
From ω-Regular Expressions to Büchi Automata
via Partial Derivatives

Peter Thiemann1(B) and Martin Sulzmann2

1 Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 079,
79110 Freiburg, Germany

thiemann@acm.org
2 Faculty of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences, Moltkestrasse 30,
76133 Karlsruhe, Germany

martin.sulzmann@hs-karlsruhe.de

Abstract. We extend Brzozowski derivatives and partial derivatives
from regular expressions to ω-regular expressions and establish their
basic properties. We observe that the existing derivative-based automa-
ton constructions do not scale to ω-regular expressions. We define a new
variant of the partial derivative that operates on linear factors and prove
that this variant gives rise to a translation from ω-regular expressions to
nondeterministic Büchi automata.

Keywords: Automata and logic ·Omega-regular languages ·Derivatives

1 Introduction

Brzozowski derivatives [3] and partial derivatives [2] are well-known tools to
transform regular expressions to automata and to define algorithms for equiva-
lence and containment on them [1]. Derivatives had quite some impact on the
study of algorithms for regular languages on finite words and trees [4,9], but
they received less attention in the study of ω-regular languages.

While the extension of Brzozowski derivatives to ω-regular expressions is
straightforward, the corresponding automaton construction does not easily
extend to ω-automata. This observation leads Park [6] to suggest resorting to
a different acceptance criterion based on transitions. Redziejowski [7] remarks
that “the automaton constructed from the derivative has, in general, too few
transitions as well as too few states.” As a remedy, Redziejowski presents a con-
struction of a deterministic automaton where states are certain combinations of
derivatives with a non-standard transition-based acceptance criterion. In sub-
sequent work, Redziejowski [8] improves on this construction by lowering the
number of states and by simplifying some technical details. To the best of our
knowledge, these papers [7,8] are the only attempts to construct ω-automata
using derivatives.

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 287–298, 2015.
DOI: 10.1007/978-3-319-15579-1 22

288 P. Thiemann and M. Sulzmann

In comparison, our construction and proof are much simpler, we gain new
insights into the structure of linear factors as a stepping stone to partial deriva-
tives, and we obtain a standard nondeterministic Büchi automaton. Because
Brzozowski derivatives invariably lead to deterministic automata, we analyze
Antimirov’s partial derivatives and identify linear factors as a suitable structure
on which we base the construction of a nondeterministic automaton.

Overview

Section 2 reviews the basic definitions for (ω-) regular expressions and (Büchi)
automata. Section 3 reviews Brzozowski derivatives, extends them to ω-regular
expressions, and demonstrates the failure of the automaton construction based
on Brzozowski derivatives. Section 4 introduces Antimirov’s linear factors and
partial derivatives, extends them to ω-regular expressions, establishes their basic
properties, and demonstrates the failure of the automaton construction based on
partial derivatives. Section 5 introduces a new notion of partial derivative that
operates directly on linear factors of an ω-regular expression, defines a Büchi
automaton on that basis, and proves its construction correct.

2 Preliminaries

An alphabet Σ is a finite set of symbols. The set Σ∗ denotes the set of finite
words over Σ, ε ∈ Σ∗ stands for the empty word; the set Σω denotes the set of
infinite words over Σ. For u ∈ Σ∗, we write u · v for the concatenation of words;
if v ∈ Σ∗, then u · v ∈ Σ∗; if v ∈ Σω, then u · v ∈ Σω. Concatenation extends to
sets of words as usual: U ·V = {u · v | u ∈ U, v ∈ V } where U ⊆ Σ∗ and V ⊆ Σ∗

or V ⊆ Σω.
Given a language U ⊆ Σ∗ and W ⊆ Σ∗ or W ⊆ Σω, the left quotient

U−1W = {v | ∃u ∈ U : uv ∈ W}. It is a subset of Σ∗ or Σω depending on W .
For a singleton language U = {u}, we write u−1W for the left quotient.

Definition 1. The set RΣ of regular expressions over Σ is defined inductively
by 1 ∈ RΣ, 0 ∈ RΣ, Σ ⊆ RΣ, and, for all r, s ∈ RΣ, (r.s), (r + s), r∗ ∈ RΣ.
The explicit bracketing guarantees unambiguous parsing of regular expressions.

Definition 2. The language denoted by a regular expression is defined induc-
tively by L : RΣ → ℘(Σ∗) as usual. L(1) = {ε}. L(0) = {}. L(a) = {a}
(singleton word) for each a ∈ Σ. L(r.s) = L(r) · L(s). L(r + s) = L(r) ∪ L(s).
L(r∗) = {u1 . . . un | n ∈ N, ui ∈ L(r)}.
Definition 3. The operations �,⊕ : RΣ × RΣ → RΣ are smart concatenation
and smart union constructors for regular expressions.

r � s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 r = 0 ∨ s = 0
r s = 1
s r = 1
(r.s) otherwise

r ⊕ s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r s = 0
s r = 0
r r = s

(r + s) otherwise

From ω-Regular Expressions to Büchi Automata via Partial Derivatives 289

Lemma 4. For all r, s: L(r � s) = L(r.s); L(r ⊕ s) = L(r + s).

Definition 5. A regular expression r is nullable if ε ∈ L(r). The function N :
RΣ → {0,1} detects nullable expressions: N(1) = 1. N(0) = 0. N(a) = 0.
N(r.s) = N(r) � N(s). N(r + s) = N(r) ⊕ N(s). N(r∗) = 1.

Lemma 6. For all r ∈ RΣ. N(r) = 1 iff ε ∈ L(r).

Definition 7. The set Rω
Σ of ω-regular expressions over Σ is defined by 0 ∈ Rω

Σ;
for all α, β ∈ Rω

Σ, (α + β) ∈ Rω
Σ; for all r ∈ RΣ and α ∈ Rω

Σ, (r.α) ∈ Rω
Σ; for

all s ∈ RΣ, if ε /∈ L(s), then sω ∈ Rω
Σ.

Remark 8. Definition 7 is equivalent to an alternative definition often seen in the
literature, where an ω-regular-expression has a sum-of-product form

∑n
i=1(ri.s

ω
i)

with ε /∈ L(si). An easy induction shows that every α can be rewritten in this
form: cases 0, (α+β), sω: immediate; case (r.α): by induction, α can be written as∑n

i=1(ri.s
ω
i), distributivity and associativity yield

∑n
i=1(r.ri).sω

i for (r.α). When
convenient for a proof, we assume that an expression is in sum-of-product form.

Definition 9. The language denoted by an ω-regular expression is defined induc-
tively by Lω : Rω

Σ → ℘(Σω): Lω(0) = ∅. Lω(α + β) = Lω(α) ∪ Lω(β). Lω(r.α) =
L(r) · Lω(α). Lω(sω) = {v1v2 · · · | ∀i ∈ N : vi ∈ L(s)}.
Definition 10. A (nondeterministic) finite automaton (NFA) is a tuple A =
(Q,Σ, δ, q0, F) where Q is a finite set of states, Σ an alphabet, δ : Q×Σ → ℘(Q)
the transition function, q0 ∈ Q the initial state, and F ⊆ Q the set of final states.

Let w = a0 . . . an−1 ∈ Σ∗ be a word. A run of A on w is a sequence q0 . . . qn

such that, for all 0 ≤ i < n, qi+1 ∈ δ(qi, ai). The run is accepting if qn ∈ F .
The language L(A) = {w ∈ Σ∗ | ∃ accepting run of A on w} is recognized by A.

The automaton A is deterministic if |δ(q, a)| = 1, for all q ∈ Q, a ∈ Σ.

Definition 11. A (nondeterministic) Büchi-automaton (NBA) is a tuple B =
(Q,Σ, δ,Q0, F) where Q is a finite set of states, Σ an alphabet, δ : Q×Σ → ℘(Q)
the transition function, Q0 ⊆ Q the set of initial states, and F ⊆ Q the set of
accepting states.

Let w = (ai)i∈N ∈ Σω be an infinite word. A run of B on w is an infinite
sequence of states (qi)i∈N such that q0 ∈ Q0 and for all i ∈ N: qi+1 ∈ δ(qi, ai).

A run (qi)i∈N of B is accepting if there exists a strictly increasing sequence
(nj)j∈N such that qnj

∈ F , for all j ∈ N. The language Lω(B) = {w ∈ Σω |
∃ accepting run of B on w} is recognized by B. The automaton B is deterministic
if |Q0| = 1 and |δ(q, a)| = 1, for all q ∈ Q, a ∈ Σ.

3 Regular Expressions to Finite Automata

The textbook construction to transform a regular expression into a finite automa-
ton is taken from Kleene’s work [5]. However, there is an alternative approach
based on Brzozowski’s idea of derivatives for regular expressions.

290 P. Thiemann and M. Sulzmann

Given a regular expression r and a symbol a ∈ Σ, the derivative r′ = da(r)
is a regular expression such that L(r′) = {w | aw ∈ L(r)}, the left quotient of
L(r) by the symbol a. The derivative can be defined symbolically by induction
on regular expressions.

Definition 12 (Brzozowski derivative [3]).

da(0) = 0
da(1) = 0

da(b) =

{
1 a = b

0 a = b

da(r.s) = (da(r) � s) ⊕ (N(r) � da(s))
da(r + s) = da(r) ⊕ da(s)
da(r∗) = da(r) � r∗

Brzozowski proved the following representation theorem that factorizes a regular
language into its ε-part and the quotient languages with respect to each symbol
of the alphabet.

Theorem 13 (Representation [3]). L(r) = L(N(r)) ∪ ⋃
a∈Σ{a} · L(da(r))

He further proved that there are only finitely many different regular expres-
sions derivable from a given regular expression. This finiteness result considers
expressions modulo a similarity relation ≈ that contains (at least) associativity,
commutativity, and idempotence of the + operator as well as considering 0 as
the neutral element. We further assume associativity of concatenation.

Definition 14 (Similarity). Similarity ≈ ⊆ RΣ × RΣ is the smallest com-
patible relation that encompasses the following elements for all r, s, t ∈ RΣ.

(r+s)+t ≈ r+(s+t) r+s ≈ s+r r+r ≈ r r+0 ≈ r (r.s).t ≈ r.(s.t)

Similarity extends to ≈ω ⊆ Rω
Σ × Rω

Σ as the smallest compatible relation that
contains the following elements for all α, β, γ ∈ Rω

Σ.

(α + β) + γ ≈ω α + (β + γ) α + β ≈ω β + α α + α ≈ω α α + 0 ≈ω α

(r.s).α ≈ω r.(s.α) r ≈ s ⇒ (r.tω) ≈ω (s.tω) s ≈ t ⇒ (r.sω) ≈ω (r.tω)

Definition 15. The derivative operator extends to words w ∈ Σ∗ by dε(r) = r,
daw(r) = dw(da(r)) and to sets of words W ⊆ Σ∗ by dW (r) = {dw(r) | w ∈ W}.
Theorem 16 (Finiteness [3]). For each r ∈ RΣ, the set dΣ∗(r)/≈ is finite.

Taken together, these two theorems yield an effective transformation from a
regular expression to a deterministic finite automaton.

Theorem 17 (DFA from regular expression [3]). Define the DFA D(r) =
(Q,Σ, δ, q0, F) where Q = dΣ∗(r)/≈, for all s ∈ Q, a ∈ Σ: δ(s, a) = {da(s)},
q0 = r, F = {s ∈ Q | N(s) = 1}. Then D(r) is a deterministic finite automaton
and L(D(r)) = L(r).

Let’s try to apply an analogous construction to ω-regular expressions. We
first straightforwardly extend the definition of derivatives [7].

From ω-Regular Expressions to Büchi Automata via Partial Derivatives 291

Definition 18 (Brzozowski derivative for ω-regular expressions).

da(0) = 0
da(α + β) = da(α) ⊕ da(β)

da(r.α) = (da(r) � α) ⊕ (N(r) � da(α))
da(sω) = da(s) � sω

Lemma 19. Lω(da(α)) = a−1Lω(α)

Lemma 20. Lω(α) =
⋃

a∈Σ{a} · Lω(da(α)).

The operation dw(Σ) also yields finitely many derivatives modulo similarity
(extended to Rω

Σ ×Rω
Σ in the obvious way), but applying Brzozowski’s automata

construction analogously results in a deterministic Büchi automaton, which is
known to be weaker than its nondeterministic counterpart.

Example 21. Consider the ω-regular expression (a + b)∗.bω that describes the
language of infinite words that contain only finitely many as. It is known that this
language cannot be recognized with a deterministic Büchi automaton. Applying
Brzozowski’s automaton construction analogously yields the following:

Q = {q0, q1}
q0 = (a + b)∗.bω

q1 = (a + b)∗.bω + bω

Q0 = {q0}

δ(q0, a) = q0
δ(q0, b) = q1
δ(q1, a) = q0
δ(q1, b) = q1

As all states “contain” the looping expression bω, it is not clear which states
should be accepting. Furthermore, the automaton is deterministic, so it cannot
recognize Lω((a + b)∗.bω), regardless.

4 Partial Derivatives

As Brzozowski’s construction only results in a deterministic automaton, we next
consider a construction that yields a nondeterministic automaton. It is based
on Antimirov’s partial derivatives [2]. The partial derivative ∂a(r) of a regular
expression r with respect to a is a set of regular expressions {s1, . . . , sn} such
that

⋃n
i=1 L(si) = {w | aw ∈ L(r)}. As a stepping stone to their definition,

Antimirov introduces linear factors of regular expressions. A linear factor is a
pair of a first symbol that can be consumed by the expression and a “remaining”
regular expression. The following definition corresponds to Antimirov’s definition
[2, Definition 2.4], but we replace the smart constructor � for concatenation (that
elides ε) by plain concatenation to simplify the finiteness proof.

Definition 22 (Linear factors [2]).

lf(0) = {}
lf(1) = {}
lf(a) = {〈a,1〉}

lf(r.s) = lf(r).s ∪ N(r) � lf(s)
lf(r + s) = lf(r) ∪ lf(s)
lf(r∗) = lf(r).r∗

where
0 � F = {} 1 � F = F
〈a, r〉.s = 〈a, r.s〉 F.s = {f.s | f ∈ F}

292 P. Thiemann and M. Sulzmann

Defining the language of a linear factor and a set of linear factors F by

L(〈a, r〉) = a · L(r) L(F) =
⋃

{L(f) | f ∈ F}
we can prove the following results about linear factors by induction on r.

Lemma 23. If 〈a, r′〉 ∈ lf(r), then a · L(r′) ⊆ L(r).

Lemma 24. If av ∈ L(r), then there exists 〈a, r′〉 ∈ lf(r) such that v ∈ L(r′).

Lemma 25. For all r, L(lf(r)) = L(r) \ {ε}.
We label the symbol for partial derivative with A to signify Antimirov’s defini-
tion. In Section 5, we define a different version of the partial derivative.

Definition 26 (Partial derivative [2]).

∂A
a (r) = {r′ | 〈a, r′〉 ∈ lf(r), r′ = 0}

Partial derivatives extend to words and sets of words W ⊆ Σ∗ in the usual way:

∂A
ε (r) = {r} ∂A

aw(r) =
⋃

{∂A
w (r′) | r′ ∈ ∂A

a (r)} ∂A
W (r) =

⋃
{∂A

w (r) | w ∈ W}
Antimirov proves [2, Theorem 3.4] that the set of all partial derivatives of a
given regular expression is finite. While his definition of linear factors uses the
smart concatenation �, the finiteness proof does not rely on it: it approximates
smart concatenation by the standard concatenation operator.

Theorem 27. For any r ∈ RΣ, |∂A
Σ+(r)| ≤ ||r|| where ||r|| is the alphabetic

width of r (i.e., the number of occurrences of symbols from Σ in r).

Furthermore, a language can be represented from its partial derivatives.

Lemma 28. L(r) = L(N(r)) ∪ ⋃
a∈Σ a · L(

∑
∂A

a (r)).

Here, we write
∑{ri | 1 ≤ i ≤ n} for r1 + · · · + rn, if n > 0, or for 0 if n = 0.

We also have the following characterization.

Lemma 29. If ∂A
a (r) = {s1, . . . , sn}, then

⋃n
i=1 L(si) = {w | aw ∈ L(r)}.

Antimirov defines a nondeterministic automaton for L(r) as follows.

Theorem 30 (NFA from regular expression [2]). Define the NFA N (r) =
(Q,Σ, δ, q0, F) where Q = ∂A

Σ∗(r), for all s ∈ Q, a ∈ Σ: δ(s, a) = ∂A
a (s), q0 = r,

F = {s ∈ Q | N(s) = 1}. Then N (r) is an NFA and L(r) = L(N (r)).

Lemma 31. w ∈ L(r) iff ε ∈ ⋃
N(∂A

w (r)).

Proof. By induction on w.
Base case: ε ∈ L(r) iff ε ∈ N(r) by Lemma 6. The claim follows because

N(r) =
⋃

N({r}) =
⋃

N({∂A
ε (r)}).

Inductive case: Suppose that aw ∈ L(r) and ∂A
a (r) = {r1, . . . , rk}. By

Lemma 29,
⋃

i L(ri) = {v | av ∈ L(r)} so that w ∈ ⋃
i L(ri), i.e., ∃i: w ∈ L(ri).

By induction, ε ∈ ⋃
N(∂A

w (ri)) ⊆ N(∂A
aw(r)).

For the reverse direction, suppose that ε ∈ ⋃
N(∂A

aw(r)) = N(
⋃{∂A

w (r′) |
r′ ∈ ∂A

a (r), r′ = 0}). Hence, there exists r′ ∈ ∂A
a (r) such that ε ∈ N(∂A

w (r′)). By
induction, w ∈ L(r′) and thus, by Lemma 29, aw ∈ L(r). ��

From ω-Regular Expressions to Büchi Automata via Partial Derivatives 293

To scale the definition from Theorem 30 to ω-regular expressions we need to
extend Definition 22.
Definition 32 (ω-Linear factors). Define lf : Rω

Σ → Σ × Rω
Σ × {0, 1} by

lf(0) = ∅
lf(α + β) = lf(α) ∪ lf(β)

lf(r.α) = lf(r).α × {0} ∪ N(r) � lf(α)
lf(sω) = lf(s).sω × {1}

Compared to the linear factor of a regular expression, an ω-linear factor is a
triple of a next symbol, an ω-regular expression, and a bit that indicates whether
the factor resulted from unrolling an ω-iteration.

For an ω-linear factor define Lω(〈a, β, g〉) = a · Lω(β) and for a set F of
ω-linear factors accordingly Lω(F) =

⋃{Lω(f) | f ∈ F}.
Each ω-regular language can be represented by its set of ω-linear factors.

Compared to the finite case (Lemma 25), the empty string need not be considered
because it is not an element of Σω.
Lemma 33. For all α, Lω(α) = Lω(lf(α)).

Proof. By induction on α. We only show one illustrative case.
Case sω: let w ∈ Lω(sω). By definition, w = v0v1 . . . with ε = vi ∈ L(s),

for all i ∈ N. Suppose that w = aw′. Then v0 = av′
0. Show that there exists

f = 〈a, s′, 1〉 ∈ lf(sω) such that w′ ∈ Lω(s′).
If lf(sω) = ∅, then Lω(sω) = ∅, which contradicts the existence of w.
Suppose next that all ω-linear factors have the form 〈b, s′, 1〉 for some b = a.

But then we obtain a contradiction to av′
0 ∈ L(s).

Thus, we need to examine the ω-linear factors of the form 〈a, s′.sω, 1〉 ∈
lf(s).sω × {1} = lf(sω). By Lemma 24, there must be a linear factor 〈a, s′〉 ∈
lf(s) such that v′

0 ∈ L(s′). Hence, w′ = v′
0v1 · · · ∈ Lω(s′.sω) and thus w = aw′ ∈

Lω(〈a, s′.sω, 1〉) ⊆ Lω(lf(sω)).
For the reverse direction, suppose that w ∈ Lω(lf(sω)). Then there exists

〈a, s′〉 ∈ lf(s) and hence 〈a, s′.sω, 1〉 ∈ lf(s).sω × {1} = lf(sω) such that
w ∈ a · Lω(s′.sω) = a · L(s′) · Lω(sω). By Lemma 23, a · L(s′) ⊆ L(s) so that
w ∈ a · L(s′) · Lω(sω) ⊆ L(s) · Lω(sω) = Lω(sω). ��

Using the obvious extension of the partial derivative operator, Lemma 29
extends to the ω-regular case.
Lemma 34. If ∂A

a (α) = {β1, . . . , βn}, then
⋃n

i=1 Lω(βi) = {w | aw ∈ Lω(α)}.
However, again it is not clear how to extend Antimirov’s automaton construc-

tion to Büchi automata. The critical part is to come up with a characterization of
the accepting states.
Example 35. Let α = (a + b)∗.bω as in the previous example. Constructing an
automaton analogously to Theorem 30 yields

q0 = (a + b)∗.bω

q1 = bω

Q = {q0, q1}
Q0 = {q0}

δ(q0, a) = {q0}
δ(q0, b) = {q0, q1}
δ(q1, a) = {}
δ(q1, b) = {q1}

294 P. Thiemann and M. Sulzmann

Thus, adopting the set of accepting states F = {q1} yields a nondeterminis-
tic Büchi automaton that accepts exactly L(α). Apparently, we may categorize
states of the form sω as accepting.

While the previous example is encouraging in that the construction leads to a
correct automaton, a simple transformation of the ω-regular expression shows
that the criterion for accepting states is not sufficient in the general case.

Example 36. Let β = (a + b)∗.(b.b∗)ω. This expression recognizes the same lan-
guage as the expression of the previous example.

∂a(β) = ∂a((a + b)∗.(b.b∗)ω)
= ∂a((a + b)∗).(b.b∗)ω ∪ ∂a(b.b∗) � (b.b∗)ω

= {(a + b)∗.(b.b∗)ω}
∂b(β) = ∂b((a + b)∗.(b.b∗)ω)

= ∂b((a + b)∗).(b.b∗)ω ∪ ∂b(b.b∗) � (b.b∗)ω

= {(a + b)∗.(b.b∗)ω} ∪ {b∗.(b.b∗)ω}
∂b(b∗.(b.b∗)ω) = ∂b(b∗).(b.b∗)ω ∪ ∂b(b.b∗) � (b.b∗)ω

= {b∗.(b.b∗)ω} ∪ {b∗.(b.b∗)ω}
∂a(b∗.(b.b∗)ω) = {}

Thus, we cannot construct a Büchi automaton for Lω(β) by simply classifying
the states of the form sω as accepting because there are no such states in this
automaton: thus, the automaton would accept the empty language.

Alternatively, we might be tempted to consider all expressions of the form
r.sω where r is nullable as accepting states. This choice would classify all states
in the example as accepting, which would cause the automaton to wrongly accept
the infinite word aω.

5 NBA from ω-Linear Factors

The difficulties with the previous examples demonstrate that Antimirov’s partial
derivatives cannot be used directly as the states of a Büchi automaton. To fix
these problems, we base our construction directly on the ω-linear factors that
arise as an intermediate step in Antimirov’s work.

Definition 37. For an ω-linear factor (and a set F of ω-linear factors) define
the partial derivative as a set of ω-linear factors:

∂b(〈a, β, g〉) =

{
{} a = b

lf(β) a = b
∂b(F) =

⋃

f∈F

∂b(f)

Define further the extension to words ∂ε(F) = F and ∂aw(F) = ∂w(∂a(F)) and
the extension to sets of finite words W ⊆ Σ∗: ∂W (F) =

⋃{∂w(F) | w ∈ W}.
This definition of the derivative serves as the basis for defining the set of

states Q(α) for the NBA, which we are aiming to construct.

From ω-Regular Expressions to Büchi Automata via Partial Derivatives 295

Definition 38. Define Q(α) inductively as the smallest set such that lf(α) ⊆
Q(α) and, for each a ∈ Σ, ∂a(Q(α)) ⊆ Q(α).

Lemma 39. If 〈a, β, g〉 ∈ Q(α), then ∃w ∈ Σ∗ such that 〈a, β, g〉 ∈ ∂w(lf(α)).

Proof. By induction on the construction of Q(α).
Base case: 〈a, β, g〉 ∈ lf(α) = ∂ε(lf(α)).
Inductive case: 〈a, β, g〉 ∈ ∂a(f), for some f ∈ Q(α) and a ∈ Σ. By induction,

f ∈ ∂w(lf(α)), for some w, and thus 〈a, β, g〉 ∈ ∂a(∂w(lf(α))) = ∂aw(lf(α)).
��

Proposition 40. For each ω-regular expression α, Q(α) is finite.

Proof. We prove that Q(α) ⊆ Σ × ∂A
Σ+(α) × {0, 1}.

Suppose that 〈a, α′, g〉 ∈ Q(α). There are two cases. If 〈a, α′, g′〉 ∈ lf(α),
then a ∈ Σ and α′ ∈ ∂A

a (α) ⊆ ∂A
Σ+(α).

If 〈a, α′, g′〉 ∈ ∂b(〈b, β, g〉) for some 〈b, β, g〉 ∈ Q(α), then there exists some
w ∈ Σ∗ such that β ∈ ∂A

wb(α) and 〈a, α′, g〉 ∈ lf(β). By definition, α′ ∈
∂A

wba(α) ⊆ ∂A
Σ+(α).

By Theorem 27, |∂A
Σ+(α)| is finite and so is |Q(α)| ≤ |Σ| · |∂A

Σ+(α)| · 2. ��
Given this finiteness, we construct a non-deterministic Büchi automaton from

an ω-regular expression as follows.

Definition 41 (NBA from ω-regular expression). Define the NBA B(α) =
(Q,Σ, δ,Q0, F) by Q = Q(α); Q0 = lf(α); F = {〈a, β, g〉 ∈ Q | g = 1}; and
δ(f, a) = ∂a(f).

Example 42. Consider (again) α = (a + b)∗.bω.

lf(α) = lf((a + b)∗).bω ∪ lf(bω)
= {〈a, (a + b)∗.bω, 0〉, 〈b, (a + b)∗.bω, 0〉, 〈b, bω, 1〉}
= Q = Q0

δ(〈b, bω, 1〉, a) = {}
δ(〈b, bω, 1〉, b) = {〈b, bω, 1〉}
δ(〈a, (a + b)∗.bω, 0〉, a) = lf((a + b)∗.bω) = Q
δ(〈a, (a + b)∗.bω, 0〉, b) = {}
δ(〈b, (a + b)∗.bω, 0〉, a) = {}
δ(〈b, (a + b)∗.bω, 0〉, b) = lf((a + b)∗.bω) = Q

Accepting states: F = {〈b, bω, 0〉} = lf(bω).
The resulting automaton properly accepts Lω(α).

Example 43. Next consider β = (a + b)∗.(b.b∗)ω.

lf(β) = lf((a + b)∗).(b.bω) × {0} ∪ lf((b.b∗)ω)
= lf(a + b).(a + b)∗.(b.bω) × {0} ∪ lf(b.b∗).(b.b∗)ω × {1}
= {〈a, (a + b)∗.(b.bω), 0〉, 〈b, (a + b)∗.(b.bω), 0〉}

∪ lf(b).b∗.(b.b∗)ω × {1}
= {〈a, (a + b)∗.(b.bω), 0〉, 〈b, (a + b)∗.(b.bω), 0〉

, 〈b, b∗.(b.b∗)ω, 1〉}
= {〈a, β, 0〉, 〈b, β, 0〉, 〈b, b∗.(b.b∗)ω, 1〉}

296 P. Thiemann and M. Sulzmann

δ(〈a, β〉, a) = lf(β)
δ(〈b, β〉, b) = lf(β)
δ(〈b, b∗.(b.b∗)ω〉, b) = lf(b∗.(b.b∗)ω)

= lf(b∗).(b.b∗)ω × {1} ∪ lf((b.b∗)ω)
= lf(b).b∗.(b.b∗)ω × {1} ∪ lf(b.b∗).(b.b∗)ω × {1}
= lf(b).b∗.(b.b∗)ω × {1} ∪ lf(b).b∗.(b.b∗)ω × {1}
= {〈b, b∗.(b.b∗)ω, 1〉}
= lf((b.b∗)ω)

Accepting states:

F = {〈b, b∗.(b.b∗)ω, 1〉} = lf((b.b∗)ω)

The resulting automaton properly accepts Lω(β) with the same number of states
as in the previous example.

It remains to prove the correctness of the construction in Definition 41.

Theorem 44. For all α ∈ Rω
Σ: Lω(α) = Lω(B(α)).

We start with some technical lemmas.

Lemma 45. For all v = ε, ∂v(lf(sω)) = ∂v(lf(s.sω)).

Proof. By definition of ω-regular expressions, ε /∈ L(s) that is N(s) = 0.
Observe that lf(sω) = lf(s).sω × {1},
whereas lf(s.sω) = lf(s).sω × {0} ∪ N(s) � lf(sω) = lf(s).sω × {0}.
Because v = ε, it must be that v = av′, for some a.
Hence, ∂a(lf(sω)) =

⋃{lf(s′.sω) | 〈a, s′〉 ∈ lf(s)} = ∂a(lf(s.sω)).
Hence, ∂av′(lf(sω)) = ∂av′(lf(s.sω)) ��
The next lemma is our workhorse in proving that Lω(α) is contained in the

language of B(α).

Lemma 46. If u ∈ L(r), then lf(α) ⊆ ∂u(lf(r.α)).

Proof. Induction on r.
Case r = 0: contradiction because L(0.α) = {}.
Case r = 1: Then u = ε and ∂ε(lf(1.α)) = lf(1.α) = lf(α).
Case r = a: Then u = a and ∂a(lf(a.α)) = ∂a(〈a, α, 0〉) = lf(α).
Case r = r1.r2: Then u = u1u2 with u1 ∈ L(r1) and u2 ∈ L(r2).

By similarity (cf. Definition 14), lf((r1.r2).α) = lf(r1.(r2.α)).
By induction on r1, lf(r2.α) ⊆ ∂u1(lf(r1.(r2.α))).
By induction on r2,

lf(α) ⊆ ∂u2(lf(r2.α)) ⊆ ∂u2(∂u1(lf(r1.(r2.α)))) = ∂u(lf(r.α))

Case r = r1 + r2: Assume that u ∈ L(r1) ⊆ L(r). By induction, lf(α) ⊆
∂u(lf(r1.α)) ⊆ ∂u(lf(r.α)). The case for r2 is analogous.

From ω-Regular Expressions to Büchi Automata via Partial Derivatives 297

Case r = r∗
1 : Consider

lf(r∗
1 .α) = lf(r∗

1).α ∪ N(r∗
1) � lf(α) = lf(r1).r∗

1 .α ∪ lf(α)

For u ∈ Σ∗, ∂u(lf(r∗
1 .α)) = ∂u(lf(r1).r∗

1 .α) ∪ ∂u(lf(α)).
If u ∈ L(r), then u = u1 . . . un, for some n ∈ N, where all ui = ε. Continue by
induction on n.
If n = 0, u = ε, then clearly lf(α) ⊆ ∂ε(lf(r∗

1 .α)).
Otherwise,

∂u(lf(r∗
1 .α))

= ∂u1...un
(lf(r∗

1 .α))
= ∂u2...un

(∂u1(lf(r
∗
1 .α)))

= ∂u2...un
(∂u1(lf(r1).r

∗
1 .α) ∪ ∂u1(lf(α)))

⊇ ∂u2...un
(∂u1(lf(r1).r

∗
1 .α))

⊇ ∂u2...un
(lf(r∗

1 .α))
by induction

⊇ lf(α)

��
The next, final lemma is our workhorse in proving that the language of B(α)

is contained in Lω(α). The proof requires the extra bit in the ω-linear factors.

Lemma 47. Let q0q1 . . . qn be a prefix of an accepting run of B(r.sω) on uw =
a1 . . . anw where qn ∈ lf(sω), but qi /∈ lf(sω), for 0 ≤ i < n. Then u ∈ L(r).

Proof. Induction on n.
Case 0; u = ε: q0 ∈ lf(sω) ∩ lf(r.sω) because q0 ∈ Q0. Now lf(sω) =

lf(s).sω × {1} and lf(r.sω) = lf(r).sω × {0} ∪ N(r) � lf(s).sω × {1}.
If N(r) = 1, then q0 ∈ lf(sω) ⊆ lf(r.sω) and u = ε ∈ L(r).
If N(r) = 0, then q0 ∈ lf(s).sω ×{1}∩lf(r).sω ×{0} = ∅ so that this case is

not possible. (Without the extra bit in lf, there may be common linear factors
if L(r) ∩ L(s∗) = ∅.)

Case n > 0: u = au′ and q1 ∈ ∂a(q0). As q0 ∈ Q0 = lf(r.sω) = lf(r).sω ×
{0} ∪ N(r) � lf(sω) but q0 /∈ lf(sω), it must be that q0 ∈ lf(r).sω × {0}.

Thus, q1 ∈ ∂a(lf(r).sω × {0}), so that there is a linear factor 〈a, r′〉 ∈ lf(r)
such that q1 ∈ lf(r′.sω).

Thus, q1 . . . qn is a prefix of an accepting run of B(r′.sω)1 on u′w = a2 . . . anw
where qn ∈ lf(sω), but qi /∈ lf(sω), for 1 ≤ i < n. By induction, u′ ∈ L(r′) so
that u = au′ ∈ L(r) by Lemma 23. ��
Proof (of Theorem 44). It is sufficient to consider α = r.sω.

Case “⊆”: Let w ∈ Lω(r.sω). Then w = uv0v1 . . . where u ∈ L(r) and
ε = vi ∈ L(s), for i ∈ N.

Let Q0 = lf(r.sω). By Lemma 46, lf(sω) ⊆ ∂u(lf(r.sω)) = δ(Q0, u).
1 While the set Q′ of states of B(r′.sω) is a subset of the states Q of B(r.sω), it is easy
to see that the states q1 . . . qn as well as the remaining states qn+1qn+2 . . . of the
accepting run are all elements of Q′.

298 P. Thiemann and M. Sulzmann

Furthermore, for each i ∈ N, by Lemmas 45 and 46,

∂vi
(lf(sω)) = ∂vi

(lf(s.sω)) ⊇ lf(sω)

Hence, there exists a run of B(α) which visits states from F = lf(sω)
infinitely often.

Case “⊇”: Suppose that a0a1 · · · ∈ Lω(B(α)). Hence, there is a run q0q1 · · · ∈
Qω and a strictly increasing sequence (ni)i∈N ∈ N

ω such that, for all j ∈ N,
qj ∈ F iff ∃i : j = ni.

Let q = qn0 be the first accepting state in the run and let u = a0 . . . an0−1. By
construction of B(α), q ∈ δ(Q0, u) and q ∈ lf(sω) = F . By Lemma 47, u ∈ L(r).

Next, for each i ∈ N, define vi = ani
. . . ani+1 so that w = uv0v1

For each i, qni
∈ F and ε = vi = biv

′
i. By construction qni+1 ∈ δ(qni

, bi) so
that qni+1 . . . qni+1 . . . is a prefix of an accepting run of B(qni+1) where qni+1 =
〈bi, s

′.sω, 1〉, for some 〈bi, s
′〉 ∈ lf(s). By Lemma 47, v′

i ∈ L(s′) so that vi =
biv

′
i ∈ L(s) by Lemma 23.
Taken together, we have shown that w ∈ L(r) · {v0v1 · · · | vi ∈ L(s)} =

Lω(r.sω). ��
We believe that it is possible to reduce the number of states of B(α) by a factor
of |Σ| by merging suitable linear factors, but we leave this for future work.

References

1. Antimirov, V.M.: Rewriting regular inequalities. In: Reichel, H. (ed.) FCT 1995.
LNCS, vol. 965, pp. 116–125. Springer, Heidelberg (1995)

2. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theoretical Computer Science 155(2), 291–319 (1996)

3. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
4. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended

regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011.
LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011)

5. Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata
Studies (1956)

6. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
Theoretical Computer Science. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg
(2003)

7. Redziejowski, R.R.: Construction of a deterministic ω-automaton using derivatives.
Informatique Théorique et Applications 33(2), 133–158 (1999)

8. Redziejowski, R.R.: An improved construction of deterministic omega-automaton
using derivatives. Fundam. Inform. 119(3–4), 393–406 (2012)

9. Roşu, G., Viswanathan, M.: Testing extended regular language membership incre-
mentally by rewritin. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp.
499–514. Springer, Heidelberg (2003)

	From ω-Regular Expressions to B¨uchi Automata via Partial Derivatives
	1 Introduction
	2 Preliminaries
	3 Regular Expressions to Finite Automata
	4 Partial Derivatives
	5 NBAfromω-Linear Factors
	References

