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Preface

These proceedings contain the papers that were presented at the 9th International Con-
ference on Language and Automata Theory and Applications (LATA 2015), held in
Nice, France, during March 2–6, 2015.

The scope of LATA is rather broad, including: algebraic language theory; algo-
rithms for semi-structured data mining; algorithms on automata and words; automata
and logic; automata for system analysis and program verification; automata networks;
automata, concurrency, and Petri nets; automatic structures; cellular automata; codes;
combinatorics on words; computational complexity; data and image compression; de-
scriptional complexity; digital libraries and document engineering; foundations of finite
state technology; foundations of XML; fuzzy and rough languages; grammars (Chom-
sky hierarchy, contextual, unification, categorial, etc.); grammatical inference and algo-
rithmic learning; graphs and graph transformation; language varieties and semigroups;
language-based cryptography; parallel and regulated rewriting; parsing; patterns; power
series; string and combinatorial issues in bioinformatics; string processing algorithms;
symbolic dynamics; term rewriting; transducers; trees, tree languages, and tree au-
tomata; unconventional models of computation; weighted automata.

LATA 2015 received 115 submissions. Most of the papers were given at least three
reviews by Program Committee members or by external referees. After a thorough and
vivid discussion phase, the committee decided to accept 53 papers (which represents an
acceptance rate of 46.09%). The conference program also included five invited talks.
Part of the success in the management of such a large number of submissions was due
to the excellent facilities provided by the EasyChair conference management system.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the reviewers for their cooperation, and Springer for its very
professional publishing work.

December 2014 Adrian-Horia Dediu
Enrico Formenti

Carlos Martín-Vide
Bianca Truthe
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New Approaches to Černý’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 212

François Gonze and Raphaël M. Jungers

On Robot Games of Degree Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Vesa Halava, Reino Niskanen, and Igor Potapov

Time-Bounded Reachability Problem for Recursive Timed Automata
Is Undecidable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Shankara Narayanan Krishna, Lakshmi Manasa, and Ashutosh Trivedi

On Observability of Automata Networks via Computational Algebra . . . . . . 249
Rui Li and Yiguang Hong

Reasoning on Schemas of Formulas: An Automata-Based Approach. . . . . . . 263
Nicolas Peltier

Derivatives for Regular Shuffle Expressions . . . . . . . . . . . . . . . . . . . . . . . 275
Martin Sulzmann and Peter Thiemann

From x-Regular Expressions to Büchi Automata via Partial Derivatives . . . . 287
Peter Thiemann and Martin Sulzmann

Quotient of Acceptance Specifications Under Reachability Constraints . . . . . 299
Guillaume Verdier and Jean-Baptiste Raclet

Codes, Semigroups, and Symbolic Dynamics

Structure and Measure of a Decidable Class of Two-dimensional Codes . . . . 315
Marcella Anselmo, Dora Giammarresi, and Maria Madonia

On Torsion-Free Semigroups Generated by Invertible Reversible Mealy
Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Thibault Godin, Ines Klimann, and Matthieu Picantin

XII Contents



Coding Non-orientable Laminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Luis-Miguel Lopez and Philippe Narbel

Preset Distinguishing Sequences and Diameter of Transformation
Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Pavel Panteleev

Hierarchy and Expansiveness in 2D Subshifts of Finite Type. . . . . . . . . . . . 365
Charalampos Zinoviadis

Combinatorics on Words

On the Number of Closed Factors in a Word . . . . . . . . . . . . . . . . . . . . . . . 381
Golnaz Badkobeh, Gabriele Fici, and Zsuzsanna Lipták

Online Computation of Abelian Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Gabriele Fici, Thierry Lecroq, Arnaud Lefebvre, and Élise Prieur-Gaston

Coverability in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Guilhem Gamard and Gwenaël Richomme

Equation xiyjxk ¼ uivjuk in Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
Jana Hadravová and Štěpán Holub
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Automated Synthesis of Application-Layer
Connectors from Automata-Based Specifications

Marco Autili1, Paola Inverardi1, Filippo Mignosi1,
Romina Spalazzese2, and Massimo Tivoli1(B)

1 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università dell’Aquila, L’Aquila, Italy

{marco.autili,paola.inverardi,filippo.mignosi,massimo.tivoli}@univaq.it
2 Department of Computer Science, Malmö University, Malmö, Sweden

romina.spalazzese@mah.se

Abstract. The heterogeneity characterizing the systems populating the
Ubiquitous Computing environment prevents their seamless interoper-
ability. Heterogeneous protocols may be willing to cooperate in order to
reach some common goal even though they meet dynamically and do
not have a priori knowledge of each other. Despite numerous efforts have
been done in the literature, the automated and run-time interoperability
is still an open challenge for such environment. We consider interoper-
ability as the ability for two Networked Systems (NSs) to communicate
and correctly coordinate to achieve their goal(s).

In this paper, we report the main outcomes of our past and recent
research on automatically achieving protocol interoperability via con-
nector synthesis. We consider application-layer connectors by referring
to two conceptually distinct notions of connector: coordinator and medi-
ator. The former is used when the NSs to be connected are already able
to communicate but they need to be specifically coordinated in order to
reach their goal(s). The latter goes a step forward representing a solu-
tion for both achieving correct coordination and enabling communication
between highly heterogeneous NSs.

In the past, most of the works in the literature described efforts to
the automatic synthesis of coordinators while, in recent years the focus
moved also to the automatic synthesis of mediators. By considering our
past experience on the automatic synthesis of coordinators and media-
tors as a baseline, we conclude by overviewing a formal method for the
automated synthesis of mediators that allows to relax some assumptions
state-of-the-art approaches rely on, and characterize the necessary and
sufficient interoperability conditions that ensure the mediator existence
and correctness.

1 Introduction

The heterogeneity characterizing the systems that populate the ubiquitous com-
puting environment prevents their seamless interoperability. Systems with het-
erogeneous protocols may be willing to cooperate in order to reach some common
goal even though they do not have a priori knowledge of each other.
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 3–24, 2015.
DOI: 10.1007/978-3-319-15579-1 1
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The term protocol refers to interaction protocols or observable protocols. A
protocol is the sequences of messages visible at the interface level which a sys-
tem exchanges with other systems. In this paper we consider application-layer
protocols as opposed to midlleware-layer protocols [31].

By referring to the notion of interoperability introduced in [28], the problem
we address in this paper, is related to automatically achieve the interoperability
between heterogeneous protocols in the ubiquitous computing environment.

With interoperability, we mean the ability of heterogeneous protocols to com-
municate and correctly coordinate to achieve their goal(s). The communication
is expressed as synchronization, i.e., two systems communicate if they are able
to synchronize on “common actions”. Coordination is expressed by the achieve-
ment of a specified goal, i.e., two systems succeed in coordinating if they interact
through synchronization according to the achievement of their goal(s). Commu-
nication that requires a complex protocol interaction can be regarded as a simple
form of coordination. Indeed, application level protocols introduce a notion of
communication that goes beyond single basic synchronization and may require
a well defined sequence of synchronizations to be achieved.

In order to make communication and correct coordination between heteroge-
neous protocols possible, we focus on methods, and related tools, for the auto-
matic synthesis of application-layer connectors. In this paper, we report our
past and recent work on devising automatic connector synthesis techniques in
the domains of Component Based Software Engineering (CBSE) and Ubiqui-
tous Computing (UbiComp), respectively. The work carried on within the CBSE
domain can be considered as a baseline for the work done in the UbiComp
domain. However, it is worth mentioning that these two research contributions
address two distinct sub-problems of the automatic connector synthesis problem.

In particular, in the CBSE domain, we used automatic connector synthesis
in order to face the so-called component assembly problem. This problem can
be considered as an instance of the general interoperability problem where the
issue of enabling communication is assumed to be already solved. The focus, in
the component assembly problem, is on how to coordinate the interactions of
already communicating black-box components so that the resulting system is
free from possible deadlocks and it satisfies a goal specified in terms of coor-
dination policies. Since components are black-box, this is done by introducing
in the system a software coordinator. It is an additional component and it is
synthesized to intercept all other components interactions in order to prevent
deadlocks and those interactions that violate the coordination policies. Coordi-
nation policies are routing policies usually specified in some automata-based or
temporal logic formalism. Thus, a coordinator can be considered as a specific
notion of connector, i.e., a coordination connector.

In the UbiComp domain, the granularity of a system shifts from the gran-
ularity of a system of components (as in the CBSE domain) to the one of a
System-of-Systems (SoS) [27]. A SoS is characterized by an assembly of a wide
variety of building blocks. Thus, in the UbiComp domain, enabling communica-
tion between heterogeneous NSs regardless, at a first stage, possible coordination
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mismatches, becomes a primary concern. This introduces another specific notion
of connector, i.e., the notion of mediator seen as a communication connector.

Achieving correct communication and coordination among heterogeneous
NSs means achieving interoperability among them. The interoperability prob-
lem and the specific notions of connector (e.g., coordinator or mediator) that
can be used to solve it, or part of it, have been the focus of extensive studies
within different research communities. Protocol interoperability come from the
early days of networking and different efforts, both theoretical and practical,
have been done to address it in several areas including: protocol conversion,
component adaptors, Web services mediation, theories of connectors, wrappers,
bridges, and interoperability platforms.

Despite the existence of numerous solutions in the literature, most of them
are focused on coordinator synthesis and less effort has been devoted to the auto-
matic synthesis of mediators. In particular, most of these approaches: (i) assume
the communication problem solved by considering protocols already able to com-
municate; (ii) are informal making automatic reasoning impossible; (iii) follow a
semi-automatic process for the mediator synthesis requiring human intervention;
(iv) consider only few possible mismatches.

Our recent work on mediator synthesis has been devoted to the definition of
a theory of mediators with related supporting methods and tools. In particular,
our recent work has led us to design automated model-based techniques and tools
to support the mediator synthesis process, from protocol abstraction to protocol
matching and protocol mapping.

The remainder of the paper is organized as follows. Section 2 sets the con-
text of the work reported in this paper. In particular, by means of two exam-
ples, this section clarifies the distinction between the notions of coordinator
and mediator. Sections 3 and 4 describe different approaches for the automatic
synthesis of coordinators and of mediators, respectively. The coordinator syn-
thesis approaches that are discussed in Section 3 represents the baseline chosen
from the state-of-the-art for the approaches described in Section 4. We conclude
Section 4 by proposing a formal method for the automated synthesis of mediators
that permits to relax some assumptions state-of-the-art approaches rely on, and
characterize the necessary and sufficient interoperability conditions that ensure
the mediator existence and correctness. The method relies on both transducer
theory [11] and Mazurkiewicz trace theory [24]. Section 5 discusses related works
in the areas of both coordinator and mediator synthesis. Section 6 concludes the
chapter and outlines our future research perspectives.

2 Setting the Context

A common assumption of the connector synthesis techniques discussed in this
paper is related to the possibility to characterize the interaction protocol of a
system by means of an automata-based specification, e.g., a Labeled Transition
System (LTS) [33]. Note that this assumption is supported by the increasing
proliferation of techniques for software model elicitation (see [14,21,26,36,37,43]
just to cite a few).
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The interaction protocol of a NS expresses the order in which input and
output actions are performed while the NS interacts with its environment. Input
actions model methods that can be called as well as the return values from
such calls, or the reception of messages from communication channels. Output
actions model method calls, message transmission via communication channels,
or exceptions that occur during methods execution.

As introduced in Section 1, our focus is on the automatic synthesis of
application-layer connectors. Our notion of protocol abstracts from the content
of the exchanged data, i.e., values of method/operation parameters, return val-
ues, or content of messages. This means that we are interested in harmoniz-
ing the behavior protocol (e.g., scheduling of operation calls) of heterogeneous
NSs rather than performing mediation of communication primitives or of data
encoding/decoding that are issues related to the synthesis of middleware-layer
connectors [31].

The interoperability problem concerns the problem of both enabling commu-
nication and achieving correct coordination. In our past research we addressed
correct coordination by assuming communication already solved. This is done
via automatic coordinator synthesis (Section 3). Instead, in our more recent
and current research we focus on the whole interoperability problem by devising
methods and tools for the automatic mediator synthesis (Section 4).

In order to better clarify the distinction between the notions of coordinator
and mediator, in the following two sub-sections, we describe two simple yet
significant examples of the kinds of interoperability problems that can be solved
by using coordinators (Section 2.1) and mediators (Section 2.2), respectively.

2.1 The Need for Coordinators: The Shared Resource Scenario

To better illustrate protocol coordination and the related underlying problems,
we introduce the Shared Resource scenario. This explanatory example is con-
cerned with the automatic assembly of a client-server component-based system.
This system is formed by three components: two clients, respectively denoted as
C1 and C2, and one server denoted as C3 (the component controlling the Shared
Resource). This example, although very simple, exhibits coordination problems
that exemplify the kind of problems that coordinator synthesis can solve. For
instance, here, the problem is due to the presence of race conditions in accessing
a shared resource.

Let us assume that we want to assemble a system formed by C1, C2, and C3.
In doing so, we want to automatically prevent possible deadlocks and guarantee
a specified coordination policy, hence, guaranteeing that the system’s goal is
reached.

Figure 1 represents the behavior of each component in terms of an LTS.
Each LTS models the component observable behavior in an intuitive way. Each
state of an LTS represents a state of the component and the state S0 represents
its initial state. Each action or complementary action performed by interacting
with the environment of the component (i.e., all other components in parallel)
is represented as a label of a transition into a new state. Actions are input or
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C3 

Fig. 1. Components’ behavior for the Shared Resource scenario

output. Within an LTS of a component, the label of an input action is prefixed
by the question mark “?” (e.g., ?C3.retValue1 of C1). The label of an output
action is prefixed by the exclamation mark “!” (e.g., !C3.method2 of C2).

The interface of server C3 exports three methods denoted as C3.method1,
C3.method2, and C3.method3, respectively. While C3.method2 has no return
value, C3.method1 and C3.method3 can return some value. C3.method1 returns
two possible return values denoted as C3.retValue1, and C3.retValue2. The
former is returned when a call of C3.method1 has not preceded by a call of
C3.method2. Otherwise, the latter is returned. C3.method3 returns only one
value, i.e., C3.retValue2. The two clients perform method calls according to
the server interface.

It is worthwhile noticing that the described component interfaces syntacti-
cally match since either they already match or suitable component wrappers
have been previously developed by the system assembler. As stated above, the
problem of enabling communication is here considered as already solved. We
recall that, in coordinator synthesis, the focus is on automatically preventing
interaction protocol mismatches rather than enabling communication.

In this example deadlocks can occur because of a race condition among C1
and C2. In fact, one client (i.e., C2) performs a call of C3.method2, hence leading
the server C3 in a state in which it expects a call of C3.method1. While C2 is
attempting to perform the call of C3.method1, the other client (i.e., C1) performs
such a call. In this scenario C1, C2, and C3 are in the state S1, S1, and S3 of their
LTSs. Now, C3 expects to return C3.retValue2 as return value of C3.method1
but C2 is still waiting to perform a call of C3.method1 and C1 expects a different
return value. Thus, a coordination mismatch occurs and it results in an deadlock
in the interaction between C1, C2, and C3.

This mismatch can be solved by synthesizing a software coordinator that
supervises components’ interactions by preventing the deadlock [7,50,51]. At
the level of the coordinator’s actual code, the coordinator is synthesized as a
multi-threaded component that creates a thread for each request and for each
caller performing such a request. Preventing, or solving if possible, deadlocks cor-
responds to put in a waiting state the thread that handles the request leading
to the deadlock state and performed by the identified caller. Thus the coordi-
nator will return the control to the caller only when it reaches a state in which
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the blocked request is possible1. Such multi-threaded servers are supported by
existing component technologies such as COM/DCOM or CORBA.

Another coordination issue that one can note is that, e.g., C1 can always
obtain the access to the shared resource, while C2 never obtains it since C2
can always require the access whenever the resource is already “lock” by C1. In
other words, C3 cannot be fair in providing the access to the shared resource
it supervises. To solve this issue, a software coordinator can be automatically
synthesized so to enforce an alternating protocol policy [51] on the components’
interaction. The coordinator allows only the alternating access of C1 and C2 to
the shared resource.

2.2 The Need for Mediators: the Purchase Order Scenario

To better illustrate protocol mediation and the related underlying problems that
we characterized in [47], in the following we introduce the Purchase Order sce-
nario from the Semantic Web Service (SWS) Challenge2 [38]. It represents a
typical real-world problem that is both close to industrial reality and practical.
This scenario highlights the various mismatches that can be encountered when
making heterogeneous systems interoperable. The scenario considers two NSs
implemented as prosumer3 Web Services (WSs) by using different protocols: the
Moon Client (MC) and the Blue Service (BS).

MC and BS, as prosumers, require to deal with all the possible type of
WSDL4 operations that WSs can support: (i) one-way - the WS receives a mes-
sage (input only); (ii) request-response - the WS receives a message (input),
and sends a correlated message (output); (iii) solicit-response - the WS sends
a message (output), and receives a correlated message (input); (iv) notification
- the WS sends a message (output only).

Figures 2 and 3 represent the WSDL interfaces of MC and BS, respec-
tively, plus a description of each interface operation. As prosumers, the WSDL
interfaces of MC and BS specify both their required and provided interfaces. A
required interface defines the set of operations (solicit-response and notification)
that a WS expects to invoke on an ideal service provider. A provided interface
defines the set of operations (request-response and one-way) that can be invoked
on the WS by its clients. As far as the interaction protocol of MC and BS is
concerned, the operations in the figures are listed in the order they are performed
while the two WSs interact with their environment.

MC cannot communicate with BS due to the following protocol mismatches,
of two different types.

1 Meaning that, this time, that request performed from that caller does not lead to a
deadlock.

2 http://sws-challenge.org/.
3 A prosumer is both a consumer and a provider of service operations.
4 Web Services Description Language (WSDL) 1.1 - W3C Note 15 March 2001 - http://

www.w3.org/TR/wsdl.

http://sws-challenge.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
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Fig. 2. MC WSDL interface

Communication mismatches concern the semantics and granularity of the
protocol actions. For instance, a client of BS provides its identifier while placing
the order, whereas MC has to authenticate before performing any operation.
Furthermore, BS provides a single operation to add an item, with the needed
quantity, to the order, whereas MC expects to use two different operations, one
for the addition and one for the quantity specification. To solve these kind of
mismatches it is necessary to align the two protocols to the same language, e.g.,
by using a suitable wrapper component.

Fig. 3. BS WSDL interface

Coordination mismatches concern the control structure of the (aligned)
protocols and can be solved by means of a mediator that can mediate the conver-
sation between the two protocols so that they can actually interact. For instance,
BS requires its clients to confirm the ordered items and then place the order,
whereas MC expects to confirm the ordered items only once the order is placed.
Finally, BS allows the addition of several kinds of items in the same order,
whereas MC performs the addition of only one kind of item per order.



10 M. Autili et al.

The mediation logic should account for the data that define the structure of
the messages exchanged by the respective input/output actions. For example,
the message associated to the request of AddItem is an aggregate of the messages
associated to the requests of SelectItem and SetQuantity. The methods described
in Section 4 have been conceived in order to automatically infer, among the
others, this aggregation relation by, e.g., assuming ontology knowledge or weaker
semantic information on input/output messages correlation.

3 Automatic Synthesis of Application-layer Coordinators

This section provides an overview of two different approaches to the automatic
synthesis of application-layer coordinators. We first introduce each approach by
outlining their commonalities and differences. Then, in Sections 3.1 and 3.2, we
give an overview of each approach.

Section 3.1 describes a method for the correct (with respect to coordination
mismatches) and automatic assembly of component-based systems via central-
ized coordinator synthesis [51]. In this context, by considering communication
issues already solved, the interoperability problem introduced in Section 1 can
be rephrased as follows: given a set of communicating components, C, and a set
of behavioral properties, P , automatically derive a deadlock-free assembly, A, of
these components which guarantees every property in P , if possible. The assembly
A is a composition of the components in C plus a synthesized coordinator. The
coordinator is synthesized as an additional component which intercepts all the
component interactions so as to control the exchange of messages with the aim
of preventing possible deadlocks and those interactions that violate the prop-
erties in P . In [51] this problem is addressed by showing how to automatically
synthesize the implementation of a centralized coordinator.

Unfortunately, in a distributed environment it is not always possible or con-
venient to introduce a centralized coordinator. For example, existing distributed
systems might not allow the introduction of an additional component (i.e., the
coordinator) which coordinates the information flow in a centralized way. More-
over, the coordination of several components might cause loss of information and
bottlenecks hence slowing down the response time of the centralized coordinator.
Conversely, building a distributed coordinator might extend the applicability of
the approach to large-scale contexts.

To overcome the above limitations, in [7], an extension of the previous method
is proposed. This extension is discussed in Section 3.2. The aim of the proposed
extension is to automatically synthesize a distributed coordinator into a set of
wrappers (local coordinators), one for each component whose interaction has
to be controlled. The distributed coordinator synthesis approach has various
advantages with respect to the synthesis of centralized coordinators. The most
relevant ones are: (i) no centralized point of information flow exists; (ii) the
degree of parallelism of the system without the coordinator is maintained; and
(iii) all the domain-specific deployment constraints imposed on the centralized
coordinator can be removed.



Application-Layer Connector Synthesis 11

Beyond the above two methods that we discuss in this paper, in the past,
we also defined automated coordinator synthesis techniques for both evolvable
systems [41] and real-time systems [50].

Our coordinator synthesis methods have been all applied to real case studies
in the domains of COM/DCOM and J2EE applications. This experimentation
has been carried on through the Synthesis tool [6] that implements all the
above mentioned methods.

3.1 Automatic Synthesis of Centalized Coordinators

Synthesis is a technique equipped with a tool [6] that permits to assemble
a component-based application in a deadlock-free way [7,51]. Starting from a
set of black-box components, Synthesis assembles them together according to
a so called coordinator-based architecture by synthesizing a coordinator that
guarantees deadlock-free interactions among components. The code that imple-
ments the coordinator is automatically derived directly from the components’
interfaces. Synthesis assumes a partial knowledge of the components’ interac-
tion behavior described as finite state automata plus the knowledge of a spec-
ification of the system to be assembled given in terms of Message Sequence
Charts (MSCs) [1]. Under these hypotheses, Synthesis automatically derives
the assembling code of the coordinator for a set of components. The coordina-
tor is derived in such a way to obtain a failure-free system. It is shown that
the coordinator-based system is equivalent according to a suitable equivalence
relation to the initial one once depurate of all the failure behaviors. The initial
coordinator is a no-op coordinator that serves to model all the possible compo-
nent interactions (i.e., the failure-free and the failing ones). Acting on the initial
coordinator is enough to automatically prevent both deadlocks and other kinds
of failure hence obtaining the failure-free coordinator.

As illustrated in Figure 4, the Synthesis framework realizes a form of system
adaptation. The initial software system is changed by inserting a new component,
the coordinator, in order to prevent interactions failures.

The framework makes use of the following models and formalisms. An archi-
tectural model, namely coordinator-based architecture, which constrains the way
components can interact, by forcing interaction to go through the coordinator.
A set of behavioral models for the components. Each model describes a specific
view of the component interaction protocol in the form of an LTS. A behavioral
equivalence on LTS to establish the equivalence among the original system and
the adapted/coordinated one. MSCs are used to specify the integration failure
to be avoided. Then LTSs and LTS synchronous product [5,33] plus a notion
of behavioral refinement [39] are used to synthesize the failure-free coordinator
specification, as it is described in detail in [51]. As already mentioned, from
the coordinator specification the actual code can be automatically derived as a
centralized component [51].



12 M. Autili et al.

Fig. 4. Automatic synthesis of centralized failure-free coordinators

3.2 Automatic Synthesis of Distributed Coordinators

As an extension of the method described in Section 3.1, the method that we
discuss in this section assumes as input (see Figure 5): (i) a behavioral specifi-
cation of the coordinator-free system formed by communicating components. It
is given as a set {C1, . . . , Cn} of LTSs (one for each component). The behavior
of the system is modeled by composing in parallel all the LTSs and by forcing
synchronization on common events; (ii) the specification of the desired behavior
that the system must exhibit. This is given in terms of an extended LTS, from
now on denoted by PLTS .

These two inputs are then processed in two main steps:
1. by taking into account all component LTSs, we automatically derive the LTS

that models the behavior of a centralized deadlock-free coordinator. This first
step is inherited from the approach described in Section 3.1. Whenever PLTS

ensures itself deadlock-freeness and its traces are all traces of the centralized
coordinator LTS, such a step is not required and, hence, the centralized coor-
dinator cannot be generated. By avoiding the generation of the centralized
coordinator, the method’s complexity is polynomial in the number of states
of PLTS . The first step terminates by checking whether enforcing PLTS is
possible or not. This check is implemented by a specific notion of refinement.
In our method, we use a suitable notion of strong simulation [39] to check
the refinement relation between two LTSs.
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Fig. 5. Automatic synthesis of distributed failure-free coordinators

2. In the second step, let K be the LTS of the centralized coordinator. If K has
been generated and it has been checked that PLTS can be enforced on it,
our method explores K looking for those states representing the last chance
before entering an execution trace that leads to a deadlock. For instance, in
Figure 6, the state S4 represents the last chance state before incurring in
the deadlock state S7. This information is crucial for deadlock prevention
purposes. The search of the last chance states aims at storing into the local
wrappers the states of the components that could lead the system to a dead-
lock by means of a so called critical action. The idea is therefore not to allow
a component to perform a critical action before being sure that the system
will not reach a deadlock state.

Fig. 6. An example of a centralized coordinator LTS in Synthesis

By interacting with the Synthesis tool, the user can tag component actions
as either controllable or uncontrollable by the external environment. If such
a critical action is controllable then it can be discarded. Otherwise, if it is
uncontrollable, Synthesis performs a controller synthesis step [15,44] that
“backtracks” by looking for the first controllable action that can be discarded
to prevent the execution of the critical action. After the execution of this
search, the set of last chance states and associated critical actions are stored
in a table, one for each component wrapper.
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The second step also explores PLTS to retrieve information crucial for
undesired behavior prevention. The aim here is to split and distribute PLTS

in a way that each local wrapper knows which actions the wrapped compo-
nent is allowed to execute.

Referring to Figures 6 and 7 for instance, the wrapper of component C3
must not allow the component to send the request C1.a, if the current global
state of the system matches the state S0 in PLTS , hence enforcing the desired
behavior modeled by PLTS . In particular, the label {!−C1.a 2,!−C1.a 3}
of the loop on S0 denotes two loops, one labeled with !−C1.a 2 and one
labeled with !−C1.a 3. The action !C1.a 3 denotes an output action C1.a
by C3; !−C1.a 3 represents its neagation, i.e., all possible actions different
from it.

Fig. 7. An example of a desired behavior LTS in Synthesis

The sets of last chance states and allowed actions are stored and, subse-
quently, used by the local wrappers as basis for correctly synchronizing with
each other by exchanging additional communication. In other words, the
local wrappers interact with each other to restrict the components’ stan-
dard communication (modeled by K) by allowing only the part of the com-
munication that is correct with respect to deadlock-freeness and PLTS . By
decentralizing K, the local wrappers preserve parallelism of the components
forming the system.

4 Automatic Synthesis of Application-Layer Mediators

This section describes our recent works on the automatic synthesis of application-
layer mediators. The approach presented in Section 4.1 discusses a theory of
mediating connectors and an automated synthesis method for achieving on-the-
fly interoperability (both communication and correct coordination) between het-
erogeneous protocols. The method discussed in Section 4.2 allows the automatic
synthesis of a connector (serving as both coordinator and mediator) which is
described in a modular form, hence enabling connector evolution and mainte-
nance. Finally, Section 4.3 discusses a theoretical approach for the automated
synthesis of mediators which permits to relax some of the assumptions state-
of-the-art approaches rely on. The discussed formalization relies on transducer
theory [11] and Mazurkiewicz trace theory [23].
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4.1 Automated Synthesis of Mediating Connectors for On-the-fly
Interoperability

In this section we overview our methodology and theory for the automated syn-
thesis of mediating connectors (also called mediators or connectors) for
on-the-fly interoperability [29,45,48]. Our emergent mediator is automatically
elicited and synthesized. It makes the communication and correct coordination
between heterogeneous protocols possible despite a set of mismatches that we
characterized in [46,47] together with their related mediating connector patterns.

We focus on compatible or functionally matching protocols, i.e., heteroge-
neous protocols that realize complementary functionalities (see [10] for the
inference of such high level compatibility). These protocols can potentially com-
municate and correctly coordinate by performing complementary sequences of
messages and data (or complementary conversations). However, communication
and correct coordination might not be achieved because of mismatches [47] (het-
erogeneity). For example, protocol languages (both messages and data) can have:
(i) different granularity, or (ii) different alphabets. Protocols’ behavior may have
different sequences of messages and data because of (a.1) the order in which
they are performed by a protocol is different from the order in which they are
performed by the other protocol; (a.2) interleaved messages and data related to
third parties communications i.e., with other systems or with the environment. In
some cases, as for example (i), (ii) and (a.1), it is necessary to properly perform
a manipulation of the two languages. In case (a.2) it is necessary to provide an
abstraction of the two sequences of messages and data that results in sequences
containing only those messages and data that are relevant to the communication.
The scenario in Section 2.2 illustrates some of the mismatches that we identi-
fied in [47]. A mediator is then a protocol that allows the communication and
correct coordination among compatible protocols by reconciling/mediating their
differences.

Fig. 8. Overview of our methodology
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Figure 8 shows an overview of the approach. Inside the big dashed box on
the left, there are the main elements of the methodology that takes as input (i)
LTS-based specifications of interaction protocols modeling both messages and
input/output data, and (ii) a semantic characterization of their messages and
data through ontologies (in the figure they are called Behaviour P,Q and Ontol-
ogy, respectively). The approach includes three steps called ❶ Abstraction, ❷
Matching and ❸ Synthesis after which it returns as output either the auto-
matically synthesised mediator or that the mediator is not needed because the
protocols can already communicate and coordinate, or that there is no mediator
because the protocols are not compatible. Outside the dashed box, right part
of the figure, there are some details about how the overall process and theory
work. During the Abstraction step (❶), two substeps are performed: (1.1) iden-
tification of the Common Language (OPQ) through reasoning and inference on
the ontology and, if this exists, (1.2) abstraction of the behaviours of protocols
(P,Q) into Abstract Behaviours (AP , AQ) driven by the Common Language.
The Abstraction step finds how to align the languages by reasoning and solv-
ing both communication and coordination mismatches[47]. During the Matching
step (❷), the approach looks for a Common Abstracted Behaviour (CAB) by
reasoning on the mismatches once again. If CAB exists, it means that the pro-
tocols (P,Q) can communicate, that a Mediator exists and it is automatically
synthesised by the Synthesis step (❸), thanks to CAB and OPQ. The emergent
synthesised mediator is correct-by-construction.

An implementation of this theory has been done and applied in [9]. We
have also conducted several further investigation by considering both functional
interoperability and non functional interoperability during the synthesis process,
i.e., modeling and taking non functional concerns into account. Results are pre-
sented in [12,13] with a focus on dependability and performance arising from the
execution environment, while in [22] with a focus on user performance require-
ments. In [22], the synthesised connector is self-adaptive with respect to run-time
changes in the performance requirements.

4.2 Automatic Synthesis of Modular Connectors

In this section we overview a method for the automatic synthesis of modular con-
nectors described in [30]. A modular connector is a composition of independent
mediators. Each mediator is a primitive sub-connector that realizes a mediation
pattern, which corresponds to the solution of a recurring protocol mismatch.
The advantage of our connector decomposition is twofold: (i) it is correct, i.e.,
as for its monolithic version, a modular connector performs a mediation that is
free from possible mismatches; and (ii) it promotes connector evolution, hence
also easing code synthesis and maintenance. As described in [30], to show (i),
we defined the semantics of protocols (as well as of mediators and connectors)
by using a revised version of the Interface Automata (IA) theory [4]. Then, we
proved that a modular connector for two protocols P and R enjoys the same
correctness properties of the monolithic connector obtained by expressing the
synthesis problem as a quotient problem between P and R [20]. Concerning the
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set of considered mediation patterns and, hence, connector modularization, our
synthesis method relies on a revised version, namely AP(A), of the connector
algebra described in [8]. It is an algebra for reasoning about protocol mismatches
where basic mismatches can be solved by suitably defined primitives, while com-
plex mismatches can be settled by composition operators that build connectors
out of simpler ones. We revise the original algebra by adding an iterator operator
and by giving its semantics in terms of our revised IA theory. For (ii), we used
the above introduced Purchase Order scenario to illustrate that relevant changes
can be applied on a modular connector by acting on its constituent mediators,
without entirely re-synthesizing its protocol.
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Fig. 9. Overview of the method

Figure 9 pictorially shows the synthesis phases (as rounded-corner rectan-
gles) with their related input/output artefacts. The numbers denote the order in
which the phases are carried out. The first phase splits into two sub-phases (1.1
and 1.2); it takes as input a domain ontology DO, for IPSs P and R, and auto-
matically synthesizes a set, W , of Communication Mediators (CMs). CMs are
represented as terms in AP(A) and they are responsible for solving communica-
tion mismatches. In particular, the CMs in W are used as wrappers for P and R
so to “align” their different alphabets to the same alphabet. Roughly speaking,
the goal of this phase is to make two heterogeneous protocols “speak” the same
language. To this aim, the synthesized CMs translate an action from an alpha-
bet into a certain sequence of actions from another alphabet. However, despite
the achieved alphabet alignment, coordination mismatches are still possible; the
second phase is for solving such mismatches. The synthesis of COordination
Mediators (COMs) is carried out by reasoning on the traces of the “wrapped” P
and R. As detailed in [30], for all pairs of traces, if possible, a COM that makes
the two traces interoperable is synthesized as a term in AP(A). The parallel
composition of the synthesized COMs represents, modulo alphabet alignment,
the correct modular connector for P and R.



18 M. Autili et al.

4.3 Synthesis of Protocol Mediators as Composition of Transducers

In this section we briefly report on a synthesis approach that we are recently
investigating in order to overcome some limitations of the above methods. In
particular, a strong common assumption of the above approaches is related to the
availability of a domain ontology mapping one protocol ontology into the other.
The domain ontology defines the relations that hold between the various concepts
used by systems belonging to the same application domain. Thus, assuming the
existence of such ontology means to consider as already solved a crucial, yet
mostly difficult, part of the mediator synthesis problem. Instead, in this research,
we formalized a method for the automated synthesis of protocol mediators that
automatically infers the semantic relations that, in the state-of-the-art works, are
explicit in the domain ontology. In order to do this we require the user to specify
the Mazurkiewicz independence relation among common symbols in the protocol
signatures. That is, the order relation among symbols joins commutativity. Note
that providing the independence relation is a strictly weaker assumption than
having a domain ontology.

Then, our methods combines the inferred relations in order to synthesize a
model of the mediator that is amenable to be automatically treated for code
generation purposes. As part of the method formalization, we provided a rigor-
ous characterization of the interoperability notion and, hence, of the synthesis
problem. This characterization relies on the transducer formalism [11] and on
Mazurkiewicz trace theory [24]. It allows us to: (i) clearly express the necessary
and sufficient interoperability conditions that must hold, for the protocols to be
mediated, to ensure the existence of a mediator, and (ii) show that our synthesis
method is sound. In this direction, we defined a novel notion of composition of
transducers, which allows us to automatize a mediator existence check. Although
different, this notion is related to other notions of automata compositions, such
as Interface Automata (IA) [4], and to the best of our knowledge, it has never
been considered in the transducer theory.

Within our approach, by means of a suitable behavioral mapping, transduc-
ers are used to model interaction protocols in terms of sequences of input/output
actions with the external environment. The newly introduced notion of parallel
composition between transducers is then leveraged to automatically check the
existence of a mediator and to synthesize it accounting for solvable communica-
tion and coordination mismatches.

Informally, a transducer can be defined as an automaton that reads input
words on one tape, and prints output words on a second tape. A word goes
either from the initial state to a final state or in between final states.

In Figure 10, we show a simple composition of two transducers. Transducers
have a graphical representation very similar to the usual representation of finite
automata. Each state q is represented by a circle, labeled with q, and possibly
marked with the name of the associated task. Each transition t=(q,i,o,q′) is
represented as an arrow directed from q to q′ and labeled with i/o. ε denotes the
empty word. The initial state has an incoming arrow and it is always marked as
start. Final states are doubly circled.
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Fig. 10. Two transducers, TP and TQ, and their parallel composition TP ||TQ

Intuitively, the parallel composition of two transducers, T1 and T2, contains
a transition from a state to a final state whenever T1 recognizes an input (resp.,
output) word that, modulo reordering of some common symbols and consump-
tion of some unshared ones, is the same as the output (resp., input) word recog-
nized by T2, and vice versa. Our notion of parallel composition ensures that if
two protocols do not match on at least a common word, then they cannot be
mediated.

For space reasons, we omit the formal definition but it is worth noticing
that this notion of composition makes use of the intersection of trace languages,
which is in general undecidable [2]. To cope with this undecidability result,
several attempts are under investigation, e.g., by:
− allowing transducers to visit cycles only a bounded number of times. In

this case, it is enough to compute the Foata normal form for Mazurkiewicz
traces [23,42] of all the words in the paths and check for equality.

− considering a transitive independence relation. In this case, there are algo-
rithms [3] that allows our synthesis method to build the composition.

− considering an independence relation that is a transitive forest [2]. In this
case, there are algorithms that allows to decide the existence of a mediator
by showing the non-emptiness of the composition.

− considering transducers where all the paths (i.e., sequences of states) of the
form q10 . . .qi. . .qj . . ., with qi=qj and q10 initial, are such that qh is final and
i≤h≤j. This restriction is motivated by the fact that, when there is a cycle, a
task must be accomplished within the cycle. Again, this permits to compute
the Foata normal form of all the words in the paths and check for equality.

5 Related Works

Interoperability, considered as the ability to correctly coordinate and medi-
ate components’ interaction, have been investigated in several contexts, among
which integration of heterogeneous data sources [54], architectural patterns [17],
patterns of connectors [49], Web services [32,35], and algebra to solve mis-
matches [25]. For the sake of brevity, we discuss only the works, from the different
contexts, closest to our methods.

The interoperability of protocols have received attention since the early days
of networking. Indeed many efforts have been done in several directions including
for example formal approaches to protocol conversion, like in [18,34].

The seminal work in [55] is strictly related to the notions of mediator pre-
sented in this paper. Compared to our connector synthesis, this work does not
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allow to deal with ordering mismatches and different granularity of the languages
(solvable by the split and merge primitives).

Recently, with the emergence of web services and advocated interoperability,
the research community has been studying solutions to the automatic mediation
of business processes [52,53]. However, most solutions are discussed informally,
making it difficult to assess their respective advantages and drawbacks.

In [49] the authors present an approach for formally specifying connector
wrappers as protocol transformations, modularizing them, and reasoning about
their properties, with the aim to resolve component mismatches. In [16] the
authors present an algebra for five basic stateless connectors that are symme-
try, synchronization, mutual exclusion, hiding and inaction. They also give the
operational, observational and denotational semantics and a complete normal-
form axiomatization. The presented connectors can be composed in series and
in parallel. Although these formalizations supports connector modularization,
automated synthesis is not treated at all hence keeping the focus only on con-
nector design and specification.

In [40], the authors use game theory for checking whether incompatible com-
ponent interfaces can be made compatible by inserting a converter between them
which satisfies specified requirements. This approach is able to automatically
synthesize the converter. In contrast to our methods, their method needs as
input a deadlock-free specification of the requirements that should be satisfied
by the adaptor, by delegating to the user the non-trivial task of specifying that.

In other work in the area of component adaptation [19], it is shown how to
automatically generate a concrete adaptor from: (i) a specification of component
interfaces, (ii) a partial specification of the components interaction behavior, (iii)
a specification of the adaptation in terms of a set of correspondences between
actions of different components and (iv) a partial specification of the adap-
tor. The key result is the setting of a formal foundation for the adaptation of
heterogeneous components that may present mismatching interaction behavior.
Assuming a specification of the adaptation in terms of a set of correspondences
between methods (and their parameters) of two components requires to know
many implementation details (about the adaptation) that we do not want to
consider in order to synthesize a connector.

6 Conclusion and Future Perspectives

Interoperability is a key requirement for heterogeneous protocols within ubiqui-
tous computing environments where networked systems meet dynamically and
need to interoperate without a priori knowledge of each other. Although numer-
ous efforts has been done in many different research areas, protocol interoper-
ability is still an open challenge.

In our recent research, we concentrated on the automatic synthesis of medi-
ators between compatible protocols which enables them to communicate.

We proposed rigorous techniques to automatically reason about and compose
the behavior of networked systems that aim at fulfilling some common goal.
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The reasoning permits to find a way to achieve communication and to build
the related mediation solution. Our current work puts the emphasis on “the elic-
itation of a way to achieve communication”. In particular, we contributed with:
(i) a rigorous characterization of the interoperability notion as the necessary and
sufficient conditions that must hold for the existence of a connector between two
heterogeneous protocols; and (ii) the provision of automated methods and tools
to solve communication and coordination mismatches, even without assuming
the existence of a domain ontology that represents a common strong assumption
in the state of the art. We have started to show, through their application to real
world case studies that our methods are viable and sound. All the synthesized
connector models are suitable for the automatic generation of the connector
actual code.

As future work, we intend to establish what are the applicability boundaries
of our synthesis methods in terms of both their complexity and expressive power.
More in general, with our formalizations we would like to contribute to deter-
mine which class of interoperability mismatches can be automatically solved.
In the future, we also plan to: (i) study run-time techniques towards efficient
synthesis; (ii) scale the synthesis process up to an arbitrary number of protocols;
and (iii) ensure dependability. Towards this direction we have already done some
investigations by considering both functional interoperability and non-functional
interoperability during the synthesis process, i.e., modeling and taking non func-
tional concerns into account. Preliminary results are presented in [12,13] with
a focus on dependability and performance arising from the execution environ-
ment, while in [22] with a focus on user performance requirements. In [22], the
synthesised mediator is self-adaptive with respect to run-time changes in the
performance requirements.
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Abstract. A new approach to program verification is based on
automata. The notion of automaton depends on the verification prob-
lem at hand (nested word automata for recursion, Büchi automata for
termination, a form of data automata for parametrized programs, etc.).
The approach is to first construct an automaton for the candidate proof
and then check its validity via automata inclusion. The originality of the
approach lies in the construction of an automaton from a correctness
proof of a given sequence of statements. A sequence of statements is at
the same time a word over a finite alphabet and it is (a very simple case
of) a program. Just as we ask whether a word has an accepting run, we
can ask whether a sequence of statements has a correctness proof (of a
certain form). The automaton accepts exactly the sequences that do.

1 Introduction

The verification of a program can often be divided into two steps: 1) the construc-
tion of a candidate proof and 2) the check of the validity of the candidate proof
for the given program. An example is the construction of a Floyd-Hoare style
annotation and the check of its inductiveness. In a new approach to program ver-
ification, the candidate proof in Step 1 comes in the form of an automaton and
Step 2 is reduced to an automata inclusion test. If the inclusion test succeeds,
the program is proven correct. The approach lends itself to a verification algo-
rithm in the form of a loop: the automaton for the candidate proof is constructed
incrementally until the inclusion holds (see also Figure 1 in Section 2).

The approach introduces a novel separation between

− the symbolic reasoning about data and
− the automata-theoretic reasoning about control.

By data we mean the values of program variables (e.g., integers) which are
read and written by program statements. Examples of statements are tests of
conditions and updates. We apply symbolic reasoning to mechanize the analysis
of the data and produce a correctness proof for the sequence of statements.
For example, we can first translate the sequence of statements into a logical
formula (in the logical theory corresponding to the data domain) and then apply
a dedicated decision procedure (as implemented by an SMT solver).
c© Springer International Publishing Switzerland 2015
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The originality of the approach lies in the construction of the automaton
from a correctness proof of a given sequence of statements. The construction
relies on the following observation: one can first decompose the correctness proof
into its base components and then rearrange the base components to obtain a
correctness proof for a new sequence built up from the same set of statements. In
the automaton that we construct, the non-determinism reflects the combinatorial
choice of ways to rearrange the base components. A sequence of statements is
at the same time a word over a finite alphabet and it is (a very simple case
of) a program. Just as we ask whether a word has an accepting run, we can
ask whether a sequence of statements has a correctness proof (one which can be
obtained by rearranging the base components). The automaton accepts exactly
the sequences that do.

The control of the program can be expressed through a graph, the so-called
control flow graph of the program. The paths in the graph define the set of
sequences of statements that are possible according to the control flow alone
(i.e., ignoring the data and ignoring in particular the outcome of tests of condi-
tions). It is this set of sequences which is the language recognized by the program
automaton (we here use the finite set of the statements in the program as the
alphabet and sequences of statements as words).

The control of the program comes in only in Step 2. We test the inclusion
between the program automaton and the automaton for the candidate proof.
The inclusion means that each sequence of statements that is possible according
to the control flow of the program has a correctness proof.

Roadmap. In the remainder of this paper, we will instantiate the approach for
six different verification problems. Each verification problem requires a specific
class of automata. In the table below, unbounded parallelism refers to programs
with an unbounded number of threads, and predicate automata are a new ver-
sion of data automata that we introduce. The term proofs that count refers to
programs whose verification involves the task to synthesize ghost variables that
count. Each verification problem poses a new challenge in finding an appropri-
ate notion of automata for the program and for the candidate proof, a way of
representing and constructing the automata, and finally an algorithm for check-
ing automata inclusion. We will explain each challenge and our approach to the
solution informally, by way of examples. For technical details, we refer to the
corresponding paper.

verification problem inclusion problem reference

Section 2 sequential programs nondeterministic finite automata [10,12]
Section 3 termination Büchi automata [13]
Section 4 recursion nested word automata [11]
Section 5 concurrency alternating finite automata [4]
Section 6 unbounded parallelism predicate automata [6]
Section 7 proofs that count Petri net ⊆ counting automaton [5]
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program P

P is correct P is incorrect

P ⊆ A1 ∪ · · · ∪ An ? τ ∈ INFEASIBLE ?

no

trace τ
such that

τ ∈ L(P \ (A1 ∪ · · · ∪ An))

yes

automaton An+1

such that
τ ∈ L(An+1) ⊆ INFEASIBLE

n := n + 1

yes no

n := 0

Fig. 1. Automated program verification

2 Sequential Programs: Nondeterministic Finite Automata

In this section we instantiate the approach for verifying sequential programs.
We present two ways to construct an automaton from the correctness proof of a
sequence of statements. We often refer to a sequence of statements as a trace.

Automata from unsatisfiable cores. The program Pex1 in Figure 2 is the adap-
tation of an example in [14]. The original program in [14] allocates a pointer p
and then enters a while loop which uses p and conditionally frees p. The original
correctness property in [14] is “the pointer p is not used after it has been freed.”

In our setting we use assert statements to define the correctness of the
program executions. In the example of Pex1, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

Informally, we can argue the correctness of Pex1 rather directly if we split the
executions into two cases, namely according to whether the then branch of the
conditional gets executed at least once during the execution or it does not. If
not, then the value of p is never changed and remains non-zero (and the assert
statement cannot fail). If the then branch of the conditional is executed, then
the value of n is 0, the statement n-- decrements the value of n from 0 to −1,
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�0: assume p != 0;

�1: while(n >= 0)
{

�2: assert p != 0;

if(n == 0)
{

�3: p := 0;
}

�4: n--;
}

�0

�1

�2

�3

�4

�5

�err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 2. Example program Pex1

and the while loop will exit directly, without executing the assert statement. It
turns out that our verification algorithm will automatically reproduce this case
split.

The algorithm starts with the sequence of statements on some path from �0
to �err in the control flow graph of Pex1 (see Figure 2). We take the shortest path
which goes from �0 to �err via �1 and �2. The sequence of statements on this path
is infeasible because it is not possible to execute the assume statements p!=0
and p==0 without an update of p in between. Formally, the formula obtained by
translating the sequence of statements is unsatisfiable, and the conjuncts p �= 0
and p = 0 form an unsatisfiable core of the formula.

We construct the automaton A1 in Figure 3 by first constructing an automa-
ton that accepts only the sequence of the assume statements p!=0 and p==0 and
then adding a number of self-loops. The idea behind the construction is that
the sequence of statements remains infeasible if we add any statement before or
after and any statement other than an update of p in-between.

The automaton A1 does not accept a sequence of statements with an update
of p in between the statements p!=0 and p==0. The shortest path from �0 to �err
with such a sequence of statements goes from �2 to �err after it has gone from �2
to �3 once before. The sequence of statements on this path is again infeasible:
it is not possible to execute the assume statement n==0, the update statement
n--, and then the assume statement n>=0 (without an update of n between n==0
and n-- and between n-- and n>=0).

We construct the automaton A2 depicted in Figure 3 in the analogous way.
Now, the unsatisfiable core corresponds to the sequence of the statements n==0,
n--, and n>=0. Thus, we first construct an automaton that accepts only this
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q0

q1

q2

Σ

Σ

p != 0

p == 0

Σ\{ p := 0 }

p0

p1

p2

p3

n == 0

n--

n >= 0

Σ

Σ\{ n-- }

Σ\{ n-- }

Σ

Fig. 3. Automata A1 and A2 whose union forms a proof of correctness for Pex1 (an
edge labeled with Σ means a transition reading any letter, an edge labeled with
Σ\{ p := 0 }) means a transition reading any letter except for p := 0 )

sequence and then add a number of self-loops. Now we are careful to not add a
self-loop with an update of n.

To summarize, we have twice taken a path from �0 to �err and constructed
an automaton from the unsatisfiable core of the proof of the infeasibility of the
sequence of statements on the path.

The control flow graph Pex1 defines an automaton that recognizes the set of
all sequences of statements on paths from �0 to �err. We can thus check that all
such sequences are accepted by one of the two automata by testing the inclusion

Pex1 ⊆ A1 ∪ A2.

Automata from sets of Hoare triples. It is “easy” to justify the construction of
the automata A1 and A2 in the example above: the infeasibility of a sequence of
statements (such as the sequence p!=0 p==0) is preserved if one adds statements
that do not modify any of the variables of the statements in the sequence (here,
the variable p).

The example of the program Pex2 in Figure 4 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from �0 to �err) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can we
account for the paths that loop in �2 taking the edge labeled x++ one or more
times? We need to construct an automaton that covers the case of those paths,
but we can no longer base the construction solely on unsatisfiable cores.
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�0: x := 0;

�1: y := 0;

�2: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

�0 �1 �2 �err
x:=0 y:=0

x++

x==-1

y==-1

Fig. 4. Example program Pex2

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are sufficient
to prove the infeasibility of all those paths. They express that the assertion x ≥ 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x ≥ 0}
{x ≥ 0} y:=0 {x ≥ 0}
{x ≥ 0} x++ {x ≥ 0}
{x ≥ 0} x==-1 { false }

The automaton A1 in Figure 5 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q0 for true, the state
q1 for x ≥ 0, the (only) final state q2 for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

In our implementation [8], the set of Hoare triples comes from an interpo-
lating SMT solver such as [2] which generates the assertion x ≥ 0 from the
infeasibility proof.

The four Hoare triples below are sufficient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y ≥ 0}
{y ≥ 0} x++ {y ≥ 0}
{y ≥ 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A2 in Figure 5. The two automata are sufficient to prove the correctness of the
program; i.e., Pex2 ⊆ A1 ∪ A2.

We could have based the construction of the automaton A2 in Figure 5 on the
unsatisfiable core of the infeasibility proof, as in the example of Pex2. Intuitively,
we do not need to know the precise form of the assertion y ≥ 0 in order to know
that it is invariant under x++. It is sufficient to know that the variabe x does
not occur in the assertion (which we can assume because x does not appear in
the unsatisfiable core).
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q0 q1 q2
x:=0

y:=0

x++

x==-1
q0 q1 q2

x:=0

y:=0

x++

y==-1

Fig. 5. Automata A1 and A2 for Pex2

To summarize, we have presented two ways to construct an automaton from
the correctness proof of a sequence of statements. The first gets away without the
synthesis of assertions, but the second is more general and leads to a complete
verification method [10].

In the verification algorithm depicted in Figure 1, the union of the automata
constructed from the correctness proofs for sequences of statements is con-
structed incrementally until the inclusion holds. In our implementation [8], we
need not construct the union explicitly. Instead, we can incrementally construct
the difference automaton P \ (A1 ∪ · · · ∪ An).

3 Termination: Büchi Automata

In this section we present how we use Büchi automata to construct a termination
proof of a program.

In the presence of loops with branching or nesting, the termination proof has
to account for all possible interleavings between the different paths through the
loop. If the program is lasso-shaped (a stem followed by a single loop without
branching), the control flow is trivial: there is only one path. Consequently,
the termination proof can be very simple. Many procedures are specialized
to lasso-shaped programs and derive a simple termination proof rather effi-
ciently [9,16,18]. The relevance of lasso-shaped programs stems from their use
as the representation of an ultimately periodic infinite trace through the control
flow graph of a program with arbitrary nesting (the period, i.e., the cycle of the
lasso, may itself go through a sequence of loops in the program).

We can explain our algorithm informally using the program Psort depicted
in Figure 6 which is an implementation of bubblesort. We begin by picking some
ω-trace of Psort. We take the trace that first enters the outer while loop and
then takes the inner while loop infinitely often. We denote this trace using the
ω-regular expression Outer.Innerω. We see that this trace is terminating: its
termination can be shown using the linear ranking function f(i, j) = i − j.
Moreover, we see that this ranking function is applicable not only to this trace,
but to all traces that eventually always take the inner loop. Such traces can be
represented by the ω-regular expression

(Inner + Outer)∗.Innerω . (1)
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program sort(int i)

�1: while (i>0)

�2: int j:=1

�3: while(j<i)

// if (a[j]>a[i])

// swap(a[j],a[i])

�4: j++

�5: i--

�1

�2

�3

�4

�5

i>0

j:=1

j<ij++

j>=i

i--

Fig. 6. Program Psort which is an implementation of bubblesort

Now, let us pick another ω-trace from Psort. This time we take the trace
that always takes the outer while loop. We see that this trace is terminating.
Its termination can be shown using the linear ranking function f(i, j) = i.
Moreover, we see that this ranking function is applicable not only to this trace,
but to all traces that take the outer while loop infinitely often, as represented
by the ω-regular expression

(Inner∗.Outer)ω . (2)

Finally, we consider the set of all ω-trace of the program Psort

(Outer + Inner)ω,

check that each trace has the form (1) or has the form (2), and conclude that
Psort is terminating.

The approach is based on the notion of an ω-trace, which is an infinite
sequence of program statements π = st1st2 . . .. Like in the section before,
we assume that the statements are taken from a given finite set of pro-
gram statements Σ. If we consider Σ as an alphabet and each statement as
a letter, then an ω-trace is an infinite word over this alphabet. For exam-
ple, we can write the alphabet of our running example Psort as Σsort =
{ i>0 , j:=1 , j<i , j++ , j>=i , i-- } and π = j<i j:=1 .( j:=1 j++ j:=1 )ω is an ω-trace.

We call an ω-trace terminating if it does not correspond to any possible
execution (i.e., if there is no starting state such that all statements in the trace
can be executed). The ω-traces ( x<0 x:=1 )ω and ( x>=0 x-- )ω are terminating. In
the first one, already the finite prefix x<0 x:=1 x<0 does not correspond to any
possible execution. In the second, every finite prefix has a possible execution (for
a prefix of length 2n, take a starting state where x is greater than n − 1).

As before, a program is represented as a control flow graph whose edges
are labeled with statements (one node is singled out as the initial nodes; here,
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there are no error nodes). We may view a program P = 〈Loc, δ, �init〉 as a Büchi
automaton where every state is a final state. We call the program P terminating
if each of its ω-traces is terminating.

We define a module to be a restricted form of Büchi automaton which has
exactly one final state. A Büchi automaton of this form recognizes an ω-regular
language of the form U.V ω, where U and V are regular languages over the
alphabet of statements U, V ⊆ Σ∗.

A fair ω-trace of a module P is an ω-trace that labels a fair path in the graph
of P, i.e., a path that visits the distinguished location �fin infinitely often. We call
the module P terminating if each of its fair ω-traces is terminating. A non-fair
ω-trace of a terminating module (i.e., an ω-trace that labels a path in its control
flow graph without satisfying the fairness constraint) can be non-terminating.

We define a certified module to be a module that is equipped with a ter-
mination argument. The termination argument consists of two parts: a ranking
function and an annotation of the module’s location with assertions that certify
that the ranking function decreases every time the final location �fin is visited.
The certificate ensures that the module is terminating (every fair ω-trace of the
module terminates).

�1{oldrnk = ∞}

�2

{oldrnk = ∞}

�3{oldrnk = ∞}

�4{oldrnk = ∞}

�5{oldrnk = ∞}

�′
3

{i − j < oldrnk

∧ oldrnk ≥ 0}

�′
4

{i − j = oldrnk

∧ i − j > 0}

i>0

j:=1

j<ij++

j>=i

i--

j:=1

j<ij++

The figure on the
right depicts a certi-
fied module (Psort

1 ,
f, I) where f is the
ranking function
f(i, j) = i − j and
I is the mapping of
locations to predicates
indicated by writing
the predicate beneath
the location.

The variables oldrnk
is an auxiliary variable whose value is the value of the ranking function at the
previous visit of the final location. We note that for each transition (�, st, �′)
the corresponding triple {I(�)} st {I(�′)} is a valid Hoare triple (with
the understanding that outgoing transitions of final states implicitly assign
oldrnk := f(i, j)).

4 Recursion: Nested Word Automata

A new verification method for recursive programs is based on the theory of nested
words [1]. The verification method constructs a nested word automaton from an
inductive sequence of “nested interpolants”, i.e., an inductive annotation for the
“nested trace” of the recursive program with assertions. Such an annotation may
come from an interpolating SMT solver such as [2].

The theory of nested word automata offers an interesting potential as an
alternative to the low-level view of a recursive program as a stack-based device
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that defines a set of traces. A nested word expresses not only the linear order
of a trace but also the nesting of calls and returns. Regular languages of nested
words enjoy the standard properties of regular language theory, of which we
will use the closure under intersection and complement, and the decidability of
emptiness [1].

procedure m(x)

�0: if x>100

�1: res:=x-10

else

�2: xm := x+11

�3: call m

�4: xm := resm

�5: call m

�6: res := resm

�7: assert (x<=101 -> res=91)

return res

�0

�1

�2

�3

�4

�5

�6

�7

�err

call m

x>100

res:=x-10

x<=100

xm:=x+11
call m

xm:=resm

res:=resm

return ↑�3

return ↑�5

x≤101∧res �=91

Fig. 7. McCarthy’s 91 function with correctness specification given as pseudocode and
recursive control flow graph P91. The program is correct if the assert statement never
fails resp. if there is no feasible trace from the initial location �0 to the error location
�err. In a different reading, the graph presents a nested word automaton, the control
automaton P91.

Figure 7 shows an implementation of McCarthy’s 91 function,

m(x) =

{
x − 10 if x > 100
m(m(x + 11)) if x ≤ 100

together with the correctness specification (if the argument x is not greater than
101, the function returns 91).

Following [19], we present a recursive program formally as a recursive control
flow graph; see Figure 7 for an example. Each node is a program location �.
Each edge is labeled with a statement st, which is either an assignment y:=t ,
an assume ϕ , a call call p , or a return return p . We note that transitions
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labeled with return p have two predecessors. First the exit location of the called
procedure, second the location of the corresponding procedure call. In Figure 7
we label edges additionally with ↑� (reminiscent to pop transitions in a pushdown
automaton) to denote the location of the corresponding call transition.

Following [1], a nested word over an alphabet Σ is a pair (w,�) consisting
of a word w = a0 . . . an−1 over the alphabet Σ and the nesting relation � (a
binary relation between the n positions of w). We can use the nesting relation
i� j to express that i is the position of a call and j the position of the matching
return.

I0 : �

I1 : x≤100

I2 : xm ≤111 I3 : �

I4 : �

I5 : res≤x − 10I6 : resm ≤101

I7 : xm ≤101 I8 : �

I9 : x≥101

I10 : x≥101 ∧ res=x − 10I11 : resm =91

I12 : res=91

I13 : ⊥

x<=100

xm:=x+11

call m

x>100

res:=x-10

return

xm:=resm

call m

x>100

res:=x-10

return

res:=resm

x≤101∧res �=91)

Fig. 8. Error trace of P91 in Figure 7 annotated with an inductive sequence of state
assertions that prove infeasibility of this trace

In Figure 8, we present an error trace (a nested word accepted by P91) that is
infeasible. The trace is interleaved with an inductive sequence of state assertions
that proves infeasibility of this trace. The sequence of state assertions is modular
in the sense that each state assertion describes only local states of the current
calling context.
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The global state of the program can be obtained using the nesting relation of
the nested word. We call such a sequence of state assertions a sequence of nested
interpolants. A method that uses Craig interpolation to compute a sequence
of nested interpolants is presented in [11]. We note that we cannot apply Craig
interpolation directly to a nested trace, because then variables of parent contexts
may occur in the current context. Using nested interpolants and nested word
automata we can use the scheme presented in Section 2 to analyze programs
with procedures in a modular way.

5 Concurrent Programs: Alternating Finite Automata

In principle, one could apply the method developed in Section 2 to verify concur-
rent programs with shared memory. If each thread of a program is represented
as an NFA, then their Cartesian product gives an NFA which recognizes the set
of interleaved traces of the program. The challenge posed by concurrency is that
the size of this Cartesian product is exponential in the number of threads, and
the number of interleaved traces is greater still.

In [4], we propose a method for overcoming the exponential explosion prob-
lem using a novel proof system which is based on the notion of an inductive data
flow graph (iDFG). An iDFG is a data flow graph with incorporated inductive
assertions. It accounts for a set of dependencies between data operations in inter-
leaved traces. It stands as a representation for the set of traces which give rise to
these dependencies, and acts as certificate that each of these traces is infeasible.
This set of traces can be recognized by an alternating finite automaton (AFA),
enabling the reduction of the iDFG proof checking problem to a language inclu-
sion problem for AFA. This problem suffers from high worst-case complexity
(PSpace-complete), but this is vastly superior to the exponential space com-
plexity (not just in the worst case) of constructing the Cartesian product.

mi := t++

[mi ≤ s]
// critical section
s := s + 1�i,3 :

�i,2 :
�i,1 :

Thread iWe will use the Ticket mutual exclusion protocol as
an example to illustrate iDFGs. The program has two
global variables, t and s, representing a ticket counter
and service counter, respectively. We suppose that the
protocol is executed by three threads (Threads 1, 2, and
3), where each Thread i is executing the sequence of three instructions shown
to the right. The program begins in a state where s and t are both zero. To
execute the protocol, a thread first acquires its (unique ticket) and stores it in
the local variable mi (�i,1), then waits until the service counter reaches its ticket
to enter its critical section (�i,2), and then finally leaves its critical section by
incrementing the service counter (�i,3). The property we wish to prove is mutual
exclusion: no two threads may be in the critical section at the same time. We
accomplish this by proving that every trace which violates mutual exclusion is
infeasible.

One trace of the program which violates mutual exclusion (Thread 2 and
Thread 3 both end in their critical sections) is pictured (on the left hand side)
in Figure 9, along with a Hoare-style proof of its infeasibility. To its right is an
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iDFG, which represents the essence of this proof: the trace is infeasible because
Thread 3 enters its critical section when it is Thread 2’s turn to do so. The
iDFG abstracts away the details of the Hoare-style proof which are irrelevant
to this essential argument, such as the relative order between the events s++
and m3 := t++, or whether the events [m1 ≤ s] or [m2 ≤ s] occur at all. The
graph is labeled with program assertions on each edge, where each incoming
edge represents a pre-condition, and each outgoing edge a post-condition. Bifur-
cation in the graph represents pre-conditions which can potentially be achieved
in parallel. For example, consider the two incoming edges to [m3 ≤ s]: it does
not matter in which order the pre-conditions {s = 1} and {m3 > 1} are achieved;
as long as both hold when [m3 ≤ s] is executed, then the resulting state will
satisfy the post-condition {false}. The assertions are inductive in the sense that
each node corresponds to a valid Hoare triple, where the pre-condition is the
conjunction of the labels of all incoming edges, and the post-condition is the
conjunction of the labels of all outgoing edges.

Each edge in the iDFG represents a constraint on the traces which are rec-

ognized by the iDFG. For example, the edge s++
{s=1}−−−−→ [m3 ≤ s] indicates

that s++ must appear before [m3 ≤ s] in the trace, and every instruction which
appears in between must leave the assertion {s = 1} invariant. A trace is recog-
nized by the iDFG when it satisfies all of these constraints. The inductiveness
condition for the assertion labels ensures that every trace which is recognized by
the iDFG is infeasible.

A more operational view of the language of traces recognized by an iDFG can
be given by translation into an AFA. AFAs may be understood as a generalization
of nondeterministic finite automata. We may think of NFAs as having a transition
function which maps each state and letter to a disjunction of states, with the
interpretation that at least one of them must lead to an accepting state for the
input word to be accepted. AFAs generalize this by also allowing conjunctions of
states, with the interpretation that all states must lead to an accepting state for
the input word to be accepted (i.e., the transition function maps each state and
letter to a (positive) propositional formula where the propositions are states).

For any iDFG we may construct an AFA that recognizes the set of all traces
τ such that the reversal of τ is recognized by the iDFG. Each assertion in the
iDFG corresponds to a state of the AFA and each iDFG node corresponds to an
AFA transition. Since the AFA accepts the reversed language, each node in the
iDFG should be read as a backwards transition. This allows the bifurcation in
the iDFG to be interpreted using conjunction. For example, iDFG node labeled
[m3 ≤ s] indicates that starting in the state {false}, we may read the letter
[m3 ≤ s] and transition to both {s = 1} and {m3 > 1}, and must accept along
each path. More explicitly, the transition rule corresponding to this vertex is as
follows:

δ({false}, [m3 ≤ s]) = {s = 1} ∧ {m3 > 1} .

A complete iDFG proof for the 3-thread Ticket protocol is given in Figure 10.
This iDFG illustrates the need for disjunction as well as conjunction. Consider
that there are two nodes of the iDFG which are labeled [m3 ≤ s] and which
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{s = 0 ∧ t = 0}
m1 := t++

{s = 0 ∧ t = 1}
m2 := t++

{s = 0 ∧ t = 2}
m3 := t++

{s = 0 ∧ m3 > 1}
[m1 ≤ s]

{s = 0 ∧ m3 > 1}
s++

{s = 1 ∧ m3 > 1}
[m2 ≤ s]

{s = 1 ∧ m3 > 1}
[m3 ≤ s]

{false}

m1 := t++

m2 := t++

m3 := t++

[m3 ≤ s]

s++

{t = 0}

{t = 1}

{t = 2}

{m3 > 1}

{s = 0}

{s = 1}

{false}

Fig. 9. Example trace with a Hoare-style proof and iDFG proof

have {false} as a post-condition. This means that there are two transition rules
corresponding to reading the letter [m3 ≤ s] at the state {false}. The transition
rules can be combined by disjunction, yielding the following transition function:

δ({false}, [m3 ≤ s]) = ({s = 0} ∧ {m3 > 0}) ∨ ({s = 1} ∧ {m3 > 1}) .

The main appeal of iDFGs is that they are succinct proof objects for concur-
rent programs. Generalizing the Ticket example to N threads, the iDFG proof
has O(N2) vertices, while the product control flow graph has O(3N ). In [4], we
make the claim of succinctness more general and formal by defining a measure of
data complexity and showing that iDFG proofs are polynomial in this measure.
Intuitively, this succinctness is possible because iDFGs represent only the data
flow of the program, and abstract away control features that are irrelevant to
the proof. This approach shifts the burden of the exponential explosion incurred
by concurrency towards the check whether all program traces are represented,
which is an automata-theoretic problem.

6 Unbounded Parallelism: Predicate Automata

The preceding section discusses a method for attacking the problem that the
size of the automaton for a concurrent program is exponential in the number
of threads. For many programs (filesystems, device drivers, web servers, ...), the
number of threads is not statically known, or may increase without bound during
the course of the program’s execution. For such a program, the Cartesian product
is infinite (as is the alphabet of program instructions), and the set of program
traces is not a regular language. Thus, the problem of unbounded parallelism
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m1 := t++

m1 := t++

m1 := t++

{t = 0}

m2 := t++

m2 := t++

m2 := t++

{t = 0}

m3 := t++

m3 := t++

m3 := t++

{t = 0}

[m1 ≤ s]

{false}

[m1 ≤ s]

{false}

{m1 > 0}

{m1 > 1}

{m1 > 0}

{s = 0}

[m2 ≤ s]

{false}

[m2 ≤ s]

{false}

{m2 > 0}

{m2 > 1}

{m2 > 0}

{s = 0}

[m3 ≤ s]

{false}

[m3 ≤ s]

{false}

{m3 > 0}

{m3 > 1}

{m3 > 0}

{s = 0}

s++

{s = 0}
{s = 1} {s = 1} {s = 1}

Fig. 10. Complete iDFG proof for the 3-thread Ticket protocol

is not merely one of high complexity, and we must develop new technology to
address it.

In [6], we present proof spaces, a proof system which generalizes iDFGs to
allow unboundedly many threads. The proof checking problem for proof spaces
is carried out using predicate automata, which are an infinite-state (and infinite-
alphabet) generalization of alternating finite automata.

We will start by demonstrating proof spaces on a simple example. Consider a
program in which an arbitrary number of threads concurrently execute the code
below. The goal is to verify that, if g ≥ 1 holds initially, then it will always hold
(regardless of how many threads are executing).

global int g
local int x
1: x := g;
2: g := g+x;

Consider the set of the Hoare triples (a) - (d) given below.
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(a) {g ≥ 1} 〈x := g : 1〉 {x(1) ≥ 1}
(b) {g ≥ 1 ∧ x(1) ≥ 1} 〈g := g + x : 1〉 {g ≥ 1}
(c) {g ≥ 1} 〈x := g : 1〉 {g ≥ 1}
(d) {x(1) ≥ 1} 〈x := g : 2〉 {x(1) ≥ 1}

Here we use x(1) to refer to Thread 1’s copy of the local variable x, and 〈x := g : 1〉
to indicate the instruction x := g executed by Thread 1.

The question of how such Hoare triples can be generated automatically is
discussed in more detail in [6]; for our present purposes, we suppose that they
are received from an oracle. We pose the question: given a set of ordinary Hoare
triples (of the type one might expect to generate using sequential verification
techniques), what can we do with them? We consider a deductive system in
which these triples are taken as axioms, and the only rules of inference are
sequencing, symmetry, and conjunction. These rules are easily illustrated with
concrete examples:

− Sequencing composes two Hoare triples sequentially. For example, sequencing
(a) and (d) yields

(a ◦ d) {g ≥ 1} 〈x := g : 1〉〈x := g : 2〉 {x(1) ≥ 1}
− Symmetry permutes thread identifiers. For example, renaming (a) and (c)

(mapping 1 �→ 2) yields

(a’) {g ≥ 1} 〈x := g : 2〉 {x(2) ≥ 1}
(c’) {g ≥ 1} 〈x := g : 2〉 {g ≥ 1}

and, renaming (d) (mapping 1 �→ 2 and 2 �→ 1) yields

(d’) {x(2) ≥ 1} 〈x := g : 1〉 {x(2) ≥ 1}
− Conjunction composes two Hoare triples by conjoining pre- and postcondi-

tions. For example, conjoining (a’) and (c’) yields

(a’ ∧ c’) {g ≥ 1} 〈x := g : 2〉 {g ≥ 1 ∧ x(2) ≥ 1}
and conjoining (a) and (d’) yields (a ∧ d’)

{ g ≥ 1 ∧ x(2) ≥ 1 } 〈x := g : 1〉 { x(1) ≥ 1 ∧ x(2) ≥ 1 }
Naturally, the deductive system may apply inference rules to deduced Hoare

triples as well: for example, by sequencing (a’ ∧ c’) and (a ∧ d’), we get the
Hoare triple

{ g ≥ 1 } 〈x := g : 2〉〈x := g : 1〉 { x(1) ≥ 1 ∧ x(2) ≥ 1 }
A proof space is a set of valid Hoare triples which is closed under sequencing,
symmetry, and conjunction (that is, it is a theory of this deductive system). Any
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finite set of valid Hoare triples generates an infinite proof space by considering
those triples to be axioms and taking their closure under deduction; we call such
a finite set of Hoare triples a basis for the generated proof space. Fixing a pre-
condition ϕpre and a post-condition ϕpost (for instance, taking both to be g ≥ 1
for our example), a proof space can be said to recognize all of those traces τ
such that { ϕpre } τ { ϕpost } belongs to the space.

As with iDFGs, we can give a more operational view of the traces recognized
by a proof space using automata. For this purpose, we developed the notion
of predicate automata (PA), an infinite-state, infinite-alphabet generalization
of alternating finite automata (closely related to alternating register automata
[3,7,15,17]). If one conceives of alternating finite automata as the automata of
propositional logic, then predicate automata may be thought of as the automata
for first-order logic. A PA A is equipped with a finite vocabulary of predicates,
and its states are propositions over this vocabulary (i.e., if p is a binary predicate
symbol of A, then p(1, 2) is a state of A). The transition function of a PA
maps each predicate symbol and letter to a positive Boolean formula over its
vocabulary. For example, the transition

δ(p(i, j), a : k) = (p(i, j) ∧ i �= k) ∨ (q(i) ∧ q(j) ∧ i = k)

indicates that, if the PA is at state p(1, 2) and reads a : 2, then it transitions to
p(1, 2); if it then reads a : 1, then it transitions to both the state q(1) and q(2)..

From a finite basis B of Hoare triples, we may construct a predicate automa-
ton which recognizes the same traces as the proof space generated by B. Each
n-thread assertion which appears in the basis corresponds to an n-ary predicate,
and each Hoare triple in the basis corresponds to a transition. For example, the
Hoare triple (b) corresponds to the PA transition

δ({g ≥ 1}, g := g + x : k) = {g ≥ 1} ∧ {x(k) ≥ 1}

(where {g ≥ 1} is a nullary predicate and {x(k) ≥ 1} is a unary predicate).
The proof checking problem for proof spaces reduces to the inclusion prob-

lem for PA. Although this problem is undecidable in general, [6] gives a semi-
algorithm which is a decision procedure for the special case of PAs where each
predicate symbol in its vocabulary has arity at most one.

7 Proofs that Count: Petri Nets

Consider the program that consists of an arbitrary number of threads whose
control flow graph is pictured below. The (global) integer variables s and t are
initially 0. The task is to automatically construct a proof that the error location
�error is unreachable (i.e., the program satisfies the specification s = t = 0/false).
This deceptively simple property is surprisingly difficult to prove correct using
automated techniques.
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t++

assume(s >= t)

�0

�1

�error�2

s++

We illustrate the difficulty of proving this example by informally applying
the technique from Section 2. We begin by sampling an error trace from the
program, say (a trace that involves two threads)

τ = t++; t++; s++; assume(s >= t)

A correctness proof for τ is a sequence of intermediate assertions, shown below
in Figure 11(a). We may generalize the proof to apply to a language of traces,
as shown in the NFA in Figure 11(b).

t++ s++{0 = t− s} {1 = t− s} {2 = t− s} {false}t++ assume(s>=t){1 = t− s}

s++

t++
t++

assume(s>=t)

false

1 = t− s 2 = t− s0 = t− s

(a)

(b)

Fig. 11. Proof for the sample trace τ

This automaton does not yet accept every trace of the program. We could
continue by sampling a new trace, for instance

τ ′ = t++; t++; t++; s++; assume(s >= t),

but it is already clear that this strategy is doomed to fail. There is no regular
language which contains all the program traces and which does not contain
incorrect traces. Similarly, there is no finitely-generated proof space which proves
the correctness of every trace.

A counting argument (in the context of formal methods) is a program proof
that makes use of one or more counters, which are not part of the program itself,
but which are useful for abstracting program behavior. One informal argument
for correctness is as follows: a global, inductive invariant for this program is that
the number of threads at line �1 (i.e., after executing t++ but before executing
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s++), let us call this k, is equal to the difference t − s. Since the number of
threads at line �1 is non-negative, we must always have s ≤ t, and �error must
be unreachable. This counting argument is clear and simple to our human intu-
ition, but how can we take this intuition and formalize it into a mechanically
constructed proof ? This question was investigated and answered in [5].

t++/inc

s++/dec
assume(s>=t)/tst

{
false

}

{
k = t− s

} q0

q1 Σ/nop

Our solution to this problem is pictured to the
right. This counting proof consists of a count-
ing automaton A (a kind of restricted counter
machine) paired with an annotation ϕ mapping
the states of A to assertions. The counting
automaton A is a finite automaton equipped with
a N-valued counter denoted k (initially 0). Each
transition of the automaton is equipped with an
action for k, which may be inc (increment the
counter), dec (decrement, but block unless the
counter is ≥ 1), tst (block unless the counter is ≥ 1), or nop (do nothing). The
annotation ϕ associates with each state of this automaton a formula over the
program variables and the counter variable k. This annotation is inductive in the
sense that each transition is associated with a valid Hoare triple: for example,

{k = t − s} t++; k++ {k = t − s}
{k = t − s} s++; k-- {k = t − s}
{k = t − s} assume(s>=t); assume(k≥1) {false}

A trace is accepted by A if it labels a path from q0 (the initial state) to
q1 (the final state), and none of the counter actions block. Every trace which
is accepted by A is associated with a sequence of assertions (thus proving its
correctness). This sequence is obtained from the accepting run of A by taking,
for each position in the run, the assertion at the current state with k replaced
by its current value. For example, the proof for the trace τ above is as follows:

t++ s++

{0 = t− s} {1 = t− s} {2 = t− s} {false}

q0, k = 0 q0, k = 1 q0, k = 2
inc dec

t++ assume(s>=t)

inc
q0, k = 1

{1 = t− s}

tst
q1, k = 1

This counting proof works not only for the trace τ , but for every trace of the
program (that is, the proof is enough to show that �error is unreachable). The
key to this proof is the use of the counter variable k, which counts the number
of t++ statements in excess of s++ statements along a trace. Using this auxiliary
counter allows us to make a simple, succinct argument for the correctness of this
program.

The essential idea for constructing counting proofs is to encode the problem
as an SMT query. Our encoding requires us to specify the “size” of the candidate
proof to find (e.g., the number of states that may be used), and will always suc-
ceed if a proof of that size exists. The main insight behind our proof construction
procedure is that by looking for small proofs, we can force an SMT solver to
synthesize nontrivial counting arguments. For example, we can force an SMT
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t++ s++assume(s >= t)

q0

k
q1

Σ

t++

assume(s >= t)

p0

p1

p2p3

s++

(a) Control flow net of the program
(b) Petri net equivalent to
counting automaton proof

Fig. 12. The language of Petri net (a) is included in the language of the deterministic
Petri net (b)

solver to “discover” the need to count the number of t++ statements in excess of
s++ statements in the proof above completely automatically, simply by asking
for a proof with 2 states.

The idea behind proof checking is based on the observation that counting
automata can be converted into deterministic labeled Petri nets (Figure 12(b)).
Similarly, the language of program traces can be represented by a Petri net
(Figure 12(a)). The final step of the correctness argument is performed by show-
ing that the language of the Petri net for the program is included in the language
of the deterministic Petri net for the counting automaton, a problem which is
known to be decidable.

8 Conclusion

We have described several instances of a new approach to program verification
which constructs and checks automata. We have shown that, in order to instan-
tiate the approach for a specific verification problem, one has to come up with
the appropriate notion of automaton, one has to define the construction of an
automaton from the proof of a sequence of statements (i.e., a trace), one has to
define the program automaton which recognizes the set of error traces, and one
has to present an algorithm for solving the corresponding automata inclusion
problem.

There are several interesting verification problems (timed systems, hybrid
systems, game-theoretic properties, termination for unbounded parallelism, . . . )
where the question whether an appropriate notion of automaton exists, is still
open and we do not know whether the approach can be instantiated.

Conversely, given a notion of automaton, one may ask whether there exists a
verification problem for which this notion may be useful. For example, in some
restricted cases in Section 5 it may be useful to define the denotation of an iDFG
as a set of trees and replace alternating finite automata by tree automata.
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An obvious topic for future research is the scalability of the automata oper-
ations used in the approach: the check of automata inclusion, minimization for
the incremental construction of the difference automaton, etc.

Finally, the construction of an automaton from the proof of a sequence of
statements may be interesting in settings other than verification. For example,
given a failed test for a program with a bug, we can again construct an automaton
and use the automaton for the diagnosis of the bug [20].

Acknowledgements. We would like to thank Jürgen Christ for comments and
discussions.
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Abstract. We survey recent work on the use of Hankel matrices H(f,�)
for real-valued graph parameters f and a binary sum-like operation � on
labeled graphs such as the disjoint union and various gluing operations of
pairs of laeled graphs. Special cases deal with real-valued word functions.
We start with graph parameters definable in Monadic Second Order
Logic MSOL and show how MSOL-definability can be replaced by the
assumption that H(f,�) has finite rank. In contrast to MSOL-definable
graph parameters, there are uncountably many graph parameters f with
Hankel matrices of finite rank. We also discuss how real-valued graph
parameters can be replaced by graph parameters with values in commu-
tative semirings.

In this talk we survey recent work done together with the first author’s former
and current graduate students B. Godlin, E. Katz, T. Kotek, E.V. Ravve, and
the second author on the definability of word functions and graph parameters
and their Hankel matrix. There are three pervasive themes.

– Definability of word functions and graph parameters f in some logical formal-
ism L which is a fragment of Second Order Logic SOL, preferably Monadic
Second Order Logic MSOL, or CMSOL, i.e., MSOL possibly augmented
with modular counting quantifiers;

– Replacing the definability of f by the assumption that certain Hankel matri-
ces have finite rank; and

– Replacing the field of real numbers R by arbitrary commutative rings or
semirings S.

1 Hankel Matrices

In linear algebra, aHankelmatrix, named afterHermannHankel, is a squarematrix
with constant skew-diagonals. In automata theory, a Hankel matrix H(f, ◦) is an
infinite matrix where the rows and columns are labeled with words w over a fixed
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alphabet Σ, and the entry H(f, ◦)u,v is given by f(u ◦ v). Here f : Σ∗ → R is a
real-valued word function and ◦ denotes concatenation. A classical result of G.W.
Carlyle and A. Paz [3] in automata theory characterizes real-valued word func-
tions f recognizable by weighted (aka multiplicity) automata (WA-recognizable)
in algebraic terms:

Theorem 1 (G.W. Carlyle and A. Paz, 1971).
A word function is WA-recognizable iff its Hankel matrix has finite rank.

Hankel matrices for graph parameters (aka connection matrices) were intro-
duced by L. Lovász [33] and used in [14,34] to study real-valued partition func-
tions of graphs. In [14,34] the role of concatenation is played by k-connections of
k-graphs, i.e., graphs with v1, . . . , vk distinguished vertices. Given two k-graphs
G,G′ the k-connections G�k G′ is defined by taking first the disjoint union of G
and G′ and then identifying corresponding labeled vertices. The Hankel matrix
H(f,�k) is the infinite matrix where rows and columns are labeled by k-graphs
and the entry H(f,�k)G,G′ is given by f(G �k G′). We say that f has finite
connection rank if all the matrices H(f,�k) have finite rank.

Partition functions are defined by counting weighted homomorphisms, which
in some way generalize weighted automata. Let H = (V (H), E(H)) be a fixed
graph, and let α : V (H) → R and β : E(H) → R be real-valued functions
(weights). For a graph G = (V (G), E(G)) we define

ZH,α,β(G) =
∑

h:G→H

∏
(v)∈V (G)

α(h(v)) ·
∏

(u,v)∈E(G)

β(h(u), h(v))

M. Freedman, L. Lovász and A. Schrijver [14] give the following characteri-
zation of partition functions:

Theorem 2 (M. Freedman, L. Lovász and A. Schrijver, 2007).
A real-valued graph parameter f can be presented as a partition function

f(G) = ZH,α,β(G)

for some H,α, β, iff all its connection matrices H(f,�k) have finite rank and
are positive definite.

In [34] many variations of this theorem are discussed using different notions of
connections of labeled graphs.

2 Definability in MSOL via Guiding Examples

Second Order Logic SOL allows quantification over vertices, edges and relations
thereof. Monadic Second Order Logic MSOL allows quantification only over
unary relations over the universe. In the case of graphs we have to distinguish
between graphs G as structures where the universe V (G) consists of vertices
only and edges are given by the edge relation E(G), and hypergraphs, where
the universe consists of vertices and edges, and the hyperedges are given by an
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incidence relation R(G). The notion of definability of graph parameters and graph
polynomials in SOL and MSOL was first introduced in [7] and extensively studied
in [12,17,18,22,24–26,36]. Later these studies also included MSOL augmented
by modular counting quantifiers Dm,kx Φ(x) which assert that there are, modulo
m, exactly k elements satisfying φ. This logic is denoted by CMSOL.

The set of real-valued graph parameters definable in SOL (MSOL,CMSOL) is
denoted by SOLEVAL (MSOLEVAL,CMSOLEVAL), as they are evaluations of
SOL-definable (MSOL,CMSOL-definable) graph polynomials. Words are treated
here as special cases of labeled graphs.

Our first examples use small, i.e., polynomial sized sums and products:

(i) The cardinality |V | of V is FOL-definable by

|V | =
∑
v∈V

1

(ii) The number of connected components of a graph G, k(G) is MSOL-definable
by

k(G) =
∑

C⊆V :component(C)

1

where component(C) says that C is a connected component.
(iii) The graph polynomial Xk(G) is MSOL-definable by

Xk(G) =
∏

c∈V :first−in−comp(c)

X

if, in addition, we have a linear order on the vertices and first − in − comp(c)
says that c is a first element in a connected component.

Our next examples use possibly large, i.e., exponential sized sums:

(iv) The number of cliques �Clique(G) in a graph is MSOL-definable by

�Clique(G) =
∑

C⊆V :clique(C)

1

where clique(C) says that C induces a complete graph.
(v) Similarly “the number of maximal cliques” �MClique(G) is MSOL-definable

by
�MClique(G) =

∑
C⊆V :maxclique(C)

1

where maxclique(C) says that C induces a maximal complete graph.
(vi) The clique number of G, ω(G) is is SOL-definable by

ω(G) =
∑

C⊆V :largest−clique(C)

1

where largest − clique(C) says that C induces a maximal complete graph
of largest size.
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An inductive definition of a fragment L of SOLEVAL can be sketched as
follows:

Definition 3. Let R be a (polynomial) ring. A numeric graph parameter p :
Graphs → R is L-definable if it can be defined inductively as follows:

– Monomials are of the form
∏

v̄:φ(v̄) t where t is an element of the ring R and
φ is a formula in L with first order variables v̄.

– Polynomials are obtained by closing under small products, small sums, and
large sums.

Usually, summation is allowed over second order variables, whereas products are
over first order variables only.

Our definition of SOLEVAL is somewhat reminiscent to the definition of
Skolem’s Lower Elementary Functions, [37–39].

3 The Finite Rank Theorem

In [18] the following Finite Rank Theorem is proved:

Theorem 4 (Finite Rank Theorem).
Let f be a real-valued graph parameter definable in CMSOL. Then f has finite
connection rank.

The same holds for a wider class of Hankel matrices arising from sum-like binary
operations on labeled graphs. A binary operation on labeled graphs is sum-like if
it can be obtained from the disjoint union of two graphs by applying a quantifier-
free scalar transduction, see e.g. [4,35].

If we consider words instead of graphs, also the converse holds for the Hankel
matrix of concatenation, [28,29]:

Theorem 5 (NL and JAM, 2013). A real-valued word function f is definable
in MSOL iff its Hankel matrix for concatenation has finite rank.

These results are reminiscent to results by [10], but their logical formalism differs
from ours and was introduced later than MSOL-definability of graph parameters,
[7].

The Finite Rank Theorem can also be used to show non-definability,
[23,24], which gives a more convenient and versatile tool than the usual methods
involving Ehrenfeucht-Fräıssé games.

4 Meta-Theorems Using Logic

The notions of path-width, tree-width and clique-width are the most used notions
of width of graphs, cf. [20]. Widths are graph parameters with non-negative
integer values. The exact definition is not needed here. What matters is that
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graphs can have unbounded width of either kind. Classes of bounded path-
width have bounded tree-width, which in turn have bounded clique-width, but
not conversely.

B. Courcelle’s celebrated theorem for graph properties and graph classes
of bounded tree-width [4,9] says that on graph classes of bounded tree-width,
MSOL-definable graph properties can be decided in linear time.

In [5], [6, Theorem 4], [7, Theorem 31], this is extended to graph parameters
and bounded clique-width:

Theorem 6 (B. Courcelle, JAM, and U. Rotics, 1998). Let f be a
CMSOL-definable graph parameter with values in a ring R. Then f can be com-
puted in polynomial time1 on graph classes of bounded clique-width.

As a generalization of graph classes of given tree-width or clique-width, the
notion of CMSOL-inductive classes of graphs was introduced in [35]. Special
cases of CMSOL-inductive classes are the sum-like inductive classes.

Definition 7 (Sum-like Inductive). C is sum-like inductive if it is inductively
defined using a finite set of basic labeled graphs Gj , j ≤ J and a finite set of
sum-like binary operations �i, i ≤ I. In other words, each Gj , j ≤ J is in C, and
whenever H1,H2 ∈ C then also �i(H1,H2) ∈ C for all i ≤ I.

The classes of graphs of fixed tree-width (path-width, clique-width) are all sum-
like inductive, cf. [35]. Other examples of sum-like inductive classes of labeled
graphs can be found using various graph grammars, cf. [15,16,35]. In the frame-
work of sum-like inductive classes, Theorem 6 can be stated in model theoretic
terms, [35, Theorem 6.6].

Theorem 8 (JAM, 2004/14).
Let C be sum-like inductive2, and f be a graph parameter in CMSOLEVAL.

Then the computation of f(G) is Fixed Parameter Tractable3 in the size of the
parse tree witnessing that G ∈ C.

5 Eliminating Logic

L. Lovász, in [34], also noted that Hankel matrices can be used to make Cour-
celle’s Theorem logic-free for the case of bounded tree-width by replacing MSOL-
definability by a finiteness condition on the rank of its connection matrices. In
addition, graph parameters are allowed to take values in an arbitrary field K.
1 For real-valued graph parameters we have to be careful abut the model of computa-
tion. Either we work in a Turing computable subfield of R, or we use the computa-
tional model of Blum-Shub-Smale BSS, cf. [1].

2 Originally the theorem was stated for MSOL-smooth operations. The proof I had in
mind in [35] only works for sum-like operations. However, it is not known whether
there are MSOL-smooth operations which are not sum-like.

3 A graph parameter is Fixed Parameter Tractable (FPT), if it can be computed in
time O(c(k) · nd(k)) where n is the size of the graph, and c(k), d(k) are functions
depending on the parameter k, but independent of the size of the graph, cf. [9,13].
Here the parameter is hidden in the fact that C is CMSOL-inductive.
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Theorem 9 (L. Lovász, 2007).
Let K be a field and let f be a K-valued graph parameter with finite connection
rank. Then f can be computed in linear time on graph classes of bounded tree-
width.

In [30,31] this is extended to make Theorem 6 logic-free for the case of
bounded clique-width. To do this one defines a suitable sum-like binary operation
ηP,Q on graphs with additional unary predicates P (G), Q(G) on the vertices
V (G). ηP,Q(G1, G2) is the disjoint union of G1 and G2 augmented with all the
edges from

EP,Q = {(u, v) ∈ (V (G1)�V (G2))2 : u ∈ P (G1)�P (G2) and v ∈ Q(G1)�Q(G2)}

In words ηP,Q(G1, G2) is the disjoint union of G1 and G2 augmented with all
the edges with one vertex in P (G1 ∪ G2) and one vertex in Q(G1 ∪ G2).

Theorem 10 (NL and JAM, 2014). Let f be a real-valued graph parameter
with H(f, ηP,Q) of finite rank. Then f can be computed in polynomial time on
graph classes of bounded clique-width.

In [27] this is further extended to make Theorem 8 also logic-free. A detailed
discussion will appear in [32]. For this extension we introduce the notion of
linearly linked Hankel matrices.

Definition 11 (Linearly Linked Hankel Matrices). Let �i, i ≤ I be finitely
many binary operations on labeled graphs, and let Gj , j ≤ J be a finite set of
basic graphs. pk, k ≤ K be finitely many real-valued graph parameters. For a
labeled graph H let p̄(H) denote the vector (p1(H), . . . , pK(H)).

1. C is inductively defined using Gj , j ∈ J and �i, i ≤ I if each Gj , j ∈ J is
in C, and whenever H1,H2 ∈ C then also �i(H1,H2) ∈ C. Here �i does not
have to be sum-like.

2. The Hankel matrices H(pk,�i, i ≤ I, j ≤ J are linearly linked if the following
hold:
(a) For each pk, k ≤ K and �i, i ≤ I the Hankel matrices H(pk,�i) are of

finite rank.
(b) For each i ≤ I there is a matrix Pi such that for all graphs H1,H2

p̄(�i(H1,H2)) = Pi · p̄(�1(H1,H2))

Theorem 12 (NL and JAM, 2014).
Let C be inductively defined using Gj , j ∈ J and �i, i ≤ I, and let pk, k ≤ K
be finitely many graph parameters, such that the Hankel matrices H(pk,�i), i ≤
I, j ≤ J are linearly linked. Then for graphs H ∈ C with parse-tree pt(H), all
the graph parameters pk, k ≤ K can be computed in polynomial time in the size
of pt(H).

Theorem 12 is a proper generalization of Theorem 8:
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Proposition 13. If C is sum-like inductive using Gj , j ∈ J and �i, i ≤ I, and
f ∈ CMSOLEVAL, there are finitely many graph parameters p1, . . . , pK such
that all the Hankel matrices H(pk,�i), i ≤ I, j ≤ J are linearly linked.

To prove Proposition 13 one uses the Bilinear Reduction Theorem from [35],
which is proven in full detail as [24, Theorem 8.7].

In the logical versions of these theorems there are only countablymanyCMSOL-
definable graph parameters. However, there are uncountably many graph param-
eters with finite rank Hankel matrices even for the disjoint union of graphs. Hence,
in contrast to the case of word functions, the finiteness assumption on the rank does
not imply MSOL-definability. Furthermore, eliminating logic from these theorems
allows us to separate the algebraic character of the proof from its logical part given
by the Finite Rank Theorem for sum-like operations.

6 From Fields to Semirings

Finally, we discuss how to formulate Theorem 8 both logic-free and for graph
parameters with values in a commutative semiring. A motivating example for
this shift of perspective is the clique number ω(G) of a graph G, which has infinite
connection rank over the reals, but finite row-rank in the tropical semiring Tmax,
the max-plus algebra defined over the reals. There are several notions of rank
for matrices over commutative semirings. All of them coincide in the case of a
field, and some of them coincide in the tropical case, [2,8,19].

In [30,31] Lovász’s Theorem is generalized to graph parameters with values
in the tropical semirings rather than a field, and graph classes of bounded clique-
width. There we work with two specific notions: row-rank in the tropical case,
and a finiteness condition introduced by G. Jacob [21], which we call J-finiteness,
in the case of arbitrary commutative semirings.

Theorem 14 (NL and JAM, 2014). Let f be a graph parameter with values
in Tmax with H(f, ηP,Q) of finite row rank. Then f can be computed in polynomial
time on graph classes of bounded clique-width.

In the case of graph parameters with values in arbitrary commutative semirings,
this remains true for graph classes of bounded linear clique-width, cf. [11]. Linear
clique-width relates to clique-width like path-width relates to tree-width.
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Abstract. The computational power of membrane systems, in their dif-
ferent variants, can be studied by defining classes of problems that can
be solved within given bounds on computation time or space, and com-
paring them with usual computational complexity classes related to the
Turing Machine model. Here we will consider in particular membrane sys-
tems with active membranes (where new membranes can be created by
division of existing membranes). The problems related to the definition
of time/space complexity classes for membrane systems will be discussed,
and the resulting hierarchy will be compared with the usual hierarchy of
complexity classes, mainly through simulations of Turing Machines by
(uniform families of) membrane systems with active membranes.

1 Introduction

Membrane systems (or P systems) were introduced in [12] as a class of dis-
tributed parallel computing devices inspired by the functioning of living cells.
The basic model consists of several membranes, hierarchically embedded in a
main membrane called skin membrane. The membranes delimit regions and can
contain objects, which evolve according to given evolution rules associated with
the regions. Such rules are applied in a nondeterministic and maximally par-
allel manner: at each step, all the objects which can evolve should evolve. If
we let the system evolve starting from a given initial configuration, we obtain
a computation. The computation halts if no further rule can be applied, and
the objects expelled through the skin membrane (or collected inside a specified
output membrane) are the result of the computation.

An obvious question that arises concerns the definition of classes of (decision)
problems that can be solved by P systems within given bounds of time/space,
adapting to the framework of P systems notions from classical structural com-
plexity theory, and the possibility of attacking computationally hard problems
(e.g., NP-complete problems) using a polynomial amount of resources.

Many variants of P systems have been defined, adding further features or
capabilities to the basic model (see, e.g., [14]). Here, we will focus on P systems
with active membranes, introduced in [13] as a variant of P systems where the
membranes play an active role in the computations: an electrical charge, that
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 56–69, 2015.
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can be positive (+), neutral (0), or negative (−), is associated with each mem-
brane, and the application of the evolution rules can be controlled by means
of these electrical charges. Moreover, new membranes can be created during
the computation by division of existing ones. This latter feature makes them
extremely efficient from a computational complexity standpoint: using an expo-
nentially increasing number of membranes that evolve in parallel, they can solve
NP-complete and even PSPACE-complete problems [3,21] in polynomial time.
On the other hand, if division of membranes is not allowed the efficiency appar-
ently decreases: the so-called Milano theorem [23] tells us that no NP-complete
problem can be solved in polynomial time without using division rules, unless
P = NP holds. When division rules operate only on elementary membranes (i.e.
membranes not containing other membranes), such systems are still able to effi-
ciently solve NP-complete problems [15,23]. More recently, in [19] it was proved
that all problems in PPP (a possibly larger class including the polynomial hier-
archy) can also be solved in polynomial time using P systems with elementary
membrane division.

A survey of results concerning time complexity classes for P systems can be
found in [14], chapter 12.

Here we will instead focus mainly on space complexity. A measure of space com-
plexity for P systems has been introduced in [16]: the space required by a P system
is the maximal size it can reach during any legal computation, defined as the sum
of the number of membranes and the number of objects. Under this notion of space
complexity, in [18] it has been proved, by mutual simulation of P systems and Tur-
ing Machines, that the class of problems solvable in polynomial space by P systems
with active membranes, denoted by PMCSPACEAM, coincides with PSPACE.
This equivalence has been subsequently extended to exponential space [1], by prov-
ing that the class EXPMCSPACEAM of problems solvable in exponential space
by P systems with active membranes coincides with EXPSPACE.

A further improvement has been given in [2], showing with different simula-
tion techniques that arbitrary single-tape Turing Machines can be simulated by
uniform families of P systems with a cubic slowdown and a quadratic space over-
head; hence, the classes of problems solvable by P systems with active membranes
and by Turing Machines coincide up to a polynomial with respect to space com-
plexity. This equivalence allows us to adapt to P systems existing theorems about
the space complexity of Turing machines, such as Savitch’s theorem and the space
hierarchy theorem.

The results recalled above show that P systems and Turing Machines are equiv-
alent up to a polynomial from the space complexity point of view, assuming the
available space is at least polynomial. In [5,8,20] P systems with stronger space
restrictions, i.e. working in sublinear or even constant space, have been considered.
Obviously, the definition of space must be revised, making the input read-only, and
removing its size from the calculation of space, as usually done for Turing Machines
working in sub linear space. A first result shows that DLOGTIME–uniform P sys-
tems with active membranes, using a logarithmic amount of space, are able to
simulate logarithmic-space deterministic Turing machines, and thus to solve all
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problems in the class L. Then, in [8] it is pointed out that, while logarithmic-space
Turing machines can only generate a polynomial number of distinct configurations,
P systems working in logarithmic space have exponentially many potential ones,
andthustheycanbeexploitedtosolvecomputationalproblemsthatareharderthan
those in L. In particular, polynomial-space Turing machines can be simulated by
means of P systems with active membranes using only logarithmic auxiliary space,
thus obtaining a characterization ofPSPACE. Finally, in [5] it is proved that, quite
surprisingly, a constant amount of space is sufficient (and trivially necessary) to
solve all problems in PSPACE.

Another possibility is to considerP systemswith restrictions on the available set
of rules. An interesting case consists in limiting membrane division to elementary
membranes (not containing further membranes). We can give a complete charac-
terisation of the class of problems that can be solved by P systems with elementary
division working in polynomial time, showing that it coincides with the class P#P.

The paper is structured as follows. In Section 2 the basic definitions concerning
Psystemsandthe relevant complexity classes arebriefly recalled.Section3 contains
the main results concerning the relationships between space complexity classes for
P systems and Turing Machines, and corollaries obtained by re-interpreting some
classic statements about Turing Machines in the membrane computing framework.
The main results about systems working in sublinear space are then presented in
Section 4 while Section 5 discusses the case of systems without non elementary divi-
sion rules.

2 PSystemswithActiveMembranes

We recall here some basic definitions on P systems with active membranes; more
details can be found in ([14], chapters 11–12).

Definition 1. A P system with active membranes of initial degree d ≥ 1 is a tuple
Π = (Γ,Λ, μ,w1, . . . , wd, R), where:

− Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
− Λ is a finite set of labels;
− μ is a membrane structure (i.e., a rooted unordered tree, usually represented by

nestedbrackets) consistingofdmembranesenumeratedby1, . . . , d; furthermore,
eachmembrane is labeled by an element ofΛ, not necessarily in aone-to-oneway,
and possesses an electrical charge (or polarization), which can be either neutral
(0), positive (+) or negative (−)

− w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in the d regions of μ;

− R is a finite set of rules of the following kinds:
• Object evolution rules, of the form [a → w]αh

They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multisetw (i.e.,a is removed fromthemultiset inhandreplacedby theobjects
in w).
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• Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the charge of h is changed to β.

• Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to amembrane labeled byh, having chargeα and contain-
ing an occurrence of the object a; the object a is sent out from h to the outside
region becoming b and, simultaneously, the charge of h is changed to β.

• Dissolution rules, of the form [a]αh → b
They can be applied to amembrane labeled byh, having chargeα and contain-
inganoccurrenceof theobjecta; themembraneh is dissolvedand its contents
are left in the surrounding region unaltered, except that an occurrence of a
becomes b.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h, having charge α, containing
an occurrence of the object a but having no other membrane inside (an ele-
mentary membrane); the membrane is divided into two membranes having
label h and charge β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes.

• Nonelementary division rules, of the form

[
[ ]+h1

· · · [ ]+hk
[ ]−hk+1

· · · [ ]−hn

]α

h
→ [

[ ]δh1
· · · [ ]δhk

]β

h

[
[ ]εhk+1

· · · [ ]εhn

]γ

h

They can be applied to a membrane labeled by h, having charge α, containing
the positively charged membranes h1, . . . , hk, the negatively charged mem-
branes hk+1, . . . , hn, and possibly some neutralmembranes. Themembrane
h is divided into two copies having charge β and γ, respectively; the positive
children are placed inside the former membrane, their charge changed to δ,
while the negative ones are placed inside the latter membrane, their charges
changed to ε. Any neutral membrane inside h is duplicated and placed inside
both copies.

The class of P systems with active membranes will be denoted by AM. We will
also consider the subclass AM(−d,−n), whose elements do not use dissolution or
nonelementary division rules. These P systems compute by applying the rules to
iterativelymodify theirmembrane structure and themulti sets of objects contained
in membranes, as defined below.

Definition 2. Let Π be a P system with active membranes. Then:

− A configuration of Π is given by its current membrane structure, including the
electricalcharges, togetherwith themultisets located inthecorrespondingregions.
In particular, the initial configuration is given by the membrane structure μ,
where all the membranes are neutral, and the initial contents w1, . . . , wd, of its
membranes.

− A computation step changes the current configurationaccording to the following
principles:
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• Each object andmembrane can be subject to atmost one rule per step, except
for object evolution rules (inside each membrane any number of evolution
rules can be applied simultaneously).

• The application of rules is maximally parallel: each object appearing on the
left-hand side of evolution, communication, dissolution or elementary divi-
sion rules must be subject to exactly one of them (unless the current charge
of themembrane prohibits it). The same principle applies to eachmembrane
that can be involved in communication, dissolution, elementary or nonele-
mentary division rules. In other words, the only objects andmembranes that
do not evolve are those associated with no rule, or only to rules that are not
applicable due to the electrical charges.

• When several conflicting rules can be applied in the same step, a single rule
is chosen nondeterministically from the set of applicable rules. This non-
deterministic choice occurs independently for each copy of the object in the
membrane. This implies thatmultiple possible configurations can be reached
as the result of a computation step.

• While all the chosen rules are considered to be applied simultaneously dur-
ing each computation step, they are logically applied in a bottom-up fashion:
first, all evolution rules are applied to the elementary membranes, then all
communication,dissolutionanddivisionrules; then theapplicationproceeds
towards the root of the membrane structure. In other words, each membrane
evolves only after its internal configuration has been updated.

• Theoutermostmembrane cannot be divided or dissolved, andanyobject sent
out from it cannot re-enter the system again.

− A halting computation of the P system Π is a finite sequence of configurations
C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable by
Ci viaasinglecomputationstep,andnorulescanbeappliedanymore inCk.Anon-
halting computation C = (Ci : i ∈ N) consists of infinitely many configurations,
againstarting fromthe initial oneandgeneratedbysuccessivecomputationsteps,
where the applicable rules are never exhausted.

P systems can be used as language recognisers by employing two distinguished
objects yes and no; exactly one of these must be sent out from the outermost mem-
brane in the last step of each computation, in order to signal acceptance or rejection,
respectively; we also assume that all computations are halting. If all computations
starting from the same initial configuration are accepting, or all are rejecting, the
P system is said to be confluent. If this is not necessarily the case, then we have a
non-confluent Psystem,and theoverall result is establishedas fornondeterministic
Turing Machines: it is acceptance iff at least an accepting computation exists.

In order to solve decision problems (i.e., decide languages), we use families of
recogniser P systems Π = {Πx : x ∈ Σ�}. Each input x is associated with a
P systemΠx that decides themembership ofx in the languageL ⊆ Σ� byaccepting
or rejecting. The mapping x �→ Πx must be efficiently computable for each input
length, as discussed in detail in [10].
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Definition 3. Let E, F be classes of functions over strings. A family of P sys-
tems Π = {Πx : x ∈ Σ�} is said to be (E ,F)-uniform if the mapping x �→ Πx

can be described by two functions F ∈ F (for “family”) and E ∈ E (for “encoding”)
as follows:

− F (1n) = Πn, where n is the length of the input x and Πn is a common P system
for all inputs of length n, with a distinguished input membrane.

− E(x) = wx, where wx is a multiset encoding the specific input x.
− Finally, Πx is simply Πn with wx added to the multiset placed inside its input

membrane.

In particular, a family Π is said to be (L,L)-uniform if the functions E and F can
be computed by a deterministic Turing machine in logarithmic space.

Any explicit encoding of Πx is allowed as output of the construction, as long as
thenumberofmembranesandobjects representedby itdoesnotexceedthe lengthof
thewholedescription, and the rules are listedonebyone.This restriction is enforced
in order to mimic a (hypothetical) realistic process of construction of the P systems,
where membranes and objects are presumably placed in a constant amount during
each construction step, and require actual physical space proportional to their num-
ber; see also [10] for further details on the encoding of P systems.

Finally, we describe how space complexity for families of recogniser P systems
is measured, and define the related complexity classes [16].

Definition 4. Let C be a configuration of a P system Π. The size |C| of C is defined
as the sum of the number of membranes in the current membrane structure and the
total number of objects they contain. If C = (C0, . . . , Ck) is a halting computation of
Π, then the space required by C is defined as

|C| = max{|C0|, . . . , |Ck|}

or, in the case of a non-halting computation C = (Ci : i ∈ N),

|C| = sup{|Ci| : i ∈ N}.

Non-haltingcomputationsmightrequireaninfiniteamountofspace(insymbols |C| =
∞): for example, if the number of objects strictly increases at each computation step.

The space required by Π itself is then

|Π| = sup{|C| : C is a computation of Π}.

Notice that |Π| = ∞might occur if eitherΠ hasanon-halting computation requiring
infinite space (as described above), or Π has an infinite set of halting computations,
such that for each bound b ∈ N there exists a computation requiring space larger than
b.

Finally, let Π = {Πx : x ∈ Σ�} be a family of recogniser P systems, and let
s : N → N. We say that Π operates within space bound s iff |Πx| ≤ s(|x|) for each
x ∈ Σ�.
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Definition 5. Let f : N → N be a function. By (L,L)-MCD(f(n)) (respec-
tively, (L,L)-MCSPACED(f(n))) we denote the class of languages which can
be decided by (L,L)-uniform families of confluent P systems of type D (with
D = AM or D = AM(−d,−ne)) within time (resp., space) bound f . The cor-
responding classes for non-confluent P systems are (L,L)-NMCD(f(n)) and
(L,L)-NMCSPACED(f(n)).

As usual, the above definitions can be generalized to sets of functions by
union, defining (L,L)-PMCD (resp., (L,L)-PMCSPACED) as the union of the
classes (L,L)-MCD(f(n)) (resp., (L,L)-MCSPACED(f(n))) with f(n) polyno-
mial, and in analogous way (L,L)-EXPMCD ((L,L)-EXPMCSPACED) for expo-
nential f(n), (L,L)-LMCD ((L,L)-LMCSPACED) for f(n) logarithmic, and
finally (L,L)-kEXPMCD ((L,L)-NEXPMCSPACED) forf(n) superexponential
of level k.

3 SpaceComplexity:AM vsT M

We will compare the above classes with the well known space complexity classes for
TuringMachines (T M)PSPACE andEXPSPACE; for the precise definitions and
properties of Turing Machines and related complexity classes we refer the reader
to [11]. The results reported below essentially establish the equivalence (up to a
polynomial) of many space complexity classes defined in terms of P systems with
active membranes and of Turing Machines, and are based on mutual simulation
of the two computation models. The detailed description of simulations cannot be
given here, and can be found in [2].

Theorem 6. Let M be a single-tape deterministic Turing machine working in
time t(n) and space s(n), including the space required for its input. Then there exists
an (L,L)-uniform familyΠ of confluentP systemswith restricted elementary active
membranes working in time O(t(n)s(n)2) ⊆ O(t(n)3) and space O(s(n)2) such
that L(M) = L(Π).

Notice that the uniformity condition for Π ensures that the P systems them-
selves carryout the simulationof theTuringmachineM , as opposed to themachines
constructing them, whenever the problem they solve is outsideL, e.g., in the case of
PSPACE-hardproblems.Theorem6canbealso compared to thepreviouslyknown
simulations of polynomial-space P systems [19,22], requiring only O(t(n)) time
andO(s(n)) space, and exponential-spaceP systems [1], requiringO(t(n)2 log t(n))
time and O(s(n) log s(n)) space, which are more efficient in those restricted cases.

The simulation of Theorem 6 can be made faster, and also generalised to nonde-
terministic Turing machines, by using non-confluent P systems.

Theorem 7. Let M be a single-tape, possibly nondeterministic Turing machine
working in time t(n) and space s(n), including the space required for its input.
Then there exists an (L,L)-uniform family Π of non-confluent P systems with
restricted elementary active membranes working in time O(t(n)s(n)) ⊆ O(t(n)2)
and space O(s(n)2) such that L(M) = L(Π).
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From Theorem 6 we obtain inclusions of complexity classes for Turing machines
and P systems when the space bound is at least linear (since we are dealing with
single-tape Turing machines).

Theorem 8. For every function f(n) ∈ Ω(n) the following inclusions hold:

TIME(f(n)) ⊆ (L,L)-MCAM(−d,−n)(O(f(n)3))

⊆ (L,L)-MCAM(O(f(n)3))
SPACE(f(n)) ⊆ (L,L)-MCSPACEAM(−d,−n)(O(f(n)2))

⊆ (L,L)-MCSPACEAM(O(f(n)2)).

Let us now recall how P systems may be simulated by Turing Machines with a
polynomial space overhead [18].

Theorem 9. Let Π be a (L,L)-uniform confluent (resp., non-confluent) family
of recogniser P systems with active membranes working in space s(n); let t(n) ∈
poly be the time complexity of the Turing machine F computing the mapping 1n �→
Πn. Then, Π can be simulated by a deterministic (resp., nondeterministic) Turing
machine working in space O(s(n)t(n) log s(n)).

By combining Theorem 6 and Theorem 9, we can prove equality between space
complexity classes for P systems and Turing machines under some (not very restric-
tive) assumptions on the set of space bounds we are interested in.

Theorem 10. Let F be a class of functions N → N such that

− F contains the identity function n �→ n;
− Ifs(n) ∈ F andp(n) isapolynomial, thenthereexists somef(n) ∈ F withf(n) ∈

Ω(p(s(n))).

Then SPACE(F) = (L,L)-MCSPACEAM(F). In particular, we have the follow-
ing equalities:

PSPACE = (L,L)-PMCSPACEAM
EXPSPACE = (L,L)-EXPMCSPACEAM
2EXPSPACE = (L,L)-2EXPMCSPACEAM
kEXPSPACE = (L,L)-kEXPMCSPACEAM.

Anotherconsequenceof thepossibilityofPsystemstosimulateTuringmachines
with a polynomial overhead and vice versa is that we are now able to translate theo-
remsabout the space complexityofTuringmachines into theoremsaboutPsystems.
As an example, the following two corollaries can be proved almost immediately for
large enough space complexity bounds1.
1 Corollaries 11 and 12 can be proved, in the restricted polynomial and exponential space

cases,with tighter space boundsbyusing the simulations in [19] and [1] respectively (see
also [22]).
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Corollary 11 (Savitch’s Theorem for P Systems). For each function s(n)
growing faster than every polynomial we have (L,L)-NMCSPACEAM(s(n)) ⊆
(L,L)-MCSPACEAM(O(s(n)8 log4 s(n))).

As a consequence, for all classes of functions F satisfying the hypotheses of The-
orem 10 we have

(L,L)-MCSPACEAM(F) = (L,L)-NMCSPACEAM(F).

Corollary 12 (SpaceHierarchyTheoremforPSystems). Let s(n) bea func-
tion growing faster than every polynomial, and let f(n) be a space-constructible func-
tion such that O(s(n)2 log s(n)) ⊆ o(f(n)). Then

(L,L)-MCSPACEAM(s(n)) � (L,L)-MCSPACEAM(O(f(n)2)).

4 Sublinear SpaceComplexity

Having proved the equivalence (up to a polynomial) of the space complexity of Tur-
ing machines and P systems working in space Ω(n), we are also interested in finding
out the behaviour of P systems with stronger restrictions. However, the measure of
space complexity employed up to now, given by the largest amount of membranes
and objects reached during the computation, is not suitable for this task. The mul-
tiset wx encoding the input string x is, in general, already of polynomial size with
respect to |x|; requiring it to be smaller would make the mapping x �→ wx, and
consequently the mapping x �→ Πx, non-injective.

Hence, to analyse the complexity of sublinear-space P systems we use an expedi-
ent similar to one usually employed with Turing machines: making the input read-
only, and removing its size from the calculation of space [20].

More formally,wepartitionthealphabetofPsystems intotwodisjoint setsΔ∪Γ ,
where Δ is the input alphabet and Γ the working alphabet, and require the multi-
set wx encoding x ∈ Σ� to be defined over Δ. Furthermore, we require that input
objects are either rewritten into themselves by the rules, or into objects ofΓ : for evo-
lution rules [a → w]αh , at most one object b ∈ Δ may appear in w, and only if b = a;
for rules a [ ]αh → [b]βh, [a]αh → [ ]βh b, and [a]αh → b, if b ∈ Δ then b = a; for division
rules [a]αh → [b]βh [c]γh, if b ∈ Δ (resp., c ∈ Δ) then b = a and c /∈ Δ (resp., c = a
and b /∈ Δ). This ensures that no new input objects are created during the compu-
tation, and the existing ones are either just moved around the membrane structure,
or rewritten into working alphabet objects. Finally, we define the space required by
a configuration of a P systems to be the sum of the number of membranes and the
number of working alphabet objects only.

A preliminary consequence of this definition of space complexity is that P sys-
tems with active membranes working in O(log n) space are able to simulate Turing
machines working in O(log n) space [20]. The input objects of the P systems corre-
spond to symbols of the input tape of the Turing machine, subscripted with indices
denoting their position in the string in order not to lose information about order-
ing. An object of the P system encodes both the state q of the Turing machine and
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the position i on the input tape; the input multiset (i.e., the Turing machine input
tape) is queried by writing the number i in binary on the charges of O(log n) nested
membranes; this allows the movement of the object denoting the i-th input symbol
(and only that object) to a specified region, when it can be finally read by the state-
object. Further O(log n) membranes and objects directly encode the configuration
of the working tape of the Turing machine.

The existence of this simulation proves the following inclusion [20]:

Theorem 13. L ⊆ (DLOGTIME,DLOGTIME)-LMCSPACEAM.

Here the uniformity condition is DLOGTIME, a very weak uniformity condi-
tion usually employed for Boolean circuits [9]. This is necessary in order to disallow
the machine providing the uniformity condition to perform the simulation itself,
which would be possible when using the usual P (or even L) uniformity condition.

The simulation we just described was relatively straightforward, since the
O(log n) read-write spaceof the simulatedTuringmachinecanbeeasily represented
by a similar amount of space in the simulating P system. However, a more sophisti-
cated solution allows a polynomial amount of read-only input objects to simulate a
polynomial amount of read-write tape cells [8].

Consider an object ai, encoding the fact that the i-th symbol of the tape of a
Turing machine M is a; this object is located within a certain membrane h of the
P system simulating M . When M rewrites the symbol in position i on the tape as b,
rather than rewriting ai (which would need to be rewritten into a working alphabet
object, thus increasingthespaceconsumption),wecanmove it toadifferentregionk
of the P system. Essentially, we establish an injective mapping between regions and
objects (in the example, h corresponds to a and k to b), and the symbol on the i-th
tapecell ofM is encodedbythe location ofai.Only the subscript iofai ismeaningful
(except during the initialisation of the system, to choose whether to move ai to h
rather thantok).Theregionsassociatedwithtapesymbols, suchashandk, areonce
again surrounded by O(log n) membranes, in whose charges a state-object writes
the index i of the tape cell currently scanned by M . This allows us to isolate the
corresponding object, as in the previous simulation.

As an immediate consequence, we obtain the identification of logarithmic space
for P systems with polynomial space for Turing machines and, perhaps counter-
intuitively, with polynomial space for P systems: the latter turns out to be always
exponentially wasteful [8].

Theorem 14. (L,L)-LMCSPACEAM = (L,L)-PMCSPACEAM = PSPACE.

Here the logarithmic-space uniformity condition suffices to obtain ameaningful
result, since L provably differs from PSPACE.

The last simulation we described requires only a constant number of non-input
objects: the logarithmic space complexity is entirely due to the membranes encod-
ing the tape head position. However, a simple combinatorial argument shows that,
even with a constant number of membranes, moving around a polynomial number
of read-only input objects may create exponentially many configurations, the same
aspolynomial-spaceTuringmachines.Thequestion iswhether these configurations
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can be generated in a controlled (i.e., deterministic, or at least confluent) way and,
more specifically, if we can isolate the object encoding the i-th tape symbol for any i
and for any input string. If so, we would be able to simulate PSPACE in constant
space with P systems.

Surprisingly, this turns out tobe the case [5].TheO(log n)-depthmachinerypre-
viouslyusedto isolate theobjectwithsubscript icanbereplacedbyconfluentnonde-
terminism and timers. The idea is to pick nondeterministically one input object xj

at a time, rewrite it into itselfand a timer-object counting from j downto0. Simulta-
neously, a state-object similar to that of the previous simulations counts from i (the
index of the object we are trying to select) down to 0. We can check whether i = j
by letting the first object to reach 0 signal to the other by changing the charge of a
membrane. If i 
= j, the object xj is moved to a temporary membrane, and another
objectxk is selected.Eventually, the objectxj will be selected (thus ensuring conflu-
ence) and, by keeping track of the region it came from, it will be possible to deduce
the identity of the tape symbol it represents.

This simulation only requires a constant number of membranes and non-input
objects, proving the following result [5].

Theorem 15. (L,L)-MCSPACEAM(O(1)) = PSPACE.

Hence, fromthepointof viewof space complexity, non-wastefulP systemseither
use constant space, or super-polynomial space.

This latter result may cause some doubts regarding the definition of space com-
plexity: does it really capture our intuitive idea of size of a P system as a biologi-
cally inspired device? After all, the distinctiveness of m = |Γ | object types (chem-
ical species) and of k = |Λ| labels (membrane types) in the P system model must
correspond to a physical distinctiveness of the objects they model, which we may
assume to require a non-constant amount of space. On the other hand, the defini-
tions of space employedup tonow in this paper assignunitary volume to each object
and each membrane. A more sophisticated (but still mathematically simple) way
to measure space would be to assign to each non-input object and each membrane
a volume proportional to the amount of information they encode: log m and log k,
respectively. Adopting this more detailed measure of space complexity implies that
the last simulation we described would run in logarithmic space, rather than con-
stant space.

5 ElementaryDivision andCountingProblems

An interesting restriction of P systems with active membranes is obtained by lim-
iting membrane division to elementary membranes (not containing further mem-
branes). The fact that this kind of division suffices to solve NP-complete problems
in polynomial time is one of the oldest results in membrane computing [23], in sym-
bols:
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Theorem 16. NP ⊆ PMCAM(−n).

The main idea is to evaluate Boolean formulae ϕ in conjunctive normal form
by having objects x1, . . . , xm, corresponding to the variables of ϕ, in an elemen-
tary membrane h; the membrane is then divided repeatedly by using rules [xi]0h →
[ti]0h [fi]0h for 1 ≤ i ≤ m. Interpreting ti (resp., fi) as a true (resp., false) truth
assignment to xi, we obtain 2m copies of membrane h after m steps, each one of
them containing a distinct truth assignment for ϕ. The truth assignments are then
evaluated in parallel, also in polynomial time, by using evolution and communica-
tion rules, and an object t is sent out from each copy of membrane h containing a
satisfying assignment. Clearly, a copy of t exists if and only if ϕ is satisfiable.

This algorithm can be extended [17] to count the truth assignments, or more
specifically to checkwhether thenumber of assignments exceeds a given thresholdk.
This can be accomplished by having another set of membranes perform binary divi-
sion until there are exactly k of them, and have each of these membranes absorb a
copy of t as soon as it is sent out from a membrane h. If there is any instance of t
left after this “deletion” phase, then the number of truth assignments satisfying
the formula exceeds k. Since the satisfiability threshold problem is PP-complete,
we obtain the following result:

Theorem 17. PP ⊆ PMCAM(−n).

This result can be further improved by using the counting P systems as “mod-
ules” in a larger P system simulating a polynomial-time Turingmachine [19]. These
P system modules are literally used as sub-routines by sending them an input (com-
puted by the Turing machine being simulated) by means of communication rules.
Since the modules operate in polynomial time, this allows us to simulate Turing
machines with oracles for PP (or, equivalently, #P) problems with a polynomial
slowdown:

Theorem 18. P#P ⊆ PMCAM(−n).

The P#P lower bound turns out to be optimal [7]. Indeed, we can simulate a
Psystemwithelementarymembranedivisionworking inpolynomial timeas follows.
It is a well-known result that non-dividing membranes can be simulated directly by
a polynomial-time Turing machine [23]; the key observation here is that we do not
need to simulate the dividing elementary membranes directly, but we only need to
know what objects they send out or absorb during each computation step. This
would allow us to update the configuration of the outermost membrane (which can-
not divide, by definition) and obtain the result of the computation of the P system.
The multisets entering and exiting the elementary membranes can be computed
by having oracles for queries substantially equivalent to “How many instances of a
are output (resp., absorbed) by membranes having label h at computation step t?”.
Since this can be answered by a#P oracle, we obtain a complete characterisation of
the computing power of P systems with elementary division working in polynomial
time:
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Theorem 19. PMCAM(−n) = P#P.

Theconjecturehere is that this equivalence canbegeneralised toP systemswith
non-elementary membrane division of constant depth by increasing the power of
the oracle. Let the counting hierarchy [4] be defined by C0P = P and Cd+1P =
PPCdP. Then, a preliminary result [6] shows that P systems of depth d, using non-
elementary membrane division and working in polynomial time are at least as pow-
erfulasPCdP.Theoutermostmembranesimulatesapolynomial-timedeterministic
Turing machine, and the membrane substructure of depth d − 1 it contains simu-
lates a CdP Turing machine. This, in turn, contains a membrane substructure of
depth d − 2 simulating a Cd−1P Turing machine, and so on recursively. As a conse-
quence, P systems of depth O(1) are at least as powerful as CH =

⋃∞
d=0 CdP.
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Abstract. In this paper we survey some recent researches concerning
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1 Introduction

Parallel composition of words appears to be an important issue both in the
theory of concurrency and in formal languages. Usually it is modeled by the
shuffle operation. The shuffle u �� v of words u and v is the finite set of words
obtained by merging the words u and v from left to right, but choosing the next
symbol arbitrarily from u or v. In other words, the shuffle operator returns the
set of all possible interleaving of symbols in u and v. For example, the shuffle of
ab and cd is the set {abcd, acbd, acdb, cabd, cadb, cdab}. This definition naturally
extends to languages. In a more formal way, the shuffle product (or simply shuffle)
of two languages L1, L2 over the alphabet Σ is the language

L1 �� L2 = {u1v1...unvn ∈ Σ∗|n ≥ 1, u1...un ∈ L1, v1...vn ∈ L2}.

It is known that the shuffle product is an associative and commutative oper-
ation, which is also distributive over the union. Other variants of the shuffle
product, related to various forms of synchronization, are known in literature
(cf [2]), but are not considered in this paper.

The initial work on shuffle arose out of formal language theory. To the best
of our knowledge, the shuffle product was first used in this context by Ginsburg
and Spanier [11]. Early research with applications to concurrent processes can be
found in [34] and [22]. Various problems concerning the complexity of the shuffle
operation were investigated in the 1980’s in [23,26,27,37]. Interestingly, it was
observed in [21] that some aspects of the shuffle product bear strong similarities
with genetic recombination.

In recent years newproblems on the shuffle operation have been proposed, partly
motivated by their applications to concurrent systems (cf. [3,4,6,16,17,33]).

Antonio Restivo—Partially supported by Italian MIUR Project PRIN 2010LYA9RH,
“Automi e Linguaggi Formali: Aspetti Matematici e Applicativi”.

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 70–81, 2015.
DOI: 10.1007/978-3-319-15579-1 5



The Shuffle Product: New Research Directions 71

In this paper we survey some recent researches on the shuffle that arise both in for-
mal language theory and in combinatorics on words. In the first section we report
recent investigations into the language generation power of the shuffle operation,
when used in combination with the more conventional operations of union, inter-
section, complement, concatenation and Kleene star. In the second section we con-
sider very recent combinatorial and algorithmic problems related to the shuffle.
Some of them concern the complexity and the avoidability of shuffle squares.

2 Formal Languages

A very general problem in the theory of formal languages is, given a “basis”
of languages and a set of operations, to characterize the family of languages
expressible from the “basis” by using the operations. In practice, a basis of
languages will consists of a set of very simple languages, such as the languages
of the form {a}, where a is a letter of the alphabet. In the theory of regular
languages, the operations taken into account are usually the Boolean operations,
the concatenation and the (Kleene) star operation.

In this setting, two families of languages play a fundamental role: the family
REG of regular languages, and the family SF of star-free languages. REG is
defined as the smallest family of languages containing the languages of the form
{a}, where a is a letter, and {ε}, where ε is the empty word, and closed under
union, concatenation and star. It is well known that the family REG is closed
also under all Boolean operations. The family SF of star-free languages is the
smallest family of languages containing the languages of the form {a} and {ε},
and closed under Boolean operations and concatenation.

Another operation that plays an important role in the theory of formal lan-
guages is the shuffle operation. It is well known (cf [10]) that the family REG
of regular languages is closed under shuffle. The study of subfamilies of regu-
lar languages closed under shuffle is a difficult problem, partly motivated by its
applications to the modeling of process algebras [1] and to program verification.

In particular, we here consider the smallest family of languages containing
the languages of the form {a} and {ε}, and closed under Boolean operations,
concatenation and shuffle. Let us call intermixed the languages in this family,
which is denoted by INT. It is perhaps surprising that the following important
problem in the theory of regular languages is still open, and to a large extent
unexplored.

Problem 1. Give a (decidable) characterization of the family INT.

In this section we discuss this problem: we present some partial results and
we introduce new special problems as possible steps in the characterization of the
family INT. Such partial results and special problems show the deep connections
of Problem 1 with other relevant aspects of formal languages theory. The results
presented in this section are essentially based on the papers [3], [6] and [15].
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2.1 Star-Free and Intermixed Languages

In [3] it is proved the following theorem showing that the family INT of inter-
mixed languages is strictly included in the family REG of regular languages and
strictly contains the family SF of star-free languages.

Theorem 1. SF � INT � REG

Moreover, in [3] it is shown that the family INT is closed under quotients,
but it is not closed under inverse morphism. Therefore, the family INT is not a
variety of languages (cf [30] and [31]), and so it cannot be characterized in terms
of syntactic monoids.

Let us recall (cf [28]) that a language L ⊆ Σ∗ is said to be aperiodic, or
non-counting, if there exists an integer n > 0 such that for all x, y, z ∈ Σ∗ one
has

xynz ∈ L ⇔ xyn+1z ∈ L.

A fundamental theorem of Schutzenberger states that a regular language is star-
free if and only if it is aperiodic.

The strict inclusion between the families SF and INT implies that the shuf-
fle of two star-free languages in general is not star-free. This means, roughly
speaking, that the shuffle creates periodicities.

In order to enlighten on the difficult Problem 1, we consider the following

Problem 2. Determine conditions under which the shuffle of two star-free lan-
guages is star-free too.

A first simple condition is obtained in [6] by introducing a weaker version of
the shuffle product, called bounded shuffle.

Let k be a positive integer. The k-shuffle of two languages L1, L2 ⊆ Σ∗ is
defined as follows:

L1 ��k L2 = {u1v1...umvm|m ≤ k, u1...um ∈ L1, v1...vm ∈ L2}.

Any k-shuffle is called bounded shuffle. It is not difficult to show that the
family REG of regular languages is closed under bounded shuffle. In [6] it is
proved the following theorem.

Theorem 2. SF is closed under bounded shuffle, i.e. if L1, L2 ∈ SF then L1

��kL2 ∈ SF , for any k ≥ 1.

One can derive the following corollary.

Corollary 3. The shuffle of a star-free language and a finite language is star-
free.

In the following subsections we report some partial results to Problem 2, that
highlight the role of the notions of commutativity and ambiguity in the problem.
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2.2 Partial Commutations

The family SF is closed under concatenation and it is not closed under shuffle.
What is the difference between concatenation and shuffle? Actually, the shuffle
u �� v of words u and v can be obtained from their product uv by allowing the
commutation of the letters occurring in u with the letters occurring in v (external
commutation), keeping the letters in each word in order, i.e. preventing their
(internal) commutation. In the following results we show that such a discrepancy
between internal and external commutations is at the origin of the fact that the
shuffle “creates periodicity”. Next results illustrates this phenomenon.

Let us start with an interesting result known in the commutative case. We
denote by [u] the commutative closure of a word u, which is the set of words com-
mutatively equivalent to u. A language L is commutative if, for every word u ∈ L,
[u] is contained in L. The following result was proved by J.F. Perrot in [29].

Theorem 4. The shuffle of two commutative star-free languages is star-free.

This result settles a special case in which there is, roughly speaking, an
agreement between internal and external commutations.

In order to examine the phenomenon in its generality we introduce an oper-
ation between languages, that generalizes at the same time concatenation and
shuffle, and we investigate the closure of SF with respect to this operation. The
new operation is defined by introducing a partial commutation between the let-
ters of the alphabet, and its appropriate setting is the theory of traces (cf [9]).

Let Γ be a finite alphabet and let θ ⊆ Γ × Γ be a symmetric and irreflexive
relation called the (partial) commutation relation. We consider the congruence
∼θ of Γ ∗ generated by the set of pairs (ab, ba) with (a, b) ∈ θ. If L ⊆ Γ ∗ is a
language, [L]θ denoted the closure of L by ∼θ, and L is closed by ∼θ if L = [L]θ.
The closed subsets of Γ ∗ are called trace languages.

Let now L1 and L2 be two languages over the alphabet Σ
Let us consider two disjoint copies Σ1 and Σ2 of the alphabet Σ, i.e. such that

Σ1 ∩ Σ2 = ∅, and the isomorphism σ1 from Σ∗
1 to Σ∗ and σ2 from Σ∗

2 to Σ∗.
Let L′

1 (L′
2 resp.) be the subset of Σ∗

1 (Σ∗
2 resp.) corresponding to L1 (L2

resp.) under the isomorphism σ1 (σ2 resp.). Let us consider the morphism σ :
(Σ1 ∪ Σ2)∗ → Σ∗ defined as follows:

σ(a) =
{

σ1(a), if a ∈ Σ∗
1 ;

σ2(a), if a ∈ Σ∗
2 .

Let θ be of the form θ ⊆ Σ1 × Σ2. The θ-product (denoted by ��θ) of the
languages L1, L2 ⊆ Σ∗ is defined as follows:

L1 ��θ L2 = σ([L′
1L

′
2]θ).

Remark that the product (concatenation) and the shuffle correspond to two
special (extremal) cases of the θ-product. Indeed, if θ = ∅ then L1 ��θ L2 =
L1L2, and, if θ = Σ1 × Σ2, then L1 ��θ L2 = L1 �� L2.
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The partial commutation θ ⊆ Σ1 × Σ2 induces a partial commutation θ′ on
Σ defined as follows: if (a, b) ∈ θ the (σ1(a), σ2(b)) ∈ θ′.

In [15] it is proved the following theorem.

Theorem 5. Let L1 and L2 be two languages closed under θ′, i.e., [L1]θ′ = L1

and [L2]θ′ = L2. If L1 and L2 are star-free, then L1 ��θ L2 is star-free.

The theorem states, roughly speaking, that, if internal commutation θ′

(i.e., the commutations allowed inside words in each of the languages L1 and L2)
“coincides” with the external commutation θ (i.e., the commutations between
the letters in words of L1 and the letters in words of L2), then the θ-product
preserves the star-freeness.

Special cases of the previous theorem are the well known result that the con-
catenation of two star-free languages is star-free (corresponding to the case θ = ∅),
and the result of J.F. Perrot (cf Theorem 4) that the shuffle of two commutative
star-free languages is star-free (corresponding to the case θ = Σ1 × Σ2).

A recent paper of Cano, Guaiana and Pin [5] contains some other interest-
ing results on regular languages closed under partial commutations, which are
related to the problems raised in this section.

2.3 Unambiguous Star-Free Languages

In this section we investigate some conditions for Problem 2, related to the
unambiguity of the product of languages.

A language L ⊆ Σ∗ is a marked product of the languages L0, L1, ..., Ln if

L = L0a1L1a2L2...anLn,

for some letters a1, a2, ..., an of Σ.
It is known (cf [32]) that the family SF of star-free languages is the smallest

Boolean algebra of languages of Σ∗ which is closed under marked product.
A marked product L = L0a1L1a2L2...anLn is said to be unambiguous if every

word u of L admits a unique decomposition

u = u0a1u1...anun,

with u0 ∈ L0, u1 ∈ L1, ..., un ∈ Ln.
For instance, the marked product {a, c}∗a{ε}b{b, c}∗ is unambiguous.
Let us define the family USF of unambiguous star-free languages as the small-

est Boolean algebra of languages of Σ∗ containing the languages of the form A∗,
for A ⊆ Σ, which is closed under unambiguous marked product (cf [32]).

The family USF is a very robust class of languages: it is a variety of languages
and it admits several other nice characterizations (see [36] for a survey).

Moreover, it can be shown that USF is strictly included in SF, and so we
have the following chain of inclusions:

USF � SF � INT � REG.
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The following theorem, proved in [6], shows the role of unambiguity in
Problem 2.

Theorem 6. If L1 and L2 are unambiguous star-free languages, then L1 �� L2

is star-free.

Other interesting results on varieties of languages closed under the shuffle
product are in [12,13].

2.4 Cyclic Submonoids

The languages in the family USF can be described by regular expressions in
which the star operation is restricted to subsets of the alphabet. Furthermore,
Theorem 6 states that the shuffle of languages in this family is star-free. Hence,
the critical situations, with respect to Problem 2, occur with languages corre-
sponding to regular expressions in which the star operation is applied to con-
catenation of letters. So, in this section, we consider the shuffle of languages of
the form u∗, where u is a word of Σ∗. Actually, such languages correspond to
cyclic submonoids of Σ∗.

The special interest of such languages in our context is shown by the following
theorem, proved in [3].

Theorem 7. If the word u contains more than one letter, then the language u∗

is intermixed.

Remark that in [3] in order to prove the strict inclusion INT � REG, it
is shown that the regular language (a2)∗ is not intermixed, and this is again a
language of the form u∗. Moreover, next theorem, firstly proved by McNaughton
and Papert in [28], shows that the combinatorial properties of the word u play a
role in Problem 2. Let us first introduce a definition. A word u ∈ Σ∗ is primitive
if it is not a proper power of another word of Σ∗, i.e., if the condition u = vn,
for some word v and integer n, implies that u = v and n = 1.

Theorem 8. The language u∗ is star-free if and only if u is a primitive word.

We now consider the shuffle u∗ �� v∗ of two cyclic submonoids generated
by the words u and v, respectively. If u and v are primitive words then, by the
previous theorem, u∗ and v∗ are star-free languages. Remark that the languages
u∗ and v∗ do not belong to USF, and their shuffle, in general, is not star-free.
Here we are interested to the conditions under which the language u∗ �� v∗ is
star-free.

Let us consider some examples. If u = b and v = ab, the language b∗ �� (ab)∗ =
(b + ab)∗ is star-free. Let us consider now u = aab and v = bba, the language
(aab)∗ �� (bba)∗ is not star-free. Indeed the language

((aab)∗ �� (bba)∗) ∩ (ab)∗ = ((ab)3)∗

is not star-free, by the Theorem 8

Problem 3. Characterize the pairs of primitive words u, v ∈ Σ∗ such that
u∗ �� v∗ is a star-free language.
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3 Combinatorics on Words

This last problem in the previous section is closely related to some relevant
questions in combinatorics on words. Recall that combinatorics on words is a
fundamental part of the theory of words and languages. It is deeply connected
to numerous different fields of mathematic and its applications, and it emphasizes
the algorithmic nature of many problems on words (cf [24]).

3.1 Lyndon-Schutzenberger Problems for the Shuffle

Some important problems in combinatorics on words pertain to the non primitive
words that appear in the set u+v+, where u and v are primitive words.

A remarkable result in this direction is the famous Lyndon-Schutzenberger
theorem (cf [25]), originally formulated for the free groups.

Theorem 9. If u and v are distinct primitive words, then the word unvm is
primitive for all n,m ≥ 2.

The next theorem, proved by Shyr and Yu ([35]), can be considered as a light
improvement of the previous result.

Theorem 10. If u and v are distinct primitive words, then there is at most one
non-primitive word in the language u+v+.

Problem 3 is, in a certain sense, related to those considered in the above
theorems, with the difference that we here take into account the shuffle of the two
languages u+ and v+, instead of their concatenation. Actually, Problem 3 leads
to investigate the non-primitive words that appear in the language u+ �� v+,
where u and v are primitive words. In particular, we are interested to investigate
the exponents of the powers that appear in u+ �� v+.

Let us introduce further notation. Let us denote by Q the set of primitive
words. Consider words u, v, w ∈ Q such that (u+ �� v+) ∩ w+ = φ, and let
p(u, v, w) be the positive integer k such that

(u+ �� v+) ∩ w+ = (wk)+.

For u, v ∈ Q, let us define the set of integers

P (u, v) = {p(u, v, w)| w ∈ Q}.

For instance, if we consider the words u = a10b, v = b, then P (u, v) = {1, 2, 5, 10}.

The following problem is closely related to Problem 3.

Problem 4. Given two primitive words u, v, characterize the set P (u, v) in
terms of the combinatorial properties of u and v.
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Actually, with the notation here introduced, Problem 3 can be restated as fol-
lows: Characterize the pairs of primitive words u, v ∈ Σ∗ such that P(u,v) = {1}.

A more elementary problem is to investigate the powers that appear in the
language u �� v, where u and v are primitive words. For instance, if u = aab
and v = bba, then (ab)3 ∈ u �� v; if u = b and v = aaaab, then (aab)2 ∈ u �� v;
if u = b and v = aaaaab, then u �� v does not contain proper powers.

Problem 5. Characterize the pairs of primitive words (u, v) such that u �� v
does not contain proper powers, i.e u �� v ⊂ Q.

3.2 Shuffle Squares

Closely related to the last problem in the previous section is the notion of shuffle
square. Recall that a word u is a square if there exists a word v such that u = v2.
A word u is a shuffle square if there exists a word v such that u ∈ v �� v. For
instance, the word u = bbabbabb is a shuffle square, because u ∈ v �� v, where
v = babb:

u = bbabbabb,

where the letters of one occurrence of v are underlined for ease of reading. The
word v is called a shuffle root of u. Remark that the shuffle root is, in general,
not unique. For instance, the word bbab is another shuffle root of bbabbabb.

Problem 6. Characterize the shuffle squares having a unique shuffle root

Another remark is that a shuffle square, i.e. a word u such that u ∈ v �� v for
some word v, can occur twice in v �� v, as shown by the following example. The
word abcbacabacbabcbacabcacbc occurs twice in v �� v, where v = abcbacabacbc :

abcbacabacbabcbacabcacbc

abcbacabacbabcbacabcacbc.

Recently several papers have given special attention to shuffle squares. Harju
[17] studied shuffle of square-free words, i.e. words that have no factors of the
form vv for some non-empty word v. More results on square-free shuffles were
obtained independently by Harju and Müller [18], and Currie and Saari [8], who
proved, in particular, the following result about the existence of arbitrarily long
square-free words that are shuffle squares.

Theorem 11. For every integer n � 3 there exists a square-free ternary word
v of length n such that v �� v contains a square-free word.

The most intriguing questions perhaps concern the complexity of shuffle
squares. We consider the following two problems:

(1) Given words u and v, is u ∈ v �� v?

(2) Given a word u, does there exists a word v such that u ∈ v �� v?

Actually, as we shall see, these two problems dramatically differ in complexity. The
complexity of the first problem was proved by van Leeuwen and Nivat (cf [23]):
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Theorem 12. Given words u, v1 and v2, it can be tested O(|u|2/log(|u|) time
whether or not u ∈ v1 �� v2.

As to concern the second problem, recently the following result has been
independently proved by Buss and Soltys [4] and by Rizzi and Vialette [33].

Theorem 13. Given a word u, it is NP-complete to decide whether u is a shuffle
square, i.e. whether there exists a word v such that u ∈ v �� v.

Actually in [4] it is proved that the problem to decide whether a word is a
shuffle square is NP-complete for an alphabet with 9 letters, and it is claimed
that this can be improved to 7. It remains open the problem to determine the
smallest cardinality of the alphabet for which the problem is NP-complete. In
particular, it remains open the following problem.

Problem 7. How hard is the problem to check whether a binary word is a shuffle
square?

Notice that in [20] it is claimed without proof that checking whether a binary
word is a shuffle square is NP-complete.

A closely related problem, concerning the shuffle of a word with its reverse,
has been approached by Henshall , Rampersad and Shallit in [19], where they
prove the following theorem. Recall that a word u is an abelian square if u = vv′,
where v′ is a permutation of v. For any word v = a1a2 · · · an, where the ai’s are
letters, denote by vR the reverse of v, i.e v = an · · · a2a1.

Theorem 14. Given a word u, if there exists a word v such that u ∈ v �� vR,
then u is an abelian square. Conversely, if u is a binary abelian square, then
there exists a word v such that u ∈ v �� vR.

Remark that the converse does not hold if u is not a binary word, as shown
by the following example: the word u = abcabc is an abelian square, but does
not exist any v such that u ∈ v �� vR.

A consequence of previous theorem is that it is polynomial-time solvable to
decide whether a binary word is the shuffle of another word with its reverse.
Rizzi and Vialette completed in [33] the result of [19], and showed the following
theorem for unbounded alphabet words.

Theorem 15. Given a word u over an arbitrary alphabet, there is a polynomial
time algorithm to decide whether there exists a word v such that u ∈ v �� vR.

The following problems concern the avoidability of shuffle squares. In the
Dagstuhl Seminar Combinatorics and Algorithmics on Strings, March 9-14, 2014,
Karhumaki asked the question whether shuffle squares are avoidable, i.e. whether
there exist words of arbitrary length, over a finite alphabet, that do not contain
as factor a shuffle square. In the course of the same seminar Currie [7] gave a
positive answer to the question: he showed, by using the Lovasz local lemma,
that shuffle squares are avoidable over an alphabet of size �e115�. This result
has been recently improved by Guegan and Ochem in [16], where they prove the
following result.
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Theorem 16. Shuffle squares are avoidable over an alphabet of size 7.

The proof of Guegan and Ochem, as that of Currie, is non constructive:
it uses the entropy compression method in the general framework developed
by Gonçalves, Montassier and Pinlou in [14]. The following questions naturally
arise:

Problem 8. What is the minimal alphabet size that allows to avoid shuffle
squares?

Problem 9. Give an explicit construction of an infinite word that avoids shuffle
squares

One can also consider powers larger than squares. A word u is a shuffle cube
if there exists a word v such that u ∈ v �� v �� v. For instance, the word
u = babaabababab is a shuffle cube, because u ∈ v �� v �� v, where v = baab:

u = babaabababab.

In the same way, a word v is a shuffle k-power, for some positive integer k, if
there exist a word v such that u ∈ v �� v �� v �� ... �� v, k times. One can then
ask the question whether shuffle cubes (or, more generally, shuffle k-powers) are
avoidable over an alphabet of size m. In other terms, the question is whether
there exists a word of an arbitrary length, over an alphabet of size m, that does
not contain as factor a shuffle cube.

Remark that, contrary to the case of the usual product, in general a shuffle
cube does not contain as factor a shuffle square, as shown by the following
example found by Romeo Rizzi (private communication). Consider the word

u = abcabadcdbcd.

It easy to see u is a shuffle cube: u ∈ v �� v �� v, where v = abcd. If a factor of
u is a shuffle square, then it must contain an even number of occurrences of each
letter. There are only three factors of u having this property, and one can easily
check that they are not shuffle squares. Hence, the avoidability of shuffle cubes
over a finite alphabet cannot be obtained as a consequence of Theorem 16. This
leads to the following

Problem 10. Prove that shuffle cubes are avoidable over a finite alphabet
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Abstract. Approximate string matching is the problem of finding all
factors of a text t of length n that are at a distance at most k from
a pattern x of length m. Approximate circular string matching is the
problem of finding all factors of t that are at a distance at most k from x
or from any of its rotations. In this article, we present a new algorithm for
approximate circular string matching under the edit distance model with
optimal average-case search time O(n(k + log m)/m). Optimal average-
case search time can also be achieved by the algorithms for multiple
approximate string matching (Fredriksson and Navarro, 2004) using x
and its rotations as the set of multiple patterns. Here we reduce the
preprocessing time and space requirements compared to that approach.

Keywords: Algorithms on automata and words · Average-case com-
plexity · Average-case optimal · Approximate string matching

1 Introduction

In order to provide an overview of our results and algorithms, we begin with a
few definitions, generally following [4]. We think of a string x of length n as an
array x[0 . . n − 1], where every x[i], 0 ≤ i < n, is a letter drawn from some fixed
alphabet Σ of size σ = O(1). By a q-gram we refer to any string x ∈ Σq. The
empty string of length 0 is denoted by ε. A string x is a factor of a string y if
there exist two strings u and v, such that y = uxv. Consider the strings x, y, u,
and v, such that y = uxv. If u = ε, then x is a prefix of y. If v = ε, then x is a
suffix of y. Let x be a non-empty string of length n and y be a string. We say that
there exists an occurrence of x in y, or, more simply, that x occurs in y, when
x is a factor of y. Every occurrence of x can be characterised by a position in y.
Thus we say that x occurs at the starting position i in y when y[i . . i+n−1] = x.
Given a string x of length m and a string y of length n ≥ m, the edit distance,
denoted by δE(x, y), is defined as the minimum total cost of operations required
to transform one string into the other. For simplicity, we only count the number
of edit operations, considering the cost of each to be 1 [15]. The allowed edit
operations are as follows:
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− Insertion: insert a letter in y, not present in x; (ε, b), b �= ε
− Deletion: delete a letter in y, present in x; (a, ε), a �= ε
− Substitution: replace a letter in y with a letter in x; (a, b), a �= b, and a, b �= ε.

We write x ≡E
k y if the edit distance between x and y is at most k. Equivalently,

if x ≡E
k y, we say that x and y have at most k differences. We refer to the

standard dynamic programming matrix of x and y as the matrix defined by
D[i, 0] = i, 0 ≤ i ≤ m, D[0, j] = j, 0 ≤ j ≤ n

D[i, j] = min

⎧⎨
⎩

D[i − 1, j − 1] + (1 if x[i − 1] �= y[j − 1])
D[i − 1, j] + 1
D[i, j − 1] + 1

, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Similarly we refer to the standard dynamic programming algorithm as the algo-
rithm to compute the edit distance between x and y through the above recurrence
in time O(mn). Given a non-negative integer threshold k for the edit distance,
this can be computed in time O(mk) [17]. We say that there exists an occurrence
of x in y with at most k differences, or, more simply, that x occurs in y with at
most k differences, when u ≡E

k x and u is a factor of y.
A circular string of length n can be viewed as a traditional linear string which

has the left- and right-most symbols wrapped around and stuck together in some
way. Under this notion, the same circular string can be seen as n different linear
strings, which would all be considered equivalent. Given a string x of length n,
we denote by xi = x[i . . n − 1]x[0 . . i − 1], 0 < i < n, the i-th rotation of x
and x0 = x. Consider, for instance, the string x = x0 = abababbc; this string
has the following rotations: x1 = bababbca, x2 = ababbcab, x3 = babbcaba,
x4 = abbcabab, x5 = bbcababa, x6 = bcababab, x7 = cabababb.

This type of structure occurs in the DNA of viruses, bacteria, eukaryotic
cells, and archaea. In [9], it was noted that, due to this, algorithms on circular
strings may be important in the analysis of organisms with such structure. For
instance, circular strings have been studied before in the context of sequence
alignment. In [5,14], algorithms for multiple circular sequence alignment were
presented. Here we consider the problem of finding occurrences of a pattern x
of length m with circular structure in a text t of length n with linear structure.
This is the problem of circular string matching.

The problem of exact circular string matching has been considered in [16],
where an O(n)-time algorithm was presented. The approach presented in [16]
consists of preprocessing x by constructing a suffix automaton of the string xx,
by noting that every rotation of x is a factor of xx. Then, by feeding t into
the automaton, the lengths of the longest factors of xx occurring in t can be
found by the links followed in the automaton in time O(n). In [6], an average-
case optimal algorithm for exact circular string matching was presented and it
was also shown that the average-case lower bound for single string matching
of Ω(n logσ m/m) also holds for circular string matching. Very recently, in [3],
the authors presented two fast average-case algorithms based on word-level par-
allelism. The first algorithm requires average-case time O(n logσ m/w), where
w is the number of bits in the computer word. The second one is based on a
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mixture of word-level parallelism and q-grams. The authors showed that with
the addition of q-grams, and by setting q = Θ(logσ m), an average-case optimal
time of O(n logσ m/m) is achieved. Indexing circular patterns [12] based on the
construction of suffix tree—have also been considered.

The aforementioned algorithms for the exact case have the disadvantage
that they cannot be applied in a biological context since single nucleotide poly-
morphisms and errors introduced by wet-lab sequencing platforms might have
occurred in the sequences; also it is not clear whether they could easily be
adapted to deal with the approximate case. For the rest of the article, we assume
that each position in the text t is uniformly randomly drawn from Σ, and con-
sider the following problem.

ApproximateCircularStringMatching
Input: a pattern x of length m, a text t of length n > m, and an integer
threshold k < m
Output: all factors u of t such that u ≡E

k xi, 0 ≤ i < m

Similar to the exact case [6], it can be shown that the average-case lower
bound for single approximate string matching of Ω(n(k + logσ m)/m) [2] also
holds for approximate circular string matching under the edit distance model.
Recently, we have presented average-case O(n)-time algorithms for approximate
circular string matching which are also very efficient in practice [1]. In [10], an
algorithm with O(nk log m

m ) average-case search time was presented. To achieve
average-case optimality, one could use the algorithms for multiple approximate
string matching, presented in [8], for matching the r = m rotations of x with
O(n(k + logσ rm)/m) average-case search time, only if k/m < 1/2 − O(1/

√
σ)

and r = O(min(n1/3/m2, σo(m))). Therefore the focus of this article is on a
more direct algorithm which also improves on the preprocessing time and space
complexity.

Our Contribution. In this article, we present a new average-case optimal algo-
rithm for approximate circular string matching, under the edit distance model,
that reduces the preprocessing time and space requirements compared to previ-
ous algorithms with optimal average-case search time. These savings are around
O(m2) or more in all cases.

2 Algorithm

In this section, we present our algorithm for approximate circular string matching
under the edit distance model. The presented algorithm consists of two distinct
schemes: the searching scheme, which determines if the currently considered text
window potentially has a valid occurrence; in case the window may contain a
valid occurrence, we are required to check the window for valid occurrences of
the pattern or any of its rotations; this is done through the verification scheme.

Intuitively, the algorithm considers a sliding window of length m-k of the
text, and reads q-grams backwards from the end of the window until it is likely
to have found enough differences to skip the entire window. That is, we wish to
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make the probability of a verification being triggered sufficiently unlikely whilst
also ensuring we can shift the window a reasonable amount.

The rest of this section is structured as follows. We first present an efficient
incremental string comparison technique which forms the basis of the verification
scheme. We then present the searching scheme of our algorithm which requires a
preprocessing step. In fact, this preprocessing step is similar to the verification
scheme. Finally, we show how plugging these schemes together results in a new
average-case optimal algorithm for approximate circular string matching.

2.1 Verification Scheme

The verification scheme of our algorithm is based on incremental string com-
parison techniques. First we give an introduction to these techniques; and then
explain how we use them in the verification scheme. The incremental string com-
parison problem was introduced in the pioneering work of Landau et al [13]. The
authors considered the following problem: given the edit distance between two
strings A and B, how can the edit distance between A and bB or Bb be efficiently
derived, where b is an additional letter. Given a threshold on the number of dif-
ferences k, they solve this problem and allow prepending and appending of letters
in time O(k) per operation. Later the authors of [11] considered a generalisation
of this problem with the aim of computing all maximal gapped palindromes in
a string. The problem considered is a generalisation of the incremental string
comparison problem considered in [13] as it considers how to efficiently derive
the edit distance when prefixes are deleted and letters are prepended to A or B.
The solution proposed in [11] also has a time complexity of O(k) per operation.
The solution for the generalised incremental string comparison problem forms
the basis of our verification step. The technique lends itself more naturally to
circular string matching due to the increased flexibility it provides. We begin by
recalling some of the main results from [11] required for our algorithm.

The main idea in both [13] and [11] is the efficient computation of the so-called
h-waves. In the standard dynamic programming matrix for two strings x and y,
we say that a cell D[i, j] is on the diagonal d iff j − i = d. For each diagonal, we
may have a lowest cell with value h; if D[i, j] = h and D[i+1, j +1] = h+1 then
D[i, j] is this cell for diagonal j − i. The h-wave, for all 0 ≤ h ≤ k, is the position
of all these cells across all diagonals, that is, a list Hh of length O(k), where
each entry is a pair (i, j) such that D[i, j] = h and D[i + 1, j + 1] = h + 1. Note
that the i-th wave can only contain entries on diagonal zero and the i diagonals
either side of it, so for 0 ≤ i ≤ k every wave has size O(k). Both incremental
string comparison techniques show some bounds on the possible values of the
cells on h-waves and how to efficiently compute them. These h-waves define
the entire dynamic programming matrix due to the monotonicity properties of
the matrix. For any diagonal d, if we know the position of the lowest cell on d with
value h and h + 1, then we also know the value of every cell between these two
cells: it must be h + 1. So given the h-waves of the matrix, for all 0 ≤ h ≤ k, we
have all the information that is in the standard dynamic programming matrix.
The key result from our perspective is the following.
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Let cat(u′, u) denote the string obtained by concatenating u′ and u, where
u, u′ ∈ Σ+. Let del(α, u) denote the string obtained by deleting the prefix of
length α of u. Let D′ denote the standard dynamic programming matrix for
strings cat(A′,A) and del(t2,B), where |A′| = t1.

Theorem 1 ([11]). The 0-wave, 1-wave, . . . , and k-wave of matrix D′ can be
computed in time O((t1 + t2)k).

If a window of the text triggers a verification then we have a window of
length m − k such that there exist some q-grams of the window that occur in x
or its rotations with at most k differences in total. When we verify a window,
we check for occurrences of pattern x starting at every position in the window.
For each position, we may have a factor of length at most m + k representing
an occurrence, meaning we must consider a factor w of the text of length 2m
which we refer to as a block. This ensures we avoid missing any occurrences at
the m − k starting positions as (m − k) + (m + k) = 2m.

For each possible starting position i, 0 ≤ i < m − k, we compute the 0-wave,
1-wave, . . . , and k-wave for x and w′ = w[i . . 2m − 1], the suffix of w starting
at position i. To check if we have an occurrence, we must check the k-wave Hk.
We iterate through each entry in the k-wave Hk; and if Hk has missing entries or
contains entries on the last row of the matrix, then x occurs in w with at most
k differences.

Similarly we can check for the occurrences of the rotations of x using the
incremental string comparison techniques. We are now ready to outline the ver-
ification scheme, denoted by function VER. Given the pattern x of length m, an
integer threshold k < m, and a block w of length 2m of the text t, function VER
finds all factors u of w such that u ≡E

k xi, 0 ≤ i < m. If any diagonal has no
entry on the k-wave then that diagonal reached the last row of the matrix with
less than k differences; this means x occurs in w with less than k differences.

Function VER(x, m, k, w, 2m)

Compute the edit distance between x and w′ = w[0 . . 2m − 1]
with at most k differences using the standard dynamic
programming algorithm;

Check for any occurrences using D, and if found, report an
occurrence at position 0;

foreach i ∈ {1, m − k − 1} do

foreach j ∈ {1, m} do

Construct rotation xj of x by removing the first letter of
xj−1 and appending it to the end of xj−1;

Compute the edit distance between xj and
w′ = w[i . . 2m − 1] using the incremental string
comparison techniques;

Check for any occurrences using Hk, and if found,
report an occurrence at the current position i being
checked;
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Lemma 2. Given the pattern x of length m, an integer threshold k < m, and
string w of length 2m, function VER requires time O(m2k).

Proof. Computing the edit distance between x and w[0 . . 2m − 1] with at most
k differences takes time O(mk) using the standard dynamic programming algo-
rithm. By Theorem 1, computing the edit distance between all the rotations of
the pattern and w[i . . 2m−1] for a single position in w requires O(mk); and there
are O(m) positions in w. In total, the time is O(mk+m2k), that is O(m2k). �	

2.2 Searching Scheme

The searching scheme of the presented algorithm requires the preprocessing and
indexing of the pattern x. We first present the preprocessing required and then
present the searching technique itself.

Preprocessing. We build a q-gram index in a similar way as that proposed by
Chang and Marr in [2]. Intuitively, we wish to determine the minimum possible
edit distance between every q-gram and any factor of x or its rotations. Equiv-
alently we find the minimum possible edit distance between every q-gram and
any prefix of a factor of length 2q of x and the suffixes of length 1 to 2q of x
or its rotations. An index like this allows us to lower bound the edit distance
between a window of the text and x or its rotations without computing the edit
distance between them. To build this index, we generate every string of length q
on Σ, and find the minimum edit distance between it and all prefixes of factors
of length 2q of x or its rotations. This information can easily be stored by gen-
erating a numerical representation of the q-gram and storing the minimum edit
distance in an array at this location. If we know the numerical representation,
we can then look up any entry in constant time.

We determine the edit distance using the preprocessing scheme, denoted by
function PRE, which is similar to the verification scheme (function VER).

Given the string x′ = x[0 . . m − 1]x[0 . . m − 2] of length 2m − 1, function
PRE finds the minimum edit distance between every q-gram on Σ, generated in
increasing order, and any factor u of length 2q of x′ and its suffixes of length 1
to 2q.

Lemma 3. Given the string x′ = x[0 . . m − 1]x[0 . . m − 2] of length 2m − 1 on
Σ, σ = |Σ|, and q < m, function PRE requires time O(σqmq) and space O(σq).

Proof. The time required for initialising array M is O(σq). The time required
for computing the edit distance between x′[0 . . 2q − 1] and s is O(q2) using the
standard dynamic programming algorithm. By Theorem 1, computing the edit
distance between all 2q-grams of x′ and s requires time O(mq). There exist
O(σq) possible q-grams on Σ and so, in total, the time complexity is O(σqmq).
Keeping array M in memory requires space O(σq). �	
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Function PRE(x′, 2m − 1, q, σ)

M[0 . . σq − 1] ← 0;

j ← 0;

foreach s ∈ Σq do

Compute the edit distance between u = x′[0 . . 2q − 1] and s using
the standard dynamic programming algorithm. Set Emin equal to
the minimum edit distance between s and any prefix of u using D;

foreach i ∈ {1, 2m − q − 1} do

u ← x′[i . .min {i + 2q − 1, 2m − 2}];

Compute the edit distance E′ between u and s using the
incremental string comparison techniques. Set E′ equal to the
minimum edit distance between s and any prefix of u using Hq;

if E′ < Emin then Emin ← E′;

M[j] ← Emin;

j ← j + 1;

return M;

Searching. In the search phase we wish to read backwards enough q-grams
from a window of size m − k that the probability we must verify the window is
small and the amount we can shift the window by is sufficiently large. We now
recall some important lemmas from [2] that we will use in the analysis of our
algorithm.

Lemma 4 ([2]). The probability that two q-grams on Σ, one being uniformly
random, have a common subsequence of length (1 − c)q is at most aσ−dq

q , where
a = (1 + o(1))/(2πc(1 − c)) and d = 1 − c + 2c logσ c + 2(1 − c) logσ(1 − c). The
probability decreases exponentially for d > 1, which holds if c < 1 − e√

σ
.

Lemma 5 ([2]). If s is a q-gram occurring with less than cq differences in a
given string u, |u| ≥ q, s has a common subsequence of length q − cq with some
q-gram of u.

By Lemmas 4 and 5, we know that the probability of a random q-gram occurring
in a string of length m with less than cq differences is no more than maσ−dq/q
as we have m − q + 1 q-grams in the string. For circular string matching this
is not sufficient. To ensure that we have the q-grams of all possible rotations
of pattern x, we instead consider the string x′ = x[0 . . m − 1]x[0 . . m − 2] and
extract the q-grams from x′. We may have up to 2m−q q-grams, but to simplify
the analysis we assume we have 2m and so the probability becomes 2maσ−dq/q.

In the case when we read k/(cq) q-grams, we know that with probability at
most (k/(cq))2maσ−dq/q we have found less than k differences. This does not
permit us to discard the window if all q-grams occur with at most cq differences.
To fix this, we instead read 1 + k/(cq) q-grams. If any q-gram occurs with less
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than cq differences, we will need to verify the window; but if they all occur
with at least cq differences, we must exceed the threshold k and can shift the
window. When shifting the window we have the case that we shift after verifying
the window and the case that the differences exceed k so we do not verify the
window. If we have verified the window, we can shift past the last position we
checked for an occurrence: we can shift by m−k positions. If we have not verified
the window, as we read a fixed number of q-grams, we know the minimum-length
shift we can make is one position past this point. The length of this shift is at least
m−k−(q+k/c) positions. This means we will have at most n

m−k−(q+k/c) = O( n
m )

windows. The previous statement is only true assuming m−q > k+k/c, as then
the denominator is positive. From there we see that we also have the condition
that q + k + k/c can be at most εm, where ε < 1, so the denominator will be
O(m). This puts a slightly stricter condition on c, that is, c > k

εm−q−k .
We can see that, for each window, we verify with probability at most (1 +

k/(cq))2maσ−dq/q, where a = (1+ o(1))/(2πc(1− c)) and d = 1− c+2c logσ c+
2(1 − c) logσ(1 − c). So the probability that a verification is triggered is

(1 + k/(cq))2maσ−dq

q
.

Because by Lemma 2, verification takes time O(m2k), then per window, the
expected cost is

(1 + k/(cq))2maσ−dqO(m2k)
q

= O(
(q + k)m3kaσ−dq

q2
).

We wish to ensure that the probability of verifying a window is small enough that
the average work done is no more than the work we must do if we skip a window
without verification. When we do not verify a window, we read 1 + k/(cq) q-
grams and shift the window. This means that we read q+k/c = O(q+k) letters.
So a sufficient condition is the following:

(q + k)m3kaσ−dq

q2
= O(q + k).

Or equivalently the below expression, where f is the constant of proportionality:

(q + k)m3kaσ−dq

q2
≤ f(q + k).

By rearranging and setting f = σ we get the condition on the value of q below:

q ≥ 3 logσ m + logσ k + logσ a − 2 logσ q

d
.

From the condition on q we can see that it is sufficient to pick q = Θ(logσ km),
so asymptotically on m we get the following:

q ≥ 3 logσ m + logσ k − O(logσ logσ km)
d

.
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Therefore, for sufficiently large m, the below condition is sufficient for optimality,
where d = 1 − c + 2c logσ c + 2(1 − c) logσ(1 − c):

q =
3 logσ m + logσ k

d
.

For this analysis to hold we must be able to read the required number of q-
grams to ensure the probability of verifying a window is small enough to negate
the work of doing it. Note that the above probability is the probability that
at least one of q-grams match with less than cq differences. To ensure we have
enough unread random q-grams in the window for Lemma 5 to hold in the above
analysis the window must be of size m − k ≥ 2q + 2k/c. Now we consider the
case where 2q +2k/c > m−k ≥ 2q +k/c. If we have just verified a window then
we have enough new random q-grams and our analysis holds. If we have just
shifted then we know that all the q-grams we previously read matched with at
least cq differences and we have between 1 and k/qc q-grams and the probability
that one of these matches with less than cq difference is less than in the analysis
above so it holds.

The condition m− k ≥ 2q + k/c implies a condition on c, it must be the case
that c ≥ k

m−k−2q . This condition on c is weaker than our previous condition on
c, so to determine the error ratio k

m , we use the stronger condition. Additionally,
from Lemma 4, we know that c < 1− e√

σ
. So we must pick a value for c subject to

k
εm−k−q ≤ c < 1− e√

σ
. This inequality implies a limit on the error ratio for which

our algorithm is optimal. Clearly it must be the case that k
εm−k−q < 1 − e√

σ
for

ε < 1. Rearranging the inequality implies the following sufficient condition on
our error ratio:

2k

m
< ε − q

m
− εe√

σ
+

qe

m
√

σ
+

ke

m
√

σ
.

From here we can factorise and divide everything by 2 to get the following:

k

m
<

ε

2
− q

2m
− e

2
√

σ
(ε − q

m
− k

m
).

So asymptotically on m we have:

k

m
<

ε

2
− O(

1√
σ

).

Note that this technique can work for any ratio which satisfies k
m < 1

2 − O( 1√
σ
).

For any ratio below this, pick a large enough value for ε such that asymptotically
on m the algorithm will work in the claimed search time. By choosing a suitable
value for c and q ≥ 3 logσ m+logσ k

d we obtain the following result.

Theorem 6. The problem ApproximateCircularStringMatching can be
solved in optimal average-case search time O(n(k + logσ m)/m).
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3 Comparison with Existing Algorithms

To the best of our knowledge, the only other algorithms to achieve optimal
average-case search time for approximate circular string matching are the algo-
rithms presented in [8] for multiple approximate string matching. In the analysis
of the algorithms in [8] it is assumed that all patterns are random. In [7] the
authors re-analyse their algorithms for the problem of circular string matching
with the same preprocessing and space costs. In this section, we analyse these
results and compare them with our own. We refer to the algorithm presented in
Section 2 as BIP. Due to the constant c in the value of q from Lemma 4, the
exact preprocessing and space costs for these algorithms depend on the chosen
value for c. It is however possible to determine the minimum savings we make
based on the value of q used in all algorithms.

Applying the algorithms in [8] to approximate circular string matching requires
a reduction to multiple approximate string matching for matching the m rotations
of x. The first algorithm in [8] has the following time complexity:

O(n(k + logσ rm)/m).

By setting r = m this matches our search time and the result is valid when
k/m < 1/2 − O(1/

√
σ), r = O(min(n1/3/m2, σo(m))), and we have O(σq) space

available, where q is subject to the constraint:

q ≥ 4 logσ m + 2 logσ r

d
.

Again by setting r = m this becomes q ≥ 6 logσ m
d and the preprocessing time

is O(σqm2). We will refer to this algorithm as FN1. The second algorithm, pre-
sented in [8], has the same preprocessing cost and requires space O(σqm). We
will refer to this algorithm as FN2. The important difference between FN1 and
FN2 comes in the condition on q which is slightly lower for FN2:

q ≥ 3 logσ m + logσ r + logσ(m + log2 r)
d

.

Again, setting r = m this becomes:

q ≥ 4 logσ m + logσ(m + log2 m)
d

.

To simplify the comparison between these approaches, we will ignore the
factor of log2 m, and simply say that the value of q for algorithm FN2 is greater
than or equal to 5 logσ m

d . This is lower than the sufficient requirement, so any
saving we make using this value must be at least as good or better in reality.

First let us consider FN1. The preprocessing requirement of BIP is O(σqmq),
so before any savings made due to the value of q for BIP, we have reduced the
preprocessing cost by a factor of O(m

q ). Given the condition on q for BIP, it is
clear that even in the worst case, when k = O(m), BIP will make a saving of
at least 2 logσ m on the value of q. This corresponds to an additional saving of
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O(m2) in preprocessing time bringing the total to O(m3

q ) and O(m2) in space.
In the case of FN2, we make a saving of at least logσ m on the value of q. This
corresponds to a total saving of O(m2

q ) in preprocessing time and O(m2) in
space. It should be noted that this is a pessimistic analysis of the savings as we
have assumed k = O(m) and d = 1, although it must hold that d < 1. Note that
the standard dynamic programming algorithm can be used with runtime O(m3)
for verification and O(σqmq2) for preprocessing. The speed-ups mentioned in
the previous section remain significant as we assumed that k = O(m). We still
achieve a preprocessing speed up of at least O(m2) and O(m) against FN1 and
FN2, respectively. Table 1 corresponds to this analysis.

Table 1. Comparison of average-case optimal approximate circular string matching
algorithms

Algorithm Error Ratio (k/m) Space Preprocessing Time Condition on q

FN1 1
2

− O( 1√
σ
) O(σq) O(σqm2) 6 logσ m

d

FN2 1
2

− O( 1√
σ
) O(σqm) O(σqm2) 4 logσ m+logσ(m+log2 m)

d

BIP 1
2

− O( 1√
σ
) O(σq) O(σqmq) 3 logσ m+logσ k

d

4 Final Remarks

In this article, we presented a new average-case optimal algorithm for approxi-
mate circular string matching. To the best of our knowledge, this algorithm is
the first average-case optimal algorithm specifically designed for this problem.
Other average-case optimal algorithms exist but with higher preprocessing and
space requirements than the presented algorithm. Additionally the considered
problem is solved in a more direct fashion, that is, with no reduction to multiple
approximate string matching by taking greater advantage of the similarity of the
rotations of the pattern.

Our immediate target is twofold:

− first, we plan on tackling the problem of multiple approximate circular string
matching. We will try to generalise the approach we have taken here to see
if it leads to an average-case optimal algorithm in this case.

− second, we plan on implementing the presented algorithm. We will then
compare the respective implementation to other average- and worst-case
approaches.
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Abstract. We generalise a search algorithm by Mohri and Riley from
strings to trees. The original algorithm takes as input a weighted automa-
ton M over the tropical semiring, together with an integer N , and out-
puts N strings of minimal weight with respect to M . In our setting, M
defines a weighted tree language, again over the tropical semiring, and
the output is a set of N trees with minimal weight. We prove that the
algorithm is correct, and that its time complexity is a low polynomial in
N and the relevant size parameters of M .

1 Introduction

Tree automata are useful in natural language processing (NLP), not least to
describe the derivation trees of context-free grammars in an automata-theoretic
way. Since data-driven approaches were made feasible through the availability of
large-scale corpora, weighted grammars have increased in popularity, and with
them, so have weighted tree automata [4]. The weights assigned to transitions
in these devices allow analyses to be computed together with, for example, an
associated confidence level or a probability. This is helpful when we want to
assess the quality of an analysis, or when there are several competing analyses
to choose between.

At a higher level of abstraction, selecting the right analysis consists in opti-
mising some objective function f over the set A of all possible analyses. Huang
and Chiang [6] observe that it may not be tractable to compute f(a) for every
single a ∈ A, but that we may obtain a satisfactory approximation by first rank-
ing the elements of A according to a simpler function, computing an N -best list
a1, . . . , aN according to this ranking, and finally optimising f over {a1, . . . , aN}.
Examples include reranking the hypotheses produced by parsers or translation
systems, where the reranking is based on auxiliary language models or evaluation
scores orthogonal to the first round of analysis; see, e.g. [3,9].

There are other situations in which an N -best analysis can be used for approx-
imation. Suppose for instance that the analysis is computed by a cascade of com-
putational modules, a common architecture for NLP systems [6]. Each module
typically comes with its own objective function, and the goal is to optimise these
jointly. Although it might not be possible to compute the full set of outputs from
each module, we may again settle for the N best outputs from each module, and
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A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 97–108, 2015.
DOI: 10.1007/978-3-319-15579-1 7



98 J. Björklund et al.

propagate them downstream. In their paper Huang and Chiang provide several
examples of this technique, including joint parsing and semantic role labeling,
and combined information extraction and coreference resolution.

In the majority of the above-mentioned applications, the weights represent
probabilities and are as such taken from the interval of real values between zero
and one. However, for the sake of numerical precision, negative log likelihoods are
used in the actual computations, and the min operation is used to find the most
likely analysis. This makes the min-plus semiring (or tropical semiring) (R+ ∪
{∞},min,+, 0,∞) an appropriate structure for transition weights. Alternatively,
the max-plus semiring (R+ ∪ {−∞},max,+, 0,−∞) may be used.

In this paper, we focus on the case where trees are associated with weights
by means of a weighted tree automaton (wta) over the tropical semiring. Thus,
the weight of a computation, called a run, is the sum of the weights of the rules
applied, and the weight of a tree is the minimum of the set of all runs on that
tree. Note that the latter is only relevant if the automaton is nondeterministic.
In [6] Huang and Chiang give an O(m + D · N log N) algorithm for (essentially)
finding a set S of N best runs in an acyclic wta, where m is the number of
transitions and D is the size of the largest run in S. However, as pointed out
by Mohri and Riley [8], one would usually rather determine the N best trees,
because the trees correspond to the analyses and it is not very useful to obtain
the same analysis twice in an N -best list just because it corresponds to several
distinct runs of the nondeterministic automaton that implements the weight
assignment. Unfortunately, determining the N best trees is a harder problem.
Part of the difficulty lies in the fact that weighted automata are not closed
under determinisation. In fact, both in the string and in the tree case the set of
weighted languages recognisable by deterministic weighted automata is a proper
subset of those recognisable by nondeterministic weighted automata. When the
standard determinisation algorithm is applied to an automaton of this kind, the
algorithm will not terminate but continue forever to build up an ever-increasing
state space.

Mohri and Riley [8] solve the problem of finding the N best strings, where
the input is a weighted string automaton (wsa) over the tropical semiring (and
the number N). To avoid computing redundant paths, they apply Dijkstra’s N -
shortest paths algorithm to a determinised version of the input automaton. Their
algorithm applies the determinisation algorithm under a lazy evaluation scheme
to guarantee termination and keep the running time polynomial. We generalise
this algorithm to weighted tree languages, while simplifying the technique by
working directly with the input automaton rather than an on-the-fly determin-
isation. The frontier is no longer a set of paths, but rather a set of trees that
are combined and recombined into new trees to drive the search. This increased
dimensionality creates an efficiency problem which we solve by a pruning tech-
nique.

Owing to space limitations, some of the proofs had to be abridged or left out.
A detailed treatment can be found in [1], which can be downloaded from http://

www8.cs.umu.se/research/uminf/index.cgi?year=2014&number=22.

http://www8.cs.umu.se/research/uminf/index.cgi?year=2014&number=22
http://www8.cs.umu.se/research/uminf/index.cgi?year=2014&number=22
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2 Preliminaries

We write N for the set of nonnegative integers and R+ for the set of non-negative
reals; R∞

+ denotes R+ ∪ {∞}. For n ∈ N, [n] = {1, . . . , n − 1}. In particular,
[0] = ∅. The number of elements of a (possibly infinite) set S is written |S|, and
the powerset of S is denoted by pow (S). The empty string is denoted by λ.

The estimation of the running time of our algorithm contains the factor log r,
where r is the maximum rank of symbols in the ranked alphabet considered (see
below for the definitions). To avoid the technical problem that log 1 = 0 we use
the convention that, throughout this paper, log r abbreviates max(1, log r).

For a set A, an A-labelled tree is a function t : D → A where D ⊆ N
∗ is such

that, for every v ∈ D, there exists a k ∈ N with {i ∈ N | vi ∈ D} = [k]. We call
D the domain of t and denote it by dom (t). An element v of dom (t) is called a
node of t, and k is the rank of v. The subtree of t ∈ TΣ rooted at v is the tree
t/v defined by dom (t/v) = {u ∈ N

∗ | vu ∈ dom (t)} and t/v(u) = t(vu) for every
u ∈ N

∗. If t(λ) = f and t/i = ti for all i ∈ [k], where k is the rank of λ in t,
then we denote t by f [t1, . . . , tk]. If k = 0, then f [] is usually abbreviated as f .
In other words, a tree t with domain {λ} is identified with t(λ).

A ranked alphabet is a finite set of symbols Σ =
⋃

k∈N
Σ(k) which is parti-

tioned into pairwise disjoint subsets Σ(k). For every k ∈ N and f ∈ Σ(k), the
rank of f is rank (f) = k. The set TΣ of all trees over Σ consists of all Σ-labelled
trees t such that the rank of every node v ∈ dom (t) coincides with the rank of
t(v). For a set T of trees we denote by Σ(T ) the set of all trees f [t1, . . . , tk] such
that f ∈ Σ(k) and t1, . . . , tk ∈ T .

Let Σ be a ranked alphabet and let � �∈ Σ be a special symbol of rank 0.
The set of contexts over Σ is the set CΣ consisting of all c ∈ TΣ∪{�} such that
there is exactly one v ∈ dom (c) with c(v) = �. The substitution of a tree t for
� in c is defined as usual, and is denoted by c[[t]].

A weighted tree language over the tropical semiring is a mapping L : TΣ →
R

∞
+ , where Σ is a ranked alphabet. Such languages can be specified by the use

of so-called weighted tree automata (wta), of which there exist variants with
final weights and with final states. As shown by Borchardt [2] these two variants
are equivalent, and going from final weights to final states only requires a single
additional state (which becomes the unique final state) and, in the worst case,
twice as many transitions. This means that all results shown in this paper,
including the running time estimations, hold for both types of wta.

Formally, a weighted tree automaton is a system M = (Q,Σ, δ,Qf) where

– Q is a finite set of states which are considered as symbols of rank 0;
– Σ is a ranked alphabet of input symbols disjoint with Q;
– δ : Σ(Q) × Q → R

∞
+ is the transition function; and

– Qf ⊆ Q is the set of final states.

Note that the transition function δ can be specified as a set of all transition
rules f [q1, . . . , qk] w→ q such that δ(f [q1, . . . , qk], q) = w �= ∞. In particular,
transition rules whose weight is ∞ are not mentioned explicitly. In the following,
we let |δ| denote the number of transition rules describing δ.
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For convenience, we define the behaviour of M on trees in TΣ∪Q as opposed
to just TΣ , where states are considered to be symbols of rank 0: The set of runs
of M on t ∈ TΣ∪Q is the set of all Q-labelled trees π : dom (t) → Q such that
π(v) = t(v) for all v ∈ dom (t) with t(v) ∈ Q. A run π is accepting if π(λ) ∈ Qf .

The weight of a run π on a tree t = f [t1, . . . , tk] is defined as

w(π) =
∑

v∈dom (t), t(v)∈Σ(k)

δ(t(v)[π(v1) · · · π(vk)], π(v)) .

Now, let M(t) = min {w(π) | π is an accepting run of M on t} for every tree
t ∈ TΣ∪Q. This defines the weighted tree language WM : TΣ → R

∞
+ recognised

by M , namely WM (t) = M(t) for all t ∈ TΣ .
The problem we are concerned with in this paper is to compute N trees of

minimal weight according to M . For N ∈ N, an acceptable solution is a set
T = {t1, . . . , tN} ⊆ TΣ such that M(ti) ≤ M(t) for all i ∈ [N ] and t ∈ TΣ \ T .
Similarly, for N = ∞, we seek an infinite set T = {t1, t2, . . . } ⊆ TΣ with
M(ti) ≤ M(t) for all i ≥ 1 and t ∈ TΣ \ T .

3 The Algorithm

We now develop our algorithm for computing N minimal trees with respect to
a given wta. This will be done in two steps: First a basic version is developed,
and second it is turned into a more efficient one by means of a pruning strategy.
Correctness and efficiency will be studied in Section 5. Throughout the paper,
let M = (Q,Σ, δ,Qf) be the wta given as input to the search algorithm. We
will use the letters m, n, and r to denote the number |δ| of transition rules, the
number |Q| of states, and the maximum rank of symbols in Σ.

Our algorithm explores its search space recursively. The frontier of the explored
part is organised as a priority queue. The algorithm iteratively selects a promis-
ing tree t from the queue, considers t for output, puts it into a set T of explored
trees, and finally expands the frontier by all trees in Σ(T ) which have at least one
occurrence of t as a direct subtree. For t ∈ T ⊆ TΣ this expansion is defined as

expand(T, t) = {f [t1, . . . , tk] ∈ Σ(T ) | ti = t for at least one i ∈ [k]} .

To define our algorithm, it is convenient to consider two wta Mq and Mq, for
every q ∈ Q. The wta Mq is simply given by Mq = (Q,Σ, δ, {q}), i.e. q becomes
the unique final state. The wta Mq is given by Mq = (Q,Σ ∪ {�}, δ ∪ {� 0→
q}, Qf). Note that Mq(c) = M(c[[q]]) for all c ∈ CΣ and q ∈ Q.

The priority of a tree t in our queue is primarily determined by the minimal
value of M(c[[t]]), where c ranges over all possible contexts. To determine this, we
compute for every q ∈ Q the minimal value of Mq(c)+Mq(t). Since Mq denotes
the wta obtained from M by taking q as the unique final state, Mq(t) is the
minimal weight of all runs on t whose root state is q. Since Mq(c) is independent
of t, a c that minimises it can be calculated in advance using, e.g., Knuth’s
extension of Dijkstra’s algorithm [7]. This yields the following lemma.
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Lemma 1. A family of contexts (cq)q∈Q such that Mq(cq) = min {Mq(c) | c ∈
CΣ} for each q ∈ Q, can be computed in time O(mr · (log n + r)).

In the rest of the paper, we frequently make use of the contexts cq, assuming
that they have been computed for all q ∈ Q. For a tree t in the frontier of our
search space we are, intuitively, interested in the tree c[[t]] that has the least
possible weight. Clearly, c can be assumed to be one of the contexts cq. Thus,
our aim has to be to determine the state q that minimises the weight of cq[[t]].

Definition 2 (Optimal state). The mapping optset : TΣ → pow (Q) is defined
by

optset(t) = {q ∈ Q | Mq(cq) + Mq(t) = min
c∈CΣ

M(c[[t]])} .

In addition, let opt(t) denote an arbitrary but fixed element of optset(t), for
every t ∈ TΣ.

We can now give our basic algorithm. Rather than formulating the algorithm
for arbitrary wta, we formulate it only for wta computing monotone weighted
tree languages. Here, a weighted tree language L is called monotone if, for all
trees t ∈ TΣ and all c ∈ CΣ \ {�}, L(t) �= ∞ implies L(c[[t]]) ≥ L(t). To see that
this does not diminish the usefulness of the algorithm, notice that an arbitrary
input wta M can be made monotone as follows. We introduce a new symbol out
of rank 1 and turn M into M ′ such that M ′(t) = ∞ and M ′(out [t]) = M(t)
for all t ∈ TΣ . This can easily be achieved by adding a new state qf , which
becomes the unique final state, and transitions out [q] 0→ qf for q ∈ Qf . Then
M ′ is monotone and if out [t1], . . . , out [tN ] are N trees of minimal weight with
respect to M ′, then t1, . . . , tN are minimal with respect to M .

Algorithm 1. Enumerate N trees of minimal weight in ascending order for a
wta M such that WM is monotone
1: procedure BestTreesBasic(M, N)
2: T ← ∅; K ← ∅
3: enqueue(K, Σ0)
4: i ← 0
5: while i < N ∧ K nonempty do
6: t ← dequeue(K)
7: T ← T ∪ {t}
8: if M(t) = Δ(t) then
9: output(t)

10: i ← i + 1
11: end if
12: enqueue(K, expand(T, t))
13: end while
14: end procedure

Our basic algorithm is presented in Algorithm 1. It maintains three data
structures: T is a set of trees that represents the explored search space, K is a
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priority queue of trees in Σ(T ), and C is a table containing the value Mq(t), for
all q ∈ Q and t ∈ T ∪ K. The table C can easily be updated whenever new trees
are added to K. The priority order ≤K of K is given by

t <K t′ ⇒ Δ(t) < Δ(t′) or Δ(t) = Δ(t′) and t <lex t′

where Δ(s) = M(copt(s)[[s]]) for all s ∈ TΣ .

Here, <lex is any lexical order that orders trees first by size and then lexically.
Note that the output condition in Line 8 cannot be replaced by the more intuitive
M(t) < ∞ because it has to cover the case where Δ(t) = ∞ (which happens if
there are fewer than N trees of finite weight).

Unfortunately, Algorithm 1 builds a large number of trees and is thus not
very efficient. Therefore, we now give a more efficient version that works by
repeatedly pruning the priority queue.

The idea of the pruning step is that a tree s can be discarded from the
queue if we already have, for every state q ∈ optset(s), at least N other trees
t <K s such that q ∈ optset(t). Intuitively, in this case we have sufficiently
many good alternatives to s in the formation of a set of minimal trees, so that s
will not be needed. A polynomial runtime is thus obtained by applying the new
procedure Prune (see Algorithm 2) in Lines 3 and 12 of Algorithm 1. This leads
to Algorithm 3.

Algorithm 2. Prune the priority queue
1: procedure Prune(T, K)
2: for s ∈ K do
3: if |{t ∈ T ∪ K | q ∈ optset(t) and t <K s}| ≥ N for all q ∈ optset(s) then
4: discard(K, s)
5: end if
6: end for
7: end procedure

4 Example

Let us have a look at an example. We consider the input automaton M in
Figure 1, where Σ(0) = {a, b} and Σ(2) = {◦}. Assume that the lexical ordering
places a before b before ◦, let ‖t‖σ (σ ∈ Σ(0)) denote the number of occurrences
of σ in a tree t ∈ TΣ , and let ‖t‖ denote the total number of leaves of t. Then

M(t) =
{‖t‖ + min(‖t‖a, ‖t‖b) if ‖t‖ is even

∞ otherwise .

Lemma 1 gives cpa
= ◦[�, b], cpb

= ◦[�, a], and cqa
= cqb

= �. We note that

– Mpσ
(cpσ

) = 1 and Mqσ
(cqσ

) = 0 for σ ∈ Σ(0), and
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Algorithm 3. Compute N trees of minimal weight for a wta M s.t. WM is
monotone
1: procedure BestTrees(M, N)
2: T ← ∅; K ← ∅
3: Prune(T, enqueue(K, Σ0))
4: i ← 0
5: while i < N ∧ K nonempty do
6: t ← dequeue(K)
7: T ← T ∪ {t}
8: if M(t) = Δ(t) then
9: output(t)

10: i ← i + 1
11: end if
12: Prune(T, enqueue(K, expand(T, t)))
13: end while
14: end procedure

a

b

pa pbqa qb

◦

◦

◦

◦

◦

◦

◦

◦

2 1

1 2

Fig. 1. The input wta considered as an example. The input alphabet is Σ(0) ∪ Σ(2),
where Σ(0) = {a, b} and Σ(2) = {◦}. Round nodes (with double circles if final) represent
states, and squares represent transitions. The consumed input symbols are shown inside
the squares. Solid arcs point to the right-hand side of the transition in question and are
labelled with the weight of the transition unless it is zero. In the case of input symbol ◦
the two states in the left-hand side of a transition are indicated by incoming solid and
dashed arcs. Since the wta is symmetric, the latter distinction is, in fact, irrelevant.

– letting a = b and b = a we have, for all t ∈ TΣ ,

optset(t) =
{{pσ | σ ∈ Σ(0) and ‖t‖σ ≤ ‖t‖σ} if ‖t‖ is odd

{qσ | σ ∈ Σ(0) and ‖t‖σ ≤ ‖t‖σ} if ‖t‖ is even .

To increase readability, let us denote trees in TΣ without the binary symbol ◦.
For example, ◦[◦[a, b], b] will be denoted by [[a, b], b]. To find N = 3 minimal trees
with respect to M , Algorithm 3 proceeds as follows:

After initialisation, T = ∅ and K contains a and b, where a <K b as Δ(a) =
2 = Δ(b) and a <lex b. The iterations of the ‘while’ loop proceed as follows:
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Step 1: dequeue a

Output: Expand with:
none (as Δ(a) = 2 �= M(a)) [a, a]
T : K:
a b , [a, a]

Step 2: dequeue b

Output: Expand with:
none (as Δ(b) = 2 �= M(b)) [b, b] , [b, a] , [a, b]
T : K:
a , b [a, a] , [b, b] , [a, b] , [b, a]

Step 3: dequeue [a, a]
Output: Expand with:
[a, a] (as Δ([a, a]) = 2 = M([a, a])) [[a, a], [a, a]] , [[a, a], a] , [[a, a], b] ,

[a, [a, a]] , [b, [a, a]]
T : K:
a , b , [a, a] [b, b] , [a, b] , [b, a] , [a, [a, a]] , [[a, a], a] ,

[[a, a], [a, a]] , [b, [a, a]] , [[a, a], b]]

Here, the greyed out boxes indicate trees that are pruned away. For instance,
the unique optimal state of [[a, a], [a, a]] is qb, which is also an optimal state of
the trees [a, a], [a, b], and [b, a] having a higher priority. The trees [b, [a, a]] and
[[a, a], b], whose optimal state is pb, are superseded by a, [a, [a, a]], and [[a, a], a].
Note that [[a, a], [a, a]] <K [b, [a, a]] despite the fact that [[a, a], [a, a]] <lex

[b, [a, a]], because Δ([[a, a], [a, a]]) = 4 whereas Δ([b, [a, a]]) = 5. Pruned trees
of Step 3 are not added to the next table.

Step 4: dequeue [b, b]
Output: Expand with:
[b, b] (as Δ([b, b]) = 2 = M([b, b])) [[b, b], [b, b]] , [[b, b], a] , [[b, b], b] ,

[[b, b], [a, a]] , [a, [b, b]] , [b, [b, b]] ,
[[a, a], [b, b]]

T : K:
a , b , [a, a] , [b, b] [a, b] , [b, a] , [a, [a, a]] , [[a, a], a] ,

[b, [b, b]] , [[b, b], b] , [[b, b], [b, b]] ,
[a, [b, b]] , [[b, b], a] , [[a, a], [b, b]] ,
[[b, b], [a, a]]

In the next step, [a, b] is dequeued and written to the output, and the algo-
rithm terminates.



An Efficient Best-Trees Algorithm for Weighted Tree Automata 105

5 Correctness and Efficiency

Let us now establish the correctness of Algorithms 1 and 3, and then study
the efficiency of the latter. For this, we assume that Σ �= Σ(0), so that TΣ is
infinite and hence N trees of minimal weight can always be found. It is clear
that Algorithm 1 is correct if Σ = Σ(0) and terminates within O(m) steps in this
case. Throughout this section we will write BestTreesBasic(M,N) = t1, t2, . . . , tl
or BestTreesBasic(M,N) = t1, t2, . . . (and similarly for BestTrees) if running
Algorithm 1 with the inputs M and N results in the (finite or infinite) sequence
t1, t2, . . . , tl or t1, t2, . . . of output trees.

Using the following lemma, which is not difficult to show, we can prove the
correctness of Algorithm 1.

Lemma 3.

(1) Algorithm 1 never dequeues the same tree twice.
(2) If Algorithm 1 dequeues a tree in t ∈ TΣ, then it has previously dequeued

all trees in s ∈ TΣ such that s <K t. In particular, if a tree in t ∈ TΣ is
dequeued, then all trees s ∈ TΣ with Δ(s) < Δ(t) have been dequeued earlier.

Theorem 4 (Correctness of Alg. 1). For all N ∈ N, BestTreesBasic(M,N)
terminates and returns N trees of minimal weight according to the wta M . More-
over, BestTreesBasic(M,∞) = t1, t2, . . . consists of pairwise distinct trees such
that, for each i ∈ N and every tree t ∈ TΣ \ {t1, . . . , ti}, M(t) ≥ M(ti).

Proof. Clearly, the first statement of the theorem is a consequence of the second.
By Lemma 3(1), the output trees of BestTreesBasic(M,∞) are pairwise distinct.
To prove that BestTreesBasic(M,∞) outputs an infinite sequence of trees we
show that, after any number of iterations, only a finite number of additional
iterations can be made until a tree is written to the output (i.e., until Line 9
is reached). Suppose that a tree t is dequeued. Then the tree t′ = copt(t)[[t]]
satisfies M(t′) = Δ(t′) = Δ(t). By Lemma 3(2) and the definition of ≤K , no
tree s with |s| > |t′| will be dequeued before t′ (as it would imply s >lex t′). By
Lemma 3(1) this means that t′ will eventually be dequeued. Since M(t′) = Δ(t′),
the condition in Line 8 is satisfied and t′ is written to the output in Line 9.

To complete the proof, assume that BestTreesBasic(M,∞) = t1, t2, . . . and
consider some i ∈ N and a tree t ∈ TΣ \{t1, . . . , ti}. To show that M(t) ≥ M(ti),
assume that M(t) < ∞, because otherwise the assertion is trivially true. Now,
recall the assumption that WM is monotone. Since M(t) < ∞, it implies that
M(c[[t]]) ≥ M(t) for all contexts c, which means that M(t) = Δ(t) (because
M(�[[t]]) = M(t)). We also have M(ti) = Δ(ti), because Algorithm 1 outputs
ti only if the condition in Line 8 is satisfied. However, by Lemma 3(2) we have
Δ(t) ≥ Δ(ti) since t would otherwise have been dequeued before ti, and would
thus have been written to the output at that stage (because M(t) = Δ(t)).
Hence, M(t) = Δ(t) ≥ Δ(ti) = M(ti), which finishes the proof. ��

Based on the correctness of Algorithm 1 we can now go on to prove the
correctness of Algorithm 3 and study its efficiency. In the following, let us say
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that a tree s ∈ TΣ is discarded in a run of BestTrees(M,N) if it, at some stage, is
considered in Line 2 of Algorithm 2, fulfills the pruning condition in Line 3, and
is consequently removed from the queue in Line 4. Further, call a tree t ∈ TΣ

inactive (with respect to the considered run of BestTrees(M,N)) if it contains
a discarded subtree. Naturally, a tree that is not inactive is called active.

Lemma 5. Let BestTreesBasic(M,∞) = t1, t2, . . . and consider the execution of
BestTrees(M,N) for some N > 0. Let l ∈ N∪{∞} be the number of active trees
among t1, t2, . . . , and let ij be such that tij

is the jth active tree in t1, t2, . . . , for
all j ≤ l. Then BestTrees(M,N) = ti1 , ti2 , . . . , timin(l,N) .

Using this, the correctness of Algorithm 3 is established.

Theorem 6 (Correctness of Alg. 3). For all N ∈ N, BestTrees(M,N) ter-
minates and returns N trees of minimal weight according to the input wta M .
Moreover, BestTrees(M,∞) = t1, t2, . . . consists of pairwise distinct trees such
that, for each i ∈ N and every tree t ∈ TΣ \ {t1, . . . , ti}, M(t) ≥ M(ti).

Proof. The second statement is correct by Theorem 4, because the behaviours
of both algorithms are obviously identical for N = ∞.

To prove the first statement, assume that BestTreesBasic(M,∞) = t1, t2, . . .
and, using Lemma 5, that BestTrees(M,N) = ti1 , . . . , til

for some l ≤ N . We
show that {ti1 , . . . , til

} = {t1, . . . , tN}. Let Θ = {t1, . . . , tN} \ {ti1 , . . . , til
}. By

Lemma 5 each tree in Θ is inactive. Let us assume that Θ �= ∅, and let k be the
least index such that tk ∈ Θ. In other words, tk is the first tree among t1, . . . , tN
containing a discarded subtree. Since tk is one of the output trees of Algorithm 1
we have Δ(tk) = M(tk). Let tk = c[[s]], where s is one of the discarded subtrees
of tk. Thus, s is inactive but all its proper subtrees are active.

To finish the proof, let v ∈ dom (c) be the node of c such that c/v = �, and
consider a minimal run π on tk, where q = π(v). We know that M(c′[[s]]) ≥ M(tk)
for all c′ ∈ CΣ because otherwise c′[[s]] ∈ {t1, . . . , tk−1}, which would contradict
the choice of k since c′[[s]] contains the discarded subtree s. In other words,

q ∈ optset(s), Mq(c) = min{Mq(c′) | c′ ∈ CΣ} and M(tk) = M(cq[[s]]) . (1)

Since s was discarded during the execution of Algorithm 3, we know further
that T ∪ K, from that point onward, always contained N pairwise distinct trees
u1, . . . , uN such that ui <K s and q ∈ optset(ui).

We distinguish two cases, deriving a contradiction in each case and thus
proving that tk cannot exist:

1. If M(cq[[ui]]) < M(c[[ui]]) for some i ∈ [N ] (i.e., c is not a context that
Lemma 1 could have computed instead of cq) then it follows from the equa-
tions M(cq[[ui]]) = Mq(cq) + Mq(ui) and M(c[[ui]]) ≤ Mq(c) + Mq(ui) that
Mq(cq) < Mq(c) and thus M(cq[[s]]) < M(tk), contradicting (??).

2. If M(c[[ui]]) = M(cq[[ui]]) = Δ(ui) for all i ∈ N , let us consider some i ∈ [N ].
If s <lex ui despite the fact that ui <K s, then Δ(ui) < Δ(s). Consequently,
M(c[[ui]]) = M(cq[[ui]]) < M(tk), which gives us c[[ui]] <K tk. If, on the



An Efficient Best-Trees Algorithm for Weighted Tree Automata 107

contrary, ui <lex s and thus c[[ui]] <lex c[[s]], then Δ(c[[ui]]) ≤ M(c[[ui]]) =
Δ(ui) ≤ Δ(s) = M(tk) = Δ(tk) gives us again c[[ui]] <K tk.
We have thus shown that c[[ui]] <K tk for all i ∈ [N ]. By Lemma 3(2), all of
these N pairwise distinct trees occur among t1, . . . , tk−1, which is impossible
because k ≤ N . ��
Let us now discuss the worst-case efficiency of BestTrees. A consequence of

the pruning is that T can only grow to contain N ·n trees, since at this point, the
pruning will discard everything that is left in the queue.1 Since each execution
of the ‘while’ loop increases the size of T , this means that the body of the ‘while’
loop in BestTrees is executed at most N · n times.

Lemma 7. Prune(K,Expand(T, t)) is computable in time

O
(
max(m · (Nr + r log r + N log N), Nn2)

)
.

Proof (Sketch). In order to implement pruning efficiently, we have to avoid the
explicit computation of Expand(T, t). Let us denote the subset of transition
rules in δ that lead to the state q by δq. We first compute, for every q ∈ Q, an
ordered list of (at most) N trees s1, . . . , sN in Expand(T, t) such that Mq(s1) ≤
· · · ≤ Mq(sN ) and Mq(s) ≥ Mq(sN ) for all s ∈ Expand(T, t) \ {s1, . . . , sN}. To
do this, consider every rule ρ = (f [q1, . . . , qk] w→ q) ∈ δq in turn and build a
weighted edge-labelled digraph Gρ having nodes u0, . . . , uk and v0, . . . , vk and
the following edges for every i ∈ [k]:2

For every s′ ∈ T \ {t} there are edges with label s′ and weight Mqi(s′)
from ui−1 to ui and from vi−1 to vi. In addition, there are edges with
label t and weight Mqi(t) from both ui−1 and vi−1 to vi.

A path from u1 to vk+1 in Gρ which is labelled t1 · · · tk corresponds to the
tree f [t1, . . . , tk] ∈ Expand(T, t). Note that t occurs among t1, . . . , tk since only
t-labelled edges lead from ui to vi+1. The weight of the path (plus w) is the
weight of a minimal run π on f [t1, . . . , tk] with π(λ) = q and π(i) = qi for all
i ∈ [k]. Since Gρ has O(r) nodes and O(Nnr) edges, N paths of minimal weight
can be computed by Eppstein’s algorithm [5] in time O(Nnr+r log r+N log N).
We can improve this to O(Nr + r log r + N log N) by including in Gρ, for every
pair of nodes, only N edges of minimal weight between those nodes. Clearly,
only these edges can be on the N paths of minimal weight. For every rule ρ,
this gives rise to an ordered list Lρ of (at most) N trees. The time required for
this is O(m · (Nr + r log r + N log N)) in total. Together with each tree in the
computed lists Lρ, we keep track of the corresponding weight in order to be able
to implement the following steps.

In the next step, the lists obtained for rules with the same right-hand side
q are merged into a single list. Finally, a similar procedure merges the n lists
obtained in the previous step with the trees in K. Since the queue contains at
1 See [1] for an explicit proof of this fact.
2 The nodes v0 and uk are superfluous but simplify the description of Gρ.
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most Nn elements, the time required for this is O
(
Nn2

)
if we implement K as

a linked list. ��
Using Lemmas 1 and 7 as well as the fact that the main loop of Algorithm 3

is executed at most Nn times, we obtain Theorem 8.

Theorem 8. BestTrees(M,N) runs in time

O
(
max(Nmn · (Nr + r log r + N log N), N2n3,mr2)

)
.

It may be worthwhile to notice that the set T of Algorithm 3 is subtree
closed, meaning that t1, . . . , tk ∈ T for every tree f [t1, . . . , tk] ∈ T . Since all
output trees of Algorithm 3 are in T , this means that the output of Algorithm 3
can be represented as a packed forest with |T | nodes, i.e., of size ≤ N · n.

6 Conclusion and Future Work

Future work includes the implementation and integration of the algorithm into
an open-source library for formal tree languages. On the theoretical side, we are
interested in seeing further generalisations of the search algorithm, for example,
from trees to directed acyclic graphs, or from the tropical semiring to some
encompassing family of extremal semirings.
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Abstract. In the life sciences, determining the sequence of bio-mole-
cules is essential step towards the understanding of their functions and
interactions inside an organism. Powerful technologies allows to get huge
quantities of short sequencing reads that need to be assemble to infer the
complete target sequence. These constraints favour the use of a version
de Bruijn Graph (DBG) dedicated to assembly. The de Bruijn Graph
is usually built directly from the reads, which is time and space con-
suming. Given a set R of input words, well-known data structures, like
the generalised suffix tree, can index all the substrings of words in R.
In the context of DBG assembly, only substrings of length k + 1 and
some of length k are useful. A truncated version of the suffix tree can
index those efficiently. As indexes are exploited for numerous purposes in
bioinformatics, as read cleaning, filtering, or even analysis, it is impor-
tant to enable the community to reuse an existing index to build the
DBG directly from it. In an earlier work we provided the first algorithms
when starting from a suffix tree or suffix array. Here, we exhibit an algo-
rithm that exploits a reduced version of the truncated suffix tree and
computes the DBG from it. Importantly, a variation of this algorithm is
also shown to compute the contracted DBG, which offers great benefits
in practice. Both algorithms are linear in time and space in the size of
the output.

Keywords: Stringology · Text algorithms · Indexing data structures ·
de Bruijn graph · Assembly · Space complexity · Dynamic update

1 Introduction

The de Bruijn Graph (DBG) serves in bioinformatics and genomics to assemble
the sequence of large molecules from a huge set of short sequencing reads. In this
context, only the substrings of length, say k, of the reads form the nodes of the
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DBG (unlike in the original DBG). These substrings are termed k-mers in biology
or k-grams in computer science. An arc links two k-mers whenever they overlap
by (k − 1) symbols at (necessarily) successive positions in a read. The assembly
DBG is then traversed searching for long paths, which will form the contigs, i.e.
the sequence of sub-regions of the molecule. However, in non repetitive regions,
the layout of the reads dictate a single path of k-mers without bifurcations. Any
simple path between an in-branching node and the next out-branching node,
can then be contracted into a single arc without loosing any information on
the graph structure. The sequence of such simple paths are called unitigs (the
contraction from unique and contigs). The version of the DBG where all such
“non-branching” paths are condensed into an arc is termed the Contracted DBG
(CDBG).

Given the extreme throughput delivered by nowadays sequencing machines,
it is crucial to enable fast construction of the CDBG. It is also desirable to
build the DBG or its contracted version directly from space efficient indexing
data structures, since the read set has often been filtered and mined for patterns
representing errors prior to assembly using such data structures. It occurs for
instance in a preprocessing phase of sequencing errors removal using a generalised
suffix tree of the reads [15]. The use of an indexing data structure (or index for
short) also allows to compute and store additional information into the nodes
of the DBG: the coverage of a k-mer, i.e. the number of reads in the layout
covering that k-mer. Unexpected variations of the coverage permits to detect
sequencing errors, to distinguish between classes of point mutations [13], but
also to disentangle repetitive sequence regions. Indeed, the reads coming from
the distinct but similar copies of a repeat tend to collapse into a single assembly
region and increase abnormally the local coverage. Actually, the DBG is itself
used as a data structure to seek graph patterns representing mutation, large
insertions/deletions, or chromosomal rearrangements [14].

In a first attempt towards constructing the DBG from an index, Cazaux et al.
gave recently two algorithms for building it from either a Generalised Suffix Tree
(GST) or a generalised Suffix Array [4]. Indeed, a subset of the suffix tree nodes
represent either exactly one k-mer or its shortest extension; hence, this subset
is isomorphic to the set of nodes of the DBG. Moreover, following a suffix link
and then going down the tree at most once allows to traverse from one node to
its neighbours in the DBG. Hence, the arcs of the DBG can be simulated on the
GST or computed using it. This summarises the basis of the DBG construction
algorithms, which require linear time in the input length (i.e. the cumulated sum
of the read lengths). Importantly, it was also shown that the contraction of the
arcs in the DBG can be computed in linear time during the construction: this
gave the first linear time CDBG construction algorithm [4].

However, in practice the size of the Generalised Suffix Tree remains pro-
hibitive for large read sets. In the light of these algorithms, it is clear that many
nodes of the GST among those having a string depth either larger than the order
k or strictly smaller than k − 1 are useless. Truncated Suffix Trees (TST) have
been introduced to index only a subset of factors below a certain string depth
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[10,16]. TST avoid storing strings longer than a limit length k, but still include
all suffixes shorter than k. In practice, when the reads are numerous and short,
which occurs in a majority of large sequencing applications, the memory wasted
for such nodes is important. With an Illumina sequencing experiment, the typi-
cal number of reads n := 108, the read length is 100 and several values are used
for k up to 64. In such a case, one stores n × (k − 2) useless nodes. We set out
to first find an algorithm for a reduced version of the TST that avoids those
nodes, second to show that the DBG and CDBG can both be built in time and
space that are linear in the size of the DBG, rather than in the cumulated length
of the reads. The paper is organised as follows. Below we list related works. In
Section 2, we define a simple condition that a set of input strings must satisfy
to allow building a generalised index and sketch a modification of McCreight’s
algorithm [9] for doing so. In Section 3, we introduce the reduced truncated
suffix tree and specialise the previous algorithm for constructing it efficiently.
Finally, in Section 4 we show how to construct both the de Bruijn Graph and its
contracted version in optimal time from the reduced truncated suffix tree. We
then conclude mentioning lines of future work.

1.1 Related Works

Suffix trees are well-known indexing data structures that enable to store and
retrieve all the factors of a given string. They can be adapted to a finite set of
strings and are then called generalised suffix trees (GST). They can be built in
linear time and space. They have been widely studied and used in a large number
of applications (see [1,8]). In some applications it is not required to consider the
full set of suffixes, since one may only be interested in factors of length bounded
by a given constant. These factors are actually prefixes of suffixes. In 2003, Na
et al. [10] introduced the truncated suffix trees which only stores the factors
of length at most k in a context of lossless data compression. They gave linear
time algorithms for directly constructing truncated suffix trees. They present
experimental results showing that on various kinds of strings and different values
of k that truncated suffix trees have much less nodes than suffix trees. Truncated
suffix trees have been generalised to set of strings and use for performing efficient
pattern matching in biological sequences [16].

DBGs are heavily exploited for genome assembly in bioinformatics [12], where
several compact data structures for storing DBGs have been developed [2,6]
including probabilistic ones [5]. The emphasis is placed on the practical space
needed to store the DBGs in memory. Moreover, some recent assembly algo-
rithms put forward the advantage of using for the same input, multiple DBGs
with increasing orders [11], thereby emphasising the need for dynamically updat-
ing the DBGs.

From now on, the input of our problem consists of an integer k > 0 and
R = {w1, . . . , wn} a set of n finite words over a finite alphabet. We will consider
indexing the substrings of words in R; hence, all indexes used are generalised
indexes [8]. For simplicity, we may omit this adjective.



112 B. Cazaux et al.

2 Set of Chains of Suffix-Dependant Strings and Tree

Here, we introduce the notion of suffix dependence between strings, and the
notion of chain of suffix-dependant strings in order to define a unified index that
generalises both the suffix tree [9] and the truncated suffix tree [10]. First, we
introduce a notation on strings.

Notation on Strings. We consider finite strings (also termed words or sequences)
over a finite alphabet Σ. For a string w, |w| denotes the length of w. For any
integers i and j such that i ≤ j, [i, j] denotes the interval of integers between i
and j. For any i ≤ j in [1, |w|], w[i, j] is the substring of w beginning at position
i and ending at position j. Then, w[1, i] is called a prefix of w, while w[i, |w|] is
a suffix of w. For a set of strings A, the norm of A, denoted ||A||, is

||A|| =
∑
a∈A

|a|.

Now, let us define the concept of suffix-dependant strings and of chains of
suffix-dependant strings.

Definition 1. 1. A string x is said to be suffix-dependant of another string y
if x[2..|x|] is prefix of y.

2. Let w be a string and m be a positive integer smaller than |w|−1. A m-tuple
of m strings (x1, . . . , xm) is a chain of suffix-dependant strings of w if x1

is a prefix of w and for each i ∈ [2,m], xi is a prefix of w[i, |w|] such that
|xi| ≥ |xi−1| − 1.

For a set of strings R = {w1, . . . , wn} , let S = {C1, . . . , Cn} be a set of
tuples such that for each i ∈ [1, n], Ci is a chain of suffix-dependant strings of
the string wi. For i ∈ [1, n] and j ∈ [1, |Ci|], Ci[j] is the jth string of the tuple
Ci. Let be Ŝ = {Ĉ1, . . . , Ĉn} the set of tuples such that for each i ∈ [1, n] and
j ∈ [1, |Ci|], Ĉi[j] = |Ci[j]|, i.e. Ŝ contains tuples of lengths.

With Ŝ and R, we can easily compute S. In the sequel, we use S to demon-
strate our results, and Ŝ to state the complexities of algorithms. Indeed, in the
case where Ci is the tuple of each suffix of wi, the size of Ci is linear in |wi|2
but Ĉi is linear in |wi|.

Let w be a string; w may occur in distinct tuples of S. Thus, we define
N(w) the set of (i, j) such that w = Ci[j]. In other words, N(w) is the set of
coordinates of the elements of S that are equal to w.

We define a contracted version of the well-known Aho-Corasick tree [8]. In
fact, we apply nearly the same contraction process that turns a trie of a word
into its compact Suffix Tree [8]. Consider the Aho-Corasick tree of R, in which
each node represents a prefix of word in R. We contract the non-branching parts
of the branches except that we keep all nodes representing a word that belongs
to a tuple in S. From now on, let T (S) denote this contracted version of the
Aho-Corasick tree of R.
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N and L denote respectively the set of nodes and the set of leaves of T (S).
Furthermore, we define for each node v of T (S) two weights:

− s(v) is the number of times that an element of a tuple of S is equal to the
word represented by v (i.e. s(v) := |N(v)|).

− t(v) is the number of times that the first element of a tuple of S is equal to
the word represented by v (i.e. t(v) := |{(i, 1) ∈ N(v) | i ∈ [1, n]}|).
Let w be a string, we put Succ(w) = {(i, j) | (i, j −1) ∈ N(w) and j ≤ |Ci|}.

We define F as the subset of L such that:

F := {u ∈ L | ∃C ∈ S and j < |C| such that u = C[j]}

It is equivalent to say that F = {u ∈ L | Succ(u) is not empty}. A mapping
m from F to N is called possible link if for each node v in F , ∃(i, j) ∈ Succ(v)
such that m(v) = Ci[j].

Below we present an algorithm that constructs T (S), and computes for each
node v in N , the weights s(v) and t(v) and a possible link P0.

Algorithm to Construct the T (S). Now, we give an algorithm to construct
T (S). We use the version of McCreight’s algorithm given by Na et al. [10] on
our input and we build for each leaf v, s(v), t(v) and P0(v). For building T (S),
we start with a tree that contains only the root. Then, for each word w in every
chain C, we create or update (if it exists) the node w as follows. Assume that
we keep in memory the node v that has been processed just before w.

If w is the first word of C, we go down from the root by comparing w to the
labels of the tree. If we create the node w, s(w) and t(w) are initialised to 1, and
P0(w) to nil. If w already exists on the tree, we increment s(w) and t(w) by 1.

If w is not the first word of C, we start from v, and as in McCreight’s
algorithm, we create or arrive on the node representing w. If we need to create
this node, s(w) is initialised to 1, t(w) to 0, and P0(w) to nil. Otherwise, we add
1 to s(w). We set P0(v) = w.

The loop continues with the next word until the end, and we obtain T (S).

Theorem 2. For a set of chain of suffix-dependant strings S, we can construct
T (S) in O(||R||) time and space.

Proof. To begin with, let us to prove that T (S) is in O(||R||) space. Its number of
leaves equals

∑
C∈S |C|. Hence, its number of nodes is at most 2

∑
C∈S |C|−1 ≤

2||R||, and its number of edges is at most 2||R||. Thus the size of T (S) is in
O(||R||).

Clearly, the construction algorithm of T (S) computes both weights s(.) and
t(.), and the possible link P0(.) correctly. For the complexity, for each chain of
suffix-dependant Ci of S, the length of the traverse path on the tree is equal to
|wi|, thanks to the use of the suffix links. Thus as in McCreight’s algorithm, the
complexity is in O(||R||).
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Now, we are equipped with an algorithm that builds T (S) for any set of
chains of suffix-dependant strings. Let us review some instances of sets S, for
which T (S) is in fact a well-known tree.

− If C := ∪w∈R{tuple of suffixes of w}, then T (C) is the Generalised Suffix
Tree of R (see Figure 1a). We have that the restrained mapping sl(.) is an
example of a possible link.

− If Bk := ∪w∈R{tuple of k-mer of w and suffixes of length k′ < k of w}, then
T (Bk) is the generalised k-truncated suffix tree of R, as defined in [16] (which
generalizes the k-truncated suffix tree of Na et al. [10]).

− If Ak := ∪w∈R{tuple of k + 1-mer of w and suffixes of length k of w}, then
T (Ak) is the truncated suffix tree that we define below in Section 3 (see
Figure 1b).

3 Our Truncated Suffix Tree

First, let us introduce a notation about trees that index strings and whose edges
are labelled with strings.

Definition 3. For a node v of a tree, f(v) denotes the parent node of v, and
Children(v) its set of children. The depth of v is the length of the unique path
between the root and v in the tree. Each represent a unique word: that made up
by the concatenation of the label of edges along this path. The notion of node and
the word it represents are confounded (we used one for the other). For a T (S)
and a word w, �w� is the node v with the shortest depth of the T (S) such that
w is a prefix of v. If this node does not exist, �w� does not exists. For a node u
of the T (S), sl(u) is the node �u[2, |u|]�.

For a set of words R = {w1, w2, . . . , wn} and an integer k > 0, we define the
following notation.

Definition 4

1. Fk(R) is the set of substrings of length k of words of R.
2. Suffk(R) is the set of suffixes of length k of words of R.
3. For all i ∈ [1, |R|] and j ∈ [1, |wi| − k + 1], Ak,i denotes the tuple such that

its jth element is defined by

Ak,i[j] :=

{
wi[j, j + k] if j ≤ |wi| − k

wi[j, |wi|] otherwise.

4. and finally Ak is the set of these tuples: Ak :=
⋃n

i=1 Ak,i.

Proposition 5. 1. Ak,i is a chain of suffix-dependant strings of wi.
2. Moreover, {w ∈ Ak,i | Ak,i ∈ Ak} = Fk+1(R) ∪ Suffk(R).

Proof. 1. For all j ∈ [1, |Ak,i| − k], it is easy to see that Ak,i[j] is a suffix-
dependant string of Ak,i[j + 1].
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Fig. 1. (a) The generalised suffix tree for the set of words {bacbab, bbacbaa, bcaacb, cbaac,
cbabcaa}. The part above the green line corresponds to the TST T (A2), which is shown
in (b). (b) The truncated suffix tree T (A2) for the same set of words.

2. For the second point

{w ∈ Ak,i | Ak,i ∈ Ak} =
n⋃

i=1

(
|wi|−k+1⋃

j=1

{Ak,i[j]})

=
n⋃

i=1

(
|wi|−k⋃
j=1

{Ak,i[j]}
⋃

{Ak,i[|wi| − k + 1]})

=
n⋃

i=1

(Fk+1({wi})
⋃

Suffk({wi}))

= Fk+1(R) ∪ Suffk(R)

By applying the algorithm described in Section 2 to the set Ak (Definition 4),
and by using Theorem 2, we get the following result.

Corollary 6. We can construct T (Ak) in O(||R||) time and space.
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3.1 Experimental Results

We tested the two data structures GST and TST on real biological data. We
considered a set of 2249632 Illumina reads of yeast of length 101 and performed
tests for subsets of size 100, 1000, 10000, 100000, 1000000 and for the whole set.
We counted the number of nodes of the GST and of the TST for various values
of k (5, 10, 20 and 40). We used the gsuffix1 of [16]. It should be noted that
their implementation of the TST stores all the suffixes shorter than k producing
thus more nodes than our TST. Table 1 show the results. It can be seen that for
small sets, TSTs do not save many nodes compare to the GST except for very
small values of k but that for large sets TSTs save a lot of nodes for small values
of k, they save more than two third of nodes for k = 20 and almost half of the
nodes for k = 40. We also performed experiments with longer reads from Pacific
Biosciences technology (not shown here). In this case, as expected, TSTs save
less nodes than for Illumina reads.

Table 1. Number of nodes of the GST vs the TST for k = 5, 10, 20, 40 and the
percentage compare to the GST for Illumina reads of length 101

�reads 100 1000 10000

ST 14382 135558 1320811
TST (k = 5) 1352 (9.40%) 1365 (1.00%) 1365 (0.10%)
TST (k = 10) 14100 (98.03%) 120602 (88.96%) 677153 (51.26%)
TST (k = 20) 14347 (99.75%) 133204 (98.26%) 1263803 (95.68%)
TST (k = 40) 14382 (100.00%) 134316 (99.08%) 1291685 (97.79%)

�reads 100000 1000000 2249632

ST 12354838 103555389 216725799
TST (k = 5) 1365 (0.01%) 1365 (0.001%) 1365 (0.0006%)
TST (k = 10) 1315886 (10.65%) 1396675 (1.34%) 1397752 (0.64%)
TST (k = 20) 10549607 (85.38%) 49389538 (47.69%) 69248532 (31.95%)
TST (k = 40) 11337038 (91.76%) 69375578 (66.99%) 117282522 (54.11%)

4 De Bruijn Graph via the Truncated Suffix Tree

Here, we describe an algorithm that builds the de Bruijn Graph of a set of
words R starting from the generalised truncated suffix tree of R. Note that this
DBG differs from the original graph as defined by de Bruijn in the field of word
combinatorics [3]. The DBG studied here serves for genome assembly and for
approximating the well-known Shortest Superstring problem [7].

4.1 De Bruijn Graph

Let k be a positive integer and R := {w1, . . . , wn} be a set of n words. We use
the definition of a de Bruijn graph stated in [4].
1 http://gsuffix.sourceforge.net/gsuffix-docs/main.html

http://gsuffix.sourceforge.net/gsuffix-docs/main.html
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Definition 7 (de Bruijn graph). The de Bruijn graph of order k for R,
denoted by dBG+

k , is a directed graph, whose vertices are the k-mers of words of
S and where an arc links u to v if and only if u and v are two successive k-mers
of a word of R.

Another slightly different definition is sometimes used in which the k-mers
must overlap by (k − 1) symbols, but must not necessarily occur in the same
read. This relaxed definition introduces “false” arcs, but is easier to build and
store in memory. All our results can easily be adapted to that definition.

Proposition 8 states that there does not exist any leaf in T (Ak) representing
a word strictly shorter than k.

Proposition 8. Let v be a leaf of T (Ak). Then |v| = k or |v| = k + 1.

Proof. For all wi ∈ R and j ∈ [1, |wi| − k + 1], |Ak,i[j]| = k or k + 1.

We set InitR,k = {v ∈ VT (Ak) | |v| ≥ k and |f(v)| < k}. For a possible link
P0, we define the mapping P from F to N . F , N and L have the same definition
as before, but applied to the T (Ak). F can be seen in this case as the set of leaves
of length k + 1 of T (Ak). We define the mapping P as follows:

P : F −→ N
v 
→

{
P0(v) if P0(v) ∈ InitR,k

f(P0(v)) otherwise

The mapping P can be constructed in linear time in O(||R||). In fact, for
each v ∈ F , P (v) can be constructed in O(1) because in this case, P0(v) ∈
InitR,k ⇔ |f(P0(v))| �= k. As |F| ≤ ||R||, we can construct P for all elements of
F in O(||R||). Indeed, it is enough to look the length of the parent of P0(v) to
decide if P0(v) is in InitR,k.

Proposition 9. Le be v ∈ L, P (v) ∈ InitR,k and P (v) = sl(v) if sl(v) exists.

Proof. Let be v ∈ L. If v ∈ F and P0(v) /∈ InitR,k, |f(P0(v))| = k and thus
P (v) = f(P0(v)) ∈ InitR,k. According to the definitions of a possible link P ,
and of Ak, for any node v in L, P (v) is the shortest node of T (Ak) such that v
is a prefix of P (v). Hence, P (v) = sl(v).

(a) (b) (c)

Fig. 2. The different cases of the definition of E+. For a node v (in green), the curved
solid arrows are the arcs of E+, the dashed arrows are the suffix links of the nodes,
the dashed nodes are nodes of InitR,k. (a) and (b) correspond to the first part of the
definition while (c) corresponds to the second part.
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Let us define, E+
k , a set of arcs. Two cases arise depending on whether the

starting node v represents a word of length k or k + 1.

E+
k =

(∪|v|=k+1(v, P (v))
) ∪ (∪|v|=k

(∪u∈Children(v)(v, P (u))
))

with v ∈ InitR,k. Figure 2 illustrates the alternative cases in the definition of
E+

k , which is the union of these cases.

Proposition 10. (InitR,k, E
+
k ) is isomorphic to dBG+

k of R.

Proof. The proof is identical to that of [4, Theorem1].

Figure 3 shows an example of de Bruijn graph of order 2 built from T (A2).

Proposition 11. The size of T (Ak) is linear in the size of dBG+
k .

Proof. Let b be the application from F to E+
k such that

b(v) =

{
(v, P (v)) if |f(v)| �= k

(f(v), P (v)) if |f(v)| = k.

By Proposition 10, b is a bijection. As |L \ F| ≤ |R|, |L| is linear in the size
of dBG+

k .

From R, we first build the reduced TST, and then build dBG+
k from it. By

Proposition 11, we get the following theorem.

Theorem 12. For a set of words R, we can construct dBG+
k in O(||R||) time

and in O(size(dBG+
k )) space.
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Fig. 3. The de Bruijn graph of order 2 built on T (A2). The solid curved arrows are
the edges corresponding to the first part of the definition of E+

k , while those in blue
correspond to the second part.
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4.2 A Contracted de Bruijn Graph

Let e an arc of dBG+
k , e = (x, y) is said to be reducible if the outdegree of x and

the indegree of y are at most 1.

Definition 13. Let k be a positive integer and R := {w1, . . . , wn} be a set of n
words. The contracted de Bruijn graph of order k for R, denoted by CdBG+

k , is
the de Bruijn graph of order k where each reducible arc is contracted.

Let z be a word, SupportR(z) is the set of pairs (i, j), where z is the substring
wi[j, j + |s| − 1]. SupportR(z) is called the support of z in R.

Proposition 14. For each leaf v of T (Ak), s(v) is the size of the support of v
in R and t(v) is the size of the set

(
SupportR(v) ∩ {(i, 1) | 1 ≤ i ≤ n}).

Hence, we obtain the following theorem.

Theorem 15. For a set of words R, we can construct CdBG+
k in O(||R||) time

and in O(size(dBG+
k )) space.

Instead of using T (Ak) to build dBG+
k or CdBG+

k , we could have taken
T (Bk+1). Indeed, T (Bk+1) is the tree T (Ak) with additional leaves representing
all suffixes shorter than (k − 1) of the words in R. These leaves make T (Bk+1)
linear in ||R||, but not in the size of dBG+

k .

5 Conclusion

First, we provided a unified version of the construction of a generalised index for
a set of input words. It only requires that the elements of the chain are suffix-
dependant. This general framework was applied to build a reduced version of a
Truncated Suffix Tree (TST), which given a parameter k does not contain any
node representing a string smaller than k − 1 compared to the TST of [10,16].
Our algorithm does not build those nodes and thus does not need to remove
them afterwards, as would be the case with the TST of [10,16]. This feature
is crucial since otherwise, the index data structure could not be linear in the
size of the de Bruijn Graph of order k. Moreover, it is not trivial to modify the
algorithm of [10] to avoid building those nodes, because it uses their suffix links
during construction. A natural question arise: does our framework remain valid
if one relaxes the assumption of suffix-dependency?

Second,we showthat thedeBruijnGraph (DBG)that is heavily exploited in the
context of genome assembly can be directly constructed from the reduced TST in
a time and a space linear in the size of the output. This part builds upon our earlier
work, which addressed the question of DBG construction from a Suffix Tree and
Suffix Array [4]. Moreover, we provide an algorithm to build the contracted DBG,
which is used in practice and directly yields as a by-product of the contraction, a
class of reliable contigs, called the unitigs2. Starting from the reduced truncated
2 Usually the result of an assembly is not the complete sequence, rather a set of assembled

sequences called contigs.
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tree ensures that the index encodes as much nodes as the output DBG. However,
as information on nodes representing substrings of length < k − 1 are missing, one
looses the dynamicity obtained in [4, Section6]: our reduced TST cannot support
the DBG construction for both order k and k − 1. Nevertheless, as our algorithms
remain valid for the original TST [10,16], which stores all the information for any
substrings ≤ k, we can dynamically update the DBG for any order < k. Both the
questions of 1/ dynamically updating the de Bruijn Graph when the order changes
by more than one unit, and of 2/ constructing the DBG from compressed indexes
make thrilling lines of future work.
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Abstract. Frequent pattern mining is widely used in bioinformatics
since frequent patterns in bio sequences often correspond to residues
conserved during evolution. In bio sequence analysis, non-overlapping
inversions are well-studied because of their practical properties for local
sequence comparisons. We consider the problem of finding frequent pat-
terns in a bio sequence with respect to non-overlapping inversions, and
design efficient algorithms.

Keywords: String processing algorithms · Frequent pattern mining ·
Non-overlapping inversions

1 Introduction

Agrawal et al. [1] studied the frequent pattern mining for finding associations
among market products and increasing profit. For example, frequent patterns in
customer behavior are useful for setting affordable product price, promotion and
store layout. They investigated the problem of finding meaningful associations
over market transactions. Frequent patterns are also useful in other domains
including sequential data, bio sequences or strings [10–12,14,18,20].

In bioinformatics, frequent motifs in DNA or protein sequences often corre-
spond to residues conserved during evolution due to an important structural or
functional role [18]. Note that traditional pattern mining algorithms are not suit-
able for bio sequences, since they cope with a large number of items and short
sequence lengths [11]. Wang et al. [18] first proposed an algorithm that finds
sequential patterns on bio sequences. Recently, Liao and Chen [12] designed an
algorithm for the problem with gaps—regions not conserved in evolution.

From a biological aspect, an inversion—breakage and rearrangement within
itself—is one of the most important operations since such an event produces
new gene sequences from an original gene sequence and sometimes causes a dis-
ease [13]. Schöniger and Waterman [15] introduced a simplification hypothesis
that all regions involved in the inversions do not overlap. This hypothesis—
non-overlapping inversions—is realistic for local DNA comparisons on relatively
closed sequences [17]. On the string with non-overlapping inversions,
Chen et al. [4] designed an O(n4) algorithm to solve the alignment with non-
overlapping inversions, which was improved to O(n3) by Vellozo et al. [17]. Amir
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 121–132, 2015.
DOI: 10.1007/978-3-319-15579-1 9
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and Porat [2] proposed an O(n2) approximation algorithm for the problem, and
Cho et al. [6] proposed an O(n3) algorithm for the modified problem where
inversions occur to both strings. For the pattern matching, Cantone et al. [3]
proposed O(nm) algorithm to solve the pattern matching with non-overlapping
inversions. On formal language theory, researchers [5,8] have studied properties
and decision problems of formal languages considering inversions. This leads us
to consider frequent pattern mining problem on a string with non-overlapping
inversions.

Due to the irregularity of gene evolution, rearrangements—for instance,
non-overlapping inversions—may occur in conserved regions P . Suppose that
a sequence Si+1 is obtained from a sequence Si that has conserved regions,
and non-overlapping inversions occur during the evolution from Si to Si+1 (See
Fig. 1 for an illustrative example of this phenomenon.). We search for a con-
served region P in Si+1, which now may have been modified by non-overlapping
inversions from Si. Note that often we do not have all evolution sequences of a
gene. For instance, here Si+1 is a mere sequence that we have and, thus, we do
not know where exactly non-overlapping inversions occur in Si+1. This makes
the problem of finding similar or same pattern occurrences in Si challenging
when we have only Si+1 and the fact that Si+1 is generated from Si by some
non-overlapping inversions.

Si+1

P︷ ︸︸ ︷ P︷ ︸︸ ︷ P︷ ︸︸ ︷ P︷ ︸︸ ︷
Si

Fig. 1. Let Si be a gene sequence of the ith generation and Si+1 be a gene sequence of
the i+1th generation. During the evolution from Si to Si+1, non-overlapping inversions
flip subsequences of the conserved regions P .

We formulate our problem as a frequent pattern mining problem on a string:
Given a text T of length n over an alphabet Σ, a pattern length m and a
pattern occurrence threshold r, our goal is to compute the set of all patterns P
of length m that occur in T at least r times when we allow non-overlapping
inversions on P . Note that P may not be a substring or a subsequence of T , which
is different from other frequent pattern mining problems in the literature. We first
compute a set of all possible substrings Ti of length m and construct digraphs Gi

representing all strings that can be generated by non-overlapping inversions on
Ti. Next, we overlay all such Gi’s and obtain a weighted multidigraph G. Then,
we find all paths in G with the bottleneck lower bound r—each path represents P
and the bottleneck is the number of occurrences of P . We show that we can find
all patterns in O(nm2 + Cm) time using O(m) space, where C is the number of
matching patterns. If we want to store all matching patterns instead of reporting
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them, then we can construct a DFA that recognizes the set of all such patterns
in O(nm2) time using O(m) space.

2 Preliminaries

Let A[a1][a2] · · · [an] be an n-dimensional array, where the size of each dimen-
sion is ai for 1 ≤ i ≤ n. Let A[i1][i2] · · · [in] be the element of A with
indices (i1, i2, . . . , in). Given a finite set Σ of characters and a string w over
Σ, we use |w| to denote the length of w and w[i] to denote the symbol of w at
position i. We use w[i : j] to denote the substring w[i] · · · w[j], where 0 < i ≤ j.

For a finite set Σ of characters, Σ∗ denotes the set of all strings over Σ. A
language over Σ is any subset of Σ∗. The symbol ∅ denotes the empty language
and the symbol λ denotes the null string. A finite-state automaton (FA) A is
specified by A = (Q,Σ, δ, s, F ), where Q is a set of states, Σ is an alphabet,
δ ⊆ Q × Σ × Q is a set of transitions, s ∈ Q is the start state and F ⊆ Q
is a set of final states. For a transition δ(p, σ) = q, we say that p has an out-
transition and q has an in-transition. Moreover, we call q a target state of p.
A string w is accepted by A if there is a labeled path from s to a final state
in F such that the path spells out w. The language L(A) of an FA A is the
set of all strings accepted by A. If |{δ(p, σ)}| = 1 for all p ∈ Q and σ ∈ Σ,
we say that A is a deterministic finite-state automaton (DFA); otherwise, A is a
nondeterministic finite-state automaton (NFA). For more knowledge in automata
theory, the reader may refer to textbooks [16,19].

We consider a biological operation inversion θ and denote by θ(w) the reverse
of a string w. We define an inversion operation θ(i,j) for a given range (i, j)
to be θ(i,j)(w) = θ(w[i : j]). When the context is clear, we denote θ(i,j) as
(i, j). We say that the length of (i, j) is j − i + 1. We define a sequence Θ =
((p1, q1), (p2, q2), . . . , (pk, qk)) of inversions for a string w to be non-overlapping
(NOI-sequence for short) if it satisfies the following conditions: For 1 ≤ i ≤ k,
p1 ≥ 1, qk ≤ |w|, pi ≤ qi and pi+1 ≥ qi + 1 for 1 ≤ i ≤ k − 1. For the
sake of easier explanation of our algorithms, for any given index i, we assume
that there always exists an inversion whose range covers i; namely, p1 = 1,
qk = |w| and pi+1 = qi + 1, since a non-inversed range (i, j) can be represented
by a sequence ((i, i), (i+1, i+1), . . . , (j, j)) of inversions. Now, in summary, given
an NOI-sequence Θ = ((p1, q1), (p2, q2), . . . , (pk, qk)) and a string w, Θ(w) =
θ(w[p1 : q1])θ(w[p2 : q2]) · · · θ(w[pk : qk]).

An undirected graph G = (V,E) consists of a finite nonempty set V of nodes
and a set E of unordered pairs of distinct nodes of V . Each pair e = {u, v} of
nodes in E is an edge of G and e is said to join u and v. A directed graph or
digraph D consists of a finite nonempty set V of nodes and a set E of ordered
pairs of nodes. For an edge e = (u, v) of a digraph, we say that e is from node u
to node v. A multidigraph is a digraph where more than one edge can join two
nodes. The reader may refer to Harary [7] for more details in graph theory.

Given two strings X and Y of the same length, we say that X and Y have
an alignment with non-overlapping inversions (NOI-alignment for short) if there
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exists an NOI sequence Θ such that Θ(Y ) = X. Given a text T of length n and a
pattern P of length m, the NOI-occurrence Occ(T, P ) of T and P is the number
of indices i where Ti = T [i : i+m−1] has an NOI-alignment with P .

Definition 1 (Frequent Pattern Mining with Non-overlapping Inver-
sions). Given a text T of length n over Σ, a pattern length m and a mini-
mum number r of pattern occurrences, find all pairs (P ∈ Σm, Occ(T, P )) where
Occ(T, P ) ≥ r.

3 The Algorithm

Given a text T , our algorithm starts from inspecting all substrings Ti of T . We
first compute a set of all NOI-alignment strings for Ti and construct a digraph Gi

that represents the set. Then we overlay all Gi’s and construct a weighted
digraph G, and find all frequent patterns P from G, where Occ(T, P ) ≥ r.
We construct inversion fragment tables for all substrings Ti.

Definition 2. Given a text T , an index i and a pattern length m, the inversion
fragment table ( IFT for short) is defined as follows:

Fi[j][k] =

{
((k, j), Ti[k]) if k ≤ j,

((j, k), Ti[k]) otherwise

for 1 ≤ j, k ≤ m.

We call all elements in Fi[j][k] inversion fragments (IFs for short) of Ti. For
an IF F = ((p, q), σ), we say that F yields the character σ. For a sequence of
IFs F1, . . . ,Fl, where Fi yields σi, we say that the sequence yields a string σ1 · · · σl.
Fig. 2 shows an example of an IFT.

F1

1

2

3

4

4

((1, 4), A)

((2, 4), G)

((3, 4), C)

((4, 4), T )

3

((1, 3), A)

((2, 3), G)

((3, 3), C)

((3, 4), T )

2

((1, 2), A)

((2, 2), G)

((2, 3), C)

((2, 4), T )

1

((1, 1), A)

((1, 2), G)

((1, 3), C)

((1, 4), T )

Fig. 2. IFT F1 for T = AGCTA and m = 4. Shaded cells denote IFs for θ(2,4)(T1).

IFs become useful for computing a substring created by an inversion because
of the following property of the inversion operation:

Observation 3. For a text T , an index i and its IFT Fi, a sequence Fi[j][k],
Fi[j+1][k−1], . . . , Fi[k−1][j+1], Fi[k][j] of IFs yields θ(j,k)(Ti).
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From Observation 3, we know that if we apply θ(min(j,k),max(j,k)) to Ti, then
σ yielded by Fi[j][k] becomes the jth character of the result string. Using
Observation 3, we construct a digraph Gi for T and i by Algorithm 1, which
we call an inversion graph. In an inversion graph, each node (j, σ) represents
that there exists an NOI-alignment between P and Ti where P [j] = σ. Each
edge ((j, σ1), (j+1, σ2), σ0, f = c or v) represents that if P [j−1] = σ0 and P [j] =
σ1, then we can set P [j+1] = σ2 to ensure that P and Ti have an NOI-alignment.
The last element f is the flag that indicates whether P [j] and P [j+1] are from a
single inversion on the text (v) or from two adjacent inversions (c). Fig. 3 shows
an example of an inversion graph.

(1, A)

(1, G)

(1, C)

(1, T )

(2, A)

(2, G)

(2, C)

(2, T )

(3, A)

(3, G)

(3, C)

(3, T )

(4, A)

(4, G)

(4, C)

(4, T )

#

##

#

#

#

G

A

G

A

C

A, T

A

G

C

A,G

C

T

A,G

(2, A)

Fig. 3. An inversion graph G1 for T = AGCTA (flags of the edges are omitted). The
dashed path represents P = GATC, which has an NOI-alignment with T1 = AGCT .

We can retrieve all strings that have an NOI-alignment with Ti from Gi.

Theorem 4. Given a text T , an index i, a pattern length m and an inversion
graph Gi, a string P has an NOI-alignment with Ti if and only if

1. ((1, P [1]), (2, P [2]),#, f) ∈ Ei and
2. ((j, P [j]), (j+1, P [j+1]), P [j−1], f) ∈ Ei for 2 ≤ j ≤ m − 1.

In the literature, people often assume that the alphabet size is constant, since
Σ is a finite set. Then, it is straightforward to verify that Algorithm 1 runs in
O(m3) time. Since the size of Fi is O(m2) and the size of Ei is O(m), Algorithm 1
requires O(m2) space. We improve the runtime of Algorithm 1 by relying on the
following property of IFTs.

Observation 5. For 1 ≤ i < n − m and 2 ≤ j, k ≤ m,

1. If Fi[j][k] = ((j, k), σ), then Fi+1[j−1][k−1] = ((j−1, k−1), σ).
2. If Fi[j][k] = ((k, j), σ), then Fi+1[j−1][k−1] = ((k−1, j−1), σ).
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Algorithm 1. ConstructInversionGraph
Input: Text T over Σ of size t, index i and a pattern length m
Output: Digraph Gi = (V, Ei), where V = {1, 2, . . . , m} × Σ and

Ei ⊂ V × V × (Σ ∪ {#}) × {v, c}
1 construct Fi

2 V ← {1, 2, . . . , m} × Σ
3 for j ← 1 to m − 1 do

/* check the case that an inversion ends at index j */

4 for k ← 1 to j do
5 let σ1 be yielded by Fi[j][k]

/* find all first characters of inversions starting from

index j + 1 and record the edge */

6 for l ← j + 1 to m do
7 let σ2 be yielded by Fi[j+1][l]
8 if j = 1 then
9 add ((j, σ1), (j+1, σ2), #, c) to Ei

10 else
11 for each σ0 where ((j−1, σ0), (j, σ1), σ

′, f) ∈ Ei do
12 add ((j, σ1), (j+1, σ2), σ0, c) to Ei

/* check the case that index j is within the range of an

inversion */

13 for k ← 2 to m do
/* find the next character in the inversion and record the

edge */

14 let σ1 be yielded by Fi[j][k] and σ2 be yielded by Fi[j+1][k−1]
15 if j = 1 then
16 add ((j, σ1), (j+1, σ2), #, v) to Ei

17 else if k �= m then
18 add ((j, σ1), (j+1, σ2), σ0, v) to Ei, where Fi[j−1][k+1] yields σ0

19 if j < k and j �= 1 then
20 for each σ0 where ((j−1, σ0), (j, σ1), σ

′, c) ∈ Ei do
21 add ((j, σ1), (j+1, σ2), σ0, v) to Ei

22 return (V, Ei)

From Observation 5, we know that Gi and Gi+1, constructed from Fi and
Fi+1 respectively, have common edges (See Fig. 4.). We make use of these edges
to reduce the construction time of Gi+1 by adding a new label (k, k′) for each
edge ((j, σ1), (j+1, σ2), σ0, f) ∈ Ei, representing that the edge is from IFs Fi[j][k]
and Fi[j+1][k′]. Moreover, in Algorithm 1, Fi is only used to compute characters
yielded by IFs. Since Fi[j][k] always yields Ti[k], we do not need to construct Fi

in the algorithm. By modifying Algorithm 1, we obtain a new algorithm with
improved time and space complexity. Algorithm 2 preserves all edges in Ei−1

that are made from IFs in Fi and runs Algorithm 1 only for edges that are not
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in Ei−1 but in Ei. While adding new edges to Ei, Algorithm 2 does not use Fi.
Thus, Algorithm 2 constructs the same Gi as Algorithm 1 except for additional
labels.

Algorithm 2. ConstructFastInversionGraph
Input: Text T over Σ of size t, index i, pattern length m and inversion graph

Gi−1 = (V, Ei−1)
Output: Digraph Gi = (V, Ei), where V = {1, 2, . . . , m} × Σ and

Ei ⊂ V × V × (Σ ∪ {#}) × {v, c} × {1, 2, . . . , m}2

/* retrieve common edges from Ei−1 */

1 for each ((j, σ1), (j+1, σ2), σ0, f, k, k′) ∈ Ei−1 do
2 if 2 ≤ j ≤ m − 1 and 2 ≤ k, k′ then
3 add ((j−1, σ1), (j, σ2), σ0, f, k−1, k′−1) to Ei

4 for j ← 1 to m − 1 do
/* add only new edges for j using a part of Algorithm 1 */

5 for k ← 1 to j do
6 σ1 ← Ti[k], σ2 ← Ti[m]
7 if j = 1 then add ((1, σ1), (2, σ2), #, c, k, m) to Ei else
8 for each σ0 where ((j−1, σ0), (j, σ1), σ

′, f, k′, k) ∈ Ei do
9 add ((j, σ1), (j+1, σ2), σ0, c, k, m) to Ei

/* add edges for j = m − 1 using a part of Algorithm 1 */

10 if j = m − 1 then
11 for k ← 2 to m − 1 do
12 σ1 ← Ti[k], σ2 ← Ti[k−1]
13 add ((m−1, σ1), (m, σ2), Ti[k+1], v, k, k−1) to Ei

14 σ1 ← Ti[m−1], σ2 ← Ti[m]
15 for each σ0 where ((m−2, σ0), (j, σ1), σ

′, c, k′, k) ∈ Ei do
16 add ((j, σ1), (j+1, σ2), σ0, v, k, k−1) to Ei

17 return (V, Ei)

F1

1

2

3

4

4

((1, 4), A)

((2, 4), G)

((3, 4), C)

((4, 4), T )

3

((1, 3), A)

((2, 3), G)

((3, 3), C)

((3, 4), T )

2

((1, 2), A)

((2, 2), G)

((2, 3), C)

((2, 4), T )

1

((1, 1), A)

((1, 2), G)

((1, 3), C)

((1, 4), T )

F2

1

2

3

4

4

((1, 4), G)

((2, 4), C)

((3, 4), T )

((4, 4), A)

3

((1, 3), G)

((2, 3), C)

((3, 3), T )

((3, 4), A)

2

((1, 2), G)

((2, 2), C)

((2, 3), T )

((2, 4), A)

1

((1, 1), G)

((1, 2), C)

((1, 3), T )

((1, 4), A)

Fig. 4. Comparison of F1 and F2 for T = AGCTA. Shaded cells denote IFs from F1

and F2 that satisfy the properties of Observation 5.
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Since moving common edges from Ei−1 to Ei takes O(m) time and adding
new edges takes O(m2) time, Algorithm 2 runs in O(m2) time using O(m) space.
Note that Gi represents all possible strings that have NOI-alignments with Ti.
We overlay all Gi’s to construct an accumulated inversion graph G for T by
Algorithm 3 (See Fig. 5 for an example.). Note that Algorithm 3 requires
O(nm2) time and O(m) space.

Algorithm 3. ConstructAccumulatedInversionGraph
Input: Text T of length n over Σ of size t and a pattern length m
Output: Weighted multidigraph G = (V, E), where V = {1, 2, . . . , m} × Σ and

E ⊂ V × V × (Σ ∪ {#}) × {1, 2, . . . , n − m + 1}
1 V ← {1, 2, . . . , m} × Σ
2 for each (i, σ1), (i+1, σ2) ∈ V , σ0 ∈ Σ do
3 add ((i, σ1), (i+1, σ2), σ0, 0) to E.

4 for i ← 1 to n − m + 1 do
/* modify ConstructInversionGraph not to use F1 */

5 if i = 1 then ConstructInversionGraph(T, i, m) else
ConstructFastInversionGraph(T, i, m, Gi−1) for each (v1, v2, σ, f, k, k′) ∈ Ei

do
6 change (v1, v2, σ, g) ∈ E to (v1, v2, σ, g + 1)

7 return (V, E)

For an edge ((i, σi), (i+1, σi+1), σi−1, gi) ∈ E, we call gi the weight of the edge
and σ the preceding symbol of the edge. We also say that the edge is from index i
to index i+1. For a path ((1, σ1), (2, σ2),#, g1), ((2, σ2), (3, σ3), σ1, g2), . . . , ((m−
1, σm−1), (m,σm), σm−2, gm), we call min(g1, g2, . . . , gm) the minimum weight of
the path. From the construction of G, we have the following statement:

Lemma 6. For a text T of length n and a pattern lengthm, letP ∈ Σm be a pattern
such that ((1, P [1]), (2, P [2]),#, g1) ∈ E and ((j, P [j]), (j+1, P [j+1]), P [j−1],
gj) ∈ E for 2 ≤ j ≤ m − 1. Then Occ(T, P ) = min(gj) for 1 ≤ j ≤ m − 1.

Now, our goal is to find all paths from index 1 to index m, where the mini-
mum weight of each path is greater than or equal to r. We reduce the resulting
accumulated inversion graph so that any path from index 1 to index m in the
graph satisfies the condition based on a modified Kruskal’s Algorithm [9]. We
sort edges by ascending order with respect to weights as in Kruskal’s Algorithm.
Then we repeatedly remove an edge with the minimum weight until all remaining
edges have weights greater than or equal to r. Once we remove an edge e, we then
remove all adjacent edges of e that cannot be in a path anymore because of the
removal of e. Algorithm 4 removes edges from G to return a graph G′, where any
path from index 1 to index m represents a pattern P such that Occ(T, P ) ≥ r.
Fig. 6 is an example of G′ for T = AGCTAGCTAG and r = 3.

We prove that any path from index 1 to index m in the resulting graph
represents a pattern P such that Occ(T, P ) ≥ r.
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Fig. 5. An accumulated inversion graph G for T = AGCTAGCTAG
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Fig. 6. A reduced accumulated inversion graph G′ for T = AGCTAGCTAG and r = 3

Theorem 7. Suppose Algorithm 4 returns G′ = (V,E′). Let P ∈ Σm be a
pattern such that ((1, P [1]), (2, P [2]),#, g1) ∈ E′ and ((j, P [j]), (j+1, P [j+1]),
P [j−1], gj) ∈ E for 2 ≤ j ≤ m − 1. Then Occ(T, P ) ≥ r.

Next, we analyze the time and space complexity of the algorithm.

Lemma 8. Algorithm 4 runs in O(nm2) time using O(m) space.
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Algorithm 4. ReduceAccumulatedInversionGraph
Input: Text T of length n over Σ of size t, a pattern length m and a pattern

occurrence threshold r
Output: Weighted multidigraph G′ = (V, E′), where V = {1, 2, . . . , m} × Σ and

E ⊂ V × V × (Σ ∪ {#}) × {1, 2, . . . , n − m + 1}
1 ConstructAccumulatedInversionGraph(T, m)
2 E′ ← E
3 sort E′ by ascending order with respect to weights
4 while there exists an edge in E′ with weight less than r do
5 e ← ((i, σ1), (i+1, σ2), σ0, g) be the edge with minimum weight in E′

6 R ← ∅ // set of edges to remove

7 if e is the only edge from index i to index i + 1 in E′ then return (V, ∅)
else add e to R while R �= ∅ do

8 for each e′ ← ((j, σ′
1), (j+1, σ′

2), σ
′
0, g

′) ∈ R do
9 if e′ is the only edge from node (j, σ′

1) to node (j+1, σ′
2) in E′ then

10 add all edges from node (j+1, σ′
2) to index j+2 with preceding

symbol σ′
1 in E′ to R

11 if there is no edge from node (j, σ′
1) to index j+1 in E′ then

12 add all edges from index j−1 to node (j, σ′
1) in E′ to R

13 if e′ is the only edge from node (j, σ′
1) to index j+1 with preceding

symbol σ′
0 in E′ then

14 add all edges from node (j−1, σ′
0) to node (j, σ′

1) in E′ to R

15 remove e′ from E′ and R

16 return (V, E′)

It requires at least O(Cm) to report all patterns with the occurrence greater
than or equal to r, where C is the number of such patterns. From G′, we can
find all such patterns by simple depth-first search in O(Cm). On the other hand,
if we want to identify all matching patterns instead of reporting them, then we
can convert G′ to a DFA A′, where L(A′) is the set of all such patterns. For
a weighted multidigraph G′ = (V,E′), where V = {1, 2, . . . ,m} × Σ and E ⊂
V ×V ×(Σ∪{#})×{1, 2, . . . , n−m+1}, we construct a DFA A′ = (Q,Σ, δ, s, F )
by the following procedure:

1. Q = s ∪ {#} × Σ × {1} ∪ Σ × Σ × {2, . . . , m}.
2. F = Σ × Σ × {m}.
3. δ(s, σ) = (#, σ, 1) for all ((1, σ), (2, σ′),#, g) ∈ E′, where σ, σ′ ∈ Σ and

g ≥ 0.
4. δ((σ0, σ1, i), σ2) = (σ1, σ2, i+1) for all e′ ← ((i, σ1), (i+1, σ2), σ0, g) ∈ E′,

where σ0, σ1, σ2 ∈ Σ, g ≥ 0 and 1 ≤ i ≤ m − 1.

From the construction of the transition function, it is straightforward that
A′ is a DFA and L(A′) is equal to the set of all patterns with the occurrence
greater than or equal to r. The construction of A′ requires O(m) time using
O(m) space. Then, we establish the following theorem.
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Theorem 9. Given a text T of length n over an alphabet Σ, a pattern length m
and a pattern occurrence threshold r, we can solve frequent pattern mining with
non-overlapping inversions in O(nm2 +Cm) time using O(m) space, where C is
the number of patterns to find. Moreover, we can construct a DFA that recognizes
the set of all patterns to find in O(nm2) time using O(m) space.

4 Conclusions

We have considered non-overlapping inversions in frequent pattern mining. We
have proposed a graph-based algorithm that finds all patterns P where Occ(T, P )
≥ r in O(nm2 + Cm) time using O(m) space, where m is the desired pattern
length, n is the size of an input text T , r is the pattern occurrence threshold
and C is the number of patterns to find. Moreover, we have proposed an algo-
rithm that constructs a DFA recognizing the set of all matching patterns in
O(nm2) time using O(m) space. Notice that we need to examine all possible
strings that have an NOI-alignment with any Ti to find P . Since the number
of inversions in all Ti’s is O(nm2), it would be challenging to design an algo-
rithm that runs faster than O(nm2+Cm). Since the runtime to find all patterns
depends on C, it is an interesting open question to establish the lower and the
upper bound of C. Another future direction is to find frequent patterns from a
bio sequence under other biological operations and combined operations.
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Abstract. A maximum(-sum) contiguous subsequence of a real-valued
sequence is a contiguous subsequence with the maximum cumulative
sum. A minimal maximum contiguous subsequence is a minimal con-
tiguous subsequence among all maximum ones of the sequence. We have
designed and implemented a domain-decomposed parallel algorithm on
cluster systems with Message Passing Interface that finds all successive
minimal maximum subsequences of a random sample sequence from a
normal distribution with negative mean. Our study employs the theory
of random walk to derive an approximate probabilistic length bound for
minimal maximum subsequences in an appropriate probabilistic setting,
which is incorporated in the algorithm to facilitate the concurrent com-
putation of all minimal maximum subsequences in hosting processors. We
also present a preliminary empirical study of the speedup and efficiency
achieved by the parallel algorithm with synthetic random data.

Keywords: All maximum subsequences · Theory of random walk ·
Message passing interface · Parallel random access machine model

1 Preliminaries

Algorithmic and optimization problems in sequences and trees arise in widely
varying domains such as bioinformatics and information retrieval. Large-scale
(sub)sequence comparison, alignment, and analysis are important research areas
in computational biology. Time- and space-efficient algorithms for finding mul-
tiple contiguous subsequences of a real-valued sequence having large cumulative
sums help identify statistically significant subsequences in biological sequence
analysis with respect to an underlying scoring scheme – an effective filtering pre-
process even with simplistic random-sequence models of independent residues.

For a real-valued sequence X = (xη)n
η=1, the cumulative sum of a non-empty

contiguous subsequence (xη)j
η=i, where i and j are in the index range [1, n] with

i ≤ j, is
∑j

η=i xη (and that of the empty sequence is 0). All subsequences addressed
in our study are contiguous in real-valued sequences; the terms “subsequence” and
“supersequence” will hereinafter abbreviate “contiguous subsequence” and “con-
tiguous supersequence”, respectively. A maximum(-sum) subsequence of X is one
with the maximum cumulative sum. A minimal maximum subsequence of X is a
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 133–144, 2015.
DOI: 10.1007/978-3-319-15579-1 10
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minimal subsequence (with respect to subsequential containment) among all max-
imum subsequences of X.

Very often in applications it is required to find many or all pairwise disjoint
subsequences having cumulative sums above a prescribed threshold. Observe
that subsequences having major overlap with a maximum subsequence tend to
have good cumulative sums. Intuitively, we define the sequence of all succes-
sive minimal maximum subsequences (S1, S2, . . .) of X inductively as follows:
(1) The sequence S1 is a (non-empty) minimal maximum subsequence of X,
and (2) Assume that the sequence (S1, S2, . . . , Si) of non-empty subsequences of
X, where i ≥ 1, has been constructed, the subsequence Si+1 is a (non-empty)
minimal subsequence (with respect to subsequential containment) among all
non-empty maximum subsequences (with respect to cumulative sum) that are
disjoint from each of {S1, S2, . . . , Si}.

Efficient algorithms for computing the sequence of all successive minimal
maximum subsequences of a given sequence are essential for statistical infer-
ence in large-scale biological sequence analysis. In biomolecular sequences, high
(sub)sequence similarity usually implies significant structural or functional sim-
ilarity. When incorporating good scoring schemes, this provides a powerful sta-
tistical paradigm for identifying biologically significant functional regions in
biomolecular sequences [8], such as transmembrane regions and deoxyribonucleic
acid-binding domains [6] in protein analyses. The non-positivity of the expected
score of a random single constituent tends to delimit unrealistic long runs of
contiguous positive scores.

We design and implement a domain-decomposed parallel algorithm on cluster
systems with Message Passing Interface that finds all successive minimal max-
imum subsequences of a random sample sequence from a normal distribution
with negative mean. A brief summary of a preliminary empirical study of the
speedup and efficiency achieved by the parallel algorithm is also presented. Our
study is motivated by the linear-time sequential algorithm [8] and a logarithmic-
time and optimal-work parallel algorithm on the parallel random access machine
(PRAM) [3] for this computation problem.

For computing a single (minimal) maximum subsequence of a length-n real-
valued sequence of X, a simple sequential algorithm solves this problem in O(n)
optimal time. A parallel algorithm [1] on the PRAM model solves the single max-
imum subsequence problem in O(log n) parallel time using a total of O(n) opera-
tions (work-optimal). A generalization of the problem and the selection problem
is the sum-selection that, for given input length-n sequence X, range-bound
[l, u], and rank k, finds a subsequence of X such that the rank of its cumulative
sum is k among all subsequences with cumulative sum in [l, u]. A randomized
algorithm [7] solves the sum-selection problem in expected O(n log(u − l)) time.

For the problem of finding the sequence of all successive minimal maxi-
mum subsequences of a length-n real-valued sequence X, a recursive divide-
and-conquer strategy can apply the linear-time sequential algorithm above to
compute a minimal maximum subsequence of X whose deletion results in a
prefix and a suffix for recursion. The algorithm has a (worst-case) time
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complexity of Θ(n2). Empirical analyses of the algorithm [8] on synthetic data
sets (sequences of independent and identically distributed uniform random terms
with negative mean) and score sequences of genomic data indicate that the run-
ning time grows at Θ(n log n).

In order to circumvent the iterative dependency in computing the sequence
of all successive minimal maximum subsequences, Ruzzo and Tompa [8] prove a
structural characterization of the sequence as follows. Denote by Max(X) the set
of all successive minimal maximum subsequences or their corresponding index
subranges (when the context is clear) of a real-valued sequence X.

Theorem 1. [8] For a non-empty real-valued sequence X, a non-empty subse-
quence S of X is in Max(X) if and only if: (1) [monotonicity ] the subsequence S
is monotone: every proper subsequence of S has its cumulative sum less than that
of S, and (2) [maximality of monotonicity ] the subsequence S is maximal in X
with respect to monotonicity, that is, every proper supersequence of S contained
in X is not monotone.

Hence, we also term Max(X) as the set of all maximal monotone subse-
quences of X. This gives a structural decomposition of X into Max(X): (1) every
non-empty monotone subsequence of X is contained in a maximal monotone
subsequence in Max(X); in particular, every positive term of X is contained
in a maximal monotone subsequence in Max(X), and (2) the set Max(X) is a
pairwise disjoint collection of all maximal monotone subsequences of X.

Based on the structural characterization of Max(X), Ruzzo and Tompa
present a sequential algorithm that computes Max(X) in O(n) optimal sequen-
tial time and O(n) space (worst case). Alves, Cáceres, and Song [2] develop
a parallel algorithm for computing Max(X) of a length-n sequence X on the
bulk synchronous parallel/coarse grained multicomputer model of p processors
in O(n

p ) computation time and O(1) communication rounds.
In the following section, we introduce other structural decompositions of a

sequence X that lead to computing Max(X) with: (1) a parallel algorithm on
the PRAM model [3] in logarithmic parallel time and optimal linear work, and
(2) a domain-decomposed parallel algorithm implemented on cluster systems
with Message Passing Interface. This paper presents the skeletons for the main
results without lengthy derivations and proofs, which are detailed in the full
version.

2 Structural Decompositions of X Leading to Max(X)

For a real-valued sequence X = (xη)n
η=1, denote by si(X) the i-th prefix sum∑i

η=1 xη of X for i ∈ [1, n], and s0(X) = 0. We abbreviate the prefix sums
si(X) to si for all i ∈ [1, n] when the context is clear. For a subsequence Y of X,
denote by α(Y ;X), β(Y ;X), and γ(Y ;X) its starting index, ending index, and
index subrange [α(Y ;X), β(Y ;X)] (γ(Y ;X) = ∅ if Y is empty) in the context
of X, respectively, and by γ+(Y ;X) the set of all indices in γ(Y ;X) yielding
positive terms of Y . When considering the subsequence Y as a sequence in its
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own context we abbreviate α(Y ;Y ), β(Y ;Y ), γ(Y ;Y ), and γ+(Y ;Y ) to α(Y ),
β(Y ), γ(Y ), and γ+(Y ), respectively.

The following characterization of monotonicity [3] yields an effective compu-
tation of the index subrange of a non-trivial monotone subsequence containing
a given term of X.

Lemma 1. Let X be a non-empty real-valued sequence and Y be a non-empty
subsequence of X (with index subrange [α(Y ;X), β(Y ;X)]). The following state-
ments are equivalent:

1. Y is monotone in X.
2. The starting prefix sum sα(Y ;X)−1(X) of Y is the unique minimum and the

ending prefix sum sβ(Y ;X)(X) of Y is the unique maximum of all si(X) for
all i ∈ [α(Y ;X) − 1, β(Y ;X)].

3. All non-empty prefixes and non-empty suffixes of Y have positive cumulative
sums.

The key to the parallel implementation [3] of finding Max(X) for a length-n
sequence X = (xη)n

η=1 lies in the concurrent computation of the ending index
of the maximal monotone subsequence constrained with the starting index i ∈
γ(X). Lemma 1 suggests to consider only positive terms xi of X for the desired
computation. Let ε : γ+(X) → γ(X) be the function that ε(i) denotes the ending
index of the maximal monotone subsequence of X constrained with the starting
index i. The concurrent computation of ε via the computations of all-nearest-
smaller-values and range-minima, when applied to all the positive terms xi in
X, generates the statistics Mon(X) = {[i, ε(i)] | i ∈ γ+(X)} for the set of all
index subranges of all maximal monotone subsequences of X constrained with
given positive starting terms. The following theorem [3] reveals the structural
decomposition of X into Mon(X), which refines Max(X) and provides a basis
for a parallel computation of Max(X) from Mon(X).

Theorem 2. For a real-valued sequence X, Mon(X) enjoys the following paren-
thesis structure:

1. Every positive term of X has its index as the starting index of a unique index
subrange in Mon(X),

2. For every pair of index subranges in Mon(X), either they are disjoint or one
is a subrange of another, and

3. For every maximal monotone subsequence of X in Max(X), its index sub-
range is in Mon(X).

Our current work on Max-computation includes adapting the logarithmic-
time optimal-work parallel algorithm on practical parallel systems. However, in
view of the efficient linear-time sequential algorithm [8], we devise and imple-
ment a domain-decomposed parallel algorithm computing Max that employs the
optimal sequential algorithm in subsequence-hosting processors.

An ideal domain decomposition of a sequence X is a partition of X into
a pairwise disjoint family X of non-empty subsequences of X that are length-
balanced and Max-independent: Max(X) = ∪Y ∈X Max(Y ) (Y as a sequence in
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its own right). We first finds a sufficient condition for the Max-independence that
can be computed locally in subsequence-hosting processors. The characterization
of monotonicity in Lemma 1 suggests to consider the following two functions on
indices of positive terms of X with index range γ(X) (= [1, n])). Let rmX :
γ+(X) → [α(X) + 1, β(X)] ∪ {β(X) + 1} (= [2, n + 1]) denote the nearest-
smaller-or-equal right-match of the prefix sum si−1 of X:

rmX(i) =
{

min{η ∈ [i + 1, β(X)] | si−1 ≥ sη} if the minimum exists,
β(X) + 1 (= n + 1) otherwise.

A symmetric analogue of rmX is the nearest-smaller left-match function lmX .
Note that the families {[lmX(i), i] | i ∈ γ+(X)} and {[i, rmX(i)] | i ∈ γ+(X)}
satisfy the parenthesis structure similar to that of Mon – but permitting abut-
ting index subranges (at subrange ends) in the lmX -family. Both lmX and rmX

help locate the (minimum) starting and (maximum) ending indices, respectively,
of a maximal monotone subsequence of X containing the positive term xi: deter-
mine if a merge of multiple maximal monotone subsequences covering the index
subrange [lmX(i), i] may occur.

Lemmas 2 and 3 give a sufficient condition for the Max-independence of a
partition of X based on a local computation of rmXi

and its intuitive equivalence
by the Xi-hosting processor for each i ∈ {1, 2, . . . , n}.

Lemma 2. Let (Xη)m
η=1 be a sequential partition of a real-valued sequence X

with Xη, for η = 1, 2 . . . ,m, represented as a sequence in its own right over
its index range γ(Xη). If the partition satisfies the rm-closure condition: for all
i ∈ {1, 2, . . . ,m − 1} and all j ∈ γ+(Xi), rmXi

(j) ∈ [j + 1, β(Xi)], then the
partition is Max-independent: Max(X) = ∪m

η=1 Max(Xη).

Lemma 3. For a non-empty real-valued sequence Y , the right-match function
rmY : γ+(Y ) → [α(Y ) + 1, β(Y )] ∪ {β(Y ) + 1} satisfies the rm-closure condition
stated in Lemma 2 (for all j ∈ γ+(Y ), rmY (j) ∈ [j + 1, β(Y )]) if and only if the
sequence Y satisfies the minimum prefix-sum condition: the ending prefix sum
of Y , sβ(Y )(Y ), is a global minimum of all si(Y ) for all i ∈ [α(Y ) − 1, β(Y )].

The minimum prefix-sum condition, equivalent to the rm-closure condition
as shown in Lemma 3, exposes a stringent sufficiency for Max-independence of a
priori sequential partition of a sequence X: for all i ∈ {1, 2, . . . ,m−1}, the ending
prefix sum is a global minimum of all prefix sums of Xi. We incorporate the
minimum prefix-sum condition into constructing a posteriori sequential partition
of X that forms the basis in designing a domain-decomposed parallel algorithm
in computing Max(X).

For two sequences X and Y , denote the concatenation of X and Y by the
juxtaposition XY . Let X be a non-empty real-valued sequence with a sequential
partition P(X) = (X1,X1,2,X2,X2,3,X3, . . . , Xm−1, Xm−1,m,Xm). For nota-
tional simplicity, let X0,1 = ∅ and Xm,m+1 = ∅.

For every i ∈ {1, 2, . . . ,m−1}, denote by β∗
i the maximum/right-most index

η ∈ γ+(Xi−1,iXi), if non-empty, such that sη−1(Xi−1,iXi) is the minimum prefix
sum of those of Xi−1,iXi over γ+(Xi−1,iXi); that is,
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β∗
i = max arg min{sη−1(Xi−1,iXi) | η ∈ γ+(Xi−1,iXi) (�= ∅)}.

The sequential partition P(X) satisfies the rm-locality condition if for every
i ∈ {1, 2, . . . ,m−1} with non-empty γ+(Xi−1,iXi), rmXi−1,iXiXi,i+1(β

∗
i ) ∈ [β∗

i +
1, β(Xi−1,iXiXi,i+1)].

The rm-localized sequential partition P(X) derives a Max-independent par-
tition P̃(X) = (X ′′

i−1,iXiX
′
i,i+1)

m
i=1 where X ′′

i−1,i and X ′
i,i+1 are respectively the

suffix of Xi−1,i and prefix of Xi,i+1 that are determined by rm-computation as
follows. Recall that X0,1 = ∅ and Xm,m+1 = ∅, let X ′′

0,1 = ∅ and X ′
m,m+1 = ∅

accordingly. For every i ∈ {1, 2, . . . ,m − 1}, define X ′
i,i+1 as:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∅ if γ+(Xi−1,iXi) = ∅∨
rmXi−1,iXiXi,i+1(β

∗
i ) ∈ [β∗

i + 1, β(Xi−1,iXi;Xi−1,iXiXi,i+1)],
the prefix of Xi,i+1 with
index subrange [α(Xi,i+1;Xi−1,iXiXi,i+1), rmXi−1,iXiXi,i+1(β

∗
i )]

if γ+(Xi−1,iXi) �= ∅ ∧ rmXi−1,iXiXi,i+1(β
∗
i ) ∈ γ(Xi,i+1;Xi−1,iXiXi,i+1),

and X ′′
i,i+1 to be the (remaining) suffix of Xi,i+1 such that X ′

i,i+1X
′′
i,i+1 = Xi,i+1.

Note that the first case in defining X ′
i,i+1 may be absorbed into the second case.

Theorem 3. Let X be a non-empty real-valued sequence with an rm-localized
sequential partition P(X) = (X1,X1,2,X2,X2,3,X3, . . . , Xm−1,Xm−1,m,Xm)
and its derived sequential partition P̃(X) = (X ′′

η−1,ηXηX ′
η,η+1)

m
η=1. Then:

1. P̃(X) is Max-independent: Max(X) = ∪m
η=1 Max(X ′′

η−1,ηXηX ′
η,η+1), and

2. For all i ∈ {1, 2, . . . ,m}, Max(X ′′
i−1,iXiX

′
i,i+1) = Max(Xi−1,iXiX

′
i,i+1)−{Y

∈Max(Xi−1,iXiX
′
i,i+1) | α(Y ;Xi−1,iXiX

′
i,i+1)∈γ(X ′

i−1,i;Xi−1,iXiX
′
i,i+1)};

so Max(X) = ∪m
η=1(Max(Xη−1,ηXηX ′

η,η+1)−{Y ∈ Max(Xη−1,ηXηX ′
η,η+1) |

α(Y ;Xη−1,ηXηX ′
η,η+1) ∈ γ(X ′

η−1,η;Xη−1,ηXηX ′
η,η+1)}).

3 Probabilistic Analysis of the Locality Condition

The structural decomposition of a non-empty real-valued sequence X in
Theorem 3 suggests a basis for an ideal decomposition of X with length-balance
and Max-independence – provided the decomposition satisfies the rm-locality
condition. While the rm-localized decomposition P̃(X) is the (derived) sequen-
tial partition (X ′′

η−1,ηXηX ′
η,η+1)

m
η=1 in m pairwise disjoint subsequences, our

domain-decomposed parallel algorithm computing Max(X) will employ m pro-
cessors with the i-th processor hosting the subsequence Xi−1,iXiXi,i+1 for i ∈
{1, 2, . . . ,m}. The subsequences Xi−1,iXiXi,i+1 and Xi,i+1Xi+1Xi+1,i+2 hosted
in successive i-th and (i+1)-th processors have the common subsequence Xi,i+1

that serves as a buffer to capture the rm-locality originated from Xi−1,iXi and
a floating separation between successive Max-sets: Max(X ′′

i−1,iXiX
′
i,i+1) and

Max(X ′′
i,i+1Xi+1X

′
i+1,i+2). A longer common subsequence facilitates the satisfi-

ability of the rm-locality of the preceding subsequence while a shorter one avoids
redundant computation among successive processors.
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In this section we analyze the length bound of the common subsequences
probabilistically for random sequences of normally-distributed terms – via the
theory of random walk. Let X1,X2, . . . be a sequence of pairwise independent
and identically distributed random variables. Denote by (Sη)∞

η=0 the sequence
of prefix-sum random variables with S0 = 0 and Si =

∑i
η=1 Xη for i ≥ 1,

which corresponds to a general random walk for which Si gives the position at
epoch/index i. A record value occurs at (random) epoch i ≥ 1 corresponds to
the probabilistic event “Si > Sη for each η ∈ [0, i−1]”. For every positive integer
j, the j-th strict ascending ladder epoch random variable is the index of the j-th
occurrence of the probabilistic event above. We define analogously the notions
of: (1) strict descending ladder epochs by reversing the defining inequality from
“>” to “<”, and (2) weak ascending and weak descending epochs by replacing
the defining inequalities by “≥” and “≤”, respectively.

The first strict ascending ladder epoch is the random index of the first entry
into (0,+∞), and the continuation of the random walk beyond this epoch is a
probabilistic replica of the entire random walk. Other variants of (strict/weak,
ascending/descending) ladder epoch yield similar behavior.

Viewing the sequence X in the Max-computation in an appropriate prob-
abilistic setting studied below and following the above-stated denotations and
construction of the Max-independent sequential partition P̃(X) from an rm-
localized sequential partition P(X), we: (1) see intuitively that the random
index-difference rmXi−1,iXiXi,i+1(β

∗
i ) −β∗

i +1 behaves like the first weak descend-
ing ladder epoch T of the underlying random walk (yielding

∑κ
η=1 yη+β∗

i −1 for
κ = 0, 1, . . .) conditional on the probabilistic event “the positivity of the first
term yβ∗

i
” – with finite variance (and mean), and (2) develop a probabilistic

upper bound on the length of the common subsequences in P̃(X) via the mean
and variance of a variant of the first ladder epoch.

Remark 1. Ideally in P̃(X), we desire that:

|Xi,i+1| (= |[α(Xi,i+1;Xi−1,iXiXi,i+1), rmXi−1,iXiXi,i+1(β
∗
i )]|)

≤ |[β∗
i , rmXi−1,iXiXi,i+1(β

∗
i )]| = rmXi−1,iXiXi,i+1(β

∗
i ) − β∗

i + 1.

Thus, if we select the common subsequence Xi,i+1 such that |Xi,i+1| ≥ �E(T ) +
δ
√

Var(T ) for some positive real δ, then the following two probabilistic events
satisfy the subset-containment:

“rmXi−1,iXiXi,i+1(β
∗
i ) − β∗

i + 1 ≥ |Xi−1,i|”
⊆ “(rmXi−1,iXiXi,i+1(β

∗
i ) − β∗

i + 1) − E(T ) ≥ δ
√

Var(T )”,

and, in accordance with Chebyshev’s inequality,

pr (random index-difference rmXi−1,iXiXi,i+1(β
∗
i ) − β∗

i + 1 ≥ |Xi−1,i|)
≤ pr (T − E(T ) ≥ δ

√
Var(T )) ≤ pr (|T − E(T )| ≥ δ

√
Var(T )) ≤ 1

δ2
.

These will be applied to bound the likelihood of (non-)satisfiability of the rm-
locality condition for P(X).
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We now relate the conditional weak descending ladder epoch T to the uncon-
ditional one and then, in an appropriate probabilistic setting, the means and
variances of the two random variables.

For a sequence of pairwise independent and identically distributed random
variables X1,X2, . . . and its associated random-walk sequence (Sη)∞

η=0 of prefix-
sum random variables, denote by T1 its first weak descending ladder epoch.
Assume hereinafter that (Xη)∞

η=1 follows a common random variable X1 with
pr (X1 > 0) ≥ 0. For notational simplicity, denote by p and p̄ (= 1 − p) the
probabilities pr (X1 > 0) and pr (X1 ≤ 0), respectively.

The unconditional and conditional ladder epochs T1 and T (= T1 | X1 > 0)
have sample spaces of {1, 2, . . .} and {2, 3, . . .}, respectively, and for every t ∈
{2, 3, . . .},

pr (T = t) = pr (T1 = t | X1 > 0) =
pr (T1 = t ∩ X1 > 0)

pr (X1 > 0)
=

1
p

pr (T1 = t)

due to the subset-containment of the probabilistic events: “T1 = t (≥ 2)” ⊆
“X1 > 0”.

Lemma 4. Assume that the variance, hence the mean, of the unconditional weak
descending ladder epoch T1 exist. The means and variances of the unconditional
and conditional ladder epochs T1 and T = T1 | X1 > 0 are related as follows:

(1) E(T ) =
1
p

E(T1) − p̄

p
and (2) Var(T ) =

1
p

Var(T1) − p̄(
1
p
(E(T1) − 1))2.

Remark 2. Remark 1 and Lemma 4 suggest to seek lower and upper bounds on
E(T1) and an upper bound on Var(T1) for their use with the mean- and variance-
relationships – which translate to non-trivial bounds on E(T ) and Var(T ). Note
that, by the assumption of pr (X1 > 0), we have E(T1) > 1.

For our Max-computing problem, we assume hereinafter (unless explicitly
stated otherwise) that the sequence X = (xη)n

η=1 is a random sample from a
normal distribution with mean −a and variance b2 for some positive reals a
and b. That is, a sequence of pairwise independent and identically distributed
random variables X1,X2, . . . with a common normal distribution with mean−a
and variance b2 gives rise to the observed values x1, x2, . . .. In applications, the
knowledge of the mean and variance of the common random variable is known
(see a uniformly-distributed case studied in [8]) or can be approximated.

The negativity of the mean (−a) of the underlying normal distribution is
desired in order to avoid yielding unrealistically long minimal maximum subse-
quences for viable applications. Formally for the induced random-walk sequence
(Sη)∞

η=0 of (Xη)∞
η=1, since E(X1) is finite and negative, the first (weak descend-

ing) ladder epoch T1 has a proper probability distribution with finite mean and
the random walk drifts to −∞. For notational simplicity, denote by λ the “mean
to standard deviation” ratio E(X1)√

Var(X1)
; λ = −a

b for a common normal distribution

X1 with mean −a and standard deviation b.
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Theorem 4. For a sequence of pairwise independent and identically distributed
random variables (Xη)∞

η=1 with a negative (common) finite mean E(X1) and a
positive probability p (= pr (X1 > 0)), the unconditional and conditional first
weak descending epochs, T1 and T (= T1 | X1 > 0) respectively, satisfy the
followings:

1. [General Case: Means ] For T1:E(T1) = exp(
∑∞

η=1
pr (Sη>0)

η ); for T : E(T ) =
1
p exp(

∑∞
η=1

pr (Sη>0)
η ) − p̄

p .
2. [Normally-Distributed Case: Means ] For a common normal distribution of

(Xη)∞
η=1 with mean −a and variance b2 for some positive reals a and b and

for every positive integer l, denote B(λ, l, η) = 1 − exp(− λ2

2 sin2(ηπ/(2l))
) for

η ∈ {1, 2, . . . , l}, then:

for T1: 1 < (
l−1∏
η=1

B(λ, l, η))− 1
2l ≤ E(T1) ≤ (

l∏
η=1

B(λ, l, η))− 1
2l ;

for T :
1
p
(

l−1∏
η=1

B(λ, l, η))− 1
2l − p̄

p
≤ E(T ) ≤ 1

p
(

l∏
η=1

B(λ, l, η))− 1
2l − p̄

p
.

For our purpose in this study, we consider l = 6, and denote by μ′ and μ′′

the lower and upper bounds on the mean E(T1) obtained in Theorem 4.

Remark 3. The range-constraint on E(T1): E(T1) ∈ [μ′, μ′′] induces an upper
bound on Var(T1) via some stochastic relationships of the first- and second-order
moments of the first weak descending ladder epoch T1, its associate (first weak
descending) ladder height ST1 , and the common distribution X1 of the underlying
random walk.

The following scenario will appear in upper-bounding Var(T1) and Var(T ):
a quadratic polynomial Q with negative leading coefficient and two distinct real
roots r′ and r′′ (r′ < r′′) serves as an upper bound on a nonnegative quantity v
(such as a variance): 0 ≤ v ≤ Q(s) where s is a real-valued statistics – which
induces a range-constraint: s ∈ [r′, r′′].

Denote by q1 and q the two quadratic polynomial forms that represent upper
bounds on Var(T1) and Var(T ), respectively, in Theorem 5 below:

1. q1(t) = 2(−t2 + (1 + 2
λ2 )t) with distinct real roots r′

1 and r′′
1 (r′

1 < r′′
1 ), and

2. q(t) = −(2 + p̄
p2 )t2 + 2(1 + 2

λ2 + p̄
p2 )t − p̄

p2 with distinct real roots r′ and r′′

(r′ < r′′).

Theorem 5. For a sequence of pairwise independent and identically distributed
random variables (Xη)∞

η=1 with a negative (common) finite mean E(X1), a finite
(common) third-order absolute moment E(|X1|3), and a positive probability p (=
pr (X1 > 0)), the unconditional and conditional first weak descending epochs T1

and T (= T1 | X1 > 0) respectively, satisfy the followings:
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1. [General Case: Means and Variances ] For T1: r′ ≤ E(T1) ≤ r′′ and

Var(T1) < q1(E(T1)) = 2(−E(T1)2 + (1 +
2
λ2

) E(T1));

for T : 1
pr′ − p̄

p ≤ E(T ) ≤ 1
pr′′ − p̄

p and

Var(T ) < q(E(T1)) = −(2 +
p̄

p2
) E(T1)2 + 2(1 +

2
λ2

+
p̄

p2
) E(T1) − p̄

p2
.

2. [Normally-Distributed Case: Means and Variances ] With a common normal
distribution of (Xη)∞

η=1 with mean −a and variance b2 for some positive reals
a and b:

for T1: μ′ ≤ E(T1) ≤ μ′′ and Var(T1) < q1(E(T1));

for T :
1
p
μ′ − p̄

p
≤ E(T ) ≤ 1

p
μ′′ − p̄

p
and Var(T ) < q(E(T1)).

4 Max-Algorithms, Performance, and Conclusion

We have implemented a Max-computing parallel algorithm on cluster systems
in which subsequence-hosting processors employ an optimal linear-time sequen-
tial algorithm Max Sequential (which is detailed in the full version) for local
Max-computation. Improvements to the algorithms and work in progress will be
addressed in the conclusion. The algorithms implemented with Message Passing
Interface (MPI) are available from the authors.

The performance of the parallel algorithm Max Parallel is assessed in a
preliminary empirical study on a cluster with synthetic random data as fol-
lows: (1) N = 100 trial-sequences, each is a random sample/sequence of length
n = 5 · 106 from a normal distribution with mean −0.25 and variance 1.0, and
(2) Performance measures in (absolute) speedup and efficiency of Max Parallel
are collected in two sets of mean-statistics: (2.1) the set of conditional mean-
statistics on “success” scenario (satisfiability of the rm-locality condition for the
first (p−1) processors) from N trial-sequences and the Max-computing by (local)
Max Sequential in Max Parallel: Steps 1 – 3, and (2.2) the set of unconditional
ones for Max Parallel: all steps.

Based on the optimal sequential-time algorithm [8], the (mean) optimal
sequential time for Max-computation of a length-n sequence, T ∗(n), is approx-
imately 0.155881 sec for the synthetic random data prepared in item 1 above
(when averaged over N = 100 sequences).

Table 1 summarizes the above-stated two sets of mean-statistics of the run-
ning time, speedup, and efficiency of Max Parallel for δ = 3 (in Remark 1
and Max Parallel: Step 1) and m processors with m ∈ {1, 2, 4, 8, 16, 32, 64}:
Tm(n) (in seconds), Sm(n) = T ∗(n)

Tm(n) , and Em(n) = T1(n)
mTm(n) , respectively.

Since pr(satisfiability of rm-locality for single processor) ≥ 1− 1
δ2 (= 8

9 ), the
expected number Ns of “successes” from N trial-sequences is bounded below:
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Ns ≥ N(1 − 1
δ2 )m−1. The empirical and statistical results tabulated in the two

columns: (expected) Ns and empirical-Ns show that the constraints on E(T )
and Var(T ) (Theorem 5: part 2) in bounding E(T ) + δ

√
Var(T ) (Max Parallel:

Step 1) serves as a good lower-bound predictor for Ns. For the conditional statis-
tics on “success” scenario, the speedup and efficiency are close to their theoretical
bounds of m and 1, respectively. For the unconditional ones, even for a small δ
(= 3), the speedup and efficiency exceed 3

4 of their theoretical bounds, except for
m = 64. The speedup and efficiency performance of an improved Max Parallel
depends on the extent of resolving violations of rm-locality among neighbor pro-
cessors and tradeoffs involving δ and m.

Algorithm Max Parallel.
Require: A length-n real-valued sequence X (which is a random sample satisfying

the assumptions in Theorem 5: part 2) and a prescribed probability threshold δ
(Remark 1: Chebyshev’s inequality).

Ensure: The sequence of all successive minimal maximum subsequences (all maximal
monotone subsequences) of X.

1: Construct sequential partitionP(X) = (X1, X1,2, X2, X2,3, X3, . . . , Xm−1, Xm−1,m,
Xm) of X (stated in Section 3) such that: (1) for all i ∈ {1, 2, . . . , m}, processor Pi

hosts the subsequence Xi,i−1XiXi,i+1 in a length-balanced manner except possibly
for the last processor Pm, and (2) for all i ∈ {1, 2, . . . , m − 1}, |Xi,i+1| is the least
upper bound of �E(T ) + δ

√
Var(T )� computed via Theorem 5: part 2;

2: {Decide if P(X) is an rm-localized partition:}
2.1: for all i ∈ {1, 2, . . . , m}

{1 ≤ i ≤ m − 1: processor Pi computes:
is rmLocalizedi := (γ+(Xi−1,iXi) = ∅)∨

(rmXi−1,iXiXi,i+1(β
∗
i ) ∈ [β∗

i + 1, β(Xi−1,iXiXi,i+1)]);
i = m: processor Pm computes:

is rmLocalizedm := true;}
2.2: Compute is rmLocalized := ∧m−1

η=1 is rmLocalizedη using prefix-sum function;
2.3: for all i ∈ {1, 2, . . . , m} processor Pi updates:

is rmLocalizedi := is rmLocalized;
3: {If P(X) is rm-localized, then compute Max(X) via Theorem 3: determine

X ′
i,i+1 for all i ∈ {1, 2, . . . , m − 1} and compute Max(X ′′

i−1,iXiX
′
i,i+1) for all

i ∈ {1, 2, . . . , m}:}
for all i ∈ {1, 2, . . . , m} processor Pi updates:
if is rmLocalizedi then

{1 ≤ i ≤ m − 1: processor Pi sends rmXi−1,iXiXi,i+1(β
∗
i ) to processor Pi+1;

processor Pi+1 receives rmXi−1,iXiXi,i+1(β
∗
i );

i = m: null;}
Invokes Max Sequential to compute Max(X ′′

i−1,iXiX
′
i,i+1);

else goto Step 4;
4: Invoke a parallel algorithm adapted from the Max-computing PRAM-algorithm [3]

in which two embedded problems are solved by parallel algorithms implemented
with MPI: “all nearest smaller values” [4] and “range-minima” [5];
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Table 1. Preliminary empirical study of speedup and efficiency of Max Parallel

mean-statistics conditional on “success” scenario: unconditional:
over N mean-statistics over observed Ns mean-statistics over N

m Ns observed Ns Tm(n) Sm(n) Em(n) Tm(n) Sm(n) Em(n)

1 100.00 100 0.156833 0.9939 1.0000 0.156835 0.9939 1.0000
2 88.89 98 0.078377 1.9889 1.0005 0.078712 1.9804 0.9963
4 70.23 95 0.039663 3.9301 0.9885 0.040095 3.8878 0.9779
8 43.85 81 0.020464 7.6173 0.9580 0.021470 7.2604 0.9131
16 17.09 72 0.010410 14.9742 0.9416 0.011246 13.8610 0.8716
32 2.60 43 0.005312 29.3451 0.9226 0.006318 24.6725 0.7757
64 0.06 21 0.003002 51.9257 0.8163 0.005047 30.8859 0.4855

Our work in progress includes a comparative empirical/probabilistic study
based on current implementation and refining the algorithms to detect and
resolve violations of rm-locality among near-neighbor processors. There are two
directions for general theoretical developments. First, the length bound of the
common subsequences (to capture the rm-locality) is achieved via explicit bounds
on the mean/variance of the first ladder epoch in the underlying random walk
with normal distribution. This leads to a deserving study for general probability
distribution. Second, there are other notions of (minimal) maximality for ranking
subsequences of a real-valued sequence, developing efficient parallel algorithms
for their computation is interesting.
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Abstract. Partial orders are a fundamental mathematical structure
capable of representing true concurrency and causality on a set of atomic
events. In this paper we study two mathematical formalisms capable of
the compressed representation of sets of partial orders: Labeled Event
Structures (LESs) and Conditional Partial Order Graphs (CPOGs). We
demonstrate their advantages and disadvantages and propose efficient
algorithms for transforming a set of partial orders from a given com-
pressed representation in one formalism into an equivalent representation
in another formalism without the explicit enumeration of each scenario.
These transformations reveal the superior expressive power of CPOGs
as well as the cost of this expressive power. The proposed algorithms
make use of an intermediate mathematical formalism, called Conditional
Labeled Event Structures (CLESs), which combines the advantages of
LESs and CPOGs. All three formalisms are compared on a number of
benchmarks.

1 Introduction

Partial orders – the protagonists of this paper – play a fundamental role in the
concurrency theory. The concept has a very simple definition: a partial order is
a reflexive, antisymmetric and transitive relation ≤ on a set of elements S. Two
distinct elements a, b ∈ S can be either ordered (a ≤ b or b ≤ a) or concurrent
(a �≤ b and b �≤ a). Partial orders arise in numerous application areas such as
model checking, process mining, concurrent programming, and VLSI design to
name but a few. In this paper we do not focus on a particular application area,
however, we use partial orders coming from the VLSI design domain as real-
life benchmarks (specifically we use partial orders corresponding to processor
instructions and on-chip communication protocols).

A single partial order can capture a single behavioral scenario of a modeled
system. However, real-life systems rarely exhibit just a single scenario; in fact,
we routinely design systems exhibiting millions of scenarios, each being a partial

This research was done while the author was preparing his thesis at INRIA and LSV,
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order defined on a subset of events that may occur in a system. How do we rep-
resent all of those partial orders? One can, of course, simply list them explicitly
but this is clearly not a scalable solution – 6.6 trillion different partial orders
can be defined on just 10 events!

In this paper we study two mathematical formalisms to compactly repre-
sent sets of partial orders: Labeled Event Structures (LESs) [6] and Conditional
Partial Order Graphs (CPOGs) [5]. The two formalisms are significantly differ-
ent from each other, hence one cannot directly use them together: conversion
from one formalism to another without an intermediate uncompression step is
non-trivial. As will be demonstrated in Section 4, different formalisms may be
preferable in different application domains. For example, LESs can typically be
obtained from Petri Net specifications via unfolding, while CPOGs naturally
come from hardware specifications and implementations, where partial orders
are pre-encoded with Boolean vectors (low-level signals, instruction opcodes,
etc.).

This brings us to the main contribution of this paper: we present two direct
transformation algorithms (Section 5) for converting compressed sets of partial
orders from LESs to CPOGs and from CPOGs to LESs without an intermedi-
ate uncompression. The presented transformations reveal the superior expres-
sive power of CPOGs as well as the cost of this expressive power: CPOGs are
often more demanding from the algorithmic complexity point of view. The pro-
posed algorithms make use of a new mathematical formalism, called Conditional
Labeled Event Structures (CLESs), which combines the advantages of LESs and
CPOGs. The CLES formalism makes it possible to directly combine sets of
partial orders represented in LESs and CPOGs, thereby improving their inter-
operability.

To the best of the authors’ knowledge, no other mathematical model has been
directly used for the task of compressed representation of sets of partial orders,
hence we only build one (bidirectional) bridge between LESs and CPOGs. If one
would like to use other models for this task (for example Petri Nets or Message
Sequence Charts), it is possible to reuse existing bridges to connect to the body
of our work, e.g., one can obtain a LES from a Petri Net via its unfolding [3].

2 Preliminaries

This section introduces two formalisms that compactly represent partial orders:
Labeled Event Structures [6] and Conditional Partial Order Graphs [5].

2.1 Labeled Event Structures

Event Structures1 can represent several execution scenarios of a system by means
of so called configurations. We study their widely used extension, called Labeled
Event Structures, whose events are labeled with actions over a fixed alphabet L.
1 In this article, we restrict to prime event structures.
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Definition 1. A labeled event structure (LES) over alphabet L is a tuple E =
(E,≤,#, λ) where E is a set of events; ≤ ⊆ E × E is a partial order (called
causality) satisfying the property of finite causes, i.e. ∀e ∈ E : |{e′ ∈ E | e′ ≤
e}| < ∞; # ⊆ E × E is an irreflexive symmetric relation (called conflict)
satisfying the property of conflict heredity, i.e. ∀e, e′, e′′ ∈ E : e # e′ ∧ e′ ≤ e′′ ⇒
e # e′′; and λ : E → L is a labeling function.

Remark 1. Note that in most cases one only needs to consider reduced versions
of relations ≤ and #, which we will denote ≤r and #r, respectively. Formally, ≤r

(which we call direct causality) is the transitive reduction of ≤, and #r (direct
conflict) is the smallest relation inducing # through the property of conflict
heredity. In practice |≤r| and |#r| are often a lot smaller than |≤| and |#|,
however, in the worst case |≤r| = Θ(|≤|) and |#r| = Θ(|#|), therefore the
speed up gained by using the reduced relations does not affect the worst case
performance of the presented algorithms.

A configuration is a computation state of a LES. It is represented by a set
of events that have occurred in the computation. If an event is present in a
configuration, then so must all the events on which it causally depend. Moreover,
a configuration does not contain conflicting events.

Definition 2. A configuration of a LES E = (E,≤,#, λ) is a set C ⊆ E that is
causally closed, i.e. e ∈ C ⇒ ∀e′ ≤ e : e′ ∈ C, and conflict-free, i.e. e ∈ C and
e#e′ imply e′ �∈ C. The set of maximal (w.r.t. set inclusion) configurations of E
is denoted by Ω(E).

In this paper we only deal with LESs whose configurations do not contain
two events with the same label. With such a restriction one can associate to
every configuration C a partial order whose elements are λ(C) (where λ is lifted
to sets) and causality is inherited from ≤. We will denote such partial order as
π(C) and lift π to sets of configurations.

C1

C2 C3

C4

a a a a

b b b

c c

c

d

d

d

e

E1

a

b

c

cd

d

e

E2

Fig. 1. Two Labeled Event Structures representing the same set of partial orders

The local configuration [e] of an event e is a set of events on which it causally
depends, i.e. [e] � {e′ ∈ E | e′ ≤ e}; and its future �e� is the set of events that
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causally depend on it, i.e. �e� � {e′ ∈ E | e < e′}. Since a configuration together
with the causality relation form a partial order, one can consider a LES E as a
compressed representation of the set of partial orders induced by the maximal
configurations Ω(E).

Fig. 1 shows an LES E1 defined on alphabet L = {a, b, c, d, e} which con-
tains four maximal configurations C1-C4. Note that throughout this paper we
only show direct causality (by arrows) and direct conflicts (by dashed lines)
on diagrams for clarity (events that belong to different configurations C1-C4

are all in conflict pairwise). It can be observed that not much compression
is achieved by E1. The LES E2 represents the same set of partial orders, i.e.
π(Ω(E1)) = π(Ω(E2)), and it is more compact.

2.2 Conditional Partial Order Graphs

A Conditional Partial Order Graph (CPOG) is a quintuple H = (V,A,X, φ, ρ),
where V is a set of vertices, A ⊆ V × V is a set of arcs between them, and X
is a set of operational variables. An opcode is an assignment (x1, x2, . . . , x|X|) ∈
{0, 1}|X| of these variables; X can be assigned only those opcodes which satisfy
the restriction function ρ of the graph, i.e. ρ(x1, x2, . . . , x|X|) = 1. Function φ
assigns a Boolean condition φz to every vertex and arc z ∈ V  A of the graph.

a

b : x ∨ ye : x ∧ y

c : x ∨ y d : x ∨ y

x

y

y x

x = 0

y = 0

a

b

c d

x = 0

y = 1

a

b

c d

x = 1

y = 0

a

b

c d

x = 1

y = 1

a

e

Fig. 2. Conditional Partial Order Graph and the corresponding set of partial orders

Fig. 2 (top) shows an example of a CPOG containing 5 vertices and 6 arcs;
there are two operational variables x and y; the restriction function is ρ = 1,
hence, all four opcodes (x, y) ∈ {0, 1}2 are allowed. Vertices and arcs labeled by
1 are called unconditional (conditions equal to 1 are not depicted in the graph).
The purpose of vertex and arc conditions is to ‘switch off’ some vertices and/or
arcs in the graph according to the given opcode. This makes CPOGs capable
of containing multiple projections as shown in Fig. 2 (bottom). The leftmost
projection is obtained by keeping in the graph only those vertices and arcs whose
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conditions evaluate to Boolean 1 after substitution of the operational variables x
and y with Boolean 0. Hence, vertex e disappears, because its condition evaluates
to 0: φe = x∧y = 0. Arcs {c → d, d → c} disappear for the same reason. Note also
that although the condition on arc a → e evaluates to 1 (in fact it is constant
1) the arc is still excluded from the projection because one of the vertices it
connects (vertex e) is excluded and an arc cannot appear in a graph without one
of its adjacent vertices.

Each projection is treated as a partial order specifying a behavioral scenario
of a modeled system. Potentially, a CPOG H = (V,A,X, φ, ρ) can specify an
exponential number of different partial orders on events V according to 2|X|

possible opcodes. We will use notation H|ψ to denote a projection of a CPOG
H under an opcode ψ = (x1, x2, . . . x|X|). A projection H|ψ is called valid iff
opcode ψ is allowed by the restriction function, i.e. ρ(x1, x2, . . . x|X|) = 1, and
the resulting graph is acyclic. The latter requirement guarantees that the graph
defines a partial order. A CPOG H is well-formed iff every allowed opcode
produces a valid projection. The graph H in Fig. 2 is well-formed, because
H|x,y=0,H|x=0,y=1,H|x=1,y=0 and H|x,y=1 are valid. A well-formed graph H
therefore defines a set of partial orders P (H).

Complexity. The original definition of CPOG complexity [5] is simply the total
count of literals used in all the conditions:

∑
e∈V �A |φe|, where |φ| denotes the

count of literals in condition φ, e.g., |x ∧ y| = 2 and |1| = 0. The complexity
of the CPOG shown in Fig. 2 is thus equal to 10 according to this definition.
We argue that this definition is not very useful in practice, because it does not
take into account the fact that some of the conditions coincide. Intuitively, since
φb = φc = φd = x ∨ y we can compute condition x ∨ y only once and reuse the
result three times. Furthermore, one can notice that conditions φb = x ∨ y and
φe = x ∧ y are not very different from each other; in fact φb = ¬φe, therefore
having computed φe we can efficiently compute φb by a single inversion operation.
In Section 4 we introduce an improved measure of complexity (based on Boolean
circuits) which is free from the above shortcomings.

3 Enriched and Conditional LESs

A LES can represent several partial orders by means of its maximal configu-
rations. CPOGs provide an additional mapping between partial orders and the
corresponding opcodes, that is, given an opcode ψ satisfying the restriction func-
tion of a well-formed CPOG H, one can obtain the corresponding partial order as
a projection H|ψ. In the next subsection we show that a similar correspondence
between opcodes and partial orders can be established by LESs if we enrich them
with additional information on conflict resolution.

3.1 Enriched Labeled Event Structures

Partial orders are represented by maximal configurations of a LES, therefore
to extract a partial order from a LES one needs to resolve event conflicts in a
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certain way. We enrich LESs with a total order on the conflicts and restrict the
way conflicts can be resolved, leading to Enriched Labeled Event Structures.

Definition 3. An Enriched Labeled Event Structure (ELES) over alphabet L is
a tuple E = (E,≤,#, λ,L,V) where (E,≤,#, λ) is a labeled event structure, L
is a total order on # and V is a set of vectors of length |L|.

A conflict solver is a vector v ∈ {0, 1}|L| indicating which event is chosen in
each conflicting pair (conflict L[i] is resolved by v[i]’s event in the conflict). Not
every conflict solver is acceptable as illustrated in Fig. 3: any solver that chooses
d2 over d1 must also choose c1, because c2 is in future of d1; therefore vector
111 is disallowed. This is not the only restriction. If an event is a part of more
than one conflict, whenever we choose it w.r.t. one conflict, we must also choose
it w.r.t. to the others. Let E denote events that are not selected by a conflict
solver v, i.e. E = {e ∈ E | ∃i, j : v[i] = j ∧ L[i][1 − j] = e}, the conflict solver is
valid iff it generates a maximal configuration, i.e. E\�E� ∈ Ω(E). The set V in
the definition of ELESs contains all valid conflict solvers.

a

b

c1

c2

d1

d2

e

L = [(e, b), (c1, c2), (d1, d2)]

V = {000, 001, 010, 011, 100, 101, 110} 100

a

b

c d

101

a

b

d

c

110

a

b

d

c

0−−

a

e

Fig. 3. An ELES and its conflict solvers

Example 1. Consider the ELES shown in Fig 3. If event e is chosen (v[1] = 0),
the resolution of the other conflicts becomes unimportant since the configuration
obtained is already maximal. However if event b is chosen (v[1] = 1), other
conflicts need to be resolved, hence V = {000, 001, 010, 011, 100, 101, 110}.

The following proposition characterizes the set of valid conflict solvers for a
given labeled event structure (the proof can be found in [8]).

Proposition 1. Let E = (E,≤,#, λ,L,V) be such that for every v ∈ V, if
v[i] = j and L[i][j] = e, then ∀h, k : L[h][k] = e implies v[h] = k and ∀e′ ∈
[e], h, k : L[h][k] = e′ implies v[h] = k. Then V is a set of valid conflict solvers.
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The above result shows how to compute a set of valid conflicts solvers for
a LES and therefore each LES can be easily extended into the corresponding
ELES. This means that both LESs and CPOGs can be used when one needs
to store partial orders in a compressed form and access them by providing the
corresponding opcodes. In the rest of the paper we will focus on LESs; however,
all presented results also hold for their enriched counterparts.

3.2 Conditional Labeled Event Structures

The acyclicity of LESs often introduces redundancy in events: vertex c from
the CPOG in Fig. 2 needs to be represented by two events (c1 and c2) in the
LES of Fig. 3. In order to avoid this redundancy, we follow ideas of CPOGs and
label elements of a LES (events and relations) by Boolean conditions in order to
represent several LESs with one Conditional Labeled Event Structure. The next
section shows that CLESs are of particular interest when transforming LESs into
CPOGs and vice versa.

Definition 4. A Conditional Labeled Event Structure (CLES) over alphabet L
is a tuple E = (E,≤,#, λ,X, φ, ρ) where E are events; ≤ is a set of arcs; #
represents conflicts; λ labels events; X is a set of operational variables; φ assigns
Boolean conditions to E,≤ and #; and ρ is the restriction function.

a

b

c d

e
ρ = x ∨ y

x

y

Fig. 4. Conditional Labeled Event Structure

A well-formed CLES is such that its projection on a valid opcode (allowed
by the restriction function) generates a LES, i.e. ≤ becomes acyclic. CLESs
generalize both CPOGs and LESs: if conflicts are dropped we get a CPOG; if
the structure is acyclic and conditions are dropped, we get a LES.

The CLES in Fig. 4 represents the same partial orders as the CPOG and the
LES in Figs. 2 and 3. If we compare it to the CPOG, a conflict is introduced,
but the number of Boolean conditions is reduced. Comparing it to the LES, one
can see that not only the number of events is reduced, but also the number of
conflicts. The cardinality of the causality relation is preserved, but the informa-
tion about Boolean labeling needs to be stored, i.e. φc≤d = x and φd≤c = y.
In the next section we introduce a complexity measure for such conditional, or
parameterized, structures that we will use to compare (Enriched) LESs, CPOGs
and CLESs to each other.
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4 Parameterized Structures

The formalisms we presented in the previous sections can be used for the com-
pressed representation of sets of partial orders. The key feature of these for-
malisms is the support for conditional elements, i.e. elements labeled with
Boolean conditions.

Definition 5. A mathematical structure over a set of elements S is called a
parameterized structure if the elements are labeled with Boolean conditions φ :
S → Φ, where Φ is a set of predicates (Boolean functions) on X, that is Φ ⊆
X → {0, 1}.

A CPOG is a parameterized structure whose elements are vertices and arcs.
Events and causality/conflict relations are elements of both LESs and CLESs,
but every LES element is labeled by 1 while CLES elements can be labeled by
arbitrary conditions.

Below we define a complexity measure for parameterized structures that we
will use to compare compactness of CPOGs, LESs and CLESs in our experi-
ments.

Complexity Measure. Instead of treating each predicate in Φ separately let us
construct a Boolean circuit [10] that computes all of them together and makes use
of shared intermediate results. This is exactly what happens in practice regard-
less of whether a parameterized structure is used for verification purposes or in
hardware synthesis. The decoding complexity of a predicate set Φ is the number
of variables in Φ plus the number of gates in the smallest circuit2 computing all
predicates.

Definition 6. The Complexity of a parameterized structure with predicate set Φ
on a set of elements S is the decoding complexity of Φ plus the number of elements
in S.

Fig. 5 shows a circuit that computes predicates in Φ = {1, x∨y, x∧y, x, y, x, y}
required for the CPOG shown in Fig. 2. Note that trivial conditions 1, x and
y require no computation at all and are therefore omitted in the diagram. We
do not need a circuit to compute conditions of a LES which are always 1; only
a single NAND gate is required for the CLES in Fig. 4. Therefore, the CPOG
complexity is considered to be equal to 17 (2 variables + 4 gates + 5 vertices +
6 arcs); the LES complexity is 16 (7 events + 6 direct causality arcs + 3 direct
conflicts); finally, the CLES complexity is 15 (2 variables + 1 gate + 5 vertices
+ 6 direct causality arcs + 1 direct conflict).

Comparison of Parameterized Structures. We compare LESs, CPOGs and
CLESs on a number of benchmarks coming from the VLSI design domain, in
2 In our experiments we restrict the number of inputs of each gate to 2. Since finding

the smallest circuit is a very hard problem, we use approximation of the circuit
complexity measure [1].
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x

x
y x ∧ y

x ∨ y

y

Fig. 5. Circuit computing conditions for CPOG in Fig. 2

particular, on-chip communication controllers [2] and processor microarchitec-
tures [4]. We observed that a CPOG often has a lower complexity than a corre-
sponding LES, however, the opposite can also be true. Since every CPOG is a
CLES with # = ∅ and every LES is a CLES with φ = 1, CLESs have at most
the same complexity as CPOGs and LESs.

Example 2. Phase encoders [2] are communication controllers capable of gener-
ating all permutations of n events. They are badly handled by acyclic structures
as can be seen in Fig. 6 (right). The LES for a phase encoder with n = 3 has
complexity 33 while its corresponding CPOG has complexity 15. In general, the
complexity of CPOGs for phase encoders grows quadratically with n, while the
complexity of LESs grows exponentially: one can see that the LES for a phase
encoder of size n must have n! events on its lowest level. In fact, a LES must
contain at least as many events as there are partial orders in it.

b

a c

x
xy

y

z

z

a

b c

bc

b

a

c a

c

c

a

b a

b

Fig. 6. Phase encoder for n = 3 represented by a CPOG (left) and a LES (right)

Example 3. Decision trees [9] are binary trees that can be used to model choices
and their consequences. LESs for decision trees are smaller than CPOGs as the
number of direct conflicts is smaller than the decoding complexity for conditions.
This is illustrated in Fig. 7 where the LES on the right has complexity 16, while
the complexity of the CPOG is 21. Asymptotically the complexity of both LESs
and CPOGs grows linearly with the size of decision trees, so in this example
LESs are better by just a constant factor. In general, as we will demonstrate
in Section 5, the complexity of a CPOG never exceeds the complexity of the
corresponding LES by more than just a constant factor.
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a

b : x c : x

d : x ∧ y e : x ∧ y f : x ∧ y g : x ∧ y

a

b c

d e f g

Fig. 7. A decision tree represented by a CPOG (left) and a LES (right)

Example 4. Trees of phase encoders are a combination of decision trees of height
h and phase encoders with n actions: after h choices are made, all permutations
of n events are possible. CLESs are strictly smaller than both CPOGs and LESs
in this example, as shown in Fig. 8: the CPOG, the LES and the CLES have
complexity 35, 52, and 30, respectively.

a1

a2 : x a3 : x

a4 : x ∧ y a5 : x ∧ y a6 : x ∧ y a7 : x ∧ y

b c

z

z

a1

a2

a4 a5

b c b c

c b c b

a3

a6 a7

b c b c

c b c b

a1

a2

a4 a5

b

a3

a6 a7

c

z z z z

z z z z

z

z

Fig. 8. A tree of phase encoders represented by a CPOG, a LES and a CLESs

Table 1 provides a summary of our experimental comparison of the complex-
ity of CPOGs, LESs and CLESs. We compressed different sets of partial orders:
phase encoders, decision trees, trees of phase encoders, as well as several sets of
processor instructions (from ARM Cortex M0 and Intel 8051 processors [4]).

5 Transformations

This section presents the main contribution of this work: algorithms for trans-
forming LESs into CPOGs and vice versa without performing an intermediate
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Table 1. Experimental results

Complexity
Name Scenarios CPOG LES CLES

24 24 158 24
Phase encoder 120 35 825 35

720 48 5001 48
8 44 39 36

Decision tree 16 97 76 76
32 195 156 156
16 70 108 58

Trees of phase encoders 29 43 158 41
32 136 220 114

Complexity
Name Scenarios CPOG LES CLES

5 26 28 26
6 27 35 27
7 26 38 26

ARM Cortex M0 8 28 43 28
9 28 46 28
10 29 46 29
11 30 50 30
5 34 48 34
6 35 52 35
7 36 56 36

Intel 8051 8 37 56 37
9 46 71 46
10 47 81 47
11 51 90 51

uncompression step. Note that both algorithms make use of CLESs as an inter-
mediate representation, which is not essential but convenient. The proofs of the
results in this section can be found in [8].

From LESs to CPOGs. Every LES can be seen as an acyclic CLES where
vertices and arcs are labeled by 1. If conflicts are removed from the CLES, an
acyclic CPOG is obtained which can then be folded to remove redundant vertices.
In order to preserve the information about conflicts, conflicting events need to
be labeled by Boolean conditions in such a way that they cannot belong to the
same projection. Proposition 1 shows that whenever an event is selected in one
conflict, it must be selected in all other conflicts it participates in, along with
all of its causal predecessors. This can be encoded in the restriction function of
the resulting CPOG as follows3:

ρ = (
∧
e#f

¬φe ∨ ¬φf )(
∧
e≤f

φf ⇒ φe) (1)

For the example shown in Fig. 3 this generates the following restriction function:

(vb ⇒ va) ∧ (ve ⇒ va) ∧ (vc1 ⇒ vb) ∧ (vd1 ⇒ vb) ∧ (vd2 ⇒ vc1) ∧ (vc2 ⇒ vd1) ∧
(ve ∨ vb) ∧ (vc1 ∨ vc2) ∧ (vd1 ∨ vd2)

3 Some optimization techniques allow to consider only direct causality and direct con-
flicts. We make use of this observation in our further examples.
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By employing a SAT solver one can easily check that the above is satisfied by the
following assignments which correspond to maximal configurations of the LES:

va = vb = vc1 = vd1 = 1, vc2 = vd2 = ve = 0
va = vb = vd1 = vc2 = 1, vc1 = vd2 = ve = 0
va = vb = vc1 = vd2 = 1, vc2 = vd1 = ve = 0
va = ve = 1, vb = vc1 = vc2 = vd1 = vd2 = 0

However not only maximal configurations satisfy the function, for example, the
empty configuration clearly satisfies it as well: va = vb = vc1 = vc2 = vd1 =
vd2 = ve = 0.

Since we do not want such non-maximal configurations to be allowed by the
restriction function, we need to further elaborate it. A configuration is maximal
if and only if, for every event e ∈ E one of the following conditions holds: (i)
event e belongs to the configuration; (ii) there exist an event f which belongs to
the configuration and prevents e. The restriction function (1) can now be refined
to allow only maximal configurations:

ρ = (
∧
e#f

¬φe ∨ ¬φf )(
∧
e≤f

φf ⇒ φe)(
∧
e∈E

φe ∨
∨
e#f

φf ) (2)

Coming back to the example in Fig. 3, the refined restriction function (2) has
only four satisfying assignments that represent the four maximal configurations
of the LES.

Once conditions are assigned to events, arcs also need to be labeled before
folding the result into a CPOG: we label each arc by the conjunction of the
conditions of the events it connects to make sure an arc appears only if both
of the events do. The resulting CLES may contain several events labeled by the
same action, which is redundant for CPOGs. Such events can be merged and the
resulting condition is the disjunction of conditions of the original events. This
transformation method is summarized in Algorithm 1.

The scenarios represented by the CPOG obtained by merging events coincide
with the maximal configurations of the LES.

Theorem 1. Given an LES E = (E,≤,#, λ), Algorithm 1 constructs a CPOG
H = (V,A,X, φ, ρ) such that P (H) = π(Ω(E)).

Proof. The algorithm transforms the LES E into a CLES G and the later into
a CPOG H. The proof shows that i) projections of G coincide with maximal
configurations of E ; and ii) G|ψ = H|ψ for any valid opcode ψ. The complete
proof can be found in [8].

The complexity of the CPOG constructed by this procedure is linear with
respect to the size of the original LES, as stated by the following theorem.

Theorem 2. Given an LES E = (E,≤,#, λ), Algorithm 1 constructs a CPOG
H = (V,A,X, φ, ρ) of complexity Θ(|E|).
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Algorithm 1. Transforming a LES into a CPOG
Require: E = (E, ≤, #, λ) and a set of Boolean variables {x1, . . . , x|E|}
Ensure: H = (V, A, X, φ, ρ) such that P (H) = Ω(E)
1: V = E, A = ≤
2: ∀v ∈ V : φv = xv

3: ∀e = (v1, v2) ∈ A : φe = v1 ∧ v2
4: while ∃v1, v2 ∈ V : λ(v1) = λ(v2) do (for v �∈ V )
5: V = V \{v1, v2} ∪ {v}
6: ∀v′ ∈ V : v′ ≤ v ⇔ v′ ≤ v1 ∨ v′ ≤ v2
7: ∀v′ ∈ V : v ≤ v′ ⇔ v1 ≤ v′ ∨ v2 ≤ v′

8: φv = φv1 ∨ φv2

9: ρ = (
∧

e#f

¬φe ∨ ¬φf )(
∧

e≤f

φf ⇒ φe)(
∧

e∈E

φe ∨ ∨
e#f

φf )

10: return H = (V, A, X, φ, ρ)

Proof. The resulting CPOG contains at most the same number of vertices and
arcs as the original LES. Moreover, |X| = |E|, |φ| = O(|E|), and the size of the
restriction function ρ is linear with respect to |E| as seen from (2). The complete
proof can be found in [8].

From CPOGs to LESs. In order to transform a CPOG into an LES, the graph
is unfolded (in order to obtain an acyclic structure) while keeping conditions that
will be replaced by conflicts in the final LES. For this, a CLES is constructed
as an intermediate structure. We start from an empty CLES (that containing
no events) and at each iteration, we compute the set of possible extensions. To
decide if an instance of vertex a ∈ V is a possible extension, we need to find a set
of predecessor events P ⊆ E such that (i) the vertex is active; (ii) instances of
its predecessors and their corresponding arcs are active; (iii) if an event is not a
predecessor, then either it is not active or its corresponding arc is not active; (iv)
the instance of the vertex is different to any other in the prefix. This is captured
by the following formula for each vertex a:

φa ∧ (
∧

eb∈P
b→a∈A

φeb
∧ φb→a)(

∧
eb∈E\P
b→a∈A

¬φeb
∨ ¬φb→a)(

∧
ea∈E

¬φea
) (3)

Whenever such a combination exists and the formula reduces to φ, we add the
event to the unfolding, appropriately connecting it to P and labeling it by the
φ. The unfolding procedure finishes when (3) is no longer satisfiable. Finally,
conditions are replaced by conflicts: for every pair of mutually exclusive events,
their Boolean conditions are removed and conflict ea#eb is added.

Algorithm 2 shows the complete transformation procedure. Function
PE(E ,H) takes the current unfolding E and CPOG H, and returns a set pe
of possible extensions satisfying (3), and for each e ∈ pe, its set of predecessors
Pe, label λpe(e), and condition φpe

e .
We can use a SAT-solver to ‘guess’ a combination of an event a and a pre-

decessor set P satisfying (3).
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Algorithm 2. Transforming a CPOG into a LES
Require: a well-formed CPOG H = (V, A, X, φ, ρ)
1: E = (E, ≤, #, λ, X, φ, ρ) := (∅, ∅, ∅, ∅, X, ∅, ρ)
2: (pe, {Pe}e∈pe, λ

pe, φpe) := PE(E , H)
3: while pe �= ∅ do
4: add some e ∈ pe to E and set Pe ≤ e, λ(e) = λpe(e) and φe = φpe

e

5: while ∃ea, eb ∈ E : ¬φea ∨ ¬φeb do
6: set ea#eb

return (E, ≤, #, λ)

Proposition 2. Given a CPOG and a prefix of its unfolding, deciding if an
instance of a vertex is a possible extension is NP-hard.

Proof. Consider a CPOG with a single vertex v having condition φ. Deciding if
v is a possible extension requires checking φ for being a contradiction. See more
details in [8].

The unfolding algorithm is deterministic: the resulting LES does not depend
on the order in which events are added into the unfolding due to the following
result proved in [8].

Proposition 3. Let E be the current set of events of the unfolding and ea �= eb

two possible extensions, then eb is a possible extension of E ∪ {ea}.
Example 5. Consider the CPOG shown in Fig. 2. The unfolding procedure starts
with E = ∅ and keeps checking vertices of the CPOG for possible extensions.
At start, only vertex a can be added. For example, the constraint imposed by
non-predecessors in (3) will include ¬φa→b = 0 for vertex b, hence it is not a
possible extension at start. We proceed by adding event e0a to the unfolding with
φe0

a
= 1. When we recompute the possible extensions, formula (3) reduces to

x ∨ y and x ∧ y for vertices b and e, respectively, therefore events e0b and e0e
are added with e0a as their predecessor and with φe0

b
= x ∨ y and φe0

e
= x ∧ y.

At this point E = {e0a, e0b , e
0
e} and we find that c and d are possible extensions

adding events e0c and e0d with event e0b as the predecessor and conditions φe0
c

= y
and φe0

d
= x. Now E = {e0a, e0b , e

0
c , e

0
d, e

0
e} and we find that c and d are possible

extensions again. Two new events e1c and e1d are added. Finally, as E grows
to {e0a, e0b , e

0
c , e

1
c , e

0
d, e

1
d, e

0
e}, formula (3) becomes unsatisfiable and the unfolding

procedure is finished. Conditions of events e0b and e0e are mutually exclusive:
(x∧y)∧ (x∨y) = 0, therefore we add conflict e0b#e0e. Due to the same reasoning,
conflicts e0c#e1c and e0d#e1d are added. Finally, when all Boolean conditions are
removed from the CLES, the resulting LES is that of Fig. 3.

The result below shows that the unfolding algorithm is correct, i.e. it pre-
serves set of partial orders.

Theorem 3. Let H = (V,A,X, φ, ρ) be a well-formed CPOG and
E = (E,≤,#, λ) the LES obtained by the unfolding procedure, then π(Ω(E)) =
P (H).
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Proof. The algorithm transforms the CPOG H into a CLES G and the later into
a LES E by replacing conditions by conflicts. The proof shows that i) projections
of H and G over a valid opcode coincide; and ii) projections over G and maximal
configurations of E coincide. The complete proof can be found in [8].

As one can see, the transformation procedure from CPOGs to LESs is signif-
icantly more computationally intensive: unravelling CPOGs requires the use of
a SAT solver. Fortunately, the SAT instances that need to be solved are similar
to each other, therefore one can use incremental SAT solving techniques [11] to
speed up the algorithm.

6 Conclusion

The paper discusses the use of two models (LESs and CPOGs) for the compressed
representation of sets of partial orders. We show that LESs work well on most
practical examples, however, due to their acyclic nature they cannot efficiently
handle the cases where sets of partial orders contain many permutations defined
on the same set of events. These cases are very well handled by CPOGs, however,
the use of Boolean conditions for resolving conflicts makes them less intuitive and
more demanding from the algorithmic complexity point of view. In particular,
most interesting questions about CPOGs are NP-hard. The advantages of both
models are combined by CLESs which are used as an intermediate formalism
by the presented algorithms transforming a set of partial orders from a given
compressed representation in a LES or a CPOG into an equivalent compressed
representation in the other formalism without the explicit enumeration of all
partial orders.

Further work includes optimization of the presented algorithms, their integra-
tion with Workcraft EDA suite [7], and validation on larger case studies coming
from process mining and VLSI design domains.
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Abstract. By the Road Coloring Theorem (Trahtman, 2008), the edges
of any given aperiodic directed multigraph with a constant out-degree can
be colored such that the resulting automaton admits a reset word. There
may also be a need for a particular reset word to be admitted. For certain
words it is NP-complete to decide whether there is a suitable coloring. For
the binary alphabet, we present a classification that separates such words
from those that make the problem solvable in polynomial time. The classi-
fication differs if we consider only strongly connected multigraphs. In this
restricted setting the classification remains incomplete.

Keywords: Algorithms on automata and words · Road coloring
theorem · Road coloring problem · Reset word · Synchronizing word

1 Introduction

Questions about synchronization of finite automata have been studied since the
early times of automata theory. The basic concept is very natural: we want to
find an input sequence that would get a given machine to a unique state, no
matter in which state the machine was before. Such sequence is called a reset
word. If an automaton has a reset word, we call it a synchronizing automaton.

In the study of road coloring, synchronizing automata are created from
directed multigraphs through edge coloring. A directed multigraph is said to be
admissible, if it is aperiodic and has a constant out-degree. A multigraph needs
to be admissible in order to have a synchronizing coloring. Given an alphabet I
and an admissible graph with out-degrees |I|, the following questions arise:

1. Is there a coloring such that the resulting automaton has a reset word?
2. Given a number k ≥ 1, is there a coloring such that the resulting automaton

has a reset word of length at most k?
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3. Given a word w ∈ I�, is there a coloring such that w is a reset word of the
resulting automaton?

4. Given a set of words W ⊆ I�, is there a coloring such that some w ∈ W is a
reset word of the resulting automaton?

For the first question it was conjectured in 1977 by Adler, Goodwyn, and Weiss
[1] that the answer is always yes. The conjecture was known as the Road Coloring
Problem until Trahtman [5] in 2008 found a proof, turning the claim into the
Road Coloring Theorem.

The second question was initially studied in the paper [3] presented at LATA
2012, while the yet-unpublished papers [2] and [6] give closing results: The prob-
lem is NP-complete for any fixed k ≥ 4 and any fixed |I| ≥ 2. The instances
with k ≤ 3 or |I| = 1 can be solved by a polynomial-time algorithm.

The third question is the subject of the present paper. We show that the
problem becomes NP-complete even if restricted to |I| = 2 and w = abb or
to |I| = 2 and w = aba, which may seem surprising. Moreover, we provide a
complete classification of binary words: The NP-completeness holds for |I| = 2
and any w ∈ {a, b}� that does not equal ak, bk, akb, nor bka for any k ≥ 1. On
the other hand, for any w that matches some of these patterns, the restricted
problem is solvable in polynomial time.

The fourth question was raised in [2] and it was emphasized that there are
no results about the problem. Our results about the third problem provide an
initial step for this direction of research.

It is an easy but important remark that the Road Coloring Theorem holds
generally if and only if it holds for strongly connected graphs. It may seem that
strong connectivity can be safely assumed even if dealing with other problems
related to road coloring. Surprisingly, we show that this does not hold for com-
plexity issues. If P is not equal to NP, the complexity of the third problem for
strongly connected graphs differs from the basic third problem in the case of
w = abb. However, for the strongly connected case we are not able to provide a
complete characterization as described above, we give only partial results.

Due to the page limit, some proofs are omitted or shortened. The results are
presented in Sections 3 and 4.

2 Preliminaries

2.1 Automata and Synchronization

For u,w ∈ I� we say that u is a prefix, a suffix, or a factor of w if w = uv,
w = vu, or w = vuv′ for some v, v′ ∈ I�, respectively.

A deterministic finite automaton is a triple A = (Q, I, δ), where Q and I are
finite sets and δ is an arbitrary mapping Q × I → Q. Elements of Q are called
states, I is the alphabet. The transition function δ can be naturally extended to
Q × I� → Q, still denoted by δ, slightly abusing the notation. We extend it also
by defining

δ(S,w) = {δ(s, w) | s ∈ S}
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for each S ⊆ Q and w ∈ I�. If A = (Q, I, δ) is fixed, we write r
x−→ s instead of

δ (r, x) = s.
ForagivenautomatonA = (Q, I, δ),we callw ∈ I� a resetword if |δ(Q,w)| = 1.

If such a word exists, we call the automaton synchronizing. Note that each word
having a reset word as a factor is also a reset word.

2.2 Road Coloring

In the rest of the paper we use the term graph for a directed multigraph. A
graph is:
1. aperiodic, if 1 is the only common divisor of all the lengths of cycles,
2. admissible, if it is aperiodic and all its out-degrees are equal,
3. road colorable, if its edges can be labeled such that a synchronized deter-

ministic finite automaton arises.

Naturally, we identify a coloring of edges with a transition function δ of the
resulting automaton. It is not hard to observe that any road colorable graph is
admissible. In 1977 Adler, Goodwyn, and Weiss [1] conjectured that the back-
ward implication holds as well. Their question became known as the Road Col-
oring Problem and a positive answer was given in 2008 by Trahtman [5].

For any alphabet I and w ∈ I�, by G
|I|
w we denote the set of graphs with all

out-degrees equal to |I| such that there exists a coloring δ with |δ(Q,w)| = 1. In
this paper we work with the following computational problem:

SRCW (Synchronizing road coloring with prescribed reset words)

Input: Alphabet I, graph G = (Q,E) with out-degrees |I|, W ⊆ I�

Output: Is there a w ∈ W such that G ∈ G
|I|
w ?

In this paper we study the restrictions to one-element sets W , which means
that we consider the complexity of the sets G

|I|
w themselves.

Restrictions are denoted by subscripts and superscripts: SRCWM
k,X denotes

SRCW restricted to inputs with |I| = k, W = X, and G ∈ M, where M is a
class of graphs. By SC we denote the class of strongly connected graphs. Having
a graph G = (Q,E) fixed, by dG(s, t) we denote the length of shortest directed
path from s ∈ Q to t ∈ Q in G. For each k ≥ 0 we denote

Vk(q) = {s ∈ Q | dG(s, q) = k} .

Having R ⊆ Q, let G[R] denote the induced subgraph of G on the vertex set R.
If a graph G has constant out-degree |I|, a vertex v ∈ Q is called a sink state if
there are |I| loops on v. By Z we denote the class of graphs having a sink state.
The following lemma can be easily proved by a reduction that adds a chain of
|u| new states to each state of a graph:
Lemma 1. Let |I| ≥ 1 and u,w ∈ {a, b}�. Then:
1. If SRCWk,{w} is NP-complete, so is SRCWk,{uw}.
2. If SRCWZ

k,{w} is NP-complete, so is SRCWZ
k,{uw}.
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3 A Complete Classification of Binary Words According
to Complexity of SRCW2,{w}

The theorem below presents one of the main results of the present paper. Assum-
ing that P does not equal NP, it introduces an exact dichotomy concerning the
words over binary alphabets. Let us fix the following partition of {a, b}�:

T1 =
{
ak, bk | k ≥ 0

}
,

T2 =
{
akb, bka | k ≥ 1

}
,

T3 =
{
albk, blak | k ≥ 2, l ≥ 1

}
,

T4 = {a, b}� \ (T1 ∪ T2 ∪ T3) .

For the NP-completeness reductions throughout the present paper we use a
suitable variant of the satisfiability problem. The following can be verified using
the Schaefer’s dichotomy theorem [4]:

Lemma 2. It holds that W-SAT is NP-complete.

W-SAT

Input: Finite set X of variables, finite set Φ ⊆ X4 of clauses.

Output: Is there an assignment ξ : X → {0,1} such that for each
clause (z1, z2, z3, z4) ∈ Φ it holds that:
(1) ξ(zi) = 1 for some i,
(2) ξ(zi) = 0 for some i ∈ {1, 2},
(3) ξ(zi) = 0 for some i ∈ {3, 4}?

In this section we use reductions from W-SAT to prove the NP-completeness
of SRCW2,{w} for each w ∈ T3 and w ∈ T4. In the case of w ∈ T4 the reduction
produces only graphs having sink states. This shows that for w ∈ T4 the problem
SRCWZ

2,{w} is NP-complete as well, which turns out to be very useful in Section
4, where we deal with strongly connected graphs. For w ∈ T3 we also prove
NP-completeness, but we use automata without sink states. We show that the
cases with w ∈ T1 ∪ T2 are decidable in polynomial time.

In all the figures below we use bold solid arrows and bold dotted arrows for the
letters a and b respectively.

Theorem 3. Let w ∈ {a, b}�.

1. If w ∈ T1 ∪ T2, the problem SRCW2,{w} is solvable in polynomial time.
2. If w ∈ T3∪T4, the problem SRCW2,{w} is NP-complete. Moreover, if w ∈ T4,

the problem SRCWZ
2,{w} is NP-complete.

Proof for w ∈ T1. It is easy to see that G ∈ Gak if and only if there is q0 ∈ Q
such that there is a loop on q0 and for each s ∈ Q we have dG(s, q0) ≤ k. �	
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Proof for w ∈ T2. For a fixed q0 ∈ Q, we denote Q1 = {s ∈ Q | s −→ q0} and

R = {s ∈ Q1 | H1 has a cycle reachable from s} ,

where H1 is obtained from G[Q1] by decreasing multiplicity by 1 for each edge
ending in q0. If q0 /∈ Q1, we have H1 = G[Q1]. Let us prove that G ∈ Gakb if
and only if there is q0 ∈ Q such that:

1. It holds that dG(s, q0) ≤ k + 1 for each s ∈ Q.
2. For each s ∈ Q there is a q ∈ R such that dG(s, q) ≤ k.

First, check the backward implication. For each r ∈ R, we color by b an edge of
the form r −→ q0 that does not appear in H1. Then we fix a forest of shortest
paths from all the vertices of Q\R into R. Due to the second condition above,
the branches have length at most k. We color by a the edges used in the forest.
We have completely specified a coloring of edges. Now, for any s ∈ Q a prefix aj

of akb takes us into R, the factor ak−j keeps us inside R, and with the letter b
we end up in q0.

As for the forward implication, the first condition is trivial. For the second
one, take any s ∈ Q and denote sj = δ

(
s, aj

)
for j ≥ 0. Clearly, sk ∈ Q1,

but we show also that sk ∈ R, so we can set q = sk in the last condition.
Indeed, whenever sj ∈ Q1 for j ≥ k, we remark that δ

(
sj−k+1, a

k
)

= q0 and
thus sj+1 ∈ Q1 as well. Since j can grow infinitely, there is a cycle within Q1

reachable from sk. �	

Proof for w ∈ T3. Due to Lemma 1, it is enough to deal with w = abk for
each k ≥ 2. For a polynomial-time reduction from W-SAT, take an instance
X = {x1, . . . , xn}, Φ = {C1, . . . , Cm}, where Cj = (zj,1, zj,2, zj,3, zj,4) for each
j = 1, . . . ,m. We build the graph Gk,φ = (Q,E) defined by Fig. 1. Note that:

– In Fig. 1, states are represented by discs. For each j = 1, . . . ,m, the edges
outgoing from C′

i and C
′′
i represent the formula Φ by leading to the states

zj,1, zj,2, zj,3, zj,4 ∈ {x1, . . . , xn} ⊆ Q.
– In the case of k = 2 the state Vi,2 does not exist, so we set xi −→ D0 and

Vi,1 −→ D0 instead of xi −→ Vi,2 and Vi,1 −→ Vi,2.

We show that Gk,Φ ∈ Gabk if and only if there is an assignment ξ : X → {0,1}
satisfying the conditions given by Φ.

First, let there be a coloring δ of Gk,Φ such that
∣∣δ(Q, abk

)∣∣ = 1. Observe that
necessarily δ

(
Q, abk

)
= {D0}, while there is no loop on D0. We use this fact to

observe that whenever xi ∈ δ(Q, a), the edges outgoing from xi,Vi,1, . . . ,Vi,k−1

must be colored according to Fig. 2, but if xi ∈ δ(Q, ab), then they must be
colored according to Fig. 3. Let ξ(xi) = 1 if xi ∈ δ(Q, ab) and ξ(xi) = 0
otherwise. Choose any j ∈ {1, . . . ,m} and observe that

ξ(δ(Cj , ab)) = 1, ξ
(
δ
(
C′

j , a
))

= 0, ξ
(
δ
(
C′′

j , a
))

= 0,

thus we can conclude that all the conditions from the definition of W-SAT hold
for the clause Cj .
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x1 V1,1

V1,2

V1,3

V1,k−2

V1,k−1

x2 V2,1

V2,2

V2,3

V2,k−2

V2,k−1

xn Vn,1

Vn,2

Vn,3

Vn,k−2

Vn,k−1

D0

D1 D2

z1,1 z1,2 z1,3 z1,4 z2,1 z2,2 z2,3 z2,4 zm,1 zm,2 zm,3 zm,4

C1 C2 Cm

C′
1 C′′

1 C′
2 C′′

2 C′
m C′′

m

Fig. 1. The graph Gk,Φ reducing W-SAT to SRCW|I|=2,W={abk} for k ≥ 2

D0

Fig. 2. A coloring corre-
sponding to ξ(xi) = 0

D0

Fig. 3. A coloring corre-
sponding to ξ(xi) = 1

D0

D1 D2

D0

D1 D2

Fig. 4. Colorings for k even
(top) and odd (bottom)
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On the other hand, let ξ be a satisfying assignment of Φ. For each j we color
the edges outgoing from Cj ,C′

j ,C
′′
j such that the ab-path from Cj leads to the

zj,i with ξ(zj,i) = 1 and the a-paths from C′
j ,C

′′
j lead to the zj,i′ and zj,i′′ with

ξ(zj,i′) = 0, ξ(zj,i′′) = 0, where i′ ∈ {1, 2} , i′′ ∈ {3, 4}. For the edges outgoing
from xi,Vi,1, . . . ,Vi,k−1 we use Fig. 2 if ξ(xi) = 0 and Fig. 3 if ξ(xi) = 1. The
transitions within D0,D1,D2 are colored according to Fig. 4, depending on the
parity of k. Observe that for each i ∈ {1, . . . , n} we have xi /∈ δ(Q, ab) if ξ(xi) = 0
and xi /∈ δ(Q, a) if ξ(xi) = 1. Using this fact we check that δ(Q,w) = {D0}. �	

Proof for w ∈ T4. Any w ∈ T4 can be written as w = vajbkal or w = vbjakbl for
j, k, l ≥ 1. Due to Lemma 1 it is enough to deal with w = abkal for each k, l ≥ 1.
Take an instance of W-SAT as above and construct the graph Gw,Φ = (Q,E)
defined by Fig. 5. Note that:

– In the case of l = 1, the state Zi,1 does not exist, so we set W′
i −→ D0 and

Vi,k−1 −→ D0 instead of W′
i −→ Zi,1 and Vi,k−1 −→ Zi,1.

– In the case of k = 1, the state Vi,1 does not exist, so we set xi −→ Zi,1 (or
xi −→ D0 if l = 1) and xi −→ Wi instead of xi ⇒ Vi,1.

z1,1 z1,2 z1,3 z1,4 z2,1 z2,2 z2,3 z2,4 zm,1 zm,2 zm,3 zm,4

C1 C2

D0

V1,1

x1

V1,k−1 W1

W′
1Z1,1

Z1,l−1

V2,1

x2

V2,k−1 W2

W′
2

Z2,l−1

Vn,1

xn

Vn,k−1

Zn,l−1

Wn

W′
nZ2,1 Zn,1

C′
1 C′′

1 C′
2 C′′

2

Cm

C′
m C′′

m

Fig. 5. The graph Gw,Φ reducing W-SAT to SRCWZ
|I|=2,W={abkal} for k, l ≥ 1
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Let there be a coloring δ of Gw,Φ such that |δ(Q,w)| = 1. Observe that δ(Q,w) =

{D0}. Next, observe that whenever xi ∈ δ(Q, a), then Vi,k−1
b−→ Zi,1, but if

xi ∈ δ(Q, ab), then Vi,k−1
a−→ Zi,1. Let ξ(xi) = 1 if xi ∈ δ(Q, ab) and ξ(xi) = 0

otherwise. We choose any j ∈ {1, . . . ,m} and conclude exactly as we did in the
case of T3.

On the other hand, let ξ be a satisfying assignment of Φ. For each j, we
color the edges outgoing from Cj ,C′

j ,C
′′
j as we did in the case of T3. For each i,

we put Vi,k−1
a−→ Zi,1,Vi,k−1

b−→ Wi if ξ(xi) = 1 and the reversed variant if
ξ(xi) = 0. �	

4 A Partial Classification of Binary Words According to
Complexity of SRCWSC

2,{w}

Clearly, for any w ∈ T1 ∪ T2 we have SRCWSC
2,{w} ∈ P. In Section 4.1 we show

that
SRCWSC

2,{abb} ∈ P,

which is a surprising result because the general SRCW2,{w} is NP-complete for
any w ∈ T3, including w = abb. We are not aware of any other words that witness
this difference between SRCWSC and SRCW.

In Section 4.2 we introduce a general method using sink devices that allows us
to prove the NP-completeness of SRCWSC

2,{w} for infinitely many words w ∈ T4,
including any w ∈ T4 with the first and last letter being the same. However, we
are not able to apply the method to each w ∈ T4.

4.1 A Polynomial-Time Case

A graph G = (Q,E) is said to be k-lifting if there exists q0 ∈ Q such that for
each s ∈ Q there is an edge leading from s into Vk(q0). Instead of 2-lifting we
just say lifting.

Lemma 4. If G is a k-lifting graph, then G ∈ Gabk .

Lemma 5. If G is strongly connected, G is not lifting, and G ∈ Gabb via δ and
q0, then δ has no b-transition ending in V2(q0) ∪ V3(q0). Moreover, V3(q0) = ∅.
Proof. First, suppose for a contradiction that some s ∈ V2(q0) ∪ V3(q0) has an
incoming b-transition. Together with its outgoing b-transition we have

r
b−→ s

b−→ t,

where s �= q0 and t �= q0. Due to the strong connectivity there is a shortest
path P from q0 to r (possibly of length 0 if r = q0). The path P is made of
b-transitions. Indeed, if there were some a-transitions, let r′ a−→ r′′ be the last
one. The abb-path outgoing from r′ ends in δ(r′′, bb), which either lies on P or
in {s, t}, so it is different from q0 and we get a contradiction.
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It follows that δ(q0, b) �= q0 and δ(q0, bb) �= q0, so there cannot be any a-
transition incoming to q0. Hence for any s ∈ V1(q0) there is a transition s

b−→ q0
and thus there is no a-transition ending in V1(q0). Because there is also no a-
transition ending in V3(q0), all the a-transitions end in V2(q0) and thus G is
lifting, which is a contradiction.

Second, we show that V3(q0) is empty. Suppose that s ∈ V3(q0). No a-
transition comes to s since there is no path of length 2 from s to q0. Thus,
s has no incoming transition, which contradicts the strong connectivity. �	
Theorem 6. SRCWSC

2,{abb} is decidable in polynomial time.

Proof. As the input we have a strongly connected G = (Q,E). Suppose that q0
is fixed (we can just try each q0 ∈ Q) and so we should decide if there is some δ
with δ(Q, abb) = {q0}. First we do some preprocessing:

– If G is lifting, according to Lemma 4 we accept.
– If V3(q0) �= ∅, according to Lemma 5 we reject.
– If there is a loop on q0, we accept, since due to V3(q0) = ∅ we have G ∈ Gbb.

If we are still not done, we try to find some labeling δ, assuming that none of
the three conditions above holds. We deduce two necessary properties of δ. First,
Lemma 5 says that we can safely label all the transitions ending in V2(q0) by
a. Second, we have q0 ∈ δ(Q, a). Indeed, otherwise all the transitions incoming
to q0 are labeled by b, and there cannot be any a-transition ending in V1(q0)
because we know that the b-transition outgoing from q0 is not a loop. Thus G is
lifting, which is a contradiction.

Let the sets B1, . . . , Bβ denote the connected components (not necessarily
strongly connected) of G[V1(q0)]. Note that maximum out-degree in G[V1(q0)] is
1. Let e = (r, s) , e′ = (s, t) be consecutive edges with s, t ∈ V1(q0) and r ∈ Q.
Then the labeling δ has to satisfy

e is labeled by a ⇔ e′ is labeled by b.

Indeed:

– The left-to-right implication follows easily from the fact that there is no loop
on q0.

– As for the other one, suppose for a contradiction that both e′, e are labeled
by b. We can always find a path P (possibly trivial) that starts outside V1(q0)
and ends in r. Let r be the last vertex on P that lies in δ(Q, a). Such vertex
exists because we have V2(q0) ∪ {q0} ⊆ δ(Q, a) and V3(q0) = ∅. Now we can
deduce that δ(r, bb) �= q0, which is a contradiction.

It follows that for each Bi there are at most two possible colorings of its inner
edges (fix variant 0 and variant 1 arbitrarily). Moreover, a labeling of any edge
incoming to Bi enforces a particular variant for whole Bi.

Let the set A contain the vertices s ∈ V2(q0)∪{q0} whose outgoing transitions
lead both into V1(q0). Edges that start in vertices of (V2(q0) ∪ {q0}) \A have only
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one possible way of coloring due to Lemma 5, while for each vertex of A there are
two possibilities. Now any possible coloring can be described by |A|+β Boolean
propositions:

xs ≡ es is labeled by a

yB ≡ B is labeled according to variant 1

for each s ∈ A and B ∈ {B1, . . . , Bβ}, where es is a particular edge outgoing
from s. Moreover, the claim δ(Q, abb) = {q0} can be equivalently formulated as
a conjunction of implications of the form xs → yB , so we reduce the problem to
2-SAT. �	

4.2 NP-Complete Cases

We introduce a method based on sink devices to prove the NP-completeness for
a wide class of words even under the restriction to strongly connected graphs.

In the proofs below we use the notion of a partial finite automaton (PFA),
which can be defined as a triple P = (Q, I, δ), where Q is a finite set of states, I
is a finite alphabet, and δ is a partial function Q×I → Q which can be naturally
extended to Q× I� → Q. Again, we write r

x−→ s instead of δ (r, x) = s. We say
that a PFA is incomplete if there is some undefined value of δ. A sink state in a
PFA has a defined loop for each letter.

Definition 7. Let w ∈ {a, b}�. We say that a PFA B = (Q, {a, b} , δ) is a sink
device for w, if there exists q0 ∈ Q such that:

1. δ(q0, u) = q0 for each prefix u of w,
2. δ(s, w) = q0 for each s ∈ Q.

Note that the trivial automaton consisting of a single sink state is a sink device
for any w ∈ {a, b}�. However, we are interested in strongly connected sink devices
that are incomplete. In Lemma 8 we show how to prove the NP-completeness
using a non-specific sink device in the general case of w ∈ T4 and after that we
construct explicit sink devices for a wide class of words from T4.

Lemma 8. Let w ∈ T4 and assume that there exists a strongly connected incom-
plete sink device B for w. Then SRCWSC

2,{w} is NP-complete.

Proof. We assume that w starts by a and write w = aαbβau for α, β ≥ 1 and
u ∈ {a, b}�. Denote B = (QB , {a, b} , δB). For a reduction from W-SAT, take an
instance X,Φ with the notation used before, assuming that each x ∈ X occurs
in Φ. We construct a graph Gw,Φ =

(
Q,E

)
as follows. Let q1 ∈ QB have an

undefined outgoing transition, and let B′ be an automaton obtained from B by
arbitrarily defining all the undefined transitions except for one transition outgo-
ing from q1. Let GB′ be the underlying graph of B′. By Theorem 3, SRCWZ

2,{w}
is NP-complete, so it admits a reduction from W-SAT. Let Gw,Φ = (Q,E) be
the graph obtained from such reduction, removing the loop on the sink state
q′
0 ∈ Q. Let s1, . . . , s|Q|−1 be an enumeration of all the states of Gw,Φ different
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q1

Gw,Φ

F2,1

F|Q|,βF|Q|,β−1F|Q|,1

F1,βF1,β−1F1,1

F2,βF2,β−1F2,0

F|Q|,0

F1,0

s2

q0

GB′

s1

s|Q|−1

Fig. 6. The graph Gw,Φ

from q′
0. Then we define Gw,Φ as shown in Fig. 6. We merge the state q′

0 ∈ Q
with the state q0 ∈ QB , which is fixed by the definition of a sink device.

First, let there be a coloring δ of Gw,Φ such that
∣∣δ(Q,w

)∣∣ = 1. It follows
easily that δ, restricted to Q, encodes a coloring δ of Gw,Φ such that |δ(Q,w)| = 1.
The choice of Gw,Φ guarantees that there is a satisfying assignment ξ for Φ.

On the other hand, let ξ be a satisfying assignment of Φ. By the choice of
Gw,Φ, there is a coloring δ of Gw,Φ such that |δ(Q,w)| = 1. We use the following
coloring of Gw,Φ: The edges outgoing from s1, . . . , s|Q|−1 are colored according
to δ. The edges within GB′ are colored according to B′. The edge q1 −→ F1,0 is
colored by b. All the other edges incoming to the states F1,0, . . . ,F|Q|,0, together
with the edges of the form Fi,β −→ q0, are colored by a, while the remaining
ones are colored by b. �	
For any w ∈ {a, b}� we construct a strongly connected sink device D(w) =
(Qw, {a, b} , δw). However, for some words w ∈ T4 (e.g. for w = abab) the device
D(w) is not incomplete and thus is not suitable for the reduction above. Take
any w ∈ {a, b}� and let CP

w,CS
w,CF

w be the sets of all prefixes, suffixes and factors
of w respectively, including the empty word ε. Let

Qw =
{
[u] | u ∈ CF

w, v /∈ CS
w for each nonempty prefix v of u

}
,

while the partial transition function δw consists of the following transitions:

1. [u] x−→ [ux] whenever [u] , [ux] ∈ Qw,
2. [u] x−→ [ε] whenever ux ∈ CS

w,
3. [u] x−→ [ε] whenever [ux] /∈ Qw, ux /∈ CS

w, and vx ∈ CP
w for a suffix v of u.

Lemma 9. For any w ∈ {a, b}�, D(w) is a strongly connected sink device.

Lemma 10. Suppose that w ∈ {a, b}� starts by x, where {x, y} = {a, b}. If there
is u ∈ {a, b}� satisfying all the following conditions, then D(w) is incomplete:
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1. [u] ∈ Qw,
2. uy /∈ CF

w,
3. for each nonempty suffix v of uy, v /∈ CP

w.

Theorem 11. If a word w ∈ T4 satisfies some of the following conditions, then
SRCWSC

2,{w} is NP-complete:

1. w is of the form w = xwx for w ∈ {a, b}�
, x ∈ {a, b},

2. w is of the form w = xwy for w ∈ {a, b}�
, x, y ∈ {a, b} , x �= y,

and xkylx ∈ CF
w, xk+1 /∈ CF

w, yl+1 /∈ CF
w for some k, l ≥ 1.

Proof. Due to Lemmas 8 and 9, it is enough to show that D(w) is incomplete. Let
m ≥ 1 be the largest integer such that ym is a factor of w. It is straightforward
to check that u = ym (in the first case) or u = xkyl (in the second case) satisfies
the three conditions from Lemma 10.

5 Conclusion and Future Work

We have completely characterized the binary words w that make the computa-
tion of road coloring NP-complete if some of them is required to be the reset
word for a coloring of a given graph. Except for w = akb and w = ak with k ≥ 1,
each w ∈ {a, b}� has this property. We have proved that if we require strong
connectivity, the case w = abb becomes solvable in polynomial time. For any w
such that the first letter equals to the last one and both a, b occur in w, we have
proved that the NP-completeness holds even under this requirement. The main
goals of the future research are:

– Complete the classification of binary words in the strongly connected case.
– Give the classifications of words over non-binary alphabets.
– Study SRCW restricted to non-singleton sets of words.
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Abstract. We study counting monadic second-order logics (CMso) for
unordered data trees. Our objective is to enhance this logic with data
constraints for comparing string data values attached to sibling edges
of a data tree. We show that CMso satisfiability becomes undecidable
when adding data constraints between siblings that can check the equal-
ity of factors of data values. For more restricted data constraints that
can only check the equality of prefixes, we show that it becomes decid-
able, and propose a related automaton model with good complexities.
This restricted logic is relevant to applications such as checking well-
formedness properties of semi-structured databases and file trees. Our
decidability results are obtained by compilation of CMso to automata
for unordered trees, where both are enhanced with data constraints in a
novel manner.

1 Introduction

Logics and automata for unordered trees were studied in the last twenty years
mostly for querying Xml documents [5,14,20] and more recently in the context
of NoSql databases [2]. They were already studied earlier, for modeling syn-
tactic structures in computational linguistics [16] and records in programming
languages [11,12,17]. In our own work, we also find them relevant to the mod-
eling and static verification of file trees, i.e. structures representing directories,
files, their contents etcetera, and their transformations, i.e. programs or scripts
moving, deleting, or creating files.

Using unordered trees means expressing and evaluating properties on sets
– or multisets – of elements, e.g. the data values of the children at the current
position. Naturally, this amounts to counting: for instance in a file tree “there are
at least 2 values that match *.txt” (where * matches any string), or in a biblio-
graphical database “there are fewer values inproceedings than book”. Where the
existing approaches differ is in the expressive power available for that counting;
for instance, is it possible to compare two variable quantities – as in the second
example – or just one variable quantity and a constant – as in the first. In all
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 175–187, 2015.
DOI: 10.1007/978-3-319-15579-1 13
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{ "file.tex" :

{"\documentclass...":{}},

"dir" : {

"x.png" : {"<bin>":{}},

"y.png" : {"<bin>":{}},

...} ... }

◦
◦

◦
◦
<bin>

◦
◦

<bin>

x.png y.png
◦
◦

\doc...

file.tex dir

Fig. 1. Unordered trees in Json format, describing a typical file tree

cases, however, each element is considered alone, in isolation from its brothers.
We previously studied the complexity of decision problems for automata using
various such formalisms as guards for their bottom-up transitions in [3]. The
focus was on devising good notions of deterministic machines capable of exe-
cuting such counting operations, sufficiently expressive but allowing for efficient
algorithms. Our present focus, in contrast, is to extend the expressive power
of the counting formalisms, while preserving decidability. Since the bottom-up
automaton’s structure does not play a great role in that, and the yardsticks of
expressive power for counting tests are logics, this paper mostly deals directly
with second-order logics rather than automata.

Our main goal in this paper is to extend existing formalisms with the ability
to express data constraints on unordered data trees, so that each data value may
be considered not only in isolation, but also along with sibling values with which
it is in relation. Such constraints arise naturally in various circumstances.

By way of example, consider a directory containing LATEX resources, which
may be represented by an edge-labeled tree in the style of Figure 1, given in
Json (JavaScript Object Notation) syntax, where each data value corresponds
to a file name or, in the case of leaves, file contents. Suppose that we want to
check whether the contents of a LATEX repository have been properly compiled,
which is to say that for every main LATEX file – i.e. a file whose name has
suffix ”.tex”, and whose contents begin with ”\documentclass” – there exists a
corresponding pdf file following the version 1.5 of the standard. To express this
property, sibling data values – here representing files in the same directory – are
put in relation by

θtex2pdf = { (w”.tex”, w”.pdf”) | w is a word } . (1)

Schematically, we express constraints of the form “any value d whose subtree
satisfies some property P has a brother d′ = θtex2pdf(d) whose subtree satisfies
another property P ′”.

We need to integrate that kind of data constraints in existing formalisms
for unordered trees; the two yardsticks of expressive power that have emerged
in the literature are the extensions of weak monadic second-order logic (Mso)
by horizontal Presburger constraints [14], and by the weaker, but more tractable,
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counting constraints [8], capable of expressing that the cardinality of a set vari-
able is less than m or equal to m modulo n, but not of comparing the cardinalities
of two set variables directly, unlike Presburger logic. We choose Mso with count-
ing constraints as our starting point, which we write CMso. We denote by Γ (Θ)
and CMso(Θ) the extensions of counting constraints and CMso, respectively,
with tests on siblings for a certain class Θ of binary relations on data words.
Provided that this class contains the relation θtex2pdf defined above, our example
property that, everywhere in the file tree, every TEX file has a corresponding
pdf is expressed by the CMso({ θtex2pdf }) formula

∀x . x ∈ (#(∗”.tex” ∧ Xdoc ∧ ¬θtex2pdf.Xpdf15) = 0) (2)

where Xdoc and Xpdf15 are free set variables assumed to contain the nodes sat-
isfying the “main TEX file” and “valid pdf” properties. Intuitively: “all nodes in
the file tree are among the nodes such that the number of their children whose
label matches *”.tex”, which are main TEX documents, and for which there does
not exist a corresponding *”.pdf” sibling that is a pdf version 1.5, is zero.” We
shall give the full, closed formula at the end of Sec. 3[p179].

Note that, even for ordered data words and in the case of equality tests, – sim-
pler than even the suffix correspondences exemplified by θtex2pdf – satisfiability,
and the emptiness problem in the case of automata, become rapidly intractable
or undecidable. This has been studied for register automata, first-order logic,
and XPath, [4,9], among others. For instance, satisfiability of FO2(=,+1, <),
i.e. first-order logic with two variables and successor and linear order relations,
while decidable, is not known to be primitive recursive [4]. Unorderedness sim-
plifies matters in this case.

Nevertheless, the choice of the class of string relations Θ to which we have
access in our constraints greatly influences the complexity and decidability of the
counting constraints using them. We have found that even relatively conservative
choices of Θ entail undecidability: merely allowing the replacement of factors of
up to three letters, or the addition and deletion of suffixes and prefixes of one
letter, suffices. However, we exhibit a relatively large class which is decidable,
and capable of expressing that the prefixes of two data values are the same,
or even in the same regular language, while the suffixes belong to two different
languages; this largely covers our envisioned applications. We have also found
further restrictions for which the complexities become more reasonable.

Outline:
After a few preliminaries, Section 3 introduces the logic CMso(Θ), which is
CMso extended with the ability to put an edge’s data value in relation with
one of its siblings’, the string relation being a member of Θ. In Section 4, we
show that if relations allow both prefix and suffix manipulations, even restricted
to addition or removal of a single letter, CMso(Θ) becomes undecidable.
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After recalling the logic WSkS, which covers a large class of suffix-only manipula-
tions, Section 5 shows that CMso(ΘWSkS), where allowed relations are WSkS-
definable relations, is decidable in non-elementary time, by translating it into
automata with horizontal tests in WSkS. Section 6 presents an algorithm that
decides emptiness for the automaton model equivalent to a fragment of the logic
where string relations are limited to disjoint suffix replacements. Its complex-
ity is NExpTime – or PSpace if the automaton is deterministic. Section 7
concludes and hints at possible extensions and different ways of tackling the
problem.

2 MSO and Counting Constraints

We recall the definition of MSO and of counting constraints. As models we
restrict ourselves to data trees, even though general graph structures could be
chosen.

Data Trees.
A data alphabet is a finite set A. A data value over A is a string in A

∗.
The trees under consideration are finite, unordered, unranked trees whose
edges are labeled by data values in A

∗. Formally, a tree t is a multiset
{| (d1, t1), . . . , (dn, tn) |} where d1, . . . , dn ∈ A

∗ and t1, . . . , tn are trees. di is the
label of the edge leading into the subtree ti. For instance, the tree of Fig 1 is
{| (”file.tex”, {| (”\doc...”, {| |}) |}), (”dir”, . . . ) |}. To simplify the formalisation, we
shall not manipulate edges as distinct objects, but instead see an edge label as a
property of the node into which the edge leads. Thus we assimilate t to a struc-
ture 〈Vt, �t, ↓t〉, where Vt is the set of nodes of t, �t(v) is the data value labeling
the edge leading into the node v – undefined for the root node, – and v ↓t v′

holds if v′ is a child of v. For our convenience, we also define the “sibling-or-self”
relation: v ��t v′ ⇔ ∃v′′ . v′′ ↓t v ∧ v′′ ↓t v′. By extension of the language
of ranked trees, we use the word arity to refer to either the multiset of outgoing
edge labels of a node, or the set of outgoing edges.

MSO. Let A be a data alphabet and X a countable set of variables of two
types, node variables and set variables. A variable assignment I into some tree
t will map any node variable x ∈ X to a node I(x) ∈ Vt and any set variable
X ∈ X to a set of nodes I(X) ⊆ Vt.

As a parameter of our logic we assume a set Ψ of formulæ called node selec-
tors, which may contain letters from A and variables from X . The only assump-
tion we make is that any node selector ψ ∈ Ψ defines for any tree t and variable
assignment I into t a set of nodes �ψ�t,I ⊆ Vt. For instance, we could choose
Ψ = Ψ0 = {π | π regular expression over A} ∪ {↓ x | x ∈ X node variable}
such that �π�t,I = {v | �t(v) matches π} is set of all nodes whose incom-
ing edge is labeled by a word in A

∗ that matches regular expression π, and
�↓ x�t,I = {v | v ↓t I(x)} is the set of nodes of which I(x) is a child. Or else, we
could also choose Ψ = Ψ0 ∪ {↓ X | X ∈ X set variable}, where a formula ↓ X
requires that some child belongs to I(X). The formulæ of MSO over Ψ are:

ξ ∈ Mso(Ψ) ::= x ∈ ψ | x ∈ X | ∃x . ξ | ∃X . ξ | ξ ∧ ξ | ¬ξ ,
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were ψ ∈ Ψ . Whether a formula is true for a given tree t and variables assignment
I into t is defined as follows:

t, I |= x ∈ ψ ⇔ I(x) ∈ �ψ�t,I t, I |= ξ ∧ ξ′ ⇔ t, I |= ξ and t, I |= ξ′

t, I |= x ∈ X ⇔ I(x) ∈ I(X) t, I |= ¬ξ ⇔ not t, I |= ξ
t, I |= ∃x . ξ ⇔ t, I[x → v] |= ξ for some v ∈ Vt

t, I |= ∃X . ξ ⇔ t, I[X → V ] |= ξ for some finite V ⊆ Vt

As syntactic sugar, we will freely use the usual additional logical connectives
and set comparisons that can be easily encoded, i.e. formulæ ∀x.ξ, ∀X.ξ, ξ ⇔ ξ′,
ξ ⇒ ξ′, as well as X ⊆ X ′, X = ψ, and ψ = ∅ .

Children Counting Constraints. A children counting constraint selects a
node of a tree by testing the number of its children satisfying some property.
Which properties can be tested is defined by the parameter Φ of node selectors.
As before, we use as parameter a set of node selectors Φ such that �φ�t,I ⊆ Vt is
defined for all φ ∈ Φ, and which may contain variables in X and letters in A. For
instance, we could chose Φ = {π | π regular expression over A} ∪ X . A counting
constraint over Φ is a formula with the following syntax, where φ ∈ Φ and n,m
are natural numbers including 0:

γ ∈ Γ (Φ) ::= #φ � n | #φ ≡m n | γ ∧ γ | ¬γ .

The first two kinds of formulæ can test whether the number of children satisfying
φ is less or equal to n or equal to n modulo m. Note that we cannot write
#φ � #φ′, which would lead to the richer class of Presburger formulæ.

Any counting constraint γ defines a set of nodes �γ�t,I for any variables
assignment I to t, so counting constraints themselves can be used as node selec-
tors:

�#φ � n�t,I = { v ∈ Vt | Card({ v′ | v ↓t v′ ∧ v′ ∈ �φ�t,I }) � n } ,
�#φ ≡m n�t,I = { v ∈ Vt | Card({ v′ | v ↓t v′ ∧ v′ ∈ �φ�t,I }) ≡m n } ,

�γ ∧ γ′�t,I = �γ�t,l ∩ �γ′�t,l , �¬γ�t,I = Vt \ �γ�t,l .

Note that we can define #φ � n as syntactic sugar for ¬(#φ � n − 1), and
#φ = n as syntactic sugar for #φ � n ∧ #φ � n.

3 Counting MSO for Data Trees: CMso(Θ)

We now introduce counting MSO for data trees with comparisons of sibling data
values. Which precise comparisons are permitted is a parameter of the logic.

As before we assume a set of variables X and a data alphabet A. In addition,
we fix a set Θ of binary relations on A

∗ that are called string comparisons. We
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then define a set of node selectors with regular expressions for matching data
values and comparisons of sibling data values from Θ. Such a node selector has
the following syntax where θ ∈ Θ, π is a regular expression over A, and x,X ∈ X :

φ ∈ Φrel(Θ) ::= π incoming edge label matches π,

| x | X equal to x or member of X,

| θ.φ ∃ sibling satisfying φ with labels related by θ,

| φ ∧ φ | ¬φ conjunction and negation.

The sets of selected nodes are defined as follows for formula φ ∈ Φrel, any tree t
and variable assignment I into t:

�π�t,I = {v | �t(v) matches π} �φ ∧ φ′�t,I = �φ�t,I ∩ �φ′�t,I
�x�t,I = {I(x)} �¬φ�t,I = Vt \ �φ�t,I
�X�t,I = I(X)
�θ.φ�t,I = {v | ∃v′ . v ��t v′ ∧ (�t(v), �t(v′)) ∈ θ ∧ v′ ∈ �φ�t,I}

In particular, a node selector θ.φ selects all nodes that have a sibling-or-self, so
that the data values of these two nodes satisfy comparison θ.

Definition 1. We define the children counting contraints for data trees with
comparisons of data values Γ (Θ) by Γ (Φrel(Θ)) and the counting MSO for data
trees with comparison of sibling data values CMso(Θ) by Mso(Γ (Θ)).

Note that the childhood x ↓ x′ can be defined in CMso(Θ) by x ∈ (#x′ = 1)
independently of the choice of Θ. Hence, sibling-or-self contraints x �� x′ can
also be defined by ∃x′′. (x′′ ↓ x∧x′′ ↓ x′) for any Θ. The elements of Θ intervene
only if one wants to compare the data values of sibling nodes.

Example 1. Recall the TEX compilation example of equation (2)[p177] and its
free variables. There remains to bind Xdoc and Xpdf15 to the relevant sets of
nodes in a closed formula. A TEX main document (resp. a valid pdf version
1.5) is represented by a node with a single outgoing edge, whose label is pre-
fixed by ”\documentclass” (resp. ”%PDF-1.5”), leading to a leaf. Thus the closed
CMso({ θtex2pdf }) formula:

∃Xleaf . ∃Xdoc . ∃Xpdf15 . Xleaf = (#(∗) = 0)
∧ Xdoc = (#(∗) = 1 ∧ #(”\documentclass” ∗ ∧ Xleaf) = 1)

∧ Xpdf15 = (#(∗) = 1 ∧ #(”%PDF-1.5” ∗ ∧ Xleaf) = 1)
∧ ∀x . x ∈ (#(∗”.tex” ∧ Xdoc ∧ ¬θtex2pdf.Xpdf15) = 0) .

Example 2. Another useful thing to require of a data tree is the feature tree
property, stating that no two sibling edges may share the same label. This prop-
erty can be used to specify files systems, since one needs to state that no two files
in the same directory have the same name. Taking θid as the identity relation,
we can define feature trees in CMso({θid}) as follows:
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∀x . (#(x ∧ θid.¬x) � 1) = ∅ .

Example 3. Consider now a transformation θbck, which to w associates w”.bck”,
thus relating a file’s name to that of its automatic backup. Suppose that the
system can back up a backup, and so on, up to a certain point, and we need to
check that this bound is not overstepped. That is to say, given n ∈ N, we want to
write a formula ξn enforcing that there is no chain of backups of length greater
than n. Suppose we had a least-fixed point operator μ among our child-selectors,
following the syntax – μX.φ – and semantics of μ-calculus. Then we could write
ξn in CMso({θbck}):

∀x . (#μX.(x ∨ θbck.X) > n + 1) = ∅ .

μX.(x ∨ θbck.X) intuitively captures the set of nodes related to x by successive
iterations of θbck; we can do the same thing without needing μ by explicitly
binding a set variable Y to the least fixpoint of x ∨ θbck.X, wrt. X:

∀x . ∃Y . (#((x ∨ θbck.Y ) ∧ ¬Y ) � 1) = ∅

∧ �Y ′ . Y ′ ⊆ Y ∧ (#((x ∨ θbck.Y
′) ∧ ¬Y ′) � 1) = ∅

∧ ∀x . [#Y > n + 1] = ∅ .

The first line establishes Y as a fixed point, as it means that there are no nodes
with a child satisfying x ∨ θbck.Y but not Y . The second line states that there
is no smaller fixpoint than Y . This encoding can be generalised to any use of μ.

4 Undecidable Instances of CMso(Θ)

In this section, we exhibit conditions on the expressive power of the class of
data constraints Θ sufficient to render satisfiability for Γ (Θ), and therefore for
CMso(Θ), undecidable. As we shall see, not much is needed. Even merely allow-
ing Θ to express the addition or removal of a single letter at the beginning or end
of a word is enough; the argument developed in the next theorem is that even
this is sufficient to encode the solution of the Post Correspondence Problem.

Theorem 1. Let Θ1 be the set of string relations of the forms w → wa, w →
aw, wa → w, or aw → w, with a ∈ A, w ∈ A

∗. Then CMso(Θ1) is undecidable.

Proof. We reduce PCP, with input dominoes [ u1
v1 ], . . . , [ un

vn
]. Let us write the rela-

tions in Θ1 as θ+a, θa+, θ−a, and θa−, respectively. Given a word w = a1 . . . am,
by abuse of notation we abbreviate θ+a1 . . . . θ+am

.φ into θ+w.φ. Although Θ1

is not closed by composition, this construction enables us to pretend that it is
– the difference is that it requires the existence of siblings for each intermedi-
ate step, which does not affect us. θw−.φ is defined likewise. θam+. . . . θa1+.φ is
written θw+.φ, and likewise for θ−w.φ. Let $1, $2 ∈ A be symbols not appear-
ing in any domino, serving as markers for the first and the second phase of
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the construction. The operation for “placing domino i around previous domi-
noes” is defined as θi.φ ≡ θ$1−.θui+.θ+vi

.θ$1+.φ; “accepting dominoes” is
θacc.φ ≡ θ$1−.(∗1 ∧ θ$2+.φ), where ∗1 matches any string of length � 1, to
avoid the empty sequence as a trivial solution; “reading a on both ends” is
θa.φ ≡ θ$2−.θa−.θ−a.θ$2+.φ. Abbreviating θ.∗ or θ.true into simply θ, consider
now the formula γ ∈ Γ (Θ1) =

#$1 = 1 ∧ #$2 = 1 ∧
#($1∗ ∧¬(θ1 ∨ · · · ∨ θn ∨ θacc)) = 0 ∧ #($2∗ ∧¬(

∨
a�=$1,$2

θa)) = 1 .

It is satisfiable iff there is a tree whose arity contains $1, $2, and such that every
label beginning with $1 (i.e. phase one) has a sibling (along with the intermediate
siblings) obtained either by placing some domino so that ui mirrors vi, staying
in phase one, or by moving to phase two. At this point, a label is of the form
$2uik . . . ui1vi1 . . . vik . Furthermore, all but one label beginning with $2 (i.e. all
but $2) have a sibling obtained by removing the same letter at the beginning
and the end; all letters must be read until only $2 remains. Thus, γ is satisfiable
iff there are i1, . . . , ik such that ui1 . . . uik = vi1 . . . vik . This shows that Γ (Θ1)
is undecidable. This carries over to CMso(Θ1): consider the formula ∃x . x ∈
γ.

Proof. We reduce PCP, with input dominoes [ u1
v1 ], . . . , [ un

vn
]. Let us write

the relations in Θ1 as θ+a, θa+, θ−a, and θa−, respectively. Given a word
w = a1 . . . am, by abuse of notation we abbreviate θ+a1 . . . . θ+am

.φ into θ+w.φ.
Although Θ1 is not closed by composition, this construction enables us to pre-
tend that it is – the difference is that it requires the existence of siblings for
each intermediate step, which does not affect us. θw−.φ is defined likewise.
θam+. . . . θa1+.φ is written θw+.φ, and likewise for θ−w.φ. Let $1, $2 ∈ A be
symbols not appearing in any domino, serving as markers for the first and the
second phase of the construction. The operation for “placing domino i around
previous dominoes” is defined as θi.φ ≡ θ$1−.θui+.θ+vi

.θ$1+.φ; “accepting domi-
noes” is θacc.φ ≡ θ$1−.(∗1 ∧ θ$2+.φ), where ∗1 matches any string of length � 1,
to avoid the empty sequence as a trivial solution; “reading a on both ends” is
θa.φ ≡ θ$2−.θa−.θ−a.θ$2+.φ. Abbreviating θ.∗ or θ.true into simply θ, consider
now the formula γ ∈ Γ (Θ1) =

#$1 = 1 ∧ #$2 = 1 ∧
#($1∗ ∧¬(θ1 ∨ · · · ∨ θn ∨ θacc)) = 0 ∧ #($2∗ ∧¬(

∨
a�=$1,$2

θa)) = 1 .

It is satisfiable iff there is a tree whose arity contains $1, $2, and such that every
label beginning with $1 (i.e. phase one) has a sibling (along with the intermediate
siblings) obtained either by placing some domino so that ui mirrors vi, staying
in phase one, or by moving to phase two. At this point, a label is of the form
$2uik . . . ui1vi1 . . . vik . Furthermore, all but one label beginning with $2 (i.e. all
but $2) have a sibling obtained by removing the same letter at the beginning
and the end; all letters must be read until only $2 remains. Thus, γ is satisfiable
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iff there are i1, . . . , ik such that ui1 . . . uik = vi1 . . . vik . This shows that Γ (Θ1)
is undecidable. This carries over to CMso(Θ1): consider the formula ∃x . x ∈
γ.

5 Satisfiability of CMso(ΘWSkS) is Decidable

We shall now see that, in spite of the bleak picture painted by the previous
section, Θ can be made rather large and useful without forgoing decidability.
Indeed, the most frequent operation in applications, illustrated in particular by
the TEX example (1)[p176], is suffix replacement. The property that we really
need is thus decidability of satisfiability for CMso(Θsuffix), where the relations
of Θsuffix are of the form θu,u′ = { (wu,wu′) | w ∈ A

∗ }, for u, u′ ∈ A
∗. We show

decidability for a class that is actually more general: WSkS-definable relations.
The well-known logic Weak Monadic Second-Order Logic with k Successors

(WSkS) [6], for any k � 1, is based on first-order variables z, and second-order
variables Z. Terms τ and formulæ ω of this logic are defined by

τ ::= ε | z | τi 1 � i � k

ω ::= τ = τ | τ ∈ Z | ω ∧ ω | ¬ω | ∃z . ω | ∃Z . ω

First-order variables range over words in { 1, . . . , k }∗, and second-order variables
range over finite subsets of { 1, . . . , k }∗. The constant ε denotes the empty word,
and each of the functions i, written in postfix notation, denotes appending the
symbol i at the end of a word. Validity and satisfiability of formulæ in WSkS
are decidable [19], even though with a non-elementary complexity [18].

Some useful relations expressible in WSkS are zz′ (prefix partial order on
words), z �lex z′ (lexicographic total order on words), z ∈ π for any regular
expression π, Z ⊆ Z ′, Z = Z ′ ∪Z ′′, Z = Z ′ ∩Z ′′, Z = Z ′ (complement), Z = ∅,
|Z| ≡n m for any constants n,m. Most of those are shown in [7, p88].

The unary predicates on words definable in WSkS are precisely the regular
sets [10,13]. A binary relation R ⊆ { 1, . . . , k }∗ × { 1, . . . , k }∗ is called special if
it is of the form { (ab, ac) | a ∈ L, b ∈ M, c ∈ N } for some regular sets L, M ,
and N . A binary relation on words is definable in WSkS iff it is a finite union
of special relations [10]. Some relations which are known not to be expressible
in WSkS are z = z′z′′, z = iz′, z is a suffix of z′, z and z′ have the same length,
Z and Z ′ have the same cardinality. Let us note that what is definable largely
includes the kinds of suffix manipulations which we need for applications and,
conversely, that the dangerous properties highlighted in the previous section are
not expressible: one cannot manipulate suffixes and prefixes at the same time.

Let ΘWSkS be the set of WSkS-definable relations, with the letters of A

taken as successor functions, along with a fresh letter $; we sketch the proof
of decidability of CMso(ΘWSkS). Child-selectors φ and counting constraints ψ
are encoded into WSkS, and thus shown decidable. The Mso layer can then be
translated into automata, yielding a model of automata for unordered trees as
in [3], for which the emptiness problem is known to be decidable under certain
conditions, which are here satisfied.
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We encode multisets A of edge labels w as sets of WSkS strings, accounting
for multiplicities A(w) by appending different numbers of $ to ws to differentiate
them. Let t be a tree and At

v the arity – the multiset of labels – of node v; the
encoding of At

v is denoted by At
v and that of v by v, such that

At
v =

{
w$k

∣∣ 1 � k � At
v(w)

}
=

{
v′ ∣∣ v ↓t v′ } ,

where v′ = �t(v′)$i for some i. Note that all children sharing the same label
must get a different i; while there are several valid encodings depending on
that assignment, we simply choose one, indifferently. Taking X as fresh WSkS
set variables, this encoding extends to interpretations in the obvious way. We
can now encode any child-selector φ as a WSkS formula φ with free variables
z, Z (standing for the current node and its arity), such that for any tree t,
interpretation I, and nodes v′ ↓t v:

t, I, v |= φ ⇐⇒ I[z → v, Z → At
v′ ] |= φ .

Our building blocks are: (1) z |= π, where π is a regular expression, which is
known to be WSkS-expressible, (2) zθz′ is expressible by definition, since θ is a
WSkS-expressible relation, and (3) z − $, which removes all the $ at the end of
the word, testing its well-formedness at the same time it restitutes the edge-label,
and is encoded as

z′ = z − $ ≡ z′$z ∧ z′ |= A
∗ .

Using this, we have the following encodings:

π ≡ (z − $) |= π, X ≡ z ∈ X,

θ.φ ≡ ∃z′ ∈ Z . (z − $)θ(z′ − $) ∧ φ[z ← z′] .

There remains to handle counting constraints ψ, which is simply a matter of
showing that WSkS can encode the primitives |Z| � m – which is easy – and
|Z| ≡n m – which rests on a total order such as the lexicographic one, and on the
idea of affecting each element in turn to a second-order variable corresponding
to the value of the modulo. (Note that the same cannot be said of Presburger
logic’s |X| = |Y | tests, which are not expressible in WSkS, and whose addition
would make it undecidable.) With this done, all decidability results for WSkS
carry over to Γ (ΘWSkS); in particular:

Lemma 1. Satisfiability of Γ (ΘWSkS) is decidable.

There now remains to deal with the Mso layer; it could be encoded in WSkS
as well (as it is a second order logic with sufficient expressive power), but it
is simpler to take an automaton-based viewpoint, similar to [3,15] (with the
addition of θs). We summarise the model of automata for our unordered trees,
aut(Θ), as bottom-up automata with rules ψ → q, where ψ are formulæ of
Γ (Θ) whose child-selectors have an additional test q determining whether a
child node has been evaluated in q previously (this corresponds to an “Xq”
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test). A tree language L is said to be CMso(Θ)-definable if there exists a closed
formula ξL ∈ CMso(Θ) such that L = { t | t |= ξL }. Through straightforward
adaptations of the usual encodings [7,19], and further noting that aut(Θ) are
effectively closed by all boolean operations, we obtain:

Lemma 2. A set of trees is CMso(Θ)-definable iff it is accepted by an aut(Θ).

Of course, this result is constructive, and we can then adapt the usual reacha-
bility algorithm: provided that Γ (Θ) is decidable, so is emptiness for aut(Θ),
and, in turn, so is CMso(Θ). In particular:

Theorem 2. Satisfiability of CMso(ΘWSkS) is decidable.

6 More Efficient Fragments

We can further gain in efficiency by further restricting the θ relation. To this
end, we consider mutually exclusive suffix replacement: we pick a set of suffixes
L = {w1, . . . , wn} such that wi is never a suffix of another wj . Let ΘL be the
set of string relations θwi,wj

linking uwi to uwj , we denote ΓsufL the counting
formulæ of Γ (ΘL), with the additional restriction that regular expressions testing
labels are of the form A

∗ ·wi. We use a small-model argument to find an efficient
algorithm for satisfiability. We will later use this logic in bottom-up automata
of aut(ΘL) as we did in Part 5.

We consider that our arities are already annotated by set variables X ∈ X .
These variables will later correspond to state labelings of an automaton of
aut(Θ). If we consider vertically deterministic automata of aut(Θ) [3], where
each tree is evaluated in at most one state, the variables X are mutually exclu-
sive. By restricting ourselves to mutually exclusive suffixes, we only need to
consider the edges labeled in uL, i.e. the orbit of uwi under the action of all
θwi,wj

. This allows us to guessing a valid arity for φ ∈ ΓsufL orbit by orbit. All
we need then is a small-model theorem: if #φ � n appears in a formula ψ, we
need to keep track of how many elements are selected by φ in a counter that
stops at n. if #φ ≡m n appears in ψ, we need to keep track of how many ele-
ments are selected by φ in a counter modulo m. This leads to an exponential
number of configurations, which means that, if ψ is satisfiable, then we can find
a solution using an exponential number of orbits of exponential size. We finally
get:

Lemma 3. The satisfiability problem for an arity formula of ΓsufL is decidable
in NExpTime. Furthermore, if the variables X are mutually exclusive, the sat-
isfiability problem for an arity formula of ΓsufL is decidable in PSpace.

We can then use the techniques of [3,15], to extend our results to a class aut(ΘL)
of bottom-up automata with rules ψ → q, where ψ are formulæ of ΓsufL .

Theorem 3. The emptiness problem for automata in aut(ΘL) is decidable in
NExpTime. Furthermore, for deterministic automata of aut(ΘL), the empti-
ness problem is decidable in PSpace.
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7 Conclusions and Future Works

We have introduced the logic CMso(ΘWSkS) on unordered data trees. It is an
extension of CMso to data trees, where tests on a given child may include enforc-
ing the existence of a sibling whose label is in relation with that child’s own label,
the relation being WSkS-definable. That logic’s expressive power is largely suffi-
cient for concrete applications, such as the verification of common constraints on
file trees, which usually involve suffix manipulations, largely captured by WSkS.
We have shown that satisfiability for CMso(ΘWSkS) is decidable. However, we
have also shown that any attempt to allow additional data relations for both
prefix and suffix manipulations, even of the simplest kind, would render the
logic undecidable. We have also studied the complexity of the emptiness tests
for automata where horizontal counting constraints are restricted to relations
that only involve disjoint suffixes, and shown that the test is then NExpTime
for alternating automata, and only PSpace for deterministic automata.

There are two main ways in which this work can be extended. One is to
find more expressive string relations for which the logic remains decidable; our
undecidability results indicate that such an extension may not be very natural.
Another is to extend the reach of the string relation from merely the set of
siblings to something larger. In a first step towards that, the proof of Thm 3 can
be extended to support equality constraints between brother subtrees without
changing the NExpTime complexity. Another promising direction is the use of
Monadic Datalog on data trees [1], which is capable of expressing relations not
only with siblings but also with parents, cousins etcetera, and for which efficient
algorithms are known.

References

1. Abiteboul, S., Bourhis, P., Muscholl, A., Wu, Z.: Recursive queries on trees and
data trees. In: ICDT, pp. 93–104. ACM (2013)

2. Benzaken, V., Castagna, G., Nguyen, K., Siméon, J.: Static and dynamic semantics
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Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://
www.grappa.univ-lille3.fr/tata

8. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Information and computation 85(1), 12–75 (1990)

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata


Logics for Unordered Trees with Data Constraints on Siblings 187

9. Figueira, D.: On XPath with transitive axes and data tests. In: ACM Symposium
on Principles of Database, System, pp. 249–260 (2013)
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Abstract. Automata over infinite alphabets have recently come to be
studied extensively as potentially useful tools for solving problems in
verification and database theory. One popular model of automata studied
is the Class Memory Automata (CMA), for which the emptiness problem
is equivalent to Petri Net Reachability. We identify a restriction – which
we call weakness – of CMA, and show that they are equivalent to three
existing forms of automata over data languages. Further, we show that
in the deterministic case they are closed under all Boolean operations,
and hence have an ExpSpace-complete equivalence problem. We also
extend CMA to operate over multiple levels of nested data values, and
show that while these have undecidable emptiness in general, adding
the weakness constraint recovers decidability of emptiness, via reduction
to coverability in well-structured transition systems. We also examine
connections with existing automata over nested data.

Keywords: Automata · Data languages · Nested Data

1 Introduction

A data word is a word over a finite alphabet in which every position in the word
also has an associated data value, from an infinite domain. Data languages pro-
vide a useful formalism both for problems in database theory and verification
[3,13,16]. For example, data words can be used to model a system of a poten-
tially unbounded number of concurrent processes: the data values are used as
identifiers for the processes, and the data word then gives an interleaving of the
actions of the processes. Having expressive, decidable logics and automata over
data languages then allows properties of the modelled system to be checked.

Class memory automata (CMA) [3] are a natural form of automata over data
languages. CMA can be thought of as finite state machines extended with the
ability, on reading a data value, to remember what state the automaton was in
when it last saw that data value. A run of a CMA is accepting if the following two
conditions hold: (i) the run ends in a globally accepting state; and (ii) each data
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value read in the run was last seen in a locally accepting state. If using data values
to distinguish semi-autonomous parts of a system, while the first condition can
check the system as a whole has behaved correctly, the second of these conditions
can be used to check that each part of the system independently behaved correctly.
The emptiness problem for CMA is equivalent to Petri net reachability, and while
closed under intersection, union, and concatenation, they are not closed under
complementation, and do not have a decidable equivalence problem.

We earlier described how data words can be used to model concurrent systems:
each process can be identified by a data value, and CMA can then verify properties
of the system. What happens when these processes can spawn subprocesses, which
themselves can spawn subprocesses, and so on? In these situations the parent-child
relationship betweenprocesses becomes important, and a single layer of data values
cannot capture this; instead we want a notion of nested data values, which them-
selves contain the parent-child relationship. In fact, such nested data values have
applications beyond just in concurrent systems: they are prime candidates formod-
elling many computational situations in which names are used hierarchically. This
includes higher-order computation where intermediate functional values are being
created and named, and later used by referring to these names. More generally, this
feature is characteristic of numerous encodings into the π-calculus [14].

This paper is concerned with finding useful automata models which are
expressive enough to decide properties we may wish to verify, as well as hav-
ing good closure and decidability properties, which make them easy to abstract
our queries to. We study a restriction of class memory automata, which we find
leads to improved complexity and closure results, at the expense of expressivity.
We then extend class memory automata to a nested data setting, and find a
decidable class of automata in this setting.

Contributions. In Section 3 we identify a natural restriction of Class Memory
Automata, which we call weak Class Memory Automata, in which the local-
acceptance condition of CMA is dropped. We show that these weak CMA are
equivalent to: (i) Class Counting Automata, which were introduced in [12];
(ii) non-reset History Register Automata, introduced in [18]; and (iii) locally
prefix-closed Data Automata, introduced in [5].

These automata have an ExpSpace-complete emptiness problem. The pri-
mary advantage of having this equivalent model as a kind of Class Memory
Automaton is that there is a natural notion of determinism, and we show that
Deterministic Weak CMA are closed under all Boolean operations (and hence
have decidable containment and equivalence problems).

In Section 4 we introduce a new notion of nesting for data languages, based
on tree-structured datasets. This notion does not commit all letters to be at the
same level of nesting and appears promising from the point of view of modelling
scenarios with hierarchical name structure, such as concurrent or higher-order
computation. We extend Class Memory Automata to operate over these nested
datasets, and show that this extension is Turing-powerful in general, but reintro-
ducing the Weakness constraint recovers decidability. We show how these Nested
Data CMA recognise the same string languages as Higher-Order Multicounter
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Automata, introduced in [2], and also how the weakness constraint corresponds
to a natural weakness constraint on these Higher-Order Multicounter Automata.
Finally, we show these automata to be equivalent to the Nested Data Automata
introduced in [5].

Related Work. Class memory automata are equivalent to data automata
(introduced in [4]), though unlike data automata, they admit a notion of deter-
minism. Data automata (and hence class memory automata) were shown in [4]
to be equiexpressive with the two-variable fragment of existential monadic sec-
ond order logic over data words. Temporal logics have also been studied over
data words [6], and the introduction of locally prefix-closed data automata and
of nested data automata in [5] is motivated by extensions to BD-LTL, a form of
LTL over multiple data values introduced in [10].

Fresh register automata [17] are a precursor to the History Register automata
[18] which we examine a restriction of in this paper. Class counting automata,
which we show to be equivalent to weak CMA, have been extended to be as
expressive as CMA by adding resets and counter acceptance conditions [11,12].

We note that our restriction of class memory automata, which we call weak
class memory automata, sound similar to the weak data automata introduced in
[9]. However, these are two quite different restrictions, with emptiness problems
of different complexities, and the two automata models should not be confused.

In the second part of this paper we examine automata over nested data
values. First-order logic over nested data values has been studied in [3], where
it was shown that the < predicate quickly led to undecidability, but that only
having the +1 predicate preserved decidability. They also examined the link
between nested data and shuffle expressions. In [5] Decker et al. introduced ND-
LTL, extending BD-LTL to nested data values. To show decidability of certain
fragments of ND-LTL they extended data automata to run over nested data
values, giving the nested data automata we examine in this paper.

Further Work. We would like to understand better whether there is a natural
fragment of the π-calculus that corresponds to the new classes of automata. On
the logical side, an interesting outstanding question is to characterize languages
accepted by our classes of automata with suitable logics.

2 Preliminaries

Let Σ be a finite alphabet, and D an infinite set of data values. A data alphabet,
D, is of the form Σ × D. The set of finite data words over D is denoted D

∗.
Class Memory Automata and Data Automata. Given a set S, we

write S⊥ to mean S ∪ {⊥}, where ⊥ is a distinguished symbol (representing a
fresh data value). A Class Memory Automaton [3] is a tuple 〈 Q,Σ, qI , δ, FL, FG 〉
where Q is a finite set of states, Σ is a finite alphabet, qI ∈ Q is the initial state,
FG ⊆ FL ⊆ Q are sets of globally- and locally-accepting sets (respectively), and
δ is the transition map δ : Q×Σ ×Q⊥ → P(Q). The automaton is deterministic
if each set in the image of the transition function is a singleton. A class memory
function is a map f : D → Q⊥ such that f(d) 	= ⊥ for only finitely many d ∈ D.
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We view f as a record of the history of computation: it holds the state of the
automaton after the data value d was last read, where f(d) = ⊥ means that d is
fresh. A configuration of the automaton is a pair (q, f) where q ∈ Q and f is a
class memory function. The initial configuration is (q0, f0) where f0(d) = ⊥ for
every d ∈ D. Suppose (a, d) ∈ Σ ×D is the input. The automaton can transition
from configuration (q, f) to configuration (q′, f ′) just if q′ ∈ δ(q, a, f(d)) and f ′ =
f [d 
→ q′]. A data word w is accepted by the automaton just if the automaton can
make a sequence of transitions from the initial configuration to a configuration
(q, f) where q ∈ FG and f(d) ∈ FL ∪ {⊥} for every data value d.

A Data Automaton [4] is a pair (A,B) where A is a letter-to-letter string
transducer with output alphabet Γ , called the Base Automaton, and B is a
NFA with input alphabet Γ , called the Class Automaton. A data word w =
w1 . . . wn ∈ D

∗ is accepted by the automaton if there is a run of A on the string-
projection of w (to Σ) with output b1 . . . bn such that for each maximal set of
positions {x1, . . . , xk} ⊆ {1, . . . , n} such that wx1 , . . . , wxk

share the same data
value, the word bx1 . . . bxk

is accepted by B.
CMA and DA are expressively equivalent, with PTime translation [3]. The

emptiness problem for these automata is decidable, and equivalent to Petri Net
Reachability [4]. The class of languages recognised by CMA is closed under
intersection, union, and concatenation. It is not closed under complementation
or Kleene star. Of the above, the class of languages recognised by deterministic
CMA is closed only under intersection.

Locally Prefix-Closed Data Automata. A Data Automaton D = (A,B)
is locally prefix-closed (pDA) [5] if all states in B are final. The emptiness problem
for pDA is ExpSpace-complete [5].

Class Counting Automata. A bag over D is a function h : D → N such
that h(d) = 0 for all but finitely many d ∈ D. Let C = {=, 	=, <,>} × N, which
we call the set of constraints. If c = (op, e) ∈ C and n ∈ N we write n � c iff
nope. A Class Counting Automaton (CCA) [12] is a tuple 〈 Q,Σ,Δ, q0, F 〉 where
Q is a finite set of states, Σ is a finite alphabet, q0 is the initial state, F ⊆ Q
is the set of accepting states, and Δ, the transition relation, is a finite subset of
Q×Σ ×C ×{↑+, ↓}×N×Q. A configuration of a CCA, C = 〈 Q,Σ,Δ, q0, F 〉, is
a pair (q, h) where q ∈ Q and h is a bag. The initial configuration is (q0, h0) where
h0 is the zero function. Given a data word w = (a1, d1)(a2, d2) . . . (an, dn) a run
of w on C is a sequence of configurations (q0, h0)(q1, h1) . . . (qn, hn) such that for
all 0 ≤ i < n there is a transition (q, a, c, π,m, q′) where q = qi, q′ = qi+1,
a = ai+1, hi(di+1) � c, and hi+1 = hi[di+1 
→ hi(di+1) + m] if π =↑+ or hi+1 =
hi[di+1 
→ m] if π =↓ The run is accepting if qn ∈ F . The emptiness problem for
Class Counting Automata was shown to be ExpSpace-complete in [12].

Non-Reset History Register Automata. For a positive integer k write
[k] for the set {1, 2 . . . , k}. Fixing a positive integer m, define the set of labels
Lab = P([m])2. A non-reset History Register Automaton (nrHRA) of type m
with initially empty assignment is a tuple A = 〈 Q,Σ, δ, q0, F 〉 where q0 ∈
Q is the initial state, F ⊆ Q is the set of final states, and δ ⊆ Q × Σ ×
Lab × Q. A configuration of A is a pair (q,H) where q ∈ Q and H : [m] →



192 C. Cotton-Barratt et al.

Pfn(D) where Pfn(D) is the set of finite subsets of D. We call H an assignment,
and for d ∈ D we write H−1(d) for the set {i ∈ [m] : d ∈ H(i)}. The initial
configuration is (q0,H0), where H0 assigns every integer in [m] to the empty
set. When the automaton is in configuration (q,H), on reading input (a, d) it
can transition to configuration (q′,H ′) providing there exists X ⊆ [m] such that
(q, a, (H−1(d),X), d) ∈ δ and H ′ is obtained by removing d from H(i) for each
i then adding d to each H(i) such that i ∈ X. A run is defined in the usual way,
and a run is accepting if it ends in a configuration (q,H) where q ∈ F .

Higher-Order Multicounter Automata. A multiset over a set A is a
function m : A → N. A level-1 multiset over A is a finite multiset over A. A
level-(k + 1) multiset over A is a finite multiset of level-k multisets over A. We
can visualise this with nested set notation: e.g. {{a, a}, {}, {}} represents the
level-2 multiset containing one level-1 multiset containing two copies of a, and
two empty level-1 multisets. A multiset is hereditarily empty if, written in nested
set notation, it contains no symbols from A.

Higher-Order Multicounter Automata (HOMCA) were introduced in [2], and
their emptiness problem was shown to be Turing-complete at level-2 and above.
A level-k multicounter automaton is a tuple 〈 Q,Σ,A,Δ, q0, F 〉 where Q is a
finite set of states, Σ is the input alphabet, A is the multiset alphabet, q0 is
the initial state, and F is the set of final states. A configuration is a tuple
(q,m1,m2, . . . ,mk) where q ∈ Q and each mi is either undefined (⊥) or a level-i
multiset over A. The initial configuration is (q0,⊥, . . . ,⊥). Δ is the transition
relation, and is a subset of Q × Σ × ops × Q where ops is the set of possible
counter operations. These operations, and meanings, are as follows: (i) newi

(i ≤ k) turns mi from ⊥ into the empty level-i multiset; (ii) inca (a ∈ A) adds a
to m1; (iii) deca (a ∈ A) removes a from m1; (iv) storei (i < k) adds mi to mi+1

and sets mi to ⊥; (v) loadi (i < k) non-deterministically removes an m from
mi+1 and turns mi from ⊥ to m. This can happen only when m1 . . . mi are all
⊥. The automaton reads the input word from left to right, updating m1 . . . mk

as determined by the transitions. A word is accepted by the automaton just if
there is a run of the word such that the automaton ends up in configuration
(q,m1, . . . ,mk) where q ∈ F and each mi is hereditarily empty.

3 Weak Class Memory Automata

In this section we introduce a restriction of class memory automata, weak class
memory automata (WCMA), that have improved closure and complexity proper-
ties. We show that WCMA correspond to a natural restriction of data automata,
locally-prefix closed data automata, as well as two other independent automata
models, class counting automata and non-reset history register automata.

Definition 1. A class memory automaton 〈 Q,Σ,Δ, q0, FL, FG 〉 is weak if all
states are locally accepting (i.e. FL = Q).

When defining a weak CMA (WCMA) we may omit the set of locally accepting
states, and just give one set of final states, F .
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The emptiness problem for class memory automata is reducible (in fact,
equivalent) to emptiness of multicounter automata (MCA) [3,4]. This reduction
works by using counters to store the number of data values last seen in each state.
The local-acceptance condition is checked by the zero-test of each counter at the
end of a run of an MCA. In the weak CMA case, this check is not necessary, and
so emptiness is reducible to emptiness of weak MCA. Just as MCA emptiness is
equivalent to Petri net reachability, weak MCA emptiness is equivalent to Petri
net coverability.

p1 p2

t2t1

p1 p2

t2t1

Fig. 1. An example Petri net with ini-
tial and target markings

Example 2. We give an example showing
how a very simple Petri net reachabil-
ity query can be reduced to an emptiness
of CMA problem, and the small change
required to reduce coverability queries
to emptiness of WCMA. The idea is to
encode tokens in the Petri net using data
values: the location of the token is stored
by the class memory function’s memory
for the data value. Transitions in the Petri
net will be simulated by sequences of tran-
sitions in the automaton, which change class memory function appropriately.
Consider the Petri net shown in Figure 1, with initial marking above and target
marking below.

s0start

s1 s2

s4 s5

s3

s6

s7

⊥
ε

s1s3

⊥

ε

⊥ ε

s5

s5

Fig. 2. A class memory automaton simulating
the Petri net query shown in Figure 1

We give the automaton which
models this reachability query in
Figure 2. The first transitions
from the initial state just set up
the initial marking. As there is
only one token in the initial mark-
ing, this just involves reading one
fresh data value: this is the transi-
tion from s0 to s1 below. Once the
initial marking has been set up
(reaching s2 below), the automa-
ton can simulate the transitions
firing any number of times. Each
loop from s2 back to itself repre-
sents one transition in the Petri
net firing: the loop above repre-
sents t1 firing, and the loop below represents t2 firing. For t1 to fire, no precon-
ditions must be met, and a new data value can be read in state s3, thus data
values last seen in either of states s1 and s3 represent tokens in p1. For t2 to fire,
a token must be removed from p1, since tokens in p1 are represented by tokens
in either s1 or s3, the first transition in this loop – to s4 – involves reading a
data value last seen in one of these states. Thus data values seen in s4 represent
removed tokens, which we do not use again. Then a new token is placed in p2 by
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reading a fresh data value in s5. Once back in s2 these loops can be taken more,
or the fact that a marking covering the target marking has been reached can be
checked by reading two data values last seen in s5 to reach a final state. The
only globally accepting state is s7, and all states except those which are used to
represent tokens – i.e. all except s1, s3, and s5 – are locally accepting. The local
acceptance condition thus checks that no other tokens remain in the simulated
Petri net.

If we were interested in a coverability query, the same automaton, but with-
out the local acceptance condition, would obviously suffice. Thus emptiness of
WCMA is equivalent to Petri net coverability, which is ExpSpace-complete.

We now give the main observation of this section: that weak CMA are equiv-
alent to three independent existing automata models.

Theorem 3. Weak CMA, locally prefix-closed DA, class counting automata,
and non-reset history register automata are all PTime-equivalent.

Proof. That Weak CMA and pDA are equivalent is a simple alteration of the
proof of equivalence of CMA and DA provided in [3].

Recall that CCA use a “bag”, which essentially gives a counter for each data
value. Weak CMA can easily be simulated by CCA by identifying each state with
a natural number; then the bag can easily simulate the class memory function,
by setting the data value’s counter to the appropriate number when it is read. To
simulate a CCA with a WCMA, we first observe that for any CCA, since counter
values can only be incremented or reset, there is a natural number, N , above
which different counter values are indistinguishable to the automaton. Thus we
need only worry about a finite set of values. This means the value for the counter
of each data value can be stored in the automaton state, and thereby the class
memory function.

In [18] the authors already show that nrHRA can be simulated by CMA.
Their construction does not make use of the local-acceptance condition, so the
fact that nrHRA can be simulated by WCMA is immediate. In order to simulate
a given WCMA with state set [m], one can take a nrHRA of type m, with place
i storing the data values last seen in state i.

Data automata, and hence pDA, unlike CMA and WCMA, do not have a natural
notion of determinism, nor a natural restriction corresponding to deterministic
CMA or WCMA. What about for CCA? We define CCA to be deterministic
if for each state q and input letter a, the transitions (q, a, c, . . . ) ∈ Δ are such
that the c’s partition N. The same translations given in Theorem 3 also show
that deterministic WCMA and deterministic CCA are equivalent. We can ask the
same question of non-reset HRA. We find that the natural notion of determinism
here is: for each q ∈ Q, a ∈ Σ, and X ⊆ [m] there is precisely one Y ⊆ [m] and
q′ ∈ Q such that (q, a, (X,Y ), q′) ∈ δ. Similarly, the translations discussed above
show deterministic WCMA to be equivalent to deterministic nrHRA.

It follows from the results for CCA in [12] that Weak CMA, like normal
CMA, are closed under intersection and union, though these closures can easily
be shown directly using product constructions (and these constructions preserve
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determinism). In fact, Deterministic Weak CMA have even nicer closure prop-
erties: the language recognised can be complemented using the same method as
for DFA: complementing the final states.

Proposition 4. Deterministic Weak CMA are closed under all Boolean opera-
tions.

Corollary 5. The containment and equivalence problems for Deterministic
Weak CMA are ExpSpace-complete.

4 Nested Data Class Memory Automata

In Section 1 we discussed how data values fail to provide a good model for mod-
elling computations in which names are used hierarchically, such as a system of
concurrent processes which can spawn subprocesses. Motivated by these appli-
cations, in this section we introduce a notion of nested data values in which the
data set has a forest-structure. This is a stylistically different presentation to
earlier work on nested data in that [3,5] require that each position in the words
considered have a data value in each of a fixed number of levels. By giving the
data set a forest-structure, we can explicitly handle variable levels of nesting
within a word. However, we note that there is a natural translation between the
two presentations.

Definition 6. A rooted tree (henceforth, just tree) is a simple directed graph
〈 D, pred 〉, where pred : D ⇀ D is the predecessor map defined on every node of
the tree except the root, such that every node has a unique path to the root. A
node n of a tree has level l just if pred l−1(n) is the root (thus the root has level
1). A tree has bounded level just if there exists a least l ≥ 1 such that every
node has level no more than l; we say that such a tree has level l.

We define a nested dataset 〈 D, pred 〉 to be a forest of infinitely many trees
of level l which is full in the sense that for each data value d of level less than l,
d has infinitely many children (i.e. there are infinitely many data values d′ s.t.
pred(d′) = d).

We now extend CMA to nested data by allowing the nested data class mem-
ory automaton (NDCMA), on reading a data value d, to access the class memory
function’s memory of not only d, but each ancestor of d in the nested data set.
Once a transition has been made, the class memory function updates the remem-
bered state not only of d, but also of each of its ancestors. Formally:

Definition 7. Fix a nested data set of level l. A Nested Data CMA of level l is
a tuple 〈 Q,Σ, δ, q0, FL, FG 〉 where Q is a finite set of states, q0 ∈ Q is the initial
state, FG ⊆ FL ⊆ Q are sets of globally and locally accepting states respectively,
and δ is the transition map. δ is given by a union δ =

⋃
1≤i≤l δi where each δi

is a function:
δi : Q × Σ × ({i} × (Q⊥)i) → P(Q)
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The automaton is deterministic if each set in the image of δ is a singleton;
and is weak if FL = Q. A configuration is a pair (q, f) where q ∈ Q, and
f : D → Q⊥ is a class memory function (i.e. f(d) = ⊥ for all but finitely
many d ∈ D). The initial configuration is (q0, f0) where f0 is the class memory
function mapping every data value to ⊥. A configuration (q, f) is final if q ∈
FG and f(d) ∈ FL ∪ {⊥} for all d ∈ D. The automaton can transition from
configuration (q, f) to configuration (q′, f ′) on reading input (a, d) just if d is a
level-i data value, q′ ∈ δ(q, a, (i, f(predi−1(d)), . . . , f(pred(d)), f(d))), and f ′ =
f [d 
→ q, pred(d) 
→ q, . . . , predi−1(d) 
→ q]. A run (q0, f0), (q1, f1), . . . , (qn, fn)
is accepting if the configuration (qn, fn) is final. w ∈ L(A) if there is an accepting
run of A on w.

It is clear that level-1 NDCMA are equivalent to normal CMA. We know
that emptiness of class memory automata is equivalent to reachability in Petri
nets; it is natural to ask whether there is any analogous correspondence – to
some kind of high-level Petri net – once nested data is used.

Example 8. In Example 2, we showed how CMA (resp. WCMA) can encode Petri
net reachability (resp. coverability). A similar technique allows reachability (resp.
coverability) of Petri nets with reset arcs to be reduced to emptiness of NDCMA
(resp. weak NDCMA). The key idea is to have, for each place in the net, a level-
1 data value – essentially as a “bag” holding the tokens for that place. Nested
under the level-1 data value, level-2 data values are used to represent tokens just
as before. When a reset arc is fired, the corresponding level-1 data value is moved
to a “dead” state – from where it and the data values nested under it are not
moved again – and a fresh level-1 data value is then used to hold subsequently
added tokens to that place.

Theorem 9. The emptiness problem for NDCMA is undecidable. Emptiness of
Weak NDCMA is decidable, but Ackermann-hard.

Proof. This result follows from Theorem 12 together with results in [5], though
we also provide a direct proof.

We show decidability by reduction to a well-structured transition system
[8] constructed as follows: a class memory function on a nested data set can be
viewed as a labelling of the data set by labels from the set of states. Since we only
care about the shape of the class memory function (i.e. up to automorphisms
of the nested data set), we can remove the nodes labelled by ⊥, and view a
class memory function as a finite set of labelled trees. The set of finite forests of
finite trees of bounded depth with the order given by F ≤ F ′ iff there is a forest
homomorphism from F to F ′ (where a forest is the natural extension of tree
homomorphisms to forests) is a well-quasi-order [7], which provides the basis for
the well-structured transition system.

Undecidability for NDCMA and Ackermann-hardness for Weak NDCMA fol-
low from the ideas in Example 8: the reachability (resp. coverability) problem
for Petri nets with reset arcs is encodable in NDCMA (resp. Weak NDCMA),
and this is undecidable [1] (resp. Ackermann-hard [15]).
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Weak Nested Data CMA have similar closure properties to Weak CMA (and
this can be shown using the same techniques as for DFA).

Proposition 10. (i) Weak NDCMA are closed under intersection and union.
(ii) Deterministic Weak NDCMA are closed under all Boolean operations.

Hence, as for weak CMA, the containment and equivalence problems for Deter-
ministic Weak NDCMA are decidable.

4.1 Link with Nested Data Automata

In [5] Decker et al. also examined “Nested Data Automata” (NDA), and showed
the locally prefix-closed NDA (pNDA) to have decidable emptiness (via reduction
to well-structured transition systems). In fact, these NDA precisely correspond
to NDCMA, and again being locally prefix-closed corresponds to weakness. In
this section we briefly outline this connection.

Nested Data Automata. ([5]) A k-nested data automaton (k-NDA) is
a tuple (A,B1, . . . ,Bk) where (A,Bi) is a data automaton for each i. Such
automata run on words over the alphabet Σ × Dk, where D is a (normal,
unstructured) dataset. As for normal data automata, the transducer, A, runs
on the string projection of the word, giving output w. Then for each i the class
automaton Bi runs on each subsequence of w corresponding to the positions
which agree on the first i data values. The NDA is locally prefix-closed if each
(A,Bi) is.

Since these NDA are defined on a slightly different presentation of nested data,
we provide the following presentation of NDCMA over multiple levels of data.

Definition 11. A Nested Data CMA of level k over the alphabet Σ × Dk is a
tuple 〈 Q,Σ, δ, q0, FL, FG 〉 where Q is a finite set of states, q0 ∈ Q, FG ⊆ FL ⊆
Q, and δ : Q × Σ × (Q⊥)k → P(Q) is the transition map.

A configuration is a tuple (q, f1, f2, . . . , fk), where each fi : Di → Q⊥ maps
an i-tuple of data values to a state in the automaton (or ⊥). The initial configu-
ration is (q0, f0

1 , . . . , f0
k ) where f0

i maps every tuple in the domain to ⊥. A config-
uration (q, f1, . . . , fk) is final if each fi maps into FL ∪{⊥}. The automaton can
transition from configuration (q, f1, . . . , fk) to configuration (q′, f ′

1, . . . , f
′
k) on

reading input (a, d1, . . . , dk) just if q′ ∈ δ(q, a, (f1(d1), f2(d1, d2), . . . , fk(d1, . . . ,
dk))), and each f ′

i = fi[(d1, . . . , di) 
→ q′].

Using ideas from the proof of equivalence between CMA and DA in [3], we can
show the following result:

Theorem 12. NDCMA (resp. weak NDCMA) and NDA (resp. pNDA) are
expressively equivalent, with effective translations.

4.2 Link with Higher-Order Multicounter Automata

In [2] the authors examined a link between nested data values and shuffle
expressions. In doing so, they introduced higher-order multicounter automata
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Fig. 3. Translations between HOMCA,
HOMCA’, NDCMA, and their weak
counterparts

(HOMCA). While not explicitly over
nested data values, they are closely
related to the ideas involved, and we show
that, just as multicounter automata and
CMA are equivalent, there is a natu-
ral translation between HOMCA and the
NDCMA we have introduced. Further,
just as the equivalence between MCA
and CMA descends to one between weak
multicounter automata and weak CMA,
we find an equivalence between weak
NDCMA and “weak” HOMCA in which
the corresponding acceptance condition – hereditary emptiness – is dropped.
To show this, we introduce HOMCA’, which add restrictions to the storei and
newi counter operations analogous to the restriction for the loadi operation. We
show that these HOMCA’ are equivalent to HOMCA, and that HOMCA’ are
equivalent to NDCMA, with both of these equivalences descending to the weak
versions. These equivalences are summarised in Figure 3.

Definition 13. We define weak HOMCA to be just as HOMCA, but without
the hereditary-emptiness condition on acceptance, i.e. a run is accepting just if
it ends in a final state.

Definition 14. We define HOMCA’ to be the same as HOMCA, except for the
following changes to the counter operations: (i) storei operations are only enabled
when m1 = m2 = · · · = mi−1 = ⊥; and (ii) newi operations are only enabled
when mk 	= ⊥,mk−1 	= ⊥, . . . ,mi+1 	= ⊥ and mi−1 = mi−2 = · · · = m1 = ⊥.

As for HOMCA, we define weak HOMCA’ to be HOMCA’ without the
hereditary-emptiness condition.

This means that each reachable configuration (q,m1, . . . ,mk) is such that there
is a unique 0 ≤ i ≤ k such that for all j ≤ i, mj = ⊥ and each l > i, ml 	= ⊥.

Theorem 15. HOMCA (respectively weak HOMCA) and HOMCA’ (resp. weak
HOMCA’) are expressively equivalent, with effective translations between them.

Proof. This requires simulating the HOMCA operations storei and newi in
HOMCA’: which can be difficult if, for instance, the HOMCA is carrying out a
storei operation when it has a current level-(i−1) multiset in memory. The trick
is to move the level-(i − 1) multiset across to be nested under a new level-i mul-
tiset, and this can be done one element at a time in a “folding-and-unfolding”
method. The hereditary emptiness condition checks that the each of these move-
ments was completed, i.e. no element was left unmoved. In the weak case some
elements not being moved could not change an accepting run to a non-accepting
run, so the fallibility of the moving method does not matter.

Theorem 16. For every (weak) level-k NDCMA, A, there is a (weak) level-k
HOMCA’, A′, such that L(A′) is equal to the Σ-projection of L(A), and vice-versa.



Weak and Nested Class Memory Automata 199

Proof. This proof rests on the strong similarity between the nesting of data
values, and the nesting of level-i multisets in level-(i+1) multisets. For a NDCMA
to simulate a HOMCA’, we use level-k data values to represent instances of the
multiset letters, level-(k−1) data values to represent level-1 multisets, and so on,
up to level-1 data values representing level-(k − 1) multisets. Since each run of a
HOMCA’ can have at most one level-k multiset, this does not need to be encoded
in data values. Conversely, when simulating a NDCMA with a HOMCA’, a level-
k data value is represented by an instance of an appropriate multiset letter. The
letter contains the information on which state the data value was last seen in.
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Abstract. Several insertion operations are studied applied to languages
accepted by one-way and two-way deterministic reversal-bounded mul-
ticounter machines. These operations are defined by the ideals obtained
from relations such as the prefix, infix, suffix and outfix relations. The
insertion of regular languages and other languages into deterministic
reversal-bounded multicounter languages is also studied. The question
of whether the resulting languages can always be accepted by determin-
istic machines with the same number of turns on the input tape, the same
number of counters, and reversals on the counters is investigated. In addi-
tion, the question of whether they can always be accepted by increasing
either the number of input tape turns, counters, or counter reversals is
addressed. The results in this paper form a complete characterization
based on these parameters. Towards these new results, we use a tech-
nique for simultaneously showing a language cannot be accepted by both
one-way deterministic reversal-bounded multicounter machines, and by
two-way deterministic machines with one reversal-bounded counter.
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1 Introduction

One-way deterministic multicounter machines are deterministic finite automata
augmented by a fixed number of counters, which can each be independently
increased, decreased or tested for zero. If there is a bound on the number
of switches each counter makes between increasing and decreasing, then the
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machine is reversal-bounded [1,8]. The family of languages accepted by one-
way deterministic reversal-bounded multicounter machines (denoted by DCM) is
interesting as it is more general than regular languages, but still has a decidable
emptiness, infiniteness, equivalence, inclusion, universe and disjointness prob-
lems [8]. Moreover, these problems remain decidable if the machines operate
with two-way input that is finite-crossing in the sense that there is a fixed k
such that the number of times the boundary between any two adjacent input
cells is crossed is at most k times [4].

Reversal-bounded counter machines (both deterministic and nondeterminis-
tic) have been extensively studied. Many generalizations have been investigated,
and they have found applications in areas such as verification of infinite-state
systems, membrane computing systems, Diophantine equations, etc.

In this paper, we study various insertion operations on deterministic reversal-
bounded multicounter languages. Common word and language relations are the
prefix, suffix, infix and outfix relations. For example, w is an infix of z, written
w ≤i z, if z = xwy, for some x, y ∈ Σ∗. Viewed as an operation on the first
component of the relation, ≤i (w) = {z | w ≤i z, z ∈ Σ∗}, which is equal to
the set of all words with w as infix, which is Σ∗wΣ∗. If we consider the inverse
of this relation, z ≤−1

i w, if z = xwy, then viewing this as an operation, ≤−1
i

(z) = {w | z ≤−1
i w,w ∈ Σ∗} = {w | w ≤i z}, the set of all infixes of z. These

can be extended to operations on languages. The prefix, suffix, infix and outfix
operations can be defined on languages in this way, along with their inverses.
This is the approach taken in [10]. Using the more common notation of inf(L)
for the set of infixes of L, then inf−1(L) = Σ∗LΣ∗, the set of all words having
a word in L as an infix. This is the same as what is often called the two-sided
ideal, or the infix ideal [10]. For the suffix operation, suff(L) = (Σ∗)−1L, and
suff−1(L) = Σ∗L, with the latter being called the left ideal, or the suffix ideal.
For prefix, pref(L) = L(Σ∗)−1, and pref−1(L) = LΣ∗, the prefix ideal, or the
right ideal. The inverse of each operation defines a natural insertion operation.

We will examine the insertion operations defined by the inverse of the pre-
fix, suffix, infix, outfix and embedding relations, and their effects on deterministic
reversal-bounded multicounter languages. We will also examine certain standard
generalizations of these operations such as left and right concatenation with reg-
ular or more general languages. In particular, if we start with a language that
can be accepted with a parameterized number of input tape turns, counters, and
reversals on the counters, is the result of the various insertion operations always
accepted with the same type of machines? And if not, can they always be accepted
by increasing either the turns on the input tape, counters, or reversals on the coun-
ters? Results in this paper form a complete characterization in this regard, and
are summarized in Section 5. Surprisingly, even if we have languages accepted by
deterministic 1-reversal bounded machines with either one-way input and 2 coun-
ters, or 1 counter and 1 turn on the input, then concatenating Σ∗ to the right
can result in languages that can neither be accepted by DCM machines (any num-
ber of reversal-bounded counters), nor by two-way deterministic reversal-bounded
1-counter machines (2DCM(1), which have no bound on input turns). This is in
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contrast to deterministic pushdown languages which are closed under right con-
catenation with regular languages [6]. In addition, concatenating Σ∗ to the left of
a one-way 1-reversal-bounded one counter machine can create languages that are
neither in DCM nor 2DCM(1). Furthermore, as a consequence of the results in this
paper, it is evident that the right input end-marker strictly increases the power for
even one-way deterministic reversal-bounded multicounter languages when there
are at least two counters. This is usually not the case for various classes of one-way
machines. To do this, a new mode of acceptance, by final state without end-marker,
is defined and studied.

Most non-closure results in this paper use a technique that simultaneously
shows languages are not in DCM and not in DCM(1). The technique does not
rely on any pumping arguments. A similar technique was used in [2] for showing
that there is a language accepted by a deterministic pushdown automaton whose
stack makes only one reversal (1-reversal DPDA) that cannot be accepted by
any one-way nondeterministic reversal-bounded multicounter machine (NCM).

2 Preliminaries

The set of non-negative integers is represented by N0, and positive integers by
N. For c ∈ N0, let π(c) be 0 if c = 0, and 1 otherwise.

We use standard notations for formal languages, referring the reader to [6,7].
The empty word is denoted by λ. We use Σ and Γ to represent finite alphabets,
with Σ∗ as the set of all words over Σ and Σ+ = Σ∗ \ {λ}. For a word w ∈ Σ∗, if
w = a1 · · · an where ai ∈ Σ, 1 ≤ i ≤ n, the length of w is denoted by |w| = n, and
the reversal of w is denoted by wR = an · · · a1. The number of a’s, for a ∈ Σ, in w
is |w|a. Given a language L ⊆ Σ∗, the complement of L, Σ∗ \ L is denoted by L.

Definition 1. For a language L ⊆ Σ∗, we define the prefix, inverse prefix,
suffix, inverse suffix, infix, inverse infix, outfix and inverse outfix operations,
respectively:

pref(L) = {w | wx ∈ L, x ∈ Σ∗} pref−1(L) = {wx | w ∈ L, x ∈ Σ∗}
suff(L) = {w | xw ∈ L, x ∈ Σ∗} suff−1(L) = {xw | w ∈ L, x ∈ Σ∗}
inf(L) = {w | xwy ∈ L, x, y ∈ Σ∗} inf−1(L) = {xwy | w ∈ L, x, y ∈ Σ∗}
outf(L) = {xy | xwy ∈ L,w ∈ Σ∗} outf−1(L) = {xwy | xy ∈ L,w ∈ Σ∗}
We generalize the outfix relation to the notion of embedding [10]:

Definition 2. The m-embedding of a language L ⊆ Σ∗ is the following set:
emb(L,m) = {w0 · · · wm | w0x1 · · · wm−1xmwm ∈ L, wi ∈ Σ∗, 0 ≤ i ≤ m,xj ∈
Σ∗, 1 ≤ j ≤ m}.

We define the inverse as follows: emb−1(L,m) = {w0x1 · · · wm−1xmwm |
w0 · · · wm ∈ L, wi ∈ Σ∗, 0 ≤ i ≤ m,xj ∈ Σ∗, 1 ≤ j ≤ m }
Note that outf(L) = emb(L, 1) and outf−1(L) = emb−1(L, 1).

A language L is called prefix-free if, for all words x, y ∈ L, where x is a prefix
of y, then x = y.
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A one-way k-counter machine is a tuple M = (k,Q,Σ, $, δ, q0, F ), where
Q,Σ, $, q0, F are respectively the finite set of states, the input alphabet, the right
end-marker,theinitialstateinQ,andthesetoffinalstates,whichisasubsetofQ.The
transitionfunctionδ (definedas in [8]exceptwithonlyarightend-markersincethese
machines only use one-way inputs) is a mapping from Q × (Σ ∪ {$}) × {0, 1}k into
Q × {S,R} × {−1, 0,+1}k, such that if δ(q, a, c1, . . . , ck) contains (p, d, d1, . . . , dk)
andci = 0forsome i, thendi ≥ 0topreventnegativevalues inanycounter.Thesym-
bols S are R indicate the direction of input tape head movement, either stay or right
respectively.ThemachineM isdeterministic ifδ isafunction.ThemachineM isnon-
exiting iftherearenotransitionsdefinedonfinalstates.AconfigurationofM isak+2-
tuple (q, w$, c1, . . . , ck) representingthe fact thatM is instateq,withw ∈ Σ∗ still to
read as input, and c1, . . . , ck ∈ N0 are the contents of the k counters. The derivation
relation �M is defined between configurations, where (q, aw, c1, . . . , ck) �M (p,w′

, c1+d1, . . . , ck+dk),if(p, d, d1, . . . , dk) ∈ δ(q, a, π(c1), . . . , π(ck))whered ∈ {S,R}
and w′ = aw if d = S, and w′ = w if d = R. We let �∗

M be the reflexive, transitive
closure of �M . And, for m ∈ N0, let �m

M be the application of �M m times. A word
w ∈ Σ∗ is accepted by M if (q0, w$, 0, . . . , 0) �∗

M (q, $, c1, . . . , ck), for some q ∈ F ,
and c1, . . . , ck ∈ N0. The language acceptedbyM , denotedbyL(M), is the set of all
words accepted by M .

The machine M is l-reversal bounded if, in every accepting computation, the
count on each counter alternates between increasing and decreasing at most l
times. We will sometimes refer to a multicounter machine as being in DCM(k, l),
if it has k l-reversal bounded counters.

We denote by NCM(k, l) the family of languages accepted by one-way non-
deterministic l-reversal-bounded k-counter machines. We denote by DCM(k, l)
the family of languages accepted by one-way deterministic l-reversal-bounded
k-counter machines. The union of the families of languages are denoted by
NCM =

⋃
k,l≥0 DCM(k, l) and DCM =

⋃
k,l≥0 DCM(k, l).

Given a DCM machine M = (k,Q,Σ, $, δ, q0, F ), the language accepted by
final state without end-marker is the set of words w such that (q0, w$, 0, . . . , 0) �∗

M

(q′, a$, c′
1, . . . , c

′
k) �M (q, $, c1, . . . , ck), for some q ∈ F , q′ ∈ Q, a ∈ Σ, ci, c

′
i ∈

N0, 1 ≤ i ≤ k. Such a machine does not “know” when it has reached the end-
marker $. The state that the machine is in when the last letter of input from Σ
is consumed entirely determines acceptance or rejection. It would be equivalent
to require (q0, w, 0, . . . , 0) �∗

M (q, λ, c1, . . . , ck), for some q ∈ F , but we continue
to use $ for compatibility with the end-marker definition. We use DCMNE(k, l)
to denote the family of languages accepted by these machines when they have k
counters that are l-reversal-bounded. We define DCMNE =

⋃
k,l≥0 DCMNE(k, l).

We denote by 2DCM(1) to be the family of languages accepted by two-way
deterministic finite automata (with both a left and right input tape end-marker)
augmented by one reversal-bounded counter, accepted by final state. A machine
of this form is said to be finite-crossing if there is a bound on the number of
changes of direction on the input tape, and t-crossing if it makes at most t
changes of direction on the input tape for every computation.
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3 Closure for Insertion and Concatenation Operations

Closure under concatenation is difficult for DCM languages because of deter-
minism. However, we show special cases where closure results can be obtained.
Additionally, we study the necessity of an end-of-tape marker, showing that it
makes DCM languages strictly more powerful, but adding no power to DCM(1, l)
languages. To our knowledge, the necessity of the right end-marker for one-way
deterministic reversal-bounded multicounter machines has not been documented.

To show that the end-marker is not necessary for DCM(1, l), the proof of the
lemma below takes an arbitrary DCM(1, l) machine M and builds another M ′

that accepts by final state without end-marker and accepts the same language.
Before building M ′, the construction builds an NCM machine for every state q of
M . This machine accepts all words of the form ai where there exists some word x
(this word is guessed using nondeterminism) such that M can read x from state
q and i on the counter and reach a final state. Although these languages use
nondeterminism, they are unary, and all NCM languages are semilinear [8], and
all unary semilinear languages are regular [6]. Therefore, a DFA can be build for
each such language (for each state of M). Because these languages are unary, the
structure of the DFAs are well-known [12]. Every unary DFA is isomorphic to
one with states {0, . . . , m − 1} where there exists some state k, and a transition
from i to i + 1, for all 0 ≤ i < k (the “tail”), and a transition from j to j + 1
for all k ≤ j < m − 1, plus a transition from m to k (the “loop”), and no other
transitions. Let t be the maximum tail size, over all DFAs constructed, plus one.

Then, intuitively, the construction of M ′ involves M ′ simulating M , and after
reading input w, if M has counter value c, M ′ has counter value c − t if c > t,
with t stored in the finite control. If c ≤ t, then M ′ stores c in the finite control
with zero on the counter. This allows M ′ to know what counter value M would
have after reading a given word, but also to know when the counter value is less
than t (and the specific value less than t). In the finite control, M ′ simulates each
DFA in parallel. To do this, each time M increases the counter, from i to i + 1,
the state of each DFA switches forward by one letter. Each time M decreases the
counter from i to i − 1, the state of each DFA changes deterministically “going
backwards in the loop” if i > t, and if i ≤ t, then the counter of M is stored in
the finite control, and thus each DFA can tell when to switch deterministically
from loop to tail. Then, when in state q of M , M ′ can tell if the current counter
value would lead to acceptance from q using the appropriate DFA.

The proof is omitted due to space constraints, and can be found online in [3].

Lemma 3. For any l, DCM(1, l) = DCMNE(1, l).

We will extend these closure results with a lemma about prefix-free DCMNE

languages. It was shown in [5] that a regular language is prefix-free if and only
if there is a non-exiting DFA accepting the language. While we omit the proof
(see [3]), the same logic gives this result for DCMNE languages.

Lemma 4. Let L ∈ DCMNE. Then L is prefix-free if and only if there exists aDCM-
machine M accepting L by final state without end-marker which is non-exiting.
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From this, we obtain a special case where DCM is closed under concatenation,
if the first language can be both accepted by final state without end-marker, and
is prefix-free. The construction considers a non-exiting machine accepting L1 by
final state without end-marker, where transitions into its final state are replaced
by transitions into the initial state of the machine accepting L2. The proof is
omitted due to space constraints, and can be found online in [3].

Proposition 5. Let L1 ∈ DCMNE(k, l), L2 ∈ DCM(k′, l′), with L1 prefix-free.
Then L1L2 ∈ DCM(k + k′,max(l, l′)).

If we remove the condition that L1 is prefix-free however, the proposition is no
longer true, as we will see in the next section that even the regular language
Σ∗ (which is in DCMNE(0, 0)) concatenated with a DCM language produces a
language outside DCM.

Corollary 6. Let L ∈ DCM(k, l), R ∈ REG, where R is prefix-free. Then RL ∈
DCM(k, l).

In contrast to left concatenation of a regular language with a DCM language
(Corollary 6), where it is required that R be prefix-free (the regular language
is always in DCMNE), for right concatenation, it is only required that it be a
DCMNE language. We will see in the next section that this is not true if the
restriction that L accepts by final state without end-marker is removed.

The following proof takes a DCM machine M1 accepting by final state with-
out end-marker, and M2 a DFA accepting R, and builds a DCM machine M ′

accepting LR by final state without end-marker. Intuitively, M ′ simulates M1

while also storing a subset of M2’s states in a second component of the states.
Every time it reaches a final state of M1, it places the initial state of M2 in the
second component. Then, it continues to simulate M1 while in parallel simulating
the DFA M2 separately on every state in the second component.

Proposition 7. Let L ∈ DCMNE(k, l), R ∈ REG. Then LR ∈ DCMNE(k, l).
Also, pref−1(L) ∈ DCMNE(k, l).

As a corollary, we get that DCM(1, l) is closed under right concatenation with
regular languages. This corollary could also be inferred from the proof in [6] that
deterministic context-free languages are closed under concatenation with regular
languages.

Corollary 8. Let L ∈ DCM(1, l) and R ∈ REG. Then LR ∈ DCM(1, l).

Corollary 9. If L ∈ DCM(1, l), then pref−1(L) ∈ DCM(1, l).

4 Relating (Un)Decidable Properties to Non-closure
Properties

In this section, we use a technique that proves non-closure properties using
(un)decidable properties. A similar technique was used in [2] for showing that there
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is a language accepted by a 1-reversal DPDA that cannot be accepted by any
NCM. In particular, we use this technique to prove that some languages are not
accepted by 2DCM(1)s (i.e., two-way DFAs with one reversal-bounded counter).
Since 2DCM(1)s have two-way input and a reversal-bounded counter, it does not
seem easy to derive “pumping” lemmas for these machines. 2DCM(1)s are quite
powerful, e.g., although the Parikh map of the language accepted by any finite-
crossing 2NCM (hence by any NCM) is semilinear [8], 2DCM(1)s can accept non-
semilinearlanguages.Forexample,L1 = {aibk |i, k ≥ 2, idividesk}canbeaccepted
by a 2DCM(1) whose counter makes only one reversal. However, it is known that
L2 = {aibjck | i, j, k ≥ 2, k = ij} cannot be accepted by a 2DCM(1) [9].

We will need the following result (the proof for DCMs is in [8]; the proof for
2DCM(1)s is in [9]):

Theorem 10

1. The class of languages accepted by DCMs is closed under Boolean operations.
Moreover, the emptiness problem is decidable.

2. The class of languages accepted by 2DCM(1)s is closed under Boolean oper-
ations. Moreover, the emptiness problem is decidable.

We note that the emptiness problem for 2DCM(2)s, even when restricted to
machines accepting only letter-bounded languages (i.e., subsets of a∗

1 · · · a∗
k for

some k ≥ 1 and distinct symbols a1, . . . , ak) is undecidable [8].
We will show that there is a language L ∈ DCM(1, 1) such that inf−1(L) is

not in DCM ∪ 2DCM(1).
The proof uses the fact that that there is a recursively enumerable language

Lre ⊆ N0 that is not recursive (i.e., not decidable) which is accepted by a deter-
ministic 2-counter machine [11]. Thus, the machine when started with n ∈ N0

in the first counter and zero in the second counter, eventually halts (i.e., accepts
n ∈ Lre).

A close look at the constructions in [11] of the 2-counter machine, where
initially one counter has some value d1 and the other counter is zero, reveals
that the counters behave in a regular pattern. The 2-counter machine operates
in phases in the following way. The machine’s operation can be divided into
phases, where each phase starts with one of the counters equal to some positive
integer di and the other counter equal to 0. During the phase, the positive
counter decreases, while the other counter increases. The phase ends with the
first counter having value 0 and the other counter having value di+1. Then in
the next phase the modes of the counters are interchanged. Thus, a sequence of
configurations corresponding to the phases will be of the form:

(q1, d1, 0), (q2, 0, d2), (q3, d3, 0), (q4, 0, d4), (q5, d5, 0), (q6, 0, d6), . . .

where the qi’s are states, with q1 = qs (the initial state), and d1, d2, d3, . . . are
positive integers. Note that in going from state qi in phase i to state qi+1 in
phase i + 1, the 2-counter machine goes through intermediate states. Note that
the second component of the configuration refers to the value of c1 (first counter),
while the third component refers to the value of c2 (second counter).
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For each i, there are 5 cases for the value of di+1 in terms of di: di+1 =
di, 2di, 3di, di/2, di/3. (The division operation is done only if the number is divis-
ible by 2 or 3, respectively.) The case is determined by qi. Thus, we can define
a mapping h such if qi is the state at the start of phase i, di+1 = h(qi)di (where
h(qi) is 1, 2, 3, 1/2, 1/3).

Let T be a 2-counter machine accepting a recursively enumerable set Lre

that is not recursive. We assume that q1 = qs is the initial state, which is never
re-entered, and if T halts, it does so in a unique state qh. Let T ’s state set be
Q, and 1 be a new symbol.

In what follows, α is any sequence of the form #I1#I2# · · · #I2m# (thus
we assume that the length is even), where Ii = q1k for some q ∈ Q and k ≥ 1,
represents a possible configuration of T at the beginning of phase i, where q is
the state and k is the value of counter c1 (resp., c2) if i is odd (resp., even).

Define L0 to be the set of all strings α such that

1. α = #I1#I2# · · · #I2m#;
2. m ≥ 1;
3. for 1 ≤ j ≤ 2m−1, Ij ⇒ Ij+1, i.e., if T begins in configuration Ij , then after

one phase, T is in configuration Ij+1 (i.e., Ij+1 is a valid successor of Ij);

Lemma 11. L0 is not in DCM ∪ 2DCM(1).

Proof. Suppose L0 is accepted by a DCM (resp., 2DCM(1)). The following is an
algorithm to decide, given any n, whether n is in Lre.

1. Let R = #qs1n((#Q1+#Q1+))∗#qh1+#. Clearly R is regular.
2. Then L′ = L0 ∩ R is also in DCM (resp., 2DCM(1)) by Theorem 10.
3. Check if L′ is empty. This is possible, since emptiness of DCM (respectively,

2DCM(1)) is decidable by Theorem 10.

The claim follows, since L′ is empty if and only if n is not in Lre. 
�

4.1 Non-closure Under Inverse Infix

Theorem 12. There is a language L ∈ DCM(1, 1) such that inf−1(L) is not in
DCM ∪ 2DCM(1).

Proof. Let T be a 2-counter machine. Let L = {#q1m#p1n# | T when started
in state q when one counter has value m and the other counter has value 0, does
not reach the configuration in the next phase where the first counter becomes
zero, the other counter has value n, and the state is p}. Thus, L = {#I#I ′# | I
and I ′ are configurations of T , and I ′ is not a valid successor of I}. Clearly, L
can be accepted by a DCM(1, 1).

We claim that L1 = inf−1(L) is not in DCM ∪ 2DCM(1). Otherwise, by
Theorem 10, L1 (the complement of L1) is also in DCM ∪ 2DCM(1), and
L1 ∩ (#Q1+#Q1+)+# = L0 would be in DCM ∪ 2DCM(1). This contradicts
Lemma 11. 
�
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4.2 Non-closure Under Inverse Prefix

Theorem 13. There exists a language L such that L ∈ DCM(2, 1) and L ∈
2DCM(1) (which makes only 1 turn on the input and 1 reversal on the counter)
such that pref−1(L) = LΣ∗ �∈ DCM ∪ 2DCM(1).

Proof. Consider L = {#w# | w ∈ {a, b,#}∗
, |w|a �= |w|b}. Clearly, L can be

accepted by a DCM(2,1) and by a 2DCM(1) which makes only 1 turn on the
input and 1 reversal on the counter.

Suppose to the contrary that pref−1(L) ∈ DCM ∪ 2DCM(1). Then, L′ ∈
DCM ∪ 2DCM(1), where L′ = pref−1(L) ∩ (# {a, b,#}∗ #) = {#w1 · · · #wn# |
∃i. |w1 · · · wi|a �= |w1 · · · wi|b}.

We know that DCM and 2DCM(1) are closed under complement. So we can
see that L′′ ∈ DCM ∪ 2DCM(1), where we define L′′ = L′ ∩ (#a∗b∗)+# ={
#ak1bk1# · · · #akmbkm# | m > 0

}
.

We will show that L′′ is not in DCM ∪ 2DCM(1). Suppose L′′ is in DCM ∪
2DCM(1). Define two languages:

− L1 = {#1k1#1k1# · · · #1km#1km# | m ≥ 1, ki ≥ 1},
− L2 = {#1k0#1k1#1k1# · · · #1km−1#1km−1#1km# | m ≥ 1, ki ≥ 1}.

Note that L1 and L2 are similar. In L1, the odd-even pairs of 1’s are the same, but
in L2, the even-odd pairs of 1’s are the same. Clearly, if M ′′ in DCM∪ 2DCM(1)
accepts L′′, then we can construct (from M ′′) M1 and M2 in DCM ∪ 2DCM(1)
to accept L1 and L2, respectively.

We now refer to the language L0 that was shown not to be in DCM∪2DCM(1)
in Lemma 11. We will construct a DCM (resp., 2DCM(1)) to accept L0, which
would be a contradiction. Define the languages:

− Lodd = {#I1#I2# · · · #I2m | m ≥ 1, I1, · · · , I2m are configurations of the
2-counter machine T , for odd i, Ii+1 is a valid successor of Ii}.

− Leven = {#I1#I2# · · · #I2m | m ≥ 1, I1, · · · , I2m are configurations of the
2-counter machine T , for even i, Ii+1 is a valid successor of Ii}.

Clearly, L0 = Lodd ∩ Leven. Since DCM (resp., 2DCM(1)) is closed under inter-
section, we need only to construct two DCMs (resp., 2DCM(1)s) Modd and Meven

accepting Lodd and Leven, respectively. We will only describe the construction
of Modd, the construction of Meven being similar.

Case: Suppose L′′ ∈ DCM:
First consider the case of DCM. We will construct two machines: a DCM A and
a DFA B such that L(Modd) = L(A) ∩ L(B).

Let LA = {#I1#I2# · · · #I2m | m ≥ 1, I1, · · · , I2m are configurations of the
2-counter machine T , for odd i, if Ii = qi1di , then di+1 = h(qi)di}. We can
construct a DCM A to accept LA by simulating the DCM M1. For example,
suppose h(qi) = 3. Then A simulates M1 but whenever M1 moves its input head
one cell, A moves its input head 3 cells. If h(qi) = 1/2, then when M1 moves
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its head 2 cells, A moves its input head 1 cell. (Note that A does not use the
2-counter machine T .)

Now Let LB = {#I1#I2# · · · #I2m | m ≥ 1, I1, · · · , I2m are configurations
of the 2-counter machine, for odd i, if Ii = qi1di , then T in configuration Ii
ends phase i in state qi+1}. Clearly, a DFA B can accept LB by simulating T
for each odd i starting in state qi on 1di without using a counter, and checking
that the phase ends in state qi+1. (Note that the DCM A already checks the
“correctness” of di+1.)

We can then construct from A and B a DCM Modd such that L(Modd) =
L(A) ∩ L(B). In a similar way, we can construct Meven.

Case: Suppose L′′ ∈ 2DCM(1):
The case 2DCM(1) can be shown similarly. For this case, the machines Modd

and Meven are 2DCM(1)s, and machine A is a 2DCM(1), but machine B is still
a DFA. 
�

From this, we can immediately get the result that the right end-marker is
necessary for deterministic counter machines when there are at least two 1-
reversal-bounded counters. In fact, without it, no amount of reversal-bounded
counters with a deterministic machine could accept even some languages that can
be accepted with two 1-reversal-bounded counters could with the end-marker.

Corollary 14. There are languages in DCM(2, 1) that are not in DCMNE.

Proof. Since DCMNE is closed under concatenation with Σ∗, it follows that
pref−1(L) from Theorem 13 is not in DCMNE. 
�

4.3 Non-closure for Inverse Suffix, Outfix and Embedding

Proposition 15. There exists a language L ∈ DCM(1, 1) such that suff−1(L) �∈
DCM and suff−1(L) �∈ 2DCM(1).

Proof. Let L be as in Theorem 12. We know DCM(1, 1) is closed under pref−1 by
Corollary 9, so pref−1(L) ∈ DCM(1, 1). Suppose suff−1(pref−1(L)) ∈ DCM. This
implies that inf−1(L) ∈ DCM, but we showed this language was not in DCM.
Thus we have a contradiction. A similar contradiction can be reached when we
assume suff−1(pref−1(L)) ∈ 2DCM(1).


�
Corollary 16. There exists L ∈ DCM(1, 1) and regular languages R such that
RL /∈ DCM and RL /∈ 2DCM(1).

This implies that without the prefix-free condition on L1 in Proposition 5,
concatenation closure does not follow.

Corollary 17. There exists L1 ∈ DCMNE(0, 0) (regular), and L2 ∈ DCM(1, 1),
where L1L2 /∈ DCM and L1L2 /∈ 2DCM(1).

The result also holds for inverse outfix.
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Proposition 18. There exists a language L ∈ DCM(1, 1) such that outf−1(L) �∈
DCM and outf−1(L) �∈ 2DCM(1).

Proof. Consider L ⊆ Σ∗ where L ∈ DCM(1, 1), and suff−1(L) �∈ DCM and
suff−1(L) �∈ 2DCM(1). The existence of such a language is guaranteed by Propo-
sition 15. Let Γ = Σ ∪ {%}.

Suppose outf−1(L) ∈ DCM. Then L′ ∈ DCM, where L′ = outf−1(L) ∩ %Σ∗.
We can see L′ = {%yx | x ∈ L, y ∈ Σ∗}, since the language we intersected with
ensures that the section is always added to the beginning of a word in L.

However, we also have %−1L′ ∈ DCM because DCM is clearly closed under
left quotient with a fixed word. We can see %−1L′ = {yx | x ∈ L, y ∈ Σ∗}. This
is just suff−1(L), so suff−1(L) ∈ DCM, a contradiction.

The result is the same for 2DCM(1), relying on the closure of the family
under left quotient with a fixed word, which is clear. 
�
Corollary 19. Let m ∈ N. There exists a language L ∈ DCM(1, 1) such that
emb−1(m,L) �∈ DCM and emb−1(m,L) �∈ 2DCM(1).

This is similar to Proposition 18 except starting with #m−1, then

emb−1(#m−1L) ∩ (#%)m−1L = {(#%)m−1yx | x ∈ L, y ∈ Σ∗},

and so L′ ∈ DCM.

5 Summary of Results

Assume R ∈ REG, LDCM ∈ DCM, and LDCMNE
∈ DCMNE.

The question: For all L ∈ DCM(k, l):

Table 1. Summary of results for DCM. When applying the operation in the first column
to any L ∈ DCM(k, l), is the result necessarily in DCM(k, l) (column 2), and in DCM
(column 3)? This is parameterized in terms of k and l, and the theorems showing each
result is provided.

Operation is Op(L) ∈ DCM(k, l)? is Op(L) ∈ DCM?

pref−1(L) Yes if k = 1, l ≥ 1 Cor 9 Yes if k = 1, l ≥ 1 Cor 9
No if k ≥ 2, l ≥ 1 Thm 13 Yes if L ∈ DCMNE Prop 7

No otherwise if k ≥ 2, l ≥ 1 Thm 13

suff−1(L) No if k, l ≥ 1 Prop 15 No if k, l ≥ 1 Prop 15

inf−1(L) No if k, l ≥ 1 Thm 12 No if k, l ≥ 1 Thm 12

outf−1(L) No if k, l ≥ 1 Prop 18 No if k, l ≥ 1 Prop 18

LR Yes if k = 1, l ≥ 1 Cor 8 Yes if k = 1, l ≥ 1 Cor 8
Yes if L ∈ DCMNE Prop 7 Yes if L ∈ DCMNE Prop 7
No otherwise if k ≥ 2, l ≥ 1 Thm 13 No otherwise if k ≥ 2, l ≥ 1 Thm 13

RL Yes if R prefix-free Cor 6 Yes if R prefix-free Cor 6
No otherwise if k, l ≥ 1 Cor 16 No otherwise if k, l ≥ 1 Cor 16

LDCML No if k, l ≥ 1 Cor 17 No if k, l ≥ 1 Cor 17

LDCMNEL No if k, l ≥ 1 Cor 17 Yes if LDCMNE prefix-free Prop 5
No otherwise if k, l ≥ 1 Cor 17
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Also, for 2DCM(1), the results are summarized as follows:

− There exists L ∈ DCM(1, 1) (one-way), s.t. suff−1(L) /∈ 2DCM(1) (Prop 15).
− There exists L ∈ DCM(1, 1) (one-way) , R regular, s.t. RL /∈ 2DCM(1) (Cor

16).
− There exists L ∈ DCM(1, 1) (one-way), s.t. outf−1(L) /∈ 2DCM(1) (Prop 18).
− There exists L ∈ DCM(1, 1) (one-way), s.t. inf−1(L) /∈ 2DCM(1) (Thm 12).
− There exists L ∈ 2DCM(1), 1 input turn, 1 counter reversal, s.t. pref−1(L) /∈

2DCM(1) (Thm 13).
− There exists L ∈ 2DCM(1), 1 input turn, 1 counter reversal, R regular, s.t.

LR /∈ 2DCM(1) (Thm 13).

This resolves every open question summarized above, optimally, in terms of
the number of counters, reversals on counters, and reversals on the input tape.
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Abstract. We push further a recently proposed approach for studying
synchronizing automata and Černý’s conjecture, namely, the synchroniz-
ing probability function. In this approach, the synchronizing phenomenon
is reinterpreted as a Two-Player game, in which the optimal strategies
of the players can be obtained through a Linear Program.

Our analysis mainly focuses on the concept of triple rendezvous time,
the length of the shortest word mapping three states onto a single one.
It represents an intermediate step in the synchronizing process, and is a
good proxy of its overall length.

Our contribution is twofold. First, using the synchronizing probabil-
ity function and properties of linear programming, we provide a new
upper bound on the triple rendezvous time. Second, we disprove a con-
jecture on the synchronizing probability function by exhibiting a family
of counterexamples. We discuss the game theoretic approach and possible
further work in the light of our results.

Keywords: Automata and logic · Synchronization · Černý’s conjec-
ture · Game theory · Synchronizing probability function · Triple
rendezvous time

1 Synchronizing Automata and Černý’s Conjecture

Synchronizing automata have been the source of intense research in the past 50
years. An automaton is called synchronizing if there exists a sequence of letters
which maps all the states onto a single one (see the next subsection for rigorous
definitions). Figure 1 shows an example of such an automaton. The interest for
the subject appeared in computers and relay control systems in the 60s. The
aim was to restore control over these devices without knowing their current
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state. In the 80s and 90s, synchronizing automata found applications in robotics
and industry. From a theoretical perspective, the synchronizing property is also
linked with active research topics in engineering, like the consensus theory and
the primitivity of matrix sets (see [24]).

0

1

3

2

b

a

a

b

b

a

a, b

Fig. 1. A synchronizing automa-
ton. The word abbbabbba maps any
state onto state 0.

In this paper, we will represent automata
as sets of matrices. A set of states of an
automaton with n possible states will be rep-
resented by its 1 × n characteristic vector1,
and the letters of the automaton will be rep-
resented as n × n matrices, acting multiplica-
tively on the characteristic vector of states:

Definition 1. A (deterministic, finite state,
complete) automaton (DFA) is a set of m
column-stochastic matrices Σ ⊂ {0, 1}n×n

(where m,n are respectively the number of let-
ters in the alphabet, and the number of states
of the automaton). Each letter corresponds to
a matrix L ∈ Σ with binary entries, which

satisfies LeT = eT , where e is the 1 × n all-ones vector. We write Σt for the set
of matrices which are products of length t of matrices taken in Σ. We refer to
these matrices as words of length t.

Definition 2. An automaton Σ ⊂ {0, 1}n×n is synchronizing if there is an
index 1 ≤ i ≤ n and a finite product W = Lc1 . . . Lcs : Lcj ∈ Σ which satisfy

W = eT ei,

where ei is the ith standard basis vector (1 × n).
In this case, the sequence of letters Lc1 . . . Lcs is said to be a synchronizing word.

Jan Černý stated his conjecture on DFA in 1964 [8]. Although it is very
simple in its formulation, it has not been proven since then.

Conjecture 3 (Černý’s conjecture, 1964 [8]). Let Σ ⊂ {0, 1}n×n be a syn-
chronizing automaton. Then, there is a synchronizing word of length at most
(n − 1)2.

In [7], Černý proposes an infinite family of automata attaining this bound, for
any number of states. We refer to this family as the Černý family of automata.
The automaton in Fig. 1 is the automaton of the family with four states. Syn-
chronizing automata attaining the bound of Conjecture 3 or getting close to it
are very infrequent (see [1], [14], [18] for examples).

Since its formulation, Conjecture 3 has been the subject of intense research.
On the one hand theoretical research is aiming to prove the conjecture, on the
other hand numerical research is aiming to design efficient algorithms to find
1 A vector x ⊂ {0, 1}n for which xi = 1 if state i is in the set, and 0 otherwise.
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synchronizing words in automata (see [19], [21]). Černý’s Conjecture has been
proven to hold for several families of automata [2,3,6,7,9,10,15,22]. However
the best known general upper bound is (n3 − n)/6, obtained by Pin and Frankl
[11][16]. This bound has been holding for more than 30 years2. A state of the
art overview is given by Volkov [25].

Recently, several research efforts have tried to shed light on the problem by
making use of probabilistic approaches (see [13], [20]). The main tool we will
focus on, the synchronizing probability function (SPF), was introduced by the
second author in 2012 [13]. This tool allows the reformulation of the synchro-
nizing property as a game theoretical problem whose solution can be obtained
through convex optimization. This new link between convex optimization (a
mature discipline with strong theoretical basis, see [5], [17]) and synchronizing
automata is arguably promising towards a better understanding of the synchro-
nizing phenomenon.

The paper is organised as follows. In Section 2 we recall the main properties of
the synchronizing probability function. In Section 3, we introduce the concept of
triple rendezvous time, and, making use of the synchronizing probability function
we obtain a new upper bound on this value. In Section 4, we refute a recent
conjecture on the synchronizing probability function (Conjecture 2 in [13]) by
presenting a particular family of automata which doesn’t satisfy it.

2 A Game Theoretical Framework and the Synchronizing
Probability Function

In this section, we recall the definition and the properties of the synchronizing
probability function needed to develop our results. A more complete introduction
to the SPF and the details of the proofs can be found in [13]. This concept is
based on a reformulation of the synchronization over an automaton as a Two-
Player game with the following rules:

1. The length t is chosen.
2. Player Two secretly chooses a state for the automaton.
3. Player One chooses a word of length at most t. It is applied to the automaton,

and changes the state of the automaton accordingly.
4. Player One guesses what the final state of the automaton is. If it is the right

final state, he wins. Otherwise, Player Two wins.

The policy of Player Two is defined as a probability distribution over the
states, that is, any vector p ∈ R

+n, epT = 1. Player Two chooses the state
i with probability pi, in which case the automaton will end up at the state
corresponding to eiA, where A is the matrix representation of the word chosen
by Player One. Since Player One wants to maximize the probability of choosing
2 A bound of n(7n2 + 6n − 16)/48 was proposed by Trahtman [23], but its proof was

incomplete.
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the right final state, he will pick up the state where the probability for the
automaton to end is maximal, that is,

argmax
i

(pA)eT
i .

Therefore the probability of winning for Player One is

max
i,A

(pA)eT
i . (1)

The aim of Player Two is to minimize that probability.
In the following, Σ≤t is the set of products of length at most t of matrices

taken in Σ. By convention, and for the ease of notation, it contains the product
of length zero, which is the identity matrix.

Definition 4 (SPF, Definition 2 in [13]). Let n ∈ N and Σ ⊂ {0, 1}n×n

be an automaton. The synchronizing probability function (SPF) of Σ is the
function kΣ : N → R

+ :

kΣ(t) = min
p∈R+n, epT=1

{
max

A∈Σ≤t
{max

i
(pA)eT

i }
}

. (2)

Conjecture (3) can now be reformulated in terms of the SPF:

Proposition 5 (Proposition 1 in [13]). The following conjecture is equivalent
to Conjecture (3):

If Σ ⊂ {0, 1}n×n is a synchronizing automaton, then,

∀t ≥ (n − 1)2, kΣ(t) = 1.

If there is no ambiguity on the automaton, we use k(t) for kΣ(t).
In order to use the SPF, we need an explicit algorithmic construction of the

optimal strategies for both players, which allows us to compute the SPF value.
Each basic strategy of Player One, i.e. the choice of a word and a final state, is
equivalent to choosing a column in this word. Therefore, we consider the set of
all the different columns reached in words of length at most t.

Definition 6. We call reachable columns the set A(t) of all the different
columns in the matrices (words) in Σ≤t. We represent A(t) as a n×M(t) matrix,
where M(t) is the number of different columns.

When there is no ambiguity on t, we use A for A(t). We notice that if t = 0,
the reachable columns are the columns of the identity matrix, by definition of
Σ0.

It turns out that the SPF can be computed efficiently thanks to the following
linear programs3.
3 The following inequalities are entrywise.
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Theorem 7 (Theorem 1 in [13]). The synchronizing probability function
kΣ(t) of Σ is given by

min
p,k

k (3)

s.t. pA ≤ keT

epT = 1
p ≥ 0.

It is also given by:

max
q,k

k (4)

s.t. Aq ≥ keT

eq = 1
q ≥ 0.

In the equations above, A denotes the set of reachable columns at time t (see
Def.6), q is a M(t) × 1 vector, e represents all-ones vectors of the appropri-
ate dimension, 1 is a scalar, and 0 represents zero vectors of the appropriate
dimension.

The linear Program (4) is the dual of Program (3). For any primal feasible p
and any dual feasible q, the objective value k(p) of Program (3) and the objective
value k(q) of Program (4) satisfy k(q) ≤ k(p). Therefore, if the objective value
k is the same for both programs with feasible solutions p and q, this value is
the optimum (see [5], [17] for more details on convex optimization and linear
programming).

In the following, our main arguments will be based on the dimension of the
set of optimal strategies of (4):

Definition 8 (Definition 3 in [13]). Let Σ represent an automaton and t be
a positive integer. The polytopes Pt and Qt are the sets of optimal solutions of
respectively (3) and (4).

Lemma 9 (Lemma 1 in [13]). If k(t) = k(t + 1) then Pt+1 ⊂ Pt.

3 A New Bound on the Triple Rendezvous Time

The triple rendezvous time is equal to the length of the shortest word mapping
three states of the automaton onto a single one. Although it is a very natural
concept, we are not aware of any attempts to bound its value for synchronizing
automata. In what follows, the weight of a vector is the number of its non-zero
elements.

Definition 10. For a synchronizing automaton Σ, the triple rendezvous time
T3,Σ is defined as the smallest integer t such that A(t) contains a column of
weight superior or equal to 3.
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In other words, it is the length of the shortest word W such that for three
of the possible initial states, applying this word to the automaton leaves it in
the same final state, i.e. such that there exists states qi, qj and qk with qiW =
qjW = qkW . In the following, we will use T3 for T3,Σ when there is no ambiguity
on the automaton.

Our motivations for studying T3 are multiple. There are empirical evidences
that T3 is correlated with the length of the shortest synchronizing word. Indeed,
for the known automata achieving the bound of Conjecture 3, T3 is close to
n. Moreover, numerical experiments showed that automata with small T3 have
short synchronizing word. In addition, the triple rendezvous time is directly
linked with the synchronizing probability function evolution (Proposition 6 and
Conjecture 4 in [? ]). It is also related to the k-extension property developed in
[4]4.

For the known automata achieving the bound of Conjecture 3, the synchro-
nizing probability function is growing close to linearly. This consideration led to
the following conjecture:

Conjecture 11 (Conjecture 2 in [13]). In a synchronizing automaton Σ with
n states, for any 1 ≤ j ≤ n − 1,

kΣ(1 + (j − 1)(n + 1)) ≥ j/(n − 1).

This conjecture is stronger than Černý’s conjecture (Theorem 4 in [? ]).
Conjecture 11 would also imply that the following conjecture about the triple
rendezvous time is true:

Conjecture 12 (Conjecture 4 in [13]). In a synchronizing automaton Σ with
n states,

T3,Σ ≤ n + 2.

In Section 4, we provide a family of automata which are counterexamples for
both Conjecture 11 and Conjecture 12.

We now focus on bounding T3. A first upper bound can be easily obtained
without using the SPF:

Proposition 13. In a synchronizing automaton Σ with n states,

T3,Σ ≤ n(n − 1)
2

+ 1.

Proof. For any positive integer t smaller than the length of the shortest syn-
chronizing word, the matrix A(t + 1) must contain columns that are not in A(t)
(Lemma 1 in [13]). However, there are only n(n−1)/2 possible different columns
4 T3 is the smallest number such that there is a pair of states in the set of pairs of

states which are synchronized by some single letter, which is (T3 − 1)-extendable.



218 F. Gonze and R.M. Jungers

of weight two. As A(0) includes the n columns of weight one, A(n(n − 1)/2 + 1)
includes at least n + n(n − 1)/2 + 1 columns, in which one must be of weight
superior or equal to 3. �	

In order to obtain a better upper bound on T3, we study the evolution of the
SPF and A(t) for t < T3. In that setting, A(t) only contains columns of weight
one or two. We will associate the graph G(t) with A(t), A(t) being the incidence
matrix of G(t) (ignoring columns of weight one in A(t)).

In the graph G(t) associated with A(t), we call a singleton a vertex which is
disconnected from the rest of the graph, a pair two vertices which are connected
to each other and disconnected from the rest of the graph, and a cycle a set of
vertices connected between them as a cycle5 and disconnected from the rest of
the graph. We call a cycle odd (resp. even) if it contains an odd (resp. even)
number of vertices.

We also use the reverse correspondence. With a singleton or a pair is asso-
ciated the column in A(t) corresponding to its characteristic vector, and with a
cycle of c vertices is associated the set of c columns in A(t) corresponding to the
characteristic vectors of the c edges of the cycle.

In the following, based on this matrix-graph approach, we study the values
that k(t) can take with t < T3, and the maximal dimension that Pt could take
for each value k(t). To do so, we start from the matrix A(t). We prove that it is
possible to extract a matrix A′ from A(t) by keeping only some of its columns,
satisfying the following properties. The matrix A′ is such that its associated
graph G′ is composed of disjoint singletons, pairs and odd cycles, and such that
the optimal objective value for Program (3) and Program (4) is the same if
A(t) is replaced by A′. This structure allows us to compute easily the value k(t)
and the dimension of the solution set Pt associated with (3) (with A′ instead
of A(t)). Replacing A(t) with A′ can only increase the dimension of Pt as it
reduces the amount of constraints in (3), while still achieving the same objective
value by definition. We call support of the strategy q the set of columns in A(t)
corresponding to non zero entries in q.

Lemma 14. If t < T3, there exists an optimal solution q for Program (4) such
that its support is associated with a graph composed of disjoint singletons, pairs
and odd cycles.

Proof (sketch). The sketch of the proof is the following. We proceed by induction
on the number of variables of Program (4). If there is only one or two states, it
is trivially true. Otherwise, we use the fact that the graph G(t) associated with
A(t) can either be connected or disconnected.

If G(t) is disconnected, we can define two subprograms with the structure of
(4) with less variables, for which we know by induction that there exist optimal
solutions satisfying the lemma. From these solutions, we can build an optimal
solution of the original program whose support will also be of the right shape.
5 c vertices are forming a cycle if we can number them from 1 to c in such a way that

node 1 is only connected to nodes 2 and c, each node 1 < i < c is only connected to
nodes i − 1 and i + 1, and the node c is only connected to nodes c − 1 and 1.



On the Synchronizing Probability Function and the Triple Rendezvous Time 219

If G(t) is connected, we show that we can either find an optimal solution
with a support associated with an odd cycle including all the vertices, or find
a solution with a support associated with a disconnected graph. In this latter
case, we will again be able to split the program as in the disconnected case.

The full proof is given in [12]. �	
For programs with this particular structure, we can compute k(t) and the

dimension of Pt:

Lemma 15. If the graph G(t) associated with A(t) is composed of disjoint odd
cycles, pairs and singletons, then the optimum of Program (4) is given by 2/(n+
n1), where n1 is the number of singletons. Moreover, the dimension of Pt is the
number of pairs.

Proof. To make notations concise, we define K = n + n1. Our claim is that
k(t) = 2/K. We provide an admissible solution for the primal (3), as well as for
the dual (4), with the same objective value. Therefore this value is optimal.

A solution of (3) can be built as follows:

pi =
{

2/K if state i corresponds to a singleton,
1/K otherwise. (5)

The sum of the coefficients is
∑n

i=1(pi) = (n − n1)/K + 2n1/K = 1, and p is
a feasible solution for (3) with objective value of 2/K.

For (4), a solution can be built as follows:

qi =

⎧⎨
⎩

2/K if column i corresponds to a pair,
1/K if column i corresponds to an edge of an odd cycle,
2/K if column i corresponds to a singleton.

(6)

The sum of the coefficients is 1, and q is a feasible solution for (4) with
objective value of 2/K. Summarizing, equation (5) describes a solution for (3),
and equation (6) describes a solution for (4), achieving the same objective value.
As the programs are dual, this implies that both strategies are optimal, and
k(t) = 2/K.

We can now give an explicit expression for Pt. Reordering the vertices such
that the first f indexes correspond to singletons, the next g indexes correspond
to vertices in pairs, grouped by pair (two vertices in the same pair have indices
f +2j −1 and f +2j, 1 ≤ j ≤ g/2), and the last h indexes correspond to vertices
in odd cycles, we have the following set of optimal solutions for (3):

Pt = {(p1, ..., pf+g+h)| pi = 2/K, 1 ≤ i ≤ f,
pf+2j−1 = 1/K + xj , 1 ≤ j ≤ g/2,
pf+2j = 1/K − xj , −1/K ≤ xj ,≤ 1/K,
pk = 1/K, f + g + 1 ≤ k ≤ f + g + h}.

(7)
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Indeed, the total value assigned to each pair in the strategy p must be k(t),
and it can be split in any way between both vertices as long as none of the values
is negative. The value assigned to singletons must be k(t). For the odd cycles,
the total value assigned to each pair in the cycle must be k(t) (as it cannot be
more than that for any pair, and in the optimal solution this value is effectively
reached). However the only way to achieve that is to assign k(t)/2 to each vertex
of the cycle.

The dimension of Pt is g/2, the number of pairs (see [12] for details). �	
We now present the main result of this section, which provides a universal

upper bound on the triple rendezvous time for synchronizing automata. The
main steps of the reasoning are as follows: starting from any original program
obtained from an automaton and a value t, we can from Lemma 14 replace
A(t) with an other matrix to obtain a new optimization program with the same
objective value, higher dimension for Pt, and the same structure as in Lemma 15.
For this program, from Lemma 15, we can easily compute the value of the SPF
and an upper bound on the dimension of Pt. Then, making use of the lemma 9
on the evolution of Pt, we then obtain a lower bound on the SPF growing rate
before T3:

Corollary 1. If t < T3, then k(t) can only take the values 2/(n + s), 0 ≤ s ≤
n− 1, and this value cannot be optimal at more than 
(n− s)/2�+1 consecutive
values of t.

Proof. By Lemma 14, for any t < T3, we can replace A(t) with a matrix A which
is a subset of the columns of A(t), such that the graph G associated is composed
of singletons, pairs and odd cycles, and such that Program (4)’, based on this
matrix, achieves the same optimal objective. The set of optimal solutions P ′

t of
this program has a dimension superior or equal to the dimension of the set of
optimal solution of the original program Pt. Let s be the number of singletons
in G. There are n − s vertices which are either in pairs or in odd cycles in G.
As the dimension of P ′

t is the number of pairs, it is at most (n − s)/2. Lemma
9 states that when k(t) does not increase, the dimension of Pt has to decrease.
As the dimension of Pt is bounded by the dimension of P ′

t , k(t) cannot stay at
the same value for more than 
(n − s)/2� + 1 consecutive values of t. �	

With Corollary (1), we can now obtain the main result of this section:

Theorem 16. In a synchronizing automaton Σ with n states,

T3,Σ ≤ n(n + 4)
4

− n mod 2
4

.

Proof. By Corollary 1, the different values that the function k(t) can take before
T3 are of the shape 2/(n + s), 0 ≤ s ≤ n − 1, and this value can be the same for

(n−s)/2�+1 steps at most. Summing over all possible values for k(t), one gets
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n−1∑
s=0

(
(n − s)/2� + 1) =
n∑

s=1

(
s/2� + 1) =
n(n + 4)

4
− n mod 2

4
.

�	

4 A Counterexample to a Conjecture on the
Synchronizing Probability Function

In this section, we present an infinite family of automata which are counterex-
amples to Conjecture 11 and Conjecture 12. This family provides us with a lower
bound on the maximum value of the triple rendezvous time for automata with
n states for every odd integer n ≥ 9. The automaton with nine states and two
letters in Fig. 2 is the first of the family.

0 1 2
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5 6
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b b
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b a

b
a

b
a
b

b

Fig. 2. Automaton with 9 states and k(11) = 2/9

Conjecture 11 would imply
that, for j = 2 and n =
9, k(11) ≥ 2/8. However, the
synchronizing probability func-
tion of the automaton in Fig.2
at t = 11 is k(11) = 2/9,
disproving the conjecture. This
automaton also has the particu-
larity that its triple rendezvous
time equals 12, which is the
number of states plus 3. Indeed,
on the one hand it can be veri-
fied that the matrix A(11) con-
tains only columns of weight
two. On the other hand, for the
three initial states 0, 4 and 6 of
the automaton, the automaton
ends at state 4 after applica-
tion of the word abbabbababba,

which is twelve letters long. Therefore this automaton is also a counterexample
to Conjecture 12.

We can now extend this automaton with 9 states to an infinite family of
automata with an odd number of states. Figure 3 shows the automata of this
family with 11 and 13 states.

The recursive process to build the automaton of the family with n states
from the one with n − 2 states is the following:

1. We start from the automaton of the family with n − 2 states (with states
numbered from 0 to n − 3, with n − 4 and n − 3 added last).

2. We remove the self loops from states n − 4 and n − 3.
3. We add state n − 2 with a self loop labelled as the self loop removed from

state n − 3, and state n − 1 with a self loop with the other label.
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Fig. 3. Automata of the family with 11 and 13 states

4. We add the connections between states n − 2 and n − 4 in both directions,
labelled as the self loop removed from state n−4, and we add the connections
in both directions between n − 1 and n − 3, with the other label.

All the automata of this family are such that T3 = n+3, and k(n+2) = 2/n.

5 Conclusion

In this paper, we pushed further the study of the synchronizing probability func-
tion as a tool to represent the synchronization of an automaton. Our results are
twofold and somewhat antagonistic: on the one hand, we managed to prove a
non trivial upper bound on the triple rendezvous time thanks to the synchro-
nizing probability function. This result shows that this tool can effectively help
in understanding synchronizing automata. On the other hand, we refuted Con-
jecture 11, formulated in [? ], by providing an infinite family of automata for
which T3 = n+3 (with n being the number of states of the automaton). Conjec-
ture 11 was stated as a tentative roadmap toward a proof of Cerny’s conjecture
with the help of the synchronizing probability function, and in that sense our
conterexample is a negative result towards that direction.

A natural continuation to this research would be to find non-trivial bounds
for Ts, with 3 < s ≤ n (i.e. the smallest number such that the reachable column
set includes a column of weight at least s). Another research question is how to
narrow the gap between n + 3 and n2/4 for the triple rendezvous time.
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Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27.
Springer, Heidelberg (2008)

http://www.citeseer.ist.psu.edu/eppstein90reset.html
http://arxiv.org/abs/1410.4034
http://arxiv.org/abs/1306.0729


On Robot Games of Degree Two

Vesa Halava1,2, Reino Niskanen2(B), and Igor Potapov2

1 Department of Mathematics and Statistics, University of Turku,
20014 Turku, Finland
vesa.halava@utu.fi

2 Department of Computer Science, University of Liverpool, Ashton Building,
Liverpool L69 3BX, UK

{r.niskanen,potapov}@liverpool.ac.uk

Abstract. Robot Game is a two player vector addition game played
in integer lattice Z

n. In a degree k case both players have k vectors
and in each turn the vector chosen by a player is added to the current
configuration vector of the game. One of the players, called Attacker,
tries to play the game from the initial configuration to the origin while
the other player, Defender, tries to avoid origin. The decision problem is
to decide whether or not Attacker has a winning strategy. We prove that
the problem is decidable in polynomial time for the degree two games in
any dimension n.

Keywords: Automata and concurrency · Reachability games · Vector
addition game · Decidability · Winning strategy

1 Introduction

There is growing interest in the analysis of two player reachability games defined
in the infinite state systems. These games appear in the verification, refinement
and compatibility checking of reactive systems [11], in control problems, analysis
of programs with recursion [5] and have deep connections with automata theory
and logic [9,10,13].

In general two-player reachability games are played on a graph, called an
arena, where the set of vertices is partitioned into two subsets to designate
which player is in turn to move. Each move consists of picking an edge from the
current location and adding its label to a counter vector under some semantics
[7,12]. The objective of one player is to reach a given counter value in a given
location while the other player tries to avoid it.

The Robot Game (also known as Attacker-Defender game [8]) is the simpler
variant of the counter games under Z semantics (i.e. a counter vector can have
any value in Z

n) where the graph consists of only two vertices corresponding
to two players: Attacker and Defender. Despite the simplicity of this model, the
problem of checking the existence of winning strategy for the Robot Game in
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dimension one is EXPTIME-complete [2]. The problem is known to be undecid-
able for more complex scenario if the game is played on a graph with states of
player 1 and states of player 2 with Z

2 or N
2 as the vector space [1,4,12]. In

particular it follows from [6,8] that the Robot Game is undecidable in dimension
d ≥ 8 and in dimension d ≥ 2 if Attacker has internal states.

Obviously, there are two parameters that can be considered in the Robot
Game - the number of vectors each player has, which we call the degree of a game,
and the dimension of the vectors. The results on complexity and decidability in
[2,4,8] for such games were shown when the degree is not fixed.

In this paper we consider the Robot Game in a degree 2 case (i.e. where both
players have at most 2 vectors each). We prove that the problem is decidable in
polynomial time for the degree two games in any dimension n. Also we note that
the same problem for counter games of degree 2 on arbitrary graph (i.e. where
in each vertex of a graph (arena) only two vectors are available) is undecidable.

The proof of decidability is started with consideration of the dimension one
games. The decidability of the problem in dimension one follows clearly from [2],
but we shall present our proof, since the method is useful in higher dimensions
and leads to a polynomial time algorithm. In particular games of dimension
n ≥ 3 reduce to games of dimension 1 or 2.

2 Notations and Definitions

We denote the set of all integers by Z and the set of all non-negative integers by
N. We denote by 0n = (0, . . . , 0) n-dimensional zero vector.

A Counter Reachability Game (CRG) consists of a directed graph G = (V,E),
where set of vertices is partitioned into two parts V1 and V2, each edge e ∈
E ⊆ V × Z

n × V is labeled with vectors in Z
n, and an initial vector x0 ∈ Z

n.
Configuration of the game is (v,x), successive configuration is (v′,x+x′), where
an edge (v,x′, v′) ∈ E is chosen by player 1 if v ∈ V1 or by player 2 if v ∈ V2. A
play is a sequence of successive configurations. The goal of the first player, called
Attacker, is to reach final configuration (vf , 0n) for some vf ∈ V while the goal
of the second player, called Defender, is to keep Attacker from reaching (vf , 0n).
A strategy for a player is a function that maps a configuration to an edge that
can be applied. We say that Attacker has a winning strategy if he can reach the
final configuration regardless of the strategies of Defender. On the other hand,
we say that Defender has a spoiling strategy if there is an infinite play that never
reaches the final configuration. In the figures we use © for Attacker’s states and
� for Defender’s states. The dimension of the game is clearly the dimension of
the integer lattice n and the degree is the largest degree of a vertex in the graph.

A Robot Game (RG) [6] is special case of Counter Reachability Game, where
graph consists of only two vertices, q0 of Defender and q of Attacker. The goal
of the game is the configuration (q0, 0n). That is, a Robot Game consists of two
players, Attacker and Defender having a set of vectors U , V over Zn, respectively,
and an initial vector x0. Here the degree is just the upper bound for number
of vectors in the sets, that is, |U |, |V | ≥ 2. Starting from x0 players add a
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vector from their set to the current position of the game in turns. As in Counter
Rechability Game, Attacker tries to reach the origin while Defender tries to keep
Attacker from reaching the origin.

Since by our definition game can only end after Attacker’s move, we denote
the configuration of a game at time t by the vector wt. Clearly wt = x0 + vi1 +
ui1 + vi2 + ui2 + . . . + vit + uit after t rounds of the game where uij ∈ U and
vij ∈ V for all indices ij . Note that in each round Defender chooses the vector
before Attacker.

In Robot Game Decision Problem, RGDP for short, the task is to determine
whether or not there exists a winning strategy for Attacker, i.e., can Attacker
reach the origin regardless of the vectors Defender chooses during his turns.

3 Dimension One

In this section we consider a game as an equation describing the configuration
vector, where variables represent how many times each vector has been played.
The goal of Attacker is to make the equation equal to zero with his choices
of variables, while Defender does the opposite. The proof consists of carefully
studying this equation and an additional equation stating that total number of
vectors played by the players should be equal.

Assume that in the dimension one game that Attacker has numbers k1, k2 ∈
Z and Defender plays with numbers �1, �2 ∈ Z, and assume that the initial
number or position on the line is a ∈ Z. Denote by x, y, z, w the times numbers
k1, k2, �1, �2 are played in the game, respectively. Assume by symmetry that
k2 ≥ k1 and that k2 ≥ 0. If k2 < 0, then k1 < 0 too, and we may multiply all
numbers of the game by −1 implying a symmetric game.

If �1 = �2, then Defender has no control over the game and after each turn
k1 + �1 or k2 + �1 will be added to the configuration, depending on Attacker.
In this case winning strategy is equivalent to reachability of the origin by two
numbers. In other words, does or does not, the equation

x(k1 + �1) + y(k2 + �1) + a = 0

have a solution with x, y ∈ N and a linear diophantine equation can be solved
in polynomial time [3]. Indeed, this equivalent to asking, does there exist x ∈ N

such that y is in N.

y =
−x(k1 + �1) − a

k2 + �1.
(1)

From now on we assume that �1 �= �2. Now the game is in the origin if and
only if the following equations are satisfied:{

xk1 + yk2 + z�1 + w�2 + a = 0
x + y − z − w = 0

(2)

under constrain x, y, z, w ∈ N. We shall look the game from Defender’s point of
view, and note that Attacker does not have a winning strategy, if Defender can
somehow avoid the solutions of the above pair of equations under the constrain.
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Assume first that k1 = k2 = k. In this case, Attacker has no control over the
game and Defender will always win. Indeed, each turn either k + �1 or k + �2 will
be added to the configuration. If the configuration is −(k+�1) then Defender will
choose vector �2 and the next configuration is −(k+�1)+k+�2 = �2−�1 �= 0 or if
the configuration is −(k+�2) then Defender will choose �1 and the configuration
is −(k + �2) + k + �1 = �1 − �2 �= 0. Therefore, Attacker does not have a winning
strategy.

Assume that k2 > k1. Let us first express Attacker’s variables x, y as follows:

x =
(k2 + �1)z + (k2 + �2)w + a

k2 − k1
,

y =
(−k1 − �1)z + (−k1 − �2)w − a

k2 − k1
.

(3)

Denote the number k2 − k1 = d. Consider the game as a sequence of pairs of
numbers (z, w), that is, the sequence ((zi, wi))∞

i=0, where (z0, w0) = (0, 0) and

(zi+1, wi+1) =

{
(zi + 1, wi), or
(zi, wi + 1).

Indeed, there is no winning strategy for Attacker if and only if Defender can
construct a sequence ((zi, wi))∞

i=0 such that Attacker cannot construct a sim-
ilar sequence ((xi, yi))∞

i=0 starting from (0, 0) and defined as (xi+1, yi+1) ={
(xi + 1, yi) or
(xi, yi + 1).

such that, for some i, (xi, yi, zi, wi) is a solution of the equa-

tions (3). First of all, there is an integer solution if and only if (k2 + �1)z +(k2 +
�2)w + a and (−k1 − �1)z + (−k1 − �2)w − a are both divisible by d = k2 − k1
for some z and w. Therefore, we first rule out the cases where Defender avoids
the zero in the play by rationality.

3.1 Avoiding Zero with Rationality

In this section we prove simple conditions that guarantee Defender’s victory
formulated in Corollary 2. Consider a sequence xi = nzi + mwi + a, where
m,n, a ∈ Z, for a play ((zi, wi))∞

i=0.

Lemma 1. There exists a play ((zi, wi))∞
i=0 such that xi �≡ 0 (mod d) for all

i > 0 if (and only if)

1. n �≡ m (mod d), or
2. m ≡ n ≡ b (mod d) and bj �≡ −a (mod d) for all j ∈ N.

Proof. We prove the claim by constructing sequences for both cases.
Assume that n �≡ m (mod d). We prove the claim by induction on index i.

When i = 1, x1 = nz1 +mw1 +a is either n+a or m+a. Both of these can’t be
zero, so Defender can choose the one for which x1 �= 0. Assume that the claim
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holds for all indexes smaller than k + 1. Now xk+1 = nzk+1 + mwk+1 + a. By
definition of the sequence ((zi, wi))∞

i=0,

xk+1 =

{
n(zk + 1) + mwk + a = xk + n or
nzk + m(wk + 1) = xk + m.

By induction hypothesis xk �= 0 (mod d) and by assumption n �≡ m (mod d),
thus at most one of these can be zero and Defender can choose the non-zero one.

Assume that m ≡ n ≡ b (mod d) and bj �≡ −a (mod d) for all j. Now
xi = nzi +mwi +a ≡ b(zi +wi)+a (mod d) and by assumption b(zi +wi) �≡ −a
(mod d), so xi �≡ 0 (mod d). �	

Based on the above, clearly Defender can spoil all games not satisfying

1. (k2 + �1) ≡ (k2 + �2) ≡ b1 (mod k2 − k1), and b1j1 ≡ −a (mod k2 − k1), for
some j1, and

2. (−k1 − �1) ≡ (−k1 − �2) ≡ b2 (mod k2 − k1) and b2j2 ≡ a (mod k2 − k1),
for some j2.

Obviously a + �1 ≡ a + �2 (mod d) if and only if �1 ≡ �2 (mod d). On the other
hand, for both x and y to be integers in (3), both sequences must be 0 modulo d
at the same time, implying that we may assume that j = j1 = j2, implying that
there exists a minimal such j that j(k2 + �1) ≡ a (mod d) and j(−k1 − �1) ≡ −a
(mod d).

Corollary 2. Defender can spoil all games not satisfying

1. �1 ≡ �2 (mod k2 − k1), and
2. j(k2 + �1) ≡ a (mod k2 − k1) and j(−k1 − �1) ≡ −a (mod k2 − k1) for some

j ≥ 0, j ∈ N.

Next we concentrate on the cases of Corollary 2, and characterize those games
where Defender has a spoiling play. Therefore, we assume that the game satisfies
cases 1-2 of the previous Corollary. Note that it can be checked in polynomial
time whether the game fulfills the conditions of the Corollary 2 or not. Assume
next that c is the minimal number satisfying c(k2 + �1) ≡ c(−k1 − �1) ≡ 0
(mod k2 − k1). Now the variables x and y in equations (3) are integers in step
j + tc for all t ∈ N.

3.2 A Case of Positive Factors for z and w in (3)

In this section we prove that if the factors of z and w are positive in (3) and
−�1 = k1 and −�2 = k2 then Attacker can only win the game with his first
move. Assume first that (k2 + �1), (k2 + �2), (−k1 − �1), (−k1 − �2) are all non-
negative. Then (k2 ≥ −�1), (k2 ≥ −�2), (k1 ≤ −�1), (k1 ≤ −�2) implies
that k1 ≤ −�1,−�2 ≤ k2. Since �1 ≡ �2 (mod k2 − k1) and there are k2 − k1 + 1
numbers between k2 and k1, necessarily either −�1 = −�2 or −�1 = k1 and
−�2 = k2 (or vice versa).
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If �1 = �2. This case was completely studied already on page 226, but here
with the specified conditions of Corollary 2, the decision is even simpler. Indeed,
in (3) Attacker may calculate the first t such that (k2 + �1)tj + a and (−k1 −
�1)tj−a are both positive and play his tj moves corresponding to the numbers x
and y in solution of (3). Therefore, in this case Attacker has a winning strategy.

If −�1 = k1 and −�2 = k2. Then Defender can return the game into the
same position once and again. Attacker has a winning strategy if and only if he
can win the game after the first moves, that is, if

(�1 + k1 + a = 0 or �1 + k2 + a = 0) and (�2 + k1 + a = 0 or �2 + k2 + a = 0).

Indeed, assume that �1+k1+a �= 0 and �1+k2+a �= 0. Then Defender plays first
�1 and after that on each turn �i if Attacker played ki on the previous round,
and Attacker cannot win.

3.3 A Case of Negative or Mixed Factors for z and w in (3)

In this section we find winning conditions for Attacker if at least one of the
factors of z and w is negative in (3). In this case extra tools are needed. From
Defender’s point of view, obvious strategy is to play so that only negative values
of x or y satisfy the equation (3).

Assume that at least one of the factors of z or w is negative in (3). Now
if a ≤ 0 and (k2 + �1) or (k2 + �2) is negative, then by playing only z or w,
respectively, Defender can keep x negative for the whole play and therefore, has
a winning play. Similarly, if −a ≤ 0 and (−k1 − �1) or (−k1 − �2) is negative,
Attacker does not have a winning strategy.

Next assume that a > 0 and (k2 + �1) or (k2 + �2) is negative. Note that they
both may be negative. It is clear that −a is negative, and the sequence of pairs
of rational numbers (xi, yi) counted for a play ((zi, wi))∞

i=0 of Defender, initially
has y0 < 0. Now this sequence meets integers in steps j + ct for all t ∈ N. Note
also, that yi becomes positive at least at the same step than xi turns to negative
and not before, since clearly xi + yi = zi + wi > 0 for all i > 0.

Now consider two plays by Defender. Assume that Defender has played
(zm−1, wm−1) and next step Defender has two choices (zm−1 + 1, wm−1) or
(zm−1, wm−1 + 1). Let (xm−1, ym−1) be the pair according to (zm−1, wm−1)
and (x′, y′) and (x′′, y′′) be the pairs of integers according to the mth choice
of Defender. Obviously, there exists an integer d such that

(x′, y′) = (x′′ − d, y′′ + d). (4)

Indeed, changing one w to z makes a difference of

k2 + �1 − k2 − �2
k2 − k1

=
�1 − �2
k2 − k1

= −d (5)

in x as �1 ≡ �2 (mod k2 − k1). The number d in (4) is called the distance of
solutions in equations (3). Note that as �1 �= �2, d is nonzero.
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First we show that Defender has a spoiling strategy if the distance |d| ≥ 2.
In this case Defender can play through the solutions of Attacker as the dis-
tance between correct pair is too large. Indeed, assume that Defender has played
(zj+ct−1, wj+ct−1) for some t ∈ N and Attacker (x, y). To have a winning strat-
egy, it must be so that if Defender plays �2, that is (zj+ct−1, wj+ct−1 + 1), then
Attacker can play (x + 1, y) or (x, y + 1) according to the correct case in (3).
But now if Defender plays �1, Attacker has to be able to play (x + 1 − d, y + d)
or (x − d, y + d + 1) with one move. Since |d| ≥ 2, this is impossible. Therefore,
Defender can choose the play at step j + ct so that Attacker cannot win.

Indeed, in similar fashion, Defender may play through solutions for all cases
of j + ct steps where t ∈ N having (x, y) integers in (3), and indeed, there is no
need for reaching negative x in this case for Defender to win. This holds also in
the case of j = c = 1, i.e., in a game where x and y are integers for all (z, w) in
(3), unless the very first turn of the play leads to a win of Attacker.

Finally, we turn into the case where the distance d has |d| = 1. From the
equation (5) it follows that �1 − �2 = ±(k2 − k1).

Therefore, either k1 + �1 = k2 + �2 or k1 + �2 = k2 + �1. Assume the first
equation to hold and denote m = k1 + �1, as there are no assumption on �1, �2
except the fact that they are nonequal, we could rename �1 and �2 so that the
first equation holds. When considering the current state of the game, that is

xk1 + yk2 + z�1 + w�2 + a = 0,

It is obvious that when Defender plays �i by playing the ki Attacker can move
game by �i + ki = m. On the other hand, the same holds for Defender. As
Attacker finishes a turn by ki, by playing on the next turn �i, Defender moves
the game by m.

We shall now prove that Attacker has winning strategy if and only if Attacker
can force the game into position −t · m, for some t ∈ N, on the first round of
the game. First of all, it is obvious that if for both a + �1 and a + �2, there is a
k′, k′′ ∈ {k1, k2} such that a+ �1 + k′ = −t1m and a+ �2 + k′′ = −t2m, for some
t1, t2 ∈ N, then Attacker can win by playing ki if Defender plays �i, since then
m is added to position on each rounds and then after t1 or t2 rounds Attacker
can win.

Assume now, a + �1 + ki �= −tm for all t ∈ N. We prove that in this case
Defender can avoid the zero position with the following strategy. Denote the
play of Attacker by ki1 , ki2 , . . . , where in ∈ {1, 2} for all n = 1, 2, . . . . Defender
play on round n ≥ 2 �in−1 , in other word, after the first round, Defender adds m
to the position. Therefore, right before closing move of Attacker on round n ≥ 2
full rounds, the game is in position a + �1 + (n − 1)m. Assume contrary, that
Attacker can win the game. Then for some n ≥ 2 and k′ ∈ {k1, k2}

a + �1 + (n − 1)m + k′ = 0,

which implies that a+�1+k = −(n−1)m, a contradiction. This proves the claim.
Therefore, in the |d| = 1 games, Attacker has a winning strategy if and only if
for both a+�1 and a+�2, there are k′, k′′ ∈ {k1, k2} such that a+�1+k′ = −t1m
and a + �2 + k′′ = −t2m, for some t1, t2 ∈ N.
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Proposition 3. Attacker has a winning strategy only if

1. �1 = �2 and equation (1) has solution in N, or
2. the game satisfies conditions in Corollary 2 and

(a) Factors of z and w are positive in (3) and −�1 = k1 and −�2 = k2 and
Attacker can win the game with the first move, or

(b) At least one of the factors of z and w is negative in (3). Denote by d the
distance of the game.
i. If |d| ≥ 2 and j = 1 = c and Attacker always can win the game after

the first round.
ii. If |d| = 1, if for both a + �1 and a + �2, there is a k′, k′′ ∈ {k1, k2}

such that a + �1 + k′ = −t1m and a + �2 + k′′ = −t2m, for some
t1, t2 ∈ N.

Based on above cases it is easy to construct algorithm for the Robot Games of
dimension one and degree two. Indeed, since finding all the cases where Attacker
has a winning strategy requires first in the case �1 = �2 detecting, whether
or not there are positive integer solution to equation (1). As mentioned when
considering the case, such solutions can be detected in polynomial time. In the
case �1 �= �2 we must detect whether the game fulfills the conditions of Corollary
2, which mean solving two modular equations. After that all cases with winning
strategy are detected by checking the first round moves. Note that in the case
2b(ii), checking the existence and finding the numbers t1 and t2 requires solving
four equations of the form ti = a+�i+k

m ∈ N. Obviously, this case can be solved
in polynomial time too.

Theorem 4. RGDP in dimension one with 2 vectors is in P.

4 Dimension Two

First we approach solving a problem in dimension two in similar manner to the
case of dimension one using a system of equations. Let u1 = (α1, α2),u2 =
(β1, β2),v1 = (γ1, γ2),v2 = (δ1, δ2). Let U = {u1,u2} and V = {v1,v2} be
Attacker’s and Defender’s vector sets, respectively and an initial vector a =
(a1, a2).

For Attacker to win, the following equations need to be satisfied

xα1 + yβ1 + zγ1 + wδ1 + a1 = 0
xα2 + yβ2 + zγ2 + wδ2 + a2 = 0

(6)

and
x + y − z − w = 0 (7)

under constrain x, y, z, w ∈ N.
If the equations in (6) are linearly dependent, then it is enough to solve

one of them as in dimension 1. Thus we assume that the equations are linearly
independent. If Defender’s vectors v1 = v2, then we have a one-player game that
is considered in the following proposition.
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Proposition 5. The one-player RG of degree 2 in dimension n is in P.

Proof. Let U = {(α1, . . . , αn), (β1, . . . , βn)} be Attacker’s vector set and a =
(a1, . . . , an) the initial vector in one-player Robot Game of degree 2 in dimension
n. Now winning the game is equivalent to whether Attacker can reach the origin
from the initial vector. We need to solve system of linear Diophantine equations

xα1 + yβ1 − a1 = 0,

...
xαn + yβn − an = 0,

with constrain x, y ∈ N. As mentioned previously, solving linear Diophantine
equations is in P. �	

Let us consider sets U ′ = {u1 − u2, (0, 0)} = {u′, (0, 0)} and V ′ = {v1 +
u2,v2 + u2} = {v′

1,v
′
2}, where by default Attacker plays u2, which is added to

each vector. In the following Lemma we prove that only specific type of games
can be won by Attacker. The initial point must be on a line defined by one of
Defender’s vectors and Attacker has to have a way to move back to the line if the
second vector is used. This is depicted in Figure 1, where four different games
are shown. Note that since one of Attacker’s vectors is (0, 0), Defender can have
consecutive vectors in the play.

v′
2

v′
1

o1

u′

v′
2

v′
1

o2

u′

o3

v′
2

v′
1

u′

v′
2

v′
1

u′

o4

Fig. 1. Four different Robot Games of degree 2 in dimension 2. Here oi is the origin of
each game.

Lemma 6. Attacker can win a game if and only if v′
1 +u′ = v′

2 and a = −kv′
2

or v′
2 + u′ = v′

1 and a = −kv′
1 for some k ∈ N.

Proof. Assume first that v′
1 + u′ = v′

2 and a = −kv′
2 for some k ∈ N. Now

if Defender plays v′
1, then Attacker plays u′ and the configuration is −kv′

2 +
v′
1 + u′ = (−k + 1)v′

2. If on the other hand Defender plays v′
2, then Attacker

plays (0, 0) and the configuration is again (−k +1)v′
2. That is, Attacker can win

after k turns. This case is depicted in Figure 1 with origin o3. The other case is
symmetric.

Now we assume the contrary and show that in each case Defender has a
spoiling strategy. Up to symmetry, there are three cases to consider:
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(i) v′
1 + u′ = v′

2 and a = −kv′
1 holds,

(ii) only v′
1 + u′ = v′

2 holds,
(iii) neither v′

2 + u′ = v′
1 nor v′

2 + u′ = v′
1 hold.

Consider the first case. This is depicted in Figure 1 with origin being o1.
Clearly Defender spoils by moving away from the line defined by v′

1.
In second case v′

1 + u′ = v′
2 but a �= −kv′

2. There are two subcases to
consider. Either a = −rv′

2, where r /∈ Z or a is not on a line defined by v′
2. This

is depicted in Figure 1 with origins being o4 and o2 respectively. Apart from one
special case, in both of these cases Defender has a spoiling strategy by keeping
the play on the line defined by v′

2 that is playing v′
2 until Attacker plays u′.

If u′ is played, Defender matches it with v′
1. Clearly the game will not reach

origin unless a = −kv′
2 − u′, but in that case Defender takes the initiative and

plays v′
1 until Attacker does not match it with u′, then he plays v′

2. That is,
configuration at all times is either

a + �v′
2 + v′

1 + u′ = (� + 1 − k)v′
2 − u′ �= (0, 0) or

a + �v′
2 + v′

1 + (0, 0) = (� − k)v′
2 + v′

1 − u′ �= (0, 0), for some � ∈ Z.

In the final case, if v′
1 + u′ �= v′

2 and v′
2 + u′ �= v′

1, then we consider points
from which origin can be reached in one turn. These points are −v′

1, −v′
1 − u′,

−v′
2 and −v′

2 − u′. If the point is −v′
i, then Defender will play −v′

j , where
i, j ∈ {1, 2} and i �= j. Now if Attacker plays (0, 0), then resulting point is not
origin, since we assumed that v1 �= v2, and if Attacker plays u′, then resulting
point is −v′

i + v′
j + u′ which is nonzero by our assumption. For the other two

points we can see by similar reasoning that resulting point is not the origin. That
is, Attacker cannot reach origin. �	
Theorem 7. RGDP of degree two in dimension two is in P.

Proof. We have classified simple conditions for Attacker to have a winning strat-
egy. If one of the equations is a multiple of another, we reduce the game to
one-dimensional game. If Defender has only one vector, we use Proposition 5.
Or we need to check whether the game satisfies conditions of Lemma 6. Clearly
these can be checked in polynomial time. �	

5 Dimension Three or Higher

In this section we consider RG in dimension n ≥ 3 with 2 vectors. Let U =
{(α1, α2, . . . , αn), (β1, β2, . . . , βn)} and V = {(γ1, γ2, . . . , γn), (δ1, δ2, . . . , δn)} be
Attacker’s and Defender’s sets respectively and starting vector a = (a1, . . . , an).

For Attacker to win, the following equations need to be satisfied

xα1 + yβ1 + zγ1 + wδ1 + a1 = 0
...

xαn + yβn + zγn + wδn + an = 0 and

(8)
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x + y − z − w = 0 (9)

under constrain x, y, z, w ∈ N.
As there are at least four equations with four variables, we first check by

Gaussian elimination for number of linearly independent equations. Note that
with Gaussian elimination we can also keep track of which equations are linearly
independent. We have the following cases:

(i) There are at least 5 linearly independent equations. In this case there is no
solution to the system of equations and obviously Defender always spoils
the game.

(ii) There are 4 linearly independent equations. That is, there is a unique solu-
tion to the systems of equations. In this case there is no winning strategy
since Defender can avoid the (z, w) values of the solution.

(iii) There are 3 linearly independent equations. We have two subcases. In the
first subcase, two of the linearly independent equations are from (8) and
one from (9). In this case we have a two-dimensional game with these three
equations that can be solved by previous section. In the second subcase,
all three linearly independent equations are from (8). That is

fi = xαi + yβi + zγi + wδi + ai

fj = xαj + yβj + zγj + wδj + aj

fk = xαk + yβk + zγk + wδk + ak

are the linearly independent equations for some indices i, j, k, and

x + y − z − w = afi + bfj + cfk

for some coefficients a, b, c ∈ Z. From this we can express one of the equa-
tions with the others, for example cfk = x+y−z−w−afi−bfj , and consider
2-dimensional game with equations fi, fj and the constrain x+y−z−w = 0.
Clearly if there is a solution to this game, also fk will be equal to 0 with
the same values x, y, z, w.

(iv) There are 2 linearly independent equations, then either one of them is
from (8) and another is (9) and we have to solve a one-dimensional Robot
Game. If both linearly independent equations are from (8) then we have
two-dimensional Robot Game with the usual constrain equation 1.

(v) There is only 1 linearly independent equation. That is, every equation is
a multiple of a single equation. Since (9) has ±1 as coefficients, it has to
be the linearly independent equation and Attacker can win after the first
turn by playing any vector regardless of Defender’s choice.

Based on Theorem 7 and above considerations, we can prove

Theorem 8. RGDP of degree two is in P for all dimensions.
1 Note that we could have used similar approach to (iii)b and reduced it to one-

dimensional game instead.
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Corollary 9. Robot Game Decision Problem of degree two with initial point x0

and target point xf is in P for all dimensions.

Proof. The claim follows from Theorem 8 when we consider RG with initial point
x0 − xf and the origin as target. Clearly if Attacker has a winning strategy in
the modified game, the same strategy is winning in the original game. �	

Finally let us consider decidability of Counter Reachability Game. In [12] it
was proven that the problem is undecidable in dimension 2 even when all vectors
are in {−1, 0, 1}2. Although the degree of the game was not considered, it is easy
to modify any Counter Reachability Game to be of degree 2 by splitting vertices
with higher degree into a chain of vertices.

Proposition 10. CRG of degree two in dimension two is undecidable.

Proof. Consider a Counter Reachability Game of any degree. For each vertex q
with degree k > 2, we construct a chain q1, . . . , qk−1 of k − 1 vertices such that
each ith edge (q,v, q′) is (qi,v, q′). Finally we connect the vertices with edges
(qi, 0n, qi+1) for i ∈ {1, . . . , k − 1} and (q, 0n, q1). Now the modified game is of
degree 2. This proves the claim. �	
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Abstract. Motivated by the success of bounded model checking frame-
work for finite state machines, Ouaknine and Worrell proposed a time-
bounded theory of real-time verification by claiming that restriction
to bounded-time recovers decidability for several key decision problem
related to real-time verification. In support of this theory, the list of unde-
cidable problems recently shown decidable under time-bounded restric-
tion is rather impressive: language inclusion for timed automata,
emptiness problem for alternating timed automata, and emptiness prob-
lem for rectangular hybrid automata. The objective of our study was
to recover decidability for general recursive timed automata(RTA)—and
perhaps for recursive hybrid automata—under time-bounded restriction
in order to provide an appealing verification framework for powerful mod-
eling environments such as Stateflow/Simulink. Unfortunately, however,
we answer this question in negative by showing that time-bounded reach-
ability problem stays undecidable for RTA with 5 clocks.

Keywords: Recursive State Machines · Timed Automata · Reachability

1 Introduction

Recursive state machines (RSMs), as introduced by Alur, Etessami, and
Yannakakis [2], are a variation on various visual notations to represent hier-
archical state machines, notably Harel’s statecharts [8] and Object Management
Group supported UML diagrams [11], that permits recursion while disallowing
concurrency. RSMs closely correspond [2] to pushdown systems [6], context-free
grammars, and Boolean programs [4], and provide a natural specification and
verification framework to reason with sequential programs with recursive proce-
dure calls. The two fundamental verification questions for RSM, namely reach-
ability and Büchi emptiness checking, are known to be decidable in polynomial
time [2,7].

Timed automata [3] extend finite state machines with continuous variables
called clocks that permit a natural modeling of timed systems. In a timed
automaton the variables continuously flow with uniform rates within each dis-
crete state, while they are allowed to have discontinuous jumps during transi-
tions between states that are guarded by constraints over variables. It is well

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 237–248, 2015.
DOI: 10.1007/978-3-319-15579-1 18
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M1
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u2

u3b1 : M2

{x}

x=1

x<1

x=0

M2

v1 v2

b2 : M2
x=1

x<1, {x}

Fig. 1. An example of recursive timed automata with one clock and two components

known that the reachability problem is decidable (PSPACE-complete) for timed
automata [3]. Trivedi and Wojtczak [12] introduced recursive timed automata
(RTAs) as an extension of timed automata with recursion to model real-time
software systems. Formally, an RTA is a finite collection of components where
each component is a timed automaton that in addition to making transitions
between various states, can have transitions to “boxes” that are mapped to other
components modeling a potentially recursive call to a subroutine. During such
invocation a limited information can be passed through clock values from the
“caller” component to the “called” component via two different mechanism: a)
pass-by-value, where upon returning from the called component a clock assumes
the value prior to the invocation, and b) pass-by-reference, where upon return
clocks reflect any changes to the value inside the invoked procedure.

Example 1 (Visual Presentation). The visual presentation of a recursive timed
automaton with two components M1 and M2, and one clock variable x is shown
in Figure 1 (example taken from [12]), where component M1 calls component
M2 via box b1 and component M2 recursively calls itself via box b2. Components
are shown as thinly framed rectangles with their names written next to upper
right corner. Various control states, or “nodes”, of the components are shown
as circles with their labels written inside them, e.g. see node u1. Entry nodes
of a component appear on the left of the component (see u1), while exit nodes
appear on the right (see u3).

Boxes are shown as thickly framed rectangles inside components labeled b :
M , where b is the label of the box, M is the component it is mapped to. We
write the set of clocks passed to M by value just below the box, while we omit
this notation if all the clocks are passed by reference. The rest of the clocks are
assumed to be passed by reference. For the sake of clarity of presentation, we
often abuse the notation and write Y to denote the set X \ Y . For instance, in
the component Inc c shown in Figure 3, we pass the clocks {x, z1, z2, b} by value
to the component mapped to the box F1:Upy

2.
Call ports of boxes are drawn as small circles on the left of the box, while

return ports are on the right. We omit labeling the call and return ports as these
labels are clear from their position on the boxes. For example, call port (b1, v1)
is the top small circle on the left-hand side of box b1, since box b1 is mapped to
M2 and v1 is the top node on its left-hand side. Each transition is labeled with
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a guard and the set of reset variables, (e.g. transition from node v1 to v2 can be
taken only when variable x<1, and after this transition is taken, x is reset).

Related Work. Trivedi and Wojtczak [12] showed that the reachability and
termination (reachability with empty calling context) problem is undecidable for
RTAs with three or more clocks. Moreover, they considered the so-called glitch-
free restriction of RTAs—where at each invocation either all clocks are passed
by value or all clocks are passed by reference— and showed that the reachability
(and termination) is EXPTIME-complete for RTAs with two or more clocks. In
the model of [12] it is compulsory to pass all the clocks at every invocation with
either mechanism. Abdulla, Atig, and Stenman [1] studied a related model called
timed pushdown automata where they disallowed passing clocks by value. They
allowed clocks to be passed either by reference or not passed at all (in that case
they are stored in the call context and continue to tick with the uniform rate).
It is shown in [1] that the reachability problem for this class remains decidable
(EXPTIME-complete). In this paper we restrict ourselves to the recursive timed
automata model as introduced in [12]. In particular, we consider time-bounded
reachability problem for RTA and show that the problem stays undecidable for
RTA with 5 or more clocks. We have also studied two player reachability games
on RTA in [9], and showed that time-bounded reachability games are undecidable
for RTA with 3 or more clocks.

For a survey of models related to recursive timed automata and dense-time
pushdown automata we refer the reader to [12]and [1]. Another closely related
model is introduced in [5] where pushdown automata is extended with an addi-
tional stack used to store clock valuations. The reachability problem is known
to be undecidable for this model. We do not consider this model in the current
paper, but we conjecture that time-bounded reachability problem for this model
is also undecidable.

2 Preliminaries

2.1 Labeled Transition System

A labeled transition system (LTS) is a tuple L = (S,A,X) where S is the set of
states, A is the set of actions, and X : S×A → S is the transition function. We
say that an LTS L is finite (discrete) if both S and A are finite (countable). We
write A(s) for the set of actions available at s ∈ S, i.e., A(s) = {a : X(s, a) �= ∅}.

We say that (s, a, s′) ∈ S×A×S is a transition of L if s′ = X(s, a) and a
run of L is a sequence 〈s0, a1, s1, . . .〉 ∈ S×(A×S)∗ such that (si, ai+1, si+1)
is a transition of L for all i ≥ 0. We write RunsL (FRunsL) for the sets of
infinite (finite) runs and RunsL(s) (FRunsL(s)) for the sets of infinite (finite)
runs starting from state s. For a set F ⊆ S and a run r = 〈s0, a1, . . .〉 we
define Stop(F )(r) = inf {i ∈ N : si ∈ F}. Given a state s ∈ S and a set of final
states F ⊆ S we say that a final state is reachable from s0 if there is a run
r ∈ RunsL(s0) such that Stop(F )(r) < ∞. Given an LTS, an initial state, and a
set of final states, the reachability problem for LTS is to decide whether a final
state is reachable from the given initial state.



240 S.N. Krishna et al.
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Fig. 2. Example recursive state machine taken from [2]

2.2 Recursive State Machines

Definition 2. A recursive state machine [2] M is a tuple (M1,M2, . . . ,Mk)
of components, where each component Mi = (Ni,ENi,EXi, Bi, Yi, Ai,Xi) for
each 1 ≤ i ≤ k is such that:

– Ni is a finite set of nodes including a distinguished set ENi of entry nodes
and a set EXi of exit nodes such that EXi and ENi are disjoint sets;

– Bi is a finite set of boxes;
– Yi : Bi → {1, 2, . . . , k} is a mapping that assigns every box to a com-

ponent. We associate a set of call ports Call(b) and return ports Ret(b)
to each box b ∈ Bi: Call(b) =

{
(b, en) : en ∈ ENYi(b)

}
and Ret(b) ={

(b, ex) : ex ∈ EXYi(b)

}
. Let Calli = ∪b∈Bi

Call(b) and Reti = ∪b∈Bi
Ret(b)

be the set of call and return ports of component Mi.
We define the set of vertices Qi of component Mi as the union of the set of
nodes, call ports and return ports, i.e. Qi = Ni ∪ Calli ∪ Reti;

– Ai is a finite set of actions; and
– Xi : Qi×Ai → Qi is the transition function with a condition that call ports

and exit nodes do not have any outgoing transitions.

For the sake of simplicity, we assume that the set of boxes B1, . . . , Bk and the
set of nodes N1, N2, . . . , Nk are mutually disjoint. We use symbols N,B,A,Q,X,
etc. to denote the union of the corresponding symbols over all components.

An example of a RSM is shown in Figure 2. An execution of a RSM begins
at the entry node of some component and depending upon the sequence of input
actions the state evolves naturally like a labeled transition system. However,
when the execution reaches an entry port of a box, this box is stored on a stack
of pending calls, and the execution continues naturally from the corresponding
entry node of the component mapped to that box. When an exit node of a
component is encountered, and if the stack of pending calls is empty, then the
run terminates; otherwise, it pops the box from the top of the stack, and jumps to
the exit port of the just popped box corresponding to the just reached exit of the
component. We formalize the semantics of a RSM using a discrete LTS, whose
states are pairs consisting of a sequence of boxes, called the context, mimicking
the stack of pending calls and the current vertex.
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Definition 3 (RSM semantics). Let M = (M1,M2, . . . ,Mk) be an RSM
where the component Mi is (Ni, Eni, Exi, Bi, Yi, Ai,Xi). The semantics of M
is the discrete labelled transition system [[M]] = (SM, AM,XM) where:

– SM ⊆ B∗×Q is the set of states;
– AM = ∪k

i=1Ai is the set of actions;
– XM : SM×AM → SM is the transition relation such that for s = (〈κ〉, q) ∈

SM and a ∈ AM, we have that s′ = XM(s, a) if and only if one of the
following holds:
1. the vertex q is a call port, i.e. q = (b, en) ∈ Call, and s′ = (〈κ, b〉, en);
2. the vertex q is an exit node, i.e. q = ex ∈ EX and s′ = (〈κ′〉, (b, ex))

where (b, ex) ∈ Ret(b) and κ = (κ′, b);
3. the vertex q is any other vertex, and s′=(〈κ〉, q′) and q′ ∈ X(q, a).

Given M and a subset Q′ ⊆ Q of its nodes we define the set [[Q′]]M as the
set {(〈κ〉, v′) : κ ∈ B∗ and v′ ∈ Q′}. We also define the set of terminal config-
urations TermM as the set {(〈ε〉, ex) : ex ∈ EX} with the empty context 〈ε〉.
Given a recursive state machine M, an initial node v, and a set of final vertices
F ⊆ Q the reachability problem on M is defined as the reachability problem on
the LTS [[M]] with the initial state (〈ε〉, v) and final states [[F ]]. We define ter-
mination problem as the reachability of one of the exits with the empty context.
The following is a well known result.

Theorem 4 ([2]). The reachability and the termination problem for recursive
state machines can be solved in polynomial time.

3 Recursive Timed Automata

Recursive timed automata (RTAs) extend classical timed automata (TAs) with
recursion in a similar way RSMs extend LTSs.

3.1 Syntax

Let R be the set of real numbers. Let X be a finite set of real-valued clocks.
A valuation on X is a function ν : X → R. We assume an arbitrary but fixed
ordering on the clocks and write xi for the variable with order i. This allows us
to treat a valuation ν as a point (ν(x1), ν(x2), . . . , ν(xn)) ∈ R

|X |. For a subset
of clocks X ⊆ X and a valuation ν′ ∈ X , we write ν[X:=ν′] for the valuation
where ν[X:=ν′](x) = ν′(x) if x ∈ X, and ν[X:=ν′](x) = ν(x) otherwise. The
valuation 0 ∈ R

|X | is a special valuation such that 0(x) = 0 for all x ∈ X .
We define a constraint over a set X as a subset of R

|X |. We say that a
constraint is rectangular if it is defined as the conjunction of a finite set of
constraints of the form x �� k, where k ∈ Z, x ∈ X , and ��∈ {<,≤,=, >,≥}.
For a constraint G, we write [[G]] for the set of valuations in R

|X | satisfying the
constraint G. We write  ( resp., ⊥) for the special constraint that is true (resp.,
false) in all the valuations, i.e. [[]] = R

|X | (resp., [[⊥]] = ∅). We write rect(X )
for the set of rectangular constraints over X including  and ⊥.
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Definition 5. A recursive timed automaton H = (X , (H1,H2, . . . ,Hk)) is a
pair of set of clocks X and a collection of components (H1,H2, . . . ,Hk) where
every Hi = (Ni,ENi,EXi, Bi, Yi, Ai,Xi, Pi, Inv i, Ei, Ji, Fi) is such that:

– Ni is a finite set of nodes including a distinguished set ENi of entry nodes
and a set EXi of exit nodes such that EXi and ENi are disjoint sets;

– Bi is a finite set of boxes;
– Yi : Bi → {1, 2, . . . , k} is a mapping that assigns every box to a component.

(Call ports Call(b) and return ports Ret(b) of a box b ∈ Bi, and call ports
Calli and return ports Reti of a component Hi are defined as before. We set
Qi = Ni ∪ Calli ∪ Reti and refer to this set as the set of locations of Hi.)

– Ai is a finite set of actions.
– Xi : Qi×Ai → Qi is the transition function with a condition that call ports

and exit nodes do not have any outgoing transitions.
– Pi : Bi → 2X is pass-by-value mapping that assigns every box the set of

clocks that are passed by value to the component mapped to the box; (The
rest of the clocks are assumed to be passed by reference.)

– Inv i : Qi → rect(X ) is the invariant condition;
– Ei : Qi×Ai → rect(X ) is the action enabledness function;
– Ji : Ai → 2X is the variable reset function;

We assume that the sets of boxes, nodes, locations, etc. are mutually disjoint
across components and we write (N,B, Y,Q, P,X, etc.) to denote corresponding
union over all components.

We say that a recursive timed automaton is glitch-free if for every box either
all clocks are passed by value or none is passed by value, i.e. for each b ∈ B
we have that either P (b) = X or P (b) = ∅. Any general RTA with one clock is
trivially glitch-free. We say that a RTA is hierarchical if there exists an ordering
over components s.t. a component never invokes another component of higher
order or same order.

3.2 Semantics

A configuration of an RTA H is a tuple (〈κ〉, q, ν), where κ ∈ (B×R
|X |)∗ is

sequence of pairs of boxes and variable valuations, q ∈ Q is a location and
ν ∈ R

|X | is a variable valuation over X such that ν ∈ Inv(q). The sequence
〈κ〉 ∈ (B×R

|X |)∗ denotes the stack of pending recursive calls and the valuation
of all the variables at the moment that call was made, and we refer to this
sequence as the context of the configuration. Technically, it suffices to store the
valuation of variables passed by value, because other variables retain their value
after returning from a call to a box, but storing all of them simplifies the notation.
We denote the the empty context by 〈ε〉. For any t ∈ R, we let (〈κ〉, q, ν)+t equal
the configuration (〈κ〉, q, ν+t).

Informally, the behavior of an RTA is as follows. In configuration (〈κ〉, q, ν)
time passes before an available action is triggered, after which a discrete transi-
tion occurs. Time passage is available only if the invariant condition Inv(q) is sat-
isfied while time elapses, and an action a can be chosen after time t elapses only if
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it is enabled after time elapse, i.e., if ν+t ∈ E(q, a). If the action a is chosen then
the successor state is (〈κ〉, q′, ν′) where q′ ∈ X(q, a) and ν′ = (ν + t)[J(a) := 0].
Formally, the semantics of an RTA is given by an LTS which has both an uncount-
ably infinite number of states and transitions.

Definition 6 (RTA semantics). Let H = (X , (H1,H2, . . . ,Hk)) be an RTA
where each component is of the form Hi = (Ni,ENi,EXi, Bi, Yi, Ai,Xi, Pi, Inv i,
Ei, Ji, Fi). The semantics of H is a labelled transition system [[H]]=(SH,AH,XH)
where:

– SH⊆(B×R
|X |)∗×Q×R

|X |, the set of states, is s.t. (〈κ〉, q, ν)∈SH if ν∈Inv(q).
– AH = R⊕×A is the set of timed actions, where R⊕ is the set of non-negative

reals;
– XH : SH×AH → SH is the transition function such that for (〈κ〉, q, ν) ∈ SH

and (t, a) ∈ AH, we have (〈κ′〉, q′, ν′) = XH((〈κ〉, q, ν), (t, a)) if and only if
the following condition holds:
1. if the location q is a call port, i.e. q = (b, en) ∈ Call then t = 0, the

context 〈κ′〉 = 〈κ, (b, ν)〉, q′ = en, and ν′ = ν.
2. if the location q is an exit node, i.e. q = ex ∈ Ex, 〈κ〉=〈κ′′, (b, ν′′)〉, and

let (b, ex)∈Ret(b), then t = 0; 〈κ′〉=〈κ′′〉; q′=(b,ex); and ν′=ν[P (b):=ν′′].
3. if location q is any other kind of location, then 〈κ′〉 = 〈κ〉, q′ ∈ X(q, a),

and
(a) ν+t′ ∈ Inv(q) for all t′ ∈ [0, t];
(b) ν+t ∈ E(q, a);
(c) ν′ = (ν + t)[J(a) := 0].

3.3 Reachability and Time-Bounded Reachability Problems

For a subset Q′ ⊆ Q of states of a recursive time automaton H we define the set
[[Q′]]H as the set {(〈κ〉, q, ν) ∈ SH : q ∈ Q′}. We define the terminal configura-
tions as TermH = {(〈ε〉, q, ν) ∈ SH : q ∈ EX}. Given a recursive timed automa-
ton H, an initial node q and valuation ν ∈ R

|X |, and a set of final locations
F ⊆ Q, the reachability problem on H is to decide the existence of a run in the
LTS [[H]] staring from the initial state (〈ε〉, q, ν) to some state in [[F ]]H. As with
RSMs, we also define termination problem as reachability of one of the exits
with the empty context. Hence, given an RTA H and an initial node q and a
valuation ν ∈ R

|X |, the termination problem on H is to decide the existence of
a run in the LTS [[H]] from initial state (〈ε〉, q, ν) to a final state in TermH.

Given a run r = 〈s0, (t1, a1), s2, (t2, a2), . . . , (sn, tn)〉 of an RTA, its time
duration time(r) is defined as

∑n
i=1 ti. Given a recursive timed automaton H,

an initial node q, a bound T ∈ N, and valuation ν ∈ R
|X |, and a set of final

locations F ⊆ Q, the time-bounded reachability problem on H is to decide the
existence of a run r in the LTS [[H]] staring from the initial state (〈ε〉, q, ν) to
some state in [[F ]]H such that time(r) ≤ T . Time-bounded termination problem
is defined in an analogous manner. The following is the key result of the paper
which is proved in the rest of the paper.

Theorem 7. Time-Bounded Reachability problem is undecidable for unrestrict-
ed RTAs with at least 5 clocks.
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4 Undecidability of Time-Bounded Reachability Problem

In this section, we provide a complete proof of Theorem 7 by reducing the halting
problem for two counter machines to the reachability problem in an RTA.

A two-counter machine M is a tuple (L,CTR) where L = {�0, �1, . . . , �n} is
the set of instructions including a distinguished terminal instruction �n called
HALT, and the set CTR = {C,D} of two counters. The instructions L are of
the type:

1. (increment cj) �i : cj := cj + 1; goto �k,
2. (decrement cj) �i : cj := cj − 1; goto �k,
3. (zero-check cj) �i : if (cj > 0) then goto �k else goto �m,

where cj ∈ CTR, �i, �k, �m ∈ L. A configuration of a two-counter machine is
a tuple (�, c, d) where � ∈ L is an instruction, and c, d ∈ N are the values of
counters C and D, resp. A run of a two-counter machine is a (finite or infinite)
sequence of configurations 〈k0, k1, . . .〉 where k0 = (�0, 0, 0) and the relation
between subsequent configurations is governed by transitions between respective
instructions. The halting problem for a two-counter machine asks whether its
unique run ends at the terminal instruction �n. It is well known ([10]) that the
halting problem for two-counter machines is undecidable.

In order to prove the results of Theorem 7, we construct a recursive timed
automaton whose main components simulate various instructions. In these con-
structions the reachability of the exit node of each component corresponding to
an instruction is due to a faithful simulation of various increment, decrement
and zero check instructions of the machine by choosing appropriate delays to
adjust the clocks, to reflect changes in counter values.

We specify a main component for each instruction of the two counter machine.
The entry node and exit node of a main component corresponding to an incre-
ment instruction 〈�i : cj := cj + 1; goto �m〉 are respectively �i and �m. Sim-
ilarly, a main component corresponding to a zero check instruction 〈�i : if
(cj > 0) then goto �m else goto �n〉, has a unique entry node �i, and two exit
nodes corresponding to �m and �n respectively. We get the complete RTA for
the two-counter machine when we connect these main components in the same
sequence as the corresponding machine. We prove that the problem of reaching
a chosen vertex in an RTA within 18 units of total elapsed time is undecidable.
In order to get the undecidability result, we use a reduction from the halting
problem for two counter machines. Our reduction uses an RTA with 5 clocks.

We maintain three sets of clocks. The first set X = {x} encodes correctly
the current value of counter C; the second set Y = {y} encodes correctly the
current value of counter D; while the third set Z = {z1, z2} of 2 clocks helps in
zero-check. An extra clock b is used to enforce urgency in some locations. The
clock b is zero at the entry nodes of all the main components. Let X be the set
of all 5 clocks.

To be precise, on entry into a main component simulating the (k + 1)th
instruction, we have the values of z1, z2 as ν(Z) = 1 − 1

2k
, the value of x as
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ν(x) = 1− 1
2c+k , and the value of y as ν(y) = 1− 1

2d+k , where c, d are the current
values of the counters after simulating the first k instructions. If the (k + 1)th
instruction �k+1 is an increment counter C instruction, then after the simulation
of �k+1, we need ν(Z) = 1 − 1

2k+1 , ν(x) = 1 − 1
2c+k+2 and ν(y) = 1 − 1

2d+k+1 .
Similarly, if �k+1 is a decrement C instruction, then after the simulation of �k+1,
we need ν(Z) = 1− 1

2k+1 , ν(x) = 1− 1
2c+k and ν(y) = 1− 1

2d+k+1 . Likewise, if �k+1

is a zero check instruction, then after the simulation of �k+1, we need ν(Z) =
1− 1

2k+1 , ν(x) = 1− 1
2c+k+1 and ν(y) = 1− 1

2d+k+1 . We show by our construction
that, the time taken to simulate the (k+1)th instruction is < 9

2k
. Thus, the time

taken to simulate the first instruction is < 9, the second instruction is < 9
2 . . . ,

so that the total time taken in simulating the two counter machine is < 18.

Increment Instruction. Let us discuss the case of simulating an increment instruc-
tion for counter C. Assume that this is the (k + 1)th instruction. Figure 3 gives
the figure for incrementing counter C. At the entry node en1 of the component
Inc c, we have ν(x) = 1− 1

2c+k , ν(y) = 1− 1
2d+k and ν(Z) = 1− 1

2k
, and ν(b) = 0.

The component Inc c has three subcomponents sequentially lined up one
after another: Let β = 1

2k
, βc = 1

2c+k , and βd = 1
2d+k .

1. The first subcomponent is Upy
2. If Upy

2 is entered with ν(y) = 1 − βd, then
on exit, we have ν(y) = 1− βd

2 . The values of X,Z are unchanged. Also, the
total time elapsed in Upy

2 is ≤ 5β
2 .

2. The next subcomponent is Upx
4 . If Upx

4 is entered with ν(x) = 1 − βc, then
on exit, we have ν(x) = 1 − βc

4 . The values of Z, Y are unchanged. Also, the
total time elapsed in Upx

4 is ≤ 11β
4 .

3. The next subcomponent is UpZ
2 which updates the value of Z. If UpZ

2 is
entered with ν(Z) = 1 − β, then on exit, we have ν(Z) = 1 − β

2 . The values
of X,Y are unchanged. Also, the total time elapsed in UpZ

2 is ≤ 5β
2 .

4. Thus, at the end of the Inc c, we obtain ν(Z) = 1− 1
2k+1 , ν(x) = 1− 1

2c+k+2 ,
ν(y) = 1− 1

2d+k+1 . Also, the total time elapsed in Inc c is ≤ [52+ 11
4 + 5

2 ]β < 8β.

Consider subcomponent Upy
2 obtained by instantiating a by y and n by 2 in

the Upa
n in the Figure 3. Let us discuss the details of Upy

2, Upx
4 and UpZ

2 have
similar functionality.

1. On entry into the first subcomponent F4:D, we have ν(Z) = 1−β, ν(b) = 0,
ν(x) = 1−βc, ν(y) = 1−βd. D is called, and clock z2 is passed by reference
and the rest by value. A non-deterministic amount of time t1 elapses at the
entry node en3 of D. At the return port of F4:D, we have z2 added by t1.

2. We are then at the entry node of the subcomponent F5:Cy=
z2

with values
ν(z2) = 1 − β + t1, and ν(z1) = 1 − β, ν(x) = 1 − βc, ν(y) = 1 − βd and
ν(b) = 0. Cy=

z2
is called by passing all clocks by value. The subcomponent

Cy=
z2

ensures that t1 = β − βd.
3. To ensure t1 = β −βd, at the entry node en4 of Cy=

z2
, a time βd elapses. This

makes y = 1. If z2 must be 1, then we need 1 − β + t1 + βd = 1, or the time
t1 elapsed is β − βd. That is, Cy=

z2
ensures that z2 has grown to be equal
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Inc c

en1

[b=0]

F1:Upy
2

{y}
F2:Upx

4

{x}
F3:UpZ

2

{z1, z2}
ex1

[b=0]

D

en3 ex3

Ca=
z2

en4 ex4
a=1

z2=1

Upa
n:a ∈ {x, y} ;n ∈ {2, 4}

en2

[b=0]

F4:D

{z2}
F5:C

a=
z2

X
F6:D

{a}
F7:Chka

n

X
ex2

[b=0]

Chka
2

en7

[b=0]

F8:M

{z2}
F9:M

{z2}
ex7

[b=0]

z2=1

M

en6 ex6
a=1

UpZ
2 :Z= {z1, z2}

en5

[b=0]

F10:D

{z1}
F11:Chkz1

2

X
F12:D

{z2}
F13:C

z1=
z2

X
ex5

[b=0]

Fig. 3. TB Term in RTA: Increment c. Note that a ∈ {x, y}. Cz1=
z2 is obtained by

instantiating a = z1 in Ca=
z2 . The component Chka

4 is similar to Chka
2 . It has 4 calls

to M inside it each time passing only z2 by reference.

to y by calling F4:D. At the return port of F5:Cy=
z2

, we next enter the call
port of F6:D with ν(z2) = ν(y) = 1 − βd and ν(z1) = 1 − β. D is called by
passing y by reference, and all others by value. A non-deterministic amount
of time t2 is elapsed in D. At the return port of F6:D, we get ν(z1) = 1 − β,
ν(z2) = 1 − βd, and ν(y) = 1 − βd + t2.

4. At the call port of F7:Chky
2, we have the same values, since b = 0 has to be

satisfied at the exit node ex7 of Chky
2. That is, at the call port of F7:Chky

2,
we have ν(z1) = 1−β, ν(z2) = 1−βd, and ν(y) = 1−βd + t2. F7 calls Chky

2,
and passes all clocks by value. Chky

2 checks that t2 = βd

2 .
5. At the entry port en7 of Chky

2, no time elapses. Chky
2 sequentially calls M

twice, each time passing z2 by reference, and all others by value. In the first
invocation of M , we want y to reach 1; thus a time βd − t2 is spent at en6.
This makes z2 = 1 − βd + βd − t2 = 1 − t2. After the second invocation, we
obtain z2 = 1 + βd − 2t2 at the return port of F9:M . No time can elapse at
the return port of F9:M ; for z2 to be 1, we need t2 = βd

2 .
6. No time elapses in the return port of F7:Chky

2, and we are at the exit node
ex2 of Upy

2. Now, we have ν(z1) = 1 − β, ν(z2) = 1 − βd and ν(y) =
1 − βd + t2 = 1 − βd

2 .
7. The time elapsed in Upy

2 is the sum of t1, t2 and the times elapsed in Cy=
z2

and Chky
2. That is, (β − βd) + βd

2 + βd + 2(βd − t2) =β + 3βd

2 ≤ 5β
2 since

βd ≤ β.

At the return port of F1 : Upy
2, we thus have ν(Z) = 1 − β (ν(z) restored to

1 − β as it was passed by value to Upy
2), ν(x) = 1 − βc, and ν(y) = 1 − βd

2 . No
time elapses here, and we are at the call port of F2 : Upx

4 . The component Chkx
4

is similar to Chky
2. It has 4 calls to M inside it, each passing respectively, z2

by reference to M and x by value. An analysis similar to the above gives that
the total time elapsed in Upx

4 is ≤ 11β
4 , and at the return port of F2 : Upx

4 ,
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ZeroCheck C

en1

[b=0]

E1:Upy
2

{y}
E2:Upx

2

{x}
E3:UpZ

2

{z1, z2}
E4:ZC

X

ex1

[b=0]

ex′
1

[b=0]

ZC

en2

ex2

[z1=1]

ex′
2

[z1=1]

x=1

x�=1

Fig. 4. Unrestricted RTA with 5 clocks: Zero Check if (C = 0) then reaches exit ex1

else reaches ex′
1. Note that S = X − S. Upy

2 , Upx
2 and UpZ

2 are in Figure 3.

we get ν(x) = 1 − βc

4 , ν(y) = 1 − βd

2 and ν(Z) = 1 − β. This is followed by
entering F3 : UpZ

2 , with these values. At the return port of F3 : UpZ
2 , we obtain

ν(x) = 1 − βc

4 , ν(y) = 1 − βd

2 and ν(Z) = 1 − β
2 , with the total time elapsed in

UpZ
2 being ≤ 5β

2 .
From the explanations above, the following propositions can be proved. The

same arguments given above will apply to prove this.

Proposition 8. For any box B and context 〈κ〉, and ν(Z) = 1−β, we have that
(〈κ〉, (B, en), (ν(x), ν(y), 1 − β, ν(b))) ∗−→

UpZ2

(〈κ〉, (B, ex), (ν(x), ν(y), 1 − β
2 , ν(b))).

Proposition 9. For any box B and context 〈κ〉, and ν(x) = 1−βc, we have that
(〈κ〉,(B,en),(1 − βc,ν(y),ν(Z),ν(b))) ∗−→

Upx4
(〈κ〉,(B,ex),(1 − βc

4 ,ν(y),ν(Z),ν(b))).

Proposition 10. For any box B and context 〈κ〉, and ν(y) = 1−βd, we have
(〈κ〉,(B, en),(ν(x),1−βd,ν(Z),ν(b))) ∗−→

Upy2

(〈κ〉,(B,ex),(ν(x),1−βd

2 ,ν(Z),ν(b))).

Decrement Instruction. Assume that the (k + 1)st instruction is decrementing
counter C. Then we construct the main component Dec c similar to the com-
ponent Inc c above. The main component Dec c will have the subcomponents
Upy

2 and UpZ
2 lined up sequentially. There is no need for any Upx

n subcomponent
here, since the value of x stays unchanged on decrementing c. The total time
spent in Dec c is also, less than 8β.

Zero Check Instruction. The main component for checking if counter C = 0 is
given in Figure 4. It follows the same pattern as Inc c. Components Upy

2, Upx
2

and UpZ
2 update the clock values to account for end of the k + 1 instruction :

changing the value of x from 1 − βc to 1 − βc

2 , of y from 1 − βd to 1 − βd

2 and
that of Z from 1 − β to 1 − β

2 . Additionally, the final component ZC, to which
all clocks are passed by value, checks if x = z by checking z1 = 1 ∧ x = 1 which
means c = 0 else z1 = 1∧x1 �= 1 meaning c �= 0. Time elapsed in ZC component
is β

2 (to make z1 = 1). Thus, total time spent in ZeroCheck c is < 9β.
Note that the components for incrementing, decrementing and zero check of

counter D can be obtained in a manner similar to the above. The proof that
we reach the vertex Halt of the RTA iff the two counter machine halts follows:
Clearly, the exit node of each main component is reached iff the corresponding
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instruction is simulated correctly. Thus, if the counter machine halts, we will
indeed reach the exit node of the main component corresponding to the last
instruction. However, if the machine does not halt, then we keep going between
the various main components simulating each instruction, and never reach Halt.
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Abstract. Automata networks have been successfully used as abstract
modeling schemes in many different fields. This paper deals with the
observability of automata networks, which describes the ability to
uniquely infer the network’s initial configuration by measuring its output
sequence. Simple necessary and sufficient conditions for observability are
given. The results employ techniques from symbolic computation and
can be easily implemented within the computer algebra environments.
Two examples are worked out to illustrate the application of the results.

Keywords: Automata networks · Computational algebra · Discrete
dynamical systems · Observability

1 Introduction

Automata networks are discrete dynamical systems originally introduced by
McCulloch, Pitts, and von Neumann [13,14]. Roughly speaking, an automata
network is defined by a graph with each vertex taking states in a finite set. The
vertex variables can change their states at discrete time steps according to some
given transition rules that take into account only the states of their neighbor-
hoods in the graph. The configuration of the network is completely specified by
the states of the variables at each vertex. In fact, automata networks provide
a nice framework for modeling and analyzing various phenomena in areas as
diverse as physics, biology, and computer science (see, e.g., [1,4]).

Over the years, much effort has been devoted to the study of automata net-
works. For example, Saito and Nishio [19] considered the structural equivalence
relation induced by the structure of a graph and the behavioral equivalence rela-
tion induced by the behavior of each vertex variable, and they further discussed
the relationships between these equivalence relations. Paulevé et al. [15] consid-
ered the reachability of an automata network and proposed an algorithm for iden-
tifying sets of state variables whose activity is necessary for reachability. In [3], the
problem of modeling asynchronous discrete event systems by a network of input-
output automata was studied. A comparison regarding automata networks and
input-output automata networks was made in [9]. Finite automata systems as
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parallel communicating automata networks were investigated in [10–12]. Nega-
tive circuits and sustained oscillations in asynchronous automata networks were
analyzed in [17].

Quantitative descriptions of practical systems modeled using automata
networks are inherently limited by our ability to estimate the networks’ con-
figurations from experimentally available outputs. Although simultaneous mea-
surement of all state variables furnishes a complete description of a network’s
configuration, in practice the measurement is often limited to a subset or a
function of state variables. It is known that observability of automata has been
studied for the state estimation or identification [16,23]. Similarly, observability
of an automata network also allows us to uniquely infer the network’s initial
configuration from its outputs. However, to our knowledge, very few works have
been done on this topic.

In this paper,we consider the observability of automata networks.Themethods
to check the observability of automata given in [16,23] are not efficient in automata
network situations, though a brute-force enumeration can be certainly carried out
to test the observability for a small-size automata network. However, for a large-
scale network, brute-force search becomes unfeasible since the number of network
configurations grows exponentially with the number of vertices of the graph. For
example, in a model defined on a graph consisting of 100 vertices with each vertex
taking 3 possible states, there are a total of 3100 ≈ 5.2×1047 possible network con-
figurations. Even if a fast computer could check 1 trillion configurations per second,
it would still take octillions of years to test the complete space of network configu-
rations. We therefore need other methods to replace model simulation. In this con-
text, the purpose of this paper is to use a symbolic computation approach, which
draws from the rich theory of computational algebra, to analyze the observability
of automata networks (see Appendix A for some definitions and properties of com-
mutative algebra and finite field algebra). The results obtained provide necessary
and sufficient conditions for observability that can be easily implemented in com-
puter algebra systems, and are thus believed to scale well to some large automata
networks.

The remainder of this paper is organized as follows. Section 2 gives the defi-
nition of an automata network and describes the problem formulation. Section 3
analyzes the observability of automata networks and derives the main results. Two
examples are treated in Section 4, and a brief conclusion is drawn in Section 5.

2 Background andProblemFormulation

In this section, we provide the research background and formulate our problem.

2.1 Automata Networks

We first recall that a (finite) directed graph G = (V,E) is a pair consisting of sets
of vertices V = {1, 2, . . . , n} and edges E ⊂ V × V . The vertex i is said to be a
neighbor of j if there is an edge from i to j, that is, (i, j) ∈ E. The neighborhood of
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j, denoted Nj , is the set of all neighbors of j. Given a directed graph, we can define
an automata network by allocating a finite state automaton (also called a cell) to
each vertex. More precisely, an automata network is a quintuple

A = (G, {Xi}n
i=1, Y, {fi}n

i=1, h), (1)

where
− G = (V = {1, 2, . . . , n}, E) is a directed graph,
− Xi is the finite set of states for the automaton placed at the vertex i,
− Y =

∏q
λ=1 Yλ with each Yλ finite is the output set,

− fi :
∏

j∈Ni
Xj → Xi is the local transition function associated to the vertex i,

− h :
∏n

i=1 Xi → Y is the output map.

Let X =
∏n

i=1 Xi. Without loss of generality it can be assumed that

Xi = {0, 1, . . . ,mi}, i = 1, 2, . . . , n,

Yλ = {0, 1, . . . , lλ}, λ = 1, 2, . . . , q,

and that each fi is defined on X since the graph is finite. An element x =
(x1, x2, . . . , xn) of X is called a configuration of A . The global transition function
of A , which transforms a configuration into another one, defines the dynamics of
the network, and is constructedwith the local transition functions {fi}n

i=1 andwith
some kind of updating scheme. The updating scheme of an automata network can
take different forms, among which the two most common ones are the synchronous
(or parallel) and the sequential updating schemes [4].

In the synchronous scheme, the states of all automata in the network A
are updated at the same time. So the global transition function of A is F =
(f1, f2, . . . , fn), and the corresponding dynamics of A is described by

x(t + 1) = F (x(t)),
y(t) = h(x(t)), t = 0, 1, 2, . . . , (2)

where x(t) and y(t) denote the configuration and the output ofA at time t, taking
values in X and Y , respectively.

In a sequential updating scheme, the automata in the network are assumed to
have a prescribed ordering (given by a relation denoted by <) and update one by
one sequentially. That is, starting from an initial configuration, the first automa-
ton updates first, then the second automaton updates, taking account of the effects
of the changes in the first automaton, and so on. For instance, if we assume that

the automaton i < the automaton j ⇔ i < j,

then the dynamics of the sequential iteration is

x1(t + 1) = f1(x1(t), x2(t), . . . , xn(t)),
x2(t + 1) = f2(x1(t + 1), x2(t), . . . , xn(t)), (3)

...
xn(t + 1) = fn(x1(t + 1), x2(t + 1), . . . , xn−1(t + 1), xn(t)), t = 0, 1, 2, . . . ,

where xi(t) denotes the state of the automaton i at time t.
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Remark 1. Given local transition functions f1, . . . , fn, there aren! possible sequen-
tial modes of operation for A , corresponding to the n! permutations of the set
V = {1, 2, . . . , n}. It is a known fact that each sequential mode of operation is iden-
tical to a synchronous mode of operation [18]. For example, for every 1 ≤ i ≤ n,
let Fi be the map X → X, given by

x = (x1, . . . , xn) �→ Fi(x) = (x1, . . . , fi(x), . . . , xn),

and put G = Fn ◦ · · · ◦ F2 ◦ F1. Then the sequential iteration (3) can be written as

x(t + 1) = G(x(t)), t = 0, 1, 2, . . . ,

which means that the sequential operation mode given by (3) is identical to the
synchronous operation mode defined by G.

2.2 Problem Formulation

Consider an automata network A of the form (1). For an initial configuration
x(0) ∈ X, let y(t;x(0)) ∈ Y denote the output of A at the time step t. We say
that two different configurations ξ, η ∈ X are indistinguishable if y(t; ξ) = y(t; η)
for all t ≥ 0. In this case, it is not possible to uniquely infer the complete initial
configuration of A by observing the output sequence.

Definition 1. The automata networkA is said to be observable if any two differ-
ent configurations ξ, η ∈ X are distinguishable.

In other words, observability means that the map sending each initial configu-
ration to its output sequence is injective.

In this paper, we study the observability for the automata networkA . The aim
is to find necessary and sufficient conditions to analyze the question whether or
not an automata network is observable. We will approach this question by using
techniques from computational algebra (see Appendix A for notation and termi-
nology). It is clear that, from a theoretical point of view, we only need to consider
automata networks that operate in synchronous modes.

3 MainResults

Let A be an automata network of the form (1). In the sequel, we assume that A
operates in the synchronous mode with dynamics given by (2). To analyze observ-
ability, it is useful to impose algebraic structures on the sets X and Y . Choose a
prime integer p such that

p ≥ max{m1 + 1, . . . ,mn + 1, l1 + 1, . . . , lq + 1},

and let Fp = {0, 1, . . . , p − 1} be the prime field with p elements. Then we can
consider that X ⊂ F

n
p and Y ⊂ F

q
p.
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As a consequence, the coordinate functions of F and h can be represented
by polynomials over Fp. That is, there exist polynomials f̃1, . . . , f̃n, h̃1, . . . , h̃q ∈
Fp[x1, . . . , xn] such that

F (a1, . . . , an) = (f̃1(a1, . . . , an), . . . , f̃n(a1, . . . , an)),

h(a1, . . . , an) = (h̃1(a1, . . . , an), . . . , h̃q(a1, . . . , an))

for all (a1, . . . , an) ∈ X. It is worth noting that these polynomial representatives
may not be unique. For example, the polynomials

gi(x1, . . . , xn) =
∑

(a1,...,an)∈X

fi(a1, . . . , an)(1−(x1−a1)p−1) · · · (1−(xn−an)p−1)

(4)
and

g′
i(x1, . . . , xn) =

∑
(b1,...,bn)∈Fn

p

fi(min{b1,m1}, . . . ,min{bn,mn})

× (1 − (x1 − b1)p−1) · · · (1 − (xn − bn)p−1) (5)

define the same local transition function fi on X. Put f = (f̃1, . . . , f̃n) ∈
(Fp[x1, . . . , xn])n. We say that f is a proper representative for F if f(a1, . . . , an) ∈
X for all (a1, . . . , an) ∈ F

n
p . Note that (g1, . . . , gn) and (g′

1, . . . , g
′
n), with gi and

g′
i given by (4) and (5), respectively, are both proper representatives for F . Thus,

every F : X → X can be expressed by a proper representative.
Let f (k) denote the composition of f with itself k times. That is f (k) =

f ◦ f ◦ · · · ◦ f (k times), where by convention f (0) = (x1, x2, . . . , xn). We define a
sequence of ideals in Fp[x1, . . . , xn, z1, . . . , zn] recursively as follows:

J0 = 〈xi(xi − 1) · · · (xi − mi) : 1 ≤ i ≤ n〉 + 〈zi(zi − 1) · · · (zi − mi) : 1 ≤ i ≤ n〉
+ 〈h̃j(x1, . . . , xn) − h̃j(z1, . . . , zn) : 1 ≤ j ≤ q〉,

Jk+1 = Jk + 〈h̃j(f (k+1)(x1, . . . , xn)) − h̃j(f (k+1)(z1, . . . , zn)) : 1 ≤ j ≤ q〉,
k = 0, 1, 2, . . . .

Observe that for all k ≥ 0 we have Jk ⊂ Jk+1, and so

J0 ⊂ J1 ⊂ J2 ⊂ · · ·

forms an ascending chain of ideals. Since the ringFp[x1, . . . , xn, z1, . . . , zn] satisfies
the ascending chain condition (see Appendix A), there exists an integer N ≥ 0 such
that

JN = JN+1 = JN+2 = · · · .

Write J = JN . The following theorem tells us that the ideal J characterizes the
observability of the automata network A .
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Theorem 1. The automata network A is observable if and only if

V (J) = {(ζ, ζ) : ζ ∈ X}, (6)

where V (J) is the affine variety defined by J (see Appendix A for the definition of
an affine variety).

Proof. (Necessity). It is clear thatV (J) ⊃ {(ζ, ζ) : ζ ∈ X}. To establish the reverse
inclusion, suppose, on the contrary, that there is (ξ, η) ∈ V (J) which is not in
{(ζ, ζ) : ζ ∈ X}. Write ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn). Since J0 ⊂ J , it fol-
lows from Lemma A1 that

V (J) ⊂ V (J0) = V (〈xi(xi − 1) · · · (xi − mi) : 1 ≤ i ≤ n〉)
∩ V (〈zi(zi − 1) · · · (zi − mi) : 1 ≤ i ≤ n〉)
∩ V (〈h̃j(x1, . . . , xn) − h̃j(z1, . . . , zn) : 1 ≤ j ≤ q〉).

Hence

ξi(ξi − 1) · · · (ξi − mi) = 0, ηi(ηi − 1) · · · (ηi − mi) = 0, i = 1, 2, . . . , n,

so that ξi, ηi ∈ Xi for each i. Thus, ξ, η ∈ X and ξ �= η.
Since A is observable, there exists an integer k ≥ 0 such that

h̃j(f (k)(ξ1, . . . , ξn)) �= h̃j(f (k)(η1, . . . , ηn))

for some 1 ≤ j ≤ q. Hence (ξ, η) /∈ V (Jk). However, since Jk ⊂ J , it follows that
(ξ, η) ∈ V (J) ⊂ V (Jk), which is a contradiction. Therefore, V (J) ⊂ {(ζ, ζ) : ζ ∈
X}.

(Sufficiency). Suppose that there exist distinct configurations ξ, η ∈ X which
are indistinguishable. Then for j = 1, 2, . . . , q, k = 0, 1, 2, . . ., we have

h̃j(f (k)(ξ)) = h̃j(f (k)(η)).

Hence

(ξ, η) ∈ V (〈h̃j(f (k)(x1, . . . , xn)) − h̃j(f (k)(z1, . . . , zn)) : 1 ≤ j ≤ q〉),
k = 0, 1, 2, . . . .

It is clear that

(ξ, η) ∈ V (〈xi(xi − 1) · · · (xi − mi) : 1 ≤ i ≤ n〉)
∩ V (〈zi(zi − 1) · · · (zi − mi) : 1 ≤ i ≤ n〉).

Then a straightforward induction on k shows that (ξ, η) ∈ V (Jk) for all k ≥ 0, so
that (ξ, η) ∈ V (J) = {(ζ, ζ) : ζ ∈ X}. This contradiction proves that every pair of
distinct configurations of A are distinguishable. ��
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Theorem 1 asserts that the observability of the automata network A can be
judged by computing the variety V (J). Note that the ideal J satisfies

〈xp
1 − x1, . . . , x

p
n − xn, zp

1 − z1, . . . , z
p
n − zn〉 ⊂ J, (7)

since in the polynomial ring Fp[x1, . . . , xn, z1, . . . , zn] one has xp
i − xi = xi(xi −

1) · · · (xi − p + 1), and zp
i − zi = zi(zi − 1) · · · (zi − p + 1) for all 1 ≤ i ≤ n. It is

easily verified that if J = 〈x1−z1, . . . , xn−zn, z1(z1−1) · · · (z1−m1), . . . , zn(zn−
1) · · · (zn−mn)〉, then (6) and (7) hold. In fact, this is the unique ideal inFp[x1, . . . ,
xn, z1, . . . , zn] that satisfies (6) and (7), as the next proposition shows.

Proposition 1. If J ⊂ Fp[x1, . . . , xn, z1, . . . , zn] is an ideal such that (6) and (7)
hold, then

J = 〈x1 − z1, . . . , xn − zn, z1(z1 − 1) · · · (z1 − m1), . . . , zn(zn − 1) · · · (zn − mn)〉.
Proof. See Appendix B. ��

As an immediate consequence of Proposition 1, we can deduce the following
simpler criterion for observability.

Theorem 2. The automata network A is observable if and only if

J = 〈x1−z1, . . . , xn−zn, z1(z1−1) · · · (z1−m1), . . . , zn(zn−1) · · · (zn−mn)〉. (8)

Remark 2. In [5–7], similar algebraic frameworks were used to address the observ-
ability and local observability of polynomial systems overR. There, the results are
described in terms of certain ideals and the corresponding affine varieties. In con-
trast, by exploiting the structure of finite fields, we show that for an automata net-
work, the observability can be checked directly using the ideal J , thereby saving
the computation of the variety V (J).

So far we have seen that the ideals Jk play a crucial role in deciding whether or
not an automata network is observable. Our next result provides a more convenient
way for calculating Jk. (Note that for each integer k ≥ 0 the ideal Jk is finitely
generated; see Appendix A.)

Proposition 2. Suppose that f = (f̃1, . . . , f̃n) is proper. Let k ≥ 0 be an integer,
and let Jk = 〈gk1, . . . , gklk〉 for some gk1, . . . , gklk ∈ Fp[x1, . . . , xn, z1, . . . , zn]. Let
A(x1, . . . , xn, z1, . . . , zn) = (f(x1, . . . , xn), f(z1, . . . , zn)). Then

Jk+1 = J0 + 〈gk1 ◦ A, . . . , gklk ◦ A〉.
Proof. For simplicity of notation, we will write f(x1, . . . , xn) and f(z1, . . . , zn) as
f(x) and f(z), respectively.

We proceed by induction on k. For k = 0, we have

〈g01 ◦ A, . . . , g0l0 ◦ A〉 = 〈f̃i(x)(f̃i(x) − 1) · · · (f̃i(x) − mi) : 1 ≤ i ≤ n〉
+ 〈f̃i(z)(f̃i(z) − 1) · · · (f̃i(z) − mi) : 1 ≤ i ≤ n〉
+ 〈h̃j(f(x)) − h̃j(f(z)) : 1 ≤ j ≤ q〉.
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Since f is proper, it follows that

f̃i(a1, . . . , an)(f̃i(a1, . . . , an) − 1) · · · (f̃i(a1, . . . , an) − mi) = 0

for all (a1, . . . , an) ∈ F
n
p and for all 1 ≤ i ≤ n. By Lemma A2,

f̃i(x)(f̃i(x) − 1) · · · (f̃i(x) − mi) ∈ 〈xp
1 − x1, . . . , x

p
n − xn〉 ⊂ J0,

f̃i(z)(f̃i(z) − 1) · · · (f̃i(z) − mi) ∈ 〈zp
1 − z1, . . . , z

p
n − zn〉 ⊂ J0,

i = 1, 2, . . . , n.

Hence

J0 + 〈g01 ◦ A, . . . , g0l0 ◦ A〉 = J0 + 〈h̃j(f(x)) − h̃j(f(z)) : 1 ≤ j ≤ q〉 = J1.

Now we assume that k ≥ 1 and that the statement is true for k − 1. Since

Jk = 〈gk−1 1, . . . , gk−1 lk−1〉 + 〈h̃j(f (k)(x)) − h̃j(f (k)(z)) : 1 ≤ j ≤ q〉,
we have

〈gk 1 ◦ A, . . . , gk lk ◦ A〉 = 〈gk−1 1 ◦ A, . . . , gk−1 lk−1 ◦ A〉
+ 〈h̃j(f (k+1)(x)) − h̃j(f (k+1)(z)) : 1 ≤ j ≤ q〉.

Then it follows from the induction hypothesis that

J0 + 〈gk1 ◦ A, . . . , gklk ◦ A〉 = Jk + 〈h̃j(f (k+1)(x)) − h̃j(f (k+1)(z)) : 1 ≤ j ≤ q〉
= Jk+1.

This completes the proof of the proposition. ��
Proposition 2 also has the following important consequence for determining

the ideal J .

Proposition 3. Suppose that f = (f̃1, . . . , f̃n) is proper. If Jk+1 = Jk for some
k ≥ 0, then J = Jk.

Proof. It suffices to show that Jk+2 = Jk+1. Suppose that Jk+1 = Jk = 〈g1, . . . ,
gl〉 for some g1, . . . , gl ∈ Fp[x1, . . . , xn, z1, . . . , zn]. Then Proposition 2 shows that
Jk+2 = J0 + 〈g1 ◦ A, . . . , gl ◦ A〉 = Jk+1. ��
Remark 3. Note that in order to determine J and to check whether (8) is satisfied,
it is required to decide whether or not two sets of polynomials generate the same
ideal. This problem can be solved by employing an ideal equality algorithm [2]:
simply fix a monomial order and compute the reduced Gröbner bases for the ide-
als. Then the ideals are equal if and only if the reduced Gröbner bases are the same.
The key property used in the algorithm is that for a given monomial order, every
nonzero polynomial ideal possesses a unique reduced Gröbner basis. Many com-
puter algebra systems such as Maple and Mathematica have a built-in command
for computing a Gröbner basis whose elements are constant multiples of the ele-
ments in a reduced Gröbner basis. So the observability condition presented here is
easily programmable within the computer algebra environments.
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Remark 4. In most cases, polynomial algebra computations do not depend so
strongly on the size or complexity of a model [21]. Thus, in practice, it is reasonable
to believe that our method can scale gracefully even to some large-scale automata
networks.

4 Examples

In this section, we give examples for illustration.

Example 1. Let G be the directed graph on Z100, the set of integers modulo 100,
with the neighborhood of the vertex i given by {i − 1, i, i + 1} (modulo 100). Let
A be an automata network defined on G, where each automaton may take on the
three possible states 0, 1, or 2. The local transition function associated to the vertex
i is

fi(xi−1, xi, xi+1) = x2
i − xi−1 + xi+1 (modulo 3).

(We interpret the subscripts modulo 100 here and in the remaining part of the
example.) We assume that the network operates in the synchronous mode.

Consider now an observability problem for the automata network A . More
specifically, we assume that we can monitor a selected subset of automata, which
we call sensors, and we are interested in determining the smallest number of sensors
from whose measurements the automata network is observable. In other words,
observing these sensors allows to determine the network’s complete initial con-
figuration. Notice that if A is observable (resp., not observable) by monitoring
the sensors xi1 , xi2 , . . . , xis , then it is also observable (resp., not observable) when
monitoring xi1+k, xi2+k, . . . , xis+k, where 1 ≤ k ≤ 99.

It is trivial to see that observability holds when taking all automata as sensors.
As a next possible step, we consider to monitor x0, x2, x4, . . . , x98, and use the cri-
terion developed above to check the observability of A . The result shows that the
corresponding automata network is not observable. So in particular we derive that
(i) any sensor set consisting of a single automaton is not sufficient for observability,
and (ii) for each 0 ≤ i ≤ 99 and each 1 ≤ k ≤ 49, the sensor set {xi, xi+2k} does
not guarantee observability.Wenowaddanother automaton, for examplex1, to the
sensor set {x0, x2, x4, . . . , x98} and then check the observability. The result gives
that the network is observable. This motivates us to choose to monitor {x0, x1, x2}
or {x0, x1}. As a consequence, we find that observability holds for both of these
choices. Thus, one needs at least two sensors to observe A . For every 0 ≤ i ≤ 99,
the sensors {xi, xi+1} yield an observable network.

Furthermore, it is easily checked thatwe cannot obtain observabilitywhenmon-
itoring x0, x3, x5, . . . , x97. This implies in particular that sensor sets of the form
{xi, xi+2k+1} with 0 ≤ i ≤ 99 and 1 ≤ k ≤ 48 cannot guarantee observability,
so that {x0, x1}, {x1, x2}, . . . , {x99, x0} are exactly all the sensor sets consisting of
two automata that ensure observability. ��
Example 2. In this example, we apply the methodology of this paper to an
automata network that attempts to model a real genetic system. The network we
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consider is a discrete model for lactose metabolism in Escherichia coli [20]. The
global transition function of the network is F = (f1, . . . , f9) : X → X, where
X = {0, 1}×{0, 1}×{0, 1}×{0, 1}×{0, 1, 2}×{0, 1, 2}×{0, 1, 2}×{0, 1}×{0, 1, 2}.
The model is represented in polynomial form (modulo 3) as:

f1 = −x2
4x

2
5 + x2

4,

f2 = x2
1,

f3 = x2
1,

f4 = −x2
8 + 1,

f5 = x2
6 − 1,

f6 = −x2
3x

2
7 + x2

3x7 + x2
7,

f7 = −x2
2x

2
8x

2
9 − x2

2x
2
8x9 + x2x

2
8x9 + x2

2x
2
9 + x2

8x
2
9 + x2

2x9 − x2
8x9

− x2x9 − x2
9 + x9,

f8 = x8,

f9 = x9.

Here x1, x2, x3, x4, x5, x6, x7, x8, x9 denote mRNA, permease, β-galactosidase,
CAP, the repressor protein, allolactose, intracellular lactose, glucose, and extracel-
lular lactose, respectively. We refer the interested reader to [20] and [22] for more
biological background of the model.

In order to identify the minimum set of sensors that ensures observability, we
take 8 out of the 9 nodes as sensors (there are 9 possible combinations), and test
each system’s observability. For example, consider the case where the sensor set
includes all the nodes except for x1. It is easy to verify that the system is observ-
able, and so x1 is not necessary for observability. Proceeding in this way, we can
conclude that observability holds only for a unique choice of 8 sensor nodes, namely
the aforementioned sensor set consisting of all the nodes except for x1. This indi-
cates in particular that we cannot uncover the system’s initial state by measuring
less than 8 sensor nodes. ��

5 Conclusion

In many practical systems modeled using automata networks, experimental access
is usually limited to a subset or a function of state variables. Hence, one needs to
infer network configurations from experimentally accessible outputs. In this paper,
we have considered the problem of uniquely determining the initial configuration of
an automata network given an output sequence. The discussion is based on the idea
of representing the transition functions in polynomial form. We have thus avail-
able to us the well-developed theory of computational algebra, with a wide variety
of implemented procedures. Necessary and sufficient conditions for observability
havebeenderivedbyusing thesepowerful tools.Given the fundamental role observ-
ability plays, the results provide avenues to systematically explore the dynamical
behaviors of automata networks.



On Observability of Automata Networks via Computational Algebra 259

A Notation andMathematical Preliminaries

This appendix briefly summarizes some notation and properties of commutative
algebra and finite field algebra used in the paper. Further details can be found in
standard texts, such as [2] and [8].

Let p be a prime integer. The ring of integers modulo p forms a field with p
elements and is denoted by Fp. The ring of polynomials in x1, . . . , xn over Fp is
denoted by Fp[x1, . . . , xn]. Let I ⊂ Fp[x1, . . . , xn] be an ideal. The affine variety
defined by I, denoted V (I), is the set

{(a1, . . . , an) ∈ F
n
p : f(a1, . . . , an) = 0 for all f ∈ I}.

Given an affine variety V ⊂ F
n
p , we define by I(V ) the set

{f ∈ Fp[x1, . . . , xn] : f(a1, . . . an) = 0 for all (a1, . . . , an) ∈ V }.

Note that I(V ) is actually an ideal in Fp[x1, . . . , xn], which is called the ideal of V .
Let f1, . . . , fs be polynomials in Fp[x1, . . . , xn]. Denote by 〈f1, . . . , fs〉 the set{ ∑s
i=1 hifi : h1, . . . , hs ∈ Fp[x1, . . . , xn]

}
. Then 〈f1, . . . , fs〉 is an ideal of Fp[x1,

. . . , xn]. We call 〈f1, . . . , fs〉 the ideal generated by f1, . . . , fs. It follows from the
Hilbert Basis Theorem that every ideal I ⊂ Fp[x1, . . . , xn] is finitely generated.
That is, there exist f1, . . . , fs ∈ Fp[x1, . . . , xn] such that I = 〈f1, . . . , fs〉. This
property is equivalent to the statement that Fp[x1, . . . , xn] satisfies the ascend-
ing chain condition. That is, for every chain I1 ⊂ I2 ⊂ I3 ⊂ · · · of ideals of
Fp[x1, . . . , xn], there is an integer N such that IN = IN+1 = IN+2 = · · · .

Let I and J be ideals in Fp[x1, . . . , xn]. The sum of I and J , denoted I + J , is
the set {f + g : f ∈ I, g ∈ J}. Note that I + J is also an ideal in Fp[x1, . . . , xn].

The following technical lemmas are used in some of our proofs.

Lemma A1 ([2]). Let I and J be ideals in Fp[x1, . . . , xn]. Then

(a) I ⊂ J ⇒ V (J) ⊂ V (I);
(b) V (I + J) = V (I) ∩ V (J);
(c) if I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gr〉, then I + J = 〈f1, . . . , fs, g1, . . . , gr〉.
Lemma A2 ([8]).For f, g ∈ Fp[x1, . . . , xn] we have f(a1, . . . , an) = g(a1, . . . , an)
for all (a1, . . . , an) ∈ F

n
p if and only if f − g ∈ 〈xp

1 − x1, . . . , x
p
n − xn〉.

B Proof of Proposition 1

Put

J̃ = 〈x1 − z1, . . . , xn − zn, z1(z1 − 1) · · · (z1 − m1), . . . , zn(zn − 1) · · · (zn − mn)〉.
To prove Proposition 1, we need the following lemmas.

Lemma B1. Let r ∈ Fp[z1, . . . , zn] be a polynomial of degree ≤ mi in zi. If
r(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ ∏n

i=1 Xi, then r is the zero polynomial.
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Proof. We shall use induction on the number of indeterminates n. The case n = 1
is trivial, since a nonzero polynomial in Fp[z] of degree m has at most m distinct
roots. Now let n > 1 and assume by induction that the result holds for n − 1. If
r ∈ Fp[z1, . . . , zn] is of the indicated type, we can write

r =
mn∑
j=0

rj(z1, . . . , zn−1)zj
n,

where each rj(z1, . . . , zn−1) is of degree ≤ mi in the indeterminates zi. Let
(a1, . . . , an−1) ∈ ∏n−1

i=1 Xi be fixed. Then the polynomial r(a1, . . . , an−1, zn) ∈
Fp[zn] vanishes for every an ∈ Xn. It follows from the case n = 1 that r(a1, . . . ,
an−1, zn) is the zero polynomial in Fp[zn]. Hence rj(a1, . . . , an) = 0 for all j. Since
(a1, . . . , an−1) ∈ ∏n−1

i=1 Xi is arbitrary, the induction hypothesis implies that each
rj = 0, hence r = 0. ��

Lemma B2. I({(ζ, ζ) : ζ ∈ X}) = J̃ .

Proof. The inclusion J̃ ⊂ I({(ζ, ζ) : ζ ∈ X}) is obvious. To get the opposite
inclusion, suppose that g ∈ I({(ζ, ζ) : ζ ∈ X}). Using lexicographic order with
x1 � · · · � xn � z1 � · · · � zn, it is easy to verify that G = {x1 − z1, . . . , xn −
zn, z1(z1−1) · · · (z1−m1), . . . , zn(zn−1) · · · (zn−mn)} is aGröbnerbasis for J̃ (see,
e.g., [2]). Then it follows that [2] there is a polynomial r ∈ Fp[x1, . . . , xn, z1, . . . , zn]
with the following two properties:

(a) There is g′ ∈ J̃ such that g = g′ + r.
(b) No term of r is divisible by x1, . . . , xn, zm1+1

1 , . . . , zmn+1
n .

Property (a) shows that r = g − g′ ∈ I({(ζ, ζ) : ζ ∈ X}). Property (b) shows that
r is a polynomial only in z1, . . . , zn and of degree ≤ mi in zi. Then by Lemma B1,
we have r = 0. Hence g = g′ ∈ J̃ , so that I({(ζ, ζ) : ζ ∈ X}) ⊂ J̃ . ��

Now, we are ready to prove Proposition 1.

Proof of Proposition 1. By the Hilbert Basis Theorem, the ideal J has a finite gen-
erating set: J = 〈g1, . . . , gs〉. Define

α = 1 − (1 − gp−1
1 ) · · · (1 − gp−1

s ),
βi = (xi − zi)α,

γi = zi(zi − 1) · · · (zi − mi)α, i = 1, 2, . . . , n.

Since

α = gp−1
1 + · · · + gp−1

s − (gp−1
1 gp−1

2 + · · · + gp−1
s−1gp−1

s ) + · · ·
+ (−1)s+1gp−1

1 · · · gp−1
s ∈ J,

it follows that βi, γi ∈ J for each i. Let ξ, η ∈ F
n
p . If ξ = η ∈ X, then (ξ, η) ∈

V (J) = V (〈g1, . . . , gs〉), hence gj(ξ1, . . . , ξn, η1, . . . , ηn) = 0 for all 1 ≤ j ≤ s, so
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thatα(ξ1, . . . , ξn, η1, . . . , ηn) = 0.Otherwise,wehavegl(ξ1, . . . , ξn, η1, . . . , ηn) �= 0
for some 1 ≤ l ≤ s, so that α(ξ1, . . . , ξn, η1, . . . , ηn) = 1.

Fix 1 ≤ i ≤ n. If ξi �= ηi, then

βi(ξ1, . . . , ξn, η1, . . . , ηn) = (ξi − ηi)α(ξ1, . . . , ξn, η1, . . . , ηn) = ξi − ηi;

if ξi = ηi, then
βi(ξ1, . . . , ξn, η1, . . . , ηn) = ξi − ηi = 0.

Hence βi(ξ1, . . . , ξn, η1, . . . , ηn) = ξi − ηi for all ξ, η ∈ F
n
p . By Lemma A2 we have

xi − zi − βi ∈ 〈xp
1 − x1, . . . , x

p
n − xn, zp

1 − z1, . . . , z
p
n − zn〉 ⊂ J,

so that xi − zi ∈ J . A similar argument using γi instead of βi shows that zi(zi −
1) · · · (zi − mi) ∈ J . Thus, J̃ ⊂ J .

The opposite inclusion follows immediately from Lemma B2 and the fact that
J ⊂ I(V (J)). ��
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Abstract. We present a new proof procedure for reasoning on schemas
of formulas defined over various (decidable) base logics (e.g. proposi-
tional logic, Presburger arithmetic etc.). Such schemas are useful to
model sequences of formulas defined by induction on some parameter.
The approach works by computing an automaton accepting exactly the
values of the parameter for which the formula is satisfiable. Its main
advantage is that it is completely modular, in the sense that external
tools are used as “black boxes” both to reason on base formulas and to
detect cycles in the proof search. This makes the approach more efficient
and scalable than previous attempts. Experimental results are presented,
showing evidence of the practical interest of the proposed method.

Keywords: Automated reasoning · Satisfiability modulo theories ·
Inductive reasoning · Schemata of formulas

1 Introduction

Schemas of formulas are useful to model sequences of structurally similar formu-
las constructed over some base language. A first way of defining such sequences
is to use generalized logical connectives of the form

∨b
i=a φ or

∧b
i=a φ, where a

and b denote arithmetic expressions (possibly containing variables). For instance
φ(n) def= p(0) ∧ (

∧n
i=0 p(i) ⇒ p(i + 1)) ∧ ¬p(n + 1) is a schema of formulas that is

clearly unsatisfiable for every value of n. Note that n denotes an arithmetic vari-
able (called a parameter), not a fixed integer. If n is fixed (e.g., n = 0, 1, 2, . . . ),
then φ(n) can be viewed as a propositional formula, but it is clear that show-
ing that the formula φ(n) is unsatisfiable for every value of n ∈ N requires
mathematical induction and is thus out of the scope of propositional and even
first-order theorem provers. More generally and more conveniently, schemas can
also be defined inductively, e.g., by using convergent systems of rewrite rules. For
instance the following rules define a schema ψ(n) def= (p ⇔ (p ⇔ . . . (p ⇔ p) . . . ))
that is valid if n is even and equivalent to p if n is odd:{

ψ(0) → �
ψ(n + 1) → (p ⇔ ψ(n))

Schemas can be defined over various base languages and theories. It is also
possible to consider schemas defined over algebraic structures different from the
natural numbers (in the present paper, we consider schemas defined on words).
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 263–274, 2015.
DOI: 10.1007/978-3-319-15579-1 20
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Schemas are useful for many applications, for instance to reason on parame-
terized systems, such as circuits constructed by composing inductively n elemen-
tary layers (e.g., an n-bit adder), or programs with loops or recursive functions
(the parameter then denotes the number of iterations or recursive calls). They
also appear frequently in human-constructed proofs.

In previous papers (see, e.g., [3,4]), we have established decidability and
undecidability results for different classes of schemas, defined using various base
logics and construction schemes, and we have proposed automated proof pro-
cedures for testing satisfiability of schemas. These procedures intertwine usual
logical inference rules (used to reason on the base logic) with additional mecha-
nisms intended to simulate a particular form of mathematical induction (based
mainly on lazy instantiation schemes and cycle detection rules).

In the present work, we use another approach, which relies more on external
tools. It consists to compute an automaton accepting exactly the values of the
parameter such that the schema is satisfiable (hence the schema is unsatisfiable
iff the accepted language is empty). External provers are used both to reason in
the base logic (i.e., to determine whether a state is accepting or not) and to prune
the search space by detecting cycles (i.e., to merge equivalent states). The overall
approach is similar to that of [1], however the devised procedure is completely
different and the considered class of schemas is much larger (the present approach
handles schemas defined over arbitrary base theories whereas the procedure in
[1] is restricted to propositional logic). The main advantage of the new method
is that it is completely modular, in the sense that no modification is required to
the proof procedure used to reason on base formulas. This feature allows us to
use the most efficient theorem provers available for reasoning on the base logic,
instead of having to develop new systems. This makes the approach much more
tractable and scalable. The only requirement is that the base language must be
decidable and must admit quantifier elimination. Furthermore, the parameter
must be unique and has to be interpreted as a finite word on a finite alphabet
(or equivalently, as a term defined on a monadic signature).

The rest of the paper is structured as follows. In Section 2 we briefly review
some usual definitions. In Section 3 we introduce the syntax and semantics of
the class of schemas considered in the present paper. In Section 4, a procedure is
described for constructing, given a formula φ, an automaton accepting the values
of the parameter for which φ is satisfiable. Termination results are presented in
Section 5 and experimental results are provided in Section 6. Finally, Section 7
briefly concludes the paper and outlines possible directions of future work.

2 Preliminaries

We briefly review usual definitions (see, e.g., [11] for more details).
Let S be a set of sort symbols, containing in particular a symbol bool, denot-

ing booleans. Let F be a set of function symbols, together with a function profile
mapping each element of F to a non-empty sequence of sort symbols. A constant
symbol is a function whose profile is of length 1. If profile(f) = (s1, . . . , sn, s)
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then s is the range of f and (s1, . . . , sn) is its domain. We write f : s1, . . . , sn →
s (resp. f : s) to state that f ∈ F and profile(f) = (s1, . . . , sn, s) (resp.
profile(f) = (s)). Let V be a set of variables, associated with a function sort
mapping each element of V to a sort symbol. The set Ts of terms of sort s is
the least set satisfying the following conditions: x ∈ V ∧ sort(x) = s ⇒ x ∈ Ts

and f : s1, . . . , sn → s ∈ F ∧ ∀i ∈ [1, n] ti ∈ Tsi ⇒ f(t1, . . . , tn) ∈ Ts. For
any subset S ′ of S, the set TS′ is defined as follows: TS′

def=
⋃

s∈S′ Ts. For every
term t we denote by var(t) the set of variables occurring in t. A term is ground
if var(t) = ∅. For every term t, head(t) denotes the head symbol of t (i.e.,
head(f(t1, . . . , tn)) def= f and head(x) def= x if x ∈ V) and |t| denotes the size of t

(not counting variables or constants), defined as follows: |x| def= 0 if x ∈ V ∪ F ,
|f(t1, . . . , tn)| def= 1 + Σn

i=1|ti| if n ≥ 1.
The set of formulas F is the least set satisfying the following conditions:

⊥,� ∈ F ; Tbool ⊆ F ; t, s ∈ Ts ∧ s �= bool ⇒ t � s ∈ F and φ, ψ ∈ F , x ∈ V ⇒
φ ∨ ψ, φ ∧ ψ, φ ⇔ ψ, φ ⇒ ψ,¬φ,∀xφ,∃xφ ∈ F . For every formula φ, fvar(φ) is
the set of free variables in φ. A formula is closed if fvar(φ) = ∅. An expression
is a term or a formula.

A position is a finite sequence of natural numbers. The empty position is
denoted by ε and the concatenation of positions p and q is written p.q. A sequence
p is a position in an expression E if one of the following conditions holds: (i)
p = ε; (ii) E = f(t1, . . . , tn), p = i.q (with i ∈ [1, n]), and q is a position in ti; (iii)
E = φ1 � φ2 (with � ∈ {∨,∧,⇒,⇔}), p = i.q with i ∈ {1, 2} and q is a position
in φi; or (iv) p = 1.q, q is a position in φ and E = Qxφ (with Q ∈ {∀,∃}) or
E = ¬φ. The expression E|p then denotes the expression occurring at position
p in E and, for every expression F of the same nature and sort as E|p, E[F ]p
denotes the expression obtained by replacing the expression at position p in E
by F (the formal definitions are standard hence are omitted for conciseness).

An interpretation I is a function mapping:
- Every sort s ∈ S to a non-empty set of elements sI , with boolI = {�,⊥}.
- Every function f : s1, . . . , sn → s ∈ S to a function fI from sI

1 × · · · × sI
n to

sI (in particular if n = 0 then fI is an element of sI).
- Every variable x of sort s to an element of sI .
The value of an expression E in an interpretation I is defined as usual and
denoted by [E]I . For every formula φ, we write I |= φ if [∀x1, . . . , xn φ]I = �,
where {x1, . . . , xn} = fvar(φ).

Substitutions are sort-preserving functions mapping variables to terms. For
every substitution σ and every expression E, we denote by Eσ the expression
obtained from E by replacing every free occurrence of a variable x by its image
by the substitution σ. We let |σ| def= max{|xσ| | x ∈ V}.

We now recall basic notions about word automata.

Definition 1 (Automata). An automaton is a tuple A = (Q,Σ, δ, q0, A) where
Q is a set of states, Σ is a finite set of symbols (vocabulary), δ is a subset of
Q × Σ × Q ( transition function), q0 is an initial state in Q and A is a set of
accepting states in Q. An automaton is finite if Q is finite.
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Definition 2 (Accepted Language). A sequence of states q0, . . . , qn is a run
of an automaton A = (Q,Σ, δ, q0, A) on a word w = a1 . . . an ∈ Σ∗ if for every
i ∈ [1, n], (qi−1, ai, qi) ∈ δ. Word w is accepted if there is a run q0, . . . , qn on w
such that qn ∈ A. We denote by L(A) the set of words that are accepted by A.

3 Schemas of Formulas

Schemas are defined over some base theory T , which is defined by giving: a set of
base sorts Sbase; a set of base function symbols Fbase of profile s1, . . . , sn → s,
with s1, . . . , sn, s ∈ Sbase; and a set of interpretations Ibase of the symbols in
Sbase ∪ Fbase. An interpretation is a T -interpretation if its restriction to the
symbols in Sbase ∪ Fbase is in Ibase. A T -formula is a formula containing only
function symbols in Fbase. A formula is T -satisfiable (resp. T -valid) if it admits
a model in Ibase (resp. if it holds in all interpretations in Ibase). In the following,
we assume that an algorithm exists for testing the T -satisfiability of T -formulas.

Example 3. The base theory of propositional logic is defined by considering the
set of sorts Sbase = {bool}, where Fbase contains only constant symbols of sort
bool. The set Ibase contains all possible interpretations of these symbols.

Presburger arithmetic is defined as follows: Sbase is {int, bool}, and Fbase

contains constant symbols of sort int and the usual functions 0 : int, 1 : int,− :
int → int,+ : int, int → int,≤: int, int → bool. The set Ibase contains
all interpretations I such that intI = Z, where 0, 1,−,+, < have their usual
meaning: 0I def= 0, 1I def= 1, −Ix

def= −x, x +I y
def= x + y, x ≤I y = � iff x ≤ y.

As explained in the Introduction, schemas are defined by induction on some
parameters. These parameters must be of some special sort not occurring in
the base theory, and must be interpreted as finite words over a finite alphabet,
or, equivalently, as terms on a finite signature containing only constants and
monadic functions. More formally, let SP ⊂ S \ Sbase be a set of sorts. Variables
of a sort in SP are called parameters. Let C be a finite set of function symbols,
called constructors, of profile s′ → s or s, with s, s′ ∈ SP . A term is a constructor
term if all function symbols occurring in t are in C.

Example 4. In all the considered examples, SP will simply refer to the set of
natural numbers {nat} with the constructors: 0 : nat, s : nat → nat. The set of
terms constructed on this signature is isomorphic to the natural numbers.

Let Ω ⊆ F be a set of schema symbols, and let ≺ be a well-founded ordering
among symbols in Ω. Informally, symbols in Ω are used to denote functions
mapping ground constructor terms to base terms. We thus assume that the
profile of each symbol f ∈ Ω is of the form s → s′ with s ∈ SP and s′ ∈ Sbase.
The set Ω is partitioned into two disjoint sets Ω = D � E . Intuitively, symbols
in E will denote individuals in the domain of the base theory depending on the
parameter (e.g., the symbol p in the first example in the Introduction is in E),
whereas the symbols in D will denote inductively defined schemas of terms or
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formulas such as
∧n

i=0 p(i) ⇒ p(i + 1) or Σn
i=0i. Thus the interpretation of a

term e(α) with e ∈ E will be unspecified (it denotes an arbitrary element of
the domain of the base theory), whereas that of a term d(α) with d ∈ D will be
defined by induction on α. More precisely, the semantics of the symbols in D will
be defined by sets of rewrite rules, reducing every (ground) term of defined head
to a base term or formula. In order to formally define these rewrite systems, we
need to introduce some definitions.

For every G ⊆ F , a G-term is a non-variable term of head f ∈ G. We denote by
ΘG(t) the set of G-terms occurring in t. In particular, an Ω-term is a term whose
head is in Ω. The ordering ≺ is extended to Ω-terms as follows: f(t) ≺ g(s) if
f ≺ g or if f = g and t is a proper subterm of s. A term or formula is t-dominated
if the relation s ≺ t holds for every Ω-term s occurring in it.

A term or formula is Sbase-compatible if it contains no quantification on
parameters and if the terms of a sort in SP only occur in the scope of a function
in Ω.

Let R be a set of rewrite rules (see, e.g., [5]). For every symbol d : s → s′ ∈ D,
where s′ �= bool, we assume that the set R contains the following rules.
- A rule of the form d(a) → t, where t is a ground term of sort s′, for each

constant symbol a : s in F .
- A rule of the form d(f(x)) → t, for each symbol f : s′′ → s in F , where t is a

term of sort s′ such that var(t) ⊆ {x} and x is a variable of sort s′′.
Similarly, for every symbol d : s → bool ∈ D, the set R contains the following
rules.
- A rule of the form d(a) → φ, where φ is a closed formula, for each constant

symbol a : s in F .
- A rule of the form d(f(x)) → φ for each symbol f : s′ → s in F , where φ is a

formula with fvar(φ) ⊆ {x} and x is a variable of sort s′.
We also assume that for every rule l → r occurring in R, r is l-dominated and
Sbase-compatible. The system R is assumed to be fixed in the rest of the paper.

Proposition 5. The system R is convergent, hence every expression E has a
unique normal form w.r.t. R, denoted by E ↓R.

Definition 6. A schema interpretation I is a base interpretation such that:

1. Every sort s ∈ SP is mapped to the set of ground constructor terms of sort
s (we assume that this set is not empty).

2. For every constant symbol c : s ∈ C we have cI def= c, and for every constructor
f : s → s′ ∈ C we have fI(x) def= f(x) (this implies that [s]I = s, for every
ground constructor term s).

3. For every defined symbol d : s′ → s and for every ground constructor term
s of sort s′, we have: dI(s) def= [d(s)↓R]I .

We write φ |= ψ if I |= φ ⇒ I |= ψ holds for every schema interpretation I.
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Example 7. The schema p(0) ∧ ∧n
i=0 p(i) ⇒ p(i + 1) ∧ ¬p(n + 1) in the Intro-

duction can be encoded as follows: p(0) ∧ d(s(n)) ∧ ¬p(s(n)) with the rules:{
d(0) → �
d(s(n)) → d(n) ∧ (p(n) → p(s(n)))
The symbol p occurs in E whereas d occurs in D.

Example 8. The schema Σn
i=0i can be encoded as follows: d(s(n)) with the rules:⎧⎪⎪⎨

⎪⎪⎩
d(0) → 0
d(s(n)) → d′(n) + d(n)
d′(0) → 0
d′(s(n)) → 1 + d′(n)
The term d′(n) denotes the integer n (this is needed because Sbase-compatible

formulas cannot contain parameters outside the scope of a symbol in Ω).

Our goal is to devise a procedure to check the satisfiability of formulas in
schema interpretations. To this purpose, we assume that the considered formula
contains at most one parameter and that a procedure is available to test the
satisfiability of (quantified) formulas in the base theory. Note that the problem of
testing the satisfiability of formulas in schema interpretations cannot be encoded
directly in the base theory, even if it allows for universal quantifications and
uninterpreted symbols, due to the fact that the parameters are interpreted over
an inductively defined domain: while the rules in R can be encoded as first-
order axioms (equalities or equivalences), the fact that the parameter n is to be
interpreted as a ground term in TSP

(e.g., a natural number) cannot be stated
in first-order logic.

4 From Schemas to Automata

4.1 Base Abstractions of Schemas

In this section, we devise a simplification operation simp, whose principle is to
abstract away some of the E-terms occurring in a formula by replacing them
by existential variables. As we shall see, this operation preserves satisfiability
(under some conditions) and is essential for the termination of the construction
of the automaton (in some cases).

Example 9. Consider the formula p(s(n))∧d(n), where d is defined as in Example
7. From the rules defining d, it is easy to check that the normal form of a formula
d(sk(0)) (with k ∈ N) contains no formula of the form p(sl(0) with l > k.
Therefore, the truth value of d(n) does not depend on that of p(s(n)), which
entails that p(s(n)) ∧ d(n) is satisfiable iff the formula ∃x (x ∧ d(n)) (where x is
a variable of sort bool) is satisfiable (hence iff d(n) is satisfiable). Note that, in
constrast, a formula p(n) ∧ d(n) cannot be reduced to ∃x (x ∧ d(n)), because the
truth value of d(n) depends on that of p(n).

In order to formally define the simplification operation, we need to introduce
some definitions. We first devise a function μ mapping every symbol f ∈ Ω to a
natural number. This function is defined in such a way that the size of the terms
in ΘE occurring in the normal form of f(t) is bounded by 1 + μ(f) + |t|.
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Definition 10. The function μ : Ω → Z is defined inductively as follows:
- If f ∈ E then μ(f) def= 0.
- If f ∈ D then μ(f) def= max{μ(g)+|t|−|l|+1 | l → r ∈ R, g(t) ∈ ΘΩ(r), g ≺ f}.

We let: ν(E) def= max{μ(f) + |t| | f(t) ∈ ΘΩ(E)} and ν′(E) def= max{μ(f) + |t| |
f(t) ∈ ΘD(E), or f(t) ∈ ΘE(E) and t is ground}.
Example 11. With the definitions of Example 7, we have μ(p) = 0 (since p ∈ E)
and μ(d) = max{μ(p)+|n|−2+1, μ(p)+|s(n)|−2+1} = max{μ(p)−1, μ(p)} = 0
(since |n| = 0 and |s(n)| = 1). Consider now the symbol d′ associated with the

rules:
{

d′(0) → �
d′(s(n)) → d(s(s(n)))

We have μ(d′) = μ(d) + 2 − 2 + 1 = 1.

The next definition introduces the simplification operation.

Definition 12. Let φ be a formula, and let {t1, . . . , tn} be the set of non-ground
terms in ΘE of size strictly greater than ν′(φ) + 1. We denote by simp(φ) the
formula ∃x1, . . . , xn φ′, where x1, . . . , xn are new pairwise distinct variables not
occurring in φ of the same sorts as t1, . . . , tn (respectively) and φ′ is obtained
from φ by replacing each occurrence of ti by xi (1 ≤ i ≤ n).

Example 13. Consider the following schema defined on Presburger arithmetic:

φ
def= a(n) ≥ 0 ∧ d(n), with

{
d(0) → �

d(s(n)) → a(s(n) ≤ a(n) ∧ d(n)
Let ψ

def= φ{n �→ s(n)} ↓R= (a(s(n)) ≥ 0 ∧ d(s(n))) ↓R= a(s(n)) ≥ 0 ∧
a(s(n)) ≤ a(n) ∧ d(n). It is easy to check that μ(d) = 0. The only term in ΘE
of size strictly greater than 1 occurring in ψ is a(s(n)). The formula simp(ψ) is
therefore obtained from ψ by replacing the term a(s(n)) by a new existential vari-
able. This yields: ∃xx ≥ 0 ∧ x ≤ a(n) ∧ d(n). Note that by the Fourier-Motzkin
transformation, this formula is equivalent to 0 ≤ a(n) ∧ d(n), i.e. to φ.

The following lemma states the soundness of the simplification operation.

Lemma 14. Let φ be an Sbase-compatible irreducible formula containing a unique
parameter α and let u be a ground term of the same sort as α. The formula φ has
a model I with [α]I = u iff the same holds for simp(φ).

We now devise a sufficient criterion to test the satisfiability of arbitrary formu-
las in the base theory. The idea is simply to get rid of the symbols not occurring
in the base signature by replacing the corresponding terms by variables.

Definition 15. Let φ be an Sbase-compatible formula. We denote by �φ�T the
formula ∀y1, . . . , ym φ′, where {s1, . . . , sm} = ΘΩ(φ), y1, . . . , ym are fresh pair-
wise distinct variables of the same sorts as s1, . . . , sm respectively, and φ′ is
obtained from φ by replacing each occurrence of si by yi (1 ≤ i ≤ m).

Lemma 16. For every Sbase-compatible formula φ, �φ�T is a T -formula. More-
over, �φ�T |= φ.
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Let φ, ψ be two formulas. We write φ ∼T ψ if φ and ψ have the same set of
free parameters and if �φ ⇔ ψ�T is T -valid.

Example 17. Consider the formula φ
def= d(n) ⇔ ∃x(x ∧ d(n)). The validity of

φ cannot be directly established because it is not a T -formula (it contains a
symbol d ∈ Ω). Now consider the formula �φ�T = ∀y (y ⇔ ∃x(x ∧ y)). �φ�T
is a T -formula hence it can be handled by the decision procedure for checking
validity in T . Since �φ�T is T -valid, we have d(n) ∼T ∃x(x ∧ d(n)).

4.2 Constructing the Automaton

We now describe the procedure for constructing the automaton. Let s �→ αs be
a function mapping each sort symbol s to a variable of sort s. For any formula
φ containing a unique parameter α = αsort(α) and for any symbol c ∈ C of range
sort(α), we denote by φ↑c the formula defined as follows.
- If c is a constant symbol then φ↑c def= simp(φ{α �→ c}↓R).
- Otherwise, φ↑c def= simp(φ{α �→ c(αs)}↓R), where s is the domain of c.
Informally, φ↑c is obtained from φ by letting head(α) = c (and simplifying).

Definition 18. Let φ be a formula containing at most one parameter. We define
an automaton A(φ) = (Q,Σ, δ, q0, A) as follows.

- The alphabet is the set of constructors: Σ
def= C.

- States are equivalence classes of formulas w.r.t. the relation ∼T (the equiva-
lence class of a formula φ is denoted by [φ]∼T ). The set of states Q and the
transition relation δ are inductively defined as follows.
- Q contains the initial state: q0

def= [simp(φ↓R)]∼T .
- If Q contains a state s, ψ is an arbitrarily chosen representative1 of s, ψ

contains a parameter α : s, and c is a constructor of range s then s′ def=
[ψ↑c]∼T ∈ Q and (s, c, s′) ∈ δ.

- The set of final states A is the set of states s such that ¬�¬ψ�T is satisfiable
and ψ contains no parameter, where ψ is an arbitrarily chosen representative1

of s.

Note that, since every symbol in C is monadic, all terms t ∈ TSP
can be

viewed as words in C∗ (of course the converse does not hold). The following
theorem states the soundness of the construction.

Theorem 19. Let φ be a formula containing at most one parameter and let u
be a word in C∗. The following assertions are equivalent.
- φ has a model I and either u = ε and φ contains no parameter or φ has a
parameter α and αI = u (i.e., the word corresponding to αI is u).

- There is a run of A(φ) that accepts u.

1 The test is performed only for one particular representative of s (i.e., for one arbi-
trarily chosen element of s), not for all ψ ∈ s.
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Example 20. Consider the schema of Example 7. The initial formula is φ :
p(0) ∧ d(s(n)) ∧ ¬p(s(n)). We first compute its normal form w.r.t. R. We get:
φ↓R: p(0) ∧ d(n) ∧ (p(n) ⇒ p(s(n))) ∧ ¬p(s(n)). Next, we compute the formula
simp(φ ↓R). As explained in Example 11, we have μ(d) = 0 thus ν′(φ ↓R) = 0.
Consequently, the term p(s(n)), whose size is strictly greater than ν′(φ ↓R
) + 1 = 1, must be replaced by a new existential variable. We get the formula:
simp(φ ↓R) : ∃x p(0) ∧ d(n) ∧ (p(n) ⇒ x) ∧ ¬x), e.g., p(0) ∧ d(n) ∧ ¬p(n) (in
practice this simplification does not need to be explicitly performed: all theory
reasoning will be handled by the external solver).

This yields a first state q0. This state is not accepting since the formula
contains a parameter. There are two constructors 0 and s, which produce new
states q1 and q2, corresponding respectively to the schemas: simp(φ↓R){n �→ 0} :
p(0) ∧ d(0) ∧ ¬p(0) and simp(φ↓R){n �→ s(n)} : p(0) ∧ d(s(n)) ∧ ¬p(s(n)). After
normalization, the first formula is reduced to p(0) ∧ ¬p(0). We have ¬�¬(p(0) ∧
¬p(0))�T = ¬∃x¬(x ∧ ¬x) ≡ ⊥ hence the corresponding state is non accepting.
The formula contains no parameter, hence no new transition is produced from
this state. The second formula is identical to the initial one, hence the state q2 is
actually identical to the initial state q0 Note that the formulas are not compared
syntactically: in practice the equivalence will be detected by the external solver
by checking that the base formula ∀x, y, z ((x ∧ y ∧ ¬z) ⇔ (x ∧ y ∧ ¬z)) is valid.

We thus obtain the following automata (with no accepting state):

q0start q1
0

s Note that the simplification operation φ �→
simp(φ) is essential for termination, even in this trivial example. Without it, we
would get formulas (hence states) of the form:

p(0) ∧ d(n) ∧ (p(n) ⇒ p(s(n))) ∧ ¬p(s(n))
p(0) ∧ d(n) ∧ (p(n) ⇒ p(s(n))) ∧ (p(s(n)) ⇒ p(s(s(n)))) ∧ ¬p(s(s(n)))

. . .

and the procedure would diverge.

5 Termination

The procedure described in Section 4.2 diverges in general (A(φ) is infinite). In
this section we identify classes of formulas for which the procedure terminates,
thus yielding a decision procedure for testing validity. We start by devising an
abstract semantic criterion then we provide concrete examples of syntactic frag-
ments satisfying the required properties.

Definition 21. Let E be a set of expressions. An expression E is E-supported
if it is of the form E′σ, where E′ ∈ E and σ is a substitution mapping every
variable in E′ to an Ω-term.
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Definition 22. A class of T -expressions E is admissible if it satisfies the fol-
lowing properties.
- It is closed under replacement, i.e.: if E ∈ E, p is a position of a variable x
in E whose sort is the range of a symbol in D and F is an expression in E of
the same nature and sort as x then E[F ]p ∈ E.

- It is closed under projection, i.e.: if φ is a formula in E and x is a variable in
fvar(φ) whose sort is the range of a symbol in E, then there exists a formula
ψ ∈ E that is equivalent to ∃xφ.

- It is compatible with R, i.e., for every rule l → r ∈ R, r is E-supported.
- For every k ∈ N, the set of formulas φ ∈ E with card(var(φ)) ≤ k is finite
(up to T -equivalence).

A class of formulas F is well-supported if every formula φ ∈ F is E-supported,
for some admissible set of expressions E.

Theorem 23. If F is well-supported, then for every φ ∈ F, A(φ) is finite.

Examples of Well-Supported Classes

We now provide examples of classes of formulas fulfilling the properties of Def-
inition 22. These classes are defined by imposing conditions on the base theory
and on the symbols in the signature (not only on the symbols occurring in the
formula itself, but also on those in the rewrite system R).

Definition 24. A base theory is well-structured if for every sort symbol s ∈
Sbase, either sI is infinite in all interpretations I ∈ Ibase or there exists a
finite set of ground terms {c1, . . . , ck} such that ∀x

∨k
i=1 x � ci holds in all

interpretations in Ibase (where x is a variable of sort s). A formula φ is:
- quasi-propositional if all function symbols are of profile bool or s → bool,
with s ∈ SP ;

- flat if all symbols in D are of range bool and if the only non-ground terms
of a sort s ∈ Sbase \ {bool} occurring in φ or in the right-hand side of a rule
in R are variables and E-terms.

- a �-formula if Fbase contains no symbol of range bool (i.e. � is the only
predicate symbol);

- a ≤-formula if the only symbols of range bool in Fbase are symbols ≤s: s, s →
bool interpreted as total non-strict orders on s.

Theorem 25. The class of quasi-propositional formulas is well-supported. Fur-
thermore, if the base theory is well-structured, then the class of �-formulas and
the class of ≤-formulas are well-supported.

6 Experimental Results

The procedure has been implemented in SWI Prolog [12] using Z3 [10] as an
external tool (more generally any SMT-Lib2 compatible prover [6] can be used).
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The programs communicate by exchanging strings. We present some preliminary
experimental results. We first run our procedure on schemas of propositional
formulas, comparing our approach with the system RegSTAB described in [2]
(RegSTAB is based on an extension of semantic tableaux, see, e.g., [9]). The
benchmarks are generated by formalizing an n-bit adder circuit as a schema of
propositional formulas (parameterized by the number of bits n) and by check-
ing some basic properties of this circuit: associativity and commutativity of +,
neutrality of 0, equivalence between ripple-carry and carry-propagate adders
etc. (see [3] for more details). All the running times for RegSTAB are taken
from [3] (for conciseness, easy instances are omitted since they are not really
informative). All times are in seconds, unless specified otherwise. The results
show significant improvement in favor of the new approach (A is slower than
RegSTAB on some easy instances, which is probably due to the overcost of the
communication between the two systems, but faster on hard instances).

Problem A RegSTAB

x + 0 = x 0.547 0.017

x + y = y + x 0.531 0.267

x + (y + z) = (x + y) + z 0.687 28.902

Ripple carry ≡ Carry-propagate 0.516 0.194

x1 ≤ x2 ∧ y1 ≤ y2 ⇒ x1 + y1 ≤ x2 + y2 0.641 2.949

x1 ≤ x2 ≤ x3 ∧ y1 ≤ y2 ≤ y3 ⇒ x1 + y1 ≤ x2 + y2 ≤ x3 + y3 1.328 46m57

1 ≤ x + y ≤ 5 ∧ x ≥ 3 ∧ y ≥ 4 0.750 7m9

We also provide some results for non propositional schemas (for which there
is no available tool, as far as we are aware). The first problems are constructed
by formalizing some basic functions on arrays and by stating some of their prop-
erties: insert(T, x) denotes the array obtained by inserting a new element x at
the appropriate position in a sorted array T , T ≥ 0 means that all elements in
T are positive, |T | is the sum of the elements in T . The next problem states the
equivalence between two definitions of the lexicographic ordering: the recursive
one and the existential one (T < S ⇔ ∃i T [i] < S[i]∧∧i−1

j=0 T [j] = S[j]). The last
problem is defined as the propositional ones, but using a decimal basis instead
of bits (we check simultaneously that the adder is associative, commutative and
that 0 is neutral).

Problem A
sorted(T ) ∧ T [0] ≥ a ⇒ T [n] ≥ a 0.656

sorted(T ) ⇒ sorted(insert(T, x)) 0.610

insert(T, x) ≥ 0 ⇔ (T ≥ 0 ∧ x ≥ 0)) 0.594

sorted(T ) ∧ sorted(S) ⇒ sorted(T + S) 0.516

|insert(T, x)| = |T | + x 0.547

|T + S| = |T | + |S| 0.422

Lexicographic ordering 0.541

Decimal adder 17.4
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7 Conclusion

We have presented a new method for checking the satisfiability of schemas of for-
mulas defined over arbitrary (but decidable) base logics. The procedure diverges
in general, but it is proven terminating on some fragments. The method has the
advantage that it is modular, relying on external tools for reasoning in the base
theory. The experimental results, although preliminary, are very encouraging.
Concerning future work, many refinements of the procedure for constructing the
automaton can be considered, for instance devising more elaborate techniques
for detecting and pruning redundant nodes, or decomposing formulas into inde-
pendent parts when possible (each part being associated with a new state of the
automaton, instead of considering a single state for the conjunction). The exten-
sion of the procedure to more general theories also deserves to be considered, for
instance semi-decidable theories such as full first-order logic.

References

1. Aravantinos, V., Caferra, R., Peltier, N.: Complexity of the satisfiability problem
for a class of propositional schemata. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide,
C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 58–69. Springer, Heidelberg (2010)

2. Aravantinos, V., Caferra, R., Peltier, N.: RegSTAB: A SAT solver for proposi-
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Abstract. There is a rich variety of shuffling operations ranging from
asynchronous interleaving to various forms of synchronizations. We intro-
duce a general shuffling operation which subsumes earlier forms of shuf-
fling. We further extend the notion of a Brzozowski derivative to the
general shuffling operation and thus to many earlier forms of shuffling.
This extension enables the direct construction of automata from regular
expressions involving shuffles that appear in specifications of concurrent
systems.

Keywords: Automata and logic · Shuffle expressions · Derivatives

1 Introduction

We consider an extension of regular expressions with a binary shuffle operation
which bears similarity to shuffling two decks of cards. Like the extension with
negation and complement, the language described by an expression extended
with shuffling remains regular. That is, any expression making use of shuffling
can be expressed in terms of basic operations such as choice, concatenation and
Kleene star. However, the use of shuffling yields a much more succinct represen-
tation of problems that occur in modeling of concurrent systems [4,12].

Our interest is to extend the notion of a Brzozowski derivative [3] to regular
expressions with shuffles. Derivatives support the elegant and efficient construc-
tion of automata-based word recognition algorithms [10] and are also useful in
the development of related algorithms for equality and containment among reg-
ular expressions [1,6].

Prior work in the area. To the best of our knowledge, there is almost no prior
work which studies the notion of Brzozowski derivatives in connection with shuf-
fling. We are only aware of one work [9] which appears to imply a definition of
derivatives for strongly synchronized shuffling [2]. Further work in the area stud-
ies the construction of automata for a specific form of shuffling commonly referred
to as asynchronous interleaving [5,7]. In contrast, we provide detailed definitions
c© Springer International Publishing Switzerland 2015
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how to obtain derivatives including formal results for various shuffling operations
[2,4,11]. Our results imply algorithms for constructing automata as well as for
checking equality and containment of regular expressions with shuffles.

Contributions. After introducing our notation in Section 2 and reviewing existing
variants of shuffling in Section 3, we claim the following contributions:

− We introduce a general shuffle operation which subsumes previous forms of
shuffling (Section 4).

− We extend the notion of Brzozowski derivatives to the general shuffle oper-
ation and are able to re-establish all of its “good” properties (Section 5).

− Based on the general shuffle operation, we provide systematic methods to
obtain derivatives for specific variants of shuffling (Section 5.1).

We conclude in Section 6.

2 Preliminaries

Let Σ be a fixed alphabet (i.e., a finite set of symbols). We usually denote
symbols by x, y and z. The set Σ∗ denotes the set of finite words over Σ. We
write Γ,Δ to denote subsets (sub-alphabets) of Σ. We write ε to denote the
empty word and v · w to denote the concatenation of two words v and w. We
generally write L1, L2 ⊆ Σ∗ to denote languages over Σ.

We write L2\L1 to denote the left quotient of L1 with L2 where L2\L1 =
{w | ∃v ∈ L2.v · w ∈ L1}. We write x\L as a shorthand for {x}\L.

We write α(w) to denote the set of symbols which appear in a word. The
inductive definition is as follows: (1) α(ε) = ∅, (2) α(x · w) = α(w) ∪ {x}. The
extension to languages is as follows: α(L) =

⋃
w∈L α(w).

We write ΠΓ (w) to denote the projection of a word w onto a sub-alphabet
Γ . The inductive definition is as follows:

ΠΓ (ε) = ε ΠΓ (x · w) =
{

x · ΠΓ (w) x ∈ Γ
ΠΓ (w) x �∈ Γ

3 Shuffling Operations

Definition 1 (Shuffling). The shuffle operator ‖ :: Σ∗ × Σ∗ → ℘(Σ∗) is
defined inductively as follows:

ε‖w = {w}
w‖ε = {w}
x · v‖y · w = {x · u | u ∈ v‖y · w} ∪ {y · u | u ∈ x · v‖w}

We lift shuffling to languages by L1‖L2 = {u | u ∈ v‖w ∧ v ∈ L1 ∧ w ∈ L2}.
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For example, we find that x · y‖z = {x · y · z, x · z · y, z · x · y}.
While the shuffle operator represents the asynchronous interleaving of two

words v, w ∈ Σ∗, there are also shuffle operators that include some synchroniza-
tion. The strongly synchronized shuffle of two words w.r.t. some sub-alphabet
Γ imposes the restriction that the traces must synchronize on all symbols in Γ .
All symbols not appearing in Γ are shuffled. In its definition, we write (p) ⇒ X
for: if p then X else ∅.

Definition 2 (Strong Synchronized Shuffling). The synchronized shuffling
operator w.r.t. Γ ⊆ Σ, |||Γ :: Σ∗×Σ∗ → ℘(Σ∗), is defined inductively as follows.

ε|||Γ w = (Γ ∩ α(w) = ∅) ⇒ {w} (S1)
w|||Γ ε = (Γ ∩ α(w) = ∅) ⇒ {w} (S2)
x · v|||Γ y · w = (x = y ∧ x ∈ Γ ) ⇒ {x · u | u ∈ v|||Γ w} (S3)

∪(x �∈ Γ ) ⇒ {x · u | u ∈ v|||Γ y · w} (S4)
∪(y �∈ Γ ) ⇒ {y · u | u ∈ x · v|||Γ w} (S5)

We lift strongly synchronized shuffling to languages by

L1|||Γ L2 = {u | u ∈ v|||Γ w ∧ v ∈ L1 ∧ w ∈ L2}
The base cases (S1) and (S2) impose the condition (via Γ ∩α(w) = ∅) that none
of the symbols in w shall be synchronized. If the condition is violated we obtain
the empty set. For example, ε|||{x}y · z = {y · z}, but ε|||{x}x · y · z = ∅.

In the inductive step, a symbol in Γ appearing on both sides forces synchro-
nization (S3). If the leading symbol on either side does not appear in Γ , then
it can be shuffled arbitrarily. See cases (S4) and (S5). These three cases ensure
progress until one side is reduced to the empty string. For example, we find that
x · y|||{x}x · z = {x · y · z, x · z · y}. On the other hand, x · y|||{x,y}x · z = ∅.

Shuffling and strongly synchronized shuffling correspond to the arbitrary syn-
chronized shuffling and strongly synchronized shuffling operations by Beek and
coworkers [2]. The inductive definitions that we present simplify our proofs.

Beek and coworkers [2] also introduce a weak synchronized shuffling opera-
tion. In its definition, we write L · x as a shorthand for {w · x | w ∈ L} and x · L
as a shorthand for {x · w | w ∈ L}
Definition 3 (Weak Synchronized Shuffling). Let v, w ⊆ Σ∗ and Γ ⊆ Σ.
Then, we define

v| ∼ |Γ w = {u | ∃n ≥ 0, xi ∈ Γ, vi ∈ Γ,wi ∈ Γ.
v = v1 · x1...xn · vn+1 ∧ w = w1 · x1...xn · wn+1∧
u ∈ (v1‖w1) · x1...xn · (vn+1‖wn+1)
α(vi) ∩ α(wi) ∩ Γ = ∅}

and for languages: L1| ∼ |Γ L2 = {u | u ∈ v| ∼ |Γ w ∧ v ∈ L1 ∧ w ∈ L2}.
The weak synchronized shuffle of two words v and w synchronizes only on those
symbols in Γ that occur in both v and w. For example, x · y| ∼ |{x,y}x · z =
{x · y · z, x · z · y} because y �∈ α(x · z) whereas x · y|||{x,y}x · z = ∅.
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There is another variant of synchronous shuffling called synchronous com-
position [4,11]. The difference to strongly synchronized shuffling is that syn-
chronization occurs on symbols common to both operands. Thus, synchronous
composition can be defined by projecting onto the symbols of the operands.

Definition 4 (Synchronous Composition). The synchronous composition
operator ||| is defined by:

L1|||L2 = {w ∈ (α(L1) ∪ α(L2))∗ | Πα(L1)(w) ∈ L1 ∧ Πα(L2)(w) ∈ L2}

For example, x · y|||x · z equals {x · y · z, x · z · y}.
It turns out that the strong synchronized shuffling operation |||Γ subsumes

synchronous composition due to the customizable set Γ . In Section 4, we show an
even stronger result: All of the shuffling variants we have seen can be expressed
in terms of a general synchronous shuffling operation.

4 General Synchronous Shuffling

The general synchronous shuffling operation is parameterized by a set of syn-
chronizing symbols, Γ , and two additional sets P1 and P2 that keep track of ’out
of sync’ symbols from Γ . We write X ∪ x as a shorthand for X ∪ {x}.

Definition 5 (General Synchronous Shuffling). Let Γ, P1, P2 ⊆ Σ. The
general synchronous shuffling operator P1 ||P2

Γ :: Σ∗ × Σ∗ → ℘(Σ∗) is defined
inductively as follows.

εP1 ||P2
Γ w = ((α(w) ∩ Γ = ∅) ∨ (P1 ∩ (P2 ∪ α(w)) = ∅)) ⇒ {w} (G1)

wP1 ||P2
Γ ε = ((α(w) ∩ Γ = ∅) ∨ (P1 ∪ α(w)) ∩ P2 = ∅)) ⇒ {w} (G2)

x · vP1 ||P2
Γ y · w = (x �∈ Γ ) ⇒ {x · u | u ∈ vP1 ||P2

Γ y · w} (G3)

∪(y �∈ Γ ) ⇒ {y · u | u ∈ x · vP1 ||P2
Γ w} (G4)

∪(x = y ∧ x ∈ Γ ∧ P1 ∩ P2 = ∅) ⇒ {x · u | u ∈ v∅||∅Γ w} (G5)

∪(x = y ∧ x ∈ Γ ∧ P1 ∩ P2 �= ∅) ⇒ {x · u | u ∈ vP1 ||P2
Γ w} (G6)

∪(x ∈ Γ ∧ (P1 ∪ x) ∩ P2 = ∅) ⇒ {x · u | u ∈ vP1∪x||P2
Γ y · w} (G7)

∪(y ∈ Γ ∧ P1 ∩ (P2 ∪ y) = ∅) ⇒ {y · u | u ∈ x · vP1 ||P2∪y
Γ w} (G8)

For L1, L2 ⊆ Σ∗, Γ ⊆ Σ, P1, P2 ⊆ Σ we define

L1
P1 ||P2

Γ L2 = {u | u ∈ vP1 ||P2
Γ w ∧ v ∈ L1 ∧ w ∈ L2}

The definition of general synchronous shuffling is significantly more involved
compared to the earlier definitions. Cases (G1-8) are necessary to encode the
earlier shuffle operations from Section 3. The exact purpose of the individual
cases will become clear shortly.

In our first result we observe that Σ ||ΣΓ exactly corresponds to strongly syn-
chronized shuffling (|||Γ ).

Theorem 6. For any L1, L2 ⊆ Σ∗ and Γ ⊆ Σ: L1|||Γ L2 = L1
Σ ||ΣΓ L2.
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Proof. We choose a ’maximal’ assignment for P1 and P2 such that definition of
P1 ||P2

Γ reduces to |||Γ . We observe that property P1 = Σ ∧ P2 = Σ (SP) is an
invariant. For cases (G3-4) and (G6) the invariant property clearly holds. For
cases (G5), (G7-8) the preconditions are violated. Hence, for Σ ||ΣΓ only cases
(G1-4) and (G6) will ever apply.

Under the given assumptions, we can relate the cases in Definition 2 and
Definition 5 as follows. Cases (G1-2) correspond to cases (S1-2). Cases (G3-4)
correspond to cases (S4-5). Case (G6) corresponds to case (S3). Due to the
invariant property (SP) cases (G5) and (G7-8) never apply.

Hence, Σ ||ΣΓ and |||Γ yield the same result. ��
Via similar reasoning we can show that for Γ = ∅ ∧ P1 = ∅ ∧ P2 = ∅ general

synchronized shuffling boils down to (arbitrary) shuffling.

Theorem 7. For any L1, L2 ⊆ Σ∗: L1‖L2 = L1
∅||∅∅L2.

An immediate consequence from Theorem 6 (set Σ and Γ to ∅) and The-
orem 7 is that shuffling can also be expressed in terms of strong synchronized
shuffling.

Corollary 8. For any L1, L2 ⊆ Σ∗: L1‖L2 = L1|||∅L2.

Our next result establishes a connection to weak synchronized shuffling [2].

Theorem 9. For any L1, L2 ⊆ Σ∗,Γ ⊆ Σ: L1| ∼ |Γ L2 = L1
∅||∅Γ L2.

Proof. Property P1, P2 ⊆ Γ ∧P1∩P2 = ∅ (WP) is an invariant of P1 ||P2
Γ . For cases

(G3-4) the invariant property clearly holds. More interesting are cases (G7-8)
where P1, resp., P2 is extended. Under the precondition property (WP) remains
invariant. Case (G6) never applies. Case (G5) clearly maintains the invariant.

Recall that for strong synchronized shuffling the roles of (G5) and (G6) are
switched. See proof of Theorem 6. This shows that while cases (G5) and (G6)
look rather similar both are indeed necessary.

As we can see, under the invariant condition (WP), the purpose of P1, P2

is to keep track of “out of sync” symbols from Γ . See cases (G7-8). Case (G5)
synchronizes on x ∈ Γ . Hence, P1 and P2 are (re)set to ∅.

Thus, we can show (via some inductive argument) that ∅||∅Γ under the (WP)
invariant corresponds to weak synchronized shuffling as defined in Definition 3.

��
It remains to show that synchronous composition is subsumed by general syn-

chronized shuffling. First, we verify that synchronous composition is subsumed
by strongly synchronous shuffling.

Theorem 10. For any L1, L2 ⊆ Σ∗ we find that L1|||L2 = L1|||α(L1)∩α(L2)L2.

Proof. To establish the direction L1|||L2 ⊇ L1|||α(L1)∩α(L2)L2 we verify that the
projection of a strongly synchronizable word w.r.t. α(L1) ∩ α(L2) yields words
in the respective languages L1 and L2.
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Formally: Let u, v, w ∈ Σ∗, L1, L2 ⊆ Σ∗, Γ ⊆ Σ such that u ∈ v|||Γ w where
v ∈ L1, w ∈ L2 and Γ ⊆ α(L1) ∩ α(L2). Then, we find that (1) Πα(L1)(u) = v
and (2) Πα(L2)(u) = w. The proof of this statement proceeds by induction over
u.

Direction L1|||L2 ⊇ L1|||α(L1)∩α(L2)L2 can be verified similarly. We show that
if the projection of a word onto α(L1) and α(L2) yields words in the respective
language, then the word must be strongly synchronizable w.r.t. α(L1) ∩ α(L2).

Formally: Let u, v, w ∈ Σ∗, L1, L2 ⊆ Σ∗ such that w ∈ (α(L1) ∪ α(L2))∗,
Πα(L1)(w) = u ∈ L1 and Πα(L1)(w) = v ∈ L2. Then, we find that w ∈
u|||α(L1)∩α(L2)v. The proof proceeds again by induction, this time over w. ��

An immediate consequence of Theorem 6 and Theorem 10 is the following
result. Synchronous composition is subsumed by general synchronous shuffling.

Corollary 11. For any L1, L2 ⊆ Σ∗ we find that L1|||L2 = L1
Σ ||Σα(L1)∩α(L2)

L2.

5 Derivatives for General Synchronous Shuffling

Brzozowski derivatives [3] are a useful tool to translate regular expressions into
finite automata and to obtain decision procedures for equivalence and contain-
ment for regular expressions. We show that Brzozowski’s results and their appli-
cations can be extended to regular expressions that contain shuffle operators.
Based on the results of the previous section, we restrict our attention to regular
expressions extended with the general synchronous shuffle operator.

Definition 12. The set RΣ of regular shuffle expressions is defined inductively
by φ ∈ RΣ, ε ∈ RΣ, Σ ⊆ RΣ, and for all r, s ∈ RΣ and Γ, P1, P2 ⊆ Σ we have
that r + s, r · s, r∗, rP1 ||P2

Γ s ∈ RΣ.

Definition 13. The language L() : RΣ → Σ∗ denoted by a regular shuffle
expression is defined inductively as follows. L(φ) = ∅. L(ε) = {ε}. L(x) = {x}.
L(r+s) = L(r)∪L(s). L(r ·s) = {v ·w | v ∈ L(r)∧w ∈ L(s)}. L(r∗) = {w1...wn |
n ≥ 0 ∧ wi ∈ L(r) ∧ i ∈ {1, ..., n}}. L(rP1 ||P2

Γ s) = {u | u ∈ vP1 ||P2
Γ w ∧ v ∈

L(r) ∧ w ∈ L(s)}.
An expression r is nullable if ε ∈ L(r). The following function n( ) detects

nullable regular expressions.

Definition 14. We define n( ) : RΣ → Bool inductively as follows. n(φ) =
false. n(ε) = true. n(x) = false. n(r + s) = n(r) ∨ n(s). n(r · s) = n(r) ∧ n(s).
n(r∗) = true. n(rP1 ||P2

Γ s) = n(r) ∧ n(s).

Lemma 15. For all r ∈ RΣ we have that ε ∈ L(r) iff n(r) = true.

Proof. The proof proceeds by induction over r. For brevity, we only consider the
shuffle case as the remaining cases are standard. ε ∈ L(rP1 ||P2

Γ s) iff (by definition)
ε ∈ vP1 ||P2

Γ w for some v ∈ L(r) and w ∈ L(s). By definition of P1 ||P2
Γ it must be

that v = ε and w = ε. By induction, this is equivalent to n(r) ∧ n(s). ��
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The derivative of an expression r w.r.t. some symbol x, written dx(r) yields
a new expression where the leading symbol x has been removed. In its definition,
we write (p) ⇒ r for: if p then r else φ.

Definition 16. The derivative of r ∈ RΣ w.r.t. x ∈ Σ, written dx(r), is com-
puted inductively as follows.

dx(φ) = φ (D1)
dx(ε) = φ (D2)
dy(x) = (x = y) ⇒ ε (D3)
dx(r + s) = dx(r) + dx(s) (D4)
dx(r · s) = (dx(r)) · s + (n(r)) ⇒ dx(s) (D5)
dx(r∗) = (dx(r)) · r∗ (D6)
dx(rP1 ||P2

Γ s) = (x �∈ Γ ) ⇒ (dx(r)P1 ||P2
Γ s) + (rP1 ||P2

Γ dx(s)) (D7)
+(x ∈ Γ ∧ P1 ∩ P2 = ∅) ⇒ (dx(r)∅||∅Γ dx(s)) (D8)
+(x ∈ Γ ∧ P1 ∩ P2 �= ∅) ⇒ (dx(r)P1 ||P2

Γ dx(s)) (D9)
+(x ∈ Γ ∧ (P1 ∪ x) ∩ P2 = ∅) ⇒ (dx(r)P1∪x||P2

Γ s) (D10)
+(x ∈ Γ ∧ P1 ∩ (P2 ∪ x) = ∅) ⇒ (rP1 ||P2∪x

Γ dx(s)) (D11)

The definition extends to words and sets of words. We define dε(r) = r and
dxw(r) = dw(dx(r)). For L ⊆ Σ∗ we define dL(r) = {dw(r) | w ∈ L}.

We refer to the special case dΣ∗(r) as the set of descendants of r. A descen-
dant is either the expression itself, a derivative of the expression, or the derivative
of a descendant.

The first six cases (D1-6) correspond to Brzozowski’s original definition [3].
As a minor difference we may concatenate with φ when building the derivative
of a concatenated expression whose first component is not nullable. The new
sub-cases (D7-11) for the general shuffle closely correspond to the sub-cases of
Definition 5. For example, compare (D7) and (G3-4), (D8) and (G5), (D9) and
(G6), (D10) and (G7), and lastly (D11) and (G8).

An easy induction shows that the derivative of a shuffle expression is again
a shuffle expression.

Theorem 17 (Closure). For any r ∈ RΣ and x ∈ Σ we have that dx(r) ∈ RΣ.

Brzozowski proved that the derivative of a regular expression denotes a left
quotient. This result extends to shuffle expressions.

Theorem 18 (Left Quotients). For any r ∈ RΣ and x ∈ Σ we have that
L(dx(r)) = x\L(r).

Proof. It suffices to consider the new case of general synchronous shuffling.
We consider the direction L(dx(rP1 ||P2

Γ s)) ⊆ x\L(rP1 ||P2
Γ s)x = {w | x · w ∈

L(rP1 ||P2
Γ s)}.

Suppose u ∈ L(dx(rP1 ||P2
Γ s)). We will verify that x · u ∈ L(rP1 ||P2

Γ s). We
proceed by distinguishing among the following cases.
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− Case x �∈ Γ :
By definition of the derivative operation, we find that either (D7a) u ∈
L(dx(r)P1 ||P2

Γ s) or (D7b) u ∈ L(rP1 ||P2
Γ dx(s)).

• Case (D7a):
1. By definition u ∈ vP1 ||P2

Γ w for some v ∈ L(dx(r)) and w ∈ L(s).
2. By induction x · v ∈ L(r).
3. By observing the various cases for w (see (G2-3) in Definition 5) we

follow that x · u ∈ x · vP1 ||P2
Γ w.

4. Hence, x · u ∈ L(rP1 ||P2
Γ s) and we are done.

• Case (D7b): Similar to the above.
− Case x ∈ Γ :

By definition of the derivative operation (D8) u ∈ L(dx(r)∅||∅Γ dx(s)) where
P1 ∩ P2 = ∅, or (D9) u ∈ L(dx(r)P1 ||P2

Γ dx(s)) where P1 ∩ P2 �= ∅, or (D10)
u ∈ L(dx(r)P1∪x||P2

Γ s) where (P1∪x)∩P2 = ∅, or (D11) u ∈ L(rP1 ||P2∪x
Γ dx(s))

where P1 ∩ (P2 ∪ x) = ∅.
• Case (D8):

1. By definition u ∈ v∅||∅Γ w for some v ∈ L(dx(r)) and w ∈ L(dx(s)).
2. By induction x · v ∈ L(r) and x · w ∈ L(s).
3. By case (G5) x · u ∈ x · vP1 ||P2

Γ x · w.
4. Hence, x · u ∈ L(rP1 ||P2

Γ s) and we are done.
• Case (D9): Similar to the above. Instead of (G5) we can apply (G6).
• Case (D10):

1. By definition u ∈ vP1∪x||P2
Γ w for some v ∈ L(dx(r)) and w ∈ L(s).

2. By induction x · v ∈ L(r).
3. By observing the various cases for w (see (G2) and (G7)) we follow

that x · u ∈ x · vP1 ||P2
Γ w.

4. Hence, x · u ∈ L(rP1 ||P2
Γ s) and we are done.

• Case (D11): Similar to the above.

The other direction L(dx(rP1 ||P2
Γ s)) ⊇ {x · w | w ∈ L(rP1 ||P2

Γ s)} follows via
similar reasoning. ��

Based on the above result, we obtain a simple algorithm for membership
testing. Given a word w and expression r, we exhaustively apply the derivative
operation and on the final expression we apply the nullable test. That is w ∈ L(r)
iff n(dw(r)).

In general, it seems wasteful to repeatedly generate derivatives just for the
sake of testing a specific word. A more efficient method is to construct a DFA
via which we can then test many words. Brzozowski recognized that there is an
elegant DFA construction method based on derivatives. Expressions are treated
as states. For each expression and its derivative we find a transition.

For this construction to work we must establish that (1) the transitions
implied by the derivatives cover all cases, and (2) the set of states remains
finite. This is what we will consider next.

First, we establish (1) by verifying that each shuffle expression can be repre-
sented as a sum of its derivatives, extending another result of Brzozowski.
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Theorem 19 (Representation). For any r ∈ RΣ, L(r) = L((n(r)) ⇒ ε) ∪⋃
x∈Σ L(x · dx(r)).

Proof. Follows immediately from Lemma 15 and Theorem 18. ��
States are descendants of expression r. Hence, we must verify that the set

dΣ∗(r) is finite. In general, this may not be the case as shown by the following
example

dx(x∗) = ε · x∗

dx(ε · x∗) = φ · x∗ + ε · x∗

dx(φ · x∗ + ε · x∗) = (φ · x∗ + ε · x∗) + (φ · x∗ + ε · x∗)
...

To guarantee finiteness, we need to consider expressions modulo similarity.

Definition 20 (Similarity). We say that two expressions r, s ∈ RΣ are sim-
ilar, written r ≈ s, if one can be transformed into the other by applying the
following identities:

(I1) r + s = s + r (I2) r + (s + t) = (r + s) + t (I3) r + r = r

For S ⊆ RΣ we write S/ ≈ to denote the set of equivalence classes of all
similar expressions in S.

For the above example, we find that (φ·x∗+ε·x∗)+(φ·x∗+ε·x∗) ≈ φ·x∗+ε·x∗

by application of (I3). To show an application of (I2), consider

dx(x∗ + x · x∗) = = ε · x∗ + x∗

dx(ε · x∗ + x∗) = (φ · x∗ + εx∗) + ε · x∗

Clearly, (φ · x∗ + εx∗) + ε · x∗ ≈ φ · x∗ + εx∗. Application of (I1) is omitted for
brevity.

To verify (dis)similarity among descendants it suffices to apply identities
(I1-3) at the top-level, i.e. highest position in the abstract syntax tree represen-
tation of expressions. Top-level alternatives are kept in a list and sorted according
to the number of occurrences of symbols. Any duplicates in the list are removed.
Thus, the set dΣ∗(r)/ ≈ is obtained by generating dissimilar descendants, start-
ing with {r}. That this generation step reaches a fix-point is guaranteed by the
following result.

Theorem 21 (Finiteness). For any r ∈ RΣ the set dΣ∗(r)/ ≈ is finite.

Proof. It suffices to consider the new case of shuffle expressions. Our argumen-
tation is similar to the case of concatenation in Brzozowski’s original result. See
proofs of Theorems 4.3(a) and 5.2 in [3]. It suffices to consider the new form
rP1 ||P2

Γ s which we will abbreviate by t.
By inspection of the definition of d() on P1 ||P2

Γ and application of identity (I2)
(associativity) we find that all descendants of t can be represented as a sum of
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expressions which are either of the shape φ or r′P ′
1 ||P ′

2
Γ s′ where r′ is a descendant

of r and s′ is a descendant of s, but P ′
1 and P ′

2 are arbitrary subsets of Σ.
Thus, we can apply a similar argument as in Brzozowski’s original proof to

approximate the number of descendants of rP1 ||P2
Γ s by the number of descendants

of r and s.
Suppose 
Dr denotes the number of all descendants of r and n is the number

of elements in Σ. Then, we can approximate 
Dt as follows:


Dt ≤ 2�Dr∗�Ds∗2n∗2n

The exponent counts the number of different factors of the form r′P1 ||P2
Γ s′ and

a sum corresponds to a subset of these factors. The factor 2n ∗ 2n arises because
P1, P2 range over subsets of Σ where n = |Σ|. The factor 
Ds ∗ 
Dr arises from
the variation of r′ and s′ over the descendants of r and s, respectively.

As 
Dr and 
Ds are finite, by the inductive hypothesis, we obtain a very
large, but finite bound on 
Dt. ��

We summarize.

Definition 22 (Derivative-Based DFA Construction). For any r ∈ RΣ

we define D(r) = (Q,Σ, q0, δ, F ) where Q = dΣ∗(r)/ ≈, q0 = r, for each q ∈ Q
and x ∈ Σ we define δ(q, x) = dx(q), and F = {q ∈ Q | n(q)}.
Theorem 23. For any r ∈ RΣ we have that L(r) = L(D(r)).

5.1 Discussion

Derivatives for free. To obtain derivatives for the various shuffling variants in
Section 3 we apply the following method. Each shuffling variant is transformed
into its general synchronous shuffle representation as specified in Section 4. On
the resulting expression we can then apply the derivative construction from
Section 5.

For interleaving (‖), weakly (| ∼ |Γ ) and strongly synchronized shuffling
(|||Γ ) the transformation step is purely syntactic. For example, in case of weak
synchronous shuffling expressions r1| ∼ |Γ r2 are exhaustively transformed into
r1

∅||∅Γ r2. The transformation step is more involved for synchronous composition
(|||) as we must compute the alphabet of expressions (resp. the alphabet of the
underlying languages). We define α(r) = α(L(r)).

For plain regular expressions, we can easily compute the alphabet by observ-
ing the structure of expressions. For example, α(r∗) = α(r). α(x) = {x}.
α(φ) = {}. α(ε) = {}. α(r + s) = α(r) ∪ α(s). α(r · s) = α(r) ∪ α(s) if
L(r),L(s) �= {}. Otherwise, α(r · s) = {}. The test L(r) �= {} can again be
defined by observing the expression structure. We omit the details.

In the presence of shuffle expressions such as synchronous composition, it
is not obvious how to appropriately extend the above structural definition. For
example, consider x · x · y|||x · y. We find that α(x · x · y) = {x, y} and α(x · y)
but α(x · x · y|||x · y) = {} due to the fact that x · x · y|||x · y equals φ.



Derivatives for Regular Shuffle Expressions 285

Hence, to compute the alphabet of some r ∈ RΣ we first convert r into a DFA
M using the derivative-based automata construction. To compute the alphabet
of M we use a variant of the standard emptiness check algorithm for DFAs.
First, we compute all reachable paths from any of the final states to the initial
state. To avoid infinite loops we are careful not to visit a transition twice on a
path. Then, we obtain the alphabet of M by collecting the set of all symbols on
all transitions along these paths.

Thus, the transformation of expressions composed of synchronous composi-
tion proceeds as follows. In the to be transformed expression, we pick any subex-
pression r1|||r2 where r1, r2 ∈ RΣ . If there is none we are done. Otherwise, we
must find r1 and r2 which have already been transformed, resp., do not contain
any shuffling operator. Alphabets α(r1) and α(r2) are computed as described
and subexpression r1|||r2 is replaced by r1

Σ ||Σα(r1)∩α(r2)
r2. This process repeats

until all synchronous composition operations have been replaced.

Specialization of derivative method. For shuffling (‖) and strongly synchronized
shuffling (|||Γ ), it is possible to derive specialized derivative operations. In the fol-
lowing, R

|·|
Σ denotes the subset of regular expressions restricted to shuffle expres-

sions composed of | · | where | · | stands for any of the shuffling forms we have
seen so far.

Theorem 24 (Derivatives Closure for Shuffling). For any r ∈ R
‖
Σ and

x ∈ Σ we have that dx(r) ∈ R
‖
Σ.

Proof. Recall that ‖ can be expressed as ∅||∅∅. By case analysis of Definition 16.
Case (D7) applies only. ��
Theorem 25 (Derivatives Closure for Strongly Synchronized
Shuffling). For any r ∈ R

|||Γ
Σ and x ∈ Σ we have that dx(r) ∈ R

|||Γ
Σ .

Proof. Recall that |||Γ can be expressed as Γ ||ΓΓ . Again by case analysis. This
time only cases (D7) and (D9) apply. ��

The above closure results show that the general derivative method in
Definition 16 can be specialized for the case of asynchronous and strongly syn-
chronized shuffling. The respective proofs describe the relevant cases.

For weak synchronous shuffling, we can no longer guarantee the closure prop-
erty. For example, consider weak synchronous shuffling | ∼ |Γ which is expressed
by ∅||∅Γ . For expression x · z∅||∅{x}y. we find that

dx(x · z∅||∅{x}y) = z{x}||∅{x}y + x · z∅||{x}
{x}φ

The expression on the right-hand side is not part of R
|∼|Γ
Σ due to subexpressions

of the form z{x}||∅{x}y. However, these forms are necessary for correctness. Hence,
to appropriately define derivatives for weak synchronous shuffling derivatives it
is strictly necessary to enrich the expression language with general synchronous
shuffling.

A similar observation applies to synchronous composition. For brevity, we
omit the details.
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6 Conclusion

Thanks to a general form of synchronous shuffling we can extend the notion of
Brzozowski derivatives to various forms of shuffling which appear in the liter-
ature [2,4,11]. This enables the application of algorithms based on derivatives
for shuffle expressions such as automata-based word recognition algorithms [10]
and equality/containment checking [1,6].

There are several avenues for future work. For example, it is well-known that
associativity does not hold for synchronous composition. The work in [8] iden-
tifies sufficient conditions to guarantee associativity and other algebraic laws.
It would be interesting to identify such conditions in terms of our general syn-
chronous shuffling operation.

In another direction, it would be interesting to study in detail the impact
of the various shuffling variants on the size of the derivative-automata. Earlier
work [5] only considers the specific case of (asynchronous) shuffling.

Acknowledgments. We thank the reviewers for their comments.
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Abstract. We extend Brzozowski derivatives and partial derivatives
from regular expressions to ω-regular expressions and establish their
basic properties. We observe that the existing derivative-based automa-
ton constructions do not scale to ω-regular expressions. We define a new
variant of the partial derivative that operates on linear factors and prove
that this variant gives rise to a translation from ω-regular expressions to
nondeterministic Büchi automata.
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1 Introduction

Brzozowski derivatives [3] and partial derivatives [2] are well-known tools to
transform regular expressions to automata and to define algorithms for equiva-
lence and containment on them [1]. Derivatives had quite some impact on the
study of algorithms for regular languages on finite words and trees [4,9], but
they received less attention in the study of ω-regular languages.

While the extension of Brzozowski derivatives to ω-regular expressions is
straightforward, the corresponding automaton construction does not easily
extend to ω-automata. This observation leads Park [6] to suggest resorting to
a different acceptance criterion based on transitions. Redziejowski [7] remarks
that “the automaton constructed from the derivative has, in general, too few
transitions as well as too few states.” As a remedy, Redziejowski presents a con-
struction of a deterministic automaton where states are certain combinations of
derivatives with a non-standard transition-based acceptance criterion. In sub-
sequent work, Redziejowski [8] improves on this construction by lowering the
number of states and by simplifying some technical details. To the best of our
knowledge, these papers [7,8] are the only attempts to construct ω-automata
using derivatives.
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In comparison, our construction and proof are much simpler, we gain new
insights into the structure of linear factors as a stepping stone to partial deriva-
tives, and we obtain a standard nondeterministic Büchi automaton. Because
Brzozowski derivatives invariably lead to deterministic automata, we analyze
Antimirov’s partial derivatives and identify linear factors as a suitable structure
on which we base the construction of a nondeterministic automaton.

Overview

Section 2 reviews the basic definitions for (ω-) regular expressions and (Büchi)
automata. Section 3 reviews Brzozowski derivatives, extends them to ω-regular
expressions, and demonstrates the failure of the automaton construction based
on Brzozowski derivatives. Section 4 introduces Antimirov’s linear factors and
partial derivatives, extends them to ω-regular expressions, establishes their basic
properties, and demonstrates the failure of the automaton construction based on
partial derivatives. Section 5 introduces a new notion of partial derivative that
operates directly on linear factors of an ω-regular expression, defines a Büchi
automaton on that basis, and proves its construction correct.

2 Preliminaries

An alphabet Σ is a finite set of symbols. The set Σ∗ denotes the set of finite
words over Σ, ε ∈ Σ∗ stands for the empty word; the set Σω denotes the set of
infinite words over Σ. For u ∈ Σ∗, we write u · v for the concatenation of words;
if v ∈ Σ∗, then u · v ∈ Σ∗; if v ∈ Σω, then u · v ∈ Σω. Concatenation extends to
sets of words as usual: U ·V = {u · v | u ∈ U, v ∈ V } where U ⊆ Σ∗ and V ⊆ Σ∗

or V ⊆ Σω.
Given a language U ⊆ Σ∗ and W ⊆ Σ∗ or W ⊆ Σω, the left quotient

U−1W = {v | ∃u ∈ U : uv ∈ W}. It is a subset of Σ∗ or Σω depending on W .
For a singleton language U = {u}, we write u−1W for the left quotient.

Definition 1. The set RΣ of regular expressions over Σ is defined inductively
by 1 ∈ RΣ, 0 ∈ RΣ, Σ ⊆ RΣ, and, for all r, s ∈ RΣ, (r.s), (r + s), r∗ ∈ RΣ.
The explicit bracketing guarantees unambiguous parsing of regular expressions.

Definition 2. The language denoted by a regular expression is defined induc-
tively by L : RΣ → ℘(Σ∗) as usual. L(1) = {ε}. L(0) = {}. L(a) = {a}
(singleton word) for each a ∈ Σ. L(r.s) = L(r) · L(s). L(r + s) = L(r) ∪ L(s).
L(r∗) = {u1 . . . un | n ∈ N, ui ∈ L(r)}.
Definition 3. The operations �,⊕ : RΣ × RΣ → RΣ are smart concatenation
and smart union constructors for regular expressions.

r � s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 r = 0 ∨ s = 0
r s = 1
s r = 1
(r.s) otherwise

r ⊕ s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r s = 0
s r = 0
r r = s

(r + s) otherwise
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Lemma 4. For all r, s: L(r � s) = L(r.s); L(r ⊕ s) = L(r + s).

Definition 5. A regular expression r is nullable if ε ∈ L(r). The function N :
RΣ → {0,1} detects nullable expressions: N(1) = 1. N(0) = 0. N(a) = 0.
N(r.s) = N(r) � N(s). N(r + s) = N(r) ⊕ N(s). N(r∗) = 1.

Lemma 6. For all r ∈ RΣ. N(r) = 1 iff ε ∈ L(r).

Definition 7. The set Rω
Σ of ω-regular expressions over Σ is defined by 0 ∈ Rω

Σ;
for all α, β ∈ Rω

Σ, (α + β) ∈ Rω
Σ; for all r ∈ RΣ and α ∈ Rω

Σ, (r.α) ∈ Rω
Σ; for

all s ∈ RΣ, if ε /∈ L(s), then sω ∈ Rω
Σ.

Remark 8. Definition 7 is equivalent to an alternative definition often seen in the
literature, where an ω-regular-expression has a sum-of-product form

∑n
i=1(ri.s

ω
i )

with ε /∈ L(si). An easy induction shows that every α can be rewritten in this
form: cases 0, (α+β), sω: immediate; case (r.α): by induction, α can be written as∑n

i=1(ri.s
ω
i ), distributivity and associativity yield

∑n
i=1(r.ri).sω

i for (r.α). When
convenient for a proof, we assume that an expression is in sum-of-product form.

Definition 9. The language denoted by an ω-regular expression is defined induc-
tively by Lω : Rω

Σ → ℘(Σω): Lω(0) = ∅. Lω(α + β) = Lω(α) ∪ Lω(β). Lω(r.α) =
L(r) · Lω(α). Lω(sω) = {v1v2 · · · | ∀i ∈ N : vi ∈ L(s)}.
Definition 10. A (nondeterministic) finite automaton (NFA) is a tuple A =
(Q,Σ, δ, q0, F ) where Q is a finite set of states, Σ an alphabet, δ : Q×Σ → ℘(Q)
the transition function, q0 ∈ Q the initial state, and F ⊆ Q the set of final states.

Let w = a0 . . . an−1 ∈ Σ∗ be a word. A run of A on w is a sequence q0 . . . qn

such that, for all 0 ≤ i < n, qi+1 ∈ δ(qi, ai). The run is accepting if qn ∈ F .
The language L(A) = {w ∈ Σ∗ | ∃ accepting run of A on w} is recognized by A.

The automaton A is deterministic if |δ(q, a)| = 1, for all q ∈ Q, a ∈ Σ.

Definition 11. A (nondeterministic) Büchi-automaton (NBA) is a tuple B =
(Q,Σ, δ,Q0, F ) where Q is a finite set of states, Σ an alphabet, δ : Q×Σ → ℘(Q)
the transition function, Q0 ⊆ Q the set of initial states, and F ⊆ Q the set of
accepting states.

Let w = (ai)i∈N ∈ Σω be an infinite word. A run of B on w is an infinite
sequence of states (qi)i∈N such that q0 ∈ Q0 and for all i ∈ N: qi+1 ∈ δ(qi, ai).

A run (qi)i∈N of B is accepting if there exists a strictly increasing sequence
(nj)j∈N such that qnj

∈ F , for all j ∈ N. The language Lω(B) = {w ∈ Σω |
∃ accepting run of B on w} is recognized by B. The automaton B is deterministic
if |Q0| = 1 and |δ(q, a)| = 1, for all q ∈ Q, a ∈ Σ.

3 Regular Expressions to Finite Automata

The textbook construction to transform a regular expression into a finite automa-
ton is taken from Kleene’s work [5]. However, there is an alternative approach
based on Brzozowski’s idea of derivatives for regular expressions.
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Given a regular expression r and a symbol a ∈ Σ, the derivative r′ = da(r)
is a regular expression such that L(r′) = {w | aw ∈ L(r)}, the left quotient of
L(r) by the symbol a. The derivative can be defined symbolically by induction
on regular expressions.

Definition 12 (Brzozowski derivative [3]).

da(0) = 0
da(1) = 0

da(b) =

{
1 a = b

0 a = b

da(r.s) = (da(r) � s) ⊕ (N(r) � da(s))
da(r + s) = da(r) ⊕ da(s)
da(r∗) = da(r) � r∗

Brzozowski proved the following representation theorem that factorizes a regular
language into its ε-part and the quotient languages with respect to each symbol
of the alphabet.

Theorem 13 (Representation [3]). L(r) = L(N(r)) ∪ ⋃
a∈Σ{a} · L(da(r))

He further proved that there are only finitely many different regular expres-
sions derivable from a given regular expression. This finiteness result considers
expressions modulo a similarity relation ≈ that contains (at least) associativity,
commutativity, and idempotence of the + operator as well as considering 0 as
the neutral element. We further assume associativity of concatenation.

Definition 14 (Similarity). Similarity ≈ ⊆ RΣ × RΣ is the smallest com-
patible relation that encompasses the following elements for all r, s, t ∈ RΣ.

(r+s)+t ≈ r+(s+t) r+s ≈ s+r r+r ≈ r r+0 ≈ r (r.s).t ≈ r.(s.t)

Similarity extends to ≈ω ⊆ Rω
Σ × Rω

Σ as the smallest compatible relation that
contains the following elements for all α, β, γ ∈ Rω

Σ.

(α + β) + γ ≈ω α + (β + γ) α + β ≈ω β + α α + α ≈ω α α + 0 ≈ω α

(r.s).α ≈ω r.(s.α) r ≈ s ⇒ (r.tω) ≈ω (s.tω) s ≈ t ⇒ (r.sω) ≈ω (r.tω)

Definition 15. The derivative operator extends to words w ∈ Σ∗ by dε(r) = r,
daw(r) = dw(da(r)) and to sets of words W ⊆ Σ∗ by dW (r) = {dw(r) | w ∈ W}.
Theorem 16 (Finiteness [3]). For each r ∈ RΣ, the set dΣ∗(r)/≈ is finite.

Taken together, these two theorems yield an effective transformation from a
regular expression to a deterministic finite automaton.

Theorem 17 (DFA from regular expression [3]). Define the DFA D(r) =
(Q,Σ, δ, q0, F ) where Q = dΣ∗(r)/≈, for all s ∈ Q, a ∈ Σ: δ(s, a) = {da(s)},
q0 = r, F = {s ∈ Q | N(s) = 1}. Then D(r) is a deterministic finite automaton
and L(D(r)) = L(r).

Let’s try to apply an analogous construction to ω-regular expressions. We
first straightforwardly extend the definition of derivatives [7].
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Definition 18 (Brzozowski derivative for ω-regular expressions).

da(0) = 0
da(α + β) = da(α) ⊕ da(β)

da(r.α) = (da(r) � α) ⊕ (N(r) � da(α))
da(sω) = da(s) � sω

Lemma 19. Lω(da(α)) = a−1Lω(α)

Lemma 20. Lω(α) =
⋃

a∈Σ{a} · Lω(da(α)).

The operation dw(Σ) also yields finitely many derivatives modulo similarity
(extended to Rω

Σ ×Rω
Σ in the obvious way), but applying Brzozowski’s automata

construction analogously results in a deterministic Büchi automaton, which is
known to be weaker than its nondeterministic counterpart.

Example 21. Consider the ω-regular expression (a + b)∗.bω that describes the
language of infinite words that contain only finitely many as. It is known that this
language cannot be recognized with a deterministic Büchi automaton. Applying
Brzozowski’s automaton construction analogously yields the following:

Q = {q0, q1}
q0 = (a + b)∗.bω

q1 = (a + b)∗.bω + bω

Q0 = {q0}

δ(q0, a) = q0
δ(q0, b) = q1
δ(q1, a) = q0
δ(q1, b) = q1

As all states “contain” the looping expression bω, it is not clear which states
should be accepting. Furthermore, the automaton is deterministic, so it cannot
recognize Lω((a + b)∗.bω), regardless.

4 Partial Derivatives

As Brzozowski’s construction only results in a deterministic automaton, we next
consider a construction that yields a nondeterministic automaton. It is based
on Antimirov’s partial derivatives [2]. The partial derivative ∂a(r) of a regular
expression r with respect to a is a set of regular expressions {s1, . . . , sn} such
that

⋃n
i=1 L(si) = {w | aw ∈ L(r)}. As a stepping stone to their definition,

Antimirov introduces linear factors of regular expressions. A linear factor is a
pair of a first symbol that can be consumed by the expression and a “remaining”
regular expression. The following definition corresponds to Antimirov’s definition
[2, Definition 2.4], but we replace the smart constructor � for concatenation (that
elides ε) by plain concatenation to simplify the finiteness proof.

Definition 22 (Linear factors [2]).

lf(0) = {}
lf(1) = {}
lf(a) = {〈a,1〉}

lf(r.s) = lf(r).s ∪ N(r) � lf(s)
lf(r + s) = lf(r) ∪ lf(s)
lf(r∗) = lf(r).r∗

where
0 � F = {} 1 � F = F
〈a, r〉.s = 〈a, r.s〉 F.s = {f.s | f ∈ F}
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Defining the language of a linear factor and a set of linear factors F by

L(〈a, r〉) = a · L(r) L(F ) =
⋃

{L(f) | f ∈ F}
we can prove the following results about linear factors by induction on r.

Lemma 23. If 〈a, r′〉 ∈ lf(r), then a · L(r′) ⊆ L(r).

Lemma 24. If av ∈ L(r), then there exists 〈a, r′〉 ∈ lf(r) such that v ∈ L(r′).

Lemma 25. For all r, L(lf(r)) = L(r) \ {ε}.
We label the symbol for partial derivative with A to signify Antimirov’s defini-
tion. In Section 5, we define a different version of the partial derivative.

Definition 26 (Partial derivative [2]).

∂A
a (r) = {r′ | 〈a, r′〉 ∈ lf(r), r′ = 0}

Partial derivatives extend to words and sets of words W ⊆ Σ∗ in the usual way:

∂A
ε (r) = {r} ∂A

aw(r) =
⋃

{∂A
w (r′) | r′ ∈ ∂A

a (r)} ∂A
W (r) =

⋃
{∂A

w (r) | w ∈ W}
Antimirov proves [2, Theorem 3.4] that the set of all partial derivatives of a
given regular expression is finite. While his definition of linear factors uses the
smart concatenation �, the finiteness proof does not rely on it: it approximates
smart concatenation by the standard concatenation operator.

Theorem 27. For any r ∈ RΣ, |∂A
Σ+(r)| ≤ ||r|| where ||r|| is the alphabetic

width of r (i.e., the number of occurrences of symbols from Σ in r).

Furthermore, a language can be represented from its partial derivatives.

Lemma 28. L(r) = L(N(r)) ∪ ⋃
a∈Σ a · L(

∑
∂A

a (r)).

Here, we write
∑{ri | 1 ≤ i ≤ n} for r1 + · · · + rn, if n > 0, or for 0 if n = 0.

We also have the following characterization.

Lemma 29. If ∂A
a (r) = {s1, . . . , sn}, then

⋃n
i=1 L(si) = {w | aw ∈ L(r)}.

Antimirov defines a nondeterministic automaton for L(r) as follows.

Theorem 30 (NFA from regular expression [2]). Define the NFA N (r) =
(Q,Σ, δ, q0, F ) where Q = ∂A

Σ∗(r), for all s ∈ Q, a ∈ Σ: δ(s, a) = ∂A
a (s), q0 = r,

F = {s ∈ Q | N(s) = 1}. Then N (r) is an NFA and L(r) = L(N (r)).

Lemma 31. w ∈ L(r) iff ε ∈ ⋃
N(∂A

w (r)).

Proof. By induction on w.
Base case: ε ∈ L(r) iff ε ∈ N(r) by Lemma 6. The claim follows because

N(r) =
⋃

N({r}) =
⋃

N({∂A
ε (r)}).

Inductive case: Suppose that aw ∈ L(r) and ∂A
a (r) = {r1, . . . , rk}. By

Lemma 29,
⋃

i L(ri) = {v | av ∈ L(r)} so that w ∈ ⋃
i L(ri), i.e., ∃i: w ∈ L(ri).

By induction, ε ∈ ⋃
N(∂A

w (ri)) ⊆ N(∂A
aw(r)).

For the reverse direction, suppose that ε ∈ ⋃
N(∂A

aw(r)) = N(
⋃{∂A

w (r′) |
r′ ∈ ∂A

a (r), r′ = 0}). Hence, there exists r′ ∈ ∂A
a (r) such that ε ∈ N(∂A

w (r′)). By
induction, w ∈ L(r′) and thus, by Lemma 29, aw ∈ L(r). ��
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To scale the definition from Theorem 30 to ω-regular expressions we need to
extend Definition 22.
Definition 32 (ω-Linear factors). Define lf : Rω

Σ → Σ × Rω
Σ × {0, 1} by

lf(0) = ∅
lf(α + β) = lf(α) ∪ lf(β)

lf(r.α) = lf(r).α × {0} ∪ N(r) � lf(α)
lf(sω) = lf(s).sω × {1}

Compared to the linear factor of a regular expression, an ω-linear factor is a
triple of a next symbol, an ω-regular expression, and a bit that indicates whether
the factor resulted from unrolling an ω-iteration.

For an ω-linear factor define Lω(〈a, β, g〉) = a · Lω(β) and for a set F of
ω-linear factors accordingly Lω(F ) =

⋃{Lω(f) | f ∈ F}.
Each ω-regular language can be represented by its set of ω-linear factors.

Compared to the finite case (Lemma 25), the empty string need not be considered
because it is not an element of Σω.
Lemma 33. For all α, Lω(α) = Lω(lf(α)).

Proof. By induction on α. We only show one illustrative case.
Case sω: let w ∈ Lω(sω). By definition, w = v0v1 . . . with ε = vi ∈ L(s),

for all i ∈ N. Suppose that w = aw′. Then v0 = av′
0. Show that there exists

f = 〈a, s′, 1〉 ∈ lf(sω) such that w′ ∈ Lω(s′).
If lf(sω) = ∅, then Lω(sω) = ∅, which contradicts the existence of w.
Suppose next that all ω-linear factors have the form 〈b, s′, 1〉 for some b = a.

But then we obtain a contradiction to av′
0 ∈ L(s).

Thus, we need to examine the ω-linear factors of the form 〈a, s′.sω, 1〉 ∈
lf(s).sω × {1} = lf(sω). By Lemma 24, there must be a linear factor 〈a, s′〉 ∈
lf(s) such that v′

0 ∈ L(s′). Hence, w′ = v′
0v1 · · · ∈ Lω(s′.sω) and thus w = aw′ ∈

Lω(〈a, s′.sω, 1〉) ⊆ Lω(lf(sω)).
For the reverse direction, suppose that w ∈ Lω(lf(sω)). Then there exists

〈a, s′〉 ∈ lf(s) and hence 〈a, s′.sω, 1〉 ∈ lf(s).sω × {1} = lf(sω) such that
w ∈ a · Lω(s′.sω) = a · L(s′) · Lω(sω). By Lemma 23, a · L(s′) ⊆ L(s) so that
w ∈ a · L(s′) · Lω(sω) ⊆ L(s) · Lω(sω) = Lω(sω). ��

Using the obvious extension of the partial derivative operator, Lemma 29
extends to the ω-regular case.
Lemma 34. If ∂A

a (α) = {β1, . . . , βn}, then
⋃n

i=1 Lω(βi) = {w | aw ∈ Lω(α)}.
However, again it is not clear how to extend Antimirov’s automaton construc-

tion to Büchi automata. The critical part is to come up with a characterization of
the accepting states.
Example 35. Let α = (a + b)∗.bω as in the previous example. Constructing an
automaton analogously to Theorem 30 yields

q0 = (a + b)∗.bω

q1 = bω

Q = {q0, q1}
Q0 = {q0}

δ(q0, a) = {q0}
δ(q0, b) = {q0, q1}
δ(q1, a) = {}
δ(q1, b) = {q1}
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Thus, adopting the set of accepting states F = {q1} yields a nondeterminis-
tic Büchi automaton that accepts exactly L(α). Apparently, we may categorize
states of the form sω as accepting.

While the previous example is encouraging in that the construction leads to a
correct automaton, a simple transformation of the ω-regular expression shows
that the criterion for accepting states is not sufficient in the general case.

Example 36. Let β = (a + b)∗.(b.b∗)ω. This expression recognizes the same lan-
guage as the expression of the previous example.

∂a(β) = ∂a((a + b)∗.(b.b∗)ω)
= ∂a((a + b)∗).(b.b∗)ω ∪ ∂a(b.b∗) � (b.b∗)ω

= {(a + b)∗.(b.b∗)ω}
∂b(β) = ∂b((a + b)∗.(b.b∗)ω)

= ∂b((a + b)∗).(b.b∗)ω ∪ ∂b(b.b∗) � (b.b∗)ω

= {(a + b)∗.(b.b∗)ω} ∪ {b∗.(b.b∗)ω}
∂b(b∗.(b.b∗)ω) = ∂b(b∗).(b.b∗)ω ∪ ∂b(b.b∗) � (b.b∗)ω

= {b∗.(b.b∗)ω} ∪ {b∗.(b.b∗)ω}
∂a(b∗.(b.b∗)ω) = {}

Thus, we cannot construct a Büchi automaton for Lω(β) by simply classifying
the states of the form sω as accepting because there are no such states in this
automaton: thus, the automaton would accept the empty language.

Alternatively, we might be tempted to consider all expressions of the form
r.sω where r is nullable as accepting states. This choice would classify all states
in the example as accepting, which would cause the automaton to wrongly accept
the infinite word aω.

5 NBA from ω-Linear Factors

The difficulties with the previous examples demonstrate that Antimirov’s partial
derivatives cannot be used directly as the states of a Büchi automaton. To fix
these problems, we base our construction directly on the ω-linear factors that
arise as an intermediate step in Antimirov’s work.

Definition 37. For an ω-linear factor (and a set F of ω-linear factors) define
the partial derivative as a set of ω-linear factors:

∂b(〈a, β, g〉) =

{
{} a = b

lf(β) a = b
∂b(F ) =

⋃
f∈F

∂b(f)

Define further the extension to words ∂ε(F ) = F and ∂aw(F ) = ∂w(∂a(F )) and
the extension to sets of finite words W ⊆ Σ∗: ∂W (F ) =

⋃{∂w(F ) | w ∈ W}.
This definition of the derivative serves as the basis for defining the set of

states Q(α) for the NBA, which we are aiming to construct.
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Definition 38. Define Q(α) inductively as the smallest set such that lf(α) ⊆
Q(α) and, for each a ∈ Σ, ∂a(Q(α)) ⊆ Q(α).

Lemma 39. If 〈a, β, g〉 ∈ Q(α), then ∃w ∈ Σ∗ such that 〈a, β, g〉 ∈ ∂w(lf(α)).

Proof. By induction on the construction of Q(α).
Base case: 〈a, β, g〉 ∈ lf(α) = ∂ε(lf(α)).
Inductive case: 〈a, β, g〉 ∈ ∂a(f), for some f ∈ Q(α) and a ∈ Σ. By induction,

f ∈ ∂w(lf(α)), for some w, and thus 〈a, β, g〉 ∈ ∂a(∂w(lf(α))) = ∂aw(lf(α)).
��

Proposition 40. For each ω-regular expression α, Q(α) is finite.

Proof. We prove that Q(α) ⊆ Σ × ∂A
Σ+(α) × {0, 1}.

Suppose that 〈a, α′, g〉 ∈ Q(α). There are two cases. If 〈a, α′, g′〉 ∈ lf(α),
then a ∈ Σ and α′ ∈ ∂A

a (α) ⊆ ∂A
Σ+(α).

If 〈a, α′, g′〉 ∈ ∂b(〈b, β, g〉) for some 〈b, β, g〉 ∈ Q(α), then there exists some
w ∈ Σ∗ such that β ∈ ∂A

wb(α) and 〈a, α′, g〉 ∈ lf(β). By definition, α′ ∈
∂A

wba(α) ⊆ ∂A
Σ+(α).

By Theorem 27, |∂A
Σ+(α)| is finite and so is |Q(α)| ≤ |Σ| · |∂A

Σ+(α)| · 2. ��
Given this finiteness, we construct a non-deterministic Büchi automaton from

an ω-regular expression as follows.

Definition 41 (NBA from ω-regular expression). Define the NBA B(α) =
(Q,Σ, δ,Q0, F ) by Q = Q(α); Q0 = lf(α); F = {〈a, β, g〉 ∈ Q | g = 1}; and
δ(f, a) = ∂a(f).

Example 42. Consider (again) α = (a + b)∗.bω.

lf(α) = lf((a + b)∗).bω ∪ lf(bω)
= {〈a, (a + b)∗.bω, 0〉, 〈b, (a + b)∗.bω, 0〉, 〈b, bω, 1〉}
= Q = Q0

δ(〈b, bω, 1〉, a) = {}
δ(〈b, bω, 1〉, b) = {〈b, bω, 1〉}
δ(〈a, (a + b)∗.bω, 0〉, a) = lf((a + b)∗.bω) = Q
δ(〈a, (a + b)∗.bω, 0〉, b) = {}
δ(〈b, (a + b)∗.bω, 0〉, a) = {}
δ(〈b, (a + b)∗.bω, 0〉, b) = lf((a + b)∗.bω) = Q

Accepting states: F = {〈b, bω, 0〉} = lf(bω).
The resulting automaton properly accepts Lω(α).

Example 43. Next consider β = (a + b)∗.(b.b∗)ω.

lf(β) = lf((a + b)∗).(b.bω) × {0} ∪ lf((b.b∗)ω)
= lf(a + b).(a + b)∗.(b.bω) × {0} ∪ lf(b.b∗).(b.b∗)ω × {1}
= {〈a, (a + b)∗.(b.bω), 0〉, 〈b, (a + b)∗.(b.bω), 0〉}

∪ lf(b).b∗.(b.b∗)ω × {1}
= {〈a, (a + b)∗.(b.bω), 0〉, 〈b, (a + b)∗.(b.bω), 0〉

, 〈b, b∗.(b.b∗)ω, 1〉}
= {〈a, β, 0〉, 〈b, β, 0〉, 〈b, b∗.(b.b∗)ω, 1〉}
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δ(〈a, β〉, a) = lf(β)
δ(〈b, β〉, b) = lf(β)
δ(〈b, b∗.(b.b∗)ω〉, b) = lf(b∗.(b.b∗)ω)

= lf(b∗).(b.b∗)ω × {1} ∪ lf((b.b∗)ω)
= lf(b).b∗.(b.b∗)ω × {1} ∪ lf(b.b∗).(b.b∗)ω × {1}
= lf(b).b∗.(b.b∗)ω × {1} ∪ lf(b).b∗.(b.b∗)ω × {1}
= {〈b, b∗.(b.b∗)ω, 1〉}
= lf((b.b∗)ω)

Accepting states:

F = {〈b, b∗.(b.b∗)ω, 1〉} = lf((b.b∗)ω)

The resulting automaton properly accepts Lω(β) with the same number of states
as in the previous example.

It remains to prove the correctness of the construction in Definition 41.

Theorem 44. For all α ∈ Rω
Σ: Lω(α) = Lω(B(α)).

We start with some technical lemmas.

Lemma 45. For all v = ε, ∂v(lf(sω)) = ∂v(lf(s.sω)).

Proof. By definition of ω-regular expressions, ε /∈ L(s) that is N(s) = 0.
Observe that lf(sω) = lf(s).sω × {1},
whereas lf(s.sω) = lf(s).sω × {0} ∪ N(s) � lf(sω) = lf(s).sω × {0}.
Because v = ε, it must be that v = av′, for some a.
Hence, ∂a(lf(sω)) =

⋃{lf(s′.sω) | 〈a, s′〉 ∈ lf(s)} = ∂a(lf(s.sω)).
Hence, ∂av′(lf(sω)) = ∂av′(lf(s.sω)) ��
The next lemma is our workhorse in proving that Lω(α) is contained in the

language of B(α).

Lemma 46. If u ∈ L(r), then lf(α) ⊆ ∂u(lf(r.α)).

Proof. Induction on r.
Case r = 0: contradiction because L(0.α) = {}.
Case r = 1: Then u = ε and ∂ε(lf(1.α)) = lf(1.α) = lf(α).
Case r = a: Then u = a and ∂a(lf(a.α)) = ∂a(〈a, α, 0〉) = lf(α).
Case r = r1.r2: Then u = u1u2 with u1 ∈ L(r1) and u2 ∈ L(r2).

By similarity (cf. Definition 14), lf((r1.r2).α) = lf(r1.(r2.α)).
By induction on r1, lf(r2.α) ⊆ ∂u1(lf(r1.(r2.α))).
By induction on r2,

lf(α) ⊆ ∂u2(lf(r2.α)) ⊆ ∂u2(∂u1(lf(r1.(r2.α)))) = ∂u(lf(r.α))

Case r = r1 + r2: Assume that u ∈ L(r1) ⊆ L(r). By induction, lf(α) ⊆
∂u(lf(r1.α)) ⊆ ∂u(lf(r.α)). The case for r2 is analogous.
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Case r = r∗
1 : Consider

lf(r∗
1 .α) = lf(r∗

1).α ∪ N(r∗
1) � lf(α) = lf(r1).r∗

1 .α ∪ lf(α)

For u ∈ Σ∗, ∂u(lf(r∗
1 .α)) = ∂u(lf(r1).r∗

1 .α) ∪ ∂u(lf(α)).
If u ∈ L(r), then u = u1 . . . un, for some n ∈ N, where all ui = ε. Continue by
induction on n.
If n = 0, u = ε, then clearly lf(α) ⊆ ∂ε(lf(r∗

1 .α)).
Otherwise,

∂u(lf(r∗
1 .α))

= ∂u1...un
(lf(r∗

1 .α))
= ∂u2...un

(∂u1(lf(r
∗
1 .α)))

= ∂u2...un
(∂u1(lf(r1).r

∗
1 .α) ∪ ∂u1(lf(α)))

⊇ ∂u2...un
(∂u1(lf(r1).r

∗
1 .α))

⊇ ∂u2...un
(lf(r∗

1 .α))
by induction

⊇ lf(α)

��
The next, final lemma is our workhorse in proving that the language of B(α)

is contained in Lω(α). The proof requires the extra bit in the ω-linear factors.

Lemma 47. Let q0q1 . . . qn be a prefix of an accepting run of B(r.sω) on uw =
a1 . . . anw where qn ∈ lf(sω), but qi /∈ lf(sω), for 0 ≤ i < n. Then u ∈ L(r).

Proof. Induction on n.
Case 0; u = ε: q0 ∈ lf(sω) ∩ lf(r.sω) because q0 ∈ Q0. Now lf(sω) =

lf(s).sω × {1} and lf(r.sω) = lf(r).sω × {0} ∪ N(r) � lf(s).sω × {1}.
If N(r) = 1, then q0 ∈ lf(sω) ⊆ lf(r.sω) and u = ε ∈ L(r).
If N(r) = 0, then q0 ∈ lf(s).sω ×{1}∩lf(r).sω ×{0} = ∅ so that this case is

not possible. (Without the extra bit in lf, there may be common linear factors
if L(r) ∩ L(s∗) = ∅.)

Case n > 0: u = au′ and q1 ∈ ∂a(q0). As q0 ∈ Q0 = lf(r.sω) = lf(r).sω ×
{0} ∪ N(r) � lf(sω) but q0 /∈ lf(sω), it must be that q0 ∈ lf(r).sω × {0}.

Thus, q1 ∈ ∂a(lf(r).sω × {0}), so that there is a linear factor 〈a, r′〉 ∈ lf(r)
such that q1 ∈ lf(r′.sω).

Thus, q1 . . . qn is a prefix of an accepting run of B(r′.sω)1 on u′w = a2 . . . anw
where qn ∈ lf(sω), but qi /∈ lf(sω), for 1 ≤ i < n. By induction, u′ ∈ L(r′) so
that u = au′ ∈ L(r) by Lemma 23. ��
Proof (of Theorem 44). It is sufficient to consider α = r.sω.

Case “⊆”: Let w ∈ Lω(r.sω). Then w = uv0v1 . . . where u ∈ L(r) and
ε = vi ∈ L(s), for i ∈ N.

Let Q0 = lf(r.sω). By Lemma 46, lf(sω) ⊆ ∂u(lf(r.sω)) = δ(Q0, u).
1 While the set Q′ of states of B(r′.sω) is a subset of the states Q of B(r.sω), it is easy
to see that the states q1 . . . qn as well as the remaining states qn+1qn+2 . . . of the
accepting run are all elements of Q′.
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Furthermore, for each i ∈ N, by Lemmas 45 and 46,

∂vi
(lf(sω)) = ∂vi

(lf(s.sω)) ⊇ lf(sω)

Hence, there exists a run of B(α) which visits states from F = lf(sω)
infinitely often.

Case “⊇”: Suppose that a0a1 · · · ∈ Lω(B(α)). Hence, there is a run q0q1 · · · ∈
Qω and a strictly increasing sequence (ni)i∈N ∈ N

ω such that, for all j ∈ N,
qj ∈ F iff ∃i : j = ni.

Let q = qn0 be the first accepting state in the run and let u = a0 . . . an0−1. By
construction of B(α), q ∈ δ(Q0, u) and q ∈ lf(sω) = F . By Lemma 47, u ∈ L(r).

Next, for each i ∈ N, define vi = ani
. . . ani+1 so that w = uv0v1 . . . .

For each i, qni
∈ F and ε = vi = biv

′
i. By construction qni+1 ∈ δ(qni

, bi) so
that qni+1 . . . qni+1 . . . is a prefix of an accepting run of B(qni+1) where qni+1 =
〈bi, s

′.sω, 1〉, for some 〈bi, s
′〉 ∈ lf(s). By Lemma 47, v′

i ∈ L(s′) so that vi =
biv

′
i ∈ L(s) by Lemma 23.
Taken together, we have shown that w ∈ L(r) · {v0v1 · · · | vi ∈ L(s)} =

Lω(r.sω). ��
We believe that it is possible to reduce the number of states of B(α) by a factor
of |Σ| by merging suitable linear factors, but we leave this for future work.
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Abstract. The quotient operation, which is dual to the composition, is
crucial in specification theories as it allows the synthesis of missing spec-
ifications and thus enables incremental design. In this paper, we consider
a specification theory based on marked acceptance specifications (MAS)
which are automata enriched with variability information encoded by
acceptance sets and with reachability constraints on states. We define a
sound and complete quotient for MAS hence ensuring reachability prop-
erties by construction.

1 Introduction

Component-based design aims at building complex reactive systems by assem-
bling components, possibly taken off-the-shelf. This approach can be supported
by a specification theory in which requirements correspond to specifications while
components are models of the specifications. Such theories come equipped with
a set of operations enabling modular system design.

Several recent specification theories are based on modal specifications [9,14,
16] including in timed [7,11] or quantitative [1] contexts and with data [2]. In
this paper, we introduce marked acceptance specifications (MAS): they are based
on an extension of modal specifications, called acceptance specifications, which
we enrich with marked states to model reachability objectives. This last addition
is needed to model session terminations, component checkpoints or rollbacks.

A crucial feature in a specification theory is the operation of quotient. Let S1

be the specification of a target system and S2 be the specification of an available
black-box component. The specification S1/S2 characterizes all the components
that, when composed with any model of S2, conform with S1. In other words,
S1/S2 tells what remains to be implemented to realize S1 while reusing a compo-
nent doing S2. By allowing to characterize missing specifications, quotient thus
enables incremental design and component reuse.

The quotient of specifications also plays a central role in contract-based
design. In essence, a contract describes what a system should guarantee under
some assumptions about its context of use. It can be modeled as a pair of specifi-
cations (A,G) for, respectively, the assumptions and the guarantees. Satisfiabil-
ity of a contract then corresponds to the satisfiability of the specification G/A
(see [6] for more explanations on contract satisfaction).

A full version with proofs is available online [17].

c© Springer International Publishing Switzerland 2015
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Our contribution. Firstly, we define MAS and their semantics. The included
marked states allow to specify reachability objectives that must be fulfilled by
any model of the MAS. A MAS then characterizes a set of automata called
terminating as they satisfy the reachability property telling that a marked state
can always be reached.

Secondly, we study the compositionality of MAS. We define a compatibility
criterion such that two MAS S1 and S2 are compatible if and only if the product
of any models of S1 and S2 is terminating. Further, given two incompatible MAS
S1 and S2, we propose a construction to refine S1 into the most general S′

1 such
that S′

1 and S2 become compatible.
Last, we define the quotient of MAS. This is a two-step construction that

makes use of the previous cleaning construction. The operation is shown to be
sound and complete.

Related work. Modal specifications [13] enriched with marked states (MMS)
have been introduced in [10] for the supervisory control of services. Product
of MMS has been investigated in [8]. These papers did not show the need for
the more expressive framework of MAS as quotient was not considered. Accep-
tance specifications have first been proposed in [15] based on [12]. Their non-
deterministic version is named Boolean MS in [5]. The LTL model checking of
MS has been studied in [4]. However, the reachability considered in this paper
can be stated in CTL by AG(EF(final)) and cannot be captured in LTL.

Quotient of modal and acceptance specifications has been studied in [9,15]
and in [3] for the non-deterministic case. It has also been defined for timed [7,11]
and quantitative [1] extensions of modal specifications. None of these works
consider reachability constraints.

Outline of the paper. We recall some definitions about automata and intro-
duce MAS in Sec. 2. Then, we define the pre-quotient operation in Sec. 3 which
only partially solves the problem as it does not ensure the reachability of marked
states. In Sec. 4, we give a criterion of compatible reachability telling whether the
product of the models of two MAS is always terminating. When this condition
of compatible reachability is not met, it is possible to impose some constraints
on one of the specifications in order to obtain it, as shown in Sec. 5. Based on
this construction, Sec. 6 finally defines the quotient operation on MAS.

2 Modeling with Marked Acceptance Specifications

2.1 Background on Automata

A (deterministic) automaton over an alphabet Σ is a tuple M = (R, r0, λ,G)
where R is a finite set of states, r0 ∈ R is the initial state, λ : R × Σ ⇀ R is the
labeled transition map and G ⊆ R is the set of marked states. The set of fireable
actions from a state r, denoted ready(r), is the set of actions a such that λ(r, a)
is defined.

Given a state r, we define pre*(r) and post*(r) as the smallest sets such that
r ∈ pre*(r), r ∈ post*(r) and for any r′, a and r′′ such that λ(r′, a) = r′′, r′ ∈
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pre*(r) if r′′ ∈ pre*(r) and r′′ ∈ post*(r) if r′ ∈ post*(r). We also define pre+(r)
as the union of pre*(r′) for all r′ such that ∃a : λ(r′, a) = r and post+(r) as the
union of post*(λ(r, a)) for all a ∈ ready(r). Let Loop(r) = pre+(r) ∩ post+(r).

Two automata M1 and M2 are bisimilar iff there exists a simulation rela-
tion π : R1 × R2 such that (r01, r

0
2) ∈ π and for all (r1, r2) ∈ π, ready(r1) =

ready(r2) = Z, r1 ∈ G1 iff r2 ∈ G2 and for any a ∈ Z, (λ(r1, a), λ(r2, a)) ∈ π.
The product of two automata M1 and M2, denoted M1 × M2, is the automa-

ton (R1 × R2, (r01, r
0
2), λ,G1 × G2) where λ((r1, r2), a) is defined as the pair

(λ1(r1, a), λ2(r2, a)) when both λ1(r1, a) and λ2(r2, a) are defined.
Given an automaton M and a state r of M , r is a deadlock if r �∈ G and

ready(r) = ∅; r belongs to a livelock if Loop(r) �= ∅, G ∩ Loop(r) = ∅ and there
is no transition λ(r′, a) = r′′ such that r′ ∈ Loop(r) and r′′ �∈ Loop(r). An
automaton is terminating if it is deadlock-free and livelock-free.

2.2 Marked Acceptance Specification

We now enrich acceptance specifications [15] with marked states to model reach-
ability constraints. The resulting formalism allows to specify a (possibly infinite)
set of terminating automata called models.

Definition 1 (MAS). A marked acceptance specification (MAS) over an alpha-
bet Σ is a tuple S = (Q, q0, δ,Acc, F ) where Q is a finite set of states, q0 ∈ Q

is the initial state, δ : Q × Σ ⇀ Q is the labeled transition map, Acc : Q → 22
Σ

associates to each state its acceptance set and F ⊆ Q is a set of marked states.

Basically, an acceptance set is a set of sets of actions a model of the spec-
ification is ready to engage in. The underlying automaton associated to S is
Un(S) = (Q, q0, δ, F ). We only consider MAS such that Un(S) is deterministic.

Definition 2 (Satisfaction). A terminating automaton M satisfies a MAS
S, denoted M |= S, iff there exists a simulation relation π ⊆ R × Q such that
(r0, q0) ∈ π and for all (r, q) ∈ π: ready(r) ∈ Acc(q); if r ∈ G then q ∈ F ; and,
for any a and r′ such that λ(r, a) = r′, (r′, δ(q, a)) ∈ π. M is called a model
of S.

Example 1. A MAS is depicted in Fig. 1(a). Marked states are double-circled
while the acceptance sets are indicated near their associated state. The ter-
minating automata M ′ and M ′′ in Fig. 1(b) and Fig. 1(c) are models of S1

because of the respective simulation relation π′ = {(0′, 0), (1′, 1)} and π′′ =
{(0′′, 0), (1′′, 0), (2′′, 1)}. Observe that the transitions labeled by b and c are
optional in state 0 from the MAS S1 as these actions are not present in all
sets in Acc(0) and thus may not be present in any model of the specification.
Moreover, state 1 in S1 is marked to encode the constraint that it must be sim-
ulated in any model. As a result, although the actions b and c are optional, at
least one of the two must be present in any model of S1. This kind of constraint
entails that MAS are more expressive than MS.
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c

(c) M ′′

Fig. 1. Example of MAS with two models

A MAS is said to be in normal form if the following holds for any state q:
− post*(q) ∩ F �= ∅ and Acc(q) �= ∅;
− when ∅ ∈ Acc(q) then q ∈ F ;
− for any a ∈ Σ, δ(q, a) is defined iff a ∈ ⋃

Acc(q)
Any MAS S can be transformed into a MAS in normal form ρ(S) without

altering its set of models. The cleaning operation ρ is presented in [17]. In par-
ticular, if S has no model then ρ(S) returns the empty specification. As a result,
from now on, we always suppose that MAS are in normal form.

3 Pre-Quotient Operation of MAS

We first define an operation called pre-quotient. Given two MAS S1 and S2, it
returns a MAS S1//S2 such that the product of any of its models with any model
of S2, if terminating, will be a model of S1. Another operation, defined in Sec. 5,
will then be used in Sec. 6 to remove the “if terminating” assumption.

Definition 3 (Pre-quotient). The pre-quotient of two MAS S1 and S2,
denoted S1//S2, is the MAS (Q1 × Q2, (q01 , q

0
2), δ,Acc, F ) with:

− Acc(q1, q2) = {X | (∀X2 ∈ Acc2(q2) : X∩X2 ∈ Acc1(q1))∧X ⊆ (
⋃

Acc1(q1))
∩ (

⋃
Acc2(q2))};

− ∀a ∈ Σ : δ((q1, q2), a) is defined if and only if there exists X ∈ Acc(q1, q2)
such that a ∈ X and then δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a));

− (q1, q2) ∈ F if and only if q1 ∈ F1 or q2 �∈ F2.

Theorem 1 (Correctness). Given two MAS S1 and S2 and an automaton
M |= S1//S2, for any M2 |= S2 such that M ×M2 is terminating, M ×M2 |= S1.

The specification returned by the quotient is also expected to be complete,
ie., to characterize all the possible automata whose product with a model of S2

is a model of S1. However, such a specification may become very large as it will,
in particular, have to allow from a state (q1, q2) all the transitions which are not
fireable from q2 in S2. As these transitions will always be removed by the product
with models of S2, they serve no real purpose for the quotient. We propose to
return a compact specification for the quotient, without these transitions which
we then call unnecessary.
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An automaton M is said to have no unnecessary transitions regarding a
MAS S, denoted M ∼U S, if and only if there exists a simulation relation
π ⊆ R × Q such that (r0, q0) ∈ π and for all (r, q) ∈ π, ready(r) ⊆ ⋃

Acc(q) and
for every a and r′ such that λ(r, a) = r′, (r′, δ(q, a)) ∈ π.

When an automaton M has unnecessary transitions regarding a MAS S, it
is possible to remove these transitions. Let ρu(M,S) be the automaton M ′ =
(R × Q, (r0, q0), λ′, G × Q) with:

λ′((r, q), a) =
{

(λ(r, a), δ(q, a)) if a ∈ ⋃
Acc(q)

undefined otherwise

This automaton has no unnecessary transitions regarding S and for any MS |= S,
the automata M × MS and ρu(M,S) × MS are bisimilar (see [17] for proofs).

We can then prove that our pre-quotient is complete for automata without
unnecessary transitions. Given an arbitrary automaton, it suffices to remove
these transitions with ρu before checking if it is a model of the quotient.

Theorem 2. Given two MAS S1 and S2 and an automaton M such that
M ∼U S2 and for all M2 |= S2 we have M × M2 |= S1, then M |= S1//S2.

Corollary 1 (Completeness). Given two MAS S1 and S2 and an automaton
M such that for all M2 |= S2 we have M × M2 |= S1, then ρu(M,S2) |= S1//S2.

Observe now that the pre-quotient S1//S2 may admit some models whose
product with some models of S2 may not be terminating. Consider indeed the
specifications S1 and S2 of Fig. 1(a) and 2(a) and their pre-quotient in Fig. 2(b).
The product of the models M1

1 of S1//S2 (Fig. 2(c)) and M ′ of S2 (Fig. 1(b)) has
a livelock and thus is not terminating. One may think that there is an error in
the pre-quotient computation and that it should not allow to realize only {a, c},
without b in Acc(0, 0′). Indeed, it would forbid the model M1

1 , but it would also
disallow some valid models such as M2

1 (Fig. 2(d)), which realizes {a, c} in a
state and {a, b} in another, thus synchronizing on b with any model of S2 and
allowing the joint reachability of the marked states.

0′
{{a, b},
{a, b, c}}

1′

{∅}

a
b

c

(a) S2

0, 0′

{{a}, {a, b},
{a, c}}

1, 1′

{∅}

a

b

c

(b) S1//S2

0 2

a

c

(c) M1
1 |= S1//S2

0 1

2

a

c

a

b

(d) M2
1 |= S1//S2

Fig. 2. Example of pre-quotient

In the next section, we define a criterion allowing to test whether the product
of any models of two MAS is terminating or not. On this basis, we will then refine
the pre-quotient in Sec. 6 in order to guarantee the reachability property.



304 G. Verdier and J.-B. Raclet

4 Compatible Reachability of MAS

By definition, the product of some models of two MAS may not terminate due
to two different causes, namely deadlock and livelock. We consider separately
the two issues to derive a compatible reachability criterion on MAS.

4.1 Deadlock-Free Specifications

In this section, we propose a test to check if two MAS S1 and S2 have some
models M1 and M2 such that M1×M2 has a deadlock. To do so, we characterize
deadlock-free pairs of states, from which no deadlock may arise in the product
of any two models of S1 and S2.

Given two acceptance sets A1 and A2, let Compat(A1, A2) be true iff for
all X1 ∈ A1 and X2 ∈ A2, X1 ∩ X2 �= ∅. Now a pair of states (q1, q2) is said
to be deadlock-free, denoted DeadFree(q1, q2), if Acc1(q1) = Acc2(q2) = {∅} or
Compat(Acc1(q1),Acc2(q2)).

Definition 4 (Deadlock-free MAS). Two MAS S1 and S2 are deadlock-free
when all the reachable pairs of states in Un(S1) × Un(S2) are deadlock-free.

Theorem 3. Two MAS S1 and S2 are deadlock-free if and only if for any
M1 |= S1 and M2 |= S2, M1 × M2 is deadlock-free.

4.2 Livelock-Free Specifications

In this section, we explain how we can check if two MAS S1 and S2 have some
models M1 and M2 such that M1 × M2 has a livelock. We identify the cycles
shared between S1 and S2 along with the transitions leaving them. We check if at
least one of these transitions is preserved in the product of any two models of S1

and S2. Before studying these common cycles, a first step consists in unfolding
S1 and S2 so as possible synchronizations become unambiguous.

Unfolding. Given two specifications S1 and S2, we define the partners of a
state q1 as Q2(q1) = {q2 | (q1, q2) is reachable in Un(S1) × Un(S2)}; the set
Q1(q2) is defined symmetrically. As a shorthand, if we know that a state q1 has
exactly one partner, we will also use Q2(q1) to denote this partner.

If some states of S2 have several partners, it is possible to transform S2 so that
each of its states has at most one partner, while preserving the set of models
of the specification. The unfolding of S2 in relation to S1 is the specification
((Q1 ∪ {q?}) × Q2, (q01 , q

0
2), δu,Accu, (Q1 ∪ {q?}) × F2) where:

− q? is a fresh state (q?1 denotes a state in Q1 ∪ {q?});
− δu((q?1, q2), a) is defined if and only if δ2(q2, a) is defined and then:

δu((q1, q2), a) =
{

(δ1(q1, a), δ2(q2, a)) if δ1(q1, a) is defined
(q?, δ2(q2, a)) otherwise

δu((q?, q2), a) = (q?, δ2(q2, a))
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− Accu((q?1, q2)) = Acc2(q2).
Two MAS S1 and S2 have single partners if and only if for all q1 ∈ Q1, we

have |Q2(q1)| ≤ 1 and for all q2 ∈ Q2, we also have |Q1(q2)| ≤ 1.
Given two MAS S1 and S2, there exists some MAS S′

1 and S′
2, called unfold-

ings of S1 and S2, with single partners and which have the same models as S1

and S2. These two MAS can be computed by unfolding S1 in relation to S2 and
then S2 in relation to the unfolding of S1 (see [17] for proofs).

Cycles. In order to detect livelocks, we need to study the cycles that may be
present in the models of a specification. Intuitively, a cycle is characterized by
its states and the transitions between them.

Given a MAS S, the partial map C : Q ⇀ 2Σ represents a cycle in S if and
only if for any q ∈ dom(C), (a) C(q) �= ∅, (b) ∃X ∈ Acc(q) such that C(q) ⊆ X,
(c) dom(C) ⊆ post*(q) and (d) ∀a ∈ C(q) : δ(q, a) ∈ dom(C).

A model M of a MAS S implements a cycle C if and only if there exists a set
R of states of M such that each q ∈ dom(C) is implemented by at least one state
of R and for each r ∈ R and for each q such that (r, q) ∈ π, (a) q ∈ dom(C),
(b) C(q) ⊆ ready(r), (c) ∀a ∈ C(q) : λ(r, a) ∈ R and (d) ∀a ∈ ready(r)\C(q) :
λ(r, a) �∈ R. A cycle is said to be implementable if there exists a model M of S
implementing the cycle.

We define in Algo. 1 an operation, Loop|=-rec, which computes the cycles of
a MAS passing by a given state. However, some of these cycles may not be imple-
mentable. For instance, the cycle C = {0 �→ {a}} is not implementable in the
MAS depicted in Figure 3, as all the models have to eventually realize the tran-
sition by b to reach the marked state and then are not allowed to simultaneously
realize the transition by a.

0 1

a

b Acc(0) = {{a}, {b}}
Acc(1) = {∅}

Fig. 3. A MAS over {a,b} with no implementable cycle

In order to be implementable, a cycle has to contain a marked state or it
must be possible to realize a transition that is not part of the cycle in addition
to the transitions of the cycle. Thus, the set of implementable cycles of a MAS S,
denoted Loop|=(S), is

⋃
q∈Q{C ∈ Loop|= -rec(S, q, ∅) | dom(C) ∩ F �= ∅ ∨ ∃qC ∈

dom(C) : ∃X ∈ Acc(qC) : C(qC) ⊂ X}.

Livelock-freeness. We can now analyze the cycles of two MAS with single
partners in order to detect if there may be a livelock in the product of some of
their models. To do so, we distinguish two kinds of transitions: those, denoted A,
which are always realized when the cycle is implemented and those, denoted O,
which may (or may not) be realized when the cycle is implemented. These sets
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Algorithm 1. Loop|=-rec (S: MAS, q: State, cycle: Cycle): Set Cycle

1: if q ∈ dom(cycle) then return {cycle}
2: res ← ∅
3: for all A ∈ Acc(q):
4: cycle acc ← {a | a ∈ A ∧ q ∈ post*(δ(q, a))}
5: for all C ∈ 2cycle acc\{∅}:
6: current ← {cycle}
7: for all a ∈ C:
8: current ← ⋃

cycle∈current Loop|= -rec(S, δ(q, a), cycle ∪ {q �→ C})
9: res ← res ∪ current
10: return res

are represented by partial functions from a state to a set of sets of actions and
given, for a particular cycle C, by the following formulae:

A = {q �→ leaving(q,A) | A �∈ Acc(q), (q,A) ∈ C}
O = {q �→ leaving(q,A) | A ∈ Acc(q), (q,A) ∈ C ∧ leaving(q,A) �= ∅}

where leaving(q,A) = {X \ A | X ∈ Acc(q) ∧ A ⊂ X}
Definition 5. Given two MAS S1 and S2 with single partners and a cycle C1

in S1 such that all its states have a partner, C1 is livelock-free in relation to S2,
denoted LiveFree(C1, S2), if and only if, when the cycle C2 = {Q2(q) �→ C1(q) |
q ∈ dom(C1)} is in Loop|=(S2):
1. AC1 �= ∅, AC2 �= ∅ and there exists q′

1 ∈ dom(AC1) such that Q2(q′
1) ∈

dom(AC2) and Compat(AC1(q
′
1),AC2(Q2(q′

1))), or
2. AC1 �= ∅, AC2 = ∅, dom(C2) ∩ F2 = ∅ and ∀q′

2 ∈ dom(OC2) : Q1(q′
2) ∈

dom(AC1) and Compat(AC1(Q1(q′
2)),OC2(q

′
2)), or

3. AC1 = ∅, AC2 �= ∅, dom(C1) ∩ F1 = ∅ and ∀q′
1 ∈ dom(OC1) : Q2(q′

1) ∈
dom(AC2) and Compat(OC1(q

′
1),AC2(Q2(q′

1))).

Definition 6 (Livelock-free specifications). Two MAS S1 and S2 with sin-
gle partners are livelock-free if all the implementable cycles of S1 are livelock-free
in relation to S2.

This definition only tests the implementable cycles of S1. It is not necessary
to do the symmetrical test (checking that the implementable cycles of S2 verify
LiveFree) because we only compare the cycle of S1 with the same cycle in S2

and the tests of Def. 6 are symmetric.
The previous definition offers a necessary and sufficient condition to identify

MAS which can have two respective models whose product has a livelock:

Theorem 4. Two MAS S1 and S2 with single partners are livelock-free if and
only if for any M1 |= S1 and M2 |= S2, M1 × M2 is livelock-free.

Specifications with Compatible Reachability. By combining the tests for
deadlock-free and livelock-free specifications, we can define a criterion checking
if two MAS S1 and S2 have some models M1 and M2 such that M1 × M2 is not
terminating.
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Definition 7 (Compatible reachability). Two MAS S1 and S2 have a com-
patible reachability, denoted S1 ∼T S2, if and only if they are deadlock-free
and their unfoldings are livelock-free. They have an incompatible reachability
otherwise.

Theorem 5. Given two MAS S1 and S2, S1 ∼T S2 if and only if for any
M1 |= S1 and M2 |= S2, M1 × M2 is terminating.

This theorem allows independent implementability of MAS: given two MAS
with compatible reachability, each specification may be implemented indepen-
dently from the other while keeping the guarantee that the composition of the
resulting implementations will be terminating and thus satisfy by construction
a reachability property.

5 Correction of MAS with Incompatible Reachability

We now define an operation that, given two MAS S1 and S2 with incompatible
reachability, returns a MAS refining S1 with a compatible reachability with S2.

5.1 Deadlock Correction

First, given two non-deadlock-free MAS S1 and S2, we propose to refine S1 such
that the obtained MAS S′

1 is deadlock-free with S2. For this, we iterate through
all the non-deadlock-free pairs of states (q1, q2) and remove the elements of the
acceptance set of q1 which may cause a deadlock, as described in Algo. 2. Note
that it may return an empty specification, because of ρ, which then means that
for any model M1 of S1, there exists a model M2 of S2 such that M1 × M2 has
a deadlock.

Theorem 6 (Deadlock correction). Given two MAS S1 and S2, M1 |= S1

is such that for any M2 |= S2, M1 × M2 is deadlock-free if and only if M1 |=
dead correction(S1, S2).

Algorithm 2. dead correction (S1: MAS, S2: MAS): MAS
1: S′

1 ← S1

2: for all (q1, q2) such that ¬DeadFree(q1, q2):
3: if Acc2(q2) = {∅}:
4: if ∅ ∈ Acc′

1(q1) then Acc′
1(q1) ← {∅} else Acc′

1(q1) ← ∅
5: else:
6: Acc′

1(q1) ← {X1 | X1 ∈ Acc′
1(q1) ∧ ∀X2 ∈ Acc2(q2) : X1 ∩ X2 �= ∅}

7: return ρ(S′
1)
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5.2 Livelock Correction

Secondly, given S1 and S2 two deadlock-free MAS, we propose to refine S1 such
that the obtained specification S′

1 is livelock-free with S2.
There are two ways to prevent livelocks from occuring in the product of the

models of two MAS: removing some transitions so that states from which it is
not possible to guarantee termination will not be reached and forcing some tran-
sitions to be eventually realized in order to guarantee that it will be possible to
leave cycles without marked states. For this last method, we introduce marked
acceptance specifications with priorities that are MAS with some priority tran-
sitions which have to be eventually realized.

Definition 8 (MAS with priorities). A marked acceptance specification with
priorities (MASp) is a tuple (Q, q0, δ,Acc, P, F ) where (Q, q0, δ,Acc, F ) is a MAS
and P : 22

Q×Σ

is a set of priorities.

Definition 9 (Satisfaction). An automaton M implements a MASp S if M
implements the underlying MAS and for all P ∈ P , either ∀(q, a) ∈ P : ∀r :
(r, q) �∈ π or ∃(q, a) ∈ P : ∃r : (r, q) ∈ π ∧ a ∈ ready(r).

Intuitively, P represents a conjunction of disjunctions of transitions: at least
one transition from each element of P must be implemented by the models of
the specification.

Let S1 and S2 be two MAS and q1 a state of S1 such that q1 belongs to a
livelock. Then, there exists a cycle C1 in S1 and its partner C2 in S2 such that the
conditions given in Def. 5 are false. Given these cycles, Algo. 3 ensures that the
possible livelock will not happen, either by adding some priorities or by removing
some transitions.

Algorithm 3. live corr cycle (S1: MASp, C1: Cycle, S2: MAS, C2: Cycle): MASp
1: if AC2 �= ∅:
2: QA ← {q1 | Q2(q1) ∈ dom(AC2) ∧ ∀A ∈ AC2(Q2(q1)) : A ∩ ready(q1) �= ∅}
3: if QA �= ∅:
4: P ← {⋃1≤i≤|QA|{(qi, a) | a ∈ Xi} | Xi ∈ {A ∩ ready(qi) | A ∈ AC2(Q2(qi))}}
5: return (Q1, q

0
1 , δ1,Acc1, P1 ∪ P, F1)

6: else if dom(C2) ∩ F2 = ∅:
7: Acc′ ← Acc1
8: for all q1 ∈ {Q1(q2) | q2 ∈ dom(OC2)}:
9: Acc′(q1) ← {X | X ∈ Acc1(q1) ∧ ∀O ∈ OC2(Q2(q1)) : X ∩ O �= ∅}
10: return ρ((Q1, q

0
1 , δ1,Acc′, P1, F1))

11: Acc′ ← Acc1
12: for all q1 ∈ Q1:
13: Acc′(q1) ← {X | X ∈ Acc1(q1) ∧ ∀a ∈ X : δ(q1, a) �∈ dom(C1)}
14: return ρ((Q1, q

0
1 , δ1,Acc′, P1, F1))

We then iterate over the possible cycles, fixing those which may cause a
livelock (see [17] for a detailed explanation of the construction of live correction).
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Theorem 7 (Livelock correction). Given two MAS S1 and S2, M1 |= S1

is such that for any M2 |= S2, M1 × M2 is livelock-free if and only if M1 |=
live correction(S1, S2).

As a result, by applying successively dead correction and live correction, we
can define the following operation ρT :

ρT (S1, S2) = live correction(dead correction(S1, S2), S2)

Given two MAS S1 and S2, it refines the set of models of S1 as precisely as
possible so that their product with any model of S2 is terminating.

Theorem 8 (Incompatible reachability correction). Given two MAS S1

and S2, M |= ρT (S1, S2) if and only if M |= S1 and for any M2 |= S2, M × M2

is terminating.

6 Quotient Operation of MAS

We can now combine the pre-quotient and cleaning operations to define the
quotient of two MAS.

Definition 10. Given two MAS S1 and S2, their quotient S1/S2 is given by
ρT (S1//S2, S2).

Theorem 9 (Soundness). Given two MAS S1 and S2 and an automaton M |=
S1/S2, for any M2 |= S2, M × M2 |= S1.

Theorem 10 (Completeness). Given two MAS S1 and S2 and an automaton
M such that ∀M2 |= S2 : M × M2 |= S1, then ρu(M,S2) |= S1/S2.

These theorems indicate that each specification S2 and S1/S2 may be imple-
mented independently from the other and that the composition of the resulting
implementations will eventually be terminating and will also satisfy S1.

7 Conclusion

In this paper, we have introduced marked acceptance specifications. We have
developed several compositionality results ensuring a reachability property by
construction and, in particular, a sound and complete quotient. Note that this
framework can almost immediately be enriched with a refinement relation, par-
allel product and conjunction by exploiting the constructions available in [15]
and [8], hence providing a complete specification theory as advocated in [16].

Considering an acceptance setting instead of a modal one offers a gain in
terms of expressivity as MAS provide more flexibility than the marked extension
of modal specifications [8]. This benefit becomes essential for the quotient as
may/must modalities are not rich enough to allow for a complete operation [17].
Observe also that quotient of two MAS is heterogeneous in the sense that its
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result may be a MASp. By definition, MASp explicitly require to eventually
realize some transitions fixed in the priority set P . By bounding the delay before
the implementation of the transitions, a MASp could become a standard MAS
and the quotient would then become homogeneous. Algorithms for bounding
MASp are left for future investigations.
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Abstract. A two-dimensional code is defined as a set X ⊆ Σ∗∗ such
that any picture over Σ is tilable in at most one way with pictures in
X. It is in general undecidable whether a set X of pictures is a code
also in the finite case. Very recently in [3] strong prefix picture codes
were defined as a decidable subclass that generalizes prefix string codes.
Here a characterization for strong prefix codes that results in an effective
procedure to construct them is presented. As a consequence there are also
proved interesting results on the measure of strong prefix codes and a
connection with the family of string prefix codes.

Keywords: Two-dimensional languages · Codes · Prefix codes

1 Introduction

A two-dimensional word, or picture, is a rectangular array of symbols taken
from a finite alphabet Σ. The set of all pictures over Σ is usually denoted by
Σ∗∗: a two-dimensional language is thus a subset of Σ∗∗. Extending the theory
of formal (string) languages to two dimensions is a very challenging task. The
two-dimensional structure in fact imposes its intrinsic difficulties to all the the-
ory: the two concatenation operations (horizontal and vertical) are only partial
operations and do not induce a monoid structure to the set Σ∗∗. Moreover, if
we cut out a “prefix” from a picture (i.e. delete a rectangular portion in top-left
corner) the remaining part is not in general a picture.

During the last fifty years, and still intensively nowadays, many researchers
investigated how the notion of finite state recognizability can be transferred into
a two-dimensional (2D) world (e.g. [8,11,13,14,17–20]). Among the most accred-
ited generalizations to 2D of regular string languages, there is the family REC
of picture languages recognized by tiling systems that extend a characterization
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of finite automata ([13]). A crucial difference with string language theory is that
REC is intrinsically non-deterministic. In [2,6] deterministic and unambiguous
tiling systems, together with the corresponding subfamilies DREC and UREC,
are defined; it is proved that all the inclusions among REC, UREC and DREC
are proper. Moreover the problem whether a given tiling system is unambiguous
is undecidable.

In the theoretical study of formal string languages, string codes have been
always a relevant subject of research, also because of their applications to practi-
cal problems. Theoretical results on string codes are related to combinatorics on
words, automata theory and semigroup theory (see [10] for complete references).

The notion of code can be intuitively and naturally transposed to two-dimen-
sional objects by exploiting the notion of unique tiling decomposition. Several
attempts of developing a formal theory of two-dimensional codes have been done
by using polyominoes (connected two-dimensional figures). Unfortunately, most
of the published results show that in the 2D context we loose important prop-
erties. In [9] D. Beauquier and M. Nivat proved that the problem whether a
finite set of polyominoes is a code is undecidable, and that the same result holds
also for dominoes. Other variants of two-dimensional codes are also studied in
[1,12,15] still proving undecidability results. It is worthwhile to remark that all
mentioned results consider 2D codes independently from a 2D formal language
theory.

Very recently, in [4,5], a new definition for picture codes was introduced in
connection with the family REC of picture languages recognized by finite tiling
systems. Codes are defined by using the formal operation of tiling star as defined
in [20]: the tiling star of a set of pictures X is the set X∗∗ of all pictures that
are tilable (in the polyominoes style) by elements of X. Then X is a code if any
picture in X∗∗ is tilable in a unique way. Remark that if X ∈ REC then X∗∗

is also in REC. Similarly to the string case, it holds that if X is a finite picture
code then, starting from pictures in X, we can construct an unambiguous tiling
system for X∗∗. Unfortunately, despite this nice connection to the string code
theory, it is still undecidable whether a given set of pictures is a code.

Definitions of two-dimensional prefix code and strong prefix code are intro-
duced in [3,4]: they are introduced as the two-dimensional counterpart of prefix
string codes and they seem to be the first non-trival decidable classes of two-
dimensional codes. Remark that, at this stage, the aim of this study is purely
theoretical.

The formal definition of prefix sets of pictures (see [4]) results in a decidable
family that includes interesting examples: nevertheless the definition is quite
involved and it is based on special kind of polyominoes that have straight top
border. The strong prefix sets (proposed in [3]) have a simpler definition based
on the notion of overlapping. Main results show that strong prefix sets are a
decidable family of picture codes with a simple polynomial decoding algorithm.
It is also proved that it is decidable whether a given finite strong prefix set is
maximal and that it is possible to construct a finite maximal strong prefix code
containing a given strong prefix code.
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In this paper we deeply investigate strong prefix codes and prove that they
have a recursive structure. This allows us to describe an effective procedure to
construct all (maximal) finite strong prefix codes of pictures, starting from the
“singleton” pictures containing only one alphabet symbol. The construction in
some sense extends the literal representation of prefix codes of strings. Using such
construction we prove some results on the measure of these codes that generalize
known results from the string code theory. In the last part of the paper we show
an interesting connection between strong prefix picture codes and prefix string
codes that gives a deeper comprehension of the structure of strong prefix picture
codes and relates them to a conjecture on commutative equivalence that holds
in the string code theory (see [10,16]).

2 Preliminaries

2.1 Two-Dimensional Languages

A picture over a finite alphabet Σ is a two-dimensional rectangular array of
elements of Σ. Given a picture p, |p|row and |p|col denote the number of rows
and columns, respectively while size(p) = (|p|row, |p|col) denotes the picture size.
The set of all pictures over Σ of fixed size (m,n) is denoted by Σm,n, while Σm∗

and Σ∗n denote the set of all pictures over Σ with fixed number of rows m and
columns n, respectively. The empty pictures, referred to as λm,0 and λ0,n, for
all m,n ≥ 0, correspond to all pictures of size (m, 0) or (0, n). The set of all
pictures over Σ is denoted by Σ∗∗, while Σ++ denotes the set of all non-empty
pictures over Σ . A two-dimensional language, or picture language, over Σ is a
subset of Σ∗∗.

The set of coordinates dom(p) = {1, 2, . . . , |p|row}×{1, 2, . . . , |p|col} is referred
to as the domain of a picture p. We let p(i, j) denote the symbol in p at coor-
dinates (i, j). The top-left corner (tl-corner) of p refers to position (1, 1). We
also fix the scanning direction for a picture from the top-left corner toward the
bottom-right one (tl2br).

A subdomain of dom(p) is a set d of the form {i, i + 1, . . . , i′} × {j, j +
1, . . . , j′}, where 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col, also specified by the
pair [(i, j), (i′, j′)]. The portion of p corresponding to positions in subdomain
[(i, j), (i′, j′)] is denoted by p[(i, j), (i′, j′)]. Then a non-empty picture x is subpic-
ture of p if x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col.

Definition 1. Given pictures x, p ∈ Σ++, with |x|row ≤ |p|row and |x|col ≤
|p|col, picture x is a prefix of p, denoted by x�p, if x is the subpicture of p of size
size(x) corresponding to the top-left portion of p, i.e. x = p[(1, 1), (|x|row, |x|col)].

Two concatenation products are usually considered. Let p, q ∈ Σ∗∗ be pic-
tures of size (m,n) and (m′, n′), respectively, the column concatenation of p and
q (p � q) and the row concatenation of p and q (p � q) are partial operations,
defined only if m = m′ and if n = n′, respectively, as:
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p � q = p q p� q =
p
q

These row and column concatenations can be extended to languages and to define
row and column stars denoted by X�∗ and X�∗ , respectively [13]. Another star
operation for picture languages, introduced by D. Simplot in [20], is the tiling
star. The idea is to compose pictures in a way to cover a rectangular area, as for
example in the following figure.

Definition 2. The tiling star of X, denoted by X∗∗, is the set that contains all
the empty pictures together with the non-empty pictures p whose domain can be
partitioned in disjoint subdomains {d1, d2, . . . , dk} such that any subpicture ph

of p associated with the subdomain dh belongs to X, for all h = 1, ..., k.

The language X∗∗ is called the set of all tilings by X in [20]. Denote X++

the set X∗∗ without the empty pictures. In the sequel, if p ∈ X++, we say that
p is tilable in X while the partition t = {d1, d2, . . . , dk} of dom(p), together with
the corresponding pictures {p1, p2, . . . , pk}, is called a tiling decomposition of p
in X.

2.2 One-Dimensional Codes and Measure

A set of strings S over an alphabet Σ is a code if every word w ∈ Σ∗ can be
obtained in at most one way as concatenation of strings in S. A set of strings S
is a prefix set if any string in S is not a prefix of another one in S. It holds that
any prefix set of non-empty strings is a code. The construction of prefix codes
exploits the one-to-one correspondence between prefix codes and trees and it is
referred to as the literal representation of prefix codes.

Important properties of string codes are connected to the notion of measure
of a language. We give below some definitions and list some major results (see
[10]). Intuitively the results state that a set S is not a code only if there are “too
many too short words”.

Given an alphabet Σ, a probability distribution π on Σ is a map π : Σ →
[0, 1] such that

∑
a∈Σ π(a) = 1. As a particular case, the uniform probability

distribution is defined on Σ by π(a) = 1
Card(Σ) for any a ∈ Σ.

Given an alphabet Σ and a probability distribution π : Σ → [0, 1] on Σ,
for any s = a1 . . . an ∈ Σ∗ the probability of s is π(s) = Πn

i=1π(ai). Given a
probability distribution π on an alphabet Σ and S ⊆ Σ∗, the measure of S
relative to π, denoted μπ(S), is μπ(S) =

∑
s∈S π(s).
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Theorem 3. If S ⊆ Σ∗ is a code, then μπ(S) ≤ 1 for any probability distribu-
tion π on Σ.

Theorem 4. [Kraft-McMillan] Given a sequence (un)n≥1 of integers, there exists
a code S over an alphabet Σ of k symbols such that un = Card(S ∩ Σn) if and
only if

∑
n≥1 unk−|n| ≤ 1. Moreover, the code S can be chosen to be prefix.

Theorem 5. A finite code S ⊆ Σ∗ is a maximal code if and only if μπ(S) = 1,
for any probability distribution π on Σ.

2.3 Two-Dimensional Codes

We directly refer to the results in [4] where two-dimensional codes are intro-
duced in the setting of the theory of recognizable two-dimensional languages
and coherently to the notion of language unambiguity as in [2,6,7]. The follow-
ing definition is based on the operation of tiling star recalled in Definition 2.

Definition 6. Let Σ be a finite alphabet. X ⊆ Σ++ is a code if any p ∈ Σ++

has at most one tiling decomposition in X.

Example 7. Let Σ = {a, b} be the alphabet and let X =
{

a b ,
a
b

,
a a
a a

}
.

The set X is a code. Any picture p ∈ X++ can be univocally decomposed
in X starting at the tl-corner, checking the subpicture p[(1, 1), (2, 2)] and then
proceeding similarly for the next contiguous subpictures of size (2, 2).

In this paper we consider the smaller family of strong prefix codes introduced
in [3]. To get in the formal definition, we specialize the definition of “picture p
prefix of picture q” when p and q have the same number of rows (columns, resp.).

Definition 8. Let p, q ∈ Σ++. The picture p is a horizontal prefix of q, denoted
by p�h q, if there exists x ∈ Σ∗∗ such that q = p� x. The picture p is a vertical
prefix of q, denoted by p �v q, if there exists y ∈ Σ∗∗ such that q = p � y.

Definition 9. Let p, q ∈ Σ++. Pictures p and q overlap if either p � q or there
exists a picture x ∈ Σ++ such that x �h p and x �v q. Pictures p and q strictly
overlap if there exists a picture x ∈ Σ++, x 	= p, q, such that x �h p and x �v q.

For example, in the following figure, the pictures p and q strictly overlap:

a b
a a

a b a a
a b a a
a a

p q p and q overlap

Definition 10. Let X ⊆ Σ++. X is strong prefix if there are no two pictures
p, q ∈ X, with p 	= q, such that p and q overlap.
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Remark that the previous Definition 10 can be stated by referring directly
to picture domains by imposing that any two distinct pictures in X differ in the
common part of the domain, i.e. they do not overlap if we let their tl-corners
coincide. Let us give some examples.

Example 11 (Running Example). The following language Xrun is strong prefix.
Indeed, no two pictures in Xrun overlap.

Xrun =
{

a b a , a b b ,
b
b

,
a a
a a

,
a a
a b

,
a a
b a

,
a a
b b

,
b a
a a

,
b a
a b

,
b b
a a

,
b b
a b

}
.

In [3], it is proved that strong prefix sets are codes and that they form a
decidable family of picture codes. A strong prefix code X ⊆ Σ++ is maximal
strong prefix over Σ if it is not properly contained in any other strong prefix
code over Σ; that is, X ⊆ Y ⊆ Σ++ and Y strong prefix imply X = Y . Some
results on maximality can be found in [3].

3 Structure of Finite Strong Prefix Codes

Strong prefix codes of pictures have many valuable properties that make them
a valid counterpart of prefix codes of strings (see [3]). In this section we exhibit
a recursive construction of all finite maximal strong prefix codes. We start by
introducing the notion of “extension of a picture” and proving some properties
of finite maximal strong prefix codes related to these extensions. Let us fix an
order between pairs of integers as follows:

- (m,n) ≤ (m′, n′) if m ≤ m′ and n ≤ n′;
- (m,n) < (m′, n′) if (m,n) ≤ (m′, n′) and (m 	= m′ or n 	= n′).

Definition 12. Let Σ be an alphabet, p ∈ Σ++, m,n ≥ 0 be positive integers
with size(p) < (m,n). The set of extensions of p to size (m,n) is E(m,n)(p) =
{q ∈ Σm,n | q[(1, 1), (|p|row, |p|col)] = p}.
Proposition 13. Let X ⊆ Σ++ be a finite maximal strong prefix code, X 	=
Σ1,1. Then there exist p ∈ Σ++, m,n ∈ N, with size(p) < (m,n), such that
E(m,n)(p) ⊆ X.

Proof. Let X ⊆ Σ++ be a finite maximal strong prefix code and let rX be the
maximum number of rows of some picture in X, that is rX = max{|x|row, x ∈
X}. Consider a picture x̄ ∈ X with a maximal number c̄ of columns, among
all pictures with rX rows. Suppose that |x̄|row 	= 1 and |x̄|col 	= 1. The goal
is to show that there exists a prefix p of x̄ such that E(rX ,c̄)(p) ⊆ X. Suppose
that this is not the case. Consider the prefix x̄r obtained by deleting the last
row of x̄. By contradiction there exists t ∈ Σ∗∗ such that t̄r = x̄r � t /∈ X.
Furthermore the maximality of X implies that X ∪ {t̄r} is no longer a strong
prefix code. From the maximality of the size of t̄r, neither t̄r can be a prefix
of another picture in X, nor t̄r and another picture in X can strictly overlap.
Therefore the unique possibility is that there exists y ∈ X that is a prefix of t̄r;
more precisely y �h t̄r (otherwise y would be a prefix of x̄ too). In a dual way,
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considering the picture x̄c obtained from x̄ by deleting its last column, one can
show that there exists y′ ∈ X such that y′ �v t̄r. Then y and y′ are two pictures
in X that overlapp: this is a contradiction. The cases |x̄|row = 1 or |x̄|col = 1
can be similarly handled. ��

Observe that the proof of Proposition 13 identifies a set E(m,n)(p) of pictures
in X such that m is the maximum number of rows of a picture in X and n is the
maximum number of columns of a picture with m rows in X. Note that some
other sets E(m′,n′)(p′), with m′ ≤ m and n′ ≤ n, can be found as subsets of
X. The idea in the next proposition is that, given a maximal strong prefix code
X, we can always find a subset of the form E(m,n)(p) and reduce the set X by
taking out pictures in E(m,n)(p) and replacing them by p, in such a way to keep
a maximal strong prefix code.

Proposition 14. Let X ⊆ Σ++ be a finite maximal strong prefix code, X 	=
Σ1,1. Let Y ⊆ X with Y = E(m,n)(p), for p ∈ Σ++ and positive integers m,n,
with size(p) < (m,n). Then Xred = (X \Y )∪{p} is a maximal strong prefix code.

Proof. (Sketch) To prove that Xred is a maximal strong prefix code, we show
that, for any picture q ∈ Σ++, q and p overlap if and only if q and some picture
in Y overlap. The proof considers all possible relation cases between p and q. ��

Using Proposition 13 and 14 we give the following recursive characterization
of finite maximal strong prefix codes. Remark that Σ1,1 is a maximal strong
prefix code.

Proposition 15. Any finite maximal strong prefix code X on alphabet Σ either
is equal to Σ1,1 or can be constructed from Σ1,1 by a finite number of subsequent
replacements of p ∈ X with Em,n(p), for m,n ∈ N, with size(p) < (m,n).

Example 16. Consider the language of our running example:

Xrun =
{

a b a , a b b ,
b
b

,
a a
a a

,
a a
a b

,
a a
b a

,
a a
b b

,
b a
a a

,
b a
a b

,
b b
a a

,
b b
a b

}
.

By Proposition 15 we get the following construction procedure.
- Start with X1 = { a , b }.
- Replace picture p1 = a with E1,2(p1), yielding X2 = { a a , a b , b }.

- Replace p2 = b with E2,1(p2), yielding X3 =
{

a a , a b ,
b
a

,
b
b

}
.

- Replace p3 = a a with E2,2(p3), yielding

X4 =
{

a a
a a

,
a a
a b

,
a a
b a

,
a a
b b

, a b ,
b
a

,
b
b

}
.

- Replace p4 = a b with E1,3(p4), yielding

X5 =
{

a a
a a

,
a a
a b

,
a a
b a

,
a a
b b

, a b a , a b b ,
b
a

,
b
b

}
.

- Finally replace p5 =
b
a

, with E2,2(p5), and obtain Xrun.
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It is interesting to represent the construction in the following tree. Note the
similarities with the literal representation of a maximal prefix string code.

.

a b

a a a b
b
a

b
b

. . a b a a b b . .

a a
a a

a a
a b

a a
b a

a a
b b

b a
a a

b a
a b

b b
a a

b b
a b

4 Measure of Two-Dimensional Languages and Codes

In the theory of string codes important results are stated in connection with the
notion of measure of a language. We show that some of them hold also for strong
prefix picture codes.

Definition 17. Let Σ be an alphabet and π be a probability distribution on Σ.
The probability of a picture p ∈ Σ∗∗ is defined as

π(p) =
∏

1≤i≤m,1≤j≤n

π(p(i, j)).

The measure of a language X ⊆ Σ∗∗ relative to π is μπ(X) =
∑

p∈X π(p).

Particular interest is devoted to the uniform distribution, that associates to every
symbol a in alphabet Σ of cardinality k, the probability πu(a) = 1

k . Then the
uniform probability of a picture p ∈ Σ∗∗ is πu(p) = 1

karea(p) . The uniform measure
of a language X ⊆ Σ∗∗, is μu(X) =

∑
p∈X πu(p).

Example 18. Let Σ = {a, b} and consider language X =
{

a b ,
a
b

,
a a
a a

,
a a
a b

}
on Σ. Its uniform measure is μu(X) = 5/8 < 1. Indeed for any probability
distribution π(a) = p, π(b) = 1 − p, 0 < p < 1, then μπ(X) = p3 − 2p2 + 2p < 1.
Note that X is a code (see [4] for a proof).

Example 19. The uniform measure of the strong prefix code Xrun on Σ = {a, b},
as defined in Example 11, is μu(Xrun) = 1. Moreover, by some calculations, one
can show that the measure of Xrun is 1, for any probability distribution on Σ.
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Example 20. Let X = Xrun ∪ {p} where p =

b b a b b a a a a a
b b b b b a a a a a
a b b a b a a a a a
b b b b b a a a a a
a a a a a a a a a a
a a a a a a a a a a
b a a a a b a a a a

. For any prob-

ability distribution π on Σ = {a, b}, the relative measure of X is μπ(X) =
μπ(Xrun) + π(p) > 1 since μπ(Xrun) = 1, as shown in Example 19. Note that
X is a code, as can be argued from [4].

The previous example shows that, contrarily to the one dimensional case,
there exist finite picture codes of measure greater than 1. Hence the results on
the measure of string codes cannot be transferred to the whole class of picture
codes. Our goal is now to show that they hold for the subfamily of finite strong
prefix codes. The proof will be based on the characterization of maximal strong
prefix codes.

Proposition 21. Let X ⊆ Σ++ be a finite maximal strong prefix code and π be
a probability distribution on Σ. Then μπ(X) = 1.

Proof. Let π be a probability distribution on Σ, and μ simply denote the measure
relative to π. The proof is by induction on Card(X). The basis is the case
X = Σ1,1 and Card(X) = 2, where μ(X) = 1. Suppose now that any maximal
strong prefix code with cardinality strictly less than n has measure 1, and prove
it for X with Card(X) = n. As remarked in the Proposition 13 there exists
p ∈ Σ++ and positive integers m,n, with size(p) < (m,n), such that Y =
E(m,n)(p) ⊆ X, and Xred = (X \ Y ) ∪ {p} is a maximal strong prefix code. Note
that Card(Xred) < Card(X); thus by the inductive hypothesis μ(Xred) = 1. The
proof is completed by μ(Xred) = μ(X). Indeed μ(Xred) = μ(X) − μ(Y ) + π(p)
and π(p) =

∑
q∈E(m,n)(p)

π(q) = μ(Y ). ��
Next theorem completes the previous proposition and it is the analogous of
Theorems 3 and 5 for strong prefix picture codes.

Theorem 22. Let X ⊆ Σ++ be a finite strong prefix code and μ be a measure.
Then μ(X) ≤ 1. Moreover μ(X) = 1 if and only if X is a finite maximal strong
prefix code.

Proof. Let X ⊆ Σ++ be a finite strong prefix code. Let us show that if X is
not maximal then μ(X) < 1. This claim together with Proposition 21 proves the
(whole) statement. If X is not maximal as strong prefix code, then, as shown in
[3], there exists a finite language Y such that Y is maximal strong prefix and
X � Y . Since, for any x ∈ Σ++, π(x) > 0 it follows μ(X) < μ(Y ). Moreover,
from Proposition 21 we have μ(Y ) = 1 and, therefore, μ(X) < μ(Y ) = 1. ��

The previous theorem provides in particular a simple algorithm to test whether
a finite strong prefix set of pictures is a maximal strong prefix code, in a dif-
ferent way from [3]. We conclude the section by showing an analogous to the
Kraft-McMillan inequality (Theorem 4) for finite strong prefix picture codes.
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Theorem 23. Given a finite sequence (un)1≤n≤r of positive integers, there exists
a strong prefix code X over an alphabet Σ of k symbols, such that un = Card({p ∈
X | area(p) = n}) if and only if

∑
1≤n≤r unk−n ≤ 1.

Proof. Let X be a finite strong prefix code over an alphabet Σ of k symbols,
and denote by un its area distribution: un = Card({p ∈ X | area(p) = n}). One
can easily observe that

∑
1≤n≤r unk−n = μu(X) and hence

∑
1≤n≤r unk−n ≤

1, applying Theorem 22 to X, in the particular case of the uniform measure.
Vice versa, given a finite sequence (un)1≤n≤r of positive integers, such that∑

1≤n≤r unk−n ≤ 1, the Kraft-McMillan inequality (Theorem 4) states that
there exists a finite prefix code of strings S over an alphabet Σ of k symbols,
such that un = Card({w ∈ S | |w| = n}). Replacing each string in S ⊆ Σ+ by its
corresponding one-row picture, one can obtain a picture language X ⊆ Σ∗∗, and
the length distribution of S coincides with the area distribution of X. Moreover
X is a strong prefix code. ��

5 A Correspondence with Prefix String Codes

Strong prefix codes of pictures behave as prefix string codes from many points
of view including their measure. This section aims to enucleate a special relation
between strong prefix codes and prefix string codes, that underlies such con-
nection. A simple way to associate a string language with a picture language
is to consider the symbols sequences when reading each picture. One can read
a picture row by row or, alternatively, column by column. Indeed many other
scanning strategies can be used. Let us start with some examples.

Example 24. Let Σ = {a, b} and let X ⊆ Σ3∗ be the following strong prefix code:

X =

⎧⎨
⎩

a a
b b
b b

,
a b a
a b a
b b b

,
a b a b
a b a a
b b a b

,
b a b b
a a b b
b a a b

⎫⎬
⎭. If we scan the pictures in X column by

column, we obtain the following string language on Σ:
Lc(X) = {abbabb, aabbbbaab, aabbbbaaabab, babaaabbabbb}. It is easy to check
that Lc(X) is a prefix code (of strings). Notice that also by scanning X row by
row the resulting language Lr(X) is prefix.

It is possible to verify that for any strong prefix code of the form X ⊆ Σm∗,
with m > 0, the column by column scanning strategy yields a prefix code of
strings (similarly for X ⊆ Σ∗n and the row by row scanning strategy). The next
example takes back our running language Xrun.

Example 25. Let Xrun be as in Example 11. Both languages Lr(Xrun) and
Lc(Xrun) (obtained reading the pictures by rows or by columns, respectively)
are not prefix codes. In fact in Lr(Xrun) there is bb that is a prefix of bbaa,
while in Lc(Xrun) there is aba that is a prefix of abaa. However if we scan the
pictures of Xrun in a different (more complex) way, we obtain a prefix code.
Saying differently, symbols of strings in Lr(Xrun) can be commuted to obtain
the following prefix code
Prun = {aba, abb, bb, aaaa, aaab, aaba, aabb, baaa, baab, baba, babb}.
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In the rest of the section we prove that, what is shown for Xrun holds in general
for all finite strong prefix codes. Given a finite strong prefix code X, there exists
a particular scanning of its pictures (not necessarily the row-by-row, or column-
by-column one) that yields a prefix string code. It can be obtained following the
construction of X by replacements described in Section 3. The notations in the
next definitions refer directly to the ones in Propositions 13, 14, 15.

Definition 26. Let X ⊆ Σ++ be a finite maximal strong prefix code.
The stringing of X is the language P (X) ⊆ Σ+ recursively defined as follows:

− if X = Σ1,1 then P (X) = Σ
− if X = (Xred \ {p}) ∪ E(m,n)(p) then P (X) = (P (Xred) \ {yp}) ∪ ypΣ

k,
where yp ∈ P (Xred) is the string corresponding to p in P (Xred) and k =
m × n − size(p).

Example 27. Let Xrun be the running example. Referring to the proof of Propo-
sition 14, p, Y = E(m,n)(p), and Xred are respectively: p5, Y = E(2,2)(p5), and
X5, as in Example 16. Then P (Xred) can be recursively obtained as P (Xred) =
{aaaa, aaab, aaba, aabb, aba, abb, ba, bb} and P (Xrun) = (P (Xred)\{ba})∪baΣ2,
is: P (Xrun) = {aaaa, aaab, aaba, aabb, aba, abb, baaa, baab, baba, babb, bb}. Notice
that language P (Xrun) is a maximal prefix code. Its corresponding literal repre-
sentation is given below in order to point out the resemblance of such tree with
the tree representing the construction of Xrun in Example 16. Strings in brackets
in some nodes of the tree, denote strings that do not correspond to intermediate
steps in the recursive construction of Xrun.

.

a b

aa ab ba bb

(aaa) (aab) aba abb (baa) (bab)

aaaa aaab aaba aabb baaa baab baba babb

Proposition 28. Let X ⊆ Σ++ be a finite maximal strong prefix code of pic-
tures. Then the stringing P (X) of X is a maximal prefix code of strings.

Proof. The proof is by induction on the cardinality of X. The basis is that {a, b}
is a prefix code of strings. Then suppose the statement holds for any cardinality
less than |X|. Let p, Y = E(m,n)(p) ⊆ X, and Xred as claimed in Proposition
14. Xred is a a maximal strong prefix code and |Xred| < |X|. Then, by the
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inductive hypothesis, P (Xred) is a maximal prefix code. Let yp ∈ P (Xred) the
string corresponding to p in P (Xred). Then, P (X) = P (Xred) \ {yp} ∪ ypΣ

k,
with k = m × n − size(p), is a prefix code. Moreover P (X) is maximal prefix
(see [10] for results on string codes). ��
Remark that the property stated in Proposition 28 for any finite strong prefix
code does not hold for general picture codes. In the theory of string codes there
are indeed examples of codes whose strings cannot be rearranged in any way to
give a prefix code [10]. Further any string code S ⊆ Σ+ can be considered as a
picture code, where any string is viewed as one-row picture.

In [3] it is proved that any strong prefix code X can be embedded in a
maximal one: this guarantees that Proposition 28 holds also by removing the
maximality hypothesis for X. Then the stringing P (X) can be defined also for
(non-maximal) strong prefix codes. Note that in this case, P (X) will be a prefix
code, but not a maximal one.

Corollary 29. Let X be a finite strong prefix code. Then its stringing P (X) is
a prefix code and X is maximal strong prefix if and only if P (X) is a maximal
prefix code.

The correspondence between strong prefix codes of pictures and prefix codes
of strings sheds light on the results on the measure, presented in Section 4.
Remark that the measure of any finite strong prefix code X, is equal to the mea-
sure of its corresponding prefix code P (X). That is actually the intrinsic reason
for which results on string codes that involve the measure can be generalized
also to strong prefix codes.

As conclusion of the paper, we mention a conjecture on string codes, still
open since the 80’s and referred to as “the commutative equivalence conjecture”,
that is related to other famous conjectures in the theory of codes (see [10]).
Given two (string) languages S1 and S2, we say that they are commutatively
equivalent if S1 can be obtained by rearranging the order of the symbols in each
string of S2. The mentioned conjecture claims that every finite maximal code
is commutatively equivalent to a finite maximal prefix code. Researchers, with
the aim of solving the conjecture, have detected families of commutatively prefix
codes [16]. The stringing of a strong prefix picture code X can be regarded to as
a way to rearrange the symbols of each picture and obtain a prefix string code.
Therefore the results in this section have shown that also finite strong prefix
codes of pictures are a family of codes that are in some sense commutatively
prefix.
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Abstract. This paper addresses the torsion problem for a class of
automaton semigroups, defined as semigroups of transformations induced
by Mealy automata, aka letter-by-letter transducers with the same input
and output alphabet. The torsion problem is undecidable for automaton
semigroups in general, but is known to be solvable within the well-studied
class of (semi)groups generated by invertible bounded Mealy automata.
We focus on the somehow antipodal class of invertible reversible Mealy
automata and prove that for a wide subclass the generated semigroup is
torsion-free.

Keywords: Automaton semigroup · Reversible mealy automaton ·
Labeled orbit tree · Torsion-free semigroup

1 Introduction

In this paper we address the torsion problem for a class of automaton semigroups.
In a (semi)group, a torsion—or periodic—element is an element of finite order,

that is an element generating a finite monogenic sub(semi)group. In particular,
a (semi)group is torsion-free (resp. torsion) if its only torsion element is its
possible identity element (resp. if all its elements are torsion elements). Like
most of the major group or semigroup theoretical decision problems, the word,
torsion and finiteness problems are undecidable in general [8].

Automaton (semi)groups, that is (semi)groups generated by Mealy automata,
were formally introduced a half century ago (for details, see [9] and references
therein). Two decades later, important results started revealing their full poten-
tial. In particular, contributing to the so-called Burnside problem, the arti-
cles [2,15] construct particularly simple Mealy automata generating infinite
finitely generated torsion groups, and, answering the so-called Milnor problem,
the articles [6,16] describe Mealy automata generating the first examples of
(semi)groups with intermediate growth. Since these pioneering works, a sub-
stantial theory continues to develop using various methods, ranging from finite
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automata theory to geometric group theory and never ceases to show that
automaton (semi)groups possess multiple interesting and sometimes unusual
features.

For automaton (semi)groups, the word problem is solvable using standard
minimization techniques [7,12,19]. The torsion problem and the finiteness prob-
lem for automaton semigroups have been proven to be undecidable [14] but
remain open for automaton groups. However there exist various criteria for rec-
ognizing whether such a (semi)group or one of its element has finite order, see
for instance [1,3,4,9–11,18,20,22,23,25,27,28]. In particular, there are many
partial methods to find elements of infinite order in such (semi)groups. Their
efficiency may vary significantly. By contrast, the class of so-called invertible
bounded Mealy automata, which has received considerable attention, admits an
effective solution to both problems of torsion and finiteness [5,10,27]. This class
happens to correspond to some tight restriction on the underlying automata: the
non-trivial cycles are disjoint and none can be reached from another.

Here we tackle the torsion problem, focusing on a very different class of
Mealy automata, namely reversible Mealy automata, in which each connected
component turns out to be strongly connected. This class was known as the class
for which most of the existing partial methods do not work or perform poorly. We
prove that for a wide subclass of invertible reversible Mealy automata—roughly
the non-bireversible ones—the generated semigroup is torsion-free. It is worth
mentioning that the class of bounded Mealy automata and the class of reversible
Mealy automata are somehow at the opposite ends of the spectrum.

The proof of torsion-freeness relies on deep structural properties of the so-
called labeled orbit tree which happens to capture the behavior of the (strongly)
connected components during the exponentiation of a reversible Mealy automa-
ton, and it gives hopefully a new insight even in the still mysterious subclass of
bireversible Mealy automata (see [7,20,24] and the references therein).

The paper is organized as follows. In Section 2, we set up notation, provide
well-known definitions and facts concerning Mealy automata and automaton
semigroups. Some results concerning connected components of reversible Mealy
automata are given in Section 3. In Section 4 we introduce a crucial construction,
namely the labeled orbit tree of a Mealy automaton, and define the notion of
a self-liftable path, especially relevant for investigating torsion-freeness. Finally,
Section 5 contains the proof of our main result.

2 Mealy Automata

We first recall the formal definition of an automaton. A (finite, deterministic,
and complete) automaton is a triple

(
Q,Σ, δ = (δi : Q → Q)i∈Σ

)
, where the

stateset Q and the alphabet Σ are non-empty finite sets, and where the δi are
functions.

A Mealy automaton is a quadruple
(
Q,Σ, δ = (δi : Q → Q)i∈Σ , ρ = (ρx : Σ →

Σ)x∈Q

)
, such that both (Q,Σ, δ) and (Σ,Q, ρ) are automata. In other terms,
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a Mealy automaton is a complete, deterministic, letter-to-letter transducer with
the same input and output alphabet.

The graphical representation of a Mealy automaton is standard, see Figures 1
and 2.

x y1|0

0|1

1|1

0|0
x−1 y−10|1

1|0

1|1

0|0

Fig. 1. An invertible reversible non-bireversible Mealy automaton L (left) and its
inverse L−1 (right), both generating the lamplighter group Z2 � Z (see [17])

1|3

2|2

3|1
3|1

1|3
2|2

1|3
3|1

2|2

2|2

3|1 1|3
3|1

1|3
2|2

2|1

1|3
3|2

Fig. 2. A 3-letter 6-state inv. reversible non-bireversible Mealy automaton J

In a Mealy automaton A = (Q,Σ, δ, ρ), the sets Q and Σ play dual roles. So we
may consider the dual (Mealy) automaton defined by d(A) = (Σ,Q, ρ, δ). Alter-
natively, we can define the dual Mealy automaton via the set of its transitions:

x
i|j−→ y ∈ A ⇐⇒ i

x|y−−→ j ∈ d(A) .

Definition 1. A Mealy automaton (Q,Σ, δ, ρ) is said to be invertible if the
functions (ρx)x∈Q are permutations of Σ and reversible if the functions (δi)i∈Σ

are permutations of Q.

Consider a Mealy automaton A = (Q,Σ, δ, ρ). Let Q−1 = {x−1, x ∈ Q} be a
disjoint copy of Q. The inverse A−1 of A is defined by the set of its transitions:

x
i|j−→ y ∈ A ⇐⇒ x−1 j|i−→ y−1 ∈ A−1 .

If A is invertible, then its inverse A−1 is a Mealy automaton, see for instance
Figure 1.
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Definition 2. A Mealy automaton is bireversible if it is invertible, reversible
and its inverse is reversible.

The terms “invertible”, “reversible”, and “bireversible” are standard since [21].
Figure 3 gives characterizations of invertibility and reversibility in terms of for-
bidden configurations in a Mealy automaton.

Here we define a new class:

Definition 3. A Mealy automaton is coreversible whenever Configuration (c) in
Figure 3 does not occur. This means that each output letter induces a permutation
on the stateset.

The bireversible Mealy automata are those which are simultaneously invertible,
reversible, and coreversible. We emphasize that an invertible reversible Mealy
automaton is bireversible if and only if it is coreversible.

y

z

y �= z

i|.

i|.

(a)

i �= j

i|k

j|k

(b)

y

z

y �= z

.|k

.|k

(c)

Fig. 3. Configuration (a) is forbidden for reversible automata, Configuration (b) for
invertible ones, and Configuration (c) for coreversible ones

We view A = (Q,Σ, δ, ρ) as an automaton with an input and an output
tape, thus defining mappings from input words over Σ to output words over Σ.
Formally, for x ∈ Q, the map ρx : Σ∗ → Σ∗, extending ρx : Σ → Σ, is defined
recursively by:

∀i ∈ Σ, ∀s ∈ Σ∗, ρx(is) = ρx(i)ρδi(x)(s) . (1)

Equation (1) can be easier to understood if depicted by a cross-diagram (see [1]):

i s
x δi(x) δs(δi(x))

ρx(i) ρδi(x)(s)

By convention, the image of the empty word is itself. The mapping ρx for
each x ∈ Q is length-preserving and prefix-preserving. We say that ρx is the
production function associated with (A, x). For x = x1 · · · xn ∈ Qn with n > 0,
set ρx : Σ∗ → Σ∗, ρx = ρxn

◦ · · · ◦ ρx1 . Denote dually by δi : Q∗ → Q∗, i ∈ Σ,
the production functions associated with the dual automaton d(A). For s =
s1 · · · sn ∈ Σn with n > 0, set δs : Q∗ → Q∗, δs = δsn

◦ · · · ◦ δs1 .
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The semigroup of mappings from Σ∗ to Σ∗ generated by {ρx, x ∈ Q} is called
the semigroup generated by A and is denoted by 〈A〉+. When A is invertible, its
production functions are permutations on words of the same length and thus we
may consider the group of mappings from Σ∗ to Σ∗ generated by {ρx, x ∈ Q}.
This group is called the group generated by A and is denoted by 〈A〉.

It is know from [1] that the possible behaviors of invertible reversible non-
bireversible Mealy automata provide less variety than those of bireversible
automata whenever finiteness is concerned:

Proposition 4. ([1, Corollary 22]) Any invertible reversible non-bireversible
Mealy automaton generates an infinite group.

Note that the ratio of these invertible reversible non-bireversible Mealy automata
tends to supersede the bireversible one, when the size of alphabet and/or stateset
increases.

3 On the Behavior of Connected Components

In this section, we gather some properties satisfied by the connected compo-
nents of the underlying graph of a reversible Mealy automaton and we focus on
those properties preserved when making products. We use the following crucial
property: any connected component of a reversible Mealy automaton is strongly
connected. Our main tool, described in the next section, captures the behavior
of the connected components of the successive powers of a given reversible Mealy
automaton, allowing a much finer analysis.

Definition 5. Let A = (Q,Σ, δ, ρ) and B = (Q′, Σ, δ′, ρ′) be two Mealy automata
acting on the same alphabet. Their product is the Mealy automaton A × B =
(Q × Q′, Σ, γ, π) with transition

xy
i|ρ′

y(ρx(i))−−−−−−−→ δi(x)δ′
ρx(i)

(y) ,

which can be seen in terms of cross-diagram as:

i

x

ρx(i)

δi(x)

y

ρ′
y(ρx(i))

δ′
ρx(i)

(y)

Note that the product of two reversible (resp. invertible) Mealy automata is still a
reversible (resp. invertible) Mealy automaton. Let us consider the coreversibility
property.
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Lemma 6. Let A and B be Mealy automata on the same alphabet with A con-
nected and reversible. Then, for any connected component C of A×B, every state
of A occurs as a prefix of some state of C.

Proof. Let A = (Q,Σ, δ, ρ) and let C be a connected component of A × B.
Let xx′ ∈ C and y ∈ Q. Since A is connected and reversible, there exists s ∈ Σ∗

satisfying y = δs(x), hence y is a prefix of the state δs(xx′) in C. 
�
Proposition 7. Let A and B be reversible Mealy automata on the same alpha-
bet. If A is connected and non-coreversible, then every connected component
of A × B is reversible and non-coreversible.

Proof. Let Q be the stateset of A and let C be a connected component of A×B.
As A and B are reversible, so is C.
Since A is not coreversible, there exist two states x �= y ∈ Q leading to the same
state z, when producing the same letter j:

z

x

y

.|j

.|j
that is,

·
x z

j

and
·

y z.

j

By Lemma 6, C admits a state prefixed with x, say xx′. Let

j

x′ z′

k

be a transition of B, then the following configuration occurs in C:

zz′

xx′

yx′

.|k

.|k
that is,

.

x z

j

x′ z′

k

and

.

y z

j

x′ z′

k

,

which means that C cannot be coreversible. 
�
A convenient and natural operation is to raise a Mealy automaton to some power.
The n-th power of A = (Q,Σ, δ, ρ) is recursively defined. By convention, A0 is
the trivial Mealy automaton with only one state, which acts like identity on Σ.
For n > 0, An is the Mealy automaton

An =
(

Qn, Σ, (δi : Qn → Qn)i∈Σ , (ρu : Σ → Σ)u∈Qn

)
.
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Corollary 8. If a Mealy automaton is (invertible) reversible without corevers-
ible connected component, then every connected component of any of its powers
is (invertible) reversible and non-coreversible.

Definition 9. [17,24] The action of a Mealy automaton A is said to be spheri-
cally transitive or level-transitive whenever all the powers of d(A) are connected.

4 The Labeled Orbit Tree

There exist strong links between the successive sizes of the connected components
of the powers of a reversible Mealy automaton and some finiteness properties of
the generated semigroup, as emphasized by the two following results. Such links
can be captured by a suitable tree, playing a fundamental role in the sequel.

Proposition 10. A reversible Mealy automaton generates a finite semigroup if
and only if the sizes of the connected components of its powers are bounded.

The latter is proven in [20] within the framework of invertible reversible Mealy
automata, but the invertibility is not invoked in the proof. We need the following
result, also from [20].

Proposition 11. Let A = (Q,Σ, δ, ρ) be an invertible reversible Mealy automa-
ton. For any u ∈ Q+, the following are equivalent:

(i) the action ρu induced by u has finite order;
(ii) the sizes of the connected components of (un)n∈N are bounded.

A direct consequence of Proposition 10 provides a simple yet interesting result
concerning torsion-freeness.

Corollary 12. Let A be a reversible Mealy automaton. Whenever the action
of d(A) is spherically transitive, the semigroup 〈A〉+ is torsion-free.

Proof. Let A be a Mealy automaton with stateset Q such that all its powers are
connected. By Proposition 10, A generates an infinite semigroup.
Assume that there exists u ∈ Q+ whose action has finite order, say ρup = ρuq

with p < q. By reversibility of A, every state of Aq is equivalent to some state
of Ap, hence A generates a finite semigroup, which is a contradiction. 
�
Corollary 12 applies for instance to the Mealy automaton L on Figure 1(left):
the subsemigroup of the lamplighter group generated by x and y is torsion-free.

We are now ready to introduce our main tool.

Definition 13. Let A be a reversible Mealy automaton with stateset Q. Rooted
in A0, the labeled orbit tree t(A) is constructed as the graph of the (strongly)
connected components of the powers of A, with an edge between two nodes C,D
whenever there is u ∈ C with ux ∈ D and x ∈ Q, such an edge being labeled by
the (integer) ratio |D|/|C|.
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Such a tree t(A) is more precisely named the labeled orbit tree of the dual d(A)
since it can be seen as the tree of the orbits of Q∗ under the action of the
group 〈d(A)〉 (see [13,20]).

Figure 4 displays the labeled orbit tree t(J ), where J is the Mealy automaton
defined in Figure 2.
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Fig. 4. The labeled orbit tree t(J ) (up to level 6) with J defined on Figure 2 (the thick-
ened edges emphasize the 1-self-liftable paths defined below in Def. 17)

Since the orbit trees are rooted, we choose the classical orientation where
the root is the higher vertex and the tree grows from top to bottom. A path
is a (possibly infinite) sequence of adjacent edges without backtracking. The
initial vertex of an edge e is denoted by (e) and its terminal vertex by ⊥(e);
by extension, the initial vertex of a non-empty path e is denoted by (e) and
its terminal vertex by ⊥(e) whenever the path is finite. The label of a (possibly
infinite) path is the ordered sequence of labels of its edges.

Definition 14. In a tree, a (possibly infinite) path e is said to be initial if (e)
is the root of the tree.

Definition 15. Let A be a reversible Mealy automaton and let e, f be two edges
in the orbit tree t(A). We say that e is liftable to f if each word of ⊥(e) admits
some word of ⊥(f) as a suffix.

One can notice that this condition is not as strong as it seems:

Lemma 16. Let A be a reversible Mealy automaton and let e, f be two edges in
the orbit tree t(A). If there exists a word of ⊥(e) which admits a word of ⊥(f)
as suffix, then e is liftable to f .
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Proof. Assume uv ∈ ⊥(e) with v ∈ ⊥(f). By reversibility, for any word w in the
connected component ⊥(e), there exists s ∈ Σ∗ satisfying w = δs(uv), which
can also be written w = δs(u)δt(v) with t = ρu(s). Hence the suffix δt(v) of w
belongs to the connected component ⊥(f) of v. 
�
Definition 17. Let A be a reversible Mealy automaton and let e be a (possibly
infinite) initial path in the orbit tree t(A). We say that e = e0e1 · · · is 1-self-
liftable whenever every edge ei+1 is liftable to its predecessor ei, for i ≥ 0.

This important notion generalizes that of an e-liftable path used in [20] where
the liftability is required with respect to a uniquely specified edge e.
Using thickened edges, Figure 4 highlights each of the 1-self-liftable paths in the
orbit tree t(J ), where the Mealy automaton J is displayed on Figure 2.

Definition 18. Let A be a reversible Mealy automaton with stateset Q. The
path of a word u ∈ Q∗ ∪ Qω is the unique initial path in t(A) going from the
root through the connected components of the prefixes of u.

Lemma 19. Let A be a reversible Mealy automaton. For any state x of A, the
path of xω in t(A) is 1-self-liftable.

Proof. By Lemma 16, xn being a suffix of xn+1, such a path is 1-self-liftable. 
�
Lemma 19 guarantees the existence of 1-self-liftable paths in any orbit tree.

5 Main Result

Assume that A is an invertible reversible Mealy automaton without bireversible
component. Our aim is to prove that every element of 〈A〉+ has infinite order.
We first prove this property for the states of A, whenever A is connected, by
looking at some 1-self-liftable paths in t(A) (defined in Section 4). Then we
extend it to arbitrary elements of 〈A〉+ by using the properties of products of
Mealy automata (established in Section 3).

Proposition 20. Let A be some connected invertible reversible non-bireversible
Mealy automaton. A 1-self-liftable path in t(A) cannot contain an edge labeled
by 1.

Proof. Let A = (Q,Σ, δ, ρ), e be a 1-self-liftable path in t(A) and e be an edge
of e. Let T (resp. L) denote the set of states of (e) (resp. of ⊥(e)). For any
word w, Lw = {u | wu ∈ L} is the left quotient of L by w (see for instance [26]).
As A is connected and reversible, according to Lemma 6, for any x ∈ Q, the left
quotient Lx is non-empty. Hence we have

L =
⊔

x∈Q

xLx (disjoint union).
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The hypotheses that the path e is 1-self-liftable and that A is invertible yield

T =
⋃

x∈Q

Lx.

Indeed, let xu ∈ L with x ∈ Q (and u ∈ T by 1-self-liftability) and let v ∈ T .
By reversibility, there exists s ∈ Σ∗ verifying δs(u) = v. Now, by invertibility,
there exists t ∈ Σ∗ with ρx(t) = s:

t
x δt(x) = x′

s
u δs(u) = v

ρu(s).

Therefore, v is a suffix of δt(xu), hence v ∈ Lx′ for x′ = δt(x) ∈ Q.
Since A is not coreversible, there exist y �= y′, z ∈ Q and i, j, k ∈ Σ satisfying

i k

y z and y′ z

j j

.

So, in the connected component ⊥(e), we have

δi(yLy) = zLz and δk(y′Ly′) = zLz.

From reversibility of A, δj is injective and we deduce Ly = Ly′ . Therefore the
union T =

⋃
x∈Q Lx is not disjoint and we find |T | < |L| which implies that the

label of e is greater than 1. 
�
An easy but interesting first consequence is the following.

Corollary 21. A connected 3-state invertible reversible non-bireversible Mealy
automaton generates a free semigroup.

Proof. We deduce from Proposition 20 that any connected 3-state invertible
reversible non-bireversible Mealy automaton sees its dual to be spherically tran-
sitive and the result follows from [18, Proposition 14]. 
�
Let us go back to our main purpose.

Proposition 22. Let A be some connected invertible reversible non-bireversible
Mealy automaton. Then any state of A induces an action of infinite order.

Proof. Let x be a state of A. The path of xω is 1-self-liftable by Lemma 19. So by
Proposition 20, this path has no edge labeled with 1, which means that the sizes
of the connected components of (xn)n∈N are unbounded. By Proposition 11, the
action induced by x has infinite order. 
�
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We can now state our main result by extending Proposition 22:

Theorem 23. Any invertible reversible Mealy automaton without bireversible
component generates a torsion-free semigroup.

Proof. Let A be an invertible reversible Mealy automaton without bireversible
component with stateset Q. Let u ∈ Q+ and let C its connected component
in t(A). From Corollary 8, C is a connected invertible reversible non-bireversible
Mealy automaton with u as a state. Hence by Proposition 22, u induces an
action of infinite order. 
�
Note that Theorem 23 cannot provide extra information on the torsion-freeness
of the generated group. Take for instance the Mealy automaton L of Figure 1
(left): the action induced by yx−1 has order 2. However, Theorem 23 ensures that
an invertible reversible Mealy automaton without bireversible component cannot
generate an infinite Burnside group (see [24] for background on the Burnside
problem).

All these results and constructions emphasize the relevance of the reversibility
property and question us further on those (semi)groups structures generated by
bireversible automata that, despite the tightness of the hypothesis on them,
reveal more complex to study.

Acknowledgments. The authors thank an anonymous referee, whose relevant com-
ments improved the paper.

References

1. Akhavi, A., Klimann, I., Lombardy, S., Mairesse, J., Picantin, M.: On the finiteness
problem for automaton (semi) groups. Internat. J. Algebra Comput. 22(6), 26
(2012)
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Abstract. Surface laminations are classic closed sets of disjoint curves
in surfaces. We give here a full description of how to obtain codings
of such laminations when they are non-orientable by using lamination
languages, i.e. specific linear complexity languages of two-way infinite
words. We also compare lamination languages with symbolic laminations,
i.e. the coding counterparts of algebraic laminations.

1 Introduction

A surface lamination is essentially a closed set of pairwise disjoint closed or
two-way infinite curves (leaves) rolling around a surface, a notion related to
foliations of surfaces [6,18]. The curves of a lamination can always be contin-
uously deformed onto paths of labeled embedded graphs – closely related to
classic train-tracks [16,18] –, that we call train-track like (ttl) graphs. This defor-
mation of curves onto a graph is called carrying, and the set of labels of the
paths the curves of a lamination are deformed onto is called a lamination lan-
guage [14]. Lamination languages not only reflect some of the geometric behavior
of the laminations they represent, they are also a family of languages with spe-
cific combinatorial properties. They are shifts, characterized by their sequences
of embedded Rauzy graphs, and by their sets of bispecial factors [14] (as an
extension of results about interval exchange transformations obtained in [1,
10]). Lamination languages always have linear factor complexity, whose possi-
ble functional forms have been described in [15]. The fact that the non-orientable
case – that is, when laminations and their carrier train-tracks are non-orientable –
, reduces to the orientable case [18] was traditionally taken for granted. However,
recent advances in the non-orientable case through a detailed symbolic study of
linear involutions [2], together with the general framework in [8] readily including
the non-orientable case and using a representation called symbolic laminations,
show that this reduction to the orientable case is not as straightforward as it
seems. The purpose of this paper is to describe how this reduction goes, and in
particular we prove:

Proposition A. Every ttl graph Γ admits a canonically oriented ttl graph Γ̃ as
an orientation covering space, and any lamination carried by Γ , orientable or
not, can be coded by Γ̃ , yielding a lamination language.

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 340–352, 2015.
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Lamination languages are mostly included into the set of symbolic lamina-
tions, which is a much larger set of shifts. In fact, symbolic laminations are in
bijection with algebraic laminations, a notion defined for free groups of finite
type, and among the algebraic laminations are those which describe geodesic
laminations on compact surfaces, called algebraic surface laminations [8]. With
this respect, the second main result we prove here is the following, making a link
possible between the results of [8] and [14]:

Proposition B. The set of symbolic laminations Λsurf corresponding to alge-
braic surface laminations is equal to the set Ld of lamination languages obtained
through Proposition A.

2 Context and Basic Definitions

We first give basic definitions (details can be found in [14]). Let Γ = (V,E) be a
graph with V as a set of vertices and E as a set of edges. Γ is connected if any two
of its vertices are linked by a path. It is directed (or oriented) if an orientation
is given to each of its edges, thus every edge has an initial vertex and a terminal
vertex. A directed graph is connected if any two of its vertices are linked by a
(directed) admissible path, i.e. a sequence of consecutive edges with the same
orientation. Now, a classic notion in lamination theory is train-tracks [16,18],
usually defined as 1D branched differentiable submanifolds of surfaces, but which
can also be defined as a kind of graphs embedded in surfaces:

Definition 1. A graph Γ = (V,E) is said to be train track-like (ttl for short)
if it is embedded in a surface Σ, and for each vertex v ∈ V of degree > 1, the set
of incident edges at v has been non-trivially partitioned into two sets E1,v, E2,v,
both formed of incident edges which are next to each other around v.

A ttl graph can be thought of as a “semi-directed” graph: at each vertex v, the
sets E1,v, E2,v induce two possible local orientations, where the edges in E1,v are
considered incoming at v while the ones of E2,v outgoing from v, or the other way
around. Thus a (ttl) admissible path (or trainpath) in a ttl graph Γ is a sequence
of consecutive edges such that at each vertex v crossed, the path enters v by an
edge in E1,v (resp. E2,v) and leaves it by an edge in E2,v (resp. E1,v). This
semi-directedness reflects the idea of “railroad switches” in a train-track.

Definition 2. A curve γ in a surface Σ is said to be carried by a ttl graph Γ
in Σ if there is a continuous deformation – a homotopy – of γ onto a ttl admis-
sible path of Γ .

A ttl graph Γ is orientable if at each vertex v of Γ , there is a choice of one
of the local orientations among the two induced by E1,v and E2,v, so that these
orientations consistently match on each edge in Γ . A ttl graph Γ is directed (or
oriented) when such orientation choices for Γ have been made, and Γ becomes
then a plain embedded directed graph.
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Lemma 1 (Two orientations). Let Γ be a connected and orientable ttl graph.
Then Γ has only two possible orientations, opposite of each other on each edge.

Example 1 (A non-orientable graph). One of the simplest non-orientable ttl
graph is the “yin-yang graph” which is made of two vertices v1, v2, three edges
e1, e2, e3 linking them, and such that E1,v1 = {e1, e2}, E2,v1 = {e3}, E1,v2 =
{e1}, E2,v2 = {e2, e3}. This graph is shown on the left of the next figure. In the
middle are represented the four possible sets of local orientations derived from
the E.,. sets; each of them induces some non-consistently oriented edge, hence
the non-orientability of the yin-yang graph:

A geodesic lamination L on a surface Σ (with a Poincaré metric) is a
non-empty closed subset of Σ forming a union of simple and pairwise disjoint
geodesics [18]. Another definition, equivalent up to continuous deformation, goes
essentially as follows [14]: A (topological) lamination L in Σ is a set of simple
closed or two-way infinite curves in Σ, all pairwise disjoint and non-homotopic,
such that there exists an embedded ttl graph Γ which carries L in a maximal
way with respect to inclusion (no other curve carried by Γ can be added to L
while preserving all its curve set properties). The right part of the above figure
shows an example of a lamination, carried by the yin-yang graph, and made of
two curves: one looks like a Fermat’s spiral rescaled so as to accumulate at the
other one, a surrounding circle. Orientability for a lamination, can be defined
via the notion of carrying [4]: A lamination L is orientable if all its curves can
be carried by a directed ttl graph Γ , using only directed admissible paths of Γ .
A lamination is oriented when it is carried by a given directed graph Γ .

An embedded directed graph is coherent if at each vertex v of Γ all the
incoming edges are next to each other around v (hence the outgoing edges are
too). Following Definition 1 a directed ttl graph Γ is always coherent. Conversely,
an embedded directed graph Γ can become a ttl graph only when it is coherent so
that the sets E1,v, E2,v at each vertex v can be accordingly defined. Nevertheless,
when the focus is on curve carrying by directed graphs, non-coherent carrier
graphs can be considered too. These graphs have directed admissible paths as
any other directed graphs, and Definition 2 applies to them as well. Thus we
can drop the constraint in Definition 1 that E1,v, E2,v need to be formed by
consecutive incident edges around v. A non-necessarily coherent directed ttl
graph is an embedded directed graph, and conversely. In fact, a non-coherent
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graph Γ is always the result of edge contractions applied to a coherent graph
while preserving its carried laminations (see Sections 3 and 5.4 in [14]). Non-
coherent ttl graphs can indeed be seen as contracted train tracks.

Let A be a finite alphabet, and let AZ denote the set of the two-way infinite
words over A. Any subset of AZ is a language of two-way infinite words. AZ can
be endowed with the topology coming from the Cantor metric, and the shift

map σ is a continuous map on AZ which sends ...a−1a0a1... to ...a′
−1a

′
0a

′
1...

where a′
i = ai+1 for i ∈ Z. A shift is a closed σ-invariant language in AZ. Now,

an embedded directed graph Γ is here said to be labeled by A if its edges are
bijectively labeled by A, and the label of a directed admissible path of Γ is the
word obtained by concatenating the labels of its edges. If γ is a curve carried
by Γ , and if it is carried by a unique path (up to indexing), its coding is the label
of this path. In this case, we also say that γ is coded by this label, or coded

by Γ . The coding of a carried closed curve γ is the two-way infinite periodic
word ωuω, where u is the label of the closed directed path in Γ carrying γ.

Definition 3. A lamination language is the σ-closure in AZ of the codings of
all the curves of a lamination L coded by a directed graph Γ labeled by A.

Embedded directed graphs not only occur in the definition of lamination lan-
guages, they are also useful when analyzing the combinatorial properties of these
languages [14]. But then, the assumption that laminations should be orientable
seems necessary. The next sections show that the non-orientable case reduces to
the orientable one, thus making possible to stick to directed graphs.

3 Orientation Coverings for Carrier Graphs

First of all, to have a more combinatorial description of laminations together with
carrier graphs less dependent on the embedding surfaces, the idea in [14] was to
consider ttl graphs including their embedding information, that is, to consider
ribbon graphs (close to combinatorial maps [12]). This technical move is possible
since the coding of lamination curves only depends on the way curves are carried
by a graph, not on the genus or the punctures of their embedding surfaces.

Definition 4. A ribbon graph (or fat graph) Γ is a quintuple (V,H, h, i, ξ)
where: V is a set of vertices; H is a set of half-edges; h : H → H is an involution
without fixed points, which exchanges the pairs of half-edges, thus inducing a
set E of (full) edges (giving Γ an associated usual graph structure); i : H → V
is an incidence map, which indicates the vertex of Γ each half-edge is incident
with; ξ is a permutation on H defined as the product of the cyclic orderings
defined on each subset i−1(v), with v ∈ V .

An embedding of a graph in a surface naturally endows it with a unique ribbon
structure. Also, similarly to a graph, a ribbon graph Γ is connected if its asso-
ciated graph is connected; it is orientable if for each half-edge in H, there is a
choice of orientation so that these orientations consistently match on each edge
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in E; it is directed (or oriented) when such orientation choices for Γ have been
made; it is coherent, if ξ implies that at each vertex in V , all the incoming edges
are next to each other around. A ttl structure is assigned to a ribbon graph by
partitioning the half-edges of H incident at each v ∈ V into sets E1,v and E2,v.

Example 2 (A non-orientable coherent ttl ribbon graph). Reconsidering the
yin-yang graph of Example 1 with its embedding in the plane, and denoting by
ej,s, ej,t the two half-edges of the edge ej, we get the following ribbon graph:
V = {v1, v2}, H = {e1,s, e1,t, e2,s, e2,t, e3,s, e3,t}, h(ej,s) = ej,t and h(ej,t) =
ej,s for j = 1, ...3, i(ej,s) = v1 and i(ej,t) = v2 for j = 1, ...3, and ξ =
(e1,s e2,s e3,s)(e1,t e3,t e2,t). We can also define the same ttl structure as in
Example 1: E1,v1 = {e1,s, e2,s}, E2,v1 = {e3,s}, E1,v2 = {e1,t}, E2,v2 = {e2,t, e3,t}.

Let us give other instances of embedded graphs describable as ribbon graphs.
First of all, a ttl graph Γ is recurrent if for every edge e in Γ there exists a
closed admissible path which includes e. Then Γ is recurrent iff its edges can be
weighted by a positive map μ : E → R

∗
+ such that at every vertex v of Γ the

branch equation
∑

e∈E1,v
μ(e) =

∑
e∈E2,v

μ(e) holds [16]. A ttl graph Γ endowed
with such a map μ is said to be weighted. A bouquet of circles is a graph having
only one vertex v. Now, interval exchange transformations [7] (iets for short)
are orientation-preserving and piecewise isometric maps of bounded intervals,
and they are characterized by the fact their dynamics correspond to laminations
carried by orientable (thus trivially recurrent), coherent and weighted ttl ribbon
bouquets of circles [4]. When these laminations are coded by their bouquets,
they define a subset of lamination languages that we call iet languages, corre-
sponding to the usual way of coding iets, and characterized in [1,10] (note that
the languages coding iets over two subintervals are the Sturmian languages).
Non-classical iets can be defined similarly to iets, as they are also character-
ized by the fact their dynamics correspond to laminations carried by coherent
and weighted (hence recurrent) ttl ribbon bouquets of circles, but non-orientable
ones [11]. Note that for a ttl bouquet, non-orientability is equivalent to the pres-
ence of at least one reversing loop, that is, an edge whose both half-edges lie
either in E1,v or in E2,v. A non-orientable ttl bouquet is recurrent iff there are
reversing loops of both kinds, with half-edges in E1,v and E2,v. Iets and non-
classical iets dynamics are thus represented by weighted ttl ribbon bouquets of
circles, and they characterize what is called linear involutions [2,9].

Example 3 (Some ttl ribbon bouquets of circles). In the following figure, three
recurrent ttl ribbon bouquets of circles are shown; their embeddings induce a
ribbon structure at their unique vertex v, and their ttl structures are indicated
by the fact that every half-edge starting above the dotted line belongs to E1,v,
while every one below belongs to E2,v. The bouquet (i) corresponds to an iet over
three intervals; (ii) and (iii) corresponds to non-classical iets (linear involutions),
respectively given in [11, Section 2.4], and in [2, Section 2.2]:
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Ribbon graphs allow us to make abstraction of the embedding surfaces. We
can show then directly how to associate an oriented ttl ribbon graph with any
non-orientable one, reflecting the two possible edge orientations in their admis-
sible paths, and using a construction based on the classic method [13,17]:

Definition 5. Let Γ = (V,H, h, i, ξ) be a ttl ribbon graph. Let (V +,H+, i+, ξ+)
and (V −,H−, i−, ξ−) be two copies of (V,H, i, ξ), that is, copies of Γ without
half-edges linking information. For every v ∈ V , let v+ ∈ V +, v− ∈ V − denote
its corresponding copies, and define the local orientation at v+ ∈ V + and v− ∈
V − so that the half-edges in E1,v+ are outgoing (and those in E2,v+ incoming),
and the half-edges in E1,v− are incoming (and those in E2,v− outgoing).

Then the orientation covering of Γ is a ribbon graph Γ̃ = (V + � V −,H+ �
H−, h̃, i+ � i−, ξ+ � ξ−), where h̃ is an involution without fixed point defined as
follows. For each e ∈ H, let e+ ∈ H+, e− ∈ H− denote its copies, and:

a) If the orientation of e+ is consistent with that of h(e)+, h̃(e+) = h(e)+

(defining an oriented edge linking vertices in V +); and similarly for its copy,
h̃(e−) = h(e)− (linking vertices in V −).

b) If the orientation of e+ is consistent with that of h(e)−, h̃(e+) = h(e)−

(defining an oriented edge linking a vertex in V + to a vertex in V −); similarly
for its copy, h̃(e−) = h(e)+ (linking a vertex in V − to a vertex in V +).

The ribbon graph Γ̃ comes with a canonical orientation, since Cases (a) and (b)
above fix an orientation for each edge. With respect to the classic theory [13,17],
Γ̃ is just the two-sheeted (two-fold) orientation covering space of Γ coming
with a covering map ψ : Γ̃ → Γ defined by sending vertices and half-edges of Γ̃
to the corresponding ones of Γ in the obvious way. Also, since Γ̃ is a two-sheeted
covering, it has a covering involution s, which is the map exchanging V + and V −

together with their incident half-edges.

Example 4 (Some orientation covering graphs). Considering again the yin-yang
graph of Example 1, and the non-orientable bouquet of circles (ii) in the above figure,
here are their respective orientation coverings following Definition 5:
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The next lemma is the analogous to a classic result in manifold theory [13]:

Lemma 2 (Connectedness and Orientation). Let Γ be a connected ttl ribbon
graph. Then Γ̃ is connected iff Γ is non-orientable.

Lemma 3 (Uniqueness of Γ̃ ). Let Γ be a non-orientable ttl ribbon graph. Then
the possible orientations of Γ̃ yield isomorphic directed graphs.

4 Orientation Coverings for Laminations

In order to make a ttl ribbon graph Γ as an effective carrier graph for lamina-
tions, there are ways of building surfaces which embed Γ and laminations carried
by Γ in a unique way. A ribbon graph surface Σ(Γ ), unique up to isometry,
can be obtained as follows [14]: each vertex of Γ with degree ≤ 2 and each half-
edge in H is replaced by an Euclidean square having side length 1, and each
vertex in V with degree d > 2 is replaced by an Euclidean regular polygon with
d sides of length 1; these polygons are then glued together by Euclidean positive
isometries according to the patterns given by h, i and ξ. Laminations can then be
defined on Σ(Γ ) so as to be carried by Γ . To obtain surfaces without boundary
embedding Σ(Γ ), the boundary components of Σ(Γ ) can be capped off, e.g. with
disks, but as we already said, we mostly focus here at how a lamination is carried
by Γ , not at the specifics of their embedding surfaces. Also, any lamination L on
a surface Σ carried by an embedded graph Γ can always be moved on Σ so as to
lie in a regular neighborhood N(Γ ) of Γ in Σ. The embedding of Γ in Σ endows
it then with a ribbon structure, and Σ(Γ ) is homeomorphic to N(Γ ) by unique-
ness of regular neighborhoods. Thus, to be able to speak about laminations,
there is no loss of generality using only surfaces of the form Σ(Γ ).

Now, considering the orientation covering graph Γ̃ of Γ , we get Σ(Γ̃ ), where ψ
extends to a covering map to Σ(Γ ), whereto corresponding laminations can be
then defined consistently:

Definition 6. Let L be a lamination carried by Γ in Σ(Γ ). Let Γ+ and Γ−

be two copies of Γ , and let L+ and L− be two copies of L embedded in Σ(Γ+)
and Σ(Γ−), respectively. Then, the orientation covering lamination L̃ of L in
Σ(Γ̃ ) carried by Γ̃ is built after Definition 5: the surface Σ(Γ̃ ) is obtained by
gluing together the polygons making Σ(Γ+) and Σ(Γ−), using h̃, i+ � i−, and
ξ+ � ξ− of Γ̃ . These polygons contain pieces of curves of L+ and L−, fitting
together on Σ(Γ+) by construction. The result is L̃ and, by extension ψ(L̃) = L.

A technical point is that if we put some Poincaré metric on Σ(Γ ) (with geodesic
boundary), then Σ(Γ̃ ) inherits one too in such a way that ψ becomes a local
isometry, and in this case the covering involution s becomes an isometry.

The main properties of carrier graphs and laminations are preserved by their
orientation coverings, showing that the tools described in [14] remain effective
on them. First, a carrying of a lamination L by Γ is said to be full if every edge
of Γ is used to carry L:
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Lemma 4 (Fullness of the carrying). Let L be a lamination fully carried by Γ .
Then L̃ is fully carried by Γ̃ .

Lemma 5 (Coherence). Let Γ be a coherent ttl ribbon graph. Then Γ̃ is coher-
ent.

In reference to the topological definition of laminations, a carrying of a lamina-
tion L by Γ is said to be maximal if no other curve carried by Γ can be added
to L while at the same time preserving its nature of lamination (the definition of
carrying does not require maximality, only the definition of laminations does):

Lemma 6 (Maximality). Let L be a lamination maximally carried by a coherent
graph Γ . Then L̃ is maximally carried by Γ̃ .

A lamination L is said to be minimal if it does not contain any lamination as a
proper non-empty subset:

Lemma 7 (Minimality). Let L be a minimal lamination carried by a graph Γ .
Then L̃ is minimal iff L is non-orientable.

Example 5 (An orientation covering non-minimal lamination). Considering the
yin-yang graph Γ and the lamination L of Example 1, together with the orien-
tation covering graph Γ̃ shown in Example 4, the corresponding orientation cov-
ering lamination L̃ can be seen to be made of four curves. We show them on the
right of the next figure in two pairs, each pair containing one curve with its two
spiralling ends and one surrounding limit cycle:

Using the above labeling of Γ̃ , the lamination language coding L̃ is the σ-closure
of {ω(b−1a−1)c−1(ba)ω, ω(a−1b−1)c(ab)ω, ω(ab)ω, ω(a−1b−1)ω}.
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5 Coding Laminations

Given a lamination L carried by a ttl ribbon graph Γ , we are now ready for:

Proof (of Proposition A). First, we can consider their respective orientation
coverings Γ̃ and L̃ (cf. Definitions 5 and 6). As a consequence of Definition 5, Γ̃
is directed, and by Lemma 3, it is uniquely determined. Now, since L̃ is carried
by Γ̃ , it is oriented too, thus it can be coded by Γ̃ as a lamination language
following Definition 3. ��
As a consequence, here are all the possible ways of coding L by Γ into a lami-
nation language considering its orientability status:

i. If L is oriented, Γ is too, and the coding process is just based on taking the
labels of the admissible paths in Γ carrying the curves of L.

ii. If L is orientable but does not come with an orientation:
a. Either we fix one of the two orientations (see Lemma 1) and L is coded

through this orientation (as in Case (i)),
b. Or we consider both orientations, that is, L is coded through the coding

of L̃ by Γ̃ (see Proposition A), and we are in Case (i) again. Recall that
Γ̃ is then made of two disjoint copies of Γ (see Lemma 2), respectively
having one of the two possible orientations of Γ (see Lemma 3).

iii. If L is non-orientable, L is coded through the coding of L̃ by Γ̃ (see Propo-
sition A), and we are in Case (i) again. Here, Γ̃ is a connected graph.

As an example of a combinatorial property, the (factor) complexity [5] of a
language L is the map pL : N

∗ → N
∗, where pL(n) is the number of distinct fac-

tors (subblocks) in the words of L, and as a consequence of [14, 4.1.1]:

Remark 1 (Factor complexity of non-orientable laminations). Let L be a non-
orientable lamination, maximally carried by a coherent ttl graph Γ with a set V
of vertices and a set E of edges. Let L be the lamination language obtained by
coding L by Γ̃ . Then we have: pL(n) = 2(|E| − |V |)n + 2|V |, ∀n > 0.

For instance, the complexity of the lamination language L of Example 5 is
pL(n) = 2n + 4. An additional remark is that for a lamination language L
coming from some linear involution without connections, i.e. without simpli-
fications so that maximality of the corresponding laminations holds, we have
pL(n) = 2(|E| − 1)n + 2, ∀n > 0 (in accordance with [2]).

Note that the context of lamination languages is mostly the one of free
monoids for their sets of factors. Thus the way the carrier graphs are labeled is
of no importance (in particular from a word combinatorics point-of-view) as long
as we use as many distinct letters as there are edges. Nevertheless, considering
the orientation covering graphs allows one to extend the context to free groups,
as these graphs include edges with both orientations. In order to indicate these
orientations in the coding, there is a way of labeling an orientation covering
graph Γ̃ , so that the edge directions taken by an admissible path γ in Γ as a ttl
graph are reflected in ψ−1(γ):
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Definition 7. Let Γ be a non-orientable graph, and Γ̃ its orientation covering.
Let A = {a1, ..., an} and A−1 = {a−1

1 , ..., a−1
n }, for which s is defined as s(ai) =

a−1
i and s(a−1

i ) = ai, for every i = 1...n, and where n is the number of edges
of Γ . Then, following Definition 5, a natural labeling of Γ̃ is given as:

a. For every edge e built by Case (a) of Definition 5 of Γ̃ , we assign a distinct
letter a ∈ A, and a−1 to s(e) (its corresponding copy);

b. For every edge e built by Case (b) of Definition 5 and its copy s(e), we assign
letters a ∈ A and a−1, with an arbitrary choice (since they correspond to
edges linking vertices in V + and V −).

For instance, the orientation covering of the yin-yang graph shown in Example 5
is labeled according to a natural labeling.

6 Lamination Languages and Symbolic Laminations

Let w = ...w−2w−1w0w1w2... be a two-way infinite word over an alphabet A �
A−1 equipped with the involution s exchanging a and a−1 (see Definition 7),
then the symmetric word of w is ν(w) = ...s(w2)s(w1)s(w0)s(w−1)s(w−2).... By
extension, the symmetric language ν(L) of a language L over A � A−1 is the
language made of the symmetric words of all the words in L. The word w is said
to be reduced if wi �= s(wi+1) for all i (neither aia

−1
i nor a−1

i ai occurs).

Lemma 8. Let L be a lamination carried by a ttl ribbon graph Γ . Let Γ̃ be
labeled with a natural labeling. Let L be the lamination language of L coded by
Γ̃ . Then L = ν(L), and all the words in L are reduced.

Now, there exists another symbolic way of dealing with laminations, which
is defined in a very general setting in [8] by:

Definition 8. A symbolic lamination is a symmetric-invariant shift over an
alphabet A � A−1 made of reduced words.

Let us denote the set of all symbolic laminations by Λ, the set of lamination lan-
guages by L, and the subset of all lamination languages obtained by coding lam-
inations using the orientation coverings of their carrier graphs (cf. Cases (ii)(b)
and (iii) in p. 348) by Ld � L. According to Lemma 8, all the words of these sets
of languages coded over alphabets of the form A � A−1 are reduced, thus these
sets are comparable, combinatorially fitting in the context of free monoids:

Lemma 9. L �⊂ Λ and Ld � Λ.

An important case illustrating the preceding result is given by the set of all the
iet languages (cf. p. 344), that we denote by Liet:

Lemma 10. Liet � L, Liet �⊂ Λ, and Liet ∩ Λ �= ∅.
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In [8], a symbolic lamination in Λ is said to be orientable if it can be written
as a disjoint union L � ν(L), where L and ν(L) are both closed shifts, and Λ is
called positive if either L or ν(L) uses letters from A only (the other one from
A−1 only). This situation corresponds to the case when orientable laminations
are coded with lamination languages using their orientation covering graphs
(cf. Case (ii)(b) in p. 348), made then of two copies of the carrier graphs. This
situation is also the one of orientable linear involutions, which can be seen as a
pair of mutually inverse iets [2]. Now, similarly to iets, let us denote by Linvol all
the codings of the dynamics of the linear involutions by the orientation coverings
of their carrying ttl bouquets of circles (that is, the codings studied in [2]):

Lemma 11 Linvol � Ld, and (Linvol ∩ Liet) = (Liet ∩ Λ).

In order to explain some of the differences in the above language sets, note
first that the choices underlying the notion of lamination language were made
so that these languages code laminations according to the way their curves roll
up on a surface, and to their carrier graphs, thus yielding specific combinatorial
properties [14]. As for orientability, the concreteness of lamination languages
makes them to include the codings of orientable laminations without their sym-
metric counterpart, using their directed carrier graphs, and not necessarily their
orientation coverings. Instead, symbolic laminations always preserve the link
with group theory, so that in particular free groups can be exploited together
with the methods used to study their outer automorphisms [8, Remark 4.5].

Also, in order to have a more precise view at the inclusion Ld � Λ (cf.
Lemma 9), i.e. how the lamination languages coded by the orientation covering
graphs are included into the set of symbolic laminations, we now introduce some
more notions from [8]. Let Fn denote the free group on a set A of n generators,
where A−1 denote the set of A’s inverses, and whose elements can be seen to
be the reduced finite words over A � A−1. The group Fn can be represented
by a labeled tree Tn (a Cayley graph of Fn), defined by associating one vertex
with each reduced word in Fn, and one edge, with label x ∈ A � A−1, from
v ∈ Fn to v′ ∈ Fn if v′ = vx without reduction. The vertex associated with
the empty word is taken as the origin of Tn. It is then possible to consider the
limit language ∂2Fn made of all the possible pairs (w,w′), w �= w′, where w,w′

are right-infinite labels of admissible paths in Tn starting at the origin. The flip

involution is the map on ∂2Fn which sends (w,w′) to (w′, w). Also, Fn acts on
∂2Fn as v · (w,w′) = (vw, vw′), v ∈ Fn, where vw, vw′ are reduced if necessary.
These pairs (w,w′) give rise to two-way infinite words w′−1w, where all the
reductions (if any) have been applied, and the action of Fn preserves the set
of these two-way infinite words. Geometrically, it is then known that the words
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w′−1w correspond to geodesics in some surfaces (the geodesics are determined
by two limit points on the boundary of what is called the universal covering,
where Tn embeds, of each of these surfaces), leading to the following definition:

Definition 9. [8]. An algebraic lamination is a non-empty, closed set in ∂2Fn,
invariant by the flip and by Fn’s action.

The set of algebraic laminations is denoted by Λ2. By construction there is a
bijection ρ between Λ2 and Λ [8, Proposition 4.4] (the flip corresponds to the
symmetry property, and the Fn’s action to the shift-closure, see Definition 8).

Now, accordingly, an algebraic lamination determines a closed set of geodesics
on a surface, but this set is generally not a geodesic lamination since these
geodesics intersect on the surface (it is even very rare that they do not inter-
sect [3]). As a consequence, symbolic laminations form a much larger set of lan-
guages than lamination languages, since lamination languages only code geodesic
laminations. When an algebraic lamination actually determines a geodesic lam-
ination, it is called an algebraic surface lamination [8]. Their set is denoted
by Λ2

surf � Λ2, and let Λsurf = ρ(Λ2
surf) denote their corresponding symbolic

laminations. We are now in position to prove Proposition B, i.e. Λsurf = Ld (also
completing the figure of the set inclusions shown in p. 350):

Proof (of Proposition B, sketch). That Λsurf ⊆ Ld comes from the fact that any
algebraic surface lamination is related to a lamination carried by a bouquet of
n circles corresponding to the quotient of Tn by the action of Fn. The converse
Λsurf ⊇ Ld is essentially obtained by the fact that any ttl carrier graph can be
continuously transformed into a ttl bouquet of n circles by identifying all its
vertices onto one single vertex. ��
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Abstract. We investigate the length �(n, k) of a shortest preset dis-
tinguishing sequence (PDS) in the worst case for a k-element subset of
an n-state Mealy automaton. It was mentioned by Sokolovskii [18] that
this problem is closely related to the problem of finding the maximal
subsemigroup diameter �(Tn) for the full transformation semigroup Tn

of an n-element set. We prove that �(Tn) = 2n exp{√n
2
lnn(1 + o(1))}

as n → ∞ and, using approach of Sokolovskii, find the asymptotics of
log2 �(n, k) as n, k → ∞ and k/n → a ∈ (0, 1).

Keywords: Automata · Finite-state machine · Preset distinguishing
sequence · Transformation semigroup · Diameter

1 Introduction

Finite state machines are widely used models for systems in a variety of areas,
including sequential circuits [8] and communication protocols [10]. The study
of finite automata testing is motivated by applications in the verification of
these systems. One of the basic tasks in the verification of finite automata is
to identify the state of the automaton under investigation. Once the state is
known, the behavior of the automaton becomes predictable and it is possible to
force the automaton into the desirable mode of operation. Suppose we have a
finite deterministic Mealy automaton A whose transition and output functions
are available and we know that its initial state q0 is in some subset S of its set of
states Q. The state-identification problem is to find an input sequence called a
preset distinguishing sequence (PDS) for S in A that produces different outputs
for different states from S. Before we give a formal definition of a PDS and
state the results of the paper we need to fix notations and recall some standard
definitions from automata theory.

A finite deterministic Mealy automaton (an automaton for short) is a quintu-
ple A = (A,Q,B, δ, λ), where: A, Q, B are finite nonempty sets called the input
alphabet, the set of states, and the output alphabet, respectively; δ : Q × A → Q
and λ : Q × A → B are total functions called the transition function and the
output function, respectively.
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If we omit in the definition of automaton the output alphabet B and the
output function λ we obtain an object A = (A,Q, δ) called finite semiautomaton.
If the output function δ is partial then the semiautomaton is also called partial.

Let Σ be an arbitrary alphabet. By Σ∗ we denote the set of all words over
the alphabet Σ. Denote by |α| the length of a word α ∈ Σ∗. Denote by ε the
empty word, i.e., |ε| = 0.

As usual, we extend functions δ and λ to the set Q×A∗ in the following way:
δ(q, ε) = q, δ(q, αa) = δ(δ(q, α), a), λ(q, ε) = ε, λ(q, αa) = λ(q, α)λ(δ(q, α), a),
where q ∈ Q, a ∈ A,α ∈ A∗. Moreover, if S ⊆ Q is a subset of states, then we
let δ(S, α) = {δ(q, α) | q ∈ S}.

We say that two states q1, q2 ∈ Q of an automaton A are distinguishable by
an input word α ∈ A∗ if λ(q1, α) �= λ(q2, α). If there are no such words we say
that the states q1, q2 are indistinguishable or equivalent. An automaton is called
reduced or minimal if it does not have equivalent states.

Definition. Let S be a subset of states of an automaton A. We say that an
input word α is a preset distinguishing sequence (PDS) for S in A if α pairwise
distinguishes the states in the set S, i.e., λ(q1, α) �= λ(q2, α) for all q1, q2 ∈ S,
q1 �= q2.

Denote by �(A, S) the length of a shortest PDS for S in A, or 0 if such a PDS
does not exist. It is a well known fact [12] that there are reduced automata that
do not have a PDS for some k-element subsets of states when k ≥ 3. Consider
the function

�(n, k) = max
A∈An,|S|=k

�(A, S),

where An is the class of all n-state automata. This function can be interpreted
as the length of a shortest PDS in the worst case for a k-element subset of states
in an n-state automaton.

The function �(n, k) was studied by many authors. In his seminal paper [12]
Moore proves that �(n, 2) = n − 1. Gill [4] gives the upper bound �(n, k) ≤
(k − 1)nk. Sokolovskii finds the lower bounds in [17]:

�(n, k) ≥
(

n − 1
k − 1

)
if 1 ≤ k ≤ n/2, (1)

�(n, k) ≥
(

n − 2
�(n − 2)/2	

)
if n/2 < k < n. (2)

In [14] Rystsov shows that log3 �(n, n) ∼ n/6 as n → ∞. The result is proved
reducing the problem of estimating �(n, n) to the problem of estimating the
function T (n) that is equal to the length of a shortest irreducible word in the
worst case for a partial n-state semiautomaton. An irreducible word for a partial
semiautomaton A = (A,Q, δ) is a word α ∈ A∗ such that its action is defined
on all states and for any word β ∈ A∗ such that its action is defined on the set
δ(Q,α) we have |δ(Q,α)| = |δ(Q,αβ)|. In [14] it is proved that log3 T (n) ∼ n/3
as n → ∞. It is interesting to note that T (n) coincides with the function d3(n)
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studied by several authors [3,11] which is equal to the length of a shortest care-
fully synchronizing word1 in the worst case for a partial n-state semiautomaton.
This is due to the fact that every carefully synchronizing word is also irreducible
and the worst case irreducible word is always carefully synchronizing2. Thus we
have log3 d3(n) ∼ n/3 which was conjectured in [3].

In the paper [18] Sokolovskii investigate the relationship between the function
�(n, k) and the maximum of a subsemigroup diameter in the full transformation
semigroup of an n-element set.

Definition. Let Ωn be an n-element set. The full transformation semigroup
of Ωn (also called the symmetric semigroup of Ωn) is the set Tn of all transfor-
mations of Ωn.

The set Tn contains the proper subset Sn of all bijections on the set Ωn

called the symmetric group on Ωn. We see that Tn is a monoid and Sn is a
group with function composition as the multiplication operation. In this paper,
by the composition fg of transformations f, g ∈ Tn we mean the left composition
x �→ g(f(x)).

Consider B ⊆ Tn. By 〈B〉 denote the closure of the set B, i.e., the set
{f1 . . . f� | f1, . . . , f� ∈ B}. Let f ∈ 〈B〉 and � be the minimum natural number
such that f = f1 . . . f� for some f1, . . . , f� ∈ B. Then � is called the complexity of
the function f over the basis B and is denoted by �B(f). We should also mention
that the same function was considered in the paper [16] under the name depth.

For any subset C ⊆ Tn we define the following function:

�(C) = max
B⊆C,f∈〈B〉

�B(f). (3)

The function �(C) can be interpreted as the worst-case complexity of the
functions from C. In the paper [18] Sokolovskii shows that:(

n − 1⌊
n−1
2

⌋) < �(Tn) < n
n
2 (1+o(1))),

e
√

n lnn(1+o(1)) < �(Sn) < n!
1
2 (1+o(1)),

as n → ∞. It is worth mentioning that the lower bound for �(Sn) follows from
the asymptotic estimate of the maximum order of the permutations from Sn

called Landau’s function [9]. The stronger result for �(Sn) follows from [1]. The
author considers only closed sets C (i.e., 〈C〉 = C), which are subgroups of Sn.
For any subgroup G of Sn the directed diameter diam+(G) of the group G is
defined as follows:

diam+(G) = max
f∈G,〈B〉=G

�B(f).

1 A word α is a carefully synchronizing for a partial semiautomaton A = (A, Q, δ) if
the action of α is defined on all states and |δ(Q, α)| = 1.

2 If α is a shortest irreducible word for a partial semiautomaton A = (A, Q, δ) and
|δ(Q, α)| > 1 then we can always add a new input symbol a to A and obtain A′ =
(A∪{a}, Q, δ′) such that αa is a shortest irreducible word for A′ and |δ′(Q, αa)| = 1.
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It is easily shown that �(Sn) = maxG diam+(G), where G ranges over all
subgroups of Sn. From the results of [1] it follows that

�(Sn) = e
√

n lnn(1+o(1)) as n → ∞. (4)

We are now ready to state the first of the two main results of this paper.

Theorem 1. We have �(Tn) = 2ne
√

n
2 lnn(1+o(1)) as n → ∞.

As we mentioned before, Sokolovskii discovered (see [18]) the relationship
between functions �(Tn) and �(n, k). He proved in particular that

�(n, k) ≤ (k − 1)�(Tn). (5)

The binary entropy function denoted by H2(x) is defined as follows:

H2(x) = −x log2 x − (1 − x) log2(1 − x), where x ∈ (0, 1).

Combining inequalities (1), (2), and (5) with theorem 1 the second main
result of the paper can be proved.

Theorem 2. We have log2 �(n, k) ∼ ϕ(a)n as n → ∞ and k/n → a ∈ (0, 1),
where ϕ(a) = H2(a) if a < 1/2 and ϕ(a) = 1 if a ≥ 1/2.

2 Proofs of the Main Results

Before we proceed to the formal proofs of the main results, let us give some
definitions and state some useful lemmas first. Consider the set T(k)

n of all bijec-
tions f : D → D′ such that D,D′ ⊆ Ωn and |D| = |D′| = k. Suppose B ⊆ Tn,
f ∈ T(k)

n , f : D → D′, and there is a map g ∈ 〈B〉 such that f = g|D. Then we
denote by �B(f) the minimum of �B(g) over all such maps g, or 0 if there are no
such maps. The value �B(f) is also called the complexity of f over B. Consider
the following function:

�(T(k)
n ) = max

B⊆Tn,f∈T
(k)
n

�B(f).

If f(D) = D′, then we say that f transforms D into D′ and write D
f−→ D′.

For any set of maps B ⊆ Tn the k-graph over B is the directed graph G (loops
and multiple edges are permitted3) with the set of vertices

V (G) = {D | D ⊆ Ωn, |D| = k},

the set of arcs

E(G) = {f ∈ T(k)
n | f = g|D for some g ∈ B and D ∈ V (G)},

3 Sometimes such graphs are called pseudographs.
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and every arc f goes from the vertex D to the vertex D′ whenever D
f−→ D′.

A walk from the vertex D to the vertex D′ in the k-graph G is a sequence of
vertices and arcs w = D0, f1,D1, . . . , f�,D� such that D0 = D, D� = D′ and the
arc fi goes from the vertex Di−1 to the vertex Di for i = 1, . . . , �, or, in terms
of maps,

D0
f1−→ D1

f2−→ · · · f�−→ D�.

We often omit vertices in walks and write simply w = f1, . . . , f�. The number �
is called the length of the walk w and is denoted by �(w). By a subwalk of w we
mean a subsequence fi, fi+1, . . . , fj , 1 ≤ i < j ≤ �.

For any walk w = f1, . . . , f� from D to D′ consider the map [w] : D → D′,
where [w] = f1 . . . f� (the composition of the maps f1, . . . , f�). Two walks w and
w′ are called equivalent if [w] = [w′]. For a closed walk w, which starts and
ends in the same vertex D, the map [w] is a permutation of D. For any closed
walk w, by definition, put

wk = w, . . . ,w︸ ︷︷ ︸
k

, k ∈ N.

It is readily seen that wk is also a closed walk and [wk] = [w]k.
The next lemma is an immediate consequence of the previous definitions.

Lemma 3. Given a basis B ⊆ Tn and a map f ∈ T(k)
n such that f : D → D′ is

a restriction of some map from 〈B〉. Consider the k-graph G over B. Then �B(f)
is the length of a shortest walk w in G from D to D′ such that [w] = f .

We say that a vertex D is reachable from a vertex D′ in a k-graph G if
there is a walk in G from D to D′. Vertices D and D′ are called mutually
reachable if D is reachable from D′ and D′ is reachable from D. A k-graph is
called strongly connected if all its vertices are mutually reachable. Obviously,
mutual reachability is an equivalence relation on vertices and it partitions the
set of vertices V (G) into equivalence classes V (G) = V1 ∪ . . . ∪ Vr. Subgraphs
G1, . . . , Gr induced by V1, . . . , Vr are called strongly connected components of G.
Evidently, every strongly connected component is strongly connected.

Lemma 4. For any walk w in a strongly connected k-graph G over B ⊆ Tn

there is an equivalent walk w′ such that �(w′) < 2|V (G)| · (�(Sk) + 1) − 1.

Proof. Given a walk w = D0, f1,D1, . . . , f�,D� in the k-graph G. For any ver-
tex D in G we define a walk wD, equivalent to w, called a D-saturation of
w, as follows. For every vertex Di, 0 ≤ i ≤ �, we consider two paths4: pDi→D

from Di to D and pD→Di
from D to Di. Connecting them, we obtain the closed

walk ci = pDi→D,pD→Di
. Since G is strongly connected, it follows that these

two paths exist and �(pD→Di
), �(pD→Di

) are bounded by |V (G)| − 1. For every
closed walk ci we consider the permutation πi = [ci] of the set Di. Let mi be

4 A path is a walk in which all vertices and edges are distinct.
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the order of ci, i.e., the smallest positive integer m such that πm
i = eDi

(where
eM denotes the identity map on M). Finally, by definition, put

wD = cm0
0 , f1, cm1

1 , . . . , f�, c
m�

� . (6)

It now follows that

[wD] = πm0
0 f1π

m1
1 . . . f�π

m�

� = eD0f1eD1f2 . . . f�eD�
= f1f2 . . . f� = [w],

and we see that the D-saturation wD is equivalent to the walk w.
Consider all the occurrences of the vertex D in the walk wD. These occur-

rences partition wD into subwalks, i.e., wD = w0,w1, . . . ,ws,ws+1, where
w0 is the subwalk from the begin to the first occurrence of D, ws+1 is the
subwalk from the last occurrence of D to the end, and the closed subwalks
w1, . . . ,ws connect successive occurrences of D. Using (6) and recalling that
ci = pDi→D,pD→Di

, where �(pD→Di
) and �(pD→Di

) are bounded by |V (G)|−1,
we have �(w0) ≤ |V (G)| − 1, �(ws+1) ≤ |V (G)| − 1, and �(wi) ≤ 2|V (G)| − 1
for i = 1, . . . , s. Let π1 = [w1], . . . , πs = [ws]. Consider the set B = {π1, . . . , πs}
and the permutation π = π1 . . . πs ∈ 〈B〉. Now note that π, π1, . . . , πs are per-
mutations of the same k-element set D. Thus, taking into account (3), we obtain
π = πi1 . . . πir

, where r ≤ �(Sk).
Finally, let w′ = w0,wi1 , . . . ,wir

,ws+1. Then we get

[w′] = [w0]πi1 . . . πir
[ws+1] = [w0]π1 . . . πr[ws+1] = [wD] = [w],

i.e., w′ is equivalent to w. Moreover, we have

�(w′) ≤ 2(|V (G)| − 1) + (2|V (G)| − 1) · �(Sk) < 2|V (G)| · (�(Sk) + 1) − 1.

The lemma is proved. ��
In the previous lemma we deal with strongly connected k-graphs only. More

general case is considered in the next lemma.

Lemma 5. For any walk w in a k-graph G over B ⊆ Tn there is an equivalent
walk w′ such that �(w′) < 2|V (G)| · (�(Sk) + 1).

Proof. Consider an arbitrary walk w in G. It is readily seen that this walk
can be represented as w = w1, f1,w2, . . . , fs−1ws, where every subwalk wi

belongs completely to one strong component Gi of G and all the components
G1, . . . , Gs are different. On the other hand, from Lemma 4 it follows that
for any walk wi, 1 ≤ i ≤ s, there exists an equivalent walk w′

i such that
�(w′

i) < 2|V (Gi)| · (�(Sk) + 1) − 1. Then we let w′ = w′
1, f1,w

′
2, . . . , fs−1,w′

s

and obtain that [w′] = [w]. Moreover, we have

�(w′) =
s∑

i=1

�(w′
i)+ s−1 <

(
s∑

i=1

2|V (Gi)|
)

· (�(Sk) + 1) ≤ 2|V (G)| · (�(Sk)+1).

This proves the lemma. ��
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Consider an arbitrary basis B ⊆ Tn. It is clear that for the k-graph G over
B we have |V (G)| =

(
n
k

)
. Therefore from Lemmas 3 and 5 it follows that

�(T(k)
n ) < 2

(
n

k

)
(�(Sk) + 1). (7)

Combining this fact with equality (4), we obtain the following

Lemma 6. We have �(T(k)
n ) <

(
n
k

)
e
√

k ln k(1+o(1)) as n, k → ∞.

Consider a basis B ⊆ Tn and a map f ∈ 〈B〉. Let f = f1 . . . f� be a shortest
representation of f over B, i.e., � = �B(f). Thus we have

D0
f1−→ D1

f2−→ · · · f�−→ D�,

where Di = Ωnf1 . . . fi. Suppose ki = |Di| for i = 0, . . . , �; then we obtain

k0 = . . . = ki1 = r0 > ki1+1 = . . . = ki2 = r1 > . . . > kis+1 = . . . = k� = rs.

Therefore we get f = g0fi1g1 . . . gs−1fis
gs, where gi ∈ T(ri)

n , 0 ≤ i ≤ s. Thus it
is easily shown that �B(f) = s + �B(g0) + · · · + �B(gs). It is clear that s ≤ n − 1.
Therefore, we have

�B(f) ≤ n − 1 + �(T(r0)
n ) + · · · + �(T(rs)

n ) < n max
0≤i≤s

{
�(T(ri)

n ) + 1
}

.

Finally, we obtain
�(Tn) < n max

1≤k≤n

{
�(T(k)

n ) + 1
}

. (8)

Lemma 7. We have �(Tn) ≤ 2ne
√

n
2 lnn(1+o(1)) as n → ∞.

Proof. Using (4), (7), and (8), we obtain ln �(Tn) ≤ ln n + �(n), where

�(n) = max
1≤k≤n

{
ln

(
n

k

)
+ ϕ(k)

}
,

and ϕ(k) is a function such that ϕ(k) ∼ √
k ln k as k → ∞.

Recall that the function ln
(
n
k

)
achieves its maximum value at the point

kn = �n/2� when n is fixed. Suppose ln
(
n
k

)
+ ϕ(k) achieves its maximum value

at k′
n = kn +hn, i.e., �(n) = ln

(
n
k′

n

)
+ϕ(k′

n). We claim that hn/n → 0 as n → ∞.
Indeed, in the converse case, we can take ε ∈ (0, 1/2) such that |hn/n| ≥ ε holds
for an infinite sequence of indexes n. Further, since we have |hn/n| ∈ [ε, 1/2]
for this sequence; then it has an infinite subsequence n1, n2, . . . , ni, . . . such that
hni

/ni → a ∈ [−1/2,−ε] ∪ [ε, 1/2] as i → ∞. On the other hand, it is well known
that

ln
(

n
m

)
n

→ H(p) (9)
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as n,m → ∞ and m/n → p ∈ [0, 1], where5

H(p) = −p ln p − (1 − p) ln(1 − p)

is the entropy function. Since ϕ(kni
) = o(ni), ϕ(k′

ni
) = o(ni), k′

ni
/ni → 1/2 + a,

and kni
/ni → 1/2 as i → ∞, we obtain:

lim
i→∞

ln
(

ni

k′
ni

)
+ ϕ(k′

ni
)

ni
= H

(
1
2

+ a

)
≥ lim

i→∞

ln
(

ni

kni

)
+ ϕ(kni

)

ni
= H

(
1
2

)
.

The latter contradicts the fact that the function H(p) achieves its maximum
value at the point 1/2 only (see Fig. 1). This contradiction proves that hn/n → 0
as n → ∞.

0 1
2

1
2
+ a 1

H
(
1
2
+ a
)

H
(
1
2

)

p

H(p)

Fig. 1. Entropy function H(p)

Further, since the function ln
(
n
k

)
+ ϕ(kn) achieves its maximum value at

k = k′
n and the function ln

(
n
k

)
at k = kn when n is fixed; then we obtain

0 ≤ ln
(

n

k′
n

)
+ ϕ(k′

n) −
(

ln
(

n

kn

)
+ ϕ(kn)

)
≤ ϕ(k′

n) − ϕ(kn). (10)

Since hn/n → 0, we see that kn ∼ k′
n and

√
kn ln kn ∼ √

k′
n ln k′

n as n → ∞.
From ϕ(kn) ∼ √

kn ln kn and ϕ(k′
n) ∼ √

k′
n ln k′

n it follows that ϕ(kn) ∼ ϕ(k′
n).

Hence ϕ(k′
n) − ϕ(kn) = o(

√
kn ln kn) = o(

√
n ln n) as n → ∞.

Thus, recalling that
(

n
n/2�

) ∼
√

2
πn · 2n as n → ∞, from (10) it follows that

ln
(

n

k′
n

)
+ϕ(k′

n) = ln
(

n

kn

)
+ϕ(kn)+o(

√
n ln n) = n ln 2+

√
n

2
ln n+o(

√
n ln n).

5 Here we assume that 0 · ln 0 = 0.
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Therefore

�(n) = n ln 2 +
√

n

2
ln n · (1 + o(1))

and recalling that ln �(Tn) ≤ ln n + �(n), we obtain

�(Tn) ≤ ne�(n) = 2ne
√

n
2 lnn(1+o(1)) as n → ∞.

This completes the proof. ��
Each semiautomaton A = (A,Q, δ) induces the transformation semigroup

T(A) acting on the set of states Q in the following way. For every word α ∈ A∗,
let Tα : Q → Q be the map q �→ δ(q, α). Then by definition, put

T(A) = {Tα | α ∈ A∗}.

It is obvious that T(A) = 〈B〉, where B = {Ta | a ∈ A}. Moreover, if
f ∈ T(A), then �B(f) is equal to the length of a shortest word α ∈ A∗ such that
f = Tα.

In Lemma 7 we obtain an upper bound on the function �(Tn). The next
lemma shows that this bound is in some sense exact.

Lemma 8. We have �(Tn) ≥ 2ne
√

n
2 lnn(1+o(1)) as n → ∞.

Proof. For each n and k < n consider a semiautomaton A = (A,Q, δ) such that
Q = {1, . . . , n}, A = {1, . . . , m}, where m =

(
n−1

k

)
; and the transition function

δ is defined as follows. First we take in some order all k-element subsets of the
set {1, . . . , n − 1} ⊆ Q:

D1 = {q
(1)
1 , . . . , q

(1)
k }, . . . , Dm = {q

(m)
1 , . . . , q

(m)
k }.

Further, we choose a permutation π ∈ Sk of the maximum order, and define
the transition function such that δ(q(i)j , i) = q

(i+1)
j and δ(q(m)

j ,m) = q
(1)
π(j) for

i = 1, . . . ,m − 1; j = 1, . . . , k. Moreover, we let δ(q, i) = n whenever q /∈ Di for
i = 1, . . . ,m.

It is not hard to see that we have

D1
1−−→ D2

2−−→ · · · m−1−−−→ Dm
m−−→ D1. (11)

Furthermore, we claim that we have δ(D1, α) = D1 iff α = (12 . . . m)s, s ≥ 0.
Indeed, if α = (12 . . . m)s; then from (11) we obtain δ(D1, α) = D1. Suppose we
have δ(D1, α) = D1 for some word α = a1 . . . a� ∈ A∗. Consider the sequence
D′

1, . . . , D
′
�, where D′

1 = D′
� = D1 and D′

i+1 = δ(D′
i, ai) for i = 1, . . . , � − 1. Let

us show that

a1 = 1, a2 = 2, . . . , am = m,am+1 = 1, am+2 = 2, . . . , a� = m. (12)

Assume the converse, and let i be the smallest index such that condition (12)
does not hold for ai. Then it is readily seen that

D′
1 = D1,D

′
2 = D2, . . . , D

′
i = Di and n ∈ D′

i+1 �= Di+1.
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Further, since δ(n, a) = n for all a ∈ A; then we get n ∈ δ(D′
i, ai+1 . . . a�) = D′

�,
and hence n ∈ D1 ⊆ {1, . . . , n−1}. This contradiction proves condition (12) and
we obtain α = (12 . . . m)s for some s ≥ 0.

Let rk be the order of the previously defined permutation π ∈ Sk. Hence rk

is Landau’s function [9], i.e., the maximum order of an element of Sk, and we get
rk = e

√
k ln k(1+o(1)) as k → ∞. Consider the map f : q �→ δ(q, (12 . . . m)rk−1).

Since f(D1) = D1; then for each word α ∈ A∗ such that f = Tα we have
α = (12 . . . m)s, and it is not hard to see that f |D1 = πs. Therefore we have
s ≥ rk − 1 and �B(f) ≥ |α| = ms ≥ (

n−1
k

)
(rk − 1), where B = {Ta | a ∈ A}.

Finally, if we let k = �n/2	, then we obtain the inequality

�B(f) ≥
(

n − 1
k

)
(rk − 1) = 2ne

√
n
2 lnn(1+o(1)) as n → ∞.

This completes the proof of the lemma. ��
Now we can prove the first of the two main results of this paper.

Proof (of Theorem 1). The result follows from Lemmas 7 and 8. ��
Before we give the proof of Theorem 2, we introduce the following definitions

and notions.
A partition of a set S is a set π = {B1, . . . , Bm} of pairwise disjoint non-

empty subsets Bi ⊆ S (called blocks) such that ∪iBi = S. We say that a partition
π′ is a refinement of a partition π and write π′ ≤ π if every element of π′ is
a subset of some element of π. It is easily shown that the set of all partitions
of S is a partially ordered set with respect to the relation “≤”. It has the least
element (called discrete partition), which contains |S| singleton blocks, and the
greatest element (called trivial partition), which contains one |S|-element block.

Given a finite automaton A = (A,Q,B, δ, λ) and a subset of states S ⊆ Q,
the initial state uncertainty (with respect to A and S) after applying input word
α is a partition πα of S such that two states q, q′ ∈ S are in the same block
iff λ(q, α) = λ(q′, α). Informally speaking, the initial state uncertainty describes
what we know about the initial state q0 ∈ S of the automaton A after applying
the input word α. From the definition of a PDS for S in A it follows that an input
word α is a PDS iff the partition πα is discrete. Moreover, it is easy to prove
that for every α, β ∈ A∗ the partition παβ is a refinement of πα.

Proof (of Theorem 2). Given an n-state automaton A and a k-element subset S
of its states. Let α = a1 . . . a� be a minimum length PDS for the subset S. For
each i ∈ {0, 1, . . . , �} we consider the two values ki = |δ(S, a1 . . . ai)| and ri =
|πa1...ai

|. It is clear that k0 ≥ k1 ≥ · · · ≥ kl and r0 ≤ r1 ≤ · · · ≤ rl. Let i1, . . . , im
be the increasing sequence of all indexes i ∈ {1, . . . , �} such that ki−1 > ki or
ri−1 < ri. Since α is a minimum length PDS, then r�−1 < r� and im = �. Let also
i0 = 0. Hence the word α can be represented as α = α1ai1 . . . αmaim

. Moreover,
it is readily seen that m ≤ 2(n − 1).

Further, for each j ∈ {1, . . . , m} there exists an input word α′
j such that

Tαj
|Sj−1 = Tα′

j
|Sj−1 and |α′

j | ≤ �(T(pj)
n ), where Sj = δ(S, a1 . . . aij

), pj = kij−1 =
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kij−1+1 = · · · = kij−1. We claim that the word α′ = α′
1ai1 . . . α′

maim
is also a

PDS for S. Indeed, in the converse case, there exist two states q1, q2 ∈ S such
that λ(q1, α′) = λ(q2, α′). Since α is a PDS, we obtain λ(q1, α) �= λ(q2, α). Let j
be the minimum index such that

λ(q1, α1ai1 . . . αjaij
) �= λ(q2, α1ai1 . . . αjaij

).

Then from rij
> rij−1 = · · · = rij−1 and the minimality of the index j it follows

that
λ(q1, α1ai1 . . . αj) = λ(q2, α1ai1 . . . αj).

Therefore for the states q′
1 = δ(q1, α1ai1 . . . αj), q′

2 = δ(q2, α1ai1 . . . αj) we get
λ(q′

1, aij
) �= λ(q′

2, aij
). At the same time since Tα1ai1 ...αj

|S = Tα′
1ai1 ...α′

j
|S , we

have q′
1 = δ(q1, α′

1a1 . . . α′
j), q′

2 = δ(q2, α′
1a1 . . . α′

j) and we finally obtain

λ(q1, α′
1a1 . . . α′

jaij
) �= λ(q2, α′

1a1 . . . α′
jaij

).

Therefore the word α′ distinguishes the states q1, q2 and hence is a PDS for S.
Moreover, we have |α′| ≤ m + |α′

1| + · · · + |α′
m| ≤ m + �(T(p1)

n ) + · · · + �(T(pm)
n )

and therefore
�(n, k) < m max

1≤p≤k

{
�(T(p)

n ) + 1
}

.

Since the function �(Sk) is increasing; then from k ≤ n, m ≤ 2(n − 1),
asymptotic equality (4), and inequality (7) it follows that

�(n, k) <

(
n

k

)
e
√

n lnn(1+o(1)) if k ≤ n

2
; (13)

�(n, k) < 2ne
√

n lnn(1+o(1)) if k >
n

2
. (14)

To conclude the proof, it remains to use inequalities (1) and (2) with asymp-
totic equality (9). ��

3 Remarks and Related Work

Despite the fact that the length of a shortest PDS is exponential in the worst
case in the class of all Mealy automata there are a number of natural automata
classes where it is much smaller. For example, for the class of linear automata
it is only logarithmic [2] and for the class of automata with finite memory it
is linear [15] in the number of states. Moreover, if in a reduced automaton A
for each input symbol a and for each pair of different states q, q′ such that
δ(q, a) = δ(q′, a) we always have λ(q, a) �= λ(q′, a) then every preset homing
sequence (PHS) for A is also a PDS for A [15]. Hence using the classical result of
Hibbard [6] for PHSs it immediately follows that for any such n-state automaton
a PDS always exists, can be efficiently computed, and the length of a shortest
PDS is upper bounded by n(n−1)

2 . Moreover, this upper bound is tight [6,7]. The
class of such automata was investigated by the author in [13] under the name
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multiply reduced automata. It is interesting to note that exactly the same class
was considered in a recent paper [5] under the name DMFSM where an O(n3)
upper bound on the PDS length was obtained and an O(n2) upper bound was
only conjectured.
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Abstract. We present a hierarchical construction of 2D subshifts of
finite type with a unique direction of non-expansiveness. Our construc-
tion combines various techniques that were developed in previous self-
similar constructions of SFTs and cellular automata.
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Introduction

Two-dimensional subshifts of finite type (2D SFT) are a well-known model of
dynamical systems that can also perform universal computation [14]. As multi-
dimensional dynamical systems, they can be studied from the point of view of
their subdynamics, defined by Boyle and Lind in [1], and especially with respect
to their expansive subdynamics. The study of the expansive directions of 2D
SFTs was initiated by Kari in [9]. Even though the SFT constructed in that
paper did not have any direction of expansiveness, it had a direction of deter-
minism, which is a weaker notion that can be seen as “semi”-expansiveness.
Soon, Kari and Papazoglu gave an example of an aperiodic 2D SFT with all
but two directions expansive, see [10]. This left open only the case of a unique
direction of non-expansiveness (extremely expansive), since it is known that any
SFT that does not have any direction of non-expansiveness must be finite, and
hence periodic.

In [3], Durand, Romashchenko and Shen gave a very general construction
of aperiodic 2D SFTs, which they call fixed-point tile sets. Their method finds
inspiration in Gács’ construction of reliable cellular automata, see [4]. However,
their SFTs are not expansive in any direction. In [7], Hochman constructed 2D
subshifts with a unique direction of non-expansiveness. However, his subshifts
are not of finite type. Our construction can be seen as a blending of these two
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constructions, which keeps the good properties of each one. As a result, we obtain
aperiodic 2D SFTs with a unique direction of non-expansiveness. Furthermore,
the same methods can be used to obtain new results about extremely expansive
2D SFTs.

In this paper, we give an informal presentation of the construction, referring
to the papers [3] and [7] and mentioning the places where we do things differently
and why we have to do this. A complete description from scratch needs a long
article, so we also assume some familiarity with these papers and their ideas.

In Section 1 we give the basic definitions and some technical notions that
we need . In Section 2, we describe the construction of a rule that can simulate
any RPCA. In section 3, we use this RPCA to construct an aperiodic extremely
expansive 2D SFT. Finally, as an application of our method, in Section 4 we
construct extremely-expansive SFT covers for the limit sets of 2D substitutions.

1 Preliminaries

We will denote by Z,N and R the set of integers, non-negative integers and real
numbers,respectively. �i, j� and �i, j� denote the integer intervals {i, . . . , j − 1}
and {i, . . . , j}, respectively, while [x, y] denotes an interval of real numbers.

An alphabet is any finite set, whose elements are called letters. A special
alphabet that we will often use is C = {0, 1, $, �}. If A is an alphabet, A∗ =⋃

l∈IN Al denotes the set of finite words over A and A∗∗ =
⋃

(A∗)n the set of
finite tuples of words. If w ∈ An, we write w = w0 · · · wn−1, and call ‖w‖ = n
length of w. If u ∈ (A∗)l, we write u = (u1, . . . , ul), and call l the number of
fields of u. For every vector k ∈ Nl, where l ∈ N, let Bk = Ck1 × . . . × Ckl .
If B ⊆ Bk, for some vector k, then we say that B has constant lengths. The
notion of alphabets with constant lengths is a technicality which allows us to
implement the exchange of information between so-called colonies in an efficient
way.

If n ∈ N, then we denote by ‖n‖ the length of its quaternary representation.If
w ∈ C∗, [w] is the number represented by w in the quaternary representation
system, where $ is interpreted as 2 and � as 3.

For every i ∈ N, πi : C∗∗ → C∗ is the projection onto the i’th coordinate.
We can see πi as a partial function of C∗∗, by leaving it undefined over those
tuples that have less than i components. A field is a projection πi together
with a label Field, written in typewriter form. We denote πi(u) = u.Field the
value of Field in u. The notion of fields makes it possible to talk about the
components of a tuple in a more intuitive way.

1.1 Symbolic Dynamics and Cellular Automata

AZ
d

is the set of d-dimensional configurations, endowed with the product of
the discrete topology, and with the shift dynamical system σ, defined as the
action of Zd by (σi)i∈Zd , where for any configuration x ∈ AZ

d

and any k ∈ Zd,
σi(x)k = xi+k.
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A pattern over a finite support D ⊂ Zd is a map p ∈ AD. A (d-dimensional)
subshift is defined as the set of configurations that avoid a set of forbid-
den patterns: There exists a family of patterns F ⊂ ⋃

D⊂finiteZ
d AD such that

XF =
{

x ∈ AZ
d
∣∣∣ ∀i ∈ Zd,∀D ⊂finite Z

d, σi(x)|D /∈ F
}

. If F is a finite family
of patterns, we say that XF is a subshift of finite type (SFT). A subshift
Y ⊆ BZ

d

is called sofic if it is the image of an SFT X through an alphabet
projection. X is called an SFT cover of Y .

A configuration c ∈ AZ
d

is called periodic if there exists i ∈ Zd such that
σi(c) = c. A subshift X is called aperiodic if it does not contain any periodic
configurations.

A (1D) partial cellular automaton (PCA) is a partial map F : AZ → AZ

defined by a partial local map: There exists r ∈ N, called the radius of F , and
a partial map f : A�−r,r� → A such that for all c ∈ AZ and i ∈ Z, F (c)i =
f(c|i+�−r,r� ); F (c) is not defined if and only if f(c|i+�−r,r� ) is not defined for
some i ∈ Z. f is called the local rule of F , and F is called the global map
induced by f . The domain dom(F ) of F is the set of those configuration c for
which F (c) is defined.

A PCA is called reversible (RPCA) if it is injective. In this case, it is known
that there exists another RPCA, denoted by F−1, such that F−1F and FF−1

are restrictions of Id, and dom(F−1) = F (AZ) [6]. In particular, there exist
so-called inverse radius and inverse local rule. If r is both the radius and the
inverse radius of an RPCA F , we call it the bi-radius of F . In the rest of the
paper, we only need RPCA of bi-radius 1.

If F is an RPCA, then we say that c ∈ AZ is ultimately rejected if there
exists m ∈ Z such that Fm(c) is not defined. There is a very natural way to
associate a 2D SFT XF to an RPCA F : it consists of the space-time diagrams
of the configurations that are not ultimately rejected. These are called the valid
configurations of F . Formally,

XF =
{

x ∈ AZ
2
∣∣∣ ∀t ∈ Z, x|Z×{t} = F (x|Z×{t−1} )

}
.

A partitioned PCA (PPCA) is a PCA F = (σi1 × . . . × σil) ◦ μ over
some alphabet A = A1 × . . . × Al, where μ is a partial permutation of A, and
σi1 × . . . × σil is a collection of shift maps on the components of A. Integer ij
is called the direction of the j’th field. We describe PPCA by giving a list of
their fields, with the directions of the fields in parentheses, and by describing
their partial permutation.

PPCA are reversible, and conversely every RPCA F is essentially parti-
tioned (see for instance [8, propsps53]). We will use PPCA rather than general
RPCA because of their nice structure. The bi-radius of a PPCA is equal to
max{|i1| , . . . , |il|}. In this article, each ij ∈ {−1, 0, 1}.

When we want to define families of PCA, it is convenient to do it by allowing
the alphabet of the PCA to be infinite. In other words, a PCA with infinite
alphabet (IPCA) is defined by a local function f : A�−r,r� → A, where A
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is an infinite set. If (Ai)i∈I is a family of finite subalphabets of A satisfying
f(AZ

i ) ⊆ AZ

i , then the family of local rules (f|Ai
)i∈I defines a family of PCA.

Some definition similar to IPCA is always, even though implicitly, used in
self-similar constructions. The idea is to give a uniform construction of a family
of SFTs (or CA) that depend on a set of parameters. Then, for suitable values
of these parameters, one can prove that the corresponding SFT (or CA) behaves
in a certain desirable way. This is done explicitly in [4], even though it is lost
amidst the general complexity of that construction. Using IPCA, we can make
formal, precise (even though usually complicated) statements that can be useful
to anyone who understands the ideas of fixed-point constructions, but still wants
to check the precise details.

In order to define useful families of RPCA with infinite alphabet (IRPCA),
we will use the corresponding version of PPCA. Let A1, . . . ,Al be infinite sets
and μ be a partial permutation of A = A1 × . . . × Al. Then the function F =
(σi1 × . . . × σil) ◦ μ is an infinite PPCA (IPPCA). Any restriction of F to a
stable finite subalphabet is a PPCA, and hence an RPCA. A similar approach
has already been used in [2].

1.2 Expansiveness

Definition 1. Let X be a 2D subshift, l ∈ R	 {∞} be a direction, l ⊆ R2 the
line of slope l passing through the origin and v ∈ R2 a unit vector orthogonal to
l. We say that direction l is expansive for X if there exists b ∈ R, called the
radius of expansiveness, such that:

∀x, y ∈ X,x|(l+[−b,b]v)∩Z2 = y|(l+[−b,b]v)∩Z2 ⇒ x = y .

We denote by E(X) the set of expansive directions of X and by N (X) its com-
plement, which is called the set of non-expansive directions.

Expansive directions were first introduced by Boyle and Lind [1] in a more
general setting. In the case of subshifts, l is an expansive direction of X if every
configuration of X is uniquely determined by values of the cells in the infinite
strip of slope l and width 2b that passes through the origin.

The following is a particular case of [1, Theorem 3.7].

Proposition 2. Let X be a 2D subshift. Then, N (X) is closed with respect to
the one-point compactification of the euclidean topology of R. In addition, N (X)
is empty if and only if X is finite.

We say that X is extremely expansive if |N (X)| = 1, which is, according
to Proposition 2, the most constrained nontrivial case. A sofic shift Y is called
extremely-expansively sofic if it has an extremely expansive SFT cover. Note
that an extremely-expansively sofic shift does not have to be extremely expansive
itself, or even have an expansive direction.

It is straightforward to see that if F is an RPCA, then the horizontal direction
is expansive for XF .
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1.3 Simulation

Let F and G be RPCA over alphabets A and B and S, T ∈ N. We say that F
(S, T )-simulates G if there exist alphabet projections πAddr : A → �0, S� , πAge :
A → �0, T � and an injection ψ : B → AS with ”bulked” global map Ψ : BZ → AZ

(i.e., ∀y ∈ BZ, i ∈ Z, Ψ(y)�iS,(i+1)S� = ψ(yi)) such that:

1. For all x ∈ XF , there exist s ∈ �0, S� and t ∈ �0, T � such that πAddr(xi,j) =
s + i mod S and πAge(xi,j) = t + j mod T , for all i, j ∈ Z.

2. For all e ∈ BZ, FT Ψ(e) = ΨG(e).
3. If c ∈ F−T (AZ), πAddr(c0) = 0 and πAge(ci) = 0 for all i, then c = Ψ(e), for

some e ∈ G−1(BZ).

Addr and Age partition every (2D) valid configuration into macro-tiles, i.e.,
rectangles whose lower-left corner has Addr and Age equal to 0. Similarly, every
(1D) configuration is divided into colonies, i.e., segments whose leftmost-point
has Addr 0. All the cells of a colony have the same Age. Every colony belongs in
a unique macro-tile (in the corresponding space-time diagram). When Age = 0,
every colony of F encodes one letter of B, which we call the simulated letter
of the colony (or macro-tile) and it takes T time steps of F to simulate one
time-step of G. Intuitively, inside every macro-tile, F computes the local rule of
G using T time steps.

The following Proposition is a corollary of Theorem 5.4 proven in [7]:

Proposition 3. Let F1, F2, . . . be a sequence of RPCA with the following prop-
erties:

1. For all i ∈ N there exist Si, Ti such that Fi (Si, Ti)-simulates Fi+1.
2. For all i ∈ N, XFi

contains infinitely many points.
3. limi

∏
Si∏
Ti

= 0.

Then, for all i ∈ N, XFi
is aperiodic and N (XFi

) = {∞}.

1.4 Simulating Turing Machines with IPPCA

We define a model of Turing machine (TM) with some additional technical con-
ditions, which, however, do not change the class of computable and, more impor-
tantly, polynomially computable functions.

In the definition of simulation, every configuration that is not ultimately
rejected is divided into macro-tiles. Inside the macro-tiles, we want to perform
some computation, in order to compute the new value of the simulated letter.
This can be done more or less as in all previous self-similar constructions, but
there are two things that are worth mentioning, because they have to do with
reversibility (which was not a concern in [3,4]) and polynomial computability
(which was not a concern in [7]; in fact, computability in general was not a
concern in that paper).

When simulating a TM with a PCA, one source of non-reversibility could
be that the simulated TM is not reversible. It is not difficult to cope with this
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problem. Morita, in [12], has shown that every TM can be simulated by a PPCA.
In our case, we want to construct a single IPPCA that can simulate any TM
when restricted to the appropriate subalphabet.

Another source of irreversibility is that inside the macro-tiles, we do not know
when to stop simulating the TM. It is certainly not enough to stop as soon as the
TM halts, because then, when going back in time from the top of the macro-tile
to the bottom, we do not know when we should start running the computation
backwards. In order to deal with this problem, we use the field Schedule. This
is a field that is horizontally and vertically constant in valid configurations. We
only simulate the TM when the age is between 0 and Schedule, thus preserving
reversibilty, because we know exactly during which period to simulate the TM.

1.5 The Programming Language

We define a programming language that defines functions C∗∗ → C∗∗. We can
prove that every function defined in this programming language is a partial
permutation and computable in polynomial time. This allows to define all the
needed IPPCA with this language.

A programming language was also explicitly defined in [4]. In [5], there is
a very clear explanation of the reason that we need to use rules defined by a
programming language.

2 Construction of a Universal IPPCA

In this section, we will describe the basic building blocks of the construction.
First of all, we define the rule Grid. This is the rule that imposes the periodic

structure Addr and Age. Unlike [3], the Addr and Age not are sufficient to achieve
this. We have to use some extra fields because of the constant lengths restrictions
and because we want to implement this behaviour with IPPCA. However, we
can easily write a program that defines a permutation called Grid which has 6
fields, among them Addr and Age, and which imposes the following:

For all S, T ∈ N, there exists a subalphabet AGrid,S,T of AGrid such that if
c ∈ AZ

Grid,S,T is not ultimately rejected by Grid, then in every valid configuration
the fields Addr and Age partition the plane into S×T macro-tiles, as described in
Subsection 1.3. Furthermore, AGrid,S,T has constant lengths and ‖AGrid,S,T ‖ =
O(log(ST )).

Let c be a configuration that is not ultimately rejected, Field be a field of the
alphabet and Bc

i be the i’th colony (we arbitrarily choose the 0’th colony to be
the one that contains the origin) We denote Bc

i .Field = πField(c|Bc
i
). Bc

i .Field

is the word of length S that we obtain when we project c|Bc
i

onto Field. The

previous discussion implies that Bc
i .Addr = 01 . . . (S − 1) and Bc

i .Age = tS , for
some t ∈ �0, T �.

Here is the prototype of the method that we use: First, we define (in the
programming language) a partial permutation of (C∗)l, for some l, then we give
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directions to the fields, then for some set of parameters and for all possible values
of these parameters we define a subalphabet of (C∗)l, then we prove that for all,
or at least for all sufficiently large, values of the parameters the IPPCA behaves
nicely when restricted to the corresponding subalphabet, and, finally, we observe
that for all values of the parameters, the subalphabet has constant lengths and
we give a bound on its size.

Next, we describe the rule MacroRule. This rule defines a permutation over
(C∗)14. Among its fields, there are Age, Addr, Tape, NewTape, Prog and Schedule
plus some more fields that are not needed for an informal presentation of the
behaviour of MacroRule. We give some fixed directions to the fields, so that
together with MacroRule we obtain an IPPCA. Then, for all S, T, r ∈ N and
p ∈ 2∗, we can define a subalphabet AMacroRule,p,S,T,r with constant lengths and
size O(log(STr) + ‖p‖) such that the following holds:

Let c ∈ AZ

MacroRule,p,S,T,r be a configuration whose colonies have Age = 0.
Assume, further, that Bc

i .Tape is a letter bi ∈ B, where B is a finite alpha-
bet with constant lengths. Assume, finally, that p is the program of a rule μ
of the programming language. Then, if S, T, r and p satisfy a set of inequal-
ities, MacroRule4r(c) exists if and only if μ(bi) exists, for all i. In this case,
B

MacroRule4r(c)
i .Tape = μ(bi).

In fact, this statement is not totally precise, but it gives a good idea of what
we do. Let us now describe how the implementation of the computation phase
differs from those in [3] and [7]. Prog is the field where we write p, the program
of the permutation μ of the simulated PPCA. Contrary to [3], we do not write
the program in the beginning of the simulated letter, but instead we include it
in the state of every letter of the simulating PPCA. This makes the exchange
of information phase easier. First of all, when Age = 0, MacroRule checks that
some initialization constraints are satisfied, like, for example, that its working
tape is empty or that the head of the TM is on the leftmost position of the
colony. Then, using the program p in Prog, it simulates p onto the input written
on Tape for r steps. If it halts during the computation, then c is rejected. Also,
when Age = r, it checks that the accepting state is at the leftmost position of
the colony. In the model of TM that we use, this implies that μ(bi) exists and
that at Age = r it is written in the Tape track of colony i. However, during the
computation, the TM has written information on various tapes and we need to
delete this information. For this we use the Bennett trick. We copy Tape onto
the field NewTape which was initially empty and run the computation backwards.
Thus, at Age = 2r, in the i’th colony, the Tape track contains bi and the NewTape
track contains μ(bi). Then, we use the same trick backwards to delete bi from
Tape and we move μ(bi) from NewTape to Tape, while at the same time deleting
all information that the TM writes during the computation. Thus, at Age = 4r,
Tape contains μ(bi). We can also prove that when Age = 4r, the fields satisfy the
initialization constraints, so that when Age becomes 0 again, a new computation
phase can start.
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Using MacroRule, we can simulate any permutation, provided that S, T and
r are large enough. If we want to simulate any PPCA, we also have to simulate
shifts. This is accomplished with by the rule ParShift.

ParShift has 11 fields, among which Age, Addr, Tape, Dir, Schedule, RMail
and LMail. The Tape track contains the simulated letter. Dir is a field whose
values are −1, 0 and +1 and it says whether the letter in the Tape will go to the
colony on the left, stay at its place, or go the colony on the right, respectively.
RMail is a field with direction +1 that is used to carry the letter to the right
colony, while LMail is a letter with direction −1. For all S, T, r ∈ N, we define a
subalphabet AParShift,S,T,r with constant lengths and size O(log(STr)). Let us
describe the behaviour of ParShift.

Let B be an alphabet with constant lengths and l fields. Let d ∈ {−1, 0,+1}l

be a vector of directions. We want to simulate the shift σd = σd1×. . .×σdl : BZ →
BZ. Let c ∈ AParShift,S,T,r be a configuration whose colonies have Age = 4r.
Assume, further, that Bc

i .Tape is a letter bi ∈ B. Then, if the values of Dir are
well-chosen and T > S + 4r, B

ParShiftS(c)
i .Tape = b′

i, where b′ = σd(b). In other
words, S steps of ParShift simulate one step of σd.

At this point, we have to say something about the encoding function. For-
mally speaking, it does not make sense to say that the word in the info track is
equal to some letter of C∗∗, because the elements of C∗∗ are products of words
and not words. What we do instead is that we embed C∗∗ into C∗ with the encod-
ing function χ. The details of this embedding are not important. It essentially
consists of writing the fields of the letter one after the other, separating them
with markers. In addition, the length of the encoding of a field depends only on
the length of the field, so that letters of an alphabet with constant lengths have
their markers in the same positions. Finally, in some sense, χ can be defined in
the programming language.

In order to explain how this works, we need to say what it means that the
Dir are well-chosen. If a letter is part of the encoding of the j’th field of bi, then
its Dir has to be equal to dj . Otherwise, it is 0. At Age = 4r, every letter is
moved to the LMail if Dir = −1, to RMail if Dir = +1 and stays at its place
if Dir = 0. During the next S time steps, nothing else happens except that the
letter in LMail travel to the left and the letters in RMail travel to the right.
After exactly S steps, at Age = 4r+S, the letters in the mail fields have reached
their destinations and are moved back to Tape.

We remark here that the condition of constant lengths is necessary so that
the above procedure is successful. If the alphabet does not have constant lengths,
then when we move the letters back from the mail fields to Tape, we try to move
some letter onto some already occupied position, or we will have empty space
between the encodings of the fields. Having the constant length position, we
know that after S steps, everything fits in exactly.

By combining MacroRule and ParShift, we immediately obtain an IPPCA
Universal over the infinite alphabet AUniversal that can simulate any PPCA in
the following sense:
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Proposition 4. Let μ : (C∗)l → (C∗)l be a permutation defined by program
p, d ∈ Nl be a vector of directions and B ⊆ (C∗)l be an alphabet with con-
stant lengths. Let F = σd ◦ μ. For all S, T, r ∈ N, there exists an alpha-
bet AUniversal,p,S,T,r with constant lengths and size O(log(STr)), and an SFT
XB ⊆ AZ

Universal,p,S,T,r, such that if S, T, r and p satisfy that

1. T ≥ 4r + S,
2. S > max(2r, ‖B‖),
3. r ≥ tp(‖B‖), (where tp is the time complexity of the program p),

then Universal|XB (S, T )-simulates F|B .

Formally speaking, we prove something different, because there are some
small technical details that need to be taken care of, but we have focused on
giving the basic ideas only. Universal is a very useful IPPCA that is used in all
of the self-similar and hierarchical constructions. All we have to do is to make
sure that a set of (simple) inequalities are satisfied, and then we immediately
obtain a simulation simply by restricting Universal to a suitable 1D SFT.

3 Self-simulation and Hierarchical Simulation

Up to this point, we have constructed the IPPCA Universal that can simulate
any PPCA F : BZ → BZ when restricted to an appropriate alphabet of constant
lengths and an appropriate 1D SFT. The appropriate subalphabet is defined
through a finite set of parameters that must satisfy some inequalities, while the
subshift is essentially obtained by saying that the simulated letter of every colony
comes from the alphabet of B. Notice that in the statements about MacroRule
and ParShift there is an assumption that the word read on the Tape track of
every colony is a letter of B, which is the alphabet of the PPCA we want to
simulate. In general, the simulated letters can belong to other alphabets, too,
so without restricting Universal to XB, we would not simulate F , but rather a
disjoint union of all those PPCA for which the inequalities are satisfied for the
given values of the parameters.

If we try to use Universal to construct a self-simulating PPCA, then we
encounter the following problem: let p0 be the program of Universal. On the one
hand, since AUniversal,p0,S,T,r has constant lengths and size O(log(STr)), it is cer-
tainly possible to satisfy the inequalities, when S, T, r are sufficiently large, and by
restricting Universal to XAUniversal,p0,S,T,r

, we obtain a PPCA F1 that simulates
Universal|AUniversal,p0,S,T,r

, but not Universal∣∣
∣XA

Universal,p0,S,T,r

. To achieve this,

we have to impose further restrictions, which means that we construct a PPCA
F2 such that F2 simulates F1, while F1 simulates Universal|AUniversal,p0,S,T,r

. We
can keep on doing this for any finite number of steps, but not to the infinity. There-
fore, this approach fails. This problem is explained in greater detail in [3].

In that same paper, it is said that the way to overcome this problem is to
construct a new rule that checks that the simulated letter belongs to the same
alphabet as the simulating ones and then do the simulation. This is achieved by
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“hard-wiring” the information about the simulating alphabet and then having a
TM check that this information is the same for the simulated letters. This can be
done in polynomial time. The imporant thing is that the TM does not “know”
that it is checking that the simulated letters come from the same alphabet (since
this would make the construction circular). Instead, it is just checking that some
information that is “hard-wired” in its state is the same as the information
appearing on the Tape track. It is only us, the constructors of the SFT that know
that the TM is actually checking that, because we have set up the computation
in a clever way.

First of all, by “hardwiring” some information onto the simulating alphabet,
for example the width of the colonies S, we mean that the alphabet has a field
MaxAddr, such that whenever we use the parameter S to define a subalphabet,
MaxAddr = S. Similarly, we can “hard-wire” the program p onto Prog and so on.
Second, thanks to the good properties of the encoding of the letters of C∗∗, for
every l, we can explicitly construct two functions vl : C∗∗ → N and v′

l : C∗∗ →
N such that for every a ∈ C∗∗, the encoding of the l’th field of a is written
between the position vl(a) and v′

l(a). What is more important, this function can
be expressed in the programming language.

This means that we can write a rule in the programming language that
checks the following things: First, check that the simulated letter has the same
number of fields as the simulating alphabet. This is doable, because the letters
of the simulating alphabet have a fixed number of fields, so we can check that
without circularity problems. Then, check that the length of every field of the
simulated letter is the same as the length of the same field in the simulating
alphabet. This is doable, because the simulating alphabet has constant lengths,
so, in some sense, the information about its lengths is also “hard-wired” in its
letters. Then, for some of its fields (we do not have to do this for all of the
fields because the alphabet AUniversal,p,S,T,r is defined by restricting only some
of its fields), check that the value of the simulated field is the same. This is a
rule that enforces that the simulated letters belong in AUniversal,p,S,T,r and the
configuration in XB. Now, if we combine this rule with Universal, we obtain the
rule Self. Let p1 be the program of Self. There is a set of inequalities, similar
to the ones we had for Universal, such that when they are satisfied, we have
that Self|AUniversal,p1,S,T,r

simulates itself. It is also not difficult to prove that the
inequalities are satisfied for all large enough values of S, T, r, using the fact that∥∥AUniversal,p1,S,T,r

∥∥ = O(log(STr)).

Corollary 5. There exist a (S, T )- self-simulating RPCA.

It is also possible to prove that XSelf|AUniversal,p1,S,T,r

is infinite, so that using

Proposition 3 and the fact that a self-simulating RPCA gives rise to an aperiodic
SFT, see [3], we obtain our main result:

Corollary 6. There exists an aperiodic, extremely expansive 2D SFT.

According to Proposition 2, this is the best possible result concerning expan-
sive directions of SFTs, since an SFT without any directions of expansiveness is
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finite, and hence all of its points are periodic. Our next goal is to use the methods
developed up to here to prove that in various cases, extremely expansive SFTs
are as powerful as ordinary SFTs. In the next section, we give an example of
this.

4 Extremely Expansive SFT Covers of Substitutions

A (deterministic, S × T ) substitution is a function τ : A → AIS,T , where IS,T =
�0, S� × �0, T �. If S = T = n, we call τ a square, n × n substitution.

τ can be extended to configurations in a natural way: if c ∈ AZ
2

and (x, y) =
(Sk + i, T l + j), where (i, j) ∈ IS,T , then τ(c)x,y = τ(ck,l)i,j .

Let Λ0
τ = AZ

2
and Λn+1

τ = {σv(τ(c)) : c ∈ Λn
τ and v ∈ IS,T }. The limit set

of τ is the set Λτ =
⋂

n∈IN Λn
τ .

Using a geometrical construction, Mozes in [13] proved that the limit set of
every substitution is sofic. The same thing was reproved in [3] using the fixed-
point method, while [11] gives a geometrical construction of an SFT cover with
2 non-expansive directions. By adapting one of their ideas to our method, we
are actually able to reduce the number of non-expansive directions by 1, which
is the best possible.

Proposition 7. Let τ be a n×n substitution. Then, Λτ has an extremely expan-
sive SFT cover.

Our construction is a blend of [3] and [11]. From [3], we use the hierarchical
structure provided by the fixed-point method. However, there are two problems
that we need to deal with. First, in [3], it is assumed that the macro-tiles have
size n × n and that τ can be ”computed quickly“ within the macro-tiles. In our
construction, it is not possible to assume that the rectangles are actually squares,
because we always have that T > S. However, it is not difficult to circumvent
this problem and also provide a concrete definition of what ”compute quickly“
means. The real problem lies everywhere.

In [3], every letter of the simulating alphabet has two fields, CurSon and
CurFath, with the following behaviour: CurFath is constant within macro-tiles.
CurSon is determined by the value of the CurFath and the Age and Addr fields, in
such a way that the projection of a macro-tile onto CurSon is the image through
τ of the letter in CurFath. In this way, we ensure that the projection of a valid
configuration onto CurSon belongs in τ(AZ

2
). Then, we only need to check that

inside every colony the CurSon of the simulated letter is equal to the CurFath of
the simulating letters in order to hierarchically deduce that the projection onto
the CurSon actually belongs in Λτ . This approach will not work for SFTs defined
by RPCA without some modifications for the following reason:

Inside a macro-tile, CurFath is constant and CurSon is updated according
to a rule that depends on CurFath, Addr and Age. Since CurFath is constant
within a macro-tile and Addr and Age are updated according to a reversible rule,
CurSon can be updated in a reversible way, as long as the coordinates are not
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on the bottom or lower edge of the macro-tile. But in these cases, in order to
update CurSon, we have to know the CurFath of the macro-tile that lies above
(or below) the current macro-tile. In [3], this was done by ”guessing“ what the
next CurFath is, and then checking that the guess was a good one. In RPCA,
guessing is not allowed, so we have to do something different.

Unfortunately, due to space restrictions, we cannot describe in detail how
to deal with this problem. Let us just mention that we use the idea of [11] to
obtain, at the right moment, the CurFath of the macro-tile above the current
one from “arbitrarily far in the past”. The basic idea is that we obtain the next
CurFath from the simulated letter after the simulation and at the right time we
copy it onto every field of the colony. Of course, we have to do everything in a
reversible way, which makes the construction slightly complex, but this is the
basic idea that makes the construction work.
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Abstract. A closed word (a.k.a. periodic-like word or complete first
return) is a word whose longest border does not have internal occurrences,
or, equivalently,whose longest repeated prefix is not right special.We inves-
tigate the structure of closed factors of words. We show that a word of
length n contains at least n + 1 distinct closed factors, and characterize
those words having exactly n + 1 closed factors. Furthermore, we show
that a word of length n can contain Θ(n2) many distinct closed factors.

Keywords: Combinatorics on words · Closed word · Complete return ·
Rich word · Bitonic word

Introduction

It is known (see for example [8]) that any word w of length n contains at most
n + 1 palindromic factors. Triggered by this result, several researchers initiated
a study to characterize words that can accommodate a maximal number of
palindromes, called rich (or full) words (see, for example, [2,4,5,10,12]).

In this paper, we consider the notion of closed word (a.k.a. periodic-like word
or complete first return). A word w is closed if and only if it is empty or has
a factor v �= w occurring exactly twice in w, as a prefix and as a suffix of w.
We also say in this case that w is a complete return to v. For example, aaa,
ababa, ccabcc are all closed words (they are complete returns to aa, aba and cc,
respectively), while ab and abaabab are not. As shown in Proposition 4, any word
whose exponent is at least two is closed.

The closed factors of a word are its factors that are closed words. In contrast
to the case of palindromic factors, we show that a word of length n contains at
least n + 1 closed factors (Lemma 8). Inspired by this property, we study the
class of words that contain the smallest number of closed factors, and we call
them CR-poor words.
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As an example, abca is a CR-poor word, since it has length 4 and exactly 5
closed factors, namely ε, a, b, c and abca, whereas the word ababa is not CR-poor
since it has length 5 but contains 8 closed factors: ε, a, b, aba, bab, abab, baba
and ababa.

However, there is some relation between rich words and CR-poor words.
Bucci, de Luca and De Luca [5] showed that a palindromic word is rich if and
only if all of its palindromic factors are closed. We show, in Proposition 10, that
if a word w has the property that all of its closed factors are palindromes, then
w is a CR-poor word, and it is also rich. CR-poor words are also connected to
some problems on privileged words (see [11]).

While having only palindromic closed factors is a necessary and sufficient
condition for a binary word to be CR-poor (Theorem 23), we prove that in a
word w over an alphabet Σ of arbitrary cardinality, the set of closed factors and
the set of palindromic factors of w coincide if and only if w is both rich and
CR-poor (Proposition 20).

In Theorem 17, we give a combinatorial characterization of CR-poor words
over an alphabet Σ of cardinality greater than one: A word over Σ is CR-poor if
and only if it does not contain any closed factor that is a complete return to xy, for
x, y different letters in Σ. In other words, CR-poor words are exactly those words
having as their closed factors only complete returns to powers of a single letter.
As a consequence, the language of CR-poor words over Σ is a regular language. In
contrast, the language of closed words is not regular (Proposition 5).

We give some further characterizations of CR-poor words in the case of the
binary alphabet (Theorem 23). One of them is that the binary CR-poor words
are the bitonic words, i.e., the conjugates to words in a∗b∗. We therefore have
that binary CR-poor words form a regular subset of the language of rich words.

Finally, we show that a word of length n can contain Θ(n2) many distinct
closed factors (Theorem 25).

1 Closed Words

A word is a finite sequence of elements from a finite set Σ. We refer to the
elements of Σ as letters and to Σ as the alphabet. The i-th letter of a word w is
denoted by wi. Given a word w = w1w2 · · · wn, with wi ∈ Σ for 1 ≤ i ≤ n, the
nonnegative integer n is the length of w, denoted by |w|. The empty word has
length zero and is denoted by ε. The set of all words over Σ is denoted by Σ∗.
Any subset of Σ∗ is called a language. A language is regular (or rational) if it
can be recognized by a finite state automaton.

A prefix (resp. a suffix ) of a word w is any word u such that w = uz (resp. w =
zu) for some word z. A factor of w is a prefix of a suffix (or, equivalently, a suffix
of a prefix) of w. The set of prefixes, suffixes and factors of the word w are denoted
by Pref(w), Suff(w) and Fact(w) respectively. A border of a word w is any word
in Pref(w) ∩ Suff(w) different from w. From the definitions, we have that ε is a
prefix, a suffix, a border and a factor of any word. An occurrence of a factor u
in w is a factorization w = vuz. An occurrence of u is internal if both v and z
are non-empty.
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The word w̃ = wnwn−1 · · · w1 is called the reversal (or mirror image) of w.
A palindrome is a word w such that w̃ = w. In particular, the empty word is a
palindrome. A conjugate of a word w is any word of the form vu such that uv = w,
for some u, v ∈ Σ∗. A conjugate of a word w is also called a rotation of w.

A period for the word w is a positive integer p, with 0 < p ≤ |w|, such that
wi = wi+p for every i = 1, . . . , |w| − p. Since |w| is always a period for w, we
have that every non-empty word has at least one period. We can unambiguously
define the period of the word w as the smallest of its periods. The exponent of
a word w is the ratio between its length and its smallest period. A power is a
word whose exponent is an integer greater than 1. A word that is not a power
is called primitive

We denote by PAL(w) the set of factors of w that are palindromes. A word
w of length n is rich [10] (or full [2]) if |PAL(w)| = n + 1, i.e., if it contains the
largest number of palindromes a word of length n can contain.

A language L is called factorial if L = Fact(L), i.e., if L contains all the
factors of its words. A language L is extendible if for every word w ∈ L, there
exist letters a, b ∈ Σ such that awb ∈ L. The language of rich words over a fixed
alphabet Σ is an example of a factorial and extendible language.

We recall the definition of closed word given in [9]:

Definition 1. A word w is closed if and only if it is empty or has a factor
v �= w occurring exactly twice in w, as a prefix and as a suffix of w.

The word aba is a closed, since its factor a appears in it only as a prefix
and as a suffix. The word abaa, on the contrary, is not closed. Note that for any
letter a ∈ Σ and for any integer n > 0, the word an is closed, an−1 being a factor
occurring only as a prefix and as a suffix in it (this includes the special case of
single letters, for which n = 1 and an−1 = ε).

Remark 2. The notion of closed word is equivalent to that of periodic-like word
[6]. A word w is periodic-like if its longest repeated prefix does not have two
occurrences in w followed by different letters, i.e., if its longest repeated prefix
is not right special.

The notion of closed word is also closely related to the concept of complete
return to a factor, as considered in [10]. A complete return to the factor u in a
word w is any factor of w having exactly two occurrences of u, one as a prefix and
one as a suffix. Hence a non-empty word w is closed if and only if it is a complete
return to one of its factors; such a factor is clearly both the longest repeated prefix
and the longest repeated suffix of w (i.e., the longest border of w).

Remark 3. Let w be a non-empty word over Σ. The following characterizations
of closed words follow easily from the definition:

1. w has a factor v �= w occurring exactly twice in w, as a prefix and as a suffix
of w;

2. the longest repeated prefix (resp. suffix) of w does not have internal occur-
rences in w, i.e., occurs in w only as a prefix and as a suffix;
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3. the longest repeated prefix (resp. suffix) of w does not have two occurrences
in w followed (resp. preceded) by different letters;

4. w has a border that does not have internal occurrences in w;
5. the longest border of w does not have internal occurrences in w;
6. w is a complete return to its longest repeated prefix;
7. w is a complete return to its longest border.

For more details on closed words and related results see [1,3,5–7,9,13].
We end this section by exhibiting some properties of closed words.

Proposition 4. Any word whose exponent is at least 2 is closed.

Proof. Let w = vnv′ for n ≥ 2, v a primitive word, and v′ a prefix of v such that
the exponent of w is equal to n + |v′|/n. Then vn−1v′ is a border of w. If vn−1v′

has an internal occurrence in w, then there exists a proper prefix u of v such
that uv = vu, and it is a basic result in Combinatorics on Words that two words
commute if and only if they are powers of the same word, in contradiction with
our hypotheses on u and v. ��

Moreover, it is easy to see that for any rational number x between 1 and 2,
there exists a closed word having exponent x (it is sufficient to take a word over
{a, b} ending with b and with only one other occurrence of b, placed in the first
half of the word).

Proposition 5. Let Σ be an alphabet of cardinality |Σ| ≥ 2. The language of
closed words over Σ is not regular.

Proof. Let L be the language of closed words over Σ and let a, b ∈ Σ be different
letters. Let us assume that L is regular. This implies that also L ∩ a∗b∗a∗ is
regular, since a∗b∗a∗ is a regular language and the intersection of two regular
languages is regular. We claim that L ∩ a∗b∗a∗ = {anbman | n,m ≥ 0}, which is
not a regular language, and so we have a contradiction.

Clearly, every word in {anbman | n,m ≥ 0} is closed. Suppose now that w
belongs to a∗b∗a∗. Hence, w = anbmak, for some n,m, k ≥ 0. If n �= k, say
n < k, then the longest repeated prefix of w is an and it has at least one internal
occurrence in w. By Remark 3, w is not closed. The case n > k is symmetric. ��

Finally, we recall two results from [7].

Lemma 6. [7, Lemma 4] Let w be a non-empty word over Σ. Then there exists
at most one letter x ∈ Σ such that wx is closed.

Lemma 7. [7, Lemma 5] Let w be a closed word. Then wx, x ∈ Σ, is closed if
and only if wx has the same period of w.
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2 Closed Factors

Let w be a word. A factor of w that is a closed word is called a closed factor of
w. The set of closed factors of the word w is denoted by C(w).

Lemma 8. For any word w of length n, one has |C(w)| ≥ n + 1.

Proof. We show that every position of w is the ending position of an occurrence
of a distinct closed factor of w. Thus w contains at least n non-empty closed
factors, and the claim follows. Indeed, let v be the longest non-empty closed
factor ending in position i, so that wi−|v|+1 · · · wi = v. Since a is closed for
every a ∈ Σ, such a factor always exists. If v did not occur before in w, then
we are done. Otherwise, let j be the largest position smaller than i such that
wj−|v|+1 · · · wj = v. Set v′ = wj−|v|+1 · · · wi and observe that v′ is a closed factor
ending in i, with longest border v. But |v′| > |v|, in contradiction to the choice
of v. ��
Lemma 9. For any words u, v one has |C(u)| + |C(v)| ≤ |C(uv)| + 1.

Proof. Clearly, C(u) ⊆ C(uv). In order to prove the statement, it is sufficient
to prove that for any non-empty z in C(v), there exists an f(z) in C(uv) \ C(u)
and f is injective. So let z ∈ C(v), uv = w = w1 · · · wn, and let j be the smallest
integer greater than |u| such that z = wj · · · wj+|z|−1. If j is the smallest integer
such that z = wj · · · wj+|z|−1, then set f(z) = z. Otherwise, there is in w a closed
z′ to z ending in position wj+|z|−1. If this is the first occurrence of z′ in w, then
set f(z) = z′, otherwise repeat the construction for z′. Eventually, we will find a
closed factor f(z) = z(k) whose first occurrence in w ends in position wj+|z|−1.

By construction, f has the desired properties. ��
Proposition 10. Let w be a word of length n. If C(w) ⊆ PAL(w), then C(w) =
PAL(w) and |C(w)| = |PAL(w)| = n + 1. In particular, w is a rich word.

Proof. On the one hand, from Lemma 8, one has |C(w)| ≥ n + 1. On the other
hand, one has |PAL(w)| ≤ n + 1. Hence, if C(w) ⊆ PAL(w), then it must be
C(w) = PAL(w) and |C(w)| = |PAL(w)| = n + 1, and so w is a rich word. ��

Bucci et al. [5, Proposition 4.3] showed that a word w is rich if and only if
every closed factor v of w has the property that the longest palindromic prefix (or
suffix) of v is unrepeated in v. Moreover, they proved the following remarkable
result:

Theorem 11 (Bucci et al. [5, Corollary 5.2]). A palindromic word w is
rich if and only if PAL(w) ⊆ C(w).

In Section 4, we will prove that the condition PAL(w) = C(w) characterizes
the CR-poor words over a binary alphabet.
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3 CR-poor Words

By Lemma 8, we have that n+1 is a lower bound on the number of closed factors
of a word of length n. We introduce the following definition:

Definition 12. A word w ∈ Σ∗ is CR-poor if |C(w)| = |w| + 1. We also set

LΣ = {w ∈ Σ∗ : |C(w)| = |w| + 1}

the language of CR-poor words over the alphabet Σ.

Remark 13. If |Σ| = 1, then LΣ = Σ∗. So in what follows we will suppose |Σ| ≥ 2.

Note that, for any alphabet Σ, the language LΣ of CR-poor words over Σ is
closed under reversal. Indeed, it follows from the definition that a word w ∈ Σ∗

is closed if and only if its reversal w̃ is closed.

Proposition 14. The language LΣ of CR-poor words over Σ is a factorial lan-
guage.

Proof. We have to prove that for any word CR-poor w and any factor v of w, v
is a CR-poor word. Suppose by contradiction that there exists a CR-poor word
w containing a factor v that is not a CR-poor word, i.e., w ∈ LΣ, w = uvz
and |C(v)| > |v| + 1. By Lemma 9, |C(w)| ≥ |C(u)| + |C(v)| + |C(z)| − 2 >
|u| + |z| + |v| + 1 = |w| + 1 and therefore w cannot be a CR-poor word. ��

The following technical lemma will be used in the proof of the next theorem.

Lemma 15. Let w be a CR-poor word over the alphabet Σ and x ∈ Σ. The word
wx (resp. xw) is CR-poor if and only if it has a unique suffix (resp. prefix) that
is closed and is not a factor of w.

Proof. We prove the statement for wx, the one for xw will follow by symmetry.
The “if” part is straightforward. For the “only if” part, recall from the proof of
Lemma 8 that there is at least one new closed factor ending in every position, so
in particular wx has at least one suffix that is closed and is not a factor of w. ��
Remark 16. Suppose that a word w contains as a factor a complete return to
some word u. Then for every factor u′ of u, the word w contains as a factor a
complete return to u′.

We now give a characterization of CR-poor words.

Theorem 17. A word w over Σ is CR-poor if and only if for any two different
letters a, b ∈ Σ, w does not contain any complete return to ab. In other words,

LΣ = Σ∗ \
⋃
a�=b

Σ∗abΣ∗abΣ∗.
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Proof. Let u be a complete return to ab for a, b ∈ Σ different letters. We claim
that u is not CR-poor. Since by Proposition 14, a CR-poor word cannot contain
a factor that is not CR-poor, once the claim is proved the “only if” part of the
theorem follows. So let u′ be the longest suffix of u that is closed and starts with
the letter b. Such a suffix exists since u contains at least two occurrences of b.
Then u′ is unioccurrent in u, and since u is a closed suffix of itself we have, by
Lemma 15, that u is not CR-poor.

Conversely, suppose that the word w is not CR-poor. Then, analogously as
in the proof of Lemma 3, it follows that there is a position i of w such that there
are at least two different closed factors u and u′ of w that end in position i and
do not occur in w1 · · · wi−1. If both u and u′ are complete returns to a power of
the letter wi, then one of them must occur in w1 · · · wi−1, so this situation is not
possible, and we can therefore suppose that there is a factor ending in position i
that is a complete return to a word containing at least two different letters. The
statement then follows from Remark 16. ��
Corollary 18. A word w over Σ is CR-poor if and only if every closed factor
of w is a complete return to a power of a single letter.

Corollary 19. The language LΣ of CR-poor words over Σ is a regular language.

We can now state the following result:

Proposition 20. Let w be a word over Σ. Then C(w) = PAL(w) if and only if
w is rich and CR-poor.

Proof. If C(w) = PAL(w), then |C(w)| = |PAL(w)|, and since |C(w)| ≥ |w| + 1
(by Lemma 8) and |PAL(w)| ≤ |w| + 1, then it must be |C(w)| = |PAL(w)| =
|w| + 1, and hence by definition w is rich and CR-poor.

Conversely, suppose that w is rich and CR-poor. Let v ∈ C(w). By
Corollary 18, v is a complete return to a power of a single letter, so v is a
complete return to a palindrome. It is known (see [10, Theorem 2.14]) that a
word is rich if and only if all of its factors that are complete returns to a palin-
drome are palindromes themselves. Therefore, v is a palindrome, and hence we
proved that C(w) ⊆ PAL(w). By Proposition 10, C(w) = PAL(w) and we are
done. ��

4 The Case of Binary Words

In this section we fix the alphabet Σ = {a, b}. For simplicity of exposition, we
will denote the language of CR-poor words over {a, b} by L rather than by L{a,b}.
We first recall the definition of bitonic word.

Definition 21. A word w ∈ {a, b}∗ is bitonic if it is a conjugate of a word in
a∗b∗, i.e., if it is of the form aibjak or biajbk for some integers i, j, k ≥ 0.

By Theorem 17, it is easy to see that a binary word is in L if and only if it
is bitonic.
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Lemma 22. Let w be a bitonic word. Then C(w) ⊆ PAL(w).

Proof. Since w is bitonic, a closed factor of w can only be the complete return
to a power of a single letter. So a closed factor u of w is of the form u = an,
u = bn, u = anbman or u = bnambn, for some n,m > 0, and these words are all
palindromes. ��

Thus, by Proposition 10, any bitonic word w of length n > 0 contains exactly
n + 1 closed factors and so is a CR-poor word. We therefore have the following
characterizations of CR-poor binary words.

Theorem 23. Let w ∈ {a, b}∗. The following are equivalent:

1. w ∈ L;
2. w does not contain any complete return to ab or ba;
3. C(w) ⊆ PAL(w);
4. C(w) = PAL(w);
5. w is a bitonic word.

Notice that the condition C(w) ⊆ PAL(w) does not hold in general for CR-
poor words over alphabets larger than two. As an example, the word abca is CR-
poor but contains a closed factor (abca) that is not a palindrome. In view of The-
orem 11, a natural question would be that of establishing whether a palindrome
w is CR-poor if and only if C(w) = PAL(w), i.e., whether the characterization in
Theorem 23 can be generalized to larger alphabets at least for palindromes. How-
ever, the answer to this question is negative since, for example, the word w =
abcacba is a CR-poor palindrome and contains the non-palindromic closed factor
abca. Note that, coherently with Theorem 11 (and with Proposition 20), w is not
rich. However, in the case of a binary alphabet, we have, by Theorem 23 and Propo-
sition 10, that every CR-poor word is rich. Since by Theorem 17 it follows that the
language LΣ is extendible for any alphabet Σ, the language L is therefore a facto-
rial and extendible subset of the language of (binary) rich words.

In the following proposition we exhibit a closed enumerative formula for the
language L.

Proposition 24. For every n > 0, there are exactly n2 − n + 2 distinct words
in L.

Proof. Each of the n− 1 words of length n > 0 in a+b+ has n distinct rotations,
while for the words an and bn all the rotations coincide. Thus, there are n(n −
1)+2 bitonic words of length n, and the statement follows from Theorem 23. ��

5 How Many Closed Factors Can a Word Contain?

We showed in Lemma 8 that any word of length n contains at least n+1 distinct
closed factors. But how many closed factors, at most, can a word contain? We
provide an answer in the following theorem.
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Theorem 25. For every n > 4, there exists a word w ∈ {a, b}n with quadrati-
cally many closed factors.

Proof. Let n > 4 be fixed. We construct a word w of length n such that |C(w)| ≥
(k + 1)(k + 2)/2, where k = 
n/4�.

Let w = akbkakbkan−4k. Clearly |w| = n. Let vi,j = wi · · · wj , 1 ≤ i ≤ j ≤ n,
be a factor of w. We claim that for every i = 1, 2, . . . , k − 1, every factor vi,j ,
with 3k − 1 + i ≤ j ≤ 4k, is closed. Indeed, fixed i between 1 and k − 1, the
factor vi,3k−1+i, of length 3k, is equal to ak−i+1bkakbi−1, and therefore it is
closed since it is a complete return to ak−i+1bi−1. Then, for every j such that
3k−1+i ≤ j ≤ 4k, the factor vi,j has the same period of vi,3k−1+i, and therefore
is closed by Lemma 7.

Finally, notice that whenever (i′, j′) is different from (i, j), for i′ and j′ in the
same range of i and j, respectively (that is, 1 ≤ i ≤ k−1 and 3k−1+i ≤ j ≤ 4k),
the factor vi′,j′ is different from the factor vi,j .

Therefore we conclude that w contains at least (k + 1)(k + 2)/2 = Θ(n2)
many different closed factors, and we are done. ��

It is possible to exhibit a formula for the precise value of the maximal num-
ber of closed factors in a word of length n, but we think this adds nothing to
the general picture provided by Theorem 25. Moreover, the words realizing the
upper bound do not have a nice characterization, contrarily to the case of words
realizing the lower bound, discussed in the previous sections. However, for com-
pleteness, we report in Table 1 the first values of the sequence of the maximum
number of closed factors for binary words.

Table 1. The sequence of the maximum number of closed factors in a binary word

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

max 2 3 4 6 8 10 12 15 18 21 25 29 33 37 42 47 52 58 64 70

6 Conclusion and Open Problems

This paper is a first attempt to study the set of closed factors of a finite word.
In particular, we investigated the words with the smallest number of closed
factors, which we referred to as CR-poor words. We provided a combinatorial
characterization of these words and exhibited some relations with rich words.

An enumerative formula for rich words is not known, not even in the binary
case. A possible approach to this problem is to separate rich words in subclasses
to be enumerated separately. Our enumerative formula for binary CR-poor words
given in Proposition 24 could constitute a step towards this direction.

The set of closed factors could be investigated for specific (finite or infinite)
words or classes of words, and could be a tool to derive new combinatorial
properties of words.
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Finally, the notion of closed factor has recently found applications in string
algorithms [1], hence a better understanding of the structure of closed factors of
a word could lead to some applications.
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Abstract. Given a word w and a Parikh vector P, an abelian run of
period P in w is a maximal occurrence of a substring of w having abelian
period P. We give an algorithm that finds all the abelian runs of period
P in a word of length n in time O(n × |P|) and space O(σ + |P|).

Keywords: Combinatorics on words · Text algorithms ·Abelian period ·
Abelian run

1 Introduction

Computing maximal (non-extendable) repetitions in a string is a classical topic
in the area of string algorithms (see for example [7] and references therein).
Detecting maximal repetitions of substrings, also called runs, gives information
on the repetitive regions of a string, and is used in many applications, for example
in the analysis of genomic sequences.

Kolpakov and Kucherov [5] gave a linear time algorithm for computing all the
runs in a word and conjectured that any word of length n contains less than n
runs. Bannai et al. [1] recently proved this conjecture using the notion of Lyndon
root of a run.

Here we deal with a generalization of this problem to the commutative set-
ting. Recall that an abelian power is a concatenation of two or more words that
have the same Parikh vector, i.e., that have the same number of occurrences
of each letter of the alphabet. For example, aababa is an abelian square, since
aab and aba both have 2 a’s and 1 b. When an abelian power occurs within
a string, one can search for its “maximal” occurrence by extending it to the
left and to the right character by character without violating the condition on
the number of occurrences of each letter. Following the approach of Constan-
tinescu and Ilie [2], we say that a Parikh vector P is an abelian period for a
word w over a finite ordered alphabet Σ = {a1, a2, . . . , aσ} if w can be written
as w = u0u1 · · · uk−1uk for some k > 2 where for 0 < i < k all the ui’s have
the same Parikh vector P and the Parikh vectors of u0 and uk are contained
in P. Note that the factorization above is not necessarily unique. For example,
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 391–401, 2015.
DOI: 10.1007/978-3-319-15579-1 30
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a ·bba ·bba ·ε and ε ·abb ·abb ·a (ε denotes the empty word) are two factorizations
of the word abbabba both corresponding to the abelian period (1, 2). Moreover,
the same word can have different abelian periods.

In this paper we define an abelian run of period P in a word w as an occur-
rence of a substring v of w such that v has abelian period P and this occurrence
cannot be extended to the left nor to the right by one letter into a substring
having the same abelian period P.

For example, let w = ababaaa. Then the prefix ab·ab·a = w[1. . 5] has abelian
period (1, 1) but it is not an abelian run since the prefix a · ba · ba · a = w[1. . 6]
has also abelian period (1, 1). This latter, instead, is an abelian run of period
(1, 1) in w.

Looking for abelian runs in a string can be useful to detect those regions
in a string in which there is some kind of non-exact repetitiveness, for example
regions in which there are several consecutive occurrences of a substring or its
reverse.

Matsuda et al. [6] recently presented an offline algorithm for computing all
abelian runs of a word of length n in O(n2) time. Notice that, however, the
definition of abelian run in [6] is slightly different from the one we consider here.
We will comment on this in Section 3.

We present an online algorithm that, given a word w of length n over an
alphabet of cardinality σ, and a Parikh vector P, returns all the abelian runs of
period P in w in time O(n × |P|) and space O(σ + |P|).

2 Definitions and Notation

Let Σ = {a1, a2, . . . , aσ} be a finite ordered alphabet of cardinality σ and let Σ∗

be the set of finite words over Σ. We let |w| denote the length of the word w.
Given a word w = w[0. . n − 1] of length n > 0, we write w[i] for the (i + 1)-th
symbol of w and, for 0 � i � j < n, we write w[i. . j] for the substring of w from
the (i+1)-th symbol to the (j +1)-th symbol, both included. We let |w|a denote
the number of occurrences of the symbol a ∈ Σ in the word w.

The Parikh vector of w, denoted by Pw, counts the occurrences of each letter
of Σ in w, that is, Pw = (|w|a1 , . . . , |w|aσ

). Notice that two words have the same
Parikh vector if and only if one word is a permutation (i.e., an anagram) of the
other.

Given the Parikh vector Pw of a word w, we let Pw[i] denote its i-th compo-
nent and |Pw| its norm, defined as the sum of its components. Thus, for w ∈ Σ∗

and 1 � i � σ, we have Pw[i] = |w|ai
and |Pw| =

∑σ
i=1 Pw[i] = |w|.

Finally, given two Parikh vectors P,Q, we write P ⊂ Q if P[i] � Q[i] for
every 1 � i � σ and |P| < |Q|.
Definition 1 (Abelian period [2]). A Parikh vector P is an abelian period
for a word w if w = u0u1 · · · uk−1uk, for some k > 2, where Pu0 ⊂ Pu1 = · · · =
Puk−1 ⊃ Puk

, and Pu1 = P.
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Note that since the Parikh vector of u0 and uk cannot be equal to P it implies
that |u0|, |uk| < |P|. We call u0 and uk respectively the head and the tail of the
abelian period. Note that in [2] the abelian period is characterized by |u0| and
|P| thus we will sometimes use the notation (h, p) for an abelian period of norm
p and head length h of a word w. Notice that the length t of the tail is uniquely
determined by h, p and n = |w|, namely t = (n − h) mod p.

Definition 2 (Abelian repetition). A substring w[i. . j] is an abelian repeti-
tion with period length p if i − j + 1 is a multiple of p, i − j + 1 ≥ 2p and there
exists a Parikh vector P of norm p such that Pw[i+kp..i+(k+1)p−1] = P for every
0 ≤ k ≤ p/(i − j + 1).

An abelian repetition w[i. . j] with period length p such that i − j + 1 = 2p
is called an abelian square. An abelian repetition w[i. . j] of period length p of a
string w is maximal if:

1. Pw[i−p..i−1] �= Pw[i..i+p−1] or i − p < 0;
2. Pw[j−p+1..j] �= Pw[j+1..j+p] or j + p ≥ n.

We now give the definition of an abelian run. Let v = w[b. . e], 0 ≤ b ≤ e ≤
|w| − 1, be an occurrence of a substring in w and suppose that v has an abelian
period P, with head length h and tail length t. Then we denote this occurrence
by the tuple (b, h, t, e).

Definition 3. Let w be a word. An occurrence (b, h, t, e) of a substring of w
starting at position b, ending at position e, and having abelian period P with head
length h and tail length t is called left-maximal (resp. right maximal) if there
does not exist an occurrence of a substring (b − 1, h′, t′, e) (resp. (b, h′, t′, e + 1))
with the same abelian period P. An occurrence (b, h, t, e) is called maximal if it
is both left-maximal and right-maximal.

This definition leads to the one of abelian run.

Definition 4. An abelian run is a maximal occurrence (b, h, t, e) of a substring
with abelian period P of norm p such that (e − b − h − t + 1) ≥ 2p (see Fig. 1).

b e

h tP P P

e − b − h − t + 1

Fig. 1. The tuple (b, h, t, e) denotes an occurrence of a substring starting at position b,
ending at position e, and having abelian period P with head length h and tail length t

The next result limits the number of abelian runs starting at each position
in a word.
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Lemma 5. Let w be a word. Given a Parikh vector P, there is at most one
abelian run with abelian period P starting at each position of w.

Proof. If two abelian runs start at the same position, the one with the shortest
head cannot be maximal. �	
Corollary 6. Let w be a word. Given a Parikh vector P, for every position i in
w there are at most |P| abelian runs with period P overlapping at i.

The next lemma shows that a left-maximal abelian substring at the right of
another left-maximal abelian substring starting at position i in a word w cannot
begin at a position smaller than i.

Lemma 7. If (b1, h1, 0, e1) and (b2, h2, 0, e2) are two left-maximal occurrences
of substrings with the same abelian period P of a word v such that e1 < e2 and
b1 > e1 − 2 × |P| + 1 and b2 > e2 − 2 × |P| + 1, then b1 ≤ b2.

Proof. If b2 < b1 then since e2 > e1, w[b1. . b1 + h1 − 1] is a substring of
w[b2. . b2 + h2 − 1]. Thus Pw[b1..b1+h1−1] ⊂ Pw[b2..b2+h2−1] ⊂ P which implies
that Pw[b1−1..b1+h1−1] ⊂ P meaning that (b1, h1, 0, e1) is not left-maximal: a
contradiction. �	

We recall the following proposition, which shows that if we can extend the
abelian period with the longest tail of a word w when adding a symbol a, then
we can extend all the other abelian periods with shorter tail.

Proposition 8. [4] Suppose that a word w has s abelian periods (h1, p1) <
(h2, p2) < · · · < (hs, ps) such that (|w|−hi) mod pi = t > 0 for every 1 ≤ i ≤ s.
If for a letter a ∈ Σ, (h1, p1) is an abelian period of wa, then (h2, p2), . . . , (hs, ps)
are also abelian periods of wa.

We want to give an algorithm that, given a string w and a Parikh vector P,
returns all the abelian runs of w having abelian period P.

3 Previous Work

In [6], the authors presented an algorithm that computes all the abelian runs
of a string w of length n in O(n2) time and space complexity. They consider
that a substring w[i − h. . j + t] is an abelian run if w[i. . j] is a maximal abelian
repetition with period length p and h, t ≥ 0 are the largest integers satisfying
Pw[i−h..i−1] ⊂ Pw[i..i+p−1] and Pw[j+1..j+t] ⊂ Pw[i..i+p−1]. Their algorithm works
as follows. First, it computes all the abelian squares using the algorithm of [3].
For each 0 ≤ i ≤ n − 1, it computes a set Li of integers such that

Li = {j | Pw[i−j..i] = Pw[i+1..i+j+1], 0 ≤ j ≤ min{i + 1, n − i}}.
The Li’s are stored in a two-dimensional boolean array L of size 
n/2� × (n − 1):
L[j, i] = 1 if j ∈ Li and L[j, i] = 0 otherwise. An example of array L is given in
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Figure 2. All entries in L are initially unmarked. Then, for each 1 ≤ j ≤ 
n/2�× all
maximal abelian repetitions of period length j are computed in O(n). The j-th row
of L is scanned in increasing order of the column index. When an unmarked entry
L[j, i] = 1 is found then the largest non-negative integer k such that L[j, i + pj +
1] = 1, for 1 ≤ p ≤ k, is computed. This gives a maximal abelian repetition with
period length j starting at position i − j + 1 and ending at position i + (k + 1)j.
Meanwhile all entries L[j, i + pj + 1], for −1 ≤ p ≤ k, are marked. Thus all
abelian repetitions are computed in O(n2) time. It remains to compute the length
of their heads and tails. This cannot be done naively otherwise it would lead to
a O(n3) time complexity overall. Instead, for each 0 ≤ i ≤ n − 1, let Ti be the
set of positive integers such that for each j ∈ Ti there exists a maximal abelian
repetition of period j and starting at position i−j+1. Elements of Ti are processed
in increasing order. Let jk denote the k-th smallest element of Ti. Let hk denote
the length of the head of the abelian run computed from the abelian repetition of
period jk. Then hk can be computed from hk−1, jk−1 and jk as follows. Two cases
can arise:

1. If k = 0 or jk−1 + hk−1 ≤ jk, then hk can be computed by comparing the
Parikh vector Pw[i−jk−p..i−jk] for increasing values of P from 0 up to hk +1,
with the Parikh vector Pw[i−jk+1..i].

2. If jk−1 + hk−1 > jk, then
Pw[i−jk−1−hk..i−jk] can be computed from Pw[i−jk−1−hk−1+1..i−jk−1]. Then,
hk is computed by comparing the Parikh vector Pw[i−jk−1−hk−1+1−p..i−jk]

for increasing values of p from 0 up to hk + jk − hk−1 − jk−1 + 1.

This can be done in O(n) time. The lengths of the tails can be computed simi-
larly. Overall, all the runs can be computed in time and space O(n2).

a b a a b a b a a b b b

0 1 2 3 4 5 6 7 8 9 10 11

1 0 0 1 0 0 0 0 1 0 1 1 0

2 0 0 0 0 1 1 0 1 0 0 0 0

3 0 0 1 0 1 1 0 0 0 0 0 0

4 0 0 0 0 0 0 1 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2. An example of array L for w = abaababaabbb. L4,6 = 1 which means that
Pw[3..6] = Pw[7..10].

This previous method works offline: it needs to know the whole string before
reporting any abelian run. We will now give what we call an online method
meaning that we will be able to report the abelian runs ending at position i − 1
of a string w when processing position i. However, this method is restricted to
a given Parikh vector.
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4 A Method for Computing Abelian Runs of a Word
with a Given Parikh Vector

4.1 Algorithm

Positions of w are processed in increasing order. Assume that when processing
position i we know all the, at most |P|, abelian substrings ending at position i−1.
At each position i we checked if Pw[i−|P|+1..i] = P then all abelian substrings
ending at position i − 1 can be extended and thus become abelian substrings
ending at position i. Otherwise, if Pw[i−|P|+1..i] �= P then abelian substrings
ending at positions i−1 are processed in decreasing order of tail length. When an
abelian substring cannot be extended it is considered as an abelian run candidate.
As soon as an abelian substring ending at position i−1 can be extended then all
the others (with smaller tail length) can be extended: they all become abelian
substrings ending at position i. At most one candidate (with the smallest starting
position) can be output at each position.

4.2 Implementation

The algorithm Runs(P, w) given below computes all the abelian runs with
Parikh vector P in the word w. It uses:

− function Find(P, w), which returns the ending position of the first occur-
rence of Parikh vector P in w or |w| + 1 if such an occurrence does not
exist;

− function FindHead(w, i,P), which returns the leftmost position j < i such
that Pw[j..i−1] ⊂ P or i is such a substring does not exist;

− function Min(B) that returns the smallest element of the integer array B.

Positions of w are processed in increasing order (Lines 4–21). We will now
describe the situation when processing position i of w:

− array B stores the starting positions of abelian substrings ending at position
i − 1 for the different |P| tail lengths (B is considered as a circular array);

− t0 is the index in B of the possible abelian substring with a tail of length 0
ending at position i.

All the values of the array B are initially set to |w|. Then, when processing
position i of w, for 0 ≤ k < |P| and k �= t0, if B[k] = b < |w| then w[b. . i − 1] is
an abelian substring with Parikh vector P with tail length ((t0 − k + |P|) mod
|P|)−1. Otherwise, if B[k] = |w| then it means that there is no abelian substring
in w ending at position i − 1 with tail length ((t0 − k + |P|) mod |P|) − 1.

The algorithm Runs(P, w) uses two other functions:

− function GetTail(tail, t0, p), which returns (t0 − tail + p) mod p which is
the length of the tail for the abelian substring ending at position i − 1 and
starting in B[tail];
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− function GetRun(B, tail, t0, e, p), which returns the abelian substring
(B[tail], h, t, e).

If Pw[i−|P|+1..i] = P (Line 6) then all abelian substrings ending at position
i − 1 can be extended (see Fig. 3). Either this occurrence does not extend a
previous occurrence at position i − |P| (Line 7): the starting position has to be
stored in B (Line 8) or this occurrence extends a previous occurrence at position
i − |P| and the starting position is already stored in the array B.

i

|P| |P| |P|

· · ·

Fig. 3. If Pw[i−|P|+1..i] = P then Pw[j..i] ⊂ P for i − |P| + 1 < j < i

If Pw[i−|P|+1..i] �= P (Lines 9-21) then abelian substrings ending at position
i − 1 are processed in decreasing order of tail length. To do that, the circular
array B is processed in increasing order of index starting from t0 (Lines 11-19).

Let tail be the current index in array B. At first, tail is set to t0 (Line 10).
In this case there is no need to check if there is an abelian substring with tail
length 0 ending at position i (since it has been detected in Line 6) and thus
(B[t0], h, |P|− 1, i− 1) is considered as an abelian substring candidate (Line 15)
and array B is updated (Line 16) since (B[t0], h, 0, i) is not an abelian substring.

When tail �= t0, let t =getTail(tail, t0, |P|). If Pw[i−t+1..i] �⊂ P thus
(B[tail], h, t, i − 1) is considered as an abelian substring candidate (Line 15)
and array B is updated (Line 16) since (B[tail], h, t + 1, i) is not an abelian
substring. If Pw[i−t+1..i] ⊂ P then, for tail ≤ k ≤ (t0 − 1 + |P|) mod |P|, ∃h′

k, t′k
such that (B[k], h′

k, t′k, i) is an abelian substring. It comes directly from Prop. 8.
At each iteration of the loop in Lines 11-19 b is either equal to |w| or to

the position of the leftmost abelian run ending at position i − 1. Thus a new
candidate is found if its starting position is smaller than b (Lines 14-15). It comes
directly from Lemma 7.

Algorithm 1. GetTail(tail, t0, p)
1 return (t0 − tail + p) mod p
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Algorithm 2. GetRun(B, tail, t0, e, p)
1 b ← B[tail]
2 if tail = t0 then
3 t ← p − 1
4 t ← GetTail(tail, t0, p) − 1
5 h ← (e − t − b + 1) mod p
6 return (b, h, t, e)

Algorithm 3. Runs(P, w)
1 j ← Find(P, w)

2 (B, t0) ← (|w||P|, 0)
3 B[t0] ← FindHead(w, j − |P| + 1, P)
4 for i ← j + 1 to |w| do
5 t0 ← (t0 + 1) mod |P|
6 if i < |w| and Pw[i−|P|+1..i] = P then
7 if B[t0] = |w| then
8 B[t0] ← FindHead(w, i − |P| + 1, P)

9 else
10 (b, tail) ← (|w|, t0)
11 repeat
12 if B[tail] �= |w| then
13 if tail = t0 or i = |w| or Pw[i−GetTail(tail,t0,|P|)+1..i] �⊂ P then
14 if B[tail] � b then
15 (b, h, t, e) ← GetRun(B, tail, t0, i − 1, |P|)
16 B[tail] ← |w|
17 else break

18 tail ← (tail + 1) mod |P|
19 until tail = t0
20 if min(B) > b and e − t − h − b + 1 > |P| then
21 Output(b, h, t, e)

Example

Let us see the behaviour of the algorithm on Σ = {a, b}, w = abaababaabbb
and P = (2, 2):

j = 4, B = (12, 12, 12, 12), t0 = 0
B[0] = 0, B = (0, 12, 12, 12)
i = 5

t0 = 1
Pw[2..5] �= P
(b, tail) = (12, 1)
tail = 3, 2, 1, 0

i = 6
t0 = 2
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Pw[3..6] = P
B[2] = 0, B = (0, 12, 0, 12)

i = 7
t0 = 3
Pw[4..7] = P
B[3] = 1, B = (0, 12, 0, 1)

i = 8
t0 = 0
Pw[5..8] �= P
(b, tail) = (12, 0)
(b, h, t, e) = (0, 1, 3, 7)
B[0] = 12, B = (12, 12, 0, 1)
tail = 1
tail = 2

i = 9
t0 = 1
Pw[6..9] = P
B[1] = 3, B = (12, 3, 0, 1)

i = 10
t0 = 2
Pw[7..10] = P
B[2] �= 12

i = 11
t0 = 3
Pw[8..11] �= P
(b, tail) = (12, 3)
(b, h, t, e) = (1, 3, 3, 10)
B[3] = 12, B = (12, 3, 0, 12)
tail = 0
tail = 1

i = 12
t0 = 0
i ≥ 12
(b, tail) = (12, 0)
tail = 1
(b, h, t, e) = (3, 3, 2, 11)
B[1] = 12, B = (12, 12, 0, 12)
tail = 2
(b, h, t, e) = (0, 3, 1, 11)
B[1] = 12, B = (12, 12, 12, 12)
tail = 3
tail = 0
Output((0, 3, 1, 11)
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4.3 Correctness and Complexity

Theorem 9. The algorithm Run(P, w) computes all the abelian runs with Pa-
rikh vector P in a string w of length n in time O(n × |P|) and additional space
O(σ + |P|).
Proof. The correctness of the algorithm comes from Corollary 6, Lemma 7 and
Prop. 8. The loop in lines 4-21 iterates at most n times. The loop in lines 11-19
iterates at most |P| times. The instructions in lines 6, 8 and 13 regarding the com-
parison of Parikh vectors can be performed in O(n) time overall, independently
from the alphabet size, by maintaining the Parikh vector of a sliding window of
length |P| on w and a counter r of the number of differences between this Parikh
vector and P. At each sliding step, from w[i − |P|. . i − 1] to w[i − |P| + 1. . i]
the counters of the characters w[i−|P|] and w[i] are updated, compared to their
counterpart in P and r is updated accordingly. The additional space comes from
the Parikh vector and from the array B, which has |P| elements. �	

5 Conclusions

We gave an algorithm that, given a word w of length n and a Parikh vector
P, returns all the abelian runs of period P in w in time O(n × |P|) and space
O(σ + |P|). The algorithm works in an online manner. To the best of our
knowledge, this is the first algorithm solving the problem of searching for all the
abelian runs having a given period.

We believe that further combinatorial results on the structure of the abelian
runs in a word could lead to new algorithms.

One of the reviewers of this submission pointed out that our algorithm can
be modified in order to achieve time complexity O(n). Due to the limited time
we had for preparing the final version of this paper, we did not include such
improvement here. We will provide the details in a forthcoming full version of
the paper. By the way, we warmly thank the reviewer for his comments.
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Abstract. A word is quasiperiodic (or coverable) if it can be covered
by occurrences of another finite word, called its quasiperiod. This notion
was previously studied in the domains of text algorithms and combina-
torics of right infinite words. We extend several results to two dimen-
sions. We also characterize all rectangular words that cover non-periodic
two-dimensional infinite words. Then we focus on two-dimensional words
with infinitely many quasiperiods. We show that such words have zero
entropy. However, contrarily to the one-dimensional case, they may not
be uniformly recurrent.

Keywords: Combinatorics on words · Patterns

1 Introduction

At the beginning of the 1990’s, in the area of text algorithms, Apostolico and
Ehrenfeucht introduced the notion of quasiperiodicity [1]. Their definition is as
follows: “a string w is quasiperiodic if there is a second string u �= w such that
every position of w falls within some occurrence of u in w”. The word w is also
said to be u-quasiperiodic, and u is called a quasiperiod (or a cover) of w. For
instance, the string:

ababaabababaababababaababa

is aba-quasiperiodic and ababa-quasiperiodic.
In 2004, Marcus extended this notion to right-infinite words and observed

some basic facts about this new class. He opened several questions [10], most
of them related to Sturmian words and the subword complexity. First answers
were given in [7]. A characterization of right-infinite quasiperiodic Sturmian
words was given in [8] and extended to episturmian words in [5]. More details
on the complexity function were given in [11,12].

In [11], Marcus and Monteil showed that quasiperiodicity is independent from
several other classical notions in combinatorics on words. They also introduced
a stronger notion of quasiperiodicity, namely multi-scale quasiperiodicity, with
better properties.
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 402–413, 2015.
DOI: 10.1007/978-3-319-15579-1 31
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Finally, in [4], the authors introduced a two-dimensional version of quasiperi-
odicity. In particular, they gave a linear-time algorithm computing all square
quasiperiods of a given square matrix of letters. Our approach is to continue the
study of two-dimensional quasiperiodicity by generalizing the results from [11]
to infinite two-dimensional words.

− First, we recall definitions of some classical notions from combinatorics
on words in a two-dimensional context. Then, to illustrate these notions
and quasiperiodicty, we check that independence between these notions and
quasiperiodicity is still true in two dimensions (Section 2).

− We determine a necessary and sufficient condition for a word to be a
quasiperiod of non-periodic two-dimensional word. Given a quasiperiod q,
we construct a substitution allowing to forge q-quasiperiodic words with
various properties, in particular aperiodicity (Section 3).

− We define multi-scale quasiperiodicity in two dimensions. Then we study
how multi-scale quasiperiodicity is linked to other classical notions from
combinatorics on words. (Section 4).

Warning. Note that in some contexts, most notably in the field of tilings,
“quasiperiodic” means “uniformly recurrent”. Hence we refer to quasiperiodic
words as coverable words; each quasiperiod is a cover (or covering pattern).

2 Coverability

Let Σ be a finite alphabet. A two-dimensional word (or Z
2-word) is a function

from Z
2 to Σ. Unless otherwise stated, those functions are assumed to be total.

When clarification will be needed, we will note dom(w) the domain of w, i.e.
the set of coordinates where it has defined letters.

A rectangular word is a word w such that dom(w) = {i, . . . , i+n}×{j, . . . , j+
m}, for i, j ∈ Z and n,m ∈ N. In that case, let width(w) = n+1 and height(w) =
m+1. The set of rectangular words of dimension n×m is Σn×m. More generally,
if u is a rectangular word, then un×m denotes the nwidth(u) × m height(u)-
rectangle which consists only in occurrences of u.

Let CΣ,n denote the set of n-columns over Σ, i.e. 1 × n-rectangular words
over Σ. Those columns are concatenated horizontally. Likewise, let LΣ,m denote
the set of m-lines over Σ, concatenated vertically. We will occasionally view
rectangular words as finite one-dimensional words over CΣ,n or LΣ,m, considered
as alphabets.

Inwhat follows, letw be abidimensionalword and letu, v be rectangularwords.
We say that u is a cover (or a covering pattern) of w if, for all (x, y) ∈ Z

2,
there exists (i, j) ∈ N

2 with 0 ≤ i < width(u) and 0 ≤ j < height(u) such that
w[x − i . . . x − i + width(u) − 1; y − j . . . y − j + height(u) − 1] is equal to u
up to shift. Intuitively, u is a cover of w when each position of w belongs to an
occurrence of u.

Now we recall some classical notions from combinatorics on words, adapted
to the two-dimensional case. Then we will check that coverability is independent
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from these notions. This will generalize the first part of [11] to two-dimensional
words.

Let w[i . . . i + n; j . . . j + m] denote the restriction of w to the rectangle
{i . . . i+n}×{j . . . j+m}, for i, j ∈ Z and n,m ∈ N. If u = w[i . . . i+n; j . . . j+m]
for some i, j, n and m, then u is a block of w.

A two-dimensional word w is uniformly recurrent if, for all k ∈ N, there
exists some � ∈ N such that all k × k-blocks of w appear in all �× �-blocks of w.
Intuitively, this means that any block of w appears infinitely often with bounded
gaps.

Moreover, a two-dimensional word w has a vector of periodicity −→x ∈ Z
2∗ if,

for all vectors −→y ∈ Z
2, we have μ(−→x ) = μ(−→x + −→y ). We say that w is periodic if

it has at least two non-colinear vectors of periodicity. Links between periodicity
and others notion defined in this section (most notably the block complexity
function, see below) are currently investigated, see e.g. [3].

Let cw(n,m) be the number of n × m-blocks of w (cw is known as the block
complexity function of w). Then the the topological entropy of w is the following
quantity:

H(w) = lim
n→∞

log|Σ| cw(n, n)
n2

Intuitively, if cw(n, n) � |Σ|εn2
, then H(w) � ε. In other words, when the

complexity function of w is polynomial, w has zero entropy. This is a classical
regularity property on words, often used in the context of dynamical systems.

Let |u|v denote the number of occurrences of v in u. The frequency of u in
w is the following quantity:

fw(u) = lim
n→∞

|w[−n · · · + n,−n · · · + n]|u
n2

when it exists. If fw(u) exists for all blocks u of w, then u is said to have
frequencies. This is another common regularity property coming from dynamical
systems.

Proposition 1. Coverability is independent from uniform recurrence, subword
complexity and existence of frequencies.

Proof. For uniform recurrence, observe that q =
b b a
b b b
a b b

is a cover of the non-
uniformly recurrent word displayed on Figure 1. With the same value of q, the
q-periodic two-dimensional word is uniformly recurrent.

Let w be a two-dimensional word over {a, b} with polynomial (resp. expo-
nential) complexity. Consider the following function:

ν(a) = ababaaba

ν(b) = abaababa

The image ν(w) has polynomial with the same degree (resp. exponential) com-
plexity and is aba-coverable (viewing aba as a 3 × 1-rectangle).
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Finally, the word ν(aZ
2
) has frequencies for all its blocks. By contrast, if w

is a word having no frequencies for any block, then ν(w) has no frequencies
either. ��

. . .
. . .

. . .

. . .

Fig. 1. A coverable, non-uniformly recurrent word

As a conclusion, coverability is a weak notion: it does not bring much infor-
mation about two-dimensional words it characterizes.

3 Aperiodic Coverings

In this section, we determine under which conditions a rectangular word q can
be a cover of an aperiodic Z

2-word w. First, let us consider the question for
N-words. Recall that, in this context, a border is a block of q which is both a
proper prefix and a suffix of q. (A word u is a proper block of v if it is a block
of v and u �= v).

Lemma 2. A finite one-dimensional word q is a cover of an aperiodic coverable
N-word if and only if the primitive root of q has a non-empty border.

Sketch of proof. If q is a cover of an aperiodic infinite word, then so is its primitive
root. If the primitive root r of q has no non-empty borders, then two occurrences
of r never properly overlap. Hence any r-covered word must be periodic.

Conversely, if r has a non-empty border and if q = rk for some positive
integer k, then r = uvu. Let h be the morphism defined by h(a) = (uvu)k and
h(b) = (uvu)k−1vu. The image of any aperiodic word by h is an aperiodic, r-
coverable word. The proof is omitted by lack of space, but proof of Theorem 5
works quite the same. ��

The previous result also holds for Z-words. For N
2-words, one can prove

similarly: a finite rectangular word q is a cover of some aperiodic infinite word
if and only if the primitive root of q has a non-empty horizontal border or a
non-empty vertical border. In this context, a horizontal (resp. vertical) border
is a rectangular word which has the same width (resp. height) as q and which
occurs both at the top and the bottom (resp. left and right) of q.
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The proof of Lemma 2 used a morphism. Given a word w, readers can check
that h(w) shares a lot of common properties with w. From now on, we focus
on the Z

2 case. Theorem 5 below generalizes the previous result for Z
2-words.

However, our deeper goal is to to construct a substitution over Z
2 allowing to

obtain q-coverable Z
2-words with various properties.

3.1 Primitive Roots of Rectangular Words

We need some simple definitions to state our characterization. Let q and r be
rectangular words. By definition, r is a root of q if q = rn×m, for some positive
integers n and m. If q has no roots except itself, it is said to be primitive.

These notions initially came from combinatorics on one-dimensional words.
The following lemma is a classical result about roots in one dimension. It shows
that any one-dimensional finite word has a smallest root, called its primitive
root.

Lemma 3. (See, e.g., [9], Prop. 1.3.1 and 1.3.2.)
Given any finite one-dimensional words u and v, the following statements are
equivalent:

1. there exist integers n,m ≤ 0 with (n,m) �= (0, 0), such that un = vm;
2. there exist a word t and positive integers k and � such that u = tk and v = t�;
3. uv = vu.

Let us show that primitive roots are also well-defined on rectangular words.

Lemma 4. Let q be a rectangular word. Suppose that q has two distinct roots
r1 and r2. Then there exists a rectangular word r3 such that r3 is a root of both
r1 and r2.

Proof. Let rk
1 (resp. rk

2 ) denote k occurrences of r1 (resp. r2) concatenated verti-
cally. Since r1 and r2 are roots of q, there exist integers n and m such that both
rn
1 and rm

2 are roots of q, with height(q) = height(rn
1 ) = height(rm

2 ). Consider
q, rn

1 and rm
2 as words over CΣ,height(q); by Lemma 3, there exists a word c over

CΣ,height(q) such that c is a root of both rn
1 and rm

2 .
Let r3 (resp. r4) be the horizontal prefix of r1 (resp. r2) of length width(c).

Both r3 and r4 are prefixes of q, hence rn
3 = rm

4 (the power is still taken for verti-
cal concatenation). Now view r3 and r4 as words over LΣ,width(c). By Lemma 3,
there exists a word r over LΣ,width(c) which is a common root of r3 and r4.

As r1 (resp. r2) is obtained by horizontal concatenations of occurrences of r3
(resp. r4), we deduce that r is a root of r1 and of r2. ��

The primitive root of a rectangular word q is the root minimal for the “is a
root of” relation. By Lemma 4, it is the only root of q (possibly itself) which is
primitive.

We need one last definition before stating our first theorem. Let q be a
rectangular word. Following [4], a proper block b of q is a diagonal border of
q if b occurs in two opposite corners of q. Note that it is possible to have
either width(b) = width(q) (horizontal border) or height(b) = height(q) (vertical
border), but not both.
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3.2 Patterns Covering Aperiodic Bidimensional Words

Now we can state the condition under which a rectangular word can be the
covering pattern of a non-periodic Z

2-word.

Theorem 5. Let q be a finite, rectangular word. Then there exists a q-covera-
ble, non-periodic Z

2-word if and only if the primitive root of q has a non-empty
diagonal border.

This subsection is entirely dedicated to the proof of Theorem 5.

Proof of the “only if” part. First, suppose that w is a Z
2-word which is both

q-coverable and non-periodic. There exists at least two overlapping occurrences
of q in w. Moreover, the overlapping part is not a power of the primitive root of
q: if all overlappings are powers of some root of q, then w is periodic. Therefore,
q must have at least one border which is not a power of its primitive root. Hence
its primitive root has a non-empty border.

Proof of the “if” part. Suppose that q’s primitive root has a non-empty diagonal
border. Let us build an infinite Z

2-word which is q-coverable, but not periodic.

α β

δ γ

Fig. 2. Four tiles to build a q-coverable word. Each rectangle is an occurrence of q.

Let r be the primitive root of q and b be a non-empty diagonal border of r.
Consider the four tiles α, β, δ and γ displayed on Figure 2. Each rectangle is an
occurrence of q. The overlapping zones are all occurrences of b and the shifts on
tile borders are sized accordingly. If the border b is on the opposite corner, all
tiles are built symmetrically.

Let A = {a1, a2, a3, a4} and μ be the function from AZ
2

to ΣZ
2
, defined by

μ(a1) = α, μ(a2) = β, μ(a3) = γ and μ(a4) = δ. If its input is regular enough, μ
behaves more or less like a morphism, with the following concatenation rules.

On Figure 2, each tile has three anchors, i.e. letters marked by a small square.
Concatenate two tiles horizontally by merging the right-anchor of the first one
with the left-anchor of the second one. Concatenate two tiles vertically by merg-
ing the bottom-anchor of the first one with the top-anchor of the second one.
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More formally, we have:

μ(ai · u) = μ(ai) ∪ S(4width(q);height(b)) ◦ μ(u)

μ

(
u
v

)
= μ(v) ∪ S(width(b);4 height(q)) ◦ μ(u)

where the operator ∪ denotes the superposition of two finite words. Recall that
we view two-dimensional words as (possibly partial) functions from Z

2 to the
alphabet. These functions have domains which may be strictly included in Z

2. If
w1 and w2 are two words with disjoints domains, then (w1 ∪ w2)[x, y] = w1[x, y]
where w1 is defined and w2[x, y] where w2 is defined. In what follows, we will
only consider superpositions where no position (x, y) is defined in both w1[x, y]
and w2[x, y].

If u is a rectangular word, the leftmost bottom anchor of μ(u[i, j]) has coor-
dinates:

(i × 4 × width(q) + j × width(b); j × 4 × height(q) + i × height(b))

in μ(u). Figure 3 gives an example of how μ works.

Fig. 3. µ ( a3 a4 a4 a3
a1 a2 a2 a1 ), each rectangle is an occurrence of q

A word over A is suitable when it satisfies the following conditions:

1. each line is either on alphabet {a1, a2} or on alphabet {a3, a4};
2. each column is either on alphabet {a1, a3} or on alphabet {a2, a4}.

First, we check that if w is suitable, then each letter of μ(w) belongs to
the image of exactly one letter of w. This essentially means that all tiles “fit
together” with no overlaps.

By construction, tiles α and δ fit together vertically, and tiles β and γ fit as
well. Hence μ( a1

a3 ) and μ( a2
a4 ) are well-defined. Likewise, tiles α and β fit together

horizontally, and tiles δ and γ fit as well. Hence μ(a1a2) and μ(a3a4) and are
well-defined. Iterating this argument, we deduce that the image of any suitable
word is well-defined.

Moreover, we let readers check that μ(w) has no “holes”. More precisely, if
if w is a suitable rectangular word, μ(w) satisfies the following weak convexity
properties:

− for all i, j, j1, j2 ∈ N with j1 ≤ j ≤ j2, if (i, j1) and (i, j2) are in dom(μ(w)),
then (i, j) is in dom(μ(w)) as well;
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− for all i, j, i1, i2 ∈ N with i1 ≤ i ≤ i2, if (i1, j) and (i2, j) are in dom(μ(w)),
then (i, j) is in dom(μ(w)) as well.

As a consequence, the definition of μ can be extended to suitable Z
2-words.

If w is a suitable Z
2-word, then μ(w) is a well-defined Z

2-word as well.
We will now prove that μ(w) is aperiodic for any aperiodic bidimensional

word w. First, we need a technical lemma about our tiles.

Lemma 6. Let x and y be different tiles from {α, β, γ, δ}. Then an occurrence
of x and an occurrence of y cannot overlap when their anchor points coincide.

This essentially means that situations from Figure 4 cannot occur.

Fig. 4. All other possible overlappings

Proof. There are six possibilities for the set {x, y}. All proofs are quite similar,
so we only provide a proof when x = α and y = β (illustrated by the top left-
hand case of Figure 4). In what follows, q refers to the rectangular word used for
the construction of the tiles, r to its primitive root and b to a diagonal border
of r.

There are three occurrences of q, named q1, q2 and q3, such that q1 is covered
by q2 and q3 and all three are horizontally aligned. (See for instance the top
second column of q’s in the figure). View q1, q2 and q3 as one-dimensional words
over the alphabet LΣ,width(q). There exist words x and x′ over LΣ,width(q) such
that q1 = xx′ and q2 = q3 = x′x (where words are concatenated from bottom to
top).

By Lemma 3, x and x′ (and q) are powers of a same word s over LΣ,width(q).
Notice that height(x′) = height(b) and height(x) = height(q) − height(b). It
follows that height(s) divides height(x) and height(q) − height(b).

Observe that s is a vertical prefix of both q and x. Thence one can find three
occurrences of s, named s1, s2 and s3, such that s1 is covered by s2 and s3 and
all three are vertically aligned. (See for instance the second line of q’s in the
figure).

Now view s as a one-dimensional word on the alphabet CΣ,height(s). There
exist words y, y′ such that s1 = yy′, s2 = s3 = y′y and width(y′) = width(b).
By Lemma 3, we deduce that there exists a word t over CΣ,height(s) such that y
and y′ (and s) are powers of t.
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Let k ≤ 1 be the integer such that q = sk (for vertical concatenation) and let
� ≥ 1 be the integer such that s = t� (for horizontal concatenation). We have that
q = t�×k. Therefore t is a root of q such that width(t) ≤ width(y′) = width(b)
and height(t) = height(s) ≤ height(b). Thus width(s) × height(s) ≤ width(b) ×
height(b) which is a contradiction with the definition of b. Indeed, recall that b
is a border (hence a proper block) of the primitive root of q, which is smallest
(in number of letters) roots of q. ��

In the proof of next lemma, Lemma 6 helps to establish a correspondence
between the letters of the Z

2-word μ(w) and the “tiling” consisting of occur-
rences of α, β, δ and γ. We need this correspondence to prove that some μ(w)
can always be made aperiodic.

Lemma 7. Let q be a rectangular word, r its primitive root and b one non-empty
diagonal border of r. Let w be an aperiodic, suitable Z

2-word. Then μ(w) is an
aperiodic, q-coverable Z

2-word.

Proof. By construction, μ(w) is q-coverable for all w. Suppose that μ(w) has a
non-null vector of periodicity −→p ∈ Z

2. Let us prove that, under this assumption,
w is periodic.

Let a ∈ Z
2 be the coordinates of the anchor point of some tile in μ(w). For

any i ∈ Z, let ti = a + i × −→p . Since tiles have at most 16 × width(q) × height(q)
letters, by pigeonhole principle, there are two pairs of coordinates ti and tj which
have the same offset to the anchor points of their respective tiles (i.e. the tiles
covering their respective positions). Hence the difference between these anchor
points is a multiple of the vector of periodicity −→p .

Let Ti (resp. Tj) be the tile covering position ti (resp. tj). Since Ti is the (j −
i)×−→p -translation of Tj , they are both occurrences of a same tile. Moreover, the
right-neighbours of Ti and Tj are both occurrences of a same tile, otherwise we
would have a configuration forbidden by Lemma 6. Likewise, the top-neighbour,
bottom-neighbour and left-neighbour of Ti and Tj are also equal. By iterating
this argument over the neighbours’ neighbours, and so on, we conclude that the
tiling itself is periodic. Hence, w is periodic. ��

This ends the proof of Theorem 5. From any rectangular word q with at least
one non-empty diagonal border in its primitive root, we can build μ(w) for any
aperiodic, suitable Z

2-word w.

3.3 Lifting other Properties to Coverable Words

Notice how we “lifted” aperiodicity from an arbitrary Z
2-word to a q-coverable

word. This technique can be used to lift other properties, such as existence of
frequencies, uniform recurrence, block complexity or topological entropy. The
proof is as in Proposition 1, using μ instead of ν.

Hence, for any rectangular word q, there exist q-coverable Z
2-words with or

without uniform recurrence, with or without frequencies, and with any complex-
ity function. Any rectangle which is the cover of a Z

2-word is also the cover of
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Z
2-words with any properties. In other terms, the contents of a covering pattern

do not bring any information about the covered word.
As a conclusion of this section, remark that our substitution preserves various

kind of non-periodic properties. In Lemma 3.5, we could have assumed that
there exists no-sequence (xi, yi)i∈N of coordinates in w with (xi+1−xi, yi+1−yi)
constant. We would have obtained exactly the same property for μ(w).

4 Multi-scale Coverability in Two Dimensions

In [11], Monteil and Marcus called multi-scale coverable any N-word having
infinitely many covers. We want to exclude cases where coverability is obtained
on groups of lines (or columns) stacked all over Z

2. Hence our generalization is
more specific. A Z

2-word (or a N
2-word) is called multi-scale coverable if, for

each n ∈ N, it has a k × � cover with both k ≥ n and � ≥ n.
In [11], Monteil and Marcus prove that multi-scale coverable right-infinite

words have zero entropy and are uniformly recurrent. We study these results for
Z
2-words.

4.1 Topological Entropy

Let w be a Z
2-word. Recall that cw(n,m) is the number of rectangles of size

n × m which occur in w and that the topological entropy of w is the following
quantity:

H(w) = lim
n→+∞

log|Σ| cw(n, n)
n2

(1)

This sequence converges since
log|Σ| cw(n,n)

n is sub-additive (thanks to the Fekete’s
Subadditive Lemma, see e.g. [13]).

Proposition 8. Any multi-scale coverable, Z2-word w has zero entropy.

Proof. Consider a covering pattern q of w with size n×m. Suppose without loss
of generality that n ≤ m. Let s be a m×m-square of w. The square s is covered
with occurrences of q (which may spill out of s). The relative position of s and
of occurrences of q completely defines s.

We need at most 4m occurrences of q to define a covering of s. Each occur-
rence of q must have at least one of its corners in s. If some occurrence of q
has its bottom right-hand corner in s, then no other occurrence of q may have
their bottom right-hand corners on the same line of s. Otherwise, one of these
occurrences would supersede the other one, which would be “useless” in the
covering.

Proceed the same way for the other corners and deduce that at most 4m
occurrences of q (4 per line) uniquely define s. Each of these occurrences is
uniquely determined by its position of its corner on a line of s. There are at
most m possibilities for each. Therefore, there are at most m4m q-coverings
which define all possible squares s.
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This bound on cw(m,m) allows us to compute the entropy of w. Observe
that:

lim
m→∞

log m4m

m2
=

4m log m

m2
→ 0 (2)

Since there are infinitely many covering patterns of w with growing sizes,
there are infinitely many integers m such that cw(m,m) ≤ m4m. Hence equa-
tion (2) shows that then topological entropy of w converges to zero. ��

Note that since the Kolmogorov complexity is bound by the entropy (see [2]),
this result also shows that the Kolmogorov complexity of multi-scale coverable
words is zero as well.

4.2 Uniform Recurrence

Recall that a Z
2-word w is uniformly recurrent when all its blocks occur infinitely

often with bounded gaps. In N-words, multi-scale coverability implies uniform
recurrence. Quite surprisingly, this is not true for infinite two-dimensional words.

Consider q =
b b a
b b b
a b b

and the word displayed on Figure 1. The central block

b b b b a
b b b b b
b b a b b
b b b b b
a b b b b

occurs only once, hence this word is not uniformly recurrent.
Actually, the problem does not lie in the dimension two, but in the absence

of origin. The statement “multi-scale coverability implies uniform recurrence” is
true for N-words (see [11]) and N

2-words, and false for Z-words and Z
2-words.

Here is an example of a Z-word which is multi-scale coverable, but not uni-
formly recurrent:

ω(ab)a(ab)ω = . . . babababa a babababa . . .

Any word matching the aba(ba)∗ regular expression is a covering pattern of
this word. However, the pattern aa only occur once, hence it is not uniformly
recurrent.

Proposition 9. Any multi-scale, N2-word w is uniformly recurrent.

Proof. This is an adaptation of the proof from [11]. Consider a rectangle r occur-
ring in w. Since w has arbitrarily large covering patterns and all these patterns
occur at the origin, one of these patterns contains r entirely. Hence r occurs
whenever the covering patterns occurs, and the latter occurs infinitely many
times with bounded gaps. ��

As a conclusion, uniform recurrence from multi-scale coverability does not
generalize to Z

2-words. However, the situation as a whole generalizes to two
dimensions: the implication is true on words “with origins” (N,N2), and false on
words “without” (Z,Z2).



Coverability in Two Dimensions 413

5 Conclusion and Future Work

As a conclusion, let us point out several questions on which we are currently
working.

In [11], it is shown that all multi-scale coverable words have uniform frequen-
cies. Although the result seems still true for two-dimensional words, the proof
appears to be not directly generalizable.

Moreover, we have the feeling that non-uniformly recurrent coverable Z
2-

words are pathological cases. We suspect that they are all similar to the one
displayed on Figure 1. We are currently working on a full characterization of
those words.

Finally, one-dimensional coverable words may be decomposed to a normal
form (see [6]). This allows to view one-dimensional coverable coverable words as
images of arbitrary words by some morphisms (which depend on the cover). How-
ever, there does not seem to exist such normal form for coverable two-dimensional
words. Is any q-coverable word an image by some kind of substitution?
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Department of Algebra Faculty of Mathematics and Physics, Charles University,
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Abstract. We will prove that the word aibjak is periodicity forcing if
j ≥ 3 and i + k ≥ 3, where i and k are positive integers. Also we will
give examples showing that both bounds are optimal.

Keywords: Combinatorics on words · Word equations · Periodicity

1 Introduction

Periodicity forcing words are words w ∈ A∗ such that the equality g(w) = h(w)
is satisfied only if g = h or both morphisms g, h : A∗ → Σ∗ are periodic. The first
analysis of short binary periodicity forcing words was published by J. Karhumäki
and K. Culik II in [2]. Besides proving that the shortest periodicity forcing
words are of length five, their work also covers the research on the non-periodic
homomorphisms agreeing on the given small word w over a binary alphabet.
What in their work attracts attention the most, is the fact, that even short word
equations can be quite difficult to solve. The intricacies of the equation x2y3x2 =
u2v3u2, proved to have only periodic solution [3], nothing but reinforced the
perception of difficulty. Not frightened, we will extend the result and prove that
the word aibjak is periodicity forcing if j ≥ 3 and i + k ≥ 3, where i and k
are positive integers. Also we will give examples showing that both bounds are
optimal.

2 Preliminaries

Standard notation of combinatorics on words will be used: u ≤p v (u ≤s v resp.)
means that u is a prefix of v (u is a suffix of v resp.). The maximal common prefix
(suffix resp.) of two word u, v ∈ A∗ will be denoted by u ∧ v (u ∧s v resp.). By the
length of a word u we mean the number of its letters and we denote it by |u|. A
(one-way) infinite word composed of infinite number of copies of a word u will be
denoted by uω. It should be also mentioned that the primitive root of a word u,
denoted by pu, is the shortest word r such that u = rk for some positive k. A word
u is primitive if it equals to its primitive root. Words u, v are conjugate if there are
words α, β such that u = αβ and v = βα. For further reading, please consult [6].

We will briefly recall a few basic and a few more advanced concepts which
will be needed in the proof of our main theorem. Key role in the proof will be
played by the Periodicity lemma (see [6, Chap. 6, Theorem 6.1]):
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 414–423, 2015.
DOI: 10.1007/978-3-319-15579-1 32
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Lemma 1 (Periodicity Lemma). Let p and q be primitive words. If pω and
qω have a common factor of length at least |p|+|q|−1, then p and q are conjugate.
If, moreover, p and q are prefix (or suffix) comparable, then p = q.

Reader should also recall that if two words satisfy an arbitrary non-trivial
relation, then they have the same primitive root. Another well-known result is
the fact that the maximal common prefix (suffix resp.) of any two different words
from a binary code is bounded (see [6, Chap. 6, Lemma 3.1]). We formulate it
as the following lemma:

Lemma 2. Let X = {x, y} ⊆ A∗ and let α ∈ xX∗, β ∈ yX∗ be words such that
α ∧ β ≥ |x| + |y|. Then x and y commute.

The previous lemma can be formulated also for the maximal common suffix:

Lemma 3. Let X = {x, y} ⊆ A∗ and let α ∈ X∗x, β ∈ X∗y be words such that
α ∧s β ≥ |x| + |y|. Then x and y commute.

The most direct and most well-known case is the following.

Lemma 4. Let s = s1s2 and let s1 ≤s s and s2 ≤p s. Then s1 and s2 commute.

Proof. Directly, we obtain s = s1s2 = s2s1.

Next, let us remind the following property of conjugate words:

Lemma 5. Let u, v, z ∈ A∗ be words such that uz = zv. Then u and v are
conjugate and there are words σ, τ ∈ A∗ such that στ is primitive and

u ∈ (στ)∗, z ∈ (στ)∗σ, v ∈ (τσ)∗.

We will also need not so well-know, but interesting, result by A. Lentin and
M.-P. Schützenberger [4].

Lemma 6. Suppose that x, y ∈ A∗ do not commute. Then xy+ ∪ x+y contains
at most one imprimitive word.

We now introduce some more terminology. Suppose that x and y do not
commute and let X = {x, y}, i.e., we suppose that X is a binary code. We
say that a word u ∈ X∗ is X-primitive if u = vi with v ∈ X∗ implies u = v.
Similarly, u, v ∈ X∗ are X-conjugate, if u = αβ and v = βα and the words α
and β are from X∗.

In the following lemma, first proved by J.-C. Spehner [7], and consequently by
E. Barbin-Le Rest and M. Le Rest [1], we will see that all words that are imprimi-
tive and X-primitive are X-conjugate of a word from the set x∗y ∪ xy∗. Source of
the inspiration of both articles was an article by A. Lentin and M.-P.
Schützenberger [4] with its weaker version stating that if the set of X-primitive
words contains some imprimitive words, then so does the set x∗y ∪ xy∗. As a
curiosity, we mention that Lentin and Schützenberger formulated the theorem for
x∗y ∩ y∗x instead of x∗y ∪ y∗x (for which they proved it). Also, the Le Rests did
not include in the formulation of the theorem the trivial possibility that the word
x or the word y is imprimitive.
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Lemma 7. Suppose that x, y ∈ A∗ do not commute and let X = {x, y}. If
w ∈ X∗ is a word that is X-primitive and imprimitive, then w is X-conjugate
of a word from the set x∗y ∪ y∗x. Moreover, if w 
∈ {x, y}, then primitive roots
of x and y are not conjugate.

Putting together Lemma 6 with Lemma 7, we get the following result:

Lemma 8. Suppose that x, y ∈ A∗ do not commute and let X = {x, y}. Let C
be the set of all X-primitive words from X+ \ X that are not primitive. Then
either C is empty or there is k ≥ 1 such that

C = {xiyxk−i, 0 ≤ i ≤ k} or C = {yixyk−i, 0 ≤ i ≤ k}.

The previous lemma finds its interesting application when solving word equa-
tions. For example, we can see that an equation xiyjxk = z�, with � ≥ 2, j ≥ 2
and i + k ≥ 2 has only periodic solutions. (This is a slight modification of a well
known result of Lyndon and Schützenberger [5]). Notice, that we can use the
previous lemma also with equations which would generate notable difficulties if
solved “by hand”. E.g. equation

(yx)iyx(xxy)jxy(xy)k = zm,

with m ≥ 2, has only periodic solutions.
We formulate it as a special lemma:

Lemma 9. Suppose that x, y ∈ A∗ do not commute and let X = {x, y}. If there
is an X-primitive word α ∈ X∗ and a word z ∈ A∗, such that

α = zi,

with i ≥ 2, then α = xkyx� or α = ykxy�, for some k, � ≥ 0.

We finish this preliminary part with the following useful lemmas:

Lemma 10. Let u, v, z ∈ A∗ be words such that z ≤s v and uv ≤p zvi, for some
i ≥ 1. Then uv ∈ zp∗

v.

Proof. Let 0 ≤ j < i be the largest exponent such that zvj ≤p uv and let
r = (zvj)−1uv. Then r is a prefix of v. Our assumption that z ≤s v yields that
v ≤s vr and

r(r−1v) = v = (r−1v)r.

From the commutativity of words r−1v and r, it follows that they have the same
primitive root, namely pv. Since uv = (zvj)r we have uv ∈ zp∗

v, which concludes
the proof. ��
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Lemma 10 has the following direct corollary.

Lemma 11. Let w, v, t ∈ A∗ be words such that |t| ≤ |w| and wv ≤p tvi, for
some i ≥ 1. Then w ∈ tp∗

v.

Proof. Lemma 10 with u = t−1w and z empty yields that uv ∈ p∗
v. Then wv ∈ tp∗

v

and from |t| ≤ |w|, we obtain that w ∈ tp∗
v. ��

Lemma 12. Let u, v ∈ A∗ be words such that |u| ≥ |v|. If αu is a prefix of vi

and uβ is a suffix of vi, for some i ≥ 1, then αuβ and v commute.

Proof. Since αu ≤p vi and |u| ≥ |v| we have

α−1vα ≤p u ≤p uβ.

Our assumption that uβ is a suffix of vi yields that uβ has a period |v|. Then,
uβ ≤p (α−1vα)i and, consequently, αuβ ≤p vi. From v ≤s uβ and Lemma 10,
it follows that αuβ ∈ p∗

v, which concludes the proof. ��
Lemma 13. Let u, v ∈ A∗ be words such that |u| ≥ |v|. If αu and βu are prefixes
of vi, for some i ≥ 1, and |α| ≤ |β|, then α is a suffix of β, and βα−1 commutes
with v.

Proof. Since αu is a prefix of v+ and |u| ≥ |v|, we have α−1vα ≤p u. Similarly,
β−1vβ ≤p u. Therefore,

α−1vα = β−1vβ,

and |α| ≤ |β| yields α ≤s β. From βα−1v = vβα−1 we obtain commutativity of
v and βα−1. ��

Notice that the previous result can be reformulated for suffixes of vi:

Lemma 14. Let u, v ∈ A∗ be words such that |u| ≥ |v|. If uα and uβ are suffixes
of vi, for some i ≥ 1, and |α| ≤ |β|, then α is a prefix of β, and α−1β commutes
with v.

3 Solutions of xiyjxk = uivjuk

Theorem 15. Let x, y, u, v ∈ A∗ be words such that x 
= u and

xiyjxk = uivjuk, (1)

where i + k ≥ 3, ik 
= 0 and j ≥ 3. Then all words x, y, u and v commute.

Proof. First notice that, by Lemma 9, theorem holds in case that either of the
words x, y, u or v is empty. In what follows, we suppose that x, y, u and v
are non-empty. By symmetry, we also suppose, without loss of generality, that
|x| > |u| and i ≥ k; in particular, i ≥ 2. Recall that px (py, pu, pv resp.) denote
the primitive root of x (y, u, v resp.).

We first prove the theorem for some special cases.
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(A) Let px = pu.
Then pin

x yjpkn
x = vj for some n ≥ 1, and we are done by Lemma 9.

Notice that the solution of case (A) allows us to assume the useful inequality

(i + k − 1)|u| < |px|, (∗)

since otherwise pω
x and uω have a common factor of length at least |px| + |u|,

and u and x commute by the Periodicity lemma.
From

(u−i+1pxu−k)u = u(u−ipxu−k+1)

and Lemma 5 we see that there are words σ and τ such that στ is primitive and

u−i+1pxu−k ∈ (στ)m, u = (στ)�σ, u−ipxu−k+1 ∈ (τσ)m,

for some m ≥ 1 and � ≥ 0. Then we have

u = (στ)�σ, px = ui(τσ)muk−1 = ui−1(στ)muk, (∗∗)

for some m ≥ 1 and � ≥ 0.

(B) Let py and pv be conjugate.
Let α and β be such that py = αβ and pv = βα. Since xipy is a prefix of
uip+v , we can see that u−ixiαβ ≤p β(αβ)+. From Lemma 10 we infer that
and u−ixi ∈ β(αβ)∗. Similarly, by the mirror symmetry, pyxk ≤s p+v uk

yields that xku−k ∈ (αβ)∗α. Then

xi+k = uipn
v uk,

for some n ≥ 1. From |v| > |y|, it follows that |v| ≥ |y| + |pv| and, conse-
quently,

(i + k)(|x| − |u|) = j(|v| − |y|) ≥ 3|pv|.
Then n ≥ 3 and we are done by Lemma 9.

(C) Let px and pv be conjugate.
Let α and β be such that px = αβ and pv = βα. From (∗) and i ≥ 2, it
follows that uipv is a prefix of p2x. Then ui(βα) ≤p α(βα)+ and Lemma 10
yields that ui ∈ α(βα)∗. From i|u| < |px|, it follows ui = α. Since px is a
suffix of αβαuk = pxui+k and u is a prefix of px, we have

u(u−1px) = u(u−1px) ∧s u(u−1px)ui+k.

We then deduce from Lemma 3 that x and u commute, that implies px = pu,
i.e., case (A).
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x x yj x

ui v v uk

... ...

...

Fig. 1. Case |x| ≥ |v|

We will now discuss separately cases when |x| ≥ |v| and |x| < |v|.
1. Suppose that |x| ≥ |v|.

If i ≥ 3 or x 
= px, then (u−ix)xi−1 is a prefix of vj that is longer than
|px| + |x| by (∗). By the Periodicity lemma, px is a conjugate of pv and we are
in case (C). The remaining cases deal with i = k = 2 and i = 2, k = 1.
1a) First suppose that i = k = 2. Since (u−ix)x is a prefix of vj and x(xu−k)
is a suffix of vj , we get, by Lemma 12, that (u−ix)x(xu−k) commutes with v.
Then

x3 = uipn
v uk,

for some n ≥ 0. From (i + k − 1)|u| < |px| ≤ |x| and |pv| ≤ |v| ≤ |x| we
infer that n ≥ 2. Therefore, pu = px holds by Lemma 9, and we have case (A).
1b) Suppose now that i = 2 and k = 1. We will have a look at the words u and
x = px expressed by (∗∗). Let h = (στ)m and h′ = (τσ)m. Then (∗∗) yields

u = (στ)�σ, x = u2h′ = uhu.

1b.i) Suppose now that |pv| ≤ |uh|. Since h′uh is a prefix of vj and uh is a
suffix of vj , we obtain by Lemma 12 that h′uh = pn

v . From |pv| ≤ |uh|, we
infer n ≥ 2 and, according to Lemma 9, σ and τ commute. Then also x and u
commute and we have case (A).
1b.ii) Suppose that |pv| > |uh|. From |x| ≥ |v| ≥ |pv|, it follows that pv = h′uu1

for some prefix u1 of u. We can suppose that u1 is a proper prefix of u, otherwise
x and v are conjugate and we have case (C). Then u1h

′ ≤p uh′ ≤p (στ)+ and,
by Lemma 13, we obtain uu−1

1 ∈ (στ)+. Therefore, u1 ∈ (στ)∗σ. Since h ≤s pv,
we can see that στ ≤s τσ+. Lemma 3 then implies commutativity of σ and τ .
Therefore, the words x and u also commute and we are in case (A).

2. Suppose that |x| < |v| and i|x| = i|u| + |v|.
From x ≤s v, we have x ≤s xuk. Since u ≤p x we deduce from Lemma 3 that

x and u commute, thus we have case (A).

3. Suppose that |x| < |v| and i|x| > i|u| + |v|.
Let r be a non-empty word such that uivr = xi. Notice that |r| < |px|

otherwise the words px and pv are conjugate and we have case (C). Considering
the words u and px expressed by (∗∗), we can see that (τσ)muk−1ui is a prefix
of v and ui−1(στ)m is a suffix of v. Notice also that we have case (A) if σ and τ
commute.
3a) Consider first the special case when r = uk.
3a.i) If i = k, then vj−2 = uiyjui. If j ≥ 4, we have case (B) by Lemma 9. If
j = 3, then the equality uivr = xi implies xi = u2iyju2i and we get case (A)
again by Lemma 9.
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r

xi yj xk

ui v vj−1 uk

Fig. 2. Case |x| < |v| and i|x| > i|u| + |v|

3a.ii) Suppose therefore that k < i. Notice that u = σ, otherwise, from τσ ≤p v
and uk = r ≤p v, we get commutativity of σ and τ . Therefore,

v ∈ (τσ)mσk−1p∗
xσi−1(στ)m.

We have
vukx−k = vrx−k = u−ixi−k.

From i > k and (∗) we get |u−ixi−k| > 0 and, consequently, |vuk| > |xk|.
Let v′ dente the word vukx−k. Then vj−2v′ = ryj , and j ≥ 3 together with
|v| > |x| > |uk| = |r| yields that v′ is a suffix of yj . According to (∗∗), v′ =
u−ixi−k ∈ (τσ)mσk−1p∗

x. Then, σk is a suffix of yj and we have

(σkyσ−k)j = σkyjσ−k = vj−2v′σ−k.

This is a point where Lemma 9 turns out to be extremely useful. Direct inspection
yields that vj−2v′σ−k is not a jth power of a word from {σ, τ}∗. One can verify,
for example, that the expression of vj−2v′σ−k in terms of σ and τ contains
exactly j−2 occurrences of τ2. Therefore, Lemma 9 yields that σ and τ commute,
a contradiction.
3b) We first show that r = uk holds if k ≥ 2. Indeed, if k ≥ 2 then ukpxu−k

is a suffix of v and, consequently, ukpxu−kr is a suffix of xi. Since ukpxu−kuk is
also a suffix of xi, we can use Lemma 14 and get commutativity of x with one
of the words u−kr or r−1uk. From |r| < |px| and |uk| < |px|, we get r = uk.
3c) Suppose that k = 1 and r 
= u.
3c.i) If |r| < |u|, then r is a suffix of u and |xr−1u| > |x|. Since xr−1 ≤s v
and k = 1, the word x = xr−1r is a suffix of xr−1u. Therefore, xr−1 is a suffix
of (ur−1)+. Since u2 ≤p x and |xr−1| ≥ |u| + (|u| − |r|), the Periodicity lemma
implies that the primitive root of ur−1 is a conjugate of pu. But since pu is
prefix comparable with ur−1, we obtain that ur−1 ∈ p+u . Then also r ∈ p+u and
xr−1 ∈ p+u . Consequently, x and u commute, and we have case (A).
3c.ii) Suppose therefore that |r| > |u|. Then u is a suffix of r. Since r is a suffix
of px and px = ui(τσ)m, the word r is a suffix of ui(τσ)m. From |v| > |x| we
obtain u−ixui ≤p v. Consequently, from px = ui(τσ)m and r ≤p v, it follows
that r is a prefix of (τσ)mui.

Consider first the special case when r ∈ (τσ)mp∗
u. If r ∈ (τσ)mp+u , then

r ≤s ui(τσ)m yields that (τσ)m and u commute by Lemma 3. Consequently, σ
and τ commute, and we have case (A). Therefore, r = (τσ)m, px = uir and
v = u−ixir−1 ∈ (rui)+. We have proved that x and v have conjugate primitive
roots, which yields case (C). Consider now the general case.
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If m ≤ �, then (τσ)m is a suffix of u. Since r is a prefix of (τσ)mui, and
u ≤s r, we get from Lemma 10 the case r ∈ (τσ)mp∗

u.
Suppose that m > �. Then u is a suffix of (τσ)m. Let s denote the word

(τσ)mu−1 = (τσ)m−�−1τ .
If |r| ≥ |(τσ)m|, then r = s′su for some s′. From r ≤p (τσ)mui, it follows that

s′su is a prefix of sui+1. Lemma 11 then yields s′s ∈ sp∗
u. Therefore r ∈ sup∗

u

and from su = (τσ)m, we have the case r ∈ (τσ)mp∗
u.

Let |r| < |(τσ)m|. From |r| > |u| and (τσ)m = su, we obtain that there are
words s1, s2 such that s = s1s2, r = s2u ≤p v and s1 ≤s v. Since s is both a
prefix and a suffix of v, Lemma 4 implies that s1 and s2 have the same primitive
root, namely ps.

Note that px = uisu. We now have

uis2s1 = uis ≤s v ≤s xir−1 = (uisu)ni−1uis1,

for some n ≥ 1. From i ≥ 2, it follows that uis2 is a suffix of sui+1. Lemma 3
then yields commutativity of s and u. Hence, words x and u also commute and
we are in case (A).

4. Suppose now that |x| < |v| and i|x| < i|u| + |v|.

α β γ α β γ α β γ

xi y y y xk

ui v v v uk

Fig. 3. Case |x| < |v| and i|x| < i|u| + |v|

First notice that in this case also k|x| < k|u| + |v|. If j|y| ≥ |v| + |py|, then,
by the Periodicity lemma, pv and py are conjugate, and theorem holds by (B).
Assume that j|y| < |v| + |py|. Then, since i|x| < i|u| + |v| and k|x| < k|u| + |v|,
we can see that j = 3 and there are non-empty words α, β and γ for which
y = αβγ and v = (βγ)(αβγ)(αβ), with |αγ| < |py|.
4a) Suppose first that |uiγ| ≤ |x|. Notice that also |αuk| ≤ |x| since k ≤ i and
|γ| = (i−k)(|x|−|u|)+ |α|. Then |γx| ≤ |v| and uiγx is a prefix of x2. Therefore,
by Lemma 10, uiγ commutes with x. We obtain the following equalities:

v = γpn
xα, yj = αvγ = (αγ)pn

x(αγ),

where n ≥ 1. If n ≥ 2, then x and y commute by Lemma 9. If n = 1, then
px = x and i = 2. Since γxk = vuk = γxαuk and |αuk| ≤ |x|, also k = 2 and
αuk = x. Then |α| = |γ| and u2γ = x = αu2. If |u| ≥ |γ|, then u and γ commute,
a contradiction with px = x. Therefore, |x| < 3|γ| and |v| = |γxα| < 5|γ|. Since
γ is a suffix of x and α is a prefix of x, (γαβ)3γα is a factor of v3 longer than
|y| + |v|. Therefore, by the Periodicity lemma, words y and v are conjugate, and
we have case (B).
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4b) Suppose that |uiγ| > |x|, denote z = x−1uiγ and z′ = γ−1vα−1 =
xku−kα−1. From

|y| + |γ| + |α| < |v| = |γz′α|,
we deduce |y| < |z′| . Since xi−1 = zz′ and z′ is a prefix of xk, the word zz′ has
a period |z| < |γ|. Since zz′ is a factor of v greater than |z| + |y| and v has a
period |py|, the Periodicity lemma implies |py| ≤ |z| < |γ|, a contradiction with
|γ| < |py|. ��

4 Conclusion

The minimal bounds for i, j, k in the previous theorem are optimal. In case that
i = k and j is even, Eq. (1) splits into two separate equations, which have a
solution if and only if either j = 2, or i = k = 1 (see [2]).

Apart from these solutions, we can find non-periodic solutions also in case
that i 
= k. Namely, for j = 2 and i = k + 1, we have

x = α2k+1(βαk)2, u = α,

y = βαk, v = (αkβ)2(α3k+1βαkβ)k.

So far this seems to be the only situation when the equation

xiy2xk = uiv2uk (2)

with i > k has a non-periodic solution. We conjecture that if |i − k| ≥ 2, then
Eq. (2) has only periodic solutions.

If i = k = 1 and j is odd, then Eq. (1) has several non-periodic solutions, for
example:

x = αβα, u = α,

y = γ, v = αγjα,

where β2 = vj−1.
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Abstract. There exist many constructions of infinite words over three-
letter alphabet avoiding squares. However, the characterization of the
lexicographically minimal square-free word is an open problem. Efficient
construction of this word is not known. We show that the situation
changes when some letters commute with each other. We give two char-
acterizations (morphic and recursive) of the lexicographically minimal
square-free word ṽ in the case of a partially commutative alphabet Θ of
size three. We consider the only non-trivial relation of partial commu-
tativity, for which ṽ exists: there are two commuting letters, while the
third one is blocking (does not commute at all). We also show that the
n-th letter of ṽ can be computed in time logarithmic with respect to n.

1 Introduction

Problems related to repetitions are crucial in the combinatorics on words due to
many practical application, for instance in data compression, pattern matching,
text indexing and so on (see [16]). On the other hand, in some cases it is impor-
tant to consider words avoiding regularities and repetitions. Example applica-
tions can be found in such research areas as cryptography and bioinformatics.
Languages of words over partially commutative alphabets are fundamental tools
for concurrent systems investigation, see [9]. Therefore, the study of repetitions
and their avoidability in such languages is significant.

The simplest form of repetition is a square – the factor of the form x · x,
where x is not empty. Therefore, to show that a word w contains no repetitions,
it is sufficient to show that w does not contain squares. Another interesting type
of repetition is the abelian square – a factor of the form x · y, where x can
be obtained from y by permutation of the letters. For example, baca · caab is
an abelian square, whereas bcca · cbba is not. A word that contains no abelian
squares is called abelian square-free.

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 424–435, 2015.
DOI: 10.1007/978-3-319-15579-1 33
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Square-free and abelian square-free words have been extensively studied. In
1906 Thue showed that squares are avoidable over three-letter alphabet (see
[19]), i.e. there exist infinitely many ternary words without a square. In 1961
Erdös raised the question whether abelian squares are avoidable (see [13]). First
attempt to answer this question was made by Evdokimov in 1968 (see [14]), who
showed that abelian squares are avoidable over alphabets consisting of at least
25 letters. Then, in 1970, the required size of the alphabet was decreased to 5 by
Pleasants (see [18]), and finally, in 1992, to 4 by Keränen (see [15]). Moreover,
it can be easily shown that abelian squares cannot be avoided over three-letter
alphabet.

A one step further is to study repetitions and their avoidability in words over
partially commutative alphabets, see for instance [6–8,10,11]. In contrast to the
abelian case, only some fixed pairs of letters from the alphabet are allowed to
commute. It complicates considerably the analysis of repetitions in such classes
of words.

Our Results. In this paper we deal with the avoidability of repetitions in
words over three-letter alphabet Θ with one pair of commuting letters. Then we
describe an infinite language of length-increasing square-free words and investi-
gate their combinatorial properties. We use this language, utilising the results
of [10], to define the infinite language of partially abelian square-free words over
Θ.

As a final result, we give two characterizations of the infinite lexicographically
minimal Θ-square-free word ṽ and give an efficient construction of this word.
The n-th letter of ṽ can be computed in logarithmic time with respect to n.
The first 176 letters of ṽ are:

ṽ = abacabcbacabacbcabacabcbacbcabcbacabacbcabacabcbacabacbcabcb
acbcabacabcbacabacbcabacabcbacbcabcbacabacbcabcbacbcabacabcb
acbcabcbacabacbcabacabcbacabacbcabcbacbcabacabcbacabacbc . . .

Due to the page limitation, the proofs of some facts were omitted. The full
version of this paper, including all proofs, is available as [17].

2 Basic Notions

Throughout the paper we use the standard notions of the formal language theory
(see [16] for a more detailed introduction). By Σ we denote a finite set, called
the alphabet. Elements of the alphabet are called letters. A finite word over Σ
is a finite sequence of letters. The length of a word w is defined as the number
of its letters and denoted |w|. The set of all finite words over Σ is denoted by
Σ∗ and is equipped with a binary associative concatenation operation ·, where
a1 . . . an ·b1 . . . bm is simply a1 . . . anb1 . . . bm. An empty sequence of letters, called
the empty word and denoted by ε, is the neutral element of the concatenation
operation. Thus for any word w we have ε · w = w · ε = w. An infinite word over
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Σ is a sequence of letters indexed by non-negative integers. On the other hand,
it can be also defined as a limit of infinite sequence of finite words.

A word u is called a factor of a word w if there exist words x and y such
that w = xuy. If y = ε then u is called a prefix of w and if x = ε then u is called
a suffix of w. For a word w = a1a2 . . . an and 1 ≤ i, j ≤ n by w[i..j] we denote
its factor of the form aiai+1 . . . aj .

We assume that the alphabet Σ is given together with a strict total order <,
called the lexicographical order. This notion is extended in a natural way to the
level of words. For any two words x and y we have x < y if x is a proper prefix
of y or we have x = uav1 and y = ubv2, where a, b are letters and a < b.

A mapping φ : Σ∗
1 → Σ∗

2 is called a morphism if we have φ(u ·v) = φ(u) ·φ(v)
for every u, v ∈ Σ∗

1 . A morphism φ is uniquely determined by its values on
the alphabet. Moreover, φ maps the neutral element of Σ∗

1 into the neutral
element of Σ∗

2 .
A partially commutative alphabet is a pair Θ = (Σ, ind), where Σ is an

ordered alphabet and ind ⊆ Σ × Σ is a symmetric commutation relation. Such
an alphabet defines an equivalence relation ≡Θ identifying words, which differ
only by the ordering of commuting letters. Two words w, v ∈ Σ∗ satisfy w ≡Θ v
if there exists a finite sequence of commutations of adjacent commuting letters
transforming w into v. For example let us consider the partially commutative
alphabet Θ = ({a, b, c}, {(b, c), (c, b)}). Then the word w = acbcacb is equivalent
to v = accbabc, but is not equivalent to u = baccacb. Words over a partially
commutative alphabet Θ = (Σ, ind) are called partially commutative words.
Note that it is usually assumed that for each a ∈ Σ we have (a, a) /∈ ind , but in
the case of this paper such an assumption is not essential and it does not affect
the presented results.

A square in a word w is a factor of the form x · x, where x is not empty.
A word w is called square-free if none of its factors is a square. If we consider
a partially commutative alphabet Θ = (Σ, ind) a square is called a partially
commutative square or a Θ-square in short.

Definition 1 ([10]). Let Θ = (Σ, ind) be a partially commutative alphabet.
A Θ-square is a factor of the form u ·v such that u ≡Θ v. A word w is Θ-square-
free if it does not contain a nonempty Θ-square.

There are possible other (nonequivalent) definitions of a partially commu-
tative square-free words, see [8]. Moreover, in the case of the full commutation
relation (i.e. any pair of letters can commute) Θ-squares are called the abelian
squares, and words avoiding them – the abelian square-free words.

Example 1. Let Θ = ({a, b, c}, {(b, c), (c, b)}) be a partially commutative alpha-
bet. The word w1 = abc · acb is a Θ-square, but it is not an ordinary square. On
the other hand, w2 = abc · bac is an abelian square, which is neither a Θ-square
nor an ordinary square. Therefore, w1 is a square-free word, which it is neither
Θ-square-free nor abelian square-free, while w2 is square-free and Θ-square-free,
but not abelian square-free.
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3 Partially Abelian Square-Free Words over Three-Letter
Alphabets

It is easy to see that any binary word consisting of at least four letters must con-
tain a square. In 1906 Thue shown that three letters are sufficient to construct
an infinite square-free word (see [19]). Moreover, in 1992 Keränen proved that to
avoid abelian squares (i.e. factors of the form x · y, where x and y differ only by
permutation of their letters) four letters are sufficient (see [15]). It follows imme-
diately that any four-letter alphabet with more restricted commutation relation
also allows to avoid partially commutative squares. Therefore, the alphabets of
size three are the most interesting boundary case.

Θ1: Θ2: Θ3: Θ4:

a b

c

a b

c

a b

c

a b

c

Fig. 1. The possible shapes of the commutation relation over three-letter alphabet.
The pairs of letters connected by an edge can commute.

In partially commutative alphabets consisting of three letters one can con-
sider four distinct commutation relations as depicted on Fig. 1. We start with
the most restricted case of Θ4. Observe that the concepts of Θ4-square freeness
and ordinary square-freeness are equivalent. Due to the results of Thue (see [19]),
the number of Θ4-square-free words is infinite. Moreover, the number of finite
square-free words of a given length is exponential with respect to this length
(see [5] for more details).

On the other hand, the concepts of abelian square-freeness and Θ1-square-
freeness are equivalent. We have only 117 words without Θ1-square and the
longest of them consists of 7 letters. Similarly, the number of Θ2-square-free
words is finite. In this case we have 289 such words with the longest having 15
letters (see [10] for more details).

The most interesting case is the remaining alphabet Θ3. Similarly as in the
case of Θ4, the number of finite Θ3-square-free words is infinite, however it is
polynomially proportional to the length of the word (see [11]). In what follows,
we focus on this alphabet and investigate the combinatorial structure of Θ3-
square-free words in more details.

Remark 1. From now on we only consider the alphabet Θ3 and denote it by
Θ. Thus, by Θ-square and Θ-square-freeness we mean the Θ3-square and Θ3-
square-freeness.
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Conditions for Θ-square-freeness

We start with giving some necessary and sufficient conditions for a word to
be Θ-square-free. The more detailed study of their combinatorial structure is
presented in the subsequent sections. We follow here the results of [10] presented
below. Initially we present a statement, which is used further to formulate the
conditions for Θ-square-freeness.

Definition 2 (Condition (F), see [10]). The word v ∈ Σ∗ satisfies the
condition (F) if neither abca nor acba is a factor of v, where a, b, c ∈ Θ =
(Σ, ind).

The possible structure of a finite word containing a Θ-square is established
by the following fact (see Proposition 3.2 in [10]).

Proposition 1 (see [10]). Let w be a finite square-free word satisfying the
condition (F) and containing a Θ-square as a factor. Then w admits one of the
following decompositions:

(i) w = w1bcw2bcbw2bw3 (ii) w = w1cbw2cbcw2cw3

(iii) w = w1bw2bcbw2cbw3 (iv) w = w1cw2cbcw2bcw3

where w1, w2, w3 ∈ Σ∗. Moreover in such a decomposition one of the factors
w1 or w3 is of length at most 1.

As a corollary to Proposition 1 we can formulate the following fact char-
acterizing the possible building blocks of Θ-square-free words (see the proof of
Proposition 2.1 and Proposition 3.2 in [10]). It will be utilized further in con-
struction an infinite Θ-square-free word.

Corollary 1. Any infinite Θ-square-free word w starting with a consists of the
factors belonging to the following: B = {aba, aca, abcba, acbca, abca, acba}.
Moreover, the factors acba and abca can appear only as a prefix of w.

Remark 2. Note that no two different words created by concatenating factors
(without ending a) from the set B defined in Corollary 1 are equivalent under
the relation ≡Θ.

Finally, the following theorem gives a sufficient condition for the Θ-square-
freeness of an infinite word, see Corollary 3.3 in [10] for the proof.

Theorem 1 (see [10]). Any infinite square-free word over Σ starting with a
and satisfying the (F) condition is Θ-square-free.

4 The Structure of Θ-square-free Words

In the preceding section we presented the necessary and sufficient conditions for
a word to be Θ-square-free. Below we investigate the combinatorial structure of
such words in more detail.
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Recall that due to Corollary 1 any infinite Θ-square-free word w consists
only of the factors aba, aca, abcba, acbca, acba and abca, where the last two
can appear only as a prefix w. It can be easily proven that neither abc nor acb
could be a prefix of the lexicographically minimal infinite Θ-square-free word.
Therefore we have to consider only the factors aba, aca, abcba, acbca.

The above observations are the basis of the idea of encoding the possible
building blocks of Θ-square-free words as the symbols of a four-letter meta-
alphabet Δ = {A,B,C,D}.

Definition 3. Let Σ={a, b, c} (alphabet) and Δ={A,B,C,D} (meta-alphabet).
We define a morphism M : Δ∗ −→ Σ∗ as follows:

M =
{

A −→ ab B −→ ac
C −→ abcb D −→ acbc

.

It is worth to note that the morphism defined above is a code with finite
deciphering delay. This fact is utilized in operations described further in this
paper.

In what follows, if a word w over Σ is an image of a word u over Δ we call
u an M -reduction of w and w is called M -reducible1.

The alphabet Δ consists of four letters, hence it allows us to construct words
without repetitions. However, not all such words over Δ lead to words with no
repetitions over Θ. Since we are interested in Θ-square-free words, the considered
words over Δ must satisfy additional conditions presented further.

Lemma 1. Let w be an infinite, M -reducible and Θ-square-free word starting
with abacabcbaca. Then M -reduction of w does not contain any of the factors:
AC, CA, BD, DB, ABA, BAB, CBC, DAD, ADCB, BCDA.

Remark 3. Let w ∈ Σ∗ be a Θ-square-free word satisfying the condition (F)
stated in Definition 2. Then w consists of blocks, which are images of letters
from the alphabet Δ by the morphism M defined above, hence it is always
M -reducible and we can apply the inverse mapping M−1 (M -reduction) to w.
Moreover, the obtained result is a square-free word. On the other hand, the
image by M of a square-free word over Δ does not have to be Θ-square-free
word. For instance AC is a square-free word over Δ, but M(AC) = ababcb is
not Θ-square-free.

As a corollary to Lemma 1 we can describe the structure of Θ-square-free
words in the terms of meta-alphabet.

Corollary 2. Each M -reduction of a Θ-square-free word starting with aba is an
element of the set defined by a following regular expression Υ =

(
(A|C)(B |D)

)∗.

1 In the approach presented in this paper the morphism M is in fact used as a transla-
tion of an infinite word over four-letter alphabet into an infinite word over three-letter
alphabet.
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Remark 4. The inverse of Corollary 2 is not true, i.e. there exist words whose
M -reductions are in the set Υ , but they are not Θ-square-free, for instance
abacabacbc which is an image of ABAD.

Lemma 2. Let w < v ∈ Σ∗ be two M -reducible words starting with aba, which
M -reductions have equal length and are contained in Υ , and let u ∈ Σ∗ be the
longest M -reducible word such that M−1(w) = M−1(u)M−1(w′) and M−1(v) =
M−1(u)M−1(v′). Then M−1(v′) starts with C and M−1(w′) starts with A or
M−1(v′) starts with D and M−1(w′) starts with B.

Theorem 2. An infinite word w starting with the letter a and not starting with
abca or acba is Θ-square-free if and only if w is square-free and M -reducible.

5 Two Equivalent Characterizations of the Infinite
Word ṽ

In this section we present two alternative definitions of the language of square-
free words over the meta-alphabet Δ = {A,B,C,D} introduced in the previous
section. We start with a definition using a morphism, then we show a recurrent
procedure, which generates the same class of words.

5.1 Morphic Characterization

Let us define the sequence of words {Xi}i≥0 over Δ together with the lan-
guages Lm and Ldep similar to M(Lm). Both of them are based on the following
morphism.

Definition 4. We define a morphism m : {A,B,C,D}∗ −→ {A,B,C,D}∗ as:

m =

⎧⎪⎪⎨
⎪⎪⎩

A −→ BCB
B −→ ADA
C −→ BCDCB
D −→ ADCDA

.

Definition 5. Let {Xi}i>0 be defined as:

Xi =

{
AB for i = 0

A · m(Xi−1) · B for i > 0
.

We define the languages

Lm =
{

mi(AB) : i ≥ 0
}

; and Ldep =
{

M(Xi) : i ≥ 0
}

.

The subsequent fact describes the combinatorial structure of words contained
in the language Ldep.
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Lemma 3. For every two words u, v ∈ Ldep either u is the prefix of v or v is
the prefix of u.

Note that Ldep is an infinite set of words with strictly growing lengths. There-
fore, for any k > 0 there exists a word w ∈ Ldep such that |w| > k. This obser-
vation, together with Lemma 3, constitutes the correctness of the definition of
the infinite word ṽ.

Id Zi is a sequence of length increasing words, such that Zi is a prefix of
Zi+1 for each i then limi→∞ Zi denotes the infinite word containing all Zi as
its prefixes.

Definition 6. Define ṽ = limi→∞ M(Xi), or equivalently as ṽ = sup(Ldep).

We show that ṽ is the lexicographically least word over our partially com-
mutative alphabet.

5.2 Recurrent Characterization of ṽ

In this subsection we define two sequences of words using recurrence. Further-
more, at the end of this section, we show that one of them is equivalent to the
sequence {Xi}i≥0 defined previously. We start with defining the operation of
so-called complement for letters.

Definition 7. We define the operation ̂: {A,B,C,D} → {A,B,C,D} as fol-
lows:

̂ =

{
A → B, B → A

C → D, D → C
.

The mapping defined above is in a natural way extended to the level of words.
It allows us to define two recurrent sequences of words.

Definition 8. We define the sequences of words {Yi}i≥−1 and {Si}i≥0 over the
alphabet Δ = {A,B,C,D} as follows:

Y−1 = ε, Y0 = AB, S0 = C,

Yn+1 = YnSnŶnŜnYn, Sn+1 = SnŶn−1ŜnYn−1Sn.

Example 2. The first few elements of sequences defined above are as follows:

Y0 = AB, S0 = C, Y1 = ABCBADAB, S1 = CDC,

Y2 = ABCBADABCDCBADABCBADCDABCBADAB,

S2 = CDCBADCDABCDC.

The following facts describe some of the combinatorial properties of the
sequences defined above.

Lemma 4. For each i, the word Si is a palindrome and the word Yi is a pseudo-
palindrome, i.e. for each 1 ≤ k ≤ l we have Y [l − k + 1] = Ŷ [k], where l = |Yi|.
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Lemma 5. Let Xi be as in Definition 5. Then
(1) for each i ≥ 0 we have Xi = Yi;
(2) ṽ = limi→∞ M(Yi).

Taking into account the images of the words Yi and Si by morphism M we
can formulate the following fact, which will be very useful further.

Proposition 2 (Block lengths). Let Yi and Si be as defined above. Then for
each i ≥ 1 we have:∣∣∣M(Yi)

∣∣∣ =
4(4i+1 − 1)

3
and

∣∣∣M(Si)
∣∣∣ =

4(2 · 4i + 1)
3

.

6 Combinatorial Properties of the Word ṽ

In this section we formulate and prove the main results of the paper. Namely, we
show the Θ-square-freeness (Theorem 3) and lexicographical minimality (Theo-
rem 4) of the word ṽ and the time complexity of the computing the n-th letter
of ṽ (Theorem 5). The proof of the latter yields in fact a very efficient procedure.

We start with a series of facts which lead to the proof of Θ-square-freeness
of ṽ. Let us recall languages Lm and Ldep = M(Lm) from Definition 5.

Proposition 3. The language Lm consists of square-free words only.

Lemma 6. Lm ⊆ Υ =
(
(A|C)(B|D)

)∗
.

Proposition 4. Let v ∈ Lm. Then v does not contain a factor of the form
wxwy, where w ∈ Δ∗, and (x = A ∧ y = C) or (x = B ∧ y = D).

Theorem 3. The languages M(Lm) and Ldep consists of square-free words only.
The word ṽ is an infinite Θ-square-free word.

Theorem 4. The word ṽ is the lexicographically minimal infinite Θ-square-free
word.

Proof. The Θ-square-freeness of ṽ follows from Theorem 3.
Suppose that there exists an infinite Θ-square-free word w̃ that is lexico-

graphically smaller than ṽ. Then, by the analysis of short Θ-square-free words,
w̃ has to start with abacabcbaca. Moreover, due to Theorem 2 the word w̃ is
M -reducible. Let us consider u ∈ Σ∗ – the longest common M -reducible prefix
of ṽ and w̃. Moreover, let X,Y ∈ Δ be such that v = uM(X) and w = uM(Y )
are prefixes of ṽ and w̃, respectively. We have that M(X) > M(Y ). Potentially
there are 6 cases for X,Y , however from our previous results it follows that the
only cases to consider are:

(X,Y ) = (C,A), or (X,Y ) = (D,B).

Precisely, w, v and u satisfy all assumptions of Lemma 2, hence indeed, one of
the following conditions holds:
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1. M−1(v) = M−1(u)C and M−1(w) = M−1(u)A,
2. M−1(v) = M−1(u)D and M−1(w) = M−1(u)B.

Without the loss of generality, we can assume the first case. According to
Lemma 1, the last meta-letter of M−1(u) is either B or D. We deal with each
of those cases separately.

1o (M−1(u) ends with B): Due to the morphic definition of ṽ, the last but
one letter of M−1(u) is A. Hence, the word M−1(w) contains a forbidden factor
ABA. Therefore, by Lemma 1, the infinite word w̃ cannot be Θ-square-free.

2o (M−1(u) ends with D): Following similar reasoning as above, we obtain
that M−1(u) ends with BCD. Hence, the word M−1(w) contains a forbidden
factor BCDA. Therefore, due to Lemma 1, the infinite word w̃ cannot be Θ-
square-free.

The contradictions obtained above prove that the initial assumption concern-
ing the existence of w̃ was wrong. Therefore, ṽ is indeed the lexicographically
minimal infinite Θ-square-free word.

Theorem 5. For each n > 0 the n-th letter of the word ṽ can be determined in
time O(log n).

Proof. To prove the above lemma we present a simple recurrent procedure.
For given n ≥ 0 we find the shortest word Yi of length l ≥ n, where Yi’s

are as in Definition 8. Due to Proposition 2, both the index i and length l are
given by simple arithmetic formulas. By Definition 8, the word Yi consists of
five factors (either Yi−1 or Si−1 or their complements) with lengths given by
Proposition 2. Thus, we can determine the factor F ∈ {Yi−1, Ŷi−1, Si−1, Ŝi−1}
containing the considered position k in a constant time. It remains to determine
(using a recurrent call) the letter in F on a position n′, which is obtained by
subtracting from k the starting position of F . The recurrence stops when i = 1
and we have F equal to one of the words M(Y1), M(S1), M(Ŷ1) or M(Ŝ1).

Note that at each call of the recurrence it is necessary to memorize whether we
are looking for a letter in one of words (M(Y1) or M(S1)) or their complements
(M(Ŷ1) or M(Ŝ1)). It could be done by using a single boolean variable.

It is easy to see that the number of iterations performed by the procedure
described above is logarithmic with respect to n. Moreover, the required com-
putations on each level of recurrence can be performed in a constant time.

7 Final Remarks

In partially commutative alphabets of size three with one pair of commuting
letters one can consider three commutation relations:

Θ1: Θ2: Θ3:

a b

c

a b

c

a b

c
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From the point of view of the partially abelian square-freeness all above
alphabets are equivalent. We considered in this paper square-free words over
the partially commutative alphabet Θ3, but any Θ3-square-free word could be
transformed by a morphism (precisely an isomorphism) to a Θ1-square-free or
Θ2-square-free word and almost all the results follow.

However, if we are interested in construction of the lexicographically minimal
partially abelian square-free word, the choice of the alphabet is very important.
Such a choice determines the blocking letter and the structure of the lexico-
graphically minimal word. In the case of alphabets Θ1 and Θ2 it requires further
investigation.

In [2] Allouche and Shallit presented an open problem of characterizing the
lexicographically minimal square-free word over three-letter alphabet without
any commutation allowed. The construction of Thue (see [19]) leads to a word
which is not lexicographically minimal.

On the other hand, there is a procedure, proposed by Currie [12], which
allows to determine if a given finite word is a prefix of an infinite word avoiding
some repetitions. It immediately gives an algorithm computing arbitrary long
prefix of the lexicographically least infinite word. However, generating n-th letter
is definitely not logarithmic with respect to n. Moreover, in the case of square-
freeness, it seems to be directly applicable for alphabets consisting more than
four letters.

Another problem related to square-freeness is the overlap-freeness (i.e., avoid-
ing pattern axaxa, where a is a letter and x is a word). Berstel proved [3], (see
also [4]), that the lexicographically greatest infinite overlap-free word on the
binary alphabet Σ = {0, 1} that begins with 0 is the Thue-Morse overlap-free
sequence τ .

Moreover, it has been shown in [1] that the lexicographically least infinite
overlap-free binary word is 001001τ̄ , where τ̄ is the negation of overlap-free Thue-
Morse word τ . This makes the problem of extremal cases for overlap-freeness
closed. However, its solution relies on Thue-Morse word, which is a fix point of
a morphism. This supports the claim that there is also an efficient construction
of the lexicographically least square-free word over a ternary alphabet without
commutation. We believe that the techniques utilized in this paper might be
helpful in finding such a construction.
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Abstract. A partial word is a word which contains some holes known
as do not know symbols and such places can be replaced by any letter
from the underlying alphabet. We study the relation between language
of primitive partial words with the conventional language classes viz.
regular, linear and deterministic context-free in Chomsky hierarchy. We
give proofs to show that the language of primitive partial words over an
alphabet having at least two letters is not regular, not linear and not
deterministic context free language. Also we give a 2DPDA automaton
that recognizes the language of primitive partial words.

Keywords: Combinatorics on words · Partial word · Primitive word ·
Regular · Linear · Deterministic Context-free · 2DPDA

1 Introduction

Let Σ be a finite alphabet. We assume that Σ is a nontrivial alphabet, which
means that it has at least two distinct symbols. A total word (referred to as sim-
ply a word) u = a0a1a2 . . . an−1 of length n can be defined by a total function
u : {0, . . . , n − 1} → Σ where each ai ∈ Σ. We use string and word interchange-
ably. The set Σ∗ is the free monoid generated by Σ which contains all the strings.
The length of a string u is the number of symbols contained in it and denoted
by |u|. The string with length zero (also referred to as empty string) is denoted
as λ. The set of all words of length n over Σ is denoted by Σn. We define,
Σ∗ =

⋃
n∈N Σn where Σ0 = {λ} and, Σ+ = Σ∗ \ {λ}. A language L over Σ is

a subset of Σ∗.
A partial word u of length n over alphabet Σ can be defined by a partial

function u : {0, . . . , n − 1} → Σ. The partial word u contains some do not know
symbols known as holes along with the usual symbols. For 0 ≤ i < n, if u(i) is
defined, then we say i ∈ D(u) (the domain of u), otherwise i ∈ H(u) (the set of
holes). A word is a partial word without any holes. If u is a partial word of length
n over Σ, then the companion of u is the total function u♦ : {0, . . . , n − 1} →
Σ ∪ {♦} defined by u♦(i) = u(i) if i ∈ D(u) and, u♦(i) = ♦ otherwise [4]. We
denote the language of partial words with arbitrary number of holes as Σ∗

p . The
set Σ∗

p is also a monoid under the operation of concatenation where λ serves as
the identity. Peter Leupold in [14] has given some connection between partial
words and languages in Chomsky hierarchy [17].
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 436–445, 2015.
DOI: 10.1007/978-3-319-15579-1 34
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The outline of the rest of the paper is as follows. The next section contains
some basic concepts and describes the hierarchy of languages of partial words.
In Section 3, we prove that the language of primitive partial words is not regular,
not linear and not deterministic context-free language. In Section 4, we give a
2DPDA automaton that accepts the language of primitive partial words and
partial Lyndon words.

2 The Language of Primitive Partial Words

A word u is said to be primitive if it cannot be represented as nontrivial power
of another word, that is, if u = vn then it implies u = v andn = 1. The language
containing all primitive words over an alphabet is represented as Q. The language
of primitive words plays a vital role in various fields such as coding theory, formal
languages and applications and combinatorics on words [20].

If w = xn and x is a primitive, then x is called as the primitive root of w.
Thus, for every total word there is a word which is considered as its root.

Lemma 1 ([20]). Every nonempty word w can be expressed uniquely in the
form w = xn, where n ≥ 1 and x is primitive.

Similarly, for each partial word a set of words can be considered as root. For
example, a♦ = {ab, a2}. Thus, a♦ ⊂ ab and a♦ ⊂ a2. Hence

√
a♦ = {ab, a}.

The language of primitive words Q has been extensively studied and many
facts have been proved about relation of Q with conventional formal language
classes. The language Q is known to be not regular [7], not linear [12], not DCFL
[16] but context sensitive language [13]. However, it is still an open question
whether the language of primitive words Q is context-free or not [8,9,15,19].

We briefly mention two basic concepts, containment and compatibility, that
are required to extend the definition of primitivity to partial words [3]. If u and
v are two partial words of equal length then u is said to be contained in v, if all
elements in D(u) are also in D(v) and u(i) = v(i) for all i ∈ D(u). It is denoted
by u ⊂ v.

The partial words u and v are called compatible if there exists a partial word
w such that u ⊂ w and v ⊂ w. The compatibility of u and v is denoted by u ↑ v.
Note that containment is not a symmetric relation where as compatibility is a
symmetric relation.

A partial word u is said to be primitive if there does not exists a word v such
that u ⊂ vn, n ≥ 2. Note that if u is primitive and u ⊂ v, then v is primitive
as well[3]. We denote Wi(Σ) as the set of words over alphabet Σ with at most
i holes [4]. It is easy to see the following relation.

W0(Σ) ⊂ W1(Σ) ⊂ W2(Σ) ⊂ · · · ⊂ Wi(Σ) ⊂ · · ·
where W0(Σ) = Σ∗. We put W (Σ) =

⋃
i≥0 Wi(Σ). Let us denote the language

of primitive partial words with at most i holes as Qi
p. We know that Q∪Q = Σ∗

where Q is the set of all non-primitive words. We denote the language of partial
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words with at most i holes as Σ∗
i and the language of partial words with arbitrary

number of holes as Σ∗
p over the alphabet Σ ∪ {♦}. Thus, we define

Σ∗
p = Σ∗

0 ∪ Σ∗
1 ∪ Σ∗

2 ∪ Σ∗
3 ∪ · · ·

The root of a partial word w is defined as follows.
√

w = {p | p is primitive and total and there exists k such that w ⊂ pk}

For a language L of partial words, we define
√

L = {√w | w ∈ L}.
Let us recall the relation between the finiteness of the set of root terms with

the set of regular languages.

Theorem 2 ([14]). A regular language has finite root if and only if it can be
described by a root term.

Theorem 3 ([14]). All context-free languages with finite root are regular.

We denote the language of primitive partial words as Qp. Therefore,

Qp = Q0
p ∪ Q1

p ∪ Q2
p ∪ Q3

p ∪ · · · .

The language of partial words with at most i holes can be viewed in a similar
way as Chomsky hierarchy of formal languages. The following figure shows the
hierarchy of language of partial words.

Q2
p

Σ∗
2

Q1
p

Q1
p

Q0
p = Q Q

Σ∗
0

Σ∗
1

Q2
p

Σ∗
i = Qi

p ∪ Qi
p

Fig. 1. The hierarchy of language of partial words
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In [5], a special language class of partial words CF ⊆ Σ∗
p is defined, where

CF = {w | w is a partial word over {a, b} that has a critical factorization}
It has been proved that CF is not regular [2] but CF is context sensitive [6].
It is an open problem whether CF is context-free or not [5]. In this paper we
study a different language viz. the language of primitive partial words Qp and
its relation with the languages in Chomsky hierarchy.

3 Properties of the Language of Primitive Partial Words

In this section, we shall prove that the language of primitive partial words Qp

is not regular, not linear as well as not Deterministic Context-free Language
(DCFL). First we recall the pumping lemma for regular languages and linear
languages and also some of the properties of DCFL which are required to prove
our result.

Lemma 4 (Pumping Lemma for Regular Languages [10]). For a regular
language L, there exists an integer n > 0 such that for every word w ∈ L with
|w| ≥ n, there exist a decomposition of w as w = xyz such that the following
conditions holds.

(i) |y| > 0,
(ii) |xy| ≤ n, and
(iii) xyiz ∈ L for all i ≥ 0.

It is easy to observe that the language of primitive partial words with at most
i holes, Qi

p, is not regular. This is because pumping up a hole in a word having
at most i holes will give a word which is not in Qi

p. The following result proves
the claim in general. We use the similar idea as used in [7].

Lemma 5 ([7]). For any fixed integer k, there exist a positive integer m such
that the equation system (k − j)xj + j = m, j = 0, 1, 2, . . . , k −1 has a nontrivial
solution with appropriate positive integers x1, x2, . . . , xj > 1.

Theorem 6. Qp is not regular.

Proof. Suppose that the language of primitive partial words Qp is regular. So
there exist a natural number n > 0 depending upon the number of states of
finite automaton for Qp.

Consider the partial word w = an♦am♦amb,m > n. Note that w is a prim-
itive partial word over Σ ∪ {♦}, where |Σ| ≥ 2 and a �= b. Since w ∈ Qp

and |w| ≥ n, then it must satisfy the other conditions of pumping Lemma for
regular languages. So there exist a decomposition of w into x, y, z such that
w = xyz, |y| > 0 and xyiz ∈ Qp for all i ≥ 0.

Let x = ak, y = a(n−j), z = aj−k♦am♦amb. Now choose i = xj and since we
know by Lemma 5 that for every j ∈ {0, 1, . . . , n−1}, there exists a positive inte-
ger xj > 1 such that xyxjz = aka(n−j)xjaj−k♦am♦amb = a(n−j)xj+j♦am♦amb=
am♦am♦amb ⊂ (amb)3 /∈ Qp which is a contradiction. Hence the language of
primitive partial words Qp is not regular. �
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Next, we prove that the language of primitive partial words Qp is not linear.
Let us recall the pumping lemma for linear languages.

Lemma 7 (Pumping Lemma for Linear Languages [11]). Let L be a
linear language. There exists an integer n such that any word p ∈ L with |p| ≥ n,
admits a factorization p = uvwxy satisfying the following conditions.

(i) uvmwxmy ∈ L ∀m ∈ N,
(ii) |vx| > 0, and
(iii) |uvxy| ≤ n.

Theorem 8. The language of primitive partial words Qp is not linear.

Proof. Suppose that the language Qp is linear. Let n > 0 be an integer. Consider
s = anbmam♦n ∈ Qp be a partial word and m > n and a �= b. Since |s| ≥ n,
so there exists a factorization of s into u, v, w, x, y such that it satisfies the
conditions of pumping Lemma for linear languages.

Let u = ai, v = aj , x = bk, y = bl such that i + j + k + l ≤ n, j + k > 0,w =
arbmam♦q and i, j, k, l, r, q ≥ 0. So 0 < i + j + k + l ≤ n. Also, i + j + r =
s + k + l = n. Now it must be that uvtwxty ∈ Qp for all t ∈ N. However,
uvtwxty = ai+tj+rbmam♦q+tk+l = ambmam♦m ⊂ (ambm)2 /∈ Qp. It will happen
that i+ tj + r = m = q + tk + l because if we consider the left hand side equality
we get,

i + tj + r = m
⇒ i + j + r + (t − 1)j = m
⇒ n + (t − 1)j = m

⇒ t =
m − n

j
+ 1

It is true that there will be some integers m,n and j such that t is an integer.
So, uvtwxty = ambmam♦m ⊂ (ambm)2 for some t. Hence Qp is not linear. �

Next we prove that the language of primitive partial words is not deter-
ministic context-free language. We will use the closure properties of DCFL. In
particular, the set of DCFLs is closed under complementation.

Theorem 9. Qp is not deterministic context-free.

Proof. Suppose that the language of primitive partial words Qp is deterministic
context-free. As the set of DCFLs is closed under complementation, the comple-
ment of Qp, that is, Qp (set of partial periodic words) is also a DCFL.

Also, we know that the intersection of a DCFL with a regular language is also
DCFL. Therefore, Qp ∩ {a∗b∗a∗b∗} = {anbmanbm | m,n ∈ N} is also a DCFL.
But the language {anbmanbm | m,n ∈ N} is not a Context Free Language
(CFL) which can be proved by using pumping lemma for CFLs. Hence it is
a contradiction that the language of primitive partial words Qp is a DCFL.
Therefore the language Qp is not deterministic context-free. �
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4 2DPDA for Qp

In this section we define Partial Lyndon words denoted by Lp and prove that
the language of primitive partial words with 1-hole Q1

p is accepted by Two-way
Pushdown Automaton (2DPDA). Next, we show that the language of primitive
partial words with at least two holes is accepted by a 2DPDA. Let us recall the
basic definition of 2DPDA and some of the results which are required in the
proof.

A 2DPDA is the same as ordinary DPDA but with an additional ability to
move its input head in both directions. We use Z0 as the bottom of stack and
one left end and one right end symbol as � and �, respectively.

Definition 10 ([1]). A 2DPDA, P , consists of 7-tuple

P = 〈S, I, T, δ, s0, Z0, st〉,

where

(a) S is the states of the finite control.
(b) I is the input alphabet (excluding � and �).
(c) T is the pushdown list alphabet (excluding Z0).
(d) δ is a mapping on (S−{st})×(I∪{�,�})×(T ∪Z0). The value of δ(s, a,A) is,

if defined, is of one of the forms (s
′
, d, push B), (s

′
, d), or (s

′
, d, pop) where

s
′ ∈ S,B ∈ T and d ∈ {−1, 0,+1}. We assume a 2DPDA makes no moves
from the final state st and certain other states may have no moves defined.

(e) s0 ∈ S is the initial state of the finite control.
(f) Z0 is the special symbol that indicates the bottom of the pushdown list.
(g) st is one of the designated final state.

In the above definition δ(s, a,A) indicates the transition function of the
machine when it is in the state s, the input head scans a symbol a, and the
pushdown list has the symbol A on top. There are three possible actions.

δ(s, a,A) =

⎧⎨
⎩

(s
′
, d, push B) provided B �= Z0

(s
′
, d);

(s
′
, d, pop) if A �= Z0

In these transitions, the machine enters in state s
′

and moves its input head in
the direction d, where d = −1,+1 or 0, to indicate to move its head to left, right
or remain stationary, respectively. The operation push B means add the symbol
B on the top of pushdown list and pop means remove the topmost symbol from
the pushdown list.

Definition 11 ([3]). Let k and l be two positive integers satisfying k ≤ l.
For 0 ≤ i < k + l, we define the sequence of i relative to k, l as seqk,l(i) =
(i0, i1, . . . , in+1) where
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(a) i0 = i = in+1

(b) For 1 ≤ j ≤ n, ij �= i

(c) For 1 ≤ j ≤ n + 1, ij is defined as ij =
{

ij−1 + k if �= ij−1 < l,
ij−1 − l otherwise.

Definition 12 ([4]). Let k and l be two positive integers satisfying k ≤ l and
let z be a partial word of length (k + l). We say that z is (k,l)-special if there
exists 0 ≤ i ≤ gcd(k, l) such that seqk,l(i) = (i0, i1, . . . , in+1) contains at least
two positions that are holes of z while z(i0)z(i1) . . . z(in+1) is not 1-periodic.

Lemma 13 ([4]). Let u and v be two nonempty partial words such that uv
contains at most one hole. The words u and v commute if and only if they are
contained in powers of the same words, that is, uv ↑ vu if there exists a word w
such that u ⊂ wm and v ⊂ wn for some integer m,n.

Lemma 14 ([4]). Let u and v be two nonempty partial words such that |u| ≤ |v|.
If uv ↑ vu and uv is not (|u|, |v|)-special, then there exists a word w such that
u ⊂ wm and v ⊂ wn for some integer m,n.

Definition 15. A partial word w ∈ Σ+ is primitive if and only if it is not
contained in two non-empty commuting words, that is, w ∈ Qp ⇔ w �= λ and
∀u, v ∈ Σ∗ : (w ⊂ uv and w ⊂ vu ⇒ λ ∈ {u, v}).

Several facts about primitive partial words are known; we recall some of them
which will be useful below.

Lemma 16 ([4]). Let u be a partial word with one hole. Then u is primitive
if and only if uu ↑ xuy for some partial words x, y implies x = ε or y = ε.

Lemma 17 ([4]). Let u be a partial word with at least two holes.

I. If uu ↑ xuy for some partial words x, y implies x = ε or y = ε, then u is
primitive.

II. If uu ↑ xuy for some nonempty partial words x and y satisfying |x| ≤ |y|,
then the following hold:
(a) If |x| = |y|, then u is not primitive.
(b) If u is not (|x|, |y|)-special, then u is not primitive (it is contained in a

power of a word of length |x|).
(c) If u is (|x|, |y|)-special, then u is not contained in a power of a word of

length |x|.
Definition 18. A primitive partial word w is a partial Lyndon word if and only
if it is minimal in its conjugate class (with respect to lexicographic order where
we assume a < b < · · · < ♦).

Lemma 19. The cardinality of the class of conjugates of a primitive partial
word w of length n is n.
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Proof. Let w be a primitive partial word over the alphabet Σ ∪ {♦} of length n.
So every new partial word which is generated by cyclic permutation of w is a con-
jugate of w. Since w is primitive and we know that the primitive word is closed
under cyclic permutation [20], then each of the conjugate of w is also primitive. So
the number of such conjugates of w is n. This proves our claim. �

In [18], a 2DPDA automaton for the language of primitive partial words Qp

is presented. We show that a 2DPDA can also be constructed for Q1
p by using

the same idea used in [18].

Theorem 20. Q1
p is accepted by 2DPDA.

Proof. The informal idea is as follows: Let P be a 2DPDA. Let � w � be the
input partial word with at most one hole augmented with two end markers. If
w = λ, P rejects. If not, then P moves its head towards � . P skips the last
symbol of w and pushes the remaining symbols of w onto its stack. Again P
moves to �, pushes all symbols of w onto the stack and pops one symbol. If we
write the input w = xw

′
y with x, y ∈ Σ ∪ {♦} (assuming |w| ≥ 2), the contents

of the stack will be:
w

′
yxw

′
Z0

The automaton P compares w with the pushdown contents one symbol at
a time. If the symbols match (assuming that a �= b and ♦ = a for any a ∈ Σ),
the head moves right and P pops the pushdown. If in this way the entire word
w is completely scanned and is compatible to a factor of w

′
yxw

′
P rejects (by

assuming that the hole ♦ is compatible to any of the symbol in Σ).
If a mismatch is encountered P moves the input head back to � and pushes

the symbols scanned during this move. Then P pops the topmost symbol from
the pushdown and repeats the process. If the pushdown becomes empty then P
accepts.

Hence the 2DPDA accepts w if and only if w is not compatible to a factor of
w

′
yxw

′
by using Lemma 16. �

Observe that the above proof method does not work for the set of primitive
partial words with at least two holes. A counter example is given below.

Example 21. Let w = a♦b♦. So by the method described in Theorem 20 we have
x = a, y = ♦ and w

′
= ♦b. Now w

′
yxw

′
= ♦b♦a♦b and w is compatible to a

factor of w
′
yxw

′
. We know that if a partial word u is contained in another word

v and u is primitive then v is also primitive, that is, if v is not primitive then
u is also not primitive. We can see that a partial word is contained in a set of
words. If w = a♦b♦, then w ⊂ {aaba, aabb, abba, abbb}.

Next we extend the Theorem 20 to show that the language Qp with at least
two holes is also recognizable by a 2DPDA by using a similar idea as in proof of
Theorem 20.

Theorem 22. The language of primitive partial words Qp with at least two holes
is accepted by a 2DPDA.
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Proof. Let A be a 2DPDA. Let � w � be a partial word augmented with two
end markers which is the input to A. The informal idea is as follows: since w is
a partial word, first compute the set of words in which w is contained. Let w
is contained in the set {w1, w2, . . . , wk}. Now we will give input each of the wi,
1 ≤ i ≤ k to A one at a time and if at least one of the wi is rejected by A, then
the partial word w is rejected and stop the process; otherwise continue the same
process.

If w = λ then A rejects.
Otherwise it computes the set of words {w1, w2, . . . , wk}. Suppose � w1 � is the
input to A. Next, A advances its input head to �. Then A skips the last symbol
of w1 and pushes the remainder of w1 onto its pushdown store. Then A moves
its head to � again and pushes all of w1 onto its store and pop one symbol. If
we write w1 = xw

′′
y where x, y ∈ Σ with |w1| ≥ 2 the contents of pushdown are

of the form:
w

′′
yxw

′′
Z0

The automaton A compares w1 with the pushdown contents symbol by sym-
bol. If the symbols match, the head moves right and A pops the pushdown. If in
this way w1 is completely scanned A rejects. If a mismatch occurs A moves the
input head back to � and pushes the symbols scanned during this move. Then
A pops one symbol and repeats the process. If the pushdown is empty then A
chooses the next word w2 from the set and continue.

The automaton A accepts the partial word w if and only if each of the word
in the set {w1, w2, . . . , wk} is accepted by A. �
Lemma 23. The language of partial Lyndon words Lp is accepted by 2DPDA.

Proof. The key idea is based on that a partial Lyndon word w is smaller than
each of its proper right factors. Let us describe an automaton B that accepts
Lp. Similar to the previous theorem, let � w � be the input where w ∈ Σ ∪
{♦}. B scans the input w and push the symbols of w into the pushdown while
scanning. Then B compares the topmost symbol of stack with w. If B encounters
a symbol a in the stack and symbol b in w with a < b (assuming the comparison
a < b < . . . < ♦) or reach the bottom most symbol Z0, then it rejects.

If the symbols in w and the topmost symbol in stack matches, in particular
a don’t know symbol matches only with a don’t know symbol, then B pops
the top symbol of stack and moves its head one position right. If the symbol
on the stack is greater than the symbol in the input then B returns to � and
push the symbols onto stack during the move. If B reached the symbol � in the
input and some symbols are left in the pushdown then B accepts. The procedure
is then repeated. �
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11. Horváth, G., Nagy, B.: Pumping lemmas for linear and nonlinear context-free lan-
guages. arXiv preprint arXiv:1012.0023 (2010). http://arxiv.org/abs/1012.0023
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1 Introduction

We study various classes of regular functions, as defined in a recent series of
papers by Alur et al. [7–9]. In those papers, the reader can find pointers to work
describing the utility of regular functions in various applications in the field of
computer-aided verification. Additional motivation for studying these functions
comes from their connection to classical topics in theoretical computer science;
we describe these connections now.

The class of functions computed by two-way deterministic finite transducers
is well-known and widely-studied. Engelfriet and Hoogeboom studied this class
[16] and gave it the name of regular string transformations. They also provided
an alternative characterization of the class in terms of monadic second-order
logic. It is easy to see that this is a strictly larger class than the class com-
puted by one-way deterministic finite transducers, and thus it was of interest
when Alur and Černý [4] provided a characterization in terms of a new class
of one-way deterministic finite automata, known as streaming string transduc-
ers; see also [5]. Streaming string transducers are traditional deterministic finite
automata, augmented with a finite number of registers that can be updated at
each time step, as well as an output function for each state. Each register has an
initial value in Γ ∗ for some alphabet Γ , and at each step receives a new value
consisting of the concatenation of certain other registers and strings. (There are
certain other syntactic restrictions, which will be discussed later, in Section 2.)

The model that has been studied in [7–9], known as cost register automata
(CRAs), is a generalization of streaming string transducers, where the register
update functions are not constrained to be the concatenation of strings, but
instead may operate over several other algebraic structures such as monoids,
groups and semirings. Stated another way, streaming string transducers are cost
register automata that operate over the monoid (Γ ∗, ◦) where ◦ denotes concate-
nation. Another important example is given by the so-called “tropical semiring”,
c© Springer International Publishing Switzerland 2015
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where the additive operation is min and the multiplicative operation is +; CRAs
over (Z,min,+) can be used to give an alternative characterization of the class
of functions computed by weighted automata [7].

The cost register automaton model is the main machine model that was advo-
cated by Alur et al. [7] as a tool for defining and investigating various classes
of “regular functions” over different domains. Their definition of “regular func-
tions” does not always coincide exactly with the CRA model, but does coincide
in several important cases. In this paper, we will focus on the functions computed
by (various types of) CRAs.

Although there have been papers examining the complexity of several deci-
sion problems dealing with some of these classes of regular functions, there has
not previously been a study of the complexity of computing the functions them-
selves. There was even a suggestion [3] that these functions might be difficult or
impossible to compute efficiently in parallel. Our main contribution is to show
that most of the classes of regular functions that have received attention lie in
certain low levels of the NC hierarchy.

2 Preliminaries

The reader should be familiar with some common complexity classes, such as L
(deterministic logspace), and P (deterministic polynomial time). Many of the
complexity classes we deal with are defined in terms of families of circuits.
A language A ⊆ {0, 1}∗ is accepted by circuit family {Cn : n ∈ N} if x ∈ A
iff C|x|(x) = 1. Our focus in this paper will be on uniform circuit families; by
imposing an appropriate uniformity restriction (meaning that there is an algo-
rithm that describes Cn, given n) circuit families satisfying certain size and
depth restrictions correspond to complexity classes defined by certain classes of
Turing machines.

For more detailed definitions about the following standard circuit complexity
classes (as well as for motivation concerning the standard choice of the UE-
uniformity), we refer the reader to [20, Section 4.5].

– NCi = {A : A is accepted by a UE-uniform family of circuits of bounded
fan-in AND, OR and NOT gates, having size nO(1) and depth O(logi n)}.

– ACi = {A : A is accepted by a UE-uniform family of circuits of unbounded
fan-in AND, OR and NOT gates, having size nO(1) and depth O(logi n)}.

– TCi = {A : A is accepted by a UE-uniform family of circuits of unbounded
fan-in MAJORITY gates, having size nO(1) and depth O(logi n)}.

We remark that, for constant-depth classes such as AC0 and TC0, UE-uniformity
coincides with UD-uniformity, which is also frequently called DLOGTIME-uni-
formity.) We use these same names to refer to the associated classes of functions
computed by the corresponding classes of circuits.

We also need to refer to certain classes defined by families of arithmetic
circuits. Let (S,+,×) be a semiring. An arithmetic circuit consists of input
gates, + gates, and × gates connected by directed edges (or “wires”). One gate is
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designated as an “output” gate. If a circuit has n input gates, then it computes
a function from Sn → S in the obvious way. In this paper, we consider only
arithmetic circuits where all gates have bounded fan-in.

– #NC1
S is the class of functions f :

⋃
n Sn → S for which there is a UE-

uniform family of arithmetic circuits {Cn} of logarithmic depth, such that
Cn computes f on Sn.

– By convention, when there is no subscript, #NC1 denotes #NC1
N, with the

additional restriction that the functions in #NC1 are considered to have
domain

⋃
n{0, 1}n. That is, we restrict the inputs to the Boolean domain.

(Boolean negation is also allowed at the input gates.)
– GapNC1 is defined as #NC1 − #NC1; that is: the class of all functions that

can be expressed as the difference of two #NC1 functions. It is the same as
#NC1

Z restricted to the Boolean domain. See [1,20] for more on #NC1 and
GapNC1.

The following inclusions are known:

NC0 ⊆ AC0 ⊆ TC0 ⊆ NC1 ⊆ #NC1 ⊆ GapNC1 ⊆ L ⊆ AC1 ⊆ P.

All inclusions are straightforward, except for GapNC1 ⊆ L [17].

2.1 Cost-Register Automata

A cost-register automaton (CRA) is a deterministic finite automaton (with a
read-once input tape) augmented with a fixed finite set of registers that store
elements of some algebraic domain A. At each step in its computation, the
machine

– consumes the next input symbol (call it a),
– moves to a new state (based on a and the current state (call it q)),
– based on q and a, updates each register ri using updates of the form ri ←

f(r1, r2, . . . , rk), where f is an expression built using the registers r1, . . . , rk

using the operations of the algebra A.

There is also an “output” function μ defined on the set of states; μ is a partial
function – it is possible for μ(q) to be undefined. Otherwise, if μ(q) is defined,
then μ(q) is some expression of the form f(r1, r2, . . . , rk), and the output of the
CRA on input x is μ(q) if the computation ends with the machine in state q.

More formally, here is the definition as presented by Alur et al. [7].
A cost-register automaton M is a tuple (Σ,Q, q0,X, δ, ρ, μ), where

– Σ is a finite input alphabet.
– Q is a finite set of states.
– q0 ∈ Q is the initial state.
– X is a finite set of registers.
– δ : Q × Σ → Q is the state-transition function.
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– ρ : Q × Σ × X → E is the register update function (where E is a set of
algebraic expressions over the domain A and variable names for the registers
in X).

– μ : Q → E is a (partial) final cost function.

A configuration of a CRA is a pair (q, ν), where ν maps each element of X
to an algebraic expression over A. The initial configuration is (q0, ν0), where ν0
assigns the value 0 to each register. Given a string w = a1 . . . an, the run of M
on w is the sequence of configurations (q0, ν0), . . . (qn, νn) such that, for each i ∈
{1, . . . , n} δ(qi−1, ai) = qi and, for each x ∈ X, νi(x) is the result of composing
the expression ρ(qi−1, ai, x) to the expressions in νi−1 (by substituting in the
expression νi−1(y) for each occurrence of the variable y ∈ X in ρ(qi−1, ai, x)).
The output of M on w is undefined if μ(qn) is undefined. Otherwise, it is the
result of evaluating the expression μ(qn) (by substituting in the expression νn(y)
for each occurrence of the variable y ∈ X in μ(qn)).

It is frequently useful to restrict the algebraic expressions that are allowed
to appear in the transition function ρ : Q × Σ × X → E. One restriction that is
important in previous work [7] is the “copyless” restriction.

A CRA is copyless if, for every register r ∈ X, for each q ∈ Q and each
a ∈ Σ, the variable “r” appears at most once in the multiset {ρ(q, a, s) : s ∈ X}.
In other words, for a given transition, no register can be used more than once
in computing the new values for the registers. Following [8], we refer to copyless
CRAs as CCRAs. Over many algebras, unless the copyless restriction is imposed,
CRAs compute functions that can not be computed in polynomial time. For
instance, CRAs that can concatenate string-valued registers and CRAs that can
multiply integer-valued registers can perform “repeated squaring” and thereby
obtain results that require exponentially-many symbols to write down.

3 CRAs over Monoids

In this section, we study CRAs operating over algebras with a single operation.
We focus on two canonical examples:

– CRAs operating over the commutative monoid (Z,+).
– CRAs operating over the noncommutative monoid (Γ ∗, ◦).

3.1 CRAs over the Integers

Additive CRAs (ACRAs) are CRAs that operate over commutative monoids.
They have been studied in [7–9]; in [9] the ACRAs that were studied operated
over (Z,+), and thus far no other commutative monoid has received much atten-
tion, in connection with CRAs.

Theorem 1. All functions computable by CCRAs over (Z,+) are computable
in NC1. (This bound is tight, since there are regular sets that are complete for
NC1 under projections [10].)
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Proof. It was shown in [7] that CCRAs (over any commutative semiring) have
equivalent power to CRAs that are not restricted to be copyless, but that have
another restriction: the register update functions are all of the form r ← r′ + c
for some register r′ and some semiring element c. Thus assume that the function
f is computed by a CRA M of this form. Let M have k registers r1, . . . , rk.

It is straightforward to see that the following functions are computable
in NC1:

– (x, i) �→ q, such that M is in state q after reading the prefix of x of length i.
– (x, i) �→ Gi, where Gi is a labeled bipartite graph on [k]× [k], with the prop-

erty that there is an edge labeled c from j on the left-hand side to � on the
right hand side, if the register update operation that takes place when M
consumes the i-th input symbol includes the update r� ← rj+c. If the register
update operation includes the update r� ← c, then vertex � on the right hand
side is labeled c. (To see that this is computable in NC1, note that by the pre-
vious item, in NC1 we can determine the state q that M is in as it consumes
the
i-th input symbol. Thus Gi is merely a graphical representation of the reg-
ister update function corresponding to state q.) Note that the indegree of
each vertex in Gi is at most one. (The outdegree of a vertex may be as high
as k.)

Now consider the graph G that is obtained by concatenating the graphs Gi

(by identifying the right-hand side of Gi with the left-hand side of Gi+1 for
each i). This graph shows how the registers at time i+1 depend on the registers
at time i. G is a constant-width graph, and it is known that reachability in
constant-width graphs is computable in NC1. Note that we can determine in
NC1 the register that provides the output when the last symbol of x is read. By
tracing the edges back from that vertex in G (following the unique path leading
back toward the left, using the fact that each vertex has indegree at most one) we
eventually encounter a vertex of indegree zero. In NC1 we can determine which
edges take part in this path, and add the labels that occur along that path. This
yields the value of f(x). �	
We remark that the NC1 upper bound holds for any commutative monoid where
iterated addition of monoid elements can be computed in NC1.

A related bound holds, when the copyless restriction is dropped:

Theorem 2. All functions computable by CRAs over (Z,+) are computable in
GapNC1. (This bound is tight, since there is one such function that is hard for
GapNC1 under AC0 reductions.)

Proof. We use a similar approach as in the proof of the preceding theorem. We
build a bipartite graph Gi that represents the register update function that is
executed while consuming the i-th input symbol, as follows. Each register update
operation is of the form r� ← a0+ri1 +ri2 +. . . rim . Each register rj appears, say,
aj times in this sum, for some nonnegative integer aj . If r� ← a0 +

∑k
j=1 aj · rj
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is the update for r� at time i, then if aj > 0, then Gi will have an edge labeled
aj from j on the left-hand side to � on the right-hand side, along with an edge
from 0 to � labeled a0, and an edge from 0 to 0. Let the graph Gi correspond to
matrix Mi. An easy inductive argument shows that (

∑k
j=0(

∏t
i=1 Mi))j,� gives

the value of register � after time t. The upper bound now follows since iterated
multiplication of O(1)×O(1) integer matrices can be computed in GapNC1 [15].

For the lower bound, observe that it is shown in [15], building on [12], that
computing the iterated product of 3 × 3 matrices with entries from {0, 1,−1} is
complete for GapNC1. More precisely, taking a sequence of such matrices as input
and outputting the (1,1) entry of the product is complete for GapNC1. Consider
the alphabet Γ consisting of such matrices. There is a CRA taking input from
Γ ∗ and producing as output the contents of the (1, 1) entry of the product of
the matrices given as input. (The CRA simulates matrix multiplication in the
obvious way.) �	

3.2 CRAs over (Γ ∗, ◦)
Unless we impose the copyless restriction, CRAs over this monoid can generate
exponentially-long strings. Thus in this subsection we consider only CCRAs.

CCRAs operating over the algebraic structure (Γ ∗, ◦) are precisely the so-
called streaming string transducers that were studied in [5], and shown there
to compute precisely the functions computed by two-way deterministic finite
transducers (2DFAs). This class of functions is very familiar, and it is perhaps
folklore that such functions can be computed in NC1, but we have found no
mention of this in the literature. Thus we present the proof here.

Theorem 3. All functions computable by CCRAs over (Γ ∗, ◦) are computable
in NC1. (This bound is tight, since there are regular sets that are complete for
NC1 under projections [10].)

Proof. Let M be a 2DFA computing a (partial) function f , and let x be a string
of length n. If f(x) is defined, then M halts on input x, which means that M
visits no position i of x more than k times, where k is the size of the state set
of M .

Define the visit sequence at i to be the sequence q(i,1), q(i,2), . . . q(i,�i) of length
�i ≤ k such that q(i,j) is the state that M is in the j-th time that it visits
position i. Denote this sequence by Vi.

We will show that the function (x, i) �→ Vi is computable in NC1. Assume
for the moment that this is computable in NC1; we will show how to compute f
in NC1.

Note that there is a planar directed graph G of width at most k having vertex
set

⋃
i Vi, where all edges adjacent to vertices Vi go to vertices in either Vi−1

or Vi+1, as follows: Given Vi−1, Vi and Vi+1, for any q(i,j) ∈ Vi, it is trivial to
compute the pair (i′, j′) such that, when M is in state q(i,j) scanning the i-th
symbol of the input, then at the next step it will be in state q(i′,j′) scanning the
i′-th symbol of the input. (Since this depends on only O(1) bits, it is computable
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in UE-uniform NC0.) The edge set of G consists of these “next move” edges from
q(i,j) to q(i′,j′). It is immediate that no edges cross when embedded in the plane
in the obvious way (with the vertex sets V1, V2, . . . arranged in vertical columns
with V1 at the left end, and Vi+1 immediately to the right of Vi, and with the
vertices q(i,1), q(i,2), . . . q(i,�i) arranged in order within the column for Vi).

Let us say that (i, j) comes before (i′, j′) if there is a path from q(i,j) to q(i′,j′)
in G. Since reachability in constant-width planar graphs is computable in AC0

[11], it follows that the “comes before” predicate is computable in AC0.
Thus, in TC0, one can compute the size of the set {(i′, j′) : (i′, j′) comes before

(i, j) and M produces an output symbol when moving from q(i′,j′)}. Call this
number m(i,j). Hence, in TC0 one can compute the function (x,m) �→ (i, j) such
that m(i,j) = m. But this allows us to determine what symbol is the m-th symbol
of f(x). Hence, given the sequences Vi, f(x) can be computed in TC0 ⊆ NC1.

It remains to show how to compute the sequences Vi.
It suffices to show that the set B = {(x, i, V ) : V = Vi} ∈ NC1. To do this, we

will present a nondeterministic constant-width branching program recognizing
B; such branching programs recognize only sets in NC1 [10]. Our branching
program will guess each Vj in turn; note that each Vj can be described using
only O(k log k) = O(1) bits, and thus there are only O(1) choices possible at any
step. When guessing Vj+1, the branching program rejects if Vj+1 is inconsistant
with Vj and the symbols being scanned at positions j and j + 1. When i = j
the branching program rejects if V is not equal to the guessed value of Vi.
When j = |x| the branching program halts and accepts if all of the guesses
V1, . . . , Vn have been consistent. It is straightforward to see that the algorithm is
correct. �	

4 CRAs over Semirings

In this section, we study CRAs operating over algebras with two operations
satisfying the semiring axioms. We focus on three such structures:

– CRAs operating over the commutative ring (Z,+,×).
– CRAs operating over the commutative semiring (N ∪ {∞},min,+): the so-

called “tropical” semiring.
– CRAs operating over the noncommutative semiring (Γ ∗ ∪ {⊥},max, ◦).

There is a large literature dealing with weighted automata operating over semir-
ings. It is shown in [7] that the functions computed by weighted automata oper-
ating over a semiring (S,+,×) is exactly equal to the class of functions computed
by CRAs operating over (S,+,×), where the only register operations involving
× are of the form r ← r′ × c for some register r′ and some semiring element c.
Thus for each structure, we will also consider CRAs satisfying this restriction.

We should mention the close connection between iterated matrix product
and weighted automata operating over commutative semirings. As in the proof
of Theorem 2, when a CRA is processing the i-th input symbol, each register
update function is of the form r� ← a0 +

∑k
j=1 aj · rj , and thus the register



456 E. Allender and I. Mertz

updates for position i can be encoded as a matrix. Thus the computation of
the machine on an input x can be encoded as an instance of iterated matrix
multiplication. In fact, some treatments of weighted automata essentially define
weighted automata in terms of iterated matrix product. (For instance, see [18,
Section 3].) Thus, since iterated product of k × k matrices lies in #NC1

S for
any commutative semiring S, the functions computed by weighted automata
operating over S all lie in #NC1

S . (For the case when S = Z, iterated matrix
product of k × k matrices is complete for GapNC1 for all k ≥ 3 [12,15].)

4.1 CRAs Over the Integers

First, we consider the copyless case:

Theorem 4. All functions computable by CCRAs over (Z,+,×) are computable
in GapNC1. (Some such functions are hard for NC1, but we do not know if any
are hard for GapNC1.)

Proof. Consider a CCRA M computing a function f , operating on input x. There
is a function computable in NC1 that maps x to an encoding of an arithmetic
circuit that computes f(x), constructed as follows: The circuit will have gates
rj,i computing the value of register j at time i. The register update functions
dictate which operations will be employed, in order to compute the value of rj,i

from the gates rj′,i−1. Due to the copyless restriction, the outdegree of each gate
is at most 1 (which guarantees that the circuit is a formula).

It follows from Lemma 5 below that f ∈ GapNC1. �	
Lemma 5. If there is a function computable in NC1 that takes an input x and
produces an encoding of an arithmetic formula that computes f(x) when evalu-
ated over the integers, then f ∈ GapNC1.

Proof. By [14], there is a logarithmic-depth arithmetic-Boolean formula over the
integers, that takes as input an encoding of a formula F and outputs the integer
represented by F . An arithmetic-Boolean formula is a formula with Boolean
gates AND, OR and NOT, and arithmetic gates +,×, as well as test and select
gates that provide an interface between the two types of gates. Actually, the
construction given in [14] does not utilize any test gates [13], and thus we need
not concern ourselves with them. (Note that this implies that there is no path
in the circuit from an arithmetic gate to a Boolean gate.)

A select gate takes three inputs (y, x0, x1) and outputs x0 if y = 0 and outputs
x1 otherwise. In the construction given in [14], select gates are only used when
y is a Boolean value. When operating over the integers, then, select(y, x0, x1)
is equivalent to y × x1 + (1 − y) × x0. But since Boolean NC1 is contained in
#NC1 ⊆ GapNC1 (see, e.g., [1]), the Boolean circuitry can all be replaced by
arithmetic circuitry. (When operating over algebras other than Z, it is not clear
that such a replacement is possible.) �	
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We cannot entirely remove the copyless restriction while remaining in the
realm of polynomial-time computation, since repeated squaring allows one to
obtain numbers that require exponentially-many bits to represent in binary.
However, as noted above, if the multiplicative register updates are all of the
form r ← r′ × c, then again the GapNC1 upper bound holds (and in this case,
some of these CRA functions are complete for GapNC1, just as was argued in
the proof of Theorem 2).

4.2 CRAs over the Tropical Semiring

Again, we first consider the copyless case.

Theorem 6. All functions computable by CCRAs over the tropical semiring are
computable in L, and in NC1(#NC1

trop).

Here, NC1(#NC1
trop) refers to the class of functions expressible as g(f(x)) for

some functions f ∈ NC1 and g ∈ #NC1
trop. No inclusion relation is known

between L and NC1(#NC1
trop).

Proof. The L upper bound follows easily, because the only operation that incre-
ases the value of a register is a + operation, and because of the copyless restric-
tion the value of a register after i computation steps can be expressed as a sum
of iO(1) values that are present as constants in the program of the CRA. Thus,
in particular, the value of a register at any point during the computation on
input x can be represented using O(log |x|) bits. Thus a logspace machine can
simply simulate a CRA directly, storing the value of each of the O(1) registers,
and computing the updates at each step.

For the NC1(#NC1
trop) upper bound, first note that there is a function h com-

putable in NC1 that takes x as input, and outputs a description of an arithmetic
formula over the tropcial semiring that computes f(x). This is exactly as in the
first paragraph of the proof of Theorem 4.

Next, as in the proof of Lemma 5, recall that, by [14], there is a uniform
family of logarithmic-depth arithmetic-Boolean formulae {Cn} over the tropical
semiring, that takes as input an encoding of a formula F and outputs the integer
represented by F . Furthermore, each arithmetic-Boolean formula Cn has Boolean
gates AND, OR and NOT, and arithmetic gates min,+, as well as select gates,
and there is no path in Cn from an arithmetic gate to a Boolean gate.

Let {Dn} be the uniform family of arithmetic circuits, such that Dn is the
connected subcircuit of Cn consisting only of arithmetic min and + gates. We
now have the following situation: The NC1 function h (which maps x to an
encoding of a formula F having some length m) composed with the circuit Cm

(which takes F as input and produces f(x) as output) is identical with some
NC1 function h′ (computed by the NC1 circuitry in the composed hardware for
Cm(h(x))) feeding into the arithmetic circuitry of Dm. This is precisely what is
needed, in order to establish our claim that f ∈ NC1(#NC1

trop). �	
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Unlike the case of CRAs operating over the integers, CRAs over the tropical
semiring without the copyless restriction compute only functions that are com-
putable in polynomial time (via a straightforward simulation). We know of no
better upper bound than P in this case, and we also have no lower bounds.

As noted above at the beginning of Section 4, if the “multiplicative” register
updates (i.e., + in the tropical semiring) are all of the form r ← r′ +c, then even
without the copyless restriction, the computation of a CRA function f reduces to
iterated matrix multiplication of O(1)×O(1) matrices over the tropical semiring.
Again, it follows easily that the contents of any register at any point in the
computation can be represented using O(log n) bits. Thus the upper bound of L
holds also in this case.

4.3 CRAs over the Max-Concat Semiring

As in Section 3.2, we consider only CCRAs.

Theorem 7. All functions computable by CCRAs over (Γ ∗,max, ◦) are com-
putable in AC1.

Proof. Let f be computed by a CCRA M operating over (Γ ∗,max, ◦).
We first present a logspace-computable function h with the property that

h(1n) is a description of a circuit Cn computing f on inputs of length n. The
input convention is slightly different for this circuit family. For each input symbol
a and each i ≤ n there is an input gate gi,a that evaluates to λ (the empty string)
if xi = a, and evaluates to ⊥ otherwise. (This provides an “arithmetical” answer
to the Boolean query “is the i-th input symbol equal to a?”)

Assume that there are gates r1,i, r2,i, . . . , rk,i storing the values of each of
the registers at time i. For i = 0 these gates are constants. For each input
symbol a and each j ≤ k, let Ea,j(r1,i, . . . , rk,i) be the expression that describes
how register j is updated if the i + 1-st symbol is a. Then the value rj,i+1 =
maxa{gi,a ◦ Ea,j(r1,i, . . . , rk,i)}. This yields a very uniform circuit family, since
the circuit for inputs of length n consists of n identical blocks of this form
connected in series. That is, there is a function computable in NC1 that takes
1n as input, and produces an encoding of circuit Cn as output.

Although the depth of circuit Cn is linear in n, its algebraic degree is only
polynomial in n. (Recall that the additive operation of the semiring is max and
the multiplicative operation is ◦. Thus the degree of a max gate is the maximum
of the degrees of the gates that feed into it, and the degree of a ◦ gate is the sum
of the degrees of the gates that feed into it.) This degree bound follows from the
copyless restriction. (Actually, the copyless restriction is required only for the ◦
gates; inputs to the max gates could be re-used without adversely affecting the
degree.)

By [2, Proposition 5.2], arithmetic circuits of polynomial size and algebraic
degree over (Γ ∗,max, ◦) characterize exactly the complexity class OptLogCFL.
OptLogCFL was defined by Vinay [19] as follows: f is in OptLogCFL if there is a
nondeterministic logspace-bounded auxiliary pushdown automaton M running
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in polynomial time, such that, on input x, f(x) is the lexicographically largest
string that appears on the output tape of M along any computation path. The
proof of Proposition 5.2 in [2], which shows how an auxiliary pushdown automa-
ton can simulate the computation of a max-concat circuit, also makes it clear that
an auxiliary pushdown machine, operating in polynomial time, can take a string
x as input, use its logarithmic workspace to compute the bits of h(1|x|) (i.e., to
compute the description of the circuit C|x|), and then to produce C|x|(x) = f(x)
as the lexicographically-largest string that appears on its output tape along any
computation path. That is, we have f ∈ OptLogCFL.

By [2, Lemma 5.5], OptLogCFL ⊆ AC1, which completes the proof. �	
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Abstract. Recently, Williams [STOC ’14] proved a separation between
NEXP and ACC ◦ THR, where an ACC ◦ THR circuit has a single layer
of threshold gates at the bottom and an ACC circuit at the top. Two
main ideas of his strategy are a closure property of circuit class and an
algorithm for counting satisfying assignments of circuits.

In this paper, we show that this general scheme based on these two
ideas can be applied for a certain class of circuits with multi layer of
threshold gates. The circuit class we give has the symmetric gate at the
top and poly-log layers of threshold gates to which an extra condition on
the dependency is imposed. Two gates in a circuit are dependent, if the
output of the one is always greater than or equal to the other one. An
independent gate set is a set of gates in which two arbitrary gates are not
dependent. We show that, if the size of a maximum independent gate set
of each layer of threshold gates is at most nγ for sufficiently small γ > 0,
then two key ingredients needed to apply his strategy can be established.
Namely, (i) we can efficiently find a circuit in our class being equivalent
to the AND of two input circuits in our class, and (ii) we can construct
a faster than brute-force algorithm for counting satisfying assignments
for this class by introducing a partial order to represent the dependency
of gates. As a result, we give super quasi-polynomial size lower bounds
for our class against NEXP.

Keywords: Nonuniform circuit class · Satisfiability · Lower bounds

1 Introduction

Boolean circuit is one of the most popular and natural computation models.
cience. For example, proving the existence of some NP problem having super
polynomial size circuits led us to P �= NP. The best general boolean circuit lower
bounds for NP problems are, however, 5n−o(n) by Iwama and Morizumi [9]. Var-
ious restricted circuit classes are studied. Bounded depth circuit class is one of
the most successful restricted classes with a lot of remarkable results [4,6,10,11].
Williams established a landmark in the circuit complexity theory with the separa-
tion between NEXP and ACC0 [14]. He incorporated many known results [2,3,7]
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into a perspective between algorithms and lower bounds [12]. The class TC0,
which is a class of constant depth polynomial size threshold circuits, is a well
known natural circuit class larger than ACC0. Current understanding of bounded
depth threshold circuits is extremely inadequate [5,8]. Recently, Williams [13]
proved a separation between NEXP and ACC◦THR, where an ACC◦THR circuit
has single layer of threshold gates at the bottom and an ACC circuit at the top.
Two main ideas of his strategy are a closure property of circuit class and an
algorithm for counting satisfying assignments of circuits. Thus it is a plausible
direction to consider the usefulness of the framework based on these ideas.

In this paper, we show that this general framework based on these two ideas
can be applied for some restricted class of circuits with multi layer of threshold
gates. The circuit class we give has the symmetric gate at the top and at most
poly-log layers of threshold gates to which an extra condition on the dependency
is imposed. Two gates in a circuit are dependent, if the output of the one is
always greater than or equal to the output of the other one. An independent
gate set is a set of gates in which two arbitrary gates are not dependent. Each
layer of threshold gates in our class has independent gate sets of size at most nγ

for sufficiently small γ > 0. We show that two main ideas in [13] are workable
for our circuit class. It is notable that our circuit class is universal even if there
is no two independent gates and that the general framework can be applied for
poly-log depth circuits. As far as we know, no restricted poly-log depth subclass
having super linear lower bounds for even NEXP had been found. First, we
show that we can efficiently find a circuit in our class being equivalent to the
AND of two input circuits in our class. Thus our class has a closure property
(Lemma 1). Second, we design an algorithm for counting satisfying assignments
for our circuit class (Lemma 2). We connect dependency to a structure of a
partial order on the gate set. This connection make counting assignments easier
than general settings. By pluging them into William’s schema (Theorem 1), we
obtain super quasi-polynomial size lower bounds for our circuit class against
NEXP (Theorem 3).

2 Preliminaries

In this section, we give several definitions for stating our work.

Definition 1. Let x1, ..., xn be boolean variables. Let w1, ..., wn, t be real
numbers.
(1) We define a threshold gate as a gate computing a boolean function THR

w1,...,wn,t (x1, ..., xn) such that THRw1,...,wn,t (x1, ..., xn) = 1 ⇐⇒ Σn
i=1wixi ≥ t.

The real numbers w1, ..., wn and t are called weights and threshold value, respec-
tively. When all weights are one and the threshold value is the half of fan-in
wires, the threshold gate is called majority gate.
(2) We define a symmetric gate SY MS (x1, ..., xn) as a gate computing a boolean
function SY MS (x1, ..., xn) = 1 ⇐⇒ Σn

i=1xi ∈ S for a subset S ⊆ {0, 1, ..., n}.
We call S the characteristic set of the symmetric gate SY MS .
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Remark of Definition 1. In this paper, we suppose that the absolute value
of any weight in threshold gates is at most 2poly(n) and any weight are coded by
a binary string of length poly(n). We will use the term source (sink, resp.) to
represent an input variable or a gate which is connected to the input terminal
(the output terminal, resp.) of a wire.

We give a notion of “dependency” of gates which was introduced in [1].

Definition 2. Let C be an arbitrary circuit. For a gate G in C, let G(x) ∈ {0, 1}
denote the output value of G when we feed an input string x to the circuit C.
(1) Two gates G1, G2 in C have dependency, if one of two preimages G−1

1 (1)
and G−1

2 (1) is a subset of the other one. In other words, ∀x ∈ {0, 1}n[G1(x) ≤
G2(x)] ∨ ∀x ∈ {0, 1}n[G2(x) ≤ G1(x)].
(2) A subset of gates in C is called independent gate set, if any two gates in
the set do not have dependency. A circuit may contain several independent gate
sets.

One may think that circuits with bounded size independent gate sets seems
to have very weak computational ability and seems to compute only boolean
functions in a narrow class. However, for example, the class of depth two thresh-
old circuits is universal, even if there is no pair of independent gates. We will
prove this in section 3.

Definition 3. Let Li be a type of gates for each i = 1, 2, ..., d. Let C be a circuit,
and let V0 and V be respectively the set of input variables of C and the set of
gates of C.
(1) A circuit C is a Ld ◦ Ld−1 ◦ · · · ◦ L1 circuit, if there exists some partition
V1, ..., Vd of the set V such that (i) any wire from G ∈ Vi to G′ ∈ Vj satisfies
that i < j and (ii) a type of all gates in Vi is Li for each i. We call this partition
V1, ..., Vd a layering partition of C. We also call each Vi the i-th layer.
(2) We assume that any gate G of a Ld ◦ · · · ◦ L1 circuit has an integer label i
such that G is in the i-th layer, where 1 ≤ i ≤ d. We call such labels layering
labels.

Remark of Definition 3. Note that there is no wire connecting two gates
belonging to the same layer. For example, any AC0 circuit C is in Ld◦Ld−1◦· · ·◦L1

for some constant d, where for each i (1 ≤ i ≤ d) Li ∈ {AND,OR,NOT}.

Definition 4. Let C be a Ld ◦Ld−1 ◦ · · · ◦L1 circuit. Let V1, ..., Vd be a layering
partition of C.
(1) A set Vi is called the i-th k-Li layer in C, if the maximum size of an inde-
pendent gate set I ⊆ Vi in C is at most k.
(2) We call C a k-Ld ◦ k-Ld−1 ◦ · · · ◦ k-L1 circuit, if there exists some layering
partition V1, ..., Vd such that each Vi is the i-th k-Li layer in C. Let (L)d denote
an abbreviation of Ld ◦ Ld−1 ◦ · · · ◦ L1, if Li is the same type L for all i.
(3) We define Ck[d] as a class of SYM ◦ (k-THR)d circuits.

Remark of Definition 4. (1) We usually use the term “circuit” as single
output circuits, and we particularly mention the use of multi-output circuits.
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When we consider a class of single output circuits, we write Cd ◦k-Cd−1 ◦· · ·◦k-C1

instead of k-Cd ◦ k-Cd−1 ◦ · · · ◦ k-C1. (2) In this paper, we may use the words a
k-THR layer, a layer of k-THR gates or just a layer of threshold gates to mention
one of the above sets V1, ..., Vd.

Let At be an A gate with at most t fan-in wires, where A is a gate type.

3 Prior Work and Our Results

In this section, we firstly review the proof of super quasi-polynomial lower bounds
for ACC ◦ THR by Williams [13] since it is closely related to our work in subsec-
tion 3.1. In subsection 3.2, we define a complexity class to separate from NEXP
and give a formal statement of our result. In subsection 3.3, we give an intuitive
explanation about our proof strategy and formally state notions to understand
our proof methods.

3.1 Prior Work

In [13], the following property of circuit classes plays an important role.

Definition 5. Let C be a circuit class. The class C is weakly closed under AND,
if there is a polynomial time procedure such that for given the AND of two C
circuits the procedure produces an equivalent C circuit.

Remark of Definition 5. Note that the time complexity of a procedure in
the above definition is a function in the size of a code of two circuits.

We state a meta theorem in [13].

Theorem 1 ([13]). Let C be a circuit class weakly closed under AND. Suppose
for any c ≥ 1, there is an ε > 0 and an algorithm for counting the satisfying
assignments in time 2n−Ω(nε) on C circuits with n inputs and nlogc n size. Then
NEXP does not have quasi-polynomial size C circuits.

Note that ACC ◦ THR clearly satisfies the closure property under AND. By this
general theorem, we can derive super quasi-polynomial ACC◦THR lower bounds
against NEXP, if we construct a faster counting algorithm. The following theorem
achieves this.

Theorem 2 ([13]). For every m > 1 and d > 0, there is an ε > 0 such that
counting satisfying assignments to ACC ◦ THR circuits of size 2nε

, depth d and
modulus m gates can be solved in 2n−nε

time.

Remark 2. Williams actually constructed a counting algorithm for the class of
circuits ACC ◦ SYM. He showed that there is a transformation from an arbitrary
threshold gate to a constant depth circuit with single layer of symmetric gates.
Using this transformation we can transform an arbitrary ACC ◦ THR circuit to
an ACC ◦ SYM circuit. Thus, Theorem 2 can be proved by giving a counting
algorithm for ACC ◦ SYM circuits. Below we formally state this transformation
since we will also use this in the proof of our result.
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Claim 1 ([13]). An arbitrary THR gate G can be replaced with AC0 ◦ MAJ
circuit C such that the size of C is at most polynomial in the input size of G.
Moreover, time complexity for the replacement is at most polynomial time.

3.2 Lower Bounds Against NEXP for a Circuit Class with Multi
Layers of Threshold Gates

In this subsection, we firstly define a class of circuits and a relating class of
languages.

Definition 6. We define C̃k[d] as
⋃

c>0
Cck[d].

We note that C̃k[d] is a class of circuits with n input variables, where c does not
depend on n and k.

Definition 7. Let A be an arbitrary circuit class. We define A-SIZE[S(n)] as
the class of languages having a family of A circuits with n inputs and of size
O(S(n)).

We mention our primal goal.

Theorem 3. Let d = poly log n for the number of input variables n. There is
some γ > 0 such that NEXP � C̃k[d]-SIZE[2poly(log n)] for k ≤ nγ .

Before proving lower bounds for the class C̃k[d], we see that Ck[d] is able to
compute all boolean functions even when k = 1 and d = 1. This means that
NEXP ⊆ C̃1[1]-SIZE[2n] and gives the motivation for studying the complexity
of circuits C̃k[d] with small values of k and d. The following claim says that
SYM ◦ k-THR as well as THR ◦ k-THR is universal for k = 1.

Claim 2. For any positive integer n and for any boolean function f : {0, 1}n →
{0, 1} there are a THR ◦ 1-THR circuit and a SYM ◦ 1-THR circuit with at most
2n + 1 gates.

Proof. Let f(xn−1, ..., x1, x0) be a boolean function on n variables. For sim-
plicity, we assume f(0, 0, ..., 0) = 0. First, we give a construction of a THR◦1-THR
circuit for f . For 0 ≤ j ≤ 2n − 1, let yj denote the binary representation of j of
length n, i.e., yj := (xn−1, ..., x1, x0) with

∑n−1
i=0 xi2i. Let Gj be the threshold

gate whose output is 1 iff
∑n−1

i=0 2ixi ≥ j. The bottom level of a circuit is
consisting of G = {Gj : f(yj) �= f(yj−1) (1 ≤ y ≤ 2n − 1)}. Obviously, there is
no pair of independent gates in G. The top gate outputs 1 iff

∑
Gj∈G wjGj ≥ 1

where the weight wj is f(yj) − f(yj−1) which is 1 or −1. In fact, the value of f
is equal to

∑
Gj∈G wjGj .

It is easy to observe that the top gate can be replaced by a symmetric
gate that outputs 1 iff

∑
Gj∈G Gj is odd. This says that SYM ◦ 1-THR is also

universal. �
We prove Theorem 3 by applying Theorem 1. Apparently, it is sufficient to

prove the following two lemmas.
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Lemma 1. The class of C̃k[d] circuits with n inputs and of quasi-polynomial
2log

O(1) n size is weakly closed under AND.

Lemma 2. Let d be poly log n in the number of input variables n. There exist
some ε > 0 and γ > 0 such that counting satisfying assignments to Ck[d] circuits
of size S(n) = 2no(1)

can be solved in 2n−Ω(nε) time for k ≤ nγ .

We will give a proof outline of the lemma about closure property in section 4.
We will give a counting algorithm in section 5. The algorithm in Theorem 2 is
incorporated to our counting algorithm as a subroutine.

3.3 Restrictions to Output of Threshold Gates

In this subsection, we give several notions to understand the reason why we can
construct a faster satisfiability or counting algorithm for circuits with bounded
size independent gate sets. We will give extensions of these notions to multilayer
setting in section 5. Suppose that G is a set of gates which has independent
gate sets of size at most k and has no pair of equivalent gates. Then, we can
form a partial ordered set (G,�) by defining the order � on G so that G1 � G2

iff G−1
1 (1) ⊆ G−1

2 (1) for G1, G2 ∈ G. It is easy to observe that the size of an
independent vertex set of the Hasse diagram of (G,�) is at most k. We call
this Hasse diagram an Induced Hasse Diagram (I.H.D, in short) of G. In [1],
depth two threshold circuits are considered, and I.H.D is defined for the set of
bottom gates. In this paper, we will extend the notion of I.H.D for k-THR layer
in section 5.

Definition 8.
(1) Let V be a set of gates and let H = (V,E) be I.H.D of V . A map χ : V �→
{0, 1} is called a validly ordered restriction, if ∀(u, v) ∈ E, χ(u) ≤ χ(v).
(2) Let χ be a validly ordered restriction for an arbitrary I.H.D H = (V,E).
We define the min-set of H for χ as the set {umin ∈ V ∩ χ−1(1) : ∀v ∈ V \
{umin}[v � umin ⇒ χ(v) = 0]}.
We define the max-set of H for χ as the set {umax ∈ V ∩ χ−1(0) : ∀v ∈ V \
{umax}[umax � v ⇒ χ(v) = 1]}.

Threshold gates in min-sets and max-sets are regarded as some critical local
information about all k-THR layers in a Ck[d] circuit. We give the following
notion stating min-sets and max-sets from a viewpoint of graph theory.

Definition 9. Let H be an I.H.D and χ be a validly ordered restriction of H.
Let I1, I0 be independent sets in H. The pair of independent sets (I1, I0) satisfies
the covering condition for H, if the following condition holds.

Condition: For any v ∈ V \ (I1 ∪ I0) in H, either ∃u1 ∈ I1, u1 � v or ∃u0 ∈
I0, v � u0 according to the order � of H.

We define X ′
H as the set {χ : χ is a validly ordered restriction of H }. We

also define IH as follows: IH := {(I1, I0) ⊆ V × V : I1, I0 are independent sets
satisfying the covering condition in H }. The following lemma is in [1].
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Lemma 3 ([1]). There is a bijection μH : X ′
H � χ �→ (I1, I0) ∈ IH such that if

μH(χ) = (I1, I0) then I1 is the min-set of H for χ and I0 is the max-set of H
for χ.

Observation 1. For boolean functions P1(x), ..., Pm(x) : {0, 1}n → {0, 1}, the
following statements hold.
(1) If ∀x∀i[Pi(x) ≤ Pi−1(x)], then ∀x[

∧m
i=1 Pi(x) = 1 ⇐⇒ P1(x) = 1].

(2) If ∀x∀i[Pi(x) ≤ Pi−1(x)], then ∀x[
∨m

i=1 Pi(x) = 0 ⇐⇒ Pm(x) = 0].

We explain the reason why this observation and Lemma 3 is useful to prove
Lemma 2. Intuitively, the output of an arbitrary gate of a circuit is determined
by fixing gates in the union of min-set and max-set by Observation 1 . By
Lemma 3, it is also determined by fixing the output of threshold gates in I1 ∪ I0,
where (I1, I0) ∈ IH . Note that for given pair of subsets of the vertex set of H we
can efficiently decide whether (I1, I0) ∈ IH holds or not. If the maximum size of
independent gate sets is small, then the number of threshold gates we have to
fix is not so many. We will give a more detailed description of the algorithm in
subsection 5.2.

4 Closure Property Under AND

In this section, we state how to prove the following lemma.

Lemma 1(restated). The class of C̃k[d] circuits with n inputs and of quasi-
polynomial 2log

O(1) n size is weakly closed under AND.

We assume that the input size is measured by the number of wires of circuits.
The following claim is in [13].

Claim 3 ([13]). There is a procedure such that for given ANDu ◦SYM circuit C
with n input variables and N = N(n) wires, where each input variable can have
more than one wire connecting to a same symmetric gate in C, the procedure
converts the circuit C to a single SYM gate with O(Nu) wires. �

We directly apply the above claim to our setting as follows.

Claim 4. There is a procedure such that for given AND of two C̃k[d] circuits
C1 and C2, where C1 and C2 have n input variables and at most t = t(n) top
fan-in and at most N = N(n) wires, the procedure transforms the input to a
SYM ◦ (THR)d circuit C3 having at most O(t2N ) wires. Moreover, any gate in
the l-th layer in C3 is in either the l-th layer of C1 or the l-th layer of C2. �

We omit the proofs of these two claims because of the page limitation. We give
an outline of the proof of Claim 4 as follows.

Proof outline of Claim 4. Remove the top symmetric gate from C1, and regard
fan-ins of the top symmetric gate as output wires. Let C ′

1 be the multi output
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circuit obtained by this operation. Let C ′
2 be the circuit which is obtained from

C2 in the same way. We take B copies of C ′
2 and let these copies be C ′

2,1, ..., C
′
2,B ,

where B is at most t. Layering labels are also copied. We take a new symmetric
gate. Connect the output wires of C ′

2,1, ..., C
′
2,B , C ′

1 to the new symmetric gate.
Then, we obtain C3. �

In the proof outline of Claim 4, taking copies of a multi output circuit is
particularly important to prove Lemma 1. We omit the poof of Lemma 1, because
it is not hard to show Lemma 1. We give the outline of the proof as follows.

Proof outline of Lemma 1. Suppose that C1, C2 are respectively a Cc1k[d]
circuit and a Cc2k[d] circuit. We show that there is a polynomial time procedure
such that for given the AND of a Cc1k[d] circuit C1 and a Cc2k[d] circuit C2, where
C1, C2 have n input variables and at most N wires and c1, c2 do not depend on n
and k, the procedure outputs an equivalent C(c1+c2)k[d] circuit C3 with poly(N)
wires. Note that top fan-in of a circuit is at most the number of wires in the
circuit. Hence, the number of wires in the output circuit C3 in Claim 4 is at
most poly(N). All that we prove is that the output circuit C3 in Claim 4

is a C(c1+c2)k[d] circuit. For each i = 1, 2, let C ′
i be a (cik-THR)d circuit with

n input variables and at most t = t(n) output wires such that C ′
i is obtained by

removing the top symmetric gate from Ci and by regarding input wires of the
top symmetric gate as output wires. We can construct C3 by copying C ′

2. Let
G2,l be the set {Gi,j : Gi,j is the i-th gate in the j-th copy of the l-th c2k-THR
layer in C2 }, and let G1,l be the l-th threshold layer in C1. By contradiction,
we prove that G2,l has no independent gate set of size greater than c2k for each
fixed l. �

5 Transforming of Circuits and a Counting Algorithm

In this section, our goal is to prove the following lemma.

Lemma 2(restated). Let d be poly log n in the number of input variables n.
There exist some ε > 0 and γ > 0 such that counting satisfying assignments to
Ck[d] circuits of size S(n) = 2no(1)

can be solved in 2n−Ω(nε) time for k ≤ nγ .

5.1 Notions for Bottom Up Procedures

Let f : X → Y be a map for finite sets X,Y . For an arbitrary A ⊆ X, let f |A
denote the map satisfying that ∀x ∈ A, f |A(x) = f(x).

Definition 10. Let C be a circuit class C′ ◦ (k-THR)d for an arbitrary C′ gate
at the top level. We call a C′ ◦ (k-THR)d circuit an abbreviated circuit, if for any
threshold layer in the circuit there is no pair of equivalent gates in the threshold
layer.
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Definition 11. Let C be a circuit class C′ ◦ (k-THR)d for an arbitrary C′ gate
at the top level. Let C be an abbreviated C circuit. Let Vj be the j-th k-THR
layer in C for each 1 ≤ j ≤ d.

We call a family of directed graphs Fi = {Hj = (Vj , Ej) : 1 ≤ j ≤ i} an i-th
Induced Hasse Diagram Family of C, if for each j the directed graph Hj is the
Hasse diagram of the partial ordered set (Vj ,�) defined as follows:

∀G1 ∈ Vj ,∀G2 ∈ Vj [G1 � G2 ⇐⇒ G−1
1 (1) ⊆ G−1

2 (1)].

We call a map ρ : V1 ∪ · · · ∪Vd → {0, 1} a validly ordered restriction for a family
F , if ρ|Vi

is a validly ordered restriction to Vi for any i. We also call a d-th
induced Hasse diagram family an induced Hasse diagram family of C, and Fd is
simply denoted by F .

5.2 Proof of Lemma 2

Let {A,B} be a layer of gates which contains A gates or B gates, where A,B
are types of gates. We state the following lemma, but we omit the proof of this
lemma because of page limitation.

Lemma 4. Let C be a circuit class C′ ◦ (k-THR)d, where C′ is either SYM or
THR. There is a procedure such that for given abbreviated C circuit C of size S(n)
and F which is the induced Hasse diagram family of C, the procedure outputs
an AC0 ◦ SYM circuit C ′ of size at most k2d

(
S(n)
O(k)

)d
poly(S(n)) such that C is

equivalent to C ′. Moreover, this procedure runs in O
(
k2d

(
S(n)
O(k)

)d
poly(S(n))

)
time. �
It is not hard to prove this lemma using Lemma 3. We give the proof outline as
follows.

Proof outline. Let F be {H1 = (V1, E1), ...,Hd = (Vd, Ed)}. We note that
V1 ∪ · · · ∪ Vd is the set of threshold gates of C. We define Ii as follows: Ii :=
{(Ii, Ji) ⊆ Vi × Vi : (Ii, Jj) is a pair of independent sets satisfying the covering
condition in Hi}. By Lemma 3, the definition of min-set and max-set in Defini-
tion 8 and Observation 1 , for each 1 ≤ i ≤ d and for any (Ii, Ji) ∈ Ii there
uniquely exists μi : Vi → {0, 1} such that (A) μi is a validly ordered restriction to
Vi and (B) the two images μi(Ii) and μi(Ji) are respectively {1} and {0}, and (C)
we can fix all outputs of threshold gates in the i-th k-THR layer according to μi.
Suppose that 1 ≤ ∀i ≤ d, (Ii, Ji) ∈ Ii. Then, for each validly ordered restriction
to V1 ∪ · · · ∪ Vd, there is an integer linear programming (ILP, in short) instance
such that the feasible space of the instance is equal to the set of all inputs agree-
ing with the restriction. Therefore, we obtain the OR◦AND◦{SYM,THR} circuit
by taking OR of the AND◦{SYM,THR} circuits for all validly ordered restrictions
to V1∪· · ·∪Vd. Intuitively, the number of fan-ins of the OR gate is bounded above
by the number of small subsets of threshold gates. We note that there are effi-
cient ways for listing all pairs of independent gates and implementing Lemma 3
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than the trivial brute-force. The former can be executed by solving an ILP
instance with two linear constraints for each pair of independent gates, and the
later can be done by checking all small size subsets of threshold gates. �
Lemma 5. Let d = poly log n. There is a procedure such that for given Ck[d]
circuit C of size S(n) = 2no(1)

it outputs an abbreviated circuit C ′ and an
Induced Hasse Diagram Family F of C ′ such that C is equivalent to C ′. Moreover,
there exist some ε > 0 and some γ > 0 such that it runs in time 2n−Ω(nε) for
k ≤ nγ .

Proof overview. We give an outline of our algorithm. We first explain a sim-
ple procedure which is incorporated to our algorithm. For given Ck[d] circuit
C and two gates G1, G2 ∈ Vi, where Vi is the i-th threshold layer in C and
G1(x) = G2(x) for any input x, it outputs a Ck[d] circuit which is equivalent to
C. Essentially, this procedure replaces the gate G2 with G1. We call Vi+1∪· · ·∪Vd

the upper layers than the i-th threshold layer. The following is a description of
this procedure.

1. For each threshold gate T in the upper layers than the i-th threshold layer, if
there is an input wire from G2 then the label wG2yG2 +

∑
U �=G2

wUyU ≥ tT in

the gate T is replaced with wG2yG1 +
∑

U �=G2

wUyU ≥ tT , and a wire is drawn

from G1 to T , where each U is a source of T .
2. For the top SYM gate S, if there is an input wire from G2 then the label

yG2 +
∑

U �=G2

yU ∈ S1 in the gate S is replaced with yG1 +
∑

U �=G2

yU ∈ S1, and

a wire is drawn from the gate G1 to S, where S1 is the characteristic set of
the symmetric gate S.

3. Remove G2 and all input and output wires of G2 from C.

We call this procedure abbreviation procedure. We note that eliminating threshold
gates in a threshold layer does not increase the size of maximum independent gate
sets. We explain our approach to make our algorithm. Our algorithm progresses
from the bottom layer to the top layer step by step. For each i, the (i + 1)-th
threshold layer is abbreviated by using an i-th induced Hasse diagram family.
We give the complete proof of Lemma 5 as follows.

Proof of Lemma 5. We consider the following procedure about a bottom up
construction of Induced Hasse Diagram Family.

1. Let F be ∅. For i = 1, 2, ..., d, let Vi be the i-th k-THR layer in C, and let
Ei be ∅, and do the following steps 2., 8., and 9..
2. For any G1, G2 ∈ Vi, do the following steps 3., 4., 5., 6., and 7.

3. Let C1, C2 be THR ◦ (k-THR)i−1 sub-circuits in C whose top gates
are G1 and G2, respectively, if i ≥ 2. Let C1, C2 be threshold gates
G1, G2, respectively, if i = 1.

4. For b = 1, 2, transform the circuit Cb to an AC0 ◦ SYM circuit
C ′

b, by running the procedure in Lemma 4 on the input Cb and
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F = {H1, ...,Hi−1} for any i ≥ 2 or by running the procedure in
Claim 1 on the input threshold gate Cb for i = 1.

5. Call the counting algorithm in Remark 2 to check the satisfiability
of the two AC0 ◦ SYM circuits A1:¬C ′

1 ∧ C ′
2 and A2:¬C ′

2 ∧ C ′
1.

6. If it outputs “Unsatisfiable” for A2 (i.e. C ′
1(x) ≤ C ′

2(x) for any input
string x) then Ei := Ei ∪ {(G1, G2)}.

7. Else if it outputs “Unsatisfiable” for A1 (i.e. C ′
2(x) ≤ C ′

1(x) for any
input string x ) then Ei := Ei ∪ {(G2, G1)}.

8. For each G1, G2 in C, if both (G1, G2) and (G2, G1) are in Ei then run
the abbreviation procedure on C, G1, and G2. Let C be the resulting
circuit (with no pair of equivalent gates in the i-th k-THR layer).

9. Let Hi be (Vi, Ei) and let F be F ∪ {Hi}.
10. Output C (with no pair of equivalent threshold gates in any k-THR layer)

and F = {Hi : Hi = (Vi, Ei) (1 ≤ i ≤ d)}.

Running time analysis is as follows. The most dominant contribution to the
entire running time is in the step testing dependency of two circuits. Note that
we can construct an AC0 ◦ SYM circuit with n inputs and of size S1(n) =

O
(
k2d

(
S(n)
O(k)

)d
poly(S(n))

)
by Lemma 4. By Theorem 2 and Remark 2, there

is some ε > 0 such that an algorithm can count the satisfying assignments to
AC0 ◦ SYM circuits of size 2nε

and runs in 2n−nε

time. We can take sufficiently
small constant γ > 0 such that S1(n) ≤ 2nε

for k ≤ nγ . Thus the running time
in step 5. is at most 2n−nε

. The entire running time is at most

d ·
(

O

((
S(n)

2

))
·
(

poly(S(n)) + k2d

(
S(n)
O(k)

)d

poly(S(n)) + 2n−nε

))
,

for some constant ε > 0. Note that S(n) = 2no(1)
. Therefore, there exist some

ε > 0, γ > 0 such that the entire running time is at most 2n−Ω(nε) for
k ≤ nγ . �

Finally, we give the proof of Lemma 2.

Proof of Lemma 2. By the procedure in Lemma 5, for given input circuit
C with depth d = poly log n and size S(n) = 2no(1)

, we compute an Induced
Hasse Diagram Family F and an abbreviated circuit C1 such that C and C1

are equivalent. By Lemma 4, we obtain an AC0 ◦ SYM circuit C2 with size
S2(n) = O

(
k2d

(
S(n)
O(k)

)d
poly(S(n))

)
. By S(n) = 2no(1)

and d = poly log n, we

have S2(n) = 2no(1)
. Thus, there exist ε1, γ > 0 such that this transformation

from a Ck[d] circuit C to C2 runs in time 2n−Ω(nε1 ) for k ≤ nγ . Finally, run the
algorithm in Theorem 2 on C2. There is ε2 > 0 such that the running time of
this algorithm is 2n−Ω(nε2 ). There exist ε = min

i=1,2
εi and γ > 0 such that counting

satisfying assignments to given Ck[d] circuit C can be done in time 2n−Ω(nε) for
k ≤ nγ . �
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6 Concluding Remark

In Lemma 4, we implicitly prove that any boolean function computed by res-
tricted circuits of our form can be computed by OR◦AND◦{SYM,THR} circuits
of exponential size. Currently, there are no known exponential size lower bounds
for OR ◦ AND ◦ {SYM,THR} circuits, and a direct application of [13] is not
workable because any exponential function is not sub-half-exponential (see [14]
for more details). We hope that our proof method can be applied to prove results
for the class of quasi-poly size ACC ◦THR ◦ (k-THR)d circuits, extending results
of [13]. At this moment, it is not clear that threshold gates are essential for our
lower bounds. It would be an also interesting future work to extend our method
to be applicable for circuit classes with more general boolean functions as gates.
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Abstract. We answer two open questions by (Gruber, Holzer, Kutrib,
2009) on the state-complexity of representing sub- or superword closures
of context-free grammars (CFGs): (1) We prove a (tight) upper bound
of 2O(n) on the size of nondeterministic finite automata (NFAs) repre-
senting the subword closure of a CFG of size n. (2) We present a family
of CFGs for which the minimal deterministic finite automata represent-

ing their subword closure matches the upper-bound of 22O(n)
following

from (1). Furthermore, we prove that the inequivalence problem for NFAs
representing sub- or superword-closed languages is only NP-complete as
opposed to PSPACE-complete for general NFAs. Finally, we extend our
results into an approximation method to attack inequivalence problems
for CFGs.

Keywords: Descriptional complexity · Subword closure · Nfa equiva-
lence · Language approximation

1 Introduction

Given a (finite) word w = w1w2 . . . wn over some alphabet Σ, we say that u is a
(scattered) subword or subsequence of w if u can be obtained from w by erasing
some letters of w. We denote the fact that u is a subword of w by u � w, and
alternatively say that w is a superword of u. As shown by Higman [11] in 1952
� is a well-quasi-order on Σ∗, implying that every language L ⊆ Σ∗ has a finite
set of �-minimal elements. This proves that both the subword (also: downward)
closure ∇L := {u ∈ Σ∗ | ∃w ∈ L : u �w} and the superword (also: upward)
closure ΔL := {w ∈ Σ∗ | ∃u ∈ L | u � w} are regular for any language L. While
in general, we cannot effectively construct a finite automaton accepting ∇L resp.
ΔL, for specific classes of languages effective constructions are known.

It is well-known that this is the case when L is given as a context-free gram-
mar (CFG). This was first shown by van Leeuwen [13] in 1978. Later, Courcelle
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gave an alternative proof of this result in [6]. Section 3 builds up on these results
by Courcelle. We also mention that for Petri-net languages an effective construc-
tion is known thanks to Habermehl, Meyer, and Wimmel [10].

These results can be used to tackle undecidable questions regarding the ambi-
guity, inclusion, equivalence, universality or emptiness of languages by over-
approximating one or both languages by suitable regular languages [8,10,14,15]:
For instance, consider the scenario where we are given a procedural program whose
runs can be described as a pushdown automaton resp. a CFG G1 and a context-
free specification G2 of all safe executions, and we want to check whether all runs
of the system conform to the safety specification L(G1) ⊆ L(G2). As L(G1) ∩
∇L(G2) �= ∅ ⇒ L(G1) �⊆ L(G2), we can obtain at least a partial answer to the
otherwise undecidable question. Of course, in the case L(G1) ⊆ ∇L(G2) no infor-
mation is gained, and one needs to refine the problem e.g. by using some sort of
counter-example guided abstraction refinement as done e.g. in [14].

Contributions and Outline. Our first results (Sections 3 and 4) concern
the blow-up incurred when constructing a (non-)deterministic finite automaton
(NFA resp. DFA) for the subword closure of a language given by a context-free
grammar G where we improve the results of [9]: For a CFG G of size n, [9] shows
that an NFA recognizing ∇L(G) has at most 22

O(n)
states, and there are CFGs

requiring at least 2Ω(n) states. (For linear CFGs the upper and lower bounds are
both single exponential.) The upper bound of [9] is established by analyzing the
inductive construction of [13]. We improve this result in Section 3 to 2O(n) by
slightly adapting Courcelle’s construction [6] (we also briefly discuss that naively
applying Courcelle’s construction cannot do better than 2Ω(n log n) in general).
This result of course yields immediately an upper bound of 22

O(n)
on the size

of minimal DFA representing ∇L(G). In Section 4 we show this bound is tight
already over a binary alphabet. To the best of our knowledge, so far only exam-
ples were known which showcase the single-exponential blow-up when construct-
ing an NFA accepting the subword closure of a context-free grammar [9] resp.
a DFA accepting the subword closure of a DFA or NFA [17]. We then study in
Section 5 the equivalence problem for NFAs recognizing subword- resp. supword-
closed languages. While for general NFAs this problem is PSPACE-complete, we
show that it becomes coNP-complete under this restriction. We combine these
results in Section 6 to derive a conceptual simple semi-decision procedure for
checking language-inequivalence of two CFGs G1, G2: we first construct NFAs
for ∇L(G1) and ∇L(G2), and check language-inequivalence of these NFAs; if
the NFAs are inequivalent, we construct a witness of the language-inequivalence
of G1 and G2; otherwise we refine the grammars, and repeat the test on the
so obtained new grammars. This approach is motivated by the abstraction-
refinement approach of [14] for checking if the intersection of two context-free
languages is empty. We experimentally evaluate our approach by comparing it
to cfg-analyzer of [2] which uses incremental SAT-solving to tackle the language-
inequivalence problem. Missing proofs can be found in the extended version of
the paper [3].
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2 Preliminaries

By Σ we denote a finite alphabet. For every natural number n, let Σ≤n denote
the words of length at most n over Σ. The empty word is denoted by ε; the set
of all finite words by Σ∗.

We measure the size |G| of a CFG G as the total number of symbols on the
right hand sides of all productions. The size of an NFA is simply measured as
the number of states (this is an adequate measure for a constant alphabet, since
the number of transitions is at most quadratic in the number of states).

Throughout the paper we will always assume that all CFGs are reduced,
i.e. do not contain any unproductive or unreachable nonterminals (any CFG can
be reduced in polynomial time). Let X be a nonterminal in a CFG G. We define
L(X) as the set of all words w ∈ Σ∗ derivable from X. If S is the start symbol
of G, then L(G) := L(S). Moreover, ΣX ⊆ Σ denotes the set of all terminals
reachable from X. Overloading notation we sometimes write ∇X for ∇L(X).

The dependency graph of a CFG G is the finite graph with nodes the non-
terminals of G where there is an edge from X to Y if there is a production
X → αY β in G. We say that X depends directly on Y (written as X �Y ) if
X �= Y and there is an edge from X to Y . The reflexive and transitive closure
of � is denoted by �∗. We write X ≡ Y if X �∗ Y ∧ Y �∗ X, i.e. if X and
Y are located in a common strongly-connected component of the dependency
graph. We say that G is strongly connected if the dependency graph is strongly
connected.

From [6] we recall some useful facts concerning the subword closure:

Lemma 1. For any nonterminals X,Y,Z in a CFG G it holds that:

1. ∇(L(X) ∪ L(Y )) = ∇L(X) ∪ ∇L(Y )
2. ∇(L(X) · L(Y )) = ∇L(X) · ∇L(Y )
3. X ≡ Y ⇒ ∇X = ∇Y
4. If X →∗ αY βZγ for Y,Z ≡ X then ∇X = Σ∗

X

3 Computing the Subword Closure of CFGs

In this section we describe an optimized version of the construction in [6] to
compute an NFA for the subword closure of a CFG G of size 2O(|G|), which is
asymptotically optimal. We first illustrate the construction by a simple example.

As explained at the end of the next section, a naive implementation of the
construction of [6] leads to an automaton of size 2Ω(n)n! = 2Ω(n log n) whereas
our approach achieves the (optimal) bound of 2O(n).
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3.1 Construction by Example

Consider the grammar G with start symbol S defined by the productions:

S → XaU | UaU | X X → ZbY | ε

Y → XY a | b U → V Z | acb

V → ZU | ε Z → cZ | bc

S

XY

Z

U V

On the right-hand side, the dependency graph is shown where an edge x → y
stands for x� y. To simplify the construction, we first transform the grammar
G into a certain normal form G′ (with ∇L(G) = ∇L(G′)) and then construct
an NFA from G′.

In the first step we compute the strongly connected components (SCCs) of G,
here {X,Y } and {U, V }. Since Y → XY a (with Y ≡ X and X ≡ X), we know
that ∇Y = ∇X = Σ∗

X = {a, b, c}∗. We therefore can replace any occurrence of
Y by X (thereby removing Y from the grammar) and redefine the rules for X to
X → aX | bX | cX | ε. In case of the SCC {U, V } the grammar is linear w.r.t. U
and V , i.e. starting from either of the two we can never produce sentential forms
in which the total number of occurrences of U and V exceeds one. Hence, we can
identify U and V without changing the subword closure. Finally, we introduce
unique nonterminals for each terminal symbol and restrict the right-hand side of
each production to at most two symbols by introducing auxiliary nonterminals
W and T :

S → XW | UW | X W → AaU

X → AaX | AbX | AcX | Aε U → UZ | ZU | AaT | Aε

T → AcAb Z → AcZ | AbAc

Aa → a Ab → b

Ac → c Aε → ε

S

X W

Z

U

T

Aε Aa AbAc

Note that the dependency graph of this transformed grammar is now acyclic
apart from self-loops. Because of this, we can directly transform the grammar
into an acyclic equation system (or straight-line program, or algebraic circuit)
whose solution is a regular expression for ∇S:

∇Aa = (a + ε) ∇Ab = (b + ε)
∇Ac = (c + ε) ∇Aε = ε
∇Z = c∗(∇Ab∇Ac) ∇T = ∇Ac∇Ab

∇U = Σ∗
Z(∇Aa∇T )Σ∗

Z ∇W = ∇Aa∇U
∇X = Σ∗

X ∇S = ∇X∇W + ∇U∇W + ∇X

In order to obtain an NFA for ∇S, we evaluate this equation system from bottom
to top while re-using as many of the already constructed automata as possible.
For instance, consider the equation: ∇S = ∇X∇W +∇U∇W + ε ·∇X. Because
of acyclicity of the equation system, we may assume inductively that we have
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already constructed NFAs A∇X , A∇W , and A∇U for ∇X, ∇W , and ∇U , respec-
tively. To construct the NFA for ∇S, we first make two copies A(1), A(2) of each
of these automata. Automata with superscript (1) will be used exclusively for
variable occurrences to the left of the concatenation operator, while automata
with superscript (2) will be used for the remaining occurrences. We then read
quadratic monomials, like ∇X∇W , as an ε-transition connecting A

(1)
∇X with A

(2)
∇W

as shown in Figure 1 where all edges represent ε-transitions.

qenstart

A
(1)
∇X

A
(1)
∇U

A
(2)
∇X

A
(2)
∇W

qex

Fig. 1. Efficient re-use of re-occurring NFAs in Courcelle’s construction

We do not claim that this construction yields the smallest NFA, but it is
easy to describe and yields an NFA of sufficiently small size in order to deduce
in the following subsections an asymptotically tight upper bound on the number
of states. We recall that using a CFG of size 3n + 2 to succinctly represent the
singleton language {a2n}, the bound of 2Θ(n) follows [9].

In [1] it is remarked that a straight-forward implementation of Courcelle’s
construction yields an NFA “single exponential” size w.r.t. |G|. However, no
detailed complexity analysis is given. Consider the CFG with start-symbol An

and consisting of the rules A0 → a and for all 1 ≤ k ≤ n : Ak → AiAj ∀0 ≤
i, j ≤ (k−1). If we compute an NFA for ∇An via the straight-forward bottom-up
construction it will have size an := |A∇An

| with an = 2+
∑

0≤i,j≤(n−1)(ai+aj). It
is easy to show that an ≥ 2nn! ∈ 2Ω(n log n). Hence, the crucial part to achieve the
optimal bound of 2O(n) is to reuse already computed automata. We just remark
that one can also achieve similar savings by factoring out common terms in the
right hand side of the acyclic equations. A subsequent bottom-up construction
leads to an NFA of size 2O(n) as well but the constant hidden in the O is larger
and the analysis is more involved. Note that this also shows that we can construct
a regular expression of size 2O(n) representing the subword closure.

3.2 Normal Form for Computing the Subword Closure

To simplify our construction, we will assume that our grammar has a special
form which is similar to CNF but with unary rules allowed. Any CFG can be
transformed into this form with at most linear blowup in size preserving its
subword closure (but not its language).

Definition 2. A CFG G is in quadratic normal form (QNF) if for every ter-
minal x ∈ Σ ∪ {ε} there is a unique nonterminal Ax with the only production
Ax → x and every other production is in one of the following forms:
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– X → Y X or X → XY (with Y �= X)
– X → Y or X → Y Z (with Y,Z �= X)

A grammar in QNF is called simple if

– for all X → Y X or X → XY , we have X � Y
– for all X → Y or X → Y Z, we have X � Y,Z.

Note that the dependency graph associated with a grammar in simple QNF is
acyclic with the exception of self-loops.

First, we need a small lemma that allows us to eliminate all linear productions
“within” some SCC, i.e. productions of the form X → αY β such that X �= Y
but Y �∗ X.

Lemma 3. Let G be a strongly connected linear CFG with nonterminals X =
{X1, . . . , Xn} so that every production is either of the form X → αY β or X → α
for α, β ∈ Σ∗. Consider the grammar G′ which we obtain from G by replacing
in every production of G every occurrence of a nonterminal Xi by Z. We then
have that ∇L(Z) = ∇L(Xi) for all i ∈ [n].

Using the preceding lemma, we can show that it suffices to consider only CFG
in simple QNF in the following.

Theorem 4. Every CFG G can be transformed into a CFG G′ in simple QNF
such that ∇L(G) = ∇L(G′) and |G′| ∈ O(|G|).
Proof (sketch). First, we use Lemma 1 to simplify all productions involving an
X with X ⇒∗ αXβXγ. Then we apply Lemma 3 to contract SCCs to a single
non-terminal. Finally, we introduce auxiliary variables for the terminals and we
binarize the grammar (keeping unary rules like [12]).

Theorem 5. For any CFG G in simple QNF with n nonterminals there is an
NFA A with at most 2 · 3n−1 states which recognizes the subword closure of G,
i.e. ∇L(G) = L(A).

Proof (sketch). Since the dependency graph of a grammar in simple QNF is a
DAG (if we ignore self-loops), we can order the nonterminals according to a
topological ordering of this graph. We proceed bottom-up to inductively build
an NFA for ∇L(G) = ∇S as in section 3.1. Since our grammar is in QNF,
at each stage we only have to produce at most two copies of every automaton
representing the subword-closure of a “lower” nonterminal Y . Inductively, for
each of these Y we can build an NFA with at most 2 · 3i many states where i is
Y ’s position in the topological ordering. Using the “biparitite wiring” sketched
in Figure 1 the size of the automaton for X can then be estimated as

|AS | ≤ 2 +
∑

Y : S � Y

2 · |AY | ≤ 2 + 4 ·
n−2∑
i=0

3i = 2 · 3n−1.

Corollary 6. For every CFG G of size n there is an NFA A of size 2O(n) and
a DFA D of size 22

O(n)
with ∇L(G) = L(A) = L(D).
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4 CFG → DFA: Double-Exponential Blowup

As seen in the preceding section, moving from a context-free grammar G rep-
resenting a subword-closed language to a language-equivalent NFA A, the size
of the automaton is bounded from above by 2O(|G|). For superword closures [9]
prove the same upper bound for the size of the NFA. From both results we imme-
diately obtain the upper bound 22

O(|G|)
on the size of the minimal language-

equivalent DFA recognizing the sub- or superword closure of a CFG G. This
bound is essentially tight as witnessed by the family of finite languages

Lk =
k⋃

j=1

{0, 1}j−1{0}{0, 1}k{0}{0, 1}k−j .

Lk contains exactly all those words w ∈ {0, 1}2k+1 which contain two 0s which
are separated by exactly k letters. Using the idea of iterated squaring in order to
succinctly encode the language {a2n} as a context-free grammar (resp. straight-
line program) of size O(n), the language L2n can be represented by a context-
free grammar of size O(n) as well. One then easily shows that the Myhill-Nerode
relation w.r.t. L2n , ∇L2n , and ΔL2n , respectively, has at least 22

n

equivalence
classes:

Theorem 7. There exists a family of CFGs Gn of size O(n) (generating finite
languages) such that the minimal DFAs accepting either L(Gn), or ∇L(Gn), or
ΔL(Gn), have at least 22

n

states.

5 Equivalence of NFAs Modulo Sub-/Superword Closure

As hinted at in the introduction, one application of the sub- resp. superword
closure is (in-)equivalence checking of CFGs by regular over-approximation. For
this, we must solve the equivalence problems for NFAs representing sub/sup-
word closed languages. Naturally, the question arises how hard this is.

Let A and B denote NFAs over the common alphabet Σ, having nA and nB

many states, respectively. Recall that the universality problem for NFAs, i.e.
L(A) ?= Σ∗, and hence also the equivalence problem L(A) ?= L(B) are PSPACE-
complete. Only recently, it was shown in [18] that these problems stay PSPACE-
complete even when restricted to NFAs representing languages which are closed
w.r.t. either prefixes or suffixes or factors. However, in [18] it was also shown that
for subword-closed NFAs (i.e. ∇L(A) = L(A)), universality is decidable in linear
time as L(A) = Σ∗ holds if and only if there is an SCC in A whose labels cover
all of Σ. It is easily shown that a similar result also holds for superword-closed
NFAs (i.e. ΔL(A) = L(A)): We have L(A) = Σ∗ if and only if ε ∈ L(A).

In this section we show that both equivalence problems, i.e. ∇L(A) ?= ∇L(B)
and ΔL(A) ?= ΔL(B), are coNP-complete, hence are easier than in the general

case (unless NP = PSPACE). In the following, we write more succinctly A
?≡∇ B

and A
?≡Δ B for these two problems. The following lemma is easy to prove:
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Lemma 8. Let A be an NFA. Define A∇ as the NFA we obtain from A by adding
for every transition q

a−→ q′ of A the ε-transition q
ε−→ q′. Similarly, define AΔ

to be the NFA we obtain by adding the loops q
a−→ q for every state q and every

terminal a ∈ Σ to A. Then ∇L(A) = L(A∇) and ΔL(A) = L(AΔ).

To prove that both A
?≡Δ B and A

?≡∇ B are coNP-complete we will give a poly-
nomial bound on the length of a separating word, i.e. a word w in the symmetric
difference of L(A∇) and L(B∇) resp. of L(AΔ) and L(BΔ).

We first show that the DFA obtained from A∇ resp. AΔ using the powerset
construction has a particular simple structure (this was also observed in [17]).

Lemma 9. Let A be an NFA. Let D∇
A (resp. DΔ

A ) be the DFA we obtain from
A∇ (resp. AΔ) by means of the powerset construction. For any transition S

a−→ T
of D∇

A (DΔ
A ) it holds that S ⊇ T (resp. S ⊆ T ).

Thus, the transition relation of D∇
A (disregarding self-loops) can be “embedded”

into the lattice of subsets of the states of A, which has height nA − 1.

Corollary 10. With the assumptions of the preceding lemma: The length of the
longest simple path in D∇

A (resp. DΔ
A ) is at most nA − 1.

It now immediately follows that a shortest separating word for sub- resp. supword
closed NFAs – if one exists – has at most length linear in the size of the two
NFAs.

Lemma 11. Let A and B be two NFAs. If A �≡∇ B (resp. A �≡Δ B), then there
exists a separating word of length at most nA + nB − 2.

Theorem 12. The decision problems A
?≡∇ B and A

?≡Δ B are in coNP.

To show coNP-hardness, recall the proof that the equivalence problem for star-
free regular expressions is coNP-hard by reduction from TAUT: Given a formula
φ in propositional calculus, we build a regular expression ρ (without Kleene
stars) over Σ = {0, 1} that enumerates exactly the satisfying assignments of φ.
Hence, φ ∈ TAUT iff L(ρ) = Σn iff ∇L(ρ) = Σ≤n, since the subword closure can
only add new words of length less than n (analogously for Δ).

Theorem 13. The decision problems A
?≡∇ B and A

?≡Δ B are coNP-hard.

6 Application to Grammar Problems

We apply our results to devise an approximation approach for the well-known
undecidable problem whether L(G1) = L(G2) for two CFGs G1, G2. Possible
attacks on this problem include exhaustive search for a word in the symmetric
difference w ∈ (L1 ⊕ L2) ∩ Σ≤n w.r.t. some increasing bound n e.g. by using
incremental SAT-solving [2]. Unfortunately, this quickly becomes infeasible for
large problems. Previous work has successfully applied regular approximation
for ambiguity detection [5,19] or intersection non-emptiness of CFGs [14].
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1. Compute NFAs A1 and A2 for the subword closures of G1 and G2, respectively.
2. Check, if L(A1) = L(A2).

(a) Case “Not equal”: Generate a witness w ∈ L(G1) ⊕ L(G2).
(b) Case “Equal”: Refine the grammars and restart at 1.

Fig. 2. Equivalence checking via subword closure approximation

A high-level description of our approach to (in-)equivalence-checking is given
in Figure 2.

Of course the procedure will not terminate if L(G1) = L(G2), so in practice
a timeout will be used after which the algorithm will terminate itself and output
“Maybe equal”. Steps (1) and (2) might take time (at most) double exponential
in the size of the grammars G1 and G2: Recall that the construction of Section 3
yields in the worst-case an NFA Ai whose number of states is exponential in the
size of the given CFG Gi. To check if ∇L(G1) = ∇L(G2), an on-the-fly con-
struction of the power-set automaton for A1 ×A2 can be used which terminates
as soon as a set of states is reached which contains at least one accepting state
of, say, A1 but no accepting state of A2. Using Lemma 11, we can safely termi-
nate the exploration of simple paths if their length exceeds the bound stated in
Lemma 11. In the worst case this might take time exponential in the size of A1

and A2, so at most double exponential in the size of G1 and G2.
In the following, we describe in greater detail how we generate a separating

word w′ in L(G1) or L(G2) if we find a separating word w ∈ ∇L(G1)⊕∇L(G2),
resp. how we refine G1 and G2 if ∇L(G1) = ∇L(G2).

6.1 Witness Generation for L(G1) �= L(G2)

If our check in step (2) returns “Not equal” we know that ∇L(G1) �= ∇L(G2)
and we obtain a word w ∈ ∇L(G1)⊕ ∇L(G2), w.l.o.g. assume in the following
w ∈ ∇L(G1)\∇L(G2). This word has length linear in |A1| and |A2|, i.e. at most
exponential w.r.t. |G1| and |G2|.

To obtain a (direct) certificate for the fact that L(G1) �= L(G2), we construct
a superword w′ � w with w′ ∈ L(G1) – such a w′ is guaranteed to exist as it is
the reason for w ∈ ∇L(G1). Straight-forward induction on w shows:

Lemma 14. For w ∈ Σ∗ a DFA recognizing ∇L({w}) resp. ΔL({w}) and hav-
ing at most |w| + 2 states can be constructed in time polynomial in |w|.
We can therefore intersect G1 with a DFA accepting ΔL({w}), to obtain a new
CFG G′

1 whose size is at most cubic in |w|[4,16], i.e. exponential in the size
of G1. From this grammar, we can obtain in time linear in |G′

1| a shortest word
w′ in L(G′

1) = L(G1) ∩ ΔL({w}). The length of w′ is at most exponential in
|G′

1|, i.e. at most double exponential in |G1|.
In practice, shorter witnesses are preferable, so we construct the shortest

word in L(A2) ∩ L(G1). In theory this might incur a triple exponential blow-up
resulting from complementing A2, but this way we can find a separating word
w′ which is not a superword of w and hence is usually shorter.
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6.2 Refinement

In case that the test in step (2) returns “Equal”, we refine both grammars such
that subsequent subword-approximations may find a counterexample to equal-
ity. Assume that our equivalence check yields ∇L(G1) = ∇L(G2). A possible
refinement strategy is to cover L := ∇L(G1) using a finite number of regular
languages L ⊆ L′ := L0 ∪ L1 ∪ · · · ∪ Lk and then to repeat the equivalence
check for all pairs of refined languages L(G1) ∩ Li and L(G2) ∩ Li for all i. The
requirement L′ ⊇ L protects the refinement from cutting off potential witnesses.

A simple method is covering using prefixes: Here we generate all prefixes
p1, . . . , pk of words in L of increasing length (up to some small bound d called
the refinement depth) and set Li := piΣ

∗ and L0 = ∇{pi | i ∈ [k]}. Since⋃
i Li ⊇ L this strategy preserves potential witnesses and since any counterex-

ample eventually appears as a prefix, this yields a semi-decision procedure for
grammar inequivalence. In our experiments we disregard the finite language L0

(which can also be checked by enumeration) and only check refinement using
the infinite sets piΣ

∗ with the goal of quickly finding some (not the shortest)
distinguishing word. This strategy is often able to tell apart different CFLs after
few iterations as shown in the following.

6.3 Implementation and Experiments

We implemented the inequivalence check in an extension1 of theFPsolve tool [7].
The additional code comprises roughly 1800 lines of C++ and uses libfa2 to handle
finite automata.

Our worst-case descriptional complexity results for the subword closure of
CFGs (exponential sized NFA, double-exponential sized DFA) and our remarks
on the length of possible counterexamples might suggest that our inequivalence
checking procedure is merely of academic interest. Here we briefly show that
this is not the case, and that overapproximation via subword closures is actually
quite fast in practice.

The paper [2] presents cfg-analyzer, a tool that uses SAT-solving to attack
several undecidable grammar problems by exhaustive enumeration. We demon-
strate the feasibility of our approximation approach on several slightly altered
grammars (cf. [20]) for the PASCAL programming language3. The altered gram-
mars were obtained by adding, deleting, or mutating a single rule from the
original grammar [20]. We used FPsolve and cfg-analyzer to check equivalence
of the altered grammar with the original. Both tools were given a timeout of
30 seconds. We want to stress that we do not strive to replace enumeration-
based tools like cfg-analyzer, but rather envision a combined approach: Use
overapproximations like the subword closure (with small refinement depth) as
a quick check and resort to more computationally demanding techniques like
1 The fork is available from https://github.com/regularApproximation/newton
2 http://augeas.net/libfa/
3 Available from https://github.com/nvasudevan/experiment/tree/master/grammars/

mutlang/acc

https://github.com/regularApproximation/newton
http://augeas.net/libfa/
https://github.com/nvasudevan/experiment/tree/master/grammars/mutlang/acc
https://github.com/nvasudevan/experiment/tree/master/grammars/mutlang/acc
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SAT-solving for a thorough test. Also note that it is not too hard to find exam-
ples where enumeration-based tools cannot detect inequivalence anymore, e.g. by
considering grammars with large alphabet (like C# or Java) for which the short-
est word in the language is already longer than 20 tokens. Here we just showcase
an example where both approaches can be fruitfully combined.

Table 1 demonstrates that even if our tool uses the very simple prefix-
refinement (which is the main bottleneck in terms of speed), we can successfully
solve 100 cases where cfg-analyzer has to give up after 30 seconds and even in
cases where both tools find a difference, FPsolve does so much faster

Table 1. Numbers of solved instances for different scenarios and respective average
times: #CA: solved by cfg-analyzer, #FP: solved by FPsolve, #(CA ∧ FP ): solved
by both tools, t∧tool: time needed by tool on instances from (CA ∧ FP )

scenario # instances # CA tCA #FP tFP #(CF ∧ FP ) t∧CA t∧FP

add 700 190 17.9 18 2.43 8 10.7 4.97
delete 284 61 17.8 34 0.424 10 14.4 0.464
empty 69 32 18.7 1 1.35 1 5.62 1.35
mutate 700 167 19.1 100 1.3 36 15.8 2.87

switchadj 187 16 20.5 2 5.46 1 9.68 0.34
switchany 328 35 18 9 3.72 8 9.09 2.84
∑

2268 501 – 164 – 64 – –

7 Discussion and Future Work

Motivated by the language-equivalence problem for context-free languages, we
have studied the problems of the space requirements of representing the subword
closure of CFGs by NFAs and DFAs, and the computational complexity of the
equivalence problem of subword-closed NFAs. We have shown how to construct
from a context-free grammar G an NFA accepting ∇L(G) consisting of at most
2O(|G|) states – a small gap between the lower bound of Ω(2|G|) and our upper
bound of O(3|G|) for grammars in QNF remains for future work. A further ques-
tion is if this bound can be improved in the case of languages given as determinis-
tic pushdown automata. We have further shown that the upper bound on the size
of a DFA accepting ∇L(G) of 22

O(|G|)
is tight. Interestingly, a binary alphabet

suffices for the presented language family Lk: for instance the worst-case exam-
ple of [17], which showcases the exponential blow-up suffered when constructing
an DFA for the subword closure of a language given as DFA or NFA, requires
an unbounded alphabet. We note that a unary context-free language cannot
lead to this double exponential blow-up – this follows from the proof of Theo-
rem 3.14 in [9] (see also Lemma 14 here). Regarding the language-equivalence
problem, we have shown that it becomes coNP-complete when restricted to sub-
resp. superword-closed NFAs. This is somewhat surprising given the fact that
it stays PSPACE-complete for many related families (e.g. for prefix-, suffix-, or
factor-closed languages). Finally, we have briefly described an approach to tackle
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the equivalence problem for CFGs using the presented results, though much work
remains to turn our current implementation into a mature tool: In particular,
since the intersection of two regular overapproximations is again a regular over-
approximation, it could be fruitful to combine the subword closure (or variants
like [14]) with other regular approximation techniques like [15]. We also need to
improve the refinement of the approximations when scaling the problem size.

References

1. Atig, M.F., Bouajjani, A., Touili, T.: On the Reachability Analysis of Acyclic
Networks of Pushdown Systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 356–371. Springer, Heidelberg (2008)

2. Axelsson, R., Heljanko, K., Lange, M.: Analyzing Context-Free Grammars Using an
Incremental SAT Solver. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
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Abstract. We provide a characterisation for the size of proofs in tree-
like Q-Resolution by a Prover-Delayer game, which is inspired by a sim-
ilar characterisation for the proof size in classical tree-like Resolution
[10]. This gives the first successful transfer of one of the lower bound
techniques for classical proof systems to QBF proof systems. We confirm
our technique with two previously known hard examples. In particular,
we give a proof of the hardness of the formulas of Kleine Büning et al.
[20] for tree-like Q-Resolution.

1 Introduction

Proof complexity is a well established field that has rich connections to funda-
mental problems in computational complexity and logic [14,21]. In addition to
these foundational contributions, proof complexity provides the main theoretical
approach towards an understanding of the performance of SAT solvers, which
have gained a wide range of applications for the efficient solution of practical
instances of NP-hard problems. As most modern SAT solvers employ CDCL-
based methods, they correspond to Resolution. Lower bounds to the size and
space of Resolution proofs therefore imply sharp bounds for running time and
memory consumption of SAT algorithms. Consequently, Resolution has received
key attention in proof complexity; and many ingenious techniques have been
devised to understand the complexity of Resolution proofs (cf. [13,26] for sur-
veys).

There has been growing interest and research activity to extend the suc-
cess of SAT solvers to the more expressive quantified boolean formulas (QBF).
Due to its PSPACE completeness, QBF is far more expressive than SAT and
thus applies to further fields such as formal verification or planning [6,25]. As
for SAT solvers, runs of QBF solvers produce witnesses (respectively proofs)
of unsatisfiability, and there has been great interest in trying to understand
which formal system would correspond to the solvers. In particular, a number of
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Resolution-based proof systems have been developed for QBF, most notably Q-
Resolution, introduced by Kleine Büning et al. [20], long-distance Q-Resolution
[2], QU-Resolution [27], and ∀Exp+Res [19]. Designing two further calculi IR-calc
and IRM-calc, a unifying framework for most of these systems has recently been
suggested in [7].

Understanding the sizes of proofs in these systems is important as lower
bounds for proof size directly translate into lower bounds for running time of the
corresponding QBF-solvers. However, in contrast to classical proof complexity
we do not yet have many established methods that could be employed for this
task. Very recently, the paper [8] introduces a general proof technique for QBF
systems based on strategy extraction, that transfers circuit lower bounds to proof
size lower bounds. However, no technique for classical Resolution is known to be
effective for QBF systems. Except for recent results shown by the new strategy
extraction method [8] all present lower bounds for QBF proof systems are either
shown ad hoc (e.g. [18] or the lower bound for KBKF(t) in [8]) or are obtained
by directly lifting known classical lower bounds to QBF (e.g. [15]).

Our contribution in this paper is to transfer one of the main game methods
from classical proof complexity to QBF. Game techniques have a long tradition
in proof complexity, as they provide intuitive and simplified methods for lower
bounds in Resolution, e.g. for Haken’s exponential bound for the pigeonhole
principle in dag-like Resolution [23], or the optimal bound in tree-like Resolution
[9] , and even work for strong systems [4] and other measures such as proof space
[17] and width [1]. A unified game approach to hardness measures was recently
established in [12]. Building on the classic game of Pudlák and Impagliazzo
[24] for tree-like Resolution, the papers [9,11] devise an asymmetric Prover-
Delayer game, which was shown in [10] to even characterise tree-like Resolution
size. Thus, in contrast to the classic symmetric Prover-Delayer game of [24], the
asymmetric game in principle allows to always obtain the optimal lower bounds,
which was demonstrated in [9] for the pigeonhole principle.

Inspired by these games, we develop here a Prover-Delayer game which tightly
characterises the proof size in tree-like Q-Resolution. The idea behind this game
is that a Delayer claims to know a satisfying assignment to a false formula, while
a Prover asks for values of variables until eventually finding a contradiction. In
the course of the game the Delayer scores points proportional to the progress
the Prover makes towards reaching a contradiction. By an information-theoretic
argument we show that the optimal Delayer will score exactly logarithmically
many points in the size of the smallest tree-like Q-Resolution proof of the for-
mula. Thus exhibiting clever Delayer strategies gives lower bounds to the proof
size, and in principle these bounds are guaranteed to be optimal. In comparison
to the game of [9–11], our formulation here needs a somewhat more powerful
Prover, who can forget information as well as freely set universal variables. This
is necessary as the Prover needs to simulate more complex Q-Resolution proofs
involving universal variables and ∀-reductions.

We illustrate this new technique with two examples. The first was used
by Janota and Marques-Silva [18] to separate Q-Resolution from the system



488 O. Beyersdorff et al.

∀Exp+Res defined in [19]. We use these separating formulas as an easy first
illustration of our technique. Our Delayer strategy as well as the analysis here
are quite straightforward; in fact, a simple symmetric game in the spirit of [24]
would suffice to get the lower bound. Our second example are the well-known
KBKF(t)-formulas of Kleine Büning, Karpinski and Flögel [20]. In the same
work [20], where Q-Resolution was introduced, these formulas were suggested as
hard formulas for the system. Very recently, the formulas KBKF(t) were even
shown to be hard for IR-calc, a system stronger than Q-Resolution [8]. In fact, a
number of further separations of QBF proof systems builds on the hardness of
KBKF(t) [3,16] (cf. also [8]). Here we use our new technique to show that these
formulas require exponential-size proofs in tree-like Q-Resolution. In terms of
the lower bound, this result is weaker than the result obtained in [8]. However,
it provides an interesting example for our new game technique. In contrast to
the first example, both the Delayer strategy as well as the scoring analysis is
technically involved. Here we need the refined asymmetric game. The formulas
KBKF(t) have very unbalanced proofs, so we cannot use a symmetric Delayer,
as symmetric games only yield a lower bound according to the largest full binary
tree embeddable into the proof tree (cf. [10]).

The remaining part of this paper is organised as follows. We start in Section 2
with setting up notation and reviewing Q-Resolution. Section 3 contains our
characterisation of tree-like Q-Resolution in terms of the Prover-Delayer game.
The two mentioned examples for this lower bound technique follow in Sections 4
and 5, the latter of which contains the hardness proof for KBKF(t). We conclude
with some open directions for future research in Section 6.

2 Preliminaries

A literal is a Boolean variable or its negation; we say that the literal x is com-
plementary to the literal ¬x and vice versa. If l is a literal, ¬l denotes the
complementary literal, i.e. ¬¬x = x. A clause is a disjunction of zero or more
literals. The empty clause is denoted by ⊥, which is semantically equivalent to
false. A formula in conjunctive normal form (CNF) is a conjunction of clauses.
Whenever convenient, a clause is treated as a set of literals and a CNF formula
as a set of clauses. For a literal l = x or l = ¬x, we write var(l) for x and extend
this notation to var(C) for a clause C and var(ψ) for a CNF ψ.

Quantified Boolean Formulas (QBFs) extend propositional logic with quan-
tifiers with the standard semantics that ∀x. Ψ is satisfied by the same truth
assignments as Ψ [0/x] ∧ Ψ [1/x] and ∃x. Ψ as Ψ [0/x] ∨ Ψ [1/x]. Unless specified
otherwise, we assume that QBFs are in closed prenex form with a CNF matrix,
i.e., we consider the form Q1X1 . . . QkXk. φ, where Xi are pairwise disjoint sets
of variables; Qi ∈ {∃,∀} and Qi �= Qi+1. The formula φ is in CNF and is defined
only on variables X1 ∪ · · · ∪ Xk. The propositional part φ of a QBF is called the
matrix and the rest the prefix. If a variable x is in the set Xi, we say that x is
at level i and write lev(x) = i; we write lev(l) for lev(var(l)). A closed QBF is
false (resp. true), iff it is semantically equivalent to the constant 0 (resp. 1).
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Often it is useful to think of a QBF Q1X1 . . . QkXk. φ as a game between the
universal and the existential player. In the i-th step of the game, the player Qi

assigns values to the variables Xi. The existential player wins the game iff the
matrix φ evaluates to 1 under the assignment constructed in the game. The
universal player wins iff φ evaluates to 0. A QBF is false iff there is a winning
strategy for the universal player, i.e. if the universal player can win any game.

Q-Resolution, by Kleine Büning et al. [20], is a resolution-like calculus that
operates on QBFs in prenex form where the matrix is a CNF. The rules are given
in Figure 1. All proofs in Q-Resolution are refutations, deriving ∅. Q-Resolution
derivations can be associated with a graph where vertices are the clauses of the
proof and each resolution inference C D

E gives rise to two directed edges (C,E)
and (D,E). Likewise a universal reduction C

D yields an edge (C,D). We speak of
tree-like Q-Resolution if we only allow Q-Resolution proofs which have trees as
its associated graphs. This means that intermediate clauses cannot be used more
than once and have to be rederived otherwise. There are exponential separations
known between tree-like and dag-like Resolution in the classical case (cf. [26]),
that carry over between tree-like and dag-like Q-Resolution.

(Axiom)
C

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C is a clause in the matrix. Variable x is existential. If z ∈ C1, then ¬z /∈ C2.

D ∪ {u}
(∀-Red)

D

Literal u is universal. For existential
x in clause D, lev(x) < lev(u).

Fig. 1. The rules of Q-Res [20]

3 Prover-Delayer Game

In this section, we present a two player game along with a scoring system. The
players will be called Prover and Delayer (referred by pronouns ‘she’ and ‘he’
respectively). The game is played on a QBF F . The Delayer tries to maximise
the score. The Prover tries to win the game by falsifying the formula (which
ends the game) and giving the Delayer as small a score as possible. The game
proceeds in rounds. Each round of the game has the following phases:

1. Setting universal variables: The Prover can assign values to any number of
universal variables of her choice that are not blocked, i.e., a universal variable
u can be assigned a value by the Prover if all the existential variables with
higher quantification level than u are currently unassigned.

2. Declare Phase: The Delayer can choose to assign values to any unassigned
existential variables of his choice. The Delayer does not score from this.
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3. Query Phase: This phase has three stages:
(a) Prover queries any one existential variable x that is currently unassigned.
(b) Delayer replies with positive weights w0 and w1 such that w0 + w1 = 1.
(c) Prover assigns a value for x. If she assigns x = b for some b ∈ {0, 1}, the

Delayer scores lg( 1
pb

) points.
4. Forget Phase: The Prover can forget values of any of the assigned variables

of her choice. Any variable chosen in this phase will become unassigned.

The Prover wins the game if any clause in F is falsified. In every round, we check
if the Prover has won the game after each phase.

We will now show that our game characterizes tree like Q-Resolution.

Theorem 1. If φ has a tree-like Q-Resolution proof of size at most s, then there
exists a Prover strategy such that any Delayer scores at most lg� s

2� points.

Proof. We take a similar approach as in [10]. Let Π be a tree-like Q-Resolution
refutation of φ. Informally, the Prover plays according to Π, starting at the
empty clause and following a path in the tree to one of the axioms. At a Res-
olution inference the Prover will query the resolved variable and at a universal
reduction she will set the universal variable. The Prover will keep the invariant
that at each moment in the game, the current assignment α assigns exactly all
literals from the current clause C on the path in Π, and moreover α falsifies
C. This invariant holds in the beginning at the empty clause, and in the end,
Prover wins by falsifying an axiom.

We will now elaborate and describe a randomized Prover strategy. Let the
Prover be at a node in Π labelled with clause C. We describe what she does in
the four stages.

Setting universal variables: If the current clause C was derived in the
proof Π by a ∀-reduction C∨z

C , then Prover sets z = 0. This is possible as the
current assignment contains only variables from C and therefore z is not blocked.
Prover then moves to the clause C ∨ z. The Prover repeats this till arriving at a
clause derived by the Resolution rule (or winning the game).

Query phase: Prover is now at a clause in Π that was derived by a Reso-
lution step C1∨x C2∨¬x

C1∨C2
. If the Delayer already set the value of x in his Declare

phase, then Prover follows this choice and moves on in the proof tree, possi-
bly setting further universal variables. She does this until she reaches a clause
derived by Resolution, where resolved variable x is unassigned. She queries x.
On Delayer replying with weights w0 and w1, she chooses x = i with probability
wi.

If x = 0, then Prover defines S to be the set of all variables not in C1 ∨ x
and proceeds down to the subtree rooted at that clause. Else, she defines S to
be all variables not in C2 ∨¬x and proceeds down to the corresponding subtree.

Forget Phase: The Prover forgets all variables in the set S.
For a fixed Delayer D, let qD,� denote the probability (over all random choices

made within the game) that the game ends at leaf �. Let πD be the corresponding
distribution induced on the leaves.

For the Prover strategy described above, we have the following claim:
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Claim. If the game ends at a leaf �, then the Delayer scores exactly α� =
lg

(
1

qD,�

)
points.

Proof. Note that since Π is a tree-like Q-Resolution proof, there is exactly one
path from the root of Π to �. Let p be the unique path that leads to the leaf
� and let the number of random choices made along p be m. Then, we have
qD,� =

∏m
i=1 qi where qi is the probability for the ith random choice made along

p. Since p is the unique path that leads to �, the number of points α� scored
by the Delayer when the game ends at � is exactly the number of points scored
when the game proceeds along the path p. The number of points scored by the
Delayer along p is given by: α� =

∑m
i=1 lg

(
1
qi

)
= lg

(∏
i

1
qi

)
= lg

(
1

qD,�

)
�

The Prover strategy we described is randomized. The expected score over all
leaves � is the following expression:

∑
leaves �∈Π qD,�α� =

∑
leaves �∈Π qD,� lg 1

qD,�
.

But this quantity is exactly the Shannon entropy H(πD). Since D is fixed,
this entropy will be maximum when πD is the uniform distribution; i.e., H(πD)
is maximum when, for all leaves �, the probability that the game ends at � is
the same. A tree like Q-Resolution proof of size s has at most �s/2� leaves. So
the support of the distribution πD has size at most �s/2� and hence H(qD,�) ≤
lg�s/2�.

If the expected score with the randomised Prover is ≤ lg�s/2�, then there
is a deterministic Prover who restricts the scores to at most lg�s/2�. Now we
derandomise the Prover by just fixing her random choices accordingly. If the
Delayer is optimal she can pick arbitrarily if not she can pick to exploit this. �

To obtain the characterisation of Q-Resolution we also need to show the
opposite direction, exhibiting an optimal Delayer:

Theorem 2. Let φ be an unsatisfiable QBF formula and let s be the size of
a shortest tree-like Q-Resolution proof for φ. Then there exists a Delayer who
scores at least lg�s/2� points against any Prover.

Proof. For any unsatisfiable QBF formula φ, let L(φ) denote the number of
leaves in the shortest tree-like Q-Resolution proof of φ. For a partial assignment
α to variables in φ, let φ|α denote φ restricted to the partial assignment α.

The Delayer starts with the empty assignment α and changes α throughout
the game. On receiving a query for an existential variable x, the Delayer does
the following:

1. Updates α to reflect any changes made by the Prover to any of the variables.
These changes include assignments made to both universal variables as well
as existential variables.

2. Computes the quantities �0 = L(φ|α,x=0) and �1 = L(φ|α,x=1).
3. Replies with weights w0 = �0

�0+�1
and w1 = �1

�0+�1
.

We show by induction on the number of existential variables n in φ that the
Delayer always scores at least lg L(φ) points: Base case n = 0, L(φ) = 0 and



492 O. Beyersdorff et al.

the Delayer scores at least 0 points. Assume the statement is true for all n < k.
Now for n = k, consider the first query by the Prover, after she possibly made
some universal choices according to the partial assignment α. Let the queried
variable be x. If the Prover chose x = b where b ∈ {0, 1}, then the Delayer scores
lg 1

wb
for this step alone. After assigning x = b, the formula φ|α,x=b has k − 1

existential variables and hence we use induction hypothesis to conclude that the
remaining rounds in the game give the Delayer at least lg L(φ|α,x=b). Hence the
total score is evaluated as: lg (L(φ|α,x=0) + L(φ|α,x=1)) ≥ lg L(φ|α) ≥ lg L(φ).

The last inequality holds, because if φ|α is unsatisfiable, we can refute φ by
deriving a clause with no existential literals, just containing all variables in the
domain of α and then ∀-reduce. The theorem follows since for any binary tree
of size s, the number of leaves is �s/2�. �

4 A First Example

We consider the following formulas studied by Janota and Marques-Silva [18]:

Fn = ∃e1∀u1∃c11c
2
1 · · · ∃ei∀ui∃c1i c

2
i · · · ∃en∀un∃c1nc2n :

n∧
i=1

(ei → c1i ) ∧ (ui → c1i ) ∧ (¬ei → c2i ) ∧ (¬ui → c2i ) ∧
n∨

i=1

(¬c1i ∨ ¬c2i )

These formulas were used in [18] to show that ∀Exp+Res does not simulate
Q-Resolution, i.e., Fn requires exponential-size proofs in ∀Exp+Res, but has
polynomial-size Q-Resolution proofs. Janota and Marques-Silva [19] also show
that ∀Exp+Res p-simulates tree-like Q-resolution, and hence it follows that Fn is
also hard for the latter system. We reprove this result using our characterisation.

Let U = {u1, u2, . . . , un} be the set of all universal variables. In the following,
we show a Delayer strategy that scores at least n points against any Prover. For
the Declare phase, the Delayer executes Algorithm 1 till reaching a fixed point.
For any variable queried by Prover, Delayer responds with weights

(
1
2 , 1

2

)
. For

i ∈ [n], let Ti = {ei, c
1
i , c

2
i }. Let C =

∨n
i=1(¬c1i ∨ ¬c2i ). Note that except for C, all

other clauses have only two literals.

Lemma 3. Algorithm 1 never falsifies a clause that has only two literals.

Lemma 4. If the Delayer uses the strategy outlined above, then for any winning
Prover strategy, the clause falsified is C.
Proof. Suppose the clause falsified was D. We will show that if D �= C, then the
Delayer did not use our strategy. We consider the following cases:

Algorithm 1. Declare Routine
for all clauses (�1 → �2) in Fn do

if �1 = 1 then Declare �2 = 1.
if �2 = 0 and var(�1) /∈ U then Declare �1 = 0.

end for
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1. D involves variable ui for some i ∈ [n]:
Note that ui appears in clauses with either c1i or c2i . Since both c1i and c2i
block ui, it has to be the case that when ui was set by the Prover, the
variables c1i and c2i were unassigned. Now it is straightforward to see that if
the Delayer indeed used the declare routine described in Algorithm 1, then
all clauses involving ui become satisfied after ui is set by the Prover.

2. D is (ei → c1i ) or (¬ei → c2i ):
Suppose w.l.o.g. that D = (ei → c1i ). As a consequence of Lemma 3, it must
be the case that D was falsified because of the Prover choosing a value for
either ei or c1i . So we have two cases:

• Prover chose a value for ei to falsify D: So ei was unassigned just before
the query phase began. But if Algorithm 1 left ei unassigned, then this
means ci is unassigned or c1i �= 0. Hence if the Delayer indeed used
Algorithm 1, D could not have been falsified.

• Prover chose a value for c1i to falsify D: Following an argument just like
the previous case, if the Delayer indeed used Algorithm 1, then ci would
be unassigned at the start of the query phase only if ei = 0 or unassigned.
In both these cases D cannot be falsified by choosing a value for c1i . �

Theorem 5. Delayer scores at least n points against any Prover strategy.

Proof. From Lemma 4, it is sufficient to show that any Prover strategy that
falsifies C will give the Delayer a score of at least n. C can be falsified only if
all variables c1i , c2i have been assigned to 1. We observe that for any i ∈ [n],
the Prover can get at most one of c1i or c2i to be declared for free by setting ui

appropriately. To assign the other ci to 1, the Prover can either query ci directly
and set it to 1 or query ei and set it appropriately. Both these ways give the
Delayer 1 point. Hence for every i ∈ [n], the Delayer scores at least 1 point. �
With Theorem 1 this reproves the hardness of Fn for tree-like Q-Resolution,
already implicitly established in [18,19]:

Corollary 6. Formulas Fn require tree-like Q-Resolution proofs of size Ω(2n).

This bound is tight as tree-like Q-Resolution refutations of size O(2n) exist.

5 Hardness of the Formulas of Kleine Büning et al.

In our second example we look at a family of formulas first defined by Kleine
Büning, Karpinski and Flögel [20]. The formulas are known to be hard for Q-
Resolution and indeed for the stronger system IR-calc [8]. Here we use our tech-
nique to give an independent proof of their hardness in tree-like Q-Resolution.

Definition 7 (Kleine Büning, Karpinski and Flögel [20]). Consider the
clauses

C− = {¬y0} C0 = {y0,¬y0
1 ,¬y1

1}
C0

i = {y0
i , xi,¬y0

i+1,¬y1
i+1} C1

i = {y1
i ,¬xi,¬y0

i+1,¬y1
i+1} i ∈ [t − 1]

C0
t = {y0

t , xt,¬yt+1, . . . ,¬yt+t} C1
t = {y1

t ,¬xt,¬yt+1, . . . ,¬yt+t}
C0

t+i = {xt, yt+i} C1
t+i = {¬xi, yt+i} i ∈ [t]
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The KBKF(t) formulae are defined as the union of these clauses under the
quantifier prefix ∃y0, y

0
1 , y

1
1 ∀x1 ∃y0

2 , y
1
2 ∀x2, . . . ,∀xt−1 ∃y0

t , y1
t ∀xt ∃yt+1 . . . ∃yt+t.

We now want to show an exponential lower bound on proof size for the
KBKF(t) formulas via our game. We will assume throughout that t > 2. We
start with an informal description of the Delayer strategy.

Delayer Strategy – Informal Description

At any point of time during a run of the game, there is a partial assignment that
has been constructed by the Prover and Delayer. We define the following:

Definition 8. For any partial assignment α to the variables, we define zα to
be the index of the highest subscript such that an α assigns a 0 to one or more
existential variables with that subscript. If no such subscript exists, then z = 0.

For convenience, we will drop the subscript and just say z when the partial
assignment is clear from context. We usually mention the time during a run of
the game by referring to z instead of explicitly mentioning the induced partial
assignment. The idea behind the Delayer strategy is the following: We observe
that for all i < t − 2 and j ∈ {0, 1}, to falsify the clause Cj

i , it is necessary that
yj

i is set to 0 and both y0
i+1 and y1

i+1 are set to 1. The strategy we design will
not let the Prover win on clauses C−, C0, C0

i , or C1
i for any i < (t − 2). We do

this by declaring either y0
i+1 or y1

i+1 to 0 at a well chosen time. Furthermore, we
will show : (1) When the game ends, z ≥ t and (2) After any round in the game,
the Delayer has a score of at least O(z) It is easy to see that the lower bound of
Ω(t) for the score of the Delayer follows from statements (1) and (2).

Delayer Strategy – Details

Declare Phase: The Delayer sets y0 to 0 in the declare phase of the first round.
Let F be the set of all existential variables that were chosen to be forgotten

by the Prover in the forget phase of the previous round. The Delayer first does
the following “Reset Step”: For all variables y in F that had value 0 just before
the forget phase of the previous round, the Delayer declares y = 0. After the
reset step, the Delayer executes Algorithm 2 repeatedly until reaching a fixed
point. The notation y ← b means that the Delayer declares y = b if and only if
y is an unassigned variable. Also, we assume that z is updated automatically to
be the highest subscript for existential literals set to 0. We observe the following
about the reset step:

Observation 9. The reset step ensures that z always increases monotonically
(when z is measured at the beginning of each query phase).

Line 14 of Algorithm 2 gives us the following observation:

Observation 10. After the declare phase, for all i < z, the existential variables
y0

i and y1
i has been assigned a value.
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Algorithm 2. Declare Routine
1: y0

z ← 1, y1
z ← 1, z′ := z

2: if yxz
z �= 0 or xz unassigned then

3: for all i > z do y0
i ← 1; y1

i ← 1
4: end if
5: for i = t − 1 to 1 do
6: for j = 0 to 1 do
7: if Cj

i is not satisfied with only one literal l that is unassigned then Satisfy
Cj

i with that literal (if existential).
8: end for
9: end for

10: if z ≤ t − 2 and either y0
z+2 = 1 or y1

z+2 = 1 then y
1−xz+1
z+1 ← 0

11: if z �= z′, xz assigned and yxz
z = 0 then

12: if xz+1 unassigned then y0
z+1 ← 0 else y1−xz

z+1 ← 0
13: end if
14: for all i < z do y0

i ← 0, y1
i ← 0

Observation 11. For all i > z, Algorithm 2 assigns all y0
i and y1

i to 1 before
assigning any of them to 0.

Query Phase:
Let the variable queried be yb

i . From Observation 10, it is easy to see that i ≥ z.
We have the following cases:

• If i > t, then the Delayer replies with weights w0 = 2z−t−1 and w1 = 1−w0.
• Else z ≤ i ≤ t. We have two cases:

• If xi is unassigned, then the Delayer replies with weights w0 = 2z−i and
w1 = 1 − w0.

• Else xi holds a value. Then we have the following cases:
∗ If b = ¬xi, then the Delayer replies with weights w0 = 2z−i and

w1 = 1 − w0.
∗ Else b = xi and Delayer replies with weight w0 = 2z−j , where j is the

largest index such that ∀k : z < k ≤ j, xk is assigned and y1−xk

k = 1.
Weight w1 = 1 − w0.

We now analyze the above strategy: We start with the following lemma:

Lemma 12. If the Delayer uses the strategy outlined above, then against any
Prover, at the end of the game on KBKF(t), z ≥ t (where z is defined as in
Definition 8).

Remark 13. If the Prover choses to assign 1 to a variable queried in the query
phase on turn k, then by the query phase on turn k + 1, the value of z (index of
the rightmost zero) increments by at most 1. For the increase by 1 it is required
that yxz

z = 0 and that for all c ∈ {0, 1}, yc
z+1 and yc

z+2 are unassigned before the
query phase on turn k. If the Prover chose to assign 1 to the variable queried
and it results in a change of z, then it must cause any of y0

z+1, y1
z+1, y0

z+2 or
y1

z+2 to be set to 1, incrementing z be at most one.
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For all i ∈ [t], and z < t−1, let sz(yc
i ) denote the minimum (over all possible

Prover strategies) Delayer score when yc
i is assigned 1 by the Prover for the first

time starting from a partial assignment where the right most zero is in column
z and every variable to the right of column z is unassigned.

Combining Observation 9 with the fact that at the start of the game z = 0,
Lemma 12 implies that the Prover increases z by at least t in the process of
winning the game. We will now measure the scores that the Delayer accumulates.

Lemma 14. For all z < t − 1 and i < t, each of sz(y0
i ) and sz(y1

i ) is at least
2t−i lg 2t−z

2t−z−1 .

During a run of the game, z increases from 0 to t. Now we show that the Delayer
scores Ω(z) points during any run of the game on KBKF(t) for large enough t:

Lemma 15. There exists constants t0 > 0 and α > 0 such that for all t > t0,
at any point of time during a run of the game on KBKF(t), the Delayer has a
score of at least αz.

To show this lemma, we argue that the Delayer scores Ω(1) points for every
increment of z during the game. This immediately gives us the required claim.
Combining Lemma 12 and Lemma 15, we have:

Theorem 16. There exists a Delayer strategy that scores Ω(t) against any
Prover in the Prover-Delayer game on KBKF(t).

Corollary 17. KBKF(t) require tree-like Q-Resolution proofs of size 2Ω(t).

6 Conclusion

In this paper we have shown that lower bound techniques from classical proof
complexity can be transferred to the more complex setting of QBF. We have
demonstrated this with respect to prover-delayer games, even obtaining a char-
acterisation of tree-like size in Q-Resolution. Although tree-like (Q-)Resolution
is a weak system, it is an important one as it corresponds to runs of the plain
DLL algorithm, which serves as the basis of most SAT and QBF-solvers.

A very interesting question for further research is to understand how far
this transfer of techniques can be extended. In particular, it seems likely that
the very general game-theoretic approaches of [23] can also be utilised for QBF
systems. Two other seminal techniques that have found wide-spread applications
for classical Resolution are feasible interpolation [22], which also applies to many
further systems, and the size-width method of Ben-Sasson and Wigderson [5]. Is
it possible to use analogous methods for Q-Resolution and its extensions?
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Abstract. In this paper we present a method which can be used to
investigate on the positivity of a number sequence defined by a recurrence
relation having constant coefficients (in short, a C-recurrence).

Keywords: C-recurrences · Positive numbers sequence

1 Introduction

Succession rules (sometimes called ECO-systems) have been proved to be an
efficient tool in order to solve several combinatorial problems. The concept of
a succession rule was introduced in [6] to study reduced Baxter permutations,
and only later this has been recognized as an extremely useful tool for the ECO
method, a methodology applied for the enumeration of various combinatorial
structures [2].

An (ordinary) succession rule Ω is a system constituted by an axiom and a
set of productions. A production constructs the successors of any given label (k).
The rule Ω can be represented by means of a generating tree having the axiom
as the label of the root and each node labelled (k) at level n has k sons at level
n + 1.

A succession rule Ω defines a sequence of positive integers {fn}n≥0 where fn

is the number of the nodes at level n in the generating tree defined by Ω. By
convention the root is at level 0, so f0 = 1. The function fΩ(x) =

∑
n≥0 fnxn is

the generating function determined by Ω.
More recently, there have been some efforts in developing methods to pass

from a recurrence relation defining an integer sequence to a succession rule defin-
ing the same sequence; in this case we say that the succession rule and the
recurrence relation are equivalent.

Our work fits into this research line, and tries to deepen the relations between
succession rules and recurrence relations.

It is worth mentioning that almost all studies realized until now on this
topic have regarded linear recurrence relations with a finite number of integer
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 499–510, 2015.
DOI: 10.1007/978-3-319-15579-1 39
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coefficients [4,7]. We will address to these ones as C-finite recurrence relations,
and to the defined sequences as C-finite sequences [18].

Accordingly, our work will start considering C-finite recurrences. Compared
with the methods presented in [4,7], our approach is completely different.

To achieve this goal, we first translate the given C-finite recurrence relation
into an extended succession rule, which differs from the ordinary succession rules
since it admits both jumps and marked labels. Then we recursively eliminate
jumps and marked labels from such an extended succession rule, thus obtaining
an ordinary succession rule equivalent to the previous one. We need to point out
that this translation is possible only if a certain condition – called positivity con-
dition – is satisfied. Such a condition ensures that all the labels of the generating
tree are non marked, hence the sequence defined by the succession rule has all
positive terms.

If the recurrence relation has degree k with coefficients a1, . . . , ak, such a
condition can be expressed in terms of a set of k inequalities which can be
obtained from a set of quotients and remainders given by the coefficients. To the
authors’ knowledge, such a condition is completely new in literature. It directly
follows that our positive condition provides a sufficient condition for testing the
positivity of a C-finite sequence, then it is related to the so called positivity
problem.

Positivity Problem: given a C-finite sequence {fn}n≥0, establish if all its terms
are positive.

This problem was originally proposed as an open problem in [3], and then
re-presented in [16] (Theorems 12.1-12.2, pages 73-74), but no general solution
has been found yet.

It is worth mentioning that the positivity problem can be solved for a large
class of C-finite sequences, precisely those whose generating function is a
N-rational series. We also recall that the class of N-rational series is precisely
the class of the generating functions of regular languages, and that a Soittola’s
Corollary in [17] states that the problem of establishing whether a rational gen-
erating function is N-rational is decidable.

N-rational series have been recently revisited using modern combinatorial
techniques in [4,15], using different approaches and some algorithms to pass
from an N-rational series to a regular expression enumerated by such a series
have been proposed [1,13]. However, none of these techniques provides a method
to face C-finite recurrence relations which are not N-rational.

Following the attempt of enlightening some questions on positive sequences,
some researches have recently focused on determining sufficient conditions to
establish the possible positivity of a given C-finite recurrence relation, as inter-
estingly described in [11]. As a matter of fact, up to now, we only know that
the positivity problem is decidable for C-finite recurrences of two [12] or three
terms [14]. Another approach to tackle the positivity problem is to develop algo-
rithms to test possible positivity of recursively defined sequences (and, in par-
ticular, C-finite sequences) by means of computer algebra, as in [10].
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Our work fits into this research line, since the positive condition we propose
is a sufficient condition for testing the positivity of a C-finite sequence.

2 Basic Definitions and Notations

In this section we present some basic definitions and notations related to the
concept of succession rule. For further definitions and examples we address the
reader to [6].

Two succession rules are equivalent if they have the same generating function.
A succession rule is finite if it has a finite number of labels and productions.

For example, the two succession rules:{
(2)
(2) � (2)(2)

{
(2)
(k) � (1)k−1(k + 1)

are equivalent rules, and define the sequence fn = 2n. The one on the left is a
finite rule, since it uses only the label (2), while the one on the right is an infinite
rule.

According to the technique of colored label [8], in a succession rule there can
be labels (k)1 and (k)2 having the same number k of sons but having different
productions, in this case we refer to colored succession rules.

A slight generalization of the concept of ordinary succession rule is provided
by the so called jumping succession rule [9]. Roughly speaking, the idea is to
consider a set of succession rules acting on the objects of a class and producing
sons at different levels.

The usual notation to indicate a jumping succession rule Ω is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a)

(k)
j1� (e11(k))(e12(k)) . . . (e1k(k))

(k)
j2� (e21(k))(e22(k)) . . . (e2k(k))

...

(k)
jm� (em1(k))(em2(k)) . . . (emk(k))

The generating tree associated with Ω has the property that each node
labelled (k) lying at level n produces m sets of sons at level n + j1, n + j2, . . . ,
n+jm, respectively and each of such set has labels (ei1(k)), (ei2(k)), . . . , (eik(k))
respectively, 1 ≤ i ≤ m.

We need to point out that a node labelled (k) has precisely k sons, according
to the above definitions. A rule having this property is said to be consistent.
However, in many cases we can relax this constraint and consider rules, where
the number of sons is a function of the label k.

Another generalization is used in [5], where the authors deal with jumping
and marked succession rules. In this case the labels appearing in a jumping
succession rule can be marked, and the marked labels are considered together
with the unmarked ones.
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A jumping and marked generating tree is a rooted labelled tree where there
appear marked and unmarked labels according to the corresponding succession
rule. The main property is that in the generating tree a marked label (k) kills
or annihilates the unmarked label (k) lying on the same level n. In particular,
the enumeration of the combinatorial objects in a class is the difference between
the number of unmarked and marked labels lying on a given level.

For any label (k), we introduce the following notation for generating tree
specifications:

(k) = (k); (k)n = (k) . . . (k)︸ ︷︷ ︸
n

n > 0; (k)−n = (k) . . . (k)︸ ︷︷ ︸
n

n > 0.

3 A Method to Translate C-Sequences into Succession
Rules

The main purpose of our research is to develop a general formal method to
translate a given recurrence relation into a succession rule defining the same
number sequence. In this case we will say that the recurrence relation and the
succession rules are equivalent by abuse of language.
This section is organized as follows.

i) We deal with C-finite recurrences of the form

fn = a1fn−1 + a2fn−2 + · · · + akfn−k ai ∈ Z, 1 ≤ i ≤ k (1)

with default initial conditions, i.e. f0 = 1 and fh = 0 for all h < 0. First, we
translate the given C-finite recurrence relation into an extended succession
rule, possibly using both jumps and marked labels (Section 3.1).

ii) Then, we recursively eliminate jumps and marked labels from such an
extended succession rule, thus obtaining a finite succession rule equivalent
to the previous one (Section 3.2). We remark that steps i) and ii) can be
applied independently of the positivity of {fn}n≥0, but at this step we can-
not be sure that all the labels of the obtained rule are nonnegative integers.

iii) We state a condition to ensure that the labels of the obtained succes-
sion rule are all nonnegative. If such a condition holds, then the sequence
{fn}n≥0 has all positive terms, thus we refer to this as positivity condition
(Section 3.3).

3.1 C-Sequences with Default Initial Conditions

Let us consider a C-finite recurrence relation expressed as in (1), with default ini-
tial conditions and the related C-finite sequence {fn}n≥0. We recall that the gen-
erating function of {fn}n≥0 is rational, and precisely it is f(x) =

∑
n≥0 fnxn =

1
1−a1x−a2x2−···−akxk .
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The first step of our method consists into translating the C-finite recurrence
relation (1) into an extended succession rule. The translation is rather straight-
forward, since in practice it is just an equivalent way to represent the recurrence
relation.

Proposition 1. The recurrence relation (1) with default initial conditions is
equivalent to the following extended succession rule:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a1)
(a1)

1� (a1)a1

(a1)
2� (a1)a2

...

(a1)
k� (a1)ak

(2)

For example, the recurrence relation fn = 3fn−1 +2fn−2 −fn−3 with default
initial conditions, defines the sequence 1, 3, 11, 38, 133, 464, 1620, 5655, . . . , and
it is equivalent to the following extended succession rule:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)
(3) 1� (3)3

(3) 2� (3)2

(3) 3� (3)

(3)

Figure 1 shows the first few levels of the associated generating tree.

38(3) (3)(3)(3)(3) (3)(3) (3) (3)(3)(3) (3)(3) (3) (3)(3)(3) (3)(3) (3)(3)(3)(3)(3)(3) (3)(3)(3)(3)(3)(3) (3)

(3)

(3)(3)

(3)(3)(3)

(3)(3)

(3)(3)(3) (3)(3)

(3)(3)(3)(3)

(3)(3)(3)

(3)(3)(3)

1

3

11

(3)

Fig. 1. Four levels of the generating tree associated with the succession rule (3)

3.2 Elimination of Jumps and Marked Labels

The successive step of our method consists into recursively eliminating jumps
from the extended succession rule (2) in order to obtain a finite succession rule
which is equivalent to the previous one. Once jumps have been eliminated we
will deal with marked labels.
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Proposition 2. The succession rule:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a1)
(a1) � (a1 + a2)(a1)a1−1

(a1 + a2) � (a1 + a2 + a3)(a1)a1+a2−1

...
(
∑k−1

l=1 al) � (
∑k

l=1 al)(a1)(
∑k−1

l=1 al)−1

(
∑k

l=1 al) � (
∑k

l=1 al)(a1)(
∑k

l=1 al)−1

(4)

is equivalent to the recurrence relation fn = a1fn−1 + a2fn−2 + · · · + akfn−k,
ai ∈ Z, 1 ≤ i ≤ k, with default initial conditions.

Please notice that the numbers inside a label are the coefficients of the recur-
rence relation and their algebraic sum gives the number of successors of that
label. Obviously, the labels (a1), (a1 + a2), · · · , (

∑k
l=1 al) are different labels

even if the algebraic sums of the numbers inside labels gives the same value.
For example, given the recurrence relation fn = 3fn−1 + 4fn−3 with default ini-
tial conditions, in this case a1 = 3, a2 = 0, a3 = 4, we have the following colored
succession rule: ⎧⎪⎪⎨

⎪⎪⎩
(3)1
(3)1 �(3)2(3)21
(3)2 �(7)(3)21
(7) �(7)(3)61

Proof. Let Ak(x) be the generating function of the label (
∑k

l=1 al) related to
the succession rule (4). We have:

A1(x) = 1 + (a1 − 1)xA1(x) + (a1 + a2 − 1)xA2(x) + . . .

· · · + (a1 + a2 + · · · + ak − 1)xAk(x);

A2(x) = xA1(x);

A3(x) = xA2(x) = x2A1(x);
...

Ak−1(x) = xAk−2(x) = xk−2A1(x);

Ak(x) = xAk−1(x) + xAk(x) = xk−1

1−x A1(x).

Therefore,

A1(x) = 1 + x(a1 − 1)A1(x) + x2(a1 + a2 − 1)A1(x) + . . .

· · · + xk

1−x (a1 + a2 + · · · + ak − 1)A1(x),

and we obtain the generating function A1(x) = 1−x
1−a1x−a2x2−···−akxk .
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At this point we can consider the generating function determined by the
succession rule (4) as following:∑k

i=1 Ai(x) = A1(x) + A2(x) + · · · + Ak−1(x) + Ak(x) =

= A1(x) + xA1(x) + · · · + xk−2A1(x) + xk−1

1−x A1(x) =

= (1−x)+x(1−x)+···+xk−2(1−x)+xk−1

1−a1x−a2x2−···−akxk =

= 1
1−a1x−a2x2−···−akxk .

Following the previous statement, the extended succession rule (3) – deter-
mined in the previous section – can be translated into the following succession
rule: ⎧⎪⎪⎨

⎪⎪⎩
(3)
(3) �(5)(3)2

(5) �(4)(3)4

(4) �(4)(3)3

We observe that the previously obtained succession rule is an ordinary finite
succession rule, but it may happen that the value of the label (

∑i
l=1 al) is

negative, for some i with i ≤ k, then the succession rule (4) contains marked
labels.

For example, the recurrence relation fn = 5fn−1 − 6fn−2 + 2fn−3, with
default initial conditions, which defines the sequence 1,5,19,67,231,791,2703, . . . ,
(sequence A035344 in the The On-Line Encyclopedia of Integer Sequences) is
equivalent to the following succession rule:⎧⎪⎪⎨

⎪⎪⎩
(5)
(5) �(−1)(5)4

(−1) �(1)(5)2

(1) �(1)

Therefore our next goal is to remove all possible marked labels from the
succession rule. We observe that in order to obtain this goal, the recurrence
relation fn = a1fn−1 + a2fn−2 + · · · + akfn−k with default initial conditions
needs a1 > 0. We assume that this condition holds throughout the rest of the
present section.

In order to furnish a clearer description of our method, we start considering
the case k = 2.

Proposition 3. The C-finite recurrence fn = a1fn−1 + a2fn−2, with default
initial conditions, and having a1 > 0, is equivalent to⎧⎪⎨

⎪⎩
(a1)
(a1) � (0)q2(r2)(a1)a1−(q2+1)

(r2) �
(
(0)q2(r2)

)q2
(0)q2(r2)(a1)r2−(q2+1)2

(5)
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where, by convention, the label (0) does not produce any son, and q2, r2 are
defined as follows:
– if a1 + a2 ≤ 0 then q2, r2 > 0 such that |a1 + a2| = q2a1 − r2;
– otherwise q2 = 0, r2 = a1 + a2.

Proof. We have to distinguish two cases: in the first one a1 + a2 ≤ 0 and in the
second one a1 + a2 > 0.

If a1 + a2 ≤ 0, we have to prove that the generating tree associated to the
succession rule (5) is obtained by performing some actions on the generating
tree associated to the extended succession rule (6) which is obviously equivalent
to the recurrence fn = a1fn−1 + a2fn−2 having a1 > 0 and a2 < 0, with f0 = 1
and fh = 0 for each h < 0. ⎧⎪⎨

⎪⎩
(a1)
(a1)

1� (a1)a1

(a1)
2� (a1)a2

(6)

The proof consists in eliminating jumps and marked labels at each level of
the generating tree associated with succession rule (6), sketched in Figure 2,
by modifying the structure of the generating tree, still maintaining fn nodes at
level n, for each n.

Let (a1) be a label at a given level n. We denote by B1 the set of a1 labels
(a1) at level n+1 and by B2 the set of a2 labels (a1) at level n+2, see Figure 2.
We remark that (a1)a2 = (a1) . . . (a1)︸ ︷︷ ︸

−a2

.

B(   )a . . . a(   )1
B

2 1(   )a. ..a(   )12
B

1(   )a . . . a(   )1
B

21(   )a a(   )1. . .B
1

1(   )a. ..a(   )12
B. ..

1(   )aa(   )1
B

1

a(   )1

B
1 1(   )a . ..

1(   )a 1(   )a . . . a(   )1

1(   )a a(   )1. . .B
1

. ..
1(   )aa(   )1

B
11(   )a a(   )1. . .B

1
. ..

. ..
1(   )aa(   )1

B
1

. . . a(   )11(   )a

. . .. ..

. . .
11

Fig. 2. Step 1

In order to eliminate both jumps and marked labels in B2 at level 2 produced
by the root (a1) at level 0, we have to consider the set of a1 labels (a1) in B1 at
level 2 obtained by (a1) which lie at level 1. At level 2, each label (a1) in a given
set B1 kills one and only one marked label (a1) in B2. At this point |a1 + a2|
labels (a1) in B2 always exist at level 2.

In order to eliminate such marked labels we have to consider more than a
single set B1 of label (a1) at level 2. Let q2 be a sufficient number of sets B1 at
level 2 able to kill all the labels (a1) in B2 at level 2. Therefore |a1+a2| = q2a1−r2
with q2, r2 > 0.
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We have the desired number of labels (a1) at level 2 by setting q2 labels (a1)
at level 1 equal to (0) and one more label (a1) to (r2). Note that the marked
labels at level 2 are not generated and the labels (a1) at level 1 are revised in
order to have the right number of labels at level 2, see Figure 3.

(   )2

1(   )a . ..
1(   )a

a(   )1 . . . a(   )1 a(   )1

B
1

2

1(   )a . ..

1(   )a . . . a(   )1
B

2 1(   )a. ..a(   )12
B

1(   )a . . . a(   )1
B

2

a(   )1

. . .

. ..

. ..

. . .

1
B

q

(   ) 00 (   )r

Fig. 3. Step 2

Note that, when a label (a1) kills a marked label (a1) at a given level n,
then the subtree, having such label (a1) as its root, kills the subtree having
(a1) as its root. So, when a label (a1) of B1 kills a label (a1) of B2 at level 2,
then the two subtrees having such labels as their roots are eliminated too, see
Figure 3.

On the other hand, the q2 +1 sets B2 at level 3 obtained by the q2 +1 labels
at level 1, once labelled with (a1) and now having value r2, 0, . . . , 0, respectively,
are always present in the tree, see Figure 3. In order to eliminate such undesired
marked labels we can only set the production of (r2). As a set B2 at a given
level is eliminated by using q2 + 1 labels at previous level then (r2) must give
(r2) (0) . . . (0)︸ ︷︷ ︸

q2

exactly q2 +1 times. This explains the first part of the production

rule of the label (r2) in succession rule (5). Since (r2) has r2 sons then the
remaining r2 − (q2 +1)2 labels are set to be equal to (a1) as in the previous case,
see Figure 4.

(   )

00(   )r2(   ) ... . .2r(   ) (   )0 0(   ). .a(   )1. . .a(   )11(   )a . ..
1(   )a (   )00(   )r2(   ) .. . .. 2r(   ) (   )0 0(   ). .

a(   )1 . . . a(   )1

2
q

. . . 0(   )(   )02r(   ) . . .
2

q

. . . 0(   )(   )02r(   )

. ..

2
q

0(   )r2(   )1(   )a . ..

a(   )1

. . .

. ..

. . .

1
B 0

(   )

Fig. 4. Step 3
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By the way, the modified q2+1 labels having value r2, 0, . . . , 0, respectively, at

a given level n, produce the labels
(
(0)q2(r2)

)q2+1

(a1)r2−(q2+1)2 at level n + 1.

Just as obtained for levels 1 and 2, the labels
(
(0)q2(r2)

)q2+1

automatically
annihilate the remaining q2 + 1 sets B2 of marked labels at level n + 2, once
obtained by the modified q2 + 1 labels at level n, see Figure 4.

Till now we have modified a portion P of the total generating tree in a way
that it does not contain any marked label. Note that, the remaining labels (a1)
will be the roots of subtrees which are all isomorphic to P .

The value fn defined by the tree associated to the extended succession
rule (6), is given by the difference between the number of non-marked and
marked labels. The just described algorithm modifies the number of generated
non-marked labels and sets to 0 the number of marked ones in a way that fn is
unchanged, for each n, so the succession rule (5) is equivalent to the recurrence
fn = a1fn−1 + a2fn−2.

In the case a1 + a2 > 0 we have marked labels only if a2 < 0. In this case
a single set B1 is sufficient to kill all the marked labels in B2 at level 2. By the
way, both in the case a2 < 0 and a2 > 0 we have that q2 = 0 and r2 = a1 + a2,
and the succession rule (5) has the same form of the rule (4) which is equivalent
to the recurrence fn = a1fn−1 + a2fn−2 having a1 > 0 and a2 ∈ Z, with f0 = 1
and fh = 0 for each h < 0.

The statement of Proposition 3 can be naturally extended to the general
case k > 2.

Proposition 4. The C-finite sequence {fn}n satisfying fn = a1fn−1+a2fn−2+
· · · + akfn−k, with default initial conditions and a1 > 0 is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1)
(a1) � (0)q2(r2)(a1)a1−(q2+1)

(r2) �
(
(0)q2(r2)

)q2
(0)q3(r3)(a1)r2−(q2(q2+1)+q3+1)

...

(ri) �
(
(0)q2(r2)

)qi
(0)qi+1(ri+1)(a1)ri−(qi(q2+1)+qi+1+1)

...

(rk) �
(
(0)q2(r2)

)qk
(0)qk(rk)(a1)rk−(qk(q2+1)+qk+1)

(7)

where the parameters qi and ri, with 2 ≤ i ≤ k, can be determined in the following
way:
– if

∑i
l=1 al ≤ 0 then qi, ri > 0 such that |∑i

l=1 al| = qia1 − ri,
– otherwise qi = 0 and ri =

∑i
l=1 al.

Proof. It is omitted for brevity sake.
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We can translate the previously considered recurrence relation fn = 5fn−1 −
6fn−2 + 2fn−3, with default initial conditions, into the following ordinary suc-
cession rule by using Proposition 4:⎧⎪⎪⎨

⎪⎪⎩
(5)
(5) �(0)(4)(5)3

(4) �(0)(4)(1)(5)
(1) �(1)

being q2 = 1, r2 = 4, q3 = 0 and r3 = 1.

3.3 Positivity Condition

The statement of Proposition 4 is indeed a tool to translate C-finite recurrences
into finite succession rules. However this property turns out to be effectively
applicable only when the labels of the succession rule are all positive, and the
reader can easily observe that Proposition 4 does not give us an instrument to
test whether this happens or not.

In particular, if the labels of the succession rule are all positive then the
terms of the C-finite sequence are all positive. It is then interesting to relate our
problem with the so called positivity problem, which we have already mentioned
in the Introduction.

Corollary 1. Let us consider the recurrence relation fn = a1fn−1 + a2fn−2 +
· · · + akfn−k having a1 > 0 and ai ∈ Z, 2 ≤ i ≤ k, with f0 = 1 and fh = 0 for
each h < 0. If⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 − (q2 + 1) ≥ 0
r2 − (q2(q2 + 1) + q3 + 1) ≥ 0
...
ri − (qi(q2 + 1) + qi+1 + 1) ≥ 0 , 3 ≤ i ≤ k − 1
...
rk − (qk(q2 + 1) + qk + 1) ≥ 0

(8)

then fn > 0 for all n.

As previously mentioned, condition (8) ensures that all the labels of the
succession rules equivalent to the given C-finite recurrence are positive, hence
all the terms fn are positive. Thus it can be viewed as a sufficient condition to
test the positivity of a given C-finite sequence.

Note that our criterion deals with a subclass of C-finite recurrence relations
as it requires that a1 > 0.

4 Conclusions and Further Developments

In this paper we have presented a general method to translate a given C-finite
recurrence into an ordinary succession rule and we have proposed a sufficient
condition for testing the positivity of a given C-finite sequence.
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A further development could take into consideration the average complexity
necessary to prove the positivity of a given C-finite sequence.

Afterwards, it should be interesting to develop the study concerning the
C-finite recurrences with generic initial conditions in order to examine in depth
the potentiality of our method.
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Abstract. Interval temporal logics provide a natural framework for
temporal reasoning about interval structures over linearly ordered
domains, where intervals are taken as the primitive ontological entities.
Their computational behaviour and expressive power mainly depend on
two parameters: the set of modalities they feature and the linear orders
over which they are interpreted. In this paper, we consider all fragments
of Halpern and Shoham’s interval temporal logic HS with a decidable
satisfiability problem over the class of all dense linear orders, and we
provide a complete classification of them in terms of their complexity
and expressiveness by solving the last two open cases.

Keywords: Computational complexity · Interval temporal logics · Sat-
isfiability · Expressiveness · Decidability

1 Introduction

Most temporal logics proposed in the literature assume a point-based struc-
ture of time. They have been successfully applied in a variety of fields, ranging
from the specification and verification of communication protocols to temporal
data mining. However, a number of relevant application domains, such as, for
instance, those of planning and synthesis of controllers, are often characterized
by advanced features like durative actions (and their temporal relationships),
accomplishments, and temporal aggregations, which are neglected or dealt with
in an unsatisfactory way by point-based formalisms. The distinctive features of
c© Springer International Publishing Switzerland 2015
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interval temporal logics turn out to be useful in these domains. As an example,
they allow one to model telic statements [18], that is, statements that express
goals or accomplishments, like the statement: “The airplane flew from Venice to
Toronto” (see [8, Sect. II.B]). Temporal logics with interval-based semantics have
also been proposed as suitable formalisms for the specification and verification of
hardware [15] and of real-time systems [10]. Finally, successful implementations
of interval-based systems can be found in the areas of learning (the adaptive
learning system TERENCE [11], that provides a support to poor comprehen-
ders and their educators, is based on the so-called Allen’s interval algebra [3])
and real-time data systems (the algorithm RISMA [13], for performance and
behaviour analysis of real-time data systems, is based on Halpern and Shoham’s
modal logic of Allen’s relations [12]).

The variety of binary relations between intervals in a linear order was first
studied by Allen [3], who investigated their use in systems for time management
and planning. In [12], Halpern and Shoham introduced and systematically ana-
lyzed the (full) modal logic of Allen’s relations (HS for short), that features one
modality for each Allen relation. In particular, they showed that HS is highly
undecidable over most classes of linear orders. This result motivated the search
for (syntactic) fragments of HS offering a good balance between expressiveness
and computational complexity. During the last decade, a systematic analysis has
been carried out to characterize the complexity of the satisfiability problem for
HS fragments [4,5,16], as well as their relative expressive power [1,2,5]. Such
an analysis pointed out that such characterizations also depend on the class of
linearly ordered set over which formulae are interpreted.

This paper aims at completing the classification of decidable HS fragments
with respect to both their complexity and expressiveness, relative to the class
of (all) dense linear orders. For our purposes, the class of dense linear orders
and the linear order of the rational numbers Q are indistinguishable. Thus, all
the results presented here directly apply to Q as well. The paper is organized as
follows. In Section 2, we introduce syntax and semantics of (fragments of) HS.
Next, in Section 3 we summarize known results about dense linear orders. In
Section 4 and Section 5, we solve the last two open problems, thus completing
the picture for the class of dense linear structures. It is worth mentioning that
an analogous classification has been provided in [5] for the class of finite linear
orders, the class of discrete linear orders, the linear order of the natural numbers
N, and the linear order of the integers Z.

2 The Modal Logic of Allen’s Relations

Let us consider a linearly ordered set D = 〈D,<〉, where D is an element domain
and < is a total ordering on it. An interval over D is an ordered pair [x, y], where
x, y ∈ D and x ≤ y. An interval is called a point interval if x = y and a strict
interval if x < y. In this paper, we assume the strict semantics, that is, we
exclude point intervals and only consider strict intervals. The adoption of the
strict semantics, excluding point intervals, instead of the non-strict semantics,
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HS modalities

〈A〉
〈L〉
〈B〉
〈E〉
〈D〉
〈O〉

Allen’s relations

[x, y]RA[x
′, y′] ⇔ y = x′

[x, y]RL[x
′, y′] ⇔ y < x′

[x, y]RB [x
′, y′] ⇔ x = x′, y′ < y

[x, y]RE [x
′, y′] ⇔ y = y′, x < x′

[x, y]RD[x′, y′] ⇔ x < x′, y′ < y

[x, y]RO[x
′, y′] ⇔ x < x′ < y < y′

Graphical representation
x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Fig. 1. Allen’s interval relations and the corresponding HS modalities

which includes them, conforms to the definition of interval adopted by Allen
in [3], but differs from the one given by Halpern and Shoham in [12]. It has
at least two strong motivations: first, a number of representation paradoxes
arise when the non-strict semantics is adopted, due to the presence of point
intervals, as pointed out in [3]; second, when point intervals are included there
seems to be no intuitive semantics for interval relations that makes them both
pairwise disjoint and jointly exhaustive. If we exclude the identity relation, there
are 12 different relations between two strict intervals in a linear order, often
called Allen’s relations [3]: the six relations RA (meets or adjacent), RL (after
or later), RB (starts or begins), RE (finishes or ends), RD (during), and RO

(overlaps), depicted in Fig. 1, and their inverses, that is, RX = (RX)−1, for each
X ∈ {A,L,B,E,D,O}.

We interpret interval structures as Kripke structures with Allen’s relations
playing the role of the accessibility relations. Thus, we associate a modality 〈X〉
with each Allen relation RX . For each X ∈ {A,L,B,E,D,O}, the transpose
of modality 〈X〉 is modality 〈X〉, corresponding to the inverse relation RX of
RX . Halpern and Shoham’s logic HS [12] is a multi-modal logic with formulae
built from a finite, non-empty set AP of atomic propositions (also referred to
as proposition letters), the propositional connectives ∨ and ¬, and a modality
for each Allen relation. With every subset {RX1 , . . . , RXk

} of these relations,
we associate the fragment X1X2 . . .Xk of HS, whose formulae are defined by the
grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,

where p ∈ AP. The other propositional connectives and constants (e.g., ∧, →,
and 	), as well as the dual modalities (e.g., [A]ϕ ≡ ¬〈A〉¬ϕ), can be derived in
the standard way.

The (strict) semantics of HS is given in terms of interval models M =
〈I(D), V 〉, where D is a linear order, I(D) is the set of all (strict) intervals over
D, and V is a valuation function V : AP → 2I(D), which assigns to each atomic
proposition p ∈ AP the set of intervals V (p) on which p holds. The truth of a
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formula on a given interval [x, y] in an interval model M is defined by structural
induction on formulae as follows:

– M, [x, y] � p if and only if [x, y] ∈ V (p), for each p ∈ AP;
– M, [x, y] � ¬ψ if and only if it is not the case that M, [x, y] � ψ;
– M, [x, y] � ϕ ∨ ψ if and only if M, [x, y] � ϕ or M, [x, y] � ψ;
– M, [x, y] � 〈X〉ψ if and only if there exists [x′, y′] such that [x, y]RX [x′, y′]

and M, [x′, y′] � ψ, for each modality 〈X〉.
Formulae of HS can be interpreted over a given class of interval models; we
identify the class of interval models over linear orders in C with the class C itself.
Thus, we will use, for example, the expression ‘formulae of HS are interpreted
over the class C of linear orders’ instead of the extended one ‘formulae of HS
are interpreted over the class of interval models over linear orders in C’. Among
others, we mention the following important classes of linear orders: (i) the class
of all linear orders Lin; (ii) the class of all dense linear orders Den, that is,
those in which for every pair of different points there exists at least one point
in between them; (iii) the class of all weakly discrete linear orders WDis, that
is, those in which every element, apart from the greatest one, if it exists, has an
immediate successor, and every element, other than the least one, if it exists, has
an immediate predecessor; (iv) the class of all strongly discrete linear orders Dis,
that is, those in which for every pair of different points there are only finitely
many points in between them; (v) the class of all finite linear orders Fin, that
is, those having only finitely many points; (vi) the singleton classes consisting of
the standard linear orders over R, Q, Z, and N. The mirror image (or, simply,
mirror) of a fragment F is obtained by simultaneously substituting 〈A〉 with
〈A〉, 〈B〉 with 〈E〉, 〈B〉 with 〈E〉, 〈O〉 with 〈O〉, 〈L〉 with 〈L〉, and the other
way around. When interpreted over left/right symmetric classes of structures
(i.e., classes C such that if C contains a linear order D = 〈D,≺〉, then it also
contains a linear order isomorphic to its dual linear order Dd = 〈D,�〉, where �
is the inverse of ≺), such as Den, all computational properties of a fragment are
preserved for its mirror one; thanks to this observation, we can safely deal with
only one fragment for each pair of mirror fragments.

3 Known and Unknown Results

It has been proved in [1] that there are precisely 9 different optimal definabili-
ties that hold among HS modalities in the dense case. As a consequence, only
966 HS fragments are expressively different (out of 4096 different subsets of 12
modalities). Of those, 146 are decidable, thanks to the following results:

Undecidability: we know from [4] that each fragment containing (as definable)
O, AD, or AD is undecidable;

Non-primitive recursive: the decidability of AABB has been proved in [14],
where it has also been shown that each fragment containing AAB or AAB is
non-primitive recursive;
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Complexity Class

1: Non-primitive recursive

2: EXPSPACE-complete

3: NEXPTIME-complete

4: PSPACE-complete

5: NP-complete

Definabilities

1) 〈L〉p ≡ 〈A〉〈A〉p
2) 〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p
3) 〈L〉p ≡ 〈O〉(〈O〉	 ∧ [O]〈D〉〈O〉p)
4) 〈L〉p ≡ 〈B〉[D]〈B〉〈D〉〈B〉p
5) 〈L〉p ≡ 〈O〉[E]〈O〉〈O〉p
6) 〈L〉p ≡ 〈O〉(〈O〉	 ∧ [O]〈B〉〈O〉〈O〉p)
7) 〈L〉p ≡ 〈O〉(〈O〉	 ∧ [O][L]〈O〉〈O〉p)
8) 〈O〉p ≡ 〈E〉〈B〉p
9) 〈D〉p ≡ 〈E〉〈B〉p
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Fig. 2. Decidable fragments of HS in the dense case and their relative expressive power
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ExpSpace-completeness: as a consequence of the results presented in [8], we
know that ABBL is in ExpSpace, and each fragment containing AB or AB
is ExpSpace-hard (in particular, the hardness result given in [8] for ABB
can be suitably rephrased to deal with the smaller fragments AB and AB);

NExpTime-completeness: it has been proved in [7] that AA is in NExpTime,
and both A and A are NExpTime-hard;

PSpace-completeness: each sub-fragment of BBDDLL that contains (as defin-
able) D or D is shown to be PSpace-complete in [6,16].

The purpose of this paper is to fill in the few gaps still uncovered by this
collection of results. Here, we shall prove that:(i) BBLL and all its fragments are
NP-complete (observe that each fragment is NP-hard, given that it is at least
as expressive as propositional logic), and (ii) all the fragments that contain AB
or AB are non-primitive recursive. The aforementioned results allow us to draw
a picture that encompasses all HS fragments, ordered according to their relative
expressive power and grouped by computational complexity. We show here such
a picture (see Fig. 2), limited to all and only decidable HS fragments (for the
sake of readability, we omit fragments that are expressively equivalent or mirror
image of another fragment featured in the picture). In Fig. 2 we also show the 9
definabilities that hold among HS modalities over dense linear orders.

4 NP-Complete Fragments

In this section we show that the fragment BBLL is in NP (NP-completeness
immediately follows as propositional logic is embedded into BBLL). By defin-
ing a suitable notion of pseudo-model for formulae of BBLL we can show that
each satisfiable formula admits a pseudo-model of size at most P (|ϕ|) for some
polynomial P . For lack of space, in this paper we only give the intuition behind
the concept of pseudo-model and the main ideas behind the small pseudo-model
theorem. A detailed account of the proof can be found in [9].

We start the discussion by considering the fragment LL. The semantics of
the interval modalities implies that intervals with the same ending point agree
on the truth of 〈L〉-formulae (i.e., formulae of the kind 〈L〉ϕ); symmetrically,
intervals with the same beginning point agree on 〈L〉-formulae. Hence, given a
model M for a formula ϕ, we can associate to every point x the set of its LL-
requests, defined as the pair of sets (Lx, Lx), where Lx contains all formulae ψ
in the closure of ϕ (that is, the set of all sub-formulae of ϕ and their negations)
such that 〈L〉ψ is true over all intervals [y, x], and Lx contains all formulae ψ in
the closure of ϕ such that 〈L〉ψ is true over all intervals [x, y]. Since the closure
of a formula is a finite set, we can partition the domain of the model into a finite
number of clusters of points with the same set of LL-requests. Moreover, by the
transitivity of both 〈L〉 and 〈L〉, we have that the set of LL-requests is monotone
with respect to the ordering of points, that is, for every pair of points x < y we
have Lx ⊇ Ly and Lx ⊆ Ly. This implies that every cluster is either a single
point or a segment of D, and that the number of clusters is at most 4|ϕ|.
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Fig. 3. A pseudo-model for BBLL

A pseudo-model for LL is an abstract representation of the partitioning. It is
formally defined as a finite LL-sequence of triples:

(L0, L0, T ype0), (L1, L1, T ype1), . . . , (Ln, Ln, T ypen),

where each Type is either point or segment, and such that: (i) the monotonicity
of LL-requests is respected; (ii) the first and the last triple of the sequence are
of type segment; (iii) clusters of type point cannot be adjacent. To represent a
well-formed model for ϕ, an LL-sequence must respect the following additional
constraints:

– it must be consistent : for every pair of indexes i < j there must exists an
atom F (that is, a maximally consistent subset of the closure) that contains
the formula 〈L〉ψ for every ψ ∈ Lj , the formula ¬ξ for every ξ �∈ Li, the
formula 〈L〉η for every η ∈ Li and the formula ¬ζ for every ζ �∈ Lj ;

– it must be L-fulfilling : for every index i and every formula ψ ∈ Li there must
exists a pair of indexes i < j < k and atom F containing ψ and consistent
with the clusters j and k;

– it must be L-fulfilling, which is defined analogously.

The consistency condition guarantees that [L]- and [L]-formulae are satisfied,
while the fulfillment conditions guarantee that 〈L〉- and 〈L〉-formulae are satisfied
as well. We have already observed that the number of clusters (and thus, the
length of an LL-sequence) is bounded by 4|ϕ|. Hence, by guessing a LL-sequence
and then checking it for consistency and fulfillment we can easily obtain an
NP procedure for deciding the satisfiability of a formula in LL.

The extension of the above result to the full BBLL language is based on the
following observation. Given a model for the formula and an interval [x, y] we
define the set of BB-requests of the interval as the pair (B[x,y], B[x,y]), where
B[x,y] contains all formulae ψ in the closure of ϕ such that 〈B〉ψ is true on [x, y],
and B[x,y] contains all formulae ξ in the closure of ϕ such that 〈B〉ξ is true on
[x, y]. Fixed a point x in the model, we have that the sets of BB-requests of
the intervals [x, y] with begin point x respect the same monotonicity property
as for LL-requests: for every pair of points y < z we have B[x,y] ⊆ B[x,z] and
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B[x,y] ⊇ B[x,z]. Hence, it is possible to partition the intervals starting in any given
point x into at most 4|ϕ| “points” and “segments”. A pseudo-model for BBLL is
then made of the following components (see Fig. 3 for a graphical account):

– an LL-sequence σLL = (L0, L0, T ype0), (L1, L1, T ype1), . . . , (Ln, Ln, T ypen)
defining the partitioning of LL-requests;

– for every cluster (Li, Li, T ypei) of the LL-sequence, a BB-sequence σi
BB

=
(Bi, Bi, T ypei), (Bi+1, Bi+1, T ypei+1), . . . , (Bm, Bm, T ypem) representing all
intervals [x, y] such that x belongs to the ith cluster (Li, Li, T ypei). σi

BB
must

be a refinement of the partitioning (Li, Li, T ypei) . . . (Ln, Ln, T ypen).

The consistency and the fulfillment condition are suitably extended to guarantee
satisfiability of BB-formulae. Since the size of a BBLL pseudo-model is quadratic
in the size of the formula, we can easily obtain an NP decision procedure that
guesses a pseudo-model and checks the satisfiability of a formula in BBLL.

Theorem 1. The satisfiability problem for the logic BBLL and each one of its
fragments, interpreted over the class of dense linear orders, is NP-complete.

5 Non-Primitive Recursive Fragments

As we have mentioned, the last piece needed to complete the picture in Fig. 2
concerns the non-primitive recursive fragments. In [14] the non-primitive recur-
siveness of AAB and AAB has been proved. We shall prove here that, in actuality,
every fragment that contains AB or AB is non-primitive recursive.

Lossy counter machines are a variant of Minsky counter automata where
transitions may non-deterministically decrease the values of counters. A compre-
hensive survey on faulty machines and on the relevant complexity, decidability,
and undecidability results can be found in [17]. Formally, a counter automaton
is a tuple A = (Q, q0, C,Δ), where Q is a finite set of control states, q0 ∈ Q is
the initial state, C = {c1, . . . , ck} is the set of counters, whose values range over
N, and Δ is a transition relation. The relation Δ is a subset of Q×L×Q, where
L is the instruction set L = {inc, dec, ifz}×{1, . . . , k}. A configuration of A is a
pair (q, v̄), where q ∈ Q and v̄ is the vector of counter values. A run of a Minsky
(i.e., with no error) counter automaton is a finite or infinite sequence of config-
urations such that, for every pair of consecutive configurations (q, v̄), (q′, v̄′), a
transition (q, v̄) l−→ (q′, v̄′) has been taken (for some (q, l, q′) ∈ Δ). The value of
v̄′ is obtained from the value of v̄ by performing instruction l, where l = (dec, i)
requires vi > 0 and l = (ifz, i) requires vi = 0. In lossy machines, which is
the type in which we are interested, once a faulty transition has been taken,
counter values may have been decreased nondeterministically before or after the
execution of the exact transition by an arbitrary natural number. We use the
notation (q, v̄) l−→† (q′, v̄′) to denote that there exist v̄†, v̄′

† such that v̄ ≥ v̄†,

(q, v̄†)
l−→ (q′, v̄′

†), and v̄′
† ≥ v̄′, where the ordering ≤ is defined component-wise
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in the obvious way. We are interested here in the non-termination problem for
lossy machines, defined as the problem of deciding whether A has at least one
infinite run starting with the initial configuration (q0, 0̄). This problem is non-
primitive recursive [17].

Lemma 2. There exists a reduction from the non-termination problem for lossy
counter machines to the satisfiability problem for AB over the class of all dense
linear orders.

Proof. Let A = (Q, q0, C,Δ) be a lossy counter machine. We write an AB-
formula ϕA which is satisfiable over a dense linear order if and only if A has at
least one infinite run starting with the initial configuration. The computation is
encoded left-to-right over a dense domain D, by choosing an evaluation interval
[x, y] that works as the “last” one, and taking into account that, given any
x0 < x, there are infinitely many intervals between x0 and x. We shall make use
of the propositional letters u (units), qi (states, where i ranges from 0 to |Q|),
conf (configurations), ci (counters’ instances, where i ranges from 1 to |C|), and
corr , corri (corresponds; i ranges from 1 to |C|). Counters’ instances, or simply
counters, allow us to encode the counters of A: given a configuration where
the value of the i-th counter is n, the corresponding conf -interval will contain
precisely n ci-intervals. (By p-interval we denote those intervals that satisfy p,
for every propositional letter p.) Additional propositional letters will be used in
the reduction for technical reasons.

Let [G] (universal modality) be the following shortcut:

[G]ϕ = ϕ ∧ [B]ϕ ∧ [A]ϕ ∧ [A][A]ϕ.

The first step in our construction consists in discretizing the domain, making
use of a propositional variable u. In doing so, we also set the first configuration:

ϕu−chain =

⎧⎨
⎩

〈A〉〈A〉(u ∧ conf ∧ start ∧ q0) ∧ [A](〈A〉u → 〈B〉u)
[G](u → [B]¬u) ∧ [G](u → [B]ub) ∧ [G](u → [A]¬ub)
[G](start → u) ∧ [G](start → [A](¬u ∧ [A]¬u))

Consider an interval [x, y] over which the formula of our reduction is evaluated.
The sense of the above formula ϕu−chain is to generate an infinite discrete chain
x0, x1, . . . such that x0 < x1 < . . . < x < y, and that each [xk, xk+1] is labeled
by u. With the above formulae we also guarantee that start is unique and no
u-interval overlaps a u-interval in the chain.

With the next formulae we make sure that there is a infinite sequence of con-
figurations. The first one (start) coincides with the unit [x0, x1], and contains the
starting state q0 only. This is consistent with our requirement that all counters
start with the value 0. Moreover, we guarantee that configurations’ endpoints
coincide with endpoints of elements of the u-chain, that every configuration con-
tains a state, and that start is unique. In our reduction, the state is placed on
the last unit of every configuration.

ϕconf−chain =

⎧⎨
⎩

[G](conf → (u ∨ 〈B〉u)) ∧ [G](〈A〉conf → 〈A〉u)
[A](〈A〉conf → 〈B〉conf ) ∧ [G](conf → [B]confb ∧ [B]¬conf )
[G](conf → [A]¬confb) ∧ [G](〈A〉conf ↔ 〈A〉(∨i=0,...,|Q| qi))
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Notice that states (qi-intervals) occur exactly as last u-intervals of configurations.
Since configurations do not overlap, this implies that each configuration contains
exactly one state.

Configurations also contain counters’ instances ci for each counter i whose
value is greater than zero. Besides, a special placeholder c+i or c−

i may be placed
in a configuration, in order to make it possible to deal with increment and
decrement operations. States, counters’ instances, and placeholders may only
hold over units, which, in turn, all have to contain one of the above. A placeholder
must be placed over the counter to which it refers. Moreover, counters and states
are mutually incompatible, and there cannot be more than one per type on a
given unit. These requirements are guaranteed by the following formula:

ϕunits =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[G](
∧

i=0,...,|Q|(qi → u) ∧ ∧
i=1,...,|C|((ci ∨ c+i ∨ c−

i ) → u))
[G](u → ((

∨
i=0,...,|Q| qi) ∨ (

∨
i=1,...,|C| ci)))

[G]
∧

i=0,...,|Q|(qi → (
∧

j=i+1,...,|Q| ¬qj))
[G]

∧
i=0,...,|Q|(qi → (

∧
j=1,...,|C| ¬cj))

[G]
∧

i=1,...,|C|((ci → (
∧

j=i+1,...,|C| ¬cj)) ∧ (c−
i → ci) ∧ (c+i → ci))

Before we can actually encode the transition function Δ, we have to axioma-
tize the properties of corr and corri for each i. In a perfect (non-faulty) machine,
when a counter is not modified by any operation from a configuration to the next
one its value is preserved. Since we are encoding a lossy machine, it suffices to
guarantee that no counter’s value is ever incremented, except for the special
case of an incrementing operation. To this end, we use the propositional letter
corr as a basis for correspondence, and the proposition corri to identify the
correspondence for the i-th counter:

ϕcorr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[G]
∧

i=1,...,|C|(((ci ∧ ¬c+i ) → 〈A〉corri) ∧ (c+i → ¬〈A〉corri))
[G]

∧
i=1,...,|C|(corri → corr)

[G]
∧

i=1,...,|C|(corri → 〈A〉(ci ∧ ¬c−
i )) ∧ [G](corr → [B]corrb)

[G](((
∨

i=0,...,|Q| qi) ∧ corrb) → corrb∗)
[G]((

∨
i=0,...,|Q| qi) → [A](corrb → corrb∗))

[G](corr → [B]¬corr) ∧ [G](corrb∗ → [B]¬corrb∗)
[G](〈A〉corrb∗ → 〈A〉u) ∧ [G](corr → 〈B〉corrb∗)
[G]((u ∧ ¬(

∨
i=0,...,|Q| qi)) → [A]¬corrb∗)

To finalize the reduction, we now take care of incrementing and decrementing
operations, as well as of the zero test. For each (q, l, q′) ∈ Δ, let conf(q,l,q′) be a
special propositional letter holding on a configuration and carrying information
on which transition produced that configuration. Clearly, every configuration
but start is the result of precisely one transition. Therefore, we have:

ϕconf =
{

[G]((conf ∧ ¬start) ↔ (
∨

(q,l,q′)∈Δ conf (q,l,q′)))
[G](

∧
(q,l,q′)∈Δ(conf (q,l,q′) → (

∧
(q′′,l′,q′′′) �=(q,l,q′) ¬conf (q′′,l′,q′′′))))
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We can now implement the actual transitions. To deal with the increment (resp.,
decrement) operation we make use of the symbol c+i (resp., c−

i ), as follows:

ϕinc =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[G](
∧

(q,(inc,i),q′)∈Δ(conf(q,(inc,i),q′) → (〈A〉q ∧ 〈B〉c+i,b)))
[G](

∧
(q,(inc,i),q′)∈Δ(〈A〉conf(q,(inc,i),q′) → 〈A〉q′))

[G](
∧

i=1,...,|C|(〈A〉c+i,b ↔ 〈A〉c+i ))
[G](

∧
i=1,...,|C|(c

+
i,b → (〈A〉conf ∧ [B]¬conf )))

[G](
∧

i,j=1,...,|C|(c
+
i,b → [B]¬c+j,b))

[G](
∧

i=1,...,|C|((conf ∧ 〈B〉c+i,b) → (
∨

q,q′∈Q conf(q,(inc,i),q′))))

ϕdec =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[G](
∧

(q,(dec,i),q′)∈Δ(conf(q,(dec,i),q′) → (〈A〉q ∧ [A](conf → 〈B〉c−
i,b))))

[G](
∧

(q,(dec,i),q′)∈Δ(〈A〉conf(q,(dec,i),q′) → 〈A〉q′))
[G](

∧
i=1,...,|C|(〈A〉c−

i,b ↔ 〈A〉c−
i ))

[G](
∧

i=1,...,|C|(c
−
i,b → (〈A〉conf ∧ [B]¬conf )))

[G](
∧

i,j=1,...,|C|(c
−
i,b → [B]¬c−

j,b))
[G](

∧
i=1,...,|C|((conf ∧ 〈A〉〈B〉c−

i,b) → (
∨

q,q′∈Q conf(q,(dec,i),q′))))

ϕifz =

⎧⎪⎨
⎪⎩

[G](
∧

(q,(ifz,i),q′)∈Δ(conf(q,(ifz ,i),q′) → (〈A〉q ∧ [A](conf → [B]cz
i,b))))

[G](
∧

(q,(ifz,i),q′)∈Δ(〈A〉conf(q,(ifz ,i),q′) → 〈A〉q′))
[G](

∧
i=1,...,|C|((〈A〉ci → [A]cz

i,b) ∧ (¬〈A〉ci → [A]¬cz
i,b)))

The formula ϕu−chain∧ϕconf−chain∧ϕunits∧ϕcorr ∧ϕconf ∧ϕinc∧ϕdec∧ϕifz

is satisfiable if and only if A has at least one infinite run. ��
Since it is possible to construct a similar reduction using the fragment AB,

we can conclude the following theorem.

Theorem 3. The complexity of the satisfiability problem for the fragments AB
and AB over the class of dense linear orders is non-primitive recursive.

6 Conclusions

In this paper, we solved the last open problems about the complexity of HS
fragments whose satisfiability problem is decidable when interpreted over the
class of dense linear orders (equivalently, Q). If we look at the emerging picture,
we notice that such a class turns out to be the best one from the point of view
of computational complexity. The satisfiability problem for any HS fragment
over the class of finite (resp, discrete) linear orders, as well as over N and Z,
is indeed at least as complex as over the class of dense linear orders. Moreover,
there are some fragments, like the logic of subintervals D, for which the problem is
decidable (in fact, PSpace) over the latter class and undecidable over the former
ones. The same relationships hold between the class of dense linear orders and
the class of all linear orders (resp., R) with respect to the known fragments.
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Abstract. Recently the class DelayFPT has been introduced into
parameterized complexity in order to capture the notion of efficiently
solvable parameterized enumeration problems. In this paper we propose
a framework for parameterized ordered enumeration and will show how
to obtain DelayFPT enumeration algorithms in the context of graph
modification problems. We study these problems considering two differ-
ent orders of solutions, lexicographic and by size. We present generic
algorithmic strategies: The first one is based on the well-known princi-
ple of self-reducibility in the context of lexicographic order. The second
one shows that the existence of some neighborhood structure among the
solutions implies the existence of a DelayFPT algorithm which outputs
all solutions ordered non-decreasingly by their size.

Keywords: Parameterized complexity · Enumeration · Bounded search
tree · Parameterized enumeration · Enumeration with ordering

1 Introduction

Enumeration problems, the task of generating all solutions of a given computa-
tional problem, find applications, e.g., in query answering in databases and web
search engines, bioinformatics and computational linguistics. From a complexity-
theoretic viewpoint, the notion of Delay-P, the class of problems whose instance
solutions can be output in such a way that the delay between two outputs is
bounded by a polynomial, is of utmost importance [14].

For many enumeration problems it is of high interest that the output solutions
obey some given ordering. In particular in many applications it is interesting
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to get the solutions with the smallest “cost” at the beginning. Enumerating
all solutions in non-decreasing order allows to determine not only the smallest
solution, but also the kth-smallest one. Also with such a generation algorithm
it is possible to find the smallest solution satisfying some additional constraints
in checking at each generation step whether these constraints are satisfied. The
disadvantage of this method is that it cannot guarantee fast results, however it
has the advantage to be applicable to any additional constraint (see, e.g., [18]).
Let us illustrate this with some examples.

The question for which classes of propositional CNF formulas an enumeration
of all satisfying solutions is possible in Delay-P, above defined, was studied in
[4]. In terms of the well-known Schaefer framework for classification of Boolean
constraint satisfaction problems, it was shown that for the classes of Horn, anti-
Horn, affine or bijunctive formulas, such an algorithm exists. For other classes of
formulas the existence of a Delay-P algorithm implies P = NP. It is interesting
to note that the result hinges on the self-reducibility of the propositional satisfi-
ability problem. Since variables systematically are tried first with an assignment
0 and then 1, it can be observed that the given enumeration algorithms output
all satisfying assignments in lexicographic order.

In [6] the enumeration of satisfying assignments for propositional formulas
was studied under a different order, namely in non-decreasing weight, and it was
shown that under this new requirement, enumeration with polynomial delay is
only possible for Horn formulas and width-2 affine formulas (i.e., affine formulas
with at most 2 literals per clause). One of the main ingredients of these algo-
rithms is the use of a priority queue to ensure enumeration in order (as is the
case already in [14]).

While parameterized enumeration has already been considered (see, e.g.,
[7–9]), the notion of fixed-parameter tractable delay was introduced only recently
in this context, leading to the definition of the complexity class DelayFPT [5].
The “polynomial time” in the definition of DelayP here is simply replaced by a
time-bound of the form p(n) · f(k), where n denotes the input length and k the
input parameter, p is an arbitrary polynomial, and f is an arbitrary computable
function. By this the notion of efficiency in the context of the parameterized
world, i.e., fixed parameter tractability (FPT), has been combined with the enu-
meration framework. A number of problems from propositional logic were studied
in [5] and enumeration algorithms based on self-reducibility and on the technique
of kernelization were developed. In particular it was shown that membership of
an enumeration problem in DelayFPT can be characterized by a certain tailored
form of kernelizability, very much as in the context of usual decision problems.

In the present paper we study ordered enumeration in the context of param-
eterized complexity. First we develop a formal framework for enumeration with
any order. Then we consider the special context of graph modification problems
where we are interested in ordered enumeration for the two mostly studied orders,
namely lexicographic and by non-decreasing size (where the size is the number of
modifications that have to be made). We use two algorithmic strategies, depend-
ing on the order: Based on the principle of self-reducibility we obtain DelayFPT
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(and polynomial-space) enumeration algorithms for lexicographic order, as soon
as the decision problem is efficiently solvable. Second, we present a DelayFPT
enumeration algorithm for order by size as soon as a certain FPT-computable
neighborhood function on the solutions set exists (see Proposition 11). In order
to take care of the order, we use a priority queue that may require exponential
space.

We prove the wide scope of applicability of our method by presenting FPT-
delay ordered enumeration algorithms for a large variety of problems, such as
cluster editing, triangulation, triangle deletion, closest-string, and backdoor sets.

2 Preliminaries

We start by defining parameterized enumeration problems with a specific order-
ing and their corresponding enumeration algorithms. Most definitions in this
section transfer those of [14,16] from the context of enumeration and those of [5]
from the context of parameterized enumeration to the context of parameterized
ordered enumeration.

Definition 1. A parameterized enumeration problem with ordering is a quadru-
ple E = (I, κ,Sol,�) such that the following holds: I is the set of instances;
κ : I → N is the parameterization function and κ is required to be polynomial-
time computable; Sol is a function such that for all x ∈ I, Sol(x) is a finite set,
the set of solutions of x, further we write S =

⋃
x∈I Sol(x); � is a quasiorder

(or preorder, i.e., a reflexive and transitive binary relation) on S.
We will write IE , κE , etc. to denote that we talk about instance set, param-

eterization function, etc. of problem E.

Definition 2. Let E = (I, κ,Sol,�) be a parameterized enumeration problem
with ordering. Then an algorithm A is an enumeration algorithm for E if the
following holds: For every x ∈ I, A(x) terminates after a finite number of steps.
For every x ∈ I, A(x) outputs exactly the elements of Sol(x) without duplicates.
For every x ∈ I and y, z ∈ Sol(x), if y � z and z �� y then A(x) outputs solution
y before solution z.

Before we define complexity classes for parameterized enumeration, we need
the notion of delay for enumeration algorithms.

Definition 3 (Delay). Let E = (I, κ,Sol,�) be a parameterized enumeration
problem with ordering and A be an enumeration algorithm for E. Let x ∈ I be an
instance. The i-th delay of A is the time between outputting the i-th and (i+1)-st
solution in Sol(x). The 0-th delay is the precalculation time which is the time
from the start of the computation to the first output statement. Analogously, the
n-th delay, for n = |Sol(x)|, is the postcalculation time which is the time needed
after the last output statement until A terminates. The delay of A is then defined
as the maximum over all 0 ≤ i ≤ n of the i-th delay of A.
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Now we are able to define two different complexity classes for parameterized
enumeration following the notion of [5].

Definition 4. Let E = (I, κ,Sol,�) be a parameterized enumeration problem.
We say E is FPT-enumerable if there exists an enumeration algorithm A, a
computable function f : N → N, and a polynomial p such that for every x ∈ I,
A outputs all solutions of Sol(x) in time f(κ(x)) · p(|x|).

An enumeration algorithm A is a DelayFPT algorithm if there exists a com-
putable function f : N → N, and a polynomial p such that for every x ∈ I, A
outputs all solutions of Sol(x) with delay of at most f(κ(x)) · p(|x|).

The class DelayFPT consists of all parameterized enumeration problems that
admit a DelayFPT enumeration algorithm.

Some of our enumeration algorithms will make use of the concept of priority
queues to enumerate all solutions in the correct order and to avoid duplicates.
We will follow the approach of Johnson et al. [14]. A priority queue Q stores
a potentially exponential number of elements. Let x be an instance. The insert
operation of Q requires O(|x| · log |Sol(x)|) time. The extract minimum operation
requires O(|x| · log |Sol(x)|) time, too. It is important, however, that the compu-
tation of the order between two elements takes at most O(|x|) time. As pointed
out by Johnson et al. the required queue can be implemented with the help of
standard balanced tree schemes.

3 Graph Modification Problems

Graph modifications problems have been studied for a long time in computa-
tional complexity theory. Already in the monograph by Garey and Johnson [11],
among the graph-theoretic problems considered, many fall into this problem
class. To the best of our knowledge, graph modification problems were stud-
ied in the context of parameterized complexity for the first time in [3]. Given
some graph property P and some graph G, we write G |= P if the graph G
obeys the property P. A (graph) operation for G is either removing a vertex, or
adding/removing an edge. Two operations are dependent if one removes a vertex
v and the other removes or adds an edge incident to v, or if one removes an edge
e and the other adds the same edge e again. A set of operations is consistent if it
does not contain two dependent operations. Given such a consistent set of oper-
ations S, the graph obtained from G by applying the operations in S is denoted
by S(G). Notice that for two consistent sets of operations S and S′ such that
S �= S′, we have S(G) �= S′(G).

Definition 5. Given some graph property P, a graph G, k ∈ N, and a set of
operations O, we say that S is a solution for (G, k,O) with respect to P if the
following three properties hold: (1) S ⊆ O is a consistent set of operations ;
(2) |S| ≤ k ; (3) S(G) |= P. A solution S is minimal if there is no solution S′

such that S′
� S.

Cai was interested in the following parameterized graph modification decision
problem w.r.t. some given graph property P:
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Problem: MP
Input: (G, k,O), G undirected graph, k ∈ N, O set of operations on G.
Parameter: k

Question: Does there exist a solution for (G, k,O) with respect to P?

Some of the most important examples of graph modification problems are
presented now.

A chord in a graph G = (V,E) is an edge between two vertices of a cycle
C in G which is not part of C. A given graph G = (V,E) is triangular (or
chordal) if each of its induced cycles of 4 or more nodes has a chord. The problem
Triangulation then asks, given an undirected graph G and k ∈ N, whether
there exists a set of at most k edges such that adding this set of edges to G
makes it triangular. Yannakakis showed that this problem is NP-complete [20].

A cluster is a graph such that all its connected components are cliques.
In order to transform (or modify) a graph G we allow here only two kinds of
operations: adding or removing an edge. Cluster-Editing asks, given a graph
G and a parameter k, whether there exists a consistent set of operations of
cardinality at most k such that S(G) is cluster. It was shown by Shamir et al.
that the problem is NP-complete [17].

The problem Triangle-Deletion asks whether a given graph can be trans-
formed into a triangle-free graph by deletion of at most k vertices. Yannakakis
has shown that the problem is NP-complete [19].

Analogous problems can be defined for many other classes of graphs, e.g.,
line graphs, claw-free graphs, Helly circular-arc graphs, etc., see [2].

Now turn towards the main focus of the paper. Here we are interested in
corresponding enumeration problems with ordering. In particular, we will focus
on two well-known preorders, lexicographic and by size. Since our solutions are
subsets of an ordered set of operations, they can be encoded as binary strings in
which the ith bit from right indicates whether the ith operation is in the subset.
We define lexicographic ordering of solutions as the lexicographic ordering of
these strings. We define the size of a solution simply as its cardinality.

Problem: Enum-Mlex
P

Instance: (G, k,O), G undir. graph, k ∈ N, O ordered set of oper. on G.
Parameter: k

Output: All solutions of (G, k,O) w.r.t. P in lexicographic order.

Problem: Enum-Msize
P

Instance: (G, k,O), G undir. graph, k ∈ N, O set of operations on G.
Parameter: k

Output: All solutions of (G, k,O) w.r.t. P in non-decreasing size.



Parameterized Enumeration for Modification Problems 529

If the context is clear we omit the subscript P for the graph modification
problem and simply write M. We write SolM(x) for the function associating
solutions to a given instance, and also SM for the set of all solutions of M.

4 Enumeration of Graph Modification Problems with
Ordering

4.1 Lexicographic Order

We first prove that, for any graph modification problem MP , if the decision prob-
lem is in FPT then there is an efficient enumeration algorithm for Enum-Mlex

P .

Theorem 6. Let MP be a graph modification problem. If MP is in FPT then
Enum-Mlex

P ∈ DelayFPT with polynomial space.

Proof. We present an algorithm enumerating all solutions of an instance of a
given modification problem MP by the method of self-reducibility, see
Algorithm 1. The algorithm uses a function ExistsSol(G, k,O) that tests if the
instance (G, k,O) of the modification problem MP has a solution. By assump-
tion, this test is in FPT. We use calls to this function to avoid exploration of
branches of the recursion tree that do not lead to any output. �	

Algorithm 1. Enumerate all solutions of MP in lexicographic order
Input: a graph G, k ∈ N, an ordered set of operations O = {o1, . . . , on}
Output: all consistent sets S ⊆ O s.t. |S| ≤ k, S(G) |= P in lexicographic order

1 if ExistsSol(G, k,O) then Generate(G, k,O, ∅).

Procedure Generate(G, k,O, S):
1 if O = ∅ or k = 0 then return S;
2 else
3 let op be the last operation in O, let O := O \ {op};
4 if ExistsSol(S(G), k, O) then Generate(S(G), k, O, S);
5 if S ∪ {op} is consistent and ExistsSol((S ∪ {op})(G), k − 1, O) then
6 Generate((S ∪ {op})(G), k − 1, O, S ∪ {op}).

Corollary 7. Enum-Triangulationlex ∈ DelayFPT with polynomial space.

Proof. Kaplan et al. [15] and Cai [3] showed that Triangulation ∈ FPT. Now
by applying Theorem 6 we get the result. �	

In [3], Cai identified a class of graph properties whose associated modification
problems belong to FPT. Let us introduce some terminology. Given two graphs
G = (V,E) and H = (V ′, E′), we write H � G if H is an induced subgraph of
G, i.e., V ′ ⊆ V and E′ = E ∩ (V ′ × V ′). Let F be a set of graphs and P be
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some graph property. We say that F is a forbidden set characterization of P if
for any graph G it holds that: G |= P iff for all H ∈ F ,H �� G.

Among the problems presented in the previous section (see page 5) Triangle-
Deletion and Cluster-Editing have a finite forbidden set characterization,
namely by triangles and paths of length two. In contrast, Triangulation has a
forbidden set characterization which is not finite, since cycles of arbitrary length
are problematic.

Actually, for properties having a finite forbidden set characterization, the
corresponding modification problem is fixed-parameter tractable. Together with
Theorem 6, this provides a positive result in terms of enumeration.

Proposition 8 ([3]). If a property P has a finite forbidden set characterization
then the problem MP is in FPT.

Proposition 9. For any graph modification problem, if P has a finite forbidden
set characterization then Enum-Mlex

P ∈ DelayFPT with polynomial space.

4.2 Size Ordering

A common strategy in enumeration context consists of defining a notion of neigh-
borhood that allows to compute a new solution from a previous one with small
amounts of computation time (see, e.g., the work of Avis and Fukuda [1]). We
introduce the notion of a neighborhood function, which, roughly speaking, gen-
erates some initial solutions from which all solutions can be produced. Taking
care of the order and avoiding duplicates is then handled by a priority queue,
which may require exponential space. For the graph modification problems, we
show that if the inclusion-minimal solutions can be generated in FPT, then such
a neighborhood function exists, thus providing a DelayFPT enumeration algo-
rithm. In the following O (the “seed”) is a technical symbol that will be used in
order to generate the initial solutions.

Definition 10. Let M be some graph modification problem. A neighborhood
function for M is a (partial) function NM : IM × (SM ∪ {O}) → 2SM such that
the following holds:

1. For all x = (G, k,O) ∈ IM and S ∈ SolM(x) ∪ {O}, NM(x, S) is defined.
2. For all x ∈ IM, NM(x, O) = ∅ if SolM(x) = ∅, and NM(x, O) is an arbitrary

set of solutions otherwise.
3. For all x ∈ IM and S ∈ SolM(x), if S′ ∈ NM(x, S) then |S| < |S′|.
4. For all x ∈ IM and all S ∈ SolM(x), there exists p > 0 and S1, . . . , Sp ∈

SolM(x) such that (i) S1 ∈ NM(x, O), (ii) Si+1 ∈ NM(x, Si) for 1 ≤ i < p,
and (iii) Sp = S.

Furthermore, we say that NM is FPT-computable, when NM(x, S) is computable
in time f(k) · poly(|x|) for any x ∈ IM and S ∈ SolM(x).
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Thus, a neighborhood function for a problem M is a function that in a first
phase computes from scratch some initial set of solutions (see Definition 10(2)).
In many of our applications below, NM(x, O) will be the set of all minimal
solutions for x. In a second phase these solutions are iteratively enlarged (see
condition (3)), where condition (4) guarantees that we do not miss any solution,
as we will see in the next theorem.

Proposition 11. Let M be a graph modification problem. If M admits a neigh-
borhood function NM that is FPT-computable, then Enum-Msize ∈ DelayFPT.

Proof. Algorithm 2 outputs all solutions in DelayFPT. By the definition of the
priority queue (recall in particular that insertion of an element is done only if
the element is not yet present in the queue) and by the fact that all elements of
NM((G, k,O), S) are of bigger size than S by Definition 10(3), it is easily seen
that the solutions are output in the right order and that no solution is output
twice.

Besides, no solution is omitted. Indeed, given S ∈ SolM(G, k,O) and
S1, . . . , Sp associated with S by Definition 10(4), we prove by induction that
each Si is inserted in Q during the run of the algorithm: For i = 1, this proceeds
from line 2 of the algorithm; for i > 1, the solution Si−1 is inserted in Q by
induction hypothesis and hence all elements of NM((G, k,O), Si−1), including
Si, are inserted in Q (line 6). Thus, each Si is inserted in Q and then output
during the run. In particular, this holds for S = Sp.

Finally, we claim that Algorithm 2 runs in DelayFPT. Indeed, the delay
between the output of two consecutive solutions is bounded by the time required
to compute a neighborhood of the form NM((G, k,O), O) or NM((G, k,O), S)
and to insert all its elements in the priority queue. This is in FPT due to the
assumption on NM being FPT-computable and as there is only a single extrac-
tion and FPT-many insertion operations on the queue. �	

Algorithm 2. DelayFPT algorithm for Enum-M
Input: (G, k,O), G is an undirected graph, k ∈ N, and O is a set of operations.

1 compute NM((G, k,O),O);
2 insert all elements of NM((G, k,O),O) into priority queue Q (ordered by size);
3 while Q is not empty do
4 extract the minimum solution S of Q and output it;
5 insert all elements of NM((G, k,O), S) into Q;

A natural way to provide a neighborhood function for a graph modification
problem M is to consider the inclusion minimal solutions of M. Let us denote
by Min-M the problem of enumerating all inclusion minimal solutions of M.

Theorem 12. Let M be a graph modification problem. If Min-M is FPT-
enumerable then Enum-Msize ∈ DelayFPT.
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Proof. Let A be an FPT-algorithm for Min-M. Because of Proposition 11, it
is sufficient to build an FPT neighborhood function for M. For an instance
(G, k,O) of M and for S ∈ SolM(G, k,O) ∪ {O}, we define NM((G, k,O), S) as
the result of Algorithm 3.

Algorithm 3. Procedure for computing NM((G, k,O), S)
Input: (G, k,O), G is an undirected graph, k ∈ N, and O is a set of operations.

1 if S = O then return A(G, k,O);
2 res := ∅ ;
3 forall the t ∈ O do
4 forall the S′ ∈ A((S ∪ {t})(G), k − |S| − 1, O \ {t}) do
5 if S ∪ S′ ∪ {t} is consistent then res := res ∪ {S ∪ S′ ∪ {t}};

6 return res;

The function NM thus defined clearly fulfills conditions 2 and 3 of
Definition 10. We prove by induction that it also satisfies condition 4 (that
is, each solution T of size k comes with a sequence T1, . . . , Tp = T such that
T1 ∈ NM((G, k,O), O) and Ti+1 ∈ NM((G, k,O), Ti) for each i). If T is a mini-
mal solution for (G, k,O), then T ∈ NM((G, k,O), O) and the expected sequence
(Ti) reduces to T1 = T . Otherwise, there exists an S ∈ SolM(G, k,O) and a non-
empty set of transformations, say S′ ∪{t}, such that T = S∪S′ ∪{t} and there is
no solution for G between S and S∪S′∪{t}. This entails that S′ is a minimal solu-
tion for

(
(S∪{t})(G), k−|S|−1

)
and hence T ∈ NM((G, k,O), S) (see lines 4–5 of

Algorithm 3). The conclusion follows from the induction hypothesis that guar-
antees the existence of solutions S1, . . . , Sq such that S1 ∈ NM((G, k,O), O),
Si+1 ∈ NM((G, k,O), Si) and Sq = S. The expected sequence T1, . . . , Tp for T
is nothing but S1, . . . , Sq, T . To conclude, it remains to see that Algorithm 3 is
FPT. This follows from the fact that A is an FPT-algorithm (lines 1 and 4). �	
Corollary 13. Enum-Triangulationsize ∈ DelayFPT.

Proof. All minimal k-triangulations can be output in time O(24k ·|E|) for a given
graph G and k ∈ N [15, Thm. 2.4]. This immediately yields the expected result,
by help of Theorem 12. �	
Proposition 14. For any property P that has a finite forbidden set character-
ization, the problem Enum-Msize

P is in DelayFPT.

Proof. The algorithm developed by Cai [3] for the decision problem is based
on a bounded search tree, whose exhaustive examination provides all minimal
solutions in FPT. Theorem 12 yields the conclusion. �	
Corollary 15. The enumeration problems Enum-Cluster-Editingsize and
Enum-Triangle-Deletionsize are in DelayFPT.

Proof. As we already mentioned, these two properties have a finite forbidden set
characterization. �	
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5 Generalization

Modification problems can be defined for other structures than graphs, thus pro-
viding similar complexity results. We give two different examples in this section.

5.1 Closest String

Given a set of binary strings I we want to find a string s whose maximum
Hamming distance max{dH(s, s′) | s′ ∈ I} ≤ d for some d ∈ N. This problem
is NP-hard [10]. Given a string w = w1 · · · wn with wi ∈ {0, 1}, n ∈ N, and a
set S ⊆ {1, . . . , n}, S(w) denotes the string obtained from w in flipping the bits
indicated by S. The corresponding parameterized problem is the following.

Problem: Closest-String

Input: (s1, . . . , sk, n, d), where s1, . . . , sk is a sequence of strings over
{0, 1} of length n ∈ N, and an integer d ∈ N.

Parameter: d

Question: Does there exist S ⊆ {1, . . . , n} such that dH(S(s1), si) ≤ d for
all 1 ≤ i ≤ k?

Gramm et al. have shown that this problem is in FPT [13]. Moreover, an
exhaustive examination of a bounded search tree constructed from the idea of
Gramm et al. [13, Fig.1] allows to produce all minimal solutions of this problem
in FPT. Therefore, we get the following result for the corresponding enumeration
problems.

Theorem 16. Enum-Closest-Stringlex ∈ DelayFPT with polynomial space
and Enum-Closest-Stringsize ∈ DelayFPT.

5.2 Backdoors

In the following, let C be some class of CNF-formulas, and ϕ be a propositional
CNF formula. If X is a set of propositional variables we denote with Θ(X) the
set of all assignments over the variables in X. For some θ ∈ Θ(X) the expression
θ(ϕ) is the formula obtained by applying the assignment θ to ϕ, i.e., clauses
with a satisfied literal are removed, and falsified literals are removed. A set S of
variables from ϕ is a weak C-backdoor of ϕ if there exists an assignment θ ∈ Θ(S)
such that θ(ϕ) ∈ C and θ(ϕ) is satisfiable. The set S is a strong C-backdoor of ϕ
if for all θ ∈ Θ(S) the formula θ(ϕ) is in C.

Now we can define the corresponding parameterized problems:

Problem: Weak/strong-C-Backdoors

Input: A formula ϕ in 3CNF, k ∈ N.
Parameter: k

Question: Does there exist a weak/strong C-backdoor of size ≤ k?
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The class C is a base class if it can be recognized in P, satisfiability of its
formulas is in P, and the class is closed under isomorphisms w.r.t. variable names.
We say C is clause defined if for every CNF-formula ϕ it holds: ϕ ∈ C iff {C} ∈ C
for all clauses C from ϕ. Gaspers and Szeider [12] investigated a specific type of
C-formulas, namely the clause-defined base classes C, and showed that for any
such class C, the detection of weak C-backdoors is in FPT for input formulas
in 3CNF. They describe in [12, Prop. 2] that a bounded search tree technique
allows to solve the detection of weak C-backdoors in FPT time. This technique
results in obtaining all minimal solutions in FPT time.

Theorem 17. For every clause-defined base class C and input formulas in
3CNF, Enum-Weak-C-Backdoorslex ∈ DelayFPT with polynomial space and
Enum-Weak-C-Backdoorssize ∈ DelayFPT.

Proof. Given an instance x = (ϕ, k) we first compute all its minimal backdoors.
Then, given some backdoor S we define N(x, S) as the set of the pairwise unions
of all minimal weak C-backdoors of (θ(ϕ), k − |S| − 1) together with S ∪{xi} for
each θ ∈ Θ(S∪{xi}) for xi ∈ Vars(ϕ)\S. Observe that there are only FPT-many
assignments for which the minimal weak C-backdoors have to be computed and
as the satisfiability test for the formulas is in P this yields a DelayFPT algorithm.

�	
Let ϕ be a CNF-formula and V ⊆ Vars(ϕ) be a subset of its variables. Then

ϕ − V is the formula where all literals over variables from V have been removed
from all clauses in ϕ. Now we want to consider strong C-backdoors for clause-
defined base classes C. Note that in this case the notion of strong C-backdoors
coincides with the notion of deletion C-backdoors, i.e., a set V ⊆ Vars(ϕ) is a
strong C-backdoor of ϕ if and only if ϕ − V ∈ C.

Theorem 18. For every clause-defined base class C and input formulas in
3CNF, Enum-Strong-C-Backdoorslex ∈ DelayFPT with polynomial space
and Enum-Strong-C-Backdoorssize ∈ DelayFPT.

Proof. For every clause-defined base class C and input formulas in 3CNF, the
problem Min-Strong-C-Backdoors is FPT-enumerable. Indeed,we only need
to branch on the variables from a clause C /∈ C and remove the corresponding
variable from ϕ. The size of the branching tree is at most 3k. As for base classes
the satisfiability test is in P, this yields an FPT-algorithm. The neighbourhood
function N(x, S) for x = (ϕ, k) is defined to be the set of the pairwise unions
of all minimal strong C-backdoors of (ϕ − (S ∪ {xi}), k − |S| − 1) together with
S ∪ {xi} for all variables xi �∈ S. �	

6 Conclusion

We presented FPT-delay ordered enumeration algorithms for a large variety of
problems, such as cluster editing, triangulation, closest-string, and backdoors.
An important point of our paper is that we propose an algorithmic strategy for
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efficient enumeration. This is rather rare in the literature, where usually algo-
rithms are devised individually for specific problems. In particular, our scheme
yields DelayFPT algorithms for all graph modification problems that are char-
acterized by a finite set of forbidden patterns.

We would like to mention that the DelayFPT algorithms for size order pre-
sented in this paper require exponential space (in the size of the input) due to the
use of the priority queues. An interesting question is whether there is a method
which requires less space but uses a comparable delay between the output of
solutions and still obeys the underlying order on solutions.
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Abstract. We investigate the computational complexity of some prob-
lems related to preimages and ancestors of states of reaction systems.
In particular, we prove that finding a minimum-cardinality preimage or
ancestor, computing their size, or counting them are all intractable prob-
lems, with complexity ranging from FPNP[logn] to FPSPACE(poly).

Keywords: Reaction systems · Computational complexity

1 Introduction

Recently many new computational models have been introduced. Most of them
are inspired by natural phenomena. This is also the case of Reaction Systems
(RS), proposed by Ehrenfeucht and Rozenberg in [2], which are a metaphor for
basic chemical reactions. Informally, a reaction system is made of a (finite) set of
entities (molecules) and a (finite) set of admissible reactions. Each reaction is a
triple of sets: reactants, inhibitors and products (clearly the set of reactants and
the one of inhibitors are disjoint). Given a set of reactants T , a reaction (R, I, P )
is applied if R ⊆ T and if there are no inhibitors (i.e. T ∩ I is empty); the result
is the replacement of T by the set of products P . Given a set of reactants T ,
all admissible reactions are applied in parallel. The final set of products is the
union of all single sets of products of each reaction which is admissible for T .

Studying RS is interesting for a number of reasons, not only as a clean com-
putational model allowing precise formal analysis but also as a reference w.r.t.
other computing systems. For example, in [5], the authors showed an embedding
of RS into Boolean automata networks (BAN), a well-known model used in a

This work has been supported by Fondo d’Ateneo (FA) 2013 of Università degli Studi
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number of application domains. Remark that for BAN the precise complexity
of only for a bunch of problems about the dynamical behaviour is known. Via
the embedding of RS into BAN, all the complexity results about RS are indeed
lower bounds for the corresponding ones for BAN.

In this paper, we continue the exploration of the computational complexity
of properties of RS. The focus is on preimages and ancestors of minimal size. In
more practical terms, this could be useful when minimising the number of chemi-
cal entities necessary to obtain a target compound. Indeed, given a current state
T , the minimal pre-image (resp., n-th-ancestor) problem or MPP (resp., MAP)
consists in finding the minimal set (w.r.t. cardinality) of reactants which pro-
duces T in one step (resp., n steps). Variants of MPP and MAP consider count-
ing the pre-images (#MPP); counting the ancestors (#MAP); or computing the
size of the minimal pre-image (SMPP) or of the minimal ancestor (SMAP). We
prove that (see Section 2 for the precise definition of the complexity classes):

− MPP ∈ FPNP and it is FPNP
‖ -hard under metric reductions;

− #MPP is in #PNP[log n] and it is #P-hard under parsimonious reductions;
− SMPP is FPNP[log n]-complete under metric reductions;
− MAP and #MAP are complete for FPSPACE(poly) under metric reduc-

tions;
− SMAP is FPSPACE(log)-complete under metric reductions.

These results are important for further understanding the computational capabil-
ities of RS but they also provide clean new items to the (relatively) short list of
examples of problems in high functional complexity classes. Finally, remark that
the problem of pre-image existence has been proved to be in NP by Salomaa [10].
However, here the complexity is higher because of the minimality requirement.

2 Basic Notions

We briefly recall the basic notions about RS [3]. In this paper we require the
sets of reactants and inhibitors of a reaction to be nonempty, as is sometimes
enforced in the literature; our results also hold when empty sets are allowed.

Definition 1. Consider a finite set S, whose elements are called entities. A
reaction a over S is a triple (Ra, Ia, Pa) of nonempty subsets of S. The set Ra

is the set of reactants, Ia the set of inhibitors, and Pa is the set of products.
The set of all reactions over S is denoted by rac(S).

Definition 2. A Reaction System (RS) is a pair A = (S,A) where S is a finite
set, called the background set, and A ⊆ rac(S).

Given a state T ⊆ S, a reaction a is said to be enabled in T when Ra ⊆ T
and Ia ∩ T = ∅. The result function resa : 2S → 2S of a, where 2S denotes the
power set of S, is defined as resa(T ) = Pa if a is enabled in T , and resa(T ) = ∅

otherwise. The definition of resa naturally extends to sets of reactions: given T ⊆
S and A ⊆ rac(S), define resA(T ) =

⋃
a∈A resa(T ). The result function resA of a

RS A = (S,A) is resA, i.e., it is the result function on the whole set of reactions.
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Definition 3. Let A = (S,A) be a RS. For any T ⊆ S, an element U ⊆ S is an
ancestor of T if rest

A(U) = T for some t ∈ N. If t = 1, U is called preimage of T .
An ancestor (resp., preimage) U of T is minimal if |U | ≤ |V | for all ancestors
(resp., preimages) V of T .

A state always admits at least itself as ancestor but might not have a preimage.
We describe the complexity of preimage and ancestor problems for RS with

complexity classes of functions problems (see [7,8] for further details). Let Σ
be an alphabet. The class FP (resp., FPNP) consists of all binary relations R
over Σ� having a “choice function” f ⊆ R with dom f = dom R that can be
computed in polynomial time by a deterministic Turing machine (TM) without
access to oracles (resp., with access to an oracle for an NP decision problem).
Additional requirements on the oracle queries define the subclasses FPNP[log n]

and FPNP
‖ of FPNP, where the number of allowed oracle queries is O(log n)

and the queries are performed in parallel (i.e., every current query string does
not depend on the results of previous queries), respectively. We have FP ⊆
FPNP[log n] ⊆ FPNP

‖ ⊆ FPNP. The class #P consists of all functions f : Σ� → N

with a polynomial-time nondeterministic TM having exactly f(x) accepting com-
putations on every input x. If in addition O(log n) queries to an NP oracle are
allowed, the class #PNP[log n] is defined. Clearly, FP ⊆ #P ⊆ #PNP[log n]. In
this paper we will also refer to FPSPACE, i.e., the collection of binary rela-
tions having a choice function computable in polynomial space, and its two
subclasses FPSPACE(poly) and FPSPACE(log), in which the output is limited
to polynomial length and logarithmic length, respectively, rather than exponen-
tial length. Remark that FPSPACE(poly) is just �PSPACE, i.e., the class of
functions f : Σ� → N such that there exists a polynomial-space nondeterminis-
tic TM performing only a polynomial number of nondeterministic choices and
having exactly f(x) accepting computations on every input x.

Hardness for these classes is defined in terms of two kinds of reductions. The
first one is the many-one reduction, also called parsimonious when dealing with
counting problems: a function f is many-one reducible to g if there exists a
function h ∈ FP such that f(x) = g(h(x)) for every input x. A generalisation
is the metric reduction [6]: a function f is metric reducible to g if there exist
functions h1, h2 ∈ FP such that f(x) = h2(x, g(h1(x))) for every input x. These
notions of reduction can be generalised to reductions between binary relations.

Since we do not deal with sublinear space complexity, without loss of gen-
erality, throughout this paper we assume that all TM computing functions use
a unique tape, both for input and work. We also assume that they move their
tape head to the leftmost cell before entering a final state.

3 Preimage Problems

First of all, inspired by the algorithm described in [9], we show a tight relation
between the MPP and the problem of finding a minimal unary travelling sales-
man tour (TSP) [8], where the edge weights are encoded in unary and, hence,
bounded by a polynomial in the number of vertices.
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Lemma 4. Finding a minimal unary TSP tour is metric reducible to MPP.

Proof. Suppose we are given any set of vertices V , with |V | = n, and any unary-
encoded weight function w : V 2 → N. We build a RS A = (S,A) admitting a state
whose preimages encode the weighted simple cycles over V . The background set is
given by S = E ∪ W ∪ {♥,♠}, where

E = {(u, v)t : u, v ∈ V and 0 ≤ t < n}
W = {♦(u,v),i : u, v ∈ V and 1 ≤ i ≤ w(u, v)}

while the reactions in A, with u, v, u1, u2, v1, v2 ranging over V and t, t1, t2 ranging
over {0, . . . , n − 1}, are

({(u1, v1)t, (u2, v2)t,♥}, {♠}, {♠}) if (u1, v1) �= (u2, v2) (1)
({(u, v1)t1 , (u, v2)t2 ,♥}, {♠}, {♠}) if v1 �= v2 or t1 �= t2 (2)
({(u1, v)t1 , (u2, v)t2 ,♥}, {♠}, {♠}) if u1 �= u2 or t1 �= t2 (3)
({(u1, v1)t, (u2, v2)(t+1) mod n,♥}, {♠}, {♠}) if v1 �= u2 (4)
({♥}, {(u, v)t : u, v ∈ V } ∪ {♠}, {♠}) (5)
({(u, v)t,♥}, {♦(u,v),i,♠}, {♠}) for 1 ≤ i ≤ w(u, v) (6)
({♦(u,v),i,♥}, {(u, v)t : 0 ≤ t < n} ∪ {♠}, {♠}) for 1 ≤ i ≤ w(u, v) (7)
({♥}, {♠}, {♥}) (8)

The meaning of an element (u, v)t in a state of A is that edge (u, v) is the t-th
edge (for 0 ≤ t < n) of a simple cycle over V , i.e., of a candidate solution for the
TSP. The edge weights of the cycle must also appear, in unary notation: if (u, v)t

is part of a state and w(u, v) = k, then also ♦(u,v),1, . . . ,♦(u,v),k must be part of
the state. Hence, a length-n simple cycle c = (v0, . . . , vn−1) over V is encoded as a
state T (c) = E(c) ∪ W (c) ∪ {♥}, where

E(c) = {(v0, v1)0, (v1, v2)1, . . . , (vn−2, vn−1)n−2, (vn−1, v0)n−1}

is the set of edges traversed by the cycle, indexed in order of traversal, and

W (c) = {♦(vt,v(t+1) mod n),i : 0 ≤ t < n, 1 ≤ i ≤ w(vt, v(t+1) mod n)}

contains the elements encoding the weights of the edges in E(c).
Moreover, consider a state T ⊆ S. If ♥ /∈ T , then necessarily resA(T ) = ∅,

since all reactions have ♥ as a reactant. Similarly, ♠ ∈ T implies resA(T ) = ∅,
since ♠ inhibits all reactions. Now suppose ♥ ∈ T and ♠ /∈ T . Reactions (1)–(5)
produce ♠ from T when any of the following conditions (implying that T ∩ E does
not encode a simple cycle over V ) occur:

(1) the state T contains two distinct elements denoting edges occurring as the t-th
edge of the candidate cycle;

(2) one of the vertices of the candidate cycle has outdegree greater than 1;
(3) one of the vertices of the candidate cycle has indegree greater than 1;
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(4) two consecutive edges do not share an endpoint;
(5) no edge is the t-th edge of the candidate cycle, for some 0 ≤ t < n.

Any set T ∩ E where none of the above apply encodes a valid simple cycle over V .
Reaction (6) produces ♠ if an edge (u, v)t occurs, but some element ♦(u,v),i,

encoding a unit of the weight of the edge, is missing. Conversely, reaction (7) pro-
duces♠ if a unit of theweight of amissing edge occurs. These reactions are all simul-
taneously disabled exactly when T ∩ W contains the weights of the edges in T ∩ E.
Finally, reaction (8) preserves the ♥. The result function of A is thus

resA(T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{♥} if T encodes a weighted simple cycle over V

{♥,♠} if ♥ ∈ T , ♠ /∈ T , but T fails to encode
a weighted simple cycle over V

∅ if ♥ /∈ T or ♠ ∈ T

Hence, the preimages of {♥} are exactly the weighted simple cycles over V . Since
each preimage T of {♥} has size |T | = n + 1 +

∑n−1
t=0 w(vt, v(t+1) mod n), a preim-

age T of {♥} of minimum size corresponds to a shortest tour over V , which can be
extracted from T in polynomial time just by listing the elements in T ∩ E, ordered
by their subscript. Since the mapping (V,w) �→ A described by the above construc-
tion can be computed in polynomial time, the thesis follows. �
Lemma 5. For RS MPP is metric reducible to the problem of finding, among
the possible output strings of a polynomial-time nondeterministic TM, a string
having the minimum number of 1s.

Proof. Given any instance (A = (S,A), T ) of the RS minimal preimage prob-
lem, let M be the nondeterministic TM which behaves as follows. M guesses
a state U ⊆ S and checks whether resA(U) = T ; if this is the case, then M
outputs U as a binary string in {0, 1}|S|; M outputs 1|S|+1, otherwise. Clearly,
M works in time p(n) for some polynomial p, and its outputs are all the preim-
ages of T (together with an easily distinguishable dummy output if no preimage
exists); in particular, the outputs of M that are minimal with respect to the
number of 1s correspond to the smallest preimages of T . �

The following is proved similarly to the equivalence of binary TSP and finding
the maximum binary output of a polynomial-time nondeterministic TM [8].

Lemma 6. Finding a string with minimal number of 1s among those output by a
nondeterministic polynomial-time TM is metric reducible to the unary TSP. �

We can now provide lower and upper bounds to the complexity of MPP.

Theorem 7. MPP for RS is equivalent to the unary TSP under metric reduc-
tions. Hence, MPP ∈ FPNP and it is FPNP

‖ -hard under metric reductions.

Proof. The equivalence is a consequence of Lemmata 4, 5, and 6. Moreover, TSP
belongs to FPNP which is closed under metric reductions [8]. The travelling
salesman with 0/1 weights is hard for FPNP

‖ (see [1]) and can be reduced to the
minimal RS preimage problem. �
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The complexity of finding the size of minimal preimages is given by:

Corollary 8. SMPP is FPNP[log n]-complete under metric reductions.

Proof. The size of the minimal preimage can be found by binary search, using
an oracle answering the question “Is there a preimage of size at most k?”, which
belongs to NP. Hence, the problem is in FPNP[log n]. The hardness of the problem
follows from the fact that the size of a minimal preimage is just the length of
the shortest unary travelling salesman tour increased by n + 1 in the reduction
of Lemma 4, and that the unary TSP is FPNP[log n]-complete [8]. �

Finally, we can also prove lower and upper bounds to the complexity of
finding the number of minimal preimages or #MPP in short.

Theorem 9. #MPP is in #PNP[log n] and it is #P-hard under parsimonious
reductions.

Proof. The following algorithm shows the membership in #PNP[log n]: given
(A, T ), compute the size k of the smallest preimage of T by binary search
using log n queries to the oracle (as in the proof of Corollary 8); then, guess
a state U ⊆ S with |U | = k, and accept if and only if resA(U) = T . The num-
ber of accepting computations corresponds to the number of minimal preimages
of T .

In order to prove the #P-hardness of the problem, we perform a reduction
from #SAT (a variant of [5, Theorem 4]). Let ϕ = ϕ1 ∧ · · · ∧ ϕm be a Boolean
formula in conjunctive normal form over the variables V = {x1, . . . , xn}. Let
A = (S,A) be a RS with S = V ∪ V ∪ C ∪ {♠}, where V = {x̄1, . . . , x̄n} and
C = {ϕ1, . . . , ϕm}, and A consisting of the following reactions:

({xi}, {♠}, {ϕj}) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, if xi occurs in ϕj (9)
({x̄i}, {♠}, {ϕj}) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, if x̄i occurs in ϕj (10)
({s}, {xi, x̄i,♠}, {♠}) for 1 ≤ i ≤ n, s /∈ {xi, x̄i,♠} (11)
({xi, x̄i}, {♠}, {♠}) for 1 ≤ i ≤ n. (12)

A state T ⊆ S encodes a valid assignment for ϕ if, for each 1 ≤ i ≤ n, it
contains either xi or x̄i (denoting the truth value of variable xi), but not both,
and no further element. The reactions of type (9) (resp., (10)) produce the set
of elements representing the clauses satisfied when xi is assigned a true (resp.,
false) value. Hence, the formula ϕ has as many satisfying truth assignments as
the number of states T ⊆ S encoding valid assignment such that resA(T ) = C,
the whole set of clauses. Any such T contains exactly n elements.

If a state T has n elements or less, but it is not a valid assignment to ϕ, then
there is at least one literal xi or x̄i missing in T : thus, either T = ∅, or reac-
tion (11) is enabled and ♠ ∈ resA(T ); in both cases resA(T ) �= C. If T has strictly
more than n elements, then either it is an inconsistent assignment, containing
both xi and x̄i for some i, and in that case ♠ ∈ resA(T ) �= C by reaction (12),
or it has a subset T ′ = T ∩ (V ∪ V ) with |T ′| = n such that resA(T ′) = resA(T ).

Thus, the number of minimal preimages of T in A is exactly the number of
assignments satisfying ϕ, as required. �
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4 Ancestor Problems

We now turn our attention to the ancestor problems, which will show a (suppos-
edly) higher complexity. First of all, we need a few technical results, providing
us with a FPSPACE(poly)-complete function suitable for reductions.

Lemma 10. The “universal” function U(M, 1m, x), defined as M(x) if the
TM M halts in space m, and undefined otherwise, is FPSPACE(poly)-complete
under many-one reductions.

Proof. We have U ∈ FPSPACE(poly), since there exist universal TMs having
only a polynomial space overhead [8]. Let R ∈ FPSPACE(poly), and let M be
a polynomial-space TM for R. Then, there exists a polynomial p bounding both the
working space and the output length of M . The mapping f(x) = (M, 1p(|x|), x) can
be computed in polynomial time, and R(x,U(f(x))) holds for all x ∈ dom R. This
proves the FPSPACE(poly)-hardness of U . �
Lemma 11. Let the binary relation R((M, 1m, y), x) hold if and only if the
deterministic TM M , on input x, halts with output y on its tape, |y| ≤ m,
and M does not exceed space m during the computation. Then, the relation R
is FPSPACE(poly)-complete under many-one reductions.

Proof. The relation R is in FPSPACE(poly): a polynomial-space deterministic
TM can try all strings x of length at most m, one by one, and simulate M on
input x (within space m) until the output y is produced or the strings have
been exhausted. We now reduce the function U from Lemma 10 to R. Given an
instance (M, 1m, x) of U , consider the instance (M ′, 1k, 1) of R, where

− M ′ is the TM which on any input y, first simulates M on input x within
space k; if M(x) = y, then M ′ outputs 1; otherwise, M ′ outputs 0.

− k = p(m), where p is the polynomial space overhead needed by M ′ in order
to simulate M .

We have U(M, 1m, x) = y if and only if M ′ outputs 1 in space k on input y, that
is, if and only if R((M ′, 1k, 1), y). Since the mapping (M, 1m, x) �→ (M ′, 1k, 1)
can be computed in polynomial time, the relation R is FPSPACE(poly)-hard.

�
By exploiting the ability of RS to simulate polynomial-space TMs [4], we

obtain the following result.

Theorem 12. MAP is complete for FPSPACE(poly) under metric reductions.

Proof. The problem is in FPSPACE(poly), since a polynomial-space TM can
enumerate all states of a RS in order of size, and check whether they lead to the
target state (the reachability problem for RS is known to be in PSPACE [4]).

In order to prove the FPSPACE(poly)-hardness of the problem, we describe
a variant of the simulation of polynomial-space TMs by means of RS from [4],
where a distinguished state T , encoding the final configuration of the TM, has
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as minimal ancestors all states encoding the inputs of the TM leading to that
configuration. Given a TM M and a space bound m, let Q and Γ be the set of
states and the tape alphabet of M , including a symbol � for “blank” cells. We
define a RS A having background set

S = {qi : q ∈ Q,−1 ≤ i ≤ m} ∪ {ai : a ∈ Γ, 0 ≤ i < m} ∪ {♠}.
We encode the configurations of M as states of A as follows: if M is in state q,
the tape contains the string w = w0 · · · wm−1, and the tape head is located on
the i-th cell, then the corresponding state of A is {qi, w0,0, . . . , wm−1,m−1}, with
an element qi representing TM state q and head position i, and m elements
corresponding to the symbols on the tape indexed by their position.

A transition δ(q, a) = (r, b, d) of M is implemented by the following reactions

({qi, ai}, {♠}, {ri+d, bi}) for 0 ≤ i < m

which update state, head position, and symbol under the tape head. The remain-
ing symbols on the tape (which have an index different from the tape head
position) are instead preserved by the following reactions:

({ai}, {qi : q ∈ Q} ∪ {♠}, {ai}) for a ∈ Γ , 0 ≤ i < m

If an element encoding TM state and position is not part of the current RS state,
the element representing the initial state s ∈ Q of M , with tape head on the
first cell, is produced by the following reactions

({ai}, {qj : q ∈ Q, 0 ≤ j < m} ∪ {♠}, {s0}) for a ∈ Γ , 0 ≤ i < m (13)

and the simulation of M by A begins in the next time step with the same tape
contents. If M exceeds its space bound, by moving the tape head to the left of
position 0 or to the right of position m, the following reactions become enabled

({q−1}, {♠}, {♠}) for q ∈ Q

({qm}, {♠}, {♠}) for q ∈ Q

and produce the universal inhibitor ♠, which halts the simulation in the next
time step. The universal inhibitor is also produced by the following reactions
when the state of A is not a valid encoding of a configuration of M , namely,
when multiple state elements appear:

({qi, rj}, {♠}, {♠}) for q, r ∈ Q, q �= r, 0 ≤ i < m, 0 ≤ j < m

or when multiple symbols are located on the same tape cell:

({ai, bi}, {♠}, {♠}) for a, b ∈ Γ , a �= b, 0 ≤ i < m

or when a tape cell does not contain any symbol (recall that a blank cell contains
a specified symbol from Γ ):

({s}, {ai : a ∈ Γ} ∪ {♠}, {♠}) for s /∈ {ai : a ∈ Γ} ∪ {♠}, 0 ≤ i < m (14)
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The result function of A can thus be described as follows:

resA(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T ′ if T encodes a configuration of M

and T ′ its next configuration
T ∪ {s0} if T encodes a tape of M

T ′ ∪ {♠} for some T ′ ⊆ S, if ♠ /∈ T but T does
not encode a configuration of M

∅ if ♠ ∈ T or T = ∅

Notice that all states of A encoding configurations of M have m + 1 elements,
and that either resA(T ) = ∅ or ♠ ∈ resA(T ) if |T | < m.

Given an instance (M, 1m, y) of relation R from Lemma 11, we can ask for a
minimal state X of A leading to Y , where Y encodes the configuration of M in
its final state, with the string y on the tape.

If there exists a string x such that M(x) = y and the space bound m is
never exceeded by M during its computation, then there exists a state X ⊆ S
encoding a tape for M containing the input x (padded to length m with blanks)
and such that rest

A(X) = Y for some t ≥ 0. We have |X| = m, and X is minimal
with respect to size among all states leading to Y , since all smaller states lead
to ∅ in at most two steps. Furthermore, from X we can easily recover a string x
with M(x) = y. Conversely, any state X ⊆ S with |X| = m and rest

A(X) = Y
necessarily encodes a string x such that M(x) = y within space m.

If M(x) �= y for all strings x (or all such computations exceed the space
bound m), then all states T such that rest

A(T ) = Y , and in particular the
minimal ones, contain m + 1 elements. By observing this fact, we can infer that
no input of M produces the output y in space m.

Since the mapping (M, 1m, y) �→ (A, Y ) described by the above construction
can be computed in polynomial time, and the answer for R can be extracted
from the answer to the minimal RS ancestor search problem in polynomial time,
the latter problem is FPSPACE(poly)-hard under metric reductions. �

We now deal with the problem of finding the size of a minimal ancestor.

Lemma 13. Let f(M, 1m) = min{|x| : the TM M accepts x in space m}, unde-
fined if no such x exists. Then f is FPSPACE(log)-complete under many-one
reductions.

Proof. Given g ∈ FPSPACE(log), let G be a deterministic TM computing g in
space p(n) for some polynomial p, and let x ∈ Σ�. Let M be a deterministic
TM that, on input y, first simulates G(x), then accepts if and only if |y| ≥ G(x).
Hence, we have g(x) = f(M, 1q(|x|)), where q is a polynomial bound on the space
needed by M to simulate G. This proves the hardness of f . The function can be
computed in FPSPACE(log) by simulating M on all strings of length at most m
until one is accepted in space m, then outputting its length. �
Theorem 14. SMAP is FPSPACE(log)-complete under metric reductions.
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Proof. The problem is in FPSPACE(log), since a polynomial-space TM can find
an ancestor U of a state of a RS as in the proof of Theorem 12, outputting the
size of U rather than U itself. In order to show the hardness of the problem, we
reduce the function f from Lemma 13 to it. Given (M, 1m), let A be the RS
of Theorem 12, simulating M in space 1m, and let A′ be A modified as follows.
First of all, we add ♥ to S, and we also add it as a reactant to all reactions.
Then, the reactions of type (13) are replaced by

({♥}, {ai : a ∈ Γ} ∪ {qj : q ∈ Q,−1 ≤ j ≤ m} ∪ {♠}, {�i}) for 0 ≤ i < m
(15)

({♥}, {qj : q ∈ Q,−1 ≤ j ≤ m} ∪ {♠}, {s0}) (16)

The reactions of type (15) complete the tape of the TM by producing a blank
symbol in position i if no symbol ai and no state qj occur. Reaction (16) produces
the initial state of M in position 0 when no other state element occurs.

The reactions of type (14) are replaced by

({qj}, {ai : a ∈ Γ} ∪ {♠}, {♠}) for q ∈ Q, 0 ≤ i < m, −1 ≤ j ≤ m (17)

which give an error (producing ♠) when a tape symbol is missing, but only if a
state element is already present. Finally, we add the reaction ({♥}, {♠}, {♥}),
which preserves the ♥ element.

The behaviour of A′ differs from A in the following ways. The input string
x = x0 · · · xn−1 of M is provided as a state X = {x0,0, . . . , xn−1,n−1,♥}. In
the first step of A′, the tape is completed by adding blanks and the initial state
of M (reactions (15)–(16)); this produces the state X∪{�n, . . . ,�m−1, s0}, which
encodes the initial configuration of M . The simulation of M then proceeds as
for A (with the additional element ♥ always present).

The ancestors of state T describing an accepting configuration of M (empty
tape, accepting state, head in position 0) and of minimal size encode the initial
input x of M together with ♥, if M accepts at least one string in space m (hence,
such ancestors have size at most m + 1); if no string is accepted, the minimal
ancestors of T all have size at least m+2, by the same reasoning as in the proof
of Theorem 12. Hence, f(M, 1m) + 1 is the size of a minimal ancestor of T , if
the latter is at most m + 1, and f(M, 1m) is undefined otherwise: this defines a
metric reduction of f to this problem. �
Remark 15. The problem of Theorem 14 is actually complete under metric reduc-
tions that only increase linearly the length of the output; the class FPSPACE(log)
is closed under such reductions, but not under general metric reductions.

Finally, we show that counting the number of minimal ancestors has the same
complexity as finding one of them.

Lemma 16. Given a TM M , a unary integer 1m, and a string y, computing
the number of strings x of length at most m such that M(x) = y in space m
is FPSPACE(poly)-complete under many-one reductions.
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Proof. Recalling that FPSPACE(poly) = �PSPACE, the following nondeter-
ministic polynomial-space TM has the required number of accepting computa-
tions: on input (M, 1m, y), it guesses a string x of length at most m (this requires
polynomially many guesses); then it simulates M on x, accepting if M outputs y
without exceeding space m, and rejecting otherwise.

Given f ∈ �PSPACE, let N be a nondeterminstic, polynomial-space TM
with f(x) accepting computations on input x; let p(n) be both a space bound
for N and bound on the number of nondeterministic choices it makes. Consider
the following polynomial-space TM M : on input z ∈ {0, 1}�, it simulates a
computation of N on input x, but replaces the nondeterministic choices of N with
deterministic lookups to successive bits of z. If N exceeds space m = p(|x|), or
halts without having made exactly |z| nondeterministic choices, or the simulated
computation of N rejects, then M writes 0 as output; otherwise, M outputs 1.

Hence, M outputs 1 once for each accepting computation of N , that is, for
exactly f(x) input strings. Since the mapping x �→ (M, 1p(|x|), 1) can be com-
puted in polynomial time, the FPSPACE(poly)-hardness of the problem follows.

�
Theorem 17. #MAP is FPSPACE(poly)-complete under metric reductions.

Proof. The problem is in FPSPACE(poly), since a polynomial-space TM can
compute the size of a minimal ancestor of a state T of a RS, then enumerate all
states of the same size and count how many of them lead to T .

Let (M, 1m, y) be an instance of the problem of Lemma 16, and let A be the
RS simulating M as in the proof of Theorem 12. Let Y = {f0, z0,0, . . . , zm−1,m−1}
be the state of A encoding the final configuration of M with output y, where
z = y0 · · · yk−1�m−k is y padded to length m with blanks and f ∈ Q is the final
state of M . In order to distinguish the presence or absence of at least a string x
such that M(x) = y, we add a large number of ancestors of Y having size m+1,
ensuring that are minimal only if no such string exists. Let A′ be A augmented
with the following reactions:

({ai,♠}, {qj : q ∈ Q,−1 ≤ j ≤ m}, {zi,i, f0}) for a ∈ Γ , 0 ≤ i < m. (18)

When ♠ is present, and all qj are missing, these reactions map each element
representing a symbol in tape cell i, to the symbol zi in tape cell i, together with
the final state f of M in position 0. In particular, when at least one symbol per
position i is present, the whole target state Y is produced. Hence, these reactions
introduce exactly |Γ |m new ancestors of Y of size m + 1. The state Y then has
at least |Γ |m + 1 ancestors of size m + 1, including Y itself. From the proof
of Theorem 12 we may infer that the maximum number of ancestors of Y of
size m is |Γ |m. The number of strings x of length at most m such that M(x) = y
in space m is then equivalent to the number of minimal ancestors of Y for A′,
if and only if this number is at most |Γ |m. If the number is larger than |Γ |m,
then the minimal ancestors have size m + 1, indicating that no such string x
exists. This defines a metric reduction, proving the FPSPACE(poly)-hardness
of #MAP. �



548 A. Dennunzio et al.

5 Conclusions

We investigated the problem of finding the minimal preimage of a state of a RS
and proved that this problem is equivalent, under metric reductions, to finding a
minimal TSP tour when the weights are expressed in unary. We also studied the
complexity of finding a minimal ancestor of a given state and showed that it is
as hard as simulating a polynomial-space TM (with polynomial-length output).
Furthermore, we have investigated the complexity of other problems related
to preimages (resp., ancestors): finding the size and the number of minimal
preimages (resp., ancestors). All these problems were proved to be intractable.

In the future we plan to continue the exploration of problems related to
preimages and ancestors of RS. In the more general model [3], RSs behave as
interactive processes, where new entities are introduced at every time step by
means of a context sequence. Under which conditions does the presence of a
context sequence increase the complexity of the problems we considered? We are
also interested in questions related to the approximability of the aforementioned
problems and the complexity of finding a minimal ancestor that is not “too far”
from the target state.
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Abstract. We present an almost complete classification of the param-
eterized complexity of all operator fragments of the satisfiability prob-
lem in computation tree logic CTL. The investigated parameterization is
the sum of temporal depth and structural pathwidth. The classification
shows a dichotomy between W[1]-hard and fixed-parameter tractable
fragments. The only real operator fragment which is confirmed to be in
FPT is the fragment containing solely AX. Also we prove a generaliza-
tion of Courcelle’s theorem to infinite signatures which will be used to
proof the FPT-membership case.

Keywords: Parameterized complexity · Temporal logic · Computation
tree logic · Courcelle’s theorem

1 Introduction

Temporal logic is the most important concept in computer science in the area
of program verification and is a widely used concept to express specifications.
Introduced in the late 1950s by Prior [16] a large area of research has been
evolved up to today. Here the most seminal contributions have been made by
Kripke [9], Pnueli [14], Emerson, Clarke, and Halpern [2,6] to name only a few.
The maybe most important temporal logic so far is the computation tree logic
CTL due to its polynomial time solvable model checking problem which influ-
enced the area of program verification significantly. However the satisfiability
problem, i.e., the question whether a given specification is consistent, is beyond
tractability, i.e., complete for deterministic exponential time. One way to attack
this intrinsic hardness is to consider restrictions of the problem by means of
operator fragments leading to a trichotomy of computational complexity shown
by Meier [12]. This landscape of intractability depicted completeness results for
nondeterministic polynomial time, polynomial space, and (of course) determin-
istic exponential time showing how combinations of operators imply jumps in
computational complexity of the corresponding satisfiability fragment.

For more than a decade now there exists a theory which allows us to better
understand the structure of intractability: 1999 Downey and Fellows developed
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the area of parameterized complexity [4] and up to today this field has grown
vastly. Informally the main idea is to detect a specific part of the problem, the
parameter, such that the intractability of the problems complexity vanishes if
the parameter is assumed to be constant. Through this approach the notion
of fixed parameter tractability has been founded. A problem is said to be fixed
parameter tractable (or short, FPT) if there exists a deterministic algorithm
running in time f(k) · poly(n) for all input lengths n, corresponding parameter
values k, and a recursive function f . As an example, the usual propositional
logic satisfiability problem SAT (well-known to be NP-complete) becomes fixed
parameter tractable under the parameter number of variables.

∅
AXAF AG

AU EU
AX,AF AF,AG AX,AG

AX,AF,AG
AX,AU AX, EU

AG,AU
AF, EU

AX,AF, EU

W[1]-hard open FPT

Fig. 1. Parameterized complexity of
CTL-SAT(T ) parameterized by for-
mula pathwidth and temporal depth
(see Theorem 1)

In this work we almost completely
classify the parameterized complexity of
all operator fragments of the satisfiabil-
ity problem for the computation tree logic
CTL under the parameterization of formula
pathwidth and temporal depth. Only the
case for AF resisted a full classification.
We will explain the reasons in the con-
clusion. For all other fragments we show
a dichotomy consisting of two fragments
being fixed parameter tractable and the
remainder being hard for the complexity
class W[1] under fpt-reductions. W[1] can
be seen as an analogue of intractability
in the decision case in the parameterized
world. To obtain this classification we prove
a generalization of Courcelle’s theorem [3] for infinite signatures which may be
of independent interest.

Related work. Similar research for modal logic has been done by Praveen and
influenced the present work in some parts [15]. Other applications of Courcelle’s
theorem have been investigated by Meier et al. [11] and Gottlob et al. [8]. In
2010 Elberfeld et al. proved that Courcelle’s theorem can be extended to give
results in XL as well [5] wherefore the results of Theorem 4 can be extended to
this class, too.

2 Preliminaries

We assume familiarity with standard notions of complexity theory as Turing
machines, reductions, the classes P and NP. For an introduction into this field
we confer the reader to the very good textbook of Pippenger [13].

2.1 Complexity Theory

Let Σ be an alphabet. A pair Π = (Q,κ) is a parameterized problem if Q ⊆ Σ∗

and κ : Σ∗ → N is a function. For a given instance x ∈ Σ∗ we refer to x as
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the input. A function κ : Σ∗ → N is said to be a parameterization of Π or the
parameter of Π. We say a parameterized problem Π is fixed-parameter tractable
(or in the class FPT) if there exists a deterministic algorithm deciding Π in time
f(κ(x))·|x|O(1) for every x ∈ Σ∗ and a recursive function f . Note that the notion
of fixed-parameter tractability is easily extended beyond decision problems.

If Π = (Q,κ),Π ′ = (Q′, κ′) are parameterized problems over alphabets Σ,Δ
then an fpt-reduction from Π to Π ′ (or in symbols Π ≤fpt Π ′) is a mapping
r : Σ∗ → Δ∗ with the following three properties:

(1) For all x ∈ Σ∗ it holds x ∈ Q iff r(x) ∈ Q′. (2) r is fixed-parameter
tractable, i.e., r is computable in time f(κ(x)) · |x|O(1) for a recursive function
f : N → N. (3) There exists a recursive function g : N → N such that for all
x ∈ Σ∗ it holds κ′(r(x)) ≤ g(κ(x)).

The class W[1] is a parameterized complexity class which plays a similar
role as NP in the sense of intractability in the parameterized world. The class
W[1] is a superset of FPT and a hierarchy of other W-classes are build above
of it: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P]. All these classes are closed under
fpt-reductions. It is not known whether any of these inclusions is strict. For
further information on this topic we refer the reader to the text book of Flum
and Grohe [7].

2.2 Tree- and Pathwidth

Given a structure A we define a tree decomposition of A (with universe A) to
be a pair (T,X) where X = {B1, . . . , Br} is a family of subsets of A (the set
of bags), and T is a tree whose nodes are the bags Bi satisfying the following
conditions:

1. Every element of the universe appears in at least one bag:
⋃

X = A.
2. Every Tuple is contained in a bag: for each (a1, . . . , ak) ∈ R where R is a

relation in A, there exists a B ∈ X such that {a1, . . . , ak} ∈ B.
3. For every element a the set of bags containing a is connected: for all a ∈ A

the set {B | a ∈ B} forms a connected subtree in T .

The width of a decomposition (T,X) is width(T,X) := max{|B| | B ∈ X}−1
which is the size of the largest bag minus 1. The treewidth of a structure A is the
minimum of the widths of all tree decompositions of A. Informally the treewidth
of a structure describes the tree-likeliness of it. The closer the value is to 1 the
more the structure is a tree.

A path decomposition of a structure A is similarly defined to tree decompo-
sitions however T has to be a path. Here pw(A) denotes the pathwidth of A.
Likewise the size of the pathwidth describes the similarity of a structure to a
path. Observe that pathwidth bounds treewidth from above.

2.3 Logic

Let Φ be a finite set of propositional letters. A propositional formula (PL for-
mula) is inductively defined as follows. The constants �,⊥, (true, false) and
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any propositional letter (or proposition) p ∈ Φ are PL formulas. If φ, ψ are
PL formulas then so are φ ∧ ψ,¬φ, φ ∨ ψ with their usual semantics (we fur-
ther use the shortcuts →,↔). Temporal logic extends propositional logic by
introducing four temporal operators, i.e., next X, future F, globally G, and until
U. Together with the two path quantifiers, exists E and all A, they fix the set
of computation tree logic formulas (CTL formulas) as follows. If φ ∈ PL then
PTφ,P[φUψ] ∈ CTL and if φ, ψ ∈ CTL then PTφ,P[φUψ], φ∨ψ,¬ψ, φ∧ψ ∈ CTL
hold, where P ∈ {A,E} is a path quantifier and T ∈ {X,F,G} is a temporal
operator. The pair of a single path quantifier and a single temporal operator
is referred to as a CTL-operator. If T is a set of CTL-operators then CTL(T ) is
the restriction of CTL to formulas that are allowed to use only CTL-operators
from T .

Let us turn to the notion of Kripke semantics. Let Φ be a finite set of propo-
sitions. A Kripke structure K = (W,R, V ) is a finite set of worlds W , a total
successor relation R : W → W (i.e., for every w ∈ W there exists a w′ ∈ W with
wRw′), and an evaluation function V : W → 2Φ labeling sets of propositions to
worlds. A path π in a Kripke structure K = (W,R, V ) is an infinite sequence
of worlds w0, w1, . . . such that for every i ∈ N wiRwi+1. With π(i) we refer to
the i-th world wi in π. Denote with P(w) the set of all paths starting at w. For
CTL formulas we define the semantics of CTL formulas φ, ψ for a given Kripke
structure K = (W,R, V ), a world w ∈ W , and a path π as

K,w |= ATφ ⇔ for all π ∈ P(w) it holds K,π |= Tφ,

K,w |= ETφ ⇔ there exists a π ∈ P(w) it holds K,π |= Tφ,

K, π |= Xφ ⇔ K,π(1) |= φ,

K, π |= Fφ ⇔ there exists an i ≥ 0 such that K,π(i) |= φ,

K, π |= Gφ ⇔ for all i ≥ 0 K,π(i) |= φ,

K, π |= φUψ ⇔ ∃i ≥ 0∀j < i K, π(j) |= φ and K,π(i) |= ψ.

For a formula φ ∈ CTL we define the satisfiability problem CTL-SAT asking
if there exists a Kripke structure K = (W,R, V ) and w ∈ W such that K,w |= φ.
Then we also say that M is a model of φ. Similar to before CTL-SAT(T ) is the
restriction of CTL-SAT to formulas in CTL(T ) for a set of CTL-operators T . A
formula φ ∈ CTL is said to be in negation normal form (NNF) if its negation
symbols ¬ occur only in front of propositions; we will use the symbol CTLNNF

to denote the set of CTL-formulas which are in NNF only.
Given φ ∈ CTL we define SF(φ) as the set of all subformulas of φ (containing

φ itself). The temporal depth of φ, in symbols td(φ), is defined inductively as
follows. If Φ is a finite set of propositional symbols and φ, ψ ∈ CTL then

td(p) := 0, td(φ ◦ ψ) := max{td(φ), td(ψ)},
td(�) := 0, td(¬φ) := td(φ),
td(⊥) := 0, td(PTφ) := td(φ) + 1,

td(P[φUψ]) := max{td(φ), td(ψ)} + 1,

where ◦ ∈ {∧,∨,→,↔}, P ∈ {A,E}, and T ∈ {X,F,G}. If ψ ∈ SF(φ) then the
temporal depth of ψ in φ is tdφ(ψ) := td(φ) − td(ψ).
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Vocabularies are finite sets of relation symbols (or predicates) of finite arity
k ≥ 1 (if k = 1 then we say the predicate is unary) which are usually denoted
with the symbol τ . Later we will also refer to similar objects of infinite size
wherefore we prefer to denote them with the term signature which usually is
an countable infinite sized set of symbols. A structure A over a vocabulary (or
signature) τ consists of a universe A which is a non-empty set, and a relation
PA ⊆ Ak for each predicate P of arity k. Monadic second order logic (MSO) is
the restriction of second order logic (SO) in which only quantification over unary
relations is allowed (elements of the universe can still be quantified existentially
or universally). If P is a unary predicate then P (x) is true if and only if x ∈ P
holds (otherwise it is false).

3 Parameterized Complexity of CTL-SAT(T)

In this section we investigate all operator fragments of CTL-SAT parameter-
ized by temporal depth and formula pathwidth with respect to its parameterized
complexity. This means, we the given formulas from CTL as input are represented
by relational structures as follows.

Let ϕ ∈ CTL be a CTL formula. The vocabulary of our interest is τ being
defined as τ := {const1f | f ∈ {�,⊥}} ∪ {conn2

f,i | f ∈ {∧,∨,¬}, 1 ≤ i ≤
ar(f)} ∪ {var1, repr1, repr1PL} ∪ {repr1C,body2

C | C is a unary CTL-operator} ∪
{repr1C,body3

C | C is a binary CTL-operator}. We then associate the vocabulary
τ with the structure Aϕ where its universe consists of elements representing
subformulas of ϕ. The predicates are defined as follows

− var(x) holds iff x represents a variable,
− repr(x) holds iff x represents the formula ϕ,
− reprPL(x) holds iff x represents a propositional formula,
− reprC(x) holds iff x represents a formula Cψ where C is a CTL-operator,
− bodyC(y, x) (resp., bodyC(y, z, x)) holds iff x represents a formula Cψ (resp.,

C(ψ, χ)) and ψ is represented by y where C is a unary CTL-operator (resp.,
ψ / χ is represented by y / z where C is a binary CTL-operator),

− constf (x) holds iff x represents the constant of f ,
− connf,i(x, y) holds iff x represents the ith argument of the function f at the

root of the formula tree represented by y.

Now we consider the problem CTL-SAT parameterized by the pathwidth of
its instance structures Aϕ (for the instances ϕ) as well as the temporal depth
of the formula. Hence the parameterization function κ maps, given an instance
formula ϕ ∈ CTL to the pathwidth of the structures Aϕ plus the temporal depth
of ϕ, i.e., κ(ϕ) = pw(Aϕ) + td(ϕ).

The following theorem summarizes the collection of results we have proven
in the upcoming lemmas. The subsection on page 554 contains the FPT result
together with the generalization of Courcelle’s theorem to infinite signatures.

Theorem 1. CTL-SAT(T ) parameterized by formula pathwidth and temporal
depth is
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1. in FPT if T = {AX} or T = ∅, and
2. W[1]-hard if AG ∈ T , or AU ∈ T , or {AX,AF} ⊆ T .

Proof. (1.) is witnessed by Corollary 4. The proof of (2.) is split into Lemmas 5
to 7. ��

One way to prove the containment of a problem parameterized in that way in
the class FPT is to use the prominent result of Courcelle [Thm. 6.3 (1)][3]. Infor-
mally, satisfiability of CTL-formulas therefore has to be formalized in monadic
second order logic. The other ingredient of this approach is expressing formu-
las by relational structures as described before. Now the crux is that our case
requires a family of MSO formulas which depend on the instance. This however
seems to be a serious issue at first sight as this prohibits the application of Cour-
celle’s theorem. Fortunately we are able to generalize Courcelle’s theorem in a
way to circumvent this problem. Moreover we extended it to work with infinite
sized signatures under specific restrictions which allows us to state the desired
FPT result described as follows.

A Generalized Version of Courcelle’s Theorem

Assume we are able to express a problem Q in MSO. If instances x ∈ Q can be
modeled via some relational structure Ax over some finite vocabulary τ and we
see Q as a parameterized problem (Q,κ) where κ is the treewidth of Ax then by
Courcelle’s theorem we immediately obtain that (Q,κ) is in FPT [3]. If we do
not have a fixed MSO formula (which is independent of the instance) then we are
not able to use the mentioned result. However the following theorem shows how
it is possible even with infinite signatures to apply the result of Courcelle. For
this, we assume that the problem can be expressed by an infinite family (φn)n∈N

of MSO-formulas along with the restriction that (φn)n∈N is uniform, i.e., there
is a recursive function f : n → φn.

Let κ be a parameterization. Call a function f : Σ∗ → Σ∗ κ-bounded if there
is a computable function h such that for all x it holds that |f(x)| ≤ h(κ(x)).

Theorem 2. Let (Q,κ) be a parameterized problem such that instances x ∈ Σ∗

can be expressed via relational structures Ax over a (possibly infinite) signature τ
and tw(Ax) is κ-bounded. If there exists a uniform MSO-formula family (φn)n∈N

and a fpt-computable, κ-bounded function f such that for all x ∈ Σ∗ it holds
x ∈ Q ⇔ Ax |= φ|f(x)| then (Q,κ) ∈ FPT.

Proof. Let (Q,κ), (φn)n∈N, κ and f be given as in the conditions of the theorem.
Let (φn)n∈N be computed by a w.l.o.g. non-decreasing and computable function
g. The following algorithm correctly decides Q in fpt-time w.r.t. κ. First compute
i := |f(x)| in FPT for the given instance x. Since (φn)n∈N is uniform and f is
κ-bounded we can construct φi in time g(n) = g(|f(x)|) ≤ g(h(κ(x))), hence in
FPT. Now we are able to solve the model checking problem instance (Ax, φi) in
time f ′(tw(Ax), |φi|

) · |Ax| for a recursive f ′ due to Courcelle’s theorem. As both
tw and |φi| are κ-bounded, the given algorithm then runs in FPT time. ��
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Note that the infinitely sized signature is required to describe the structures
from the set of all structures A which occur with respect to the corresponding
family of MSO-formulas (φn)n∈N. Every subset T ⊂ A of structures with respect
to each φi then possess (as desired and required by Courcelle’s theorem) a finite
signature, i.e., a vocabulary.

Praveen [15] shows the fixed-parameter tractability of ML-SAT (parameter-
ized by pathwidth and modal depth) by applying Courcelle’s theorem, using for
each modal formula an MSO-formula whose length is linear in the modal depth.
This can be seen as a special case of Theorem 2 using a P-uniform MSO family
that partitions the instance set according to the modal depth.

Again we want to stress that formula pathwidth of ϕ refers to the pathwidth
of the corresponding structures Aϕ as defined above.

Lemma 3. Let ϕ ∈ CTLNNF({AX,EX}, B) given by the structure Aϕ over τ .
Then there exists an MSO formula θ(ϕ) such that ϕ ∈ CTL-SAT({AX}) iff
Aϕ |= θ(ϕ) and θ(ϕ) depends only on td(ϕ).

Proof. The first step is to show that a formula ϕ ∈ CTLNNF({AX,EX}) is satisfi-
able if and only if it is satisfied by a Kripke structure of depth td(ϕ), where the
depth of a structure (M,w0) is the maximal distance in M from w0 to another
state from M . This can be similar proven as the tree model property of modal
logic [1, p. 269, Lemma 35].

Let ϕ be the given formula in CTLNNF({AX,EX}). The following formula
θstruc describes the properties of the structure Aϕ. At first it takes care of the
uniqueness of the formula representative. If an element x does not represent a
formula then it has to be a subformula. Additionally if x it is not a variable it
has to be either a constant, or a Boolean function f ∈ B with the corresponding
arity ar(f), or an AX-, or an EX-formula respectively. Furthermore the distinct-
ness of the representatives has to be ensured which together with the previous
constraints implies acyclicity of the relation structure graph.

In the following f1(u, v, w, x) corresponds to the operator of the function
which is true if exactly one of its arguments is true.

θstruc :=∀x∀y(repr(x) ∧ repr(y) → x = y)∧

∀x

(
¬repr(x) → ∃y

(
¬var(y) ∧

∨
f∈{∧,∨,¬},

1≤i≤ar(f)

connf,i(x, y)
))

∧

∀x f1

(
var(x),

∨
f∈{�,⊥}

constf (x),

∨
f∈B,

ar(f)≥1

∧
1≤i≤ar(f)

∃y
(
connf,i(y, x) ∧ ∀z

(
connf,i(z, x) → z = y

))
,

∃y
(
bodyAX(y, x) ∧ ∀z

(
bodyAX(z, x) → z = y

))
,
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∃y
(
bodyEX(y, x) ∧ ∀z

(
bodyEX(z, x) → z = y

)))∧

∀x∀y
(
(bodyAX(y, x) → reprAX(x)) ∧ (bodyEX(y, x) → reprEX(x))

)
.

The previous formula is a modification of the formula used in the proof of
Lemma 1 in [11].

The next formulas will quantify sets Mi which represent sets of satisfied
subformulas at worlds in the Kripke structure at depth i. Here the formulas with
propositional connectives, resp., all constants, have a valid assignment obeying
their function value in the model Mi. The AX- and EX-formulas are processed
as expected: the EX-formulas branch to different worlds and the AX-formulas
have to hold in all possible next worlds. Now we are ready to define θi

assign in
an inductive way. At depth 0 we want to consider only propositional formulas.
Here it ensures that all Boolean functions obey the model:

θ0assign(M0) := ∀x, y1, . . . , yn ∈ M0 : reprPL(x)∧
∧

f∈B

( ∧
ar(f)=0

constf (x) → f ∧
∧

1≤i≤ar(f)

connf,i(yi, x) → f(M0(y1), . . . ,M0(yar(f)))

)
.

In the general definition of θi
assign we utilize for convenience two subformulas,

θi
branchEX and θi

stepAX. The first is defined for an element x representing an
EX-formula, a set of elements Mi representing to be satisfied formulas, and a set
of elements MAX representing the AX-formulas which are satisfied in the current
world. The formula enforces that the formula EXψ represented by x has to hold
in the next world together with all bodies of the AX-formulas:

θi
branchEX(Mi,MAX,x) := ∃y

(
bodyEX(y, x) ∧ ∃Mi−1

(
Mi−1(y) ∧ ∀z ∈ MAX

(∃w bodyAX(w, z) ∧ Mi−1(w)) ∧ θi−1
assign(Mi−1)

))
.

The second formula is crucial when there are no EX-formulas represented
in Mi. Then the AX-formulas still have to be satisfied eventually wherefore we
proceed with a single next world (without any branching required):

θi
stepAX(MAX) := ∃Mi−1∀z ∈ MAX(∃w bodyAX(w, z)∧Mi−1(w))∧θi−1

assign(Mi−1).

Now we turn towards the complete inductive definition step where we need to
differentiate between the two possible cases for representatives: either a propo-
sitional or a temporal formula is represented. The first part is similar to the
induction start and the latter follows the observation that for every EX-preceded
formula we want to branch. In each such branch all not yet satisfied AX-preceded
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formulas have to hold. The set MAX contains all AX-formulas which are satisfied
in the current world. If we do not have any EX-formulas then we enforce a single
next world for the remaining AX-formulas:

θi
assign(Mi) :=∀x, y1, . . . , yn ∈ Mi

∧
f∈B

( ∧
ar(f)=0

constf (x) → (Mi(x) ↔ f)∧

∧
1≤i≤ar(f)

connf,i(yi, x) → (
Mi(x) ↔ f(Mi(y1), . . . , Mi(yar(f)))

))∧

∃MAX ⊆ Mi

(
∀x

(
MAX(x) ↔ (

reprAX(x) ∧ Mi(x)
))∧

∀x ∈ Mi

(
reprEX(x) → θi

branchEX(Mi,MAX, x)
)∧(∀x ∈ Mi(¬reprEX(x))

) → θi
stepAX(MAF

))
.

Through the construction we get that ϕ is satisfiable iff Aϕ |= θstruc ∧
∃M(θtd(ϕ)

assign(M)) =: θ(ϕ). ��
Corollary 4. CTL-SAT({AX}) parameterized by formula pathwidth and tempo-
ral depth is fixed-parameter tractable.

Proof. Assume that the given formula ϕ is in NNF since such a transformation is
possible in linear time. As pathwidth is an upper bound for treewidth, we apply
Theorem 2 in the following way. For |f(ϕ)| = td(ϕ) the function f is κ-bounded
and computes the appropriate MSO formula from the uniform family given by
Lemma 3. ��

Intractable Fragments of CTL-SAT

In the following section we consider fragments of CTL for which their models can-
not be bounded by the temporal depth of the formula. Therefore the framework
used for the AX case cannot be applied. Instead we prove W[1]-hardness.

Lemma 5. CTL-SAT(T ) parameterized by formula pathwidth and temporal
depth is W[1]-hard if {AX,AF} ⊆ T .

Proof (Sketch). Due to space constraints the full proof is omitted and we refer to
the technical report [10]. We will modify the construction in the proof of Praveen
[15, Lemma A.3] and thereby state an fpt-reduction from the parameterized
problem p-PW-SAT whose input is (F , part : Φ → [k], tg : [k] → N), where
F is a propositional CNF formula, part is a function that partitions the set of
propositional variables of F into k parts, and tg is a function which maps to each
part a natural number. The task is to find a satisfying assignment of F such that
in each part p ∈ [k] exactly tg(p) variables are set to true. A generalization of this
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determined :=AG
n∧

i=1

(
(qi ⇒ AXqi) ∧ (¬qi ⇒ AX¬qi)

)

depth :=

n−2∧

i=0

(
(di ∧ ¬di+1) ⇒ AX(di+1 ∧ ¬di+2)

)

setCounter :=(q1 ⇒ t↑part(1)) ∧ (¬q1 ⇒ f↑part(1))∧

AG
n∧

i=2

(
(di−1 ∧ ¬di) ⇒ [

(qi ⇒ t↑part(i)) ∧ (¬qi ⇒ f↑part(i))
] )

incCounter :=
(
(t↑part(1) ⇒ AXtr

1
part(1)) ∧ (f↑part(1) ⇒ AXfl

1
part(1))

)
∧

AG
k∧

p=1

n[p]−1∧

j=0

[(
t↑p ⇒

(
tr

j
p ⇒ tr

j+1
p ∧ AXtr

j+1
p

))
∧

(
f↑p ⇒

(
fl

j
p ⇒ fl

j+1
p ∧ AXfl

j+1
p

))]

targetMet :=AG
k∧

p=1

(dn ⇒ tr
tg(p)
p ∧ ¬tr

tg(p)+1
p ∧ fl

n[p]−tg(p)
p ∧ ¬tr

n[p]−tg(p)+1
p )

determined’ :=AG
k∧

p=1

(
(tr

0
p ⇒ tr

0
p) ∧ (fl

0
p ⇒ fl

0
p)
)

countInit :=d0 ∧ ¬d1 ∧
k∧

p=1

(¬tr
1
p ∧ ¬fl

1
p ∧ tr

0
p ∧ fl

0
p)

depth’ :=AG
k∧

p=1

n[p]∧

j=0

[(
tr

j
p ⇒ tr

j
p)
)

∧
(

fl
j
p ⇒ (fl

j
p)
)]

countMonotone :=AG

⎛

⎝
n∧

i=1

(
(di ⇒ di−1)

)
∧

k∧

p=1

n[p]∧

l=2

[
(tr

j
p ⇒ tr

j−1
p ) ∧ (fl

j
p ⇒ fl

j−1
p )

]
⎞

⎠

Fig. 2. Reduction from p-PW-SAT to CTL-SAT({AX,AG})

problem to arbitrary formulas F (i.e., the CNF constraint is dropped) is W[1]-
hard when parameterized by k and the pathwidth of the structural representation
AF of F which is similar proven as in [15, Lemma 7.1].

The further idea is to construct a CTL-formula φF in which we are able to ver-
ify the required targets. The formula enforces a Kripke structure K = (W,R, V )
where in each world w ∈ W the value of V (w) coincides with a satisfying assign-
ment f of F together with the required targets. Each such K contains as a
substructure a chain w0Rw1R · · · Rwn of worlds and all variables qi in F are
labeled to each wj if f(qi) holds.

The formula φF that is the conjunction of subformulas (Figure 2) similar to
[15, Lemma A.3] states the reduction from p-PW-SAT to CTL-SAT({AX,AG})
parameterized by temporal depth and pathwidth. With respect to Praveens app-
roach we explain how to obtain a formula consisting of only one single AG oper-
ator leading to a formula φF = ψ ∧ AGχ, where ψ is purely propositional and
χ ∈ CTL({AX}). Then AG can be replaced by EG and the proof stays valid
since there is only one instance of an existential temporal operator and it occurs
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at temporal depth zero. As AG(α) ∧ AG(β) ≡ AG(α ∧ β) we can modify the
formula φF which is a conjunction of the formulas from above to the desired
form containing only a single AG. This is then replaced by EG and the argu-
mentation follows. The correctness of the reduction is similarly proven as in
[15, Lemma A.3]. ��
Lemma 6. CTL-SAT(T ) parameterized by formula pathwidth and temporal
depth is W[1]-hard if AG ∈ T .

Proof. Now we consider the case were T = {AG}. As AGϕ is equivalent to ¬EF¬ϕ
we can simply substitute in the constructed formula φF from [15, Lemma A.3]
the occurrence of EX with EF. By this the possible “steps” invoked by the EX-
operator become “jumps” through EF. This however allows consecutive worlds to
be labeled identically, counting a variable duplicately. We refer to the technical
report for the necessary construction to prevent such behaviour [10].

Lemma 7. CTL-SAT(T ) parameterized by formula pathwidth and temporal
depth is W[1]-hard if AU ∈ T .

Proof. Due to space constraints the proof is omitted and we refer to the technical
report [10].

4 Conclusion

In this work we present an almost complete classification with respect to param-
eterized complexity of all possible CTL-operator fragments of the satisfiability
problem in computation tree logic CTL parameterized by formula pathwidth
and temporal depth. Only the case for the fragment containing solely AF remains
open. Currently we are working on a classification of this fragment which aims
for an FPT result and uses the “full version” of Theorem 2; the main goal is
to bound the model depth of an AF-formula in the full parameter, i.e. not only
in the temporal depth of the formula. This requires finding lower bounds for
the treewidth of the considered structures when the formula enforces a deep
model. Then we can construct a family of MSO formulas similar to the AX case.
The classified results form a dichotomy with two fragments in FPT and the
remainder being W[1]-hard.

Comparing our results to the situation in usual computational complexity
for the decision case they do not behave as expected. Surprisingly the fragment
{AX} is FPT whereas on the decision side this fragment is PSPACE-complete.
For the other classified fragments the rule of thumb is the following: The NP-
complete fragments are FPT whereas the PSPACE- and EXPTIME-complete
fragments are W[1]-hard. For the shown W[1]-hardness results an exact classi-
fication with matching upper bounds is open for further research. Similarly a
complete classification with respect to all possible Boolean fragments in the
sense of Post’s lattice is one of our next steps.

Furthermore we constructed a generalization of Courcelle’s theorem to infi-
nite signatures for parameterized problems (Q,κ) with Q ⊆ Σ∗ such that the
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treewidth of the relational structures Ax corresponding to instances x ∈ Σ∗

is κ-bounded under the existence of a computable family of MSO-formulas
(cf. Theorem 2). Previously such a general result for infinite signatures was not
known to the best of the authors knowledge and is of independent interest.

Another consequent step will be the classification of other temporal logics
fragments, e.g., of linear temporal logic LTL and the full branching time logic
CTL∗ with respect to their parameterized complexity. Also the investigation of
other parameterizations beyond the usual considered measures of pathwidth or
treewidth and temporal depth may lead to a better understanding of intractabil-
ity in the parameterized sense.
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Abstract. Testing Automaton (TA) is a new kind of ω-automaton intro-
duced by Hansen et al. [6] as an alternative to the standard Büchi
Automata (BA) for the verification of stutter-invariant LTL properties.
Geldenhuys and Hansen [5] shown later how to use TA in the automata-
theoretic approach to LTL model checking. They propose a TA-based
approach using a verification algorithm that requires two searches (two
passes) and compare its performance against the BA approach.

This paper improves their work by proposing a transformation of
TA into a normal form (STA) that only requires a single one-pass verifi-
cation algorithm. The resulting automaton is called Single-pass Testing
Automaton (STA). We have implemented the STA approach in Spot
model checking library. We are thus able to compare it with the BA and
TA approaches. These experiments show that STA compete well on our
examples.

1 Introduction

The automata-theoretic approach [11] to LTL model checking relies on
ω-automata (i.e., an extension of finite automata to infinite words). It starts
by converting the negation of the LTL formula ϕ into an ω-automaton A¬ϕ,
then composing that automaton with the state-space of a model M given as a
Kripke structure KM (a variant of ω-automaton), and finally checking the lan-
guage emptiness of the resulting product automaton A¬ϕ ⊗ KM . This operation
tells whether A¬ϕ ⊗ KM accepts an infinite word, and can return such a word
as a counterexample. The model M satisfies ϕ iff L (A¬ϕ ⊗ KM ) = ∅.

As for any model checking process, the automata-theoretic approach suf-
fers from the well known state explosion problem. In practice, it is the product
automaton that can be very large, its size can reach (|A¬ϕ|×|KM |) states, which
can make it impossible to be handled using the resources of modern computers.

The ω-automaton representing A¬ϕ is usually a Büchi Automaton (BA).
This paper focuses on improving another kind of ω-automaton called Testing
Automaton (TA). TA is a variant of an “extended” Büchi automaton introduced
by Hansen et al. [6]. Instead of observing the valuations on states or transi-
tions, the TA transitions only record the changes between these valuations. In
addition, TA are less expressive than BA since they are able to represent only
stutter-invariant [3] properties. Also they are often larger than their equivalent
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 563–576, 2015.
DOI: 10.1007/978-3-319-15579-1 44
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BA, but their high degree of determinism [6] often leads to a smaller product
size [5].

In a previous work [1], we evaluated the use of TA for the model check-
ing of stutter-invariant LTL properties. We have shown that the TA approach
is efficient when the formula to be verified is violated (i.e., a counterexample
exists). This is not the case when the property is satisfied since the product
(A¬ϕ ⊗KM ) has to be visited twice during the the emptiness check. In this work,
we improve the TA approach in order to avoid the second pass of the empti-
ness check algorithm. To achieve this goal, we propose a transformation of TA
into a normal form that does not require such a second pass, called Single-pass
Testing Automata (STA). We have implemented the algorithms of STA app-
roach in Spot [10] library. Our experimental comparisons between BA, TA and
STA approaches show that the STA approach is statistically more efficient when
no counterexample is found (i.e., the property is satisfied) because it does not
require a second pass.

2 Existing Approaches

Let AP a set of atomic propositions, a valuation � over AP is an assignment of
truth value to each atomic proposition. We denote by Σ = 2AP the set of all
valuations over AP , where a valuation � ∈ Σ is interpreted either as the set of
atomic propositions that are true, or as a Boolean conjunction. For instance, if
AP = {a, b}, then Σ = 2AP = {{a, b}, {a}, {b}, ∅} or Σ = {ab, ab̄, āb, āb̄}.

2.1 Büchi Automata (BA)

A Büchi Automaton (BA) is an ω-automaton [4] with valuations on transitions
and acceptance conditions on states. Any LTL formula ϕ can be converted into
a BA that accepts the same executions that satisfy ϕ [11].

Definition 1 (BA). A Büchi Automaton (BA) over the alphabet Σ = 2AP is
a tuple B = 〈Q, I, δ,F〉 where:
− Q is a finite set of states, I ⊆ Q is a finite set of initial states,
− F ⊆ Q is a finite set of accepting states (F is called the accepting set),
− δ ⊆ Q × Σ × Q is the transition relation where each transition is labeled by

a letter � of Σ, i.e., each element (q, �, q′) ∈ δ represents a transition from
state q to state q′ labeled by a valuation � ∈ 2AP .

A run of B over an infinite word σ = �0�1�2 . . . ∈ Σω is an infinite sequence
of transitions r = (q0, �0, q1)(q1, �1, q2)(q2, �2, q3) . . . ∈ δω such that q0 ∈ I (i.e.,
the infinite word is recognized by the run). Such a run is said to be accepting if
∀i ∈ N, ∃j ≥ i, qj ∈ F (at least one accepting state is visited infinitely often).
The infinite word σ is accepted by B if there exists an accepting run of B over σ.

Figure 1 shows a BA recognizing the LTL formula (a U G b). In this BA, the
Boolean conjunctions labeling each transition are valuations over AP = {a, b}.
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aUG b G b

ab, ab̄

āb, ab

āb, ab

Fig. 1. A BA B for the LTL for-
mula a U G b, with accepting states
shown as double circles

1ab̄

2ab

3āb

4

{b}

{a, b}{b}

{a}

{a}

{a}

{a}

Fig. 2. A TA T for the LTL formula
a U G b

SCC[i − 1] SCC[i] SCC[i + 1] SCC[n]

t

Fig. 3. SCC search stack and how the SCCs are merged

The LTL formulas labeling each state represent the property accepted starting
from this state of the automaton: they are shown for the reader’s convenience
but not used for model checking. As an illustration of Definition 1, the infinite
word ab; ab̄; āb; ab; āb; ab; . . . is accepted by the BA of Figure 1. A run over such
infinite word must start in the initial state labeled by the formula (aUGb) and
remains in this state for the first two valuations ab; ab̄, then it changes the value
of a, so it has to take the transition labeled by the valuation āb to move to the
second state labeled by the formula (Gb). Finally, to be accepted, it must stay on
this accepting state by executing infinitely the transitions labeled by {āb, ab}.

Model Checking Using BA. The synchronous product of a BA B with a
Kripke structure K is a BA K ⊗ B whose language is the intersection of both
languages. Testing this product automaton (i.e., a BA) for emptiness amounts
to the search of an accepting cycle that contains at least one accepting states.

Algorithm 1 presented below is an iterative version of the Couvreur’s SCC-
based algorithm [2] adapted to the emptiness check of BA. Algorithm 1 computes
on-the-fly the Maximal Strongly Connected Components (MSCCs) of the BA
representing the product K ⊗ B: it performs a Depth-First Search (DFS) for
SCC detection and then merges the SCCs belonging to the same Maximal SCC
into a single SCC. After each merge, if the merged SCC contains an accepting
state from F⊗ (line 16), then an accepting run (i.e., a counterexample) is found
(line 16) and the L (K ⊗ B) is not empty. todo is the DFS stack. It is used by
the procedure DFSpush to push the states of the current DFS path and the set
of their successors that have not yet been visited. H maps each visited state to
its rank in the DFS order, and H[s] = 0 indicates that s is a dead state (i.e., s
belongs to a maximal SCC that has been fully explored). The SCC stack stores
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a chain of partial SCCs found during the DFS. For each SCC the attribute root
is the DFS rank (H) of the first state of the SCC, acc is the set of accepting
states belonging to the SCC, and rem contains the fully explored states of the
SCC.

1 Input: A BA K ⊗ B = 〈S⊗, I⊗, δ⊗, F⊗〉
2 Result: � if and only if L (K ⊗ B) = ∅
3 Data: todo: stack of 〈state ∈ S⊗, succ ⊆ δ⊗〉, H: map of S⊗ 	→ N

SCC: stack of 〈root ∈ N, acc ⊆ F⊗, rem ⊆ S⊗〉, max ← 0
4 begin
5 foreach s0 ∈ I⊗ do
6 DFSpush(s0)
7 while ¬todo.empty() do
8 if todo.top().succ = ∅ then
9 DFSpop()

10 else
11 pick one 〈s, , d〉 off todo.top().succ
12 if d �∈ H then
13 DFSpush(d)
14 else if H[d] > 0 then
15 merge(H[d])
16 if SCC.top().acc �= ∅ then return ⊥

17 return �
18 DFSpush(s ∈ S⊗)

19 max ← max + 1; H[s] ← max;
20 SCC.push(〈max, ({s} ∩ F⊗), ∅〉)
21 todo.push(〈s, {〈q, l, d〉 ∈ δ⊗ | q = s}〉)
22 DFSpop()

23 〈s, 〉 ← todo.pop()
24 SCC.top().rem.insert(s)
25 if H[s] = SCC.top().root then
26 foreach s ∈ SCC.top().rem do
27 H[s] ← 0

28 SCC.pop()

29 merge(t ∈ N)

30 acc ← ∅; r ← ∅;
31 while t < SCC.top().root do
32 acc ← acc ∪ SCC.top().acc
33 r ← r ∪ SCC.top().rem
34 SCC.pop()

35 SCC.top().acc ← SCC.top().acc ∪ acc
36 SCC.top().rem ← SCC.top().rem ∪ r

Algorithm 1. Emptiness check algorithm for BA
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1. The algorithm 1 begins by pushing in SCC each state s visited for the first
time (line 12), as a trivial SCC with the set acc = {s} ∩ F⊗ (line 20).

2. Then, when the DFS explores a transition t between two states s and d, if d
is in the SCC stack (line 14), then t closes a cycle passing through s and d in
the product automaton. This cycle “strongly connects” all SCCs pushed in
the SCC stack between SCC[i] and SCC[n]: the two SCCs that respectively
contains the states d and s (SCC[n] is the top of the SCC stack).

3. All the SCCs between SCC[i] and SCC[n] are merged (line 15) into SCC[i].
This merging is illustrated by Figure 3: a “back” transition t is found between
SCC[n] and SCC[i], therefore the latest SCCs (from i to n) are merged.

4. The set of accepting states of the merged SCC is equal to the union of
SCC[i].acc ∪ SCC[i + 1].acc ∪ · · · ∪ SCC[n].acc. If this union contains an
accepting state of F⊗, then the merged SCC is accepting and the algorithm
return false (line 16): the product is not empty.

2.2 Testing Automata (TA)

Testing Automata were introduced by Hansen et al. [6] to represent stutter-
invariant [3] properties. While a Büchi automaton observes the value of the atomic
propositions, the basic idea of TA is to only detect the changes in these values, mak-
ing TA particularly suitable for stutter-invariant properties; if a valuation of AP
does not change between two consecutive valuations of an execution, the TA stay in
the same state, this kind of transitions are called stuttering transitions. To detect
infinite executions that end stuck in the same state because they are stuttering, a
new kind of accepting states is introduced: livelock-accepting states.

A ⊕ B denotes the symmetric set difference between two valuations A and
B, i.e., the atomic propositions that differ (e.g., ab̄ ⊕ ab = {b}).

Definition 2 (TA). A Testing Automaton (TA) over the alphabet Σ = 2AP is
a tuple T = 〈Q, I, U, δ,F ,G〉, where:
− Q is a finite set of states, I ⊆ Q is a finite set of initial states,
− U : I → 2Σ is a function mapping each initial state to a set of valuations

(set of possible initial configurations),
− F ⊆ Q is a set of Büchi-accepting states,
− G ⊆ Q is a set of livelock-accepting states,
− δ ⊆ Q × (Σ \ ∅) × Q is the transition relation where each transition (s, k, d)

is labeled by a changeset: k ∈ Σ is interpreted as a non empty set of atomic
propositions whose value must change between states s and d.

An infinite word σ = �0�1�2 . . . ∈ Σω is accepted by T iff there exists a sequence
(q0, �0 ⊕ �1, q1)(q1, �1 ⊕ �2, q2) . . . (qi, �i ⊕ �i+1, qi+1) . . . ∈ (Q×Σ ×Q)ω such that:
− q0 ∈ I with �0 ∈ U(q0),
− ∀i ∈ N, either (qi, �i ⊕ �i+1, qi+1) ∈ δ (the execution progresses), or (�i =

�i+1)∧ (qi = qi+1) (the execution is stuttering and the TA does not progress),
− either, ∀i ∈ N, (∃j ≥ i, �j �= �j+1) ∧ (∃l ≥ i, ql ∈ F) (the TA is progressing

in a Büchi-accepting way), or, ∃n ∈ N, (qn ∈ G∧(∀k ≥ n, qk = qn∧�k = �n))
(the sequence reaches a livelock-accepting state and then stays on that state
because the execution is stuttering).
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The construction of a TA from a BA is detailed in [1,5]. To illustrate Defi-
nition 2, let us consider Figure 2, representing a TA T for aUGb. In this figure,
the initial states 1, 2 and 3 are labeled respectively by the set of valuations
U(1) = {ab̄}, U(2) = {ab} and U(3) = {āb}. Each transition of T is labeled with
a changeset over the set of atomic propositions AP = {a, b}. In a TA, states
with a double enclosure belong to either F or G: states in F \ G have a double
solid line, states in G \ F have a double dashed line (states 2 and 3 of T ), and
states in F ∩ G use a mixed dashed/solid style (state 4).
− The infinite word ab; āb; ab; āb; ab; āb; . . . is accepted by a Büchi accepting

run of T . A run recognizing such word must start in state 2, then it always
changes the value of a, so it has to take transitions labeled by {a}. For

instance it could be the run 2
{a}−−→ 4

{a}−−→ 4
{a}−−→ 4 · · · or the run 2

{a}−−→
3

{a}−−→ 4
{a}−−→ 4 · · · Both visit the state 4 ∈ F infinitely often, so they are

Büchi accepting.
− The infinite word ab; āb; āb; āb; . . . is accepted by a livelock accepting run of

T . An accepting run starts in state 2, then moves to state 4, and stutters on
this livelock-accepting state. Another possible accepting run goes from state
2 to state 3 and stutters in 3 ∈ G.

− The infinite word ab; ab̄; ab; ab̄; ab; ab̄; . . . is not accepted. It would corre-
spond to a run alternating between states 2 and 1, but such a run is neither
Büchi accepting (does not visit any F state) nor livelock-accepting (it passes
through state 2 ∈ G, but does not stay into this state continuously).

Model Checking Using TA. The product of a Kripke and a TA is not a TA:
while a TA execution is allowed to stutter on any state, the product must execute
an explicit stuttering transition.

Definition 3 (Synchronous Product of a TA with a Kripke structure).
For a Kripke structure K = 〈S,S0,R, l〉 and a TA T = 〈Q, I, U, δ,F ,G〉, the prod-
uct K ⊗ T is a tuple 〈S⊗, I⊗, U⊗, δ⊗,F⊗,G⊗〉 where
− S⊗ = S × Q, F⊗ = S × F , G⊗ = S × G,
− I⊗ = {(s, q) ∈ S0 × I | l(s) ∈ U(q)} with ∀(s, q) ∈ I⊗, U⊗((s, q)) = {l(s)},
− δ⊗ = {((s, q), k, (s′, q′)) | (s, s′) ∈ R, (q, k, q′) ∈ δ, k = l(s) ⊕ l(s′)}

∪ {((s, q), ∅, (s′, q′)) | (s, s′) ∈ R, q = q′, l(s) = l(s′)}
.

An execution σ = �0�1�2 . . . ∈ Σω is accepted by K ⊗ T if there exists a sequence
(s0, �0 ⊕ �1, s1)(s1, �1 ⊕ �2, s2) . . . (si, �i ⊕ �i+1, si+1) . . . ∈ (S⊗ × Σ × S⊗)ω where:
− s0 ∈ S0

⊗ with �0 ∈ U⊗(s0),
− ∀i ∈ N, (si, �i ⊕ �i+1, si+1) ∈ δ⊗ (we are always progressing in the product)
− Either, ∀i ∈ N, (∃j ≥ i, �j �= �j+1) ∧ (∃l ≥ i, sl ∈ F⊗) (the automaton is

progressing in a Büchi-accepting way), or, ∃n ∈ N,∀k ≥ n, (�k = �n) ∧ (sk ∈
G⊗) (a suffix of the execution stutters in G⊗).

We have L (K ⊗ T ) = L (K) ∩ L (T ) by construction.

Figure 4 shows an example of a synchronous product between a Kripke struc-
ture K and a TA T recognizing the LTL formula FGp. Each state of K is num-
bered and labeled with a valuation of atomic propositions (over AP = {p}) that
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(b) a TA T for FGp
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∅
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(c) K ⊗ T

Fig. 4. Example of a product between a Kripke structure K and a TA T of FGp. The
bold cycle of K ⊗ T is livelock-accepting.
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Fig. 5. Impact on the product of using STA T + instead of TA T . Bold states and
transitions are addition relative to Figure 4.

hold in this state. In the product K ⊗ T , states are labeled with a pairs of the
form (s, q) where s is a state of K and q of T , and the livelock accepting states
are denoted by a double dashed circle.

A Two-Pass Emptiness Check Algorithm. In this section, we present a two-
pass algorithm for the emptiness check of the synchronous product between a
TA and a Kripke structure. In model checking approach using TA, the emptiness
check requires a dedicated algorithm because according to the Definition 3, there
are two ways to detect an accepting cycle in the product:
− Büchi accepting: a cycle containing at least a Büchi-accepting state (F⊗)

and at least one non-stuttering transition (i.e., a transition (s, k, s′) with
k �= ∅),

− livelock accepting: a cycle composed only by stuttering transitions and live-
lock accepting states (G⊗).

A straightforward emptiness check would have two passes: a first pass to detect
Büchi accepting cycles and a second pass to detect livelock accepting cycles.

The first-pass of Algorithm 2 is similar to Algorithm 1, it detects all Büchi-
accepting cycles, and with line 18 included in this algorithm, it detects also some
livelock-accepting cycles. Since in certain cases it may fail to report some livelock-
accepting cycles, a second pass is required to look for possible livelock-accepting
cycles. However, if no livelock-accepting state is visited during the first pass,
then the second pass can be disabled: this is the purpose of variable Gseen of
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1 Input: K ⊗ T = 〈S⊗, I⊗, U⊗, δ⊗, F⊗, G⊗〉
2 Result: � if and only if L (K ⊗ T ) = ∅
3 Data: todo: stack of 〈state ∈ S⊗, succ ⊆ δ⊗〉

SCC: stack 〈root ∈ N, lk ∈ 2AP , k ∈ 2AP , acc ⊆ F⊗, rem ⊆ S⊗〉
H: map of S⊗ 	→ N, max ← 0, Gseen ← false

4 begin
5 if ¬ first-pass() then return ⊥ if Gseen then return second-pass()

6 first-pass()

7 foreach s0 ∈ I⊗ do
8 DFSpush1(∅, s0)
9 while ¬todo.empty() do

10 if todo.top().succ = ∅ then
11 DFSpop()

12 else
13 pick one 〈s, k, d〉 off todo.top().succ
14 if d �∈ H then
15 DFSpush1(k, d)
16 else if H[d] > 0 then
17 merge1(k, H[d])
18 if (SCC.top().acc �= ∅) ∧ (SCC.top().k �= ∅) then return ⊥

if (d ∈ G⊗) ∧ (SCC.top().k = ∅) then return ⊥

19 return �
20 DFSpush1(lk ∈ 2AP , s ∈ S⊗)

21 max ← max + 1; H[s] ← max;
22 SCC.push(〈max, lk, ∅, ({s} ∩ F⊗), ∅〉)
23 todo.push(〈s, {〈q, k, d〉 ∈ δ⊗ | q = s}〉)
24 if s ∈ G⊗ then Gseen ← true

25 merge1(lk ∈ 2AP , t ∈ N)

26 acc ← ∅; r ← ∅; k ← lk;
27 while t < SCC.top().root do
28 acc ← acc ∪ SCC.top().acc
29 k ← k ∪ SCC.top().k ∪ SCC.top().lk
30 r ← r ∪ SCC.top().rem
31 SCC.pop()

32 SCC.top().acc ← SCC.top().acc ∪ acc
33 SCC.top().k ← SCC.top().k ∪ k
34 SCC.top().rem ← SCC.top().rem ∪ r

Algorithm 2. The first-pass of the Emptiness check algorithm for TA products

Algorithm 2 (line 5), where Gseen is a flag that records if a livelock-accepting
state is detected during the exploration of the product by the first pass (line 24).
This first-pass is based on the BA emptiness check algorithm presented in
Algorithm 1 with the following changes:
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− In each item scc of the SCC stack: the new field scc.lk stores the change-set
labeling the transition coming from the previous SCC, and scc.k contains
the union of all change-sets in scc (lines 29 and 33).

− After each merge, SCC.top() is checked for Büchi-acceptance (line 18) or
livelock-acceptance (line 18) depending on the emptiness of SCC.top().k.

Figure 4 illustrates how the first-pass of Algorithm 2 can fail to detect the
livelock accepting cycle in a product K ⊗ T as defined in Definition 3. In this
example, GT = {1} therefore (3, 1) and (2, 1) are livelock-accepting states, and
C2 = [(3, 1) → (2, 1) → (3, 1)] is a livelock-accepting cycle.

However, the first-pass may miss this livelock-accepting cycle depending
on the order in which it processes the outgoing transitions of (3, 1). If the tran-
sition t1 = ((3, 1), {p}, (0, 0)) is processed before t2 = ((3, 1), ∅, (2, 1)), then the
cycle C1 = [(0, 0) → (1, 0) → (2, 1) → (3, 1) → (0, 0)] is detected and the four
states are merged in the same SCC before exploring t2. After this merge (line 17),
this SCC is at the top of the SCC stack. Subsequently, when the DFS explores
t2, the merge caused by the cycle C2 does not add any new state to the SCC, and
the SCC stack remains unchanged. Therefore, the test line 18 still return false
because the union SCC.top().k of all change-sets labeling the transitions of the
SCC is not empty (it includes for example t1’s label: {p}). Finally, first-pass
algorithm terminates without reporting any accepting cycle, missing C2.
In general, to report a livelock-accepting cycle, the first-pass computes the union
of all change-sets of the SCC containing this cycle. However, this union may
include non-stuttering transitions belonging to other cycles of the SCC. In this
case, the second-pass is required to search for livelock-accepting cycles, ignoring
the non-stuttering transitions that may belong to the same SCC. In the next
section, we propose a Single-pass Testing Automata STA, which allows to obtain
a synchronous product in which such mixing of non-stuttering and stuttering
transitions will never occur in SCCs containing livelock-accepting cycles, making
the second-pass unnecessary. It is important to say that in the experiments
presented in the sequel, we implemented Algorithm 2 including an heuristic
proposed by Geldenhuys and Hansen [5] to detect more livelock-accepting cycles
during the first pass. However, when properties are satisfied, the second pass
is always required because this heuristic fails to report some livelock-accepting
cycles [5]. We don’t present the details of this heuristic because we show in the
next sections other solutions that allow to detect all the livelock-accepting cycles
during the first pass and therefore remove the second pass (in all cases).

3 Converting a TA into a Single-Pass Testing Automaton

In this section, we introduce STA, a transformation of TA into a normal form
such that livelock-accepting states have no successors, and therefore STA app-
roach does not need the second pass of the emptiness check of TA approach.
This improves the efficiency of the model checking (experimentally evaluated in
section 4). STA also simplify the implementation (and the optimization) of the
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emptiness check algorithm as it renders unnecessary the implementation of the
second pass.

Definition 4 (STA). A Single-pass Testing Automaton (STA) is a Testing
Automaton T = 〈Q, I, U, δ,F ,G〉 over Σ such that δ ∩ (G × Σ × Q) = ∅. In
other words, an STA is a TA in which every livelock-accepting state has no
successors.

3.1 Construction of an STA from a TA

Property 1 formalizes the construction of an STA from a TA. We can transform
a TA into an STA by adding an unique livelock-accepting state g (i.e., in STA,
G = {g}), and adding a transition (q, k, g) for any transition (q, k, q′) that goes
into a livelock-accepting state q′ ∈ G of the original automaton. In addition, if q′

has no successors then q′ can be removed, since it is bisimilar to the new state g.

Property 1. Let T = 〈Q, I, U, δ,F ,G〉 be a TA, we construct an equivalent STA
T ′ = 〈Q′, I ′, U ′, δ′,F , {g}〉 such that L (T ′) = L (T ) by the following:
− Q′ = (Q \ G∅) ∪ {g} where G∅ = {q ∈ G | ({q} × Σ × Q) ∩ δ = ∅} is the set

of states of G that have no successors, and g �∈ Q is a new state,
− I ′ = I ∪ {g} if G ∩ I �= ∅, I ′ = I otherwise,
− δ′ = (δ \ (Q × Σ × G∅)) ∪ {(q, k, g) | (q, k, q′) ∈ δ, q′ ∈ G},
− ∀q ∈ I, U ′(q) = U(q) and U ′(g) =

⋃
q∈(G∩I)

U(q).

Figure 5a shows how the TA from Figure 4b was transformed into an STA
using Property 1. The idea behind this transformation is that any livelock-
accepting execution of T will be mapped to an execution of T + that is captured
by the new state g. The new g state has an impact on the product (Figure 5b): the
strongly connected components of this new product no longer mix non-stuttering
transitions and livelock-accepting cycles: this renders the second-pass useless.
The objective of STA is to isolate in the product the exploration of the parts
that are composed only by livelock-accepting states and stuttering transitions,
like the bold part of the product represented in the Figure 5b.

The STA emptiness check algorithm is the first-pass of the TA emptiness
check algorithm without the second-pass procedure. In other words, in STA
approach, the emptiness check is only Algorithm 2 (page 570) without line 5.

3.2 Correctness of the One-Pass Emptiness Check Using STA

In the following, K, T , T + denote respectively a Kripke, a TA and an STA.
The first-pass is an SCC-based algorithm, it computes the set of all

MSCCs (i.e., Maximal SCCs) of the product automaton. Therefore, in order
to prove that the first-pass is sufficient to detect all livelock-accepting cycles,
we prove that in K ⊗ T +, searching for all livelock-accepting cycles is equivalent
to searching for all MSCCs that are only composed of stuttering transitions and
livelock-accepting states. In Algorithm 2, line 18 allows to detect this kind of
MSCCs.
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Lemma 1. In a product K ⊗ T : if one MSCC M contains a product state (s, q)
such that q is a livelock-accepting state that has no successors in T , then M is
only composed of stuttering transitions and livelock-accepting states.

Proof. q has no successors in the TA T , therefore from q, a run of T can only
execute stuttering transitions: it stays in the same livelock-accepting state q.
Consequently, all product states of M are connected by stuttering transitions.
In addition, they have the same livelock-accepting state as TA component (q),
therefore by Definition 3 all states of M are livelock-accepting.

Lemma 2. In a product K ⊗ T +: one MSCC M contains a livelock-accepting
state iff M is only composed of stuttering transitions and livelock-accepting
states.

Proof. (=⇒) If an MSCC M contains a livelock-accepting state (s, q) of K⊗T +,
then q is a livelock-accepting state that has no successors in T + because in STA
every livelock-accepting state has no successors. The proof follows from Lemma 1
applied to K ⊗ T +. (⇐=) Any state of M is livelock-accepting.

The difference between Lemma 1 and Lemma 2 is that the livelock-accepting
states of STA have no successors, while those of TA can.

Lemma 3. In the product K ⊗ T +: there exists at least one livelock-acceptance
cycle C if and only if there exists at least one non trivial MSCC M such that
M is only composed of stuttering transitions and livelock-accepting states.

Proof. (=⇒): The cycle C contains at least one livelock-accepting state, therefore
applying Lemma 2 with M is the MSCC containing C allows us to conclude.
(⇐=): M is non-trivial (it contains at least one state with a self-loop), therefore
M contains at least one non-trivial cycle only composed of stuttering transitions
and livelock-accepting states. This cycle is the livelock-accepting cycle C.

In Algorithm 2, the first-pass computes all MSCCs and line 18 allows to detect
only the MSCCs satisfying Lemma 3. Thus, the STA emptiness check algorithm
reports one cycle iff this cycle is a livelock-accepting or a Büchi-accepting cycle.

STA Optimization. The goal of this optimization is to reduce the number
of transitions in STA, by exploiting the fact that the livelock-accepting states
(q′ ∈ G) that are also Büchi-accepting (q′ ∈ F) do not require the second pass.
Indeed, during the TA to STA transformation described by Property 1, it was
unnecessary to add artificial transitions (q, k, g) for any transition (q, k, q′) where
q′ ∈ (G ∩F), because any MSCC containing q′ is necessarily an accepting MSCC
and it is detected by the first-pass of Algorithm 2.

4 Experimental Evaluation of STA

This section presents our experimentation conducted under the same conditions
as our previous work [1]: within the same tools Spot and CheckPN and we
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Fig. 6. Performance (transitions visited by the emptiness check) of STA vs. TA and
BA

selected some Petri net models and formulas to compare BA, TA and STA
approaches. The models are from the Petri net literature [9], we selected two
instances of each of the following models: the Flexible Manufacturing System
(4/5), the Kanban system (4/5), the Peterson algorithm (4/5), the slotted-ring
system (6/5), the dining philosophers (9/10) and the Round-robin mutex (14/15).
We also used two models from actual case studies: PolyORB [8] and MAPK [7].
For each selected model instance, we generated 200 verified formulas (no coun-
terexample in the product) and 200 violated formulas (a counterexample exists):
100 random (length 15) and 100 weak-fairness [1] (length 30) of the two cases
of formulas. Since generated formulas are very often trivial to verify (the empti-
ness check needs to explore only a handful of states), we selected only those
formulas requiring more than one second of CPU for the emptiness check in all
approaches.

4.1 Results

Figure 6 compares the number of visited transitions when running the emptiness
check; plotting STA against TA and BA. This gives an idea of their relative
performance. Each point corresponds to one of the 5600 evaluated formulas
(2800 violated with counterexample as black circles, and 2800 verified having
no counterexample as grey crosses). Each point below the diagonal is in favor of
STA while others are in favor of the other approach. Axes are displayed using a
logarithmic scale.

4.2 Discussion

On verified properties, the results are very straightforward to interpret when
looking at the number transitions explored by the emptiness check in Figure 6.
STA significantly improve TA in all cases where a second pass was necessary.
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In these cases, the STA approach, with its single-pass emptiness check, is a
clear improvement over TA. These cases where the STA approach is twice faster
than TA’s, appear as a linear cloud of grey crosses below the diagonal in the
scatter plot of Figure 6. Otherwise, they have the same performance because if
no livelock-acceptance states are detected in the product then the TA and STA
approaches explore exactly the same product (these cases correspond to the grey
crosses on the diagonal). In the scatter plot comparing STA against BA, in most
cases the grey crosses appear below the diagonal, i.e., the points where STA is
better. Therefore, STA outperform BA for verified properties.

On violated properties, it is harder to interpret the results because they
depend on the order in which non-deterministic transitions of the property
automaton are explored. In the best case, the order of transitions leads the
emptiness check straight to a counterexample; in the worst case, the algorithm
explores the whole product until it finally finds a counterexample. BA, TA and
STA provide different orders of transitions and therefore change the number of
states and transitions to be explored by the emptiness check before a counterex-
ample is found.

5 Conclusion

In a preliminary work presented in [1], we experiment LTL model checking of
stuttering-insensitive properties with various techniques: Büchi automata (BA),
Transition-based Generalized Büchi Automata and Testing Automata (TA) [5].
At this time, conclusions were that TA has good performance for violated prop-
erties (i.e. when a counterexample was found). However, this was not the case
when no counterexample was computed since the entire product had to be vis-
ited twice to check for each acceptance mode of a TA (Büchi acceptance or
livelock-acceptance).

This paper extends the above work to avoid the second pass of the emptiness
check algorithm in TA approach. It proposes a transformation of TA into STA,
a Single-pass Testing Automata that avoids the need for a second pass. The STA
approach have been implemented in Spot library and used on several benchmark
models including large models issued from case studies. Experimentation with
Spot reported that, STA remain good for violated properties, and also beat TA
and BA in most cases when properties exhibit no counterexample.
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Abstract. We study the orthogonal range searching problem on points
that have a significant number of geometric repetitions, that is, subsets
of points that are identical under translation. Such repetitions occur
in scenarios such as image compression, GIS applications and in com-
pactly representing sparse matrices and web graphs. Our contribution is
twofold. First, we show how to compress geometric repetitions that may
appear in standard range searching data structures (such as K-D trees,
Quad trees, Range trees, R-trees, Priority R-trees, and K-D-B trees),
and how to implement subsequent range queries on the compressed rep-
resentation with only a constant factor overhead. Secondly, we present
a compression scheme that efficiently identifies geometric repetitions in
point sets, and produces a hierarchical clustering of the point sets, which
combined with the first result leads to a compressed representation that
supports range searching.

Keywords: Data and image compression · Range searching · Relative
tree · DAG compression · Hierarchical clustering

1 Introduction

The orthogonal range searching problem is to store a set of axis-orthogonal
k-dimensional objects to efficiently answer range queries, such as reporting or
counting all objects inside a k-dimensional query range. Range searching is a
central primitive in a wide range of applications and has been studied extensively
over the last 40 years [1,3–6,10,11,14,16,19,21–24,26,28,29] (Samet presents an
overview in [30]).

In this paper we study range searching on points that have a significant
number of geometric repetitions, that is, subsets of points that are identical
under translation. Range searching on points sets with geometric repetitions
arise naturally in several scenarios such as data and image analysis [12,27,32],
GIS applications [12,20,31,33], and in compactly representing sparse matrices
and web graphs [7,9,17,18].
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Our contribution is twofold. First, we present a simple technique to effectively
compress geometric repetitions that may appear in standard range searching
data structures (such as K-D trees, Quad trees, Range trees, R-trees, Priority
R-trees, and K-D-B trees). Our technique replaces repetitions within the data
structures by a single copy, while only incurring an O(1) factor overhead in
queries (both in standard RAM model and I/O model of computation). The key
idea is to compress the underlying tree representation of the point set into a
corresponding minimal DAG that captures the repetitions. We then show how
to efficiently simulate range queries directly on this DAG. This construction is
the first solution to take advantage of geometric repetitions. Compared to the
original range searching data structure the time and space complexity of the
compressed version is never worse, and with many repetitions the space can be
significantly better. Secondly, we present a compression scheme that efficiently
identifies translated geometric repetitions. Our compression scheme guarantees
that if point set P1 is a translated geometric repetition of point set P2 and P1

and P2 are at least a factor 2 times their diameter away from other points,
the repetition is identified. This compression scheme is based on a hierarchical
clustering of the point set that produces a tree of height O(log D), where D is the
diameter of the input point set. Combined with our first result we immediately
obtain a compressed representation that supports range searching.

1.1 Related Work

Several succinct data structures and entropy-based compressed data structures
for range searching have recently been proposed, see e.g., [2,8,15,25]. While these
significantly improve the space of the classic range searching data structure, they
all require at least a Ω(N) bits to encode N points. In contrast, our construction
can achieve exponential compression for highly compressible point sets (i.e. where
there is a lot of geometric repetitions).

A number of papers have considered the problem of compactly representing
web graphs and tertiary relations [7,9,18]. They consider how to efficiently rep-
resent a binary (or tertiary) quad tree by encoding it as bitstrings. That is, their
approach may be considered compact storage of a (sparse) adjacency matrix
for a graph. The approach allows compression of quadrants of the quad tree
that only contain zeros or ones. However, it does not exploit the possibly high
degree of geometric repetition in such adjacency matrices (and any quadrant
with different values cannot be compressed).

To the best of our knowledge, the existence of geometric repetitions in the
point sets has not been exploited in previous solutions for neither compression
nor range searching. Thus, we give a new perspective on those problems when
repetitions are present.

1.2 Outline

We first present a general model for range searching, which we call a canonical
range searching data structure, in Section 2. We show how to compress such data
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structures efficiently and how to support range searching on the compressed data
structure in the same asymptotic time as on the uncompressed data structure
in Section 3. Finally, we present a similarity clustering algorithm in Section 4,
guaranteeing that geometric repetitions are clustered such that the resulting
canonical range searching data structure is compressible.

2 Canonical Range Searching Data Structures

We define a canonical range searching data structure T , which is an ordered, rooted
and labeled treewithN vertices.Eachvertexv ∈ T hasanassociatedk-dimensional
axis-parallel range, denoted rv , and an arbitrary label, denoted label(v). We let
T (v) denote the subtree of T rooted at vertex v and require that ranges of vertices
in T (v) are contained in the range of v, so for every vertex u ∈ T (v), ru ⊆ rv .
Leafs may store either points or ranges, and each point or range may be stored in
several leafs. The data structure supports range queries that produce their result
after evaluating the tree through a (partial) traversal starting from the root. In par-
ticular, we can only access a node after visiting all ancestors of the node. Queries
can use any information from visited vertices. A similar model for showing lower
bounds for range searching appeared was used by Kanth and Singh in [21].

Geometrically, the children of a vertex v in a canonical range searching data
structure divide the range of v into a number of possibly overlapping ranges.
At each level the tree divides the k-dimensional regions at the level above into
smaller regions. Canonical range searching data structures directly capture most
well-known range searching data structures, including Range trees, K-D trees,
Quad trees and R-trees as well as B-trees, Priority R-trees and K-D-B trees.
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Fig. 1. A two-dimensional point set with R tree ranges overlaid, and the resulting R
tree. Blue ranges are children of the root in the tree, red ranges are at the second level.
A vertex label (a - h) in the R tree identifies the range. We have omitted the precise
coordinates for the ranges, but e.g. range a spans the range [13, 22] × [46, 54].
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Example: Two-dimensional R tree. The two-dimensional R tree is a canonical
range searching data structure since a vertex covers a range of the plane that
contains the ranges of all vertices in its subtree. The range query is a partial
traversal of the tree starting from the root, visiting every vertex having a range
that intersects the query range and reporting all vertices with their range fully
contained in the query range. Figure 1 shows an R tree for a point set, where
each vertex is labeled with the range that it covers. The query described for R
trees can be used on any canonical range searching data structure, and we will
refer to it as a canonical range query.

3 Compressed Canonical Range Searching

We now show how to compress geometric repetitions in any canonical range
searching data structure T while incurring only a constant factor overhead in
queries. To do so we convert T into a relative tree representation, which we then
compress into a minimal DAG representation that replaces geometric repetitions
by single occurrences. We then show how to simulate a range query on T with
only constant overhead directly on the compressed representation. Finally, we
extend the result to the I/O model of computation.

3.1 The Relative Tree

A relative tree R is an ordered, rooted and labeled tree storing a relative rep-
resentation of a canonical range searching data structure T . The key idea is we
can encode a range or a point r = [x1, x

′
1] × . . . × [xk, x

′
k] as two k-dimensional

vectors position(r) = (x1, . . . , xk) and extent(r) = (x′
1 − x1, . . . , x

′
k − x′

k) corre-
sponding to an origin position and an extent of r. We use this representation in
the relative tree, but only store extent vectors at vertices explicitly. The origin
position vector for the range rv of a vertex v ∈ R is calculated from offset vectors
stored on the path from the root of R to v, denoted path(v).

Formally, each vertex v ∈ R stores a label, label(v), and a k-dimensional
extent vector extent(rv ). Furthermore, each edge (u, v) ∈ R stores an offset
vector offset(u, v). The position vector for rv is calculated as position(rv ) =∑

(a,b)∈path(v) offset(a, b). We say that two vertices v, w ∈ R are equivalent if the
subtrees rooted at the vertices are isomorphic, including all labels and vectors.
That is, v and w are equivalent if the two subtrees R(v) and R(w) are equal.

It is straightforward to convert a canonical range searching data structure
into the corresponding relative tree.

Lemma 1. Given any canonical range searching data structure T , we can con-
struct the corresponding relative tree R in linear time and space.

Proof. First, note that a relative tree allows each vertex to store extent vectors
and labels. Thus, to construct a relative tree R representing the canonical range
searching data structure T , we can simply copy the entire tree including extent
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Fig. 2. The relative tree obtained from the R tree from Figure 1 and the resulting
minimal DAG G generating the tree. Only coordinates of the lower left corner of the
ranges in the R tree are shown. In the relative tree, the absolute coordinates for the
points are only shown for illustration, in order to see that the relative coordinates sum
to the absolute coordinate along the root-to-leaf paths.

vectors and vertex labels. So we only need to show how to store offset vectors in
R to ensure that the ranges for each pair of copied vertices are equal.

Consider a vertex v ∈ T and its copy vR ∈ R and their parents w ∈ T
and wR ∈ R. Since the extent vector and vertex labels are copied, extent(rv ) =
extent(rvR) and label(v) = label(vR). The offset vector for the (wR, vR) edge is
offset(wR, vR) = position(rv ) − position(rw ). We assume the offset for the root
is the 0-vector. Observe that summing up all the offset vectors on path(v) is
exactly position(rv ), and so position(rvR) = position(rv ).

Since each vertex and edge in T is only visited a constant number of times
during the mapping, the construction time for R is O(N). The total number of
labels stored by R is asymptotically equal to the number of labels stored by T .
Finally, the degrees of vertices does not change from T to R. Thus, if v ∈ T is
mapped to vR ∈ R and v requires s space, vR requires Θ(s) space.

3.2 The Data Structure

The compressed canonical data structure is the minimal DAG G of the relative
tree R for T . By Lemma 1 and [13] we can build it in O(N) time. Since G
replaces equivalent subtrees in R by a single subtree, geometric repetitions in T
are stored only once in G. For an example, see Figure 2.

Now consider a range query Q on the canonical range searching data structure
T . We show how to simulate Q efficiently on G. Assuming vG ∈ G generates
vR ∈ R, we say that vG generates v ∈ T if vR is the relative tree representation
of v. When we visit a vertex vG ∈ G, we calculate the origin position position(rvG )
from the sum of the offset vectors along the root-to-vG path. The origin position
for each vertex can be stored on the way down in G, since we may only visit a
vertex after visiting all ancestors (meaning that we can only arrive at vG from
a root-to-vG path in G). Thus, it takes constant time to maintain the origin
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position for each visited vertex. Finally, a visit to a child of v ∈ T can be
simulated in constant additional time by visiting a child of vG ∈ G. So we can
simulate a visit to v ∈ T by visiting the vertex vG ∈ G that generates v and in
constant time calculate the origin position for vG.

Any label comparison takes the same time on G and T since the label must be
equal for vG ∈ G to generate v ∈ T . Now, since there is only constant overhead
in visiting a vertex and comparing labels, it follows that if Q uses t time we can
simulate it in O(t) time on G. In summary, we have the following result.

Theorem 1. Given a canonical range searching data structure T with N ver-
tices, we can build the minimal DAG representation G of T in linear time. The
space required by G is O(n), where n is the size of the minimal DAG for a rel-
ative representation of T . We can support any query Q on T that takes time t
on G in time O(t).

As an immediate corollary, we get the following result for a number of concrete
range searching data structures.

Corollary 1. Given a K-D tree, Quad tree, R tree or Range tree, we can in
linear time compress it into a data structure using space proportional to the
size of the minimal relative DAG representation which supports canonical range
searching queries with O(1) overhead.

3.3 Extension to the I/O Model

We now show that Theorem 1 extends to the I/O model of computation. We
assume that each vertex in T require Θ(B) space, where B is the size of a
disk block. To allow for such vertices, we relax the definition of a canonical
range searching data structure to allow it to store B k-dimensional ranges. From
Lemma 1 and [13], if a vertex v ∈ T require Θ(B) space, then so does the
corresponding vertex vG ∈ G. Thus, the layout of the vertices on disk does not
asymptotically influence the number of disk reads necessary to answer a query,
since only a constant number of vertices can be retrieved by each disk read.
This means that visiting a vertex in either case takes a constant number of disk
blocks, and so the compressed representation does not asymptotically increase
the number of I/Os necessary to answer the query. Hence, we can support any
query Q that uses p I/Os on T using O(p) I/Os on G.

4 Similarity Clustering

We now introduce the similarity clustering algorithm. Even if there are signifi-
cant geometric repetitions in the point set P , the standard range searching data
structures may not be able to capture this and may produce data structures
that are not compressible. The similarity clustering algorithm allows us to cre-
ate a canonical range searching data structure for which we can guarantee good
compression using Theorem 1.
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4.1 Definitions

Points and point sets We consider points in k-dimensional space, assuming k is
constant. The distance between two points p1 and p2, denoted d(p1, p2), is their
euclidian distance. We denote by P = {p1, p2, . . . , pr} a point set containing r
points. We say that two point sets P1, P2 are equivalent if P2 can be obtained
from P1 by translating all points with a constant k-dimensional offset vector.

The minimum distance between a point pq and a point set P , mindist(P, pq) =
minp∈P d(p, pq), is the distance between pq and the closest point in P . The mini-
mum distance between two point sets P1, P2 is the distance between the two closest
points in the two sets, mindist(P1, P2) = minp1∈P1,p2∈P2 d(p1, p2). These defini-
tions extend to maximum distance in the natural way, denoted maxdist(P, pq) and
maxdist(P1, P2). The diameter of a point set P is the maximum distance between
any two points in P , diameter(P ) = maxp1,p2∈P d(p1, p2) = maxdist(P, P ).

A point set P1 ⊂ P is lonely if the distance from P1 to any other point is
more than twice diameter(P1), i.e. mindist(P1, P \ P1) > 2 × diameter(P1).

Clustering. A hierarchical clustering of a point set P is a tree, denoted C (P ),
containing the points in P at the leaves. Each node in the tree C (P ) is a cluster
containing all the points in the leaves of its subtree. The root of C (P ) is the
cluster containing all points. We denote by points(v) the points in cluster node
v ∈ C (P ). Two cluster nodes v, w ∈ C (P ) are equivalent if points(v) is equivalent
to points(w) and if the subtrees rooted at the nodes are isomorphic such that
each isomorphic pair of nodes are equivalent.

4.2 Hierarchical Clustering Algorithm for Lonely Point Sets

Order P in lexicographically increasing order according to their coordinates in
each dimension, and let Δ(P ) denote the ordering of P . The similarity clus-
tering algorithm performs a greedy clustering of the points in P in levels i =
0, 1, . . . , log D + 1, where D = diameter(P ). Each level i has an associated clus-
tering distance threshold di, defined as d0 = 0 and di = 2i−1 for all other i.

The clustering algorithm proceeds as follows, processing the points in order
Δ(P ) at each level. If a point p is not clustered at level i > 0, create a new
cluster Ci centered around the point p (and its cluster Ci−1 at the previous level).
Include a cluster Ci−1 from level i − 1 in Ci if maxdist(points(Ci−1), p) ≤ di.
The clusters at level 0 contain individual points and the cluster at level log D+1
contains all points.

Lemma 2. Given a set of points P , the similarity clustering algorithm produces
a clustering tree containing equivalent clusters for any pair of equivalent lonely
point sets.

Proof. Let P1 and P2 be two lonely point sets in P such that P1 and P2 are
equivalent, and let d = diameter(P1) = diameter(P2). Observe that a cluster
formed at level i has at most diameter 2di = 2i. Thus, since all points are
clustered at every level and all points outside P1 have a distance greater than
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2d to any point in P1, there is a cluster c ∈ C (P ) formed around point a ∈ P1

at level j = �log d� containing no points outside P1. Now, assume some point
p ∈ P1 is not in points(c). As all unclustered points within distance 2j ≥ d from
a are included in c, this would mean that p was clustered prior to creating c.
This contradicts the assumption that P1 is lonely, since it can only happen if
some point outside P1 is closer than 2d to p. Concluding, c contains exactly the
points in P1. The same argument naturally extends to P2.

Now, let C1, C2 be the clusters containing the points from P1, P2, respectively.
Observe that points(C1) and points(C2) are equivalent. Furthermore, because
each newly created cluster process candidate clusters to include in the same
order, the resulting trees for C1 and C2 are isomorphic and have the same order-
ing. Thus, the clusters C1 and C2 are equivalent.

Because the clustering proceeds in O(log D) levels, the height of the clus-
tering tree is O(log D). Furthermore, by considering all points and all of their
candidates at each level, the clustering can be implemented in time O(N2 log D).
Observe that the algorithm allows creation of paths of clusters with only a single
child cluster. If such paths are contracted to a single node to reduce the space
usage, the space required is O(N) words. In summary, we have the following
result.

Theorem 2. Given a set of N points with diameter D, the similarity clustering
algorithm can in O(N2 log D) time create a tree representing the clustering of
height O(log D) requiring O(N) words of space. The algorithm guarantees that
any pair of equivalent lonely point sets results in the same clustering, producing
equivalent subtrees in the tree representing the clustering.

Since the algorithm produces equivalent subtrees in the tree for equivalent
lonely point sets, the theorem gives a compressible canonical range searching
data structure for point sets with many geometric repetitions.

5 Open Problems

The technique described in this paper for generating the relative tree edge labels
only allows for translation of the point sets in the underlying subtrees. How-
ever, the given searching technique and data structure generalizes to scaling and
rotation (if simply storing a parent-relative scaling factor and rotation angle
in each node, along with the nodes parent-relative translation vector). We con-
sider it an open problem to efficiently construct a relative tree that uses such
transformations of the point set.

Another interesting research direction is if it is possible to allow for small
amounts of noise in the point sets. That is, can we represent point sets that
are almost equal (where few points have been moved a little) in a compressed
way? An even more general question is how well one can do when it comes to
compression of higher dimensional data in general.

Finally, the O(N2 log D) time bound for generating the similarity clustering
is prohibitive for large point sets. So an improved construction would greatly
benefit the possible applications of the clustering method and is of great interest.
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Abstract. The Burrows-Wheeler Transform is a text permutation that
has revolutionized the fields of pattern matching and text compression,
bridging the gap existing between the two. In this paper we approach the
BWT-construction problem generalizing a well-known algorithm—based
on backward search and dynamic strings manipulation—to work in a
context-wise fashion, using automata on words. Let n, σ, and Hk be
the text length, the alphabet size, and the k-th order empirical entropy
of the text, respectively. Moreover, let H∗

k = min{Hk + 1, �log σ�}. Under
the word RAM model with word size w ∈ Θ(log n), our algorithm builds
the BWT in average O(nH∗

k ) time using nH∗
k +o(nH∗

k ) bits of space, where
k = logσ(n/ log2 n) − 1. We experimentally show that our algorithm has
very good performances (essentially linear time) on DNA sequences, using
about 2.6 bits per input symbol in RAM.

1 Introduction

The Burrows-Wheeler Transform of a text T [4], is the (unique) permutation
of T$—where $ is a character not appearing in T and lexicographically smaller
than all the characters in T—obtained concatenating the characters preceding
its sorted circular permutations. Since its discovery [4], this text transform rev-
olutionized text compression [6] and text indexing [7], merging the two in the
promising field of compressed self indexing (a complete and accurate survey on
the subject is [16]). Despite the intriguing properties of compressed self-indexes,
there still exists a bottleneck in their construction, consisting in the construc-
tion of the BWT. Let n be the text length, σ the alphabet size and Hk the
k-th order empirical entropy of the text. To date, none of the solutions in the
literature is able to guarantee simultaneously both O(n) construction time and
nHk + o(n log σ) bits of space. The most time-efficient (also in practice) O(n)
techniques to date, rely on the construction of suffix arrays (see for example [19]),
which however require O(n log n) bits of space. Very recently, it has been shown
that the space requirements can be reduced to O(n log σ), while maintaining the
optimal construction time O(n) [1]. Despite compact space being asymptotically
optimal in the uncompressed domain, the hidden constant in practice could be
high and makes this kind of algorithms impractical, especially for large texts
(e.g. big genomes). This problem motivates the search for more space-efficient
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 587–598, 2015.
DOI: 10.1007/978-3-319-15579-1 46
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algorithms, being able either to work in external memory or to exploit the com-
pressibility of the text in order to reduce RAM requirements. External and semi-
external solutions on genomic data include [2], which requires about 1 byte per
input symbol and works in linear-time, and [21], which requires about 2 bits per
input symbol and works in O(n log2 log n) average time. Of particular interest is
the more general implementation described in [5], which requires a constant (i.e.
text independent) amount of RAM working space. Building a compressed BWT
is another common solution in order to save working space. Usually, this is done
by inserting the text characters backwards in a compressed dynamic string data
structure. The complexity of this approach is deeply influenced by the inherent
complexity of dynamic string data structures, which have been proved to have
a Θ (log n/log log n) lower [8] and (amortized) upper [17] bound for queries and
updates. In particular, the result in [17] has as direct consequence (clearly men-
tioned in that paper) that the BWT can be constructed in nHk + o(n log σ) bits
of space and O (n log n/log log n) worst-case time.

In this scenario, we propose a compressed-space solution able to reach aver-
age linear time on semi-uniform inputs (e.g. DNA). Our result makes two (rea-
sonable) assumptions: that the RAM word size is w ∈ Θ(log n) and that the
alphabet size is bounded by σ ∈ O(polylog(n)). Table 1 summarizes the above
discussed results, comparing them with our bounds. Our algorithm relies on the
fact that BWT characters can be partitioned in contexts. On the grounds of this
observation we generalize the classic backward insertion algorithm to work with
multiple dynamic strings (one per context), instead of only one for the whole
BWT. The classic algorithm becomes, then, a particular case of ours when the
context length k is 0. This strategy reduces considerably the average size of
internal data structures, thus leading to better performances. To our knowledge,
ours is the first result reaching both linear average-case time and compressed
working space. We call our algorithm cw-bwt (context-wise BWT).

Table 1. Comparison among some of the most interesting space-time tradeoffs pre-
sented in literature. H∗

k stands for min{Hk + 1, �log σ�}, and stems from the use of
Huffman encoding.

Space (bits) average-case time worst-case time reference

O(n log n) - O(n) [19]

O(n log σ) O(n) O(n) [1]

nHk + o(n log σ) - O(n log n/ log log n) [17]

nH∗
k + o(nH∗

k ) O(nH∗
k ) O (nH∗

k(log n/ log log n)2
)

This work

We implemented cw-bwt in the BWTIL library, freely downloadable at https://
github.com/nicolaprezza/BWTIL. cw-bwt has also been integrated in the short-
string alignment package ERNE, to be used in DNA analysis (http://erne.
sourceforge.net). Our software relies on the bitvector library, freely download-
able at https://github.com/nicola-gigante/bitvector.

https://github.com/nicolaprezza/BWTIL
https://github.com/nicolaprezza/BWTIL
http://erne.sourceforge.net
http://erne.sourceforge.net
https://github.com/nicola-gigante/bitvector
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2 Notation

Throughout this paper we will work with an alphabet Σ ordered by < and of
size |Σ| = σ; we will denote by c a character in Σ. With T ∈ Σn we will denote
the text to be processed, and $ /∈ Σ will be a character (terminator) lexico-
graphically smaller than any character in Σ. We will assume to work under the
word RAM model with word size w ∈ Θ(log n) and that the alphabet size is
σ ∈ O(polylog(n)) = O(poly(w)). Concatenation of strings u, v ∈ (Σ ∪ $)∗ will
be denoted by uv. By Ti, i ≤ n, we will denote T [i, ..., n − 1], i.e. the i-th suffix
of T . When dealing with dynamic strings/bitvectors, with the term queries we
will denote rank and access operations (we do not consider select), while by the
term updates we will denote insertions or substitutions (we do not consider dele-
tions). With u we will denote the length of a generic dynamic bitvector/string,
which could be much smaller than n. Given a dynamic string/bitvector S on the
alphabet Σ, with S.rank(c, i) we will denote the number of characters equal to
c in the substring S[0, ..., i − 1]. The operation S.insert(c, i) will instead denote
character insertion, turning S into S[0, ..., i − 1]cS[i, ..., |S| − 1]. S[i] is the i-th
character of S. By S[i] ← c we will denote character substitution in position
i of the string. By S.F (c) we denote the quantity

∑
x<c S.rank(x, |S|), i.e. the

number of characters lexicographically smaller than c in the whole string S. If
S is the BWT of some text, then S.F (c) has a direct interpretation as the first
column (usually called F ) in the matrix representation of the BWT. By ck we
will denote the string “cc...c” (k times). With the term k-context we will denote
a k-mer on the extended alphabet Σ∪{$}, i.e. a string in (Σ∪{$})k. Logarithms
are taken in base 2, unless differently specified.

3 The Burrows-Wheeler Transform

The Burrows-Wheeler transform of T$ can be obtained by sorting all circular
permutations of T$, representing them in “conceptual” matrix M (see Table 2),
and then taking the last column Mn = L of M (the first column will be denoted
M0 = F ), where M i, 0 ≤ i ≤ n is the i-th column of M . We will often refer to
the BWT matrix M in our algorithm’s description. Notice that length-k contexts
appear lexicographically sorted in the first k columns of M , and thus they induce
a partition of the BWT rows (as depicted in Table 2). A fundamental property
of the BWT matrix is the LF property : the i-th occurrence of c (c ∈ Σ ∪ {$}) in
the last column corresponds to the i-th occurrence of c in the first column (i.e.
they represent the same text position). This property can be generalized.

Given a h-context s ∈ (Σ ∪ {$})h, for some h, let Cs(M i) be the class of the
partition of M i induced by s.

Lemma 1. (Context-wise LF property) If T [j] is i-th occurrence of c in Cs(L),
then T [j] is the i-th occurrence of c in Ccs(F ).

The classical LF -property is the special case for k = 0 of the context-wise
LF property.
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Table 2. Conceptual BWT matrix M of the text mississippi$. Last column is the
BWT (ipssm$pissii). There are 9 different contexts of length k = 2, corresponding to
a partitioning of the BWT in 9 substrings. With our strategy, we will keep one dynamic
string data structure for each of these substrings.

$ m i s s i s s i p p i
i $ m i s s i s s i p p
i p p i $ m i s s i s s
i s s i p p i $ m i s s
i s s i s s i p p i $ m
m i s s i s s i p p i $
p i $ m i s s i s s i p
p p i $ m i s s i s s i
s i p p i $ m i s s i s
s i s s i p p i $ m i s
s s i p p i $ m i s s i
s s i s s i p p i $ m i

4 Data Structures

Our main structure will be, essentially, a de Bruijn automaton: a labeled sub-
graph of a de Bruijn graph [3], having k-contexts as states. For each automaton’s
state s we will store a compressed dynamic string encoding the class Cs(L) and
a partial sum data structure encoding the class Cs(Mk). These data structures
will be better specified below. Then, the main algorithm will proceed by reading
text’s characters (right to left) while navigating automaton’s states and updat-
ing the corresponding dynamic strings and partial sums structures. Correctness
follows from Lemma 1.

de Bruijn Automata

With the term de Bruijn automaton we indicate a labeled subgraph of a de Bruijn
graph [3], having k-mers appearing in T$k as nodes. More in detail, our de Bruijn
automaton is A = 〈Q,Σ, δ, $k〉, where Q = {q | q is a k-mer in T$k} is the set
of states, Σ is the set of input symbols, δ : Q×Σ → Q is the transition function
defined as δ(u, c) = v iff v = cu[0, ..., k − 2], and $k is the start state. Accepting
states are not relevant for our application, so we omit them. Using array indexes
as k-digit integers in base σ, the representation of the automaton will turn out
to be implicit in our data structures. This choice gives the additional benefit
that automaton’s states can be visited in lexicographic order without overhead,
a feature that we will use in our algorithm.

In order to refer to the structures associated to each automaton state, we will
use the following notation. Each automaton’s state s ∈ Q will carry a dynamic
string denoted (using an object-oriented like notation) with A[s].DS and a par-
tial sum data structure denoted with A[s].PS. The function A.GOTO(s, c) ∈
Q, s ∈ Q, c ∈ Σ, encodes the automaton’s transition function: A.GOTO(s, c) =
δ(s, c).
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Succinct Dynamic Bitvectors

The problem of designing a lightweight bitvector offering efficient query and
update operations has been extensively discussed in the literature [10,11,17,18].
Let u be the bitvector length. Given the lower bound Ω (log u/log log u) on the
maximum of update and queries [8] and the most recent optimal-time and com-
pressed O(uH0) space solutions [17,18], this problem can be considered essen-
tially solved for a general bitvector size u. However, under the word RAM model
with word size w, better solutions can be found for a small enough bitvector size
u (e.g. u ∈ O(poly(w))).

The core of our bitvector data structure is a packed B-tree. Each leaf of
the tree stores W = p · w bits, for a suitable integer p > 0. Internal nodes are
composed by 3p words each and store one rank (number of 1’s) and one size
(number of bits) counter for each child, in addition to pointers to the children
(totalling 3pw bits for each internal node). The size of each pointer, rank, and
size counter is of O(log u) bits, thus the maximum number of children per node
is d = O(W/ log u). With h we denote the height of the tree. Access and rank
operations are implemented in O(h · p) time: size counters guide the search
from the root to the leaves, and rank counters give partial rank information (of
the subtrees) while searching the leaf (O(p) operations for each node on the
path). The main novelty resides in the insertion algorithm, which is studied to
maximize leaf usage and minimize expensive re-arrangement operations. While
inserting a bit, if a leaf/node is not full, then we simply insert the bit/key in
the right place, updating accordingly the counters. If a leaf/node is full, 4 cases
can appear. Let b =

√
d. If a leaf is full, then we count the number m of bits

in b adjacent leaves, including the current full leaf (apart from being adjacent,
the way leaves are chosen is not relevant for the analysis). If m > b(W − b),
then we create a new leaf and redistribute uniformly the m bits in the resulting
b + 1 leaves. If m ≤ b(W − b), then we redistribute uniformly the m bits among
the b leaves without creating a new one. If an internal node is full, then we
choose b adjacent nodes (included the current full node) and we count the total
number m of children. If 
m/(b+1)� ≥ b, then we create a new internal adjacent
node and we uniformly redistribute the children in the resulting b + 1 nodes.
If 
m/(b + 1)� < b, then we uniformly redistribute the children among the b
adjacent nodes. All the above redistributions can be implemented in O(p·b) time
using shifts and masks. In all 4 the cases, it can be easily shown that after a
redistribution the number of free bits/positions in the manipulated leaves/nodes
is always Ω(b): as a consequence, if a redistribution takes place, then at least b
“easy” (O(h·p) time) insertions have been made beforehand, resulting in O(h·p)
amortized cost for the insertion. Due to the internal node redistribution policy,
the minimum number of children per node is b. It follows that the height of the
tree is h ∈ O(logb(u)). We will study space/time complexities in 2 cases: u ∈
O(poly(w)), and u ∈ O(2w) (intuitively, in our algorithm these situations will
represent the average and worst-case, respectively). In order to keep the space
always succinct, we choose p = log u/ log w. We obtain d = O(w/ log w) and
b = O(

√
w/ log w). If u ∈ O(wc), c ∈ O(1), then h ∈ O(c) = O(1). Otherwise, if



592 A. Policriti et al.

u ∈ O(2w), then h ∈ O(log u/ log log u) = O(w/ log w). The minimum number of
used bits per leaf is (following the redistribution policy) b(W − b)/(b + 1). From
this fact, it can be shown that the maximum overhead (total number of bits
allocated in the leaves but not used) is of O(u/b) bits. Moreover, the maximum
number of leaves is nL ∈ O(u/W ), thus the maximum number of internal nodes
is (nL − 1)/(b− 1) ∈ O(nL/b) = O(u/(bW )), totalling W ·O(u/(bW )) = O(u/b)
bits of space occupancy for the internal nodes. In both cases u ∈ O(poly(w))
and u ∈ O(2w), the extra space required by the tree is thus o(u), so the whole
structure occupies u + o(u) bits of space. Finally, from the particular value
chosen for p, it can be easily shown (see above) that all operations have cost
O(h · p) = O(1) or O((w/ log w)2) (in the amortized sense for insertion) if the
bitvector size is u ∈ O(poly(w)) or u ∈ O(2w), respectively.

Compressed Dynamic Strings

Given the bitvector data structure discussed above, a generalization to dynamic
strings can be easily made using wavelet trees (see [15] for a complete survey on
the subject). Assuming that the frequency of each character to be inserted in
the string is known beforehand, we implement this structure using a Huffman-
shaped wavelet tree. Huffman encoding requires, on average, at most H0 + 1
bits per symbol, and never more than log σ�. For compactness of notation, we
denote by H∗

0 the value min{Hk + 1, log σ�}. The total space of the structure
is then nH∗

0 + o(nH∗
0 ) + O(σ log n) + O(σ log σ) bits [12,15], where the last two

terms come from the tree topology and the codebook, respectively. Queries and
update operations are supported in average O(H∗

0 ) or O(H∗
0 (w/ log w)2) time if

the string size is u ∈ O(poly(w)) or u ∈ O(2w), respectively.

Partial Sums

Our algorithm will require, for each automaton’s state s, one partial sum struc-
ture of length σ encoding the class Cs(Mk). A partial sum data structure PS of
length j is a list of values PS[0], ..., PS[j − 1] offering efficient partial sum and
update queries. With PS.sum(i) we will denote the quantity

∑i−1
k=0 PS[k], and

PS.increment(i) will denote the operation PS[i] ← PS[i] + 1.
Efficient solutions offering optimal worst-case space and time bounds, appeared

in literature [20]. For self-containedness, here we describe a simple structure based
on packed B-trees, optimized for the particular case where σ ∈ O(poly(w)). The
main idea is to use a packed B-tree to store temporary partial sums information,
plus an array S[0, ..., σ − 1] initialized at S[i] = 0, 0 ≤ i < σ. The packed B-tree
has σ leaves (each storing a counter) and internal nodes store the partial sums
of the corresponding subtrees. Each counter in the tree is composed by log σ =
O(log(w)) bits, so the height of the tree is logw/ log w σ ∈ O(logw/ log w poly(w)) =
O(1). Updates are implemented as follows. When incrementing a counter (i.e.
PS.increment(i)), the packed B-tree is updated accordingly (i.e. by increment-
ing counters from the i-th leaf up to the root). At steps of σ increment operations,
S[i] is incremented with the content of the i-th leaf (0 ≤ i < σ) of the packed
B-tree, and the tree is re-initialized (i.e. each counter is reset to 0). Since a sin-
gle update on the packed B-tree takes constant time and the tree is re-built every
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σ operations, updates on the whole structure PS take constant amortized time.
Finally, a query PS.sum(i) is implemented in O(1) time by returning the sum
between S[i] and the i-th partial sum stored in the packed B-tree. Given that each
counter will store a number less than or equal to n (the text length), the described
data structure occupies O(σ log n) = O(σw) bits of space.

5 The cw-bwt Algorithm

Standard dynamic string based approaches use one string to represent the whole
BWT and proceed by inserting the text characters backwards as follows. The
construction starts at i = 0 with BWT = “$” and at the, generic, i-th step,
character T [n − i − 1] is inserted in it. Letting j be such that BWT [j] = $ and
r = BWT.rank(T [n − i − 1], j), we update BWT by:

1) BWT [j] ← T [n − i − 1] and
2) BWT.insert($, BWT.F (T [n − i − 1]) + r).

Here we describe how to improve the above algorithm by allowing it to work
context-wise. We name our algorithm cw-bwt.

Optimal k and Space Requirements

First of all notice that, since we partition the BWT using length k contexts and
each partition is Huffman-compressed, as a by-product we obtain that, overall,
the dynamic string data structures require globally nH∗

k + o(nH∗
k) bits of space

in memory [14] (excluding wavelet tree topologies and codebooks, see below),
where H∗

k = min{Hk + 1, log σ�}. The number of states of the automaton is
bounded by |Q| ≤ σk + k ∈ O(σk). For each automaton state we store a partial
sum data structure of size O(σw) = O(σ log n) bits. This is, asymptotically,
the same space required to store a single wavelet tree topology (O(σ log n))
and a codebook (O(σ log σ) ⊆ O(σ log n)). The choice k = logσ

(
n/σ log2 n

)
=

logσ(n/ log2 n) − 1 results in a total space occupancy of all the above discussed
structures of O(σ log n)O(σk) = O (

σ log n · n/(σ log2 n)
)

= O(n/ log n) = o(n)
bits. Summing up, the total space occupancy of the cw-bwt algorithm is nH∗

k +
o(nH∗

k) bits, where k = logσ(n/ log2 n) − 1.

Main Algorithm

Our algorithm is reported as Algorithm 1. See below for a detailed discussion of
the pseudocode.

In line 3 the de Bruijn automaton is constructed and data structures are
initialized. As mentioned in Section 4, a simple direct-hashing strategy permits
to perform the automaton construction implicitly and with no overhead. The
initialization of dynamic string data structures requires the frequency of each
character to be computed for each class Cs(L) (for Huffman encoding). This
step can be easily done in linear O(n) time and O(σkσ log n) = o(n) bits of
space using, again, direct hashing.
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Algorithm 1. cw-bwt(T )
input : Text T ∈ Σn, without terminator appended at the end.
output: BWT of T$.

1 n ← |T |;
2 k ← max(�logσ(n/ log2 n) − 1�, 0); /* optimal k */

3 A ← init automaton(T, k); /* init automaton and data structures */

4 s ← $k; /* current state */

5 t ← 0; /* position of the insertion in current state */

6 for i = n − 1 downto 0 do

7 head ← T [i]; /* symbol entering in the context */

8 tail ← s[k − 1]; /* symbol exiting from the context */

9 s′ ← A.GOTO(s, head); /* next state */

10 A[s].DS.insert(head, t); /* insert current character */

11 A[s′].PS.increment(tail); /* update partial sums */

12 t ← A[s′].PS.sum(tail) + A[s].DS.rank(head, t); /* update t */

13 s ← s′; /* update state */

14 A[s].DS.insert($, t); /* insert terminator */

15 BWT ← ε; /* the BWT of T$ */

16 for s ∈ Q in lexicographic order do
17 BWT.append(A[s].DS); /* append dynamic strings to BWT */

18 return BWT ;

The for loop in line 6 scans backwards all text characters, starting from the
rightmost. Variables head and tail at lines 7 and 8 store the current text character
and the rightmost symbol of the current context, respectively. t is the position
where head has to be inserted in the current state. The new automaton state s′ is
computed (line 9) by appending head at the beginning of the current state and by
removing tail from its rightmost end. The subsequent 4 lines represent the core
of our algorithm. First of all, the current text character head = T [i] is inserted at
position t in the dynamic string associated with the class Cs(L) (line 10). In the
BWT matrix, this operation corresponds to the substitution of the terminator $
character with head (notice that $ is not explicitly inserted at each step: we just
remember its coordinates 〈s, t〉). The next operations correspond to the insertion
in the BWT matrix of the current text suffix Ti, having as prefix head·s = s′ ·tail
and ending with $. Since we will need information about the first k + 1 columns
of M (see Lemma 1), we need to keep track of the fact that in Cs′

(Mk) a new
symbol tail has been added. Since symbols in Cs′

(Mk) appear in lexicographic
order, this task is accomplished simply by incrementing a partial sum counter
(line 11). In line 12 the new position of $ in Cs′

(L) is computed (remember
that $ is not explicitly inserted). The operation A[s].DS.rank(head, t) returns
the number of characters equal to head before the position that contained $.
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Since we are computing this value in Cs(L), this is the number of text suffixes
starting with head · s and lexicographically smaller than the current text suffix
Ti. Lemma 1 implies that, in order to compute the new position of $ in Cs′

(L)
(i.e. the lexicographic position of the new text suffix in the BWT matrix), we
need to add to this value the number of characters smaller than tail in Cs′

(Mk),
i.e. A[s′].PS.sum(tail) (line 12).

As mentioned above, we never explicitly insert the terminator character $
during construction. For this reason, at the end of the first for loop, $ is explic-
itly inserted (line 14). Finally, the for loop at line 16 scans lexicographically
the automaton states in order to reconstruct the BWT in the correct order.
Notice that states can be scanned in lexicographic order with no overhead if the
automaton has been implemented using direct hashing, as described in section
4. Moreover, in this step the BWT can be stored directly to disk, for no addi-
tional RAM consumption. The operation BWT.append(A[s].DS) at line 17 is
implemented by appending the characters of A[s].DS one by one to the string
BWT (|A[s].DS| access operations).

Time Complexity

The most expensive operations in the for loops are those at lines 10, 12, and
17 (insert, rank, and access, respectively). All other operations have cost O(1)
(see Section 4). Assuming a uniform text distribution, the expected length of
each dynamic string is O(n/σk) = O(σ log2 n). This value, under the other two
assumptions σ ∈ O(poly(w)) and w ∈ Θ(log n), is equal to O(polylog(n)) =
O(poly(w)). These observations imply (Section 4) that the amortized cost of
queries/updates on the dynamic strings is of O(H∗

k ), so the following theorem
holds:

Theorem 2. The cw-bwt algorithm builds the BWT of a length n text in average
time O(nH∗

k ) using nH∗
k + o(nH∗

k ) bits of space, where k = logσ(n/ log2 n) − 1
and H∗

k = min{Hk + 1, log σ�}.
The worst case scenario, on the other hand, is represented by a highly

repetitive text T in which one or more k-contexts appear Θ(n) times. This
results in the length of the corresponding dynamic strings being Θ(n) = Θ(2w),
thus (see Section 4) in O(H∗

k(w/ log w)2) = O(H∗
k (log n/ log log n)2) cost for

queries/updates. The following holds:

Theorem 3. The cw-bwt algorithm builds the BWT of a length n text in worst-
case time O(nH∗

k (log n/ log log n)2) using nH∗
k + o(nH∗

k ) bits of space, where
k = logσ(n/ log2 n) − 1 and H∗

k = min{Hk + 1, log σ�}.

6 Experiments

We tested our tool on datasets from the pizza&chili repository1 and on the
Human genome, build hg19 (n ≈ 3.2 · 109, ΣDNA = {A,C, T,G,N}). In order

1 http://pizzachili.dcc.uchile.cl/

http://pizzachili.dcc.uchile.cl/
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Table 3. Performances of the tested tools on data coming from the pizza&chili repos-
itory. The column Working space accounts for both RAM and disk working space
(input and output excluded). All input files have size 100MB. divsufsort required
always 502 MB of working space while having essentially the same speed of dbwt, so it
is not reported here. The RAM space of bwte was always forced to be upper-bounded
by that of cw-bwt.

Tool File Alphabet size RAM (MB) Working space (MB) Time (s)

cw-bwt

english 215 85 85 1376
proteins 25 69 69 1162
XML 96 74 74 1184

sources 227 92 92 1337
DNA 16 41 41 581

dbwt

english 215 243 243 18
proteins 25 276 276 27
XML 96 234 234 15

sources 227 237 237 16
DNA 16 197 197 15

bwte

english 215 85 123 193
proteins 25 69 153 217
XML 96 74 142 180

sources 227 92 135 164
DNA 16 41 121 313

SE-SAIS

english 215 135 614 75
proteins 25 169 662 78
XML 96 129 560 65

sources 227 144 566 61
DNA 16 129 538 66

to compare performances with other state-of-the-art tools, we also tested an
implementation of the semi-external algorithm SE-SAIS[2], the suffix array con-
struction algorithm divsufsort (both implemented in the SDSL library[9]),
the external algorithm bwte [5], and a direct-bwt (dbwt) construction tool by
Sadakane2. All tests were conducted on a intel i7 core, 2.4GHz machine run-
ning Ubuntu 14.04 operating system. Table 3 shows running times and memory
requirements of all the tested tools. As expected, cw-bwt wins no prize in speed,
due to its complicated data structures. On the other hand, cw-bwt is the only
tool (among the ones tested) able to operate in sublinear working space (disk and
RAM), making it useful in situations where both RAM and disk space are at a
premium. The results obtained with bwte show that external-memory algorithms
can beat cw-bwt running times, while using less RAM space (albeit more total
working space). In order to prove the linear time complexity of our tool on semi-
uniform inputs, we executed cw-bwt on several prefixes of the Human genome
(build hg19), see Figure 1. As predicted by theory (Theorem 2), time complexity
grows locally as O(n log n), dropping down when k is automatically increased

2 http://researchmap.jp/muuw41s7s-1587/# 1587

http://researchmap.jp/muuw41s7s-1587/#_1587
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Fig. 1. Running times on genomic data (Human
genome)

(which happens at exponen-
tial steps). This behaviour
keeps the complexity always
under a linear function of
n—in Figure 1, the dotted
line interpolating the first 4
peaks. cw-bwt completed the
BWT of the Human genome
in 4 hours and 37 minutes
using only 994 MB of RAM
(about 2.6 bits per input
symbol, less than a plain
encoding of the alphabet
ΣDNA). This improves the
performances of state-of-the-
art internal-memory tools:
the bbwt tool published in [13]
has a declared memory con-
sumption of 1.4 GB, and dbwt
and divsufsort required 5.8
GB and 14.6 GB, respectively.
When compared also with
external-memory algorithms,

cw-bwt improved upon SE-SAIS, which required 3.62 GB of RAM and 13 GB
of disk working space. Finally, bwte was executed allowing 1 GB of RAM and
required additional 2.6 GB of disk working space, with times comparable to
those of cw-bwt (3 hours).

7 Conclusions

Building the Burrows-Wheeler transform in small space is important in applica-
tions such as bioinformatics, due to the huge sizes of the genomes involved. In
this paper we showed that, exploiting the semi-uniform distribution of genomic
sequences, it is indeed possible to accomplish this goal in average linear time and
compressed working space. Our implementation is general and we showed that
also on other commonly used texts (english, code sources, XML), our tool reaches
sublinear (compressed) space, showing no significant slowdown with respect to
semi-uniform genomic texts. Despite being linear in text size (and acceptable
for many practical applications), due to the use of more complex data struc-
tures, running times of cw-bwt are however still much higher than those of more
memory-consuming tools. To overcome this problem, we are considering the pos-
sibility to parallelise our algorithm. From a theoretical point of view, we are also
investigating the effect that using other kinds of automata on words would have
on the data structures load distribution and, consequently, on the worst-case
complexity of our algorithm.
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Abstract. We present a new backward tree pattern matching algorithm
for ordered trees. The algorithm finds all occurrences of a single given
tree pattern which match an input tree. It makes use of linearisations of
both the given pattern and the input tree. The algorithm preserves the
properties and advantages of standard backward string pattern matching
approaches. The number of symbol comparisons in the backward tree
pattern matching can be sublinear in the size of the input tree. As in the
case of backward string pattern matching, the size of the bad character
shift table used by the algorithm is linear in the size of the alphabet.
We compare the new algorithm with best performing previously existing
algorithms based on (non-linearised) tree pattern matching using finite
tree automata or stringpath matchers and show that it outperforms these
for single pattern matching.

Keywords: Tree pattern matching · Backward pattern matching · Tree
processing · Tree linearisation

1 Introduction

Trees are one of the fundamental data structures used in Computer Science
and the theory of formal tree languages has been extensively studied and devel-
oped since the 1960s [8,12]. Tree pattern matching on node-labelled trees is an
important algorithmic problem with applications in many tasks such as com-
piler code selection, interpretation of nonprocedural languages, implementation
of rewriting systems, or XML processing. Tree patterns are trees whose leaves
can be labelled by a special wildcard, the nullary symbol S, which serves as a
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placeholder for any subtree. Since the linear notation of a subtree of a tree is a
substring of the linear notation of that tree, the subtree matching and tree pat-
tern matching problems are in many ways similar to the string pattern matching
problem. We note that the tree pattern matching problem is more complex than
the string matching one because there can be at most n2 distinct substrings of
a string of size n, whereas there can be at most 2n−1 + n distinct tree patterns
which match a tree of size n.

As mentioned, trees can be linearised into strings. Such a linear notation can be
obtained by a corresponding tree traversal. Moreover, every sequential algorithm
on a tree traverses its nodes in a sequential order, which corresponds to some lin-
ear notation. Such a linear representation need not be built explicitly. Many algo-
rithms have been proposed for exact string matching [3,9,10,16]. Among the most
efficient of them are those based on backward string pattern matching, represented
by the Boyer-Moore and Boyer-Moore-Horspool algorithms. Although backward
string pattern matching’s time complexity is generally O(n∗m) (for text and pat-
tern size n and m respectively) in the worst case, due to such algorithms’ ability
to skip text parts, they often perform sublinearly in practice.

Many tree pattern matching algorithms exist as well [4,6,11,13]. Many of
them use some kind of tree automata [6]. Cole et al. [7] use a subset matching
approach, but at the cost of large auxiliary data structures. For unrestricted
tree pattern sets, among the fastest algorithms in practice are algorithms based
on deterministic frontier-to-root (bottom-up) tree automata (DFRTAs) [4,6,13]
and on Hoffmann-O’Donnell-style stringpath matchers [1,13]. A few of these tree
pattern matching algorithms use principles of matching patterns backwards:
Hoffmann and O’Donnell refer to work by Lang et al. [15] that applies such
an approach to leftmost stringpaths of trees and involves complications when
dealing with nodes of arity greater than 2. [18] compares symbols of a pattern
and an input subject tree upwards, with subsequent shifting of the pattern in the
subject tree. That algorithm can skip nodes when it is known that no occurrence
is skipped, but the tree is not linearised and therefore skipping is somewhat
complicated. Our algorithm uses a linear representation of the subject tree where
random access to symbols/positions is possible.

While modifying backward string pattern matching to backward subtree
matching (searching for occurrences of given subtrees) is straightforward, this is
not the case for backward tree pattern matching, where complications arise due
to the use of nullary symbol S and matched subtrees being possibly recursively
nested. In this paper, a new backward tree pattern matching algorithm is pre-
sented. The presented backward tree pattern matching algorithm preserves the
properties and the advantages of the standard backward string pattern match-
ing: the number of symbol comparisons in the backward tree pattern matching
can be sublinear in n, the size of the subject tree. Based on the Boyer-Moore-
Horspool algorithm, a modified bad character shift heuristic is used. As in the
case of backward string pattern matching, the size of the bad character shift table
used by the algorithm is linear with the size of the alphabet. Our experimental
results confirm the properties of the algorithm and show that it outperforms the
aforementioned DFRTAs and stringpath matchers.
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2 Basic Notions

An alphabet is a finite nonempty set of symbols. A ranked alphabet is a finite
nonempty set of symbols each of which has a unique nonnegative arity (or rank).
Given a ranked alphabet A, the arity of a symbol a ∈ A is denoted Arity(a).
The set of symbols of arity p is denoted by Ap. Elements of arity 0, 1, 2, . . . , p
are called nullary (constants), unary, binary, . . ., p-ary symbols, respectively. We
assume that A contains at least one constant. In the examples we use numbers at
the end of identifiers for a short declaration of symbols with arity. For instance,
a2 is a short declaration of a binary symbol a.

A string x is a sequence of i symbols s1s2s3 . . . si from a given alphabet,
where i is the size of the string. A sequence of zero symbols is called the empty
string. The empty string is denoted by symbol ε.

Based on concepts and notations from graph theory [2], a rooted tree t is an
acyclic connected directed graph t = (N,R) with a special node r ∈ N , called
the root, such that (1) r has in-degree 0, (2) all other nodes of t have in-degree
1, and (3) there is just one path from the root r to every f ∈ N , where f �= r.
Nodes of a tree with out-degree 0 are called leaves. A labelled and rooted tree is a
tree with the additional property that every node f ∈ N is labelled by a symbol
a ∈ A, where A is an alphabet. A node g is a direct descendant of node f if a
pair (f, g) ∈ R. A ranked, labelled and rooted tree is a tree labelled by symbols
from a ranked alphabet and where the out-degree of a node f labelled by symbol
a ∈ A equals Arity(a). Nodes labelled by nullary symbols (constants) are leaves.
An ordered, ranked, labelled and rooted tree is a tree where direct descendants
af1, af2, . . . , afn of a node af having an Arity(af ) = n are ordered.

The prefix notation pref(t) of a tree t is defined as follows:
1. pref(a) = a0 if a is a leaf,
2. pref(t) = an pref(b1) pref(b2) . . . pref(bn), where a is the root of tree t,

n = Arity(a) and b1, b2, . . . bn are direct descendants of a.

The prefix bar notation pref bar(t) of a tree t is defined as follows:
1. pref bar(a) = a ↑ if a is a leaf,
2. pref bar(t) = a pref bar(b1) pref bar(b2) . . . pref bar(bn) ↑, where a is the

root of tree t and b1, b2, . . . bn are direct descendants of a.

Example 1. Consider a ranked alphabet A = {a2, a1, a0}. Consider an ordered,
ranked, labelled and rooted tree t1r = ({a21, a22, a03, a14, a05, a16, a07}, R1r)
over alphabet A, where R1r = {(a21, a22), (a21, a16), (a22, a03), (a22, a14), (a14,
a05), (a16, a07)}. Tree t1r in prefix notation is pref(t1r) = a2 a2 a0 a1 a0 a1 a0.
Trees can be represented graphically, as is done for tree t1r in Figure 1(a). ��

Example 2. Consider an unranked alphabet A = {a}. Consider an ordered,
labelled and rooted tree t1u = ({a1, a2, a3, a4, a5, a6, a7}, R1u) over an alphabet
A, where R1u = {(a1, a2), (a1, a6), (a2, a3), (a2, a4), (a4, a5), (a6, a7)}. Tree t1u in
prefix bar notation is pref bar(t1u) = a a a ↑ a a ↑ ↑ ↑ a a ↑ ↑ ↑. The tree
t1u is illustrated in Figure 1(b). ��
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(a) Tree t1r from Example 1
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(b) Tree t1u from Example 2

Fig. 1. Tree t1r over a ranked alphabet (left), and the same tree t1u over an unranked
alphabet (right) from Examples 1 and 2

To define a tree pattern, we use a special wildcard symbol S �∈ A, Arity(S) = 0,
which serves as a placeholder for any subtree. A tree pattern is defined as a labelled
ordered tree over an alphabet A ∪ {S}. We will assume that the tree pattern con-
tains at least one node labelled by a symbol from A. A tree pattern containing at
least one symbol S will be called a tree template. A tree pattern p with k ≥ 0 occur-
rences of the symbol S matches a subject tree t at node n if there exist subtrees
t1, t2, . . . , tk (not necessarily the same) of t such that the tree p′, obtained from p
by substituting the subtree ti for the i-th occurrence of S in p, i = 1, 2, . . . , k, is
equal to the subtree of t rooted at n.

Example 3. Consider a tree t1r = ({a21, a22, a03, a14, a05, a16, a07}, R1r)
from Example 1, which is illustrated in Figure 1(a). Consider a subtree p1r
over alphabet A, p1r = ({a21, a02, a13, a04}, Rp1). Subtree p1r in prefix notation
is pref(p1r) = a2 a0 a1 a0 and Rp1 = {((a21, a02), (a21, a13)), ((a13, a04))}.
Consider a tree pattern p2r over alphabet A ∪ {S}, p2r = ({a21, S2, a13,
S4}, Rp2). Tree pattern p2r in prefix notation is pref(p2r) = a2 S a1 S and
Rp2 = {(a21, S2), (a21, a13), (a13, S4)}. Tree patterns p1r and p2r are illustrated
in Figure 2. Tree pattern p1r occurs once in tree t1r — it matches at node 2 of
t1r. Tree pattern p2r occurs twice in t1r — it matches at nodes 1 and 2 of t1r. ��

a04

a02 a13

a21

(a) Subtree p1r from Example 3

S4

S2 a13

a21

(b) Tree pattern p2r from Example 3

Fig. 2. Subtree and tree pattern over ranked alphabet from Example 3

In backward string pattern matching the symbols of the pattern and the text
are compared in opposite direction to the shifting of the pattern.

Instead of a shift by 1 (as per line 8 of Alg. 1), lager shifts can often be made.
One heuristic for larger shifts is that of the Boyer-Moore-Horspool algorithm [14],
computing the length of the shift based on one symbol aligned to the end of the
pattern. This shift, a simplification of the one used by the original Boyer-Moore
algorithm, has turned out to perform very well in practice. The shifts are stored
in a bad character shift table. Given a pattern of size m (pattern[1..m]) over an
alphabet A, the bad character shift table BCS(pattern[1..m])[a] = min({m} ∪
{j : pattern[m − j] = a and j > 1}) for each a ∈ A.
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Name: Basic backward PM.
Input: A string text of size n and a string pattern of size m.
Output: Locations of the pattern in the text.

1 begin
2 i := 0
3 while i < n − m do
4 j := m
5 while j > 0 and pattern[j] = text [i+ j] do
6 j := j − 1
7 end
8 if j = 0 then output(i+ 1) i := i+ 1 {Length of the shift.}
9 end

10 end
Algorithm 1. Basic backward string pattern matching algorithm

3 Backward Tree Pattern Matching Algorithm

The problem of tree pattern matching can be seen as matching connected sub-
graphs in trees. Tree patterns in a linear notation are represented by substrings of
trees in the linear notation but they can contain gaps given by special wildcards
S, which serve as placeholders for any subtrees. The basic idea of backward tree
pattern matching for tree patterns is the same as in the string case: moving the
pattern in one direction and matching symbols of tree pattern and subject tree
in the opposite direction. Wildcard S occurrences must be handled in a special
way. For this purpose we use a prefix ranked bar notation of the tree.

Definition 4. The prefix ranked bar notation pref ranked bar(t) of a tree t is
defined as follows:
1. pref ranked bar(S) = S ↑S

2. pref ranked bar(a) = a0 ↑0 if a is a leaf,
3. pref ranked bar(t) = an pref ranked bar(b1) pref ranked bar(b2) . . .

pref ranked bar(bn) ↑n, where a is the root of the tree t, n = Arity(a) and
b1, b2, . . . bn are direct descendants of a.

Definition 5. Let ↑n, where n ≥ 0 be bar symbols of arity n. The bar set A↑ is
the set of all bar symbol ↑n. ��
Definition 6. Let pattern[1..m] be a pref ranked bar notation of a tree pattern
p over an alphabet A. The bad character shift table BCS(pattern[1..m]) for
backward tree pattern matching is defined for each a ∈ A:
BCS(pattern[1..m])[a] = min(

{m} ∪ {j : pattern[m − j] = a and m > j > 0} ∪
{j + Arity(a) ∗ 2 : pattern[m − j] = S and m > j > 0 and a �∈ A↑} ∪
{j − 1 : pattern[m − j] = S and m > j > 1 and a ∈ A↑}) ��
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Note that there is no value for the wildcard S in shift table BCS because
this symbol cannot occur in the subject tree.

Items of the BCS table are computed as the minimum value from four for-
mulas, see Def. 6 where the formulas are separated by the union operation. The
first formula makes sure that the shift is not longer than the size of the pattern
m. In this case the size of a subtree corresponding to wilcard S is considered to
be the smallest possible one, i.e. 2 (the size of subtree consisting of one nullary
symbol a0 ↑0). The second formula defines the minimal safe shift for symbols
that occur in the pattern. The minimal safe shift for a symbol a is the distance
j of the closest occurrence of the symbol a from the end of the pattern. Nullary
symbol S is considered to correspond to the smallest possible subtree again.

The third and fourth formulas define the shift for cases when a symbol a is
expected to be in a subtree te that corresponds to wildcard S. The location of
the last wildcard S from the end of the pattern is used to define the base shift
length j and this shift can be prolonged by some number depending on the arity
of the symbol a, see the second part of the definition. The smallest subtree te
that contains the symbol a is rooted by a and its direct descendants are nullary
symbols b0. For each symbol b0 in the subtree te there is also one symbol ↑0. The
base shift j is then prolonged by 2 ∗ Arity(a). Any symbol from the set A↑ can
occur as the last symbol of a subtree te, ie. it can be matched with ↑S. Therefore,
the base shift of each bar is shortened by 1, see fourth part of the definition. The
shift cannot be zero and in that case the base shift is not shortened. Note that
this case would occur only for pattern S ↑S.

Firstly, Alg. 7 for the construction of BCS table finds the location of the last
wildcard S. Then, the BCS table for all symbols of the alphabet is initialised

Name: ConstructBCS.
Input: Tree pattern in prefix ranked bar notation pref ranked bar(pattern) of

size m over alphabet A of the subject tree.
Output: The bad character shift table BCS(pref ranked bar(pattern)).

1 begin
2 s := m
3 for i := 1 to m do
4 if pref ranked bar(pattern)[i] = S then s = m − i
5 end
6 foreach x ∈ A do BCS [x] = m
7 foreach x ∈ A do
8 if x �∈ A↑ then shift := s+Arity(x) ∗ 2 else if s >= 2 then

shift := s − 1 else shift := s if BCS [x] > shift then BCS [x] := shift
9 end

10 for i := 1 to m − 1 do
11 if pref ranked bar(pattern)[i] �∈ {S, ↑S} and

BCS [pref ranked bar(pattern)[i]] > (m − i) then
BCS [pref ranked bar(pattern)[i]] := m − i

12 end

13 end
Algorithm 2. Construction of BCS table
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to the size of the pattern. The length of the shift for all symbols of the alphabet
is possibly shortened with the use of the information on the position of the last
wildcard S. The arity of symbols is used to make this part of the shift function
longer according to Def. 6. Finally, the length of the shift is again possibly
shortened by the actual positions of symbols in the pattern.

Example 7. Consider a tree pattern p3r in prefix ranked bar notation
pref ranked bar(p3r) = a2 a1 S ↑S ↑1 a1 a0 ↑0 ↑1 ↑2 over an alphabet A =
{a3, a2, a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S}. Alg. 7 constructs the following items of the
BCS table.
BCS[a3] = min({10} ∪ ∅ ∪ {13}) = 10, BCS[a2] = min({10} ∪ {9} ∪ {11}) = 9,

BCS[a1] = min({10} ∪ {4, 8} ∪ {9}) = 4, BCS[a0] = min({10} ∪ {3} ∪ {7}) = 3,

BCS[↑3] = min({10} ∪ ∅ ∪ {6}) = 6, BCS[↑2] = min({10} ∪ ∅ ∪ {6}) = 6,

BCS[↑1] = min({10} ∪ {1, 5} ∪ {6}) = 1, BCS[↑0] = min({10} ∪ {2} ∪ {6}) = 2. ��
The backward tree pattern matching algorithm uses an additional struc-

ture subtree jump table (SJT ) to efficiently skip subtrees corresponding to S.
This structure contains two kinds of positions for each subtree r of a tree
t. The first kind of position is the position of the first symbol of the sub-
tree r in pref ranked bar(r) notation in the pref ranked bar(t) notation of
the tree t as an index and the position one after the last symbol of the sub-
tree r in pref ranked bar(r) notation as a value. The second one is the posi-
tion of the last symbol of the subtree r in pref ranked bar(r) notation in the
pref ranked bar(t) notation of the tree t as an index and the position one before
the first symbol of the subtree r in pref ranked bar(r) notation as a value. This
structure has the same size as the pref ranked bar notation and its construction
by Alg. 3 is very fast without performing any time–consuming comparisons of
symbols (labels).

Definition 8. Let t and pref ranked bar(t) of length n be a tree and its prefix
ranked bar notation, respectively. A subtree jump table
SJT (pref ranked bar(t)) is defined as a mapping from set of integers {1..n} into
a set of integers {0..n + 1}. If pref ranked bar(t) [i..j] is the pref ranked bar
notation of a subtree of tree t, then SJT (pref ranked bar(t))[i] = j + 1 and
SJT (pref ranked bar(t))[j] = i − 1, 1 ≤ i < j ≤ n.

Lemma 9. Given pref ranked bar(t) and rootIndex equal to 1, Algorithm 3
constructs subtree jump table SJT (pref ranked bar(t)). ��

Example 10. Consider a tree t2r in prefix ranked bar notation pref ranked bar
(t2r) = a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 over alphabet A = {a3, a2, a1,
a0, ↑3, ↑2, ↑1, ↑0}. Table 1 shows the SJT (pref ranked bar(t2r)). ��

Our backward tree pattern matching algorithm, shown in Alg. 4, is an exten-
sion of the string backward pattern matching algorithm, shown in Alg. 1.

The modification of the string backward matching algorithm is based on the
principle that the algorithm performs also tests for wildcards S in the pattern.
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Name: ConstructSJT
Input: Tree t in prefix notation pref ranked bar(t) of length n, index of

current node rootIndex default is 1, reference to an empty subtree jump
table SJT (pref ranked bar(t)) of length n

Output: index exitIndex, subtree jump table SJT (pref ranked bar(t))
1 begin
2 index := rootIndex+ 1
3 for i = 1 to Arity(pref ranked bar(t)[rootIndex]) do
4 index :=

ConstructSJT (pref ranked bar(t), index, SJT (pref ranked bar(t)))
5 end
6 index := index+ 1
7 SJT (pref ranked bar(t))[rootIndex] = index
8 SJT (pref ranked bar(t))[index] = rootIndex − 1
9 return index

10 end
Algorithm 3. Construction of subtree jump table

Table 1. Subtree jumping table SJT (pref ranked bar(t2r)) of tree t2r

1 2 3 4 5 6 7 8 9 10 11 12 13 14
a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2
15 8 5 2 7 4 1 14 11 8 13 10 7 0

Name: BackwardLTPM.
Input: The subject tree in pref ranked bar(subject) notation of size n, the

tree pattern in pref ranked bar(pattern) notation of size m,
SJT (pref ranked bar(subject)), and BCS(pref ranked bar(pattern)).

Output: Locations of occurrences of the pattern pattern in the tree subject.
1 begin
2 i := 0
3 while i <= (n − m) do
4 j := m
5 position := i+ j
6 while j > 0 and position > 0 do
7 if pref ranked bar(subject)[position] = pref ranked bar(pattern)[j]

then
8 position := position − 1
9 else if pref ranked bar(pattern)[j] = ↑S and

pref ranked bar(subject)[position] ∈ A↑ then
10 position := SJT (pref ranked bar(subject))[position]
11 j = j − 1 {Subtree skip}
12 else break j := j − 1

13 end
14 if j = 0 then output(position + 1)

i := i+ BCS [pref ranked bar(subject)[i+m]]
15 end

16 end
Algorithm 4. Backward tree pattern matching algorithm
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The modification is in line 10 of Alg. 4, where a part of the subject tree represent-
ing a subtree is skipped when a wildcard S, represented as S ↑S, is processed.
Also, two indexes, one to the pattern and the other one to the text, are needed
because subtrees (which need to be skipped) are often longer than two symbols.

Theorem 11. Given a tree pattern p in prefix ranked bar notation and shift table
BCS(pref ranked bar(p)) constructed by Alg. 2, Alg. 4 correctly computes the
locations of all occurrences of the pattern p in an input tree t.

Proof. Backward tree pattern matching algorithm is an extension of the back-
ward string pattern matching algorithm. It is to be proved that shifting using
BCS(pref ranked bar(t)) cannot skip any occurrence of the tree pattern p.
Let c ∈ A. Assume that there is an occurrence of p located at position i,
0 < i < BCS(pref ranked bar(t))[c]. A symbol c must then be located at
some position i either directly or as part of a subtree that corresponds to a wild-
card S. According to Def. 6, the BCS(pref ranked bar(p))[c] is derived from
the last occurrence of symbol c in the prefix ranked bar notation of the pattern
pref ranked bar(p), hence we get a contradiction, and from the last occurrence
of symbol S and its bar ↑S. If the symbol c is located in the subtree that corre-
sponds to a wildcard S, then the the shift is already computed from the smallest
possible subtree containing the symbol c. Hence, pattern p cannot occur at posi-
tion i. Therefore, no occurrence of p can be skipped by the algorithm. ��

Example 12. Consider a tree pattern p4r in the prefix ranked bar notation
pref ranked bar(p4r) = a2 S ↑S S ↑S ↑2 over an alphabet A = {a3, a2,
a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S} and a tree t2r in the prefix ranked bar notation
pref ranked bar (t2r) = a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 over an
alphabet A = {a3, a2, a1, a0, ↑3, ↑2, ↑1, ↑0}. The BCS[a3] = 6, BCS[a2] = 5,
BCS[a1] = 4, BCS[a0] = 2, BCS[↑3] = 1, BCS[↑2] = 1, BCS[↑1] = 1,
BCS[↑0] = 1. A run of Alg. 4 is depicted in Table 2. Longer subtrees in place of
wildcards S are denoted by S→ ←S. ��

The run of Alg. 4 for Example 12 starts at position 6 of the pref ranked bar
(t2r). Mismatch of ↑2 and ↑0 results in subsequent shift by 1 symbol to align ↑0

Table 2. Trace of the run of Alg. 4 for subject tree t2r and tree pattern p4r

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 pref ranked bar(t2r)

14 6 2 2 2 2 6 6 2 2 2 2 6 14 subtree sizes(t2r)

↑2 ↑0 �= ↑2, shift = 1

a2 S→ ←S S→ ←S ↑2 match, shift = 1

↑2 a2 �= ↑0, shift = 5

a2 S→ ←S S→ ←S ↑2 match, shift = 1

a2 S→ ←S S→ ←S ↑2 match, shift = 1



608 J. Trávńıček et al.

with position of the end of the last wildcard S in the pref ranked bar(p4r). The
algorithm recognises pattern match on positions 2 to 7 and shift is by 1 symbol
to align ↑2 again with the end of the last wildcard S in pref ranked bar(p4r).
Mismatch of ↑ 2 and a2 results in a shift by 5 symbol where a2 is not only aligned
with a2 but also with position closes to the end of the pattern where a2 can be
as a part of the last wildcard S. Another match is recognised and the shift is
by 1 symbol where another occurrence is recognised and subsequent shift is to
outside of the pref ranked bar(t2r) resulting in the end of the run of the Alg. 4.

The BCS table is the only data structure needed for the algorithm and its
size is Θ(A), where A is the alphabet size. The preprocessing time is O(m+A),
where m is the pattern length and A is the alphabet size.

Backward string pattern matching is known to perform sublinear number of
comparisons of symbols on average. The modification to backward tree pattern
matching requires the input tree to be read in prefix ranked bar notation. How-
ever, the algorithm still performs Ω( n

m ) comparisons of symbols, where n is the
size of the input subject tree and m is the size of the given tree pattern and
O(n ∗ m) comparisons of symbols as in the case of the backward string pattern
matching. The lengths of the shifts depend on the position of the last wildcard
S in the pattern p – the closer to the end of the pattern the last occurrence of
symbol S is, the longer are the shifts performed.

4 Some Empirical Results

We have implemented our algorithm by extending the existing Forest FIRE
toolkit and accompanying FIRE Wood graphical user interface [5,17]. This
toolkit already implemented many tree pattern matching algorithms and con-
structions of automata used in them, but no algorithms based on linearisations
of both pattern tree(s) and subject tree. Constructions included in Forest FIRE
include ones described in [1,4,6,13] and others. We compared our algorithm’s
performance to some of the best-performing ones in Forest FIRE, according to
the results in [6]. We compared the running times of the search phase of the fol-
lowing algorithms: 1) our new backward tree pattern matching algorithm based
on linearisations of pattern and subject tree (BLTPM); 2) an algorithm based
on the use of a deterministic frontier-to-root (bottom-up) tree automaton con-
structed for the pattern (DFRTA); and 3) an algorithm based on the use of a
Aho-Corasick automaton constructed for the pattern’s stringpath set (AC).

The comparison was done using a pattern set previously used for benchmark-
ing Forest FIRE. This pattern set was obtained by taking the Mono project’s X86
instruction set grammar and, for each grammar production, taking the tree in
the production’s right hand side, and replacing any nonterminal occurrences by
wildcard symbol occurrences. The resulting pattern set consists of 460 tree pat-
terns of varying sizes. Since our pattern matching algorithm is a single-pattern
one, we ran each of the algorithms for each pattern individually, and sequentially
ran it over each subject tree from two sets of subject trees: a set of 150 trees
of approximately 500 nodes each, and a set of 500 trees of approximately 150
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nodes each. Both of these sets had previously been used for benchmarking Forest
FIRE. Benchmarking was conducted on a 2 GHz Intel Core i7 with 16 GB of
RAM running OpenSUSE GNU/Linux version 13.1 using Java SE 7.

Linearised versions of the tree patterns and subject trees were constructed
from the in-memory tree representations, using additional memory. However,
this is linear in the size of the tree representations, while the shift tables used
will typically be much smaller than the automata used in the other algorithms.
Because of this and because search time was our primary concern, we do not
consider memory use. Figures 3(a) and 3(b) show the search times as boxplots,
clearly showing that on average, our new algorithm considerably outperforms
existing ones for the single-pattern case (note the logarithmic scale).
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Fig. 3. Distributions of pattern matching times for the respective algorithms

5 Concluding Remarks

We presented a new backward tree pattern matching algorithm that uses a mod-
ified bad character shift table and works on trees in prefix ranked bar notation.
The algorithm may perform sublinear number of comparisons of symbols (labels)
in respect to size of the subject tree and performs well in practice. Future work
should involve the investigation of other shift heuristics that might result in
longer shifts. Furthermore, we are working on extensions of our algorithm to the
case of multiple tree patterns.
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Abstract. It was shown before that the NP-hard problem of determin-
istic finite automata (DFA) identification can be translated to Boolean
satisfiability (SAT). Modern SAT-solvers can efficiently tackle hard DFA
identification instances. We present a technique to reduce SAT search
space by enforcing an enumeration of DFA states in breadth-first search
(BFS) order. We propose symmetry breaking predicates, which can be
added to Boolean formulae representing various DFA identification prob-
lems. We show how to apply this technique to DFA identification from
both noiseless and noisy data. The main advantage of the proposed app-
roach is that it allows to exactly determine the existence or non-existence
of a solution of the noisy DFA identification problem.

Keywords: Grammatical inference · Boolean satisfiability · Learning
automata · Symmetry breaking techniques

1 Introduction

Deterministic finite automata (DFA) are models that recognize regular lan-
guages [1], therefore the problem of DFA identification (induction, learning) is
one of the best studied [2] in grammatical inference. The identification problem
consists of finding a DFA with minimal number of states that is consistent with
a given set of strings with language attribution labels. This means that such
a DFA rejects the negative example strings and accepts the positive example
strings. It was shown in [3] that finding a DFA with a given upper bound on its
size (number of states) is an NP-complete problem. Besides, in [4] it was shown
that this problem cannot be approximated within any polynomial.

Despite this theoretical difficulty, several efficient DFA identification algo-
rithms exist [2]. The most common approach is the evidence driven state-merging
(EDSM) algorithm [5]. The key idea of this algorithm is to first construct an aug-
mented prefix tree acceptor (APTA), a tree-shaped automaton, from the given
labeled strings, and then to iteratively apply a state-merging procedure until
no valid merges are left. Thus EDSM is a polynomial-time greedy method that
tries to find a good local optimum. EDSM participated in the Abbadingo DFA
learning competition [5] and won it (in a tie). To improve the EDSM algorithm
several specialized search procedures were proposed, see, e.g., [6,7]. One of the
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 611–622, 2015.
DOI: 10.1007/978-3-319-15579-1 48
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most successful approaches is the EDSM algorithm in the red-blue framework [5],
also called the Blue-fringe algorithm.

The second approach for DFA learning is based on evolutionary computa-
tion; early work includes [8,9]. Later the authors of [10] presented an effective
scheme for evolving DFA with a multi-start random hill climber, which was used
to optimize the transition matrix of the identified DFA. A so-called smart state
labeling scheme was applied to choose the state labels optimally, given the tran-
sition matrix and the training set. Authors emphasized that smart selection of
state labels gives the evolutionary method a significant boost which allowed it
to compete with the EDSM. Authors find that the proposed evolutionary algo-
rithm (EA) outperforms the EDSM algorithm on small target DFAs when the
training set is sparse. For larger DFAs with 32 states, the hill climber fails and
EDSM then clearly outperforms it.

The challenge of the GECCO 2004 Noisy DFA competition [11] was to learn
the target DFA when 10 percent of the given training string labels had been
randomly flipped. In [12] Lucas and Reynolds show that within limited time EA
with smart state labeling is able to identify the target DFA even at such high
noise level. Authors compared their algorithm with the results of the GECCO
competition and found that EA clearly outperformed all the entries. Thereby it
is the state-of-the-art technique for learning DFA from noisy training data.

In several cases the best solution for noiseless DFA identification is the
translation-to-SAT technique [13], which was altered to suit the StaMInA (State
Machine Inference Approaches) competition [14] and ultimately won. The main
idea of that algorithm is to translate the DFA identification problem to Boolean
satisfiability (SAT). Thus we are able to use highly optimized modern DPLL-
style SAT solving techniques [15]. The translation-to-SAT approach was also
used to efficiently tackle problems such as bounded model checking [16], solving
SQL constraints by incremental translation [17], analysis of JML-annotated Java
sequential programs [18], extended finite-state machine induction [19].

Many optimization problems exhibit symmetries – groups of solutions which
can be obtained from each other via some simple transformations. To speed up
the solution search process we can reduce the problem search space by perform-
ing symmetry breaking. In DFA identification problems the most straightforward
symmetries are groups of isomorphic automata. The idea of avoiding isomorphic
DFAs by fixing state numbers in breadth-first search (BFS) order was used in the
state-merging approach [20] (function NatOrder) and in the genetic algorithm
from [21] (Move To Front reorganization). Besides, in [13] symmetry breaking
was performed by fixing some colors of the APTA vertices from a clique pro-
vided by a greedy max-clique algorithm was applied in a preprocessing step of
translation-to-SAT technique.

In this paper we propose new symmetry breaking predicates [15] which can
be added to Boolean formulae representing various DFA identification problems.
These predicates enforce DFA states to be enumerated in BFS order. Proposed
predicates cannot be applied with the max-clique technique [13] at the same time,
but our approach is more flexible. To show the flexibility of the approach, we
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draw our attention to the case of noisy DFA identfication. Therefore we propose
a modification of the noiseless translation-to-SAT for the noisy case (Section 3).
We show that the previously proposed max-clique technique is not applicable in
this case while our BFS-based approach is. The main advantage of our approach
is that we can determine existence or non-existence of a solution in this case.
Experiments showed that using BFS-based symmetry breaking predicates can
significantly reduce the time of algorithm execution. Also we show that our
strategy outperforms the current state-of-the-art EA from [12] if the number of
the target DFA states, noise level and number of strings are small.

2 Encoding DFA Identfication into SAT

The goal of DFA identification is to find a smallest DFA A such that every string
from S+, a set of positive examples, is accepted by A, and every string from S−,
a set of negative examples, is rejected. The size of A is defined as the number
of states C it contains. The alphabet Σ = {l1, . . . , lL} of the sought DFA A is
the set of all L symbols from S+ and S−. The example of the smallest DFA
for S+ = {ab, b, ba, bbb} and S− = {abbb, baba} is shown in Fig. 1. In this work
we assume that DFA states are numbered from 1 to C and the start state has
number 1.

Fig. 1. An example of a DFA

In [13] Heule and Verwer proposed a compact translation of DFA identifi-
cation problem into SAT. Here we briefly review the proposed technique, since
our symmetry breaking predicates supplement it. The first step of both state-
merging and translation-to-SAT techniques is augmented prefix tree acceptor
(APTA) construction from the given examples S+ and S−. APTA is a tree-
shaped automaton such that paths corresponding to two strings reach the same
state v if and only if these strings share the same prefix in which the last symbol
corresponds to v. We denote by V the set of all APTA states; by vr – the APTA
root; by V+ – the set of accepting states; and by V− – the set of rejecting states.
Moreover, for state v (except vr) we denote its incoming symbol as l(v) and its
parent as p(v). The APTA for S+ and S− mentioned above is shown in Fig. 2a.

The second step of the technique proposed in [13] is the construction of the
consistency graph (CG) for the obtained APTA. The set of nodes of the CG
is identical to the set of APTA states. Two CG nodes v and w are connected
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(a) An example of an APTA for S+ =
{ab, b, ba, bbb} and S− = {abbb, baba}

(b) The consistency graph for
APTA from Fig. 2a

Fig. 2. An example of APTA and its consistency graph

with an edge (and called inconsistent) if merging v and w in APTA results in an
inconsistency: an accepting state is merged with a rejecting state. Let E denote
the set of CG edges. The CG for APTA of Fig. 2a is shown in Fig. 2b.

The key part of the algorithm is translating the DFA identification problem
into a Boolean folmula in conjunctive normal form (CNF) and using a SAT solver
to find a satisfying assignment. For a given set of examples and fixed DFA size
C the solver returns a satisfying assignment (that defines a DFA with C states
that is compliant with S+ and S−) or a message that it does not exist. The main
idea of this translation is to use a distinct color for every state of the identified
DFA and to find a consistent mapping of APTA states to colors. Three types of
variables were used in the proposed compact translation:

1. color variables xv,i ≡ 1 (v ∈ V ; 1 � i � C) iff APTA state v has color i;
2. parent relation variables yl,i,j ≡ 1 (l ∈ Σ; 1 � i, j � C) iff DFA transition

with symbol l from state i ends in state j;
3. accepting color variables zi ≡ 1 (1 � i � C) iff DFA state i is accepting.

Direct encoding, described in [13], uses only variables xv,i; variables yl,i,j
and zi are auxiliary and are used in compact encoding predicates, which are
described below.

The compact translation proposed in [13] uses nine types of clauses:

1. xv,i ⇒ zi (v ∈ V+; 1 � i � C) – definitions of zi values for accepting states
(¬xv,i ∨ zi);

2. xv,i ⇒ ¬zi (v ∈ V−; 1 � i � C) – definitions of zi values for rejecting states
(¬xv,i ∨ ¬zi);

3. xv,1 ∨ xv,2 ∨ . . . ∨ xv,C (v ∈ V ) – each state v has at least one color;
4. xp(v),i ∧ xv,j ⇒ yl(v),i,j (v ∈ V \ {vr}; 1 � i, j � C) – a DFA transition is set

when a state and its parent are colored (yl(v),i,j ∨ ¬xp(v),i ∨ ¬xv,j);
5. yl,i,j ⇒ ¬yl,i,k (l ∈ Σ; 1 � i, j, k � C; j < k) – each DFA transition can

target at most one state (¬yl,i,j ∨ ¬yl,i,k);
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6. ¬xv,i ∨ ¬xv,j (v ∈ V ; 1 � i < j � C) – each state has at most one color;
7. yl,i,1 ∨ yl,i,2 ∨ . . . ∨ yl,i,C (l ∈ Σ; 1 � i � C) – each DFA transition must

target at least one state;
8. yl(v),i,j ∧ xp(v),i ⇒ xv,j (v ∈ V \ {vr}; 1 � i, j � C) – state color is set when

DFA transition and parent color are set (¬yl(v),i,j ∨ ¬xp(v),i ∨ xv,j);
9. xv,i ⇒ ¬xw,i ((v, w) ∈ E; 1 � i � C) – the colors of two states connected

with an edge in the consistency graph must be different (¬xv,i ∨ ¬xw,i).

Thus, the constructed formula consists of O(C2|V |) clauses and, if the SAT
solver finds a solution, we can identify the DFA.

To find a minimal DFA, authors use iterative SAT solving. Initial DFA size
C is equal to the size of a large clique found in the CG. To find that clique,
a greedy algorithm proposed in [13] can be applied. Then the minimal DFA is
found by iterating over the DFA size C until the formula is satisfied.

The found clique was also used to perform symmetry breaking: in any valid
coloring of a graph, all states in a clique must have a different color. Thus, we
can fix the state colors in the clique in a preprocessing step. Later we will see
that the max-clique symmetry breaking is not compatible with the one proposed
in this paper.

To significantly reduce the SAT search space, the authors applied several
EDSM steps before translation to SAT. Since EDSM cannot guarantee the min-
imality of solution, we will omit the consideration of this step in our paper.

3 Learning DFA from Noisy Samples

The translation described in the previous section deals with exact DFA identifi-
cation. In this section we show how to modify the translation in order to apply
it to noisy examples. We assume that not more than K attribution labels of the
given training strings were randomly flipped. Solving this problem was the goal
of the GECCO 2004 Noisy DFA competition [11] (with K equal to 10 percent of
the number of the given training strings). An EA with smart state labeling was
later proposed in [12], and since that time it is, to the best of our knowledge,
the state-of-the-art technique for learning DFA from noisy training data.

In noisy case we cannot use APTA node consistency: we cannot determine
whether an accepting state is merged with a rejecting state because correct
string labels are unknown. Thus we cannot use CG and the max-clique symmetry
breaking.

The idea of our modification is rather simple: for each labeled state of APTA
we define a variable which states whether the label can be flipped. The number
of flips is limited by K. Formally, for each v ∈ V± = V+ ∪V− we define fv which
is true if and only if the label of state v can (but does not have to) be incorrect
(f lipped). Using these variables, we can modify the translation proposed in [13] to
take into account mistakes in string labels. To do this, we change the zi definition
clauses (items 1 and 2 from list in Section 2): because of mistake possibility they
hold in case fv is false. Thus, new zi value definitions are expressed in the
following way: ¬fv ⇒ (xv,i ⇒ zi) for v ∈ V+; ¬fv ⇒ (xv,i ⇒ ¬zi) for v ∈ V−.
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To limit the number of corrections to K we use an auxiliary array of K
integer variables. This array stores the numbers of the APTA states for which
labels can be flipped. Thus, fv is true if and only if the array contains v. To avoid
consideration of isomorphic permutations we enforce the array to be sorted in
the increasing order.

To represent the auxiliary array as a Boolean formula we define variables ri,v
for 1 � i � K and v ∈ V± = {v1, . . . , vW }. ri,v is true if and only if v is stored in
the i-th position of the array. To connect variables fv with ri,v we add so-called
channeling constrains: fv ⇔ (r1,v ∨ . . . ∨ rK,v) for each v ∈ V±.

We have to state that exactly one ri,v is true for each position i in the
auxiliary array. To achieve that we use the order encoding method [22]. We add
auxiliary order variables oi,v for 1 � i � K and v ∈ V± = {v1, . . . , vW }. We
assume that oi,v for v ∈ {v1, . . . , vj} and ¬oi,v for v ∈ {vj+1, . . . , vW } for some j.
This can be expressed by the following constraint: oi,vj+1 ⇒ oi,vj

for 1 � j < W .
Now we define that ri,vj

⇔ oi,vj
∧¬oi,vj+1 . Also we add clauses oi,vj

⇒ oi+1,vj+1

(for 1 � i < K and 1 � j < W ) to store corrections in increasing order.
The proposed constraints in CNF are listed in Table 1; there are O(C|V±| +

K|V±|) clauses. Thus, to modify the translation for the noiseless case to deal with
noise we can replace the zi value definition and inconsistency clauses (items 1,
2 and 9 from list in Section 2) with the ones listed in Table 1.

Table 1. Clauses for noisy DFA identification

Clauses CNF representation Range

¬fv ⇒ (xv,i ⇒ zi) ¬xv,j ∨ zj ∨ fv 1 � j � C; v ∈ V+

¬fv ⇒ (xv,i ⇒ ¬zi) ¬xv,j ∨ ¬zj ∨ fv 1 � j � C; v ∈ V−
fv ⇒ (r1,v ∨ . . . ∨ rK,v) ¬fv ∨ r1,v ∨ . . . ∨ rK,v v ∈ V±
ri,v ⇒ fv ¬ri,v ∨ fv 1 � i � K; v ∈ V±
ri,vj ⇒ oi,vj ¬ri,vj ∨ oi,vj 1 � i � K; 1 � j � W
ri,vj ⇒ ¬oi,vj+1 ¬ri,vj ∨ ¬oi,vj+1 1 � i � K; 1 � j < W
oi,vj ∧ ¬oi,vj+1 ⇒ ri,vj ¬oi,vj ∨ oi,bj+1 ∨ ri,vj 1 � i � K; 1 � j < W
oK,vW ⇒ rK,vW ¬oK,vW ∨ rK,vW

oi,vj+1 ⇒ oi,vj ¬oi,vj+1 ∨ oi,vj 1 � i � K; 1 � j < W
oi,vj ⇒ oi+1,vj+1 ¬oi,vj ∨ oi+1,vj+1 1 � i < K; 1 � j < W

4 Symmetry Breaking Predicates

In this section we propose a way to fix automata state enumeration to avoid con-
sideration of isomorphic DFAs during SAT solving. The main idea of our sym-
metry breaking is to enforce DFA states to be enumerated in breadth-first search
(BFS) order. That idea was also used in function NatOrder in the state-merging
approach described in [20] and the Move To Front reorganization algorithm used
in the genetic algorithm [21].

BFS uses the queue data structure to store intermediate results as it traverses
the graph. First we enqueue the initial DFA state (in this paper state number 1).
While the queue is not empty we deque a state i and enqueue any direct child
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states j that have not yet been discovered (enqueued before). Since our transi-
tions are labeled with symbols from Σ, we enqueue child states in alphabetical
order of symbols l on transitions i

l−→ j. We call DFA BFS-enumerated if its
states are enumerated in dequeuing (equals to enqueuing) order. An example of
a BFS-enumerated DFA with six states shown in Fig. 3a (BFS-tree transitions
that were used to enqueue states are marked bold); BFS enqueues are shown in
Fig. 3b. The DFA shown in Fig. 1 is not BFS-enumerated – BFS first dequeues
state 3 rather than state 2 (we consider 1 a−→ 3 before 1 b−→ 2).

(a) BFS-enumerated DFA
with bolded BFS-tree edges

21 3 4 5 6

b b

c
b

c

(b) BFS queue. Cells correspond to
DFA states, transitions correspond to
enqueues

Fig. 3. An example of BFS-numerated DFA and its BFS queue

We propose constraints that enforce DFA to be BFS-enumerated. We assume
that translation of a given DFA identification problem to SAT deals with Boolean
variables yl,i,j (l ∈ Σ; 1 � i, j � C) to set the DFA transition function: yl,i,j ≡ 1
iff transition with symbol l from state i ends in state j.

The main idea is to determine each state’s parent in the BFS-tree and set
constrains between states’ parents. We store parents in values pj,i (for each
1 � i < j � C). pj,i is true if and only if state i is the parent of j in the
BFS-tree. Each state except the initial one must have a parent with a smaller
number, thus ∧

2�j�C

(pj,1 ∨ pj,2 ∨ . . . ∨ pj,j−1).

Moreover, in BFS-enumeration states’ parents must be ordered. State j must
be enqueued before the next state j + 1, thus the next state’s parent k cannot
be less than current state’s parent i (see Fig. 4):∧

1�k<i<j<C

(pj,i ⇒ ¬pj+1,k).
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k i j j+1

Fig. 4. Part of the queue illustrating the parent ordering predicates. Transitions show
parent relations. The dotted transition is not allowed due to BFS-enumeration.

We set parents variables pj,i through yl,i,j using auxiliary variables ti,j . In
BFS-enumeration state j was enqueued while processing the state with minimal
number i among states that have a transition to j:∧

1�i<j�C

(pj,i ⇔ ti,j ∧ ¬ti−1,j ∧ . . . ∧ ¬t1,j),

where ti,j ≡ 1 iff there is a transition between i and j; we define these auxiliary
variables using yl,i,j : ∧

1�i<j�C

(ti,j ⇔ yl1,i,j ∨ . . . ∨ ylL,i,j).

Now to enforce DFA to be BFS-enumerated we have to order children in
alphabetical order of symbols on transitions. We consider two cases: alphabet Σ
consists of two symbols {a, b} and more than two symbols {l1, . . . , lL}. In the
case of two symbols only two states can have the same parent i and they are
forced by ordering constraints to have consecutive numbers j and j + 1. In this
case we force the transition that starts in state i labeled with symbol a to end
in state j instead of j + 1: ∧

1�i<j<C

(pj,i ∧ pj+1,i ⇒ ya,i,j).

In the second case we have to introduce a third type of variables in our
symmetry breaking predicates. We store the alphabetically minimal symbol on
transitions between states: ml,i,j is true if and only if there is a transition i

l−→ j
and there is no such transition with an alphabetically smaller symbol. We con-
nect these variables with DFA transitions by adding the following channeling
predicates: ∧

1�i<j�C

∧
1�n�L

(mln,i,j ⇔ yln,i,j ∧ ¬yln−1,i,j ∧ . . . ∧ ¬yl1,i,j).

Now it remains to arrange consecutive states j and j+1 with the same parent
i in the alphabetically order of minimal symbols on transitions between them
and i (see Fig. 5):∧

1�i<j<C

∧
1�k<n�L

(pj,i ∧ pj+1,i ∧ mln,i,j ⇒ ¬mlk,i,j+1).
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i j j+1

l�

l�

Fig. 5. Illustration of alphabetical ordering predicates. If i is the parent of j and j +1,
ln (lk) is the alphabetically minimal symbol on transitions between i and j (i and j+1)
then lk cannot be alphabetically smaller than ln

Thus we propose symmetry breaking predicates that are composed by listed
constraints. Predicates (for three or more symbols case) translated into O(C3 +
C2L2) CNF clauses are listed in Table 2. Our implementation of proposed pred-
icates and all algorithms can be found on the our labaratory github repository
(https://github.com/ctlab/DFA-Inductor).

Table 2. BFS-based symmetry breaking clauses

Clauses CNF representation Range

ti,j ⇒ (yl1,i,j ∨ . . . ∨ ylL,i,j) ¬ti,j ∨ yl1,i,j ∨ . . . ∨ ylL,i,j 1 � i < j � C
yi,j,l ⇒ ti,j ¬yl,i,j ∨ ti,j 1 � i < j � C; l ∈ Σ

ml,i,j ⇒ yl,i,j ¬ml,i,j ∨ yl,i,j 1 � i < j � C; l ∈ Σ
mln,i,j ⇒ ¬ylk,i,j ¬mln,i,j ∨ ¬ylk,i,j 1 � i < j � C; 1 � k < n � L
(yln,i,j ∧ ¬yln−1,i,j ∧ . . .

¬yl1,i,j) ⇒ mln,i,j

¬yln,i,j ∨ yln−1,i,j ∨ . . .
∨yl1,i,j ∨ mln,i,j

1 � i < j � C; 1 � n � L

pj,1 ∨ pj,2 ∨ . . . ∨ pj,j−1 pj,1 ∨ pj,2 ∨ . . . ∨ pj,j−1 2 � j � C
pj,i ⇒ ti,j ¬pj,i ∨ ti,j 1 � i < j � C
pj,i ⇒ ¬tk,j ¬pj,i ∨ ¬tk,j 1 � k < i < j � C
(ti,j ∧ ¬ti−1,j ∧ . . . ∧ ¬t1,j) ⇒ pj,i ¬ti,j ∨ ti−1,j ∨ . . . ∨ t1,j ∨ pj,i 1 � i < j � C

pj,i ⇒ ¬pj+1,k ¬pj,i ∨ ¬pj+1,k 1 � k < i < j < C
(pj,i ∧ pj+1,i ∧ mln,i,j) ⇒ ¬mlk,i,j+1 ¬pj,i ∨ ¬pj+1,i ∨ ¬mln,i,j ∨ ¬mlk,i,j+1 1 � i < j < C; 1 � k < n � L

5 Experiments

All experiments were performed using a machine with an AMD Opteron 6378
2.4 GHz processor running on Ubuntu 14.04. All algorithms were implemented
in Java, the lingeling SAT-solver was used. Our own algorithm was used for
generating problem instances for all experiments based on randomly generated
data sets. This algorithm builds a set of strings with the following parameters:
size of DFA N which has to be generated, alphabet size A, number of strings
S which have to be generated, noise level K (percent of attribution labels of
generated strings which have to be randomly flipped).

In the exact case the max-clique method clearly outperforms BFS-based
strategy.

For noisy DFA identification we used randomly generated instances. First we
considered the case when the target DFA exists and the Boolean formula is satis-
fiable. We used following parameters: N ∈ [5; 10], A = 2, S ∈ {10N, 25N, 50N}.
We compared SAT approach without any symmetry breaking predicates, our

https://github.com/ctlab/DFA-Inductor
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solution using BFS-based symmetry breaking predicates and the current state-
of-the-art EA from [12]. Each experiment was repeated 100 times. The time limit
was set to 1800 seconds. Initial experiments showed that EA clearly outperforms
our method when K > 4%. Therefore we set this parameter to 1%−4%. Results
are listed in Table 3. We left only instances which were solved within the time
limit. These results indicate that the BFS-based strategy finds the solution faster
than the current state-of-the-art EA only when N is small (< 7), noise level is
small (1% − 4%) and the number of strings is also small (< 50N). But BFS-
based strategy finds the solution extremely faster than SAT approach without
symmetry breaking strategy.

Table 3. Mean times of solving noisy DFA identification with count of strings in the
each instance set to 10N , 25N and 50N respectively

N K BFS, sec SAT, sec EA, sec

5 2 0.22 0.38 1.22
5 4 0.59 0.9 1.1
6 2 1.05 2.44 2.94
6 4 3.34 7.82 2.85
7 1 4.34 10.83 21.36
7 3 17.22 143.66 19.16
8 1 17.89 31.58 30.29
8 2 163.92 225.31 19.8

N K BFS, sec SAT, sec EA, sec

5 1 0.54 0.64 2.77
5 2 2.42 4.33 1.80
6 1 6.3 11.95 11.65
6 2 13.3 43.54 4.80
7 1 31.01 114.95 17.24
7 2 286.76 TL 13.11
8 1 239.46 404.32 21.73

N K BFS, sec SAT, sec EA, sec

5 1 4.2 7.59 6.07
5 2 12.87 22.36 3.05
6 1 20.76 52.5 20.39
6 2 107.94 309.22 11.28

The last experiment considered the case when the target DFA does not exist
and the Boolean formula is unsatisfiable. Random dataset was also used here.
We tried to find the target DFA using the following parameters: N ∈ [5; 7],
A = 2, S = 50N , K ∈ [1; 2] percent. The input set of strings was generated from
a (N +1)-sized DFA. It should be noted that the EA from [12] cannot determine
that an automaton consistent with a given set of strings does not exist. On the
other hand, all SAT-based methods are capable of that. Therefore we compared
our implementation of compact SAT encoding without using symmetry break-
ing predicates and the same with BFS-based predicates. Each experiment was
repeated 100 times and the time limit was set to 1800 seconds again. Results
are listed in Table 4. It can be seen from the table that BFS-based strategy
significantly reduces the mean time of determination that an automaton does
not exist.

Table 4. Mean times and percent of passed solutions of solving noisy DFA identification
when the target DFA does not exist

N K BFS, sec WO, sec passed BFS, % passed WO, %

5 1 11.57 257.13 100 100
5 2 46.42 1296.71 100 30
6 1 110.05 TL 100 0
6 2 581.73 TL 100 0
7 1 995.27 TL 89 0
7 2 TL TL 0 0
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6 Conclusions and Future Work

We proposed symmetry breaking predicates which can be added to the Boolean
formula representing various DFA identification problems. By adding the pred-
icates we can reduce SAT search space through enforcing DFA states to be
enumerated in breadth-first search (BFS) order.

We drew our attention to the case of noisy DFA identfication. We proposed a
modification of the noiseless translation-to-SAT [13] for the noisy case. To achieve
compact encoding for that case we used the order encoding method. We showed
that the previously proposed max-clique technique for symmetry breaking is not
applicable in the noisy case while our BFS-based approach is. We showed that the
BFS-based strategy can be applied in the noisy case when an automaton which
is consistent with a given set of strings does not exists. The current state-of-the-
art EA from [12] cannot determine that. In experimental results, we showed that
our approach with BFS-based symmetry breaking predicates clearly outperforms
algorithm without any predicates. Also we showed that our strategy outperform
EA if the number of the target DFA states is small, noise level is small and
number of strings is small either.

We plan to translate noisy DFA identification to Max-SAT in order to limit
the number of corrections without using an auxiliary array of integer variables.
Also we plan to experiment with alternative integer encoding methods. In the
future we would like to solve a problem of finding all solutions (instead of a
single DFA) using our predicates.
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Abstract. Approaches based on the idea generically called distribu-
tional learning have been making great success in the algorithmic learn-
ing of context-free languages and their extensions. We in this paper
show that conjunctive grammars are also learnable by a distributional
learning technique. Conjunctive grammars are context-free grammars
enhanced with conjunctive rules to extract the intersection of two lan-
guages. We also compare our result with the closely related work by Clark
et al. (JMLR 2010) on contextual binary feature grammars (cbfgs). Our
learner is stronger than theirs. In particular our learner learns every exact
cbfg, while theirs does not. Clark et al. emphasized the importance of
exact cbfgs but they only conjectured there should be a learning algo-
rithm for exact cbfgs. This paper shows that their conjecture is true.

Keywords: Grammatical inference · Algorithmic learning · Distribu-
tional learning

1 Introduction

Approaches based on the idea generically called distributional learning have
been making great success in the algorithmic learning of context-free languages
(cfls). Distributional learning algorithms exploit information on the distribu-
tion of strings in contexts with respect to a learning target language: that is, we
observe which combination of a string u ∈ Σ∗ and a context 〈l, r〉 ∈ Σ∗ × Σ∗

forms a string lur ∈ Σ∗ belonging to the concerned language L ⊆ Σ∗. In the dis-
tributional learning of context-free grammars (cfgs), nonterminal symbols of a
grammar are associated with a context, a string, or sets of those and have seman-
tics determined by those associated objects. For example, a nonterminal indexed
with a context 〈l, r〉 is supposed to derive strings u such that lur belongs to the
learning target language (cf. [3]). A learner constructs a hypothesis grammar
based on the semantics of nonterminals. Approaches that define the semantics
by strings are called primal and those by contexts are dual.

Clark et al. [4] have proposed a grammar formalism called contextual binary
feature grammars (cbfgs) as “distributionally” learnable representations. The
formalism is strong enough to generate all cfls and some other context-sensitive
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languages. Cbfgs use contexts as features, which play a similar role of nonter-
minal symbols of cfgs. This idea gives a guide to design a learning algorithm.
They proposed a learning algorithm that identifies a subclass of cfls in the limit
from positive data and membership queries.

However, their discussion has a strange gap between the formalism and the
learning target. Their learner constructs a cbfg as a hypothesis while the learn-
ing target is a cfl. The learnable subclass of cfls are defined in terms of cfgs
rather than cbfgs. Certainly their algorithm learns some non-context-free lan-
guages, but no characterization of those languages are given except that they
are learned by their method. Actually, features of cbfgs play only the role as a
guide for learning. Indeed, in the definition of cbfgs, no semantical requirement
is imposed on features. One can use arbitrary contexts as features of a grammar,
which may be completely irrelevant of the language defined by the grammar. On
the other hand, Clark et al. [4] are very much interested in the property called
exactness, which establishes a clear relation between features and their seman-
tics. In exact cbfgs, a string has a feature if and only if the string can occur
in the feature (= context). Indeed this property is the guide for learning. Their
learner constructs its hypothesis so that it can be exact. However, they present
no rigorous mathematical relation between the exactness and learnability. In
fact, there are exact cbfgs which generate cfls that their algorithm does not
learn. They only conjectured that there should exist an algorithm that learns all
exact cbfgs.

Another mismatch in their algorithm is found in their grammar construc-
tion. While features of a cbfg are contexts, their learner constructs rules based
on strings. Their strategy can be seen as a compromise of primal and dual
approaches. Their algorithm requires target cfls to satisfy two conditions which
we call the finite kernel property (fkp) and finite fiducial set property (ffp).
Actually later Yoshinaka [9] showed that a primal type algorithm learns cfls
with the fkp, whose hypotheses are standard cfgs.

We in this paper take a closer look at those mismatches in Clark et al.’s result
and close the gaps by designing a distributional learning algorithm for a subclass
of conjunctive grammars [7]. Conjunctive grammars are generalization of cfgs
that have conjunctive rules to extract the intersection of the languages derived
from nonterminal symbols. Cbfgs can be seen as notational variants of con-
junctive grammars with some minor restriction. We treat conjunctive grammars
for the generality in this paper. The subclass we target has the finite context
property (fcp) [1,2]. Actually the technique used in our learning algorithm is a
straightforward generalization of an existing dual type algorithm for cfgs with
the fcps [9]. We show that exact cbfgs satisfy this property. As an important
consequence of this, the conjecture by Clark et al. [4] is shown to be true. After
we explain the algorithm and its correctness briefly, we discuss and compare
the learning algorithms by Clark et al. and by us. We will also show that if a
cfl satisfies the two conditions required by Clark et al.’s algorithm, the fkp
and the ffp, then it has the fcp. The fkp is a property with which a primal
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approach works and the fcp is favorable for a dual one. This explains how their
primal-dual mixed strategy works.

2 Distribution of Strings in Contexts

Let Σ be a nonempty finite set of letters. We denote the empty string by λ. We
define Σλ = Σ ∪ {λ}. Any element of Σ∗ × Σ∗ is called a context. The empty
context 〈λ, λ〉 is denoted by Λ. For a string v ∈ Σ∗ and a context 〈u1, u2〉 ∈
Σ∗ ×Σ∗, the composition of them is 〈u1, u2〉�v = u1vu2 ∈ Σ∗. The composition
operation is naturally generalized to be applied to sets W ⊆ Σ∗×Σ∗ and V ⊆ Σ∗

as W � V = {w � v | w ∈ W, v ∈ V }. For a language L ⊆ Σ∗, we let

Sub(L) = { v ∈ Σ∗ | w � v ∈ L for some w ∈ Σ∗ × Σ∗ },

Con(L) = {w ∈ Σ∗ × Σ∗ | w � v ∈ L for some v ∈ Σ∗ }.

We also have an operation dual to �. We denote the set of contexts that admit
every string in a set V ⊆ Σ∗ with respect to a language L ⊆ Σ∗ by

L � V = {w ∈ Σ∗ × Σ∗ | w � v ∈ L for all v ∈ V }.

Similarly, the set of strings that every context in W ⊆ Σ∗ × Σ∗ accepts is

L � W = { v ∈ Σ∗ | w � v ∈ L for all w ∈ W }.

Note that L�{Λ} = L. By definition, W �V ⊆ L iff W ⊆ L�V iff V ⊆ L�W .
When L is understood, particularly when our learning target is L, we denote
L � W for W ⊆ Σ∗ × Σ∗ by W † and L � V for V ⊆ Σ∗ by V ‡. It is easy to
see that V ⊆ (V ‡)†, W ⊆ (W †)‡, V ‡ = ((V ‡)†)‡ and W † = ((W †)‡)†. Moreover,
we define W ‡ = (W †)‡ and V † = (V ‡)†. In both cases where X ⊆ Σ∗ and where
X ⊆ Σ∗ × Σ∗, we have X† ⊆ Σ∗ and X‡ ⊆ Σ∗ × Σ∗. For V1, V2 ⊆ Σ∗,
we write V1 ≈ V2 if V †

1 = V †
2 . For sets V ⊆ Σ∗ and W ⊆ Σ∗ × Σ∗, we define

W (V ) = W † ∩ V and V (W ) = V ‡ ∩ W .

3 Learning Conjunctive Grammars with Finite Context
Property

This section presents an algorithm that learns conjunctive grammars with a
special property called the finite context property (fcp). This property is first
proposed for cfgs by Clark [1,2].

Definition 1 (Okhotin [7,8]). A conjunctive grammar is a quadruple G =
〈Σ,V, P, S〉 where Σ is a finite set of terminal symbols, V is a finite set of
nonterminal symbols, S ∈ V is a special nonterminal called the initial symbol
and P is a finite set of rules each of which has the form

X ← α1& . . . &αk

where X ∈ V , αi ∈ (Σ ∪ V )∗ for each i ∈ {1, . . . , k} for some k ≥ 1.
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The language L(G,α) of α ∈ (Σ ∪ V )∗ is recursively defined as follows:

− a ∈ L(G, a) for all a ∈ Σλ,
− if ui ∈ L(G,Xi) with Xi ∈ Σ ∪ V for i = 1, . . . , k, then u1 . . . uk ∈

L(G,X1 . . . Xk),
− if u ∈ L(G,αi) with αi ∈ (Σ ∪ V )∗ for i = 1, . . . , k and X ← α1& . . . &αk ∈

P , then u ∈ L(G,X),
− nothing else is in L(G,α).

The language of G is L(G) = L(G,S).

We say that two grammars are equivalent if they define the same language. We
say that a rule is useless if there is no string in L(G) that can be derived using
that rule. For example, the rule Y ← b is useless in the following grammar.

S ← X&Y, X ← a, Y ← a, Y ← b .

We in this paper assume without loss of generality that no rule is useless.
Conjunctive grammars can define the following context-sensitive languages:

{ anbncn | n ≥ 0 }, {ucu | u ∈ {a, b}∗ } .

One can show that every conjunctive grammar admits an equivalent grammar
whose rules have one of the following forms (cf. [7]):

− X ← a for some X ∈ V and a ∈ Σλ,
− X ← Y Z for some X,Y,Z ∈ V ,
− X ← Y &Z for some X,Y,Z ∈ V .

Hereafter we assume that grammars are in this binary form for simplicity.

Definition 2. Let X ∈ V be a nonterminal symbol of a conjunctive grammar
G = 〈Σ,V, P, S〉. A context set CX is said to be a characterizing context set of X
if L(G,X) = L(G)�CX . We say that G has the k-finite context property (k-fcp)
if every nonterminal admits a finite characterizing context set of cardinality at
most k. A grammar has the fcp if it has the k-fcp for some k.

In general, it is not necessarily the case that L(G,X) ⊆ Sub(L(G)) for a con-
junctive grammar G and a nonterminal X, even when G has no useless rules.
The fcp requires the languages of a nonterminal to be “observable” in the sense
that we have L(G,X) ⊆ Sub(L(G)).

Yoshinaka [9] and Leiß [6]1 proposed learning algorithms for cfgs with the
weak fcp, which requires L(G,X) ≈ L(G) � CX rather than the exact equal-
ity. It is an open problem whether the classes of languages generated by cfgs
(conjunctive grammars) with the stronger (Clark’s original) fcp and of those
with the weak fcp coincide. This paper requires learning targets to satisfy the
stronger fcp. The learning algorithm that will be presented in this section is a
1 Leiß [6] pointed out an error of the original algorithm by Clark [2].
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straightforward generalization of Yoshinaka’s algorithm, but a learner based on
Leiß’s algorithm is also possible (see Sec. 3.2).

We remark that a characterizing context set CX of X is a subset of Con(L(G)).
Otherwise CX � Con(L(G)), we have L(G) � CX = ∅ = L(G,X). The nonter-
minal X is useless.

3.1 Learner

Our learning paradigm is identification in the limit from positive data and mem-
bership queries. A positive presentation of a language L∗ over Σ is an infinite
sequence u1, u2, · · · ∈ Σ∗ such that L∗ = {ui | i ≥ 1 }. A learner is given a
positive presentation of the language L∗ = L(G∗) of the target grammar G∗
and each time a new example ui is given, it outputs a grammar Gi (called a
hypothesis) computed from u1, . . . , ui with the aid of a membership oracle. One
may query the oracle whether an arbitrary string u is in L∗, and the oracle
answers in constant time. We say that a learning algorithm identifies G∗ in the
limit from positive data and membership queries if for any positive presentation
u1, u2, . . . of L(G∗), there is an integer n such that Gn = Gm for all m ≥ n
and L(Gn) = L(G∗). Trivially every grammar admits a successful learning algo-
rithm. An algorithm should learn a rich class of grammars in a uniform way. We
say that a learning algorithm identifies a class G of grammars in the limit from
positive data and membership queries iff it identifies all G∗ ∈ G.

Since the nonterminals of a target grammar G∗ are characterized by contexts,
our learner’s hypothesis grammar Ĝ will use nonterminals indexed by context
sets. We denote a nonterminal indexed by a context set C by [[C]]. We would like
[[C]] to be characterized by the set C, i.e., L(Ĝ, [[C]]) = C†. If a context set C
characterizes a nonterminal X of the target grammar, we want [[C]] to simulate X.
Our learning algorithm constructs a grammar Ĝ = Gk(F,K) = 〈Σ, V̂ , P̂ , [[{Λ}]]〉
from two finite sets F ⊆ Σ∗ × Σ∗ and K ⊆ Σ∗.

− V̂ = { [[C]] | C ⊆ F and |C| ≤ k },
− P̂ = P̂0 ∪ P̂1 ∪ P̂2 where

• P̂0 = { [[C]] ← a | a ∈ C(Σλ) },
• P̂1 = { [[C]] ← [[C1]][[C2]] | C � (C(K)

1 C
(K)
2 ) ⊆ L∗ },

• P̂2 = { [[C]] ← [[C1]]&[[C2]] | C � (C(K)
1 ∩ C

(K)
2 ) ⊆ L∗ }.

Those rules are constructed in polynomial time in |F | and |K| (but not in k) by
the aid of the membership oracle.

Lemma 3. If E ⊆ F then L(Gk(E,K)) ⊆ L(Gk(F,K)).
If J ⊆ K then L(Gk(F,K)) ⊆ L(Gk(F, J)).

Definition 4. We say that a rule is correct if it is compatible with the semantics
of the nonterminals in it. That is,

− [[C]] ← a is correct if a ∈ C†,
− [[C]] ← [[C1]][[C2]] is correct if C† ⊇ C†

1C
†
2 ,
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− [[C]] ← [[C1]]&[[C2]] is correct if C† ⊇ C†
1 ∩ C†

2 .

If a rule is not correct, it is called incorrect.

Lemma 5. For any F and K, all the correct rules constructible from the non-
terminals of V̂ are present in Gk(F,K).

Lemma 6. Let L∗ be generated by a conjunctive grammar G∗ with the k-fcp
and CX be a characterizing context of each nonterminal X of G∗ with |CX | ≤ k.
If F ⊇ CX for all nonterminals X, then L∗ ⊆ L(Gk(F,K)).

Proof. Let Ĝ = Gk(F,K). One can easily see that for every rule ρ of G∗, φ(ρ) is
a correct rule where φ replaces each nonterminal X of G∗ by [[CX ]]. By Lemma 5,
φ(ρ) is present in Ĝ and thus Ĝ can simulate G∗. We prove this claim for con-
junctive rules only. For a rule X ← Y &Z of G∗, the fact

C†
Y ∩ C†

Z = L(G∗, Y ) ∩ L(G∗, Z) ⊆ L(G∗,X) = C†
X

means that the rule [[CX ]] ← [[CY ]]&[[CZ ]] is correct by definition. ��
Note that here the weak fcp is not enough to establish that φ(ρ) will be correct,
because Si ≈ S′

i where Si ⊆ Σ∗ for i = 1, 2 does not imply S1 ∩ S2 ≈ S′
1 ∩ S′

2.
Every rule in P̂0 of Gk(F,K) is correct for any F and K. However it is not

necessarily the case for rules in P̂1 and P̂2.

Lemma 7. Every F admits a finite set K ⊆ Sub(L∗) consisting of at most
2|V̂ |3 strings such that all rules of Gk(F,K) are correct.

Proof. We construct a finite set K from F as follows.
For each triple [[C]], [[C1]], [[C2]] that forms an incorrect rule [[C]] ← [[C1]][[C2]],

there is u1u2 ∈ C†
1C

†
2 − C† where ui ∈ C†

i for i = 1, 2. Let K contain u1 and u2.
Then the incorrect rule is suppressed.

For each triple [[C]], [[C1]], [[C2]] that forms an incorrect rule [[C]] ← [[C1]]&[[C2]],
there is u ∈ C†

1 ∩ C†
2 − C†. Let K contain u. Then we have u ∈ C

(K)
i and

C � (C(K)
1 ∩ C

(K)
2 ) � L∗, so the incorrect rule is suppressed. ��

Lemma 8. If Ĝ = Gk(F,K) has no incorrect rules, then L(Ĝ) ⊆ L∗.

Proof. It is easy to show by induction on derivation that u ∈ L(Ĝ, [[C]]) implies
u ∈ C†. In particular for the initial symbol [[Λ]], we establish L(Ĝ, [[Λ]]) ⊆ Λ† =
L∗. ��

Our learner Algorithm 1 expands F to augment the conjecture grammar
when we know we do not yet have enough contexts, while keeping expanding K
to exclude incorrect rules.

Theorem 9. Algorithm 1 identifies conjunctive grammars with the k-fcp in the
limit from positive data and membership queries.
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Algorithm 1 Learning conjunctive grammars with k-fcp
Data: A positive presentation u1, u2, . . . of L∗; membership oracle O for L∗;
Result: A sequence of conjunctive grammars G1, G2, . . .
let D := ∅; F := ∅; K := ∅; Ĝ := Gk(F,K);
for n = 1, 2, . . . do

let D := D ∪ {un}; K := Sub(D);
if D � L(Ĝ) then

let F := Con(D);
end if
output Ĝ = Gk(F,K) as Gn;

end for

Proof. Let Dn = {u1, . . . , un}. Lemma 6 ensures that Algorithm 1 does not
update F infinitely many times. Let Fm0 = Con(Dm0) be the limit of F . There is
a point n0 such that Gk(Fm0 ,Kn0) has no incorrect rules for Kn0 = Sub(Dn0) by
Lemma 7. For any n ≥ max{m0, n0}, Algorithm 1 outputs Ĝn = Gk(Fm0 ,Kn0),
which contains all and only correct rules. By Lemma 8, L(Ĝn) ⊆ L∗. By the
choice of m0, it is impossible that L(Ĝn) � L∗. ��
We remark on the efficiency of our algorithm. Algorithm 1 updates its conjecture
in polynomial time in the data size. Moreover, to get characterizing contexts of
all nonterminals in V∗ of G∗, k|V∗| examples are enough. To suppress incorrect
rules, O(|V̂ |3) substrings are enough by Lemma 7.

3.2 Hypothesis Grammar with Closed Nonterminals

Our hypothesis grammars Gk(F,K) may have many nonterminals playing the
same role. Observing that two nonterminals [[C1]] and [[C2]] with C

(K)
1 = C

(K)
2

occur exactly at the same positions on the right-hand side of rules, we can pick
only one of those equivalent nonterminals. We call C closed if C(K)(F ) = C,
which is the maximum element of the equivalence class {B | B(K) = C(K) }. An
alternative construction of a hypothesis Hk(F,K) which uses only closed sets
for nonterminals is obtained by merging all nonterminals [[C]] of Gk(F,K) into
[[C(K)(F )]]. It is obvious that L(Hk(F,K), [[C]]) =

⋃{L(Gk(F,K), [[B]]) | B(K) =
C(K) }, which implies L(Hk(F,K)) = L(Gk(F,K)).

Another idea to construct a hypothesis grammar with nonterminals indexed
with closed sets is given by Leiß [6] for learning cfgs with the fcp. His algo-
rithm updates its hypothesis only when (C(K)

1 C
(K)
2 )(F ) = (C(K)

1 C
(K)
2 )(F )(K)(F )

or (C(K)
1 C

(K)
2 )(F ) = ∅ for all C1, C2 ⊆ F . We can take this idea where the

rule construction need not be altered from Gk(F,K) except that all nonterminal
symbols are indexed with closed sets.

3.3 Non-binary Form

Just for simplicity we assume that target languages are generated by conjunc-
tive grammars in the binary form. Although every conjunctive grammar can be
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converted into this form preserving its language, the fcp is not necessarily pre-
served. For example, the language LCEH = { amb | m > 0 } ∪ { amcn | 0 < m <
n } [4] can be generated by a cfg with the fcp2 but it cannot be in the binary
form. To overcome this problem, we may allow grammar rules to have a more
general form

[[C]] ← α1& . . . &αm with αi ∈ (Σ ∪ V̂ )∗ for each i

where

− if m ≥ 2 then each αi contains at least one nonterminal symbol,
− for αi = u0[[C1]]u1 . . . [[C]]ni

uni
, each uj occurs in some elements of F ,

− and some restriction should be satisfied so that polynomially many rules are
possible in a hypothesis grammar.

An example of the third condition is to bound the number of nonterminals that
occur in the right-hand side of each rule (cf. [10]).

Under this modification, Leiß’s condition for updating hypotheses should also
be modified accordingly.

4 Contextual Binary Feature Grammars

Clark et al. [4] introduced contextual binary feature grammars (cbfgs) as distri-
butionally learnable representations of languages. They are essentially notational
variants of conjunctive grammars with some minor restriction.

Definition 10 (Clark et al. [4]). A contextual binary feature grammar
(cbfg) over Σ is a quadruple G = 〈F, P0, P1, Σ〉 where

− F ⊆ Σ∗ × Σ∗ is a finite set of contexts,
− P0 is a finite set of rules of the form C ← a for C ⊆ F and a ∈ Σ,
− P1 is a finite set of rules of the form C ← C1C2 for C,C1, C2 ⊆ F .

A cbfg assigns a context set to each string recursively by

fG(λ) = ∅,

fG(a) =
⋃

{C | C ← a ∈ P0 } for a ∈ Σ,

fG(u) =
⋃

{C | C ← C1C2 ∈ P1, Ci ⊆ fG(ui) for i = 1, 2
for some u1, u2 ∈ Σ+ with u = u1u2 } for |u| > 1 .

The language defined by G is

L(G) = {u ∈ Σ+ | 〈λ, λ〉 ∈ fG(u) } .

2 The grammar with the following rules have the fcp and generate LCEH.

S ← Xb | aY c, X ← aX | a, Y ← aY c | Y c | c .
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Clark et al. [4] showed that for every conjunctive grammar G one can construct
a cbfg G′ generating almost the same language: L(G′) = L(G)# for a special
end marker # /∈ Σ. The converse is trivial.

Proposition 11. Every cbfg G has an equivalent conjunctive grammar G′.

Proof. For G = 〈F, P0, P1, Σ〉, define G′ = 〈Σ,F ′
0∪F ′

1, P
′
0∪P ′

1∪P ′
2, (λ, λ)〉 where

F ′
0 = { [[w]] | w ∈ F } ,

F ′
1 = { [[C]] | C occurs on the right hand side of some rule of P1 } ,

P ′
0 = { [[w]] ← a | w ∈ C and C ← a ∈ P0 with a ∈ Σ for some C ⊆ F } ,

P ′
1 = { [[w]] ← [[C1]][[C2]] | w ∈ C and C ← C1C2 ∈ P1 for some C ⊆ F } ,

P ′
2 = { [[C]] ← [[w1]]& . . . &[[wn]] | C = {w1, . . . , wn} ∈ F ′ } .

It is easy to see that u ∈ L(G′, [[w]]) if and only if w ∈ fG(u). ��

4.1 Comparison of Clark et al.’s Learner and Ours

Clark et al. [4] proposed a learning algorithm for cfgs with special conditions.
The hypotheses output by the algorithm are cbfgs. Although their main theo-
rem mentions the learnability of the specific kind of cfgs, certainly their algo-
rithm learns some cbfgs generating non-context-free languages. In this regard,
Clark et al. have already shown a positive result on the learnability of some
conjunctive grammars. We show that our result is stronger than Clark et al.’s.
Clark et al. [4] showed the learnability of the class of cfls that are generated
by cfgs with the finite kernel property (fkp) and that have the finite fiducial
set property (ffp). Those properties are defined as follows. In what follows, we
allow cfgs to have multiple initial symbols. The language of a cfg is defined to
be the union of all the languages defined by those initial symbols.

Definition 12 (Yoshinaka [9]). A cfg G with multiple initial symbols has the
fkp if every nonterminal X has a string uX ∈ L(G,X) such that L(G,X)† = u†

X .

Definition 13. A language L has the ffp if every string u ∈ Σ∗ has a finite
context set Cu such that C†

u = u†.

The above definitions might look different from the original ones. The equivalence
to Clark et al.’s original definitions is shown in the appendix. Now the following
proposition is trivial.

Proposition 14. If a grammar G satisfies the fkp and its language L(G) has
the ffp, then G satisfies the weak fcp.

Proof. Each nonterminal X of G has a string uX such that L(G,X)† = u†
X by

the fkp. By the ffp, uX has a finite context set CX such that u†
X = C†

X . That
is, L(G,X)† = C†

X . ��
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If Definition 12 is strengthened so that L(G,X) = u†
X , then the conclusion of

Proposition 14 becomes that G satisfies the (stronger) fcp.
Yoshinaka [9] showed that actually either the weak fcp or fkp is enough

to make cfgs learnable, whereas Proposition 14 clarifies that Clark et al. [4]
require both properties. Their learner’s hypothesis grammars have a branching
rule C ← C1C2 if there are u1, u2 ∈ K such that C = (u1u2)(F ) and Ci = u

(F )
i

for i = 1, 2. This rule will be correct, in the sense that C � C†
1C

†
2 ⊆ L∗, if

C†
i = u†

i . This is the reason why the ffp is required in addition to the fkp.
Although they use contexts as features, rules are determined by strings. This
inconsistent strategy demands learning targets to satisfy both the fcp and fkp.

We remark that there is a cfg G with the fcp whose language L(G) does not
satisfy the ffp. An example is LCEH (Sec. 3.3). The string b has no finite context
set C such that C†

b = b†. On the other hand, there is a cfl with the ffp that
has no cfg satisfying the fcp, e.g., L2 = { am | m ≥ 0 } ∪ { ambm′

cbn′
an | m ≤

m′ and n ≤ n′ }. One can easily verify that L2 has the ffp. If a cfg generates
L2, it must have a nonterminal X whose language LX is an infinite subset of a∗.
We have L‡

X = { 〈am, an〉 | m,n ≥ 0 } but no finite subset of L‡
X characterizes

X. For any finite subset F of L‡
X , one can find n such that F ⊆ (bncbn)(F ), for

which 〈an+1, an+1〉 ∈ L‡
X − (bncbn)(F ).

4.2 Exact Contextual Binary Feature Grammars

Although cbfgs use contexts to control derivations, choice of contexts is arbi-
trary. They may be completely irrelevant of the language defined by the gram-
mar. A restriction that establishes a clear and strong relation between features
and their semantics is the exactness.

Definition 15 (Clark et al. [4]). A cbfg is said to be exact if for all u ∈ Σ+,
fG(u) = {u}(F ).

Clark et al. [4] emphasize the importance of this property. Indeed their and our
learners construct a hypothesis grammar so that it can be exact. However, they
found no relation between exactness and learnability of cbfgs, while conjec-
turing that there should be a learning algorithm for exact cbfgs Actually the
exactness entails the fcp through the straightforward translation of cbfgs into
conjunctive grammars.

Lemma 16. If a cbfg G is exact, then the conjunctive grammar G′ obtained
by the straightforward translation has the fcp.

Proof. Let G′ be the conjunctive grammar obtained by the method of the proof
of Proposition 11 from an exact cbfg G. It is obvious that nonterminals [[w]] ∈ F ′

0

and [[C]] ∈ F ′
1 of G′ are characterized by {w} and C, respectively. ��

Our learning algorithm can be translated for cbfgs accordingly. Actually con-
junctive grammars Gk(F,K) output by our learner are almost cbfgs as non-
terminals are indexed with sets of contexts. A translation of Gk(F,K) will be
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obtained by removing conjunctive rules and replacing all nonterminals [[C]] by
the context sets C. Let us call a cbfg a k-cbfg if every context set used in rules
has cardinality at most k.

Corollary 17. Exact k-cbfgs are polynomial time identifiable in the limit from
positive data and membership queries.

5 Primal Approach

Existing distributional learning algorithms are classified into two types. A pri-
mal approach uses strings to define the semantics of nonterminals, and a dual
approach uses contexts. Our approach taken in this paper is dual in this sense.
Yoshinaka [9,10] showed a neat symmetry between primal and dual approaches
and gave an algorithm that integrates the two. However it does not seem straight-
forward to design a correct learner of primal type for conjunctive grammars with
the fkp. Another formalism that only a dual approach is known to work for is
parallel (multiple) cfgs [5]. The current state of the art might suggest dual
approaches have an advantage over primal approaches, but further investigation
is needed to clarify the relation of the two types of approaches.

A Equivalence of Clark et al.’s and Our Definitions

The original definition of the fkp by Clark et al. [4] is as follows.

Definition 18 (Clark et al. [4]). A cfg G has the fkp if every nonterminal
X admits a finite set SX ⊆ L(G,X) such that

− a ∈ SX if a ∈ L(G,X),
− for every v ∈ L(G,X) there is u ∈ SX such that u‡ ⊆ v‡.

Obviously every grammar satisfying Definition 12 also satisfies Definition 18. We
show the converse.

Proposition 19. Every grammar G satisfying Definition 18 has an equivalent
grammar G′ satisfying Definition 12.

Proof. Let SX be a finite string set for each nonterminal X of a grammar G
satisfying Definition 18. Suppose K includes SX for each nonterminal X. For
simplicity we assume that every rule of G is either X ← a with a ∈ Σλ or
X ← Y Z for some X,Y,Z ∈ V . Let us define G′ = 〈Σ,VK , PK , IK〉, where
IK ⊆ VK is the set of initial symbols, by

− VK = { [[u]] | u ∈ K },
− PK = { [[a]] ← a | a ∈ Σλ } ∪ { [[u]] ← [[u1]][[u2]] | u‡ � u1u2 ⊆ L(G) },
− IK = { [[u]] | u ∈ L(G) }.
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[L(G′) ⊆ L(G)] One can show by induction on derivation that v ∈ L(G′, [[u]])
implies u‡ �v ⊆ L(G). This implies u‡ �L(G′, [[u]]) ⊆ L(G). Applying this claim
to the initial symbols [[u]] of G′, we obtain that L(G′, [[u]]) ⊆ L(G).

[L(G) ⊆ L(G′)] For every u ∈ SX of every initial symbol X of G, the fact
u ∈ L(G) implies [[u]] ∈ IK . It is enough to show that if v ∈ L(G,X) then v ∈
L(G′, [[u]]) for some u ∈ SX such that u‡ ⊆ v‡. For X an initial symbol of G, This
holds true for v ∈ Σλ with u = v by construction. Suppose v = v1v2 ∈ L(G,X),
vi ∈ L(G,Yi) for i = 1, 2 and X ← Y Z ∈ P . We have [[ui]] ∈ VK such that vi ∈
L(G′, [[ui]]) and u‡

i ⊆ v‡
i for i = 1, 2. Since u1u2 ∈ L(G,Y1Y2) ⊆ L(G,X), one can

find u ∈ SX be such that u‡ ⊆ (u1u2)‡. Then G′ has the the rule [[u]] ← [[u1]][[u2]]
and v ∈ L(G′, [[u]]). The fact v†

i ⊆ u†
i implies v† = (v1v2)† ⊆ (u1u2)† ⊆ u†.

[fkp] In the proof for L(G′) ⊆ L(G), we have already seen that u‡ �
L(G′, [[u]]) ⊆ L(G), which means L(G′, [[u]]) ⊆ u†. The fact u ∈ L(G′, [[u]]) implies
u† ⊆ L(G′, [[u]])†. Hence G′ satisfies Definition 12. ��

The original definition of the ffp by Clark et al. [4] is as follows.3

Definition 20 (Clark et al. [4]). A language L has the ffp if every string u
admits a finite context set (called a fiducial set) F such that for any v ∈ Σ∗,
u(F ) ⊆ v(F ) iff u‡ ⊆ v‡.

Proposition 21. Definitions 13 and 20 are equivalent.

Proof. If F is a fiducial set of u ∈ Σ∗, then u(F ) is satisfies Definition 13, since

u† = { v | u‡ ⊆ v‡ } = { v | u(F ) ⊆ v(F ) } = (u(F ))† .

On the other hand, if C satisfies Definition 13 for u, it is a fiducial set, since for
any v,

C = u(C) ⊆ v(C) ⇐⇒ C � v ⊆ L ⇐⇒ u‡ � v ⊆ L ⇐⇒ u‡ ⊆ v‡ . ��

Acknowledgements. The authors are grateful to the anonymous reviewers for valu-
able comments that have improved the quality of this paper. This work was supported
in part by JSPS Kakenhi.

References

1. Clark, A.: A learnable representation for syntax using residuated lattices. In: de
Groote, P., Egg, M., Kallmeyer, L. (eds.) Formal Grammar. LNCS, vol. 5591, pp.
183–198. Springer, Heidelberg (2011)

2. Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
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Abstract. We introduce the notion of Hypergraph Weighted Model
(HWM) that generically associates a tensor network to a hypergraph and
then computes a value by tensor contractions directed by its hyperedges.
A series r defined on a hypergraph family is said to be recognizable if
there exists a HWM that computes it. This model generalizes the notion
of recognizable series on strings and trees. We present some properties
of the model and study at which conditions finite support series are
recognizable.

1 Introduction

Real-valued functions whose domains are composed of syntactical structures,
such as strings, trees or graphs, are widely used in computer science. One way to
handle them is by means of rational series that use automata devices to jointly
analyze the structure of the input and compute its image. Rational series have
been defined for strings and trees, but their extension to graphs is challenging.

On the other hand, rational series have an equivalent algebraic characteriza-
tion by means of linear (or multi-linear) representations. We show in this paper
that this last formalism can be naturally extended to graphs (and hypergraphs)
by associating tensors to the vertices of the graph.

More precisely, we define the notion of Hypergraph Weighted Model (HWM),
a computational model that generically associates a tensor network to a hyper-
graph and that computes a value by successive generalized tensor contractions
directed by its hyperedges. We say that a series r defined on a hypergraph fam-
ily is HWM-recognizable if there exists a HWM M that computes it: we then
denote r by rM . We first show that HWM-recognizable series defined on strings
or trees exactly recover the classical notion of recognizable series. We present
two closure properties: if r and s are two recognizable series defined on a family
H of connected hypergraphs, then r + s and r · s, respectively defined for all
graphs G ∈ H by (r + s)(G) = r(G) + s(G) and (r · s)(G) = r(G)s(G) (the
Hadamard product), are HWM-recognizable.
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Recognizable series on strings and trees include polynomials, i.e. finite sup-
port series. This is not always the case for recognizable series defined on more
general families of hypergraphs. For example, we show that finite support series
are not recognizable on the family of circular strings. The main reason is that if
a recognizable series is not null on some hypergraph G, it must be also different
from zero on tilings of G, i.e. connected graphs made of copies of G. We show
that if a graph family is tiling-free, then finite support series are recognizable.
Strings and trees, as any family of rooted hypergraphs, are tiling-free.

String rational series and weighted automaton have their roots in automata
theory [9,16] and their study can be found in [4,8,11,14,15]. The extension of
rational series and weighted automaton to trees is presented in [3,8]. Spectral
methods for inference of stochastic languages of strings/trees have been devel-
oped upon the notion of linear representation of a rational series ([2,7] for exam-
ple). Tensor networks emerged in the theory of brain functions [13], they have
been used in quantum theory (see for example [12]), and the interest for these
objects has recently been growing in other fields (e.g. data mining [5]).

We recall notions on tensors and hypergraphs in Section 2, we introduce the
Hypergraph Weighted Model and present some of its properties in section 3, we
introduce the notion of tilings and we study the recognizability of finite support
series in Section 4, we provide some examples in Section 5 and we then propose
a short conclusion.

Most of the proofs have been omitted for brevity but can be found in [1].

2 Preliminaries

2.1 Rational Series on Strings and Trees

We refer to [3,4,6,8,14] for notions about recognizable series on strings and trees,
and we briefly recall below some basic definitions.

Let Σ be a finite alphabet, and Σ∗ be the set of strings on Σ. A series on Σ∗

is a mapping r : Σ∗ → K where K is a semiring. A series r is recognizable if there
exists a tuple 〈V, ι, {Mx}x∈Σ , τ 〉 where V = K

d for some integer d ≥ 1, ι, τ ∈ V
and Mx ∈ K

d×d for each symbol x ∈ Σ , such that for any u1 . . . un ∈ Σ∗,
r(u1 . . . un) = ι�Mu1 . . .Mun

τ . In this paper, we will only consider the case
where K = R or C.

A ranked alphabet F is a tuple (Σ, �) where Σ is a finite alphabet and where
� maps each symbol x of Σ to an integer �x called its arity ; for any k ∈ N, let us
denote Fk = �−1({k}). A ranked alphabet is positive if � takes its values in N+.

The set of trees over a ranked alphabet F is denoted by T (F). A tree series
on T (F) is a mapping r : T (F) → K. A series r is recognizable if there exists
a tuple 〈V, μ,λ〉, where V = K

d for some integer d ≥ 1, μ maps each f ∈ Fp

to a p-multilinear mapping μ(f) ∈ L(V p;V ) for each p ≥ 0 and λ ∈ V , such
that r(t) = λ�μ(t) for all t in T (F), where μ(t) ∈ V is inductively defined by
μ(f(t1, . . . , tp)) = μ(f)(μ(t1), . . . , μ(tp)).
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2.2 Tensors

Let d ≥ 1 be an integer, V = K
d where K = R or C and let (e1, . . . , ed) be the

canonical basis of V . A tensor T ∈ ⊗k
V = V ⊗· · ·⊗V (k times) can uniquely be

expressed as a linear combination T =
∑

i1,...,ik∈[d] Ti1...ik
ei1 ⊗ · · · ⊗ eik

(where

[d] = {1, · · · , d}) of pure tensors ei1 ⊗· · ·⊗eik
which form a basis of

⊗k
V [10].

Hence, the tensor T can be represented as the multi-array (Ti1...ik
).

Definition 1. The tensor product of T ∈ ⊗p
V and U ∈ ⊗q

V is the tensor
T⊗U ∈ ⊗p+q

V defined by (T⊗U)i1···ipj1···jq
= Ti1···ip

Uj1···jq
. For any v ∈ K

d,
let v⊗k = v ⊗ · · · ⊗ v (k times) denote its k-th tensor power.

Let � : V × V → V be an associative and symmetric bilinear mapping:
∀u, v, w ∈ V, u � v = v � u and u � (v � w) = (u � v) � w. The mapping � is
called a product.

Remark 2. Let 1 = (1, . . . , 1)� and let �id be defined by ei �id ej = δijei,
where δ is the Kronecker symbol: �id is called the identity product. The oper-
ation of applying the linear form v 
→ 1�v to the identity product a �id b
of two vectors is related to the notions of generalized trace and contraction:
if A =

∑
i,j∈[d] Ai,jei ⊗ ej is a 2-order tensor over K

d (i.e. a square matrix),
v =

∑
i,j∈[d] Ai,jei �id ej is the diagonal vector of A and 1�v is its trace. Fur-

thermore, if A =
∑

i,j∈[d] Ai,jei ⊗ ej and B =
∑

i,j∈[d] Bi,jei ⊗ ej are 2-order
tensors over K

d, then
∑

i,j,k,l Ai,jBk,lei ⊗ 1�(ej �id ek) ⊗ el is the tensor form
of the matrix product A · B (i.e. the contraction of the tensor A ⊗ B along its
2nd and 3rd modes).

2.3 Hypergraphs

Definition 3. A hypergraph G = (V,E, l) over a positive ranked alphabet (Σ, �)
is given by a non empty finite set V , a mapping l : V → Σ and a partition
E = (hk)1≤k≤nE

of PG = {(v, j) : v ∈ V, 1 ≤ j ≤ �v} where �v = �l(v).

V is the set of vertices, PG is the set of ports and E is the set of hyperedges
of G. The arity of a symbol x is equal to the number of ports of any vertex
labelled by x. We will sometimes use the notation v(i) for the port (v, i) ∈ PG.
A hypergraph G can be represented as a bipartite graph where vertices from
one partite set represent the vertices of G, and vertices from the other represent
its hyperedges (see Figure 4). A hypergraph is connected if for any partition
V = V1 ∪ V2, there exists a hyperedge h ∈ E and ports v

(i)
1 , v

(j)
2 ∈ h s.t. v1 ∈ V1

and v2 ∈ V2. A hypergraph is a graph if |h| ≤ 2 for all h ∈ E, and a hypergraph
is closed if |h| ≥ 2 for all h ∈ E.

Example 4. Over the ranked alphabet {(a, 3), (b, 2)}, let V = {v1, v2, v3}, l(v1) =
l(v3) = a, l(v2) = b, E = {h1, h2, h3, h4} where h1 = {v

(1)
1 , v

(3)
3 }, h2 =

{v
(2)
1 , v

(1)
2 , v

(2)
3 }, h3 = {v

(3)
1 , v

(2)
2 } and h4 = {v

(1)
3 } (see Figure 1).
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a1
1
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b2
1

2

a3

3 2
1

h1 h2

h3

h4

0: ι
1 h0 1:u1

1 2 h1 · · · n :un
1 2 hn

n+1:

τ
1

Fig. 1. (left) The hypergraph G from example 4. (right) Graph associated with a string
u = u1 · · ·un (where i : x means that �(i) = x).

Example 5. A string u = u1 . . . un over an alphabet Σ can be seen as a (hy-
per)graph over the ranked alphabet (Σ ∪ {ι, τ}, �) where �x = 2 for any x ∈ Σ
and �ι = �τ = 1. Let V = {0, · · · , n + 1}, l(0) = ι, l(n + 1) = τ and l(i) = ui

for 1 ≤ i ≤ n. Let E = {h0, h1, . . . , hn} where h0 = {(0, 1), (1, 1)} and hi =
{(i, 2), (i + 1, 1)} for 1 ≤ i ≤ n (see Figure 1). The set of strings Σ∗ gives rise to
a family of hypergraphs.

Example 6. Similarly, we can associate any tree t over a ranked alphabet (Σ, �)
with a graph Gt on the ranked alphabet (Σ ∪ {λ}, �′) where �′(f) = �f + 1 for
any f ∈ Σ, and where the special symbol λ of arity 1 is connected to the free
port of the vertex corresponding to the root of t. The explicit construction of
Gt can be found in [1], and the graph associated with the tree t = f(a, f(a, a))
is shown as an example in Figure 2.

Example 7. Given a finite alphabet Σ, let F = (Σ, �) be the ranked alphabet
where �x = 2 for each x ∈ Σ. We say that a hypergraph G = (V,E) on F is a
circular string if and only if G is connected and every hyperedge h ∈ E is of the
form h = {(v, 2), (w, 1)} for v, w ∈ V (see Figure 2).

Example 8. An other interesting extension of strings (naturally modeled by
graphs) is the set of 2D-words w ∈ ΣM×N on a finite alphabet Σ, see Section 5
(Crosswords) for details.

3 Hypergraph Weighted Models

3.1 Definition

In this section, we give the formal definition of Hypergraph Weighted Models.
We then explain how to compute its value for a given hypergraph.

Definition 9. A Hypergraph Weighted Model (HWM) of dimension d on a
ranked alphabet (Σ, �) is a tuple M = 〈VM , {Tx}x∈Σ ,�,α〉 where VM = K

d,
� is a product on VM , α ∈ VM , and {Tx}x∈Σ is a family of tensors where each
Tx ∈ ⊗�x

VM .
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Fig. 2. (left) Hypergraph Gt associated with the tree t = f(a, f(a, a)). (right) Example
of circular string on the alphabet {a, b}.

Let G = (V,E, l) be a hypergraph and let Γ = [d]PG be the set of mappings
from PG to [d]. The series rM computed by the HWM M is defined by

rM (G) =
∑
γ∈Γ

Tγ

∏
h∈E

α� ⊙
i∈γ(h)

ei

where Tγ =
∏

v∈V Tv
γ(v(1))...γ(v(�v)) (using the notation Tv = Tl(v)).

Let V = {v1, · · · , vn}. The tensor Tv1 ⊗ Tv2 ⊗ · · · ⊗ Tvn is of order |PG|,
and any element γ ∈ Γ can be seen as a multi-index of [d]|PG|. Thus, Tγ is

the
(
γ(v(1)

1 ), · · · , γ(v(�v1)
1 ), · · · , γ(v(1)

n ), · · · , γ(v(�vn)
n )

)
-coordinate of the tensor⊗n

i=1 T
vi . Hence, the computation consists in forming the tensor product defined

over all the vertices and reducing it along the hyperedges.

Example 10. Consider the hypergraph G from Example 4. We have

rM (G) =
∑

i1,··· ,i8

Ta
i1i2i3T

b
i4i5T

a
i6i7i8α

�(ei1 �ei8)α
�(ei2 �ei4 �ei7)α

�(ei3 �ei5)α
�ei6 .

Remark 11. If � = �id and if α = 1, then rM (G) =
∑

γ∈ΓId
Tγ where ΓId =

{γ ∈ Γ : ∀h ∈ E, p, q ∈ h ⇒ γ(p) = γ(q)}.
For the hypergraph G from Example 4, this would lead to the following

contractions of the tensor Ta ⊗Tb ⊗Ta: rM (G) =
∑

i1,i2,i3,i6
Ta

i1i2i3T
b
i2i3T

a
i6i2i1 .

Remark 12. Let Σ be a finite alphabet, let Mσ ∈ K
d×d for σ ∈ Σ and let A =

〈Kd, {Mσ}σ∈Σ ,�id,1〉 be a HWM. For any non empty word w = w1 · · · wn ∈
Σ∗ and its corresponding circular string Gw, it follows from Remark 2 that
rA(Gw) = Tr(Mw1 · · ·Mwn

) (where Tr(M) is the trace of the matrix M).

Remark 13. Let A = 〈Rd, {Ax}x∈Σ ,�,α〉 be a HWM. Each tensor Ax can be
decomposed as a sum of rank one tensors Ax =

∑R
r=1 a

(x,1)
r ⊗· · ·⊗a(x,�x)

r where R
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is the maximum rank of the tensors Tx for x ∈ Σ. The computation of A on G =
(V,E, �) can then be written as r(G) =

∏
h∈E α�

[⊙
(v,i)∈h

(∑R
r=1 a

(�(v),i)
r

)]
.

Remark 14. If G is a hypergraph with two connected components G1 and G2,
we have rM (G) = rM (G1) · rM (G2) for any HWM M .

Definition 15. Let H be a family of hypergraphs on a ranked alphabet (Σ, �).
We say that a hypergraph series r : H → K is (HWM-)recognizable if and only
if there exists a HWM M such that rM (G) = r(G) for all G ∈ H.

3.2 Properties

In this section, we show that HWMs satisfy some basic properties which are
desirable for a model extending the notion of recognizable series to hypergraphs.
The following propositions (whose proofs can be found in [1]) show that the
proposed model naturally generalizes the notion of linear representation of rec-
ognizable series on strings and trees.

Proposition 16. Let r = 〈V, ι, {Mσ}σ∈Σ , τ 〉 be a recognizable series on Σ∗. For
any word w ∈ Σ∗, let Gw be the associated hypergraph on the ranked alphabet
(Σ∪{ι, τ}, �), whose construction is described in Example 5. Consider the HWM
M = 〈V, {Tx}x∈Σ∪{ι,τ},�id,1〉 where Tτ = τ , Tι = ι and Tσ = Mσ for all
σ ∈ Σ. Then, r(w) = rM (Gw) for all strings w ∈ Σ∗.

Proposition 17. Let r = 〈V, μ,λ〉 be a recognizable series on trees on the ranked
alphabet F = (Σ, �). For any tree t over F, let Gt be the associated hypergraph
on the ranked alphabet (Σ ∪ {λ}, �′) (see Example 6).

There exists a HWM M such that rM (Gt) = r(t) for any tree t over F.

The following propositions show that the set of HWMs is closed under addi-
tion and Hadamard product.

Proposition 18. Let A = 〈Km, {Ax}x∈Σ ,�A,α〉, B = 〈Kn, {Bx}x∈Σ ,�B ,β〉
be two HWMs. Let rA (resp. rB) be the series computed by A (resp. by B).

There exists a HWM of dimension m + n computing the series rA+B defined
by rA+B(G) = rA(G) + rB(G), for any connected hypergraph G.

Proposition 19. Let A = 〈Km, {Ax}x∈Σ ,�A,α〉, B = 〈Kn, {Bx}x∈Σ ,�B ,β〉
be two HWMs. Let rA (resp. rB) be the series computed by A (resp. by B).

There exists a HWM of dimension mn computing the series rA·B defined by
rA·B(G) = rA(G)rB(G), for any hypergraph G.

The proofs of these propositions use a construction similar to the one used to
show the closure of recognizable series on strings under addition and Hadamard
product. For the addition, the two HWMs are juxtaposed in the vector space
K

m+n, for the Hadamard product, they are combined in the vector space K
m ⊗

K
n (see [1] for details).

Finally, the next proposition (whose proof can be found in [1]) shows that
any recognizable real valued series on closed graphs can be computed by a HWM
with coefficients in C using the identity product �id and the vector 1.
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Proposition 20. Let A = 〈Rd, {Ax}x∈Σ ,�A,α〉 be a HWM. There exists a
HWM B = 〈Cd, {Bx}x∈Σ ,�id,1〉 such that rB(G) = rA(G) for any closed
graph G.

4 Recognizability of Finite Support Series

In this section, we show that finite support series (or polynomials: series for
which the set of hypergraphs with non-zero value is finite) are not recognizable
in general, but we exhibit a wide class of families of hypergraphs for which they
are.

First, we show on a simple example why polynomials are not recognizable
for all families of hypergraphs. Consider the family of circular strings over a one
letter alphabet Σ = {a} introduced in Example 7 and Remark 12. The following
lemma (whose proof can be found in [1]) implies that the series r, defined by
r(Ga) = 1 and r(Gak) = 0 for all integer k > 1, is not recognizable. Indeed, r
would be such that r(Gak) = Tr(Mk

a) = 0 for all k ≥ 2, but it then follows from
Lemma 21 that r(Ga) = Tr(Ma) = 0.

Lemma 21. Let M ∈ R
n×n. If Tr(Mk) = 0 for all k ≥ 2, then Tr(M) = 0.

This example illustrates the fact that the computation of a HWM on a hyper-
graph G is done independently on each hyperedge of G. This implies that if two
hypergraphs are not distinguishable by just looking at the ports involved in their
hyperedges, the computations of a HWM on these two hypergraphs are strongly
dependent. This is clear if we consider a hypergraph G1 made of two copies
of a hypergraph G2 (i.e. G1 has two connected components, which are both
isomorphic to G2): we have r(G1) = r(G2)2 for any HWM r (see Remark 14).

The following section formally introduces the notion of tiling of a hyper-
graph G and show how this relation between hypergraphs relates to the question
of the recognizability of polynomials.

4.1 Tilings

A tiling of a hypergraph Ĝ is a hypergraph G, built on the same alphabet and
made of copies of Ĝ. More precisely,

Definition 22. Let Ĝ = (V̂ , Ê, l̂) be a hypergraph over a ranked alphabet (Σ, �).
A hypergraph G = (V,E, l) on the same alphabet (Σ, �) is a tiling of Ĝ if and
only if there exists a mapping f : V → V̂ such that

(i) l(v) = l̂(f(v)) for any v ∈ V
(ii) the mapping g : PG → PĜ defined by g(v, i) = (f(v), i) is such that for all

h ∈ E: g(h) ∈ Ê and the restriction g|h of g to h is bijective.

The following proposition shows that for a connected hypergraph, this formal
definition of tiling is equivalent to the intuition of a hypergraph made of copies
of the original one.
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Let G = (V,E, l) be a tiling of the connected hypergraph Ĝ = (V̂ , Ê, l̂), let
∼V be the equivalence relation defined on V by v ∼V v′ iff f(v) = f(v′), and let
∼E be the equivalence relation defined on E by h ∼E h′ iff g(h) = g(h′) where f
and g are the mappings defined above. Clearly, v ∼V v′ entails that l(v) = l(v′)
and it can easily be shown that h ∼E h′ iff ∃v(i) ∈ h, v′(i) ∈ h′ such that v ∼V v′.
We can thus define the quotient hypergraph G = (V/ ∼V , E/ ∼E , l).

Proposition 23. If G = (V,E, l) is a tiling of a connected hypergraph Ĝ =
(V̂ , Ê, l̂), then G = (V/ ∼V , E/ ∼E , l) is isomorphic to Ĝ and moreover, the
cardinal of f−1({v̂}) is the same for every v̂ ∈ V̂ .

Proof. We will prove the last part of the proposition, which entails the surjectivity
of f . This will be enough since if f is surjective, then G is isomorphic to Ĝ.

Let m be the maximal cardinality of the sets f−1({v̂}) and suppose that they
have different cardinalities. Let V1 = {v̂ ∈ V̂ : Card(f−1({v̂})) = m} and V2 =
V̂ \ V1. Since Ĝ is connected, there exists a hyperedge ĥ and v̂

(i)
1 , v̂

(j)
2 ∈ ĥ such

that v̂1 ∈ V1 and v̂2 ∈ V2. Let f−1({v̂1}) = {v1, . . . , vm} and let h1, . . . , hm ∈ E

be the hyperedges containing v
(i)
1 , . . . , v

(i)
m , respectively. Since each g|hi

is injective
and since the vertices v1, . . . , vm are distinct, the hyperedges h1, . . . , hm are also
distinct and therefore disjoint. Let w

(j)
1 = g−1

|h1
(v̂(j)

2 ), . . . , w(j)
m = g−1

|hm
(v̂(j)

2 ). These
ports are distinct and therefore, the vertices w1, . . . , wm are also distinct. Since,
f(w1) = · · · = f(wm) = v̂2, we obtain a contradiction.

a1
1

2

3
b2

1

2

a3

3 2
1

h1 h2

h3

h4

a4
1

2

3
b5

1

2

a6

3 2
1

h5 h6

h7

h8

a7
1

2

3
b8

1

2

a9

3 2
1

h9 h10

h11

h12

Fig. 3. A tiling made of three copies of the hypergraph from Example 4
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4.2 Finite Support Series and Tilings

We end this section with the main result of this paper. We show that we can
construct a HWM which assigns a nonzero value to a specific hypergraph over
some ranked alphabet and all of its tilings, and zero to any other hypergraph
on the same alphabet. This result leads to a sufficient condition on families of
hypergraphs for the recognizability of finite support series.

Theorem 24. Given a hypergraph Ĝ = (V̂ , Ê, l̂) over (Σ, �), there exists a rec-
ognizable series rĜ such that rĜ(G) �= 0 if and only if G is a tiling of Ĝ.

Proof. Let PĜ be the set of ports of Ĝ. For any symbol x ∈ Σ, we note V̂ (x)
the set of vertices in V̂ labeled by x.

Let S = 2PĜ bet the set of subsets of PĜ and let d = |S|. Instead of indexing
the canonical basis of K

d with integers in [d], we will index it with elements of S.
For example, for each port (v̂, i) ∈ PĜ, the singleton {(v̂, i)} is in S, thus e{(v̂,i)}
is a basis vector (which we will note e(v̂,i) for convenience).

Define the HWM M = 〈Kd, {Tx}x∈Σ ,�,α〉 by

Tx =

{
e∅⊗�x if V̂ (x) = ∅∑

v̂∈V̂ (x) e(v̂,1) ⊗ · · · ⊗ e(v̂,�v̂) otherwise

eS � eT =

{
eS∪T if S �= ∅, T �= ∅ and S ∩ T = ∅
e∅ otherwise

αS =

{
1 if S ∈ Ê (note that ∅ �∈ Ê)
0 otherwise

for any x ∈ Σ and S, T ∈ S. Let r be the series computed by M , we claim that
r satisfies the property of the theorem.

For any hypergraph G = (V,E, l) with V = {v1, · · · , vN}, we have r(G) =∑
γ∈ΓTγ

∏
h∈E α�⊙

S∈γ(h)eS where Γ = SPG and Tγ =
∏N

i=1 T
vi

γ(vi,1),··· ,γ(vi,�vi)
.

Let γ ∈ Γ . If there exists a port p ∈ PG s.t. γ(p) = ∅, then
∏

h∈E α� ⊙
S∈γ(h) eS =

0; otherwise, it follows from the definition of the tensors Tx that Tγ is different
from 0 (and furthermore equal to 1) if and only if for all v ∈ V , there exists v̂ ∈
V̂ (l(v)) s.t. γ(v, i) = (v̂, i) for all i ∈ [�v], hence

r(G) =
∑

v̂1∈V̂ (l(v1))

· · ·
∑

v̂N ∈V̂ (l(vN ))

N∏
i=1

Tvi

(v̂i,1)···(v̂i,�v̂i))

∏
h∈E

α� ⊙
(vj ,ij)∈h

e(v̂j ,ij)

We have r(G) �= 0 if and only if there exist N vertices v̂i ∈ V̂ (l(vi)) for
i ∈ [N ] such that (i) α� ⊙

(vj ,ij)∈h e(v̂j ,ij) �= 0 for all h ∈ E. Let f : V → V̂

and g : PG → PĜ be the mappings defined by f(vi) = v̂i and g(vi, j) = (v̂i, j)
for all i ∈ [N ]. It follows from the definitions of α and � that (i) is true if and
only if g(h) ∈ Ê for all h ∈ E, and there are no distinct (vj , ij), (vk, ik) in a
hyperedge h ∈ E such that (v̂j , ij) = (v̂k, ik), i.e. the restriction g|h is injective
for any h ∈ E.
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A family H of hypergraphs is tiling-free if and only if for any G ∈ H, there
are no (non-trivial) tiling of G in H.

Corollary. For any tiling-free family of hypergraphs H, finite support series
on H are recognizable.

Remark 25. A simple example of tiling-free family is the family of rooted hyper-
graphs: hypergraphs on a ranked alphabet (Σ ∪ {λ}, �), where the special root
symbol λ appears exactly once.

5 Examples

In this section, we present some examples of recognizable hypergraph series to
give some insight on the expressiveness of HWMs and on how their computation
relates to the usual notion of recognizable series on strings and trees.

Rooted Circular Strings. First note that the family of circular strings is not
tiling-free: the circular string abab is a tiling of ab. Instead of the construction
described in Example 5, we can map each string w on a finite alphabet Σ to
a rooted circular string. Let w = w1 · · · wn ∈ Σ∗, we will consider the circular
string Gw on the ranked alphabet (Σ ∪{λ}, �) where �x = 2 for any x ∈ Σ ∪{λ},
with vertices V = {0, · · · , n}, labels l(0) = λ and l(i) = wi for i ∈ [n], and edges
{(n, 2), (0, 1)} and {(i, 2), (i + 1, 1)} for i ∈ {0, · · · , n − 1} (see Figure 4).

Let r = 〈Rd, ι, {Mσ}σ∈Σ , τ 〉 be a rational series on Σ∗. We define the HWM
A = 〈Rd, {Ax}x∈Σ ,�id,1〉 where Aσ = Mσ for all σ ∈ Σ and Aλ = τι�. We
have rA(Gw) = Tr(τι�Mw1 · · ·Mwn

) = Tr(ι�Mw1 · · ·Mwn
τ ) = r(w) for all

w ∈ Σ∗.
Now consider m rational series on Σ∗ with d-dimensional linear represen-

tations 〈ιi, {Mσ}σ∈Σ , τ i〉 for i ∈ [m]. The string series r = r1 + · · · + rm is
rational and its dimension can be as high as dm. However, the HWM A =
〈Rd, {Ax}x∈Σ ,�id,1〉 where Aσ = Mσ for all σ ∈ Σ and Aλ =

∑m
i=1 τ iι

�
i is

such that rA(Gw) = r(w) for all w ∈ Σ∗, and is of dimension d.

Recognizing anbn. Given an even length string on the alphabet {a, b}, we can
enrich the construction described in Example 5 by associating a vertex of arity
3 to each letter, and adding extra edges connecting letters in the first half of the
string to letters in the second half. Formally, given a word w1 · · · w2n on Σ, we
consider the 3-ary graph representation of w given by the graph G = (V,E, l)
on the ranked alphabet (Σ ∪ {ι, τ}, �) where �ι = �τ = 1, �σ = 3 for all σ ∈ Σ,
V = {0 · · · 2n + 1}, l(0) = ι, l(2n + 1) = τ , l(i) = wi for 1 ≤ i ≤ 2n, and the
set of edges is composed of {(0, 1), (1, 1)}, {(i, 2), (i + 1, 1)} for 1 ≤ i ≤ 2n and
{(i, 3), (n + i, 3)} for 1 ≤ i ≤ n. The 3-ary graph representation of the string
abaa is shown in Figure 4.

Using this construction, it is easy to show that there exists a HWM (on the
family of 3-ary graph representations of even length strings) whose support is
the set of 3-ary graph representations of the language {anbn : n ≥ 1}.
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Crosswords. Let (Σ, �) be a ranked alphabet where all symbols have arity
4. An (M,N)-crossword w on Σ is an array of symbols [wij ]ij ∈ ΣM×N . The
graph Gw = (V,E, l) associated to the crossword w is the graph with vertices
V = [M ] × [N ], l(m,n) = wmn, and edges E = EH ∪ EV , where the ports are
labeled by W,E,N, S, and where

EH =
⋃

m∈[M ],n∈[N−1]

{{(m,n)E , (m,n + 1)W }} ⋃
m∈[M ]

{{(m, 1)W }, {(m,N)E}}
,

EV =
⋃

n∈[N ],m∈[M−1]

{{(m,n)S , (m + 1, n)N}} ⋃
n∈[N ]

{{(1, n)N}, {(M,n)S}}
.

An example of graph associated to a crossword is shown in Figure 4. The
computation of a HWM on a crossword can be independently done on the rows
and columns. Since the computation of a rational string series can be simu-
lated by a HWM, we can construct a HWM that will associate to any cross-
word the product of a rational string series applied to its rows, and another one
applied to its columns (this result can easily be generalized to N -dimensional
words).

Proposition 26. Let

A = 〈Rd1 , {Aσ}σ∈Σ ,α0,α∞〉, B = 〈Rd2 , {Bσ}σ∈Σ ,β0,β∞〉

be two rational string series on Σ∗. There exists a HWM C = 〈Cd1+d2 , {Cσ}σ∈Σ ,
�,γ〉 such that rC(Gw) =

∏
m∈[M ] rA(wm:)

∏
n∈[N ] rB(w:n) for any (M,N)-

crossword w (where wm: denotes the m-th row of w and w:n its n-th column).

0:λ

1 2

1:w1

1

2

2:w2

2 1
· · ·

n:wn

2

1

a

S

N

W

E
c

S

N

W

E

d
S

N

W

E
b

S

N

W

E

a

S

N

W

E

b
S

N

W

E

ι 1 a1 2

3

b
1 2

3

a1 2

3

a1 2

3

τ1

Fig. 4. (left) Rooted circular string, (right) graph associated to the 2D-word aca
dbb

and (bottom) graph associated to the string abaa with extra edges connecting ui

to u2+i
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6 Conclusion

The model we propose naturally generalizes recognizable series on strings and
trees. It satisfies closure properties by sum and Hadamard product. We have
analysed why finite support series on some families of hypergraphs are not rec-
ognizable, and we exhibit a sufficient condition on families of hypergraph for the
recognizability of finite support series.

Since many data over a variety of fields naturally present a graph structure
(images, secondary structure of RNA in bioinformatics, dependency graphs in
NLP, etc.), this computational model offers a broad range of applications.

The next theoretical step will be to study how learning can be achieved within
this framework, i.e. how the tensor components of the model M can be recovered
or estimated from samples of the form (G1, ̂rM (G1)), . . . , (Gn, ̂rM (Gn)). Prelim-
inary results on circular strings indicate that this is a promising direction. Gen-
eral learning algorithms should rely on tensor decomposition techniques, which
generalize the spectral methods used for learning rational series on strings and
trees. We also plan to tackle algorithmic issues and to study how techniques and
methods developed in the field of graphical models, such as message passing,
variational methods, etc., could be adapted to the setting of HWMs.
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Abstract. To check a system, some verification techniques consider a
set of terms I that represents the initial configurations of the system,
and a rewrite system R that represents the system behavior. To check
that no undesirable configuration is reached, they compute an over-
approximation of the set of descendants (successors) issued from I by R,
expressed by a tree language. Their success highly depends on the qual-
ity of the approximation. Some techniques have been presented using
regular tree languages, and more recently using non-regular languages
to get better approximations: using context-free tree languages [16] on
the one hand, using synchronized tree languages [2] on the other hand.
In this paper, we merge these two approaches to get even better approx-
imations: we compute an over-approximation of the descendants, using
synchronized-context-free tree languages expressed by logic programs.
We give several examples for which our procedure computes the descen-
dants in an exact way, whereas the former techniques compute a strict
over-approximation.

Keywords: Term rewriting · Tree languages · Logic programming ·
Reachability

1 Introduction

To check systems like cryptographic protocols or Java programs, some verifica-
tion techniques consider a set of terms I that represents the initial configura-
tions of the system, and a rewrite system R that represents the system behavior
[1,13,14]. To check that no undesirable configuration is reached, they compute
an over-approximation of the set of descendants1 (successors) issued from I by
R, expressed by a tree language. Let R∗(I) denote the set of descendants of I,
and consider a set Bad of undesirable terms. Thus, if a term of Bad is reached
from I, i.e. R∗(I) ∩ Bad �= ∅, it means that the protocol or the program is
flawed. In general, it is not possible to compute R∗(I) exactly. Instead, one com-
putes an over-approximation App of R∗(I) (i.e. App ⊇ R∗(I)), and checks that
App ∩ Bad = ∅, which ensures that the protocol or the program is correct.

However, I, Bad and App have often been considered as regular tree lan-
guages, recognized by finite tree automata. In the general case, R∗(I) is not
1 I.e. terms obtained by applying arbitrarily many rewrite steps on the terms of I.

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 652–663, 2015.
DOI: 10.1007/978-3-319-15579-1 51
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regular, even if I is. Moreover, the expressiveness of regular languages is poor.
Then the over-approximation App may not be precise enough, and we may have
App∩Bad �= ∅ whereas R∗(I)∩Bad = ∅. In other words, the protocol is correct,
but we cannot prove it. Some work has proposed CEGAR-techniques (Counter-
Example Guided Approximation Refinement) to conclude as often as possible
[1,4,6]. However, in some cases, no regular over-approximation works [5].

To overcome this theoretical limit, the idea is to use more expressive lan-
guages to express the over-approximation, i.e. non-regular ones. However, to be
able to check that App ∩ Bad = ∅, we need a class of languages closed under
intersection and whose emptiness is decidable. Actually, if we assume that Bad
is regular, closure under intersection with a regular language is enough. The
class of context-free tree languages has these properties, and an approximation
technique using context-free tree languages has been proposed in [16]. On the
other hand, the class of synchronized tree languages [17] also has these proper-
ties, and an approximation technique using synchronized tree languages has been
proposed in [2]. Both classes include regular languages, but they are incompara-
ble. Context-free tree languages cannot express dependencies between different
branches, except in some cases, whereas synchronized tree languages cannot
express vertical dependencies.

We want to use a more powerful class of languages that can express the two
kinds of dependencies together: the class of synchronized-context-free tree-(tuple)
languages [21,22], which has the same properties as context-free languages and
as synchronized languages, i.e. closure under union, closure under intersection
with a regular language, decidability of membership and emptiness.

In this paper, we propose a procedure that always terminates and that com-
putes an over-approximation of the descendants obtained by a linear rewrite sys-
tem, using synchronized-context-free tree-(tuple) languages expressed by logic
programs. Compared to our previous work [2], we introduce “input arguments”
in predicates, which is a major technical change that highly improves the qual-
ity of the approximation, and that requires new results and new proofs. This
work is a first step towards a verification technique offering more than regular
approximations. Some on-going work is discussed in Section 5 in order to make
this technique be an accepted verification technique.

The paper is organized as follows: classical notations and notions manipulated
throughout the paper are introduced in Section 2. Our main contribution, i.e.
computing approximations, is explained in Section 3. Finally, in Section 4 our
technique is applied to examples, in particular when R∗(I) can be expressed in
an exact way neither by a context-free language, nor by a synchronized language.
For lack of space, all proofs are in [3].

Related Work: The class of tree-tuples whose overlapping coding is recognized
by a tree automaton on the product alphabet [7] (called “regular tree relations”
by some authors), is strictly included in the class of rational tree relations [19].
The latter is equivalent to the class of non-copying2 synchronized languages [20],
which is strictly included in the class of synchronized languages.
2 Clause heads are assumed to be linear.
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Context-free tree languages (i.e. without assuming a particular strategy for
grammar derivations) [23] are equivalent to OI (outside-in strategy) context-
free tree languages, but are incomparable with IO (inside-out strategy) context-
free tree languages [11,12]. The IO class (and not the OI one) is strictly included
in the class of synchronized-context-free tree languages. The latter is equivalent
to the “term languages of hyperedge replacement grammars”, which are equiva-
lent to the tree languages definable by attribute grammars [9,10]. However, we
prefer to use the synchronized-context-free tree languages, which use the well
known formalism of pure logic programming, for its implementation ease.

Much other work computes the descendants in an exact way using regular
tree languages (in particular the recent paper [8]), assuming strong restrictions.

2 Preliminaries

Consider a finite ranked alphabet Σ = {a, b, f, g, h, . . .} and a set of variables
Var = {x, y, z, . . .}. Each symbol f ∈ Σ has a unique arity, denoted by ar(f).
The notions of first-order term, position and substitution are defined as usual.
Given σ and σ′ two substitutions, σ ◦ σ′ denotes the substitution such that for
any variable x, σ◦σ′(x) = σ(σ′(x)). TΣ denotes the set of ground terms (without
variables) over Σ. For a term t, Var(t) is the set of variables of t, Pos(t) is the
set of positions of t. For p ∈ Pos(t), t(p) is the symbol of Σ ∪ Var occurring at
position p in t, and t|p is the subterm of t at position p. The term t is linear if
each variable of t occurs only once in t. The term t[t′]p is obtained from t by
replacing the subterm at position p by t′. PosVar(t) = {p ∈ Pos(t) | t(p) ∈ Var},
PosNonVar(t) = {p ∈ Pos(t) | t(p) �∈ Var}.

A rewrite rule is an oriented pair of terms, written l → r. We always assume
that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a finite
set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The
rewrite relation →R is defined as follows: t →R t′ if there exist a position p ∈
PosNonVar(t), a rule l → r ∈ R, and a substitution θ s.t. t|p = θ(l) and t′ =
t[θ(r)]p. →∗

R denotes the reflexive-transitive closure of →R. t′ is a descendant of
t if t →∗

R t′. If E is a set of ground terms, R∗(E) denotes the set of descendants
of elements of E. The rewrite rule l → r is left (resp. right) linear if l (resp. r)
is linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right)
linear. R is linear if R is both left and right linear.

In the following, we consider the framework of pure logic programming, and
the class of synchronized-context-free tree-tuple3 languages [21,22], which is pre-
sented as an extension of the class of synchronized tree-tuple languages defined
by CS-clauses [17,18]. Given a set Pred of predicate symbols; atoms, goals, bod-
ies and Horn-clauses are defined as usual. Note that both goals and bodies are
sequences of atoms. We will use letters G or B for sequences of atoms, and A
for atoms.
Definition 1. The tuple of terms (t1, . . . , tn) is flat if t1, . . . , tn are variables.
The sequence of atoms B is flat if for each atom P (t1, . . . , tn) of B, (t1, . . . , tn)
3 For simplicity, “tree-tuple” is sometimes omitted.
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is flat. B is linear if each variable occurring in B (possibly at subterm position)
occurs only once in B. Note that the empty sequence of atoms (denoted by ∅) is
flat and linear.

A Horn clause P (t1, . . . , tn) ← B is normalized if ∀i ∈ {1, . . . , n}, ti is a variable
or contains only one occurrence of function-symbol. A program is normalized if
all its clauses are normalized.

Example 2. Let x, y, z be variables. The sequence of atoms P1(x, y), P2(z) is
flat, whereas P1(x, f(y)), P2(z) is not flat. The clause P (x, y) ← Q(x, y) is
normalized (x, y are variables). The clause P (f(x), y) ← Q(x, y) is normalized
whereas P (f(f(x)), y) ← Q(x, y) is not.

Definition 3. A logic program with modes is a logic program such that a mode-
tuple m ∈ {I,O}n is associated to each predicate symbol P (n is the arity of P ).
In other words, each predicate argument has mode I (Input) or O (Output).
To distinguish them, output arguments will be covered by a hat.
Notation: Let P be a predicate symbol. ArIn(P ) is the number of input argu-
ments of P , and ArOut(P ) is the number of output arguments. Let B be a
sequence of atoms (possibly containing only one atom). In(B) is the input
part of B, i.e. the tuple composed of the input arguments of B. ArIn(B) is
the arity of In(B). V arin(B) is the set of variables that appear in In(B).
Out(B), ArOut(B), and V arout(B) are defined in a similar way. We also define
V ar(B) = V arin(B) ∪ V arout(B).

Example 4. Let B = P (t̂1, t̂2, t3), Q(t̂4, t5, t6). Then, Out(B) = (t1, t2, t4) and
In(B) = (t3, t5, t6).

Definition 5. Let B = A1, . . . , An be a sequence of atoms. We say that Aj 
Ak (possibly j = k) if ∃y ∈ V arin(Aj) ∩ V arout(Ak). In other words an input
of Aj depends on an output of Ak. We say that B has a loop if Aj + Aj for
some Aj (�+ is the transitive closure of �).

Example 6. Q(x̂, s(y)), R(ŷ, s(x)) (where x, y are variables) has a loop because
Q(x̂, s(y))  R(ŷ, s(x))  Q(x̂, s(y)).

Definition 7. A Synchronized-Context-Free (S-CF) program Prog is a logic
program with modes, whose clauses H ← B satisfy:

– In(H).Out(B) ( . is the tuple concatenation) is a linear tuple of variables, i.e.
each tuple-component is a variable, and each variable occurs only once,

– and B does not have a loop.

A clause of an S-CF program is called S-CF clause.

Example 8. Prog = {P (x̂, y) ← P (ŝ(x), y)} is not an S-CF program because
In(H).Out(B) = (y, s(x)) is not a tuple of variables. Prog′ = {P ′(ŝ(x), y) ←
P ′(x̂, s(y))} is an S-CF program because In(H).Out(B) = (y, x) is a linear tuple
of variables, and there is no loop in the clause body.
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Definition 9. Let Prog be an S-CF program. Given a predicate symbol P
without input arguments, the tree-(tuple) language generated by P is LProg(P )=
{t∈(TΣ)ArOut(P ) |P (t)∈Mod(Prog)}, where TΣ is the set of ground terms over
the signature Σ and Mod(Prog) is the least Herbrand model of Prog. LProg(P )
is called Synchronized-Context-Free language (S-CF language).

Example 10. Prog={S(ĉ(x, y)) ← P (x̂, ŷ, a, b).
P (f̂(x), ĝ(y), x′, y′) ← P (x̂, ŷ, h(x′), i(y′)). P (x̂, ŷ, x, y) ←} is an S-CF program.
The language generated by S is LProg(S) = {c(fn(hn(a)), gn(in(b))) | n ∈ IN},
which is not synchronized (there are vertical dependencies) nor context-free.

Definition 11. The S-CF clause H ← B is non-copying if the tuple Out(H).
In(B) is linear. A program is non-copying if all its clauses are non-copying.

Example 12. The clause P (d̂(x, x), y) ← Q(x̂, p(y)) is copying whereas P (ĉ(x),
y)←Q(x̂, p(y)) is non-copying.

Remark 13. An S-CF program without input arguments is actually a CS-program
(composed of CS-clauses) [17], which generates a synchronized language4. A non-
copying CS-program such that every predicate symbol has only one argument
generates a regular tree language5. Conversely, every regular tree language can
be generated by a non-copying CS-program.

Definition 14. Given an S-CF program Prog and a sequence of atoms G,

– G derives into G′ by a resolution step if there exists a clause6 H ← B in Prog
and an atom A ∈ G such that A and H are unifiable by the most general unifier
σ (then σ(A) = σ(H)) and G′ = σ(G)[σ(A) ← σ(B)]. It is written G �σ G′.
We consider the transitive closure �+ and the reflexive-transitive closure �∗

of �. If G1 �σ1 G2 and G2 �σ2 G3, we write G1 �∗
σ2◦σ1

G3.
– G rewrites into G′ (possibly in several steps) if G �∗

σ G′ s.t. σ does not
instantiate the variables of G. It is written G →∗

σ G′.

Example 15. Let Prog = {P (x̂1, ĝ(x2)) ← P ′(x̂1, x̂2). P (f̂(x1), x̂2) ← P ′′(x̂1,
x̂2).}, and consider G = P (f(x), y). Thus, P (f(x), y)) �σ1 P ′(f(x), x2) with
σ1 = [x1/f(x), y/g(x2)] and P (f(x), y)) →σ2 P ′′(x, y) with σ2 = [x1/x, x2/y].

In the remainder of the paper, given an S-CF program Prog and two
sequences of atoms G1 and G2, G1 �∗

Prog G2 (resp. G1 →∗
Prog G2) also denotes

that G2 can be derived (resp. rewritten) from G1 using clauses of Prog. Note
that for any atom A, if A → B then A � B. On the other hand, A �σ B implies
σ(A) → B. Consequently, if A is ground, A � B implies A → B.

It is well known that resolution is complete.

Theorem 16. Let A be a ground atom. A ∈ Mod(Prog) iff A �∗
Prog ∅.

4 Initially, synchronized languages were presented using constraint systems (sorts of
grammars) [15], and later using logic programs. CS stands for “Constraint System”.

5 In this case, the S-CF program can easily be transformed into a finite tree automaton.
6 We assume that the clause and G have distinct variables.
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3 Computing Descendants

To make the understanding easier, we first give the completion algorithm in
Definition 17. Given a normalized S-CF program Prog and a linear rewrite sys-
tem R, we propose an algorithm to compute a normalized S-CF program Prog′

such that R∗(Mod(Prog)) ⊆ Mod(Prog′), and consequently R∗(LProg(P )) ⊆
LProg′(P ) for each predicate symbol P . Some notions, as strong coherence, will
be explained later.

Definition 17 (comp). Let arity-limit and predicate-limit be positive integers.
Let R be a linear rewrite system, and Prog be a finite, normalized and non-
copying S-CF program strongly coherent with R. The completion process is
defined by:

Function compR(Prog)
Prog = removeCycles(Prog)
while there exists a non-convergent critical pair H ← B in Prog do

Prog = removeCycles(Prog ∪ normProg(H ← B))
end while
return Prog

Let us explain this algorithm.
The notion of critical pair is at the heart of the technique. Given an S-CF

program Prog, a predicate symbol P and a rewrite rule l → r, a critical pair,
explained in details in Section 3.1, is a way to detect a possible rewriting by
l → r for a term t in a tuple of LProg(P ). A convergent critical pair means
that the rewrite step is already handled i.e. if t →l→r s then s is in a tuple
of LProg(P ). Consequently, the language of a normalized CS-program involving
only convergent critical pairs is closed by rewriting.

To summarize, a non-convergent critical pair gives rise to an S-CF clause.
Adding the resulting S-CF clause to the current S-CF program makes the crit-
ical pair convergent. But, let us emphasize on the main problems arising from
Definition 17, i.e. the computation may not terminate and the resulting S-CF
clause may not be normalized. Concerning the non-termination, there are mainly
two reasons. Given a normalized S-CF program Prog, 1) the number of critical
pairs may be infinite and 2) even if the number of critical pairs is finite, adding
the critical pairs to Prog may create new non-convergent critical pairs, and
so on.

Actually, as in [2], there is a function called removeCycles whose goal is to get
finitely many critical pairs from a given finite S-CF program. For lack of space,
many details on this function are given in [3]. Basically, given an S-CF program
Prog having infinitely many critical pairs, removeCycles(Prog) is another S-CF
program that has finitely many critical pairs, and such that for any predicate
symbol P , LProg(P ) ⊆ LremoveCycles(Prog)(P ). The normalization process pre-
sented in Section 3.2 not only preserves the normalized nature of the computed
S-CF programs but also allows us to control the creation of new non-convergent
critical pairs. Finally, in Section 3.3, our main contribution, i.e. the computation
of an over-approximating S-CF program, is fully described.
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3.1 Critical Pairs

Definition 18. Let Prog be a non-copying S-CF program and l → r be a left-
linear rewrite rule. Let x1, . . . , xn be distinct variables such that {x1, . . . , xn} ∩
V ar(l) = ∅. If there are P and k s.t. the kth argument of P is an output, and
P (x1, . . . , xk−1, l, xk+1, . . . , xn) �+

θ G where7

1. resolution steps are applied only on atoms whose output is not flat,
2. Out(G) is flat and
3. the clause P (t1, . . . , tn) ← B used in the first step of this derivation satisfies
tk is not a variable8

then the clause θ(P (x1, . . . , xk−1, r, xk+1, . . . , xn)) ← G is called critical pair.
Moreover, if θ does not instantiate the variables of In(P (x1, . . . , xk−1, l, xk+1,
. . . , xn)) then the critical pair is said strict.

Example 19. Let Prog be the S-CF program defined by:
Prog = {P (x̂) ← Q(x̂, a). Q(f̂(x), y) ← Q(x̂, g(y)). Q(x̂, x) ← .} and consider
the rewrite system: R = {f(x) → x}. Note that L(P ) = {fn(gn(a)) | n ∈ IN}.

We have Q(f̂(x), y) �Id Q(x̂, g(y)) where Id denotes the substitution that
leaves every variable unchanged. Since Out(Q(x̂, g(y))) is flat, this generates the
strict critical pair Q(x̂, y) ← Q(x̂, g(y)).

Lemma 20. A strict critical pair is an S-CF clause. In addition, if l → r is
right-linear, a strict critical pair is a non-copying S-CF clause.

Definition 21. A critical pair H ← B is said convergent if H →∗
Prog B.

The critical pair of Example 19 is not convergent.
Let us recall that the completion procedure is based on adding the non-

convergent critical pairs into the program. In order to preserve the nature of the
S-CF program, the computed non-convergent critical pairs are expected to be
strict. So we define a sufficient condition on R and Prog called strong coherence.

Definition 22. Let R be a rewrite system. We consider the smallest set of
consuming symbols, recursively defined by: f ∈ Σ is consuming if there exists a
rewrite rule f(t1, . . . , tn) → r in R s.t. some ti is not a variable, or r contains at
least one consuming symbol.

The S-CF program Prog is strongly coherent with R if 1) for all l → r ∈ R, the
top-symbol of l does not occur in input arguments of Prog and 2) no consuming
symbol occurs in clause-heads having input arguments.

In R = {f(x) → g(x), g(s(x)) → h(x)}, g is consuming and so is f . Thus
Prog={P (f̂(x), x) ← .} is not strongly coherent with R. Note that a CS-program
(no input arguments) is strongly coherent with any rewrite system.
7 Here, we do not use a hat to indicate output arguments because they may occur
anywhere depending on P .

8 In other words, the overlap of l on the clause head P (t1, . . . , tn) is done at a non-
variable position.
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Lemma 23. If Prog is a normalized S-CF program strongly coherent with R,
then every critical pair is strict.

So, we come to our main result that ensures to get the rewriting closure when
every computable critical pair is convergent.

Theorem 24. Let R be a linear rewrite system, and Prog be a non-copying
normalized S-CF program strongly coherent with R. If all strict critical pairs are
convergent, then for every predicate symbol P without input arguments, L(P ) is
closed under rewriting by R, i.e. (t ∈ L(P ) ∧ t →∗

R t′) =⇒ t′ ∈ L(P ).

3.2 Normalizing Critical Pairs – normProg

If a critical pair is not convergent, we add it into Prog, and the critical pair
becomes convergent. However, in the general case, a critical pair is not normal-
ized, whereas all clauses in Prog should be normalized. In the case of CS-clauses
(i.e. without input arguments), a procedure that transforms a non-normalized
clause into normalized ones has been presented [2]. For example, P ( ̂f(g(x)), b̂) ←
Q(x̂) is normalized into {P (f̂(x1), b̂) ← P1(x̂1). P1(ĝ(x1)) ← Q(x̂1).} (P1 is a
new predicate symbol). Since only output arguments should be normalized, this
procedure still works even if there are also input arguments. As new predicate
symbols are introduced, possibly with bigger arities, the procedure may not
terminate. To make it terminate in every case, two positive integers are used:
predicate-limit and arity-limit. If the number of predicate symbols having the
same arity as P1 (including P1) exceeds predicate-limit, an existing predicate
symbol (for example Q) must be used instead of the new predicate P1. This
may enlarge Mod(Prog) in general and may lead to a strict over-approximation.
If the arity of P1 exceeds arity-limit, P1 must be replaced in the clause body
by several predicate symbols9 whose arities are less than or equal to arity-limit.
This may also enlarge Mod(Prog). See [2] for more details.

In other words normProg(H ← B) builds a set of normalized S-CF clauses N
such that Mod(Prog ∪ {H ← B}) ⊆ Mod(Prog ∪ N).

However, when starting from a CS-program (i.e. without input arguments),
it could be interesting to normalize by introducing input arguments, in order to
profit from the bigger expressiveness of S-CF programs, and consequently to get
a better approximation of the set of descendants, or even an exact computation,
like in Examples 26 and 27 presented in Section 4.

3.3 Completion

At the very beginning of Section 3, we have presented in Definition 17 the com-
pletion algorithm i.e. compR. In Sections 3.1 and 3.2, we have described how to
9 For instance, if P1 is binary and arity-limit = 1, then P1(t1, t2) should be replaced by
the sequence of atoms P2(t1), P3(t2). Note that the dependency between t1 and t2 is
lost, which may enlarge Mod(Prog). Symbols P2 and P3 are new if it is compatible
with predicate-limit. Otherwise former predicate symbols should be used instead of
P2 and P3.
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detect non-convergent critical pairs and how to convert them into normalized
clauses using normProg.

Theorem 25 illustrates that our technique leads to a finite S-CF program
whose language over-approximates the descendants obtained by a linear rewrite
system R.

Theorem 25. Function comp always terminates, and all critical pairs are con-
vergent in compR(Prog). Moreover, for each predicate symbol P without input
arguments, R∗(LProg(P )) ⊆ LcompR(Prog)(P ).

4 Examples

In this section, our technique is applied on several examples. I is the initial set
of terms and R is the rewrite system. Initially, we define an S-CF program Prog
that generates I and that satisfies the assumptions of Definition 17. For lack
of space, the examples should be as short as possible. To make the procedure
terminate shortly, we suppose that predicate-limit=1, which means that for all i,
there is at most one predicate symbol having i arguments, except for i = 1 we
allow two predicate symbols having one argument.

When the following example is dealt with synchronized languages, i.e. with
CS-programs [2, Example 42], we get a strict over-approximation of the descen-
dants. Now, thanks to the bigger expressive power of S-CF programs, we compute
the descendants in an exact way.

Example 26. Let I = {f(a, a)} and R = {f(x, y) → u(f(v(x), w(y)))}. Intu-
itively, the exact set of descendants is R∗(I) = {un(f(vn(a), wn(a))) | n ∈ N}
where un means that u occurs n times. We define Prog = {Pf (f̂(x, y)) ←
Pa(x̂), Pa(ŷ)., Pa(â) ← .}. Note that LProg(Pf ) = I. The run of the comple-
tion is given in Fig. 1. The reader can refer to [3] for a detailed explanation. In
Fig. 1, the left-most column reports the detected non-convergent critical pairs
and the right-most column describes how they are normalized. Note that for
the resulting program Prog, i.e. clauses appearing in the right-most column,
LProg(Pf ) = R∗(I) indeed.

The previous example could probably be dealt in an exact way using the
technique of [16] as well, since R∗(I) is a context-free language. It is not the case
for the following example, whose language of descendants R∗(I) is not context-
free (and not synchronized). It can be handled by S-CF programs in an exact
way thanks to their bigger expressive power.

Example 27. Let I = {d1(a, a, a)} and

R =

{
d1(x, y, z) 1→ d1(h(x), i(y), s(z)), d1(x, y, z) 2→ d2(x, y, z)
d2(x, y, s(z)) 3→ d2(f(x), g(y), z), d2(x, y, a) 4→ c(x, y)

}
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Pf (ẑ) ← P1(ẑ, x, y), Pa(x̂), Pa(ŷ).

P1(û(z), x, y) ← P1(ẑ, v(x), w(y)).

P1( ̂f(x, y), x, y) ← .

Pf ( ̂u(f(v(x), w(y)))) ← Pa(x̂), Pa(ŷ).

Pf ( ̂f(x, y)) ← Pa(x̂), Pa(ŷ).

Pa(â) ← .

Starting S-CF program

Detected non-convergent critical pairs New clauses obtained by normProg

∅

Fig. 1. Run of compR on Example 26

R∗(I) is composed of all terms appearing in the following derivation:

d1(a, a, a) 1→n d1(hn(a), in(a), sn(a)) 2→ d2(hn(a), in(a), sn(a))
3→k d2(fk(hn(a)), gk(in(a)), sn−k(a)) 4→ c(fn(hn(a)), gn(in(a))) .

Note that the last rewrite step by rule 4 is possible only when k = n. The run
of the completion on this example is given in Fig. 2. Black arrows means that
the non-convergent critical pair is directly added to Prog since it is already
normalized. The reader can find a full explanation of this example in [3].

Note that the subset of descendants d2(fk(hn(a)), gk(in(a)), sn−k(a)) can
be seen (with p = n − k) as d2(fk(hk+p(a)), gk(ik+p(a )), sp(a)). Let Prog′ be
the S-CF program composed of all the clauses except the blue one occurring
in the right-most column in Fig. 2. Thus, the reader can check by himself that
LProg′(Pd) is exactly R∗(I).

5 Further Work

Computing approximations more precise than regular approximations is a first
step towards a verification technique. However, there are at least two steps before
claiming this technique as a verification technique: 1) automatically handling the
choices done during the normalization process and 2) extending our technique
to any rewrite system. The quality of the approximation is closely related to
those choices. On one hand, it depends on the choice of the predicate symbol
to be reused when predicate-limit is reached. On the other hand, the choice of
generating function-symbols as output or as input is also crucial. According to
the verification context, some automated heuristics will have to be designed in
order to obtain well-customized approximations.

Ongoing work tends to show that the linear restriction concerning the rewrite
system can be tackled. A non right-linear rewrite system makes the computed
S-CF program copying. Consequently, Theorem 24 does not hold anymore. To get
rid of the right-linearity restriction, we are studying the transformation of a copy-
ing S-CF clause into non-copying ones that will generate an over-approximation.
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Pd( ̂d1(x, y, z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ).
Pa(â) ← .

Pd( ̂d1(h(x), i(y), s(z))) ← Pa(x̂), Pa(ŷ), Pa(ẑ)
Pd( ̂d1(x, y, z)) ← P1(x̂, ŷ, ẑ).

P1(ĥ(x), î(y), ŝ(z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ).

Pd( ̂d2(x, y, z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ).

Pd( ̂d1(h(x), i(y), s(z))) ← P1(x̂, ŷ, ẑ) P1(ĥ(x), î(y), ŝ(z)) ← P1(x̂, ŷ, ẑ).

Pd( ̂d2(x, y, z)) ← P1(x̂, ŷ, ẑ).

Pd( ̂c(x, y)) ← Pa(x̂), Pa(ŷ).

Pd( ̂d2(f(h(x)), g(i(y)), z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ)
Pd( ̂d2(x, y, z)) ← P2(x̂, ŷ, ẑ, x

′, y′, z′), Pa(x̂′), Pa(ŷ′), Pa(ẑ′).

P2(f̂(x), ĝ(y), ẑ, x
′, y′, z′) ← P2( x̂, ŷ, ẑ, h(x′), i(y′), z′)

P2(x̂, ŷ, ẑ, x, y, z) ← .

P2(f̂(x), ĝ(y), ẑ, x
′, y′, z′) ← P2(x̂, ŷ, ẑ1, h(x

′), i(y′), z′1),

Pd( ̂d2(f(h(x)), g(i(y)), z)) ← P1(x̂, ŷ, ẑ)
Pd( ̂d2(x, y, z))←P2(x̂, ŷ, ẑ, x

′, y′, z′),

Pd( ̂c(f(x), g(y))) ← P2(x̂, ŷ, ẑ, h(x
′), i(y′), z′),

P3(f̂(x), ĝ(y))←P2(x̂, ŷ, ẑ, h(x
′), i(y′), z′),

Pd( ̂c(x, y)) ← P3(x̂, ŷ).

P2(x̂1, ŷ1, ẑ, h(x
′
1), i(y

′
1), z

′)

A cycle is detected – removeCycles replaces the

blue clause by the red one.

Detected non-convergent critical pairs New clauses obtained by normProg

Starting S-CF program

Pa(x̂′), Pa(ŷ′).

P1(x̂′, ŷ′, ẑ′).

Pa(x̂′), Pa(ŷ′).

Fig. 2. Run of compR on Example 27

On the other hand, to get rid of the left-linearity restriction, we are studying a
technique based on the transformation of any Horn clause into CS-clauses [17].
However, the method of [17] does not always terminate. We want to ensure
termination thanks to an additional over-approximation.
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Abstract. This paper studies properties of the back end of a sorting
network and illustrates the utility of these in the search for networks
of optimal size or depth. All previous works focus on properties of the
front end of networks and on how to apply these to break symmetries in
the search. The new properties help shed understanding on how sorting
networks sort and speed-up solvers for both optimal size and depth by
an order of magnitude.

Keywords: Sorting networks · SAT solving · Symmetry breaking

1 Introduction

In the last year, new results were obtained regarding optimality of sorting net-
works, concerning both the optimal depth of sorting networks on 11 to 16 chan-
nels [2] and the optimal size of sorting networks on 9 and 10 channels [3]. Both
these works apply symmetry-breaking techniques that rely on analyzing the
structure at the front of a sorting network in order to reduce the number of
candidates to test in an exhaustive proof by case analysis.

In this work, we focus on the dual problem: what does the end of a sorting
network look like? To the best of our knowledge, this question has never been
studied in much detail. Batcher [1] characterizes a particular class of networks
that can be completed to a sorting network in a systematic way, but his work
only applies to the search for efficient sorting networks. Parberry [8] establishes
a necessary condition to avoid examining the last two layers of a candidate prefix
in his proof of optimality of the depth 6 sorting network on 9 channels, but its
application requires fixing the previous layers (although it has similarities to the
idea behind our proof of Theorem 11 below).

We show that the comparators in the last layer of a sorting network are of a
very particular form, and that the possibilities for the penultimate layer are also
limited. Furthermore, we show how to control redundancy of a sorting network
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in a very precise way in order to restrict its last two layers to a significantly
smaller number of possibilities, and we study the impact of this construction in
the SAT encodings used in the proofs of optimality described in [2,3].

The analysis, results, and techniques in this paper differ substantially from
the work done on the first layers: that work relies heavily on symmetries of
sorting networks to show that the comparators in those layers may be restricted
to be of a particular form. Our results show that the comparators in the last
layers must have a particular form. When working with the first layers it suffices
to work up to renaming of the channels, as there are very general results on
how to apply permutations to the first layers of any sorting network and obtain
another sorting network of the same depth and size. On the last layer, this is
not true: permuting the ending of a sorting network will not, in general, yield
the ending of another sorting network. We formalize the fact that, as inputs go
through a sorting network, the number of channels between pairs of unsorted
values gets smaller, until, at the last layer, all occurrences of unsorted pairs of
values are on adjacent channels. To the best of our knowledge, this surprising
fact has never been observed before, and it influences the possible positions of
comparators in the last layers. This intuition about the mechanism of sorting
networks is formally expressed by the notion of k-block and Theorem 11, which
is the main contribution of this paper.

2 Preliminaries on Sorting Networks

A comparator network C with n channels and depth d is a sequence C =
L1; . . . ;Ld where each layer Lk is a set of comparators (i, j) for pairs of channels
i < j. At each layer, every channel may occur in at most one comparator. The
depth of C is the number of layers d, and the size of C is the total number of
comparators in its layers. If C1 and C2 are comparator networks, then C1;C2

denotes the comparator network obtained by concatenating the layers of C1 and
C2; if C1 has m layers, it is an m-layer prefix of C1;C2.

An input x̄ ∈ {0, 1}n propagates through C as follows: x̄0 = x̄, and for
0 < k ≤ d, x̄k is the permutation of x̄k−1 obtained as follows: for each comparator
(i, j) ∈ Lk, the values at positions i and j of x̄k−1 are reordered in x̄k so that
the value at position i is not larger than the value at position j. The output of
the network for input x̄ is C(x̄) = x̄d, and outputs(C) =

{
C(x̄) | x̄ ∈ {0, 1}n

}
.

The comparator network C is a sorting network if all elements of outputs(C)
are sorted (in ascending order). The zero-one principle (e.g. [6]) implies that a
sorting network also sorts any other totally ordered set, e.g. integers.

Optimal sorting network problems are about finding the smallest depth and
the smallest size of a sorting network for a given number of channels n. Figure 1
shows a sorting network on 5 channels that has optimal size (9 comparators) and
optimal depth (5 layers). It also shows how the network sorts the input 10101.

In order to determine the minimal depth of an optimal sorting network on
n channels, one needs to consider all possible ways in which such a network
can be built. Parberry [8] shows that the first layer of a depth-optimal sorting
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Fig. 1. An optimal-depth, optimal-size sorting network on 5 channels, operating on
the input 10101. The channels are numbered from top to bottom, with a comparator
(i, j) represented as a vertical line between two channels; each comparator moves its
smallest input to its top channel. The layers are separated by a vertical dashed line.

network on n channels can be assumed to consist of the comparators (2k−1, 2k)
for 1 ≤ k ≤ ⌊

n
2

⌋
. Parberry and later Bundala and Závodný pursued the study

of the possibilities for the second layer and demonstrated the impact of this on
the search for optimal sorting networks.

The following two observations will be be instrumental for proofs in later
sections. We write x̄ ≤ ȳ to denote that every bit of x is less than or equal to
the corresponding bit of y, and x̄ < ȳ for x̄ ≤ ȳ and x �= y.

Lemma 1. Let C be a comparator network and x̄ be a sorted sequence. Then x̄
is unchanged by every comparator in C.

Lemma 2 (Theorem 4.1 in [1]). Let C be a comparator network and x̄, ȳ ∈
{0, 1}n be such that x̄ ≤ ȳ. Then C(x̄) ≤ C(ȳ).

3 The Last Layers of a Sorting Network

In this section we analyze the last two layers of a sorting network and derive some
structural properties that will be useful both for restricting the search space in
proofs of optimality, and as a tool to understand how a sorting network works.

We begin by recalling the notion of redundant comparator (Exercise 5.3.4.51
of [6], credited to R.L. Graham). Let C; (i, j);C ′ be a comparator network. The
comparator (i, j) is redundant if xi ≤ xj for all sequences x1 . . . xn ∈ outputs(C).
If D′ is a comparator network obtained by removing every redundant comparator
from D, then D′ is a sorting network iff D is a sorting network: from the definition
it follows that D(x̄) = D′(x̄) for every input x̄ ∈ {0, 1}n. This result was already
explored in the proof of optimality of the 25-comparator sorting network on
9 channels [3]. We will call a sorting network without redundant comparators
non-redundant. In this section we focus on non-redundant sorting networks.

Lemma 3. Let C be a non-redundant sorting network on n channels. Then all
comparators in the last layer of C are of the form (i, i + 1).



Sorting Networks: The End Game 667

0
0
1

1
0
0

(a)

0
1
1

1
1
0

(b)

Proof. Let C be as in the premise with a comparator c = (i, i+
2) in the last layer. We can assume it is the last comparator.
Since c is not redundant, there is an input x̄ such that channels
i to i + 2 before applying c look like (a) or (b) on the right.

Suppose x̄ is a word yielding case (a), and let ȳ be any
word obtained by replacing one 0 in x̄ by a 1. Since C is a
sorting network, C(ȳ) is sorted, but since x̄ < ȳ the value in
channel i before applying c must be a 1 (Lemma 2), hence ȳ
yields situation (b). Dually, given ȳ yielding (b), we know that
any z̄ obtained by replacing one 1 in ȳ by a 0 will yield (a).

Thus all inputs with the same number of zeroes as x̄ or ȳ must yield either (a)
or (b), in particular sorted inputs, contradicting Lemma 1. The same reasoning
shows that c cannot have the form (i, i + k) with k > 2, thus it has to be of the
form (i, i + 1). ��
Corollary 4. Suppose that C is a sorting network with no redundant compara-
tors that contains a comparator (i, j) at layer d, with j > i + 1. Then at least
one of channels i and j is used in a layer d′ with d′ > d.

Proof. If neither i nor j are used after layer d, then the comparator (i, j) can be
moved to the last layer without changing the function computed by C. By the
previous lemma C can therefore not be a sorting network. ��

Lemma 3 restricts the number of possible comparators in the last layer in a
sorting network on n channels to n−1, instead of n(n−1)/2 in the general case.

Theorem 5. The number of possible last layers in an n-channel sorting network
with no redundancy is Ln = Fn+1 −1, where Fn denotes the Fibonacci sequence.

Proof. Denote by L+
n the number of possible last layers on n channels, where the

last layer is allowed to be empty (so Ln = L+
n −1). There is exactly one possible

last layer on 1 channel, and there are two possible last layers on 2 channels (no
comparators or one comparator), so L+

1 = F2 and L+
2 = F3.

Given a layer on n channels, there are two possibilities. Either the first chan-
nel is unused, and there are L+

n−1 possibilities for the remaining n − 1 channels;
or it is connected to the second channel, and there are L+

n−2 possibilities for the
remaining n − 2 channels. So L+

n = L+
n−1 + L+

n−2, whence L+
n = Fn+1. ��

Even though Ln grows quickly, it grows slower than the number Gn of pos-
sible layers in general [2]; in particular, L17 = 2583, whereas G17 = 211,799,312.

To move (backwards) beyond the last layer, we introduce an auxiliary notion.

Definition 6. et C be a depth d sorting network without redundant comparators,
and let k < d. A k-block of C is a set of channels B such that i, j ∈ B if and
only if there is a sequence of channels i = x0, . . . , x� = j where (xi, xi+1) or
(xi+1, xi) is a comparator in a layer k′ > k of C.
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Note that for each k the set of k-blocks of C is a partition of the set of channels.
Given a comparator network of depth d, we will call its (d−1)-blocks simply

blocks – so Lemma 3 states that a block in a sorting network C is either a
channel unused at the last layer of C or two adjacent channels connected by a
comparator at the last layer of C.

Example 7. Recall the sorting network shown in Figure 1. Its 4-blocks, or simply
blocks, are {1}, {2}, {3, 4} and {5}, its 3-blocks are {1}, {2, 3, 4, 5}, and for k < 3
there is only the trivial k-block {1, 2, 3, 4, 5}.

Lemma 8. Let C be a sorting network of depth d on n channels, and k < d.
For each input x̄ ∈ {0, 1}n, there is at most one k-block that receives a mixture
of 0s and 1s as input.

Proof. From the definition of k-block, there is no way for values to move from
one k-block to another. Therefore, if there is an input for which two distinct
k-blocks receive both 0s and 1s as inputs, the output will not be sorted. ��
Lemma 9. Let C be a depth d sorting network on n channels without redundant
comparators. Then all comparators in layer d − 1 connect adjacent blocks of C.

Proof. The proof is similar to that of Lemma 3, but now considering blocks
instead of channels. Let c be a comparator in layer d − 1 of C that does not
connect adjacent blocks of C. Since c is not redundant, there must be some
input x̄ that provides c with input 1 on its top channel and 0 on its bottom
channel. The situation is depicted below, where A and C are blocks, and B is
the set of channels in between. According to Lemma 8, there are five possible
cases for A, B and C, depending on the number of 0s in x̄.

0

1

C
B
A A all 0 all 0 all 0 all 0 mixed

B all 0 all 0 mixed all 1 all 1
C mixed all 1 all 1 all 1 all 1

(a) (b) (c) (d) (e)

Suppose that x̄ yields (a). By changing the appropriate number of 0s in x̄ to
1s, we can find a word ȳ yielding case (b), since again by monotonicity of C this
cannot bring a 0 to the top input of c. Likewise, we can reduce (e) to (d). But
now we can move between (b), (c) and (d) by changing one bit of the word at
a time. By Lemma 2, this must keep either the top 1 input of c or the lower 0,
while the other input is kept by the fact that C is a sorting network. Again this
proves that this configuration occurs for all words with the same number of 0s,
which is absurd since it cannot happen for the sorted input. ��

Combining this result with Lemma 3 we obtain the explicit configurations
that can occur in a sorting network.

Corollary 10. Let C be a depth d sorting network on n channels without redun-
dant comparators. Then every comparator (i, j) in layer d − 1 of C satisfies
j − i ≤ 3. Furthermore, if j = i + 2, then either (i, i + 1) or (i + 1, i + 2) occurs
in the last layer; and if j = i + 3, then both (i, i + 1) and (i + 2, i + 3) occur in
the last layer.
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Fig. 2. Sorting networks containing a comparator (i, i + 3) in their penultimate layer

The sorting networks in Figure 2 show that the bound j − i ≤ 3 is tight. We
can also state a more general form of Lemma 9, proved exactly in the same way.

Theorem 11. If C is a sorting network on n channels without redundant com-
parators, then every comparator at layer k of C connects adjacent k-blocks of C.

When considering the last n comparators instead of the last k layers, induc-
tion on n using Theorem 11 yields the following result.

Corollary 12. Every k-block with n comparators of a sorting network without
redundant comparators uses at most n + 1 channels.

4 Co-Saturation

The results in the previous sections allow us to reduce the search space of all pos-
sible sorting networks of a given depth simply by identifying necessary conditions
on the comparators those networks may have. However, the successful strategies
in [2,3,8] all focus on finding sufficent conditions on those comparators: identi-
fying a (smaller) set of networks that must contain one sorting network of depth
d (or size k), if such a network exists at all.

We now follow this idea pursuing the idea of saturation in [2]: how many
(redundant) comparators can we safely add to the last layers of a sorting net-
work? We will show how to do this in a way that reduces the number of possi-
bilities for the last two layers to a minimum. Note that we are again capitalizing
on the observation that redundant comparators do not change the function rep-
resented by a comparator network and can, thus, be removed or added at will.

Lemma 13. Let C be a sorting network on n channels. There is a sorting net-
work N of the same depth whose last layer: (i) only contains comparators between
adjacent channels; and (ii) does not contain two adjacent unused channels.

Proof. We first eliminate all redundant comparators from C to obtain a sorting
network S. By Lemma 3 all comparators in the last layer of S are then of the
form (i, i+1). Let j be such that j and j+1 are unused in the last layer of S; since
S is a sorting network, this means that the comparator (j, j + 1) is redundant
and we can add it to the last layer of S. Repeating this process for j = 1, . . . , n
we obtain a sorting network N that satisfies both desired properties. ��
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We say that a sorting network satisfying the conditions of Lemma 13 is in last
layer normal form (llnf).

Theorem 14. The number of possible last layers in llnf on n channels is Kn =
Pn+5, where Pn denotes the Padovan sequence, defined as P0 = 1, P1 = P2 = 0
and Pn+3 = Pn + Pn+1.

Proof. Let K+
n be the number of layers in llnf that begin with the comparator

(1, 2), and K−
n the number of those where channel 1 is free. Then Kn = K+

n +K−
n .

Let n > 3. If a layer in llnf begins with a comparator, then there are Kn−2

possibilities for the remaining channels; if it begins with a free channel, then there
are K+

n−1 possibilities for the remaining channels. Therefore Kn = K+
n + K−

n =
Kn−2 + K+

n−1 = Kn−2 + Kn−3. There exist one last layer on 1 channel (with no
comparator), one on 2 channels (with one comparator between them) and two
on 3 channels (one comparator between either the top two or the bottom two
channels), so K1 = P6, K2 = P7 and K3 = P8. From the recurrence it follows
that Kn = Pn+5. ��

Note that Kn grows much slower than the total number Ln of non-redundant
last layers identified in Theorem 5. For example, K17 = 86 instead of L17 = 2583.

If the last layer is required to be in llnf, we can also study the previous
layer. By Lemma 9, we know that every block can only be connected to the
adjacent ones; again we can add redundant comparators to reduce the number
of possibilities for the last two layers.

Lemma 15. Let C be a sorting network of depth d in llnf. Let i < j be two
channels that are unused in layer d − 1 and that belong to different blocks. Then
adding the comparator (i, j) to layer d − 1 of C still yields a sorting network.

Proof. Suppose there is an input x̄ such that channel i carries a 1 at layer d− 1,
and channel j carries a 0 at that same layer. Since neither channel is used, their
corresponding blocks will receive these values. But then C(x̄) has a 1 in a channel
in the block containing i and a 0 in the block contaning j, and since i < j this
sequence is not sorted by C. Therefore the comparator (i, j) at layer d − 1 of C
is redundant, and can be added to this network. ��
Lemma 16. Let C be a sorting network of depth d in llnf. Suppose that there is
a comparator (i, i + 1) in the last layer of C, that channel i + 2 is used in layer
d − 1 but not in layer d, and that channels i and i + 1 are both unused in layer
d − 1 of C (see Figure 3, left). Then there is a sorting network C ′ of depth d in
llnf such that channels i + 1 and i + 2 are both used in layers d − 1 and d.

Proof. Since channels i and i+1 are unused in layer d−1, comparator (i, i+1) can
be moved to that layer without changing the behaviour of C; then the redundant
comparator (i+1, i+2) can be added to layer d, yielding the sorting network C ′

(Figure 3, left). If i > 1 and channel i− 1 is not used in the last layer of C, then
C ′ must also contain a comparator (i−1, i) in its last layer (Figure 3, right). ��
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−→
−→

Fig. 3. Transformations in the proof of Lemma 16

Lemma 16 can also be applied if channel i − 1 (instead of i + 2) is used at layer
d − 1 and unused in layer d.

Definition 17. A sorting network of depth d is co-saturated if: (i) its last layer
is in llnf, (ii) no two consecutive blocks at layer d−1 have unused channels, and
(iii) if (i, i + 1) is a comparator in layer d and channels i and i + 1 are unused
in layer d − 1, then channels i − 1 and i + 2 (if they exist) are used in layer d.

Theorem 18. If C is a sorting network on n channels with depth d, then there
is a co-saturated sorting network N on n channels with depth d.

Proof. Assume C is given. Apply Theorem 14 to find a sorting network S in llnf,
containing no redundant comparators except possibly in the last layer.

Let B1, . . . , Bk be the (d − 1)-blocks in S. For i = 1, . . . , k − 1, if blocks Bi

and Bi+1 have a free channel, add a comparator between them. (Note that it
may be possible to add two comparators between these blocks, namely if they
both have two channels and none is used in layer d − 1.) Let N be the resulting
network. By Lemma 15, all the comparators added from S to N are redundant,
so N is a sorting network; by construction, N satisfies (ii).

If N does not satisfy (iii), then applying Lemma 16 transforms it into another
sorting network N ′ that does. ��

Table 1 shows the number of possibilities for the last two layers of a co-
saturated sorting network on n channels for n ≤ 17, obtained by a representation
of these suffixes similar to the one described in [4].

In the next sections, we show how we can capitalize on these results to
improve the proofs of optimal depth and optimal size of sorting networks.

5 Implications for Optimal Depth SAT Encodings

In this section, we describe how SAT encodings in the spirit of [2] can profit from
the results in Sections 3 and 4. We detail the boolean variables in the model of the

Table 1. Number of distinct co-saturated two-layer suffixes on n channels, for n ≤ 17

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# 4 4 12 26 44 86 180 376 700 1,440 2,892 5,676 11,488 22,848 45,664
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encoding, and express our contribution in terms of those. The remaining details
of this construction are immaterial to this paper. The encoding represents an
n-channel comparator network of depth d by d × n(n − 1) Boolean variables

Vd
n =

{
c�
i,j | 1 ≤ � ≤ d, 1 ≤ i < j ≤ n

}
where the intention is that c�

i,j is true if and only if the network contains a
comparator between channels i and j at depth �. Further, to facilitate a concise
and efficient encoding of our new results, we introduce an additional set of d · n
Boolean variables capturing which channels are “used” at a given layer

Ud
n =

{
u�

k | 1 ≤ � ≤ d, 1 ≤ k ≤ n
}

where the intention is that u�
k is true if and only if there is some comparator

on channel k at level �. Using these variables, previous work describes how the
search for an n-channel sorting network of depth d is encoded by a formula ϕ0

satisfiable if and only if there is such a network. If ϕ0 is satisfiable, the network
found can be reconstructed from the assignment of the variables Vd

n.

5.1 Encoding Necessary Conditions

The results of Section 3 represent necessary conditions for non-redundant sorting
networks. Thus, we can just add them to the SAT encoding as further restrictions
of the search space without losing solutions. We start by looking at the last layer,
i.e., the layer at depth d, and then continue to consider layer d − 1.

Consider first Lemma 3, which states that non-redundant comparators in the
last layer have to be of the form (i, i + 1). Seen negatively, we can simply forbid
all comparators (i, j) where j > i + 1, that connect non-adjacent channels. This
restriction can be encoded straightforwardly by adding the following (n−1)(n−2)
unit clauses ϕ1 to the SAT encoding:

ϕ1 =
{ ¬cd

i,j | 1 ≤ i, i + 1 < j ≤ n
}

The restriction from Lemma 3 is generalized by Corollary 4, which states
that whenever a comparator at any layer connects two non-adjacent channels,
necessarily one of these channels is used at a later layer. Similarly to ϕ1 we can
encode this by adding one clause for each of the (n − 1)(n − 2)/2 non-adjacent
comparator at any given depth � using ϕ1(�):

ϕ1(�) =

⎧⎨
⎩ c�

i,j →
∨

�<k≤d

uk
i ∨ uk

j | 1 ≤ i, i + 1 < j ≤ n

⎫⎬
⎭

Note that indeed ϕ1(d) = ϕ1, as there is no depth k with � < k ≤ d.
We now move on to consider the penultimate layer d−1. According to Corol-

lary 10, no comparator at this layer can connect two channels more than 3 chan-
nels apart. Similar to Lemma 3, we encode this restriction by adding unit clauses
for each of the (n − 3)(n − 4)/2 comparators more than 3 channels apart:

ϕ2 =
{ ¬cd−1

i,j | 1 ≤ i, i + 3 < j ≤ n
}
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Corollary 10 also states that the existence of a comparator (i, i + 3) on the
penultimate layer implies the existence of the two comparators (i, i + 1) and
(i+2, i+3) on the last layer. This is straightforwardly encoded using additional
2(n − 3) implication clauses:

ϕ3 =
{

cd−1
i,i+3 → cd

i,i+1

) ∧ (
cd−1
i,i+3 → cd

i+2,i+3 | 1 ≤ i ≤ n − 3
}

Finally, Corollary 10 also states that the existence of a comparator (i, i+2) on
the penultimate layer implies the existence of either of the comparators (i, i+1)
or (i + 1, i + 2) on the last layer. This can be encoded using n − 2 clauses:

ϕ4 =
{

cd−1
i,i+2 → cd

i,i+1 ∨ cd
i+1,i+2 | 1 ≤ i ≤ n − 2

}
Empirically, we have found that using ϕ = ϕ0 ∧ϕ1 ∧ϕ2 ∧ϕ3 ∧ϕ4 instead of just
ϕ0 decreases SAT solving times dramatically. In contrast, adding ϕ1(�) for � < d
has not been found to have a positive impact.

5.2 Symmetry Breaking Using Sufficient Conditions

The restrictions encoded so far were necessary conditions for non-redundant
sorting networks. In addition, we can break symmetries by using the sufficient
conditions from Section 4, essentially forcing the SAT solver to add redundant
comparators.

According to Lemma 13 (ii) we can break symmetries by requiring that there
are no adjacent unused channels in the last layer, i.e., that the network is in llnf.

ψ1 =
{

ud
i ∨ ud

i+1 | 1 ≤ i < n
}

Essentially, this forces the SAT solver to add a (redundant) comparator between
any two adjacent unused channels on the last layer.

The next symmetry break is based on a consideration of two adjacent blocks.
There are four possible cases: two adjacent comparators, a comparator followed
by an unused channel, an unused channel followed by a comparator, and two
unused channels. The latter is forbidden by the symmetry break ψ1 (and thus
not regarded further).

The case of two adjacent comparators is handled by formula ψa
2 :

ψa
2 =

{
cd
i,i+1 ∧ cd

i+2,i+3 → (
ud−1

i ∧ ud−1
i+1

) ∨ (
ud−1

i+2 ∧ ud−1
i+3

) | 1 ≤ i ≤ n − 3
}

This condition essentially forces the SAT solver to add a (redundant) comparator
on layer d − 1, if both blocks have an unused channel in that layer.

The same idea of having to add a comparator at layer d − 1 is enforced for
the two remaining cases of a comparator followed by an unused channel or its
dual by ψb

2 and ψc
2, respectively:

ψb
2 =

{
cd
i,i+1 ∧ ¬ud

i+2 → (
ud−1

i ∧ ud−1
i+1

) ∨ ud−1
i+2 | 1 ≤ i ≤ n − 2

}
ψc
2 =

{ ¬ud
i ∧ cd

i+1,i+2 → ud−1
i ∨ (

ud−1
i+1 ∧ ud−1

i+2

) | 1 ≤ i ≤ n − 2
}
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Table 2. SAT solving for n-channel, depth 8 sorting networks with |Rn| 2-layer filters.
The table shows the impact of the restrictions on the last two layers in the size of the
encoding and the solving time (in seconds) for the slowest unsatisfiable instance, as
well as the total time for all |Rn| instances.

unrestricted last layer: ϕ0 restricted last layer: ψ
slowest instance total slowest instance total

n |Rn| #clauses #vars time time #clauses #vars time time

15 262 278312 18217 754.74 130551.42 335823 25209 148.35 19029.26
16 211 453810 27007 1779.14 156883.21 314921 22901 300.07 24604.53

The final symmetry break is based on Lemma 16, i.e., on the idea of moving
a comparator from the last layer to the second last layer. We encode that such
a situation cannot occur, i.e., that whenever we have a comparator on the last
layer d following or followed by an unused channel, one of the channels of the
comparator is used on layer d − 1:

ψa
3 =

{
cd
i,i+1 ∧ ¬ud

i+2 → ud−1
i ∨ ud−1

i+1 | 1 ≤ i ≤ n − 2
}

ψb
3 =

{
cd
i,i+1 ∧ ¬ud

i−1 → ud−1
i ∨ ud−1

i+1 | 2 ≤ i ≤ n − 1
}

Empirically, we found that ψ = ϕ ∧ ψ1 ∧ ψa
2 ∧ ψb

2 ∧ ψc
2 ∧ ψa

3 ∧ ψb
3 further

improves the performance of SAT solvers. In order to show optimality of the
known depth 9 sorting networks on 15 and 16 channels, it is enough to show
that there is no sorting network on those numbers of channels with a depth
of 8. Previous work [4] introduces the notion of complete set of prefixes: a set
Rn such that if there exists a sorting network on n channels with depth d, then
there exists one extending a prefix in Rn. Using this result, it suffices to show
that there are no sorting networks of depth 8 that extend an element of R15

or R16. Table 2 shows the improvement of using ψ instead of ϕ0, detailing for
both cases the number of clauses, the number of variables and the time to solve
the slowest of the |Rn| instances (which are solved in parallel). We also specify
the total solving time (both compilation and SAT-solving) for all |Rn| instances
together. The new encodings are larger per same instance (the slowest instances,
showed in the table, are different), but, as indicated in the table, the total time
required in order to show that the formulas are unsatisfiable is reduced by a
factor of around 6.

6 Conclusion

This paper presents the first systematic exploration of what happens at the end
of a sorting network, as opposed to at the beginning. We present properties of
the last layers of sorting networks. In order to assess the impact of our contribu-
tion, we show how to integrate them into SAT encodings that search for sorting
networks of a given depth [2]. Here, we see an order of magnitude improvement
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in solving times, bringing us closer to being able to solve the next open instance
of the optimal depth problem (17 channels).

While the paper presents detailed results on the end of sorting networks in the
context of proving optimal depth of sorting networks, the necessary properties
of the last layers can also be used to prove optimal size. We experimented on
adding constraints similar to those in Section 5 for the last three comparators, as
well as constraints encoding Corollary 12, to the SAT encoding presented in [3].
Preliminary results based on uniform random sampling of more than 10% of the
cases indicate that we can reduce the total computational time used in the proof
that 25 comparators are optimal for 9 channels from 6.5 years to just over 1.5
years. On the 288-thread cluster originally used for that proof, this corresponds
to reducing the actual execution time from over 8 days to just 2 days.

These results can also be used to improve times for the search for sorting
networks. In a recent paper [7], the authors introduce an incremental approach to
construct sorting networks (iterating between two different SAT problems). They
show that, using the first three layers of a Green filter [5], their approach finds a
sorting network with 17 channels and depth 10, thus improving the previous best
upper bound on the depth of a 17-channel sorting network. Using the same prefix,
together with the constraints on the last two layers described in Section 5, we
can find a depth 10 sorting network in under one hour of computation. Without
these last layer constraints, this procedure times out after 24 hours.
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Abstract. Given two graphs H1 and H2, a graph G is (H1, H2)-free if
it contains no subgraph isomorphic to H1 or H2. We continue a recent
study into the clique-width of (H1, H2)-free graphs and present three
new classes of (H1, H2)-free graphs that have bounded clique-width. We
also show the implications of our results for the computational complex-
ity of the Colouring problem restricted to (H1, H2)-free graphs. The
three new graph classes have in common that one of their two forbidden
induced subgraphs is the diamond (the graph obtained from a clique on
four vertices by deleting one edge). To prove boundedness of their clique-
width we develop a technique based on bounding clique covering number
in combination with reduction to subclasses of perfect graphs.

Keywords: Clique-width · Forbidden induced subgraphs · Graph class

1 Introduction

Clique-width is a well-known graph parameter and its properties are well studied;
see for example the surveys of Gurski [20] and Kamiński, Lozin and Milanič [22].
Computing the clique-width of a given graph is NP-hard, as shown by Fellows,
Rosamond, Rotics and Szeider [18]. Nevertheless, many NP-complete graph prob-
lems are solvable in polynomial time on graph classes of bounded clique-width,
that is, classes in which the clique-width of each of its graphs is at most c for some
constant c. This follows by combining the fact that if a graph G has clique-width
at most c then a so-called (8c − 1)-expression for G can be found in polynomial
time [28] together with a number of results [13,23,30], which show that if a
q-expression is provided for some fixed q then certain classes of problems can
be solved in polynomial time. A well-known example of such a problem is the
Colouring problem, which is that of testing whether the vertices of a graph
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can be coloured with at most k colours such that no two adjacent vertices are
coloured alike. Due to these algorithmic implications, it is natural to research
whether the clique-width of a given graph class is bounded.

It should be noted that having bounded clique-width is a more general prop-
erty than having bounded tree-width, that is, every graph class of bounded
treewidth has bounded clique-width but the reverse is not true [11]. Clique-
width is also closely related to other graph width parameters, e.g. for any class,
having bounded clique-width is equivalent to having bounded rank-width [29]
and also equivalent to having bounded NLC-width [21]. Moreover, clique-width
has been studied in relation to graph operations, such as edge or vertex dele-
tions, edge subdivisions and edge contractions. For instance, a recent result of
Courcelle [12] solved an open problem of Gurski [20] by proving that if G is the
class of graphs of clique-width 3 and G′ is the class of graphs obtained from
graphs in G by applying one or more edge contraction operations then G′ has
unbounded clique-width.

The classes that we consider in this paper consist of graphs that can be
characterized by a family {H1, . . . , Hp} of forbidden induced subgraphs (such
graphs are said to be (H1, . . . , Hp)-free). The clique-width of such graph classes
has been extensively studied in the literature (e.g. [1–9,14,16,19,24–27]). It is
straightforward to verify that the class of H-free graphs has bounded clique-
width if and only if H is an induced subgraph of the 4-vertex path P4 (see
also [17]). Hence, Dabrowski and Paulusma [17] investigated for which pairs
(H1,H2) the class of (H1,H2)-free graphs has bounded clique-width. In this
paper we solve a number of the open cases. The underlying research question is:

What kind of properties of a graph class ensure that its clique-width is bounded?

As such, our paper is to be interpreted as a further step towards this direction.
Rather than coming up with ad hoc techniques for solving specific cases, we
aim to develop more general techniques for attacking a number of the open
cases simultaneously. Our technique in this paper is obtained by generalizing
an approach followed in the literature. In order to illustrate this approach with
some examples, we first need to introduce some notation (see Section 2 for all
other terminology).

Notation. The disjoint union (V (G)∪V (H), E(G)∪E(H)) of two vertex-disjoint
graphs G and H is denoted by G + H and the disjoint union of r copies of a
graph G is denoted by rG. The complement of a graph G, denoted by G, has
vertex set V (G) = V (G) and an edge between two distinct vertices if and only
if these vertices are not adjacent in G. The graphs Cr,Kr and Pr denote the
cycle, complete graph and path on r vertices, respectively. The graph 2P1 + P2 is
called the diamond. The graph K1,3 is the 4-vertex star, also called the claw. For
1 ≤ h ≤ i ≤ j, let Sh,i,j be the subdivided claw whose three edges are subdivided
h − 1, i − 1 and j − 1 times, respectively; note that S1,1,1 = K1,3.

Our Technique. Dabrowski and Paulusma [16] determined all graphs H for
which the class of H-free bipartite graphs has bounded clique-width. Such a clas-
sification turns out to also be useful for proving boundedness of the clique-width
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for other graph classes. For instance, in order to prove that (P1 + P3, P1+S1,1,2)-
free graphs have bounded clique-width, the given graphs were first reduced to
(P1+S1,1,2)-free bipartite graphs [17]. In a similar way, Dabrowski, Lozin, Raman
and Ries [15] proved that (K3,K1,3 + K2)-free graphs and (K3, S1,1,3)-free have
bounded clique-width by reducing to a subclass of bipartite graphs. Note that
bipartite graphs are perfect graphs. This motivated us to develop a technique
based on perfect graphs that are not necessarily bipartite. In order to so, we
need to combine this approach with an additional tool. This tool is based on the
following observation. If the vertex set of a graph can be partitioned into a small
number of cliques and the edges between them are sufficiently sparse, then the
clique-width is bounded (see also Lemma 10). Our technique can be summarized
as follows.

1. Reduce the input graph to a graph that is in some subclass of perfect graphs;
2. While doing so, bound the clique covering number of the input graph.

Another well-known subclass of perfect graphs is the class of chordal graphs. We
show that besides the class of bipartite graphs, the class of chordal graphs and
the class of perfect graphs itself may be used for Step 1. We explain Steps 1-2
of our technique in detail in Section 3.

Our Results. In this paper, we investigate whether our technique can be used
to find new pairs (H1,H2) for which the clique-width of (H1,H2)-free graphs is
bounded. We show that this is indeed the case. By applying our technique, we
are able to present three new classes of (H1,H2)-free graphs of bounded clique-
width.1 Namely, it enables us to prove the following result, which we prove
in Section 4.

Theorem 1. The class of (H1,H2)-free graphs has bounded clique-width if

(i) H1 = 2P1 + P2 and H2 = 3P1 + P2;
(ii) H1 = 2P1 + P2 and H2 = 2P1 + P3;
(iii) H1 = 2P1 + P2 and H2 = P2 + P3.

Structural Consequences. Theorem 1 reduces the number of open cases in
the classification of the boundedness of the clique-width for (H1,H2)-free graphs
to 13 open cases, up to some equivalence relation, see also [17]. Note that the
graph H1 is the diamond in each of the three results in Theorem 1. Out of
the 13 remaining cases, there are still three cases in which H1 is the diamond,
namely when H2 ∈ {P1 +P2 +P3, P1 +2P2, P1 +P5}. However, for each of these
graphs H2, it is not even known whether the clique-width of the corresponding
smaller subclasses of (K3,H2)-free graphs is bounded. Of particular note is the
class of (K3, P1 + 2P2)-free graphs, which is contained in all of the above open

1 We do not specify our upper bounds as this would complicate our proofs for negligible
gain. This is because in our proofs we apply graph operations that exponentially
increase the upper bound of the clique-width, which means that the bounds that
could be obtained from our proofs would be very large and far from being tight.
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cases and for which the boundedness of clique-width is unknown. Settling this
case is a natural next step in completing the classification. Note that for K3-
free graphs the clique covering number is proportional to the size of the graph.
Another natural research direction is to determine whether the clique-width of
(P1 + P4,H2)-free graphs is bounded for H2 = P2 + P3 (the clique-width is
known to be unbounded for H2 ∈ {3P1 + P2, 2P1 + P3}).

Dabrowski, Golovach and Paulusma [14] showed that Colouring restricted
to (sP1 + P2, tP1 + P2)-free graphs is polynomial-time solvable for all pairs of
integers s, t. They justified their algorithm by proving that the clique-width of
the class of (sP1, tP1 + P2)-free graphs is bounded only for small values of s and t,
namely only for s ≤ 2 or t ≤ 1 or s + t ≤ 6. In the light of these two results it
is natural to try to classify the clique-width of the class of (sP1 + P2, tP1 + P2)-
free graphs for all pairs (s, t). Theorem 1, combined with the aforementioned
classification of the clique-width of (sP1, tP1 + P2)-free graphs and the fact that
any class of (H1,H2)-free graphs has bounded clique-width if and only if the
class of (H1,H2)-free graphs has bounded clique-width, immediately enables us
to do this.

Corollary 2. The class of (sP1 + P2, tP1 + P2)-free graphs has bounded clique-
width if and only if s ≤ 1 or t ≤ 1 or s + t ≤ 5.

Algorithmic Consequences. Our research was (partially) motivated by a
study into the computational complexity of the Colouring problem for (H1,
H2)-free graphs. As mentioned, Colouring is polynomial-time solvable on any
graph class of bounded clique-width. Of the three classes for which we prove
boundedness of clique-width in this paper, only the case of (2P1 + P2, 3P1+P2)-
free (and equivalently (2P1 + P2, 3P1 + P2)-free) graphs was previously known
to be polynomial-time solvable [14]. Hence, Theorem 1 gives us four new pairs
(H1,H2) with the property that Colouring is polynomial-time solvable when
restricted to (H1,H2)-free graphs, namely if

• H1 = 2P1 + P2 and H2 ∈ {2P1 + P3, P2 + P3};
• H1 = 2P1 + P2 and H2 ∈ {2P1 + P3, P2 + P3}.

As such, there are still 15 potential classes of (H1,H2)-free graphs left for which
both the complexity of Colouring and the boundedness of their clique-width
is unknown [17].

2 Preliminaries

Below we define some graph terminology used throughout our paper. Let G be a
graph. For u ∈ V (G), the set N(u) = {v ∈ V (G) | uv ∈ E(G)} is the neighbour-
hood of u in G. The degree of a vertex in G is the size of its neighbourhood. The
maximum degree of G is the maximum vertex degree. For a subset S ⊆ V (G),
we let G[S] denote the induced subgraph of G, which has vertex set S and edge
set {uv | u, v ∈ S, uv ∈ E(G)}. If S = {s1, . . . , sr} then, to simplify notation,
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we may also write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. Let H be another
graph. We write H ⊆i G to indicate that H is an induced subgraph of G. Let
X ⊆ V (G). We write G \ X for the graph obtained from G after removing X.
A set M ⊆ E(G) is a matching if no two edges in M share an end-vertex. We
say that two disjoint sets S ⊆ V (G) and T ⊆ V (G) are complete to each other
if every vertex of S is adjacent to every vertex of T . If no vertex of S is joined
to a vertex of T by an edge, then S and T are anti-complete to each other.
Similarly, we say that a vertex u and a set S not containing u may be com-
plete or anti-complete to each other. Let {H1, . . . , Hp} be a set of graphs. Recall
that G is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph
in {H1, . . . , Hp}; if p = 1, we may write H1-free instead of (H1)-free.

The clique-width of a graph G, denoted by cw(G), is the minimum number
of labels needed to construct G by using the following four operations:

(i) creating a new graph consisting of a single vertex v with label i;
(ii) taking the disjoint union of two labelled graphs G1 and G2;
(iii) joining each vertex with label i to each vertex with label j (i �= j);
(iv) renaming label i to j.

A class of graphs G has bounded clique-width if there is a constant c such that
the clique-width of every graph in G is at most c; otherwise the clique-width of G
is unbounded.

Let G be a graph. We say that G is bipartite if its vertex set can be partitioned
into two (possibly empty) independent sets B and W . We say that (B,W ) is a
bipartition of G.

Let G be a graph. We define the following two operations. For an induced
subgraph G′ ⊆i G, the subgraph complementation operation (acting on G with
respect to G′) replaces every edge present in G′ by a non-edge, and vice versa.
Similarly, for two disjoint vertex subsets X and Y in G, the bipartite comple-
mentation operation with respect to X and Y acts on G by replacing every edge
with one end-vertex in X and the other one in Y by a non-edge and vice versa.

We now state some useful facts for dealing with clique-width. We will use
these facts throughout the paper. Let k ≥ 0 be a constant and let γ be some
graph operation. We say that a graph class G′ is (k, γ)-obtained from a graph
class G if the following two conditions hold:

(i) every graph in G′ is obtained from a graph in G by performing γ at most
k times, and

(ii) for every G ∈ G there exists at least one graph in G′ obtained from G by
performing γ at most k times.

We say that γ preserves boundedness of clique-width if for any finite constant k
and any graph class G, any graph class G′ that is (k, γ)-obtained from G has
bounded clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [24].

Fact 2. Subgraph complementation preserves boundedness of clique-width [22].
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Fact 3. Bipartite complementation preserves boundedness of clique-width [22].

The following lemma is well-known and straightforward to check.

Lemma 3. The clique-width of a forest is at most 3.

Let G be a graph. The size of a largest independent set and a largest clique
in G are denoted by α(G) and ω(G), respectively. The chromatic number of G
is denoted by χ(G). We say that G is perfect if χ(H) = ω(H) for every induced
subgraph H of G.

We need the following well-known result, due to Chudnovsky, Robertson,
Seymour and Thomas.

Theorem 4 (The Strong Perfect Graph Theorem [10]). A graph is per-
fect if and only if it is Cr-free and Cr-free for every odd r ≥ 5.

The clique covering number χ(G) of a graph G is the smallest number of (mutu-
ally vertex-disjoint) cliques such that every vertex of G belongs to exactly one
clique. If G is perfect, then G is also perfect (by Theorem 4). By definition, G can
be partitioned into ω(G) = α(G) independent sets. This leads to the following
well-known lemma.

Lemma 5. Let G be any perfect graph. Then χ(G) = α(G).

We say that a graph G is chordal if G contain no induced cycle on four or more
vertices. Bipartite graphs and chordal graphs are perfect (by Theorem 4).

The following three lemmas give us a number of subclasses of perfect graphs
with bounded clique-width. We will make use of these lemmas later on in the
proofs as part of our technique.

Lemma 6 ([16]). Let H be a graph. The class of H-free bipartite graphs has
bounded clique-width if and only if H ⊆i K1,3 + 3P1,K1,3 + P2, P1 + S1,1,3 or
S1,2,3 or H = sP1 for some s ≥ 1.

Lemma 7 ([19]). The class of chordal (2P1 + P2)-free graphs has clique-width
at most 3.

Lemma 8 ([15]). The class of (K3,K1,3 +P2)-free graphs has bounded clique-
width.

Finally, we also need the following lemma, which corresponds to the first lemma
of [14] by complementing the graphs under consideration.

Lemma 9 ([14]). Let s ≥ 0 and t ≥ 0. Then every (sP1 + P2, tP1 + P2)-free
graph is (Ks+1, tP1 + P2)-free or (sP1 + P2, (s2(t − 1) + 2)P1)-free.
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3 The Clique Covering Lemma

In Section 2 we stated several lemmas that can be used to bound the clique-
width if we can manage to reduce to some specific graph class. As we shall see,
such a reduction is not always sufficient and the following lemma forms a crucial
part of our technique (we use it in the proofs of each of our main results). We
omit the proof due to space restrictions.

Lemma 10. Let k ≥ 1 be a constant and let G be a (2P1 + P2, 2P2 + P4)-free
graph. If χ(G) ≤ k then cw(G) ≤ f(k) for some function f that only depends
on k.

It is easy to see that for any fixed constant s ≥ 2 we can generalize Lemma 10
to be valid for (2P1 + P2, 2Ks+P4)-free graphs. By more complicated arguments
it is also possible to generalize it to other graph classes, such as (2P1 + P2,
Ks + P6)-free graphs for any fixed s ≥ 0. However, this is not necessary for the
main results of this paper.

4 The Proof of Theorem 1

Theorem 1 (i). The class of (2P1 + P2, 3P1+P2)-free graphs has bounded clique-
width.

To prove this theorem, suppose G is a (2P1 + P2, 3P1+P2)-free graph. Apply-
ing Lemma 9 we find that G is (K3, 3P1 +P2)-free or (2P1 + P2, 10P1)-free. If G
is (K3, 3P1 + P2)-free then it has bounded clique-width by Lemma 8, so we may
assume it is (2P1 + P2, 10P1, 3P1 + P2)-free. We can then show that the vertex
set of the graph can be partitioned into a bounded number of cliques, so the
clique-width is bounded by Lemma 10. We omit the proof details.

We also omit the proof of our second main result.

Theorem 1 (ii). The class of (2P1 + P2, 2P1 + P3)-free graphs has bounded
clique-width.
We now prove the last of our three main results, namely that the class of
(2P1 + P2, P2 + P3)-free graphs has bounded clique-width. We first establish,
via a series of lemmas, that we may restrict ourselves to graphs in this class
that are also (C4, C5, C6,K5)-free. We omit the proofs for the first two of these
lemmas.

Lemma 11. The class of those (2P1 + P2, P2+P3)-free graphs that contain a K5

has bounded clique-width.

Lemma 12. The class of those (2P1 + P2, P2 +P3,K5)-free graphs that contain
an induced C5 has bounded clique-width.

Lemma 13. The class of those (2P1 + P2, P2+P3,K5, C5)-free graphs that con-
tain an induced C4 has bounded clique-width.
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Proof. Suppose that G is a (2P1 + P2, P2 + P3,K5, C5)-free graph containing
a C4, say on vertices v1, v2, v3, v4 in order. Let Y be the set of vertices adjacent
to v1 and v2 (and possibly other vertices on the cycle). If y1, y2 ∈ Y are non-
adjacent then G[v1, v2, y1, y2] would be a 2P1 + P2. Therefore Y is a clique.
Since G is K5-free, there are at most four such vertices. Therefore by Fact 1 we
may assume that no vertex in G has two consecutive neighbours on the cycle. For
i ∈ {1, 2} let Vi be the set of vertices outside the cycle adjacent to vi+1 and vi+3

(where v5 = v1). For i ∈ {1, 2, 3, 4} let Wi be the set of vertices whose unique
neighbour on the cycle is vi. Let X be the set of vertices with no neighbours on
the cycle.

We first prove the following properties:

(i) Vi are independent sets for i = 1, 2.
(ii) Wi are independent sets for i = 1, 2, 3, 4.
(iii) X is an independent set.
(iv) X is anti-complete to Wi for i = 1, 2, 3, 4.
(v) Without loss of generality W3 = ∅ and W4 = ∅.
(vi) Without loss of generality W1 is anti-complete to W2.

To prove Property (i), if x, y ∈ Vi are adjacent then G[x, y, vi+1, vi+3] is a
2P1 + P2. For i = 1, . . . , 4, the set Wi ∪ X must also be independent, since
if x, y ∈ W1 ∪ X were adjacent then G[x, y, v2, v3, v4] would be a P2 + P3. This
proves Properties (ii)–(iv).

To prove Property (v), suppose that x ∈ W1 and y ∈ W3 are adjacent. In that
case G[v1, v2, v3, y, x] would be a C5. This contradiction means that no vertex
of W1 is adjacent to a vertex of W3. Now suppose that x, x′ ∈ W1 and y ∈ W3.
Then G[y, v3, x, v1, x

′] would be a P2+P3 by Property (ii). Therefore, if both W1

and W3 are non-empty, then they each contain at most one vertex and we can
delete these vertices by Fact 1. Without loss of generality we may therefore
assume that W3 is empty. Similarly, we may assume W4 is empty. Hence we
have shown Property (v).

We are left to prove Property (vi). Suppose that x ∈ W1 is adjacent to
y ∈ W2. Then x cannot have a neighbour in V2. Indeed, suppose for contradiction
that x has a neighbour z ∈ V2. Then G[x, z, y, v1] is a 2P1 + P2 if y and z are
adjacent, and G[x, y, v2, v3, z] is a C5 if y and z are not adjacent. By symmetry, y
cannot have a neighbour in V1. Now y must be complete to V2. Indeed, if y has
a non-neighbour z ∈ V2 then G[x, y, z, v3, v4] is a P2 + P3. By symmetry, x is
complete to V1. Recall that W1∪X is an independent set by Properties (ii)–(iv).
We conclude that any vertex in W1 with a neighbour in W2 is complete to V1

and anti-complete to V2∪X. Similarly, any vertex in W2 with a neighbour in W1

is complete to V2 and anti-complete to V1 ∪ X.
Let W ∗

1 (respectively W ∗
2 ) be the set of vertices in W1 (respectively W2)

that have a neighbour in W2 (respectively W1). Then, by Fact 3, we may apply
two bipartite complementations, one between W ∗

1 and V1 ∪ {v1} and the other
between W ∗

2 and V2∪{v2}. After these operations, G will be split into two disjoint
parts, G[W ∗

1 ∪W ∗
2 ] and G\(W ∗

1 ∪W ∗
2 ), both of which are induced subgraphs of G.

The first of these is a bipartite (P2 + P3)-free graph and therefore has bounded
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clique-width by Lemma 6. We therefore only need to consider the second graph
G\(W ∗

1 ∪W ∗
2 ). In other words, we may assume without loss of generality that W1

is anti-complete to W2. This proves Property (vi).

If a vertex in X has no neighbours in V1 ∪ V2 then it is an isolated vertex by
Property (iv) and the definition of the set X. In this case we may delete it without
affecting the clique-width. Hence, we may assume without loss of generality that
every vertex in X has at least one neighbour in V1∪V2. We partition X into three
sets X0,X1,X2 as follows. Let X1 (respectively X2) denote the set of vertices
in X with at least one neighbour in V1 (respectively V2), but no neighbours in V2

(respectively V1). Let X0 denote the set of vertices in X adjacent to at least one
vertex of V1 and at least one vertex of V2.

Let G∗ = G[V1 ∪V2 ∪W1 ∪W2 ∪X1 ∪X2]. We prove the following additional
properties:

(vii) G∗ is bipartite.
(viii) Without loss of generality X0 �= ∅.
(ix) Every vertex in V1 that has a neighbour in X is complete to V2.
(x) Every vertex in V2 that has a neighbour in X is complete to V1.
(xi) Every vertex in X0 has exactly one neighbour in V1 and exactly one neigh-

bour in V2.
(xii) Without loss of generality, every vertex in V1 ∪ V2 has at most one neigh-

bour in X0.
(xiii) Without loss of generality, V1 is anti-complete to W2.
(xiv) Without loss of generality, V2 is anti-complete to W1.

Property (vii) can be seen has follows. Because G is (P2 + P3, C5)-free, G∗ has
no induced odd cycles of length at least 5. Suppose, for contradiction, that G∗

is not bipartite. Then it must contain an induced C3. Now V1, V2,W1,W2,X1

and X2 are independent sets, so at most one vertex of the C3 can be in any one
of these sets. The set X1 is anti-complete to V2,W1,W2 and X2 (by definition
of V2 and Properties (iii) and (iv)). Hence no vertex of the C3 can be in X1.
Similarly, no vertex of the C3 be be in X2. The sets W1 and W2 are anti-complete
to each other by Property (vi), so the C3 must therefore consist of one vertex
from each of V1 and V2, along with one vertex from either W1 or W2. However,
in this case, these three vertices, along with either v1 or v2, respectively would
induce a 2P1 + P2 in G, which would be a contradiction. Hence we have proven
Property (vii).

We now prove Property (viii). Suppose X0 is empty. Then, since G∗ is
(P2 + P3)-free and bipartite (by Property (vii)), it has bounded clique-width
by Lemma 6. Hence, G has bounded clique-width by Fact 1, since we may delete
v1, v2, v3 and v4 to obtain G∗. This proves Property (viii).

We now prove Property (ix). Let y1 ∈ V1 have a neighbour x ∈ X. Suppose,
for contradiction, that y1 has a non-neighbour y2 ∈ V2. Then G[x, y2, v1, v2, y1] is
a C5 if x is adjacent to y2 and G[x, y1, v1, y2, v3] is a P2 +P3 if x is non-adjacent
to y2, a contradiction. This proves Property (ix). By symmetry, Property (x)
holds.
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We now prove Property (xi). By definition, every vertex in X0 has at least one
neighbour in V1 and at least one neighbour in V2. Suppose, for contradiction, that
a vertex x ∈ X0 has two neighbours y, y′ ∈ V1. By definition, x must also have
a neighbour z ∈ V2. Then z must be adjacent to both y and y′ by Property (x).
However, then G[x, z, y, y′] is a 2P1 + P2 by Property (i), a contradiction.This
proves Property (xi).

We now prove Property (xii). Suppose a vertex y ∈ V1 has two neighbours
x, x′ ∈ X0. If there is another vertex z ∈ X0 then z must have a unique neigh-
bour z′ in V1. If z′ is a different vertex from y then G[z, z′, x, y, x′] would be a
P2 +P3 by Properties (i) and (iii). Thus z′ = y, that is, every vertex in X0 must
be adjacent to y and to no other vertex of V1. By Fact 1, we may delete y. In
the resulting graph no vertex of X would have neighbours in both V1 and V2.
So X0 would become empty, in which case we can argue as in the proof of
Property (viii). This proves Property (xii).

We now prove Property (xiii). First, for i ∈ {1, 2}, suppose that a vertex
y ∈ Vi is adjacent to a vertex x ∈ X. Then y can have at most one non-
neighbour in Wi. Indeed, suppose for contradiction that z, z′ ∈ Wi are non-
neighbours of y. Then G[x, y, z, vi, z

′] is a P2 + P3 by Properties (ii) and (vi), a
contradiction. We claim that at most one vertex of W2 has a neighbour in V1.
Suppose, for contradiction, that W2 contains two vertices w and w′ adjacent to
(not necessarily distinct) vertices z and z′ in V1, respectively. Since X0 �= ∅ by
Property (viii), there must be a vertex y ∈ V2 with a neighbour in X0. As we
just showed that such a vertex y can have at most one non-neighbour in W2,
we may assume without loss of generality that y is adjacent to w. Since y has a
neighbour in X, it must also be adjacent to z by Property (x). Now G[w, z, y, v2]
is a 2P1 + P2, which is a contradiction. Therefore at most one vertex of W2 has
a neighbour in V1 and similarly, at most one vertex of W1 has a neighbour in V2.
By Fact 1, we may delete these vertices if they exist. This proves Properties (xiii)
and (xiv).

For i = 1, 2 let V ′
i be the set of vertices in Vi that have a neighbour in X0. We

show two more properties:

(xv) Every vertex in W1 ∪ X1 is adjacent to either none, precisely one or all
vertices of V ′

1 .
(xvi) Every vertex of W2 ∪ X2 is adjacent to either none, precisely one or all

vertices of V ′
2 .

We prove Property (xv) as follows. Suppose a vertex x ∈ X1∪W1 has at least two
neighbours in z, z′ ∈ V1. We claim that x must be complete to V ′

1 . Suppose, for
contradiction, that x is not adjacent to y ∈ V ′

1 . By definition, y has a neighbour
y′ ∈ X0. Then G[y, y′, z, x, z′] is a P2 + P3 by Properties (i), (iii) and (iv), a
contradiction. This proves Property (xv). Property (xvi) follows by symmetry.

Let W ′
i and X ′

i be the sets of vertices in Wi and Xi respectively that are adjacent
to precisely one vertex of V ′

i . We delete v1, v2, v3 and v4, which we may do
by Fact 1. We do a bipartite complementation between V ′

1 and those vertices
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in W1 ∪ X1 that are complete to V ′
1 . We also do this between V ′

2 and those
vertices in W2 ∪ X2 that are complete to V ′

2 . Finally, we perform a bipartite
complementation between V ′

1 and V2 \ V ′
2 and also between V ′

2 and V1 \ V ′
1 . We

may do all of this by Fact 3. Afterwards, Properties (i)–(vi), (ix), (x), (xiii)–(xvi)
and the definitions of V ′

1 , V ′
2 , W ′

1, W ′
2, X1, X2 imply that there are no edges

between the following two vertex-disjoint graphs:

1. G[W ′
1 ∪ W ′

2 ∪ X ′
1 ∪ X ′

2 ∪ V ′
1 ∪ V ′

2 ∪ X0] and
2. G \ (W ′

1 ∪ W ′
2 ∪ X ′

1 ∪ X ′
2 ∪ V ′

1 ∪ V ′
2 ∪ X0 ∪ {v1, v2, v3, v4})

Both of these graphs are induced subgraphs of G. The second of these graphs does
not contain any vertices of X0. So it is bipartite by Property (vii) and therefore
has bounded clique-width, as argued before (in the proof of Property (viii)).

Now consider the first graph, which is G[W ′
1 ∪ W ′

2 ∪ X ′
1 ∪ X ′

2 ∪ V ′
1 ∪ V ′

2 ∪ X0].
By Fact 3, we may complement the edges between V ′

1 and V ′
2 . This yields a new

graph G′. By definition of V ′
1 , V

′
2 and Properties (ix) and (x), we find that V ′

1 is
anti-complete to V ′

2 in G′. Hence, by definition of V ′
1 , V

′
2 and Properties (i), (iii),

(xi) and (xii), we find that G′[V ′
1 ∪ V ′

2 ∪ X0] is a disjoint union of P3’s. For
i ∈ {1, 2}, every vertex in W ′

i ∪ X ′
i is adjacent to precisely one vertex in V ′

i by
definition. As the last bipartite complementation operation did not affect these
sets, this is still the case in G′. By Properties (ii)–(iv) and (vi), we find that
W ′

1∪W ′
2∪X0∪X ′

1∪X ′
2 is an independent set. Then, by also using Properties (xiii)

and (xiv) together with the definitions of X1 and X2, we find that no vertex in
W ′

i ∪X ′
i has any other neighbour in G′ besides its neighbour in V ′

i . Therefore G′

is a disjoint union of trees and thus has bounded clique-width by Lemma 3.
We conclude that G has bounded clique-width. This completes the proof of
Lemma 13. 	


We omit the proof of the next lemma.

Lemma 14. The class of those (2P1 + P2, P2 + P3,K5, C5, C4)-free graphs that
contain an induced C6 has bounded clique-width.

We now use Lemmas 11–14 and the fact that (2P1 + P2, P2+P3, C4, C5, C6)-free
graphs are chordal graphs, and so have bounded clique-width by Lemma 7, to
obtain:

Theorem 1 (iii). The class of (2P1 + P2, P2 + P3)-free graphs has bounded
clique-width.

References

1. Boliac, R., Lozin, V.V.: On the clique-width of graphs in hereditary classes. In:
Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 44–54. Springer,
Heidelberg (2002)
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8. Brandstädt, A., Mahfud, S.: Maximum weight stable set on graphs without claw
and co-claw (and similar graph classes) can be solved in linear time. Information
Processing Letters 84(5), 251–259 (2002)
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Abstract. Traces are equivalence classes of action sequences which can
be represented by partial orders capturing the causality in the behaviour
of a concurrent system. Generalised traces, on the other hand, are equiv-
alence classes of step sequences. They are represented by order structures
that can describe non-simultaneity and weak causality, phenomena which
cannot be expressed by partial orders alone. In this paper, we provide
a systematic classification of different subclasses of generalised traces in
terms of the order structures representing them. We also show how the
original trace model fits into the overall framework.

Keywords: Trace · Independence · Dependence graph · Partial order ·
Simultaneity · Serialisability · Interleaving · Generalised causal order
structure

1 Introduction

Mazurkiewicz traces [14,15] are a well-established, classical, and basic model for
representing and structuring sequential observations of concurrent behaviour;
see, e.g., [1,10]. The fundamental assumption underlying trace theory is that
independent events (occurrences of actions) may be observed in any order.
Sequences that differ only w.r.t. the ordering of independent events are iden-
tified as belonging to the same concurrent run of the system under considera-
tion. Thus a trace is an equivalence class of sequences comprising all (sequential)
observations of a single concurrent run. The dependencies between the events of
a trace are invariant among (common to) all elements of the trace. They define an
acyclic dependence graph which — through its transitive closure — determines
the underlying causality structure of the trace as a (labelled) partial order [16].
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In fact, this partial order can also be obtained as the intersection of the labelled
total orders corresponding to the sequences forming the trace. Moreover, the
sequences belonging to the trace correspond exactly to the linearisations (satu-
rations) of this partial order. In [17] the necessary connection between the causal
structures (partial orders) and observations (total orders) is provided by show-
ing that each partial order is the intersection of all its linearisations (Szpilrajn’s
property). Consequently, each trace can also be viewed as a labelled partial
order which is unique up to isomorphism; see, e.g., [1,3,10]. Thus, to capture
the essence of equivalence between different observations of the same run of a
concurrent system, Mazurkiewicz traces bring together two mathematical ideas
both based on a notion of independence between actions expressed as a binary
independence relation ind. On the one hand, there are equations ab = ba gener-
ating the equivalence by expressing the commutativity of occurrences of certain
actions as determined by the independence relation. As a result, sequences wabu
and wbau of action occurrences are considered equivalent whenever 〈a, b〉 ∈ ind.
On the other hand, there is the idea of a common partial order structure that
underlies equivalent observations defined by the ordering of the occurrences of
dependent actions. However, being based on equating independence and lack of
ordering, the model of Mazurkiewicz traces with the corresponding partial order
interpretation of concurrency is rather restricted [6].

In [5], a full generalisation of the theory of Mazurkiewicz traces is presented
for the case that actions could occur and may be observed as occurring simul-
taneously. Thus observations consist of sequences of steps, i.e., sets of one or
more actions that occur simultaneously. In order to retain the philosophy under-
lying Mazurkiewicz traces, the extended set-up is based on a few explicit and
simple design choices. Instead of the single independence relation ind, now three
basic relations between pairs of different actions are distinguished: simultaneity
indicating that actions may occur together in a step; serialisability indicating
a possible execution order for potentially simultaneous actions; and interleaving
indicating that actions can not occur simultaneously though no specific ordering
is required. These three relations are used to define fundamental concurrency
alphabets and then applied to identify step sequences as observations of the
same concurrent run. In this more general case, the equations are of the form
A1A2 = B1B2 where the Ai and Bj are steps, and defined in terms of simul-
taneity, serialisability, and interleaving. The resulting equivalence classes of step
sequences are called generalised traces. Actually, in this paper we will work with
the definition of generalised traces provided by generalised concurrency alphabets
also introduced in [5]. These alphabets have only two relations: simultaneity as
before and sequentialisability combining serialisability and interleaving.

It is the main aim of this paper to characterise and discuss generalised traces
in more detail. As demonstrated in [5], the clear semantical meaning of the three
relations — simultaneity, serialisability, interleaving — allows for an intuitive
classification of some natural subclasses of fundamental concurrency alphabets.
A hierarchy of interesting families of generalised traces is presented in [5], includ-
ing new non-trivial classes of traces as well as the original Mazurkiewicz traces,
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comtraces [7,13], and g-comtraces [8]. Comtraces are equivalence classes of step
sequences derived from equations of the form AB = A�B using the two relations
simultaneity and serialisability. Likewise, g-comtraces are equivalence classes of
step sequences derived from equations of the form AB = A � B and AB = BA
— using simultaneity, serialisability as well as interleaving. Actually, as shown
in [11], the equations used in [8] do not model the relevant aspects of concur-
rent behaviours in a fully adequate way. This has been corrected in the general
set-up of [5] with generalised traces and fundamental concurrency alphabet pro-
viding the full generalisation of Mazurkiewicz traces to step sequences. There
a complete picture is presented including extended dependence graphs and a
characterisation of the causal order structures underlying generalised traces as
the most general order structures from [4].

Modelling concurrency with order structures stems from the results of [2,6]
and [12]. The basic idea is that general concurrent causal behaviour is repre-
sented by a pair of relations, instead of just one, as in the standard (partial
order) approach (see, e.g., [16]). Depending on the assumptions for the chosen
model of concurrency, details vary, but basically there are two versions: one in
which the two relations are interpreted as standard causality (dependence or
precedence) and weak causality (not later than), respectively (see, e.g., [2,6,7]);
and an extended, general, version (suggested in [6,11] but eventually defined
in [4]) with the two relations mutual exclusion and weak causality (causality is
now a derived notion). The first version has a relatively well developed theory
and substantial applications (see, e.g., [2,6,7,9]). The second one, however, is
relatively new and as such the starting point for this paper where we identify
the order structures that characterise the subfamilies of generalised traces from
the classification in [5].

The paper is organised as follows. In the next section, we recall the definitions
of generalised concurrency alphabets and the corresponding generalised traces.
We also discuss two ways of partitioning the causal dependencies between actions
which leads to the identification of five interesting subclasses of generalised con-
currency alphabets and the induced generalised traces. After that, we recall the
definition of ordered structures corresponding to the generalised traces. In the
following section, we present the main results of the paper, providing a full char-
acterisation of the relationships between the various subclasses of generalised
traces and the corresponding subclasses of order structures.

2 Generalised Traces

For a binary relation R, the notations R−1, R+ and R∗ are standard. Moreover,
Rsym = R ∪ R−1 is the symmetric closure, R = R+ \ idX = R∗ \ idX is
the irreflexive transitive closure of R; and R� = R∗ ∩ (R∗)−1 is the largest
equivalence relation contained in R∗. R is a partial order relation if it is irreflexive
and transitive, and a total order relation if, in addition, Rsym = (X × X) \ idX .

Throughout the paper, Σ �= ∅ is a finite alphabet of actions, S = 2Σ \ {∅}
is the set of all steps, and S

∗ is the set of step sequences. For every a ∈ Σ
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and u = A1 . . . Ak ∈ S
∗, #u(a) is the number of occurrences of a within u;

occ(u) = {〈a, i〉 | a ∈ Σ ∧ 1 ≤ i ≤ #u(a)} is the set of action occurrences of u;
and the position posu(α) within u of α = 〈a, i〉 ∈ occ(u) is the smallest index
j ≤ k such that the number of occurrences of a within A1 . . . Aj is exactly i.

Let EQ be a finite set of equations of the form u = v, where u and v are
nonempty step sequences. EQ induces a relation ≈ on step sequences comprising
all pairs 〈tuw, tvw〉 such that t, w ∈ S

∗, and u = v or v = u is an equation.
Furthermore, ≡ is the equivalence relation on step sequences defined as ≈∗.

The report [5] presents a full generalisation of the theory of Mazurkiewicz
traces to the case that the smallest unit of observation is a set of actions (a step)
rather than a single action. Thus observation sequences consist of sequences
of steps, i.e., sets of actions that occur simultaneously. In order to extend the
Mazurkiewicz trace approach to this more general situation, [5] proposes gener-
alised concurrency alphabets Θ employing two relations defined for a set of atomic
actions Σ, namely simultaneity sim defining legal steps, and sequentialisation seq
specifying actions which can be swapped, or actions whose simultaneous occur-
rence means that they can also occur one after another. Together sim and seq
define a set of equations and an equivalence relation for step sequences over Σ.

A generalised concurrency alphabet is a triple θ = 〈Σ, sim, seq〉 ∈ Θ, where
Σ is a finite nonempty set, and sim and seq are two irreflexive relations over Σ
such that sim and seq \ sim are symmetric. The sets of steps and step sequences
defined by θ are given by Sθ = {A ⊆ Σ | A �= ∅ ∧ (A × A) \ idΣ ⊆ sim} and
SSEQθ = S

∗
θ; and the induced equations are as follows, where A,B ∈ Sθ:

AB = BA if A × B ⊆ seq ∩ seq−1 (interleaving)
AB = A ∪ B if A × B ⊆ seq ∩ sim (serialisability) (1)

Note that if A,B ∈ Sθ and A × B ⊆ seq ∩ sim then A ∩ B = ∅ and A ∪ B ∈ Sθ,
and so the above equations (1) can never transform a step sequence in S

∗
θ into a

sequence of sets outside S
∗
θ.

Similarly as in the case of Mazurkiewicz traces, the equations (1) induce an
equivalence relation ≡ on the step sequences SSEQθ defined by θ. The equiva-
lence classes TSSEQθ of the relation ≡ are called (generalised) traces, and the
generalised trace containing a step sequence u ∈ SSEQθ is denoted by .

There are six meaningful relationships between pairs of actions which together
form a partition of Σ × Σ: (i) con = seq ∩ seq−1 ∩ sim is concurrency identify-
ing actions which can be executed simultaneously as well as in any order; (ii)
inl = (seq∩ seq−1) \ sim is interleaving allowing a pair of actions to be swapped,
but disallowing simultaneity; (iii) ssi = sim \ (seq∪ seq−1) is strong simultaneity
allowing a pair of actions to be executed simultaneously, but disallowing serialisa-
tion and interleaving; (iv) sse = (seq\seq−1)∩sim is semi-serialisability allowing
a pair of simultaneously executed actions to be executed in the order given, but
not in the reverse order; (v) wdp = (seq−1 \ seq) ∩ sim is weak dependence, the
inverse of semi-serialisability; and (vi) rig = (Σ × Σ) \ (sim ∪ (seq ∩ seq−1)) is
rigid order allowing neither simultaneity nor changing of the order of actions.

The Venn diagram of sim and seq consists of three components: sim \ seq,
seq\ sim, and sim∩ seq. Hence, one can distinguish in a natural way eight classes
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of generalised concurrency alphabets, as shown in the diagram below, where the
subscripts indicate which relations are empty. Out of the seven proper subclasses
of Θ, there is little to be gained from studying Θsim∪seq and Θseq as for these each
trace is a singleton. Hence we will concentrate on the remaining types of gener-
alised concurrency alphabets, viz. Θseq\sim, Θsim, Θsim\seq, Θseq∩sim, and Θsim�seq,
where sim�seq = (sim \ seq) ∪ (seq \ sim).

3 Order Structures for Generalised Traces

The order theoretic treatment of generalised traces is based on relational struc-
tures 〈Δ,�,�, �〉 comprising a finite domain Δ, two binary relations � and �
on Δ, and a domain labelling Δ

�−→ Σ. To represent observational and causal rela-
tionships in the behaviours of concurrent systems we use OS, the order structures
from [4] which are an extension of an idea first proposed in [2,6,12]. Individual
observations (step sequences) are represented by saturated order structures, or
so-structures for short, and causal relationships are represented by invariant
order structures (io-structures). Formal definitions follow below.

An order structure is a relational structure os = 〈Δ,�,�, �〉 with a symmet-
ric and irreflexive mutex relation � and an irreflexive weak causality relation
�. Intuitively, Δ is the set of events that have happened during some execution
of a concurrent system; x � y means that x occurred not simultaneously with
y, and x � y that x occurred not later than y, i.e., before or simultaneously
with y. Hence if x � y and x � y, then x must have occurred before y. We will
therefore refer to the intersection � ∩ � as causality (or precedence), denoting
it by ≺. Note that x � y � x intuitively means that x and y were observed
as simultaneous. It is assumed that os is separable meaning that � ∩ ��= ∅.
Separability excludes situations where events forming a weak causality cycle in
�� are also involved in the mutex relationship. Furthermore, it is assumed that
os is label-linear meaning that � ∩ � is a total order relation when restricted
to the domain elements labelled by the same action. Referring to the set-up of
Mazurkiewicz traces, order structures correspond to (labelled) acyclic relations.

An extension of the order structure os is any order structure 〈Δ,�′,�′, �〉
such that � ⊆ �′ and � ⊆ �′. An so-structure is a relational structure sos =
〈Δ,�,�, �〉 satisfying

x �= y ∧ x �� y ⇐⇒ x � y � x x � y =⇒ x �sym y
x �= y ∧ x � z � y =⇒ x � y x �= y ∧ �(x) = �(y) =⇒ x � y
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One can see that saturated order structures are the only order structures without
proper extensions. Referring to the set-up of Mazurkiewicz traces, so-structures
correspond to total order relations, i.e., the only acyclic relations which cannot
be extended without violating their acyclicity. We denote by satext(os) the set
of all saturated extensions of os ∈ OS.

An io-structure is a relational structure ios = 〈Δ,�,�, �〉 satisfying

x �� x x �= y ∧ x � z � y =⇒ x � y
y � x �= y ⇐= x � y x ≺ z � y ∨ x � z ≺ y =⇒ x � y

x �= y ∧ �(x) = �(y) =⇒ x ≺sym y z � y ∧ z � x � z =⇒ x � y
z � z′ ∧ x � z � y ∧ x � z′ � y =⇒ x � y

Invariant order structures are the only order structures which cannot be extended
without making the set of their saturated extensions smaller (follows from the
results of [5]). Referring to the set-up of Mazurkiewicz traces, io-structures cor-
respond to partial order relations, the only acyclic relations which cannot be
extended without making the set of their total order extensions smaller. Cru-
cially, IOS are exactly those order structures os for which satext(os) �= ∅ and
os =

⋂
satext(os). In other words, io-structures are exactly those order struc-

tures which can be represented by their saturated extensions. This fundamental
property is a counterpart of Szpilrajn’s Theorem [17] which implies that partial
orders are exactly those acyclic relations which can be represented by their total
order extensions.

The order structure closure OS
os2ios−−−→ IOS is given by 〈Δ,�,�, �〉 os2ios�−−−→

〈Δ,�� ◦ � ◦ �� ∪ �� ◦∇sym◦ ��,� , �〉 where ∇ = {〈x, y〉 | ∃z, w : z �
w ∧ x �∗ z �∗ y ∧ x �∗ w �∗ y}. Order structure closure corresponds to the
transitive closure for acyclic relations. It is also the unique mapping OS

f−→ IOS
such that f(ios) = ios, for every ios ∈ IOS, and satext(os) = satext ◦ f(os), for
every os ∈ OS (see [5]). This corresponds to the fact that transitive closure is
the unique mapping from acyclic relations to partial orders which preserves the
total order extensions.

4 Relating Generalised Traces and Order Structures

In this section we will identify the order structures corresponding to the five
subclasses of generalised concurrency alphabets identified in Section 2, but first
we recall from [5] the main results established for the general case.

Let θ = 〈Σ, sim, seq〉 be a generalised concurrency alphabet. An event domain
(for θ) is a set Δ ⊆ Σ × N for which there is a mapping Σ

ε−→ N such that
Δ = {〈a, i〉 | a ∈ Σ ∧ 1 ≤ i ≤ ε(a)}.

An so-structure sos = 〈Δ,�,�, �〉 is consistent with θ if Δ is an event
domain for θ, 〈a, i〉 ��−→ a is the default labelling of Δ, and, for all distinct
〈a, i〉, 〈a, j〉, 〈b, k〉 ∈ Δ, we have: 〈a, i〉 ≺ 〈a, j〉 ⇐⇒ i < j and 〈a, i〉 �� 〈b, k〉 =⇒
〈a, b〉 ∈ sim .

We let SOSθ denote the set of all so-structures consistent with θ. Step
sequences defined by θ correspond to so-structures in SOSθ via the bijection
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SSEQθ
sseq2sos−−−−−→ SOSθ such that sseq2sos(u) = 〈occ(u),�,�, �〉, where, for all

α, β ∈ occ(u) with posu(α) = k and posu(β) = m we have: k �= m =⇒ α �
β and k ≤ m ∧ α �= β =⇒ α � β .

Dependencies between events are captured by the map SSEQθ
sseq2osθ−−−−−→ OS

such that sseq2osθ(u) = 〈occ(u),�,�, �〉, where, for all α, β ∈ occ(u) with
posu(α) = k and posu(β) = m:

α � β if 〈�(α), �(β)〉 ∈ ssi ∪ wdp ∪ rig ∪ inl ∧ k < m
or 〈�(α), �(β)〉 ∈ ssi ∪ sse ∪ rig ∪ inl ∧ k > m

α � β if 〈�(α), �(β)〉 ∈ ssi ∪ sse ∪ wdp ∪ rig ∧ k < m
or 〈�(α), �(β)〉 ∈ ssi ∪ sse ∧ k = m

(2)

We refer to sseq2osθ(u) as the dependence graph of u. Crucially, if u ≡ w, then
sseq2osθ(u) = sseq2osθ(w), and so dependence graphs can be lifted to the level of
generalised traces via sseq2osθ( ) = sseq2osθ(u). Hence there are two kinds of
order structures capturing causal dependencies in the step sequences of SSEQθ

and traces in TSSEQθ, namely dependence graphs and their closures, i.e., OSθ =
sseq2osθ(SSEQθ) and IOSθ = os2ios(OSθ). In what follows, for every Φ ⊆ Θ, we
will denote OSΦ =

⋃
θ∈Φ OSθ and IOSΦ =

⋃
θ∈Φ IOSθ.

Generalised traces in TSSEQθ can be identified with the io-structures in
IOSθ and a suitable correspondence is established by the pair of inverse bijec-

tions TSSEQθ
os2ios ◦ sseq2osθ−−−−−−−−−−→ IOSθ

sseq2sos−1 ◦ satext−−−−−−−−−−−→ TSSEQθ. Moreover, if an
order structure os has injective labelling, then there is a generalised concur-
rency alphabet θ and a step sequence u ∈ SSEQθ such that os is isomorphic to
sseq2osθ(u). Thus generalised concurrency alphabets can generate all the com-
plex patterns involving causal relationships captured by io-structures.

An example system model for which generalised traces and io-structures
provide a suitable semantical treatment are the elementary net systems with
inhibitor and mutex arcs [11].

The restriction to subclasses of generalised concurrency alphabets can lead
to striking simplifications in the order structures involved and the corresponding
order structure closure. Such simplifications enable, e.g., a more efficient treat-
ment of the computational aspects involving generalised traces and their corre-
sponding order structures. In what follows, we will consider the five non-trivial
subclasses of generalised concurrency alphabets, aiming at as simple as possible
descriptions of the order structures capturing the corresponding io-structures.
Order Structures for Θsim. An alphabet μ ∈ Θsim has sim = ∅ and so does not
allow for true step sequences and there are no serialisability equations as in (1).
Moreover, con = ssi = sse = wdp = ∅, seq = seq−1 = inl and rig = (Σ × Σ) \ inl.
As a result, one can simplify the definition of the dependence graph of a step
sequence u ∈ SSEQμ, by replacing (2) with:

α � β if k �= m α � β if 〈�(α), �(β)〉 ∈ rig ∧ k < m .

It is possible to treat μ as a Mazurkiewicz concurrency alphabet 〈Σ, seq〉 with seq
and rig playing the roles of the standard independence and dependence relations,
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respectively. As all step sequences in SSEQμ consist of singleton steps, they
correspond one-to-one to the sequences in Σ∗. Moreover, the saturated order
structures in SOSμ correspond one-to-one to the sequences in Σ∗. Indeed, since
sim = ∅, we have that for every sos = 〈Δ,�,�, �〉 ∈ SOSμ it is the case that
��= idΔ, and so ≺ is a total order relation.

The order structures OSsim reflecting the causal dependencies in the gen-
eralised traces over the alphabets of Θsim are those os ∈ OS for which �=
(Δ × Δ) \ idΔ. The resulting simplified definitions are then as follows. A rela-
tional structure 〈Δ,�,�, �〉 belongs to IOSsim if

x �� x x � z � y =⇒ x � y
x �= y ⇐⇒ x � y x �= y ∧ �(x) = �(y) =⇒ x �sym y

and the simplified order closure OSsim
os2iossim−−−−−→ IOSsim corresponds to the transi-

tive closure of an acyclic relation through os2iossim(os) = 〈Δ,�,�+, �〉.
Theorem 1. IOSΘsim ⊂ OSΘsim ⊂ OSsim ⊂ OS and IOSΘsim ⊂ IOSsim ⊂ IOS ⊂ OS
and IOSsim ⊂ OSsim.

Proposition 2. os2iossim is a surjection with os2iossim = os2ios|OSsim . Moreover,
if os ∈ OSsim has an injective labelling, then there are μ ∈ Θsim and u ∈ SSEQμ

such that os is isomorphic to sseq2osμ(u).

Following Mazurkiewicz [15], the classical example of a system model for
which the generalised concurrency alphabets in Θsim and io-structures IOSsim
provide a suitable semantical treatment are the elementary net systems with
sequential execution semantics.

Order Structures for Θseq\sim. An alphabet σ ∈ Θseq\sim has seq\sim = ∅, and
so seq ⊆ sim, rig = (Σ × Σ) \ sim, and inl = ∅. As a result, one can simplify the
definition of the dependence graph of a step sequence u ∈ SSEQσ, by replacing
(2) with:

α � β if 〈�(α), �(β)〉 ∈ ssi ∪ rig ∪ sse ∧ k < m
or 〈�(α), �(β)〉 ∈ ssi ∪ rig ∪ wdp ∧ k > m

α � β if 〈�(α), �(β)〉 ∈ rig ∪ wdp ∧ k < m
or 〈�(α), �(β)〉 ∈ ssi ∪ sse ∧ k ≤ m

Alphabets in Θseq\sim do not allow true interleaving, and swapping of steps can
be achieved by splitting and combining. In [6], such alphabets are referred to as
comtrace alphabets.

The order structures OSseq\sim needed to reflect causal dependencies in the
generalised traces over the concurrent alphabets of Θseq\sim are all those order
structures os ∈ OS for which x � y =⇒ x �sym y. The resulting simplified
definitions are then as follows. A relational structure 〈Δ,�,�, �〉 belongs to
IOSseq\sim if x �� x and

x �= y ∧ x � z � y =⇒ x � y x �sym y ∧ y � x ⇐= x � y
x ≺ z � y ∨ x � z ≺ y =⇒ x � y x �= y ∧ �(x) = �(y) =⇒ x � y
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and the simplified order closure OSseq\sim
os2iosseq\sim−−−−−−−→ IOSseq\sim is such that

os2iosseq\sim(os) = 〈Δ, (�∗ ◦ ≺ ◦ �∗)sym ,� , �〉.
Theorem 3. IOSΘseq\sim

⊂ OSΘseq\sim
⊂ OSseq\sim ⊂ OS and IOSseq\sim ⊂ OSseq\sim

and IOSΘseq\sim
⊂ IOSseq\sim ⊂ IOS .

Proposition 4. os2iosseq\sim is a surjection with os2iosseq\sim = os2ios|OSseq\sim
.

Moreover, if os ∈ OSseq\sim has an injective labelling � : Δ → Σ, then there are
σ ∈ Θseq\sim and u ∈ SSEQσ such that os is isomorphic to sseq2osσ(u).

A system model for which Θseq\sim and IOSseq\sim provide a suitable seman-
tical treatment are the elementary net systems with inhibitor arcs [7].

Finally, traces generated by the alphabets in Θseq\sim are histories satisfying
the concurrency paradigm π3 of [6] by which actions that can be executed in any
order can also be executed simultaneously (but not necessarily vice versa).

Proposition 5. Let α �= β be two action occurrences of a generalised trace τ
generated by σ ∈ Θseq\sim. If there are u,w ∈ τ with posu(α) < posu(β) and
posw(α) > posw(β) then there is v ∈ τ with posv(α) = posv(β).

Order Structures for Θsim\seq. An alphabet κ ∈ Θsim\seq has sim \ seq = ∅,
and so ssi = sse = wdp = ∅ and rig = (Σ × Σ) \ seq. As a result, one can
simplify the definition of the dependence graph of a step sequence u ∈ SSEQμ,
by replacing (2) with:

α � β if 〈�(α), �(β)〉 /∈ sim α � β if 〈�(α), �(β)〉 /∈ seq ∧ k < m

For the alphabets in Θsim\seq the serialisability equations are rich enough to split
any step in every possible way.

The order structures OSsim\seq are all those os ∈ OS for which x �sym y =⇒
x � y. The resulting simplified definitions are then as follows. A relational
structure 〈Δ,�,�, �〉 belongs to IOSsim\seq if:

x � z � y =⇒ x � y x � y =⇒ y � x �= y
x �sym y =⇒ x � y x �= y ∧ �(x) = �(y) =⇒ x �sym y

and the simplified order closure OSsim\seq
os2iossim\seq−−−−−−−→ IOSsim\seq is such that

os2iossim\seq(os) = 〈Δ,� ∪(�+)sym ,�+, �〉.
Theorem 6. IOSΘsim\seq

⊂ OSΘsim\seq
⊂ OSsim\seq ⊂ OS and IOSsim\seq ⊂ OSsim\seq

and IOSΘsim\seq
⊂ IOSsim\seq ⊂ IOS .

Proposition 7. os2iossim\seq is a surjection with os2iossim\seq = os2ios|OSsim\seq
.

Moreover, if os ∈ OSsim\seq has an injective labelling � : Δ → Σ, then there are
κ ∈ Θsim\seq and u ∈ SSEQκ such that os is isomorphic to sseq2osκ(u).

Finally, traces generated by the alphabets in Θsim\seq are histories satisfying
the concurrency paradigm π2 of [6].

Proposition 8. Let α �= β be action occurrences of a generalised trace τ gen-
erated by κ ∈ Θsim\seq. If there is v ∈ τ with posv(α) = posv(β) then there are
u,w ∈ τ with posu(α) < posu(β) and posw(α) > posw(β).
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Order Structures for Θseq∩sim. An alphabet ν ∈ Θsim∩seq has sim ∩ seq = ∅,
and so we have ssi = sim, sse = wdp = con = ∅, and rig = (Σ × Σ) \ (sim� seq).
As a result, one can simplify the definition of the dependence graph of a step
sequence u ∈ SSEQμ, by replacing (2) with:

α � β if k �= m α � β if 〈�(α), �(β)〉 /∈ seq ∧ k ≤ m ∧ α �= β

For the alphabets in Θsim∩seq steps can be only manipulated through the inter-
leaving equations.

The order structures OSsim∩seq are all those os ∈ OS for which x �= y =⇒
x � y ∨ x � y � x. The resulting simplified definitions are then as follows. A
relational structure 〈Δ,�,�, �〉 belongs to IOSsim∩seq if:

x �= y ∧ x � z � y =⇒ x � y x �� y ∧ x �= y ⇐⇒ x � y � x
x �� x x �= y ∧ �(x) = �(y) =⇒ x ≺sym y

and the simplified order closure OSsim∩seq
os2iossim∩seq−−−−−−−→ IOSsim∩seq is such that

os2iossim∩seq(os) = 〈Δ,�,� , �〉.
Theorem 9. OSΘseq∩sim ⊂ OSseq∩sim ⊂ OS and IOSΘseq∩sim ⊂ IOSseq∩sim ⊂ IOS
and IOSΘseq∩sim ⊂ OSΘseq∩sim and IOSseq∩sim ⊂ OSseq∩sim .

Proposition 10. os2iosseq∩sim is a surjection with os2iosseq∩sim = os2ios|OSseq∩sim .
Moreover, if os ∈ OSseq∩sim has an injective labelling � : Δ → Σ, then there are
ν ∈ Θseq∩sim and u ∈ SSEQν such that os is isomorphic to sseq2osν(u).

Order Structures for Θsim�seq. An alphabet ω ∈ Θsim�seq has sim�seq = ∅,
and so sim = seq = con, ssi = sse = wdp = inl = ∅ and rig = (Σ × Σ) \ con.
As a result, one can simplify the definition of the dependence graph of a step
sequence u ∈ SSEQμ, by replacing (2) with:

α � β if 〈�(α), �(β)〉 ∈ rig α � β if 〈�(α), �(β)〉 ∈ rig ∧ k < m

For the alphabets in Θsim�seq the interleaving equations are not really needed,
and the serialisability equations are rich enough to split and reorder steps in
every possible way. As a result, all steps can be completely sequentialised.

The order structures OSsim�seq are all those os ∈ OS for which x � y ⇐⇒
x �sym y. The resulting simplified definitions are then as follows. A relational
structure 〈Δ,�,�, �〉 belongs to IOSsim�seq if

x �� x x � z � y =⇒ x � y
x � y ⇐⇒ x �sym y x �= y ∧ �(x) = �(y) =⇒ x �sym y

and the simplified order closure OSsim�seq
os2iossim�seq−−−−−−−→ IOSsim�seq is such that

os2iossim�seq(os) = 〈Δ, (�+)sym ,�+, �〉.
Theorem 11. IOSsim�seq ⊂ OSsim�seq and IOSΘsim�seq

⊂ IOSsim�seq ⊂ IOS and
IOSΘsim�seq

⊂ OSΘsim�seq
⊂ OSsim�seq ⊂ OS .
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Proposition 12. os2iosseq�sim is a surjection with os2iosseq�sim=os2ios|OSseq�sim
.

Moreover, if os ∈ OSsim�seq has an injective labelling � : Δ → Σ, then there are
ω ∈ Θsim�seq and u ∈ SSEQω such that os is isomorphic to sseq2osω(u).

It may come as a surprise that although the structures IOSsim�seq are in a
one-to-one correspondence with partial orders, similarly as for IOSsim, the actual
definition of the two classes of order structures is different.

Finally, the generalised traces generated by the alphabets in Θsim�seq are his-
tories satisfying the true concurrency paradigm π8 of [6] and a system model for
which this subclass provides a suitable semantical treatment are the elementary
net systems with step sequence semantics.

Proposition 13. Let α �= β be action occurrences of a generalised trace τ gen-
erated by ω ∈ Θsim�seq. Then there is v ∈ τ with posv(α) = posv(β) if and only
if there are u,w ∈ τ with posu(α) < posu(β) and posw(α) > posw(β).

5 Conclusions

In [5] we introduced and investigated how to extend Mazurkiewicz trace the-
ory to the case of step sequences and we established that the general traces
defined through general concurrency alphabets are indeed the most general in
terms of their underlying order structures. In this paper we have continued our
investigations and identified for the five natural subclasses of generalised traces
their corresponding – simplified – io-order structures. We have also established
connections between some of these subclasses and the concurrency paradigms
of [6].

As observed in [5], there are io-structures that cannot be generated by any
generalised concurrency alphabet. The intuitive reason is that the latter can
only capture static dependencies between actions, whereas in the former dif-
ferent occurrences of the same pair of actions may exhibit different causality
dependencies. In our future work we will aim at a precise characterisation of
the labellings of io-structures which correspond to statically defined causality
relationships between actions, for each subclass of io-structures considered in
this paper.
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Abstract. Picture languages have been intensively investigated by sev-
eral research groups. In this paper, we define weighted two-dimensional
on-line tessellation automata (W2OTA) taking weights from a new
weight structure called picture valuation monoid. The behavior of this
automaton model is a picture series mapping pictures over an alphabet
to a picture valuation monoid. As one of our main results, we prove
a Nivat theorem for W2OTA. It shows that recognizable picture series
can be obtained precisely as projections of particularly simple unambigu-
ously recognizable series restricted to unambiguous recognizable picture
languages. In addition, we introduce a weighted MSO logic which can
model average density of pictures. As the other main result of this paper,
we show that W2OTA and a suitable fragment of our weighted MSO
logics are expressively equivalent.

Keywords: Picture valuation monoids · Weighted two-dimensional
on-line tessellation automata · Picture series · Nivat’s theorem ·
Weighted logic · Average behavior

1 Introduction

The theory of picture languages as a generalization of formal string languages
was motivated by problems arising from image processing and pattern recogni-
tion [19,31], and also plays a role in the theory of cellular automata and other
devices of parallel computing [28,34]. In the nineties, the family of recogniz-
able picture languages was defined and characterized by many different devices
[20,22]. Several research groups obtained a description of recognizable picture
languages in terms of automata, sets of tiles, rational operations, and existential
monadic second-order logic [21,23,24,27]. Bozapalidis and Grammatikopoulou
introduced the interesting model of weighted (quadrapolic) picture automata
whose transitions carry weights taken as elements from a given commutative
semiring [3]. The behavior of such a picture automaton is a picture series
which maps pictures over an arbitrary alphabet to elements of the semiring. In
2006, Fichtner provided a notion of a weighted MSO logic over pictures [16–18].
She proved that for commutative semirings, the class of picture series defined
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by sentences of the weighted logics coincides with those computed by weighted
picture automata [16].

In this paper we define picture valuation monoids as the abstract model for
the weight structures and we introduce weighted two-dimensional on-line tessel-
lation automata (W2OTA) taking weights from picture valuation monoids. By
this, we can model several application examples, e.g., the average light of picture
(interpreting the alphabet as different levels of light) which can not be modelled
with commutative semirings. Weighted automata over words computing objec-
tives like the average cost were introduced recently by Chatterjee, Doyen, and
Henzinger [4–7].

As our first main result, we prove a Nivat-like theorem for recognizable pic-
ture series, i.e., for the behaviors of W2OTA. Nivat’s Theorem is a fundamental
characterization of rational transductions and provides a connection between
rational transductions and rational languages; see [9] for a version of this result
for semiring-weighted automata on words. Recently, Droste and Perevoshchikov
[11] proved a Nivat-like theorem for recognizable quantitative timed languages.
Here, we will derive such a result for recognizable picture series. We show that
recognizable picture series can be obtained precisely as projections of particularly
simple unambiguously recognizable series restricted to unambiguously recogniz-
able picture languages. In addition, we show that if the underlying picture valu-
ation monoid is idempotent, then we do not need unambiguity of the underlying
picture language.

In the second part of this paper we define a new weighted MSO logic which
can model average density of pictures. The weighted MSO logic used here is
a combination of the ideas from [2], [10], [11] and [16]. In [16], disjunction and
existential quantification were interpreted by the sum, and the semantics of both
conjunction and universal quantification were defined by the product operation
of the semiring. In this paper, using picture valuation monoids as the abstract
model, the semantics of universal quantification will be interpreted by a picture
valuation function, which for example provides the average value of light of a
picture.

Our second main result states that the weighted automata device of W2OTA
and a fragment of weighted MSO logic are expressively equivalent. To reach
this result, we define a suitable fragment of our logic in which the application
of universal first order (FO) quantification is restricted to almost boolean FO
formulas, and the application of conjunction is restricted to either almost boolean
FO formulas or boolean FO formulas. In addition, we restrict the use of constants
in the formula by allowing their occurrence only in the scope of an FO universal
quantifier. This enables us to derive our second main result for arbitrary product
picture valuation monoids, not requiring regularity as in [10]. Also, our results
differ from the ones in [16] which required commutative semirings as weight
structure.

We would like to mention that our results do not need distributivity of multi-
plication over addition or commutativity or even associativity of multiplication,
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while considering a commutative semiring as the weight structure was previously
an essential assumption in the weighted picture automata theory.

2 Valuation Monoids and Weighted Picture Automata

We assume that the reader is familiar with notions and results of two-dimensional
languages. For more details see [19,20,36]. We just give the notion of pictures
and some basic notations that we use here.

Let N = {0, 1, 2, ...} be the set of natural numbers. Let Σ be a non-empty set.
A picture over Σ is a non-empty rectangular array of elements in Σ 1. A picture
language is a set of pictures. The set of all pictures over Σ is denoted by Σ++.
Let p ∈ Σ++. We write p(i, j) or pi,j for the component of p at position (i, j)
and let �v(p) and �h(p) be the number of rows and columns of p, respectively.
The pair (�v(p), �h(p)) is the size of p. The set Σm×n comprises all pictures of
size (m,n).

Definition 1. A picture valuation monoid, or for short pv-monoid, is a tuple
D = (D,+, val,0) consisting of a commutative monoid (D,+,0) and a val-
uation function val : D++ → D with val(d) = d for all d ∈ D and

val(

⎛
⎜⎜⎜⎝

d1,1 d1,2 · · · d1,n

d2,1 d2,2 · · · d2,n

...
...

. . .
...

dm,1 dm,2 · · · dm,n

⎞
⎟⎟⎟⎠) = 0 whenever dij = 0 for some i and j, for

d11, ..., dmn ∈ D. We say that D is idempotent if + is idempotent, i.e., d+d = d
for all d ∈ D.

Example 2. Consider (R ∪ {−∞}, sup, avg,−∞) where avg((dij)1≤i≤m
1≤j≤n

) =

1
m×n

∑
1≤i≤m
1≤j≤n

dij . Let B ⊆ [0, 1] be a finite set of values and let L ⊆ B++

be any picture language over B. Consider the function S : B++ → R ∪ {−∞}
defined for p ∈ B++ by:

S(p) =

⎧⎨
⎩

1
m×n

∑
1≤i≤m
1≤j≤n

pi,j if p ∈ L,

−∞ otherwise.

We could interpret the values in B as different levels of light. Then for each
picture p in the language L, the function S provides the average value S(p) of
light of p.

Example 3. Consider (N∪ {∞},min,maj,∞) where the valuation function is a
majority function, i.e., maj(d1, ..., dn) is the greatest value among all values that
occur most frequently in d1, ..., dn, e.g. maj(4, 6, 6, 6, 8, 8, 8, 12) = 8. Now let B

1 We assume a picture to be non-empty for technical simplicity reason, as in [18,21].



706 P. Babari and M. Droste

be a finite set, interpreted for instance as a set of different colors, and consider
the function S : B++ → N, defined for p ∈ B++ by:

S(p) = maj{m × n | qm×n is a monochrome subpicture of p}.

Then for each picture p, S provides the largest area of a monochrome rectangle,
enclosed as a subpicture within p, which can be found most frequently among
all monochrome subpictures of p.

Definition 4. A weighted 2-dimensional on-line tessellation automaton
(W2OTA) A = (Q,T, I, F, γ) over the alphabet Σ and a picture valuation
monoid D = (D,+, val,0) consists of a finite set Q of states, a set of transi-
tions T ⊆ Q × Q × Σ × Q, sets of initial and final states I, F ⊆ Q, respectively,
and a weight function γ : T → D.

For a transition t = (qh, qv, a, q) ∈ T , we set σh(t) = qh, σv(t) = qv and
σ(t) = q. We denote by label(t) its label a and by γ(t) = d its weight. We extend
both functions to pictures by setting for a picture c = (ci,j)1≤i≤m

1≤j≤n
∈ Tm×n over

the set of transitions:

label(c)i,j := label(ci,j) and γ(c) = val(γ(ci,j))i,j .

This defines functions label : T++ → Σ++ and γ : T++ → D. We call label(c)
the label of c and γ(c) the weight of c.

A run c in A is an element in Tm×n, for some m,n, satisfying

∀ 1 ≤ i ≤ m, 2 ≤ j ≤ n : σh(ci,j) = σ(ci,j−1),

∀ 2 ≤ i ≤ m, 1 ≤ j ≤ n : σv(ci,j) = σ(ci−1,j).

We call the run c ∈ Tm×n successful if for all 1 ≤ i ≤ m, 1 ≤ j ≤ n we have
σv(c1,j), σh(ci,1) ∈ I and σ(cm,n) ∈ F . The set of all successful runs labeled with
a picture p in A is denoted by I

p−→A F .
We define the behavior of A as the function ‖A‖ : Σ++ → D given by

‖A‖(p) =
∑

(val(γ(c)) | c ∈ I
p−→A F ).

If p ∈ Σ++ has no successful run in A, then ‖A‖(p) = 0. Intuitively, the weight
of a picture p is the sum of the weights of all successful runs in A that read p.

Example 5. For instance, a run in a W2OTA over (R ∪ {−∞}, sup, avg,−∞)
and the alphabet {a, b, c} where p, q, s are states, can be shown by the following
image:
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a\1

q

c\7

q

b\2

s

p s q
p s q

a\3.5 b\3.5 c\4

p q p

q

q

p

p

p

p

s

q

s

q

q

p

� � �

� � �
� � �

� � �

� � �� � �

� � �� � �

The label of this run is the picture
(

a c b
a b c

)
and its weight is

avg(
(

1 7 2
3.5 3.5 4

)
) = 4.

In Definition 4, when D is considered as two-valued boolean algebra, we
get precisely the definition of a 2-dimensional on-line tessellation automaton
(2OTA). For an alphabet Σ, 2OTA over Σ define picture languages and compute
the family of recognizable picture languages [20].

A weighted or unweighted 2OTA A is called unambiguous if for any picture
there exists at most one successful run in A. A picture language L is called
unambiguously 2OTA recognizable if it can be recognized by an unambiguous
2OTA.

Any function S : Σ++ → D is called a picture series or a quantitative
picture language over Σ and D. If S = ‖A‖ for a weighted 2-dimensional on-
line tessellation automaton A taking weights from D, then S is called W2OTA-
recognizable.

Example 6. Let (R ∪ {−∞}, sup, avg,−∞) be a pv-monoid with
avg((dij)1≤i≤m

1≤j≤n
) = 1

m×n

∑
1≤i≤m
1≤j≤n

dij . Consider A = ({q}, T, {q}, {q}, γ) as

a W2OTA over the alphabet Σ = {b, w} with T = {(q, q, b, q), (q, q, w, q)},
γ(q, q, b, q) = −1, and γ(q, q, w, q) = 1. If we let the letter b interpret black color
and the letter w interpret white color, then A computes the average difference
of darkness and brightness for every monochrome picture p ∈ Σ++. For example

‖A‖(

⎛
⎝ b b w

w b w
w w b

⎞
⎠) = 1

9 , ‖A‖(

⎛
⎝w w w

w w w
w w w

⎞
⎠) = 1, and ‖A‖(

(
b b
w w

)
) = 0.

Now we give some closure properties of W2OTA-recognizable picture series
which we will use for the proof of our main results in the following two sections
and which could be also of independent interest.

Let Σ and Γ be two sets. We can extend any mapping π : Σ → Γ to a function
π : Σ++ → Γ++ in the natural way, mapping a picture p ∈ Σm×n to p′ ∈ Γm×n
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such that π(p(i, j)) = p′(i, j), for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Now let Σ and Γ be
finite. We define for every S : Σ++ → D the projection π(S) : Γ++ → D by

π(S)(p) =
∑

(S(p′) | p′ ∈ Σ++, π(p′) = p)

for every p ∈ Γ++.

Proposition 7. Let D be a picture valuation monoid, and let π : Σ → Γ be a
mapping. If S : Σ++ → D is W2OTA-recognizable, then the projection π(S) :
Γ++ → D is also W2OTA-recognizable.

To prove this lemma, we apply a similar idea as used in [10,13].

Let Σ be an alphabet, D a picture valuation monoid and r : Σ → D be a
mapping. We denote by val ◦ r : Σ++ → D the picture series over D defined for
all p ∈ Σ++ by (val ◦ r)(p) = val(r(p)).

Lemma 8. Let Σ be an alphabet, D a picture valuation monoid and r : Σ → D
a mapping. Then, val ◦ r is unambiguously W2OTA-recognizable.

Let D = (D,+, val,0) be a pv-monoid and S, S′ : Σ++ → D. Then S + S′ is
defined pointwise by (S+S′)(p) = S(p)+S′(p) for all p ∈ Σ++. Let L ⊆ Σ++ be
a picture language. Then the intersection (S ∩ L) : Σ++ → D is a picture series
over D defined by (S ∩ L)(p) = S(p) if p ∈ L and (S ∩ L)(p) = 0 if p ∈ Σ++\L.

Proposition 9. Let (D,+, val,0) be a pv-monoid and let S : Σ++ → D and
S′ : Σ++ → D be W2OTA-recognizable picture series. Then S + S′ is W2OTA-
recognizable.

Lemma 10. Let D = (D,+, val,0) be a pv-monoid, S a W2OTA-recognizable
picture series and L a 2OTA-recognizable picture language.

1. If L is unambiguously 2OTA-recognizable, then S∩L is W2OTA-recognizable.
2. If L is unambiguously 2OTA-recognizable and S is unambiguously W2OTA-

recognizable, then S ∩ L is unambiguously W2OTA-recognizable.
3. If D is idempotent, then S ∩ L is W2OTA-recognizable.

Proof. (Sketch) We use the standard product construction of two automata A
and A′ where A is a 2OTA over Σ such that L(A) = L, and A′ is a W2OTA over
Σ and D such that ‖A′‖ = S. We call the automaton obtained by this construc-
tion Ã. Now in (1), since A is unambiguous, then for every p ∈ Σ++ there is
either no successful run on p in Ã or there are as many successful runs on p in Ã
as there are in A′. Hence, for p ∈ L we have ‖Ã‖(p) = ‖A′‖(p) = (S ∩ L)(p). In
(2), we can choose A and A′ both unambiguous, then obviously Ã is unambigu-
ous, and the result is obtained similarly to (1). To prove case (3), if p ∈ Σ++\L,
then ‖Ã‖(p) = (S ∩ L)(p) = 0. Now let N > 0 be the number of successful
runs on p ∈ Σ++ in A. Then, every successful run on p in A′ can be simulated
by N runs in Ã having the same weight. If c is a successful run in A′ over p,
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then by idempotency of D we have
∑N

i=1 val(γ(c)) = val(γ(c)). It follows that
‖Ã‖(p) = (S ∩ L)(p).
We just note that the assumptions on L being unambiguous are necessary,
cf. [11].

3 A Nivat Theorem for Weighted Picture Automata

Nivat’s theorem is a fundamental characterization of rational transductions and
provides a connection between rational transductions and rational languages.
Recently, Droste and Perevoshchikov [11] proved a Nivat-like theorem for recog-
nizable quantitative timed languages. Here we want to prove such a result for
recognizable picture series.

Let Σ be an alphabet and D = (D,+, val,0) a pv-monoid. Let
Drec(Σ++,W2OTA) denote the family of picture series recognized by W2OTA
over Σ and D. The abbreviation DN (Σ++) (with N meaning Nivat) stands
for the set of all picture series S : Σ++ → D over D such that there exist an
alphabet Γ , mappings h : Γ → Σ and r : Γ → D and a recognizable picture
language L ⊆ Γ++ such that S = h((val ◦ r) ∩ L). Finally, the abbreviation
DN (Σ++,UNAMB) is defined like DN (Σ++) with the difference that L is an
unambiguous picture language.

Theorem 11. Let Σ be an alphabet and D = (D,+, val,0) a pv-monoid. Then
we have the following,

− Drec(Σ++,W2OTA) = DN (Σ++,UNAMB);
− Moreover, if D is idempotent, then Drec(Σ++,W2OTA) = DN (Σ++).

Proof. First we show that Drec(Σ++,W2OTA) ⊆ DN (Σ++,UNAMB). Let
A = (Q,T, I, F, γ) be a W2OTA over Σ and D such that ‖A‖ = S. Let Γ = T .
We define the mapping h : Γ → Σ for all λ = (qh, qv, a, q) ∈ Γ by h(λ) = a and
we let r = γ : Γ → D. From A we construct the 2OTA A′ = (Q,T ′, I, F ) over
the enlarged alphabet Γ such that

T ′ = {(qh, qv, (qh, qv, a, q), q) | ∃a ∈ Σ : (qh, qv, a, q) ∈ T}.

With this construction, clearly for every input label (qh, qv, a, q) ∈ Γ there is at
most one transition in T ′ with label (qh, qv, a, q). So A′ is unambiguous and we
put L(A′) = L. It remains to show that S = h((val◦r)∩L). For this let p ∈ Σ++.
Note that I

p−→A F = {p′ ∈ L(A′) | h(p′) = p}. Moreover, if c ∈ I
p−→A F , we

have (val ◦ r)(c) = val(r(c)) = val(γ(c)). Therefore,

h((val ◦ r) ∩ L)(p) =
∑

((val ◦ r)(p′) | p′ ∈ L and h(p′) = p)

=
∑

(val(γ(c)) | c ∈ I
p−→A F )

= ‖A‖(p).

The converse inclusions are immediate by Lemmas 8 and 10 and Proposition 7.
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Let Σ be an alphabet and D = (D,+, val,0) a pv-monoid. Let
DH(Σ++,UNAMB) denote the family of picture series S : Σ++ → D over
D such that there exist an alphabet Γ , a mapping π : Γ → Σ and an unambigu-
ously recognizable picture series T : Γ++ → D over D such that S = π(T ). Now
as a corollary of Theorem 11, we have the following result:

Corollary 12. Let Σ be an alphabet and D = (D,+, val,0) a pv-monoid. Then
DH(Σ++,UNAMB) = Drec(Σ++,W2OTA).

4 Weighted MSO Logic

In this section we introduce the syntax and semantics of the weighted MSO
logic on pictures. The syntax is a combination of the idea introduced in [10],
[11] and [16]. We define the syntax as a combination of almost boolean first-
order formulas and formulas of weighted monadic second-order logic. The idea
of boolean formulas was introduced first by Bollig and Gastin [2]. Here we fix
an alphabet Σ. For a ∈ Σ, Pa denotes a unary predicate symbol. We provide a
countable set V of first-order and second-order variables. Lower-case letters x, y
denote first-order variables, and capital letters like X,Y denote second-order
variables. We also need to equip our picture valuation monoid with a product
operation and a unit element.

Definition 13. A product picture valuation monoid, or a ppv-monoid for
short, is a tuple D = (D,+, val, ,0,1) consisting of a picture valuation
monoid (D,+, val,0), a binary operation  : D2 → D, and 1 ∈ D with
val((1)i,j)1≤i≤m

1≤j≤n
= 1 for all m, n ≥ 1 and 0  d = d  0 = 0, 1  d = d  1 = d

for all d ∈ D.

Definition 14. The syntax of weighted MSO logics over a ppv-monoid
(D,+, val, ,0,1) is defined as follows:

β ::= Pa(x) | xSvy | xShy | x ∈ X | x = y | ¬β | β ∧ β | ∀xβ

ϕ ::= d | β | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃Xϕ

where d ∈ D, a ∈ Σ, x, y,X ∈ V. The formulas β are called boolean first-order,
for short FO, formulas and the formulas ϕ are called weighted MSO-formulas,
for short wMSO-formulas.

Note that negation is only applied in boolean FO formulas.
The set Free(ϕ) of free variables in ϕ is defined as usual. Let p ∈ Σm×n.

We put Dom(p) = {1, 2, ...,m} × {1, 2, ..., n} and denote the component of p at
position (i, j) by p(i, j). Intuitively, Pa(x) means that the position x of some
considered picture carries the letter a. Sv and Sh represent the two successor
relations of both directions, defined by (i, j)Sv(i + 1, j) and (i, j)Sh(i, j + 1).
Formulas containing no set quantification but possibly including atomic formulas
of the form (x ∈ X) are called first-order formulas.
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Table 1. The semantics of weighted MSO formulas over a ppv-monoid

[[d]]V(p,σ)=d

[[Pa(x)]]V(p,σ)=

{
1, if p(σ(x))=a,

0, otherwise

[[xSvy]]V(p,σ)=

{
1, if σ(x)Svσ(y),

0, otherwise

[[xShy]]V(p,σ)=

{
1, if σ(x)Shσ(y),

0, otherwise

[[x=y]]V(p,σ)=

{
1, if σ(x) = σ(y),

0, otherwise

[[x∈X]]V(p,σ)=

{
1, if σ(x) ∈ σ(X),

0, otherwise

[[¬β]]V(p,σ)=

{
1, if [[β]]V(p,σ)=0,

0, if [[β]]V(p,σ)=1

[[ϕ1∨ϕ2]]V(p,σ)=[[ϕ1]]V(p,σ)+[[ϕ2]]V(p,σ)

[[ϕ1∧ϕ2]]V(p,σ)=[[ϕ1]]V(p,σ)�[[ϕ2]]V(p,σ)

[[∃xϕ]]V(p,σ)=
∑

(i,j)∈Dom(p)

[[ϕ]]V∪{x}(p, σ[x/(i, j)])

[[∃Xϕ]]V(p,σ)=
∑

I⊆Dom(p)

[[ϕ]]V∪{X}(p, σ[X/I])

[[∀xϕ]]V(p,σ)= val
(
[[ϕ]]V∪{x}(p,σ[x/(i, j)])

)
(i,j)∈Dom(p)

The picture language L(ϕ) defined by the sentence ϕ is the set of all pictures
p ∈ Σ++ satisfying ϕ. We say a picture language L is first-order definable (L ∈
FO) if there is a first-order sentence ϕ such that L = L(ϕ). We refer the reader
for more details on classical results to [23].

Let V be a finite set of variables with Free(ϕ) ⊆ V. We define a (V, p)-
assignment as a function:

σ : V → Dom(p) ∪ 2Dom(p)

mapping FO variables in V to elements of Dom(p) and second-order variables
in V to subsets of Dom(p). If x is an FO variable and (i, j) ∈ Dom(p), then
the update σ[x/(i, j)] for (i, j) ∈ N × N is defined as σ[x/(i, j)](x) = (i, j) and
σ[x/(i, j)] �V\{x}= σ �V\{x}. Similarly, the update σ[X/I] is defined for I ⊆
N × N. We encode a pair (p, σ), where σ is a (V, p)-assignment, as a picture
over the enriched alphabet ΣV = Σ × {0, 1}V . Conversely, an element r ∈ Σ++

V
can be viewed as a pair (p, σ) where p ∈ Σ++ is the projection over Σ and
σ ∈ ({0, 1}V)++ is the projection of r over {0, 1}V . Now, if the latter projection
σ({0, 1}V)++ is such that for each FO variable x ∈ V, the projection of σ to
the x-coordinate contains exactly one pixel carrying a 1, then σ will be called a
valid assignment.

Now, similar to [16] we give the semantics of wMSO formulas. However, here
the semantics of universal quantification will be interpreted by a valuation func-
tion, which for example provides the average value of light of a picture and the
semantics of conjunction is interpreted by a product operation.

Let ϕ be a weighted MSO-formula and V be a finite set of variables containing
Free(ϕ). The semantics of ϕ will be a series �ϕ�V : Σ++

V → D such that if σ is not
a valid (p,V)-assignment, then �ϕ�V(p, σ) = 0. Otherwise, we define �ϕ�V(p, σ) ∈
D inductively as in Table 1. We write Σϕ = ΣFree(ϕ) and �ϕ� = �ϕ�Free(ϕ). In
case ϕ is a sentence, then the semantics is a picture series over Σ.

Example 15. Consider (R∪{−∞}, sup, avg,+,−∞, 0) where avg((dij)1≤i≤m
1≤j≤n

) =

1
m×n

∑
1≤i≤m
1≤j≤n

dij . Let B ⊆ [0, 1] be the finite set of values considered in
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Example 2. Let B++ be the set of all pictures over B. Consider the formula
ψ = ∀x (

∨
b∈B(Pb(x) ∧ b)). Since universal quantification is interpreted by aver-

age, so, the semantics of the formula ψ provides the average value �ψ�(p) of light
of p. Therefore, we have �ψ� = S for the picture series S from Example 2 (where
L = B++).

Lemma 16. [16] Let Σ be any alphabet and let ϕ be a first-order formula. Then
L(ϕ) is an unambiguously recognizable picture language.

For a language L ⊆ Σ++, the characteristic series 1L : Σ++ → D is defined
for p ∈ Σ++ by 1L(p) = 1 if p ∈ L, and 1L(p) = 0 otherwise. Hence, for
any picture series S : Σ++ → D and a picture language L ⊆ Σ++ we have
S  1L = S ∩ L.

Lemma 17. Let D be a ppv-monoid. If L is unambiguously 2OTA-recognizable,
then 1L is W2OTA-recognizable.

Definition 18. The class of almost boolean FO formulas of weighted-MSO is
the smallest class containing all constant d ∈ D and all boolean FO formulas
and which is closed under disjunction and conjunction.

The following result can be shown by an easy induction on the structure of
ϕ which we will use it in Lemma 21.

Lemma 19. Let D be a ppv-monoid. If ϕ is an almost boolean FO formula, then
�ϕ� can be written in the form �ϕ� =

∑n
k=1 dk1Lk

with d1, ..., dn ∈ D for some
n ∈ N, and (Lk)k=1,...,n forming a partition of Σ++

ϕ of FO definable picture
languages over Σϕ.

We already know that for semiring weighted automata on words, the full
weighted MSO logic without any restriction on universal quantification is expres-
sively stronger than weighted automata [8]. In [16], the author considers com-
mutative semirings as the abstract model for weight structure. Here we do not
require commutativity of the product operation , but the application of conjunc-
tion is restricted to either almost boolean FO formulas or boolean FO formulas.
Moreover, using an idea of Perevoshchikov [11], we restrict the use of constants
in the formula by allowing their occurrence only in the scope of FO universal
quantifiers. By this, we can avoid the assumption of regularity of [10] for the
valuation monoids.

Definition 20. A weighted MSO formula ϕ is called

− ∀-restricted if whenever it contains a sub-formula of the form ∀xψ, then ψ
is an almost boolean FO formula.

− ∧-restricted if for every sub-formula ψ1 ∧ ψ2 of ϕ either both ψ1 and ψ2 are
almost boolean FO formulas, or ψ1 or ψ2 is a boolean FO formula.

− D-restricted if every constant d ∈ D occurring in ϕ is in the scope of a
first-order universal quantifier.
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Lemma 21. Let D be a ppv-monoid and let ϕ be an almost boolean FO formula.
Then �∀x ϕ� is W2OTA-recognizable over im(�ϕ�).

Proof. (Sketch). Let ϕ be an almost boolean FO formula. By Lemma 19, we
have �ϕ� =

∑n
k=1 dk1Lk

where (Lk)k=1,...,n is a partition of Σ++
ϕ of FO definable

picture languages over Σϕ. Let Σ̃ = Σ × {1, 2, ..., n}, and let L̃ be the picture
language of all (p, ν, σ) ∈ (Σ̃V)++ such that (p, σ) is valid and for all (i, j) ∈
Dom(p) and k ∈ {1, 2, ..., n} we have ν(i, j) = k ⇔ (p, σ[x/(i, j)]) ∈ Lk. In [27],
it was shown that L̃ is FO definable and as a result, there exists an unambiguous
2OTA Ã computing L̃. Now from Ã we can construct a W2OTA A, by letting
the transitions of A have a suitable value dk as weight, and it follows that
�∀x ϕ� = π(‖A‖) for a projection π. Then �∀x ϕ� is W2OTA-recognizable by
Proposition 7.

Our main result of this section is the following.

Theorem 22. Let D be a ppv-monoid and let S : Σ++ → D be a picture
series. Then S is W2OTA-recognizable if and only if S = �ϕ� for a ∀-restricted,
∧-restricted and D-restricted wMSO-sentence ϕ.

Proof. (Sketch). (=⇒) Given a W2OTA A, we can use its structure to construct
a ∀- and ∧- restricted sentence α such that �α� = ‖A‖ and all the constants
of α can occur in the scope of the FO universal quantifier. Hence, α is also
D-restricted.

(⇐=) Let ϕ be a ∀-restricted, ∧-restricted and D-restricted wMSO-sentence.
By induction over the structure of a suitable subformula ψ of ϕ, we construct
a W2OTA Aψ such that ‖Aψ‖ = �ψ�. If ψ is a boolean FO formula, then it
can be regarded as a classical boolean FO formula defining the picture language
L(ψ), which is unambiguous due to Lemma 16. We know that �ψ� = 1L(ψ). Now
by Lemma 17, �ψ� is W2OTA-recognizable. If ψ = ψ1 ∨ ψ2, ϕ = ∃x ψ′, and
ψ = ∃X ψ′ we apply Propositions 9 and 7. If ψ = ∀x ψ′, we use Lemma 21. Now,
consider ψ = ψ1 ∧ ψ2. Since ψ is ∧-restricted, either both ψ1 and ψ2 are almost
boolean FO formulas, or ψ1 or ψ2 is a boolean FO formula. In the first case, ψ
can occur as a subformula of ∀xϕ′ and then the result follows by Lemma 21. In
the second case, we apply Lemma 10.

5 Conclusion

We defined weighted two-dimensional on-line tessellation automata taking
weights from picture valuation monoids which are more general than semirings.
These automata can model average density of pictures. We proved a Nivat’s
theorem for W2OTA. This result makes a connection between the behaviors of
W2OTA and 2OTA. In fact, we showed that recognizable picture series can be
obtained precisely as projections of particularly simple unambiguously recogniz-
able series restricted to unambiguous recognizable picture languages. In addition,
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we showed that if we consider idempotent picture valuation monoids, then we
get this result without any unambiguity condition.

We also defined a new weighted MSO logic. We considered a suitable fragment
of this logic and as the second result of this paper we proved that our W2OTA
and this fragment of weighted MSO logic are expressively equivalent.

We would like to mention that, because of space constraints here we
did not include the following results: Under additional assumptions on the
underlying picture valuation monoid, there are several extended fragments of
our weighted MSO logic which are expressively equivalent to our W2OTA model.
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Abstract. We consider rational relations made of pairs (u, v) of finite
words such that v is a subword of u. We show that such a selecting
relation can be realized by a transducer such that the output label of
each transition is a subword of its input label. We also show that it is
decidable whether a given relation has this property.

Keywords: Transducers · Synchronization

1 Introduction

Selecting elements from a sequence to build a new sequence is an ubiquitous
process in mathematics and computer science. Its use ranges from topology to
the theory of quasi-orderings. In this paper, we study selecting processes realized
by transducers which are finite automata equipped with inputs and outputs.
The subword relation is one of the most natural relations on words. It gives raise
to Higman’s theorem [7] and can be realized by a transducer. These selecting
processes also occur in [1] where it is shown that selecting symbols by oblivious
sequential transducers preserves normality. Let us recall that an infinite word x
over some alphabet is said to be normal if, for each length, all finite words of that
length occur with the same frequency in x. The term oblivious means here that
the selection of an input symbol is only based upon the prefix of the input read
before that symbol, not including the symbol itself. The work presented here
was actually motivated by this use of transducers but our results only hold for
finite words and cannot be extended to infinite words as it was initially expected
(see Sect. 6).

Transducers considered in [1] have a very special form. For each input symbol,
the transducer either outputs nothing (the empty word) or copies the input to
the output. The natural transducer realizing the subword relation has also this
special form. This property of the transitions insures that the output is always
a subword of the input. The global relation between the input and the output is
guaranteed by local properties of the transitions. It is not true however that each
transducer realizing a selecting process has this local property (see Example 1
for instance). As usual, such an observation raises the two related following
questions: first, is every selecting process realized by a transducer having the
local property and second, is it decidable whether some process realized by a
given transducer is a selecting one. In this paper, we answer the two questions
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 716–726, 2015.
DOI: 10.1007/978-3-319-15579-1 56
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positively. We show that each relation such that the output is always a subword
of the input is realized by a transducer where the transitions already satisfy this
property locally. We also show how to decide whether a given rational relation
satisfies that for every of its pairs (u, v), v is a subword of u.

The first question follows a line of research started by Elgot and Mezei in [6]
where it is shown that a rational length preserving relation, that is input and
output always have the same length, can be realized by a transducer such that
for each transition input and output have the same length (see [5, Thm IX.6.1]
and [11, Thm IV.6.1]). This result has been extended by Leguy in [8] where it
is shown that each length-decreasing relation can be realized by a transducer in
which each transition has an output which is shorter than the input. Notice that
this latter result is really an extension of Elgot and Mezei’s one which can easily
be recovered from it. This result was further extended by Sakarovitch using the
notion of a stable monoid of N

2 [11, Thm IV.6.3].
The first question can also be rephrased as a Fatou property of a sub-

monoid M of A∗ × B∗ [4]. Let R be a rational relation of A∗ × B∗ contained
in a sub-monoid M of A∗ × B∗. A very natural question is whether the rela-
tion R can be realized by a transducer T in which all transitions are labelled
by elements of M . If the family of rational subsets of a given monoid M is
denoted by Rat(M), this question is whether the following implication holds for
all relations R.

R ∈ Rat(A∗ × B∗) ∧ R ⊆ M =⇒ R ∈ Rat(M)

The questions answered in [6] and [8] correspond to the two sub-monoids M =
{(u, v) : |u| = |v|} and M = {(u, v) : |u| � |v|}. The case M = {(u, v) :
|u|/|v| = α} for some fixed rational number α has also been answered positively
in [3]. It turns out that the answer to this question is negative in general (see
example 13). In this paper, we answer positively this question for the sub-monoid
M = {(u, v) : v|u} made of pairs (u, v) such that v is a subword of u. Notice
that in all previous results, the monoid M is defined by constraints regarding
lengths of the words and making thus all symbols equivalent. Our result is the
first positive one where the monoid M is defined by other constraints.

The second question is a very classical one. For each subclass of rational
relations, it is natural to check whether a given relation is a member of that
subclass. It turns out that most of these questions are undecidable [2, Thm 8.4]
but it is decidable in the two cases considered above. It is always surprising when
this membership problem is decidable.

The paper is organized as follows. Basic definitions and transducers are
recalled in Sect. 2. Sect. 3 introduces the crucial notion of delays and shifts
of a transducer. It is proved in Sect. 4 that each selecting relation is realized by
a transducer with the local property. Sect. 5 is devoted to the decidability result.
In Sect. 6 are discussed some positive and negative extensions of our result. Due
to lack of space, all proofs have been omitted.
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2 Preliminaries

Let A be finite alphabet. We let A∗ and Aω respectively denote the sets of all
finite and infinite words. The empty word is denoted by ε and the length of a
word w is denoted |w|. The number of occurrences of a symbol a in a word w is
denoted by |w|a. The cardinality of a finite set E is also denoted |E|.

A word v = b1 · · · bn is a subword of a word u = a1 · · · am if there exists a
strictly increasing function ι from {1, . . . , n} to {1, . . . , m} such that bj = aι(j)

for each 1 � j � n, or equivalently if there exist n + 1 words u0, . . . , un such
that u = u0b1u1 · · · bnun [9, Chap. 6]. The increasing function ι is called an
embedding of v in u and the relation is denoted by v|u. Note that there may
exist several embeddings of a word v in a word u. There are, for instance, 5
embeddings of v = aabb in u = aababb. Three of them are depicted in Fig. 1.
Among all possible embeddings, there is an embedding ι0 such that for any other
embedding ι, ι0(j) � ι(j) holds for each 1 � j � n. This embedding ι0 is called
the leftmost embedding of v in u. Note that if ι0(j) = k, then b1 · · · bj is the
longest prefix of v which is a subword of a1 · · · ak. The rightmost embedding can
be defined similarly. The first embedding shown in Fig. 1 is the leftmost one of
aabb in aababb. If ι is an embedding of v in u and w is a factor of v starting
at position k, the restriction of ι to w is the function ι′ from {1, · · · , |w|} to
{1, · · · ,m} defined by ι′(j) = ι(j + k − 1). It is an embedding of w in u.

1 2 3 4 5 6

a a b a b b

a a b b

1 2 3 4

ι(1) = 1, ι(2) = 2

ι(3) = 3, ι(4) = 5

1 2 3 4 5 6

a a b a b b

a a b b

1 2 3 4

ι(1) = 1, ι(2) = 2

ι(3) = 5, ι(4) = 6

1 2 3 4 5 6

a a b a b b

a a b b

1 2 3 4

ι(1) = 1, ι(2) = 4

ι(3) = 5, ι(4) = 6

Fig. 1. Three embeddings of aabb in aababb

A relation R ⊆ A∗×B∗ is called selecting if, for any words u and v, (u, v) ∈ R
implies v|u.

A transducer is a finite automaton, the transitions of which are labelled by
pairs of words. More formally, a transducer is a tuple 〈Q,A,B,Δ, I, F 〉, where
Q is a finite set of states, A and B are the input and output alphabets, Δ ⊆
Q×A∗ ×B∗ ×Q is a finite set of transitions, I ⊆ Q is the subset of initial states,
and F ⊆ S is the subset of final states. A transition (p, u, v, q) is written p u:v−−→ q.
A run from a state p to a state q is a sequence of consecutive transitions p u1:v1−−−→
q1

u2:u2−−−→ q2 · · · qn−1
un:vn−−−−→ q. Its label is the pair (u, v) where u = u1 · · · un and

v = v1 · · · vn. The run is also written p u:v−−→ q. The run is successful if p ∈ I
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and q ∈ F . The relation realized by T , denoted by |T |, is the subset of A∗ × B∗

consisting of the labels of successful runs. A state is useful if it occurs in some
successful run. Such states can be computed in linear time. Since the realized
relation remains unchanged when useless states are removed, we always assume
in the sequel that the set Q only contains useful states. A relation R ⊆ A∗ × B∗

is said to be rational if it equal to |T | for some transducer T . A transducer
is normalized if each of its transitions is either labelled by a pair (a, ε) where
a ∈ A or by a pair (ε, b) where b ∈ B. It is well known [11, Thm IV.1.1]
that any transducer can be transformed into an equivalent normalized one. All
transitions of the form p ε:ε−−→ q are first removed in the same way as ε-transitions
are removed from automata. Then each transition p u:v−−→ q where u = a1 · · · am

and v = b1 · · · bn is replaced by transitions p a1:ε−−→ q1 · · · qm−1
am:ε−−−→ qm

ε:b1−−→
qm+1 · · · qm+n−1

ε:bn−−→ q where q1, . . . , qm+n−1 are newly introduced states. In
this paper, we are interested in transducers realizing selecting relations.

0 1
a : ε a : a

ba : ab

Fig. 2. Transducer realizing a selecting relation

Example 1. It can be checked that the transducer depicted in Fig. 2 realizes a
selecting relation.

3 Shifts and Delays

The aim of the section is to introduce the notion of delay of runs in a transducer
realizing a selecting relation. We begin by defining the shift and delay of a pair
of factorized words with respect to a given embedding. This allows us to define,
first the delay of a run with respect to a given embedding and second, the delay
of this run as the minimal delay over all possible embeddings.

3.1 Definitions

So, we start by defining the shift and delay of a pair of factorizations u = xx′ and
v = yy′ of words such that v|u. Let v = b1 · · · bn be a subword of u = a1 · · · am.
Let us denote by r and s the lengths of x and y. We now define the shift and
the delay of an embedding ι of v in u. The set {j : ι(j) � r} is an interval of
the form {1, . . . , k} for some integer 0 � k � n. The position k is the rightmost
position of v which is mapped to a position of x by the embedding. If no letter
of v is mapped to a letter of x, then k = 0. If k = s, the shift of the embedding
is the empty word and the delay is zero. If k > s, the shift is said to be negative,
it is the prefix bs+1 · · · bk of y′ and the delay is the length of this prefix. If k < s,
the shift is said to be positive, it is the suffix bk+1 . . . bs of y and the delay is the
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Fig. 3. Negative and positive shifts

length of this suffix. An empty shift is considered as either positive or negative.
The delay is always the length of the shift.

We now come to the delay of runs in a transducer. Let T = 〈Q,A,B,Δ, I, F 〉
be a transducer realizing a selecting relation. Consider a successful run ρ =
q0

u1:v1−−−→ q1 · · · qn−1
un:vn−−−−→ qn of T . Consider also an embedding ι of v = v1 · · · vn

in u = u1 · · · un. For each integer 1 � j � n − 1, we consider the factorization
u = xjx

′
j and v = yjy

′
j where xj = u1 · · · uj , x′

j = uj+1 · · · un, yj = v1 · · · vj and
v′

j = vj+1 · · · vn. With these factorizations and the embedding ι, is associated
a negative or positive shift σ(ρ, ι, j) and a delay d(ρ, ι, j). Then, by definition,
the delay of ρ with respect to ι is d(ρ, ι) = max{d(ρ, ι, j) : 1 � j � n − 1}.
Finally, the delay d(ρ) of ρ is the minimum over all possible embeddings ι of v
in u of d(ρ, ι). A transducer is said to be of bounded delay if there is an integer N
such that the delay of any of its successful run is bounded by N .

3.2 Reformulation in the Free Group

The free group provides a easy way to denote shifts in a run that we now describe.
It allows us to have uniform formulations for negative and positive shifts. We
start by briefly recalling the definition of the free group FA over some alphabet A.

Let A be alphabet. We denote by Ā a disjoint copy of the alphabet A, that
is Ā = {ā : a ∈ A}. The function which maps each letter a to ā is first extended
to an involution of A + Ā by setting ¯̄a = a. It is then extended further to an
involution of (A + Ā)∗ by setting w̄ = ān · · · ā1 for each word w = a1 · · · an.
Note that this involution in an anti-morphism: uv = v̄ū. The free group FA

generated by A is the group obtained by quotienting the monoid (A + Ā)∗ by
the congruence generated by all the pairs {(aā, ε) : a ∈ A + Ā}. Its element can
be identified with the reduced words of (A + Ā)∗, that is words with no factor
of the form aā or āa. Suppressing occurrences of factors of that form from a
word w until there is no occurrence yields a unique reduced word. The inverse
of an element w is w̄. We call an element of FA positive (respectively negative)
if its reduced word belongs to A∗ (respectively Ā∗).
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We now come to the use of the free group to denote shifts. Let u and v be
two words such that v|u. Given two factorizations u = u1u2 and v = v1v2, and
an embedding of v in u, we denote by σ the associated shift which is a word
over A. We now associate with σ an element w of the free group as follows. If the
shift is positive, we set w = σ and if it is negative, we set w = σ̄. In both cases,
v1w̄ and wv2 are positive and satisfy v1w̄|u1 and wv2|u2. This notion simplifies
notations in constructions and proofs given later.

Let T = 〈Q,A,B,Δ, I, F 〉 be a transducer realizing a selecting relation.
Consider a successful run ρ = q0

u1:v1−−−→ q1 · · · qn−1
un:vn−−−−→ qn of T and an embed-

ding ι of v = v1 · · · vn in u = u1 · · · un. As described before, there is, for each
integer 1 � j � n−1, a shift σ(ρ, ι, j). Let wj be defined by wj = σ(ρ, ι, j) if the
shift is positive and wj = σ(ρ, ι, j) if it is negative. Setting w0 = wn = ε, it is
easily seen that wj−1vjw̄j is positive and that wj−1vjw̄j |uj for each 1 � j � n.

4 Selectors

A transducer is a selector if each of its transitions is labelled by a pair (u, v)
of words such that v|u. The output is then obtained by selecting some symbols
of the input and deleting the others. This justifies the terminology. Clearly, the
relation realized by a selector is a selecting one. Our main result is a converse,
namely that any selecting relation can be realized by a selector.

It can be easily assumed that each transition of a selector is labelled by either
a pair (a, a) or a pair (a, ε) for some symbol a. Indeed, if a transition has an
input word of length greater than 1, it can be replaced by a bunch of transitions
using newly introduced states, one transition for each symbol of the input word.

As shown by Example 1, it is not true that any transducer realizing a selecting
relation is a selector. The transducer of Fig. 2 has indeed a transition 1 ba:ab−−−→ 1
although it realizes a selecting relation. However, the following theorem states
that any selecting relation is realized by a selector.

Theorem 2. Any rational selecting relation can be realized by a selector.

0 1

2

a : a

a : ε

a : a
ba : ba

a : ε
ba : b

a : a

Fig. 4. A selector realizing the same relation as in Example 1
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Example 3. The transducer depicted in Fig. 4 is a selector realizing the relation
considered in Example 1.

The proof of the theorem is carried out as follows. For a given transducer T ,
we define from T a sequence of selectors Tn. The construction is in the same spirit
as the resynchronization lemma given in [11, Lemma IV.6.2] but it is based on
transducers rather than on rational expressions. Each selector Tn realizes a sub-
approximation of the relation realized by T and each of these approximations
improves on the previous one, that is |Tn| ⊆ |Tn+1| ⊆ |T |. We finally show that if
T realizes a selecting relation, then Tn realizes the same relation as T for n large
enough. The transducer depicted in Fig. 4 is actually the selector T1 obtained
from the transducer T depicted in Fig. 2.

We now come to the definition of the selector Tn. Let T = 〈Q,A,B,Δ, I, F 〉
be a transducer and let n be a non-negative integer. The transducer Tn is defined
as follows. Its state set is Qn = Q × (A�n + Ā�n). Its initial and final states are
respectively I × {ε} and F × {ε}. Its set of transitions Δn is given by

Δn = {(q, w) u:v−−→ (q′, w′) : v|u and q
u:w̄vw′
−−−−−→ q′ in T }.

In the definition above, using the label w̄vw′ in the transition q u:w̄vw′−−−−−→ q′

assumes implicitly that w̄vw′ computed in the free group FA is a positive word.
In the constructed transducer, some states might be useless as they cannot occur
in a successful run. These useless states and all transitions involving them are
implicitly removed from Tn. The transducer T0 has the same state set as T but
its transition set Δ0 only contains transitions p u:v−−→ q of T where v|u.

0 1
a : ε

a : a

0ε

1ā 1b

1ε 1a

a : a

a : ε

a : a
ba : ba

ba : ε

a : ε
ba : b

ba : ba

a : a

ba : a

a : ε

a : a

Fig. 5. Transducers T0 and T1

Example 4. Consider the transducer T given in Example 1. The first transducer
depicted in Fig. 5 is indeed T0. The second one is the transducer T1 with some
extra useless states. If useless states 1a and 1b are removed, one gets T1 which
is the selector given in Example 3.
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The following lemma allows us to show that the relation realized by Tn is
contained in the relation realized by T .

Lemma 5. If there is run (q, w) u:v−−→ (q′, w′) in Tn, then v|u and there is a run
q u:w̄vw′−−−−−→ q′ in T .

Corollary 6. One has |Tn| ⊆ |T |.
Example 7. The relation realized by the selector T0 of Example 4 is strictly
contained in the relation realized by T . The selector T1 realizes the same relation
as T .

The following remark is useful in constructing runs in Tn. Let q u:v−−→ q′

be a transition of T and let w and w′ be negative or positive elements of the
free group of length at most n such that wvw̄′ is positive and wvw̄′|u. Then
(q, w) u:wvw̄′−−−−−→ (q′, w′) is a transition of Tn. The following lemma is a partial
converse of Lemma 5.

Lemma 8. Let T be a transducer realizing a selecting relation. Let q u:v−−→ q′ be a
successful run in T of delay d. If d � n, there is a successful run (q, ε) u:v−−→ (q′, ε)
in Tn.

Lemma 9. Let T be a normalized transducer realizing a selecting relation. For
any successful run ρ = q0

u:v−−→ qn, the leftmost embedding of v in u does not yield
any positive shift of length greater than the number of state of T .

Obviously, a similar result with rightmost embeddings and negative shifts also
holds. However, this does not imply that there always exists an embedding with
bounded delay. Nevertheless, this result holds and it is proved in the following
lemma.

Lemma 10 (Fundamental). Let T be a normalized transducer realizing a
selecting relation. Then, the delay of any successful run of T is bounded by the
number of states of T .

5 Decidability

In this section, we show that this is decidable whether a given rational relation
is selecting or not.

Let us recall that, for a transducer T , the transition set Δn of the trans-
ducer Tn is given by the following formula.

Δn = {(q, w) u:v−−→ (q′, w′) : v|u and q
u:w̄vw′
−−−−−→ q′ in T , |w|, |w′| � n}.

This allows us to define a function π from Δn to the set Δ transitions of the
transducer T which maps each transition (q, w) u:v−−→ (q′, w′) to the transition
q u:w̄vw′−−−−−→ q′. This function π is then extended to a morphism from Δ∗

n to the
set Δ∗. Since π maps consecutive transitions of Tn to consecutive transitions



724 L. Boasson and O. Carton

of T , it also maps runs in Tn to runs in T . Furthermore, it maps each successful
run (q, ε) u:v−−→ (q′, ε) in Tn to the successful run q u:v−−→ q′ in T with the same
label (u, v).

We consider each run in T (respectively in Tn) as a word over the alphabet Δ
(respectively Δn). We respectively denote by E and En the set of successful runs
in T and Tn. As sets of words over Δ and Δn, the two sets E and En are rational.
Indeed, E is accepted by the transducer T considered as an automaton over Δ
in the following way. Each transition τ = p u:v−−→ q of T is replaced by the
transition p τ−→ q in the automaton. Similarly the transducer Tn is considered as
an automaton accepting En.

Lemma 11. Let T be a normalized transducer with N states. Let E and EN be
set of successful runs in T and TN . The relation realized by T is selecting if and
only if π(EN ) = E.

Theorem 12. It can be decided whether the relation realized by a given trans-
ducer is selecting.

Regarding the complexity of the decision procedure, the following remarks
can be done. The size of a transition p u:v−−→ q is defined as 1 + |uv|. The size
of a transducer is then the sum of the sizes of all its transitions. The first step
of the decision procedure is the normalization of the transducer T which may
increase its size quadratically. The size of TN is then exponential in the size of T .
Checking equality π(EN ) = E can be done in exponential time in the size of T
and TN . The complete decision procedure is then doubly exponential in the size
of the given transducer.

6 Extensions and Open Problems

As a conclusion, we consider some natural questions about our result. These
questions deal with variants as well as extensions. In particular, the natural
extension to infinite words fails unexpectedly. We begin by some variants.

6.1 Variants

We present here two variants of our result. The first one gives raise easily to the
same conclusion whence the second one leaves the problem open.

Let us consider the set G = {(a, a) : a ∈ A} ∪ {(a, ε) : a ∈ A}. Our main
theorem states that if a relation R is contained in G∗, then it can be realized
by a transducer with transitions labelled by elements of G∗. This result can be
extended to any given subset H ⊆ G as follows. Let R be a relation such that
R ⊆ H∗. By Theorem 2, there is a selector T realizing R. It can be easily checked
that for each transition p u:v−−→ q of T , the pair (u, v) belongs to H∗.

We now turn to the second variant. Let us fix a subset I of (A×A)∪(A×{ε}).
A word v = b1 · · · bn is a subword with respect to I of a word u = a1 · · · am if
there exists a strictly increasing function ι from {1, . . . , n} to {1, . . . , m} such
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that, for each 1 � k � m, if ι(j) = k for some 1 � j � n then (ak, bj) ∈ I and
if ι−1(k) = ∅ then (ak, ε) ∈ I. This is denoted by v|Iu. If I = G, the relation |I
is the classical subword relation |. If the set I contains A × {ε}, our proof can
be adapted to get the result. It is an open problem whether our result can be
extended to the general setting. In the same vein, many variants of the subword
relation could be considered.

6.2 Finitely Generated Monoid

We show here that a very general extension of our result as a Fatou property is
not possible. It would be tempting to state that if a rational relation R is con-
tained in a finitely generated sub-monoid M of A∗×B∗, then R can be realized by
a transducer transitions of which are labelled by elements of M . Unfortunately,
this fairly general statement does not hold as the following example shows.

0 1 2
ε : b

a : a

b : ε

Fig. 6. Transducer realizing (ε, b)(a, a)∗(b, ε)

Example 13. Let A be the alphabet {a, b} and let R be the relation {(anb, ban) :
n � 0} = (ε, b)(a, a)∗(b, ε). It is contained in the sub-monoid M = {(u, v) : |u|b =
|v|b} of A∗ × A∗ which is generated by the its finite subset {(ε, a), (a, ε), (b, b)}.
However, R cannot be realized by a transducer labelled by elements of M .

A first open problem is to find a characterization of the finitely generated
sub-monoids M of A∗ × B∗ for which the Fatou property holds. So far, for each
sub-monoid M of A∗ × B∗ that has been proved to have the Fatou property,
it is also decidable whether a given rational relation R is contained in M . This
naturally raises the second problem whether the Fatou property implies the
decidability of the inclusion R ⊆ M .

6.3 Infinite Words

We consider finally the extension of our result to infinite words. Surprisingly,
the result cannot be extended to infinite words. As the following example shows,
there exists a rational selecting relation on infinite words that cannot be realized
by a selector.

Example 14. Let A be the alphabet {a, b} and let R be the relation on Aω

defined by

R = {(an(ba)ω, banbω) : n � 0} = (ε, b)(a, a)∗(ba, b)ω.
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0 1 2 3
ε : b

a : a

b : b
a : ε

b : b

Fig. 7. Büchi transducer realizing (ε, b)(a, a)∗(ba, b)ω

This relation is realized by the transducer depicted in Fig. 7 and equipped with a
Büchi acceptance condition [10]. For each integer n, the output ω-word banbω is
a subword of the input ω-word an(ba)ω. However, this relation cannot be realized
by a transducer labelled by elements from {(a, ε) : a ∈ A} ∪ {(a, a) : a ∈ A}.
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Abstract. We mainly investigate the power of weight-reducing string-
rewriting systems in the context of transducing observer systems. First
we relate them to a special type of restarting transducer. Then we situate
them between painter and length-reducing systems. Further we show that
for every weight-reducing system there is an equivalent one that uses only
weight-reducing painter rules. This result enables us to prove that the
class of relations that is computed by transducing observer systems with
weight-reducing rules is closed under intersection.

1 Transducing by Observing

The paradigm of Computing by Observing was originally introduced for gener-
ating and accepting formal languages [3,4]. The basic architecture is depicted
in Figure 1. At the basis there is some system that evolves in discrete steps.
Every configuration of this system is mapped to one single letter by the so-
called observer. In this way a kind of protocol of the computation is built. This
idea of observing and writing a protocol translates maybe even more naturally
into transductions if we consider the input and the observation as a pair.

Fig. 1. Schematic representation of a transducing observer system

This approach was first investigated with painter string-rewriting systems
as underlying systems [5]. They turned out to be quite powerful and compute
c© Springer International Publishing Switzerland 2015
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classes of transductions that are beyond the best-known classes like rational
and pushdown transductions. This corresponds to the fact that they are equi-
valent to linear bounded automata, when we use them for accepting languages.
In the sequel, length-reducing string-rewriting systems are shown to compute
a smaller class of transductions that is actually similar to the one computed
by RRWW-transducers [6], another recently introduced model for computing
word transductions based on string-rewriting systems [7]. The main problem in
showing the equivalence between these two classes was that a length-reducing
system can make at most n reduction steps on a string of length n. In this respect
weight-reducing systems are slightly more permissive, because they can allow a
number of steps that is linear in the length of the input string. Therefore, they are
a good candidate for further investigations on transductions realized by string-
rewriting systems that are linearly bounded in the length of their derivations. For
restarting automata, the relation between length-reducing and weight-reducing
rewriting is a longstanding open question [9]. Thus, investigating these systems in
the context of transductions might open up new insights into the latter question.

Recently, the Computing by Observing architecture has also received interest
from an entirely different perspective: it formalizes the concept of observer that
was postulated by Searle as an indespensable constitutent of any computation
[14]. Here the architecture offers ways to reason about such observers not only
philosophically but in a formal approach [10,11].

2 Transducing Observer Systems

We use standard terminology and notations from Formal Language Theory as
they are exposed for example by Salomaa [13]. Concerning transductions we
mainly follow Aho and Ullman [1]; in contrast to this standard approach, we
exempt pairs with the empty word on the left hand side and some nonempty
right hand side. Since the input is the space on which we computate, such pairs
might make classes different that are equal for all other pairs.

The observed systems in our architecture will be string-rewriting systems.
Concerning these we follow notations and terminology as exposed by Book and
Otto [2]. A string-rewriting system W on an alphabet Σ is a subset of Σ∗ × Σ∗.
Its elements are called rewrite rules, and are written either as ordered pairs (�, r)
or as � → r for �, r ∈ Σ∗. In the role of observers we use a variant of the devices
that have become standard in this function: monadic transducers.

Definition 1. A generalized monadic transducer is a tuple O =
(Q,Σ,Δ, δ, q0, φ), where the set of states Q, the input alphabet Σ, the
transition function δ, and the start state q0 are the same as for deterministic
finite automata. Δ is the output alphabet, and φ is the output function, a
mapping Q �→ Δ∗ which assigns an output word or the empty word to each
state. The class of all generalized monadic transducers is denoted by gMT .

The mode of operation is as follows: the monadic transducer reads the input
word; then the output is the image under φ of the state it stops in. For a
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sequence of strings (w1, w2, . . . , wk) we write O(w1, w2, . . . , wk) for O(w1) ·
O(w2) · · · O(wk).

Now we combine the two components, a string-rewriting system and a gen-
eralized monadic transducer in the way described in the introduction.

Definition 2. A transducing observer system, short T/O system is a triple
Ω = (Σ,W,O), where Σ is the input alphabet, W is a string-rewriting system
over an alphabet Γ such that Σ ⊆ Γ which consists of all the symbols that occur
in the rule set W , and the observer O is a generalized monadic transducer, whose
input alphabet is Γ .

The mode of operation of a transducing observer system Ω = (Σ,W,O)
is as follows: the string-rewriting system starts to work on an input word u.
After every reduction step the observer reads the new string and produces an
output. The concatenation of all observations of a terminating derivation forms
the output word v. The relation that Ω computes consists of all possible pairs
(u, v). Note that already the input string is the first observation; thus there can
be an output even if no rewriting rule can be applied to the first string.

Further, the observer is equipped with an important feature: By outputting
the special symbol ⊥ it can abort a computation. In that case no output is
produced. The other way in which no output might be produced is, if the string-
rewriting system does not terminate. Formally, the relation computed is

Rel(Ω) = {(u, v) | ∃w : w ∈ W (u) and v = O(w) and |v|⊥ = 0},

where W (u) denotes all sequences of words (u, u2, . . . , uk) that form terminating
derivations u ⇒W u2 ⇒W · · · ⇒W uk of W ; |v|⊥ is the number of occurrences
of ⊥ in v. Thus Rel(Ω) consists of all pairs of input words combined with the
observations of possible terminating derivations on the given input word.

Different types of string-rewriting rules result in different types of transducing
observer systems. Here we will use three types of string-rewriting systems. A
string-rewriting system is called a painter system if for all its rules (�, r), we
have |�| = |r| = 1, that is, every rule just replaces one letter by another one.
A string-rewriting system over an alphabet Σ is called weight-reducing if there
exists a weight function ω : Σ �→ N+ from the alphabet to the set of all positive
integers such that for all the rewrite rules (�, r) we have ω(�) > ω(r). Thus every
rule reduces the string’s weight by at least one. Finally, a string-rewriting system
is called length-reducing if for all its rules (�, r) we have |�| > |r|, that is, every
rule shortens the string by at least one symbol.

The class of all string-rewriting systems that have painter, weight-reducing,
and length-reducing rules are denoted by pnt-SRS, wr-SRS, and lr-SRS, respec-
tively. The corresponding transducing observer systems are denoted by pnt-T/O,
wr-T/O, and lr-T/O. Finally and in what follows the class of relations defined
by a system of a special type is denoted by Rel([system]).

In order to see how a transducing observer system works, we first look at an
example that uses painter rules.
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Example 3. We construct a transducing observer system that computes the
relation {(an, (anbn)n) | n ≥ 2}. Note that here the right-hand sides of the
pairs are much longer than the left-hand sides; more precisely, a left-hand side
of length n has a right-hand side of length 2n2.

The tactics our system follows to generate the right-hand side is the following:
if the input consists only of letters a, then these are changed to A from left to
right one by one in n steps. During each of these steps, the entire string is marked
with underline from left to right; every time a letter is marked the output a is
produced. Then the marks are removed from left to right and in every step b
is output. When the entire input string has been converted to A this will have
produced exactly one factor anbn for every input letter.

The string-rewriting rules that we employ are a → α and α → A for convert-
ing the input letters a in two steps to A; the rules a → a, α → α, and A → A are
there for marking the letters; finally, a → a and A → A are used for unmarking
the letters. Of course, these rules could be applied in arbitrary orders by the
string-rewriting system. Thus the observer must be constructed in such a way
that it rejects any derivation that deviates from the sequence described above.

We introduce two mappings that help us specify the observer clauses in a
more concise manner. For a string w we denote by the set of all strings that
have the same letter sequence as w and have exactly one non-empty continuously
underlined factor that starts in w’s first letter. So for a string of length n we
obtain n−1 different strings. is the symmetric version denoting underlines
that start somewhere in the string and are continuous till its end. Both apply
also to sets of strings in the obvious way. Finally we must introduce a special
symbol f by a rule A → f , which cannot be rewritten anymore. The application
of this rule results in irreducible strings of the form f∗ that are needed to stop
the system.

The observer realizes the following mapping:

In this way a derivation sequence

AAAaaa ⇒ AAAαaa ⇒∗ AAAαaa ⇒∗ AAAαaa ⇒ AAAAaa ⇒∗ AAAAaa

produces exactly the output a6b6. Further it is important to notice that the
application of any rule out of this order leads to a string that is not treated in
the first three clauses of O and thus results in the abortion of the computation.
For example, if in the first string AAAaaaa any symbol is underlined or an a
different from the left-most one is converted to α, this leads to a rejection. Other
rule applications are not possible, and for the other configurations the situation
is similar. �
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3 The Relation to Restarting Transducers

One aim of the work on transducing observer systems has been the search for
new characterizations of known classes of transductions. We have been especially
interested in relations to restarting transducers which were derived from restart-
ing automata that were introduced by Jancar et al. [8]. A restarting transducer
(RRWW-Td for short) is a 9-tuple T = (Q,Σ,Δ, Γ, c| , $, q0, k, δ) where Q is the
finite set of states, Σ and Γ are the finite input and tape alphabet, Δ is the
finite output alphabet, c| , $ /∈ Γ are the markers for the left and right border
of the tape, q0 ∈ Q is the initial state and k ≥ 1 is the size of the read/write
window. Additionally the transition function δ is defined by:

δ : Q × PC(k) → P(Q × ({MVR} ∪ PC≤(k−1)) ∪ {Restart,Accept} × Δ∗),

where PC(k) denotes the set of possible contents (over Γ ) of the read/write
window of T . The transducer works in cycles, where each cycle is a combination
of a number of move-right-steps, one rewrite-step and a restart- or accept-step.
In case of a tail computation the rewrite-step is optional.

Every rewrite step of the form (q, v) ∈ δ(p, u) shortens the tape, i. e. |u| > |v|.
After a rewrite step is applied, the read/write window is placed immediately to
the right of the string v. Further, the output of the transducer, that is a word
in Δ∗, is produced during a restart-step at every end of a cycle or during an
accept-step in a tail computation.

Such a transducer T defines a transduction as every input word w ∈ Σ∗

is mapped onto the set of words z ∈ Δ∗ for which there exists an accepting
computation of T during which the output z is produced.

Equivalences of classes computed by restarting transducers and transduc-
ing observer systems would strongly connect the two models. So far, however,
only close similarities have been found; most noteworthy the following relation
between Rel(lr-T/O) and Rel(RRWW-Td), the class of transductions computed
by RRWW-transducers, via a morphism:

Theorem 4 ([6]) . For every relation R ⊆ Σ∗ × Δ∗ and R ∈ Rel(RRWW-Td),
there is a uniform morphism ϕ and a relation S ∈ Rel(lr-T/O) such that R =
{(u, v) | (ϕ(u), v) ∈ S}.

Looking at weight-reducing string-rewriting systems instead of length-reducing
ones, we see that the resulting class of relations contains Rel(RRWW-Td), but
it is not clear whether this inclusion is proper. Before we can prove this we need
to recall the formal definition of a restarting transducer.

To increase the readability of the behavior of restarting automata we use
meta-instructions (see [12]). We recall that a tuple of the form (E1, u �→ u′, E2)
mirrors the cycle of an RRWW-automaton that reads across the tape content E1,
rewrites a subword u by a shorter subword u′ and finally the automaton checks
if the part of the tape unseen until then corresponds to E2. As these meta-
instruction describe the rewriting behavior of an automaton they can easily be
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extended to restarting transducers. Now

(E1, u �→ u′, E2; v)

is a restarting transducer’s meta-instruction, where E1, E2, u, u′ are defined as
for the corresponding automaton and v is the output word produced at the end
of this cycle. To describe accepting tail computations we use meta-instructions
of the form (E,Accept; v).

Theorem 5 . Rel(RRWW-Td) ⊆ Rel(wr-T/O).

Proof. As mentioned above, for every relation R ∈ Rel(RRWW-Td) there is a
relation S realized by a length reducing system and a morphism ϕ such that
R = {(u, v) | (ϕ(u), v) ∈ S}. Actually this morphism just transforms each input
word into a redundant representation with a copy of each letter, and thus it
provides some additional space to simulate one cycle of the restarting transducer
in two steps of the lr-T/O-system. The latter was needed to “clean up” after
applying a rule. Here we extend this idea to weight reducing systems.

Let T = (Q,Σ,Δ, Γ, c| , $, q0, k, δ) be an RRWW-transducer. The weight func-
tion ω is defined for all x ∈ Γ as ω(x) = 2. The string-rewriting rules that the
wr-T/O-system Ω uses are derived from the meta-instructions of T . Let

t : (E1, u · x → u′, E2; v)

be such a transition for u, u′ ∈ Γ ∗ and x ∈ Γ . We now associate with each
transition a unique label, here t. From this description we build a wr-T/O-system
Ω = (Σ,W,O) such that for each of the meta-instructions above two rules are
added to W ⊆ Γ ′∗ × Γ ′∗: u · x → u′ · t and t → ε. Note that Γ is a subset of Γ ′,
where each label t ∈ Γ ′\Γ . Furthermore, the weight assigned to each t equals
1. Finally for every meta-instruction of T the observer’s mapping includes the
clause

O(w) = v; if w ∈ E1 · u′ · t · E2,

and O(w) = ε if no such label t is present in w. Observe that after the application
of any rule from W the weight of a string is at least decreased by 1. Further note,
that in this way the proof of correctness is a direct consequence of the simulation
of restarting transducers by length reducing systems, cited above. Consequently,
accepting meta-instructions of T are simulated by introducing a special symbol
ta, which can not be rewritten anymore.

Finally, T rejects an input word simply by getting stuck, that is, no transition
is applicable in the current configuration. As the clauses of the observer mirror
directly the move-right steps of T , it will also get stuck. In this situation we have
to output ⊥ to abort the computation of Ω. This can be done by making the
observer “complete”, that is, the transition function of O is extended such that
every input word w, which is not described by the regular expressions above
leads to the following output:

O(w) = ⊥.

This completes the proof. �
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So, for the moment we have the following chain of inclusions: Rel(lr-T/O) ⊆
Rel(RRWW-Td) ⊆ Rel(wr-T/O). But we do not know if either of them is proper.
We suspect that this really is a chain and the three classes are different.

One indicator that Rel(wr-T/O) is similar to Rel(RRWW-Td) is the fact that
the class Rel(wr-T/O) is subject to the same length-bounded property as the class
Rel(RRWW-Td). This is a property that holds for every pair from relations from
these classes; it bounds the length of the right-hand side in terms of the length
of the left-hand side. In general, we call a relation R length-bounded, if there is
a constant c, such that for each pair (u, v) ∈ R with u �= ε, |v| ≤ c · |u| holds.
All relations in Rel(RRWW-Td) are length-bounded; this can be seen in a way
similar to the following proof that this property also holds for Rel(wr-T/O).

Lemma 6. For every relation R in Rel(wr-T/O), there is a constant c such that
for each pair (u, v) ∈ R with u �= ε, |v| ≤ c · |u| holds.
Proof. Let k be the sum of the weights of all the symbols in a given input string w.
Every rule application in a wr-T/O system must reduce the weight by at least one.
Therefore there can be at most k computation steps. In every step the observer
outputs one of its output strings. If n is the length of the longest string that can
be output in one step, then the total length of the output for the string w cannot
exceed k · n. If m is the highest possible weight of an input symbol, then k is at
most |w| · m. Thus setting c = |w| · m · n makes the statement true. �

4 A Hierarchy of Transductions Realized by Observer
Systems

Now we compare the computational power that transducing observer systems
achieve with the three types of string-rewriting systems introduced above. From
earlier work we know that the relations computed by length-reducing T/O-
systems are included in those that are computed by painter T/O-systems [6].
The same is true for weight-reducing systems. In order to show this we first
establish a kind of normal form for weight-reducing systems.

Lemma 7. Every transducing observer system with weight-reducing rules can
be simulated by one with rules that do not increase the string’s length.

Proof. The key observation is the following: a symbol of a given weight s can
only be rewritten to a maximum of s − 1 symbols. If the maximum weight of an
input symbol is m + 1, then a string w cannot increase in length beyond m · |w|.

So we code m symbols into one with space symbols filling the unused spots.
In the beginning, every letter is written into the first one of the m slots in its
position. The main problems are then how to implement rule applications and
when to delete empty spaces. If we just leave empty spaces there, the distance
between different parts of the left-hand side of a rule could become arbitrarily
large. If we delete them too early, later expansions might become impossible.

For the latter problem we delete as late as possible. This means that a rewrit-
ing rule that has k compound symbols on its left-hand side will always write k
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new symbols unless the total of coded original symbols on its right-hand side
is less than k. In that case, each symbol is written by itself into one compound
symbol, the remaining positions are deleted. If there are more than k original
symbols, say �, then we distribute them in order from left to right in such a
way that the first k −  �

k �k original symbols positions contain  �
k � + 1 original

symbols; the remaining positions contain  �
k � original symbols. In this way the

total weight of the original symbols can never exceed the number of available
slots.

For a rule in the original system we need to introduce several new rules,
because we do not know what the left-hand side will look like. The original
symbols can be distributed in various ways over compound symbols with space
slots in between, and the factor might even start and end inside compound
symbols. So for an original rule u → v we need to implement all the possible left-
hand sides starting with at least one original symbol in the left-most position and
ending with at least one symbol in the right-most position. The symbols between
the two ends might occur in just one compound symbol each or with several in
one compound symbol. All possibilities must be implemented. Because we do
not have completely empty compound symbols, there are only finitely many
possibilities.

Note that at the right-most and left-most positions the distribution of sym-
bols on the right-hand side described above might theoretically not work. If the
rule’s left-most symbol occupies the right-most slot in a compound symbol and
more than one symbol should be written into that position, then this is not pos-
sible. However, if a symbol occupies the right-most slot, then this means that
some rule before (or a sequence of rules) expanded a string roughly by the factor
m; this in turn means that the weight of nearly all the original symbols in this
string must be one. Thus we can adapt the distribution of original letters slightly
to putting only one into the left-most compound symbol. We can proceed in a
similar fashion for other small numbers greater than one and on the right end
of the rewritten factor.

It is obvious how the observer of the new systems must work: it reads the
compound symbols and after each one it changes its state as if it had read all
the original symbols contained in the compound one. �

Theorem 8. Rel(wr-T/O) � Rel(pnt-T/O).

Proof. Transducing observer systems with weight-reducing rules fulfill the length-
bounded property from Lemma 6. The relation {(an, (anbn)n) | n ≥ 2} from
Example 3 shows that with painter systems relations without such a linear bound
can be computed. Thus the inclusion is proper.

The key for showing that the inclusion Rel(wr-T/O) ⊆ Rel(pnt-T/O) holds
is Lemma 7, which shows us that for every wr-T/O-system there is an equivalent
one that uses only non-increasing rules. On the other hand, it has been shown sev-
eral times how general non-increasing (context-sensitive) rules can be simulated
by painter systems. The technique was used for example in the proof of Theorem
4.1 and Corollary 4.1 on accepting observer systems [4]. Further, the proof that all
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relations of deterministic pushdown transducers can be computed via painter sys-
tems shows how to accommodate output in this context [5]. For technical details
we refer to the referenced descriptions of these constructions. �

So this results follows in a straight-forward manner from earlier proofs. Now
we take a look at what happens, if we put a further restriction on the painter sys-
tems in Theorem 8. Namely, we require the painter rules to be weight-reducing,
too. Systems with this type of rules can still simulate all systems, whose rules
are weight-reducing but not necessarily of size one. Thus the length bound of
one on the size of the rules does not affect the computational power in this case.

Theorem 9. Rel(wr-T/O) = Rel(wr-pnt-T/O).

Proof (Sketch). Again, following Lemma 7 we can suppose that we are dealing
with a weight-reducing system without length-increasing rules. The main prob-
lem in splitting a rule that rewrites more than one symbol into several painter
rules is the following: a rule like 728 → 555 increases the weight in the second
position, although the total weight is decreased. Here and in what follows the dig-
its are symbols with the corresponding weight. So the painter rule resulting from
the rewriting in the central position is 2 → 5 and would be weight-increasing.
The basic idea to solve this is the introduction of new symbols. In this case,
between the weights 2 and 1 we would use a symbol like 25. The index indicates
the symbol that is in that position after application of the original rule.

The main difficulty lies in an increase in weight that might return to the same
symbol in a loop. Such a loop can run several, actually an unbounded number
of times in the same position. Therefore no static solution like the fixed index
above can work. Instead, we make use of the fact that an increase in the weight
in one position must be compensated by a decrease in some other position in
the same rule. In the example above there are two options: 7 → 5 in the first
position and 8 → 5 in the last. So we just mark the 2 with the name of the loop
and let an index run for example in the position of the 8.

Two consecutive runs of this same loop could need the same index in the
same position. To avoid this, we actually introduce some additional space by
a rule 8 → 5 instead of 8 → 5 every time the loop is started. The resulting
system is not a painter system anymore. But from another application of Lemma
7 we can obtain an equivalent painter system.

One crucial point is the definition of what we call a loop. Since we reserve
a special index and use special painter rules (that mark the 2 and introduce
the in our example), we can only deal with a finite number of loops. With
a sufficiently restrictive definition of loops we can ensure that there are only
finitely many distinct ones. �

As we have explained, we use the reduction of weight at the start of a loop for
the (temporary) creation of some additional space. This is a technique similar to
one that Jurdzinski and Otto used, when they showed the equivalence between
finite-change automata and shrinking restarting-automata [9].
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From the last part of the proof or simply from Lemma 7 we can see that
the use of context-free rules (left-hand side of length one, right-hand side arbi-
trarily long) does not increase the computational power compared to the use of
painter rules as long as we use only weight-reducing rules. Denoting by wr-cf- the
class of all weight-reducing context-free string-rewriting systems we can slightly
generalize Theorem 9.

Corollary 10. Rel(wr-T/O) = Rel(wr-pnt-T/O) = Rel(wr-cf-T/O).

This is in contrast to the situation for general painter and context-free systems.
There the former allow linearly bounded computations, while the additional use
of just one context-free rule leads to computational completeness [4].

The next question concerns the relation between T/O systems with length-
reducing and those with weight-reducing rules. The simple observation that every
length-reducing string-rewriting system is weight-reducing for the weight func-
tion that assigns weight one to every symbol places weight-reducing T/O-systems
above the latter class.

Theorem 11. Rel(lr-T/O) ⊆ Rel(wr-T/O).

Actually, this result also follows directly from Theorem 5 and the fact that
length-reducing T/O-systems can be simulated by RRWW-transducers. However,
we are unable to determine whether this inclusion is proper. Intuitively, we sus-
pect that it is. A weight-reducing system can in some sense use the input several
times, while length-reducing rules necessarily consume it during the computa-
tion. To show what we mean by using the input several times, we sketch the
proof of the following result.

Theorem 12. The class Rel(wr-T/O) is closed under intersection.

Proof. After Theorem 9 we can assume that all relations in wr-T/O are computed
by systems that only use painter rules. We only sketch how a wr-pnt-T/O can
compute the intersection between two relations that are computed by systems
from this class, let us call them Ω1 and Ω2. Further, let their observers be O1

and O2, respectively. For both relations the length-bounded property holds, and
let k be a constant that fulfills this property for both relations.

The system that computes the intersection works on four tapes that are
simulated on the symbols of the input string. First, two copies of the input
string w are created. Then the computation of Ω1 on w is simulated and the
output is written on the third tape. Here we need to write k symbols into one.
Then the output of Ω2 on w is computed and written on the fourth tape.

It remains to compare the two outputs. Only if they are equal we now out-
put exactly this string. During the steps before no output has been produced.
Since Ω1 and Ω2 are both weight-reducing, appropriate weights can be chosen
such that the two successive computations are simulated by weight-reducing
rules. Also storing the outputs can be done in a weight-reducing way, since
symbols that have been written are not changed any more; thus the empty out-
put should produce the highest weight, every further symbols from left to right
should decrease the weight. �
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The same tactics does not work in a direct way for length-reducing rules, just
as it would not work for general weight-reducing rules. Already the computation
of the first output could reduce the string to just one symbol, and no copy can
be stored on a second track. It also does not seem to be possible to simulate the
two computations in parallel, since the rewritings might take place at different
positions. However, it is not clear how to formalize this. Therefore the properness
of the inclusion remains an open problem.

This parallels the situation for RRWW-automata. These are like RRWW-
transducers, but do not produce output; rather they accept or reject a word.
There, automata with length-reducing rules can be simulated by those with
weight-reducing rules (which are called shrinking restarting automata) [9]. But
it remains unknown whether the weight-reducing rules lead to bigger computa-
tional power.

5 Conclusions

The results of the preceding sections are summarized in Figure 2. Lines indicate
inclusions from bottom to top, arrows indicate proper inclusions. Dotted arrows
show the relation via morphisms in the style of Theorem 4.

Rel(lr-T/O)

Rel(wr-T/O) =
Rel(wr-pnt-T/O) =
Rel(wr-cf-T/O)

Rel(pnt-T/O)

Rel(cf-T/O)

Rel(RRWW-Td)

Fig. 2. The hierarchy of transducing observer systems with the relation to RRWW-
tranducers

What we have not treated explicitly is the relation of the two classes on top,
but it follows from results on accepting observer systems. Painters are equally
powerful as linear bounded automata, context-free rules allow the simulation
of arbitrary Turing Machines [4]. Thus Rel(pnt-T/O) is related to the class of
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transduction that can be computed by Turing Machines with a linear space
bound, while Rel(cf-T/O) are all computable relations; these two classes are
obviously not equal.

There are mainly three questions left open; these regard the properness of
the inclusions Rel(lr-T/O) ⊆ Rel(wr-T/O), Rel(lr-T/O) ⊆ Rel(RRWW-Td), and
Rel(RRWW-Td) ⊆ Rel(wr-T/O). As argued above and in earlier work [6], we
expect all three of these inclusions to be proper. Theorem 12 might be a hint that
Rel(RRWW-Td) and Rel(wr-T/O) are different, because the former might not be
able to compute intersections. We also doubt that the morphism in Theorem 4
can be eliminated, which would mean that also Rel(lr-T/O) and Rel(RRWW-Td)
are different.
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Abstract. We present an efficient algorithm for testing approximate
dtd validity modulo the strong tree edit distance. Our algorithm inspects
xml documents in a probabilistic manner. It detects with high proba-
bility the nonvalidity of xml documents with a large fraction of errors,
measured in terms of the strong tree edit distance from the dtd. The run
time depends polynomially on the depth of the xml document tree but
not on its size, so that it is sublinear in most cases (because in practice
XML documents tend to be shallow). Therefore, our algorithm can be
used to speed up exact dtd validators that run in linear time.

Keywords: Property testing · Regular tree automata · dtd · XML

1 Introduction

Validity checking for collections of large xml documents may quickly become
time consuming. With today’s technology, more than 10 minutes are needed to
validate a single document of more than 20 giga bytes, so that the treatment
of hundreds such documents may take days or weeks. This difficulty could be
overcome by sublinear algorithms that can quickly detect invalid documents
without reading them entirely.

Whether sublinear algorithms for xml schema validation exist is a principle
question. One approach to obtain sublinear algorithms for schema validation is
to use algorithms that evaluate schemas on xml streams in an online manner
[9,11]. In this manner, errors can be in sublinear time when they are localized
in a prefix of sublinear size of the xml streams, but not otherwise. In contrast,
our objective is to develop probabilistic approximation algorithms inspired by
property testing [2,7,8] which access a random fragment of constant size only, in
order to detect invalidity with high probability, if the input structure contains
many errors wheresoever located.

For approximate membership testing for unranked ordered trees as with xml,
we need a storage model that permits to randomly draw descendants of any
node from a uniform distribution, while giving deterministic access to its first
child, next sibling and parent. Such a storage model is easy to implement with
the techniques from xml databases. The number of errors is measured by the
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minimal number of edit operations needed to repair the xml document so that
it satisfies the schema, but normalized with respect to the documents size. The
more edit operations are permitted, the smaller is the error measured, and the
easier becomes approximate membership testing. The only positive result so
far applies to testing DTD validity modulo the tree edit distance with subtree
moves [7]. But this edit distance is weaker than the usual edit distance, in that
it permits subtree moves beside of all usual operations. Thus the edit distance
with move can be very small compared to the usual edit distance and therefore
it detects less errors. Approximate membership for tree automata modulo the
usual edit distance would be nice to have, but its existence was stated as an
open question in [5]. It should also be noticed that property testers for graphs
are usually limited to local properties [13,15].

The first contribution of this paper is an approximate membership tester for
unranked tree automata modulo the usual tree edit distance [14,18], closing the
open problem from [5]. Indeed such a test can be obtained by linearization of
unranked trees into words. In order to show this, we use the nontrivial obser-
vation that the usual edit distance between two trees is bounded in function
of the edit distance of their linearizations [1]. Thereby, can we apply the recent
approximate membership tester [12] for non-deterministic finite automata (nfas)
modulo the edit distance on words. This tester improves on a previous tester by
Alon, Krivelevich, and Newman [2] for the Hamming distance, so that it runs
in polynomial time in the size of the automaton and the inverse error preci-
sion, and still independently of the size of the input word. However, the time
complexity of the so obtained tester for appoximate membership for unranked
tree automata depends exponentially on depth of the input tree. This is not a
problem for shallow trees, that are frequent in the case of xml, but leaves open
whether this depth dependence can be removed, or whether a polynomial depth
dependence can be obtained.

The second and main contribution of this paper is an efficient probabilistic
algorithm testing approximate dtd validity modulo the strong tree edit distance
from [17], which restricts the usual tree edit operations to leaf insertion, leaf
deletion, and node relabeling (while ruling out node inserting and deletion). Its
run time depends only on the depth of the xml document but not of its size.
Trivially, the same tester is also correct for all weaker distances such as the
usual tree edit distance. With inputs: an error precision ε > 0, a dtd D, and
an xml documents t that is ε-far (normalized by the size of t) from satisfying
the dtd D modulo the strong edit distance; the algorithm returns no with high
probability. It answers close for valid trees, and either close or no for all
others. The running time is polynomially bounded in the depth of t, 1/ε, and
the mintree size mD of the dtd, which is the maximum over element names
a ∈ Σ of the minimal sizes of a-labeled subtrees of D-valid trees. Even though
mD may grow exponentially with D, it seems to be close to the size of D for
all practically relevant dtds. Furthermore, mD can be computed in quadratic
time in the size of D, so unusual cases can be recognized efficiently and passed
directly to exact dtd validity checking.
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The next difficulty is that we cannot use the linearization approach for
approximate membership testing modulo the strong tree edit distance. To rem-
edy the situation we study weighted words, i.e., words in which all positions
are assigned a weight. The edit distance on words is also lifted to weighted
words, such that the costs of edit operations are given by these weights. Then,
we extend the algorithm from [12] to a polynomial time nfa membership tester
for weighted words modulo the stong edit distance. We next contribute a direct
reduction from approximate dtd validity to approximate nfa membership of
weighted words.
Outline. In Section 2 we recall preliminaries on xml data models and schemas.
In Section 3, we recall edit distances for trees and words. In Section 4, we present
our main result. In Section 5, we introduce weighted words, lift the edit distance,
and present our tester for membership of weighted words to regular languages
modulo the edit distance. In Section 6, we prove the main result. A long version
with full proofs is available at https://hal.inria.fr/hal-00803696.

2 Data Models and Schemas

We recall preliminaries on the xml data model and on xml schemas.
Words. An alphabet Σ is a finite set. We denote the set of words over alphabet
Σ by Σ∗. The length of a word w ∈ Σn is |w| = n and the set of its positions is
pos(w) = {1, . . . , n}. The empty word is denoted ε and w·w′ is the concatenation
of w and w′.

A nondeterministic finite automaton with ε-transitions (nfa) is a tuple A =
(Σ, Q, init , fin, Δ), where alphabet Σ is a finite set, Q is a finite set of states
with subsets init and fin of initial and final states, and Δ ⊆ Q × (Σ � {ε}) × Q
a transition relation.

For states q, q′ ∈ Q, ε−→ is the relation such that q
ε−→ q′ if and only if

(q, ε, q′) ∈ Δ. In analogy, for any a ∈ Σ, q
a−→ q′ if and only if (q, a, q′) ∈ Δ.

The relation ε−→∗ is the reflexive transitive closure of ε−→. The relation a=⇒ includes
multiple ε-transitions and a single a-transition, i.e, a=⇒ is the composition of
relations ε−→∗◦ a−→ ◦ ε−→∗.

A quasi-run of an nfa A on a word w = a1 . . . an over Σ is a function
r : pos(w) → Q such that r(i − 1) ai=⇒ r(i). A run is a quasi-run such that :
∃q ∈ init , q

ε−→∗r(0). A run is called successful if r(n) ∈ fin. The language L(A)
recognized by A is the set of all words w that permit a successful run.

An nfa A = (Σ, Q, init , fin, Δ) is productive if every state in Q is reachable
from init and co-reachable from fin. Without loss of generality we might assume
all automata input by our algorithms as productive.

A fragment of a word w is a subset of its positions. A fragment of consecutive
positions (or without holes) is called an interval and denoted by I =]i, j] as
usual. A factor of w is the word located at an interval, and a subword is the
word located at a fragment. The subword of w at fragment F is denoted wF .

An interval I of w is called blocking for an nfa A if starting from any state of
A, every possible quasi-run of A on wI gets stuck, that is, none of those possible

https://hal.inria.fr/hal-00803696
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quasi-runs occurs in some successful run on a word in L(A). As an example, if A
is an automaton recognizing L = ab∗, then the interval ]0, 2] of aab is blocking,
since after reading the first a, A cannot proceed with any second “a”. Whether a
fragment is blocking is defined similarly, except that the automaton is allowed to
jump over holes to arbitrary accessible states. We can decide whether a fragment
F is blocking for A in time O(|F | |A|) without reading the entire word [12].
XML Data Model. Thexmldatamodel essentiallyboils downtofiniteunranked
data trees when ignoring details of attributes, processing instructions and com-
ments. Since we only consider structural aspects of xml documents described by
dtds, we can safely ignore data values and thus simplify the xml data model fur-
ther to finite unranked trees over a finite alphabet (fixed by the dtd).

The set of unranked trees over an alphabet Σ is the least set T ∗
Σ containing

all tuples a(t1, · · · , ti) where a ∈ Σ and t1 · · · ti in T ∗
Σ . The set nod(t) of nodes

of an unranked tree t is a prefix closed subset of N∗ (words with labels in N).
The size |t| is the number of nodes of t. As usual, we have the binary relations
parent t, fct (firstchild) and nst (nextsibling) on nod(t). The root of t is denoted
by root t = root = ε and is the unique node without parent. The i-th child of a
node v is v · i. A leaf is a node without children. The depth d(t) of a tree is the
maximal number of edges on paths from some leaf to the root with parent edges
only. For any v ∈ nod(t) we denote by t|v the subtree of t rooted at node v, and by
t[v] ∈ Σ the label of v. Furthermore, we define word(t) ∈ Σ∗ to be the sequence
of labels of the children of the root of t. For instance, if t = c(b(a, a), b(a, a, a))
then word(t) = bb and word(t|root·2) = aaa.
Schemas. Various languages for defining schemas of xml documents were pro-
posed in the literature. Document type descriptors (dtds) are most basic, while
Xml Schemas are more expressive. Our choice of dtds is motivated by the fact
that equally efficient membership testers for more expressive formalisms such as
tree automata are difficult to find or may even not exist.

Standard dtds define regular languages of unranked trees by using regular
expressions. These can be compiled into nfas in linear time, but only when
permitting ε-transitions as we do [10,16]. It should also be noticed that all
regular expressions in dtds are deterministic (see the W3C recommendation).
Therefore they can be converted into deterministic finite automata in polynomial
time. However, this conversion might require quadratic time if not fixing the
alphabet [4]. For our purpose, it is therefore advantageous to define dtds based
on nfas with ε-transitions. In some examples we will use regular expressions for
illustration nevertheless.

Definition 1. A dtd D over an alphabet Σ is a tuple (Σ, init , (Aa)a∈Σ) where
init is an element of Σ, and all Aa are nfas with alphabet Σ.

An unranked tree t over Σ is valid for a dtd D iff t[root ] = init and
word(t|v) ∈ L(At[v]) for all v ∈ nod(t). We denote the set of all D-valid trees by
L(D). For all labels a ∈ Σ and dtd D = (Σ, init , (Aa)a∈Σ), we denote by Da the
dtd (Σ, a, (Aa)a∈Σ). The mintree size mD is the maximum for all a ∈ Σ of all
minimal sizes of trees belonging to L(Da): mD = maxa∈Σ,L(Da) �=∅ min{|t| | t ∈
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L(Da)}. Note that one can compute mD in quadratic time from D even though
this number might be exponentially bigger than the size of D.

3 Edit Distances

We recall the the edit distance for words and trees.
Edit Operations. The (usual) edit operations on words permit to relabel,
insert, and delete a letter at a given position. The edit distance between two
words w and w′ is the least number of usual edit operations needed to trans-
form w into w′. It is denoted by e(w,w′). The usual edit operations on trees
allow for node relabelling, node inserting, and node deletion [18]. The (usual)
edit distance on unranked trees t and t′, that we will denote by estand(t, t′)
is the least number of usual edit operations required to transform t into t′.
The strong edit operations [17] restricts the usual edit operations to node rela-
belling, leaf insertion and leaf deletion. We consider a tree t = C(a(t1, . . . , tn))
where C is a context with hole marker at node v, so that t|v = a(t1, . . . , tn).
The relabelling of v to b in t is the tree: relv,b(t) = C(b(t1, . . . , tn)). The
insertion of a b-leaf at a position 0 ≤ i ≤ n below node v yields the tree:
insv,i,b(t) = C(a(t1, . . . , ti, b, ti+1, . . . , tn)). The deletion of a leaf v · i with
1 ≤ i ≤ n yields: delv·i(t) = C(a(t1, . . . ti−1, ti+1, . . . , tn)). The strong edit dis-
tance between two trees t and t′ is the least number of strong edit operation to
transform t into t′. It is denoted by e(t, t′).

It always holds that estand(t, t′) ≤ e(t, t′). Furthermore, e(t, t′) ≤ |t| + |t′| − 1
since we can first delete all nodes of t except the root, then relabel the root, and
finally add all non-root nodes of t′ one by one.
Farness. Let S be a set of structures and e : S × S → N0 a function called the
distance for S. We assume that any structure s ∈ S has a finite size |s| ∈ N0.
We define the distance of a structure s to a language L ⊆ S as the least num-
ber of edit operations needed to transform s into a member of L, i.e., E(s, L) =
mins′∈L E(s, s′).

Definition 2. Let ε > 0 and L(A) ⊆ S for some language definition A. A
structure s is called ε-far from A modulo distance E if the normalized distance
of s to L(A) is greater than ε, that is if E(s,L(A))/|s| ≥ ε, and ε-close otherwise.

Note that ε-farness from a dtd D with respect to the usual edit distance
implies ε-farness from D with respect to the strong edit distance. Furthermore,
since e(t, t′) ≤ |t| + |t′| − 1 for any two unranked trees, it follows that e(t,Da) ≤
|t| + mD − 1 ≤ mD |t| for all labels a in the alphabet of a non-empty dtd D
(a tree always has a root, so |t|,mD ≥ 1). Since emptiness of dtds is linearly
decidable we only consider non empty dtds in the rest of the paper.
Linearization. The relationship from [1] between the usual edit distance on
trees t and t′ and the edit distance of their respective xml linearizations w and
w′ depends on the minimal depth of the two trees d:

e(w,w′)
2

≤ estand(t, t′) ≤ (2d + 1) e(w,w′)
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These estimations are thight up to a constant factor. For any tree t of depth
d, if t is ε-far from a dtd D modulo the usual tree edit distance, then its xml
linearization w is ε

2d+1 -far from the linearizations of any D-valid tree.
Note however, that the same upper bound does not hold for the strong tree

edit distance e(t, t′). This indicates already, that we will need a more general
method for testing dtd membership modulo the strong tree edit distance, than
for testing membership for finite word automata modulo the edit distance.

4 Main Results

Sublinear membership testers are not allowed to read the whole input structure.
Instead they only access some elements of the structure randomly and navigate
from there on. Which access operations are permitted can be defined by a ran-
domized data model. In this section, we introduce appropriate randomized data
models for words and trees, and then formulate our positive results.
Randomized Data Models. As usual, any word w with alphabet Σ defines
a unique relational structure Sw with domain dom(w) = pos(w) ∪ {0}, that is
Sw = (dom(w), startw, succw, (labw

a )a∈Σ) where startw = {0}, succw = {(i, i+1) |
0 ≤ i < |w|}, and labw

a is the set of positions of w labeled by a. The randomized
data model is similar except that it gives random access to elements of some
structure isomorphic to Sw. More formally, the randomized data model of a
word w and a bijection θ : dom(w) → V is the tuple rdmθ

w = (ele, start, succ,
lab), which contains a random generator ele that draws an arbitrary element of
V from a uniform distribution, a start position start ∈ V , a successor function
succ : V → V ∪ {⊥}, and a labeling function lab : V → Σ, such that θ is an
isomorphism between Sw and the relational structure (V , {start}, {(v, succ(v)) |
succ(v) = ⊥}, (θ(labw

a ))a∈Σ).
Any xml document t, as an unranked tree over some alphabet Σ, defines

a unique relational structure St = (nod(t), root t, parent t, fct, nst, (labt
a)a∈Σ)

with domain nod(t). The randomized data model is similar except that it gives
random access to elements of some structure isomorphic to St. More formally,
the randomized data model of a word w and a bijection θ : nod(t) → V is the
tuple rdmθ

t = (desc, root , parent , fc, ns, lab, depth). For any node v of t, desc(v)
is a random generator that draws descendants of v from a uniform distribution
or returns ⊥ if v is a leaf, a root element root ∈ V , a parent function parent :
V \{root} → V , the firstchild function fc : V → V ∪{⊥}, the nextsibling function
ns : V → V ∪ {⊥}, and labeling functions lab : V → Σ. We require that θ is an
isomorphism from St to the relational structure (V , {root}, {(v, parent(v)) | v ∈
V }, {(v, fc(v)) | fc(v) = ⊥}, {(v,ns(v)) | ns(v) = ⊥}, (θ(labt

a))a∈Σ)). Finally,
depth = d(t) is the depth of t.
Approximate Membership. Approximate membership is a special case of
property testing, aiming for probabilistic algorithms that read a sublinear part of
the input structure based on a randomized data model. For the formal definition,
we fix a class S of structures such that each structure s in S has randomized
data models denoted by rdms, and a class A of language definitions such that
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each definition A in A defines a language L(A) included in S and has a size |A|
in N.

Definition 3. An approximate membership tester for S and A is an algorithm
(possibly randomized) that receives as inputs a randomized data model rdms for
some structure s ∈ S, an error precision ε > 0 and a language definition A ∈ A,
and answers with probability 2

3 : close if s ∈ L(A) and no if s is ε-far from A.

The query complexity of a tester is the number of times it uses rdms during
the computation in dependence of the input (size). Its time complexity accounts
for all other operation performed by the algorithm in addition to the query
complexity.
Tree Edit Distance. We next sketch how to test approximate membership for
tree automata on unranked trees [6] modulo the usual tree edit distance, based
on tree linearization. Note that such tree automata subsume our dtds.

The idea is to use the upper bound estand(t, t′) ≤ (2d + 1)e(w,w′) from [1],
where w is the xml linearization of t and w′ the xml linearization of t′. We want
to test approximately whether an unranked tree t of depth d is recognized by a
tree automaton B. If t is ε-far from B modulo the usual tree edit distance, then
its linearization is ε

2d+1 -far from the language of linearizations of trees recognized
by B of depth at most d. The tree automaton B can then be compiled into finite
automata A of exponential size |B|d that accepts all these linearizations. This
can be done by first compiling B into a nested word automaton [3] in linear
time, which in turn is compiled to a finite automaton by moving stacks up to
depth d into states. One can then apply the polynomial time membership tester
for finite automata modulo the edit distance on words from [12]. In order to do
so, one has to verify that the randomized data model of words can be simulated
by a randomized data model of the corresponding tree, which is straigthforward.
Since the tester in [12] never errs for correct words, and there is no requirement
on close trees, this method gives indeed a valid tester. The query complexity
of this test is in O(p(|A|, 1/ε, d)) where p is the polynomially bounded function
that satisfies for all positive real numbers a, e,d: p(a, e,d) = a3 e d log3(a2 e d)
The time complexity is in O(|A| p(|A|, 1/ε, d)). In combination we obtain:

Theorem 4. Whether an unranked tree t is approximatively recognized by a
tree automaton B can be tested with query complexity and time complexity in
O(p(|B|d(t), 1/ε, d(t))) and O(|B|d(t) p(|B|d(t), 1/ε, d(t))) respectively; modulo the
tree edit distance with error precision ε.

Even though nontrivial, this theorem has three weaknesses. First of all, the
finite automaton A constructed from the tree automaton B and the depth d
may be of exponential size O(|B|d). Second, the tester does not apply to the
strong tree edit distance. And third, the query complexity of the tester depends
exponentially on the depth of the tree.
Strong Tree Edit Distance. Our main result is that all three problems can
be solved for dtd membership modulo the strong tree edit distance, as stated
in the following theorem.
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Theorem 5. Whetheranunranked tree t is valid for a dtdD = (Σ, init , (Aa)a∈Σ)
modulo the strong tree edit distance with error precision ε can be tested with query
complexity in O(d2 p(a, d/ε,mD)) and time complexity in O(a d2 p(a, d/ε,mD) +
|D|), where d = d(t) and a = maxA∈Σ |Aa| is smaller than |D|.

The dependency on the depth is reduced from exponential to polynomial.
In contrast, approximate membership of nfas can be done with constant query
complexity [2,7,12]. Nevertheless, as dtds are naturally connected to nfas, one
might want to reduce approximate membership of the former to the one of
the latter. We believe that this cannot be archieved. Instead, we will present a
reduction to a more general property tester for so called weighted words that we
will develop for this purpose.

5 Weighted Words

We present an approximate membership tester for finite automata on weighted
words modulo a weighted edit distance.
From Trees to Weighted Words. A weighted word over an alphabet Σ is a
word over the alphabet Σ ×N. The idea for the introduction of weigthed words
is as follows. To any node v of a tree t we assign the weight |t|v|. The weighted
word associated to a node v is then the word word(t|v), in which each position
is weighted by the weight of the corresponding child of v.

We next illustrate the close link from trees to weighted words by example.
We consider the dtd D with rules r → ab∗, a → a∗, b → b∗. For any i ≥ 0, let ai

be the tree a(a, . . . , a) with i a-leaves and bi the tree b(b, . . . , b) with i b-leaves.
The tree t = r(a1, b2, b3, a4) of depth 2 is clearly invalid for D. Its distance is
e(t,D) = 5 since one must delete the whole last subtree to become valid and
this subtree has size 5. However, if we consider the regular language below the
root L = ab∗ and pick the word at the root w = word(t|ε) = abba, then we have
e(w,L) = 1 for the edit distance for words. One way to understand the problem
is that we cannot simply ignore the sizes of the subtrees as we did. Instead,
we should associate a weight to each position, and consider the weighted word
ω = (a, 2)(b, 3)(b, 4)(a, 5) for the above example. We also need to adapt the
costs of deleting a weighted letter such as (c, i) to its weight i. In this way, the
weighted distance of ω to L becomes 5 which is equal to the distance of t to D.

Any weighted word has the form w ∗ p for some w ∈ Σ∗ and p ∈ N
∗, where

w and p have the same length. We call w the word part and p the weight part of
w ∗ p. We will also say that ω has at position i the weight k ∈ N and the label
a ∈ Σ if ω[i] = (a, k). The weight |ω|∗ is the sum of the weights at all positions
of ω. The word part of a weighted word is used to define its membership to word
regular languages while the weight part is used to define weighted words edit
distance. We say that a weighted word w∗p is recognized by an nfa A if and only
if w ∈ L(A). The set of weighted words recognized by A is denoted by L∗(A).
The notions of blocking fragment and interval are lifted to weighted words by
deletion of the weights. For example, if A is a productive automaton recognizing
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L = ab∗, then the interval I =]0, 2] of ω = (a, 1)(a, 3)(b, 4) is blocking for A,
since aa is the word part of the weighted word ωI located at I, and after reading
the first a, A cannot proceed with any second “a”.

The edit operations for weighted words are essentially the same as for words,
i.e, insertions, relabeling, and deletions. The only difference is that the costs
of these operations depend on the weights of the letters that are edited. For
a weighted word ω = σ1 . . . σn and a natural number i ∈ [0, n], the insertion
of a weighted letter σ ∈ Σ × N following position i in ω yields the weighted
word: insi,σ(ω) = σ1 . . . σiσσi+1 . . . σn. The cost of this insertion is the weight
of σ. The deletion of position 1 ≤ i ≤ n of w yields the following weighted
word: del i(ω) = σ1 . . . σi−1σi+1 . . . σn. The cost of such a deletion operation is
the weight of the deleted letter σi. The relabeling at position 1 ≤ i ≤ n of
ω into a letter b changes only the letter at this position but not its weight.
Let σi = (a, k) then the relabeling operation at position i costs k and yields:
rel i,b(ω) = σ1 . . . σi−1(b, k)σi+1 . . . σn.
Testing Weighted Words. We next show that approximate nfa membership
modulo the edit distance can be tested efficiently for weighted words. We will
prove the following result for the randomized data model of weighted words
defined below.

Theorem 6. LetA be an nfas that has k strongly connected components.Whether
a weighted wordω is approximately amember ofL∗(A)modulo the weighted edit dis-
tance with error precision ε can be tested with query complexity O(k2|A|

ε log3(k|A|
ε ))

and time complexity O(k2|A|2
ε log3(k|A|

ε )) independently of the weight or size of ω.

So far, the ideas to Theorem 6 are essentially the same as for usual words
[12]. What changes for weighted words is that many errors can be concentrated
at some position of high weight. This can be accounted by adapting the random
drawing of fragments. Instead of using a generator that draws positions uniformly
in the word, we use a random generator that draws positions depending on
weights. The probability to draw the i-th position of a weighted word ω =
w ∗ p should be p(i)/|ω|∗. We call such a random generator a drawing from a
weighted distribution. We can now define the random data model of a weighted
word ω and a bijection θ : pos(ω) → V in analogy to the case of words: rdmθ

ω

= (ele, start, next , lab). Here, ele is a random generator of positions for the
weighted distribution. It might be disturbing that such random generator cannot
be obtained from a weighted word without reading it entirely. However, as we
will see, we can obtain it from the randomized data model of a tree.

With respect to such random data models for weighted words, Theorem 6
become true. We prove this in two steps. We first consider the case where the
nfa is strongly connected, and second study the general case of automaton with
several strongly connected components.
Strongly Connected Automata. Let A be an nfa that is strongly connected.
An approximate membership testing for weighted words can proceed as follows.
The input is a randomized data model rdmθ

ω for some weighted word ω. The tes-
ter then generates randomly sufficiently many positions of the word according to
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their weights, reads sufficiently long factors starting there, and returns no if one of
them is blocking. What “sufficient” here means can be deduced from the following
Lemma.

Lemma 7. Let A = (Σ,Q, init ,fin,Δ) be an nfa that is strongly connected, ω
a weighted word, m a natural number bigger than |ω|∗, ε > 0 an error precision,
and γ = 8|Q|

ε . If e(ω,A) > εm and m ≥ 8γ�log(γ)�, then there is a length
l ∈ [2, γ] which is a power of 2, and a set of disjoint intervals Il with weight
mβl such that: all intervals of Il are of lentgh 2l and blocking for A. Where
βl = l/(2γ�log(γ)�).

General Automata. We generalised the previous result to automata with mul-
tiple strongly connected components. We refine the results from [12], which in
turn adapts the schema from [2], and prove that drawing positions from the
weight distribution of ε-far weighted words, yields a blocking fragment with
high probability.

For integers l, α, weighted word ω and a sequence S = (i1, · · · , iα) of α
positions in ω, we denote by FS the fragment ∪1≤j≤α[ij ,min(ij + l, |ω|)]. And
we define S(ω, l, α) as the set of all fragments FS .

Lemma 8. Let A be a productive nfa with state set Q and k strongly connected
components. Let ε > 0, γ′ = 16k|Q|

ε and ω be a weighted word of weight greater
than 8γ′�log(γ′)�. If ω is ε-far from A, then there exists a power of two l ∈ [2, γ′]
such that: with probability 5

6 , drawing αl = 30kγ′�log(γ′)�2/l positions with the
weight distribution of ω yields some blocking fragment in S(ω, 2l, αl).

Finally, Theorem 6 is a consequence of Lemma 8. Indeed, the algorithm in
Figure 1 is a one sided membership tester for weighted words. In fact by the
previous lemma, drawing enough positions according to the weight distribution
gives a blocking fragment with probability at least 5

6 ≥ 2
3 . The case of weighted

words with small lengths is easily detected using start, succ, lab and the exact
membership is checked; this case includes all light weighted words. Furthermore
weighted words in L(A) have no blocking fragments.

6 Testing Unranked Trees

We reduce dtd membership of trees to nfa membership of weighted words. For
a tree t, the reduction is based on the weighted words ωv = word(t|v) ∗ pv for
nodes v of t, where pv is the sequence of sizes |t|v′ | of subtrees rooted at the
children v′ of v in document order. Note that we do not need to compute the
values |t|v′ |. However, we can draw a child v′ of some node v in a tree t with
probability |t|v′ |/|t|v|, and this is the only thing needed by our weighted word
tester (Figure 1), as this drawing corresponds to the drawing of positions for the
weighted distribution of ωv. Therefore, by Theorem 6, for all nodes v of t, we
can test membership of ωv to nfas efficiently. However, the query complexity
measured in terms of accesses to tree t belongs only to O(d(t) · k2|A|

ε log3(k|A|
ε )),
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f un memberA(r, ε)

// r = rdmθ
ω for some weighted word ω

// and ε an error prec i s ion
l e t (ele, start, succ, lab) = r
l e t k be the number o f s t r ong l y connected components o f A

l e t γ′ =
16k|Q|

ε

i f |ω| < 8γ′	log(γ′)
 then
i f ω ∈ L(A)//run A via start, succ, lab
then r e t u r n close e l s e r e t u r n no

e l s e

f o r i = 1 to 	log(γ′)
 do

l e t l = min(2i, γ′)
l e t αl = 30kγ′	log(γ′)
2/l
l e t S be sequence o f αl po s i t i o n s o f ω randomly drawn by ele
l e t F be the union o f a l l i n t e r v a l s o f ω o f l ength 2l s t a r t i n g

at p o s i t i o n s in S
i f F i s b lock ing wrt . A

// run A via succ and lab
then r e t u r n no ; e x i t e l s e s k i p

end
r e t u r n close

Fig. 1. An approximate membership tester for weighted words

since we need to draw children of v as explained above in order to draw positions
in ωv with the correct weight.

We now link the strong tree edit distance to dtds to the edit distance of
weighted words to nfas.

Lemma 9. Let D = (Σ, init , (Aa)a∈Σ) be a dtd, ε > 0 a precision, and t a
tree. If all nodes v ∈ nod(t) satisfy e(ωv, At[v]) ≤ ε

mD
|ωv|∗ and lab(root t) = init

then e(t,D) ≤ d(t)ε|t|.
Lemma 9 shows that trees ε-farness is witnessed by nodes with weighted

words far from their appropriate regular language. We next explain how to detect
such nodes. Indeed the next lemma states that the overall subtree sizes of nodes
whose corresponding weighted words are far from their regular word language is
important. A node v ∈ nod(t) is ε-bad if e(ωv, At|v ) > ε

2mD ·d(t) |ωv|∗. Let Bt be
the set of bad nodes whose ancestors aren’t bad. |Bt| =

∑
v∈Bt

|t|v| is the size
of Bt.

Lemma 10. For dtd D, precision ε > 0, and t a tree ε-far from D, one has
|Bt| > ε

2 |t|.
We describe now how this lemma translates to a membership tester. Let μ

be the random process that uniformly selects a node of t and returns its path
to the root π. The size of π is at most d(t) and for all nodes v ∈ nod(t), the
probability that v is in π is Prπ∼μ[v ∈ π] = |t|v|/|t|. Therefore, by Lemma 10, if
t is ε-far from D , then the probability that π contains an element of Bt is at least
ε
2 . Hence for �log(5)/ε� drawn paths, with probability 4

5 one drawn node is bad.
However we do not know which selected node is bad, so we need to verify them
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all to detect ε-farness. We next use the membership tester of weighted words
in section 5, which answers correctly with probability at least 5

6 . It follows that
with probability at least 4

5 · 5
6 = 2

3 we would find error in t.

7 Conclusion and Future Work

We have presented the first approximate membership tester for dtds modulo
the strong tree edit distance. The most difficult part was to extend previous
results for regular words languages to regular tree languages that are restricted to
locality in vertical direction (but not horizontally). Some questions remain open.
First of all, it might be possible that approximate membership modulo the edit
distance can be tested efficiently for Xml Schemas by extending the methods
presented here. In such a setting one would preserve top-down determinism but
give up vertical locality. A second more difficult question is whether approximate
membership can be tested efficiently for bottom-up tree automata for ranked
trees, while depending only on their depth. The third yet more difficult question
is whether efficient algorithms exist for testing RelaxNG validity. Fourth, it
might be interesting to study property testing for schemas with key constraints.
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