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Abstract. There exist many constructions of infinite words over three-
letter alphabet avoiding squares. However, the characterization of the
lexicographically minimal square-free word is an open problem. Efficient
construction of this word is not known. We show that the situation
changes when some letters commute with each other. We give two char-
acterizations (morphic and recursive) of the lexicographically minimal
square-free word ṽ in the case of a partially commutative alphabet Θ of
size three. We consider the only non-trivial relation of partial commu-
tativity, for which ṽ exists: there are two commuting letters, while the
third one is blocking (does not commute at all). We also show that the
n-th letter of ṽ can be computed in time logarithmic with respect to n.

1 Introduction

Problems related to repetitions are crucial in the combinatorics on words due to
many practical application, for instance in data compression, pattern matching,
text indexing and so on (see [16]). On the other hand, in some cases it is impor-
tant to consider words avoiding regularities and repetitions. Example applica-
tions can be found in such research areas as cryptography and bioinformatics.
Languages of words over partially commutative alphabets are fundamental tools
for concurrent systems investigation, see [9]. Therefore, the study of repetitions
and their avoidability in such languages is significant.

The simplest form of repetition is a square – the factor of the form x · x,
where x is not empty. Therefore, to show that a word w contains no repetitions,
it is sufficient to show that w does not contain squares. Another interesting type
of repetition is the abelian square – a factor of the form x · y, where x can
be obtained from y by permutation of the letters. For example, baca · caab is
an abelian square, whereas bcca · cbba is not. A word that contains no abelian
squares is called abelian square-free.
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Square-free and abelian square-free words have been extensively studied. In
1906 Thue showed that squares are avoidable over three-letter alphabet (see
[19]), i.e. there exist infinitely many ternary words without a square. In 1961
Erdös raised the question whether abelian squares are avoidable (see [13]). First
attempt to answer this question was made by Evdokimov in 1968 (see [14]), who
showed that abelian squares are avoidable over alphabets consisting of at least
25 letters. Then, in 1970, the required size of the alphabet was decreased to 5 by
Pleasants (see [18]), and finally, in 1992, to 4 by Keränen (see [15]). Moreover,
it can be easily shown that abelian squares cannot be avoided over three-letter
alphabet.

A one step further is to study repetitions and their avoidability in words over
partially commutative alphabets, see for instance [6–8,10,11]. In contrast to the
abelian case, only some fixed pairs of letters from the alphabet are allowed to
commute. It complicates considerably the analysis of repetitions in such classes
of words.

Our Results. In this paper we deal with the avoidability of repetitions in
words over three-letter alphabet Θ with one pair of commuting letters. Then we
describe an infinite language of length-increasing square-free words and investi-
gate their combinatorial properties. We use this language, utilising the results
of [10], to define the infinite language of partially abelian square-free words over
Θ.

As a final result, we give two characterizations of the infinite lexicographically
minimal Θ-square-free word ṽ and give an efficient construction of this word.
The n-th letter of ṽ can be computed in logarithmic time with respect to n.
The first 176 letters of ṽ are:

ṽ = abacabcbacabacbcabacabcbacbcabcbacabacbcabacabcbacabacbcabcb
acbcabacabcbacabacbcabacabcbacbcabcbacabacbcabcbacbcabacabcb
acbcabcbacabacbcabacabcbacabacbcabcbacbcabacabcbacabacbc . . .

Due to the page limitation, the proofs of some facts were omitted. The full
version of this paper, including all proofs, is available as [17].

2 Basic Notions

Throughout the paper we use the standard notions of the formal language theory
(see [16] for a more detailed introduction). By Σ we denote a finite set, called
the alphabet. Elements of the alphabet are called letters. A finite word over Σ
is a finite sequence of letters. The length of a word w is defined as the number
of its letters and denoted |w|. The set of all finite words over Σ is denoted by
Σ∗ and is equipped with a binary associative concatenation operation ·, where
a1 . . . an ·b1 . . . bm is simply a1 . . . anb1 . . . bm. An empty sequence of letters, called
the empty word and denoted by ε, is the neutral element of the concatenation
operation. Thus for any word w we have ε · w = w · ε = w. An infinite word over
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Σ is a sequence of letters indexed by non-negative integers. On the other hand,
it can be also defined as a limit of infinite sequence of finite words.

A word u is called a factor of a word w if there exist words x and y such
that w = xuy. If y = ε then u is called a prefix of w and if x = ε then u is called
a suffix of w. For a word w = a1a2 . . . an and 1 ≤ i, j ≤ n by w[i..j] we denote
its factor of the form aiai+1 . . . aj .

We assume that the alphabet Σ is given together with a strict total order <,
called the lexicographical order. This notion is extended in a natural way to the
level of words. For any two words x and y we have x < y if x is a proper prefix
of y or we have x = uav1 and y = ubv2, where a, b are letters and a < b.

A mapping φ : Σ∗
1 → Σ∗

2 is called a morphism if we have φ(u ·v) = φ(u) ·φ(v)
for every u, v ∈ Σ∗

1 . A morphism φ is uniquely determined by its values on
the alphabet. Moreover, φ maps the neutral element of Σ∗

1 into the neutral
element of Σ∗

2 .
A partially commutative alphabet is a pair Θ = (Σ, ind), where Σ is an

ordered alphabet and ind ⊆ Σ × Σ is a symmetric commutation relation. Such
an alphabet defines an equivalence relation ≡Θ identifying words, which differ
only by the ordering of commuting letters. Two words w, v ∈ Σ∗ satisfy w ≡Θ v
if there exists a finite sequence of commutations of adjacent commuting letters
transforming w into v. For example let us consider the partially commutative
alphabet Θ = ({a, b, c}, {(b, c), (c, b)}). Then the word w = acbcacb is equivalent
to v = accbabc, but is not equivalent to u = baccacb. Words over a partially
commutative alphabet Θ = (Σ, ind) are called partially commutative words.
Note that it is usually assumed that for each a ∈ Σ we have (a, a) /∈ ind , but in
the case of this paper such an assumption is not essential and it does not affect
the presented results.

A square in a word w is a factor of the form x · x, where x is not empty.
A word w is called square-free if none of its factors is a square. If we consider
a partially commutative alphabet Θ = (Σ, ind) a square is called a partially
commutative square or a Θ-square in short.

Definition 1 ([10]). Let Θ = (Σ, ind) be a partially commutative alphabet.
A Θ-square is a factor of the form u ·v such that u ≡Θ v. A word w is Θ-square-
free if it does not contain a nonempty Θ-square.

There are possible other (nonequivalent) definitions of a partially commu-
tative square-free words, see [8]. Moreover, in the case of the full commutation
relation (i.e. any pair of letters can commute) Θ-squares are called the abelian
squares, and words avoiding them – the abelian square-free words.

Example 1. Let Θ = ({a, b, c}, {(b, c), (c, b)}) be a partially commutative alpha-
bet. The word w1 = abc · acb is a Θ-square, but it is not an ordinary square. On
the other hand, w2 = abc · bac is an abelian square, which is neither a Θ-square
nor an ordinary square. Therefore, w1 is a square-free word, which it is neither
Θ-square-free nor abelian square-free, while w2 is square-free and Θ-square-free,
but not abelian square-free.
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3 Partially Abelian Square-Free Words over Three-Letter
Alphabets

It is easy to see that any binary word consisting of at least four letters must con-
tain a square. In 1906 Thue shown that three letters are sufficient to construct
an infinite square-free word (see [19]). Moreover, in 1992 Keränen proved that to
avoid abelian squares (i.e. factors of the form x · y, where x and y differ only by
permutation of their letters) four letters are sufficient (see [15]). It follows imme-
diately that any four-letter alphabet with more restricted commutation relation
also allows to avoid partially commutative squares. Therefore, the alphabets of
size three are the most interesting boundary case.

Θ1: Θ2: Θ3: Θ4:

a b

c

a b

c

a b

c

a b

c

Fig. 1. The possible shapes of the commutation relation over three-letter alphabet.
The pairs of letters connected by an edge can commute.

In partially commutative alphabets consisting of three letters one can con-
sider four distinct commutation relations as depicted on Fig. 1. We start with
the most restricted case of Θ4. Observe that the concepts of Θ4-square freeness
and ordinary square-freeness are equivalent. Due to the results of Thue (see [19]),
the number of Θ4-square-free words is infinite. Moreover, the number of finite
square-free words of a given length is exponential with respect to this length
(see [5] for more details).

On the other hand, the concepts of abelian square-freeness and Θ1-square-
freeness are equivalent. We have only 117 words without Θ1-square and the
longest of them consists of 7 letters. Similarly, the number of Θ2-square-free
words is finite. In this case we have 289 such words with the longest having 15
letters (see [10] for more details).

The most interesting case is the remaining alphabet Θ3. Similarly as in the
case of Θ4, the number of finite Θ3-square-free words is infinite, however it is
polynomially proportional to the length of the word (see [11]). In what follows,
we focus on this alphabet and investigate the combinatorial structure of Θ3-
square-free words in more details.

Remark 1. From now on we only consider the alphabet Θ3 and denote it by
Θ. Thus, by Θ-square and Θ-square-freeness we mean the Θ3-square and Θ3-
square-freeness.
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Conditions for Θ-square-freeness

We start with giving some necessary and sufficient conditions for a word to
be Θ-square-free. The more detailed study of their combinatorial structure is
presented in the subsequent sections. We follow here the results of [10] presented
below. Initially we present a statement, which is used further to formulate the
conditions for Θ-square-freeness.

Definition 2 (Condition (F), see [10]). The word v ∈ Σ∗ satisfies the
condition (F) if neither abca nor acba is a factor of v, where a, b, c ∈ Θ =
(Σ, ind).

The possible structure of a finite word containing a Θ-square is established
by the following fact (see Proposition 3.2 in [10]).

Proposition 1 (see [10]). Let w be a finite square-free word satisfying the
condition (F) and containing a Θ-square as a factor. Then w admits one of the
following decompositions:

(i) w = w1bcw2bcbw2bw3 (ii) w = w1cbw2cbcw2cw3

(iii) w = w1bw2bcbw2cbw3 (iv) w = w1cw2cbcw2bcw3

where w1, w2, w3 ∈ Σ∗. Moreover in such a decomposition one of the factors
w1 or w3 is of length at most 1.

As a corollary to Proposition 1 we can formulate the following fact char-
acterizing the possible building blocks of Θ-square-free words (see the proof of
Proposition 2.1 and Proposition 3.2 in [10]). It will be utilized further in con-
struction an infinite Θ-square-free word.

Corollary 1. Any infinite Θ-square-free word w starting with a consists of the
factors belonging to the following: B = {aba, aca, abcba, acbca, abca, acba}.
Moreover, the factors acba and abca can appear only as a prefix of w.

Remark 2. Note that no two different words created by concatenating factors
(without ending a) from the set B defined in Corollary 1 are equivalent under
the relation ≡Θ.

Finally, the following theorem gives a sufficient condition for the Θ-square-
freeness of an infinite word, see Corollary 3.3 in [10] for the proof.

Theorem 1 (see [10]). Any infinite square-free word over Σ starting with a
and satisfying the (F) condition is Θ-square-free.

4 The Structure of Θ-square-free Words

In the preceding section we presented the necessary and sufficient conditions for
a word to be Θ-square-free. Below we investigate the combinatorial structure of
such words in more detail.
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Recall that due to Corollary 1 any infinite Θ-square-free word w consists
only of the factors aba, aca, abcba, acbca, acba and abca, where the last two
can appear only as a prefix w. It can be easily proven that neither abc nor acb
could be a prefix of the lexicographically minimal infinite Θ-square-free word.
Therefore we have to consider only the factors aba, aca, abcba, acbca.

The above observations are the basis of the idea of encoding the possible
building blocks of Θ-square-free words as the symbols of a four-letter meta-
alphabet Δ = {A,B,C,D}.

Definition 3. Let Σ={a, b, c} (alphabet) and Δ={A,B,C,D} (meta-alphabet).
We define a morphism M : Δ∗ −→ Σ∗ as follows:

M =
{

A −→ ab B −→ ac
C −→ abcb D −→ acbc

.

It is worth to note that the morphism defined above is a code with finite
deciphering delay. This fact is utilized in operations described further in this
paper.

In what follows, if a word w over Σ is an image of a word u over Δ we call
u an M -reduction of w and w is called M -reducible1.

The alphabet Δ consists of four letters, hence it allows us to construct words
without repetitions. However, not all such words over Δ lead to words with no
repetitions over Θ. Since we are interested in Θ-square-free words, the considered
words over Δ must satisfy additional conditions presented further.

Lemma 1. Let w be an infinite, M -reducible and Θ-square-free word starting
with abacabcbaca. Then M -reduction of w does not contain any of the factors:
AC, CA, BD, DB, ABA, BAB, CBC, DAD, ADCB, BCDA.

Remark 3. Let w ∈ Σ∗ be a Θ-square-free word satisfying the condition (F)
stated in Definition 2. Then w consists of blocks, which are images of letters
from the alphabet Δ by the morphism M defined above, hence it is always
M -reducible and we can apply the inverse mapping M−1 (M -reduction) to w.
Moreover, the obtained result is a square-free word. On the other hand, the
image by M of a square-free word over Δ does not have to be Θ-square-free
word. For instance AC is a square-free word over Δ, but M(AC) = ababcb is
not Θ-square-free.

As a corollary to Lemma 1 we can describe the structure of Θ-square-free
words in the terms of meta-alphabet.

Corollary 2. Each M -reduction of a Θ-square-free word starting with aba is an
element of the set defined by a following regular expression Υ =

(

(A|C)(B |D)
)∗.

1 In the approach presented in this paper the morphism M is in fact used as a transla-
tion of an infinite word over four-letter alphabet into an infinite word over three-letter
alphabet.
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Remark 4. The inverse of Corollary 2 is not true, i.e. there exist words whose
M -reductions are in the set Υ , but they are not Θ-square-free, for instance
abacabacbc which is an image of ABAD.

Lemma 2. Let w < v ∈ Σ∗ be two M -reducible words starting with aba, which
M -reductions have equal length and are contained in Υ , and let u ∈ Σ∗ be the
longest M -reducible word such that M−1(w) = M−1(u)M−1(w′) and M−1(v) =
M−1(u)M−1(v′). Then M−1(v′) starts with C and M−1(w′) starts with A or
M−1(v′) starts with D and M−1(w′) starts with B.

Theorem 2. An infinite word w starting with the letter a and not starting with
abca or acba is Θ-square-free if and only if w is square-free and M -reducible.

5 Two Equivalent Characterizations of the Infinite
Word ṽ

In this section we present two alternative definitions of the language of square-
free words over the meta-alphabet Δ = {A,B,C,D} introduced in the previous
section. We start with a definition using a morphism, then we show a recurrent
procedure, which generates the same class of words.

5.1 Morphic Characterization

Let us define the sequence of words {Xi}i≥0 over Δ together with the lan-
guages Lm and Ldep similar to M(Lm). Both of them are based on the following
morphism.

Definition 4. We define a morphism m : {A,B,C,D}∗ −→ {A,B,C,D}∗ as:

m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A −→ BCB
B −→ ADA
C −→ BCDCB
D −→ ADCDA

.

Definition 5. Let {Xi}i>0 be defined as:

Xi =

{

AB for i = 0

A · m(Xi−1) · B for i > 0
.

We define the languages

Lm =
{

mi(AB) : i ≥ 0
}

; and Ldep =
{

M(Xi) : i ≥ 0
}

.

The subsequent fact describes the combinatorial structure of words contained
in the language Ldep.
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Lemma 3. For every two words u, v ∈ Ldep either u is the prefix of v or v is
the prefix of u.

Note that Ldep is an infinite set of words with strictly growing lengths. There-
fore, for any k > 0 there exists a word w ∈ Ldep such that |w| > k. This obser-
vation, together with Lemma 3, constitutes the correctness of the definition of
the infinite word ṽ.

Id Zi is a sequence of length increasing words, such that Zi is a prefix of
Zi+1 for each i then limi→∞ Zi denotes the infinite word containing all Zi as
its prefixes.

Definition 6. Define ṽ = limi→∞ M(Xi), or equivalently as ṽ = sup(Ldep).

We show that ṽ is the lexicographically least word over our partially com-
mutative alphabet.

5.2 Recurrent Characterization of ṽ

In this subsection we define two sequences of words using recurrence. Further-
more, at the end of this section, we show that one of them is equivalent to the
sequence {Xi}i≥0 defined previously. We start with defining the operation of
so-called complement for letters.

Definition 7. We define the operation ̂: {A,B,C,D} → {A,B,C,D} as fol-
lows:

̂ =

{

A → B, B → A

C → D, D → C
.

The mapping defined above is in a natural way extended to the level of words.
It allows us to define two recurrent sequences of words.

Definition 8. We define the sequences of words {Yi}i≥−1 and {Si}i≥0 over the
alphabet Δ = {A,B,C,D} as follows:

Y−1 = ε, Y0 = AB, S0 = C,

Yn+1 = YnSn
̂Yn

̂SnYn, Sn+1 = Sn
̂Yn−1

̂SnYn−1Sn.

Example 2. The first few elements of sequences defined above are as follows:

Y0 = AB, S0 = C, Y1 = ABCBADAB, S1 = CDC,

Y2 = ABCBADABCDCBADABCBADCDABCBADAB,

S2 = CDCBADCDABCDC.

The following facts describe some of the combinatorial properties of the
sequences defined above.

Lemma 4. For each i, the word Si is a palindrome and the word Yi is a pseudo-
palindrome, i.e. for each 1 ≤ k ≤ l we have Y [l − k + 1] = ̂Y [k], where l = |Yi|.
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Lemma 5. Let Xi be as in Definition 5. Then
(1) for each i ≥ 0 we have Xi = Yi;
(2) ṽ = limi→∞ M(Yi).

Taking into account the images of the words Yi and Si by morphism M we
can formulate the following fact, which will be very useful further.

Proposition 2 (Block lengths). Let Yi and Si be as defined above. Then for
each i ≥ 1 we have:

∣

∣

∣M(Yi)
∣

∣

∣ =
4(4i+1 − 1)

3
and

∣

∣

∣M(Si)
∣

∣

∣ =
4(2 · 4i + 1)

3
.

6 Combinatorial Properties of the Word ṽ

In this section we formulate and prove the main results of the paper. Namely, we
show the Θ-square-freeness (Theorem 3) and lexicographical minimality (Theo-
rem 4) of the word ṽ and the time complexity of the computing the n-th letter
of ṽ (Theorem 5). The proof of the latter yields in fact a very efficient procedure.

We start with a series of facts which lead to the proof of Θ-square-freeness
of ṽ. Let us recall languages Lm and Ldep = M(Lm) from Definition 5.

Proposition 3. The language Lm consists of square-free words only.

Lemma 6. Lm ⊆ Υ =
(

(A|C)(B|D)
)∗

.

Proposition 4. Let v ∈ Lm. Then v does not contain a factor of the form
wxwy, where w ∈ Δ∗, and (x = A ∧ y = C) or (x = B ∧ y = D).

Theorem 3. The languages M(Lm) and Ldep consists of square-free words only.
The word ṽ is an infinite Θ-square-free word.

Theorem 4. The word ṽ is the lexicographically minimal infinite Θ-square-free
word.

Proof. The Θ-square-freeness of ṽ follows from Theorem 3.
Suppose that there exists an infinite Θ-square-free word w̃ that is lexico-

graphically smaller than ṽ. Then, by the analysis of short Θ-square-free words,
w̃ has to start with abacabcbaca. Moreover, due to Theorem 2 the word w̃ is
M -reducible. Let us consider u ∈ Σ∗ – the longest common M -reducible prefix
of ṽ and w̃. Moreover, let X,Y ∈ Δ be such that v = uM(X) and w = uM(Y )
are prefixes of ṽ and w̃, respectively. We have that M(X) > M(Y ). Potentially
there are 6 cases for X,Y , however from our previous results it follows that the
only cases to consider are:

(X,Y ) = (C,A), or (X,Y ) = (D,B).

Precisely, w, v and u satisfy all assumptions of Lemma 2, hence indeed, one of
the following conditions holds:
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1. M−1(v) = M−1(u)C and M−1(w) = M−1(u)A,
2. M−1(v) = M−1(u)D and M−1(w) = M−1(u)B.

Without the loss of generality, we can assume the first case. According to
Lemma 1, the last meta-letter of M−1(u) is either B or D. We deal with each
of those cases separately.

1o (M−1(u) ends with B): Due to the morphic definition of ṽ, the last but
one letter of M−1(u) is A. Hence, the word M−1(w) contains a forbidden factor
ABA. Therefore, by Lemma 1, the infinite word w̃ cannot be Θ-square-free.

2o (M−1(u) ends with D): Following similar reasoning as above, we obtain
that M−1(u) ends with BCD. Hence, the word M−1(w) contains a forbidden
factor BCDA. Therefore, due to Lemma 1, the infinite word w̃ cannot be Θ-
square-free.

The contradictions obtained above prove that the initial assumption concern-
ing the existence of w̃ was wrong. Therefore, ṽ is indeed the lexicographically
minimal infinite Θ-square-free word.

Theorem 5. For each n > 0 the n-th letter of the word ṽ can be determined in
time O(log n).

Proof. To prove the above lemma we present a simple recurrent procedure.
For given n ≥ 0 we find the shortest word Yi of length l ≥ n, where Yi’s

are as in Definition 8. Due to Proposition 2, both the index i and length l are
given by simple arithmetic formulas. By Definition 8, the word Yi consists of
five factors (either Yi−1 or Si−1 or their complements) with lengths given by
Proposition 2. Thus, we can determine the factor F ∈ {Yi−1, ̂Yi−1, Si−1, ̂Si−1}
containing the considered position k in a constant time. It remains to determine
(using a recurrent call) the letter in F on a position n′, which is obtained by
subtracting from k the starting position of F . The recurrence stops when i = 1
and we have F equal to one of the words M(Y1), M(S1), M(̂Y1) or M(̂S1).

Note that at each call of the recurrence it is necessary to memorize whether we
are looking for a letter in one of words (M(Y1) or M(S1)) or their complements
(M(̂Y1) or M(̂S1)). It could be done by using a single boolean variable.

It is easy to see that the number of iterations performed by the procedure
described above is logarithmic with respect to n. Moreover, the required com-
putations on each level of recurrence can be performed in a constant time.

7 Final Remarks

In partially commutative alphabets of size three with one pair of commuting
letters one can consider three commutation relations:

Θ1: Θ2: Θ3:

a b

c

a b

c

a b

c
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From the point of view of the partially abelian square-freeness all above
alphabets are equivalent. We considered in this paper square-free words over
the partially commutative alphabet Θ3, but any Θ3-square-free word could be
transformed by a morphism (precisely an isomorphism) to a Θ1-square-free or
Θ2-square-free word and almost all the results follow.

However, if we are interested in construction of the lexicographically minimal
partially abelian square-free word, the choice of the alphabet is very important.
Such a choice determines the blocking letter and the structure of the lexico-
graphically minimal word. In the case of alphabets Θ1 and Θ2 it requires further
investigation.

In [2] Allouche and Shallit presented an open problem of characterizing the
lexicographically minimal square-free word over three-letter alphabet without
any commutation allowed. The construction of Thue (see [19]) leads to a word
which is not lexicographically minimal.

On the other hand, there is a procedure, proposed by Currie [12], which
allows to determine if a given finite word is a prefix of an infinite word avoiding
some repetitions. It immediately gives an algorithm computing arbitrary long
prefix of the lexicographically least infinite word. However, generating n-th letter
is definitely not logarithmic with respect to n. Moreover, in the case of square-
freeness, it seems to be directly applicable for alphabets consisting more than
four letters.

Another problem related to square-freeness is the overlap-freeness (i.e., avoid-
ing pattern axaxa, where a is a letter and x is a word). Berstel proved [3], (see
also [4]), that the lexicographically greatest infinite overlap-free word on the
binary alphabet Σ = {0, 1} that begins with 0 is the Thue-Morse overlap-free
sequence τ .

Moreover, it has been shown in [1] that the lexicographically least infinite
overlap-free binary word is 001001τ̄ , where τ̄ is the negation of overlap-free Thue-
Morse word τ . This makes the problem of extremal cases for overlap-freeness
closed. However, its solution relies on Thue-Morse word, which is a fix point of
a morphism. This supports the claim that there is also an efficient construction
of the lexicographically least square-free word over a ternary alphabet without
commutation. We believe that the techniques utilized in this paper might be
helpful in finding such a construction.
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