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Abstract. We extend Brzozowski derivatives and partial derivatives
from regular expressions to w-regular expressions and establish their
basic properties. We observe that the existing derivative-based automa-
ton constructions do not scale to w-regular expressions. We define a new
variant of the partial derivative that operates on linear factors and prove
that this variant gives rise to a translation from w-regular expressions to
nondeterministic Biichi automata.
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1 Introduction

Brzozowski derivatives [3] and partial derivatives [2] are well-known tools to
transform regular expressions to automata and to define algorithms for equiva-
lence and containment on them [1]. Derivatives had quite some impact on the
study of algorithms for regular languages on finite words and trees [4,9], but
they received less attention in the study of w-regular languages.

While the extension of Brzozowski derivatives to w-regular expressions is
straightforward, the corresponding automaton construction does not easily
extend to w-automata. This observation leads Park [6] to suggest resorting to
a different acceptance criterion based on transitions. Redziejowski [7] remarks
that “the automaton constructed from the derivative has, in general, too few
transitions as well as too few states.” As a remedy, Redziejowski presents a con-
struction of a deterministic automaton where states are certain combinations of
derivatives with a non-standard transition-based acceptance criterion. In sub-
sequent work, Redziejowski [8] improves on this construction by lowering the
number of states and by simplifying some technical details. To the best of our
knowledge, these papers [7,8] are the only attempts to construct w-automata
using derivatives.
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In comparison, our construction and proof are much simpler, we gain new
insights into the structure of linear factors as a stepping stone to partial deriva-
tives, and we obtain a standard nondeterministic Biichi automaton. Because
Brzozowski derivatives invariably lead to deterministic automata, we analyze
Antimirov’s partial derivatives and identify linear factors as a suitable structure
on which we base the construction of a nondeterministic automaton.

Overview

Section 2 reviews the basic definitions for (w-) regular expressions and (Biichi)
automata. Section 3 reviews Brzozowski derivatives, extends them to w-regular
expressions, and demonstrates the failure of the automaton construction based
on Brzozowski derivatives. Section 4 introduces Antimirov’s linear factors and
partial derivatives, extends them to w-regular expressions, establishes their basic
properties, and demonstrates the failure of the automaton construction based on
partial derivatives. Section 5 introduces a new notion of partial derivative that
operates directly on linear factors of an w-regular expression, defines a Biichi
automaton on that basis, and proves its construction correct.

2 Preliminaries

An alphabet X' is a finite set of symbols. The set X* denotes the set of finite
words over X, € € X* stands for the empty word; the set X denotes the set of
infinite words over X. For u € X*, we write u - v for the concatenation of words;
ifveX* thenu-ve X* ifve X then u-v € XY¥. Concatenation extends to
sets of words as usual: U-V ={u-v|u € U,v € V} where U C X* and V C X*
orV C X¥v,

Given a language U C X* and W C X* or W C X the left quotient
UMW ={v|JueU:u € W} It is a subset of ¥* or X depending on W.
For a singleton language U = {u}, we write u ='W for the left quotient.

Definition 1. The set Ry of regular expressions over X is defined inductively
by 1 € Ry, 0 € Ry, ¥ C Ry, and, for all r;s € Ry, (r.s), (r+s), r* € Ry.
The explicit bracketing guarantees unambiguous parsing of reqular expressions.

Definition 2. The language denoted by a regular expression is defined induc-
tively by L : Ry — o(X*) as usual. L(1) = {e}. L(0) = {}. L(a) = {a}
(singleton word) for each a € X. L(r.s) = L(r) - L(s). L(r+ s) = L(r) U L(s).
L(r*)={uy...up | neNu; € L(r)}.

Definition 3. The operations ®,® : Ry; X Ry, — Ry are smart concatenation
and smart union constructors for reqular erpressions.

0 r=0Vvs=0 r s=0

r s=1 S r=0
ro©s= rds=

s r=1 r r=s

(r.s) otherwise (r+s) otherwise
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Lemma 4. For allr, s: L(r ®s) = L(r.s); L(r & s) = L(r + s).

Definition 5. A regular expression r is nullable if ¢ € L(r). The function N :
Rs, — {0,1} detects nullable expressions: N(1) = 1. N(0) = 0. N(a) = O.
N(r.s)=N(r)®N(s). N(r+s)=N(r)@® N(s). N(r*) =1.

Lemma 6. For allr € Rx,. N(r) =1 iff e € L(r).

Definition 7. The set RS, of w-regular expressions over X is defined by 0 € R%,;
for all o, € RY, (a+ B) € RY; for allr € Ry and a € R, (r.a) € RY; for
all s € Ry, if € ¢ L(s), then s* € RY.

Remark 8. Definition 7 is equivalent to an alternative definition often seen in the
literature, where an w-regular-expression has a sum-of-product form Y-, (r;.s¢)
with € ¢ L(s;). An easy induction shows that every « can be rewritten in this
form: cases 0, (a+ (), s*: immediate; case (r.a): by induction, o can be written as
Yo (ri.sy), distributivity and associativity yield > (r.r;).s¢ for (r.a)). When
convenient for a proof, we assume that an expression is in sum-of-product form.

Definition 9. The language denoted by an w-reqular expression is defined induc-
tively by L2 : RY. — p(X¥): L2(0) = 0. LY (a+ 8) = LY (a) ULY(B). L (r.a) =
L(r) - LY(a). LY(s¥) ={vivg--- | Vie N:v; € L(s)}.

Definition 10. A (nondeterministic) finite automaton (NFA) is a tuple A =

(Q,X,0,q0, F) where Q is a finite set of states, X an alphabet, § : Q x X — o(Q)

the transition function, qo € @Q the initial state, and F' C Q the set of final states.
Letw=aqg...an_1 € X* be a word. A run of A on w is a sequence qq . .. qGn

such that, for all 0 < i < n, ¢i41 € 6(qi,a;). The run is accepting if ¢, € F.

The language L(A) = {w € X* | 3 accepting run of A on w} is recognized by A.
The automaton A is deterministic if |0(q,a)] =1, for allq € Q, a € X.

Definition 11. A (nondeterministic) Bichi-automaton (NBA) is a tuple B =
(Q,X,0,Q0, F) where Q is a finite set of states, X an alphabet, § : Qx X — o(Q)
the transition function, Qo C Q the set of initial states, and F C @ the set of
accepting states.

Let w = (a;)ien € X% be an infinite word. A run of B on w is an infinite
sequence of states (q;)ien such that qo € Qo and for all i € N: ¢;41 € 5(qs,a5).

A run (¢;)ien of B is accepting if there exists a strictly increasing sequence
(nj)jen such that q,; € F, for all j € N. The language L*(B) = {w € X |
3 accepting run of B on w} is recognized by B. The automaton B is deterministic
if |Qol =1 and |6(q,a)| =1, forallge Q, a € X.

3 Regular Expressions to Finite Automata

The textbook construction to transform a regular expression into a finite automa-
ton is taken from Kleene’s work [5]. However, there is an alternative approach
based on Brzozowski’s idea of derivatives for regular expressions.
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Given a regular expression r and a symbol a € X, the derivative r’ = d,(r)
is a regular expression such that £(r') = {w | aw € L(r)}, the left quotient of
L(r) by the symbol a. The derivative can be defined symbolically by induction
on regular expressions.

Definition 12 (Brzozowski derivative [3]).

dq(0) =0 da(r-s) = (da(r) ©5) & (N(r) © da(s))
d,(1) =0 Zag 3 5) = Zagrg (s)
da(b) = {(1) Z;Z ’ "

Brzozowski proved the following representation theorem that factorizes a regular
language into its e-part and the quotient languages with respect to each symbol
of the alphabet.

Theorem 13 (Representation [3]). L(r) = L(N(r))U,cxla} - L(da(r))

He further proved that there are only finitely many different regular expres-
sions derivable from a given regular expression. This finiteness result considers
expressions modulo a similarity relation = that contains (at least) associativity,
commutativity, and idempotence of the + operator as well as considering 0 as
the neutral element. We further assume associativity of concatenation.

Definition 14 (Similarity). Similarity ~ C Rx X Ry is the smallest com-
patible relation that encompasses the following elements for all r,s,t € Ry.

(r+s)+t=r+(s+t) r+s=xs+r r+rxr r+0=7r (r.s)t=xr.(s.t)

Similarity extends to =% C RY x RY. as the smallest compatible relation that
contains the following elements for all o, 8,7 € R$.

(a+pB)+ty~"at(f+y) a+Br*B+ta atanx’a a+0x
(r.s).a =¥ r.(s.q) ras = (riv) &Y (s.4v) s t= (r.s¥) ¥ (rtv)
Definition 15. The derivative operator extends to words w € X* by d.(r) =,
dow (1) = dy(de(r)) and to sets of words W C X* by dw (r) = {d(r) | w € W}.

Theorem 16 (Finiteness [3]). For each r € Ry, the set ds«(r)/~ is finite.

Taken together, these two theorems yield an effective transformation from a
regular expression to a deterministic finite automaton.

Theorem 17 (DFA from regular expression [3]). Define the DFA D(r) =
(Q,X,6,q0, F) where Q = dg«(r)/~, for all s € Q,a € X: §(s,a) = {da(s)},
go=r,F={s€Q|N(s)=1}. Then D(r) is a deterministic finite automaton
and L(D(r)) = L(r).

Let’s try to apply an analogous construction to w-regular expressions. We
first straightforwardly extend the definition of derivatives [7].
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Definition 18 (Brzozowski derivative for w-regular expressions).

da(0) =0 do(r.cr) = (da(r) © ) ® (N (r) © da(a))
da<a+ﬁ) = da(a) S5 da(ﬁ) da(sw) d ( ) 8%

Lemma 19. £¥(d,(a)) = a 1LY ()
Lemma 20. £(a) = ,cx{a} - LY (da(a)).

The operation d,,(X) also yields finitely many derivatives modulo similarity
(extended to R% x R% in the obvious way), but applying Brzozowski’s automata
construction analogously results in a deterministic Bilichi automaton, which is
known to be weaker than its nondeterministic counterpart.

Ezample 21. Consider the w-regular expression (a + b)*.0* that describes the
language of infinite words that contain only finitely many as. It is known that this
language cannot be recognized with a deterministic Biichi automaton. Applying
Brzozowski’s automaton construction analogously yields the following;:

={q, ¢} d(qo,a) = qo
QO = (a+0b)*.b¥ 5(q0,b) = 1
1 = (a+b)"0% +b 9(q1,a) = qo
Qo = {(Jo} (fha ) =q1

As all states “contain” the looping expression 0%, it is not clear which states
should be accepting. Furthermore, the automaton is deterministic, so it cannot
recognize £ ((a + b)*.b*), regardless.

4 Partial Derivatives

As Brzozowski’s construction only results in a deterministic automaton, we next
consider a construction that yields a nondeterministic automaton. It is based
on Antimirov’s partial derivatives [2]. The partial derivative d,(r) of a regular
expression r with respect to a is a set of regular expressions {si,...,s,} such
that 7, L(s;) = {w | aw € L(r)}. As a stepping stone to their definition,
Antimirov introduces linear factors of regular expressions. A linear factor is a
pair of a first symbol that can be consumed by the expression and a “remaining”
regular expression. The following definition corresponds to Antimirov’s definition
[2, Definition 2.4], but we replace the smart constructor @ for concatenation (that
elides €) by plain concatenation to simplify the finiteness proof.

Definition 22 (Linear factors [2]).

LF(0) = {} LF(r.s) = LF(r).sUN(r)®LF(s)
LF(1) = {} LF(r 4+ s) = LF(r) ULF(s)
LF(a) = {(a, 1)} LF(r*) =1LF(r).r*

where 0o F () Lo F

(a,r).s = {a,r.s) F.s={f.s|f€F}
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Defining the language of a linear factor and a set of linear factors F' by

L((a,r)) = a- L(r) =l | fery
we can prove the following results about linear factors by induction on r.
Lemma 23. If {(a,r') € LF(r), then a- L(r") C L(r).
Lemma 24. If av € L(r), then there exists (a,r’) € LF(r) such that v € L(r).
Lemma 25. For all r, L(LF(r)) = L(r) \ {e}.

We label the symbol for partial derivative with 4 to signify Antimirov’s defini-
tion. In Section 5, we define a different version of the partial derivative.

Definition 26 (Partial derivative [2]).
o) = {r" | (a,r") € LF(r),r’ # 0}

Partial derivatives extend to words and sets of words W C X* in the usual way:

02 (r)y={r} 0,(r)=J02(") |7 €02} o (r)=|J{op(r) |we W}

Antimirov proves [2, Theorem 3.4] that the set of all partial derivatives of a
given regular expression is finite. While his definition of linear factors uses the
smart concatenation ®, the finiteness proof does not rely on it: it approximates
smart concatenation by the standard concatenation operator.

Theorem 27. For any r € Ry, |04, (r)| < ||r|| where ||r|| is the alphabetic
width of v (i.e., the number of occurrences of symbols from X in r).

Furthermore, a language can be represented from its partial derivatives.
Lemma 28. L(r) = L(N(r)) UU,csa- L(> 02(r)).
Here, we write > {r; |1 <i <n} forri+---4+ry,, if n >0, or for 0 if n = 0.
We also have the following characterization.
Lemma 29. If 921(r) = {s1,..., sy}, then U, L(s;) = {w | aw € L(r)}.
Antimirov defines a nondeterministic automaton for £(r) as follows.

Theorem 30 (NFA from regular expression [2]). Define the NFA N (r) =
(Q,X,0,q0, F) where Q = 04.(r), for all s € Q, a € X: §(s,a) = 02(s), o =7,
F={seQ|N(s)=1}. Then N(r) is an NFA and L(r) = LIN(r)).

Lemma 31. w € L(r) iff e € |JN(9A(r)).

Proof. By induction on w.

Base case: € € L(r) iff ¢ € N(r) by Lemma 6. The claim follows because
N(r)=UN{r}) = UN{o4(r)}).

Inductive case: Suppose that aw € L(r) and 94(r) = {ri,...,m:}. By
Lemma 29, |J; £(r;) = {v | av € L(r)} so that w € J, L(r;), i.e., Fir w € L(r;).
By induction, e € [JN(9/(r;)) € N(92,(r)).

For the reverse direction, suppose that ¢ € |JN(92,(r)) = N(U{02A(+") |
7" € 02(r),r" # 0}). Hence, there exists 7’ € 92(r) such that ¢ € N(92(r")). By
induction, w € L(r") and thus, by Lemma 29, aw € L(r). O
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To scale the definition from Theorem 30 to w-regular expressions we need to
extend Definition 22.

Definition 32 (w-Linear factors). Define LF : RY. — X' x R x {0,1} by

LF(0) =0 LF(r.a) = LF(r).a x {0} U N(r) ® LF(«)
LF(a+ ) = LF(a) ULF(3) LF(s¥) =LF(s).s* x {1}

Compared to the linear factor of a regular expression, an w-linear factor is a
triple of a next symbol, an w-regular expression, and a bit that indicates whether
the factor resulted from unrolling an w-iteration.

For an w-linear factor define £¥({a,,g9)) = a - £L¥(8) and for a set F of
w-linear factors accordingly £¥(F) = J{L“(f) | f € F}.

Each w-regular language can be represented by its set of w-linear factors.
Compared to the finite case (Lemma 25), the empty string need not be considered
because it is not an element of X“.

Lemma 33. For all o, LY(a) = LY(LF(v)).

Proof. By induction on . We only show one illustrative case.

Case s¥: let w € £L¥(s¥). By definition, w = vovy ... with € # v; € L(s),
for all i € N. Suppose that w = aw’. Then vy = av(. Show that there exists
f=/{a,s,1) € LF(s*¥) such that w' € L¥(s).

If LF(s¥) = 0, then £¥(s*) = (), which contradicts the existence of w.

Suppose next that all w-linear factors have the form (b, s’,1) for some b # a.
But then we obtain a contradiction to av) € L(s).

Thus, we need to examine the w-linear factors of the form (a,s’.s¥,1) €
LF(s).s¥ x {1} = LF(s*). By Lemma 24, there must be a linear factor {(a,s’) €
LF(s) such that vy € £(s'). Hence, w' = vjvy - -+ € L¥(s'.s*) and thus w = aw’ €
LY ((a, s.s¥,1)) C LY(LF(s¥)).

For the reverse direction, suppose that w € £¢(LF(s¥)). Then there exists
(a,s")y € LF(s) and hence (a,s’.s¥,1) € LF(s).s¥ x {1} = LF(s¥) such that
wE a-LY.sY) =a-L(s) - LY(s*). By Lemma 23, a - L(s") C L(s) so that
wea-L(s) LY(s¥) T L(s) LY(s¥) = LY(s¥). O

Using the obvious extension of the partial derivative operator, Lemma 29
extends to the w-regular case.

Lemma 34. If 02 (a) = {B1,...,Bn}, then U], £L(8;) = {w | aw € L ()}
However, again it is not clear how to extend Antimirov’s automaton construc-

tion to Biichi automata. The critical part is to come up with a characterization of
the accepting states.

Ezample 35. Let o = (a + b)*.b* as in the previous example. Constructing an
automaton analogously to Theorem 30 yields

qo = (a+b)*.b¥ 3(qo,a) = {qo}

q =0 (g0, ) = {qo, 1 }
Q ={q,q1} §(qr,a) = {}

Qo = {qo} 3(q1,b0) = {q1}
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Thus, adopting the set of accepting states F' = {q1} yields a nondeterminis-
tic Biichi automaton that accepts exactly £(«). Apparently, we may categorize
states of the form s as accepting.

While the previous example is encouraging in that the construction leads to a
correct automaton, a simple transformation of the w-regular expression shows
that the criterion for accepting states is not sufficient in the general case.

Ezample 36. Let § = (a+ b)*.(b.b*)“. This expression recognizes the same lan-
guage as the expression of the previous example.

9a(B) = 0a((a+0)".(b.b")*)
= a((a+0)*).(b.6")% Uda(bb*) @ (b.b*)*
= {(a+0)" (b0")*}
9 (83) = 0((a+0)".(0.0")*)
= 3y((a+ b)*).(b.b*)* U dy(b.b*) ® (b.0*)*
= {(a +b)*.(b.b")*} U {b*.(b.b*)*}
Bp(b*.(0.b*)) = By (b*).(b.6*)* U Bp(b.b*) & (b.b*)*
= (b (b.b*)=} U {b*.(b.b)< )
9a (b™.(0.")%) = {}

Thus, we cannot construct a Biichi automaton for £¢(3) by simply classifying
the states of the form s as accepting because there are no such states in this
automaton: thus, the automaton would accept the empty language.

Alternatively, we might be tempted to consider all expressions of the form
r.s* where r is nullable as accepting states. This choice would classify all states
in the example as accepting, which would cause the automaton to wrongly accept
the infinite word a“.

5 NBA from w-Linear Factors

The difficulties with the previous examples demonstrate that Antimirov’s partial
derivatives cannot be used directly as the states of a Biichi automaton. To fix
these problems, we base our construction directly on the w-linear factors that
arise as an intermediate step in Antimirov’s work.

Definition 37. For an w-linear factor (and a set F of w-linear factors) define
the partial derivative as a set of w-linear factors:

Bu((a, B, 9)) = {” “EE = anh)

LF(B) a=b fer

Define further the extension to words 0.(F) = F and Ogw(F) = 0w(0.(F)) and
the extension to sets of finite words W C X*: Ow (F) = | J{0w(F) | w € W}.

This definition of the derivative serves as the basis for defining the set of
states Q(«) for the NBA, which we are aiming to construct.
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Definition 38. Define Q(«a) inductively as the smallest set such that LF(a) C
Q(«) and, for each a € X, 9,(Q(a)) C Q(a).
Lemma 39. If {a,3,9) € Q(«), then 3w € X* such that (a,,g) € Ow(LF()).
Proof. By induction on the construction of Q(«).

Base case: (a,3,g) € LF(a) = 0. (LF(«)).

Inductive case: {(a, 3, g) € 0,(f), for some f € Q(a) and a € X. By induction,
f € 0w(LF()), for some w, and thus {(a, 5, g) € 0aq(0w(LF())) = Oaw (LF()).

O

Proposition 40. For each w-regular expression a, Q(a) is finite.

Proof. We prove that Q(a) C X x 94, (a) x {0,1}.

Suppose that {(a,a’,g) € Q( ). There are two cases. If (a,a’,¢') € LF(a),
then a € X and o/ € 92 (a) C 04 ().

If (a,0/,¢") € Oy({b,3,g)) for some (b, 3,g) € Q(a), then there exists some
w € X* such that B8 € 92, (a) and (a,a/,g) € LF(B). By definition, o/ €
Oy (@) € 054 ().

By Theorem 27, |94, ()| is finite and so is |Q(a)| < |X| - |08 ()] -2. O

Given this finiteness, we construct a non-deterministic Biichi automaton from
an w-regular expression as follows.

Definition 41 (NBA from w-regular expression). Define the NBA B(a) =
(Q,%,6,Q0, F) by Q@ = Q(a); Qo = LF(a); F = {{a,0,9) € Q@ | g = 1}; and
6(f,a) = a(f).
Ezample /2. Consider (again) o = (a + b)*.b%.
LF(a) = LF((a + b)*).b¥ ULF(b¥)
= {{a, (a4 b)*.b*,0), (b, (a + b)*.b¥,0), (b, b*,1)}

=Q=CQo
5((b,6*,1Y, a) —0
5((b, 0¥, 1), ) ={{,*, 1)}
6({a, (a+)*.b*,0),a) = LF ((a+b) W) =Q
5({a, (a + b)*.b*,0),b) = {}
5((b, (a+b)*.b,0),a) = {}
3({b, (a + b)*.b,0),b) = LE((a + b)*.b%) = Q

Accepting states: F' = {(b,4*,0)} = LF(b*).
The resulting automaton properly accepts £ (a).
Ezample 43. Next consider 5 = (a + b)*.(b.b*)~.
LF(3) = LF((a + b)*).(b.b*) x {0} ULF((b.b*)*)
=LF(a + b) (a+b)*.(b.b¥) x {0} ULF(b.b*).(b.0%)¥ x {1}
— {{a (a +b)".(66°),0), (b, (a + b)".(b6*),0)}
U LF(b) b*.(b.b*)¥ x {1}
= {{a, (a +0)".(6-6),0), (b, (a + )".(b-0“), 0)
o a1y
= {<a7 B,0), (b, B,0), (b, b".(b.b™)~, 1) }
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6({a, B),a) LF(
3((b, 8),b) =
0((b, b*.(b.b*)“), b) = LF(b (b.0%)%)
= LF(b*).(b.6%)* x {1} ULF((b.b*)¥)
b
b

|
=
!
/\
\./ \./

= LF(b).b*.(b.b*)¥ x {1} ULF(b.b*).(b.b*)% x {1}
= LF(b).b*.(b.6*)* x {1} ULF(b).b*.(b.b*)¥ x {1}
= {(0,07.(0.67), 1)}

= LF((b.")%)

Accepting states:

= {(b,b".(b.b")*, 1)} = LF((b.b"))

The resulting automaton properly accepts £¢(3) with the same number of states
as in the previous example.

It remains to prove the correctness of the construction in Definition 41.
Theorem 44. For all o € RY: LY (o) = LY(B(a)).
We start with some technical lemmas.

Lemma 45. For all v # €, 0,(LF(s*)) = 0, (LF(s.5*)).

Proof. By definition of w-regular expressions, € ¢ L(s) that is N(s) = 0.
Observe that LF(s¥) = LF(s).s* x {1},
whereas LF(s.s¥) = LF(s).s¥ x {0} UN(s) © LF(s*¥) = LF(s).s¥ x {0}.
Because v # ¢, it must be that v = av’, for some a.
Hence, 0,(LF(s¥)) = U{LF(s'.s¥) | {(a,s’) € LF(s)} = 0, (LF(s.5¥)).
Hence, Ogy (LF(8¥)) = Ogor (LF(5.5¥)) O

The next lemma is our workhorse in proving that £“(«) is contained in the
language of B(a).

Lemma 46. If u € L(r), then LF(a) C 0, (LF(r.cv)).

Proof. Induction on 7.
Case r = 0: contradiction because £(0.cr) = {}.
Case r = 1: Then u = € and J.(LF(1.ct)) = LF(1l.cx) = LF(c).
Case r = a: Then u = a and 9,(LF(a.ct)) = 9,({a, @, 0)) = LF(a).
Case r = r1.r9: Then u = ujug with uy € L(r1) and ug € L(r3).
By similarity (cf. Definition 14), LF((r1.72).ct) = LF(r1.(r2.0)).
By induction on 71, LF(rg.ct) C Oy, (LF(r1.(r2.0))).
By induction on 73,

LF() C Oy, (LF(r2.c0)) C Oy, (Oy, (LF(r1.(r2.x)))) = Oy (LF(r.0))

Case 7 = r1 + ro: Assume that u € L(r;) C L(r). By induction, LF(a) C
Ou(LF(r1.@)) C 9, (LF(r.«v)). The case for o is analogous.
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Case r = ri: Consider
LF(rj.«) = LF(r]).c U N(r]) ® LF() = LF(r1).r}.a U LF ()

For uw € X*, 0, (LF(r}.«)) = Oy (LF(71).7}.a) U Oy (LF ().

If u € L(r), then u = uy ... uy, for some n € N, where all u; # . Continue by
induction on n.

If n =0, u = ¢, then clearly LF(a) C 0.(LF(r}.a)).

Otherwise,
Ou(LF(r].))
= Oy, .. un(L (ri.))
= Ous...up, (Ouy (LF (17 .00)))
= Ous...up, (Ouy (LF (r1).7].0t) U Oy, (LF ()
2 Duy.u ( ul(LF( ).ri.a))

1
> Dy (LP(r} 2))
by induction
D LF(a)
O

The next, final lemma is our workhorse in proving that the language of B(«)
is contained in £“(«). The proof requires the extra bit in the w-linear factors.

Lemma 47. Let qoqi .. .qn be a prefiz of an accepting run of B(r.s*) on uvw =
aji ...apw where q, € LF(s¥), but q; ¢ LF(s¥), for 0 <i <mn. Then u € L(r).

Proof. Induction on n.

Case 0; u = e: qo € LF(s*) N LF(r.s¥) because ¢y € Qp. Now LF(s¥) =
LF(s).s* x {1} and LF(r.s*) = LF(r).s* x {0} UN(r) ® LF(s).s* x {1}.

If N(r) =1, then ¢o € LF(s*) C LF(r.s¥) and v = ¢ € L(r).

If N(r) =0, then gy € LF(s).s* X {1} NLF(r).s* X {0} = 0 so that this case is
not possible. (Without the extra bit in LF, there may be common linear factors
if L(r)NL(s*) #0.)

Casen > 0: u = au’ and g1 € 9,(q0). As qo € Qo = LF(r.s¥) = LF(r).s* X
{0} UN(r) ® LF(s*) but gy ¢ LF(s*), it must be that gy € LF(r).s* x {0}.

Thus, g1 € 0,(LF(r).s* x {0}), so that there is a linear factor (a,r’) € LF(r)
such that g1 € LF(r'.s).

Thus, g . . . g is a prefix of an accepting run of B(r".s*)! on v/w = as ... a,w
where ¢, € LF(s*), but ¢; ¢ LF(s*), for 1 < i < n. By induction, v’ € L(r') so
that u = au’ € L(r) by Lemma 23. O

Proof (of Theorem 44). It is sufficient to consider a = r.s*.

Case “C”: Let w € L¥(r.s*). Then w = wwgvy ... where u € L(r) and
e #wv; € L(s), for i € N.

Let Qo = LF(r.s¥). By Lemma 46, LF(s¥) C 9, (LF(r.s*)) = §(Qo, u).

! While the set Q' of states of B(r’.s”) is a subset of the states @ of B(r.s¥), it is easy
to see that the states ¢i...q, as well as the remaining states ¢n+i1¢n+2... of the
accepting run are all elements of Q’.
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Furthermore, for each i € N, by Lemmas 45 and 46,

Oy, (LF(s*)) = 0y, (LF(5.8*)) D LF(s*)

Hence, there exists a run of B(«) which visits states from F = LF(s¥)
infinitely often.

Case “2”: Suppose that aga; - - - € L (B(a)). Hence, there is a run goqy - - - €
Q¥ and a strictly increasing sequence (n;);ey € N* such that, for all j € N,
g; € Fiff 3i:j =n,.

Let g = ¢p, be the first accepting state in the run and let u = ag ... an,—1. By
construction of B(«), g € 6(Qo, u) and q € LF(s*) = F. By Lemma 47, v € L(r).

Next, for each i € N, define v; = ay, ... ap,,, so that w = uvgvy . ...

For each i, ¢, € F and € # v; = b;v}. By construction ¢,,+1 € §(gn,,b;) so
that ¢n,4+1...Gn,,, --- is a prefix of an accepting run of B(qy,+1) where g,,41 =
(bi, s'.s¥, 1), for some (b;,s") € LF(s). By Lemma 47, v € L(s') so that v; =
b;v; € L(s) by Lemma 23.

Taken together, we have shown that w € L(r) - {vovi--- | v; € L(s)} =
LY (r.s%). O

We believe that it is possible to reduce the number of states of B(«) by a factor
of | X| by merging suitable linear factors, but we leave this for future work.
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