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Abstract. Agent-based simulation models with large experiments for a precise 
and robust result over a vast parameter space are becoming a common practice, 
where enormous runs intrinsically require highly intensive computational re-
sources. This paper proposes a grid based simulation environment, named So-
cial Macro Scope (SOMAS) to support parallel exploration on agent-based 
models with vast parameter space. We focus on three types of simulation me-
thods for agent-based models with various objectives: (1) forward simulation to 
conduct experiments in a straightforward way by simply operating sets of pa-
rameter values to obtain sets of results; (2) inverse simulation to search for solu-
tions that reduce the error between simulated results and actual data by means 
of solving "inverse problem", which executes the simulation steps in a reverse 
order and employs optimization algorithms to fit the simulation results to the 
desired objectives; and (3) model selection to find optimal model structure with 
subset of parameters and procedures, which conducts two-layer optimization to 
obtain a simple and more accurate simulation result. We have confirmed the 
practical scalability and efficiency of SOMAS by a case study in history simu-
lation domain. 

Keywords: Agent-based simulation · Grid computing · Forward simulation ·  
Inverse simulation · Model selection 

1 Introduction 

Social simulation is a research method by which researchers construct artificial  
societies in their computers to explore problems in social science [1]. Traditional 
statistic ways set up social simulation models based on the real dataset in a top-down 
manner, which show the relationship of parameters within a model but fail to clarify 
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the causations. In the recent literature, agent-based simulation (ABS) has become a 
powerful computational modeling paradigm. ABS approximately represents members 
of organizations, corporations or societies as autonomous agents, and builds a model 
of social system as interactions among agents along their learning, adaption, and evo-
lutionary process. ABS implements the model in a bottom-up type, through which, we 
are able to explain the causations from micro-level conditions to a macro-level  
emergence, and then understand the corresponding social phenomena. ABS has been 
widely applied in the research of social simulation field [2]. 

However, on the other hand, ABSs, especially those employ evolutionary algo-
rithms and reinforcement learning methods for solutions, explore an enormous para-
meter space, and it is generally difficult to choose an appropriate parameter set and 
determine their influence degrees in the simulation model. In addition, it is also diffi-
cult to decide whether a combination of parameter values works well to achieve the 
desired objectives. Furthermore, large experiments required by ABSs over a vast pa-
rameter space always consume long execution time and intrinsically require highly 
intensive computational resources far exceeding the capability of one computer pro-
cessor [3, 4]. In order to solve such problem, distributed computing such as grid tech-
nologies and cloud computing are employed to obtain the simulation result within a 
short CPU time.  

Therefore, we propose a grid based simulation environment for supporting agent-
based models with vast parameter space, based on a general classification of simula-
tion approaches of agent-based models. The main objectives of this paper are to (1) 
provide a grid based simulation environment with three functional components to 
support parallel execution of ABS models through forward-, inverse-simulation and 
model selection methods; (2) implement a common programming interface for easy 
and smooth execution of ABS experiments through forward-, inverse-simulation and 
model selection methods, without necessary to modify the source code of ABS mod-
els. Such a grid based simulation environment is especially beneficial for those social 
scientists they are not familiar with recent computer usages, because, using the 
SOMAS library, they do not need to modify their own simulators but only prepare 
sets of property files to run. This paper then reports one case study in history simula-
tion domain, through which demonstrates the effectiveness of SOMAS.  

The rest of this paper is organized as follows: Section 2 makes a brief review of the 
related work. Section 3 proposes and implements SOMAS. Section 4 conducts one 
case study on SOMAS, and evaluates the effectiveness of SOMAS by analysis of the 
simulation results. Finally, Section 5 concludes the paper and proposes some ideas for 
future work. 

2 Related Work 

There have been many contributions on the implementation of large experiments of 
ABS models on a distributed computing environment. In this paper, we distinguish 
these tasks into two categories: one is large-scale distributed ABS model, which  
simulates a large system with thousands to millions of agents; the other is small ABS 
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model with vast parameter space, which executes enormous trials of the ABS model 
with various parameter sets. The former are more challenging because of managing 
one trial of ABS model with interactions among a huge number of agents across the 
boundary of computational nodes, while node boundary does not need to be consi-
dered in the latter because there is no communication across each run of ABS.  

Among the contributions in the first category, Yamamoto et al. propose a Java-
based framework named ZASE to support large-scale massive multi-agent based  
simulation (MMABS) with thousands to millions of agents [5]. ZASE makes use of 
computer clusters over the Internet to conduct distributed computation in parallel, and 
is applied to analyze the large-scale city transportation system in Japan. Another work 
is HLA_Grid_Repast, which is a middleware platform to allow users to execute large-
scale distributed Repast simulations [6]. HLA_Grid_Repast presents Repast models 
as one level of service and facilitates the execution of large-scale agent federations, 
following a mechanism of parallel simulation and modeling over a grid environment 
at the same time. Besides, some popular toolkits such as Netlogo not only offer users 
abundant functions for agent-based modeling, but also support distributed experi-
ments of agent-based models on clusters.  

Of the works in the second category, Pignotti et al. create a virtual machine envi-
ronment named SimulationBox to support ABS models using Swarm, Repast and 
Mason on a grid environment. SimulationBox provides semantic workflow mechan-
ism to select models that meet specified macro criteria [7]. Spot-Oriented Agent Role 
Simulator (SOARS) by Deguchi et al. support both large-scale ABS models with vast 
number of agents and small ABS models with vast parameter space on a grid envi-
ronment. There also exists system like MEME, QosCosGrid which support some kind 
of grid computing. However, the usage of these tools is not wide spread so far.  

Besides, among the studies of running simulation models distributed on a grid en-
vironment, grid-oriented genetic algorithm framework (GOGA) has been developed 
for solving large-scale genetic algorithm (GA) optimization problems [8]. Especially, 
Ono et al. has proposed GOGA 2 to support parallel computational tasks of GA on a 
grid environment, and has confirmed its practicability on a grid test bed constructed 
by a cluster of multiple public clusters [9]. Although the main purpose of GOGA 2 is 
numerical optimization, not suitable for social simulations, we can utilize its libraries 
to distribute and implement large experiments of agent-based models with multiple 
simulation trials on a grid environment, through forward-, inverse-simulation and 
model selection methods. 

3 Proposal and Implementation of SOMAS 

In this section, we propose a grid based simulation environment, named Social Macro 
Scope (SOMAS), in order to meet with various simulation requirements for agent-
based models over a vast parameter space. In the following, we will discuss the de-
sign and implementation of SOMAS based on a general classification of ABS  
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methods. Then, we describe the procedure of using SOMAS to implement distributed 
experiment execution of ABSs on a grid environment. 

3.1 Simulation Methods of Agent-Based Model 

There are many types of simulation methods to implement agent-based models, for 
instances, conventional ways execute the simulation steps in a straightforward way: 
all micro-level parameters and initial conditions are firstly set, then the simulation 
steps are executed, and finally the macro-level results are observed as outputs. Such a 
process is called "forward simulation" in this paper. By changing the parameter val-
ues, forward simulation collects sets of results and uses them for sensitivity analysis 
or landscape prediction. When using forward simulation method, plural trials are al-
ways executed to examine stochastic variations of outcomes by operating sets of pa-
rameter values, such as the Axelrod Cultural Model (ACM) [10], and other examples 
can be found in [11].  

In contrast, inverse techniques execute the simulation steps in the reverse order by 
means of solving "inverse problem": a macro-level objective function is firstly set, the 
simulated worlds are then evolved to fit to the objectives, and finally the micro-level 
agent parameters are optimized [12, 13]. Generally, in "inverse simulation", optimiza-
tion techniques such as Genetic Algorithms (GAs) are employed to search for  
solutions that reduce the error between the simulated results and objective values, 
examples can be found in Yang’s research work [4]. She has developed ABS models 
to analyze a particular family line which continued to produce successful candidates 
in civil service examination in imperial China over five hundred years, and finally 
inferred the successful family strategies by systematic parameter optimization via 
inverse simulations. Other contributions can be found in [3]. 

However, there always comes the request to coordinate the complexity of a model 
structure when applies inverse simulation to analyze complex social phenomena. To 
solve such a problem, we propose model selection method, which selects subset of 
variables and procedures as features, and uses them to find more accurate agent-based 
models to describe the desired problem. We implement model selection by using fea-
ture selection in machine learning [14]. When we apply model selection to ABS field, 
each candidate parameter and procedure of the ABS model is managed as a feature, 
and each model structure is determined based on a subset of selected variables and 
procedures as features. The procedure can be described by if-else rules and 
represented by “1” or “0” values in feature selection process. The model is evaluated 
by how precise the selected feature set is able to reproduce the desired results as ma-
cro outcomes. The complexity of the model is decided based on the number of fea-
tures in the evaluation results. Within a certain error limitation, model selection can 
also provide plural feature sets for multiple solutions to a same macro problem.  

Fig.1 summarizes and compares the general different execution processes among 
forward-, inverse-simulation and model selection methods. As shown in Fig.1, a lot of 
simulation trials are necessary when applying the three types of methods to conduct  
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ABSs. Most ABS applications reduce the number and range of parameters and proce-
dures in order to finish the experiments within a limited evaluation time, while a me-
ta-level problem of how to decide a reasonable execution time for evaluation occurs. 
Parallel exploration on vast parameter space is therefore considered as a solution to 
speed up the execution time of ABS experiments. 
 

 

Fig. 1. Three types of simulation methods of agent-based models 

3.2 Proposal of SOMAS 

Against such a background, a grid based simulation environment is required to sup-
port parallel exploration on ABS models with vast parameter space, which releases 
social scientists from a lot of time to implement optimization algorithms and learn 
domain knowledge on grid programming. In this paper, we consider a general scena-
rio of agent-based models through various simulation methods as follows: 1) sets 
property files to use a grid-based simulation environment; 2) determines one type of 
simulation method to implement the agent-based model; 3) sets system parameters 
which required by the selected simulation method; 4) generates a number of random 
seed to determine the random sequence for executing optimization algorithms in in-
verse simulation or model selection methods; 5) executes the simulation model by 
performing appropriate logging at the same time; 6) repeats the actions from step (2) 
to (4) until the simulation reaches the predefined number of simulation trials;7) han-
dles the log files properly to create a summary of the experiments. According to the 
above mentioned scenario, the parallelism of ABS models with different simulation 
methods is feasible through the following two points: 1) parallelism of trials, and 2) 
parallelism of optimization algorithm. Because multiple trials of ABS models and the 
evaluation process of optimization algorithms are independent, we can implement 
parallelism by assigning them to multiple computation nodes. 

On the other hand, the difficulties of implementation of SOMAS mainly include: 
1) a common programming interface for easy and smooth execution of agent-based 
models through various simulation methods; 2) programming libraries to meet with 
requirements from parallelism experiment execution, such as security authentication,  
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file transfer and acceptance, communication between the nodes of in and out of the 
computation cluster, task scheduling, flexibility to add/delete computation nodes 
to/from a grid environment, and convenient interfaces for users to operate a grid envi-
ronment; 3) programming libraries for operations required by optimization  
algorithms. 

3.3 Design of SOMAS  

SOMAS is designed as a Java-based simulation framework, which utilizes GOGA 2’s 
four libraries:1) Java-based Simple Grid Framework (JSGF) to provide grid setup 
operations, 2) Java-based Master- Worker library (JMW) to provide parallel compu-
ting operations, 3) Java-based GA Framework (JGAF) to provide GA-related opera-
tions, and 4) Java-based GA-Gridfying library (JGAG) to implement parallel GA on a 
grid environment. Further, SOMAS design and implement Java-based Simulation 
Method library (JSM) to enable three types of simulation methods on a grid. In addi-
tion, SOMAS provide a common programming interface to connect simulation  
methods and user program. Although user program is considered as ABS model by 
default, other types of social simulation models with multiple independent trials can 
also be explored. SOMAS also define a set of interface for logger output and experi-
mental result summary. Table 1 compares the main functional difference between 
SOMAS and GOGA2. 

Table 1. Comparison of main functional difference between GOGA 2 and SOMAS 

 

3.4 Grid Environment Description 

Grid technologies connect geographically dispersed computation resources such as 
PC clusters via Internet, in order to obtain the simulation results within a short CPU 
time by benefiting from a parallelism [15]. In recent years, the computer centers of 
universities and IT companies have started fare-paying services to rent the nodes of 
their PC clusters. A grid constructed based on a set of public PC clusters by rental 
service from universities or IT companies is called a Grid of Multiple Public Clusters 
(GMPUC). By using the rental services, users can dynamically construct a grid envi-
ronment whenever they need computational resources, without necessary to handle 
complex operations for administrating PC cluster systems. Fig.2 describes a grid envi-
ronment constructed based on GMPUC, which consists of user site and multiple geo-
graphically dispersed remote clusters. 

User site is the site where user terminal belongs to. If user terminal has a private 
IP, and cannot be directly accessed from the outside, it is assumed that, as shown in 
Fig.2, the relay node with a global IP enables indirectly access from the user terminal 

Framework JSGF JMW JGAF JGAG JSM 

GOGA 2 ○ ○ ○ ○ × 

SOMAS ○ ○ ○ ○ ○ 
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to the outside node. Otherwise, if the user terminal has a global IP and can be directly 
accessed from the outside, a relay node is not necessary. For the user terminal, it is 
assumed that the Java execution environment is installed. And, for the relay node, it is 
assumed that the SSH server has been installed with SSH port forwarding service, and 
other nodes can login by means of using the SSH public key encryption.  

 

 

Fig. 2. Grid Computation Environment 

Remote cluster is assumed to be composed of a login node, a resource management 
node and multiple computation nodes, where NFS, NIS is running. Login node has a 
global IP, which can be directly accessible from the outside. Login node can be login 
through SSH public key encryption authentication, and the process on the computa-
tion nodes can be invoked through local scheduling system of resource management 
node. Resource management node has a private IP, and is assumed to be able to 
communicate with login node, and multiple computation nodes. Resource manage-
ment node runs local scheduling system. In this paper, Sun Grid Engine is assumed 
for the local scheduling system, which has been used in many GMPUC applications. 
Computation nodes have either private IPs or global IPs. Computation nodes in the 
same PC cluster can communicate with each other. The Java runtime environment is 
assumed has been installed on computation nodes. Besides, it is assumed that any 
computation node can finish a callback connection with either user terminal or relay 
node. 

3.5 Implementation of SOMAS 

SOMAS is developed and implemented based on the GMPUC environment, which 
utilizes the master-worker library of GOGA 2 to distribute plural trials of ABS mod-
els on a grid, through forward-, inverse-simulation and model selection methods, 
respectively, shown in Fig.3, Fig.4 and Fig.5. These pictures consist two parts: the 
user site and the remote PC clusters. In general, user terminal at user site manages the 
processes such as trials generation, and communicate with trials worker nodes of  
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the remote PC cluster. The PC cluster consists of plural remote nodes act as trials 
worker or GA master or GA evaluation worker, which performs differently when 
employing forward-, inverse-simulation and model selection method. Although there 
is only one node acts as the user terminal, we can control the number of remote nodes 
of the PC clusters by setting the values of arguments of the grid property file (explain 
later). We introduce the implementation of three types of simulation methods below. 

 
Forward Simulation Function. Fig.3 describes the constitution of computation 
nodes and the process of implementation of forward simulation function. In forward 
simulation, the computation nodes include a trials master (user terminal) and plural 
trials worker nodes (remote node). 

 

Fig. 3. The implementation of forward simulation function 

As shown in Fig.3, forward simulation is carried out as follows: 1) Trials master 
reads experimental settings based on the property files, 2) According to the experi-
mental settings, Trials master generates various parameter sets such as (A, B, C, …), 
and then 3) Trials master sends parameter sets to worker nodes via resource manage-
ment node (which finds worker nodes available for computation tasks from the PC 
clusters and then determines the assignments of parameter sets to worker nodes), next 
4) Worker nodes execute ABSs based on the received parameter sets, 5) when ABSs 
finish, worker nodes return the simulation results to trials master, the workflow from 
step (3) to (5) is repeated until all the parameter sets are handled, finally, 6) Trials 
master summarizes the simulation results and we obtain sets of result by forward  
simulation.  

 
Inverse Simulation Function. Fig.4 gives the constitution of computation nodes and 
the process of implementation of inverse simulation function. We employ GAs for 
optimizations. In inverse simulation, the remote PC cluster consists of GA master and 
plural GA evaluation worker nodes for parallel computations. GA master manages 
GA operations other than individual evaluation tasks. GA evaluation worker nodes 
execute the ABS models based on the received parameter values and return the simu-
lation results to GA master. The ABS models are executed similar to the forward 
simulation. 
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Fig. 4. The implementation of inverse simulation function 

As shown in Fig.4, inverse simulation is carried out as follows: 1) Trials master 
reads the experimental settings based on the property files, 2) According to the expe-
rimental settings, trials master generates a trial of inverse simulation with specified 
optimization algorithm such as GA, 3) when GA is employed, trials master invokes a 
GA master on the remote PC clusters and send the GA task to it, 4) GA master man-
ages GA operators such as initial population generation, crossover, mutation and gen-
eration alternation, 5) when the evaluation of an individual is necessary by a process 
of GA, GA master invokes GA evaluation worker nodes, and sends multiple trials of 
evaluation tasks to the worker nodes, 6) each GA evaluation worker node executes the 
ABS based on the parameter values of each individual, and evaluates it, 7) as a result 
of simulation, the evaluation value which expresses how well the desired objectives 
are able to be achieved is returned to GA master, the workflow from step (5) to (7) are 
repeated until inverse simulation is finished, then 8) the simulation result is returned 
to trials master, and finally, 9) an optimal parameter values are obtained by GA result. 
Through such a procedure, we obtain a model structure by systematic parameter op-
timization through inverse simulation, which represents the desired objectives. 

 
Model Selection Function. Fig. 5 shows the constitution of computation nodes and 
the process of implementation of model selection function. Model selection is imple-
mented through a two-layer optimization mode: the first-layer optimization selects a 
subset of parameters and procedures as features and the second-layer optimization 
employs it as input variables to execute inverse simulation. The results of objective 
function of inverse simulations are used as external criterions to evaluate the efficien-
cy of selected feature sets. As shown in Fig.5, Trials master on the user terminal man-
age GA operations of feature selection; GA masters and GA evaluation worker nodes 
of the remote cluster execute a group of inverse simulations based on the selected 
feature sets.  
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Fig. 5. The implementation of model selection function 

Taken GA as the specified optimization algorithm, model selection is carried out as 
follows: 1) Trials master reads the experimental settings based on the property files, 
2) According to the experimental settings, trials master executes the first-layer GA 
for feature selection, each subset of parameters and procedures is managed as a fea-
ture set and expressed as an individual of GA, trials master generates multiple inverse 
simulation tasks based on these feature sets, and then 3) Trials master invokes GA 
masters on the remote cluster, and sends feature sets to them, from step (4) to (7) the 
second layer GA of inverse simulations are executed based on the parameters values 
and procedures within the feature sets, 8) the evaluation results obtained from inverse 
simulations based on the feature set are returned to the Trials master, and finally, 9) 
the optimal feature set with its optimal parameter values and procedures is achieved. 
Through such a process, we obtain a set of candidate model structures by systematic 
parameter and procedure optimization through two-layer GA, which meet with the 
desired objectives.  

 
Property Files of SOMAS. Three types of property files are prepared to use 
SOMAS: (1) grid property file, (2) SOMAS property file, and (3) simulation property 
file. Grid property file is a shell file which determines a grid-based simulation envi-
ronment and the total number of computation nodes. This file is made based on the 
settings of the remote cluster side to use. SOMAS property file sets the simulation 
method and the constitution of computation nodes of the remote cluster. For the simu-
lation methods, forward-, inverse simulation or model selection can be chosen. Simu-
lation property file is implemented as forward simulation property file, inverse  
simulation property file, or model selection property file (which consists of feature 
selection property file and inverse simulation property file), depending on the simula-
tion method chosen to conduct the agent-based models. Forward simulation property 
file sets the configurations to generate plural combinations of parameter values from a 
predefined data file and based on these parameter values to conduct simulations. In-
verse simulation property file sets the operators of GA. In model selection, the feature 
selection property file sets the GA operations for feature selection, and the inverse 
simulation property file is set up as same in inverse simulation. 
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3.6 Procedure of Using SOMAS 

Because the necessary software to run SOMAS on PC cluster are only Linux, SSH 
and Java (which are all readily available and the installation is easy to finish), if Job 
Management System, such as Sun Grid Engine, Oracle Grid Engine, Torque, PBS 
Pro, etc., is installed, then users can share the system efficiently. The general proce-
dure of using SOMAS to conduct ABS on GMPUC are described as follows: 1) first, 
we build the agent-based model by implementing the common java programming 
interface, 2) second, we set grid property file to determine the sitemap and the number 
of computation nodes on GMPUC, and then 3) we set SOMAS property file to decide 
forward-, inverse-simulation or model selection method to conduct ABS, and we also 
set the constitution of computation nodes of the remote clusters, 4) under each case, 
we set configurations and parameters in forward-, inverse simulation or model selec-
tion property file, and finally 5) we conduct ABS experiments through forward-, in-
verse-simulation or model selection method, and summary the simulation results. 

4 Experiments and Discussions 

This section describes one case study of history simulation domain on SOMAS. The 
case study presents computational and methodological extensions of civil service 
examinations, family lines, and cultural capitals in imperial China. The motivation is 
to demonstrate the applicability and efficiency of SOMAS on parallel exploration on 
ABS models with vast parameter space, through forward-, inverse-simulation and 
model selection methods on a grid-based simulation environment. We build a grid test 
bed of GMPUC type, which consists of computation nodes from two public clusters: 
DIS cluster in Suzukakedai campus, and TSUBAME cluster in Ookayama campus, 
both located at Tokyo Institute of Technology. We assume in this study that each run 
of the simulation models does not need to communicate with any of other runs. It 
would therefore seem justifiable to distribute multiple runs of ABS to plural computa-
tion nodes on a grid-based simulation environment. 

4.1 Case Study: Analysis of Family Strategy in Cultural Capital Reproduction 

Description of History Simulation. In this case study, an agent-based model is de-
signed to investigate the role of parental relationships and intergenerational reproduc-
tion of cultural capital to understand the long-term professional success of an elite 
family line during the Ming and Qing dynasties in imperial China [4][16]. In the 
model, cultural capital is reproduced by different family strategies, and the variables 
as parameters which characterize the strategies determine the result of cultural capital 
reproduction along with the family line. The parameters are the rate of cultural trans-
mission from family roles, such as great-grandfather, grandfather, etc. to child,  
and the coefficient between knowledge cultural capital and artistic cultural capital  
[4] [16].  
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In the following, we implement the history simulation model on SOMAS, and 
compare the simulation results through forward-, inverse simulation and model selec-
tion methods. 

Forward Simulation Test. In forward simulation, we set combinations of different 
values of parameters and execute 729/4, 096/15, 625 trials. The square error of two 
types of cultural capitals between simulated result and actual data has been used for 
evaluation, tallying by each agent. The smaller the square error is, the better the re-
sult. By running multiple trials of ABS models with respective parameter sets on 
plural computation nodes, we choose the best parameter set with its values to describe 
the successful family norm in civil service examinations in imperial China.  

The result is: the grandfather, the father, the uncle and the mother have great influ-
ence to pass on cultural capitals to the child. 

Inverse Simulation Test. In this case study, inverse simulation uses a real-coded GA 
through MGG [17] and UNDX [18] to optimize the parameters. The experimental 
configurations of history simulation through GA-based inverse simulation method 
are: selection is by best and rank-based roulette, the crossover of MGG is set to 100, 
the number of initial societies is 200, and the maximum generation is 5, 000. The 
value of alpha and beta in UNDX were set according to the suggestion in [18].  

The result is that a combined influence of the school, the grandfather, the father, 
the mother, the uncle and the aunt works well to pass on cultural capitals to the child. 

Model Selection Test. In model selection, we reexamine the model with subset of 
parameters and candidate procedures in order to obtain a more accurate model struc-
ture. The experimental configurations of first-layer GA for selecting feature set are: 
selection by best and rank-based roulette, uniform crossover, mutation rate is 0.05, the 
number of initial populations is 50, the number of child per each generation is 200, 
and the maximum generation is set to 500. Moreover, the configurations of second-
layer GA for inverse simulation are: selection by best and rank-based roulette,  
crossovers of MGG is 100, the number of initial societies is 200, and the maximum 
generation is set to 5, 000. 

By model selection, we sort the obtained feature sets by their fitness values in an 
ascending order and the top five patterns are: 1) school, grandfather, mother, uncle 
and aunt, 2) school, great grandfather, grandfather, mother, uncle and aunt, 3) school, 
great grandfather, grandfather, father, mother, uncle and aunt, 4) school, great grand-
father, father, mother, uncle and aunt, 5) school, grandfather, father, mother, uncle 
and aunt. The result of inverse simulation (the fifth pattern) can also be found by 
model selection, while the first pattern with more accurate fitness values is never 
found in inverse simulation. Such a pattern explains the same macro phenomenon by 
a simpler model structure with a subset of parameters and candidate procedures, that 
is, besides school education, the combined influence of grandfather, mother, uncle 
and aunt are important to transmit cultural capitals to the child.  
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Speed Test. The experimental results on speed test of history simulator are summa-
rized from Table 2 to Table 4, which suggest that SOMAS works well. However, 
because heterogeneous nodes of the grid test bed vary in their computing capabilities, 
the execution time does not show a linear speed up rate when adding nodes to the grid 
test bed. 

Table 2. The experimental results on speed test by forward simulation (628 agents) 

 

Table 3. The experimental results on speed test by inverse simulation 

 

Table 4. The experimental results on speed test by model selection (326 agents) 

 

4.2 Scalability Test of SOMAS 

Furthermore, we carry out experiments to confirm the scalability of SOMAS on the 
grid test bed, through inverse simulation method. The experiments set the number of 
child per each generation of MGG to 200 and use Parallel MGG algorithm (PMGG), 
which equips parallel generation replacement and evaluation mechanisms at the same 
time [18]. Because heterogeneous computation nodes on the grid test bed vary in their 
computational capabilities, we select the longest time consumption of one trial of 
history simulation as a standard unit time, and then evaluate all execution times again 
bases on this standard unit time for normalization. Fig.6 shows the normalized results, 
which confirms that the rate of speed up is almost linear for up to 100 CPUs. 

The number of 
nodes 

Execution time  

36 46 56 

1 0°04′55″ 0°31′40″ 1°56′14″ 

50 0°00′14″ 0°01′09″ 0°04′12″ 

100 0°00′12″ 0°01′03″ 0°03′48″ 

The number of 
nodes 

Execution time 

326 agents 628 agents 997 agents 

1 1°25′26″ 4°37′08″ 5°56′34″ 

10 0°09′03″ 0°27′17″ 0°33′22″ 

100 0°02′17″ 0°04′41″ 0°05′39″ 

The number of nodes( the number of GA master 
× 

the number of evaluation node) 
Execution time 

1 N/A (*1) 

10 (1×10) 41°55′22″ 

100 (10×10) 10°14′48″ 

500 (10×50) 4°05′14″ 

(*1) The calculation did not finish in three days. 
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Fig. 6. The result of scalability test of SOMAS 

5 Concluding Remarks 

In this paper, we have proposed a grid-based simulation environment, named Social 
Macro Scope (SOMAS) for agent-based model with vast parameter space. The main 
contributions of SOMAS are: 1) the simulation method libraries which enable running 
agent-based models through various simulation methods, so as to meet with different 
simulation objectives; 2) smooth execution of three types of simulation methods of 
agent-based models (forward- and inverse-simulation as well as model selection) 
through a common Java interface, especially, a new capability of model selection to 
find simpler and more accurate model structure; 3) distributed experimental execution 
processes to search for a vast parameter set and candidate procedure set by employing 
grid technologies; furthermore, 4) SOMAS has successfully developed one ABS case 
study on history simulation domain, we have obtained the simulated result within a 
short CPU time, new findings have been found by model selection method.  

Intensive experiments have confirmed the practicability and effectiveness of 
SOMAS for large experiments with multiple runs of ABSs through various simulation 
methods, independent of the agent-based model itself. We have also confirmed that 
the proposed SOMAS framework has a good scalability up to 100 CPUs on a grid test 
bed. 

Our future work is to develop more popular libraries and more case studies on 
SOMAS, to confirm its robustness and maximize its usability. We are also going to 
implement convenient libraries for automatic data analysis of simulation results. 
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