
A Parallel Algorithm for Finding All Minimal
Maximum Subsequences via Random Walk

H.K. Dai(B) and Z. Wang

Computer Science Department, Oklahoma State University, Stillwater,
Oklahoma 74078, USA

{dai,wzhu}@cs.okstate.edu

Abstract. A maximum(-sum) contiguous subsequence of a real-valued
sequence is a contiguous subsequence with the maximum cumulative
sum. A minimal maximum contiguous subsequence is a minimal con-
tiguous subsequence among all maximum ones of the sequence. We have
designed and implemented a domain-decomposed parallel algorithm on
cluster systems with Message Passing Interface that finds all successive
minimal maximum subsequences of a random sample sequence from a
normal distribution with negative mean. Our study employs the theory
of random walk to derive an approximate probabilistic length bound for
minimal maximum subsequences in an appropriate probabilistic setting,
which is incorporated in the algorithm to facilitate the concurrent com-
putation of all minimal maximum subsequences in hosting processors. We
also present a preliminary empirical study of the speedup and efficiency
achieved by the parallel algorithm with synthetic random data.

Keywords: All maximum subsequences · Theory of random walk ·
Message passing interface · Parallel random access machine model

1 Preliminaries

Algorithmic and optimization problems in sequences and trees arise in widely
varying domains such as bioinformatics and information retrieval. Large-scale
(sub)sequence comparison, alignment, and analysis are important research areas
in computational biology. Time- and space-efficient algorithms for finding mul-
tiple contiguous subsequences of a real-valued sequence having large cumulative
sums help identify statistically significant subsequences in biological sequence
analysis with respect to an underlying scoring scheme – an effective filtering pre-
process even with simplistic random-sequence models of independent residues.

For a real-valued sequence X = (xη)n
η=1, the cumulative sum of a non-empty

contiguous subsequence (xη)j
η=i, where i and j are in the index range [1, n] with

i ≤ j, is
∑j

η=i xη (and that of the empty sequence is 0). All subsequences addressed
in our study are contiguous in real-valued sequences; the terms “subsequence” and
“supersequence” will hereinafter abbreviate “contiguous subsequence” and “con-
tiguous supersequence”, respectively. A maximum(-sum) subsequence of X is one
with the maximum cumulative sum. A minimal maximum subsequence of X is a
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 133–144, 2015.
DOI: 10.1007/978-3-319-15579-1 10

134 H.K. Dai and Z. Wang

minimal subsequence (with respect to subsequential containment) among all max-
imum subsequences of X.

Very often in applications it is required to find many or all pairwise disjoint
subsequences having cumulative sums above a prescribed threshold. Observe
that subsequences having major overlap with a maximum subsequence tend to
have good cumulative sums. Intuitively, we define the sequence of all succes-
sive minimal maximum subsequences (S1, S2, . . .) of X inductively as follows:
(1) The sequence S1 is a (non-empty) minimal maximum subsequence of X,
and (2) Assume that the sequence (S1, S2, . . . , Si) of non-empty subsequences of
X, where i ≥ 1, has been constructed, the subsequence Si+1 is a (non-empty)
minimal subsequence (with respect to subsequential containment) among all
non-empty maximum subsequences (with respect to cumulative sum) that are
disjoint from each of {S1, S2, . . . , Si}.

Efficient algorithms for computing the sequence of all successive minimal
maximum subsequences of a given sequence are essential for statistical infer-
ence in large-scale biological sequence analysis. In biomolecular sequences, high
(sub)sequence similarity usually implies significant structural or functional sim-
ilarity. When incorporating good scoring schemes, this provides a powerful sta-
tistical paradigm for identifying biologically significant functional regions in
biomolecular sequences [8], such as transmembrane regions and deoxyribonucleic
acid-binding domains [6] in protein analyses. The non-positivity of the expected
score of a random single constituent tends to delimit unrealistic long runs of
contiguous positive scores.

We design and implement a domain-decomposed parallel algorithm on cluster
systems with Message Passing Interface that finds all successive minimal max-
imum subsequences of a random sample sequence from a normal distribution
with negative mean. A brief summary of a preliminary empirical study of the
speedup and efficiency achieved by the parallel algorithm is also presented. Our
study is motivated by the linear-time sequential algorithm [8] and a logarithmic-
time and optimal-work parallel algorithm on the parallel random access machine
(PRAM) [3] for this computation problem.

For computing a single (minimal) maximum subsequence of a length-n real-
valued sequence of X, a simple sequential algorithm solves this problem in O(n)
optimal time. A parallel algorithm [1] on the PRAM model solves the single max-
imum subsequence problem in O(log n) parallel time using a total of O(n) opera-
tions (work-optimal). A generalization of the problem and the selection problem
is the sum-selection that, for given input length-n sequence X, range-bound
[l, u], and rank k, finds a subsequence of X such that the rank of its cumulative
sum is k among all subsequences with cumulative sum in [l, u]. A randomized
algorithm [7] solves the sum-selection problem in expected O(n log(u − l)) time.

For the problem of finding the sequence of all successive minimal maxi-
mum subsequences of a length-n real-valued sequence X, a recursive divide-
and-conquer strategy can apply the linear-time sequential algorithm above to
compute a minimal maximum subsequence of X whose deletion results in a
prefix and a suffix for recursion. The algorithm has a (worst-case) time

A Parallel Algorithm for Finding All Minimal Maximum Subsequences 135

complexity of Θ(n2). Empirical analyses of the algorithm [8] on synthetic data
sets (sequences of independent and identically distributed uniform random terms
with negative mean) and score sequences of genomic data indicate that the run-
ning time grows at Θ(n log n).

In order to circumvent the iterative dependency in computing the sequence
of all successive minimal maximum subsequences, Ruzzo and Tompa [8] prove a
structural characterization of the sequence as follows. Denote by Max(X) the set
of all successive minimal maximum subsequences or their corresponding index
subranges (when the context is clear) of a real-valued sequence X.

Theorem 1. [8] For a non-empty real-valued sequence X, a non-empty subse-
quence S of X is in Max(X) if and only if: (1) [monotonicity] the subsequence S
is monotone: every proper subsequence of S has its cumulative sum less than that
of S, and (2) [maximality of monotonicity] the subsequence S is maximal in X
with respect to monotonicity, that is, every proper supersequence of S contained
in X is not monotone.

Hence, we also term Max(X) as the set of all maximal monotone subse-
quences of X. This gives a structural decomposition of X into Max(X): (1) every
non-empty monotone subsequence of X is contained in a maximal monotone
subsequence in Max(X); in particular, every positive term of X is contained
in a maximal monotone subsequence in Max(X), and (2) the set Max(X) is a
pairwise disjoint collection of all maximal monotone subsequences of X.

Based on the structural characterization of Max(X), Ruzzo and Tompa
present a sequential algorithm that computes Max(X) in O(n) optimal sequen-
tial time and O(n) space (worst case). Alves, Cáceres, and Song [2] develop
a parallel algorithm for computing Max(X) of a length-n sequence X on the
bulk synchronous parallel/coarse grained multicomputer model of p processors
in O(n

p) computation time and O(1) communication rounds.
In the following section, we introduce other structural decompositions of a

sequence X that lead to computing Max(X) with: (1) a parallel algorithm on
the PRAM model [3] in logarithmic parallel time and optimal linear work, and
(2) a domain-decomposed parallel algorithm implemented on cluster systems
with Message Passing Interface. This paper presents the skeletons for the main
results without lengthy derivations and proofs, which are detailed in the full
version.

2 Structural Decompositions of X Leading to Max(X)

For a real-valued sequence X = (xη)n
η=1, denote by si(X) the i-th prefix sum

∑i
η=1 xη of X for i ∈ [1, n], and s0(X) = 0. We abbreviate the prefix sums

si(X) to si for all i ∈ [1, n] when the context is clear. For a subsequence Y of X,
denote by α(Y ;X), β(Y ;X), and γ(Y ;X) its starting index, ending index, and
index subrange [α(Y ;X), β(Y ;X)] (γ(Y ;X) = ∅ if Y is empty) in the context
of X, respectively, and by γ+(Y ;X) the set of all indices in γ(Y ;X) yielding
positive terms of Y . When considering the subsequence Y as a sequence in its

136 H.K. Dai and Z. Wang

own context we abbreviate α(Y ;Y), β(Y ;Y), γ(Y ;Y), and γ+(Y ;Y) to α(Y),
β(Y), γ(Y), and γ+(Y), respectively.

The following characterization of monotonicity [3] yields an effective compu-
tation of the index subrange of a non-trivial monotone subsequence containing
a given term of X.

Lemma 1. Let X be a non-empty real-valued sequence and Y be a non-empty
subsequence of X (with index subrange [α(Y ;X), β(Y ;X)]). The following state-
ments are equivalent:

1. Y is monotone in X.
2. The starting prefix sum sα(Y ;X)−1(X) of Y is the unique minimum and the

ending prefix sum sβ(Y ;X)(X) of Y is the unique maximum of all si(X) for
all i ∈ [α(Y ;X) − 1, β(Y ;X)].

3. All non-empty prefixes and non-empty suffixes of Y have positive cumulative
sums.

The key to the parallel implementation [3] of finding Max(X) for a length-n
sequence X = (xη)n

η=1 lies in the concurrent computation of the ending index
of the maximal monotone subsequence constrained with the starting index i ∈
γ(X). Lemma 1 suggests to consider only positive terms xi of X for the desired
computation. Let ε : γ+(X) → γ(X) be the function that ε(i) denotes the ending
index of the maximal monotone subsequence of X constrained with the starting
index i. The concurrent computation of ε via the computations of all-nearest-
smaller-values and range-minima, when applied to all the positive terms xi in
X, generates the statistics Mon(X) = {[i, ε(i)] | i ∈ γ+(X)} for the set of all
index subranges of all maximal monotone subsequences of X constrained with
given positive starting terms. The following theorem [3] reveals the structural
decomposition of X into Mon(X), which refines Max(X) and provides a basis
for a parallel computation of Max(X) from Mon(X).

Theorem 2. For a real-valued sequence X, Mon(X) enjoys the following paren-
thesis structure:

1. Every positive term of X has its index as the starting index of a unique index
subrange in Mon(X),

2. For every pair of index subranges in Mon(X), either they are disjoint or one
is a subrange of another, and

3. For every maximal monotone subsequence of X in Max(X), its index sub-
range is in Mon(X).

Our current work on Max-computation includes adapting the logarithmic-
time optimal-work parallel algorithm on practical parallel systems. However, in
view of the efficient linear-time sequential algorithm [8], we devise and imple-
ment a domain-decomposed parallel algorithm computing Max that employs the
optimal sequential algorithm in subsequence-hosting processors.

An ideal domain decomposition of a sequence X is a partition of X into
a pairwise disjoint family X of non-empty subsequences of X that are length-
balanced and Max-independent: Max(X) = ∪Y ∈X Max(Y) (Y as a sequence in

A Parallel Algorithm for Finding All Minimal Maximum Subsequences 137

its own right). We first finds a sufficient condition for the Max-independence that
can be computed locally in subsequence-hosting processors. The characterization
of monotonicity in Lemma 1 suggests to consider the following two functions on
indices of positive terms of X with index range γ(X) (= [1, n])). Let rmX :
γ+(X) → [α(X) + 1, β(X)] ∪ {β(X) + 1} (= [2, n + 1]) denote the nearest-
smaller-or-equal right-match of the prefix sum si−1 of X:

rmX(i) =
{

min{η ∈ [i + 1, β(X)] | si−1 ≥ sη} if the minimum exists,
β(X) + 1 (= n + 1) otherwise.

A symmetric analogue of rmX is the nearest-smaller left-match function lmX .
Note that the families {[lmX(i), i] | i ∈ γ+(X)} and {[i, rmX(i)] | i ∈ γ+(X)}
satisfy the parenthesis structure similar to that of Mon – but permitting abut-
ting index subranges (at subrange ends) in the lmX -family. Both lmX and rmX

help locate the (minimum) starting and (maximum) ending indices, respectively,
of a maximal monotone subsequence of X containing the positive term xi: deter-
mine if a merge of multiple maximal monotone subsequences covering the index
subrange [lmX(i), i] may occur.

Lemmas 2 and 3 give a sufficient condition for the Max-independence of a
partition of X based on a local computation of rmXi

and its intuitive equivalence
by the Xi-hosting processor for each i ∈ {1, 2, . . . , n}.

Lemma 2. Let (Xη)m
η=1 be a sequential partition of a real-valued sequence X

with Xη, for η = 1, 2 . . . ,m, represented as a sequence in its own right over
its index range γ(Xη). If the partition satisfies the rm-closure condition: for all
i ∈ {1, 2, . . . ,m − 1} and all j ∈ γ+(Xi), rmXi

(j) ∈ [j + 1, β(Xi)], then the
partition is Max-independent: Max(X) = ∪m

η=1 Max(Xη).

Lemma 3. For a non-empty real-valued sequence Y , the right-match function
rmY : γ+(Y) → [α(Y) + 1, β(Y)] ∪ {β(Y) + 1} satisfies the rm-closure condition
stated in Lemma 2 (for all j ∈ γ+(Y), rmY (j) ∈ [j + 1, β(Y)]) if and only if the
sequence Y satisfies the minimum prefix-sum condition: the ending prefix sum
of Y , sβ(Y)(Y), is a global minimum of all si(Y) for all i ∈ [α(Y) − 1, β(Y)].

The minimum prefix-sum condition, equivalent to the rm-closure condition
as shown in Lemma 3, exposes a stringent sufficiency for Max-independence of a
priori sequential partition of a sequence X: for all i ∈ {1, 2, . . . ,m−1}, the ending
prefix sum is a global minimum of all prefix sums of Xi. We incorporate the
minimum prefix-sum condition into constructing a posteriori sequential partition
of X that forms the basis in designing a domain-decomposed parallel algorithm
in computing Max(X).

For two sequences X and Y , denote the concatenation of X and Y by the
juxtaposition XY . Let X be a non-empty real-valued sequence with a sequential
partition P(X) = (X1,X1,2,X2,X2,3,X3, . . . , Xm−1, Xm−1,m,Xm). For nota-
tional simplicity, let X0,1 = ∅ and Xm,m+1 = ∅.

For every i ∈ {1, 2, . . . ,m−1}, denote by β∗
i the maximum/right-most index

η ∈ γ+(Xi−1,iXi), if non-empty, such that sη−1(Xi−1,iXi) is the minimum prefix
sum of those of Xi−1,iXi over γ+(Xi−1,iXi); that is,

138 H.K. Dai and Z. Wang

β∗
i = max arg min{sη−1(Xi−1,iXi) | η ∈ γ+(Xi−1,iXi) (�= ∅)}.

The sequential partition P(X) satisfies the rm-locality condition if for every
i ∈ {1, 2, . . . ,m−1} with non-empty γ+(Xi−1,iXi), rmXi−1,iXiXi,i+1(β

∗
i) ∈ [β∗

i +
1, β(Xi−1,iXiXi,i+1)].

The rm-localized sequential partition P(X) derives a Max-independent par-
tition P̃(X) = (X ′′

i−1,iXiX
′
i,i+1)

m
i=1 where X ′′

i−1,i and X ′
i,i+1 are respectively the

suffix of Xi−1,i and prefix of Xi,i+1 that are determined by rm-computation as
follows. Recall that X0,1 = ∅ and Xm,m+1 = ∅, let X ′′

0,1 = ∅ and X ′
m,m+1 = ∅

accordingly. For every i ∈ {1, 2, . . . ,m − 1}, define X ′
i,i+1 as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∅ if γ+(Xi−1,iXi) = ∅∨
rmXi−1,iXiXi,i+1(β

∗
i) ∈ [β∗

i + 1, β(Xi−1,iXi;Xi−1,iXiXi,i+1)],
the prefix of Xi,i+1 with
index subrange [α(Xi,i+1;Xi−1,iXiXi,i+1), rmXi−1,iXiXi,i+1(β

∗
i)]

if γ+(Xi−1,iXi) �= ∅ ∧ rmXi−1,iXiXi,i+1(β
∗
i) ∈ γ(Xi,i+1;Xi−1,iXiXi,i+1),

and X ′′
i,i+1 to be the (remaining) suffix of Xi,i+1 such that X ′

i,i+1X
′′
i,i+1 = Xi,i+1.

Note that the first case in defining X ′
i,i+1 may be absorbed into the second case.

Theorem 3. Let X be a non-empty real-valued sequence with an rm-localized
sequential partition P(X) = (X1,X1,2,X2,X2,3,X3, . . . , Xm−1,Xm−1,m,Xm)
and its derived sequential partition P̃(X) = (X ′′

η−1,ηXηX ′
η,η+1)

m
η=1. Then:

1. P̃(X) is Max-independent: Max(X) = ∪m
η=1 Max(X ′′

η−1,ηXηX ′
η,η+1), and

2. For all i ∈ {1, 2, . . . ,m}, Max(X ′′
i−1,iXiX

′
i,i+1) = Max(Xi−1,iXiX

′
i,i+1)−{Y

∈Max(Xi−1,iXiX
′
i,i+1) | α(Y ;Xi−1,iXiX

′
i,i+1)∈γ(X ′

i−1,i;Xi−1,iXiX
′
i,i+1)};

so Max(X) = ∪m
η=1(Max(Xη−1,ηXηX ′

η,η+1)−{Y ∈ Max(Xη−1,ηXηX ′
η,η+1) |

α(Y ;Xη−1,ηXηX ′
η,η+1) ∈ γ(X ′

η−1,η;Xη−1,ηXηX ′
η,η+1)}).

3 Probabilistic Analysis of the Locality Condition

The structural decomposition of a non-empty real-valued sequence X in
Theorem 3 suggests a basis for an ideal decomposition of X with length-balance
and Max-independence – provided the decomposition satisfies the rm-locality
condition. While the rm-localized decomposition P̃(X) is the (derived) sequen-
tial partition (X ′′

η−1,ηXηX ′
η,η+1)

m
η=1 in m pairwise disjoint subsequences, our

domain-decomposed parallel algorithm computing Max(X) will employ m pro-
cessors with the i-th processor hosting the subsequence Xi−1,iXiXi,i+1 for i ∈
{1, 2, . . . ,m}. The subsequences Xi−1,iXiXi,i+1 and Xi,i+1Xi+1Xi+1,i+2 hosted
in successive i-th and (i+1)-th processors have the common subsequence Xi,i+1

that serves as a buffer to capture the rm-locality originated from Xi−1,iXi and
a floating separation between successive Max-sets: Max(X ′′

i−1,iXiX
′
i,i+1) and

Max(X ′′
i,i+1Xi+1X

′
i+1,i+2). A longer common subsequence facilitates the satisfi-

ability of the rm-locality of the preceding subsequence while a shorter one avoids
redundant computation among successive processors.

A Parallel Algorithm for Finding All Minimal Maximum Subsequences 139

In this section we analyze the length bound of the common subsequences
probabilistically for random sequences of normally-distributed terms – via the
theory of random walk. Let X1,X2, . . . be a sequence of pairwise independent
and identically distributed random variables. Denote by (Sη)∞

η=0 the sequence
of prefix-sum random variables with S0 = 0 and Si =

∑i
η=1 Xη for i ≥ 1,

which corresponds to a general random walk for which Si gives the position at
epoch/index i. A record value occurs at (random) epoch i ≥ 1 corresponds to
the probabilistic event “Si > Sη for each η ∈ [0, i−1]”. For every positive integer
j, the j-th strict ascending ladder epoch random variable is the index of the j-th
occurrence of the probabilistic event above. We define analogously the notions
of: (1) strict descending ladder epochs by reversing the defining inequality from
“>” to “<”, and (2) weak ascending and weak descending epochs by replacing
the defining inequalities by “≥” and “≤”, respectively.

The first strict ascending ladder epoch is the random index of the first entry
into (0,+∞), and the continuation of the random walk beyond this epoch is a
probabilistic replica of the entire random walk. Other variants of (strict/weak,
ascending/descending) ladder epoch yield similar behavior.

Viewing the sequence X in the Max-computation in an appropriate prob-
abilistic setting studied below and following the above-stated denotations and
construction of the Max-independent sequential partition P̃(X) from an rm-
localized sequential partition P(X), we: (1) see intuitively that the random
index-difference rmXi−1,iXiXi,i+1(β

∗
i) −β∗

i +1 behaves like the first weak descend-
ing ladder epoch T of the underlying random walk (yielding

∑κ
η=1 yη+β∗

i −1 for
κ = 0, 1, . . .) conditional on the probabilistic event “the positivity of the first
term yβ∗

i
” – with finite variance (and mean), and (2) develop a probabilistic

upper bound on the length of the common subsequences in P̃(X) via the mean
and variance of a variant of the first ladder epoch.

Remark 1. Ideally in P̃(X), we desire that:

|Xi,i+1| (= |[α(Xi,i+1;Xi−1,iXiXi,i+1), rmXi−1,iXiXi,i+1(β
∗
i)]|)

≤ |[β∗
i , rmXi−1,iXiXi,i+1(β

∗
i)]| = rmXi−1,iXiXi,i+1(β

∗
i) − β∗

i + 1.

Thus, if we select the common subsequence Xi,i+1 such that |Xi,i+1| ≥ �E(T) +
δ
√

Var(T) for some positive real δ, then the following two probabilistic events
satisfy the subset-containment:

“rmXi−1,iXiXi,i+1(β
∗
i) − β∗

i + 1 ≥ |Xi−1,i|”
⊆ “(rmXi−1,iXiXi,i+1(β

∗
i) − β∗

i + 1) − E(T) ≥ δ
√

Var(T)”,

and, in accordance with Chebyshev’s inequality,

pr (random index-difference rmXi−1,iXiXi,i+1(β
∗
i) − β∗

i + 1 ≥ |Xi−1,i|)
≤ pr (T − E(T) ≥ δ

√
Var(T)) ≤ pr (|T − E(T)| ≥ δ

√
Var(T)) ≤ 1

δ2
.

These will be applied to bound the likelihood of (non-)satisfiability of the rm-
locality condition for P(X).

140 H.K. Dai and Z. Wang

We now relate the conditional weak descending ladder epoch T to the uncon-
ditional one and then, in an appropriate probabilistic setting, the means and
variances of the two random variables.

For a sequence of pairwise independent and identically distributed random
variables X1,X2, . . . and its associated random-walk sequence (Sη)∞

η=0 of prefix-
sum random variables, denote by T1 its first weak descending ladder epoch.
Assume hereinafter that (Xη)∞

η=1 follows a common random variable X1 with
pr (X1 > 0) ≥ 0. For notational simplicity, denote by p and p̄ (= 1 − p) the
probabilities pr (X1 > 0) and pr (X1 ≤ 0), respectively.

The unconditional and conditional ladder epochs T1 and T (= T1 | X1 > 0)
have sample spaces of {1, 2, . . .} and {2, 3, . . .}, respectively, and for every t ∈
{2, 3, . . .},

pr (T = t) = pr (T1 = t | X1 > 0) =
pr (T1 = t ∩ X1 > 0)

pr (X1 > 0)
=

1
p

pr (T1 = t)

due to the subset-containment of the probabilistic events: “T1 = t (≥ 2)” ⊆
“X1 > 0”.

Lemma 4. Assume that the variance, hence the mean, of the unconditional weak
descending ladder epoch T1 exist. The means and variances of the unconditional
and conditional ladder epochs T1 and T = T1 | X1 > 0 are related as follows:

(1) E(T) =
1
p

E(T1) − p̄

p
and (2) Var(T) =

1
p

Var(T1) − p̄(
1
p
(E(T1) − 1))2.

Remark 2. Remark 1 and Lemma 4 suggest to seek lower and upper bounds on
E(T1) and an upper bound on Var(T1) for their use with the mean- and variance-
relationships – which translate to non-trivial bounds on E(T) and Var(T). Note
that, by the assumption of pr (X1 > 0), we have E(T1) > 1.

For our Max-computing problem, we assume hereinafter (unless explicitly
stated otherwise) that the sequence X = (xη)n

η=1 is a random sample from a
normal distribution with mean −a and variance b2 for some positive reals a
and b. That is, a sequence of pairwise independent and identically distributed
random variables X1,X2, . . . with a common normal distribution with mean−a
and variance b2 gives rise to the observed values x1, x2, In applications, the
knowledge of the mean and variance of the common random variable is known
(see a uniformly-distributed case studied in [8]) or can be approximated.

The negativity of the mean (−a) of the underlying normal distribution is
desired in order to avoid yielding unrealistically long minimal maximum subse-
quences for viable applications. Formally for the induced random-walk sequence
(Sη)∞

η=0 of (Xη)∞
η=1, since E(X1) is finite and negative, the first (weak descend-

ing) ladder epoch T1 has a proper probability distribution with finite mean and
the random walk drifts to −∞. For notational simplicity, denote by λ the “mean
to standard deviation” ratio E(X1)√

Var(X1)
; λ = −a

b for a common normal distribution

X1 with mean −a and standard deviation b.

A Parallel Algorithm for Finding All Minimal Maximum Subsequences 141

Theorem 4. For a sequence of pairwise independent and identically distributed
random variables (Xη)∞

η=1 with a negative (common) finite mean E(X1) and a
positive probability p (= pr (X1 > 0)), the unconditional and conditional first
weak descending epochs, T1 and T (= T1 | X1 > 0) respectively, satisfy the
followings:

1. [General Case: Means] For T1:E(T1) = exp(
∑∞

η=1
pr (Sη>0)

η); for T : E(T) =
1
p exp(

∑∞
η=1

pr (Sη>0)
η) − p̄

p .
2. [Normally-Distributed Case: Means] For a common normal distribution of

(Xη)∞
η=1 with mean −a and variance b2 for some positive reals a and b and

for every positive integer l, denote B(λ, l, η) = 1 − exp(− λ2

2 sin2(ηπ/(2l))
) for

η ∈ {1, 2, . . . , l}, then:

for T1: 1 < (
l−1∏

η=1

B(λ, l, η))− 1
2l ≤ E(T1) ≤ (

l∏

η=1

B(λ, l, η))− 1
2l ;

for T :
1
p
(

l−1∏

η=1

B(λ, l, η))− 1
2l − p̄

p
≤ E(T) ≤ 1

p
(

l∏

η=1

B(λ, l, η))− 1
2l − p̄

p
.

For our purpose in this study, we consider l = 6, and denote by μ′ and μ′′

the lower and upper bounds on the mean E(T1) obtained in Theorem 4.

Remark 3. The range-constraint on E(T1): E(T1) ∈ [μ′, μ′′] induces an upper
bound on Var(T1) via some stochastic relationships of the first- and second-order
moments of the first weak descending ladder epoch T1, its associate (first weak
descending) ladder height ST1 , and the common distribution X1 of the underlying
random walk.

The following scenario will appear in upper-bounding Var(T1) and Var(T):
a quadratic polynomial Q with negative leading coefficient and two distinct real
roots r′ and r′′ (r′ < r′′) serves as an upper bound on a nonnegative quantity v
(such as a variance): 0 ≤ v ≤ Q(s) where s is a real-valued statistics – which
induces a range-constraint: s ∈ [r′, r′′].

Denote by q1 and q the two quadratic polynomial forms that represent upper
bounds on Var(T1) and Var(T), respectively, in Theorem 5 below:

1. q1(t) = 2(−t2 + (1 + 2
λ2)t) with distinct real roots r′

1 and r′′
1 (r′

1 < r′′
1), and

2. q(t) = −(2 + p̄
p2)t2 + 2(1 + 2

λ2 + p̄
p2)t − p̄

p2 with distinct real roots r′ and r′′

(r′ < r′′).

Theorem 5. For a sequence of pairwise independent and identically distributed
random variables (Xη)∞

η=1 with a negative (common) finite mean E(X1), a finite
(common) third-order absolute moment E(|X1|3), and a positive probability p (=
pr (X1 > 0)), the unconditional and conditional first weak descending epochs T1

and T (= T1 | X1 > 0) respectively, satisfy the followings:

142 H.K. Dai and Z. Wang

1. [General Case: Means and Variances] For T1: r′ ≤ E(T1) ≤ r′′ and

Var(T1) < q1(E(T1)) = 2(−E(T1)2 + (1 +
2
λ2

) E(T1));

for T : 1
pr′ − p̄

p ≤ E(T) ≤ 1
pr′′ − p̄

p and

Var(T) < q(E(T1)) = −(2 +
p̄

p2
) E(T1)2 + 2(1 +

2
λ2

+
p̄

p2
) E(T1) − p̄

p2
.

2. [Normally-Distributed Case: Means and Variances] With a common normal
distribution of (Xη)∞

η=1 with mean −a and variance b2 for some positive reals
a and b:

for T1: μ′ ≤ E(T1) ≤ μ′′ and Var(T1) < q1(E(T1));

for T :
1
p
μ′ − p̄

p
≤ E(T) ≤ 1

p
μ′′ − p̄

p
and Var(T) < q(E(T1)).

4 Max-Algorithms, Performance, and Conclusion

We have implemented a Max-computing parallel algorithm on cluster systems
in which subsequence-hosting processors employ an optimal linear-time sequen-
tial algorithm Max Sequential (which is detailed in the full version) for local
Max-computation. Improvements to the algorithms and work in progress will be
addressed in the conclusion. The algorithms implemented with Message Passing
Interface (MPI) are available from the authors.

The performance of the parallel algorithm Max Parallel is assessed in a
preliminary empirical study on a cluster with synthetic random data as fol-
lows: (1) N = 100 trial-sequences, each is a random sample/sequence of length
n = 5 · 106 from a normal distribution with mean −0.25 and variance 1.0, and
(2) Performance measures in (absolute) speedup and efficiency of Max Parallel
are collected in two sets of mean-statistics: (2.1) the set of conditional mean-
statistics on “success” scenario (satisfiability of the rm-locality condition for the
first (p−1) processors) from N trial-sequences and the Max-computing by (local)
Max Sequential in Max Parallel: Steps 1 – 3, and (2.2) the set of unconditional
ones for Max Parallel: all steps.

Based on the optimal sequential-time algorithm [8], the (mean) optimal
sequential time for Max-computation of a length-n sequence, T ∗(n), is approx-
imately 0.155881 sec for the synthetic random data prepared in item 1 above
(when averaged over N = 100 sequences).

Table 1 summarizes the above-stated two sets of mean-statistics of the run-
ning time, speedup, and efficiency of Max Parallel for δ = 3 (in Remark 1
and Max Parallel: Step 1) and m processors with m ∈ {1, 2, 4, 8, 16, 32, 64}:
Tm(n) (in seconds), Sm(n) = T ∗(n)

Tm(n) , and Em(n) = T1(n)
mTm(n) , respectively.

Since pr(satisfiability of rm-locality for single processor) ≥ 1− 1
δ2 (= 8

9), the
expected number Ns of “successes” from N trial-sequences is bounded below:

A Parallel Algorithm for Finding All Minimal Maximum Subsequences 143

Ns ≥ N(1 − 1
δ2)m−1. The empirical and statistical results tabulated in the two

columns: (expected) Ns and empirical-Ns show that the constraints on E(T)
and Var(T) (Theorem 5: part 2) in bounding E(T) + δ

√
Var(T) (Max Parallel:

Step 1) serves as a good lower-bound predictor for Ns. For the conditional statis-
tics on “success” scenario, the speedup and efficiency are close to their theoretical
bounds of m and 1, respectively. For the unconditional ones, even for a small δ
(= 3), the speedup and efficiency exceed 3

4 of their theoretical bounds, except for
m = 64. The speedup and efficiency performance of an improved Max Parallel
depends on the extent of resolving violations of rm-locality among neighbor pro-
cessors and tradeoffs involving δ and m.

Algorithm Max Parallel.
Require: A length-n real-valued sequence X (which is a random sample satisfying

the assumptions in Theorem 5: part 2) and a prescribed probability threshold δ
(Remark 1: Chebyshev’s inequality).

Ensure: The sequence of all successive minimal maximum subsequences (all maximal
monotone subsequences) of X.

1: Construct sequential partitionP(X) = (X1, X1,2, X2, X2,3, X3, . . . , Xm−1, Xm−1,m,
Xm) of X (stated in Section 3) such that: (1) for all i ∈ {1, 2, . . . , m}, processor Pi

hosts the subsequence Xi,i−1XiXi,i+1 in a length-balanced manner except possibly
for the last processor Pm, and (2) for all i ∈ {1, 2, . . . , m − 1}, |Xi,i+1| is the least
upper bound of �E(T) + δ

√
Var(T)� computed via Theorem 5: part 2;

2: {Decide if P(X) is an rm-localized partition:}
2.1: for all i ∈ {1, 2, . . . , m}

{1 ≤ i ≤ m − 1: processor Pi computes:
is rmLocalizedi := (γ+(Xi−1,iXi) = ∅)∨

(rmXi−1,iXiXi,i+1(β
∗
i) ∈ [β∗

i + 1, β(Xi−1,iXiXi,i+1)]);
i = m: processor Pm computes:

is rmLocalizedm := true;}
2.2: Compute is rmLocalized := ∧m−1

η=1 is rmLocalizedη using prefix-sum function;
2.3: for all i ∈ {1, 2, . . . , m} processor Pi updates:

is rmLocalizedi := is rmLocalized;
3: {If P(X) is rm-localized, then compute Max(X) via Theorem 3: determine

X ′
i,i+1 for all i ∈ {1, 2, . . . , m − 1} and compute Max(X ′′

i−1,iXiX
′
i,i+1) for all

i ∈ {1, 2, . . . , m}:}
for all i ∈ {1, 2, . . . , m} processor Pi updates:
if is rmLocalizedi then

{1 ≤ i ≤ m − 1: processor Pi sends rmXi−1,iXiXi,i+1(β
∗
i) to processor Pi+1;

processor Pi+1 receives rmXi−1,iXiXi,i+1(β
∗
i);

i = m: null;}
Invokes Max Sequential to compute Max(X ′′

i−1,iXiX
′
i,i+1);

else goto Step 4;
4: Invoke a parallel algorithm adapted from the Max-computing PRAM-algorithm [3]

in which two embedded problems are solved by parallel algorithms implemented
with MPI: “all nearest smaller values” [4] and “range-minima” [5];

144 H.K. Dai and Z. Wang

Table 1. Preliminary empirical study of speedup and efficiency of Max Parallel

mean-statistics conditional on “success” scenario: unconditional:
over N mean-statistics over observed Ns mean-statistics over N

m Ns observed Ns Tm(n) Sm(n) Em(n) Tm(n) Sm(n) Em(n)

1 100.00 100 0.156833 0.9939 1.0000 0.156835 0.9939 1.0000
2 88.89 98 0.078377 1.9889 1.0005 0.078712 1.9804 0.9963
4 70.23 95 0.039663 3.9301 0.9885 0.040095 3.8878 0.9779
8 43.85 81 0.020464 7.6173 0.9580 0.021470 7.2604 0.9131
16 17.09 72 0.010410 14.9742 0.9416 0.011246 13.8610 0.8716
32 2.60 43 0.005312 29.3451 0.9226 0.006318 24.6725 0.7757
64 0.06 21 0.003002 51.9257 0.8163 0.005047 30.8859 0.4855

Our work in progress includes a comparative empirical/probabilistic study
based on current implementation and refining the algorithms to detect and
resolve violations of rm-locality among near-neighbor processors. There are two
directions for general theoretical developments. First, the length bound of the
common subsequences (to capture the rm-locality) is achieved via explicit bounds
on the mean/variance of the first ladder epoch in the underlying random walk
with normal distribution. This leads to a deserving study for general probability
distribution. Second, there are other notions of (minimal) maximality for ranking
subsequences of a real-valued sequence, developing efficient parallel algorithms
for their computation is interesting.

References

1. Akl, S.G., Guenther, G.R.: Applications of Broadcasting with Selective Reduction
to the Maximal Sum Subsegment Problem. International Journal of High Speed
Computing 3(2), 107–119 (1991)

2. Alves, C.E.R., Cáceres, E.N., Song, S.W.: Finding All Maximal Contiguous Subse-
quences of a Sequence of Numbers in O(1) Communication Rounds. IEEE Transac-
tions on Parallel and Distributed Systems 24(3), 724–733 (2013)

3. Dai, H.-K., Su, H.-C.: A parallel algorithm for finding all successive minimal maxi-
mum subsequences. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS,
vol. 3887, pp. 337–348. Springer, Heidelberg (2006)

4. He, X., Huang, C.-H.: Communication Efficient BSP Algorithm for All Nearest
Smaller Values Problem. Journal of Parallel and Distributed Computing 61(10),
1425–1438 (2001)

5. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley (1992)
6. Karlin, S., Brendel, V.: Chance and Statistical Significance in Protein and DNA

Sequence Analysis. Science 257(5066), 39–49 (1992)
7. Lin, T.-C., Lee, D.T.: Randomized Algorithm for the Sum Selection Problem. The-

oretical Computer Science 377(1–3), 151–156 (2007)
8. Ruzzo, W.L., Tompa, M.: A linear time algorithm for finding all maximal scoring

subsequences. In: The Seventh International Conference on Intelligent Systems for
Molecular Biology, pp. 234–241. International Society for Computational Biology
(1999)

	A Parallel Algorithm for Finding All Minimal Maximum Subsequences via Random Walk
	1 Preliminaries
	2 Structural Decompositions of X Leading to Max(X)
	3 Probabilistic Analysis of the Locality Condition
	4 Max-Algorithms, Performance, and Conclusion
	References

