Living Modeling of IT Architectures:
Challenges and Solutions

Thomas Trojer, Matthias Farwick, Martin Hausler, and Ruth Breu

Institute of Computer Science,
University of Innsbruck,
Innsbruck, Austria
{firstname.lastname}Quibk.ac.at

Abstract. Enterprise Architecture Models (EA Models) are documen-
tations capturing the elements of an enterprise’s IT infrastructure, set-
ting these elements in relation to each other and setting them into the
context of the business. EA Models are a crucial backbone for any IT
management process and activities like analysing IT related risks and
planning investments. The more companies depend on reliable IT ser-
vices and use IT as innovation driver, the more high quality EA Models
provide competitive advantage. In this paper we describe core challenges
to the maintenance of EA Models based on previously conducted sur-
veys and our longstanding experience in industrial collaborations. This
is followed by a sketch of an innovative solution to solve these challenges.

1 Introduction

Enterprise Architecture Management (EAM) is an IT management process to
describe, structure and plan complex IT systems in the context of the business.
A core task within this process is to document the current state of business
and IT infrastructure elements, e.g. business functions, software applications,
servers, and to set these elements in relation to each other. The resulting Enter-
prise Architecture Model (EA Model) is usually very large in size, i.e. typically
comprising several thousands of elements, and captures distributed knowledge
of manifold stakeholders within the organization. There are a variety of tools
for Enterprise Architecture Management off-the-shelf [22]. These tools typically
support the documentation of architectural elements according to a given meta
model and provide a set of representations, both of tree-like, graph-like or chart-
like nature.

As we have shown in several surveys conducted with experts from indus-
try [8,9], the quality of EA models in practice is an issue. Parts of this quality
issue originate from organizational aspects, others stem from drawbacks of the
available tools. One core drawback of available tools concerns the inflexibility of
the EA Meta Model which does not adapt to grown terminology in organizations.
A second drawback is deficiencies in the currentness of EA Models. EA Models
which do not reflect the current state of the IT landscape may lead to wrong de-
cisions on the management level. As two sources of this drawback we have been

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 458-474, 2015.
© Springer International Publishing Switzerland 2015

Living Modeling of IT Architectures: Challenges and Solutions 459

able to identify lacking automation capabilities and inappropriate user interfaces
to maintain the model [7]. In addition, largely static visualizations of the EA
Model in current tools are regularly mentioned to not adequately support the
tasks of stakeholders like IT architects, operations staff and project managers.

In this paper we will start with a more thorough discussion of the challenges of
tool support regarding EA models in the context of large IT infrastructures that
are managed by geographically and organizationally distributed teams. These
teams involve manifold stakeholders ranging from information officers, enterprise
and IT architects to system administrators. This is followed by a presentation of
possible corner stones for a solution to these challenges (see Section 3). Overall
we call this modeling solution to be living in the respect that models and meta
models can be maintained and visualized with a much higher degree of flexibility
than in state of the art solutions.

We will demonstrate the materialization of the sketched solution within the
novel EA modeling tool Txzture! which has been developed by our team in the
course of two industrial collaborations. Finally, we reference related work (see
Section 4) and draw conclusions in Section 5.

2 Challenges

Typically IT management teams in enterprises have their own distinct terminol-
ogy and levels of detail to document their IT systems and business functions.
Hence, the need for flexible meta models is among the conclusions from con-
ducted surveys. Flexibility means e.g. that the EA Meta Model which is under-
lying the architecture documentation needs to be customizable in order to fit the
current information demand of an organization and its stakeholders. Over time
these information demands usually change, e.g. due to the use of new technology
or modified catalogues of provided business services. Hence, a properly usable
EA Meta Model needs to adapt accordingly. This is in line with the work of
Schweda [25], who also describes evolving organization-specific meta models as
important and defines them as a requirement for successful EAM.

Once the EA Meta Model is aligned with the documentation requirements of
an enterprise, a corresponding EA Model can be developed and describes the
current state of the IT architecture and business assets. Modeling the EA is
an incremental process and needs collaboration of a diverse set of stakeholders
providing their knowledge about different enterprise aspects. While the enter-
prise transforms over time, the EA Model, in order to stay usable, needs to
be adapted. Our experience has shown that enterprise stakeholders are often
reluctant to keep the EA Model in-sync with reality, mostly because their doc-
umentation tools do not integrate well in their working environments. Recently
we have described the use of text-based EA modeling [11], specifically tailored
to support stakeholders with technical background. In general we argue that an
EAM tool has to provide modeling support tailored towards the needs of its
stakeholders. In particular this comprises consideration of both business-level

! See http://www.txture.org

http://www.txture.org

460 T. Trojer et al.

stakeholders (preferring e.g. forms and charts) and technology-level stakeholders
(preferring e.g. programming style or graphical representations).

Up-to-date EA Models are a prerequisite to EAM activities such as the analy-
sis of current I'T architectures and planning upcoming developments and projects.
These analysis and planning steps require dedicated consideration and are com-
monly supported by a set of static visualizations providing specific views on the
EA models [20]. Feedback received by experts from industry has shown that
stakeholder-specific visualizations are to a large extent missing in current EAM
tools. By stakeholder-specific visualizations we mean dynamic and navigable
views, supporting an individual user to analyze the EA model. This is in line
with trends in Business Intelligence, where such visualizations are also known
and part of the self-service aspect?.

Finally, an integral challenge to all of the aforementioned aspects is to main-
tain high computational performance of operations on top of EA Models. When
dealing with large-scale EA Models optimized and automated adaptations based
on a changed meta model, the browsing and querying of arbitrary EA Model el-
ements and the creation of visualizations from the entire EA Model need to be
accomplished in a timely manner. Otherwise, the usability of an EA modeling
tool and the tool’s acceptance by enterprise stakeholders may be heavily affected.

Overall, we summarize the EAM tool challenges we have outlined in this
section as follows:

— Implementation of flexible IT architecture modeling

— Need for stakeholder-centric modeling editors

— Provision of dynamic and navigable visualizations

— High performance of EAM operations on top of large-scale EA Models

3 Solutions within the Living Modeling Environment
Txture

In 2011 we started a consulting project with a banking data center and subse-
quently a research project with the data center of a large semiconductor man-
ufacturer. The overall goal of both projects was to make the documentation of
EA more efficient and effective. Enhanced flexibility as well as usability features
and stakeholder orientation of the implemented tool were generally seen as im-
portant. In addition, requirements to support common EAM activities on top of
an EA Model were considered.
The key features of the resulting modeling tool Tzture are as follows:

— Modeling of the architecture via a form-based web-client to support less
technically skilled users.

— Textual architecture modeling via a meta-model aware Fclipse-based text
editor [11] provided to technical staff.

— Dynamic and flexible graph visualizations of EA Models.

2 BI Survey ’13, “The latest market trends”, http://barc-research.com/bi-survey/

http://barc-research.com/bi-survey/

Living Modeling of IT Architectures: Challenges and Solutions 461

EA Visualizations

Graph Database
High-level

EA queries
N —
«{ Low-level Queries

K
query

(Interface)

0
o
o
I
o

<
e
]
S

(=4

7y
query

EA Analysis

Model Repository EA (Meta) Models
2

EA Meta Model @

Editor

(e30W) @deL3U]
Interface (Query)

Jdepe
Y

EA Meta Model EA Model
(Interface) (Interface)

Interface (API)

synchronize synchronize import

Textual Editor Form-based Editor EA Data Importers

7]

RDMS CMDB

Fig.1. The Taxture environment showing the EA model persistence at its core and
auxiliary components for EA management purposes

— High performance model queries via optimized persistence of models in a
graph database.

— The ability to define and change the EA Meta Model at runtime.

— Configurable import mechanisms to automatically use architectural data con-
tained in external sources such as in Configuration Management Databases
(CMDB), Ezcel spreadsheets, source code or relational databases.

These key features are reflected in the architecture of the Txture modeling
environment (see Figure 1).

Figure 2 depicts a graph-based architecture visualization (see top-most screen-
shot). There, relationships between application containers, an application and
the underlying (clustered) hardware infrastructure are shown. Such visualiza-
tion is used e.g. to perform impact and risk analysis of application deployments.

Several other key visualization features can be seen in the corresponding part
of the figure:

— Architectural elements are assigned to layers, hence the visualization auto-
matically shows an intuitive architectural stack.

— The visualization is navigable and dynamic via a set of modification opera-
tions (see the context menu depicted in the screenshot).

— Graph nodes are styled based on their type or other attributes, like mission-
criticality (cf. the elements VMWare Cluster and VM Ware Server).

Furthermore, Figure 2 shows the meta modeling capabilities via a form-based
editor. This editor allows the user to change the EA Meta Model at runtime

462 T. Trojer et al.

application ® s | .
 Application (Remedy-T)

JB0ss 6.2.0 (Boss Inst T3)
| Tomeat 7.x (Fomeat Inst T3)

virtual /

\ [

Windows Serer rtual) (K1)
/

27 TXTURE

Browser

g BTN

Resolve Path >

cluster

D Type
IBKServer20 Windows Ser (" Navigate >
IBKCluster3 Microsoft iy / Remove Node
IBKCluster2 VMware Clus Remove other Nodes
Remedy-IT Application | gy Bridge Node
winserviceApp BaseLayer Execute Service Call >
1BK2 Windows Sen

VMWare Server (Server_Prod_T3)

Information Model Edit ge

IBKDB

Microsoft Clu

AXCApP
Server_Prod_T1 VMWare Server

Application

ENCA L Rel Showin Visualization
Server_Prod_T5 | Edit
Server_Prod_T4 VNWare Server
Server_Prod_T6 VMWware Server

e Name: ApplicationContainer

ApplicationContainer Layer: application

Database

Clusterinstance
IBKCluster VMware Cluster runsOn [0.1] PhysicalServer
Physicalserver
Server_Prod_T21 VMWware Server
Cluster Name: runson Opposite:
Applications
ppiicationservice Target: PhysicalServer Multiplicity: 0.1 Type: Directed

Databaselnstance

Fig. 2. The Trture environment showing the architecture browser (left screenshot),
dynamic visualizations (top-most) and the ability to view and change the EA Meta
Model (bottom-most)

which in turn directly influences the visualizations and the import configurations
for mapping EA data of external data sources.

Finally, basic search and query functionality is implemented via an architec-
ture browser and is indicated on the left side of Figure 2.

3.1 Modeling Framework

In this section we outline Tzture’s employed modeling framework using a sample
model (see Figure 3).

The EA Model in Figure 3 shows documented instances of I'T system compo-
nents. The example describes an application container instance “JBoss Inst T3”
which “runsOn” a physical server named “Server Prod T3”. As we have de-
scribed in the previous section, such a model can be used e.g., to perform impact
analysis (“What happens if the specific server crashes?”) or to do infrastructure
planning (“Is the specific server appropriately dimensioned to run such soft-
ware?”).

Additional to modeling IT component instances and their structural depen-
dencies, a simple notion of ontology can be seen on the right side of the figure.
Such ontological classifications are modeled as part of the documentation activity
and allow responsible persons for EA elements to further describe and catego-
rize their documented instances. In our example case, the application container
instance is of type “JBoss EAP 6.2.0” which reflects a part of the enterprise’s

Living Modeling of IT Architectures: Challenges and Solutions 463

EA Model Ontological Model

Server_Prod_T3 : IBM Power 780 : Type
PhysicalServer vendor: 1BM

Servlet Container : Tag

JBoss_Inst_T3 : JBoss EAP 6.2.0 : Type

Appl Container version: 6.2.0

vendor: Red Hat

Production use : Tag

Fig. 3. A simple EA Model showing IT infrastructure elements

modeled ontology. Furthermore it is tagged with “Serviet Container” to indicate
its relatedness (“isA”) to Java servlet technology. Ontologies in EA Models are
established to introduce enterprise-specific terminology (e.g., by means of em-
ployed technology), but are also used in Tzture to enhance browsing, search and
filter functionality.

Figure 4 provides an extended view of our example model by including its
corresponding meta-model hierarchy. On the EA Meta Model level, the expres-
siveness of the underlying EA Model is set. At this level the structure of a EA
documentation that architects agreed upon is modeled.

The top-level artifact, the meta-meta model, defines all concepts that are
needed to properly describe IT infrastructures. The meta-meta model defines
the concepts of class, association (i.e. association classes) and property to de-
velop the structure of an organization-specific architecture modeling language
and the concepts type, tag and mizin that allow shaping the ontological model.

Classical Hierarchies to Separate Modeling Activities. One of the expe-
riences we gained from modeling workshops with our industry partners is that
modeling novices or software developers understand modeling best when using
strict and limited hierarchies in which modeling concepts and their instantiations
are described. In our case the modeling levels that users have to interact with
are manifested by the EA Meta Model and the EA Model as its instantiation.
Besides understandability of concepts, having a clear cut between modeling lev-
els also supports a permission and concern-oriented separation for managing the
EA documentation and the meta model it relies on. This separation is important
as different modeling activities are performed by individual stakeholders with po-
tentially diverse domain expertise. This is further explained in Section 3.2.

Types to Mitigate Invasive Meta Model Changes. Another experience
we made was that adapting the EA Meta Model is typically a recurring ac-
tivity, triggered by frequent change requests from our partners and driven by
adjustments, extensions and simplifications to modeled concepts.

It is common to any modeling activity, that changes to models may involve
corresponding changes on dependent models, as part of re-establishing confor-
mance in the model hierarchy. To minimize the efforts and consequences of such

464 T. Trojer et al.

Meta-meta Model taggedBy

subclassOf
1 @MV
Property H Class
////

- source

o Association N
I

] i

! !

f 1

i
<<instanceOf>>

<<instanceOf>> <<instanceOf>>
'

Version

i
1
1
1
|
1
i
N
i
1
|
!
1
1

@M

@M

PhysicalServer

EA Meta Model

@M
ApplicationContainer

JBoss EAP 6.2.0 : Type

version: 6.2.0
vendor: Red Hat

JBoss_Inst_T3

Server_Prod_T3

location: "Shanghai, CN"

Servlet Container : Tag

Production use : Tag

EA Model Ontological Model

Fig. 4. The Trture modeling environment. Annotation boxes (black) reflect where a
model element gets instantiated (QMM = EA Meta Model, @Onto = Ontological model
and @M = EA Model)

changes, either well-defined automated model refactoring procedures are required
or a meta model needs to be realized in a way such that the most common
changes to it only minimally interfere.

For our industry partners a manual refactoring after changes to the EA Meta
Model was out of question. This is why we settled on a modeling pattern similar
to the one of power types [23] that allows for creating types at the EA Model
level and therefore reduces the need to actually adapt the related meta model.

Our original modeling approach made heavy use of inheritance on the meta
model level. For example we applied a deep inheritance structure to model dif-
ferent Application Containers according to their wvendor, software version or
required runtime platform. This rendered the meta model both large in size
(i.e. number of model elements) and prone to frequent changes (e.g. on software
version changes).

Using types greatly helped to reduce the size of the meta model and therefore
maintaining comprehensibility and lowering the frequency in which changes to it
needed to be applied. A modeling environment that allows types, can rely solely on
generic meta model elements like Physical Server or Application Container and
therefore provides stable modeling concepts that are invariant to an organization
and all of its stakeholders. This means e.g. that no highly-specific vendor-based

Living Modeling of IT Architectures: Challenges and Solutions 465

product terminology would be described within the EA Meta Model which would
only be understood by a minority of the enterprise’s stakeholders and which is
likely to change over time (cf. JBoss-specific server software in the example of
Figure 3).

Our understanding of types, as part of the ontological model, is that ad-
justments to them can be easily applied during the regular EA documentation
processes. This is in line with Atkinson and Kiihne [3], who describe the need for
changes and newly added types that are possible while the system is running.
Our type concept delivers a light-weight way for dynamic additions and proved
to be intuitively usable in EA documentation practice.

In addition to types, we use tags to further categorize model elements. Tags
are comparable to UML stereotypes® and can be applied to types and individ-
ual instances. In Txture both type and tag elements are modeled by responsible
persons for EA elements and are part of the EA Model.

Multi-Level Instantiation to Support Dynamic Extensions. With the
introduction of types on the EA Model level, we are able to limit the amount of
changes that otherwise are applied to the meta model. While this is beneficial,
maintaining an EA Meta Model of only generic concepts bares issues regarding
the expressiveness of the documentation: Generic EA Meta Model concepts leave
out detail and shift the specification of properties of model elements onto types.

Our documentation activities require that types and instances can be man-
aged by the same stakeholders within the EA Model. For proper architecture
documentation, types not only define properties to be instantiated by their re-
lated instances, but need to specify values for certain properties themselves.

Figure 4 shows that the JBoss-example type defines values for the proper-
ties version and vendor, whereas our example application container defines a
text value reflecting its deployment location to be “Shanghai”. In our example
we assume this property to be dependent on the actual type, as e.g., not for
all application containers the location is known or relevant to be documented.
Because of this, we needed to realize a property-like concept, so called mizins,
that can be instantiated on both the level of types and the level of documented
instances. This is comparable to the concept of deep instantiation [2] or that of
intrinsic attributes in the MEMO meta-modelling language [14].

The mixin concept aligns well with the flexible nature of our type concept and
allows the documenting stakeholders to adapt the EA Model to cater for their
particular documentation needs.

3.2 Stakeholder-Centric Editors

A key challenge in the context of EAM is to cater for the many different stake-
holder types that are typically involved in editing the EA model. These range
from database administrators and software developers to enterprise application
architects, to process owners, project managers and even the CIO in some cases.

3 ¢f. UML 2.4.1 infrastructure specification, http://www.omg.org/spec/UML/2.4.1/

http://www.omg.org/spec/UML/2.4.1/

466 T. Trojer et al.

It is clear that each of these stakeholder types has different requirements when it
comes to proper user interfaces. As we have described in our previous work [10],
one problem in the EA management process is that users are often reluctant to
enter data into an EA tool because of the time overhead involved. One reason
for this problem are the potentially diverging conceptions between developers of
an EA tool’s features and its eventual users.

Following from this, we argue that adequate user interfaces for the different
stakeholder groups can mitigate this problem by reducing the barriers for stake-
holders to document the EA. Along this line we previously presented an approach
to enter EA data in a textual way [11]. Our experience has shown that the tex-
tual editing approach generally works well for technical staff that is accustomed
to work in text-based environments such as they are used for programming (e.g.,
via Eclipse*) or systems configuration (e.g., of databases or server applications).
In other cases it might be more appropriate to let users enter data via simple
form-based applications. Finally there are also users that commonly work with
standard office applications like spreadsheets (most commonly Microsoft Excel).

In the following, we provide some detail on the different stakeholder-oriented
editing functionality that we have implemented in Tzture. The specific challenges
that all EA model editors have in common is that they need to seamlessly cope
with a changing underlying meta model and the multi-level modeling concepts
like runtime-added types and attributes (cf. Section 3.1).

Textual Modeling Editor. While working with our first industry partner,
we implemented textual editing of EA models. In a number of interviews with
a variety of technologically educated stakeholders, we learned that text-based
tools are commonly used by them. We decided to implement a textual editor for
EA management in order to yield a high level of acceptance in this specific user
group.

The editor (see Figure 5) was developed to be accessible within the Eclipse de-
velopment environment and builds upon the textual modeling framework Xtext®
in order to offer sophisticated textual editor functionality and user assistance out
of the box. Visual support is provided via font- and color-based highlighting of
known syntactical elements, including EA Meta Model classes, attribute names
and types. The so called outline view (see the right part in the figure) delivers a
navigable tree view that lists all described elements in a compact way. Besides
the regular in-text search functionality, the outline view can be used to quickly
overview the entire documentation and search for specific elements.

Beyond visual appeal and standard text editor functionality, our EA model
editor also provides advanced features like automatic text completion for known
syntax, error highlighting on failed model validations and the ability to insert
placeholder text templates to help documenting new EA elements.

In a previous work [15] we have demonstrated textual modeling challenges,
specifically by taking collaborative modeling efforts into account that involve the

4 http://www.eclipse.org
® See http://wuw.xtext.org

http://www.eclipse.org
http://www.xtext.org

Living Modeling of IT Architectures: Challenges and Solutions 467

[y Project Explorer =0|B 2 B BrokerApplicationHardware.arc = 0|/ 8= outline % =g
B % < | ©ApplicationContainer InsecureToncat2 { &= ~
= description "the insecure one" J

M5 type Tomcat7 BrokerApplicationDeployment

» gy Decislons runsonLogicalHardware (VM1, VM2)

¥ G Deployment

B BrokerApplicationDeployment.arch 1.1 || = DeployableArtifact Portal {
B BrokerapplicationHardware.arch 1.1 containsLogicalSoftwareConponent (BrokerPortal, ExportService)
v ¢y Software deployedonAppLicationContainer (secureTomcat)

[BrokerApplication.arch 1.1

- DeployableArtifact Userbase {
type WAR
containsLogicalSoftwareComponent (UserManagement)
deployedonapplicationContainer (I

okerPortal

1
ailservice - ExportService.EmailService

portservice
rtalNotificationService - ExportService.PortalNotil

ApplicationContainerType Tomcat? {}

- DeployableArtifactType WAR {
description "A atomatically packa
the portal applicati

interService - ExportService. PrinterService
ockDispatcher - BrokerPortal. StockDispatcher
ockTrader - BrokerPortal.StockTrader

}

- ApplicationContainer SecureTomcat {
type Toncat6
runsonLogicalHardware (VM1, VM2)

- ApplicationContainer InsecureTomcat {
type Tomcat6
runsonLogicaltardware (VM1)

- ApplicationContainerType Tomcat6 {
}

LogicalHardware VM1 {

Fig. 5. The textual editor as Eclipse plugin with file management, syntax highlighting,
automatic text completion and outline support, developed with the Xtext framework

use of non-text based modeling editors as well. The main discrepancies between
these two natures of editing are regarding the representation and persistence of
EA model data. While models are commonly stored in a way so that only dedi-
cated modeling tools can open and modify them (cf. XML-based persistence via
e.g., XML Metadata Interchange (XMI)), any text editor can be used to work
with a textual representation of models. Still, specific methods are required in
order to manage the necessary file and folder based persistence of textual model
parts and strategies which help to translate back and forth between text and
other EA model representation formats. Considerations on e.g. the order of ele-
ments in text files or the storing of textual user comments had to be made and
led to the requirement of maintaining extensional information about EA models.

Form-Based Modeling Editor. In addition to textual editing, Txture provides
web-based forms to conveniently allow management of data by users with less
technical background. There, the typical user interface elements like text fields
and combo boxes are used to maintain attribute values of EA elements and
cross-references between them.

Similar to the textual editor that provides syntactical keywords based on
the currently employed EA Meta Model, the form-based editor is dynamically
generated to reflect all available elements and their valid structure.

This type of editor is directly integrated as a web-based application within
the Txture environment which we have shown in Figure 2.

Other Modeling Editors. To cover the entire range of stakeholder types for
EA documentation, additional modeling editors can be considered for implemen-
tation. E.g. in a previous work [15] we have described our current efforts about

468 T. Trojer et al.

an easy-to-use modeling extension for Fzcel. By now we have implemented a first
prototype which renders documented EA elements together with their attributes
and references into the cells of a spreadsheet. Such an editor is helpful to support
business stakeholders and to integrate data that pre-exists in spreadsheet tables
as external data sources.

Another current effort is to use Java code annotations to allow software de-
velopers to indicate a rough underlying software architecture. Such annotations
get processed by a code analyzer and are fed into the EA documentation as
well. The banking data center that we work together with, also operates a large
software development department which established the use case of annotation-
based modeling capabilities.

Our experience over the last years has shown the importance of first determin-
ing typical stakeholder tools and trying to adapt them, prior to making plans for
custom tool developments. We have seen that users more easily accept and learn
new functionality provided by familiar tools, as opposed to operating entirely
new tools. Learning new tools, besides having to execute one’s daily working ac-
tivities, is often perceived as cumbersome and may in turn lead to an abandoned
EA documentation.

3.3 Dynamic Architecture Visualizations

Architecture visualizations constitute a key reason why EA models are created.
They are the means to reduce the architectural complexity and make potential
problems visible to the persons responsible. The main challenge for EA visual-
izations is to present large models in a way that only the relevant information
regarding a specific EA or IT architecture question are shown.

A typical approach is to allow users to pre-configure visualizations in a form-
based manner and then generate graphical representations from this
view-definition [24]. We argue that the roundtrip between configuration and
the generation of the visualization presents a hurdle for the efficiency of cre-
ating adequate visualizations. In Taxture, visualizations can be both created
from a selection of EA elements or from a pre-defined view definition, but also
edited dynamically from within a given visualization. Some of the editing func-
tionality is shown within the top right screenshot in Figure 2, visible as the
context menu that contains several options for editing the current visualiza-
tion.

During the EA projects with our industry partners we gathered a number of
requirements that useful architecture visualizations need to implement. Accord-
ingly, visualizations should

— be able to represent EA model elements in different ways,

— be easily navigable in order to make the architecture’s structure understand-
able,

— implement filter mechanisms to allow simplifications of the visualization and

— be visually extensible (e.g., via visual groups and separators derived from
extensional EA model information), hence providing additional meaning to
what is depicted.

Living Modeling of IT Architectures: Challenges and Solutions 469

The actual types of visualizations and the way EA model elements are rep-
resented are numerous and need to be adapted to the requirements of certain
user groups. For instance, we interviewed system administrators who declared
treemap-based visualizations as helpful in order to quickly determine runs on
or hosted by-relationships between server applications and virtual systems that
run on top of physical hardware. Software developers and IT systems archi-
tects felt comfortable with graph-based visualizations or a mixture of treemaps
and graphs. With treemaps, the typical containment relationships are reflected,
whereas a graph allowed them to determine system communication paths, e.g.
implemented via services. By contrast, project managers and business-oriented
stakeholders were interested in matrix or list-based representations of EA model
elements. These stakeholder groups were mostly only interested in visualizing
types that occur in an architecture, but no specific instances. We were told that
this would allow them to get an overview of the employed technology stack or
to make abstract business processes visible.

In the current version of Txzture, navigation within visualizations is possible
due to a number of operations. For example, the show neighbours-operation helps
to explore the neighbourhood of a given model element by showing all of its di-
rectly related elements (via EA model cross-references). The navigate-operation
allows to insert directly related model elements into the current visualization, by
choosing a specific relationship of interest. Finally the resolve path functional-
ity enables a user to resolve arbitrary dependencies of a selected model element
to all elements of a specific type or class. This operation is intended to show
transitive dependencies between EA elements. E.g. one could select a specific
application and resolve all physical hardware that this application relies on.

Filter operations applied to current visualizations are a helpful tool to simplify
what is depicted. E.g., we implemented the removal, grouping and bridging of
EA model elements. The removal operation, as its name implies, deletes elements
from the current visualization in order to simplify them if unnecessarily loaded.
Grouped elements are visualized as a single node within the visualization. A
label for the replacing group node is either automatically generated or can be
defined manually. Groups can also be dissolved via an inverse ungroup-operation.
Lastly, the bridging of nodes allows to transitively skip arbitrary model elements
in the visualization. The skipped nodes are replaced by new relationships that are
either labeled automatically or receive custom names. The purpose of bridging
is to lower visual complexity by means of raising the abstraction level.

In order initiate new or extend current visualizations, an adding-operation en-
ables a user to insert a selection of documented EA model elements. If requested,
any direct dependencies to already visualized elements are shown as well.

Additional to these operations, other functionality is planned as well. Current
efforts include the implementation of the aforementioned visual extensions by
means of visual groups to mark arbitrary collections of elements. This will be
done with the help of colors, separating boxes and custom labels.

470 T. Trojer et al.

One of the greatest challenges we encountered while implementing our vi-
sualization components was to keep the runtime performance of the described
operations high. To us, this highlighted the need to establish an efficient, per-
formance optimized model query framework.

3.4 Efficient Querying of Large EA Models

Querying EA models is especially important to perform analysis and to select
EA model elements along with certain criteria. Results of such model queries
are typically interpreted by enterprise stakeholders. Furthermore, query results
are the basis of Txture’s visualizations.

Two main requirements guided our design decisions regarding a query frame-
work. Namely, high performance in obtaining query results and access to a query
expression language that is easy and intuitive to use.

In order to find out about the technology that best caters our requirements,
we performed a number of benchmarks with different query frameworks. E.g., the
Object Constraint Language® (OCL) and EMF Model Query” have been used.
We were dissatisfied with all of the tested frameworks, regarding performance
results or the high complexity as well as the low expressiveness of the query
languages they offer.

We finally decided to create a query framework based on a graph persistence
to store the structure of an EA model (cf. Figure 1, central part). Regarding
performance, this decision reflects the choice of e.g. Barmpis and Kolovos [5],
who evaluated graph database to be fastest for querying, out of a number of
other model query and persistence approaches. Additionally, a regular indexed
data container (in our case a relational database) is employed and holds the
actual data of all model elements. As graph databases are typically capable of
storing vertices and edges as well as properties for both of these entities, we
found that these graphs are able to resemble the nature of EA models well.

The graph database we use is called Titan® and the query language it supports
is Gremlin® . Gremlin is a highly sophisticated graph traversal language that
is widely supported by current graph database systems. With it we were able
to mitigate any performance issues while expressing queries. Nevertheless, its
complexity would have not allowed any regular users of Tzture to take advantage
of its capabilities. Therefore we established an extensible set of high-level queries
that build upon complex graph queries, but provide a simple interface to users.
E.g., each of the visualization operations described in Section 3.3 is implemented
as such a high-level query.

The graph-based mapping of EA models, low-level graph-based querying to-
gether with the layer containing the high-level queries is depicted as part of
Figure 1 (see the right side of the core part of Tature’s architecture).

5 See http://www.omg.org/spec/0CL/

" See http://wuw.eclipse.org/modeling/emf/?project=query
8 See http://thinkaurelius.github.io/titan/

9 See https://github.com/tinkerpop/gremlin/wiki

http://www.omg.org/spec/OCL/
http://www.eclipse.org/modeling/emf/?project=query
http://thinkaurelius.github.io/titan/
https://github.com/tinkerpop/gremlin/wiki

Living Modeling of IT Architectures: Challenges and Solutions 471

4 Related Work

This paper presents an overview of our experience in EAM, the Txture tool as
well as a diverse set of challenges in the field. Accordingly, related work is simi-
larily diverse. We start its discussion by naming advancements in three research
fields that made the development of Txture possible. These are:

Advancements in Model-Driven Software Engineering. Runtime changes
of the underlying EA Meta Model and the consecutive adaptation of an EA
model is a complex problem. With the increased adoption of model-driven soft-
ware development this problem has received considerable attention in research
literature (see e.g. Favre [12]). In addition, allowing to model on multiple mod-
eling layers, such as it is required in the context of EAM is another challenge.
In particular, the work of Atkinson et al. [3] has helped in forming a better un-
derstanding of the problems of standard modeling languages such as the UML.
Also, work on textual domain-specific languages (like Xtext is used for) has con-
tributed to the development of the textual modeling editor of Tzture.

Proliferation of Graph-databases. The already mentioned size of practical
models in the EA context requires efficient methods for querying and storing
models. Graph databases have recently gained much attention because of their
utility for the use in social media applications and also other areas (an overview
is given by Angles and Gutierrez [1]). Fortunately, this resulted in the develop-
ment of several open-source, quality graph databases that are particularly useful
for querying EA model element relationships.

Advancements in Web-Engineering for Visualizations. A key-factor for
the utility of EA models are their visualizations. Building flexible client-side
visualizations for web-applications was, until recently, limited by the lack of
standards and accompanying technologies. With the adoption of new standards
(like HTML 5'°) by most modern browsers, major obstacles were removed,
leading to sophisticated graphing and drawing libraries for the web.

In the context of EAM it is common that tools provide predefined EA Meta
Models that can often only be adapted in a very limited way. For example,
the EAM tool iteraplan'! only allows for the extension of existing classes via
attributes. As shown in the EAM tool survey by Matthes et al.[22] there exist
some configurable tools, their technical foundation, however, is not clear. Other
tools work with fixed EA Meta Models based on EA modeling standards such as
The Open Group Architecture Framework [16] or Archimate [21]. We argue that
these standards are inflexible as it is difficult to adapt them to the terminology
used in an organization or to evolve. Schweda, on the other hand, presents a
sophisticated approach to pattern-based creation of organization-specific meta

10 ¢f http://www.w3.org/TR/html5/
" http://www.iteraplan.de/en

http://www.w3.org/TR/html5/
http://www.iteraplan.de/en

472 T. Trojer et al.

models [25]. However, its practical applicability was not shown. With the MEMO
meta-modeling language, Frank et al. [14] present a language and a tool suite for
building modeling languages in the enterprise context. The tool is Eclipse-based
and needs code generation steps in order to react on a changed meta model. The
proposed language for IT infrastructure modeling, ITML [13], provides fixed
concepts and can not support organization-specific meta models. Additionally,
we found that some of the complex virtualization and clustering patterns that
we have witnessed in practice cannot be modeled with this approach. In line with
Kattenstroth [17], we conclude that although the need for organization-specific
and evolving EA Meta Models has already been identified in literature [10,25],
most related work focus on formulating generic and fixed meta models that
cannot be adapted to the requirements of specific organizations.

Despite the existence of many commercial EA tools on the market, their
capabilities for flexible visualizations are rather limited. A relatively recent de-
velopment in the area of EA visualizations is to separate the model from the
visualization unlike e.g. Archimate which makes use of a graphical modeling
notation. This separation is suggested in several research works [24,18,6].

In the general model engineering community much groundwork has been laid.
Recently, the multi-level modeling paradigm gained more attention due to the
criticism of classical (two level) modeling, like done e.g. in the UML which only
allows a model and an instantiation at the same time [4,19]. This paradigm has
influenced the meta-modeling capabilities of Tzture, in particular, by providing
mechanisms to model types and mixins. Still, multi-level modeling mainly dis-
cusses requirements from software engineering and does not necessarily consider
modeling techniques from other domains. Regarding our work on Txzture we use
a mixture of classical and multi-level modeling approaches and unified them in
a novel way to contribute a usable EA documentation method.

5 Conclusion and Outlook

In this paper we have described the EA modeling framework underlying our
research prototype Tzture. It provides a unique feature set including classical
meta-modeling, type-based modeling and mixins and tackles some of the pressing
problems of EA and IT systems documentation.

As our research elicites requirements from practical experience, we believe that
our work can be useful for other EA researchers as well, but also for vendors of
existing EA tools.

Challenges we specifically discussed are:

1. The difficulty to adapt EA Meta Models at runtime which we tackle with a
combination of multi-level modeling techniques and classical approaches like
stereotyping and power typing.

2. Issues regarding dynamic and navigable visualizations that entail the prob-
lem of efficient queries over large EA Models. We solve this by using a graph-
based model persistence together with a layer of high-level EA Model queries.

Living Modeling of IT Architectures: Challenges and Solutions 473

3. The requirement to be able to edit EA Models by considering preferences of
different stakeholder groups. We solve this by implementing model editors
that either extend existing tools or align custom editors with the require-
ments named by their prospective users.

In our future work we aim to further evaluate our approach in practice and
conduct empirical studies that will assess to what extent our approach assists
and motivates different stakeholder groups to contribute to EA documentation
processes. So far, textual editing and dynamic visualizations have already shown
their usefulness at work for both of our industry partners. In the banking data
center enterprise architects, software developers and DevOps teams document
their work in the EA model, without having to change tools. The semiconductor
manufacturer uses pre-defined architecture visualizations as a starting point for
impact analysis of systems in their data center. In discussions, users have con-
firmed the value for them to be able to define their own custom visualizations
that support their daily working activities.

Recent developments in the fields of Model-driven Software Development,
graph databases and web-engineering have made the development of the pre-
sented framework and prototypical tool implementation possible.

References

1. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Computing
Surveys (CSUR) 40(1) (2008)

2. Atkinson, C., Kiihne, T.: The essence of multilevel metamodeling. The Unified
Modeling Language. Modeling Languages, Concepts, and Tools (2001)

3. Atkinson, C., Kiihne, T.: Model-driven development: a metamodeling foundation.
IEEE Software 20(5) (2003)

4. Atkinson, C., Gerbig, R.: Harmonizing Textual and Graphical Visualizations of
Domain Specific Models Categories and Subject Descriptors. In: Proceedings of the
Second Workshop on Graphical Modeling Language Development. ACM (2013)

5. Barmpis, K., Kolovos, D.: Evaluation of contemporary graph databases for efficient
persistence of large-scale models. Journal of Object Technology, JOT (2014)

6. Buckl, S., Ernst, A.M., Lankes, J.: Generating Visualizations of Enterprise Ar-
chitectures using Model Transformations.. Enterprise Modelling and Information
Systems Architectures 2(2) (2007)

7. Farwick, M.: A Situational Method for Semi-automated Enterprise Architecture
Documentation. Ph.D. thesis, University of Innsbruck (2014)

8. Farwick, M., Berthold, A., Breu, R., Ryll, S., Voges, K., Hanschke, I.: Requirements
for Automated Enterprise Architecture Model Maintenance. In: International Con-
ference on Enterprise Information Systems (ICEIS). SciTePress (2011)

9. Farwick, M., Breu, R., Hauder, M., Roth, S., Matthes, F.: Enterprise Architecture
Documentation: Empirical Analysis of Information Sources for Automation. In:
Hawaii International Conference on System Sciences (HICSS). IEEE, Wailea (2013)

10. Farwick, M., Schweda, C.M., Breu, R., Hanschke, I.: A situational method for
semi-automated Enterprise Architecture Documentation. SoSyM (2014)

11. Farwick, M., Trojer, T., Breu, M., Ginther, S., Kleinlercher, J., Doblander, A.:
A Case Study on Textual Enterprise Architecture Modeling. In: Enterprise Dis-
tributed Object Computing Conference Workshops (EDOCW), IEEE (2013)

474

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.
24.

25.

T. Trojer et al.

Favre, J.M.: Meta-model and model co-evolution within the 3d software space. In:
Workshop on Evolution of Large-scale Industrial Software Applications (2003)
Frank, U., Heise, D., Kattenstroth, H., Ferguson, D.F., Hadar, E., Waschke, M.G.:
ITML: A Domain-Specific Modeling Language for Supporting Business Driven IT
Management. In: Proceedings of the 9th OOPSLA workshop on domain-specific mod-
eling (DSM). ACM (2009)

Frank, U.: The MEMO meta modelling language (MML) and language architec-
ture. 2nd Edition. Tech. rep., Institut fiir Informatik und Wirtschaftsinformatik
(ICB) Universitat Duisburg-Essen (2011)

Haeusler, M., Farwick, M., Trojer, T.: Combining textual and web-based modeling.
Submitted to 16th TEEE/ACM MODELS (2014)

Haren, V.: TOGAF Version 9.1. Van Haren Publishing (2011)

Kattenstroth, H.: DSMLs for enterprise architecture management. In: Workshop
on Domain-specific modeling (DSM). ACM Press (2012)

Kruse, S., Addicks, J.S., Postina, M., Steffens, U.: Decoupling models and visualisa-
tions for practical ea tooling. In: Service-Oriented Computing. ICSOC/ServiceWave
2009 Workshops (2010)

Kiihne, T.: Matters of (Meta-) Modeling. SoSyM 5(4) (2006)

Lankes, J., Matthes, F., Wittenburg, A.: Softwarekartographie: Systematische
darstellung von anwendungslandschaften. In: Wirtschaftsinformatik (2005)
Lankhorst, M.: Enterprise Architecture at Work, 3rd edn., vol. 36. Springer,
Heidelberg (2012)

Matthes, F., Buckl, S., Leitel, J., Schweda, C.M.: Enterprise Architecture Man-
agement Tool Survey 2008. Tech. rep., Technische Universitdt Miinchen, Chair for
Informatics 19, sebis (2008)

Odell, J.J.: Power Types. Journal of OO Programming (1994)

Roth, S., Hauder, M., Zec, M., Utz, A., Matthes, F.: Empowering Business Users to
Analyze Enterprise Architectures: Structural Model Matching to Configure Visu-
alizations. In: International Enterprise Distributed Object Computing Conference
Workshops (EDOCW). IEEE (2013)

Schweda, C.M.: Development of Organization-Specific Enterprise Architecture
Modeling Languages Using Building Blocks. Ph.D. thesis, Technical University
of Munich (2011)

	Living Modeling of IT Architectures:Challenges and Solutions
	1 Introduction
	2 Challenges
	3 Solutions within the Living Modeling Environment Txture
	3.1 Modeling Framework
	3.2 Stakeholder-Centric Editors
	3.3 Dynamic Architecture Visualizations
	3.4 Efficient Querying of Large EA Models

	4 Related Work
	5 Conclusion and Outlook

