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Abstract. Martin Wirsing is one of the earliest contributors to the area
of Algebraic Specification (e.g., [2]), which he explored in a variety of
domains over many years. Throughout his career, he has also inspired
countless researchers in related areas. This paper is inspired by one of
the domains that he explored thirty years or so after his first contri-
butions when leading the FET Integrated Project SENSORIA [14]: the
use of constraint systems to deal with non-functional requirements and
preferences [13,8]. Following in his footsteps, we provide an extension of
the traditional notion of algebraic data type specification to encompass
soft-constraints as formalised in [1]. Finally, we relate this extension with
institutions [6] and recent work on graded consequence in institutions [3].

1 Introduction

Service-Oriented Architecture (SOA) [10] is a paradigm for the flexible con-
struction of systems based on the dynamic interconnection of components. This
interconnection takes place when a given component (the requester) needs to
discover another component that can provide a service that it needs, i.e., a com-
ponent (the provider) that, through an interface, offers the properties required
by the requester. In addition to the usual functional properties, components may
express preferences in their interfaces, in which case the requester will choose a
provider that can maximise the way those preferences are satisfied.

Interfaces are abstractions through which components can express proper-
ties that are independent of their implementations. Algebraic specification of
abstract data types [12] are one of the most established formalisms in which
interfaces can be defined. However, they are limited to functional properties of
the input/output behaviour of the operations that components implement. In
this paper, we extend algebraic specifications of component interfaces so that
preferences can be expressed as constraints and matching can be formalised in
terms of constraint satisfaction and optimisation.

In [1], Bistarelli, Montanari, and Rossi define a general framework for the
definition of constraint systems of several kinds. More precisely, their approach
allows us to describe both hard and (different types of) soft constraint systems.
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The idea is to consider that constraint values form a semiring, where 0 represents
unsatisfiability, 1 represents satisfaction and the rest of the values represent the
different degrees of satisfiability of the given constraint system. The approach
outlined in this paper combines the ideas presented in [1] with algebraic speci-
fication to include preferences in component interfaces. Our ideas are presented
using the specification of a travel request as a running example.

The paper is organized as follows. In Section 2, we recall some basic elements
of algebraic specification theory (which does not dispense consulting [12]). In
Section 3, we extend algebraic specifications for the specification of constraints.
Then, in Section 4 we study how we can combine constraint specifications. Sec-
tion 5 is dedicated to presenting our ideas in the framework of institutions.
Finally, in Section 6 we draw some conclusions.

2 Basic Algebraic Concepts and Notation

We assume that the reader has some familiarity with category theory (for ex-
ample, at the level of the first chapters of [5].)

A signature Σ is a pair 〈S,Ω〉 where S is a finite set of sorts, and Ω is a finite
family of sets of operation and predicate symbols typed over sorts. A Σ-algebra
A consists of an S-indexed family of sets {As}s∈S and a function opA (resp., a
relation prA) for each operation symbol op (resp., predicate symbol pr) in the
signature1. A Σ-homomorphism h: A → A′ consists of an S-indexed family of
functions {hs : As → A′

s}s∈S commuting with the functions and preserving the
relations. Σ-algebras and Σ-homomorphisms form the category AlgΣ.

Given a signature Σ, we denote by TΣ the term algebra, which consists of all
the possible Σ-(ground) terms – where a ground term is either a nullary function
symbol or an expression of an operation symbol being applied to ground terms
of the types required by the operation. Given any Σ-algebra A there is a unique
homomorphism hA: TΣ → A through which hA yields the value of every term of
sort s ∈ S in As.

Given a set X of variables typed over S, we denote by TΣ(X) the algebra of
all Σ-terms with variables in X , and given a variable assignment σ: X → A, this
assignment extends to a unique homomorphism σ#: TΣ(X) → A yielding the
value of each term after the replacement of each variable x by its value σ(x). In
particular, when an assignment is defined over the term algebra, i.e. σ: X → TΣ ,
then σ#(t) denotes the term obtained by substituting each variable x in t by
the term σ(x). However, for simplicity, even if it is an abuse of notation, we will
write σ(t) instead of σ#(t).

Given a signature Σ = 〈S,Ω〉 and a set X of variables typed over S, we can
build sentences, which are either equalities of the form (t1 =s t2) where t1 and
t2 are terms of sort s, or predicates of the form p(t1, · · · , tn), or a result of ap-
plying the usual Boolean connectives over sentences. All sentences are implicitly

1 Predicates are not part of the usual staple of algebraic data type specification but
they are convenient for our purposes in this paper.
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universally quantified2, i.e., a sentence is true over a Σ-algebra A if, for each
possible variable assignment σ: X → A, the sentence is true, i.e., the two terms
of an equality (t1 =s t2) have the same values — σ(t1) is the same as σ(t2), the
value of the terms t1, · · · , tn of a predicate p(t1, · · · , tn) belong to the relation pA
— (σ(t1), · · · , σ(tn)) ∈ pA, or the Boolean operators return true when applied
to the sentences that they connect.

In this paper, we use distinguished variables for defining constraints and use
them to extend signatures and algebras. Given a set V of variables typed over
S, we denote by Σ ∪ V the extension of Σ with the variables taken as unary
operation symbols and, given a Σ-algebra A and an assignment χ: V → A, we
denote by A ∪ χ the extension of A to Σ ∪ V that coincides with χ on V . New
‘normal’ variables can be superposed using the usual construction of terms with
variables as explained above.

3 Extending Algebraic Specifications with Constraints

We put forward a number of definitions that relate to the so-called c-semiring ap-
proach to constraint satisfaction and optimisation proposed in [1]. As explained
therein, that approach is quite general and allows us to work with constraints of
different kinds, both hard and ‘soft’, the latter in many grades (fuzzy, weighted,
and so on). The c-semiring approach supports selection based on a character-
isation of ‘best solution’ supported by multi-dimensional criteria, for example
minimizing the cost of a resource while maximizing the work it supports.

We recall that a c-semiring is a commutative idempotent semiring where addi-
tion is extended to infinite sets. In summary, a c-semiring is a tuple 〈R,∨,∧, 0, 1〉
such that:

– R is a set and 0, 1 are elements of that set.
– ∨ is a commutative, associative, idempotent operation over subsets of R with

unit 0; we use
∑

for sums over sets and reserve ∨ for the binary case.
– ∧ is a binary, commutative, associative operation with unit 1 for which 0 is

absorbing, i.e., (a∧0 = 0) for every a; we use
∏

for products over finite sets.
– ∧ distributes over ∨.

The intuition is that R — the domain of the semiring — represents a space of
degrees of satisfaction, for example the set {0, 1} for ‘yes’/‘no’ or the interval [0, 1]
for intermediate degrees of satisfaction (which gives us a constraint model that is
richer than Boolean algebra). The operations ∧ and ∨ are used for composition
(conjunction) and choice, respectively.

A partial order ≤R (of satisfaction) is defined over R as follows: a ≤R b iff a∨
b = b. That is, b is better than a iff the choice between a and b is b. It follows that 0
is worse than any other degree of satisfaction — it represents dissatisfaction, and
1 is better than any other degree of satisfaction — it represents total satisfaction.
This partial order defines a complete distributive lattice.

2 Note that implicit quantification in many-sorted equational logic raises problems at
the level of proof theory, which we do not discuss herein [7].
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In order to define specifications that capture constraints interpreted over c-
semirings, we extend the traditional notion of signature as follows.

Definition 1 (Constraint Signature). A constraint signature (or c-signature
for short) is a tuple 〈S,Ω, V, sat, 0, 1,≤〉 where
– 〈S,Ω〉 is a signature as recalled above.
– V is a finite set of (constraint) variables (c-variables for short) disjoint from

Ω.
– sat∈S is a distinguished sort, 0, 1∈Ωsat are distinguished constants, and ≤

is a distinguished predicate symbol over sat.

For simplicity, we will often useΣ to denote both a c-signature and its underlying
algebraic signature and denote by VΣ its set of c-variables. We will denote by
Σc the algebraic signature 〈S,Ω ∪ VΣ〉.
Definition 2 (Constraint Algebra). Let Σ be a c-signature. A constraint
algebra (c-algebra for short) for Σ is a triple 〈A,R, χ〉 consisting of:

– A c-semiring R.
– A 〈S,Ω〉-algebra A such that Asat is the domain of R, 0A and 1A are the

units of R, and ≤A is the partial order defined by R.
– An assignment χ: V→A of values to the c-variables.

Notice that, given a term t in TΣc , χ(t) is the value that is assigned to t in the
extended algebra A ∪ χ.

We now adapt to our algebraic setting the concepts put forward in [1] for
expressing constraints:

Definition 3 (Constraints). Let Σ be a c-signature.

– A constraint is a term q∈TΣcsat, i.e., a ground term of sort sat.
– A constraint problem (c-problem for short) C is a finite set of constraints.

In our running example, we consider the case of a customer who wants to
book a flight. The data signature of our example could be as depicted in Fig. 1:
it sets out the domain of airports, cities, airlines and flights that are relevant for
a particular customer.

The c-signature of the customer, i.e., the one in which constraint variables are
introduced, could then be the extension of flightDataSign depicted in Fig. 2.

This signature includes three c-variables — flight, flightCost and payMode —
meaning that the customer wants to optimise the choice of the flight and the
payment mode. We use {DC, CC} as an abbreviation for a sort with two dif-
ferent constants DC and CC. In order to express the constraints that apply to
that optimisation, three operations are declared for expressing preferences (i.e.,
operations of sort sat): airlinePref, stopsPref, distPref.

The constraints themselves are expressed as terms of type sat, for example:
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Signature flightDataSign

Sorts nat, bool, city, airport, airline,money, flightCode
Opns distance : airport city → nat

cost : airport city → money

LHR, LGW, LTN, STN, BCN, GRO, . . . : airport
Iberia, BritishAirways, EasyJet, RyanAir, Vueling, . . . : airline
IB001, IB002, BA001, BA002, EZ001, RN001, VL001, . . . : flightCode
Egham, Barcelona, . . . : city
stops : flightCode → nat

airline : flightCode → airline

airDept, airDest : flightCode → airport

Fig. 1. The signature flightDataSign

Signature customerSign extends flightDataSign with

Opns departure, destination : city
totalCost : flightCode → money

airlinePref : airline → sat

payPref : {DC, CC} → sat

stopsPref : nat money → sat

distPref : nat → sat

c-Vars flight : flightCode; flightCost : money; payMode : {DC, CC}
Fig. 2. The signature customerSign

airlinePref(airline(flight)) — meaning that the customer has a preference on
the airline.

payPref(payMode) — meaning that the customer has a preference on the pay-
ment mode.

stopsPref(stops(flight),totalCost(flight)) — meaning that the customer wishes
to optimise the number of stops relative to the total cost of the journey.

distPref(distance(airDest(flight),destination)) — meaning that the customer
wishes to optimise the distance between the destination airport and city.

We discuss now how these preferences are evaluated.

Definition 4 (Constraint Evaluation).

Let Σ be a c-signature and 〈A,R, χ〉 a c-algebra for Σ.

– The degree of satisfaction of a constraint q is χ(q).

– Given a c-problem C:

• The degree of satisfaction χ(C) ofC is
∏

q∈C χ(q). That is, we take themin-

imum of the degrees of satisfaction that χ assigns to the constraints in C.

• The best level of consistency of C over A and R is
∑

χ:V →A χ(C), which

we denote by blevelA,R(C). That is, we take the maximum degree of

satisfaction across all assignments.
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• A c-problem C is consistent over A and R iff blevelA,R(C) > 0, i.e., if

there is an assignment for which all constraints have a non-zero degree of

satisfaction.

• A solution to a consistent c-problem C over A and R is an assignment

χ such that χ(C) > 0. A best solution is an assignment χ such that

χ(C) = blevelA,R(C).

We now consider specifications over a signature.

Definition 5 (Constraint Specification). A constraint specification (c-spec
for short) is a triple 〈Σ,Φ,C〉 where Σ is a c-signature, Φ is a finite set of
sentences over Σc and C is a finite set of constraints over Σ.

A model of 〈Σ,Φ,C〉 is a c-algebra 〈A,R, χ〉 such that (A ∪ χ) |=Σc Φ and
χ(C) > 0, i.e., the sentences in Φ are true and χ is a solution to C.

A best model of 〈Σ,Φ,C〉 is a model 〈A,R, χ〉 such that χ(C) = blevelA,R(C).

Notice that, as usual in algebraic specifications, Φ may involve (data) variables,
which should not be confused with the c-variables. The specification is quantified
over the former but not the latter.

Consider again our running example. The specification of the underlying data
type could be as depicted in Fig. 3. For simplicity, we use a tabular representation

Specification flightData

Signature flightDataSign

Axioms distance(X,Y)=D, cost(X,Y)=C where:

X Y D C

BCN Barcelona 10 5

GRO Barcelona 60 15

LHR Egham 10 5

LGW Egham 35 20

LTN Egham 40 30

STN Egham 70 50

. . . . . . . . . . . .

airDept(X)=X1, airDest(X)=X2, airline(X)=X3, stops(X)=X4 where:

X X1 X2 X3 X4

IB001 LHR BCN Iberia 0

IB002 LGW BCN Iberia 1

BA001 LHR BCN BritishAirways 0

BA002 LGW BCN BritishAirways 1

EZ001 LTN BCN EasyJet 0

RN001 STN GRO RyanAir 0

VL001 LGW BCN Vueling 0

. . . . . . . . . . . . . . .

Fig. 3. The specification flightData
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for groups of equations; for example, the specification would contain the equations
distance(BCN,Barcelona)=10, cost(BCN,Barcelona)=5 and so on.

The specification of the customer could be as depicted inFig. 4(note that all sen-
tences are universally quantified). For example, the customer is not satisfied with
any flight that has two or more stops, no matter the total cost; nor is the customer
satisfied with any flight whose destination airport is fifty or more miles away from
the destination city, though if that distance is less than 50miles, the closer the bet-
ter. The customer is also willing to pay 20% more for a non-stop flight but prefers
the cheaper between any two flights with the same number of stops.

Notice that a specification does not necessarily fix a c-semiring: a specifier is
more likely to express conditions on preferences, as is the case of customer, which
will determine what c-semirings can be chosen to accommodate them.

Because customer does not have information on the actual cost of flights, we
cannot get a best choice for the c-constraints flight, flightCost and payMode. In the
next section we show how, by connecting the customer to a supplier (with flight
costs and own preferences) it is more meaningful to compute a best choice, and
also how to compare between different suppliers so that the one that offers the
best solution can be chosen by the customer.

Specification customer extends flightData with

Signature customerSign

Axioms d, d’, n, m, m’ : nat

departure = Egham

destination = Barcelona

totalCost(F) = flightCost +

cost(airDest(F),destination) + cost(airDept(F),departure)

payPref(CC) > payPref(DC)

airlinePref(Iberia) > airlinePref(RyanAir)

airlinePref(Iberia) > airlinePref(EasyJet)

airlinePref(Iberia) = airlinePref(Vueling)

airlinePref(Iberia) = airlinePref(BritishAirways)

stopsPref(0,m) < stopsPref(1,m’) if m > m’*1.2

stopsPref(0,m) > stopsPref(1,m’) if m ≤ m’*1.2

stopsPref(n,m) > stopsPref(n,m’) if m < m’ ∧ n ≤ 1

stopsPref(n,m) = 0 if n ≥ 2

distPref(d) = 0 if d ≥ 50

distPref(d) > distPref(d’) if d < d’ < 50

Constraints

airlinePref(airline(flight))

payPref(payMode)

stopsPref(stops(flight),totalCost(flight))

distPref(distance(airDest(flight),destination))

Fig. 4. The specification customer
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4 Composing Specifications

We start by stating some of the category-theory properties of c-specs, which are
useful to bring abstract constraint data types to the more established mathe-
matical frameworks of algebraic specification (see [4,12]).

Definition 6 (Morphisms of C-Signatures). A morphism of c-signatures
σ: Σ → Σ′ consists of:

– A morphism between the algebraic signatures that preserves the distinguished
elements.

– A total function between the sets of c-variables.

The image of a c-problem C by a c-signature morphism σ: Σ → Σ′ is σ(C)
where σ(〈Vk , qk〉) is the Σ′-constraint 〈σ(Vk), σ(qk)〉.
Proposition 7 (Category of C-Signatures). C-signatures form a finitely co-
complete category, which we denote by c-SIG. The c-signature 〈{sat}, 0, 1,≤, ∅〉,
which we denote by Σ∅, is an initial object and pushouts operate independently
over the algebraic signature and the c-variables.

Proposition and Definition 8 (Category of C-Specs). A morphism of con-
straint specifications σ: 〈Σ,Φ,C〉 → 〈Σ′, Φ′, C′〉 is a morphism of c-signatures
σ: Σ → Σ′ such that Φ′ |=Σ′c σ(Φ) and σ(C) ⊆ C′.

Morphisms of c-specs define a category, which we denote by CCS. This cate-
gory is finitely co-complete.

Proof. That a category is defined is trivial to prove. Finite co-completeness is
proved as follows:

Existence of Initial Objects. It is easy to prove that 〈Σ∅, ∅, ∅〉, where Σ∅ =
〈{sat}, {0 : sat, 1 : sat, ≤: sat sat}, ∅, sat, 0, 1,≤〉 is the initial c-signature,
is an initial object of CCS.

Existence of Pushouts. Let σi: 〈Σ,Φ,C〉 → 〈Σi, Φi, Ci〉 (i = 1, 2) be two
morphisms and μi: Σi → Σ′ a pushout of the corresponding c-signature
morphisms. Then, μi: 〈Σi, Φi, pi〉 → 〈Σ′, μ1(Φ1) ∪ μ2(Φ2), μ1(C1) ∪ μ2(C2)〉
is easily proved to be a pushout of c-specs.

Pushouts compute amalgamated unions, which provide the means for composing
specifications. The amalgamation is done over what is designated to be the
‘intersection’ of the two signatures, i.e., the sorts, operations, predicates and c-
variables that they are designated to share (composition is not based on syntactic
sharing, i.e., names are not considered to be universal but local to specifications).
The exceptions are the sort sat and the constants 0 and 1 of the c-semiring,
which are shared by construction – i.e., the initial c-signature Σ∅ is shared by
all c-specifications. An example of composition is given below.

Definition 9 (Reducts). Let σ: Σ → Σ′ be a morphism of c-signatures. The
σ-reduct of a c-algebra 〈A′, R′, χ′〉 for Σ′ is the c-algebra 〈A′|σ, R′|σ, χ′|σ〉 for Σ
where:
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– A′|σ is the σ-reduct of A′ in the usual algebraic sense, i.e., (A′|σ)s=A′
σ(s) for

every sort s and, for every operation or predicate op, opA′|σ=σ(op)A′ .
– R′|σ = R′.
– χ′|σ = σ;χ′.

That is, models are translated back along a morphism by adopting the same
data carriers and c-semiring, and giving symbols and variables at the source the
interpretations that their translations have in the models being translated.

It is important to study how properties of models relate to those of their
reducts:

Proposition and Definition 10. Let σ: 〈Σ,Φ,C〉 → 〈Σ′, Φ′, C′〉 be a mor-
phism of c-specs and 〈A′, R′, χ′〉 a model of 〈Σ′, Φ′, C′〉. The following properties
hold:

1. 〈A′|σ, R′|σ, χ′|σ〉 is a model of 〈Σ,Φ,C〉.
2. χ′(σ(C)) = χ′|σ(C) ≥ χ′(C′).
3. blevelA′|σ,R′|σ (C) ≥ blevelA′,R′(σ(C)) ≥ blevelA′,R′(C′).
4. If σ is injective on VΣ, then blevelA′|σ,R′|σ(C) = blevelA′,R′(σ(C)).
5. If C′ is consistent over 〈A′, R′〉, then C is consistent over 〈A′|σ, R′|σ〉 and,

for every solution χ′ of C′, χ′|σ is a solution of C.

Proof. All properties are easy to prove.

Notice that the difference between 3 and 4 is that, if σ is not injective on VΣ ,
the range of assignments to c-variables allowed by Σ′ is more restricted than
that allowed by Σ — certain c-variables are identified through σ. Property 5
is particularly important because it shows that consistency and solutions of c-
problems are preserved by reducts, i.e., by extending a specification, one does
not create new solutions for or make existing c-problems consistent; naturally,
one may lose solutions or make c-problems inconsistent because new constraints
can be introduced through the extension.

Let us analyze how we can check when a requester component and a provider
component can be connected. If the constraint specification 〈Σ,Φ,C〉 states the
preferences and conditions defined by the requester, and 〈Σ′, Φ′, C′〉 states the
functionality offered and the conditions that the provider can accept, then what
we need is that requester and the provider constraints are consistent. More pre-
cisely, that if we put together the two specifications:

〈Σ0, ∅, ∅〉
po

��

�� 〈Σ,Φ,C〉

��
〈Σ′, Φ′, C′〉 �� 〈Σ′′, Φ′′, C′′〉

where Σ0 is the common subsignature of Σ and Σ′, then the resulting specifica-
tion must be satisfiable, meaning that there must be a model of 〈Σ′′, Φ′′, C′′〉.

In order to illustrate this construction, we connect customers with suppliers.
Consider the following specification of a supplier given in Fig. 6 based on the
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Signature supplierSign extends flightDataSign with

Opns price : flightCode money payMode → sat

available : flightCode → sat

c-Vars flight : flightCode; flightCost : money; payMode : {DC, CC}
Fig. 5. The c-signature supplierSign

Specification supplier extends flightData with

Signature supplierSign

Axioms available(F)=1 iff F∈{IB001,IB002,BA001,BA002,EZ001,RN001}
price(F,M,C)=S where:

id F M C S

A1 IB001 120 DC 1

A2 IB001 120 CC 1

A3 IB002 150 DC 1

A4 IB002 150 CC 1

A5 BA001 250 DC 1

A6 BA001 250 CC 1

A7 BA002 145 DC 1

A8 BA002 145 CC 1

A9 EZ001 60 DC 1

A10 EZ001 65 CC 1

A11 RN001 40 DC 1

A12 RN001 45 CC 1

F M C 0

Constraints available(flight)

price(flight,flightCost,payMode)

Fig. 6. The specification supplier

signature given in Fig. 5. A supplier has a number of flights available for sale, for
each of which it has a price depending on the payment mode. All the constraints
are crisp meaning that the supplier will only accept to sell flights that it has
available and for the stated prices.

As before, we have used a tabular form to simplify the specification. In ad-
dition, we have named equations (using the attribute id): this is just for con-
venience when discussing constraint optimisation and is not part of the formal
specification, i.e., it has no semantics.

Consider now the amalgamated sum (pushout) of customer and supplier assum-
ing that sorts, operations, predicates and c-variables with the same names are
shared. The set of constraints is, as explained in Def. 8:

c0 : airline(flight)

c1 : payPref(payMode)
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c2 : stopsPref(stops(flight),totalCost(flight))

c3 : distPref(distance(airDest(flight),destination))

c4 : available(flight)

c5 : price(flight,flightCost,payMode)

Again, we have named constraints to simplify the way we refer to them.
The crisp constraint c4 reduces the space of solutions to the triples (F,M,C)

— corresponding to flight code, flight cost and payment mode, respectively — on
rows A1-A12. The constraint c3 eliminates the triples (F,M,C) on rows A11-A12
from that set. For each of the remaining constraints, we can derive the following
properties where we use = and > to compare the way those assignments order
the satisfaction of the corresponding constraint:

c0 : A1=A2=A3=A4 > A9=A10, and A5=A6=A7=A8 > A9=A10
c1 : A2=A4=A6=A8=A10 > A1=A3=A5=A7=A9
c2 : A9 > A10 > A1=A2 > A7=A8 > A3=A4 > A5=A6
c3 : A1=A2=A3=A4=A5=A6=A7=A8=A9=A10
c4 : A1=A2=A3=A4=A5=A6=A7=A8=A9=A10
c5 : A1=A2=A3=A4=A5=A6=A7=A8=A9=A10

In order to calculate c2, we computed the total costs as specified in the specifi-
cation customer (see Fig. 4):

id total cost id total cost id total cost id total cost

A1 130 A2 130 A3 175 A4 175

A5 260 A6 260 A7 160 A8 160

A9 95 A10 100 A11 105 A12 110

No best solution can be derived from these inequalities: for example, the pay-
mode preference conflicts with those that relate costs. Notice that, for every
algebra that satisfies the specification, a best solution can be obtained because
a specific level of satisfaction is assigned to every constraint. What happens in
this case is that there is no solution that is optimal for all such algebras.

In general, we can think that a customer could also wish to express an ordering
of importance on constraints, for example that c2 is the most important, followed
by c3, then c1, and then c0. This can be achieved by means of another preference
function, this time applied to sat:

constPref : sat sat → sat

axiomatized by

constPref(N,M) = 0 if N=0

constPref(N,M) < constPref(N’,M) if N<N’

constPref(N,M) > constPref(N’,M) if N>N’>0

constPref(N,M) > constPref(N’,M’) if N�=0 ∧ M>M’



166 J.L. Fiadeiro and F. Orejas

One would then replace c0, c1, c2, c3 by

c : constPref(c0,constPref(c1,constPref(c3,c2)))

which would again exclude the triples on rows A11-A12 from the space of solu-
tions and return:

c : A9 > A10 > A1 > A2 > A7 > A8 > A3 > A4 > A5 > A6
c4 : A1=A2=A3=A4=A5=A6=A7=A8=A9=A10
c5 : A1=A2=A3=A4=A5=A6=A7=A8=A9=A10

This time, there is a best solution for the customer: the triple (EZ001,95,DC).
Our framework can also be used for selecting a best supplier (if one exists),

by analysing the composition of customer with that of every other supplier. For
example. consider the following specification of a different supplier depicted in
Fig. 7. The crisp constraint c4 now reduces the space of solutions to the triples
(F,M,C) on rows B1-B6. The constraint c3 eliminates the triples (F,M,C) on
rows B5-B6 from that set. The total costs are now:

id total cost

B1 75

B2 80

B3 90

B4 95

For each of the remaining constraints, we can derive the following properties
where we use the row numbers to refer to the triples:

c0 : B1=B2 > B3=B4
c1 : B2=B4 > B1=B3
c2 : B1 > B2 > B3 > B4
c3 : B1=B2=B3=B4
c4 : B1=B2=B3=B4
c5 : B1=B2=B3=B4

Applying the order on the customer’s constraints we obtain:

c : B1 > B2 > B3 > B4
c4 : B1=B2=B3=B4
c5 : B1=B2=B3=B4

From this set we can derive that (VL001,40,DC) is the best solution.
Consider now the combined specifications of the customer with the two sup-

pliers, sharing the data specification but nothing else. The amalgamation will
distinguish the triples that result from one pairing from those resulting from the
other pairing, leading effectively to the union of the two tables. This means that
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Specification otherSupplier extends flightData with

Signature supplierSign

Axioms available(F)=1 iff F∈{EZ001,RN001,VL001}
price(F,M,C)=S where:

id F M C S

B1 VL001 40 DC 1

B2 VL001 45 CC 1

B3 EZ001 55 DC 1

B4 EZ001 60 CC 1

B5 RN001 40 DC 1

B6 RN001 45 CC 1

F M C 0

Constraints available(flight)

price(flight,flightCost,payMode)

Fig. 7. The specification otherSupplier

some entries are duplicated but this is how it should be because they refer to
c-variables coming from different sources:

id F M C S id F M C S

A1 IB001 120 DC 1 A2 IB001 120 CC 1

A3 IB002 150 DC 1 A4 IB002 150 CC 1

A5 BA001 250 DC 1 A6 BA001 250 CC 1

A7 BA002 145 DC 1 A8 BA002 145 CC 1

A9 EZ001 60 DC 1 A10 EZ001 65 CC 1

B1 VL001 40 DC 1 B2 VL001 45 CC 1

B3 EZ001 55 DC 1 B4 EZ001 60 CC 1

For each of the constraints, we derive:

c0 : B1=B2=A1=A2=A3=A4 > A9=A10=B3=B4
and A5=A6=A7=A8 > A9=A10=B3=B4

c1 : B2=B4=A2=A4=A6=A8=A10 > B1=B3=A1=A3=A5=A7=A9
c2 : B1 > B2 > B3 > B4=A9 > A10 > A1=A2 > A7=A8 > A3=A4 > A5=A6
c3 : B1=B2=B3=B4=A1=A2=A3=A4=A5=A6=A7=A8=A9=A10

If we use the ordering on the customer’s constraints, then we get:

c : B1 > B2 > B3 > B4=A9 > A10 > A1=A2 > A7=A8 > A3=A4 > A5=A6

which means that, from the customer’s point of view, the optimal solution is the
triple (VL001,40,DC) and, therefore, the customer would prefer otherSupplier over
supplier.
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5 Relationship with Institutions

Algebraic specification of abstract data types has traditionally been studied in
the context of institutions [6,11]:

Definition 11 (Institution). An institution 〈Sig, Sen,Mod, |=〉 consists of

– a category Sig of signatures and signature morphisms,
– a functor Sen : Sig → Set, defining for every signature Σ the set Sen(Σ)

of Σ-sentences, and for every signature morphism σ : Σ → Σ′ a sentence
translation map Sen(σ) : Sen(Σ) → Sen(Σ′),

– a functor Mod : Sig → Catop, defining for every signature Σ the category
Mod(Σ) of Σ-models and Σ-model homomorphisms, and for every signature
morphism σ : Σ → Σ′ the reduct functor Mod(σ) : Mod(Σ′) → Mod(Σ),

– a family of satisfaction relations |=Σ ⊆ |Mod(Σ)| × Sen(Σ), indexed by
signatures,

such that the following satisfaction condition holds:

M ′ |=Σ′ Sen(σ)(ρ) if and only if Mod(σ)(M ′) |=Σ ρ,

for every signature morphism σ : Σ → Σ′, Σ′-model M and Σ-sentence ρ.

The algebraic specification of abstract data types as recalled in Sect. 2 is a
variant of the institutions reviewed in [11].

Proposition 12. The extension to c-specifications as defined in Sect. 3 and 4
defines an institution:

– The category of signatures is as defined in Prop. 7;
– The sentence functor is the extension of classical conditional equational logic

with c-constraints as defined in Def. 3, i.e., sentences are either conditional
equations or c-constraints;

– The model functor is as in Def. 2 and Def. 9.
– The satisfaction relation is as usual on conditional equations and on c-

constraints is defined by

〈A,R, χ〉 |= c iff χ(c) > 0

The results presented in Sect. 4 about c-specifications actually follow from the
fact that c-constraints define an institution.

Another way of defining an institution of c-constraints is by framing them in
the context of institutions of graded consequence recently proposed by Razvan
Diaconescu [3], which differ from institutions by letting the satisfaction relations
take values in a space L, i.e., for every signature Σ,

|=Σ : |Mod(Σ)| × Sen(Σ) → L

In this case, we would just have to take the domain of the c-semiring as the space
L and interpret the sentences that are not c-constraints as having the c-semiring
values 1 or 0 depending on whether they are satisfied or not satisfied in a model,
respectively. That is, we would treat equations as crisp constraints.
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6 Conclusions and Further Work

In this paper, we outlined a way in which specifications of abstract data types
can be extended to accommodate constraint specification using the c-semiring
approach proposed in [1]. This brings together two areas to which MartinWirsing
has made extensive contributions: algebraic specification theory (e.g., [12]) and
the use of constraint systems to deal with non-functional requirements in service-
oriented systems [13,14].

This work sets the stage for a more ambitious project of revisiting the for-
malism of symbolic graphs, proposed in [9], to use it as the basis for describing
service-oriented systems, where a symbolic graph is a typed attributed graph
together with a set of constraints. In particular, we can use symbolic graphs
to describe the states of systems and symbolic graph transformation rules to
describe computations including the interconnection of components. In this con-
text, constraints could be used to describe quality of service requirements, so that
computing service level agreements could be part of the computation associated
with component interconnection.
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