
Insertion Operations on Deterministic
Reversal-Bounded Counter Machines

Joey Eremondi1, Oscar H. Ibarra2, and Ian McQuillan3(B)

1 Department of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

j.s.eremondi@students.uu.nl
2 Department of Computer Science, University of California,

Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

3 Department of Computer Science, University of Saskatchewan,
Saskatoon, SK S7N 5A9, Canada

mcquillan@cs.usask.ca

Abstract. Several insertion operations are studied applied to languages
accepted by one-way and two-way deterministic reversal-bounded mul-
ticounter machines. These operations are defined by the ideals obtained
from relations such as the prefix, infix, suffix and outfix relations. The
insertion of regular languages and other languages into deterministic
reversal-bounded multicounter languages is also studied. The question
of whether the resulting languages can always be accepted by determin-
istic machines with the same number of turns on the input tape, the same
number of counters, and reversals on the counters is investigated. In addi-
tion, the question of whether they can always be accepted by increasing
either the number of input tape turns, counters, or counter reversals is
addressed. The results in this paper form a complete characterization
based on these parameters. Towards these new results, we use a tech-
nique for simultaneously showing a language cannot be accepted by both
one-way deterministic reversal-bounded multicounter machines, and by
two-way deterministic machines with one reversal-bounded counter.

Keywords: Automata and logic · Counter machines · Insertion opera-
tions · Reversal-bounds · Determinism · Finite automata

1 Introduction

One-way deterministic multicounter machines are deterministic finite automata
augmented by a fixed number of counters, which can each be independently
increased, decreased or tested for zero. If there is a bound on the number
of switches each counter makes between increasing and decreasing, then the

The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708.
The research of I. McQuillan was supported, in part, by the Natural Sciences and
Engineering Research Council of Canada.

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 200–211, 2015.
DOI: 10.1007/978-3-319-15579-1 15

Insertion Operations on Deterministic Reversal-Bounded Counter Machines 201

machine is reversal-bounded [1,8]. The family of languages accepted by one-
way deterministic reversal-bounded multicounter machines (denoted by DCM) is
interesting as it is more general than regular languages, but still has a decidable
emptiness, infiniteness, equivalence, inclusion, universe and disjointness prob-
lems [8]. Moreover, these problems remain decidable if the machines operate
with two-way input that is finite-crossing in the sense that there is a fixed k
such that the number of times the boundary between any two adjacent input
cells is crossed is at most k times [4].

Reversal-bounded counter machines (both deterministic and nondeterminis-
tic) have been extensively studied. Many generalizations have been investigated,
and they have found applications in areas such as verification of infinite-state
systems, membrane computing systems, Diophantine equations, etc.

In this paper, we study various insertion operations on deterministic reversal-
bounded multicounter languages. Common word and language relations are the
prefix, suffix, infix and outfix relations. For example, w is an infix of z, written
w ≤i z, if z = xwy, for some x, y ∈ Σ∗. Viewed as an operation on the first
component of the relation, ≤i (w) = {z | w ≤i z, z ∈ Σ∗}, which is equal to
the set of all words with w as infix, which is Σ∗wΣ∗. If we consider the inverse
of this relation, z ≤−1

i w, if z = xwy, then viewing this as an operation, ≤−1
i

(z) = {w | z ≤−1
i w,w ∈ Σ∗} = {w | w ≤i z}, the set of all infixes of z. These

can be extended to operations on languages. The prefix, suffix, infix and outfix
operations can be defined on languages in this way, along with their inverses.
This is the approach taken in [10]. Using the more common notation of inf(L)
for the set of infixes of L, then inf−1(L) = Σ∗LΣ∗, the set of all words having
a word in L as an infix. This is the same as what is often called the two-sided
ideal, or the infix ideal [10]. For the suffix operation, suff(L) = (Σ∗)−1L, and
suff−1(L) = Σ∗L, with the latter being called the left ideal, or the suffix ideal.
For prefix, pref(L) = L(Σ∗)−1, and pref−1(L) = LΣ∗, the prefix ideal, or the
right ideal. The inverse of each operation defines a natural insertion operation.

We will examine the insertion operations defined by the inverse of the pre-
fix, suffix, infix, outfix and embedding relations, and their effects on deterministic
reversal-bounded multicounter languages. We will also examine certain standard
generalizations of these operations such as left and right concatenation with reg-
ular or more general languages. In particular, if we start with a language that
can be accepted with a parameterized number of input tape turns, counters, and
reversals on the counters, is the result of the various insertion operations always
accepted with the same type of machines? And if not, can they always be accepted
by increasing either the turns on the input tape, counters, or reversals on the coun-
ters? Results in this paper form a complete characterization in this regard, and
are summarized in Section 5. Surprisingly, even if we have languages accepted by
deterministic 1-reversal bounded machines with either one-way input and 2 coun-
ters, or 1 counter and 1 turn on the input, then concatenating Σ∗ to the right
can result in languages that can neither be accepted by DCM machines (any num-
ber of reversal-bounded counters), nor by two-way deterministic reversal-bounded
1-counter machines (2DCM(1), which have no bound on input turns). This is in

202 J. Eremondi et al.

contrast to deterministic pushdown languages which are closed under right con-
catenation with regular languages [6]. In addition, concatenating Σ∗ to the left of
a one-way 1-reversal-bounded one counter machine can create languages that are
neither in DCM nor 2DCM(1). Furthermore, as a consequence of the results in this
paper, it is evident that the right input end-marker strictly increases the power for
even one-way deterministic reversal-bounded multicounter languages when there
are at least two counters. This is usually not the case for various classes of one-way
machines. To do this, a new mode of acceptance, by final state without end-marker,
is defined and studied.

Most non-closure results in this paper use a technique that simultaneously
shows languages are not in DCM and not in DCM(1). The technique does not
rely on any pumping arguments. A similar technique was used in [2] for showing
that there is a language accepted by a deterministic pushdown automaton whose
stack makes only one reversal (1-reversal DPDA) that cannot be accepted by
any one-way nondeterministic reversal-bounded multicounter machine (NCM).

2 Preliminaries

The set of non-negative integers is represented by N0, and positive integers by
N. For c ∈ N0, let π(c) be 0 if c = 0, and 1 otherwise.

We use standard notations for formal languages, referring the reader to [6,7].
The empty word is denoted by λ. We use Σ and Γ to represent finite alphabets,
with Σ∗ as the set of all words over Σ and Σ+ = Σ∗ \ {λ}. For a word w ∈ Σ∗, if
w = a1 · · · an where ai ∈ Σ, 1 ≤ i ≤ n, the length of w is denoted by |w| = n, and
the reversal of w is denoted by wR = an · · · a1. The number of a’s, for a ∈ Σ, in w
is |w|a. Given a language L ⊆ Σ∗, the complement of L, Σ∗ \ L is denoted by L.

Definition 1. For a language L ⊆ Σ∗, we define the prefix, inverse prefix,
suffix, inverse suffix, infix, inverse infix, outfix and inverse outfix operations,
respectively:

pref(L) = {w | wx ∈ L, x ∈ Σ∗} pref−1(L) = {wx | w ∈ L, x ∈ Σ∗}
suff(L) = {w | xw ∈ L, x ∈ Σ∗} suff−1(L) = {xw | w ∈ L, x ∈ Σ∗}
inf(L) = {w | xwy ∈ L, x, y ∈ Σ∗} inf−1(L) = {xwy | w ∈ L, x, y ∈ Σ∗}
outf(L) = {xy | xwy ∈ L,w ∈ Σ∗} outf−1(L) = {xwy | xy ∈ L,w ∈ Σ∗}
We generalize the outfix relation to the notion of embedding [10]:

Definition 2. The m-embedding of a language L ⊆ Σ∗ is the following set:
emb(L,m) = {w0 · · · wm | w0x1 · · · wm−1xmwm ∈ L, wi ∈ Σ∗, 0 ≤ i ≤ m,xj ∈
Σ∗, 1 ≤ j ≤ m}.

We define the inverse as follows: emb−1(L,m) = {w0x1 · · · wm−1xmwm |
w0 · · · wm ∈ L, wi ∈ Σ∗, 0 ≤ i ≤ m,xj ∈ Σ∗, 1 ≤ j ≤ m }
Note that outf(L) = emb(L, 1) and outf−1(L) = emb−1(L, 1).

A language L is called prefix-free if, for all words x, y ∈ L, where x is a prefix
of y, then x = y.

Insertion Operations on Deterministic Reversal-Bounded Counter Machines 203

A one-way k-counter machine is a tuple M = (k,Q,Σ, $, δ, q0, F), where
Q,Σ, $, q0, F are respectively the finite set of states, the input alphabet, the right
end-marker,theinitialstateinQ,andthesetoffinalstates,whichisasubsetofQ.The
transitionfunctionδ (definedas in [8]exceptwithonlyarightend-markersincethese
machines only use one-way inputs) is a mapping from Q × (Σ ∪ {$}) × {0, 1}k into
Q × {S,R} × {−1, 0,+1}k, such that if δ(q, a, c1, . . . , ck) contains (p, d, d1, . . . , dk)
andci = 0forsome i, thendi ≥ 0topreventnegativevalues inanycounter.Thesym-
bols S are R indicate the direction of input tape head movement, either stay or right
respectively.ThemachineM isdeterministic ifδ isafunction.ThemachineM isnon-
exiting iftherearenotransitionsdefinedonfinalstates.AconfigurationofM isak+2-
tuple (q, w$, c1, . . . , ck) representingthe fact thatM is instateq,withw ∈ Σ∗ still to
read as input, and c1, . . . , ck ∈ N0 are the contents of the k counters. The derivation
relation �M is defined between configurations, where (q, aw, c1, . . . , ck) �M (p,w′

, c1+d1, . . . , ck+dk),if(p, d, d1, . . . , dk) ∈ δ(q, a, π(c1), . . . , π(ck))whered ∈ {S,R}
and w′ = aw if d = S, and w′ = w if d = R. We let �∗

M be the reflexive, transitive
closure of �M . And, for m ∈ N0, let �m

M be the application of �M m times. A word
w ∈ Σ∗ is accepted by M if (q0, w$, 0, . . . , 0) �∗

M (q, $, c1, . . . , ck), for some q ∈ F ,
and c1, . . . , ck ∈ N0. The language acceptedbyM , denotedbyL(M), is the set of all
words accepted by M .

The machine M is l-reversal bounded if, in every accepting computation, the
count on each counter alternates between increasing and decreasing at most l
times. We will sometimes refer to a multicounter machine as being in DCM(k, l),
if it has k l-reversal bounded counters.

We denote by NCM(k, l) the family of languages accepted by one-way non-
deterministic l-reversal-bounded k-counter machines. We denote by DCM(k, l)
the family of languages accepted by one-way deterministic l-reversal-bounded
k-counter machines. The union of the families of languages are denoted by
NCM =

⋃
k,l≥0 DCM(k, l) and DCM =

⋃
k,l≥0 DCM(k, l).

Given a DCM machine M = (k,Q,Σ, $, δ, q0, F), the language accepted by
final state without end-marker is the set of words w such that (q0, w$, 0, . . . , 0) �∗

M

(q′, a$, c′
1, . . . , c

′
k) �M (q, $, c1, . . . , ck), for some q ∈ F , q′ ∈ Q, a ∈ Σ, ci, c

′
i ∈

N0, 1 ≤ i ≤ k. Such a machine does not “know” when it has reached the end-
marker $. The state that the machine is in when the last letter of input from Σ
is consumed entirely determines acceptance or rejection. It would be equivalent
to require (q0, w, 0, . . . , 0) �∗

M (q, λ, c1, . . . , ck), for some q ∈ F , but we continue
to use $ for compatibility with the end-marker definition. We use DCMNE(k, l)
to denote the family of languages accepted by these machines when they have k
counters that are l-reversal-bounded. We define DCMNE =

⋃
k,l≥0 DCMNE(k, l).

We denote by 2DCM(1) to be the family of languages accepted by two-way
deterministic finite automata (with both a left and right input tape end-marker)
augmented by one reversal-bounded counter, accepted by final state. A machine
of this form is said to be finite-crossing if there is a bound on the number of
changes of direction on the input tape, and t-crossing if it makes at most t
changes of direction on the input tape for every computation.

204 J. Eremondi et al.

3 Closure for Insertion and Concatenation Operations

Closure under concatenation is difficult for DCM languages because of deter-
minism. However, we show special cases where closure results can be obtained.
Additionally, we study the necessity of an end-of-tape marker, showing that it
makes DCM languages strictly more powerful, but adding no power to DCM(1, l)
languages. To our knowledge, the necessity of the right end-marker for one-way
deterministic reversal-bounded multicounter machines has not been documented.

To show that the end-marker is not necessary for DCM(1, l), the proof of the
lemma below takes an arbitrary DCM(1, l) machine M and builds another M ′

that accepts by final state without end-marker and accepts the same language.
Before building M ′, the construction builds an NCM machine for every state q of
M . This machine accepts all words of the form ai where there exists some word x
(this word is guessed using nondeterminism) such that M can read x from state
q and i on the counter and reach a final state. Although these languages use
nondeterminism, they are unary, and all NCM languages are semilinear [8], and
all unary semilinear languages are regular [6]. Therefore, a DFA can be build for
each such language (for each state of M). Because these languages are unary, the
structure of the DFAs are well-known [12]. Every unary DFA is isomorphic to
one with states {0, . . . , m − 1} where there exists some state k, and a transition
from i to i + 1, for all 0 ≤ i < k (the “tail”), and a transition from j to j + 1
for all k ≤ j < m − 1, plus a transition from m to k (the “loop”), and no other
transitions. Let t be the maximum tail size, over all DFAs constructed, plus one.

Then, intuitively, the construction of M ′ involves M ′ simulating M , and after
reading input w, if M has counter value c, M ′ has counter value c − t if c > t,
with t stored in the finite control. If c ≤ t, then M ′ stores c in the finite control
with zero on the counter. This allows M ′ to know what counter value M would
have after reading a given word, but also to know when the counter value is less
than t (and the specific value less than t). In the finite control, M ′ simulates each
DFA in parallel. To do this, each time M increases the counter, from i to i + 1,
the state of each DFA switches forward by one letter. Each time M decreases the
counter from i to i − 1, the state of each DFA changes deterministically “going
backwards in the loop” if i > t, and if i ≤ t, then the counter of M is stored in
the finite control, and thus each DFA can tell when to switch deterministically
from loop to tail. Then, when in state q of M , M ′ can tell if the current counter
value would lead to acceptance from q using the appropriate DFA.

The proof is omitted due to space constraints, and can be found online in [3].

Lemma 3. For any l, DCM(1, l) = DCMNE(1, l).

We will extend these closure results with a lemma about prefix-free DCMNE

languages. It was shown in [5] that a regular language is prefix-free if and only
if there is a non-exiting DFA accepting the language. While we omit the proof
(see [3]), the same logic gives this result for DCMNE languages.

Lemma 4. Let L ∈ DCMNE. Then L is prefix-free if and only if there exists aDCM-
machine M accepting L by final state without end-marker which is non-exiting.

Insertion Operations on Deterministic Reversal-Bounded Counter Machines 205

From this, we obtain a special case where DCM is closed under concatenation,
if the first language can be both accepted by final state without end-marker, and
is prefix-free. The construction considers a non-exiting machine accepting L1 by
final state without end-marker, where transitions into its final state are replaced
by transitions into the initial state of the machine accepting L2. The proof is
omitted due to space constraints, and can be found online in [3].

Proposition 5. Let L1 ∈ DCMNE(k, l), L2 ∈ DCM(k′, l′), with L1 prefix-free.
Then L1L2 ∈ DCM(k + k′,max(l, l′)).

If we remove the condition that L1 is prefix-free however, the proposition is no
longer true, as we will see in the next section that even the regular language
Σ∗ (which is in DCMNE(0, 0)) concatenated with a DCM language produces a
language outside DCM.

Corollary 6. Let L ∈ DCM(k, l), R ∈ REG, where R is prefix-free. Then RL ∈
DCM(k, l).

In contrast to left concatenation of a regular language with a DCM language
(Corollary 6), where it is required that R be prefix-free (the regular language
is always in DCMNE), for right concatenation, it is only required that it be a
DCMNE language. We will see in the next section that this is not true if the
restriction that L accepts by final state without end-marker is removed.

The following proof takes a DCM machine M1 accepting by final state with-
out end-marker, and M2 a DFA accepting R, and builds a DCM machine M ′

accepting LR by final state without end-marker. Intuitively, M ′ simulates M1

while also storing a subset of M2’s states in a second component of the states.
Every time it reaches a final state of M1, it places the initial state of M2 in the
second component. Then, it continues to simulate M1 while in parallel simulating
the DFA M2 separately on every state in the second component.

Proposition 7. Let L ∈ DCMNE(k, l), R ∈ REG. Then LR ∈ DCMNE(k, l).
Also, pref−1(L) ∈ DCMNE(k, l).

As a corollary, we get that DCM(1, l) is closed under right concatenation with
regular languages. This corollary could also be inferred from the proof in [6] that
deterministic context-free languages are closed under concatenation with regular
languages.

Corollary 8. Let L ∈ DCM(1, l) and R ∈ REG. Then LR ∈ DCM(1, l).

Corollary 9. If L ∈ DCM(1, l), then pref−1(L) ∈ DCM(1, l).

4 Relating (Un)Decidable Properties to Non-closure
Properties

In this section, we use a technique that proves non-closure properties using
(un)decidable properties. A similar technique was used in [2] for showing that there

206 J. Eremondi et al.

is a language accepted by a 1-reversal DPDA that cannot be accepted by any
NCM. In particular, we use this technique to prove that some languages are not
accepted by 2DCM(1)s (i.e., two-way DFAs with one reversal-bounded counter).
Since 2DCM(1)s have two-way input and a reversal-bounded counter, it does not
seem easy to derive “pumping” lemmas for these machines. 2DCM(1)s are quite
powerful, e.g., although the Parikh map of the language accepted by any finite-
crossing 2NCM (hence by any NCM) is semilinear [8], 2DCM(1)s can accept non-
semilinearlanguages.Forexample,L1 = {aibk |i, k ≥ 2, idividesk}canbeaccepted
by a 2DCM(1) whose counter makes only one reversal. However, it is known that
L2 = {aibjck | i, j, k ≥ 2, k = ij} cannot be accepted by a 2DCM(1) [9].

We will need the following result (the proof for DCMs is in [8]; the proof for
2DCM(1)s is in [9]):

Theorem 10

1. The class of languages accepted by DCMs is closed under Boolean operations.
Moreover, the emptiness problem is decidable.

2. The class of languages accepted by 2DCM(1)s is closed under Boolean oper-
ations. Moreover, the emptiness problem is decidable.

We note that the emptiness problem for 2DCM(2)s, even when restricted to
machines accepting only letter-bounded languages (i.e., subsets of a∗

1 · · · a∗
k for

some k ≥ 1 and distinct symbols a1, . . . , ak) is undecidable [8].
We will show that there is a language L ∈ DCM(1, 1) such that inf−1(L) is

not in DCM ∪ 2DCM(1).
The proof uses the fact that that there is a recursively enumerable language

Lre ⊆ N0 that is not recursive (i.e., not decidable) which is accepted by a deter-
ministic 2-counter machine [11]. Thus, the machine when started with n ∈ N0

in the first counter and zero in the second counter, eventually halts (i.e., accepts
n ∈ Lre).

A close look at the constructions in [11] of the 2-counter machine, where
initially one counter has some value d1 and the other counter is zero, reveals
that the counters behave in a regular pattern. The 2-counter machine operates
in phases in the following way. The machine’s operation can be divided into
phases, where each phase starts with one of the counters equal to some positive
integer di and the other counter equal to 0. During the phase, the positive
counter decreases, while the other counter increases. The phase ends with the
first counter having value 0 and the other counter having value di+1. Then in
the next phase the modes of the counters are interchanged. Thus, a sequence of
configurations corresponding to the phases will be of the form:

(q1, d1, 0), (q2, 0, d2), (q3, d3, 0), (q4, 0, d4), (q5, d5, 0), (q6, 0, d6), . . .

where the qi’s are states, with q1 = qs (the initial state), and d1, d2, d3, . . . are
positive integers. Note that in going from state qi in phase i to state qi+1 in
phase i + 1, the 2-counter machine goes through intermediate states. Note that
the second component of the configuration refers to the value of c1 (first counter),
while the third component refers to the value of c2 (second counter).

Insertion Operations on Deterministic Reversal-Bounded Counter Machines 207

For each i, there are 5 cases for the value of di+1 in terms of di: di+1 =
di, 2di, 3di, di/2, di/3. (The division operation is done only if the number is divis-
ible by 2 or 3, respectively.) The case is determined by qi. Thus, we can define
a mapping h such if qi is the state at the start of phase i, di+1 = h(qi)di (where
h(qi) is 1, 2, 3, 1/2, 1/3).

Let T be a 2-counter machine accepting a recursively enumerable set Lre

that is not recursive. We assume that q1 = qs is the initial state, which is never
re-entered, and if T halts, it does so in a unique state qh. Let T ’s state set be
Q, and 1 be a new symbol.

In what follows, α is any sequence of the form #I1#I2# · · · #I2m# (thus
we assume that the length is even), where Ii = q1k for some q ∈ Q and k ≥ 1,
represents a possible configuration of T at the beginning of phase i, where q is
the state and k is the value of counter c1 (resp., c2) if i is odd (resp., even).

Define L0 to be the set of all strings α such that

1. α = #I1#I2# · · · #I2m#;
2. m ≥ 1;
3. for 1 ≤ j ≤ 2m−1, Ij ⇒ Ij+1, i.e., if T begins in configuration Ij , then after

one phase, T is in configuration Ij+1 (i.e., Ij+1 is a valid successor of Ij);

Lemma 11. L0 is not in DCM ∪ 2DCM(1).

Proof. Suppose L0 is accepted by a DCM (resp., 2DCM(1)). The following is an
algorithm to decide, given any n, whether n is in Lre.

1. Let R = #qs1n((#Q1+#Q1+))∗#qh1+#. Clearly R is regular.
2. Then L′ = L0 ∩ R is also in DCM (resp., 2DCM(1)) by Theorem 10.
3. Check if L′ is empty. This is possible, since emptiness of DCM (respectively,

2DCM(1)) is decidable by Theorem 10.

The claim follows, since L′ is empty if and only if n is not in Lre.
�

4.1 Non-closure Under Inverse Infix

Theorem 12. There is a language L ∈ DCM(1, 1) such that inf−1(L) is not in
DCM ∪ 2DCM(1).

Proof. Let T be a 2-counter machine. Let L = {#q1m#p1n# | T when started
in state q when one counter has value m and the other counter has value 0, does
not reach the configuration in the next phase where the first counter becomes
zero, the other counter has value n, and the state is p}. Thus, L = {#I#I ′# | I
and I ′ are configurations of T , and I ′ is not a valid successor of I}. Clearly, L
can be accepted by a DCM(1, 1).

We claim that L1 = inf−1(L) is not in DCM ∪ 2DCM(1). Otherwise, by
Theorem 10, L1 (the complement of L1) is also in DCM ∪ 2DCM(1), and
L1 ∩ (#Q1+#Q1+)+# = L0 would be in DCM ∪ 2DCM(1). This contradicts
Lemma 11.
�

208 J. Eremondi et al.

4.2 Non-closure Under Inverse Prefix

Theorem 13. There exists a language L such that L ∈ DCM(2, 1) and L ∈
2DCM(1) (which makes only 1 turn on the input and 1 reversal on the counter)
such that pref−1(L) = LΣ∗ �∈ DCM ∪ 2DCM(1).

Proof. Consider L = {#w# | w ∈ {a, b,#}∗
, |w|a �= |w|b}. Clearly, L can be

accepted by a DCM(2,1) and by a 2DCM(1) which makes only 1 turn on the
input and 1 reversal on the counter.

Suppose to the contrary that pref−1(L) ∈ DCM ∪ 2DCM(1). Then, L′ ∈
DCM ∪ 2DCM(1), where L′ = pref−1(L) ∩ (# {a, b,#}∗ #) = {#w1 · · · #wn# |
∃i. |w1 · · · wi|a �= |w1 · · · wi|b}.

We know that DCM and 2DCM(1) are closed under complement. So we can
see that L′′ ∈ DCM ∪ 2DCM(1), where we define L′′ = L′ ∩ (#a∗b∗)+# ={
#ak1bk1# · · · #akmbkm# | m > 0

}
.

We will show that L′′ is not in DCM ∪ 2DCM(1). Suppose L′′ is in DCM ∪
2DCM(1). Define two languages:

− L1 = {#1k1#1k1# · · · #1km#1km# | m ≥ 1, ki ≥ 1},
− L2 = {#1k0#1k1#1k1# · · · #1km−1#1km−1#1km# | m ≥ 1, ki ≥ 1}.

Note that L1 and L2 are similar. In L1, the odd-even pairs of 1’s are the same, but
in L2, the even-odd pairs of 1’s are the same. Clearly, if M ′′ in DCM∪ 2DCM(1)
accepts L′′, then we can construct (from M ′′) M1 and M2 in DCM ∪ 2DCM(1)
to accept L1 and L2, respectively.

We now refer to the language L0 that was shown not to be in DCM∪2DCM(1)
in Lemma 11. We will construct a DCM (resp., 2DCM(1)) to accept L0, which
would be a contradiction. Define the languages:

− Lodd = {#I1#I2# · · · #I2m | m ≥ 1, I1, · · · , I2m are configurations of the
2-counter machine T , for odd i, Ii+1 is a valid successor of Ii}.

− Leven = {#I1#I2# · · · #I2m | m ≥ 1, I1, · · · , I2m are configurations of the
2-counter machine T , for even i, Ii+1 is a valid successor of Ii}.

Clearly, L0 = Lodd ∩ Leven. Since DCM (resp., 2DCM(1)) is closed under inter-
section, we need only to construct two DCMs (resp., 2DCM(1)s) Modd and Meven

accepting Lodd and Leven, respectively. We will only describe the construction
of Modd, the construction of Meven being similar.

Case: Suppose L′′ ∈ DCM:
First consider the case of DCM. We will construct two machines: a DCM A and
a DFA B such that L(Modd) = L(A) ∩ L(B).

Let LA = {#I1#I2# · · · #I2m | m ≥ 1, I1, · · · , I2m are configurations of the
2-counter machine T , for odd i, if Ii = qi1di , then di+1 = h(qi)di}. We can
construct a DCM A to accept LA by simulating the DCM M1. For example,
suppose h(qi) = 3. Then A simulates M1 but whenever M1 moves its input head
one cell, A moves its input head 3 cells. If h(qi) = 1/2, then when M1 moves

Insertion Operations on Deterministic Reversal-Bounded Counter Machines 209

its head 2 cells, A moves its input head 1 cell. (Note that A does not use the
2-counter machine T .)

Now Let LB = {#I1#I2# · · · #I2m | m ≥ 1, I1, · · · , I2m are configurations
of the 2-counter machine, for odd i, if Ii = qi1di , then T in configuration Ii
ends phase i in state qi+1}. Clearly, a DFA B can accept LB by simulating T
for each odd i starting in state qi on 1di without using a counter, and checking
that the phase ends in state qi+1. (Note that the DCM A already checks the
“correctness” of di+1.)

We can then construct from A and B a DCM Modd such that L(Modd) =
L(A) ∩ L(B). In a similar way, we can construct Meven.

Case: Suppose L′′ ∈ 2DCM(1):
The case 2DCM(1) can be shown similarly. For this case, the machines Modd

and Meven are 2DCM(1)s, and machine A is a 2DCM(1), but machine B is still
a DFA.
�

From this, we can immediately get the result that the right end-marker is
necessary for deterministic counter machines when there are at least two 1-
reversal-bounded counters. In fact, without it, no amount of reversal-bounded
counters with a deterministic machine could accept even some languages that can
be accepted with two 1-reversal-bounded counters could with the end-marker.

Corollary 14. There are languages in DCM(2, 1) that are not in DCMNE.

Proof. Since DCMNE is closed under concatenation with Σ∗, it follows that
pref−1(L) from Theorem 13 is not in DCMNE.
�

4.3 Non-closure for Inverse Suffix, Outfix and Embedding

Proposition 15. There exists a language L ∈ DCM(1, 1) such that suff−1(L) �∈
DCM and suff−1(L) �∈ 2DCM(1).

Proof. Let L be as in Theorem 12. We know DCM(1, 1) is closed under pref−1 by
Corollary 9, so pref−1(L) ∈ DCM(1, 1). Suppose suff−1(pref−1(L)) ∈ DCM. This
implies that inf−1(L) ∈ DCM, but we showed this language was not in DCM.
Thus we have a contradiction. A similar contradiction can be reached when we
assume suff−1(pref−1(L)) ∈ 2DCM(1).

�
Corollary 16. There exists L ∈ DCM(1, 1) and regular languages R such that
RL /∈ DCM and RL /∈ 2DCM(1).

This implies that without the prefix-free condition on L1 in Proposition 5,
concatenation closure does not follow.

Corollary 17. There exists L1 ∈ DCMNE(0, 0) (regular), and L2 ∈ DCM(1, 1),
where L1L2 /∈ DCM and L1L2 /∈ 2DCM(1).

The result also holds for inverse outfix.

210 J. Eremondi et al.

Proposition 18. There exists a language L ∈ DCM(1, 1) such that outf−1(L) �∈
DCM and outf−1(L) �∈ 2DCM(1).

Proof. Consider L ⊆ Σ∗ where L ∈ DCM(1, 1), and suff−1(L) �∈ DCM and
suff−1(L) �∈ 2DCM(1). The existence of such a language is guaranteed by Propo-
sition 15. Let Γ = Σ ∪ {%}.

Suppose outf−1(L) ∈ DCM. Then L′ ∈ DCM, where L′ = outf−1(L) ∩ %Σ∗.
We can see L′ = {%yx | x ∈ L, y ∈ Σ∗}, since the language we intersected with
ensures that the section is always added to the beginning of a word in L.

However, we also have %−1L′ ∈ DCM because DCM is clearly closed under
left quotient with a fixed word. We can see %−1L′ = {yx | x ∈ L, y ∈ Σ∗}. This
is just suff−1(L), so suff−1(L) ∈ DCM, a contradiction.

The result is the same for 2DCM(1), relying on the closure of the family
under left quotient with a fixed word, which is clear.
�
Corollary 19. Let m ∈ N. There exists a language L ∈ DCM(1, 1) such that
emb−1(m,L) �∈ DCM and emb−1(m,L) �∈ 2DCM(1).

This is similar to Proposition 18 except starting with #m−1, then

emb−1(#m−1L) ∩ (#%)m−1L = {(#%)m−1yx | x ∈ L, y ∈ Σ∗},

and so L′ ∈ DCM.

5 Summary of Results

Assume R ∈ REG, LDCM ∈ DCM, and LDCMNE
∈ DCMNE.

The question: For all L ∈ DCM(k, l):

Table 1. Summary of results for DCM. When applying the operation in the first column
to any L ∈ DCM(k, l), is the result necessarily in DCM(k, l) (column 2), and in DCM
(column 3)? This is parameterized in terms of k and l, and the theorems showing each
result is provided.

Operation is Op(L) ∈ DCM(k, l)? is Op(L) ∈ DCM?

pref−1(L) Yes if k = 1, l ≥ 1 Cor 9 Yes if k = 1, l ≥ 1 Cor 9
No if k ≥ 2, l ≥ 1 Thm 13 Yes if L ∈ DCMNE Prop 7

No otherwise if k ≥ 2, l ≥ 1 Thm 13

suff−1(L) No if k, l ≥ 1 Prop 15 No if k, l ≥ 1 Prop 15

inf−1(L) No if k, l ≥ 1 Thm 12 No if k, l ≥ 1 Thm 12

outf−1(L) No if k, l ≥ 1 Prop 18 No if k, l ≥ 1 Prop 18

LR Yes if k = 1, l ≥ 1 Cor 8 Yes if k = 1, l ≥ 1 Cor 8
Yes if L ∈ DCMNE Prop 7 Yes if L ∈ DCMNE Prop 7
No otherwise if k ≥ 2, l ≥ 1 Thm 13 No otherwise if k ≥ 2, l ≥ 1 Thm 13

RL Yes if R prefix-free Cor 6 Yes if R prefix-free Cor 6
No otherwise if k, l ≥ 1 Cor 16 No otherwise if k, l ≥ 1 Cor 16

LDCML No if k, l ≥ 1 Cor 17 No if k, l ≥ 1 Cor 17

LDCMNEL No if k, l ≥ 1 Cor 17 Yes if LDCMNE prefix-free Prop 5
No otherwise if k, l ≥ 1 Cor 17

Insertion Operations on Deterministic Reversal-Bounded Counter Machines 211

Also, for 2DCM(1), the results are summarized as follows:

− There exists L ∈ DCM(1, 1) (one-way), s.t. suff−1(L) /∈ 2DCM(1) (Prop 15).
− There exists L ∈ DCM(1, 1) (one-way) , R regular, s.t. RL /∈ 2DCM(1) (Cor

16).
− There exists L ∈ DCM(1, 1) (one-way), s.t. outf−1(L) /∈ 2DCM(1) (Prop 18).
− There exists L ∈ DCM(1, 1) (one-way), s.t. inf−1(L) /∈ 2DCM(1) (Thm 12).
− There exists L ∈ 2DCM(1), 1 input turn, 1 counter reversal, s.t. pref−1(L) /∈

2DCM(1) (Thm 13).
− There exists L ∈ 2DCM(1), 1 input turn, 1 counter reversal, R regular, s.t.

LR /∈ 2DCM(1) (Thm 13).

This resolves every open question summarized above, optimally, in terms of
the number of counters, reversals on counters, and reversals on the input tape.

References

1. Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. Journal of
Computer and System Sciences 8(3), 315–332 (1974)

2. Chiniforooshan, E., Daley, M., Ibarra, O.H., Kari, L., Seki, S.: One-reversal counter
machines and multihead automata: Revisited. Theoretical Computer Science 454,
81–87 (2012)

3. Eremondi, J., Ibarra, O., McQuillan, I.: Insertion operations on deter-
ministic reversal-bounded counter machines. Tech. Rep. 2014–01, University
of Saskatchewan (2014). http://www.cs.usask.ca/documents/techreports/2014/
TR-2014-01.pdf

4. Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn
multicounter machines. Journal of Computer and System Sciences 22(2), 220–229
(1981)

5. Han, Y., Wood, D.: The generalization of generalized automata: Expression
automata. International Journal of Foundations of Computer Science 16(03),
499–510 (2005)

6. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley Pub. Co.,
Addison-Wesley series in computer science (1978)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

8. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM 25(1), 116–133 (1978)

9. Ibarra, O.H., Jiang, T., Tran, N., Wang, H.: New decidability results concerning
two-way counter machines. SIAM J. Comput. 23(1), 123–137 (1995)

10. Jürgensen, H., Kari, L., Thierrin, G.: Morphisms preserving densities. International
Journal of Computer Mathematics 78, 165–189 (2001)

11. Minsky, M.L.: Recursive unsolvability of Post’s problem of ”tag” and other topics
in theory of Turing Machines. Annals of Mathematics 74(3), 437–455 (1961)

12. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Pacholski, L., Wierzbicki, T. (eds.) Mathematical Foundations
of Computer Science 1999. Lecture Notes in Computer Science, vol. 1672,
pp. 231–240. Springer, Berlin Heidelberg (1999)

http://www.cs.usask.ca/documents/techreports/2014/TR-2014-01.pdf
http://www.cs.usask.ca/documents/techreports/2014/TR-2014-01.pdf

	Insertion Operations on Deterministic Reversal-Bounded Counter Machines
	1 Introduction
	2 Preliminaries
	3 Closure for Insertion and Concatenation Operations
	4 Relating (Un)Decidable Properties to Non-closure Properties
	4.1 Non-closure Under Inverse Infix
	4.2 Non-closure Under Inverse Prefix
	4.3 Non-closure for Inverse Suffix, Outfix and Embedding

	5 Summary of Results
	References

