
Rocco De Nicola Rolf Hennicker (Eds.)

Software, Services,
and Systems

Fe
st

sc
hr

ift
LN

CS
 8

95
0

Essays Dedicated to Martin Wirsing
on the Occasion of His Retirement from the Chair
of Programming and Software Engineering

 123

Lecture Notes in Computer Science 8950
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Rocco De Nicola Rolf Hennicker (Eds.)

Software, Services,
and Systems
Essays Dedicated to Martin Wirsing
on the Occasion of His Retirement from the Chair
of Programming and Software Engineering

1 3

Volume Editors

Rocco De Nicola
IMT - Institute for Advanced Studies
Piazza San Francesco 19, 55100 Lucca, Italy
E-mail: rocco.denicola@imtlucca.it

Rolf Hennicker
Ludwig-Maximilians-Universität München
Institut für Informatik
Oettingenstraße 67, 80538 München, Germany
E-mail: hennicke@pst.ifi.lmu.de

Cover illustration: Wassily Kandinsky, St. George III, 1911.
Source: Städtische Galerie im Lenbachhaus in Munich, Germany
(http://www.lenbachhaus.de/collection/the-blue-rider/).

Photograph on p. V: The photograph of the honoree was taken by Christoph Olesinski.
Used with permission.

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-15544-9 e-ISBN 978-3-319-15545-6
DOI 10.1007/978-3-319-15545-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2015930335

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Martin Wirsing

Preface

This volume contains the 38 papers written by close collaborators and friends
of Martin Wirsing on the occasion of the celebration of his retirement from the
chair of Programming and Software Engineering at the Ludwig-Maximilians-
Universität in Munich.

The volume is a reflection, with gratitude and admiration, on Martin’s highly
creative, remarkably fruitful, and intellectually generous life, which is thriving as
strongly as ever. It is also a snapshot of research ideas that in many cases have
been deeply influenced by Martin’s work. In a sense, it is also a vantage point
from which to foresee further developments to come: by Martin himself, and by
many other people encouraged and stimulated by his friendship and example.

The book consists of six sections. The first section contains personal remem-
brance and expression of gratitude from Martin’s friends. The remaining five
sections comprise groups of papers corresponding to specific scientific interests
of Martin and are ordered according to his scientific evolution:

– Logical and Algebraic Foundations
– Algebraic Specifications, Institutions, and Rewriting
– Foundations of Software Engineering
– Service-Oriented Systems
– Adaptive and Autonomic Systems

As book editors, we were helped by several reviewers, who gave comments
on the submitted papers and suggestions for their improvement. We would like
to thank all of them for their very professional and reliable help. In fact, each
paper was reviewed by at least two colleagues and for a few papers we had a
couple of rounds of interactions with authors and reviewers before we were sure
that the standard of the published work was in line with what Martin deserves.

This volume was presented to Martin on March 6, 2015, during a two-
day symposium held at the Institut für Informatik of Ludwig-Maximilians-
Universität in Munich. During the symposium all papers were presented by one
of the authors and we also had three invited talks from eminent scientists, whose
friendship with Martin dates back many years. We thank Manfred Broy, José
Meseguer, and Ugo Montanari for having accepted our invitation.

We would also like to thank the Programming and Software Technology group
at the Institut für Informatik of LMU for the support in the organization of
the symposium, and EU project ASCENS and LMU Munich for the financial
and logistic support. We are grateful to Alfred Hofmann and to the Springer
LNCS team for their support during the publication phase of this Festschrift
and we take the occasion to acknowledge the excellent support provided by the
conference management system EasyChair.

VIII Preface

Our editorial activity made us further experience how much Martin is appre-
ciated all around the world, and to witness the great esteem with which he is
held in the scientific community. Congratulations Martin!

March 2015 Rocco De Nicola
Rolf Hennicker

Organization

Reviewers

Arbab, Farhad
Baumeister, Hubert
ter Beek, Maurice H.
Bensalem, Saddek
Bergstra, Jan
Bicocchi, Nicola
Breu, Ruth
Bruni, Roberto
Bureš, Tomáš
Caires, Luis
Cengarle, Maŕıa Victoria
Choppy, Christine
Combaz, Jacques
Corradini, Andrea
Ernst, Gidon
Fiadeiro, José Luiz
Futatsugi, Kokichi
Gadducci, Fabio
Gaina, Daniel
Gilmore, Stephen
Gnesi, Stefania
Hillston, Jane
Hofmann, Martin
Hussmann, Heinrich
Hölzl, Matthias
Klarl, Annabelle
Knapp, Alexander
Koch, Nora
Kuhlemann, Martin
Kurz, Alexander
Latella, Diego
Lengauer, Christian

Loreti, Michele
Majster-Cederbaum, Mila
Massink, Mieke
Mayer, Philip
Merz, Stephan
Meseguer, José
Montanari, Ugo
Mossakowski, Till
Möller, Bernhard
Nielson, Flemming
Nielson, Hanne Riis
Nipkow, Tobias
Ölveczky, Peter
Orejas, Fernando
Padawitz, Peter
Pattinson, Dirk
Pugliese, Rosario
Reus, Bernhard
Roggenbach, Markus
Sannella, Donald
Schröder, Lutz
Serbedzija, Nikola
Störrle, Harald
Talcott, Carolyn
Tarlecki, Andrzej
Tiezzi, Francesco
Tribastone, Mirco
Tůma, Petr
Tuosto, Emilio
Vandin, Andrea
Zambonelli, Franco
Zavattaro, Gianluigi

Table of Contents

A Homage to Martin Wirsing . 1
Rocco De Nicola and Rolf Hennicker

Homage from Friends

Ode to the PST . 13
Matthias Hölzl, Nora Koch, Philip Mayer, and Andreas Schroeder

From Formal Logic through Program Transformations to System
Dynamics: 40 Years of Meeting Points with Martin Wirsing 24

Wolfgang Hesse

The Broad View: How to Spawn a Radical Organizational
Transformation ‘En Passant’ . 27

Heinrich Hussmann

Logical and Algebraic Foundations

Modal Satisfiability via SMT Solving . 30
Carlos Areces, Pascal Fontaine, and Stephan Merz

Division by Zero in Common Meadows . 46
Jan A. Bergstra and Alban Ponse

Logical Relations and Nondeterminism . 62
Martin Hofmann

Simplified Coalgebraic Trace Equivalence . 75
Alexander Kurz, Stefan Milius, Dirk Pattinson, and Lutz Schröder

Localized Operational Termination in General Logics 91
Salvador Lucas and José Meseguer

Partial Valuation Structures for Qualitative Soft Constraints 115
Alexander Schiendorfer, Alexander Knapp, Jan-Philipp Steghöfer,
Gerrit Anders, Florian Siefert, and Wolfgang Reif

Algebraic Specifications, Institutions, and Rewriting

An Institution for Object-Z with Inheritance and Polymorphism 134
Hubert Baumeister, Mohamed Bettaz, Mourad Maouche,
and M’hamed Mosteghanemi

Abstract Constraint Data Types . 155
José Luiz Fiadeiro and Fernando Orejas

XII Table of Contents

Generate & Check Method for Verifying Transition Systems
in CafeOBJ . 171

Kokichi Futatsugi

Institutions for OCL-Like Expression Languages . 193
Alexander Knapp and Maŕıa Victoria Cengarle

Towards an Institutional Framework for Heterogeneous Formal
Development in UML — A Position Paper — . 215

Alexander Knapp, Till Mossakowski, and Markus Roggenbach

Formal Analysis of Leader Election in MANETs
Using Real-Time Maude . 231

Si Liu, Peter Csaba Ölveczky, and José Meseguer

The Foundational Legacy of ASL . 253
Donald Sannella and Andrzej Tarlecki

Soft Agents: Exploring Soft Constraints to Model Robust Adaptive
Distributed Cyber-Physical Agent Systems . 273

Carolyn Talcott, Farhad Arbab, and Maneesh Yadav

Foundations of Software Engineering

Structured Document Algebra in Action . 291
Don Batory, Peter Höfner, Dominik Köppl, Bernhard Möller,
and Andreas Zelend

From EU Projects to a Family of Model Checkers:
From Kandinsky to KandISTI . 312

Maurice H. ter Beek, Stefania Gnesi, and Franco Mazzanti

Pragmatic Formal Specification of System Properties by Tables 329
Manfred Broy

Formal Modelling for Cooking Assistance . 355
Bernd Krieg-Brückner, Serge Autexier, Martin Rink,
and Sidoine Ghomsi Nokam

A Framework for Defining and Comparing Modelling Methods 377
Gianna Reggio, Egidio Astesiano, and Christine Choppy

A Theory Agenda for Component-Based Design . 409
Joseph Sifakis, Saddek Bensalem, Simon Bliudze, and Marius Bozga

Effective and Efficient Model Clone Detection . 440
Harald Störrle

Living Modeling of IT Architectures: Challenges and Solutions 458
Thomas Trojer, Matthias Farwick, Martin Häusler, and Ruth Breu

Table of Contents XIII

Service-Oriented Systems

A Flow Analysis Approach for Service-Oriented Architectures 475
Bernhard Bauer, Melanie Langermeier, and Christian Saad

Service Composition for Collective Adaptive Systems 490
Stephen Gilmore, Jane Hillston, and Mirco Tribastone

The Evolution of Jolie: From Orchestrations
to Adaptable Choreographies . 506

Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro

Stochastic Model Checking of the Stochastic Quality Calculus 522
Flemming Nielson, Hanne Riis Nielson, and Kebin Zeng

Adaptive and Autonomic Systems

Software-Intensive Systems for Smart Cities: From Ensembles
to Superorganisms . 538

Nicola Bicocchi, Letizia Leonardi, and Franco Zambonelli

A White Box Perspective on Behavioural Adaptation 552
Roberto Bruni, Andrea Corradini, Fabio Gadducci,
Alberto Lluch Lafuente, and Andrea Vandin

Rule-Based Modeling and Static Analysis of Self-adaptive Systems
by Graph Transformation . 582

Antonio Bucchiarone, Hartmut Ehrig, Claudia Ermel,
Patrizio Pelliccione, and Olga Runge

Formalization of Invariant Patterns
for the Invariant Refinement Method . 602

Tomáš Bureš, Ilias Gerostathopoulos, Jaroslav Keznikl,
Frantǐsek Plášil, and Petr T̊uma

On StocS: A Stochastic Extension of SCEL . 619
Diego Latella, Michele Loreti, Mieke Massink, and Valerio Senni

Programming Autonomic Systems with Multiple Constraint Stores 641
Ugo Montanari, Rosario Pugliese, and Francesco Tiezzi

Adaptive and Autonomous Systems and Their Impact on Us 662
Nikola Šerbedžija

The KnowLang Approach to Self-adaptation . 676
Emil Vassev and Mike Hinchey

Author Index . 693

A Homage to Martin Wirsing

Rocco De Nicola1 and Rolf Hennicker2

1 IMT Institute for Advanced Studies Lucca, Italy
2 Ludwig-Maximilians-Universität München, Germany

1 Martin’s Origins, Positions and Services

Martin Wirsing was born on Christmas Eve, December 24th, 1948, in Bayreuth,
a Bavarian town which is famous for the annually celebrated Richard Wagner
Festival. There he visited the Lerchenbühl School and the High-School “Christian
Ernestinum” where he followed the humanistic branch focusing on Latin and
Ancient Greek. After that, from 1968 to 1974, Martin studied Mathematics at
University Paris 7 and at Ludwig-Maximilians-Universität in Munich. In 1971
he became Maitrise-en-Sciences Mathematiques at the University Paris 7 and,
in 1974, he got the Diploma in Mathematics at LMU Munich.

After graduating Martin took up a position as a research and teaching as-
sistant within the “Sonderforschungsbereich 49 für Programmiertechnik” at the
Technical University of Munich where he stayed until 1983. This was a tremen-
dously fruitful time and the beginning of Martin’s extraordinary career. At TU
Munich, Martin was a member of the CIP-group which was formed by Friedrich
L. Bauer and Klaus Samelson to investigate new methods for program devel-
opment with correctness-preserving program transformations. Martin’s contri-
butions were backed by his excellent knowledge in the field of Mathematical
Logic. In 1976 Martin got his PhD degree with a thesis entitled “Das Entschei-
dungsproblem der Prädikatenlogik 1. Stufe mit Funktionszeichen in Herbrand-
formeln”. His supervisor was Kurt Schütte, an important German logician and
the chair of the Mathematical Logic group at LMU Munich. Schütte was a stu-
dent of David Hilbert who became this way a scientific grandfather of Martin.
Five years later, 1981, Martin went to the University of Edinburgh where he
worked for half a year as a substitute for the chair of Rod Burstall. During that
time he started a collaboration with Don Sannella and developed with him the
foundations for a kernel algebraic specification language, called ASL, which was
the topic of Martin’s habilitation thesis a few years later. In Edinburgh Martin
also met the first author of this foreword who had just arrived there as a PhD
student not knowing that a close collaboration with Martin will follow 20 years
later.

In 1983 Martin became professor at the University of Passau where he helped
building up the newly founded Faculty for Mathematics and Informatics. Two
years later, he got a chair of computer science with focus on programming lan-
guages. Martin staid in Passau till 1992. During that time he formed a highly
recognised and successful research group which was involved in several national
and international projects dealing with algebraic specifications, formal program

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 1–12, 2015.
c© Springer International Publishing Switzerland 2015

2 R. De Nicola and R. Hennicker

development, reusability of software and object-oriented software engineering.
Five doctoral theses and one habilitation treatise have been successfully com-
pleted under Martin’s guidance in Passau. Martin served as dean and as vice-
dean of the faculty, in both cases for a two year term. Between 1989 and 1992
he was additionally leading the research group “Programming Systems” of the
Bavarian Research Center for Knowledge-based Systems and he was member of
its board of directors.

The year 1992 brought Martin back to the town of his scientific origins. He
took over the chair of the Research Unit for Programming and Software Tech-
nology (PST) at Ludwig-Maximilians-Universität in Munich. At that time In-
formatics was introduced as a Diploma course of studies at the Department of
Informatics of LMU and, again, much of Martin’s work was devoted to estab-
lish the new course and to help building up the department. Soon, he formed a
strong research group at LMU which continuously changed over time resulting,
until now, in 26 doctoral theses and three habilitations. Martin’s PST group has
participated in more than thirty national and international research projects
which dealt with hot new topics like mobile systems, hypermedia applications,
service-oriented architectures and autonomous, self-adaptive systems. Martin’s
ideas and his talents in organisation were also recognised and appreciated by the
leading administrative institutions of LMU. From 1999 to 2001 he was dean of
the Faculty for Mathematics and Informatics, from 2002 to 2004 he was mem-
ber of LMU’s senate, and from 2006 to 2007 he was director of the Institute
for Informatics. In 2007 Martin became vice-chair of the senate and he filled
this position until 2010. During that time he was also member of the Univer-
sity Council of LMU which is now the most successful university in German’s
excellence initiative. Since 2010 Martin is vice-president of LMU taking care of
studies and teaching.

Also outside of LMU,Martin’s advice in scientific and organisational issues was
very much in demand by national and international scientific groups and organi-
sations. It would go far beyond the scope of this foreword to mention all scientific
boards and groups in whichMartin was a valuablemember, so we restrict ourselves
to some selected ones. From 1999-2007 Martin was speaker of the Specification
and Semantics group of the German Informatics Society GI, from 2006 to 2011
he was member of the scientific board of FIRST (Fraunhofer Institute for Com-
puter Architecture and Software Technique), from 2007 to 2010 Martin served
as chairman of the scientific board of INRIA (Institut National de Recherche en
Informatique et Automatique, France), and from 2008 to 2011 he was coordina-
tor of the advisory board of the IMT Institute for Advanced Studies in Lucca.
Currently, Martin is member of the scientific committees of the University of Bor-
deaux, IMDEA Software Madrid, and the Institut Mines-Télécom. He is and was
member of the editorial boards of several scientific journals and book series includ-
ing Theoretical Computer Science, Journal of Computer Science and Technology,
Journal of Software and Informatics, the AMAST Series in Computing, and the
LNCSTransactions on Foundations forMasteringChange.Martin is also an active
member of the IFIP Working Group 1.3 on Foundations of System Specification

A Homage to Martin Wirsing 3

and an emeritus member of the Working Group 2.2 dealing with Formal Descrip-
tion of ProgrammingConcepts. He wasmember of numerous program committees
and chairman of many scientific meetings and conferences including WADT’83
and 2002, STACS’87 and 88, PLILP’91, AMAST’96, EDOC 2008, FASE 2009,
and TGC 2010.

During his career Martin has also spent some long periods as visiting re-
searcher/professor at many institutions, among the most renowned and influ-
ential ones. We would like to mention the Department of Computer Science of
the University of Edinburgh - Scotland, Bell Labs at Murray Hill in New Jersey
- USA, the Department of Computer and Information Science at University of
Genoa - Italy, the Computer Science Laboratory of SRI in Stanford - USA and
the IMDEA Software Institute in Madrid - Spain.

2 Martin’s Research

Before we summarise Martin’s research achievements, we want to pay tribute
to his extraordinary personality as a researcher, colleague, and friend. Martin is
always curious. He wants to understand new approaches and results, he is tireless
in listening and asking questions, and he contributes with ideas, proposals and
solutions. Martin has visions. His intuition leads him continuously to challenging
new research directions which he pursues with great commitment and resilience
for finding the right scientific paths and collaborations1. Martin is encouraging.
He is open for the work of others and supports them with ideas and suggestions.
And: Martin is always fair to colleagues and to students.

Martin Wirsing is the head of LMU’s research group on Programming and
Software Technology which consists of about 15 researchers and PhD students.
He is the co-author and editor of more than 20 books and has published around
250 scientific papers. His research areas comprise:

1. Logic,
2. Algebraic Specification Techniques,
3. Software Development using Formal Mehods,
4. Semantics of Specification and Programming Languages,
5. Systematic Development of Service-Oriented Systems,
6. Engineering Adaptive and Autonomic Systems.

Martin’s research ambition has always been to support the development of
correct software. In the following, we try to sketch a picture of Martin’s research
by pointing to selected publications and projects being aware that our account
is far from being complete.

2.1 Selected Publications

From the CIP-Project to Algebraic Specifications. Martin started his research ca-
reer at the Technical University of Munich as a member of the CIP group founded

1 Resilience and a strong will to win was also a distinguished quality of Martin when
he was playing soccer or table tennis which was really unfortunate for his opponents.

4 R. De Nicola and R. Hennicker

by Friedrich L. Bauer and Klaus Samelson. CIP is an acronym for Computer-
aided, Intuition-guided Programming. The objective of this project was to in-
vestigate a comprehensive program development methodology which involves
correctness preserving program transformations using a multi-level (wide spec-
trum) programming language, called CIP-L. By exploiting his broad knowledge
of mathematical logic and universal algebra, Martin contributed to this project
by investigating theoretical foundations of CIP-L, in particular techniques for
transforming functional, recursive programs into iterative programs [14]. A cru-
cial issue for proving the correctness of such transformations was the formal
treatment of programs and data structures. A promising approach for this pur-
pose were abstract data types which appeared in the mid-seventies as a new
research direction in the United States initiated by the PhD thesis of John Gut-
tag in 1975. The CIP-group took up this idea and, in the following years, Martin
did a lot of work on algebraic specifications, often in cooperation with Manfred
Broy, considering, e.g., partial abstract types [8] and hierarchies of abstract data
types [9]. Soon Martin became a key person in that area which is reflected by
his article on algebraic specifications in the Handbook of Theoretical Computer
Science [12]. An important part of program development concerns modular con-
struction, stepwise refinement and observational abstraction. These aspects are
incorporated in the algebraic specification language ASL [10,11] whose founda-
tions as a kernel language with a model class semantics have been investigated
together with Don Sannella during Martin’s stay in Edinburgh in 1981.2

Software Development and Semantics. A prerequisite for proving the correctness
of a program against a specification is the availability of a formal semantics for
both the specification and the programming language at hand. Concerning the
semantics of programming languages, a foundational study of a denotational se-
mantics of nondeterministic and noncontinuous constructs has been worked out
by Martin in an earlier paper with Broy and Gnatz in [20]. Much later, moti-
vated by the success of Java and its concurrency mechanisms, Martin has worked
on a structural operational semantics for multi-threaded Java which formalises
precisely the Java specification [22]. This was the first formal semantics for multi-
threaded Java which did not need any additional assumptions on the memory
model. At that time, beginning of the nineties, object-oriented software engi-
neering methods based on diagrammatic, semi-formal models as specifications
became more and more popular. Martin was one of the first researchers to realise
that diagrammatic notations, enhanced by formal annotations, would provide a
promising tool for the production of correct software. At a time where UML

2 Observational abstraction is obtained in ASL by relaxing the model class of a specifi-
cation w.r.t. observational equivalence of algebras. Another, at a first glance, totally
different looking approach is to relax the satisfaction relation w.r.t. observational
equivalence between the elements of an algebra as suggested in a paper of Horst
Reichel and in Goguen’s Hidden Algebra. The second author of this foreword re-
members well that after a dinner with Martin and Michel Bidoit, Martin raised the
question whether the two different approaches couldn’t been formally related. The
outcome was the paper [13] which gave a positive answer to Martin’s question.

A Homage to Martin Wirsing 5

was not yet on the table, Martin and Alexander Knapp extended the OOSE ap-
proach of Jacobson, which was built on use cases, class and interaction diagrams,
to FOOSE, a “Formal Approach to Object-Oriented Software Engineering” [16]
suitable for formal analysis and simulation. With the appearance of UML Mar-
tin was interested in extensions of UML which would allow formal reasoning. He
has co-authored two papers [23,24] proposing a heterogeneous approach to the
semantics of UML. Martin’s idea was to provide a formal semantics for each of
the different diagram types and to relate them by institution morphisms. Thus
one can analyse the consistency between different models representing differ-
ent views or different abstraction levels of a system. Later, in [25], Martin has
worked on a translation of KLAIM specifications for distributed, asynchronously
communicating systems into Maude. He has proved the correctness of the trans-
lation such that Maude’s tools can be soundly used for analysis. This was the
first implementation of KLAIM that has been proven to be correct.

Systems Engineering. Martin was always very much interested in new trends of
software systems and software engineering. He worked in various projects (see
below) for the Systematic Development of Mobile Systems, Service-Oriented Sys-
tems, Physiological Computing Systems, Hypermedia Applications, and Adap-
tive Autonomic Systems. His concern was always to support the different phases
of the software lifecycle and to provide means for formal analysis and reasoning.
In the field of mobile systems, Martin has contributed in [39] to an extension of
UML class and activity diagrams that allows to model the migration of objects
from one location to another. He has studied specification and refinement of
mobile systems in [7] and [19]. Martin’s work on service-oriented systems [26,27]
led to a systematic development methodology using a service-oriented exten-
sion of UML, a transformation of UML models into a family of process calculi,
and quantitative analysis methods with the stochastic process algebra PEPA.
Martin has also worked on physiological computing [33,35] which deals with in-
teractive systems deducing emotional states of human beings from physiological
sensor inputs. In [32] Martin has presented together with Nora Koch a reference
model for adaptive hypermedia applications which was highly recognised by the
community. Martin’s work on adaptive autonomous systems was carried out in
the context of the still running ASCENS project. His vision about a systematic
development of such systems is described in [36] incorporating the whole soft-
ware lifecycle from requirements engineering to implementation in the language
SCEL (Software Component Ensemble Language). It includes a quantitative
analysis method using continuous-time Markov chains and ordinary differential
equations.

In the last ten years Martin has also contributed to the field of soft constraints
which are applicable in different areas like, e.g., Web services or optimisation of
scheduling algorithms. During his visit at SRI International, in 2006, he has
developed with Carolyn Talcott and colleagues a rewriting logic framework for
soft constraints and has implemented a soft constraint solver in Maude [37].

6 R. De Nicola and R. Hennicker

This work has been extended in [38] to allow modelling of decision problems
with multiple preference criteria.

References

(I) Logic
1. M.: Das Entscheidungsproblem der Klasse von Formeln, die höchstens

zwei Primformeln enthalten. Manuscripta Mathematica 22, 13–25 (1977)
2. Wirsing, M.: Kleine unentscheidbare Klassen der Prädikatenlogik mit

Identität und Funktionszeichen. Archiv für mathematische Logik und
Grundlagenforschung 19(1-2), 97–109 (1978)

3. Wirsing, M.: “Small” universal Post systems. Zeitschrift für mathematis-
che Logik und Grundlagen der Mathematik 25, 559–564 (1979), Journal
of Symbolic Logic 44, 476–477 (1979)

4. Bauer, F.L., Wirsing, M.: Elementare Aussagenlogik, 228 p. Springer,
Heidelberg (1991)

5. Hennicker, R., Wirsing, M., Bidoit, M.: Proof systems for structured
specifications with observability operators. Theoretical Computer Sci-
ence 173, 393–443 (1997)

6. Poernomo, I., Crossley, J., Wirsing, M.: Adapting Proofs-as-Programs:
The Curry–Howard Protocol. Springer Monographs in Computer Sci-
ence, 420 p. (2005)

7. Merz, S., Wirsing, M., Zappe, J.: A Spatio-Temporal Logic for the Spec-
ification and Refinement of Mobile Systems. In: Pezzé, M. (ed.) FASE
2003. LNCS, vol. 2621, pp. 87–101. Springer, Heidelberg (2003)

(II) Algebraic Specification Techniques
8. Broy, M., Wirsing, M.: Partial Abstract Types. Acta Informatica 18,

47–64 (1982)
9. Broy, M., Dosch, W., Partsch, H., Pepper, P., Wirsing, M.: On Hierar-

chies of Abstract Data Types. Acta Informatica 20, 1–34 (1983)
10. Sannella, D., Wirsing, M.: A Kernel Language for Algebraic Specifica-

tion and Implementation. In: Karpinski, M. (ed.) Colloquium on Founda-
tions of Computation Theory, Linkping (Schweden). LNCS, vol. 158, pp.
413–427. Springer, Heidelberg (1983)

11. Wirsing, M.: Structured Algebraic Specifications: A Kernel Language.
Theoretical Computer Science 43, 123–250 (1986)

12. Wirsing, M.: Algebraic Specification. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, pp. 675–788. North-Holland,
Amsterdam (1990)

13. Bidoit, M., Hennicker, R., Wirsing, M.: Behavioural and Abstractor
Specifications. Science of Computer Programming 25, 149–186 (1995)

(III) Software Development using Formal Methods
14. Bauer, F.L., Broy, M., Dosch, W., Gnatz, R., Krieg-Brückner, B., Laut,

A., Luckmann, M., Matzner, T.A., Möller, B., Partsch, H., Pepper, P.,
Samelson, K., Steinbüggen, R., Wössner, H., Wirsing, M.: Programming
in a Wide Spectrum Language: A Collection of Examples. Science of
Computer Programming 1, 73–114 (1981)

A Homage to Martin Wirsing 7

15. Broy, M., Wirsing, M.: Correct Software: From Experiments to Applica-
tions. In: Jähnichen, S., Broy, M. (eds.) KORSO 1995. LNCS, vol. 1009,
pp. 1–24. Springer, Heidelberg (1995)

16. Wirsing, M., Knapp, A.: A Formal Approach to Object-Oriented Soft-
ware Engineering. Theo. Comp. Sci. 285, 519–560 (2002)

17. Reus, B., Wirsing, M., Hennicker, R.: A Hoare Calculus for Verifying
Java Realizations of OCL-Constrained Design Models. In: Hussmann,
H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 300–317. Springer, Heidelberg
(2001)

18. Wirsing, M., Baumeister, H., Knapp, A.: Property-Driven Development.
In: Cuellar, J., Liu, Z. (eds.) Second IEEE Internat. Conf. on Software
Engineering and Formal Methods, SEFM 2004, pp. 96–103. IEEE Com-
puter Society, Beijing (2004)

19. Knapp, A., Merz, S., Wirsing, M., Zappe, J.: Specification and Refine-
ment of Mobile Systems in MTLA and Mobile UML. Theoretical Com-
puter Science 351(2), 184–202 (2006)

(IV) Semantics of Specification and Programming Languages
20. Broy, M., Gnatz, R., Wirsing, M.: Semantics of Nondeterministic and

Noncontinuous Constructs. In: Bauer, F.L., Broy, M. (eds.) Program
Construction. LNCS, vol. 69, pp. 553–592. Springer, Heidelberg (1979)

21. Broy, M., Pepper, P., Wirsing, M.: On the Algebraic Definition of Pro-
gramming Languages. TOPLAS 9(1), 54–99 (1987)

22. Cenciarelli, P., Knapp, A., Reus, B., Wirsing, M.: An Event-Based Struc-
tural Operational Semantics of Multi-threaded Java. In: Alves-Foss, J.
(ed.) Formal Syntax and Semantics of Java. LNCS, vol. 1523, pp.
157–200. Springer, Heidelberg (1999)

23. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous
Approach to UML Semantics. In: Degano, P., De Nicola, R., Meseguer, J.
(eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 383–402.
Springer, Heidelberg (2008)

24. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What is a multi-
modeling language? In: Corradini, A., Montanari, U. (eds.) WADT 2008.
LNCS, vol. 5486, pp. 71–87. Springer, Heidelberg (2009)

25. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Semantics, Dis-
tributed Implementation, and Formal Analysis of KLAIM Models in
Maude. Science of Computer Programming, 51 p. (to appear, 2014)

(V) Systematic Development of Service-Oriented Systems
26. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N.,

Schroeder, A.: Semantic-Based Development of Service-Oriented Sys-
tems. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.)
FORTE 2006. LNCS, vol. 4229, pp. 24–45. Springer, Heidelberg (2006)

27. Wirsing, M., De Nicola, R., Gilmore, S., Hölzl, M., Lucchi, R., Tribas-
tone, M., Zavattaro, G.: Sensoria Process Calculi for Service-Oriented
Computing. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006.
LNCS, vol. 4661, pp. 30–50. Springer, Heidelberg (2007)

8 R. De Nicola and R. Hennicker

28. Wirsing, M., Bocchi, L., Clark, A., Fiadeiro, J., Gilmore, S., Hölzl, M.,
Koch, N., Mayer, P., Pugliese, R., Schroeder, A.: Sensoria: Engineering
for Service-Oriented Overlay Computers. In: di Nitto, E., Sassen, A.-
M., Traverso, P., Zwegers, A. (eds.) At Your Service: Service Oriented
Computing from an EU Perspective, pp. 159–182. MIT Press, Cambridge
(2009)

29. van Riemsdijk, M.B., Wirsing, M.: Comparing Goal-Oriented and Pro-
cedural Service Orchestration. Journal on Multiagent and Grid Sys-
tems 6(2), 133–163 (2010)

30. Tribastone,M.,Mayer, P.,Wirsing,M.:PerformancePrediction of Service-
Oriented Systems with Layered Queueing Networks. In: Margaria, T.,
Steffen,B. (eds.) ISoLA2010,Part II. LNCS,vol. 6416, pp. 51–65. Springer,
Heidelberg (2010)

31. Wirsing, M., Hölzl, M. (eds.): SENSORIA. LNCS, vol. 6582. Springer,
Heidelberg (2011)

(VI) Engineering Adaptive and Autonomic systems
32. Koch, N., Wirsing, M.: The munich reference model for adaptive hyper-

media applications. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH
2002. LNCS, vol. 2347, p. 213. Springer, Heidelberg (2002)

33. Wirsing, M., Bauer, S., Schroeder, A.: Modeling and Analyzing Adaptive
User-Centric Systems in Real-Time Maude. In: Ölvecki, P.C. (ed.) Proc.
of 1st International Workshop on Rewriting Techniques for Real-Time
Systems, RTRTS 2010, Longyearbyen, Spitsbergen, Norway, April 6-9.
EPTCS, vol. 36, pp. 1–25 (2010)

34. Schroeder, A., Bauer, S., Wirsing, M.: A Contract-Based Approach to
Adaptivity. J. Log. Algebr. Program. 80(3-5), 180–193 (2011)

35. Schroeder, A., Wirsing, M.: Developing Physiological Computing Sys-
tems: Challenges and Solutions. In: Jähnichen, S., Küpper, A., Albayrak,
S. (eds.) Software Engineering 2012. GI Lecture Notes in Informatics,
vol. 198, pp. 21–36 (2012)

36. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: En-
gineering Autonomic Service-Component Ensembles. In: Beckert, B.,
Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS,
vol. 7542, pp. 1–24. Springer, Heidelberg (2012)

(VII) Miscellaneous
37. Wirsing, M., Denker, G., Talcott, C., Poggio, A., Briesemeister, L.: A

Rewriting Logic Framework for Soft Constraints. In: Proc. 6th Int. Work-
shop on Rewriting Logic and its Applications (WRLA 2006), Vienna,
Austria. Electronic Notes in Theoretical Computer Science (ENTCS),
vol. 176, pp. 181–197 (2007)

38. Hölzl, M., Meier, M., Wirsing, M.: Which Soft Constraints do you Prefer?
In: Proc. 7th Int. Workshop on Rewriting Logic and its Applications
(WRLA 2008), Budapest, March 29-30. Electr. Notes Theor. Comput.
Sci, vol. 238(3), pp. 189–205 (2009)

A Homage to Martin Wirsing 9

39. Baumeister, H., Koch, N., Kosiuczenko, P., Wirsing, M.: Extending Ac-
tivity Diagrams to Model Mobile Systems. In: Akşit, M., Mezini, M.,
Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 278–293. Springer,
Heidelberg (2003)

2.2 Research Projects

Thanks to Martin’s permanent curiousness about new developments and tech-
nologies, he was always very active in conceiving, planning, coordinating and
running national and international projects. Most projects were funded by DFG
(the German Research Society) or by European Union, some others were funded
by the German Federal Ministry of Education and Research. The first project of
Martin was run in Passau together with Manfred Broy. It was a DFG project in
which a rapid prototyping tool for algebraic specifications has been developed
which has attracted much attention. The next projects during Martin’s stay in
Passau were the European projects METEOR and DRAGON. The METEOR
project investigated the use of algebraic methods, like data abstraction, structur-
ing of specifications, and analysis of data structures for formally based software
construction. The objective of the DRAGON project was the investigation of
methods supporting software reusability. Since then, Martin has guided around
40 projects and he has been the coordinator of huge EU projects, like SENSO-
RIA and ASCENS. In the following, we will list only the most important projects
coordinated by Martin. More details on the projects run at PST in Munich are
provided in the contribution to this Festschrift by the PST group, immediately
following the current chapter.

1983-1985 Rapid Prototyping of Algebraic Specifications. Sponsor: DFG.
1983-1989 ESPRIT-Project METEOR: Development of a formally based pro-

gramming environment tailored to industrial purposes. Sponsor: EU.
1987-1992 ESPRIT-Project DRAGON: Development of methods and tools for

designing reusable software in the area of distributed real time applications.
Sponsor: EU.

1990-1994 SPECTRUM: Development of an Algebraic Specification Language.
Sponsor: DFG.

1991-1994 KORSO: Component-oriented formal software development. Spon-
sor: BMFT.

1995-1998 EPKfix: Methods and Tools for Efficient Design of Electronical
Product Catalogues. Sponsor: BMFT.

2000-2002 CARUSO: Customer Care and Relationship Support Office. Spon-
sor: EU

2001-2004 InOpSys: View-Oriented Development of Software Components.
Sponsor: DFG.

10 R. De Nicola and R. Hennicker

2002-2004 AGILE: Architectures for Mobility. Sponsor: EU.
2005-2010 SENSORIA: Software Engineering for Service-Oriented Overlay

Computers. EU-funded Integrated Project. Sponsor: EU.
2005-2011 MAEWA I-II: Modellbasiertes Engineering adaptiver Rich-Internet-

Applications. Sponsor: DFG.
2008-2011 REFLECT: Responsive Flexible Collaborating Ambient. EU-funded

Specific Targeted Research Project. Sponsor: EU.
2010-2014 ASCENS: Autonomic Service-Component Ensembles. EU-funded

Integrated Project. Sponsor EU.

3 Martin’s Students

Under Martin’s supervision up to now 31 PhD theses and four habilitation theses
have been successfully completed at the University of Passau and at LMU in
Munich. His PhD students and the post-doc researchers working in his group
always profited from Martin’s inspirations, stimulations and advices and they
appreciated very much the constructive and friendly atmosphere in meetings and
discussions with him. But Martin was (and is) also demanding and very clear
with his goals and expectations about good work. Martin’s international contacts
and collaborations formed an excellent environment for his students. Also the
many interesting projects Martin has guided brought new and challenging topics
which provided the ground on which a new generation of doctoral theses has
been accomplished. Eleven students of Martin are now professors or lecturers at
national and international universities. Detailed impressions about the education
at PST are described in the contribution of the PST group immediately following
this chapter.

Habilitations

1. Peter Padawitz: Foundations of Specifications and Programming with Horn-
Clauses, University of Passau, 1987.

2. Thomas Streicher: Investigations in Intensional Type Theory, LMUMünchen,
1993.

3. Rolf Hennicker: Structured Specifications with Behavioural Operators: Se-
mantics, Proof Methods and Applications, LMU München, 1997.

4. Thom Frühwirth: A Declarative Language for Constraint Systems: Theory
and Practice of Constraint Handling Rules, LMU München, 1998.

Dissertations at University of Passau

1. Rolf Hennicker: Beobachtungsorientierte Spezifikationen, Passau, 1988.
2. Friederike Nickl: Algebraic Specification of Semantic Domain Constructions.

Passau, 1988.
3. Alfons Geser: Termination Relative. Passau, 1990.

A Homage to Martin Wirsing 11

4. Ruth Breu: Specification and Design of Object-Oriented Programs. Passau,
1991.

5. Ulrich Fraus: Mechanizing Inductive Theorem Proving in Conditional The-
ories, Passau 1994.

Dissertations at LMU München

6. Maria Victoria Cengarle: Formal Specifications with Higher-Order Parame-
terization, 1994.

7. Luis Mandel: Constrained Lambda Calculus, 1995.
8. Michael Mehlich: Implementation of Combinator Specifications, 1995.
9. Bernhard Reus: Program Verification in Synthetic Domain Theory, 1995.
10. Andy Mück: Eine verifizierte Implementierung funktional-logischer Program-

miersprachen, 1996.
11. Hannes Peterreins: Ein Gentzen-Kalkül für Strukturierte Algebraische Spez-

ifikationen, 1996.
12. Weishi Zhang: Formal Description and Development of Graphical User In-

terfaces, 1996.
13. Dimitris Dranidis: A Formal Framework for the Design and Specification of

Neural Networks, 1997.
14. Alexander Knapp: Formal Approach to Object-Oriented Software Engineer-

ing, 2000.
15. Nora Parcus de Koch: Software Engineering for Adaptive Hypermedia Sys-

tems: Reference Model, Modeling Techniques and Development Process,
2000.

16. Harald Störrle: Formal Approach to Object-Oriented Software Engineering,
2000.

17. Nataly Lyabakh: Design and Rigorous Prototyping of Object-Oriented Mod-
eling with Syntropy, 2000.

18. Dirk Pattinson: Expressivity Results in the Modal Logic of Coalgebras, 2001.
19. Matthias Hölzl: Constraint Lambda Calculus, 2001.
20. Moritz Hammer: Verfeinerungstechniken fr visuelle Modellierungen reaktiver

Systeme, 2004.
21. Philipp Meier: Agentenkomponenten: Ein komponenten-orientierter Ansatz

zur (grafischen) Entwicklung von Multi-Agenten-Systemen, 2005.
22. Shiping Yang: Towards “Living Cooperative Information Systems for Virtual

Organizations: Based on Peers, Foundet in Living Systems Theory”, 2006.
23. Shadi Al-Dehni: Model Transformation For Validation Of Software Design,

2008.
24. Michael Barth: Entwicklung und Bewertung zeitkritischer Softwaremodelle:

Simulationsbasierter Ansatz und Methodik, 2008.
25. Florian Mangold: Analyse von IT-Anwendungen mittels Zeitvariation, 2010.
26. Philip Mayer: MDD4SOA: Model-Driven Development for Service-Oriented

Architectures, 2010.

12 R. De Nicola and R. Hennicker

27. Axel Rauschmayer: Connected Information Management, 2010.
28. Gefei Zhang: Aspect-Oriented State Machines, 2010.
29. Andreas Schroeder: Software Engineering Perspectives on Physiological Com-

puting, 2011.
30. Partha Sampathkumaran: Computing the Cost of Business Processes, 2013.
31. Max Meier: Algorithmic Composition of Music in Real-Time with Soft Con-

straints, 2014.

Ode to the PST

Matthias Hölzl, Nora Koch, Philip Mayer, Andreas Schroeder
with Lenz Belzner, Marianne Busch, Anton Fasching, Annabelle Klarl,

Christian Kroiss, and Laith Raed

Programming & Software Engineering Group (PST)
Ludwig-Maximilians-University Munich, Germany

first.last @ifi.lmu.de

Thanks, sir; all the rest is mute.
– William Shakespeare, All’s Well That Ends Well

1 Welcome to the PST

1992! Internet in Germany was in its infancy, object oriented programming
wasn’t well-known yet, and even the European Union, which has funded so many
of our research efforts lately, had not been formed.

Computing was certainly not mainstream when Martin Wirsing took the post
of full professor at the Ludwig-Maximilians-Universität München in that year.
The chair for Programming & Software Engineering (Lehrstuhl für Program-
mierung und Softwaretechnik, PST) was created along with his appointment.
Indeed, the first Diplom course of studies in Computer Science (Informatik) at
LMU had been created only the year before. The institute was still situated in
the Leopoldstraße in Schwabing, only moving to the Institute am Englischen
Garten in the Oettingenstraße in 1996 (Figure 1) — a beautiful location set
right in the English Garden in Munich, five minutes away from one of the main
tourist spots, the Biergarten am Chinesischen Turm. And with a history — the
building was the site of the former Radio Free Europe [28], a radio station funded
by the U.S. Government with its own history (including a bomb attack in 1981
on the very building where PST is now located).

Fast-forward to 2015, where all of us are pretty much dependent on the com-
puters in our pockets — and where it is clear that computing has had, and will
have in the future, a tremendous influence on our society and our way of life. It
certainly has been an interesting time for computer scientists!

This development forms the framework for a personal story — 24 years in
which Martin has headed the PST group at LMU; 24 years in which he has
supervised over two dozen doctoral theses, participated in over nearly 40 research
projects, and taught countless students; and 24 years in which he has organized
a tiresome number of hikes in the Bavarian alps...

In this short expression of thanks/collection of travel notes/feeble summary
attempt (delete to taste) we shall revisit the PST history in the fields of science
and education (Section 2), research projects (Section 3), supervision of doctor-
ates and habilitations (Section 4), and the PST as a fun place to work (Section 5).
We invite you to come with us on this journey!

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 13–23, 2015.
c© Springer International Publishing Switzerland 2015

14 M. Hölzl et al.

Fig. 1. Institute am Englischen Garten

2 Science and Education

You would expect a certain affinity for mathematics and logic from somebody
who started his scientific career with a dissertation called “Das Entscheidungs-
problem der Prädikatenlogik 1. Stufe mit Funktionszeichen in Herbrandformeln”
(The Decision Problem of First-Order Predicate Logic with Function Symbols in
Herbrand Formulae) that was supervised by the eminent Munich logician Kurt
Schütte. And indeed, Martin’s desire to use algebraic and logical methods to
improve the development of software has remained one of the constant factors
throughout his career until today.

Before arriving at LMU, Martin had mostly worked in the areas of program-
ming languages, abstract data types and algebraic specifications, and written
the definitive handbook chapter on one of these areas [29]. However, recogniz-
ing the increasing importance of developing for large systems as well as the (at
that time) emerging trend towards mobile computing, he successfully broadened
the research areas pursued at PST in different directions: formal approaches to
engineering object-oriented systems [34]; a reference model for multimedia and
hypermedia applications [16]; global computing [5]; mobile systems and soft-
ware agents [18,17,15]; physiological computing [27]; service-oriented comput-
ing [30]; and, in the last few years, software engineering for autonomic ensem-
bles, i.e., distributed systems operating in open-ended, non-deterministic and
non-predictable environments [11,33,13]

Martin also remained active in research areas closer to his academic roots. For
example, he co-authored one of the first proposals for a formal semantics of multi-
threaded Java code [6,7], and a novel, heterogeneous approach to UML seman-
tics [8]; he also co-developed an abstract framework for developing new systems of

Ode to the PST 15

program synthesis by adapting proofs-as-programs to new contexts [20] and a sys-
tem of soft constraints that can deal with lexicographic orders of preferences [10].

For the members of PST this offered many exciting possibilities to work in
new and emerging areas of software engineering research. For many of us, the
possibility to interact with colleagues working on a broad range of topics but
centered around the common core of using formal techniques for software de-
velopment was a particularly pleasant aspect of working in Martin’s group. Not
unsurprisingly, this also led to occasional exclamations of “We’re supposed to be
working on what?” invariably followed, after a short discussion, by “The deadline
is when?!?”

Altogether, Martin’s scientific work has so far resulted in more than 240 pub-
lications with almost 230 co-authors, which were cited more than 5300 times.

In addition to these more visible scientific activities, Martin’s expertise and
foresight were in high demand from other scientific institutions and the Eu-
ropean Union: Among many other activities he was speaker of the section on
“Specification and Semantics” of the German Gesellschaft für Informatik and
president of INRIA’s scientific advisory council; he has been the coordinator of
the advisory board of the “Computer Science and Applications” research area
of the Institute for Advanced Studies in Lucca, and last year he has joined the
Comité Stratégique of the Université de Bordeaux.

Life at a university is not all about research, however. Teaching and admin-
istrative work play a large part as well, and in Martin’s case they are more
closely entwined than for most other professors: in addition to editing or author-
ing more than 15 scientific books, he has written two textbooks [2,12], and he
was instrumental in establishing the Elite Graduate Program “Software Engi-
neering” which is taught jointly by the University of Augsburg, the Technical
University Munich and Ludwig-Maximilians-University Munich. Given his com-
bination of scientific excellence, administrative skills and dedication to teaching,
it is no wonder that he quickly became indispensable in LMU’s boards: first as
Dekan and, after a reorganization, as director of the faculty for Mathematics,
Computer Science and Statistics, then as senator, as member of the Hochschul-
rat, and finally in his current position as vice-president of the LMU responsible
for academic studies and teaching.

However, despite his calendar being filled to the brim Martin always managed
to find time for discussions about PhD theses and organizational things, and
provided an open ear to questions and suggestions.

3 Research Projects across Europe

Martin acted out his research interests in almost 40 German and European funded
projects. He preferred those funding opportunities where he could introduce for-
mal methods in the software engineering process in very different but always excit-
ing and challenging domains, such as electronic product catalogues (EPK-fix) [24],
architectures for mobility (AGILE) [1], service-oriented architectures (SENSO-
RIA) [31], and adaptive and autonomous systems (ASCENS) [32].

16 M. Hölzl et al.

In addition, due to his research excellence he was invited to participate in
amazing projects like the Responsive Flexible Collaborating Ambient project
(REFLECT) [26], in which psychologists, car engineers and software engineers
developed a mood player that selects the music according to the users emotional
state and a car assistance prototype which configured the vehicles performance
according to the emotional, cognitive and physical drivers condition.

Fig. 2. Number of funded projects

Martin started with small budget German DFG and BMBF projects, such
as SPECTRUM and KORSO to end up with the coordination of huge EU IP
projects in the FET Proactive initiative like SENSORIA and ASCENS with
budgets around eight million Euros (Figure 2). All of them addressing innova-
tive issues like the modularization, reuse and correctness of specifications in the
beginning of the nineties, and the behaviour of autonomic service-component
ensembles twenty-five years later. Martin also supported non-funded projects of
enthusiastic researchers; some of them curiously have male or female acronyms
such as HUGO/RT (UML model translator for model checking, theorem prov-
ing, and code generation) [23], UWE (UML-based Web Engineering) [14], and
HELENA (Handling massively distributed systems with ELaborate ENsemble
Architectures) [9].

He managed and participated in EU projects of different types and challenges:
Integrated Project (IP), Specific Targeted Research Project (STREP), Coordi-
nated Action (CA) and Network of Excellence. Regarding personnel resources
these projects funded the research activities from one PhD student to the work
of more than 50 researchers belonging to a set of up to 18 partners. Martin cre-
ated consortia with impressive experts of the computer science community, such
as Marco Dorigo, Joseph Sifakis, Rocco De Nicola, Ugo Montanari, and Franco
Zambonelli.

Ode to the PST 17

In his projects, Martin has collaborated with people from an amazing number
of places — over 60 cities in 18 countries all over Europe, as the impressive map
in Figure 3 shows!

Fig. 3. Project Partners all over Europe

The first hurdle of every project is to get the proposal approved, which requires
novelty and a perfectly written document. How did Martin achieve the high
quality that characterized the proposals he submitted? On the one hand, he had
a sixth sense regarding the team and partners he selected to work with, together
with the ability to describe how these project members would complement each
other. He managed not only to convince the European commission, the proposal
reviewers but also the future partners about the complementary skills of them.
And it worked! On the other hand, Martin’s proposal management style was open
for discussion and suggestions but each decision had to be thoroughly founded.
He personally revised every detail and spent many nights in the production of
successful proposals. We as the writing team learned from his precise feedback
and new ideas about how to improve a proposal in long brainstorming meetings
and several iterations. Very often these improvements took place during the last
days and nights before the deadline!

18 M. Hölzl et al.

Most of his proposals for EU funded projects were selected for the hearing
in Brussels, where he was able to provide convincing arguments for getting the
funding. We think he will remember quite well the ASCENS hearing presentation
in Brussels, where some technical problems made him suffer a little bit. Hearing
presentations are structured in a such a way that the presenter has assigned a
fixed, very limited amount of time before questions start. The time Martin spent
starting the notebook after it went off was counted as presentation time! The
proposal was accepted anyway within the FP6 funding programme, the fourth
in a row following Customer Care and Relationship Support Office (Caruso) [3],
AGILE, and SENSORIA.

Successful proposals led to successful projects, most of them with the review
mark ”excellent” in each reporting period. On several occasions, EU project
officers mentioned that the projects delivered results that went further than
expected when compared to the description of work provided in the technical
annexes. Successful projects led to follow-up projects such as in the case of
the DFG-funded MAEWA I/MAEWA II [4] and PUMA/PUMA-2 [21], which
allowed for interesting research results over many years in the field of model-
driven web engineering, and program and model analysis.

Project meetings were characterized by Martin’s constructive comments and
strong recommendations to try to improve and integrate results as well as to
promote collaboration among the teams and partners. He promoted cultural
and culinary activities in conjunction with the project meetings and surprised
us at every dinner speech with entirely unexpected relationships between the
event location and project issues.

4 Promoting the Future: PhDs, Habils,
and Junior Professors

Martin’s achievements are not limited to his direct scientific contributions. Under
his supervision, a total of so far 27 doctoral theses and four habilitation theses
were successfully completed at the University of Passau and at the Ludwig-
Maximilians-University of Munich. Of these doctoral students, 13 have remained
in academia, and 14 have entered industry or civil service. All of the habilitands
have stayed in academia.

His ideas and vision therefore are not only continuously refined and pursued in
research, but have a significant impact in industry as well, ranging from product-
oriented software companies (such as Celonis GmbH), consulting and software
solutions companies (such as NTT DATA), to even game developer studios (such
as EA Digital Illusions CE). Martin’s scientific offspring in research are also
distributed over the globe. While most of them can be found working in Germany
(11 out of 16), some of them are pursuing their research in the UK, in Greece,
Denmark, Austria, and Australia.

The area of contributions of the theses completed under Martin’s supervision
is very varied. They range from purely theoretical contributions in the domain
of coalgebras [19] to the exploration of hands-on application domains such as

Ode to the PST 19

connected information management [22] and the application of theoretical results
to entirely different domains such as physiological computing [25]. The variety
of theses topics is extremely broad, and shows that Martin has remained open
and curious over the years, regularly willing to embrace and work on new topics.
He is always ready to listen and discuss research topic proposals, even risky or
exotic ones.

Even though the research topics feature a great variety, their scientific contri-
butions are always formally founded: Each of the theses includes a clear, deep,
and sound mathematical section. This formal work is one of the main pillars re-
quired for the scientifically sound and methodological development of the thesis.
The mathematical treatment of the topic helps students with the development
of a clear language, making the underlying concepts graspable and workable.

Martin’s exceptional network of top researchers within and outside of Europe
benefits PhD students as well. Martin has been providing and still is provid-
ing unique collaboration opportunities with top researchers to his doctoral stu-
dents, such as Carolyn Talcott and José Meseguer at the SRI in California, USA,
Rocco De Nicola at the IMT in Lucca, Italy, Ugo Montanari in Pisa, Italy, and
Stefan Jähnichen in Berlin, Germany. There are also many collaborations with
researchers working with those mentioned.

Throughout the whole research and writing process that encompasses a the-
sis project, Martin is unanimously found to be supportive and respectful, even
in difficult times, when teaching duties grow overhead or paper deadlines seem
infeasible. Instead of applying pressure, he always stays supportive and construc-
tive, and aims at bringing each of his students to their full potential.

5 The Social Framework: It’s a Group Thing!

Martin has always placed great emphasis on a relaxed and social atmosphere
in the PST group. Our meeting room — equipped with an industry-strength
automatic coffee dispenser, lovingly maintained by Anton Fasching — saw many
rounds of discussions on research topics, and the two white boards were inter-
changingly filled with math, UML diagrams, algorithm sketches, and even code.
On special occasions, such as a PhD defense, the meeting room would be trans-
formed into a party location, filled with the smell of Leberkäs, the clinking of
champagne glasses, and cheers to whomever was the focus of the event. In winter,
we always had an advent wreath provided my Mrs. Wirsing.

The climax of each year, though, were the hut seminars (Doktorandensem-
inare). On these occasions, we traveled to a hut deep within the Bavarian alps
for three days of talks, discussions, and socializing in the evening.

The first hut seminar took place in 2001 at the Dr. Erich Berger Hütte in
Wildschönau, where we stayed until 2003. After a hiatus in 2004, the seminar
was moved to Going (and the hut of the TV 1861 Ingolstadt), where it took
place in 2004 and 2005. Since 2007, the location has been the Alte Tanneralm
near Bayrischzell (Figure 4). Hard to get to, and even harder to leave (since the
trail leads uphill), the hut was a perfect place for a retreat. Each year we took

20 M. Hölzl et al.

Fig. 4. Alte Tanneralm

advantage of the location to go on a hike to one of the nearby mountains (with
the Wendelstein being a popular choice in recent years).

The numbers of participants, semmeln, beer, and other drinks consumed fluc-
tuated over the years. We can, however, empirically establish that the only thing
rising in a monotone fashion is the amount of Marillenschnäpschen (Figure 5).

Due to the remote locations of the huts, each arrival felt like the invasion
of the geeks : Power cables and strips were laid out, projectors installed, mobile
Internet antennas positioned, and (since several huts coincided with world or
European football championships) terrestrial TV receiving technology set up.
For our screen we used a white bed sheet — and in at least one case, the weather
even permitted us to do talks outside!

However, the hut seminars were not the only time in the year when we got
together for social events. Each year has also seen a Sommerfest, which between
1997 and 2007 alternately took place at Krögers’ and Wirsings’, and after 2007,
at Wirsings’ — with honorable exceptions in 2003 (Faschings’) and 2010 (Hen-
nickers’). Martin proved on these occasions that opening a beer barrel poses no
difficulties for him. It was also great to see many former members of the PST
group show up for a talk about the ”good old times”.

Winter in Munich can get quite cold, and there have even been known cases
of snow! What better way to get into the mood for Christmas than by doing
a hike in the snow-covered parks of Munich, concluded with a dinner at a nice
Wirtshaus. These now-famous PST winter hikes started in 1999 with a tour
through the snow-covered Nymphenburger Park, ending in a christmas coffee
at the Metzgerwirt. Over the years, we have added such illustrious locations as

Ode to the PST 21

0

10

20

30

40

50

60

2001 2002 2003 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Participants (overall) Semmeln (per morning) Marille (per evening) Beer (per evening)

Fig. 5. Hut statistics

the Aumeister, the Asam Schlössel, and the Emmeramsmühle to the list. Again,
honorable exceptions from these hikes were a visit to Kloster Fürstenfeld in 2004,
followed up by a party at Matthias Hölzls place, and going bowling in 2006 at
Bavaria Bowling. Thus, we can honestly claim that PST social activities not
only covered summer, spring and autumn, but the winter as well.

Many of the PST group members have become good friends in their private
lives as well, or continued doing research together long after they left the group.
We believe that Martin has succeeded in establishing an atmosphere of mutual
respect, trust, and having fun at work which had an impact above and beyond
the immediate working environment of the PST.

6 Closing Words

With these notoriously incomplete journey notes, we have tried to give some
insights into the activities at PST in the last 24 years. So much going on! We
leave it to other authors in this Festschrift to cover the deep plunges into the
formal and technical side of things for us.

With our closing words, we would like to thank Martin for the great atmo-
sphere he has created at the PST. We wish him every success in his continuing
career and private life, and we look forward to more Marillenschnäpschen at the
next hut, which we have been pleased to learn will indeed take place!

Acknowledgements. We thank all contributors and colleagues for their in-
sights and helpful material for this tour de force through PST history.

22 M. Hölzl et al.

References

1. Andrade, L., et al.: AGILE: Software Architecture for Mobility. In: Wirsing, M.,
Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 1–33.
Springer, Heidelberg (2003)

2. Bauer, F.L., Wirsing, M.: Elementare Aussagenlogik. Mathematik für Informatiker.
Springer (1991)

3. Baumeister, H.: Customer relationship management for SMEs. In: Proceedings
E2002, Prague (October 2002)

4. Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling Adaptivity with As-
pects. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 406–416.
Springer, Heidelberg (2005)

5. Baumeister, H., Koch, N., Kosiuczenko, P., Stevens, P., Wirsing, M.: UML for
Global Computing. In: Priami, C. (ed.) GC 2003. LNCS, vol. 2874, pp. 1–24.
Springer, Heidelberg (2003)

6. Cenciarelli, P., Knapp, A., Reus, B., Wirsing, M.: From Sequential to Multi-
Threaded Java: An Event-Based Operational Semantics. In: Johnson, M. (ed.)
AMAST 1997. LNCS, vol. 1349, pp. 75–90. Springer, Heidelberg (1997)

7. Cenciarelli, P., Knapp, A., Reus, B., Wirsing, M.: An event-based structural op-
erational semantics of multi-threaded java. In: Alves-Foss, J. (ed.) Formal Syntax
and Semantics of Java. LNCS, vol. 1523, p. 157. Springer, Heidelberg (1999)

8. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach
to UML Semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency,
Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)

9. Hennicker, R., Klarl, A.: Foundations for Ensemble Modeling – The Helena Ap-
proach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and
Software. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014)

10. Hölzl, M., Meier, M., Wirsing, M.: Which soft constraints do you prefer?
ENTCS 238(3), 189–205 (2009)

11. Hölzl, M., Rauschmayer, A., Wirsing, M.: Software engineering for ensembles. In:
Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Soft-Ware Intensive
Systems. LNCS, vol. 5380, pp. 45–63. Springer, Heidelberg (2008)

12. Hölzl, M.M., Raed, A., Wirsing, M.: Java kompakt - Eine Einführung in die
Software-Entwicklung mit Java. eXamen.press. Springer (2013)

13. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

14. Knapp, A., Koch, N., Wirsing, M., Zhang, G.: UWE - An Approach to Model-
Driven Development of Web Applications. i-com, Oldenbourg 6(3), 5–12 (2007) (in
German)

15. Knapp, A., Merz, S., Wirsing, M., Zappe, J.: Specification and Refinement of
Mobile Systems in MTLA and Mobile UML. In: Theoretical Computer Science,
pp. 184–202 (2006)

16. Koch, N., Wirsing, M.: The Munich Reference Model for Adaptive Hypermedia
Applications. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS,
vol. 2347, pp. 213–222. Springer, Heidelberg (2002)

17. Meier, P., Wirsing, M.: Towards a Formal Specification for the AgentComponent.
In: Ryan, M.D., Meyer, J.-J.C., Ehrich, H.-D. (eds.) Objects, Agents, and Features.
LNCS, vol. 2975, pp. 175–188. Springer, Heidelberg (2004)

Ode to the PST 23

18. Merz, S., Wirsing, M., Zappe, J.: A Spatio-Temporal Logic for the Specification and
Refinement of Mobile Systems. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621,
pp. 87–101. Springer, Heidelberg (2003)

19. Pattinson, D.: Expressivity Results in the Modal Logic of Coalgebras. PhD thesis,
Ludwig-Maximilians-Universität München (2001)

20. Poernomo, I., Crossley, J., Wirsing, M.: Adapting Proofs-as-Programs: The Curry–
Howard Protocol. Springer Monographs in Computer Science. Springer (2005)

21. PUMA/PUMA-2. Graduiertenkolleg Programm- Und Modell-Analyse, 2008-
2012/2013-2017. https://puma.informatik.tu-muenchen.de.

22. Rauschmayer, A.: Connected Information Management. PhD thesis, Ludwig-
Maximilians-Universität München (2010)

23. Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines
and Collaborations. In: Stoller, S.D., Visser, W. (eds.) Proc. Wsh. Soft-
ware Model Checking. Electr. Notes Theo. Comp. Sci., 13 pages (2001),
http://www.elsevier.nl/locate/entcs/volume55.html

24. Schneeberger, J., Koch, N., Turk, A., Lutze, R., Wirsing, M., Fritzsche, H., Closhen,
P.: EPK-fix: Software-Engineering und Werkzeuge für elektronische Produktkata-
loge. In: Informatik aktuell. Informatik 1997, Informatik als Innovationsmotor, 27.
Jahrestagung der Gesellschaft für Informatik. Springer (September 1997)

25. Schroeder, A.: Software engineering perspectives on physiological computing.
PhD thesis, Ludwig-Maximilians-Universität München (2011)

26. Schroeder, A., Bauer, S.S., Wirsing, M.: A contract-based approach to adaptivity.
J. Log. Algebr. Program. 80(3-5), 180–193 (2011)

27. Filipović, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for Concurrent
Objects. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 252–266.
Springer, Heidelberg (2009)

28. Wikipedia - The Free Encyclopedia. Radio Free Europe,
http://en.wikipedia.org/wiki/Radio_Free_Europe/Radio_Liberty

29. Wirsing, M.: Algebraic specification. In: Handbook of Theoretical Computer Sci-
ence (vol. B), pp. 675–788. MIT Press (1991)

30. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder,
A.: Semantic-based development of service-oriented systems. In: Najm, E., Pradat-
Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229,
pp. 24–45. Springer, Heidelberg (2006)

31. Wirsing, M., Hölzl, M. (eds.): SENSORIA. LNCS, vol. 6582. Springer, Heidelberg
(2011)

32. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering Au-
tonomic Service-Component Ensembles. In: Beckert, B., Bonsangue, M.M. (eds.)
FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidelberg (2012)

33. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering Au-
tonomic Service-Component Ensembles. In: Beckert, B., Bonsangue, M.M. (eds.)
FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidelberg (2012)

34. Wirsing, M., Knapp, A.: A formal approach to object-oriented software engineering.
Theor. Comput. Sci. 285(2), 519–560 (2002)

https://puma.informatik.tu-muenchen.de
http://www.elsevier.nl/locate/entcs/volume55.html
http://en.wikipedia.org/wiki/Radio_Free_Europe/Radio_Liberty

From Formal Logic through Program
Transformations to System Dynamics:

40 Years of Meeting Points with Martin Wirsing

Wolfgang Hesse

Ludwig-Maximilians-Universität München, Germany

My first meeting with Martin Wirsing is of rather virtual nature: We both have
the same academic background and got our diplomas from the same institution,
the Institute of Mathematical Logic of LMU Munich directed by Kurt Schütte.
But we did not (yet) meet personally: While I worked on my diploma thesis
on μ-recursive functions and the non-eliminability of some ugly functionals in
intricate number theory, Martin entered the institute as a student and left it
some years later having completed two theses (diploma and Ph.D.) on similarly
mystical problems such as (un-)decidability of (sub-)classes of formulae in first-
order predicate logic.

By 1970 Informatics was not yet known as a scientific discipline and at the
Technical University of Munich Friedrich L. Bauer and Klaus Samelson just ope-
ned the first academic institute for that brand-new science. I got the chance to
work there as a researcher in the new, growing and fascinating field of program-
ming languages and compilers. Shortly later, Martin had the same idea and so
we met in Bauer’s and Samelson’s group in 1974 – exactly 40 years back from
now. ALGOL was the newest hit of (academic) programming at that time but
the flavour of the year was ALGOL 68 – a gigantic tower of very useful but in
their totality rather intricate and sophisticated language constructs. Our task
was to build a compiler for that monster. This giant artefact saw the light of day
as a modern dinosaur but nevertheless it served some generations of students for
their first ALGOL 68 programming exercises.

Our boss F. L. Bauer was not happy with the universal language approach of
ALGOL 68 (and even less happy with its inventor Aad van Wijngaarden) and he
thought of new ways of programming – more exactly: of developing software –
which was then discovered as a much more encompassing and challenging process
requiring its own methodology and specialised tools. This was the starting point
of a new branch of Informatics: Software Engineering (SE).

F. L. Bauer’s approach to developing software was that of computer-aided,
intuition-guided programming (CIP) and thus Martin and I found ourselves wor-
king together on that topic in a large group of young and inspired colleagues. In
the CIP group we had to deal with innovative ideas and concepts such as program
transformations, logical and recursive programs, program verification and, last
not least, with CIP-L, a completely new, multi-level Wide Spectrum Language.
While I was struggling with L0, the lowermost language level and its formal
description and compiler, Martin was chosen to stroll in the high-level regions of

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 24–26, 2015.
c© Springer International Publishing Switzerland 2015

From Formal Logic through Program Transformations to System Dynamics 25

transforming predicate-calculus program versions of the greatest common divisor
(and similar problems) into tail-recursive ones and related transgressions.

In the late 1970ies, our professional ways took different directions. For me,
working at the Munich-based software house Softlab offered the chance to deal
with “real” Software Engineering tasks in an industrial environment whereas
Martin got the chance to complete his academic career by a habilitation – which
in turn opened him the door to be elected as a young professor and to build up
a new Computer Science faculty at the just founded University of Passau.

In the late 1980ies and beginning 1990ies, we both found our final academic
home – Martin at the LMU Munich and me at the University of Marburg.
Software Engineering was the connecting link which brought us together from
time to time – be it at SE conferences or in the new field of modelling, model
transformations and modelling languages.

Starting with my own retirement in 2008/9, a new (and still continuing) pe-
riod of close co-operation began. Now being located not only in academic but
also in physical neighbourhood (close to the Chinese Tower in Munich’s Eng-
lish Garden) we thought of opening a series of courses for bachelor and master
students on a subject which has not only pure computer science but also many
interdisciplinary aspects. Thus we started in 2010 our joint, combined lecture &
seminar on Modelling of dynamic and adaptive systems – briefly: ModaS.

The graphic depicted above gives a short overview of the bunch of themes
we are discussing with our students: Dynamic Systems encompasses the exciting
plethora of computer-supported domains of modern human real life. Applica-
tions (following the horizontal axis of the diagram) range from more technical

26 W. Hesse

ones such as house heating, robots in households, industry and space, through
chaotic or hardly predictable processes such as avalanches, earthquakes, weather
and climate changes to social and economic problem areas such as cooperation
& competition, self-organisation, artificial life and simulation games. Another
dimension (depicted in vertical direction) concerns the procedural aspects of
computer support – it ranges from mathematically rigid methods to pragmatic
approaches containing a lot of heuristics. An example of the latter are Forrester’s
world models for assessing possible future states of man-kind, their environment
and limits to growth.

It was – and still is – a great pleasure and stimulus for me to meet Martin,
planning seminars and other events with him, discussing professional, political
and private issues and – last not least – participate at his unforgettable garden
parties and combined birthday & Christmas celebrations. I wish him many more
years of energy, productivity and enjoyment. I wish us all many more oppor-
tunities to meet Martin, to work, to celebrate or just stay together with him.

The Broad View: How To Spawn a Radical

Organizational Transformation ‘En Passant’

Heinrich Hussmann

Ludwig-Maximilians-Universität München, Institut für Informatik, Germany
hussmann@ifi.lmu.de

Abstract. This short paper is a rather personal account on the process,
which in the end led to the effect that the author moved from a scholar
of an influential person to a colleague of him. It tries to tell the story how
a new organizational backbone for the Institute of Informatics at LMU
was created by predictive thinking, and it is a hommage to the ability
to switch from technical detail to a very broad but nevertheless precise
analysis of development opportunities for an organization.

1 Introduction

It may be the case that a mind being able to do deep theoretical analysis and
to invent abstract concepts is also good in analyzing practical organizational
weaknesses and in envisioning creative solutions for such practical problems.
At least this appears to be the case for Martin Wirsing’s way of approaching
problems. In the lines below, a concrete story is told which is somehow a proof
for this hypothesis.

The author of this paper is now professor for “Media Informatics” at Ludwig-
Maximilians-Universität (LMU), and therefore a colleague of Martin Wirsing.
Quite a number of years ago, the author used to be an academic scholar of
Martin Wirsing in the area of Software Engineering, and the story also explains
the path between the two positions.

2 The Broad View on Scientific Topics

When looking through the list of publications co-authored by Martin Wirsing, it
is interesting to find, besides a large number of contributions to the theoretical
side of software engineering, a quite broad selection of other topics, including
for instance hypermedia, security, and e-learning. His research group has always
kept a good balance between going into the depth of a specific issue and tackling
a broader range of diverse topics. One group of topics which appears more often
than others can be described by the catchword “multimedia”.

An interesting time in this respect were the years around 1997/1998. Dur-
ing this time, I just had obtained my first position as a professor, in Software
Engineering at the Technische Universität Dresden. From my work in industry

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 27–29, 2015.
c© Springer International Publishing Switzerland 2015

28 H. Hussmann

during the preceding years I had developed some interest in multimedia tech-
nology. At the time, it came as a surprise to me to find that Martin Wirsing’s
group had worked on a project related to multimedia presentations of electronic
product catalogues [1]. As a follow-up of this project, Martin Wirsing organized
a workshop at the “GI-Jahrestagung” in Aachen, which was devoted to Software
Engineering for Multimedia Systems [2], and I had the possibility to give a talk
there. This was a first hint at an extension of my work focus to come.

3 The Broad View on Organizational Structures

Around the same time, the Institute for Informatics at Ludwig-Maximilians-
Universität started an effort to better define the institute’s profile, combined
with an initiative to apply for further extension of the institute. This was a joint
effort of all professors at the institute, but Martin Wirsing is said to have been
quite influential within this initiative. The result was a “white book” [3] describ-
ing opportunities for further development of computer science at LMU. One very
interesting passage of this books reads as follows (translated from the German
original): “More and more, the demands of end users become foreground topics,
users who neither have administrative nor technical background knowledge. Tak-
ing the more recent developments of computer science into account, ergonomic
investigations in the following areas look promising: graphical-textual user in-
terfaces, controlled languages, modeling and specification languages, modifiable
reactive documents, query languages or information systems, new types of input
devices, multimedia output, group work software for software development.”

This visionary view on new topics finally led to a significant extension of the
institute, in particular including a new professorship for “media informatics”
inspired by the topics mentioned in the above quotation and by the vision of
establishing interdisciplinary co-operations with other departments of LMU, like
communication science and business administration. The study program “media
informatics” was started in 2001/2002.

4 Finding Creative Solutions for Organizational Problems

At that time (from 2001 on), I was looking for possibilities to move back to
Munich, and was applying for positions in software engineering. In fact, it was
Martin Wirsing in person who brought to my attention that there was an open
position at LMU in media informatics. I myself probably would not have applied
for this position, which sounded far from software engineering. But by thinking
further, a bridge between the two areas became apparent, which was mentioned
already in the quote above: “ergonomic investigations”. In fact, what was called
“software ergonomics” was an established area of software engineering already
at that time, and clearly it had to do with multimedia interfaces.

After the successful application and after becoming responsible for the area of
“media informatics”, I tried to define the area in a way which takes the link to

The Broad View 29

ergonomics strongly into account, which meant to address the area of Human-
Computer Interaction (HCI). This was a novel and nascent topic at that time,
and it has developed itself with massive speed and force since then.

Looking back at the development from nowadays (2014), there has been a
quite prosperous development for the Institute of Informatics. The “media infor-
matics” program now has by far the highest number of enrolled students among
the study programs offered by the department, higher than for traditional com-
puter science. Education in human-computer interaction is an integral part of
media informatics, and there is even a special professorship for Human-Computer
Interaction, and a Master program bearing this title. The HCI group of LMU
is well established in the international research community. During the last few
years, it could be observed that several other universities with media informatics
programs take a similar route in defining the profile for media informatics.

5 Conclusion

What can be learnt from this little story? Besides my personal thankfulness for
having been pointed at such an interesting opportunity to change the focus of
my professional activities, I would like to claim that the story shows successful
application of scientific analysis to problems on the organizational meta level of
a university. I think it takes a scientific mind with a broad perspective to see the
opportunities for develop-ment at the right point in time. And what I admire
most is that Martin managed to make this happen en passant, in parallel to his
highly successful detailed work on very technical areas of his home discipline,
formal methods and software engineering.

References

1. Knapp, A., et al.: EPK-fix: Methods and tools for engineering electronic prod-
uct catalogues. In: Steinmetz, R. (ed.) IDMS 1997. LNCS, vol. 1309, pp. 199–209.
Springer, Heidelberg (1997)

2. Wirsing, M., Schneeberger, J., Lutze, R.: Workshop: Software-Engineering für
Multimedia-Systeme. In: Informatikâ 97 Informatik als Innovationsmotor, p. 631.
Springer, Heidelberg (1997)

3. Bry, F., Clote, P., Hegering, H.-G., Kriegel, H.P., Kröger, F., Ludwig, T.,
Wirsing, M.: Weißbuch über Perspektiven in der Ludwig-Maximilians-Universität
zum Anbruch des Informationszeitalters, Internal Document LMU (1998),
http://epub.ub.uni-muenchen.de/

http://epub.ub.uni-muenchen.de/

Modal Satisfiability via SMT Solving�

Carlos Areces1, Pascal Fontaine2,3, and Stephan Merz2,3

1 Universidad Nacional de Córdoba & CONICET, Córdoba, Argentina
2 Université de Lorraine, LORIA, UMR 7503, Vandœvre-lès-Nancy, France

3 INRIA, Villers-lès-Nancy, France

Abstract. Modal logics extend classical propositional logic, and they are ro-
bustly decidable. Whereas most existing decision procedures for modal logics
are based on tableau constructions, we propose a framework for obtaining deci-
sion procedures by adding instantiation rules to standard SAT and SMT solvers.
Soundness, completeness, and termination of the procedures can be proved in a
uniform and elementary way for the basic modal logic and some extensions.

1 Introduction

Classical languages like first-order and second-order logic have been investigated in de-
tail, and their model theory is well developed. Computationally though, they are lack-
ing as their satisfiability problem is undecidable [9,25], and even their model checking
problem is already PSPACE-complete [8]. This has motivated a search for computa-
tionally well-behaved fragments. For instance, early in the twentieth century, Löwen-
heim already gave a decision procedure for the satisfiability of first-order sentences with
only unary predicates [17]. Many familiar fragments of first-order logic are defined by
means of restrictions of the quantifier prefix of formulas in prenex normal forms, and
their (un)decidability has been carefully charted [7]. Finite-variable (and in particular
two-variable) fragments of first-order logic are yet another kind of fragments whose
computational properties have been studied extensively, with decidability results go-
ing back to the early 1960s [23,14,15,20]. But even though many of these fragments
have good computational properties, their meta-logical properties are often poor, and,
in particular, they usually lack a good model theory that explains their computational
properties.

Research efforts have been devoted to identify fragments of first-order or second-
order logic that manage to combine good computational behavior with good meta-
logical properties. One such effort takes (propositional) modal logic as its starting
point [4,5]. Although modal logics are syntactically presented as an extension of propo-
sitional logic, there exist well-known translations through which modal languages may
semantically be viewed as fragments of first-order languages. Modal fragments are

� This work was partly supported by grants ANPCyT-PICT-2008-306, ANPCyT-PICT-2010-
688, ANPCyT-PICT-2012-712, the FP7-PEOPLE-2011-IRSES Project “Mobility between Eu-
rope and Argentina applying Logics to Systems” (MEALS), the project ANR-13-IS02-0001
of the Agence Nationale de la Recherche, the STIC AmSud MISMT, and the Laboratoire In-
ternational Associé “INFINIS”.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 30–45, 2015.
c© Springer International Publishing Switzerland 2015

Modal Satisfiability via SMT Solving 31

computationally very well-behaved; their satisfiability and model checking problems
are of reasonably low complexity, and they are so in a robust way [26,13]. The good
computational behavior of modal fragments has been explained in terms of the tree
model property, and generalizations thereof.

Broadly speaking, there are three general strategies for modal theorem proving:
(i) develop purpose-built calculi and tools; (ii) translate modal problems into automata-
theoretic problems, and use automata-theoretic methods to obtain answers; (iii) trans-
late modal problems into first-order problems, and use general first-order tools. The
advantage of indirect methods such as (ii) and (iii) is that they allow us to reuse well-
developed and well-supported tools instead of having to develop new ones from scratch.
In this paper we focus on the third option: translation-based theorem proving for modal
logic, where modal formulas are translated into first-order formulas to be fed to first-
order theorem provers. In particular, we will investigate the use of Satisfiability Modulo
Theories (SMT) techniques [3,18] for reasoning in restricted first-order theories. We
provide rules that constrain the instantiations of quantifiers in the translated formulas,
and we show that these rules are sound, complete and terminating.

Outline. Section 2 introduces basic modal logic and explains the overall architecture of
the SMT-based decision procedure. The precise rules are indicated in section 3, together
with the proofs of soundness, completeness, and termination. Extensions of the proce-
dure to global modalities and hybrid logic appear in section 4, and section 5 concludes
the paper and discusses related work.

2 Background

2.1 Basic Modal Logic

The basic modal logic BML can be seen as an extension of propositional logic. Let P be
a set of propositional symbols, the syntax of BML is defined as

ϕ .
= p | ¬p | ϕ∧ϕ′ | ϕ∨ϕ |�ϕ | ♦ϕ,

where p ∈ P . Observe that we assume formulas to be in negation normal form where
negation is only applied to atomic propositions. Semantically, formulas of BML are
interpreted over relational structures. Let M = 〈M, ·M 〉 be such that M is a non-empty
set called the domain and ·M is an interpretation function that assigns to each p ∈ P
a subset pM of M and introduces a relation RM ⊆ M×M (RM is usually called the
accessibility relation of M). For a relational structure M , we will often write |M | for
the domain of M , and if w ∈ |M | we will say that M ,w is a pointed model. For a
pointed model M ,w, the satisfaction relation for formulas in BML is defined by

M ,w |= p iff w ∈ pM

M ,w |= ¬p iff w /∈ pM

M ,w |= ϕ∧ϕ′ iff M ,w |= ϕ and M ,w |= ϕ′
M ,w |= ϕ∨ϕ′ iff M ,w |= ϕ or M ,w |= ϕ′

M ,w |= �ϕ iff for all (w,v) ∈ RM we have that M ,v |= ϕ
M ,w |= ♦ϕ iff for some (w,v) ∈ RM we have that M ,v |= ϕ.

32 C. Areces, P. Fontaine, and S. Merz

We say that ϕ is satisfiable if there is a pointed model M ,w such that M ,w |= ϕ,
otherwise ϕ is unsatisfiable. We define Mod(ϕ) as the set of pointed models of ϕ,
formally, Mod(ϕ) = {M ,w | M ,w |= ϕ} (we will use Mod(ϕ) for the set of mod-
els of ϕ also when ϕ is a propositional formula). For a set Σ of formulas, we let
Mod(Σ) =

⋂
ϕ∈ΣMod(ϕ). Finally, let Σ∪ {ϕ} be a set of formulas, we say that ϕ is

a consequence of Σ and we write Σ |= ϕ if Mod(Σ)⊆Mod(ϕ).
The definition above makes it clear that the semantics of basic modal logic is purely

first-order. Actually, through translation, modal languages may be viewed as fragments
of first-order languages. Our starting point is the relational translation ST, which trans-
lates modal formulas by transcribing their truth definitions as first-order formulas. Let
ϕ be a modal formula and x a first-order variable; then STx(ϕ) is defined as follows:

STx(p)
.
= P(x) STx(¬p)

.
= ¬P(x) (1)

STx(ϕ∧ϕ′) .
= STx(ϕ) ∧ STx(ϕ′) STx(ϕ∨ϕ′) .

= STx(ϕ) ∨ STx(ϕ′) (2)

STx(�ϕ) .
= ∀y : ¬R(x,y) ∨ STy(ϕ) STx(♦ϕ) .

= ∃y : R(x,y) ∧ STy(ϕ). (3)

In (1), P is a unary predicate symbol corresponding to the proposition letter p; in (3), the
variable y is fresh. Observe how (3) reflects the truth definition of the modal operators.
Also observe that STx(ϕ) is a first-order formula in negation normal form whose only
free variable is x, for any BML formula ϕ. ST is extended to sets of formulas in the
obvious way, i.e., STx(Σ) = {STx(ϕ) : ϕ ∈ Σ}.

Proposition 1. Let M ,w be a pointed model, and ϕ a formula of BML then

M ,w |= ϕ iff M ,g[x → w] |= STx(ϕ),

where, on the right-hand side, M is viewed as a first-order interpretation, g is an arbi-
trary assignment for M , and g[x → w] coincides with g but assigns w to x.

2.2 SMT Solving for Modal Satisfiability: Overall Setup

Starting from the relational translation of modal logic into first-order logic, we propose
in this paper an SMT-based procedure for deciding the satisfiability of BML formulas.
It consists of two cooperating modules, as illustrated in the schema below.

instantiation ground solver

formula abs(S)

ground model Γ

The procedure maintains a finite set S of first-order formulas. Initially, S is obtained
by relational translation from the set of BML formulas whose satisfiability we wish to
decide. New formulas can be added through instantiation, provided that the resulting
set of formulas is equisatisfiable with the original one.

Modal Satisfiability via SMT Solving 33

The ground solver is given a ground abstraction of the set S, denoted in the follow-
ing by abs(S), and it decides if abs(S) is satisfiable. The solver is assumed to be sound,
complete, and terminating for ground formulas; it includes a SAT solver and possibly
other decision procedures. For example, the extension to hybrid logic of section 4.2
requires a decision procedure for quantifier-free formulas over the theory of uninter-
preted function and predicate symbols with equality. The abstraction abs(S) for BML
is obtained by (consistently) mapping formulas ϕ in S that are either atomic or contain

an outermost quantifier to fresh propositional symbols that we denote by ϕ , while

preserving the Boolean structure of formulas in S. For example, consider the set

S = {(∀x : ¬R(c,x)∨P(x)), R(c,d)∧¬P(d)}.

Its abstraction will be denoted as

abs(S) = { ∀x : ¬R(c,x)∨P(x) , R(c,d) ∧¬ P(d) }.

Conversely, given a set Γ of propositional formulas whose atoms are all of the form ϕ ,

we define conc(Γ) to be the set of first-order formula obtained by “erasing the boxes”.
In particular, conc(abs(S)) = S.

If the ground solver finds abs(S) to be unsatisfiable, then the procedure declares
the original set of formulas unsatisfiable. Otherwise, it computes a set of literals Γ built
from the atomic propositions in abs(S) that corresponds to a model of abs(S). Although
Γ is a propositional model of abs(S), a first-order model for conc(Γ), or indeed for S,
may not exist. For example, the set S above is unsatisfiable, but abs(S) has the proposi-
tional model

Γ = { ∀x : ¬R(c,x)∨P(x) , R(c,d) ,¬ P(d) }.

In order to rule out models of abs(S) that do not correspond to first-order models of S,
the decision procedure also contains an instantiation module that computes refinements
of abs(S). More precisely, given a model Γ of abs(S), the instantiation module may
generate relevant instances of the quantified formulas that are abstracted in abs(S). For
the above example, the instantiation module should produce the formula

(∀x : ¬R(c,x)∨P(x))⇒ (¬R(c,d)∨P(d))

that will be added to S, yielding set S′. Note that Γ is no longer a model of abs(S′), and
that in fact abs(S′) is unsatisfiable. We must ensure that only finitely many instances are
generated over time, so that the feedback loop eventually terminates and the procedure
outputs a verdict.

3 Decision Procedure for Basic Modal Logic

We now define instantiation rules for basic modal logic BML. We show that these rules
are sound and complete. Moreover, only finitely many instantiations are created for
each quantified formula, hence the procedure terminates.

34 C. Areces, P. Fontaine, and S. Merz

3.1 Instantiation Rules

Recall from section 2.1 that formulas arising from the relational translation of basic
modal logic are built from unary predicate symbols P(_) that correspond to the propo-
sition symbols in P and a single binary predicate symbol R(_,_). Formulas are in nega-
tion normal form and contain exactly one free variable, representing the current point
of evaluation. Occurrences of quantifiers are restricted to the forms

∀y : ¬R(x,y)∨ϕ(y) and ∃y : R(x,y)∧ϕ(y)

where x is the variable designating the point of evaluation of the quantified formula,
and y is the only free variable in ϕ(y).

The set of formulas given as input to the decision procedure is assumed to consist
of formulas of this form. We replace the unique free variable by a Skolem constant,
obtaining a closed set S0 of formulas. The decision procedure will maintain a set of
formulas in this form, extended by formulas (Qx : ψ(x))⇒ χ where Q is a quantifier
and ψ(x) and χ are formulas in negation normal form; χ has no free variables and ψ(x)
contains exactly the free variable x.

A configuration of the decision procedure is a triple 〈S,Θ∃,Θ∀〉 where

– S is a set of closed formulas as described above and
– the sets Θ∃ and Θ∀ contain information about instances that have already been

produced and need not be created anew.

The initial configuration is 〈S0, /0, /0〉. Given a configuration 〈S,Θ∃,Θ∀〉, the decision
procedure invokes the ground solver on the set abs(S). If abs(S) is unsatisfiable, the
procedure terminates, declaring S0 unsatisfiable. Otherwise, the ground solver produces
a set of literals Γ that represents a model of abs(S), and the decision procedure computes
a successor configuration by applying one of the following instantiation rules (∃) or (∀)
and continues. If no instantiation rule is applicable, the procedure terminates, declaring
S0 satisfiable.

Rule (∃). This rule instantiates existentially quantified formulas in S by fresh constants:

〈S,Θ∃,Θ∀〉
Γ−→ 〈S′,Θ′∃,Θ∀〉 if there exists ε .

= ∃y : R(c,y)∧ϕ(y) s.t.

– ε ∈ Γ \Θ∃ is an atom corresponding to an existentially quantified formula
that appears in Γ but for which no instance has yet been created,

– d is a fresh constant,
– S′ = S∪{conc(ε)⇒ (R(c,d)∧ϕ(d))},
– Θ′∃ = Θ∃ ∪{ε}.

Rule (∀). This rule instantiates universally quantified formulas in S for constants such
that the guard of the quantified formula appears in Γ:

Modal Satisfiability via SMT Solving 35

〈S,Θ∃,Θ∀〉
Γ−→ 〈S′,Θ∃,Θ′∀〉 if there exist ε .

= ∀y : ¬R(c,y)∨ϕ(y) and d s.t.

– ε∈ Γ, R(c,d) ∈ Γ, (ε,d) /∈Θ∀. In words, ε is an atom that corresponds to a

universally quantified formula that appears in Γ, and d is a constant for which
the guard of ε is asserted in Γ but for which ε has not yet been instantiated,

– S′ = S∪{conc(ε)⇒ (¬R(c,d)∨ϕ(d))},
– Θ′∀ = Θ∀ ∪{(ε,d)}.

The rules are natural, and they resemble the rules in a tableaux algorithm for the basic
modal language, but implemented in the SMT setup. In particular, rule (∃) uses fresh
constants to denote unique witnesses for existential quantifiers. It can be understood
as on-the-fly Skolemization of an outermost existential quantifier. Universal quantifiers
are instantiated only for successors (via the accessibility relation) of the only constant
that appears in the guard of the quantifier. These instantiations are guided by the propo-
sitional model Γ computed by the ground solver.

3.2 Soundness and Completeness

The soundness of the rules (∃) and (∀) is a consequence of the following two lemmas,
whose proof is straightforward.

Lemma 2. Assume that 〈S,Θ∃,Θ∀〉
Γ−→ 〈S′,Θ′∃,Θ′∀〉 according to rules (∃) or (∀).

Then S and S′ are equisatisfiable sets of first-order formulas.

Lemma 3. If M is a first-order model of S, then abs(S) has a ground model Γ.

Proof. Define Γ to be the set of literals built from the atomic formulas in abs(S) such

that ψ ∈ Γ if M |= ψ and ¬ ψ ∈ Γ if M �|= ψ. A straightforward inductive proof

shows that Γ |= abs(S). ��

Theorem 4 (Soundness). Assume that the procedure terminates with verdict “unsatis-
fiable”. Then the initial set S0 of formulas is unsatisfiable.

Proof. The verdict “unsatisfiable” is based on a sequence of configurations

〈S0, /0, /0〉 Γ0

−→ 〈S1,Θ1
∃,Θ

1
∀〉

Γ1

−→ ·· · Γn−1

−→ 〈Sn,Θn
∃,Θ

n
∀〉

such that the ground solver finds abs(Sn) to be unsatisfiable. By Lemma 3, it follows
that Sn is unsatisfiable, and so is S0, by iterating Lemma 2. ��

The completeness proof relies on the construction of a first-order model of the original
set S0 of formulas from a propositional model of a saturated set Sn in a configuration
where no rules are applicable anymore.

Theorem 5 (Completeness). Assume that the procedure terminates with verdict “sat-
isfiable”. Then the initial set S0 of formulas is satisfiable.

36 C. Areces, P. Fontaine, and S. Merz

Proof. The verdict “satisfiable” is based on a sequence of configurations

〈S0, /0, /0〉 Γ0
−→ 〈S1,Θ1

∃,Θ
1
∀〉

Γ1
−→ ·· · Γn−1

−→ 〈Sn,Θn
∃,Θ

n
∀〉

such that the ground solver finds abs(Sn) to be satisfiable, and no transition according
to the rules (∃) or (∀) is possible. The ground solver produces a set Γ of literals that
corresponds to a propositional model of abs(Sn); more precisely, the propositional in-

terpretation Γ∗ that satisfies the atomic formulas ψ iff ψ ∈ Γ is a model of abs(Sn).

Observe that the set Sn is a superset of S0 obtained by adding formulas of the form

(∃y : R(c,y)∧ϕ(y))⇒ . . . and (∀y : ¬R(c,y)∨ϕ(y))⇒ . . .

by applications of rules (∃) and (∀). We define a first-order interpretation M as follows.
The universe |M | consists of the constants that appear in Sn: observe that this set is non-
empty since S0 contains precisely one constant and S0 ⊆ Sn. For the predicate symbols

P(_) that appear in Sn and any a∈ |M |, we define a ∈ PM iff P(a) ∈ Γ. Similarly, for

the relation symbol, we let (a,b) ∈ RM iff R(a,b) ∈ Γ.

Step 1. We show that for every ground instance of every subformula ψ of a formula
in S0 for constants that appear in Sn, if Γ∗ |= abs(ψ) then M |= ψ. The proof is by
induction on ψ.

– For ψ .
= P(a) or ψ .

= R(a,b), if Γ∗ |= abs(ψ) then abs(ψ)∈ Γ and therefore M |=ψ
by definition of M . Similarly, if Γ∗ |= ¬abs(ψ) then abs(ψ) /∈ Γ and therefore
M |= ¬ψ, again by definition of M .

– For conjunctions and disjunctions, the proof of the inductive step is immediate.
– Assume that ψ .

= ∃y : R(c,y)∧ϕ(y) is a ground instance of a subformula in S0 and

that Γ∗ |= abs(ψ), i.e. ψ ∈ Γ. Since rule (∃) cannot be applied, we must have

ψ ∈ Θ∃, and therefore Sn must contain

ψ⇒ (R(c,d)∧ϕ(d))

for some constant d, where the right-hand side of the implication is a ground in-
stance of a subformula in S0. Moreover, abs(Sn) contains

ψ ⇒ abs(R(c,d)∧ϕ(d)).

Since Γ∗ |= ψ , it follows that Γ∗ |= abs(R(c,d)∧ϕ(d)). Now, M |=R(c,d)∧ϕ(d)
follows by induction hypothesis, and this proves M |= ψ.

– Assume now that ψ .
= ∀y : ¬R(c,y)∨ ϕ(y) and that Γ∗ |= abs(ψ), i.e. ψ ∈ Γ.

Moreover, assume that M |= R(c,d) for a constant d ∈ |M |: we must show that
M |= ϕ(d). By the definition of M and the assumption that M |= R(c,d) it follows

Modal Satisfiability via SMT Solving 37

that R(c,d) ∈ Γ. Since rule (∀) cannot be applied, we must have (ψ ,d) ∈ Θ∀,

and Sn, resp. abs(Sn), contain the formulas

ψ⇒ (¬R(c,d)∨ϕ(d)) resp. ψ ⇒
(
¬ R(c,d) ∨abs(ϕ(d))

)
.

where the right-hand side of the implication on the left is a ground instance of a
subformula of S0. Because Γ∗ |= abs(Sn), we can conclude that Γ∗ |= abs(ϕ(d)),
and therefore M |= ϕ(d) by induction hypothesis, and this suffices.

Step 2. Now suppose that formula ϕ appears in the original set S0. Then ϕ is ground
and Γ∗ |= abs(ϕ) because Γ∗ is a model of abs(Sn)⊇ abs(S0). By step 1, it follows that
M |= ϕ. Thus, M is a model of S0, and this concludes the proof. ��

Remark. Notice that the restriction to ground instances of (sub-)formulas of S0 in the
above proof is necessary: the model M need not satisfy all formulas in Sn. For example,
consider a set S0 containing the formula

(∃x : R(a,x)∧P(x))︸ ︷︷ ︸
ε1

∨ (∃y : R(a,y)∧P(y)∧Q(y))︸ ︷︷ ︸
ε2

resulting from the translation of the modal formula (♦p)∨♦(p∧ q). The saturation
of S0 by application of the instantiation rules may result in a set Sn containg the two
implications

ε1 ⇒ R(a,b)∧P(b) and ε2 ⇒ R(a,c)∧P(c)∧Q(c)

for two constants b and c. A possible propositional model Γ of abs(Sn) contains the
literals

¬ ε1 , ¬ R(a,b) , ¬ P(b) , ε2 , R(a,c) , P(c) , Q(c) .

The corresponding first-order interpretation satisfies R(a,c)∧P(c), hence it satisfies ε1,
but it does not satisfy R(a,b) or P(b). Therefore it is not a model of Sn.

Observe, however, that the formulas added by applications of rule (∀) are first-order
valid, and in particular true in the interpretation M .

3.3 Termination

Finally, we show that the procedure must terminate because only finitely many constants
can be introduced during any run of the procedure.

Theorem 6 (Termination). For any finite set S0, there cannot be an infinite transition
sequence

〈S0,Θ0
∃,Θ

0
∀〉

Γ0
−→ 〈S1,Θ1

∃,Θ
1
∀〉

Γ1
−→ . . .

38 C. Areces, P. Fontaine, and S. Merz

Proof. The key is to observe that only finitely many constants can be introduced in sets
Si by applications of rule (∃), and that every constant can only give rise to finitely many
applications of rule (∀). We associate a depth ∂c with every constant c that appears in
sets Si, as follows:

– S0 contains only a single constant c whose depth ∂c is 0.
– If 〈Si+1,Θi+1

∃ ,Θi+1
∀ 〉 results from an application of rule (∀) the set of constants is

unchanged.
– If 〈Si+1,Θi+1

∃ ,Θi+1
∀ 〉 introduces constant d through an application of rule (∃) for

formula ∃y : R(c,y)∧ϕ(y), then ∂d = ∂c + 1.

We prove by induction that the set of constants c at depth ∂c = k is finite, for any k ∈N:

– The assertion is obvious for k = 0.
– Assuming there are only finitely many constants c at depth k, there can only be a

finite set of formula instances ∃y : R(c,y)∧ϕ(y) in the sets Si for every such c since
all these instances come from subformulas of the original set S0 of formulas, of
which there are only finitely many, and each of these instances can be used only
once to generate a new constant by rule (∃) because its abstraction is then added to
Θ∃. Therefore the set of constants of depth k+ 1 is again finite.

Moreover, the depth of constants introduced in any set Si is bounded by the maximal
quantifier depth of any formula in S0, since every instantiation removes a quantifier.

Hence, the set of constants that appear throughout the transition sequence is finite,
and therefore the rule (∃) can be applied only finitely often. Moreover, rule (∀) can only
be applied once per pair of universally quantified formula instance and constant. This
proves termination. ��

The proof above is a recast of the standard termination proof used in tableau calculi.
We now consider some extensions of the basic modal language. Interestingly, the proof
requires only small changes. By comparison, the corresponding termination proof for,
say, the basic hybrid logic is much more involved.

4 Extensions of the Basic Modal Logic

In this section, we consider some extensions of the basic modal logic to which we adapt
the procedure described before.

4.1 Global Modalities

The relational translation for modal operators of BML gives rise to formulas where quan-
tifiers are guarded by accessibility conditions (see definition clauses (3) on page 32).
Global modalities [12] refer to arbitrary elements of the relational structure, which need
not be related to the current point. The existential global modality is usually denoted by
E and A is its univesal dual. Their semantics conditions are as follows

M ,w |= Aϕ iff for all v ∈M we have that M ,v |= ϕ
M ,w |= Eϕ iff for some v ∈M we have that M ,v |= ϕ.

Modal Satisfiability via SMT Solving 39

Their relational translations introduces formulas

∀y : ϕ(y) and ∃y : ϕ(y)

where y is again the only free variable; moreover, ϕ(y) does not contain any constant.
We introduce two new rules (E) and (A) for these modalities. In these rules, ϕ(y)

denotes an unguarded formula that contains only y as free variable (and no constant).

Rule (E). This rule instantiates unguarded existentially quantified formulas in S by
fresh constants:

〈S,Θ∃,Θ∀〉
Γ−→ 〈S′,Θ′∃,Θ∀〉 if there exists ε .

= ∃y : ϕ(y) s.t.

– ε ∈ Γ\Θ∃ is an atom corresponding to an unguarded existentially quantified
formula that appears in Γ but has not been handled yet,

– d is a fresh constant,
– S′ = S∪{conc(ε)⇒ ϕ(d))},
– Θ′∃ = Θ∃ ∪{ε}.

Rule (A). This rule instantiates unguarded universally quantified formulas in S for
constants that have not yet been instantiated.

〈S,Θ∃,Θ∀〉
Γ−→ 〈S′,Θ∃,Θ′∀〉 if there exist ε .

= ∀y : ϕ(y) and d s.t.

– ε ∈ Γ, d is a constant in S, (ε,d) /∈ Θ∀. In words, ε is an atom corresponding
to an unguarded universally quantified formula that appears in Γ, and d is a
constant for which ε has not yet been instantiated,

– S′ = S∪{conc(ε)⇒ ϕ(d)A},
– Θ′∀ = Θ∀ ∪{(ε,d)}.

Without additional precautions, the rule (A) may lead to the regeneration of copies
of formulas for different constants that could make the procedure fail to terminate.
For example, a subformula ∀x : ∃y : R(x,y)∧ P(y) that corresponds to the relational
translation of the modal formula A♦p may lead to the generation of infinitely many
copies of the formula R(c,d)∧P(d) for different constants c and d.

In order to avoid the generation of redundant copies, we adopt a blocking rule similar
to the one proposed by Schmidt and Tishkovsky [22]. The instantiated formula ϕ(d)
generated in the above rule has been decorated in order to remember that it is an instance
of an unguarded universally quantifier. This decoration is understood to be distributed
across the Boolean connectives that appear in ϕ. As a concrete example, consider the
unguarded formula

ε .
= ∀y : P(y)∨ (∃z : R(y,z)∧Q(z))

that corresponds to the modal formula A(p∨♦q). The application of rule (A) to this
formula will introduce the implication

conc(ε)⇒ P(y)A∨ (∃z : R(y,z)∧Q(z))A.

40 C. Areces, P. Fontaine, and S. Merz

a

b c

d
p

e
¬p

Fig. 1. Model for example formula with global modalities

The decorated formulas are not distinguished from undecorated ones, except that we
add the following variant of the rule (∃).

〈S,Θ∃,Θ∀〉
Γ−→ 〈S′,Θ′∃,Θ∀〉 if there exists ε .

= (∃y : R(c,y)∧ϕ(y))A s.t.

– ε ∈ Γ \Θ∃ is an atom corresponding to an existentially quantified formula
that appears in Γ but for which no instance has yet been created,

– if S contains the formula

(∃y : R(a,y)∧ϕ(y))A⇒ (R(a,d)∧ϕ(d))

for some constants a and d, then

S′ = S∪{conc(ε)⇒ (R(c,d)∧ϕ(d))}

for that constant d, otherwise S′ is defined as above for a fresh constant d,
– Θ′∃ = Θ∃ ∪{ε}.

For the soundness proof, it is essential to notice that Lemma 2 carries over to the new
rules. In particular, the above variant of the rule (∃) ensures equisatisfiability of sets S
and S′ because the same successor satisfying ϕ(d) may be chosen for any two diamond
formulas in the scope of a global A modality. The completeness and termination proofs
of section 3 carry over to the above rules in the obvious manner.

As a concrete example, the application of our rules to the modal formula

♦�p∧♦�¬p∧A(♦p∨♦¬p)

may result in the model shown in figure 1. Its domain has five elements a, b, c, d, and e,
with a corresponding to the root point satisfying the original formula. The proposition p
is true at d and false at e. Note that every point has either d or e as a successor, ensuring
that the subformula A(♦p∨♦¬p) is satisfied.

4.2 Hybrid Logic

Hybrid languages [2] are modal languages that have special symbols to name individual
points in models. Syntactically, these new symbols i, j,k, . . ., often called nominals, are

Modal Satisfiability via SMT Solving 41

just another sort of propositional symbols1. For example, if i is a nominal and p and q
are ordinary atomic propositions, then

�i ∧ ♦q ∧ ♦¬q and �p ∧ ♦q ∧ ♦¬q

are both well-formed formulas; but they have quite a different meaning. Actually, as we
will now explain, the second formula is satisfiable whereas the first one is not. The dif-
ference comes from the interpretation that should be attributed to nominals. Because a
nominal i represents a particular element in the model it should be true at a unique state.
Formally, its interpretation iM is a singleton set. For the left-hand formula above to be
true at some point w, the first conjunct requires that at most one state (the one denoted
by i) can be accessible from the evaluation point w. It is then impossible to satisfy both
q and ¬q at that unique successor, as required by the two other conjuncts. In contrast,
the first conjunct of the right-hand formula just requires that all states accessible from
w satisfy p, but does not restrict their multiplicity. Hence, some successor may satisfy
q and another one ¬q.

Once we have names for states we can introduce, for each nominal i, an operator @i

that allows us to jump to the point named by i. The formula @iϕ (read “at i, ϕ”) moves
the point of evaluation to the state named by i and evaluates ϕ there: Intuitively, the @i

operators internalize the satisfaction relation “|=” into the logical language:

M ,w |= @iϕ iff M ,u |= ϕ where iM = {u}.

For this reason, these operators are usually called satisfaction operators.
We will now extend our calculus to handle the operators of the basic hybrid logic.

4.3 SMT-Based Decision Procedure for Hybrid Logic

The relational translation for basic modal logic extends to hybrid logic through the
definitions

STx(i)
.
= x = i

STx(@iϕ)
.
= STi(ϕ).

In particular, note that nominals are translated as constants of first-order logic. The
relational translation still produces formulas with at most one free variable.

We now adapt our SMT-based decision procedure to hybrid logic, starting from the
relational translation of the input set of hybrid logic formulas; if that translation has a
(single) free variable, it is again replaced by a (Skolem) constant, otherwise the trans-
lation must contain a constant corresponding to a nominal. Because equality is now a
central part of reasoning, we no longer produce propositional abstractions for use with
a SAT solver, but rely on a ground SMT solver that includes a decision procedure for
equality over uninterpreted predicate symbols. Accordingly, the abstraction preserves

1 Propositional symbols and nominals are however handled quite differently while translating to
first-order formulas, as we will see later.

42 C. Areces, P. Fontaine, and S. Merz

all ground formulas of the forms P(a), R(a,b), and a = n, but quantified formulas that
arise from the translation of modal operators are still abstracted, as in

∀x : ¬R(c,x)∨ (x = i∧¬P(x))

that corresponds to asserting the formula �(i∧¬p) of hybrid logic at world c.
The algorithm from section 3 remains essentially unchanged. However, ground mod-

els Γ are now not just propositional models of abs(S), but consist of an arrangement of
the finite set C of constants in S given by an equivalence relation ≡ whose set of equiv-
alence classes we will denote by [C], valuations [[P]] ⊆ [C] and [[R]] ⊆ [C]× [C] that
indicate the extensions of the unary and binary predicates in Γ, as well as a set of atoms

ϕ that correspond to abstracted subformulas in S that are true in Γ. The rules (∃) and

(∀) of section 3 remains basically the same, except that conditions ψ∈ Γ should be read
as Γ |= ψ, and that atomic formulas are no longer abstracted, as discussed above.

4.4 Soundness, Completeness, and Termination

The proof of soundness extends immediately the one of section 3.2.

Theorem 7 (Soundness for hybrid logic). Assume that the procedure terminates with
verdict “unsatisfiable”. Then the initial set S0 of formulas is unsatisfiable.

Proof. The analogues of lemmas 2 and 3 remain true for hybrid logic: for any transition

〈S,Θ∃,Θ∀〉
Γ−→ 〈S′,Θ′∃,Θ′∀〉, we have that S and S′ are equisatisfiable. Also, any first-

order model of S again gives rise to a model of abs(S), hence unsatisfiability of abs(S)
implies unsatisfiability of S.

The soundness theorem is an immediate consequence of these two lemmas. ��

Completeness. The completeness proof is also analogous to the one in section 3.2:
whenever the procedure produces a ground model in a state where no instantiation rule
can be applied, then the set of formulas is satisfiable.

Theorem 8 (Completeness for hybrid logic). Assume that the procedure terminates
with verdict “satisfiable”. Then the initial set S0 of formulas is satisfiable.

Proof. Assume that the procedure terminates after a sequence of transitions

〈S0, /0, /0〉 Γ0
−→ 〈S1,Θ1

∃,Θ
1
∀〉

Γ1
−→ ·· · Γn−1

−→ 〈Sn,Θn
∃,Θ

n
∀〉

such that abs(Sn) is satisfied by a ground model Γ, and no transition according to (∃) or
(∀) is possible. As before, S0 is exactly the subset of Sn without the formulas added by
applications of rules (∃) and (∀). Let M be the first-order structure that corresponds to
Γ, i.e. the universe |M | is the set [C] of equivalence classes of the constants in abs(Sn),
and M interprets the unary and binary predicate symbols, as well as the abstracted

quantified formulas ϕ that appear in abs(Sn). We will prove that M is a model of S0.

Modal Satisfiability via SMT Solving 43

Step 1. We again prove that for every ground instance of every subformula ψ of a
formula in S0 for constants that appear in abs(Sn), if M |= abs(ψ) then M |= ψ.

– For literals ψ that are ground instances of subformulas in Sn (and a fortiori in S0),
we now have abs(ψ) = ψ, and therefore M |= abs(ψ) iff M |= ψ. Note that this
argument extends to ground instances of the new subformulas x = i introduced by
the translation from hybrid logic.

– For conjunctions and disjunctions, the proof of the inductive step is immediate.
– For ground instances ψ of quantified formulas of the forms ∃y : R(c,y)∧ϕ(y) and
∀y :¬R(c,y)∨ϕ(y), the arguments are exactly the same as in the proof of theorem 5,

replacing ψ ∈ Γ by M |= ψ .

Step 2. For any formula ϕ ∈ S0, we have that ϕ is ground and M |= abs(ϕ) because M
is a model of abs(Sn)⊇ abs(S0). By step 1, we conclude that M |= ϕ. ��

Termination. The termination proof follows exactly the lines of that of Theorem 6,
except that now S0 may contain several constants, corresponding to nominals and to
the Skolem constant for the world from which the model construction for S0 starts. All
these (finitely many) constants are assigned depth 0. The procedure applies the same
rules as for the case of basic modal logic, and the structure of the formulas is essentially
the same (up to the addition of atomic equalities), and therefore termination is ensured
by the same argument.

The fact that the proofs of soundness, completeness, and termination carry over in a
straightforward way from basic modal logic to hybrid logic is in marked contrast to the
situation for tableau calculi. In particular, the proof of termination is highly non-trivial
for tableaux for hybrid logic [6].

5 Conclusions and Related Work

We have presented an SMT-based decision procedure for modal logic and some of
its extensions. It is based on combining a ground solver for propositional logic or
quantifier-free first-order logic with a custom instantiation module that lazily produces
instances of quantified formulas as directed by the ground solver. The procedure ro-
bustly extends from basic modal logic to hybrid logic, the main difference being the
replacement of a SAT solver by an SMT solver for reasoning about equality. We have
also adapted the procedure to take into account standard conditions on the accessibility
relation, such as reflexivity, symmetry, and transitivity; for lack of space, these exten-
sions will be described elsewhere. Further extensions, such as to the guarded fragment
of predicate logic [1] that generalizes modal logic while retaining its good computa-
tional properties, are an interesting avenue for future work.

In principle, the instantiation procedure can be implemented using patterns and e-
matching, which are provided by standard SMT solvers. However, one should not ex-
pect such a naive implementation to yield an efficient decision procedure for modal
logics. In particular, without imposing further control, subsequent calls to the ground
solver may result in completely different ground models. One way to obtain a decision

44 C. Areces, P. Fontaine, and S. Merz

procedure running in polynomial space is to impose a depth-first search strategy similar
to modal tableaux, where instances corresponding to fully explored branches can be
forgotten for the remainder of the exploration. This will imply for the SMT solver to
forget instances in a smart way, and such a feature requires some careful engineering.
Our preliminary experiments confirm that SMT solvers with trigger-based instantiation
as currently implemented are off-the-shelf decision procedures for basic modal logic,
but also show that forgetting instances is a required first step towards efficiency. More
efficient translations from modal to first-order logic, such as the functional translation
and its variants [19], may also help improving the performance without changing the
basic setup of our procedure.

Whereas semantic tableaux remain state of the art decision procedures for modal and
related logics, several authors proposed alternative methods. In particular, Hustadt and
Schmidt [10,16,21] systematically explored techniques based on translations to first-
order logic and the use of resolution and superposition provers. Our work starts from
the same encodings in first-order languages but relies on ground decision procedures for
suitable fragments of first-order logic. We believe that our proofs are more elementary,
and we hope to obtain similarly efficient implementations by controlling repeated calls
to the ground solver.

Sebastiani et al. [11,24] investigate the use of SAT solvers for modal and related log-
ics. Their approach does not start from an encoding into first-order logic, but abstracts
formulas with top-level modal connectives, similar to our abstractions of quantified
formulas. When the set of abstracted formulas is found satisfiable, the SAT solver is
launched again on sets of sub-problems derived from the formulas beneath the topmost
modal operators. Whereas their decision procedure is very efficient for basic modal
logic, it appears to fundamentally depend on the clean separation of truth conditions for
worlds that correspond to distinct modal depths, and this condition is not satisfied for
many extensions of modal logic, including hybrid logic.

Our small investigation into SMT-based decision procedures for modal and related
logics owes in part to Martin Wirsing’s interest in modal logic, as witnessed by Chap-
ter 6 of [4]. Our work is being developed within an ongoing cooperation between teams
located in Argentina and in Europe, which Martin actively fostered. For both reasons,
we hope that this paper is a suitable contribution for the present volume, and we present
Martin our sincere wishes for many more years of intellectual happiness in pursuing
research at the interface of algebra, logic, and computer science.

References

1. Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments of pred-
icate logic. Journal of Philosophical Logic 27, 217–274 (1998)

2. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.)
Handbook of Modal Logics, pp. 821–868. Elsevier (2006)

3. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A.,
Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Arti-
ficial Intelligence and Applications, vol. 185, ch. 26, pp. 825–885. IOS Press (February 2009)

4. Bauer, F.L., Wirsing, M.: Elementare Aussagenlogik. Springer, Heidelberg (1991)

Modal Satisfiability via SMT Solving 45

5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical
Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

6. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. Journal of Logic and Computa-
tion 17(3), 517–554 (2007)

7. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Berlin (1997)
With an appendix by C. Allauzen, B. Durand

8. Chandra, A., Merlin, P.: Optimal implementation of conjunctive queries in relational
databases. In: Proc. 9th ACM Symp. Theory of Computing, pp. 77–90 (1977)

9. Church, A.: A note on the Entscheidungsproblem. Journal of Symbolic Logic 1, 40–41
(1936)

10. Ganzinger, H., Hustadt, U., Meyer, C., Schmidt, R.A.: A resolution-based decision procedure
for extensions of K4. In: Zakharyaschev, M., Segerberg, K., de Rijke, M., Wansing, H. (eds.)
Advances in Modal Logic, pp. 225–246. CSLI Publications (1998)

11. Giunchiglia, F., Sebastiani, R.: Building decision procedures for modal logics from propo-
sitional decision procedures: The case study of modal K(m). Information and Computa-
tion 162(1-2), 158–178 (2000)

12. Goranko, V., Passy, S.: Using the universal modality: Gains and questions. Journal of Logic
and Computation 2(1), 5–30 (1992)

13. Grädel, E.: Why are modal logics so robustly decidable? Bulletin EATCS 68, 90–103 (1999)
14. Grädel, E., Kolaitis, P., Vardi, M.: On the decision problem for two-variable first-order logic.

Bulletin of Symbolc Logic 3, 53–69 (1997)
15. Grädel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In: Proc. 12th

Ann. IEEE Symp. Logic in Computer Science (LICS 1997), pp. 306–317. IEEE Comp. Soc.
(1997)

16. Hustadt, U., de Nivelle, H., Schmidt, R.A.: Resolution-based methods for modal logics.
Logic Journal of the IGPL 8(3), 265–292 (2000)

17. Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Mathematische Annalen 76, 447–470
(1915)

18. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an
abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977
(2006)

19. Ohlbach, H.J., Schmidt, R.A.: Functional translation and second-order frame properties of
modal logics. Journal of Logic and Computation 7(5), 581–603 (1997)

20. Pacholsky, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with counting. In:
Proc. 12th Ann. IEEE Symp. Logic in Computer Science (LICS 1997), pp. 318–327 (1997)

21. Schmidt, R.A., Hustadt, U.: First-order resolution methods for modal logics. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 345–391. Springer,
Heidelberg (2013)

22. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full role nega-
tion and identity. ACM Trans. Comput. Log. 15(1) (2014)

23. Scott, D.: A decision method for validity of sentences in two variables. Journal of Symbolic
Logic 27(377), 74 (1962)

24. Sebastiani, R., Tacchella, A.: SAT techniques for modal and description logics. In: Biere, A.,
Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial
Intelligence and Applications, vol. 185, pp. 781–824. IOS Press (2009)

25. Turing, A.: On computable numbers, with an application to the ‘Entscheidungsproblem’.
Proc. London Mathematical Society 2nd. series 42, 230–265 (1937)

26. Vardi, M.: Why is modal logic so robustly decidable? In: DIMACS Ser. Disc. Math. Theoret.
Comp. Sci., vol. 31, pp. 149–184. AMS (1997)

Division by Zero in Common Meadows�

Jan A. Bergstra�� and Alban Ponse

Section Theory of Computer Science
Informatics Institute, Faculty of Science

University of Amsterdam, The Netherlands
https://staff.fnwi.uva.nl/{j.a.bergstra/,a.ponse/}

Abstract. Common meadows are fields expanded with a total multi-
plicative inverse function. Division by zero produces an additional value
denoted with “a” that propagates through all operations of the meadow
signature (this additional value can be interpreted as an error element).
We provide a basis theorem for so-called common cancellation meadows
of characteristic zero, that is, common meadows of characteristic zero
that admit a certain cancellation law.

Keywords: Meadow, commonmeadow, division by zero, additional value,
abstract datatype.

1 Introduction

Elementary mathematics is uniformly taught around the world with a focus on
natural numbers, integers, fractions, and fraction calculation. The mathematical
basis of that part of mathematics seems to reside in the field of rational numbers.
In elementary teaching material the incorporation of rational numbers in a field
is usually not made explicit. This leaves open the possibility that some other
abstract datatype or some alternative abstract datatype specification improves
upon fields in providing a setting in which such parts of elementary mathematics
can be formalized.

In this paper we will propose the signature for — and model class of — com-
mon meadows and we will provide a loose algebraic specification of common
meadows by way of a set of equations. In the terminology of Broy and Wirs-
ing [10,15], the semantics of a loose algebraic specification S is given by the class
of all models of S, that is, the semantic approach is not restricted to the isomor-
phism class of initial algebras. For a loose specification it is expected that its

� This paper is dedicated to Martin Wirsing on the occasion of his emeritation; an
earlier version appeared as report arXiv:1406.6878v1 [math.RA], 26 June 2014.

�� Jan Bergstra expresses his great appreciation for Martin’s work, and recalls many
meetings and discussions over the years about datatypes and software engineer-
ing. Worth mentioning here is their 1981-paper On the power of algebraic specifi-
cations [3], written together with Manfred Broy and John Tucker, in which it was
proven that every computable partial algebra has an equational hidden enrichment
specification. The present paper proposes, however, a particular alternative to the
conventional option to have a partial multiplicative inverse function.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 46–61, 2015.
c© Springer International Publishing Switzerland 2015

https://staff.fnwi.uva.nl/{j.a.bergstra/,a.ponse/}

Division by Zero in Common Meadows 47

initial algebra is an important member of its model class, worth of independent
investigation. In the case of common meadows this aspect is discussed in the last
remark of Section 4 (Concluding remarks).

A commonmeadow (using inversive notation) is an extension of a field equipped
with a multiplicative inverse function (...)−1 and an additional element a that
serves as the inverse of zero and propagates through all operations. It should be
noticed that the use of the constant a is a matter of convenience only because it
merely constitutes a derived constant with defining equation a = 0−1. This im-
plies that all uses of a can be removed from the story of common meadows (a
further comment on this can be found in Section 4).

The inverse function of a common meadow is not an involution because
(0−1)−1 = a. We will refer to meadows with zero-totalized inverse, that is,
0−1 = 0, as involutive meadows because inverse becomes an involution. By de-
fault a “meadow” is assumed to be an involutive meadow.

The key distinction between meadows and fields, which we consider to be
so important that it justifies a different name, is the presence of an operator
symbol for inverse in the signature (inversive notation, see [4]) or for division
(divisive notation, see [4]), where divisive notation x/y is defined as x · y−1.
A major consequence is that fractions can be viewed as terms over the signature
of (common) meadows. Another distinction between meadows and fields is that
we do not require a meadow to satisfy the separation axiom 0 �= 1.

The paper is structured as follows: below we conclude this section with a brief
introduction to some aspects of involutive meadows that will play a role later
on, and a discussion on why common meadows can be preferred over involutive
meadows. In Section 2 we formally define common meadows and present some
elementary results. In Section 3 we define “common cancellation meadows” and
provide a basis theorem for common cancellation meadows of characteristic zero,
which we consider our main result. Section 4 contains some concluding remarks.

1.1 Common Meadows versus Involutive Meadows

Involutive meadows, where instead of choosing 1/0 = a, one calculates with
1/0 = 0, constitute a different solution to the question how to deal with the
value of 1/0 once the design decision has been made to work with the signature
of meadows, that is to include a function name for inverse or for division (or
both) in an extension of the syntax of fields. Involutive meadows feature a definite
advantage over common meadows in that, by avoiding an extension of the domain
with an additional value, theoretical work is very close to classical algebra of
fields. This conservation property, conserving the domain, of involutive meadows
has proven helpful for the development of theory about involutive meadows
in [2,1,6,4,9,8]. Earlier and comparable work on the equational theory of fields
was done by Komori [12] and Ono [14]: in 1975, Komori introduced the name
desirable pseudo-field for what was introduced as a “meadow” in [8].1

1 [8] was published in 2007; the finding of [12,14] is mentioned in [4] (2011) and was
found via Ono’s 1983-paper [14].

48 J.A. Bergstra and A. Ponse

Table 1. The set Md of axioms for (involutive) meadows

(x+ y) + z = x+ (y + z) x · y = y · x
x+ y = y + x 1 · x = x

x+ 0 = x x · (y + z) = x · y + x · z
x+ (−x) = 0 (x−1)−1 = x

(x · y) · z = x · (y · z) x · (x · x−1) = x

An equational axiomatization Md of involutive meadows is given in Table 1,
where −1 binds stronger than ·, which in turn binds stronger than +. From the
axioms in Md the following identities are derivable:

0 · x = 0, 0−1 = 0,

x · (−y) = −(x · y), (−x)−1 = −(x−1),

−(−x) = x, (x · y)−1 = x−1 · y−1.

Involutive cancellation meadows are involutive meadows in which the following
cancellation law holds:

(x �= 0 ∧ x · y = x · z)→ y = z. (CL)

Involutive cancellation meadows form an important subclass of involutive mead-
ows: in [1, Thm.3.1] it is shown that the axioms in Table 1 constitute a complete
axiomatization of the equational theory of involutive cancellation meadows. We
will use a consequence of this result in Section 3.

A definite disadvantage of involutive meadows against common meadows is
that 1/0 = 0 is quite remote from common intuitions regarding the partiality of
division.

1.2 Motivating a Preference for Common Meadows

Whether common meadows are to be preferred over involutive meadows depends
on the applications one may have in mind. We envisage as an application area
the development of alternative foundations of elementary mathematics from a
perspective of abstract datatypes, term rewriting, and mathematical logic. For
that objective we consider common meadows to be the preferred option over
involutive meadows. At the same time it can be acknowledged that a systematic
investigation of involutive meadows constitutes a necessary stage in the develop-
ment of a theory of common meadows by facilitating in a simplified setting the
determination of results which might be obtained about common meadows. In-
deed each result about involutive meadows seems to suggest a (properly adapted)
counterpart in the setting of common meadows, while proving or disproving such
counterparts is not an obvious matter.

Division by Zero in Common Meadows 49

2 Common Meadows

In this section we formally define “common meadows” by fixing their signature
and providing an equational axiomatization. Then, we consider some conditional
equations that follow from this axiomatization. Finally, we discuss some condi-
tional laws that can be used to define an important subclass of common meadows.

2.1 Meadow Signatures

The signature ΣS
f of fields (and rings) contains a sort (domain) S, two constants

0, and 1, two two-place functions + (addition) and · (multiplication) and the
one-place function − (minus) for the inverse of addition.

We write ΣS
md for the signature of meadows in inversive notation:

ΣS
md = ΣS

f ∪ { −1 : S → S},

and we write ΣS
md,a for the signature of meadows in inversive notation with an

a-totalized inverse operator:

ΣS
md,a = ΣS

md ∪ {a : S}.

The interpretation of a is called the additional value and we write â for this
value. Application of any function to the additional value returns that same
value.

When the name of the carrier is fixed it need not be mentioned explicitly in a
signature. Thus, with this convention in mind, Σmd represents ΣS

md and so on.
If we want to make explicit that we consider terms over some signature Σ with
variables in set X , we write Σ(X).

Given a field several meadow signatures and meadows can be connected with
it. This will now be exemplified with the field Q of rational numbers. The fol-
lowing meadows are distinguished in this case:

Q0, the meadow of rational numbers with zero-totalized inverse: Σ(Q0) = ΣQ
md.

Qa, the meadow of rational numbers with a-totalized inverse: Σ(Qa) = ΣQa

md,a.
The additional value â interpreting a has been taken outside |Q| so that
|Qâ| = |Q| ∪ {â}.

2.2 Axioms for Common Meadows

The axioms in Table 2 define the class (variety) of common meadows, where we
adopt the convention that −1 binds stronger than ·, which in turn binds stronger
than +. Some comments: Axioms (15)−(17) take care of a’s propagation through
all operations, and for the same reason, axioms (11) and (12) have their particular
form. Axiom (4) is a variant of the common axiom on additional inverse, which
also serves a’s propagation. Axioms (13) and (14) are further identities needed
for manipulation of (...)−1-expressions. Finally, axiom (10) is needed to reason
with expressions of the form 0 · t.

The following proposition provides some typical identities for common
meadows.

50 J.A. Bergstra and A. Ponse

Table 2. Mda, a set of axioms for common meadows

(x+ y) + z = x+ (y + z) (1)

x+ y = y + x (2)

x+ 0 = x (3)

x+ (−x) = 0 · x (4)

(x · y) · z = x · (y · z) (5)

x · y = y · x (6)

1 · x = x (7)

x · (y + z) = x · y + x · z (8)

−(−x) = x (9)

0 · (x · x) = 0 · x (10)

(x−1)−1 = x+ 0 · x−1 (11)

x · x−1 = 1 + 0 · x−1 (12)

(x · y)−1 = x−1 · y−1 (13)

1−1 = 1 (14)

0−1 = a (15)

x+ a = a (16)

x · a = a (17)

Proposition 2.2.1. Equations that follow from Mda (see Table 2):

0 · 0 = 0, (e1)

−0 = 0, (e2)

0 · x = 0 · (−x), (e3)

0 · (x · y) = 0 · (x + y), (e4)

−(x · y) = x · (−y), (e5)

(−1) · x = −x, (e6)

(−x)−1 = −(x−1), (e7)

(x · x−1) · x−1 = x−1 (e8)

−a = a, (e9)

a−1 = a. (e10)

Proof. Most derivations are trivial.

(e1). By axioms (3), (7), (8), (2) we find x = (1 + 0) · x = x+ 0 · x = 0 · x + x,
hence 0 = 0 · 0 + 0, so by axiom (3), 0 = 0 · 0.

(e2). By axioms (3), (2), (4) and (e1) we find−0 = (−0)+0 = 0+(−0) = 0·0 = 0.
(e3). By axioms (2), (4), (9) we find 0 ·x = x+(−x) = (−x)+−(−x) = 0 · (−x).

Division by Zero in Common Meadows 51

(e4). First note 0 ·x+0 ·x = (0+0) ·x = 0 ·x. By axioms (2)− (4), (6), (8), (10)
we find 0 ·(x+y) = 0 ·((x+y) ·(x+y)) = (0 ·x+0 ·(x ·y))+(0 ·y+0 ·(x ·y)) =
(0 + 0 · y) · x+ (0 + 0 · x) · y = 0 · (x · y) + 0 · (x · y) = 0 · (x · y).

(e5). We give a detailed derivation:

−(x · y) = −(x · y) + 0 · −(x · y) by x = x+ 0 · x
= −(x · y) + 0 · (x · y) by (e3)

= −(x · y) + x · (0 · y) by axioms (5) and (6)

= −(x · y) + x · (y + (−y)) by axiom (4)

= −(x · y) + (x · y + x · (−y)) by axiom (8)

= (−(x · y) + x · y) + x · (−y) by axiom (1)

= 0 · (x · y) + x · (−y) by axioms (2) and (4)

= 0 · (x · −y) + x · (−y) by axioms (6) and (5), and (e3)

= x · (−y). by x = 0 · x+ x

Thus, with axiom (9) it follows that (−x) · (−y) = x · y.
(e6). From (e5) with y = 1 we find −x = −(x · 1) = x · (−1) = (−1) · x.
(e7). By axiom (12), (−1) · (−1)−1 = 1 + 0 · (−1)−1, hence (−1)−1 = (−1) +

0 · (−1) · (−1)−1 = (−1) + 0 · (−1)−1. Now derive 1 = ((−1) · (−1))−1 =
(−1)−1 · (−1)−1 = (−1)−1 · ((−1)+ 0 · (−1)−1) = (−1) · (−1)−1+0 · (−1)−1 ·
(−1)−1 = (−1) · (−1)−1 + 0 · (1)−1 = (−1) · (−1)−1, thus (−1)−1 = −1.
Hence, (−x)−1 = (−1 · x)−1 = (−1)−1 · x−1 = (−1) · x−1 = −(x−1).

(e8). By axioms (12) and (10), (x·x−1)·x−1 = (1+0·x−1)·x−1 = x−1+0·x−1 =
x−1.

(e9). By (e5) and axioms (6) and (17), −a = −(a · 1) = a · (−1) = a.
(e10). By axioms (11) and (15)− (17), a−1 = (0−1)−1 = 0 + 0 · a = a. ��

The next proposition establishes a generalization of a familiar identity con-
cerning the addition of fractions.

Proposition 2.2.2. Mda � x · y−1 + u · v−1 = (x · v + u · y) · (y · v)−1.

Proof. We first derive

x · y · y−1 = x · (1 + 0 · y−1) by axiom (12)

= x+ 0 · x · y−1

= x+ 0 · x+ 0 · y−1 by (e4)

= x+ 0 · y−1. (18)

Hence,

(x · v + u · y) · (y · v)−1 = x · y−1 · v · v−1 + u · v−1 · y · y−1

= (x · y−1 + 0 · v−1) + (u · v−1 + 0 · y−1) by (18)

= (x · y−1 + 0 · y−1) + (u · v−1 + 0 · v−1)

= x · y−1 + u · v−1.

��

52 J.A. Bergstra and A. Ponse

We end this section with two more propositions that characterize typical prop-
erties of common meadows and that are used in the proof of Theorem 3.2.1. The
first of these establishes that each (possibly open) term over Σmd,a has a simple
representation in the syntax of meadows.

Proposition 2.2.3. For each term t over Σmd,a(X) with variables in X there
exist terms r1, r2 over Σf (X) such that Mda � t = r1 · r−1

2 and VAR(t) =
VAR(r1) ∪ VAR(r2).

Proof. By induction on the structure of t, where the VAR(t)-property follows
easily in each case.

If t ∈ {0, 1, x, a}, this follows trivially (for the first three cases we need 1−1 = 1).
Case t ≡ t1 + t2. By Proposition 2.2.2.
Case t ≡ t1 · t2. Trivial.
Case t ≡ −t1. By Proposition 2.2.1 (e5).
Case t ≡ t−1

1 . By induction there exist ri ∈ Σf (X) such that Mda � t1 = r1 ·r−1
2 .

Now derive t−1
1 = r−1

1 ·(r−1
2)−1 = r−1

1 ·(r2+0·r−1
2) = r2 ·r−1

1 +0·r−1
1 +0·r−1

2 =
r2 · r−1

1 + 0 · r−1
2 and apply Proposition 2.2.2.

��

The next proposition shows how a term of the form 0 · t with t a (possibly
open) term over Σf(X) can be simplified (note that 0 · x = 0 is not valid, since
0 · a = a).

Proposition 2.2.4. For each term t over Σf (X), Mda � 0 · t = 0 ·
∑

x∈VAR(t) x,

where
∑

x∈∅ x = 0.

Proof. By induction on the structure of t, where identity (e4) (Proposition 2.2.1)
covers the multiplicative case. ��

2.3 Conditional Equations

We discuss a number of conditional equations that will turn out useful, and we
start off with a few that follow directly from Mda.

Proposition 2.3.1. Conditional equations that follow from Mda (see Table 2):

x · y = 1→ 0 · y = 0, (ce1)

x · y = 1→ x−1 = y, (ce2)

0 · x = 0 · y → 0 · (x · y) = 0 · x, (ce3)

0 · x · y = 0→ 0 · x = 0, (ce4)

0 · (x + y) = 0→ 0 · x = 0, (ce5)

0 · x−1 = 0→ 0 · x = 0, (ce6)

0 · x = a→ x = a. (ce7)

Division by Zero in Common Meadows 53

Table 3. Some conditional laws for common meadows

x �= a → 0 · x = 0 Normal Value Law (NVL)

x−1 = a → 0 · x = x Additional Value Law (AVL)

x �= 0 ∧ x �= a → x · x−1 = 1 Common Inverse Law (CIL)

Proof. Most derivations are trivial.

(ce1). By axiom (10), 0·x·y = 0·x·y·y = 0·x·y+0·y·y = (0·x+0·y)·y, and hence
by assumption, 0 = 0·1 = 0·x·y = (0·x+0·y)·y = 0·x·y+0·y·y = 0+0·y = 0·y.

(ce2). By assumption and axioms (13) and (14), x−1 · y−1 = 1, and thus by
(ce1), 0 · x−1 = 0, so by axiom (12), y = (1 + 0 · x−1) · y = (x · x−1) · y =
(x · y) · x−1 = x−1.

(ce3). By assumption, identity (e4), and axiom (8), 0 · (x · y) = 0 · x + 0 · y =
0 · x+ 0 · x = 0 · x.

(ce4). By assumption, 0 · x = 0 · x+ 0 · x · y = x · (0 + 0 · y) = 0 · (x · y) = 0.
(ce5). Apply identity (e4) to (ce4).
(ce6). By axiom (12) and assumption, x · x−1 = 1 + 0 · x−1 = 1, so by (ce1),

0 · x = 0.
(ce7). By x = x+ 0 · x and assumption, x = x+ a = a.

��

Note that (ce1) and (ce2) immediately imply

x · y = 1→ 0 · x−1 = 0.

In Table 3 we define various conditional laws that we will use to single out
certain classes of common meadows in Section 3: the Normal Value Law (NVL),
the Additional Value Law (AVL), and the Common Inverse Law (CIL). Here we
use the adjective “normal” to express that values different from a (more precisely,
the interpretation of a) are at stake. We conclude this section by interrelating
these laws.

Proposition 2.3.2.

1. Mda + NVL � (x · y = a ∧ x �= a)→ y = a,
2. Mda + NVL � x−1 �= a→ 0 · x = 0,
3. Mda + NVL+ AVL � CIL,
4. Mda + CIL � NVL,
5. Mda + CIL � AVL.

Proof.

1. By NVL, x �= a→ 0 · x = 0, so 0 · y = (0 · x) · y = 0 · (x · y) = 0 · a = a and
hence y = (1 + 0) · y = y + 0 · y = y + a = a.

54 J.A. Bergstra and A. Ponse

2. By NVL, 0 · x−1 = 0 and hence by axiom (12), x · x−1 = 1 and by (ce1),
0 · x = 0.

3. From x �= a we find 0 · x = 0. There are two cases: x−1 = a which implies
by AVL that x = 0 contradicting the assumptions of CIL, and x−1 �= a which
implies by NVL that 0 · x−1 = 0, and this implies x · x−1 = 1 by axiom (12).

4. Assume that x �= a. If x = 0 then also 0 · x = 0. If x �= 0 then by CIL,
0 = 0 · 1 = 0 · x · x−1, so 0 · x = 0 by (ce1).

5. We distinguish three cases: x = 0, x = a, and x �= 0∧ x �= a. In the first two
cases it immediately follows that 0 · x = x. In the last case it follows by CIL
that x · x · x−1 = x, so x−1 = a implies x = a, and thus x = 0 · x.

��

3 Models and Model Classes

In this section we define “common cancellation meadows” as common meadows
that satisfy the so-called “inverse cancellation law”, a law that is equivalent with
the Common Inverse Law CIL. Then, we provide a basis theorem for common
cancellation meadows of characteristic zero.

3.1 Common Cancellation Meadows

In [1, Thm.3.1] we prove a generic basis theorem that implies that the axioms
in Table 1 constitute a complete axiomatization of the equational theory of the
involutive cancellation meadows (over signature Σmd). The cancellation law used
in that result (that is, CL in Section 1.1) has various equivalent versions, and a
particular one is x �= 0→ x · x−1 = 1, a version that is close to CIL.

Below we define common cancellation meadows, using a cancellation law that
is equivalent with CIL, but first we establish a correspondence between models
of Mda + NVL+ AVL and involutive cancellation meadows.

Proposition 3.1.1.

1. Every field can be extended with an additional value â and subsequently it
can be expanded with a constant a and an inverse function in such a way
that the equations of common meadows as well as NVL and AVL are satisfied,
where the interpretation of a is â.

2. A model of Mda+NVL+AVL extends a field with an additional value â (the
interpretation of a) and expands it with the a-totalized inverse.

Proof. Statement 1 follows immediately. To prove 2, consider the substructure
of elements b of the domain that satisfy 0 · b = 0. Only â is outside this subset.
For b with 0 · b = 0 we must check that 0 · b−1 = 0 unless b = 0. To see this
distinguish two cases: b−1 = a (which implies b = 0 with help of AVL), and
b−1 �= a which implies 0 · b−1 = 0 by NVL. ��

As a consequence, we find the following result.

Division by Zero in Common Meadows 55

Table 4. C0, the set of axioms for meadows of characteristic zero and numerals

n+ 1 · (n+ 1)−1 = 1 (n ∈ N) (C0)

0 = 0 (axioms for

1 = 1 numerals,

n+ 1 = n+ 1 n ∈ N and n ≥ 1)

Theorem 3.1.2. The models of Mda + NVL + AVL that satisfy 0 �= 1 are in
one-to-one correspondence with the involutive cancellation meadows satisfying
Md (see Table 1).

Proof. An involutive cancellation meadow can be expanded to a model of Mda+
NVL + AVL by extending its domain with a constant â in such a way that the
equations of common meadows as well as NVL and AVL are satisfied, where the
interpretation of a is â (cf. Proposition 3.1.1.1).

Conversely, given a model M of Mda+NVL+AVL, we construct a cancellation
meadow M′ as follows: |M′| = |M| \ {â} with â the interpretation of a, and
0−1 = 0 (by 0 �= 1, |M′| is non-empty). We find by NVL that 0 ·x = 0 and by CIL
(thus by NVL + AVL, cf. Proposition 2.3.2.3) that x �= 0 → x · x−1 = 1, which
shows that M′ is a cancellation meadow. ��

We define a common cancellation meadow as a common meadow that satisfies
the following inverse cancellation law (ICL):

(x �= 0 ∧ x �= a ∧ x−1 · y = x−1 · z)→ y = z. (ICL)

The class CCM of common cancellation meadows is axiomatized by Mda + CIL
in Table 2 and Table 3, respectively. In combination with Mda, the laws ICL and
CIL are equivalent: first, Mda + ICL � CIL because

(x �= 0 ∧ x �= a)
(e8)→ (x �= 0 ∧ x �= a ∧ x−1 · x · x−1 = x−1 · 1) ICL→ x · x−1 = 1.

Conversely, Mda + CIL � ICL:

(x �= 0 ∧ x �= a ∧ x−1 · y = x−1 · z)→ x · x−1 · y = x · x−1 · z CIL→ y = z.

3.2 A Basis Theorem For Common Cancellation Meadows
of Characteristic Zero

As in our paper [2], we use numerals n and the axiom scheme C0 defined in Ta-
ble 4 to single out common cancellation meadows of characteristic zero. In this
section we prove thatMda+C0 constitutes an axiomatization for common cancel-
lation meadows of characteristic zero. In [2, Cor.2.7] we prove that Md+C0 (for

56 J.A. Bergstra and A. Ponse

Md see Table 1) constitutes an axiomatization for involutive cancellation mead-
ows of characteristic zero. We define CCM0 as the class of common cancellation
meadows of characteristic zero.

We further write
t

r
(and sometimes t/r in plain text) for t · r−1.

Theorem 3.2.1. Mda + C0 is a basis for the equational theory of CCM0.

Proof. Soundness holds by definition of CCM0.
Assume CCM0 |= t = r and CCM0 |= t = a. Then, by axioms (15)− (17) and

identities (e9)− (e10), t and r are provably equal to a, that is, Mda � t = r.
Assume CCM0 |= t = r and CCM0 �|= t = a. By Proposition 2.2.3 we can

bring t in the form t1/t2 and r in the form r1/r2 with ti, ri terms over Σf (X),
thus

CCM0 |=
t1
t2

=
r1
r2
. (19)

We will first argue that (19) implies that the following three equations are valid
in CCM0:

0 · t−1
2 = 0 · r−1

2 , (20)

0 · t1 + 0 · t2 = 0 · r1 + 0 · r2, (21)

t2 · r2 · (t1 · r2 + (−r1) · t2) + 0 · t−1
2 + 0 · r−1

2

= 0 · t1 + 0 · t−1
2 + 0 · r1 + 0 · r−1

2 . (22)

Ad (20). Assume this is not the case, then there exists a common cancellation
meadow M ∈ CCM0 and an interpretation of the variables in t2 and r2 such that
one of t−1

2 and r−1
2 is interpreted as â (the interpretation of a), and the other is

not. This contradicts (19).

Ad (21). This equation characterizes that t1/t2 and r1/r2 contain the same vari-
ables, and is related to Proposition 2.2.4. Assume this is not the case, say
t1 and/or t2 contains a variable x that does not occur in r1 and r2. Since
CCM0 �|= r1/r2 = a, there is an instance of ri’s variables, say ri such that
CCM0 |= r1/r2 �= a. But then x can be instiantiated with a, which contra-
dicts (19).

Ad (22). It follows from (19) that in (22) both the lefthand-side and the right-
hand-side equal zero in all involutive cancellation meadows. By Theorem 3.1.2
we find CCM |= (22), and hence CCM0 |= (22).

We now argue that (20) − (22) are derivable from Mda + C0, and that from
those (19) is derivable from Mda + C0.

Ad (20). The statement CCM0 |= 0 · t−1
2 = 0 · r−1

2 implies that t2 and r2 have
the same zeros in the algebraic closure Q of Q (if this were not the case, then
Qa �|= 0 · t−1

2 = 0 · r−1
2 , but Qa ∈ CCM0). We may assume that the gcd of t2’s

coefficients is 1, and similar for r2: if not, then t2 = k·t′ with t′ a polynomial with

Division by Zero in Common Meadows 57

that property, and since k is a fixed numeral, we find 0 ·k = 0 (also in fields with
a characteristic that is a factor of k), and hence 0 · t2 = 0 · t′. We can apply [13,
Cor.2.4 (Ch.IV)]: because t2 and r2 are polynomials in Σf (VAR(t2, r2)) with the
property that they have the same zeros and that the gcd of their coefficients
is 1, they have equal factorization in primitive polynomials. So, in common
cancellation meadows of characteristic zero (thus, models in CCM0), each such
factor of t2 is one of r2, and vice versa. Application of axiom (10) (that is,
0 · (x · x) = 0 · x) then yields

Mda + C0 � 0 · t−1
2 = 0 · r−1

2 . (23)

Ad (21). From Proposition 2.2.4 and validity of (21) it follows that

Mda � 0 ·t1+0 ·t2 = 0 ·
∑

x∈VAR(t1/t2)
x = 0 ·

∑
x∈VAR(r1/r2)

x = 0 ·r1+0 ·r2. (24)

Ad (22). We first derive

Mda � 0 · t1 + 0 · t−1
2 = 0 · t1 + 0 · (1 + 0 · t−1

2)

= 0 · t1 + 0 · t2 · t−1
2 with axiom (12)

= 0 · t1 + 0 · t2 + 0 · t−1
2 ,

and in a similar way one derives Mda � 0 · r1 + 0 · r−1
2 = 0 · r1 + 0 · r2 + 0 · r−1

2 .
Hence, we find with (23) and (24) that

Mda + C0 � 0 · t1 + 0 · t−1
2 = (0 · t1 + 0 · t−1

2) + (0 · r1 + 0 · r−1
2) (25)

= 0 · r1 + 0 · r−1
2 . (26)

From CCM0 |= (22) it follows from the completeness result on the class of
involutive meadows of characteristic zero (see [2, Cor.2.7]) that Md+ C0 � (22),
and hence Mda + C0 � (22).

We now show the derivability of t1/t2 = r1/r2. Multiplying both sides of (22)
with (t2 · r2)−1 · (t2 · r2)−1 implies by (e8), 0 · x + 0 · x = 0 · x, and axiom (10)
that

Mda + C0 � (t2 · r2)−1 · (t1 · r2 + (−r1) · t2) + 0 · t−1
2 + 0 · r−1

2 =

0 · t1 + 0 · t−1
2 + 0 · r1 + 0 · r−1

2 ,

which implies by Proposition 2.2.2 that

Mda + C0 �
t1
t2

+
−r1
r2

+ 0 · t−1
2 + 0 · r−1

2 = 0 · t1 + 0 · t−1
2 + 0 · r1 + 0 · r−1

2 ,

and thus

Mda + C0 �
t1
t2

+
−r1
r2

+ 0 · t1 + 0 · t−1
2 + 0 · r1 + 0 · r−1

2 =

0 · t1 + 0 · t−1
2 + 0 · r1 + 0 · r−1

2 , (27)

58 J.A. Bergstra and A. Ponse

and hence

Mda + C0 �
t1
t2

=
t1
t2

+ 0 · t1 + 0 · t−1
2

=
t1
t2

+ 0 · t1 + 0 · t−1
2 + 0 · r1 + 0 · r−1

2 by (25)

=
t1
t2

+ (
r1
r2

+
−r1
r2

) + 0 · t1 + 0 · t−1
2 + 0 · r1 + 0 · r−1

2

= (
t1
t2

+
−r1
r2

) +
r1
r2

+ 0 · t1 + 0 · t−1
2 + 0 · r1 + 0 · r−1

2

=
r1
r2

+ 0 · t1 + 0 · t−1
2 + 0 · r1 + 0 · r−1

2 by (27)

=
r1
r2

+ 0 · r1 + 0 · r−1
2 by (26)

=
r1
r2
.

��

4 Concluding Remarks

Open Question. It is an open question whether there exists a basis result
for the equational theory of CCM. We notice that in [5] a basis result for one-
totalized non-involutive cancellation meadows is provided, where the multiplica-
tive inverse of 0 is 1 and cancellation is defined as usual (that is, by the cancel-
lation law CL in Section 1.1).

Common Intuitions and Related Work. Common meadows are motivated
as being the most intuitive modelling of a totalized inverse function to the best
of our knowledge. As stated in Section 1 (Introduction), the use of the constant a
is a matter of convenience only because it merely constitutes a derived constant
with defining equation a = 0−1, which implies that all uses of a can be removed.2

We notice that considering a = 0−1 as an error-value supports the intuition for
the equations of Mda.

As a variant of involutive and common meadows, partial meadows are defined
in [4]. The specification method used in this paper is based on meadows and
therefore it is more simple, but less general than the construction of Broy and
Wirsing [10] for the specification of partial datatypes.

The construction of common meadows is related to the construction of wheels
by Carlström [11]. However, we have not yet found a structural connection be-
tween both constructions which differ in quite important details. For instance,
wheels are involutive whereas common meadows are non-involutive.

2 We notice that 0 = 1 + (−1), from which it follows that 0 can also be considered a
derived constant over a reduced signature. Nevertheless, the removal of 0 from the
signature of fields is usually not considered helpful.

Division by Zero in Common Meadows 59

Quasi-Cancellation Meadows of Characteristic Zero. Following Theo-
rem 3.2.1, a common meadow of characteristic zero can alternatively be defined
as a structure that satisfies all equations true of all common cancellation mead-
ows of characteristic zero. We write CM0 for the class of all common meadows
of characteristic zero.

With this alternative definition in mind, we define a common quasi-can-
cellation meadow of characteristic zero as a structure that satisfies all conditional
equations which are true of all common cancellation meadows of characteristic
zero. We write CQCM0 for the class of all common quasi-cancellation meadows
of characteristic zero.

It is easy to show that CQCM0 is strictly larger than CCM0. To see this one
extends the signature of common meadows with a new constant c. Let Lccm,0 be
the set of conditional equations true of all structures in CCM0. We consider the
initial algebra of Lccm,0 in the signature extended with c. Now neither Lccm,0 �
c = a can hold (because c might be interpreted as say 1), nor Lccm,0 � 0 · c = 0
can hold (otherwise Lccm,0 � 0 = 0 · a = a would hold). For that reason in the
initial algebra of Lccm,0 in the extended signature interprets c as an entity e in
such a way that neither c = a nor 0 · c = 0 is satisfied. For that reason c will be
interpreted by a new entity that refutes CIL.

CM0 is strictly larger than CQCM0. To see this let Eccm,0 denote the set of
equations valid in all common cancellation meadows of characteristic zero. Again
we add an extra constant b to the signature of common meadows. Consider the
initial algebra I of Eccm,0 + (b−1 = a) in the extended signature. In I the
interpretation of b is a new object because it cannot be proven equal to 0 and
not to a and not to any other closed term over the signature of common meadows.
Now we transform Eccm,0 + (b−1 = a) into its set of closed consequences Ecl,b

ccm,0

over the extended signature. We claim that b = 0 · b cannot be proven from
Eccm,0 + (b−1 = a). If that were the case at some stage in the derivation an a
must appear from which it follows that b = a is provable as well, because a is
propagated by all operations. But that cannot be the case as we have already
concluded that b differs from a in the initial algebra I0 of Ecl,b

ccm,0. Thus, b �= a→
0 · b = 0 (an instance of NVL) is not valid in I0.

However, at this stage we do not know the answers to the following two
questions:

– Is there a finite equational basis for the class CM0 of common meadows of
characteristic zero?

– Is there a finite conditional equational basis for the class CQCM0 of common
quasi-cancellation meadows of characteristic zero?

The Initial Common Meadow. In [7] we introduce fracpairs with a definition
that is very close to that of the field of fractions of an integral domain. Fracpairs
are defined over a commutative ring R that is reduced, i.e., R has no nonzero
nilpotent elements. A fracpair over R is an expression p

q with p, q ∈ R (so q = 0

is allowed) modulo the equivalence generated by

x · z
y · (z · z) =

x

y · z .

60 J.A. Bergstra and A. Ponse

This rather simple equivalence appears to be a congruence with respect to the
common meadow signature Σmd,a when adopting natural definitions: 0 = 0

1 ,

1 = 1
1 , a = 1

0 , (
p
q) + (rs) =

p·s+r·q
q·s , (pq) · (

r
s) =

p·r
q·s −(

p
q) =

−p
q , and (pq)

−1 = q·q
p·q .

In [7] we prove that the initial common meadow is isomorphic to the initial
algebra of fracpairs over the integers Z. Moreover, we prove that the initial
algebra of fracpairs over Z constitutes a homomorphic pre-image of the common
meadow Qa, and we define “rational fracpairs” over Z that constitute an initial
algebra that is isomorphic to Qa. Finally, we consider some term rewriting issues
for meadows.

These results reinforce our idea that common meadows can be used in the
development of alternative foundations of elementary (educational) mathematics
from a perspective of abstract datatypes, term rewriting and mathematical logic.

Acknowledgement. We thank Bas Edixhoven (Leiden University) for helpful
comments concerning the proof of Theorem 3.2.1, including his suggestion to
use [13] as a reference for this proof. Furthermore, we thank the referees for
valuable comments.

References

1. Bergstra, J.A., Bethke, I., Ponse, A.: Cancellation meadows: a generic basis theo-
rem and some applications. The Computer Journal 56(1), 3–14 (2013)

2. Bergstra, J.A., Bethke, I., Ponse, A.: Equations for formally real meadows.
arXiv:1310.5011v3 [math.RA, cs.LO], this version (v3) (February 11, 2014)

3. Bergstra, J.A., Broy, M., Tucker, J.V., Wirsing, M.: On the power of algebraic
specifications. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118,
pp. 193–204. Springer, Heidelberg (1981)

4. Bergstra, J.A., Middelburg, C.A.: Inversive meadows and divisive meadows. Jour-
nal of Applied Logic 9(3), 203–220 (2011), doi:10.1016/j.jal.2011.03.001

5. Bergstra, J.A., Middelburg, C.A.: Division by zero in non-involutive meadows.
arXiv:1406.2092v1 [math.RA] (June 9, 2014). To appear in Journal of Applied
Logic 13(1), 1–12 (2015), doi:10.1016/j.jal.2014.10.001

6. Bergstra, J.A., Ponse, A.: Signed meadow valued probability mass functions.
arXiv:1307.5173v1 [math.LO] (July 19, 2013)

7. Bergstra, J.A., Ponse, A.: Fracpairs: fractions over a reduced commutative ring.
arXiv:1411.4410v1 [math.RA] (November 17, 2014)

8. Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. Jour-
nal of the ACM 54(2), Article 7, 25 pages (2007)

9. Bethke, I., Rodenburg, P.H.: The initial meadows. Journal of Symbolic Logic 75(3),
888–895 (2010)

10. Broy, M., Wirsing, M.: On the algebraic specification of nondeterministic program-
ming languages. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112,
pp. 162–179. Springer, Heidelberg (1981)

11. Carlström, J.: Wheels – on division by zero. Mathematical Structures in Computer
Science 14(01), 143–184 (2004), doi:10.1017/S0960129503004110

12. Komori, Y.: Free algebras over all fields and pseudo-fields. Report 10, pp. 9–15,
Faculty of Science, Shizuoka University, Japan (1975)

Division by Zero in Common Meadows 61

13. Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics, vol. 211. Springer
(2002)

14. Ono, H.: Equational theories and universal theories of fields. Journal of the Math-
ematical Society of Japan 35(2), 289–306 (1983)

15. Wirsing, M.: Algebraic specifications. In: van Leeuwen, J. (ed.) Handbook of The-
oretical Computer Science. Volume B: Formal models and semantics, pp. 675–788.
North-Holland (1990)

Logical Relations and Nondeterminism

Martin Hofmann

LMU Munich, Germany

Abstract. The purpose of this article is to illustrate some technical difficulties
encountered when trying to extend a logical relation to the Hoare powerdomain.
We give a partial solution and some applications. Our vehicle is a simple call-
by-value programming language with binary nondeterministic choice. We de-
fine both a big-step operational semantics and a denotational semantics using the
Hoare powerdomain. Using our logical relation we then show equivalence of the
two semantics in the sense of computational adequacy and some type-dependent
program equivalences.

1 Introduction

The aim of this article is two-fold. On the one hand, I would like to express with it
my thanks to my long time colleague, mentor, and personal friend Martin Wirsing; on
the other hand, I would like to take this opportunity to explain some difficulties we [3]
had encountered when trying to extend the well-established methods of denotational
semantics and logical relations to nondeterminism.

To be precise, the difficulties occurred in the context of modelling concurrency, but
the source of the problem rather appears to be the nondeterminism and so it seems
reasonable to concentrate on this feature alone so as to bring out the salient features.
In addition, Martin himself has written on nondeterminism in the context of algebraic
specification [5,6].

Also from Martin’s lecture notes on functional programming which I used as a basis
for my own course on this topic I got the impression that he had and hopefully still
has a certain fondness for denotational semantics. Indeed, what we do in this paper
is essentially an exercise in classical denotational semantics, but the results achieved
cannot to the best of our knowledge be found in the literature. This is probably due
to the fact that a lot of work on logical relations has been done in the last five to ten
years; a period in which the interest in domain theory and denotational semantics has
somewhat declined in favour of syntactical methods.

We think that results like the ones presented here it will help to “refurbish” domain
theory so as to become up-to-date with the most recent accomplishments in semantics.

2 Language

We use an untyped language with higher-order functions, recursion, and nondetermin-
ism. For the sake of simplicity we do not include updatable references. The values and
terms of the language are thus given by the following grammar.

v ::= x | n | rec f x.t | x op y
t ::= v | let x= t1 in t2 | v1 v2 | if v then t1 else t2 | ?

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 62–74, 2015.
c© Springer International Publishing Switzerland 2015

Logical Relations and Nondeterminism 63

Here, x ranges over variables and n ∈ Z denotes an integer constant. The symbol op
ranges over the usual binary operators including arithmetic and comparisons. We use 0
and 1 to represent boolean values false and true. More precisely, any nonzero integer
is allowed as a representation of true thus equality on boolean values is nontrivial.

The syntactic category v represents values, i.e. expressions whose evaluation neces-
sarily does not involve nondeterminism. The syntactic category t then represents arbi-
trary terms and includes the values. We only allow values in function applications and
as arguments of binary operators. One can use the let-construct to generalise these to
arbitrary terms. Thus, in examples, we may use t1 t2 as an abbreviation for the official
construct let x= t1 in let y= t2 in x y. The use of this let normal form simplifies the
definition of the semantics and the metatheory and also relieves one from having to
specify the evaluation order of nested expressions.

The term rec f x.t denotes a recursive function with body e and recursive calls made
via f ; we use λx.t as syntactic sugar in the case when f is not free in t. The construct ?
returns a nondeterministically chosen value from {0, 1}. The other constructs, let, if,
and application are self-explanatory.

2.1 Examples

The following term, henceforth denoted t1 or t2 nondeterministically decides whether
to execute t1 or t2.

t1 or t2 := let y=? in if y = 0 then t1 else t2

The following two functions have been considered by Sieber [11] who studied the full
abstraction problem for a language akin to the one considered here.

f1 := λx.1 or 2 f2 := (λx.1) or (λx.2)

He argues that these functions can be distinguished under call-by-value but are indis-
tinguishable under call-by-name. In this paper, we focus exclusively on call-by-value;
let us recall the distinguishing context. Putting g := λ f . f 0 + f 0 we have that g f1 has
possible outcomes 2, 3, 4, whereas g f2 has possible outcomes 2, 4.

The function h := rec x f .let y=? in if x = y then x else f x compares a non-
deterministically chosen value with its input and if they agree returns the input and
otherwise calls itself recursively. Thus, the only possible outcome of h n is n, but h n
diverges on inputs different from 0, 1 and may even diverge on 0 and 1.

The following function yields a nondeterministically chosen natural number.

m := rec x f .let y=? in if y = 0 then x else f (x + 1)

Now, m 0 returns any number ≥ 0, but may also diverge.

3 Operational Semantics

We define the set of free variables FV(t) of a term as usual, e.g. FV(lety=0in x + y) =
{x} and FV(rec x f . f x y) = {y}. A term t is closed if FV(t) = ∅. If v is a closed value

64 M. Hofmann

we define the substitution t[v/x] of v for x in t in the usual way. Note that FV(t[v/x]) =
FV(t) \ {x}.

We now define inductively a relation t −→ v (big-step operational semantics) be-
tween closed terms and closed values which signifies that t may evaluate to v, i.e. that v
is among the possible results of the nondeterministic evaluation of t. The defining rules
are given in Figure 1.

The reader may check that the example functions evaluate as predicted. Consider,
for example 1 or 2 = let y = ? in if y = 0 then 1 else 2. We have ? −→ 0 and
if 0 = 0 then 1 else 2 −→ 1, so 1 or 2 −→ 1. But we also have ? −→ 1 and
if 1 = 0 then 1 else 2 −→ 2, so 1 or 2 −→ 2.

Now consider h 0 with h defined in Section 2.1. We have to evaluate

let y=? in if 0 = y then 0 else h 0

Now, ? −→ 0, so h 0 −→ 0. We can also use the fact that ? −→ 1. Then we must
evaluate let y=? in if 0 = 1 then x else h 0 which evaluates to the same results as
h 0. We conclude that the only value v for which h 0 −→ v holds is v = 0. We note that

n −→ n
n op n′ −→ n′′

n′′ = n op n′
?→ n

n ∈ {0, 1}

if 0 then t1 else t2 −→ v

t1 −→ v

if 1 then t1 else t2 −→ v

t2 −→ v

let x= t1 in t2 −→ v

t1 −→ v1 t2[v1/x] −→ v

rec x f .t va −→ v

t[va/x][rec x f .t/ f] −→ v

Fig. 1. Definition of big-step operational semantics

our operational semantics cannot tell the difference between h and, say, the function
rec x f .if x = 0 ∨ x = 1 then x else f x. It only considers the terminating computa-
tions, whether or not a nonterminating computation may happen or not is irrelevant.

If we want to make such distinctions, we could use a small step operational seman-
tics, an abstract machine, or a big-step semantics with an extra judgement t ↑ describing
the possibility of nontermination. We refrain from doing so in this paper.

4 Denotational Semantics

We now describe a denotational semantics of this language which is based on the Hoare
powerdomain [9]. Just as our operational semantics, the Hoare powerdomain focuses
on terminating computations and is oblivious to the possibility of nontermination. As
in the case of the operational semantics it is possible to use other powerdomains that
differentiate more finely. We begin by reviewing the necessary domain-theoretic back-
ground.

Logical Relations and Nondeterminism 65

A predomain is an ω-cpo, i.e., a partial order with suprema of ascending chains. A
domain is a predomain with a least element, ⊥. A function f : A → A′ is continuous if
it is monotone x ≤ y ⇒ f (x) ≤ f (y) and preserves suprema of chains, i.e., f (supi xi) =
supi f (xi). Any set is a predomain with the discrete order (flat predomain). If X is a set
and A a predomain then any f : X → A is continuous. We denote a partial (continuous)
function from set (predomain) A to set (predomain) B by f : A⇁ B. We write f (a) ↓ to
mean that such a partial function f is defined on a ∈ A. We extend standard notation for
application and composition to partial functions in the usual way. E.g. f (g(a)) denotes
c if g(a) = b and f (b) = c. On the other hand, f (g(a)) is always undefined when g(a) is
undefined.

If A, B are predomains the cartesian product A×B and the set of continuous functions
A→B form themselves predomains (with the obvious componentwise and pointwise
orders) and make the category of predomains cartesian closed. Likewise, the partial
continuous functions A⇁B between predomains A, B form a domain.

A subset U ⊆ A is admissible if whenever (ai)i is an ascending chain in A such that
ai ∈ U for all i, then supi ai ∈ U, too. If f : X × A→ A is continuous and A is a domain
then one defines f †(x) = supi f i

x(⊥) with fx(a) = f (x, a). One has, f (x, f †(x)) = f †(x)
and if U ⊆ A is admissible and contains ⊥ and f : X × U → U then f † : X → U,
too. An element d of a predomain A is compact if whenever d ≤ supi ai then d ≤ ai

for some i. E.g. in the domain of partial functions from N to N the compact elements
are precisely the finite functions. A partial continuous function f : A ⇁ A is a retract
if whenever f (a) is defined then f (a) ≤ a and f (f (a)) = f (a). In short: f ≤ idA and
f ◦ f ≤ f .

If A is a predomain the Hoare powerdomain P(A) contains the subsets of A which are
down-closed and admissible. That is to say, if U ∈ P(A) then if x ≤ y ∈ U then x ∈ U,
too, and furthermore, if xi ∈ U for each i and (xi)i forms a chain then supi xi ∈ U. Such
subsets are also known as Scott-closed sets. We denote the down-closure of a set U by
↓U. The elements of P(A) are ordered by set inclusion. The supremum of a chain of
sets (Ui)i is given as the least Scott-closed set containing the union

⋃
i Ui. We denote

the least Scott-closed set comprising a set U by U‡. We can now define the predomain
of values as the least solution of the following domain equation. V � Z + (V→ PV)

An environment is a finite map η from variables to values. The environments form
themselves a predomain with the understanding that η ≤ η′ if dom(η) = dom(η′) and
η(x) ≤ η′(x) for all x ∈ dom(η). For each expression t of our metalanguage we can
now define a continuous map �t� from environments to computations. We also define
an auxiliary map �v� from environments to values for v a syntactic value. The defining
equations are given in Figure 2.

5 Program Equivalences

The denotational semantics can directly validate some expected program equivalences
that are more difficult to obtain directly from the operational semantics. An example is
fixpoint unrolling which is at the basis of various loop optimisations: For any term t we
have

66 M. Hofmann

�x�η = η(x) �n�η = �n� �v�η = {�v�}‡ �?�η = {0, 1}
�rec f x.t�η = g† η

where g(η, u) = λd.�t�η[f �→u, x�→d]
�let x= t1 in t2�η = (

⋃{�t2�η[x�→a] | a ∈ �t2�η})‡
�if v then t2 else t3�η =

{
�t2�η if �v�η ∈ Z \ {0}1
�t3�η if �v�η = 0

Fig. 2. Denotational semantics

�rec x f .t�η = �λx.t[rec x f .t/ f]�η

The proof of this is direct from the interpretation of recursive definition as least fixpoints
and the following substitution lemma:

Lemma 1. Let t be a term, v a value, and η an environment. We always have

�t�η[x �→�v�η] = �t[v/x]�η

Another important equivalence is commutativity of let which is at the basis of all kinds
of optimisations involving changes to the order of control flow. Of course, in general
commutativity must be conditioned on the absence or noninterference of other side-
effects.

�let x1= t1 in let x2= t2 in t3�η = �let x2= t2 in let x1= t1 in t3�η

There are also some inequations, for instance, we have the following rule about dupli-
cate computation:

�let x1= t1 in let x2= t1 in t2�η ⊇ �let x1= t1 in t2[x1/x2]�η

Furthermore, semantic equality and inequality are clearly congruences with respect to
all term formers for the obvious reason that the semantics is defined in a compositional
fashion. Of course, similar equations can also be proved for the operational semantics
in the sense of applicative bisimulation, contextual equivalence, or similar, but with a
less direct route.

Other equations, however, only hold under additional assumptions that can conve-
niently be phrased as typing assertions.

For a simple example consider the term t1 := λ f .λx.if x then f 0 else f 1. If f
“has type” bool→ α then we expect that t is equal to λ f . f . But of course, �t� � �λ f . f �
because the semantics does not know about types.

Perhaps more interesting is the following one. The terms t2 := λx.x + 1 and t3 :=
λx.x + 8 are equal when viewed at type Z7 → Z7 when Z7 stands, as usual, for integers
modulo 7. The term t4 := λx.if x=0 then 1 else 0 does not even have the type
Z7 → Z7.

A well-established method for proving such type-dependent equivalences consists of
interpreting types as partial equivalence relations (PERs) on values. In order that these
are compatible with the usual typing rules and become a congruence, the interpretation

Logical Relations and Nondeterminism 67

at function types is essentially forced: two pure functions will be related if they send
related arguments to related results; in particular, a function is related to itself if it
respects relatedness. In our case, functions do not return values, but sets of values. It is
thus necessary to lift relatedness from values to sets of values. How exactly this should
be done is the main technical contribution of this paper.

6 Lifting Predicates to Sets

Recall the definition of admissibility from Section 4.

Definition 1. Let P be a subset of a predomain A. We define Adm(P) as the least ad-
missible superset of P.

Proposition 1. Let A, B be predomains and P ⊆ A and Q ⊆ B. We have Adm(P × Q) =
Adm(P) × Adm(Q).

Proof. The direction ⊆ is obvious. For the other one, fix b ∈ Adm(Q) and define S ⊆ A
by S = {a | (a, b) ∈ Adm(P × Q)}. Since S is admissible and contains P, we have
Adm(P) ⊆ S and the claim follows.

In order to get compatibility of the admissible closure with function spaces and the
powerdomain construction we need the following technical definition.

Definition 2. A predomain A is effectively algebraic if there exists a family of retracts
ri : A⇁ A such that

– ri ≤ ri+1 holds for all i, so the ri form a chain and for each a ∈ A,
– the image of each ri is a finite subset of A,
– for each a ∈ A one has a = supi ri(a), i.e. supi ri = idA,
– the elements of the form ri(a) for a ∈ A are compact.

We remark that effectively algebraic domains are also known as bifinite or SFP domains
but those are usually presented in a different way. See e.g. Section 4.2 of [1].

Proposition 2. If A and B are effectively algebraic so are A × B and A→ B and PA.

Proof. If ri and r′i are the retracts for A and B then the i-th retract for A × B sends (a, b)
to (ri(a), r′i (b)). The one for A→B sends f to r′i ◦ f ◦ ri and the i-th retract for P(A) sends
U to ↓{ri(a) | a ∈ U}.

Most of the required properties are obvious from the definition; we verify that a
function of the form r′i ◦ f ◦ ri is compact: suppose that r′i ◦ f ◦ ri ≤ supi fi. Since ri()
is compact, we can find for each a ∈ A an index ja such that ri(f (r′i (a))) ≤ f ja (a). Now,
since the image of r′i is finite, there is a fixed j so that ri(f (r′i (a))) ≤ f j(a) holds for all
a. The claim follows.

We define the following families of continuous functions pi : V ⇁ V and qi : PV ⇁
PV:

pi(n) =

{
n, if |n| < i
undefined, otherwise

pi(g) = qi ◦ g ◦ pi, if g : V→ TV

q0(U) = ∅ qi+1(U) = ↓{pi(v) | v ∈ U}

68 M. Hofmann

Proposition 3. The predomains V and PV are effectively algebraic by virtue of the
abovedefined functions pi and qi.

Proof. Most properties are by induction on i following, in the case of functions and
subsets, the argument of the previous proposition. The fact that supi pi = idV and
supi qi = idPV hinges on the fact that V is the least solution of its defining equation;
for more detail see any account of the standard solution theory of recursive domain
equations [12,2,1].

If P ⊆ A and Q ⊆ B, we write P→Q for { f :A → B | ∀a ∈ P. f (a) ∈ Q}. We also write
f : P⇁ Q to mean that f (a) ∈ Q whenever a ∈ P and f (a)↓.

We will make implicit use of the following proposition.

Proposition 4. If A is effectively algebraic and U ⊆ A is down-closed then U‡ =
Adm(U).

Proof. It suffices to show that Adm(U) is down-closed. So suppose that x ≤ supi yi

where yi ∈ U so that supi yi ∈ Adm(U). We have x = supi pix and each pi(x) is already
contained in U by compactness and down-closedness of U. Therefore, x ∈ Adm(U).

Definition 3. Let A be an effectively algebraic predomain by (ri)i. A subset U ⊆ A is
effectively algebraic if ri : U ⇁ U.

Strictly speaking, the family of retracts (ri)i should be made part of the structure of an
effectively algebraic predomain rather than merely be required to exist. For the sake of
readability we do not do this.

Proposition 5. Let A, B be effectively algebraic predomains and P ⊆ A and Q ⊆
B. Furthermore, let Q be effectively algebraic. Then Adm(P→Q) = P→Adm(Q) =
Adm(P)→Adm(Q).

Proof. The second equality and the ⊆-direction of the first equation are obvious. So, for
“⊇” assume f : P→ Adm(Q). Thus, for each a ∈ P, we can chose a chain (b j,a) j so that
sup j b j,a = f (a) and b j,a ∈ Q for each j. Now, for each i we have r′i (f (a)) = sup j r′i (b j,a)
and, since r′i (f (a)) is compact, we even have r′i (f (a)) = r′i (b j,a) for some j. Note that
r′i (f (a)) ≥ r′i (b j,a) always holds by monotonicity. Thus, since b j,a ∈ Q and r′i : Q ⇁ Q
we obtain r′i (f (a)) ∈ Q for all i. As a result, for each i we have r′i ◦ f : P⇁ Q and thus,
since f = supi r′i ◦ f , we finally get f ∈ Adm(P→ Q) as required.

The following counterexample shows that the extra assumption r′i : Q ⇁ Q is indeed
necessary here.

Example 1. Let A = O with O = {⊥,�} denoting the Sierpinski space and let B = Z→
O where Z stands for the flat predomain of integers as usual. Note that all functions
from Z to O are continuous. If u : Z → O we write dom(u) = {n | u(n) = �}. We also
define u0 and u1 by dom(u0) = Z \ {0} and dom(u1) = Z. Note that this uniquely defines
u0, u1 and that u0 ≤ u1.

Let P = A and Q = {u : Z → O | u = u0 ∨ (dom(u) finite ∧ 0 ∈ dom(u))}. Define
f : A → B by f (⊥) = u0 and f (�) = u1. We have u0 ∈ Q and u1 ∈ Adm(Q) since u1

Logical Relations and Nondeterminism 69

can be written as a supremum of functions with finite domain each containing 0. Thus,
f : P → Adm(Q). However, f � Adm(P→Q). Namely, suppose that f = supi fi with
fi : P → Q. From some i onwards we must have fi(⊥) = u0 since it is not possible to
approximate u0 nontrivially while staying within Q. Then, by monotonicity, we must
have fi(�) = u0 or fi(�) = u1 because u0 ≤ u implies u ∈ {u0, u1}. But u1 � Q, so
fi(�) = u0 and so (supi fi)(�) = u0 � f (�), a contradiction.

We are now ready to define our lifting of a logical relation to the Hoare powerdomain:

Definition 4. Let A, B be effectively algebraic predomains and let E ⊆ A×B be admis-
sible. We define a relation P0E ⊆ PA × PB by

P0E = {(U,V) | ∀a ∈ U.∃b ∈ V.aEb}
We then define an admissible relation PE ⊆ PA × PB by

PE = Adm(P0)

Note that, in general, P0E will not be admissible, intuitively because the existential
witnesses in a chain might not form a chain themselves.

7 Typed Program Equivalence

We now define a type system in order to be able to state and prove type-dependent
equivalences. We also use the type system in order to assert equivalence of the opera-
tional and the denotational semantics. In both cases, the central tool will be a logical
relation built from the blocks developed in the previous section.

Types are given by the grammar

τ ::= β | τ→τ′

where β ranges over a set of base types including in particular bool and int. For each
constant op we assume three basic types βop0 , βop1 , βop2 describing the two arguments and
the result of the operator. A typing context Γ is a finite map from variables to types.
The typing judgement takes the form Γ � t : τ and is given by the rules in Figure 3. We
also allow typing axioms of the form (v, v′, τ) where v, v′ are closed values. Intuitively,
such an axiom asserts that v and v′ both have type τ and are equivalent at type τ. Such
axioms be justified semantically. We now define for each type τ a relation �τ� ⊆ V ×V
by the following clauses.

�int� = {(n, n) | n ∈ Z}
�bool� = {(n, n′) | n, n′ ∈ Z ∧ (n=0⇔n′=0)}
�τ→ τ′� = {(f , f ′) | ∀v, v′.v�τ�v′ ⇒ f (v)P�τ′� f ′(v′)}

For each base type β other than bool, int such a relation �β� must be provided so as
to satisfy the conditions of the following lemma.

Lemma 2. Each relation �τ� is admissible, effectively algebraic, transitive, and reflex-
ive in the sense that v�τ�v′ implies v�τ�v. Moreover, if v�τ�v′ and v0 ≤ v and v′ ≤ v′0
then v0�τ�v′0, too.

70 M. Hofmann

Γ � n : int Γ � v : bool
Γ � v0 op v1 : βop2

Γ � v0 : βop0 Γ � v1 : βop1

Γ � ? : bool

Γ � if v then t1 else t2 : τ

Γ � v : bool Γ � t1 : τ Γ � t2 : τ

Γ � let x= t1 in t2 : τ2

Γ � t1 : τ1 Γ, x:τ1 � t2 : τ2

Γ � rec x f .t : τ1 → τ2

Γ, x:τ1, f :τ1→τ2 � t : τ1 → τ2

Γ � v : τ

(v, v′, τ) or (v′, v, τ) an axiom

Fig. 3. Typing rules

Proof. By induction on types. Suppose that f �τ→ τ′� f ′. We must show that qi ◦
f ◦ pi�τ→ τ′�(qi ◦ f ′ ◦ pi), too. Assume v�τ�v′. By induction hypothesis, we have
pi(v)�τ�pi(v′) and thus f (pi(v))P�τ′� f ′(pi(v′)). We need to conclude that

qi(f (pi(v)))P�τ′�qi(f ′(pi(v′)))

If i = 0 this is obvious. Otherwise, pick chains f (pi(v)) = sup j U j and f ′(pi(v′)) =
sup j U ′j with U jP0�τ′�U ′j. By compactness, there exists j such that qi(f (pi(v))) = qi(U j)
and qi(f ′(pi(v′))) = qi(U ′j). So, pick a ∈ qi(U j). This means that a ≤ pi−1(b) for some
b ∈ U j. By assumption, we find b′ ∈ U ′j with b�τ′�b′. By induction hypothesis, we then
have pi−1(b)�τ′�pi−1(b′) and a�τ′�pi−1(b′). But pi−1(b′) ∈ qi(U ′), so we are done.

The other properties are obvious.

Theorem 1. Suppose thatΓ � t : τ and η, η′ are environments such that η(x)�Γ(x)�η′(x)
for all x ∈ dom(Γ). Suppose furthermore that whenever (v, v′, τ′) is an axiom then
�v��τ′��v′�. Then �t�ηP�τ��t�η′.

This theorem is actually a special case of the following binary version that establishes
soundness of the inequational theory given in Figure 4

Γ � n ≤ n : int Γ � v ≤ v : bool
Γ � v0 op v1 ≤ v′0 op v′1 : βop2

Γ � v0 ≤ v′0 : βop0 Γ � v1 ≤ v′1 : βop1

Γ � ? ≤ ? : bool
Γ � if v then t1 else t2 ≤ if v′ then t′1 else t′2 : τ

Γ � v ≤ v′ : bool Γ � t1 ≤ t′1 : τ Γ � t2 ≤ t′2 : τ

Γ � let x= t1 in t2 ≤ let x= t′1 in t′2 : τ2

Γ � t1 ≤ t′1 : τ1 Γ, x:τ1 � t2 ≤ t′2 : τ2

Γ � rec x f .t ≤ rec x f .t′ : τ1 → τ2

Γ, x:τ1, f :τ1→τ2 � t ≤ t′ : τ1 → τ2

Γ � v ≤ v′ : τ

(v, v′, τ) an axiom

Γ � t ≤ t : τ

Γ � t : τ

Γ � t ≤ t′ : τ

Γ � t ≤ t′ : τ Γ � t′ ≤ t′′ : τ

Fig. 4. Inequational theory

Logical Relations and Nondeterminism 71

Theorem 2. Suppose that Γ � t ≤ t′ : τ and η, η′ are environments such that η(x)�Γ(x)�
η′(x) for all x ∈ dom(Γ). Suppose furthermore that whenever (v, v′, τ′) is an axiom then
�v��τ′��v′�. Then �t�ηP�τ��t′�η′.

Proof. By induction on derivations. Most cases are obvious from the definitions. The
congruence rule for the recursion operator relies on the admissibility of all the �τ�-
relations. The congruence rule for let uses Proposition 5 as follows.

We assume η�Γ�η′ (note the shorthand) and the induction hypothesis then gives
�t1�ηP�τ1��t′1�η

′. Let us define f (v) = �t2�η[x �→v] and f ′(v′) = �t2�η[x �→v′]. The in-
duction hypothesis also shows f �τ1�→P�τ2� f ′ (strictly speaking: f× f ′ ∈ �τ1�→P�τ2�).
Now, Proposition 5 shows that, in fact, f Adm(�τ�→ P0�τ2�) f ′. In view of Prop. 1 and
the fact that what we must prove is also of the form · · · ∈ Adm(. . .) we can then assume
without loss of generality that �t1�ηP0�τ1��t′1�η

′ and v�τ1�v′ ⇒ f (v)P0�τ2� f ′(v′). The
rest is now plain sailing: Pick a ∈ �let x= t1 in t2�η. If a is the supremum of a chain we
can use admissibility of P�τ2�. Otherwise, we must have a ∈ f (v) for some v ∈ �t1�η.
The assumption furnishes v′ ∈ �t′1�η′ with v�τ1�v′. Thus, f (v)�τ2� f ′(v′) and we get a
matching a′ ∈ f ′(v′) such that a�τ2�a′. We omit the other cases.

8 Observational Equivalence

We now show how the logical relation entails observational equivalence and approxi-
mation.

Definition 5. Let v, v′ ∈ V. We say that v observationally approximates v′ at type τ,
written v ≤τ v′, if for each closed value f of type τ → bool, i.e. � f : τ → bool, we
have that � f �v ⊆ � f �v′. The values are observationally equivalent, written v =τ v′ if
v ≤τ v′ and v′ ≤τ v.

If v, v′ are syntactic closed values we may abbreviate �v� ≤τ �v′� by v ≤τ v′ and
likewise for =τ.

Observational equivalence means that v and v′ yield the same observable results no
matter which context f they are being used in. Note that if τ is a functional type, then
the context may invoke v and v′ several times and on arguments that depend on earlier
calls.

Theorem 3. If v�τ�v′ then v ≤τ v′.

Proof. Suppose that � f : τ → bool. By Theorem 1 we get � f �vP�bool�� f �v′. This
immediately entails the desired result.

We can therefore use semantic reasoning so as to establish observational equiva-
lences. Recall the following analogue of Shannon expansion:

v := λ f . f =bool→bool λ f .λx.if x then f 0 else f 1 =: v′

Indeed, to show this, we merely need to showv�bool→bool�v′and v′�bool→bool�v
which is trivial. We can now introduce the axiom (v, v′, bool→ bool) and its converse

72 M. Hofmann

which allows us to conclude further observational equivalences using the inequational
theory in Fig. 4.

Consider, as already suggested, a base type int7 of integers modulo 7. Putting
�int7� = {(n, n′) | n ≡ n′ (mod 7)}we then have v�int7→ int�v′ where v = λx.x+1
and v′ = λx.if x ≥ 6 then x − 6 else x + 1.

9 Operational Adequacy

We can also use a logical relation to establish the correspondence between the op-
erational and the denotational semantics by generalising the classical method [10] to
nondeterminism.

Proposition 6. If t −→ n then n ∈ �t�.
Proof. By induction on the derivation of t −→ n. As an illustrative example we show
the case where t = u v with u = rec x f .t′. If t −→ n then t′[v/x, u/ f] → n with a
shorter derivation. Thus, by induction, n ∈ �t′[v/x, u/ f]�, but �u v� = �t′[v/x, u/ f]�,
so we are done.

We now prove the converse direction for typed values using a logical relation. It also
holds for untyped values; for this a mixed recursive definition of an untyped logical
relation. For lack of space, we must omit this generalisation.

Definition 6. For each type τ we define a relation
τ between V and closed syntactic
values.

int = {(n, n) | n ∈ Z}

bool = {(n, n′) | n, n′ ∈ Z ∧ (n=0⇐⇒ n′=0)}

τ→τ′ = {(f , f ′) | ∀v, v′.v
τ v′ ⇒ f (v)P
τ′ {a | f ′(v′) −→ a}}

In the last clause the set of closed syntactic values is understood as a flat predomain.

Theorem 4. If Γ � t : τ and η(x)
Γ(x) ρ(x) then �t�P
τ {a | t[ρ] −→ a}.
Proof. By induction on typing derivations. The structure of the proof follows that of
Theorem 1. For the rec-case one must introduce the syntactic approximations recn x f .t
by rec0 x f .t = rec x f . f x and recn+1 x f .t = λx.t[rec x f .tn/ f]. One shows that
rec x f .tv −→ a iff recn x f .t v −→ a for some n.

Corollary 1. If � t : int and n ∈ �t� then t −→ n.

Proof. From the Theorem we get �t�P
int {a | t −→ a}. The claim follows directly
from this.

10 Conclusion

We have demonstrated how to extend a logical relation to the Hoare powerdomain in the
presence of general recursion. This yields a powerful proof principle for observational
equivalence (in the may sense) and also allows one to generalise Plotkin’s proof of

Logical Relations and Nondeterminism 73

computational adequacy for PCF to nondeterminism. The crucial technical innovation
is the use of the admissible closure (Adm) in order to heal the lack of admissibility of
the obvious ∀∃-existension of a logical relation to the power domain. In particular, we
have highlighted the importance of the canonical projections (“effective algebraicity”)
for the well-behavedness of this closure.

There have been other proposals to lift a logical relation to arbitrary monads includ-
ing, of course, the Hoare powerdomain, see e.g. [7], all of which are based on a variation
of continuation passing style known as ��-closure [8]. In general, these extensions are
easier to define than ours, but are difficult to work with in concrete applications. In
particular, we were unable to define parallel composition for such an extension and
to prove effect-dependent equivalences using it. For the particular applications in this
paper,��-closure might be workable, but the main purpose was to illustrate the admis-
sible closure in a simple yet nontrivial case. In [3] we use these ideas to justify a theory
of effect-dependent program equivalences including a parallelization theorem.

Since its heyday in the 80s, denotational semantics has lost quite a bit of popularity
due to the fact that many difficult technical problems such as the solution of mixed-
variance equations or, indeed, logical relations, simply evaporate when one moves to
a syntactic setting. On the other hand, syntactic theories have also become fairly com-
plicated (for a recent example see the definition of safety on p10 of [4]) and, arguably,
less intuitive than denotational models where functions are functions, and once tech-
nical lemmas such as our Proposition 5 have been asserted, can be handled in much
the same way as plain set-theoretic functions. We thus hope that this work will help to
bring denotational semantics back to the mainstream toolbox in programming language
semantics.

References

1. Abramsky, S., Jung, A.: Domain theory. Online Lecture Notes, avaliable from CiteSeerX
(1994)

2. Amadio, R.M., Cardelli, L.: Subtyping recursive types, pp. 575–631 (1993)
3. Benton, N., Hofmann, M., Nigam, V.: Abstract effects and concurrency (under review 2014)
4. Birkedal, L., Sieczkowski, F., Thamsborg, J.: A concurrent logical relation. In: Cégielski, P.,

Durand, A. (eds.) CSL. LIPIcs, vol. 16, pp. 107–121. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2012)

5. Broy, M., Gnatz, R., Wirsing, M.: Semantics of nondeterministic and noncontinuous con-
structs. In: Gerhart, S.L., et al. (eds.) Program Construction. LNCS, vol. 69, pp. 553–592.
Springer, Heidelberg (1979)

6. Broy, M., Wirsing, M.: On the algebraic specification of nondeterministic programming
languages. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 162–179.
Springer, Heidelberg (1981)

7. Katsumata, S.-y.: Relating computational effects by � �-lifting. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 174–185. Springer, Heidelberg
(2011)

8. Krivine, J.-L.: Classical logic, storage operators and second-order lambda-calculus. Ann.
Pure Appl. Logic 68(1), 53–78 (1994)

9. Plotkin, G.D.: A powerdomain construction. SIAM J. Comput. 5(3), 452–487 (1976)

74 M. Hofmann

10. Plotkin, G.D.: “lcf” considered as a programming language. Theor. Comput. Sci. 5(3),
223–255 (1977)

11. Sieber, K.: Call-by-value and nondeterminism. In: Bezem, M., Groote, J.F. (eds.) TLCA
1993. LNCS, vol. 664, pp. 376–390. Springer, Heidelberg (1993)

12. Smyth, M.B., Plotkin, G.D.: The category-theoretic solution of recursive domain equations.
SIAM J. Comput. 11(4), 761–783 (1982)

Simplified Coalgebraic Trace Equivalence

Alexander Kurz1, Stefan Milius3,�, Dirk Pattinson2, and Lutz Schröder3,��

1 University of Leicester, UK
2 The Australian National University, Australia

3 Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract. The analysis of concurrent and reactive systems is based to a large de-
gree on various notions of process equivalence, ranging, on the so-called linear-
time/branching-time spectrum, from fine-grained equivalences such as strong
bisimilarity to coarse-grained ones such as trace equivalence. The theory of con-
current systems at large has benefited from developments in coalgebra, which
has enabled uniform definitions and results that provide a common umbrella for
seemingly disparate system types including non-deterministic, weighted, proba-
bilistic, and game-based systems. In particular, there has been some success in
identifying a generic coalgebraic theory of bisimulation that matches known def-
initions in many concrete cases. The situation is currently somewhat less settled
regarding trace equivalence. A number of coalgebraic approaches to trace equiv-
alence have been proposed, none of which however cover all cases of interest;
notably, all these approaches depend on explicit termination, which is not always
imposed in standard systems, e.g. labelled transition systems. Here, we discuss
a joint generalization of these approaches based on embedding functors mod-
elling various aspects of the system, such as transition and braching, into a global
monad; this approach appears to cover all cases considered previously and some
additional ones, notably standard and probabilistic labelled transition systems.

1 Introduction

It was recognized early on that the initial algebra semantics of Goguen and Thatcher
[10] needs to be extended to account for notions of observational or behavioural equiv-
alence, see Giarratana, Gimona and Montanari [9], Reichel [18], and Hennicker and
Wirsing [12]. When Aczel [2] discovered that at least one important notion of be-
havioural equivalence—the bisimilarity of process algebra—is captured by final coal-
gebra semantics, the study of coalgebras fully entered computer science. Whereas early
work emphasized the duality between algebra and coalgebra, it became soon clear that
both areas have to be taken together. For example, in the work of Turi and Plotkin
[22], monads represent the programs, comonads represent their behaviour (operational
semantics), and a distributive law between them ensures that the behaviour of a com-
posed system is given by the behaviours of the components, or, more technically, that
bisimilarity is a congruence.

� Supported by the Deutsche Forschungsgemeinschaft (DFG) under project MI 717/5-1
�� Supported by the Deutsche Forschungsgemeinschaft (DFG) under project SCHR 1118/11-1

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 75–90, 2015.
© Springer International Publishing Switzerland 2015

76 A. Kurz et al.

Another example of the interplay of algebraic and coalgebraic structure arises from
the desire to make coalgebraic methods available for a larger range of program equiv-
alences, e.g. the ones described in van Glabbeek [23]. To this end, Power and Turi
[17] argued that trace equivalence arises from a distributive law TF → FT between
a monad T describing the non-deterministic part and a functor F describing the deter-
ministic part of a transition system X → TFX . This was taken up by Hasuo et al. [11]
and gave rise to a sequence of papers [16,14,20,7,8] that discuss coalgebraic aspects of
trace equivalence.

We generalize this approach and call a trace semantics for coalgebras X → GX
simply a natural transformation G → M for some monad M . This allows us, for ex-
ample, and opposed to the work cited in the previous paragraph, to account for non-
determinstic transition systems without explicit termination. Moreover, because of the
flexibility afforded by choosing M , both trace semantics and bisimilarity can be ac-
counted for in the same setting. We also show that for G being of the specific forms
investigated in [11] and in [20,7,14] there is a uniform way of constructing a natural
transformation of type G → M that induces the same generic trace semantics up to
canonical forgetting of deadlocks.

2 Preliminaries

We assume that readers are familiar with basic notions of category theory. We work
with a base category C, which we may assume for simplicity to be locally finitely
presentable, such as the category Set of sets and functions (see e.g. Adámek and
Rosický [4] for basics on locally finitely presentable categories and finitary functors).

Given a functor G : C → C, a G-coalgebra is an arrow γ : X → GX . Given two
coalgebras γ : X → GX and γ′ : X ′ → GX ′, a coalgebra morphism f : (X, γ) →
(X ′, γ′) is an arrow f : X → X ′ in C such that γ′ ◦ f = Gf ◦ γ.

When C is a concrete category, i.e. C comes equipped with a faithful functor
C → Set, we say that two states x ∈ X and x′ ∈ X ′ in two coalgebras (X, γ)
and (X ′, γ′) are behaviourally equivalent if there are coalgebra morphisms f, f ′ with
common codomain (Y, δ) such that f(x) = f ′(x′).

Behavioural equivalence can be computed in a partition-refinement style using the
final coalgebra sequence (Gn1)n<ω where 1 is a final object in C and Gn is n-fold
application of G. The projections pn+1

n : Gn+11 → Gn1 are defined by induction
where p10 : G→ 1 is the unique arrow to 1 and pn+2

n+1 = G(pn+1
n).

For any coalgebra (X, γ), there is a canonical cone γn : X → Gn1 defined induc-
tively by γ0 : X → 1 and γn+1 = G(γn)◦γ. We say that two states x, x′ ∈ X in (X, γ)
are finite-depth behaviourally equivalent if γn(x) = γn(x

′) for all n < ω. (Note that if
G is a finitary set functor, then finite-depth behavioural equivalence implies behavioural
equivalence; this follows from the results of Worrell [24].)

A monad is given by an operation M on the objects of C and, for each set X ,
a function ηX : X → MX and, for each f : X → MY , a so-called Kleisli star
f∗ :MX →MY satisfying (i) η∗X = idMX , (ii) f∗ ◦ηX = f , (iii) (g∗ ◦f)∗ = g∗ ◦f∗

for all g : Y → MZ . It follows that M is a functor, given by Mf = (η ◦ f)∗, and η
a natural transformation. Moreover, μ = id∗ : MM → M is a natural transformation

Simplified Coalgebraic Trace Equivalence 77

and satisfies μ ◦Mη = μ ◦ ηM = id and μ ◦Mμ = μ ◦ μM . We obtain the Kleisli
star back from μ and M by f∗ = μY ◦Mf .

An Eilenberg-Moore algebra for the monad M is an arrow ξ : MX → X such that
ξ ◦ ηX = idX and ξ ◦Mξ = ξ ◦ μX .

Recall (e.g. from Kelly [15]) that an endofunctor G on a category C is said to gen-
erate an algebraically-free monad G∗ if the category of Eilenberg-Moore algebras of
G∗ is isomorphic over C to the category of G-algebras (i.e. morphisms GX → X).
The monad G∗ is then also the free monad over G; conversely, free monads are
algebraically-free if the base category C is complete [5,15]. For example, when C
is locally finitely presentable, then every finitary functor on C, representing a type of
finitely-branching systems, generates an (algebraically-)free monad (this follows from
the free algebra construction in Adámek [3]).

3 A Simple Definition of Coalgebraic Trace Equivalence

Recall the classical distinction between bisimilarity and trace equivalence, the two ends
of the linear-time-branching time spectrum [23]: to cite a much-belaboured standard
example, the two labelled transition systems (over the alphabet Σ = {a, b, c})

s0
a

����
��
��
�� a

���
��

��
��

� t0

a

��

s10

b

��

s11

c

��

t1
b

����
��
��
�� c

���
��

��
��

�

s20 s21 t20 t21

are trace equivalent in the usual sense [1], as they both admit exactly the traces ab
and ac (and prefixes thereof), but not bisimilar, as bisimilarity is sensitive to the fact
that the left hand side decides in the first step whether b or c will be enabled in the
second step, while the right hand side leaves the decision between b and c open in the
first step. In other words, trace equivalence collapses all future branches, retaining only
the branching at the current state. Now observe that we can nevertheless construct the
trace semantics by stepwise unfolding; to do this, we need to a) remember the last step
reached by a given trace in order to continue the trace correctly, and b) implement the
collapsing correctly in each step. E.g. for s0 above, this takes the following form: let us
call a pair (u, x) consisting of a word over Σ and a state x a pretrace. Before the first
step, we assign, by default, the set {(ε, s0)} of pretraces, where ε denotes the empty
word. After the first step, we reach, applying both transitions simultaneously, the set
{(a, s10), (a, s11)}. After the second step, we reach, again applying two transitions,
{(ab, s20), (ac, s21)}. Note that after the third step, the set of pretraces will become
empty if we proceed in the same manner, as s20 and s21 are both deadlocks. Thus,
we will in general need to remember all the finite unfoldings of the set of pretraces,
as traces ending in deadlocks will be lost on the way. Of course, for purposes of trace
equivalence we are no longer interested in the states reached by a given trace, so we

78 A. Kurz et al.

forget the state components of all pretraces that we have accumulated, obtaining the
expected prefix-closed trace set {ε, a, ab, ac}.

Recall that we can understand labelled transition systems as coalgebras γ : X →
P(Σ ×X). What is happening in the unfolding steps is easily recognized as composi-
tion with γ in the Kleisli category of a suitable monad, specifically M = P(Σ∗×), a
monad that contains the functor P(Σ ×) via an obvious natural transformation α.
Defining γ(n) as the n-fold iteration of the morphism αγ in the Kleisli category
of M , we have γ(0)(s0) = {(ε, s0)}, γ(1)(s0) = {(a, s10), (a, s11)}, γ(2)(s0) =
{(ab, s20), (ac, s21)}, and γ(3)(s0) = ∅. Forgetting the state component of the pre-
traces in these sets amounts to postcomposing with M !, where ! is the unique map into
1 = {∗}. These considerations lead to the following definitions.

Definition 1. A trace semantics for a functorG is a natural transformationα : G→M
into a monad M , the global monad. Given such an α and a G-coalgebra γ : X → GX ,
we define the iterations γ(n) : X →MX of γ, for n ≥ 0, inductively by

γ(0) = ηX γ(n+1) = (αγ)∗γ(n)

where the unit η and the Kleisli star ∗ are those of M (in particular γ(1) = αγ). Then
the α-trace sequence of a state x ∈ X is the sequence

Tα
γ (x) = (M !γ(n)(x))n<ω ,

with ! denoting the unique map X → 1 as above. Two states x and y in G-coalgebras
γ : X → GX and δ : Y → GY , respectively, are α-trace equivalent if

Tα
γ (x) = Tα

δ (y).

(Although we use an element-based formulation for readability, this definition clearly
does make sense over arbitrary complete base categories.)

Of course, one shows by induction over n that

γ(n+1) = (γ(n))∗αγ for all n < ω. (1)

We first note that the trace sequence factors through the initial ω-segment of the terminal
sequence. Recall from Section 2 that a G-coalgebra γ induces a cone (γn) into the final
sequence.

Lemma 2. Let α : G→M be a trace semantics for G, and define natural transforma-
tions αn : Gn → M for n < ω recursively by α0 = η and αn+1 = μαGαn. If γ is a
G-coalgebra, then

M !γ(n) = αnγn for all n < ω.

Proof. Induction on n.
n = 0: We have M !γ(0) = M !η = η! = α0γ0.

Simplified Coalgebraic Trace Equivalence 79

n→ n+ 1: We have

αn+1γn+1

= μαG(αn)Gγnγ (Definitions of γn+1, αn+1)

= μαG(M !γ(n))γ (Inductive hypothesis)

= μM(M !γ(n))αγ (Naturality of α)

=M !μMγ(n)αγ (Naturality of μ)

=M !(γ(n))∗αγ

=M !γ(n+1) (1).

��

Corollary 3. Finite-depth behaviourally equivalent states are α-trace equivalent.

Remark 4. In most items of related work, stronger assumptions than we make here
allow for identifying an object of traces in a suitable category, such as the Kleisli cat-
egory [11] or the Eilenberg-Moore category [14,7] of a monad that forms part of the
type functor. In our setting, a similar endeavour boils down to characterizing, possibly
by means of a limit of a suitable diagram, those α-trace sequences that areG-realizable,
i.e. induced by a state in some G-coalgebra. We do not currently have a general answer
for this but point out that in a variant of the special case treated in the beginning of the
section where we take G to be P∗(Σ ×), with P∗ denoting nonempty powerset, and
M = P(Σ∗ ×)), the set of G-realizable traces is the limit of the infinite diagram

M1 M1 M1 . . .

1

η

����������
P(R)

Pπ1

����������� Pπ2

�����������
P(R)

Pπ1

����������� Pπ2

�����������

where R denotes the immediate prefix relation R = {(u, ua) | u ∈ Σ∗, a ∈ Σ} with
projections π1, π2 : R → Σ∗. We expect that this description generalizes to cases
where G and M have the form TF and TF ∗, respectively, where T is a monad and F ∗

is the free monad over the functor F , possibly under additional assumptions. In the case
at hand, the limit of the diagram is the set of all subsets A of Σ∗ × 1 ∼= Σ∗ that are
prefix-closed and extensible in the sense that for every u ∈ A there exists a ∈ Σ such
that ua ∈ A.

4 Examples

We show that various process equivalences are subsumed under α-trace equivalence.

Finite-Depth Behavioural Equivalence. Similarly to the approach via Eilenberg-
Moore liftings (explained in more detail in Section 5), α-trace equivalence spans, at

80 A. Kurz et al.

least for finitely branching systems, the entire length of the linear-time-branching-time
spectrum, in the sense that even (finite-depth) behavioural equivalence coincides with
α-trace equivalence for a suitable α. This is conveniently formulated using the follow-
ing terminology.

Definition 5. We say that an endofunctor G on a category with a terminal object 1 is
non-empty if G1 has a global element, i.e. there exists a morphism 1→ G1.

Non-emptiness of an endofunctor entails that the component of αn at 1 are sections
where αn is as in Lemma 2.

Lemma 6. If G is non-empty and generates an algebraically-free monad G∗ with uni-
versal arrow α, then (αn)1 (the component of αn at the terminal object) is a section for
every n < ω.

Proof. For each set X , G∗X is the initial G+X-algebra, with structure map

[μα, η] : GG∗X +X → G∗X

where μ and η are the multiplication and unit of G∗ [5]. By Lambek’s lemma, it follows
that [μα, η] is an isomorphism. Since both summands of the coproduct GG∗1 + 1 are
nonempty (forGG∗1, this follows from non-emptiness ofG: we obtain a global element
of GG∗1 by postcomposing a global element of G1 with Gη1 : G1 → GG∗1), the
coproduct injections are sections, so we obtain that μα and η are sections, each being
the composite of a section with an isomorphism. Using (1), it follows by induction that
αn is a section for each n < ω. ��

(Notice that G is non-empty as soon as any GX has a global element; if the base cate-
gory is Set, then every functor is non-empty except the constant functor for ∅.)
Proposition 7. If G is a non-empty functor and generates an algebraically-free monad
via α : G→ G∗, then α-trace equivalence coincides with ω-behavioural equivalence.

Proof. Immediate from Lemmas 2 and 6. ��

Labelled Transition Systems (LTS). We provide some additional details for our ini-
tial example: We have GX = P(Σ × X) and MX = P(Σ∗ × X), with α the
obvious inclusion. The monad M arises from G, as we will see later again in (2),
from a distributive law δX : Σ × P(X) → P(Σ × X) which maps a pair (a, S)
to {a}×S. Explicitly, the unit of M is given by η(x) = {(ε, x)}, and the multiplication
by μ(A) = {(uv, x) | ∃(u, S) ∈ A. (v, x) ∈ S} for A ∈ P(Σ∗ × P(Σ∗ × X)). For
each n and each state x in an LTS γ : X → P(Σ×X), γ(n)(x) consists of the pretraces
of x of length exactly n, i.e.

γ(n)(x) = {(u, y) | x u→ y, u ∈ Σn}

where
u→ denotes the usual extension of the transition relation to words u ∈ Σ∗. Thus,

M !γ(n)(x) consists of the traces of x of length n, i.e.

M !γ(n)(x) = {(u, ∗) | x u→, u ∈ Σn}

Simplified Coalgebraic Trace Equivalence 81

(where, as usual, x
u→ denotes ∃y.x u→ y). Thus, states x and y are α-trace equivalent

iff they are trace equivalent in the usual sense, i.e. iff

{u ∈ Σ∗ | x u→} = {u ∈ Σ∗ | y u→}.

The entire scenario transfers verbatim to the case of finitely branching LTS, with G =
Pω(Σ ×) and M = P<ω(Σ

∗ ×), where P<ω denotes finite powerset.

LTS with Explicit Termination. The leading example treated in related work on coal-
gebraic trace semantics [11,14,7] is LTSs with explicit termination, described as coal-
gebras for the functor

P(1 +Σ ×) ∼= 2× PΣ.

A state in an LTS with explicit termination can be seen as a non-deterministic automa-
ton; this suggests that one might expect the traces of such a state to be the words ac-
cepted by the corresponding automaton, and, in fact, this is the stance taken in previous
work [11,14,7]; for the sake of distinction, let us call this form of trace semantics lan-
guage semantics. Staring at the problem for a moment reveals that language semantics
does not fit directly into our framework: Basically, our definition of trace sequence as-
sembles the traces via successive iteration of the coalgebra structure, and remembers
the traces reached in each iteration step. Contrastingly, language semantics will drop a
word from the trace set if it turns out that upon complete execution of the word, no ac-
cepting state is reached – in α-trace semantics, on the other hand, we will have recorded
prefixes of the word on the way, and our incremental approach does not foresee forget-
ting these prefixes. See Section 5 for a discussion of how α-trace sequences can be
further quotiented to obtain language semantics.

Indeed one might contend that a more natural trace semantics of an LTS with explicit
termination will distinguish two types of traces: those induced by the plain LTS struc-
ture, disregarding acceptance, and those that additionally end up in accepting states;
this is related to the trace semantics of CSP [13], which distinguishes deadlock from
successful termination �. Such a semantics is generated by our framework as follows.
As the global monad, we take MX = P(Σ∗ × (X + 1)) (where we regard X and
1 = {�} as subsets of X + 1), with η(x) = {(ε, x)} and

f∗(S) = {(uv, b) | ∃(u, x) ∈ S ∩ (Σ∗ ×X). (v, b) ∈ f(x)} ∪ (S ∩ (Σ∗ × 1))

for f : X →MY and S ∈MY . This is exactly the monad induced by the distributive
law λX : 1+Σ×P(X)→ P(1+Σ×X) with λX(�) = {�} and λX(a, S) = a×S as
used by Hasuo et al. [11]. We embedP(1+Σ×) intoM by the natural transformation
α given by

αX(S) = {(ε,�) | � ∈ S} ∪ {(a, x) | (a, x) ∈ S}
(implicitly converting letters into words in the second part). ThenM1 ∼= P(Σ∗)2 where
the first components records accepted words and the second component non-blocked
words; in α-trace sequences, the first component is always contained in the second
one, and increases monotonically over the sequence as the Kleisli star as defined above
always keeps traces that are already accepted. Two states are α-trace equivalent iff they
generate the same traces and the same accepted traces, in the sense discussed above.

82 A. Kurz et al.

Our framework also covers the language semantics of non-deterministic automata.
Note that we can impose w.l.o.g. that a non-deterministic automaton never blocks an
input letter – if a state fails to have an a-successor, just add an a-transition into a non-
accepting state that loops on all input letters and has no transitions into other states;
this clearly leaves the language of the automaton unchanged. This restriction amounts
to considering coalgebras for the subfunctor

G = 2× (P∗)Σ

of the functor P(1 + Σ ×) modelling LTS with explicit termination, where P∗ de-
notes non-empty powerset. We embed this functor into the same monad M as above,
by restricting α : P(1 + Σ ×) → M to G. Calling G-coalgebras non-blocking
non-deterministic automata, we now have that two states in a non-blocking non-
deterministic automaton are α-trace equivalent iff they accept the same language. For
a coalgebra γ : X → GX , the maps γ(n) : X → M1, of course, still record accepted
traces as well as plain traces, but the plain traces no longer carry any information: all
α-trace sequences have the form (Ln, Σ

n)n<ω (with Ln ⊆ Σ∗ recording the accepted
words of length at most n).

Probabilistic Transition Systems. Recall that generative probabilistic (transition) sys-
tems (for simplicity without the possibility of deadlock, not to be confused with explicit
termination) are modelled as coalgebras for the functorD(Σ×) whereD denotes the
discrete distribution functor (i.e. D(X) is the set of discrete probability distributions
on X , and D(f) takes image measures under f). That is, each state has a probability
distribution over pairs of actions and successor states. We embed D(Σ ×) into the
global monad MX = D(Σ∗ ×) via the natural transformation α that takes a discrete
distribution μ on Σ ×X to the discrete distribution on Σ∗ ×X that behaves like μ on
Σ ×X (where we see Σ as a subset of Σ∗) and is 0 outside Σ ×X . The unit η of M
maps x ∈ X to the Dirac distribution at (ε, x), and for f : X →MY ,

f∗(μ)(u, y) =
∑

u=vw,x∈X

μ(v, x)f(x)(w, y)

for all μ ∈MX , (u, y) ∈ Σ∗×Y . This is the monad induced by the canonical distribu-
tive law λ : Σ × D → D(Σ ×) given by λX(a, μ) = δ(a) ∗ μ where δ forms Dirac
measures and ∗ is product measure [11]. We identify M1 with D(Σ∗). Given these
data, observe that for γ : X → D(Σ ×X) and x ∈ X , each distribution M !γ(n)(x) is
concentrated at traces of length n.

Assume from now on that Σ is finite. Recall that the usual σ-algebra on the set Σω

of infinite words over Σ is generated by the cones, i.e. the sets v↑ = {vw | w ∈
Σω}, v ∈ Σ∗, which (by finiteness of Σ) form a semiring of sets. We let states x
in a coalgebra γ : X → D(Σ × X) induce distributions μx on Σω via the Hahn-
Kolmogorov theorem [21], defining a content μ(v↑) inductively by

μx(ε↑) = 1

μx(av↑) =
∑
x′∈X

γ(a, x′)μx′(v↑)

Simplified Coalgebraic Trace Equivalence 83

– a compactness argument, again hinging on the finiteness ofΣ, shows that no cone can
be written as a countably infinite disjoint union of cones, so μ is in fact a pre-measure,
i.e. σ-additive.

We note explicitly

Proposition 8. States in generative probabilistic systems over a finite alphabet Σ are
α-trace equivalent iff they induce the same distribution on Σω.

Proof. For v a word of length n and x a state in a generative probabilistic system, we
have μx(v↑) = (M !γ(n)(x))(v). ��

5 Relation to Other Frameworks

Kleisli Liftings. Hasuo et al. [11] treat the case where the type functor G has the form
TF for a monad T and a finitary endofunctor F on sets. They require that F lifts to a
functor F̄ on the Kleisli category of T , which is equivalent to having a (functor-over-
monad) distributive law

λ : FT → TF.

They impose further conditions that include a cppo structure on the hom-sets1 of the
Kleisli category Kl(T) of T and ensure that

– T ∅ is a singleton, so that ∅ is a terminal object in Kl(T) (unique Kleisli morphisms
into ∅ of course being ⊥); and

– the final sequence of F̄ coincides on objects with the initial sequence of F , and
converges to the final F̄ -coalgebra in ω steps.

The trace semantics of a TF -coalgebra is then defined as the unique Kleisli morphism
into the final F̄ -coalgebra; in keeping with distinguishing terminology used in Sec-
tion 4, we refer to this as language semantics. Thus, two states in a TF -coalgebra are
language equivalent, i.e. trace equivalent in the sense of Hasuo et al., iff they map to
the same values in the final sequence of F̄ under the cones induced by the respec-
tive coalgebras. Explicitly: the underlying sets of the final sequence of F̄ have the
form TFn∅, n < ω, and given a coalgebra γ : X → TFX , the canonical cone
(γ̄n : X → TFn∅)n<ω is defined recursively by γ0 = ⊥ and

γ̄n+1 = X
γ

�� TFX
TF γ̄n

�� TFTFn∅ Tλ �� TTFn+1∅ μ
�� TFn+1∅.

Now the distributive law λ induces a monad structure on the functor

M = TF ∗, (2)

where F ∗ denotes the (algebraically-)free monad on F (cf. Section 4), and we have a
natural transformation α : TF → M , so that the situation fits our current framework.
The sets TFnX embed into MX , so that the objects in the final sequence of F̄ can be

1 More precisely, hom-sets are partial orders with a least element ⊥, joins of ω-chains and
composition is continuous in both arguments and left-strict, i.e. ⊥ ◦ f = ⊥.

84 A. Kurz et al.

seen as living in M0. The definition of γ̄n+1 is then seen to be just an explicit form of
Kleisli composition inM ; that is, we can, for purposes of language equivalence, replace
the γ̄n with maps γ̃n : X →M0 defined recursively by

γ̃0 = ⊥ γ̃n+1 = γ̃∗nαγ

where the Kleisli star is that of M . Comparing with (1), we see that the only difference
with the definition of γ(n) is in the base of the recursion: γ(0) = ηX . Noting moreover
that

⊥∗M !ηX = ⊥∗η! = ⊥! = ⊥,

we obtain
γ̃n = ⊥∗M !γ(n).

(Kissig and Kurz [16] use a very similar definition in a more general setting that in
particular, for non-commutative T , does not restrict T ∅ to be a singleton, and instead
assume some distinguished element e ∈ T ∅. They then put γ̃0 = λx. e; the comparison
with our framework is then entirely analogous.)

Summing up, language equivalence is induced from α-trace equivalence by post-
composing α-trace sequences with ⊥∗ : M1 → M0. Intuitively, this means that any
information tied to poststates in a pretrace is erased in language equivalence, as op-
posed to just forgetting the poststate itself in α-trace equivalence. An example of this
phenomenon are LTS with explicit termination as discussed in Section 4. Moreover,
this observation elucidates why language equivalence becomes trivial in cases without
explicit termination, such as standard LTS: here, all traces are tied to poststates and
hence are erased when postcomposing with ⊥∗. (This is also easily seen directly [11]:
without explicit termination, e.g. F = Σ× , one typically has F∅ = ∅ so that the final
F̄ -coalgebra is trivial in the Kleisli category of M .)

Eilenberg-Moore Liftings. An alternative route to final objects for trace semantics
was first suggested by the generalized powerset construction of Silva et al. [19] and
explicitly formulated in [7] (see also Jacobs et al. [14] where this is compared to the
semantics given by Kleisli liftings). In this approach one considers liftings of functors to
Eilenberg-Moore categories in lieu of Kleisli categories. The setup applies to functors of
the formG = FT where F is an endofunctor and T is a monad on a base categoryC. It
is based on assuming a final F -coalgebraZ and a (functor-over-monad) distributive law

ρ : TF → FT.

Under these assumptions, F lifts to an endofunctor F̂ on the Eilenberg-Moore cate-
gory CT of T , and the free-algebra functor C → CT lifts to a functor D from FT -
coalgebras to F̂ -coalgebras, which can be seen as a generalized powerset construction
(the standard powerset construction is obtained by taking FX = 2 × XΣ , T = P).
Explicitly, D(γ) = FμT

XρTXTγ for γ : X → FTX , where μT denotes the multipli-
cation of T . In other words, D(γ) : TX → FTX is the unique T -algebra morphism
with D(γ) · ηTX = γ. Moreover, F̂ has a final coalgebra with carrier Z . The extension
semantics (i.e. trace semantics obtained via the powerset extension) of an FT -coalgebra

Simplified Coalgebraic Trace Equivalence 85

γ : X → FTX is then obtained by first applyingD to γ, obtaining a F̂ -coalgebra with
carrier TX and hence a F̂ -coalgebra map TX → Z , and finally precomposing with
ηTX : X → TX where ηT denotes the unit of T . Similarly to our approach, one obtains
standard bisimilarity as a special case of trace equivalence by taking T = Id .

In order to compare this with our framework, in which we currently consider only
finite iterates of the given coalgebra, we need to assume that F -behavioural equivalence
coincides with finite-depth behavioural equivalence; this is ensured e.g. by assuming
that F is a finitary endofunctor on Set. In this case, two states have the same extension
semantics iff they induce the same values in the first ω steps of the final sequence of F̂ ,
whose carriers coincide with the final sequence of F . Combining the definition of Dγ
for a coalgebra γ : X → FTX with the usual construction of the canonical cone for
Dγ, which we denote by γ̄n : TX → Fn1 for distinction from the canonical cone of γ
in the final sequence of FT , we obtain that γ̄n is recursively defined by

γ̄0 = !TX : TX → 1

γ̄n+1 = F γ̄nTγρFμ
T .

Now let us also assume that T is a finitary monad on Set. Then SetT is a locally finitely
presentable category, and since the forgetful functor to Set creates filtered colimits, we
see that the lifting F̂ is finitary on SetT . Hence free F̂ -algebras exists, which implies
that we have the adjunction on the right below

Set
��

⊥ SetT		
��

⊥ Alg F̂		 ,

and the adjunction on the left is the canonical one. We define M to be the monad of the
composed adjunction; it assigns to a setX the underlying set F̂ ∗TX of a free F̂ -algebra
on the free T -algebra TX ; here F̂ ∗ denotes the free monad on F̂ (notice that this is not
in general a lifing of the free monad on F to SetT). Intuitively,M is defined by forming
the disjoint union of the algebraic theories associated to T and F , respectively, and then
imposing the distributive law between the operations of T and F embodied by ρ. In the
following we shall denote the unit and multiplication of F̂ ∗ by η̂ and μ̂, respectively.
We also write ϕ̂X : F̂ F̂ ∗X → F̂ ∗X for the structures of the free F̂ -algebras and note
that these yield a natural transformation ϕ̂.

Now denote by κ̂ : F̂ → F̂ ∗ the universal natural transformation into the free monad;
it is easy to see that κ̂ = ϕ̂ · F̂ η̂. Then it follows that α = κ̂T yields a natural transfor-
mation from FT to M (on Set). Let us further recall that there exist canonical natural
transformations β̂n : F̂n → F̂ ∗ defined inductively by

β̂0 = (Id
η̂

��F̂ ∗) and β̂n+1 = (F̂n+1 = F̂ F̂n F̂ β̂n

�� F̂ F̂ ∗ ϕ̂
��F̂ ∗).

We can assume w.l.o.g. that F preserves monos (hence, so does F̂ since monos in SetT

are precisely injective T -algebra homomorphisms) and that coproduct injections are
monic in SetT . Then an easy induction shows that the βn are monic, too. (One uses
that [η̂, φ̂] : Id + F̂ F̂ ∗ ∼= F̂ ∗.) This implies that for testing equivalence in the extension
semantics we can replace γ̄n with

γ̂n = βn
1 · γ̄n : TX → F̂ ∗1.

86 A. Kurz et al.

We are now ready to state the semantic comparison result:

Theorem 9. Let F be a finitary endofunctor, and let T be a finitary monad, both on Set.
Further let ρ : TF → FT be a functor-over-monad distributive law. Then two states in
FT -coalgebras are equivalent under the extension semantics iff for α : FT → M as
given above, their α-trace sequences are identified under componentwise postcomposi-
tion with F̂ ∗!T1. That is, in the above notation,

γ̂n · ηTX = F̂ ∗!T1 ·M !X · γ(n). (3)

Proof. We first recall how the Kleisli extension f → f∗ for the monad M is obtained.
Given f : X → MY one first extends this to the unique T -algebra morphism f :
TX → MY with f · ηTX = f (i. e. one applies the Kleisli extension of T). Then one
obtains f∗ :MX = F̂ ∗TX → F̂ ∗TY =MY as the unique F̂ -algebra morphism with
f∗ · η̂TX = f . Notice that in this notation we have D(γ) = γ and that the inductive
step of the definition on γ̄n can be written as γ̄n+1 = F̂ γ̄n · γ : TX → F̂n1. Observe
further that, since γ̂n, F̂ ∗!T1 andM ! are T -algebra homomorphisms, (3) is equivalent to

γ̂n = F̂ ∗!T1 ·M !X · (γ(n)). (4)

We now prove (3) by induction on n. For the base case n = 0 we have:

F̂ ∗!T1 ·M !X · γ(0) = F̂ ∗!T1 · F̂ ∗T !X · ηMX M = F̂ ∗T and def. of γ(0)

= F̂ ∗!T1 · F̂ ∗T !X · η̂TX · ηTX since ηM = η̂T · ηT
= η̂1 · !T1 · T !X · ηTX naturality of η̂
= η̂1 · !TX · ηTX uniqueness of !TX

= β̂0
1 · γ̄0 · ηTX def. of β̂0 and γ̄0

= γ̂0 · ηTX def. of γ̂0.

For the induction step we compute:

F̂ ∗!T1 ·M !X · γ(n+1)

= F̂ ∗!T1 · F̂ ∗T !X · (γ(n))∗ · αX · γ M = F̂ ∗T and def. of γ(n+1)

= F̂ ∗!T1 · F̂ ∗T !X · (γ(n))∗ · ϕ̂X · F̂ η̂TX · γ def. of α
= ϕ̂1 · F̂ F̂ ∗!T1 · F̂ F̂ ∗T !X · F̂ (γ(n))∗ · F̂ η̂TX · γ F̂ -algebra morphisms
= ϕ̂1 · F̂ F̂ ∗!T1 · F̂ F̂ ∗T !X · F̂ (γ(n)) · γ def. of (−)∗
= ϕ̂1 · F̂ γ̂n · γ induction hypothesis (4)
= ϕ̂1 · F̂ β̂n

1 · F̂ γ̄n · γ def. of γ̂n

= β̂n+1
1 · F γ̄n · γ def. of βn+1

= β̂n+1
1 · F γ̄n · γ · ηTX (−) Kleisli extension

= β̂n+1
1 · γ̄n+1 · ηTX def. of γ̄n+1

= γ̂n+1 · ηTX def. of γ̂n+1. ��

In the base example in work on extension semantics [14,7], the case of non-
deterministic automata understood as coalgebras of the form γ : X → 2 × P(X)Σ ,
the situation is as follows. The extension semantics of γ [14, Section 5.1] yields a map

Simplified Coalgebraic Trace Equivalence 87

tr : X → P(Σ∗) that maps each state x ∈ X to the language accepted by the automa-
ton with starting state x.

To understand the above theorem in terms of this concrete example, we fix FX =
2×XΣ and TX = P<ω(X) (to ensure finitarity). Understood as an algebraic signature,
F can be represented by two Σ-ary function symbols y and n. The monad M = F̂ ∗T
has these operations and those of P<ω, i.e. the join semilattice operations, which we
write using set notation; the distributive law ρ allows us to distribute joins over y and n,
favouring y over n to reflect the acceptance condition of (existential) non-deterministic
automata. The trace semantics αX : FTX → MX embeds flat terms, i.e. terms of
the form y((Ua)a∈Σ) or n((Ua)a∈Σ) ∈ FTX (with Ua ∈ P(X)), into general (non-
flat) terms. Every step in the construction of γn(c) puts a flat term on top of terms
constructed in the previous step, and then distributes T -operations (joins) over their
arguments as indicated. Therefore, the terms γ(n)(c) are terms of uniform depth in the
F -operations over sets of variables, i.e. they are elements of FnTC. For the alphabet
Σ = {0, 1}, a typical component of the trace sequence Tα

γ (c), i.e. M !Xγ
(n)(c) for

some n can be visualised as a tree like the one on the left:

y

0

����
��
��
��

1

���
��

��
��

� y

0

����
��
��
��

1

���
��

��
��

�

n

0

��
��
��

1

��
		
		
		

y

0

��

 1

��
��
��

n

0

��

1

��
		
		
		
	 y

0

��

 1

��
��
��
��

{∗} ∅ ∅ {∗} ∗ ∗ ∗ ∗.

This tree conveys the information that the empty word ε and the word 1 lead to final
states (i.e. are accepted in the sense of language semantics), and additionally that 00
and 11 are not blocked; generally, the α-trace sequence records at each stage which
words are accepted and additionally which words can be executed without deadlock.
The tree on the right is then obtained by applying F̂ ∗!T1. This erases the information
on non-blocked words, so that only the information that ε and 1 are accepted remains;
this yields the extension semantics [14,7], i.e. language semantics of the automaton,
as formally stated in Theorem 9. As noted already in Section 4, if we move to non-
blocking non-deterministic automata, then α-trace equivalence coincides directly with
language equivalence – note that in this case, T is the non-empty powerset monad, so
that !T1 is a bijection, i.e. postcomposing the α-trace sequence with F̂ ∗!T1 does not
lose information. Informally, this is clear as non-acceptance of words due to deadlock
never happens in a non-blocking nondeterministic automaton.

Fixpoint Definitions. Trace semantics, and associated linear-time logics, are also con-
sidered by Cirstea [8]. The setup is similar to that of Hasuo et al. [11] in that it applies to
systems of type X → TFX where T is a monad (that describes the branching) and F
a polynomial endofunctor (modelling the traces). The monad T is required to be com-
mutative and partially additive, thus inducing a partial additive semiring structure on
T 1. In the examples of interest, one recovers the monad T as induced by this semiring
structure.

88 A. Kurz et al.

Given a system (X, f : X → TFX), trace semantics then arises as a T 1-valued
relation R : X × Z → T 1 where Z = νF is the final coalgebra of the functor F
defining traces. For this to be well-defined, one additionally requires that the semiring
T 1 has suprema of chains, with order defined in the standard way.

The crucial difference to our approach is that trace semantics is defined coinductively
on the infinite unfolding of the functor F defining the shape of traces, whereas our
definition is inductive and based on finite unfoldings.

The difference becomes apparent when looking at examples. For labelled transition
systems X → P(A × X), the trace semantics of [8] is a function X → P(Aw) that
maps x to the set of maximal traces, and two states are trace equivalent if they have
the same set of infinite traces. This contrasts with our treatment where equivalent states
have the same finite traces. Similarly, for generative probabilistic systems, i.e. systems
of shape X → D(A × X) where D is the discrete distributions functor, the trace se-
mantics obtained in [8] associates probabilities to maximal (infinite) traces whereas
our treatment is centered around probabilities of finite prefixes. In summary, the main
conceptual difference between [8] and our approach is that between infinite and finite
traces. Technically, this difference is manifest in the fact that our approach defines traces
inductively instead of coinductively.

6 Conclusions

One of the main important aspects of the general theory of coalgebra is a uniform theory
of strong bisimulation. In coalgebraic terms, strong bisimulation is a simple concept,
readily defined, supports a rich theory and instantiates to the natural and known no-
tions for concretely given transition types. Instead of re-establishing facts about strong
bisimulation on a case-by-case basis, separately for each type of transition system, the
coalgebraic approach provides a general theory of which specific results for concretely
given systems are mere instances: a coalgebraic success story.

The question about whether a similar success story for trace equivalence can also be
told in a coalgebraic setting has been the subject of numerous papers (discussed in the
previous section in detail) but has so far not received a satisfactory answer.

One of the reasons why trace semantics has so far been a more elusive concept is the
fact that – even for concretely given systems such as labelled transition systems with
explicit termination – there are many, equally natural, formulations of trace equivalence.
This suggests that trace equivalence, by its very nature, cannot be captured by one
general definition, but needs an additional parameter that defines the precise nature of
traces one wants to capture.

We account for this fact by parametrising trace semantics by an embedding of a
functor (that defines the coalgebraic type of system under consideration) into a monad
(that allows us to sequence transitions). We have shown that our definition subsumes
existing notions of generic trace semantics [11,14,7]; it is more flexible than these in
that it avoids various additional technical conditions like order enrichment or partial
additivity of a monad. This has allowed us to deal with new examples not covered
by previous approaches, notably systems not featuring explicit termination, such as
standard labelled transition systems.

Simplified Coalgebraic Trace Equivalence 89

Proposition 7 shows that finite-depth strong bisimilarity is a specific instance of our
parametrized definition of trace equivalence, similarly as strong bisimilarity arises as a
special case of Eilenberg-Moore-style extension semantics [14,7]. One important point
to explore in future research is how further equivalences from the linear-time-branching
time spectrum [23] fit into our framework, extending previous work on extension se-
mantics [6]. Further open issues include a generalisation to behavioural preorders, as
well as appropriate logics that characterise these preorders and ensuing equivalences.

On a more personal note, and reflecting on the last 15 years of development in uni-
versal coalgebra, we have learned that neither coalgebraic nor algebraic approaches by
themselves are powerful enough to describe all aspects of state based systems, and that
only the combination of algebraic theories (here in the form of monads) and universal
coalgebra provide a satisfactory understanding.

Apart from providing a puzzle piece, we also hope to provide some physical moti-
vation for the person honoured by this collection of papers to occasionally stand on his
head, and while in this only seemingly anomalous position, to apply algebraic tech-
niques from a coalgebraic viewpoint. We hope that this exercise will contribute to
continued good health and many more insights into the algebraic foundations of our
discipline. Happy Birthday, Martin!

Acknowledgements. The authors wish to thank Bartek Klin for useful discussions, and
Erwin R. Catesbeiana for repeated hints regarding inconsistent monads.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K., Srba, J.: Reactive systems: modelling, specification
and verification. Cambridge University Press (2007)

2. Aczel, P.: Non-Well-Founded Sets. CSLI, Stanford (1988)
3. Adámek, J.: Free algebras and automata realizations in the language of categories. Com-

ment. Math. Univ. Carolin. 15, 589–602 (1974)
4. Adámek, J., Rosický, J.: Locally presentable and accessible categories. Cambridge University

Press (1994)
5. Barr, M.: Coequalizers and free triples. Math. Zeitschr. 116, 307–322 (1970)
6. Bonchi, F., Bonsangue, M., Caltais, G., Rutten, J., Silva, A.: Final semantics for decorated

traces. In: Mathematical Foundations of Programming Semantics, MFPS 2012. ENTCS,
vol. 286, pp. 73–86. Elsevier (2012)

7. Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of coalgebraic
language equivalence. ACM Trans. Comput. Log. 14(1:7) (2013)

8. Cı̂rstea, C.: A coalgebraic approach to linear-time logics. In: Muscholl, A. (ed.) FOSSACS
2014 (ETAPS). LNCS, vol. 8412, pp. 426–440. Springer, Heidelberg (2014)

9. Giarratana, V., Gimona, F., Montanari, U.: Observability concepts in abstract data type spec-
ifications. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp. 576–587. Springer,
Heidelberg (1976)

10. Goguen, J., Thatcher, J.: Initial algebra semantics. In: Switching and Automata Theory,
SWAT (FOCS) 1974, pp. 63–77. IEEE Computer Society (1974)

11. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Log. Methods
Comput. Sci. 3 (2007)

90 A. Kurz et al.

12. Hennicker, R., Wirsing, M.: Observational Specification: A Birkhoff Theorem. In: Work-
shop on Theory and Applications of Abstract Data Types, WADT 1985, Selected Papers,
pp. 119–135. Springer (1985)

13. Hoare, A.: Communicating sequential processes. Prentice-Hall (1985)
14. Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. In: Pattinson, D.,

Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 109–129. Springer, Heidelberg (2012)
15. Kelly, M.: A unified treatment of transfinite constructions for free algebras, free monoids,

colimits, associated sheaves, and so on. Bull. Austral. Math. Soc. 22, 1–83 (1980)
16. Kissig, C., Kurz, A.: Generic trace logics. arXiv preprint 1103.3239 (2011)
17. Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. In: Coalgebraic Meth-

ods in Computer Science, CMCS 1999. ENTCS, vol. 29, pp. 259–274. Elsevier (1999)
18. Reichel, H.: Behavioural equivalence — a unifying concept for initial and final specification

methods. In: Math. Models in Comp. Systems, Proc. 3rd Hungarian Comp. Sci. Conference,
pp. 27–39 (1981)

19. Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Generalizing the powerset construction,
coalgebraically. In: Lodaya, K., Mahajan, M. (eds.) Proc. IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 8, pp. 272–283 (2010)

20. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing determinization
from automata to coalgebras. Log. Methods Comput. Sci. 9(1:9) (2013)

21. Tao, T.: An Introduction to Measure Theory. AMS (2011)
22. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Logic in Computer

Science, LICS 1997, pp. 280–291 (1997)
23. van Glabbeek, R.: The linear time-branching time spectrum (extended abstract). In: Baeten,

J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg
(1990)

24. Worrell, J.: On the final sequence of a finitary set functor. Theoret. Comput. Sci. 338,
184–199 (2005)

Localized Operational Termination

in General Logics�

Salvador Lucas1,2 and José Meseguer1

1 CS Dept. University of Illinois at Urbana-Champaign, IL, USA
2 DSIC, Universitat Politècnica de València, Spain

Abstract. Termination can be thought of as the property of programs
ensuring that every input is given an answer in finite time. There are,
however, many different (combinations of) programming paradigms and
languages for these paradigms. Is a common formal definition of termi-
nation of programs in any (or most) of these programming languages
possible? The notion of operational termination provides a general defi-
nition of termination which relies on the logic-based description of (the
operational semantics of) a programming language. The key point is cap-
turing termination as the absence of infinite inference, that is: all proof
attempts must either successfully terminate, or they must fail in finite
time. This global notion is well-suited for most declarative languages,
where programs are theories in a logic whose inference system is special-
ized to each theory to characterize its computations. Other programming
languages (e.g., imperative languages) and applications (e.g., the evalu-
ation of specific expressions and goals in functional and logic programs)
require a more specialized treatment which pays attention not just to
theories, but to specific formulas to be proved within the given theory.
For instance, the execution of an imperative program can be viewed as a
proof of an specific formula (representing the program) within the com-
putational logic describing the operational semantics of the programming
language. In such cases, an appropriate definition of termination should
focus on proving the absence of infinite proofs for computations local-
ized to specific goals. In this paper we generalize the global notion of
operational termination to this new setting and adapt the recently intro-
duced OT-framework for mechanizing proofs of operational termination
to support proofs of localized operational termination.

Keywords: General Logics, Operational Termination, Program Termi-
nation.

1 Introduction

Martin Wirsing has made so many fundamental scientific contributions that,
when trying to relate our paper for this Festschrift to them, we are forced to

� Partially supported by NSF grant CNS 13-19109. Salvador Lucas’ research, devel-
oped during a sabbatical year at the UIUC, was also supported by the EU (FEDER),
MECD grant PRX12/00214, MINECO projects TIN2010-21062-C02-02 and TIN
2013-45732-C4-1-P, and GV projects BEST/2014/026 and PROMETEO/2011/052.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 91–114, 2015.
c© Springer International Publishing Switzerland 2015

92 S. Lucas and J. Meseguer

select only some of the important lines of research he has opened up, and, even
in such lines, to mention just a few key papers.

Our present work should be viewed as closely connected with Martin’s pio-
neering work on formal specification languages [23,24], and their use in giving
a formal semantics to both programming languages [4] and sotware modeling
languages [25,3]. A general idea emerging from all these papers is that formal
specifications can be used either directly as declarative programs, or indirectly
as providing a formal semantics for imperative languages or software modeling
languages. The two main questions posed and addressed in this paper explore a
practical aspect of this general idea:

1. Can we use general logics to give a language-independent notion of termina-
tion that applies to both declarative and imperative languages and also to
modeling languages?

2. Can language-independent termination proof methods based on this general
notion of termination be developed and used in practice?

Using the framework of general logics [16], we proposed, with other colleagues,
the notion of operational termination as a first answer to question (1) focusing
initially on declarative languages [15,9]. The idea is intuitively simple: a declara-
tive program specified by a theory S in a logic L terminates if no infinite proofs
are possible in S, so that an implementation trying to execute a goal will either
succeed in finite time, or fail in all its proof attempts also in finite time.

More recently, we have given in [14] a first answer to question (2), also for
declarative languages, by proposing a logic-independent Operational Termina-
tion Framework (OT Framework) based on the idea of transforming OT poblems
into simpler ones by means of processors. This generalizes to any logic the de-
pendency pair framework ideas of [11] used for proving termination of Term
Rewriting Systems (TRS).

In this paper we answer for the first time questions (1) and (2) in their full
generality; that is, for declarative languages and also for imperative languages
or even for software modeling languages. The general idea is still the same: in
all these cases the formal semantics will be given by an inference system, so that
operational termination will be the absence of infinite inference in such a system.
There is, however, a further generalization needed, namely, one allowing us to
localize the inference to the relevant goals. For example, a programming language
worth its salt will be Turing complete. Therefore, the operational termination of
its inference system (for example, of the SOS rules defining its formal semantics)
is a priori out of the question. But we are not interested in proving that all
programs in such a language terminate: we just want to prove that this program
P , or, more generally, this class C of programs (e.g., loop-free programs) do
indeed terminate. Formally, what is needed is to localize the OT notion to a
desired set Λ of goals (i.e., formulas) so that we can show absence of infinite
inference for proof trees rooted on goals belonging to Λ. We then need to develop
an OT framework parameterized by the class Λ of goals to which we are localizing
our deduction.

Localized Operational Termination in General Logics 93

(Refl)
t→∗ t

(Tran)
s→ u u→∗ t

s→∗ t
(Cc)

s→ t

c(s)→ c(t)

(Cf)
s→ t

f(s)→ f(t)
(Cg)

s→ t

g(s)→ g(t)
(Repl1)

g(a)→ c(b)

(Repl2)
b→ f(a)

(Repl3)
f(d)→ d

(Repl4)
g(x)→∗ c(y)

f(x)→ x

Fig. 1. Inference rules for the CTRS in Example 1

As we show in examples, this localization idea is useful not just for imperative
or modeling languages, but for declarative ones as well, because we are often
interested in the termination not of all possible goals, but of a restricted class
Λ. Let us consider some examples.

Example 1. The following Conditional Term Rewriting System (CTRS) R:

g(a)→ c(b) f(d)→ d
b→ f(a) f(x)→ x⇐ g(x)→ c(y)

is not operationally terminating: there is an infinite proof tree for the inference
system in Figure 1, which specializes the generic inference system of the CTRS
logic (see Figure 3) to R:

g(a)→ c(b)

b→ f(a)
c(b)→ c(f(a))

...
f(a)→ a

c(f(a))→ c(a) c(a)→∗ c(b)
c(f(a))→∗ c(b)

c(b)→∗ c(b)
g(a)→∗ c(b)
f(a)→ a

This infinite proof concerns a single rewriting step f(a)→ a.

Even though there are infinite proof trees for goals like f(a)→ a in the example,
there can be similar goals (e.g., f(d)→ d) which are operationally terminating,
i.e., no infinite proof tree arises when a proof is attempted for such a goal.
However, the current, global notion of operational termination of a given theory S
in a logic L [15, Definition 4] does not give an account of these local phenomena.
But such local phenomena are actually essential to characterize termination in
other programming languages, like the imperative language IMP (see, e.g., [22,
Chapter 2]).

Example 2. Consider the following imperative program P :

x:=10;

while x > 0 do x:=x-1

94 S. Lucas and J. Meseguer

The operational semantics of imperative programming languages often describes
computations as transformations from certain configurations involving states
(i.e., assignments of values to the program variables) and program expressions
and returning a final state which represents the outcome of the program (if any).
The inference rules describing a big-step operational semantics for IMP are given
in Figure 2 (see [22, Chapter 2]; for simplicity, only the inference rules that are
needed for the execution of P are shown). Termination of P cannot be proved

(Const) 〈ρ | n〉 ⇒N n (Var) 〈ρ | x〉 ⇒N ρ(x)
if n represents n ∈ N

(True) 〈ρ | true〉 ⇒B true (False) 〈ρ | false〉 ⇒B false

(GT)

〈ρ | a〉 ⇒N n 〈ρ | a′〉 ⇒N n′

〈ρ | a > a′〉 ⇒B true (GF)

〈ρ | a〉 ⇒N n 〈ρ | a′〉 ⇒N n′

〈ρ | a > a′〉 ⇒B false

if n is greater than n′ if n is not greater than n′

(Sub)

〈ρ | a〉 ⇒N n 〈ρ | a′〉 ⇒N n′

〈ρ | a - a′〉 ⇒N m (Assig)

〈ρ | a〉 ⇒N n

〈ρ | x := a〉 ⇓ ρ[x → n]

where m is n− n′

(Seq)

〈ρ | S〉 ⇓ ρ′′ 〈ρ′′ | S′〉 ⇓ ρ′

〈ρ | S;S′〉 ⇓ ρ′ (WhF)

〈ρ | b〉 ⇒B false

〈ρ | while b do S〉 ⇓ ρ

(WhT)

〈ρ | b〉 ⇒B true 〈ρ | S〉 ⇓ ρ′′ 〈ρ′′ | while b do S〉 ⇓ ρ′

〈ρ | while b do S〉 ⇓ ρ′

Fig. 2. Excerpt of inference rules for the programming language IMP

as the absence of any infinite proof tree for the inference system in Figure 2. In
fact, since IMP is Turing complete, operational termination of IMP’s inference
system would mean that all programs terminate, which is obviously false. Note
also that, in sharp contrast to Figure 1 for R in Example 1, where each CTRS
has it own, specialized inference system, the IMP inference system is the same
for all (terminating or nonterminating) IMP programs! This problem can be
solved with a localized notion of operational termination for specific goals like,
e.g., the one representing the execution of P :

〈ρ0 | x:=10; while x>0 do x:=x-1〉 ⇓ ρ

where ρ0 is an arbitrary valuation of variables.

Of course, the need for a localized notion of termination does not arise just for
imperative programs, or because the logic has a single theory of interest. It is also
felt for declarative programs which are understood as program-specific theories.

Localized Operational Termination in General Logics 95

(Refl) t→∗ t (Cong)

si → ti
f(s1, . . . , si, . . . , sk)→ f(s1, . . . , ti, . . . , sk)

for all k-ary symbols f and 1 ≤ i ≤ k

(Tran)

s→ u u→∗ t

s→∗ t (Repl)

s1 →∗ t1 . . . sn →∗ tn
�→ r

for each rule �→ r ⇐ s1 → t1 · · · sn → tn

Fig. 3. Inference rules for the CTRS logic (all variables are universally quantified)

This is because not all formulas are equally meaningful. For example, a declar-
ative concurrent object system can be naturally programmed with rewrite rules
modulo AC [17]. But not all concurrent object configurations are meaningful:
configurations where object identities are unique are essential for many purposes.
See Examples 7 to 10 in Section 3 and various examples throughout the paper
for other illustration of the general need for local operational termination.

In this paper we address this problem and make the following contributions:
(1) we generalize the definition of operational termination to make it parametric
on a set of initial formulas Λ which are used to restrict the number of considered
proof trees; (2) we generalize the recently introduced framework for proving op-
erational termination of theories in general logics [14] to deal with such localized
operational termination problems; then, (3) we use the new localized formulation
of the OT framework to illustrate how such proofs can be achieved in practice;
finally, (4) we show that the notion of locality is helpful to characterize and prove
termination of imperative programs based on their formal semantics.

2 Logics and Operational Termination

Our general notion of logic is in the spirit of both entailment systems in [16], and
schematic axiomatic systems in [1], but is made more expresive by supporting
inference systems (closely related to Aczels’ axiomatic systems) that are para-
metric not just on signatures, but also on theories. This need is clearly illustrated
by the CTRS inference system in Figure 3.

Example 3. When the inference system in Figure 3 is specialized to R in Exam-
ple 1, the generic (Cong) rule specializes to three concrete rules (for c, f and g,
respectively), and the (Repl) inference rule specializes to four concrete inference
rules, one for each rewrite rule. This specialization is shown in Figure 1.

A second feature of inference is that, even when alredy specialized to a given
theory S, the inference rules are schematic. That is, for S the CTRS in Example
1 we have a finite set of inference rules, but an infinite set of instantiations
of such rules to concrete formulas in the syntax of Example 1. This is made
explicit in the formulation of the (Repl) rule and is left implicit for the other
rules, where t, r, s, u, and so on, are meta-variables instantiatable by any term
in the signature of Example 1.

96 S. Lucas and J. Meseguer

Definition 1. A logic L is a quadruple L = (Th(L),Form , Sub, I), where: (i)
Th(L) is the class of theories of L, (ii) Form is a mapping sending each theory
S ∈ Th(L) to a set Form(S) of formulas of S, (iii) Sub is a mapping sending
each S ∈ Th(L) to its set Sub(S) of substitutions, with a containment Sub(S) ⊆
[Form(S)→Form(S)], and (iv) I is a mapping sending each S ∈ Th(L) to a
subset I(S) ⊆ Form(S) × Form(S)∗, where each (A,B1 . . . Bn) ∈ I(S) is called
an inference rule for S and denoted B1...Bn

A .

Example 4. For L = CTRS , (i) Th(CTRS) is the class of CTRSs R = (F , R)
with F a signature and R a set of conditional rules (with terms over the sig-
nature F and set of variables X); (ii) Form(R) = {s → t | s, t ∈ T (F ,X)} ∪
{s →∗ t | s, t ∈ T (F ,X)}, where T (F ,X) is the F -term algebra on the vari-
ables X ; (iii) Sub(R) = {λϕ.σ(ϕ) | σ ∈ HomF [T (F ,X) → T (F ,X)]}, where
HomF [T (F ,X) → T (F ,X)] denotes the set of F -endomorphisms of T (F ,X),
and where σ(s → t) = σ(s) → σ(t), and σ(s →∗ t) = σ(s) →∗ σ(t); and (iv)
I(R) is the instantiation of the generic inference system of Figure 3 as exempli-
fied in Example 1.

Example 5. For L = IMP, (i) Th(IMP) consists of a single theory, also denoted
IMP; (ii) Form(IMP) consists of the following formulas:

Form(IMP) = {〈ρ | a〉 ⇒N n | ρ ∈ ExpState , a ∈ ExpA, n ∈ Z}
∪ {〈ρ | b〉 ⇒B t | ρ ∈ ExpState , b ∈ ExpB , t ∈ Bool}
∪ {〈ρ | S〉 ⇓ ρ′ | ρ, ρ ∈ ExpState , S ∈ Stmt}

where ExpState consists of variables (e.g., ρ, ρ′, . . .) and appropriate representa-
tions of memory states (e.g., finite sequences of pairs (x, n), where x ∈ Var is a
program variable and n ∈ Z); and ExpA, ExpB and Stmt are the sets of arith-
metic/boolean expressions and statements which are valid in IMP, each includ-
ing variables like a, a′, . . ., b, b′, . . ., S, S′, . . . which are intended to be bound to
the corresponding kind of expressions. Note that program variables x are treated
as constant symbols at this logical level); (iii) Sub(IMP) are mappings from
Form(IMP) to Form(IMP) where given θ ∈ Sub(IMP) and φ ∈ Form(IMP),
θ(φ) is obtained by simultaneously replacing all occurrences of variables ρ, a, b, S
of the types indicated above by expressions of the corresponding type associated
to each variable in φ; and (iv) I(IMP) is the inference system of Figure 2.

Note that if A ∈ Form(S) and σ ∈ Sub(S), then its instantiation σ(A), denoted
by Aσ, is in Form(S). In what follows we assume some standard properties about
the substitutions σ ∈ Sub(S) by making explicit a set of terms Term(S) and a
subset of variables Var(S) such that there is an injective mapping Sub(S) →
[Var(S)→ Term(S)].
Example 6. For R ∈ Th(CTRS), Var(S) = X , Term(S) = T (F ,X), and
λϕ.σ(ϕ) ∈ Sub(R) is identified with the substitution σ : X → T (F ,X) (with
the natural extension to formulas s→ t and s→∗ t). This is similar for IMP.

We then define dom(σ) = {x ∈ Var(S) | xσ �= x}, and assume that there is a
set fvars(P) ⊆ Var(S) of free variables for each P ∈ Form(S). We assume three

Localized Operational Termination in General Logics 97

standard properties: (1) Extensibility: if dom(σ) ⊆ Z ⊆ Var(S), then there is
a τ with dom(τ) = Z such that if fvars(ϕ) ⊆ dom(σ), then ϕτ = ϕσ. (2)
Renaming: if fvars(ϕ) �= ∅ and Y ⊆ Var(S) is finite, there are substitutions σ, σ′

with ϕ = ϕσσ′ and fvars(ϕσ) ∩ (fvars(ϕ) ∪ Y) = ∅. (3) Gluing: given {σn}n∈N

with dom(σi) ∩ dom(σj) = ∅ whenever i �= j, there is a σ with dom(σ) =⋃
n∈N dom(σn), and such that whenever fvars(ϕ) ⊆ dom(σi) for some i ∈ N,

then ϕσ = ϕσi. Given φ, ϕ ∈ Form(S), mguS(φ, ϕ) ⊆ Sub(S) denotes a set such
that: (i) ∀σ ∈ mguS(φ, ϕ), ϕσ = φσ; and (ii) ∀τ ∈ Sub(S) such that φτ = ϕτ ,
there is σ ∈ mguS(φ, ϕ), θ ∈ Sub(S) such that τ = σθ.

Given a logic L and a theory S ∈ Th(L) its theorems are the formulas of
Form(S) for which we can derive a closed proof tree in the following sense:

Definition 2. Let L = (Th(L),Form , Sub, I) be a logic and S ∈ Th(L). Then,
the set of (finite) proof trees for S and the root of a proof tree are defined induc-
tively as follows. A proof tree T is either

– an open goal, simply denoted as G, where G ∈ Form(S). Then, we denote
root(T) = G.

– a derivation tree with root G, denoted as

T1 · · · Tn
G

(ρ)

where G ∈ Form(S), T1,. . . ,Tn are proof trees (for n ≥ 0), and ρ : B1...Bn

A is
an inference rule in I(S), such that G = Aσ, root(T1) = B1σ, . . . , root(Tn) =
Bnσ for some substitution σ ∈ Sub(S). We write root(T) = G.

We say that a proof tree for S is closed whenever it is finite and contains no open
goals. If there is a closed proof tree T for ϕ ∈ Form(S) using I(S) (i.e., such
that root(T) = ϕ), we often denote this by writing S � ϕ. Notice the difference
between G, an open goal, and G (ρ), a simple derivation tree consisting of a goal
closed by a rule ρ without premises.

Definition 3. A proof tree T for S is a proper prefix of a proof tree T ′ if there
are one or more open goals G1, . . . , Gn in T such that T ′ is obtained from T by
replacing each Gi by a derivation tree Ti with root Gi. We denote this as T ⊂ T ′.

An infinite proof tree for S is an infinite increasing chain of finite trees, that
is, a sequence {Ti}i∈N such that for all i, Ti ⊂ Ti+1.

Definition 4 (Well-formed proof tree). A proof tree T for S is well-formed
if it is either an open goal, or a closed proof tree, or a derivation tree

T1 · · · Tn
G

(ρ)

where there is i, 1 ≤ i ≤ n such that T1, . . . , Ti−1 are closed, Ti is well-formed
but not closed, and Ti+1, . . . , Tn are open goals. An infinite proof tree for S is
well-formed if it is an ascending chain of well-formed finite proof trees.

98 S. Lucas and J. Meseguer

Definition 5 (Operational termination). A theory S in a logic L is called
operationally terminating if no infinite well-formed proof tree for S exists.

Remark 1. Defining operational termination as the absence of infinite well-formed
proof trees imposes a left-to-right subgoal evaluation proof strategy1 when evalu-
ating subgoals (see [15] for further motivation about that). This strategy is quite
natural and has important advantages: (i) is complete (will find any closed proof
tree that exists), (ii) avoids building infinite proof trees with several infinite but
disjoint subtrees, and (iii) pinpoints a single failure goal when a non-closed well-
formed tree cannot be further extended. One can of course consider inference
systems that use other proof strategies. This suggests making the proof strategy
S of choice an explicit parameter, so that one could define a broader notion of
S-operational termination. We leave a detailed development of such a notion as
an interesting topic of future work.

3 Localized Operational Termination

As remarked in the introduction, the main purpose of this paper is extending
the notion of operational termination to make it localized to specific formulas.
We first define the class of proof trees we are interested in.

Definition 6. Given a subset Λ ⊆ Form(S), we say that a proof tree T for S
is Λ-localized if root(T) = σ(φ) for some φ ∈ Λ and σ ∈ Sub(S).

Note that a proof tree is Λ-localized only if Λ �= ∅.

Definition 7 (Localized operational termination). Given S ∈ Th(L) and
Λ ⊆ Form(S), we say that S is Λ-local operationally terminating if there is no
infinite Λ-localized well-formed proof tree for S.

So Λ-local operational termination means that, for all initial goals ϕ which are
instances ϕ = σ(φ) of some φ ∈ Λ, an L-interpreter will either succeed in finite
time in producing a closed proof tree, or will fail in finite time, not being able
to close or extend further any of the possible proof trees, after exhaustively
searching all such proof trees. The following fact is obvious.

Proposition 1. Let S ∈ Th(L), Λ ⊆ Form(S), θ ∈ Sub(S), and θ(Λ) = {θ(φ) |
φ ∈ Λ}. If S is Λ-local operationally terminating, then it is θ(Λ)-local opera-
tionally terminating.

Example 7. If Λ = {〈λx.0 | x:=10; while x>0 do x:=x-1〉 ⇓ ρ}, then ter-
mination of P in Example 2 is by definition equivalent to Λ-local operational
termination of the IMP logic.

1 In a broad sense of the word “strategy,” since the choice of inference rule used to
extend the proof tree is non-deterministic.

Localized Operational Termination in General Logics 99

Example 8. If Λ = {s →∗ t} for specific terms s and t, then the Λ-local oper-
ational termination of R in Example 1 implies the decidability of the concrete
reachability problem s→∗ t inR. This implies that local operational termination
is, in general, undecidable.

Example 9. If Λ = {f(d)→∗ x} for some variable x, then the Λ-local operational
termination of R in Example 1 corresponds to the operational termination of
rewriting computations starting from f(d). This would correspond to the notion
of local (operational) termination (for term f(d)) in (conditional) term rewriting,
see, e.g., [10] for a similar notion for unconditional term rewriting.

Example 10. If Λ = {x → y} for variables x and y, then the Λ-local opera-
tional termination of a CTRS corresponds to termination of proofs of one-step
rewritings. In [13], we investigate the appropriate definition of normal forms
in Conditional TRSs and show that, besides requiring the irreducibility of such
terms, it is desirable to ensure that normal forms of CTRSs do not have associ-
ated infinite proof trees. CTRSs fulfilling this requirement are called normal [13].
The {x→ y}-local operational termination (there referred to as 1-termination)
of CTRSs is a sufficient condition for CTRSs to be normal.

Every theory S is ∅-local operationally terminating. If a theory S in a logic L is
operationally terminating, then it is Λ-local operationally terminating for all Λ ⊆
Form(S). Furthermore, operational termination can be viewed as a particular
case of Λ-local operational termination. Given a logic L and S ∈ Th(L), we let
ΛS = {A | (A,B1, . . . , Bn) ∈ I(S), n > 0}. Then, we have the following.

Theorem 1. A theory S in a logic L is operationally terminating if and only if
it is ΛS-local operationally terminating.

4 Proof Jumps and Localized Operational Termination

In [14] operational termination of a theory S in a logic L is characterized as
the absence of chains of proof jumps. Proof jumps capture the use of inference
rules in a particular branch of a (possibly infinite) proof tree. In the following,
we often denote sequences B1 · · ·Bn of formulas by the vector Bn.

Definition 8. [14, Definitions 6 and 7] Let L be a logic and S ∈ Th(L). A proof
jump for S is a pair (A ⇑ Bn), where n ≥ 1 and A,B1, . . . , Bn ∈ Form(S).
Let Jumps(S) be the set of all proof jumps for S. The set JS of proof jumps of
I(S) is:

JS = {(A ⇑ Bi) |
Bn

A
∈ I(S), 1 ≤ i ≤ n}.

Example 11. The proof jumps for the inference rules in Figure 1 are:

(Tran1) s→∗ t ⇑ s→ u (Tran2) s→∗ t ⇑ (s→ u, u→∗ t)

(Cc) c(s)→ c(t) ⇑ s→ t (Cf) f(s)→ f(t) ⇑ s→ t

(Cg) g(s)→ g(t) ⇑ s→ t (Repl3) f(x)→ x ⇑ g(x)→∗ c(y)

100 S. Lucas and J. Meseguer

Example 12. The proof jumps for the inference rules in Figure 2 are

(GT1) 〈ρ | a > a′〉 ⇒B true ⇑ 〈ρ | a〉 ⇒N n

(GT2) 〈ρ | a > a′〉 ⇒B true ⇑ (〈ρ | a〉 ⇒N n, 〈ρ | a′〉 ⇒N n′)

(GF1) 〈ρ | a > a′〉 ⇒B false ⇑ 〈ρ | a〉 ⇒N n

(GF2) 〈ρ | a > a′〉 ⇒B false ⇑ (〈ρ | a〉 ⇒N n, 〈ρ | a′〉 ⇒N n′)

(S1) 〈ρ | a - a′〉 ⇒N m ⇑ 〈ρ | a〉 ⇒N n

(S2) 〈ρ | a - a′〉 ⇒N m ⇑ (〈ρ | a〉 ⇒N n, 〈ρ | a′〉 ⇒N n′)

(As) 〈ρ | x := a〉 ⇓ ρ[x → n] ⇑ 〈ρ | a〉 ⇒N n

(Sq1) 〈ρ | S;S′〉 ⇓ ρ′ ⇑ 〈ρ | S〉 ⇓ ρ′′

(Sq2) 〈ρ | S;S′〉 ⇓ ρ′ ⇑ (〈ρ | S〉 ⇓ ρ′′, 〈ρ′′ | S′〉 ⇓ ρ′)

(WF) 〈ρ | while b do S〉 ⇓ ρ ⇑ 〈ρ | b〉 ⇒B false

(WT1) 〈ρ | while b do S〉 ⇓ ρ′ ⇑ 〈ρ | b〉 ⇒B true

(WT2) 〈ρ | while b do S〉 ⇓ ρ′ ⇑ (〈ρ | b〉 ⇒B true, 〈ρ | S〉 ⇓ ρ′′)

(WT3) 〈ρ | while b do S〉 ⇓ ρ′ ⇑ (〈ρ | b〉 ⇒B true, 〈ρ | S〉 ⇓ ρ′′, 〈ρ′′ | while b do S〉 ⇓ ρ′)

Definition 9. [14, Definition 8] Let L be a logic, S ∈ Th(L), and J ⊆ Jumps(S).
An (S,J)-chain is a sequence (ψi)i≥1 of (renamed versions of) proof jumps
ψi : (A

i ⇑ Bi
ni
) ∈ J together with a substitution σ such that for all i ≥ 1,

1. σ(Bi
ni
) = σ(Ai+1) and,

2. for all j, 1 ≤ j < ni, S � σ(Bi
j) holds.

A proof jump ψ = A ⇑ Bn is connected to the next one by using the last formula
Bn in the sequence Bn, provided that (the instances of) the Bi, 1 ≤ i < n, have
closed proof trees in I(S). In the following, we call A, Bn−1 and Bn the head,
the conditional part and the hook of ψ, respectively.

Theorem 2. [14, Theorem 1] A theory S ∈ Th(L) is operationally terminating
if and only if there is no infinite (S,JS)-chain.

We use the previous notions to characterize localized operational termination
(Theorem 3). First, we need an auxiliary definition which is essential to define
the OT-framework in Section 6 and represents the idea of a conditional use of
formulas describing local operational termination (see Definition 11).

Definition 10 (Localization). A (possibly empty) sequence γ1, . . . , γn of for-
mulas γi ∈ Form(S), 1 ≤ i ≤ n together with a formula φ ∈ Form(S) is called a
localization (for S). Let Loc(S) = Form(S)∗ × Form(S) be the set of all local-
izations (γ, φ) for S. Here, φ is called the localizing formula and γ is the list of
localized conditions (which can be empty, i.e., γ = ε).

Localized Operational Termination in General Logics 101

Remark 2 (Localizations and proof jumps). A localization (γ, φ) ∈ Loc(S) can
be written # ⇑ γ, φ (for # a dummy symbol which could be identified with
a constant boolean value, for example) emphasizing the idea that localizations
can be seen as proof jumps whose head is never used. This approach will be very
useful in the following.

Definition 11. Let L ⊆ Loc(S). An (S,J)-chain (Ai ⇑ Bi
ni
)i≥1 with substi-

tution σ is L-localized if there is (γ, φ) ∈ L such that (1) for all γ ∈ γ, S � σ(γ)
holds and (2) σ(A1) = σ(φ).

The following result, whose proof is analogous to that of Theorem 2, characterizes
localized operational termination.

Theorem 3. A theory S ∈ Th(L) is Λ-local operationally terminating for some
Λ ⊆ Form(S) if and only if there is no infinite ({ε}×Λ)-localized (S,JS)-chain.

In the following, given J ⊆ Jumps(S), we let LJ = {(ε, A) | A ⇑ Bn ∈ J }.

5 Proof Graph

We trace (S,J)-chains as paths in the proof graph PG(S,J):

Definition 12. [14, Definition 9] The proof graph PG(S,J) has the proof jumps
in J as the set of nodes. There is an arc from ψ : (A ⇑ Bm) to ψ′ : (A′ ⇑ B′

n)
iff there is a substitution σ such that σ(Bm) = σ(A′) and, for all j, 1 ≤ j < m,
S � σ(Bj) holds. Here, we assume that fvars(ψ)∩fvars(ψ′) = ∅ for all ψ, ψ′ ∈ J ,
ψ �= ψ′ (renamed if necessary).

PG(S,J) is not computable due to checking for the existence of closed proof
trees for the σ(Bj). We approximate it by just omitting such a requirement.

Definition 13. [14, Definition 10] The estimated proof graph EPG(S,J) has
the same nodes than PG(S,J). There is an arc from ψ : (A ⇑ Bm) to ψ′ :
(A′ ⇑ B′

n) iff there is σ ∈ Sub(S) such that σ(Bm) = σ(A′).

Example 13. The graph EPG(R,J) for J in Example 11 is the following:

Cc Cf

Cg Tran1 Tran2

Repl3

For instance, there is an arc from (Tran1) to (Cf) because s → u and f(s′) →
f(t′) unify with substitution σ such that σ(s) = f(s′) and σ(u) = f(t′). Note
that s, s′, t′ and u are different variables due to the possibility of renaming. And
EPG(IMP,J) for J in Example 12 is depicted in Figure 4.

102 S. Lucas and J. Meseguer

S1 S2

GT2GT1 GF1 GF2

As Sq1 Sq2

WF WT1 WT2

WT3

Fig. 4. Proof graph for the proof jumps in Example 12

Since L-localized chains must start at a node of the graph which unifies with
some of the localizing formulas in L, we can restrict our attention to the subgraph
of PG(S,J) obtained as the span of such nodes. The span of L ⊆ Loc(S) over
PG(S,J) is the subgraph of PG(S,J) which is obtained from the nodes that are
reachable from those nodes A ⇑ B in the graph satisfying that σ(A) = σ(φ) for
some (γ, φ) ∈ L and substitution σ such that for all γ ∈ γ, S � σ(γ) holds.
Definition 14 (Localized proof graph). Let L ⊆ Loc(S). The L-localized
proof graph PGL(S,J) of (S,J) is the span of L over PG(S,J).

Again, the localized proof graph is not computable but can be approximated.

Definition 15 (Estimated localized proof graph). Let L ⊆ Loc(S) and
L0 = {(ε, φ) | (γ, φ) ∈ L}. The estimated L-localized proof graph EPGL(S,J)
of (S,J) is the span of L0 over EPG(S,J).

Example 14. For L = {(ε, 〈ρ | x:= a〉 ⇓ ρ′)} (where x, a, ρ and ρ′ are variables)
and J in Example 12, with EPG(IMP,J) in Figure 4, EPGL(IMP,J) is:

S1 S2 As

Remark 3. The L-localized graph in Example 14 makes explicit that termination
of assignment statements depends on the termination behavior of the evaluation
of arithmetic expressions only (see also Proposition 1).

6 Mechanizing Proofs of Localized Operational
Termination

Let OT (L) be the set of Localized Operational Termination Problems (S,J , L),
where S is a theory of L, J is a set of proof jumps and L is a set of localizations.

OT (L) = {(S,J , L) | S ∈ Th(L),J ⊆ Jumps(S), L ⊆ Loc(S)}

Localized Operational Termination in General Logics 103

Definition 16 (Localized OT problem). The OT problem τ = (S,J , L) is
finite iff there is no infinite L-localized (S,J)-chain; τ is infinite iff it is not
finite, i.e., there is an infinite L-localized (S,J)-chain.

We can recast now Theorem 3 as follows:

Theorem 4. A theory S in a logic L is Λ-local operationally terminating for
some Λ ⊆ Form(S) if and only if (S,JS , {ε} × Λ) is finite.

When proofs of Λ-local operational termination are attempted, we often refer to
the OT problem τ1 = (S,JS , {ε} × Λ) as the initial OT problem.

Example 15. With Λ = {f(d)→ t} in Example 9, the initial OT problem for R
in Example 1 is τ1 = (R,J , {(ε, f(d)→ t)}) with J as in Example 11.

Example 16. With Λ = {〈λx.0 | x:=10; while x>0 do x:=x-1〉 ⇓ ρ} for P in
Example 2, the initial OT problem is

τ1 = (IMP,J , {(ε, 〈λx.0 | x:=10; while x>0 do x:=x-1〉 ⇓ ρ})

with J as in Example 12.

And, according to Theorem 1, we have the following.

Corollary 1. A theory S in a logic L is operationally terminating if and only
if (S,JS , {ε} × ΛS) is finite.

In the OT Framework, processors are intended to facilitate proofs of operational
termination by simplifying OT problems in a number of ways.

Definition 17. [14, Definition 12] An OT processor is a function P : OT (L)→
P(OT (L)) ∪ {no} which maps an OT problem into either a set of OT problems
or the answer “no”. P is

– sound if for all OT problems τ , we have that τ is finite whenever P(τ) �= no
and all OT problems in P(τ) are finite.

– complete if for all OT problems τ , we have that τ is infinite whenever P(τ) =
no or P(τ) contains an infinite OT problem.

Processors transform OT problems in a divide and conquer scheme by decom-
posing OT problems into smaller ones, which are then independently treated.
This yields what we call an OTF-tree (see Definition 18 below), which collects all
successive applications until a trivial OT problem (which can be easily proved
finite) is obtained. Trivial OT problems (S,J , L) are those where J = ∅ or
L = ∅. Then, no L-localized (S,J)-chain is possible.

Definition 18. [14, Definition 13] Let τ0 ∈ OT (L). We construct a tree (which
we call an OTF-tree for τ0) whose nodes are labeled with either OT problems or
“yes” or “no”; the root is labeled with τ0. For every inner node n with label τ ,
there is a processor P such that:

104 S. Lucas and J. Meseguer

1. if P(τ) = no then n has a single child with label “no”.
2. if P(τ) = ∅ then n has a single child with label “yes”.
3. if P(τ) = {τ1, . . . , τm} for some m > 0, then n has children n1, . . . , nm with

labels τ1, . . . , τm respectively.

The following result formalizes the use of processors in our proof framework.

Theorem 5. [14, Theorem 3] Let τ ∈ OT (L). If all leaves of an OTF-tree for
τ are labeled with “yes” and all involved processors are sound, then τ is finite.
If there is a leaf labeled with “no” and all processors used on the path from the
root to this leaf are complete, then τ is infinite.

Remark 4. In the following, J is finite in every OT-problem (S,J , L).

7 Some Processors for the Localized OT Framework

This section introduces several processors to prove operational termination in
the (localized) OT framework. In the following, given a set J of proof jumps
(or localizations, viewed as proof jumps) and ψ ∈ J , the (possible) replacement
J [K]ψ of ψ in J by the (possibly empty) set of proof jumps in K is given by:

J [K]ψ =

{
(J − {ψ}) ∪ K if ψ ∈ J
J otherwise

Our first processor just shows that localization formulas can be handled sepa-
rately in proofs of operational termination.

Theorem 6 (Decomposition of local formulas). Let (S,J , L) ∈ OT (L).

PDecL(S,J , L) = {(S,J , {λ}) | λ ∈ L}

is a sound and complete processor.

Remark 5. If L is infinite, then PDecL yields an OTF-tree with nodes of infinite
degree (i.e., having infinitely many branches), which is nevertheless well defined.
Although using such a tree for proving an OT problem finite is unfeasible, proofs
of infiniteness of OT problems are still possible as they amount to checking that
there is a branch of finite depth with a leaf labeled with no.

7.1 Expansion of Localizations and Proof Jumps

Recall the set mguS(A,B) of most general unifiers of formulas A,B ∈ Form(S)
in Section 2. If ψ = A ⇑ Bn (where A can be #), we let

Kψ(J) = {(C ⇑ Dm, θ) | C ⇑ Dm ∈ J , θ ∈ mguS(Bn, C)}

representing the set of proof jumps that can immediately follow ψ in an (S,J)-
chain. The following processor uses proof jumps to expand the hook Bn of ψ =
A ⇑ Bn in such a way that all possible connections on Bn are considered.

Localized Operational Termination in General Logics 105

Theorem 7 (Expansion with proof jumps). Let (S,J , L) ∈ OT (L) and
ψ ∈ J ∪ L be ψ = A ⇑ Bn. Let

H = {θ(A) ⇑ θ(B1), . . . , θ(Bn−1), θ(D1), . . . , θ(Dm) | (C ⇑ Dm, θ) ∈ Kψ(J)}

Then,
PEPJ (S,J , L) = {(S,J [H]ψ , L[H]ψ)}

is a sound and complete processor.

If H in Theorem 7 is empty, a proof jump (if ψ ∈ J) or localization (if ψ ∈ L)
is removed.

Example 17. Consider τ1 = (R,J , {(ε, f(d) → t)}) in Example 15. The expan-
sion of (ε, f(d)→ t) (or # ⇑ f(d)→ t, in proof-jump-like notation) in Example
15 using (Cf) and (Repl3) in Example 11 yields L′ = {(ε, d → u′), (ε, g(d) →∗

c(y))}. Hence, PEPJ (τ1) = {τ2}, where τ2 = (R,J , L′).
Now, PDecL(τ2) = {τ31, τ32}, where τ31 = (R,J , {(ε, d → u′)}) and τ32 =

(R,J , {(ε, g(d) →∗ c(y))}). An application of PEPJ to τ31 proves it finite, be-
cause no expansion of d→ u′ with the proof jumps in J is possible. Therefore,
PEPJ (τ31) = {(R,J , ∅)}, which is a finite OT problem. On the other hand,
PEPJ (τ32) = {τ321}, where τ321 = (R,J , {(g(d)→ u, u→∗ c(y))}).

Example 18. For τ1 = (IMP,J , L) in Example 16, we use PEPJ to transform L
(using (Sq1) and (Sq2)) as follows: PEPJ (τ1) = {(IMP ,J , L2)}, where

L2 = {(ε, 〈x → 0 | A〉 ⇓ ρ′), (〈x → 0 | A〉 ⇓ ρ′, 〈ρ′ | W 〉 ⇓ ρ)}

with A = x:=10 and W = while x>0 do x:=x-1. Let τ2 = (IMP ,J , L2). Now,
PDecL(τ2) = {τ31, τ32}, where τ31 = (IMP ,J , L31) and τ32 = (IMP ,J , L32),
with L31 = {(ε, 〈x → 0 | A〉 ⇓ ρ′)} and L32 = {(〈x → 0 | A〉 ⇓ ρ′, 〈ρ′ |W 〉 ⇓ ρ)}.

The following processor uses inference rules to expand the internal Bi within a
given ψ = A ⇑ Bn (again, A can be #) in such a way that all possible proof
trees for any instance of the proof jump are still considered. Let (S,J , L) ∈
OT (L), ψ = A ⇑ Bn ∈ J ∪ L and i, 1 ≤ i < n, we let

Iψ,i(S) = {(
Dm

C
, θ) | Dm

C
∈ I(S), θ ∈ mguS(Bn, C)}

representing the set of inference rules that can be immediately used in a closed
proof tree of σ(Bi) for some Bi in ψ in a (S,J)-chain.

Theorem 8 (Expansion with inference rules). Let (S,J , L) ∈ OT (L),
ψ ∈ J ∪ L where ψ = A ⇑ Bn, and i, 1 ≤ i < n. Let

H = {θ(A) ⇑ θ(Bi−1,Dm, Bi+1, . . . , Bn) | (
Dm

C
, θ) ∈ Iψ,i(S)}

Then,
PEIR(S,J , L) = {(S,J [H]ψ, L[H]ψ)}

is a sound and complete processor.

106 S. Lucas and J. Meseguer

Example 19. Consider τ321 = (R,J , {(g(d) → u, u →∗ c(y))}) in Example 17.
Using the inference rule (Cg) in Figure 1, we have PEIR(τ321) = {τ3211}, where
τ3211 = (R,J , {(d→ t, g(t)→∗ c(y))}).

7.2 Removing Useless Proof Jumps and Localizations

No proof jump or localization ψ : A ⇑ Bn with i, 1 ≤ i < n such that for all
substitution σ, S � σ(Bi) does not hold can be used in any L-localized (S,J)-
chain. Thus, ψ can be removed from any OT problem.

Theorem 9 (Unsatisfiable jumps). Let (S,J , L) ∈ OT (L). Let ψ ∈ J ∪L be
such that ψ = (A ⇑ Bn) and there is i, 1 ≤ i < n such that for all substitutions
σ, S � σ(Bi) does not hold. Then,

PUJ (S,J , Λ) = {(S,J [∅]ψ, L[∅]ψ)}

is a sound and complete processor.

Example 20. Consider τ3211 = (R,J , {(d → t, g(t) →∗ c(y))}) in Example
19. Since no inference rule can be applied to d → t, we have PUJ (τ3211) =
{(R,J , ∅)}, which contains a finite problem. This finally proves the {f(d)→ t}-
local operational termination of R in Example 1 (see Figure 5).

7.3 SCC Processor

Since we assume J finite (Remark 4), infinite (S,J)-chains correspond to cycles
in PG(S,J). The following processor decomposes the graph associated to an
OT problem into its strongly connected components (SCCs), i.e., maximal cycles
occurring in PG(S,J). In the following, given a set J of proof jumps, we let ΛJ
be the set of head formulas in each proof jump in J : ΛJ = {A | A ⇑ Bn ∈ J }:

Theorem 10 (SCC processor). For each (S,J , L) ∈ OT (L),

PSCC (S,J , L) = {(S,J ′, LJ ′) | J ′ is an SCC in PGL(S,J)}

is a sound and (if LJ ′ ⊆ L) complete processor.

As a consequence of this theorem, we can separately work with the strongly
connected components of PGL(S,J), disregarding other parts of the graph.

Example 21. For τ31 = (IMP,J , L31) in Example 18, with PGL31(IMP,J) in
Example 14, PSCC (τ31) = {τ311}, where τ311 = (IMP , {(S1), (S2)}, L311), and
L311 = {(ε, 〈ρ | a - a′〉 ⇒N m)}.

Note that, after using PSCC most information about localization can be lost.

Localized Operational Termination in General Logics 107

τ1

PEPJ

τ2

PDecL

τ31 τ32

yes

PEPJ

τ321

PEPJ

τ3211

PEIR

yes

PUJ

Fig. 5. OTF-tree for Λ and R in Example 1

7.4 Use of Well-Founded Relations

As shown in [14], well-founded relations are often useful to simplify OT problems.

Definition 19. [14, Definition 14] A removal pair (�,�) consists of a relation
�, and a well-founded relation � satisfying either � ◦ �⊆� or � ◦ �⊆�.

In our setting we have to be careful with localization formulas.

Theorem 11 (Removal pair processor). Let (S,J , L) ∈ OT (L), where J =
{C ⇑ Dm} $ J0 and L = {λ} with λ = (γ, φ). Let (�,�) be a removal pair
such that, for all substitutions σ, (1) for all A ⇑ Bn ∈ J0, if for all 1 ≤ i < n,
S � σ(Bi) holds, then σ(A) � σ(Bn) holds; and (2) if for all 1 ≤ i < m,
S � σ(Bi) holds, then σ(C) � σ(Dm). Let L′ = L ∪ {(θ(γDm−1), θ(Dm)) | θ ∈
mguS(φ,C)}. Then,

PRP (S,J , L) = {(S,J0, L
′)}

is a sound and complete processor.

108 S. Lucas and J. Meseguer

Example 22. We prove τ311 = (IMP, {(S1), (S2)}, L311) in Example 21 finite
using PRP . With the following polynomial interpretation (with variables ranging
over the natural numbers):

[〈 | 〉](x, y) = y [-](x, y) = x+ y + 1 [⇒N](x, y) = x

we have a removal pair (�,�) defined by s � t iff [s] ≥ [t] (i.e., for each possible
assignment of natural numbers to variables x1, . . . , xn occurring in s or t the
value [s](x1, . . . , xn) of the polynomial [s] associated to s is bigger than or equal
to the value [t](x1, . . . , xn) of the polynomial [t] associated to term t, i.e., s � t
if and only if ∀x1, . . . , xn ∈ N, [s](x1, . . . , xn) ≥ [t](x1, . . . , xn)) and (similarly)
s � t iff [s] > [t]. Then, for (S1) and (S2) we have:

[〈ρ | a - a′〉 ⇒N m] = a+ a′ + 1 > a = [〈ρ | a〉 ⇒N n]
[〈ρ | a - a′〉 ⇒N m] = a+ a′ + 1 > a′ = [〈ρ | a′〉 ⇒N n′]

and PRP(τ311) = {(IMP, ∅, L311)} contains a finite OT problem (IMP, ∅, L311).

Example 23. For τ32 = (IMP,J , L32) in Example 18, we remove most proof
jumps from J by using PRP . With the following polynomial interpretation:

[〈 | 〉](x, y) = y [-](x, y) = x+ y + 1 [⇒N](x, y) = x
[:=](x, y) = y + 1 [>](x, y) = x+ y + 1 [⇒B](x, y) = x
[;](x, y) = x+ y + 1 [while do](x, y) = x+ y + 1 [⇓](x, y) = x

over the naturals (and (�,�) defined as in Example 22), we have:

[〈ρ | a - a′〉 ⇒N m] = a+ a′ + 1 > a = [〈ρ | a〉 ⇒N n]
[〈ρ | a - a′〉 ⇒N m] = a+ a′ + 1 > a′ = [〈ρ | a′〉 ⇒N n′]

[〈ρ | a > a′〉 ⇒B false] = a+ a′ + 1 > a = [〈ρ | a〉 ⇒N n]
[〈ρ | a > a′〉 ⇒B false] = a+ a′ + 1 > a′ = [〈ρ | a′〉 ⇒N n′]
[〈ρ | a > a′〉 ⇒B true] = a+ a′ + 1 > a = [〈ρ | a〉 ⇒N n]
[〈ρ | a > a′〉 ⇒B true] = a+ a′ + 1 > a′ = [〈ρ | a′〉 ⇒N n′]
[〈ρ | x := a〉 ⇓ ρ[x → n]] = a+ 1 > a = [〈ρ | a〉 ⇒N n]

[〈ρ | S;S′〉 ⇓ ρ′] = S + S′ + 1 > S = [〈ρ | S〉 ⇓ ρ′′]
[〈ρ | S;S′〉 ⇓ ρ′] = S + S′ + 1 > S′ = [〈ρ′′ | S′〉 ⇓ ρ′]

[〈ρ | while b do S〉 ⇓ ρ] = b+ S + 1 > b = [〈ρ | b〉 ⇒B false]
[〈ρ | while b do S〉 ⇓ ρ′] = b+ S + 1 > b = [〈ρ | b〉 ⇒B true]
[〈ρ | while b do S〉 ⇓ ρ′] = b+ S + 1 > S = [〈ρ | S〉 ⇓ ρ′′]
[〈ρ | while b do S〉 ⇓ ρ′] = b+ S + 1 ≥ b+ S + 1 = [〈ρ′′ | while b do S〉 ⇓ ρ′]

All proof jumps except (WT3) can be removed from J in τ32: PRP (τ32) = {τ321},
where τ321 = (IMP , {(WT3)}, L321), and L321 = L32 ∪ LWF ∪ LWT1 ∪ LWT2 ∪
LWT3 with L32 = {(〈x → 0 | A〉 ⇓ ρ′, 〈ρ′ |W 〉 ⇓ ρ)} transformed into

LWF = {(〈x → 0 | A〉 ⇓ ρ′, 〈ρ′ | x>0〉 ⇒B false)}
LWT1 = {(〈x → 0 | A〉 ⇓ ρ′, 〈ρ′ | x>0〉 ⇒B true)}
LWT2 = {(〈x → 0 | A〉 ⇓ ρ′, 〈ρ′ | x>0〉 ⇒B true, 〈ρ′ | x:=x-1〉 ⇓ ρ′′)}
LWT3 = {(〈x → 0 | A〉 ⇓ ρ′, 〈ρ′ | x>0〉 ⇒B true, 〈ρ′ | x:=x-1〉 ⇓ ρ′′, 〈ρ′′ |W 〉 ⇓ ρ′′′)}

Localized Operational Termination in General Logics 109

Now, PDecL(τ321) = {τ3211, τ3212, τ3213, τ3214}, where

τ3211 = {(IMP , {(WT3)}, LWF)} τ3212 = {(IMP , {(WT3)}, LWT1)}
τ3213 = {(IMP , {(WT3)}, LWT2)} τ3214 = {(IMP , {(WT3)}, LWT3)}.

Note that PRP does not take into account the information about localization to
establish comparisons between the head and the hook of the proof jumps. As
remarked in the introduction, taking into account the localization is essential for
achieving a proof of termination for P in Example 2. The following processor
uses well-founded orderings to achieve this task.

Theorem 12 (Decreasing Proof Jump). Let (S,J , L) ∈ OT (L), where J =
{C ⇑ Dm} and L = {λ} with λ = (γ, φ) are such that mguS(φ,C) �= ∅. Let �
be a well-founded relation such that for all substitutions σ and θ ∈ mguS(φ,C)
if for all 1 ≤ i < m, S � σ(θ(Di)) holds, then σ(θ(C)) � σ(θ(Dm)). Then,

PDPJ (S,J , L) = {(S, ∅, ∅)}

is a sound and complete processor.

Example 24. Consider τ3214 in Example 23. Use PDPJ to prove it finite: first
note that we can really apply the processor, because the localizing formula

〈ρ′′λ |W 〉 ⇓ ρ′′′λ = 〈ρ′′λ | while x > 0 do x:=x-1〉 ⇓ ρ′′′λ
and the head 〈ρψ | while b do S〉 ⇓ ρ′ψ of (WT3) unify with (a unique, up to
renaming) θ given by

θ(ρψ) = ρ′′λ θ(b) = x>0 θ(S) = x:=x-1 θ(ρ′ψ) = ρ′′′λ

Now, we prove that, if IMP � θ(〈ρψ | b〉 ⇒B true) (equivalently IMP � 〈ρ′′λ |
x>0〉 ⇒B true) and IMP � θ(〈ρψ | S〉 ⇓ ρ′′ψ) (equivalently IMP � 〈ρ′′λ |
x:=x-1〉 ⇓ ρ′′ψ) hold, then

θ(〈ρψ | while b do S〉 ⇓ ρ′ψ) = 〈ρ′′λ | while x>0 do x:=x-1〉 ⇓ ρ′′′λ
� 〈ρ′′ψ | while x>0 do x:=x-1〉 ⇓ ρ′′′λ
= θ(〈ρ′′ψ | while b do S〉 ⇓ ρ′ψ)

for some well-founded relation � among IMP formulas. As explained in [14], we
define a model of the logic IMP and use the provability hypothesis (together
with soundness) to conclude the desired comparison between the head and the
hook of the proof jump.

1. Memory states ρ are mappings from variables into integer numbers: ρ ∈
State = Var → Z.

2. Arithmetic expressions a ::= x | n | a1-a2 (we do not consider addition,
product, etc., which are not used here) denote mappings from states into in-
tegers: [a] ∈ ExpA = State → Z. Accordingly, we define (using the standard
λ-calculus-like notation for function application):

[x] ρ = (ρ x) [n] ρ = n ∈ Z (a [-] a′) ρ = (a ρ)−Z (a′ ρ)

110 S. Lucas and J. Meseguer

3. Boolean expressions b ::= true | false | a1>a2 (again, we only consider
those that are used here) denote mappings from states into booleans: [b] ∈
ExpB = State → Bool . Accordingly, we define:

[true] ρ = true [false] ρ = false (a [>] a′) ρ = (a ρ) >Z (a′ ρ)

4. Program statements denote mappings from states into states: [b] ∈ Stmt =
State → State. Accordingly:

(x [:=] a) ρ y = if x =Var y then (a ρ) else (ρ y)
S [;] S′ ρ = S′ (S ρ)

[while do] b S ρ = if (b ρ) then [while do] b (S ρ) else ρ

The last (recursive) definition could be made explicit by using a fixpoint
operator.

5. Configurations 〈 | 〉 denote the application of the second functional compo-
nent (of type State → τ for τ ∈ {Z,Bool , State}) to a memory state. Rather
than distinguishing three different kinds of configurations, we just assume
〈 | 〉 of type State → (State → τ)→ τ and define 〈 | 〉 ρ f = (f ρ).

6. Predicates ⇒N , ⇒B , and ⇓ just denote the equality between the
outcome of a configuration (in the first argument) and the second argument:

[⇒N] n n′ = n =Z n
′ [⇒B] t t′ = t =Bool t

′ [⇓] ρ ρ′ = ρ =State ρ
′

7. It is easy to check that the previous interpretation satisfies the inference
rules of IMP. For instance, for (Assig), we have that, whenever [〈ρ | a〉 ⇒N

n] holds, i.e., (a ρ) =Z n, then 〈ρ | x := a〉 ⇓ ρ[x → n], holds as well,
because [〈ρ | x := a〉] = if x =Var y then (a ρ) else (ρ y) = if x =Var

y then n else (ρ y) = is exactly the definition of ρ[x → n].
8. Now, given variable x ∈ Var , we define a well-founded relation �x between

formulas 〈ρ | S〉 ⇓ ρ′ as follows: 〈ρ1 | S〉 ⇓ ρ′1 �x 〈ρ2 | S〉 ⇓ ρ′2 if and only if
(ρ1 x) >N (ρ2 x) ≥ 0. Note that �x is well-founded.

9. Finally, we prove that, if IMP � 〈ρ′′λ | x>0〉 ⇒B true and IMP � 〈ρ′′λ |
x:=x-1〉 ⇓ ρ′′ψ hold, then

〈ρ′′λ | while x>0 do x:=x-1〉 ⇓ ρ′′′λ �x 〈ρ′′ψ | while x>0 do x:=x-1〉 ⇓ ρ′′′λ
By soundness, we have IMP |= 〈ρ′′λ | x>0〉 ⇒B true and IMP |= 〈ρ′′λ |
x:=x-1〉 ⇓ ρ′′ψ. Since

[〈ρ′′λ | x>0〉 ⇒B true] = ([x>0] ρ′′λ) =Bool true
= (ρ′′λ x) >Z 0 =Bool true

this means that x is bound to a positive number in the state ρ′′λ. And

[〈ρ′′λ | x:=x-1〉 ⇓ ρ′′ψ] = ([x:=x-1] ρ′′λ) =State ρ
′′
ψ

= ρ′′λ[x → ((ρ′′λ x)− 1)] =State ρ
′′
ψ

means that (ρ′′ψ x) =Z (ρ′′λ x) − 1. Note that, since (ρ′′λ x) > 0, it follows
(ρ′′ψ x) ≥ 0. Hence, we reach the desired conclusion.

Localized Operational Termination in General Logics 111

τ1

PEPJ

τ2

PDecL

τ31 τ32

τ311

PSCC

yes

PRP

τ321

PRP

τ3211

PDecL

τ3212 τ3213 τ3214

yes

PEPJ

yes

PEPJ

yes

PEPJ

yes

PDPJ

Fig. 6. OTF-tree for the program P in Example 2

Thus, P(τ3214) = {(IMP, ∅, LWT3)}, meaning that τ3214 is finite.

Remark 6. Example 24 shows how semantic methods can be successfully applied
in the OT framework. Of course, the automation of such methods (in particular,
the automatic generation of the higher-order algebraic interpretations deployed
there) is not easy and deserves further investigation.

Example 25. For τ3211 in Example 23, the localizing formula 〈ρ′ | x>0〉 ⇒B

false cannot be expanded by (WT3). Thus, PEPJ (τ3211) = {(IMP , {(WT3)}, ∅)},
which is finite. We similarly use PEPJ to prove τ3212 and τ3213 finite as well. Thus,
termination of P in Example 2 is finally proved (see Figure 6).

8 Related Work and Conclusions

In lazy functional programming and logic programming, the focus is naturally
biased to a localized notion of termination due to the essential role of initial
expressions and goals in computations. Lazy functional languages somehow wel-
come nontermination because of their ability to deal with infinite data structures

112 S. Lucas and J. Meseguer

(generated through an infinite number of reduction steps which steadily approx-
imate the desired infinite object) would be impossible with a global notion of
termination. Still, programmers expect that (thanks to lazy evaluation) initial
expressions leading to a finite value, but possibly involving the partial devel-
opment of an infinite data structure, terminate and yield the desired outcome.
Thus, some techniques have been developed for proving such local termination
of functional languages, see [12] for a recent paper surveying many of those
developments.

The absence of infinite proof trees has been used in Logic Programming to
provide a suitable definition of the termination of logic programs [5,7,20]. For
instance, Dershowitz et al. define termination of a logic program as “the finiteness
of the LD-tree constructed for the program and a given query” [7]. In [21], a
dependency pair framework for proving termination of logic programs (inspired
by the DP Framework for TRSs2 [11]) is developed.

In Term Rewriting Systems (TRSs), where the notion of termination is tra-
ditionally global, i.e., TRSs are considered terminating if no term initiates an
infinite rewrite sequence, the problem of local termination (i.e., termination of
rewrite sequences starting from terms t taken from a given set of terms T) has
recently deserved some attention and a number of techniques an tools for auto-
matically proving it are now available (see, e.g., [10]).

With regard to imperative programs, the notion is local at the language level
but global at the program level, meaning that: (i) not all programs terminate; and
(ii) the interest focuses on ensuring that the transition relation (among memory
states) associated to a given program is well-founded [6]. This includes initial-
ization conditions (initial memory state from which the program computation
starts) and user-supplied inputs, which in both cases may change the execution
of the program. There have been many advances in this field as well with a host
of new powerful techniques and implementations ([6] provides a good account).

Our main aim in [14] and in this paper is not replacing all these approaches
and techniques (by somehow showing astonishing improvements in performance
and efficiency, which is quite unlikely in general). It is rather to complement
them by showing how logic principles naturally arising from the logic descrip-
tion of the operational semantics of programming languages can be used in the
definition and proof of termination in a broad variety of programming languages
and systems. This has two main advantages. Firstly, it makes termination proofs
semantics-based, that is, directly based on the language’s formal (operational)
semantics, as advocated for all formal reasoning about programs in [18]. Second,
it provides a variety of language-generic termination proof methods which can
complement and enhance language-specific ones. In [14], we successfully applied
the very same OT framework to prove and disprove termination of Conditional
Term Rewriting Systems (CTRS), Typed λ-calculus, and the Context-Sensitive
Membership Equational Logic (CS-MEL), which provides an operational princi-

2 See [14] for more details about the relations between our OT framework and the DP
framework for TRSs.

Localized Operational Termination in General Logics 113

ple for the execution of programs in languages like CafeOBJ and Maude. In this
paper, we generalize the notion of operational termination to deal with localiza-
tion. Although the notion of localization is conceptually simple, it is powerful
enough to make the OT framework applicable to imperative programming lan-
guages and other termination problems, where termination is naturally localized.
In particular, we have exemplified its use by applying them to prove termination
of imperative programs, and local termination of CTRSs in two different senses,
regarding one-step reductions s→ t starting from specific (sets of) terms s (this
problem just does not exist for TRSs); and regarding many steps reductions
s →∗ t; in both cases, this is the first time that this is investigated so far. We
are able now to cover naturally localized notions of termination like the afore-
mentioned ones for lazy functional programming and logic programming. We
have also generalized and extended the OT framework to deal with proofs of
localized operational termination in general logics. In particular, the processors
introduced in [14] have been adapted and revised to deal with localizations.

We are working to implement the OT framework through a combined effort
to improve the tools MTT [8] and mu-term [2]. The ability of rewriting logic
and the tandem MTT/Maude to serve as a representation framework for general
logics, and the implemented techniques for proving termination in mu-term will
be essential to achieve this task. This combination of tools and methods should
be very useful to further develop the theory and its applications.

Acknoledgements. We thank the anonymous referees for their useful comments.

References

1. Aczel, P.: Schematic Consequence. In: Gabbay, D. (ed.) What is a Logical System,
pp. 261–272. Oxford University Press (1994)

2. Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving Termination
Properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010.
LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011)

3. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What Is a Multi-modeling
Language? In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486,
pp. 71–87. Springer, Heidelberg (2009)

4. Broy, M.,Wirsing, M., Pepper, P.: On the Algebraic Definition of Programming Lan-
guages. ACM Transactions on Programming Languages and Systems 9(1), 54–99
(1987)

5. Codish, M., Taboch, C.: A semantic basis for the termination analysis of logic
programs. Journal of Logic Programming 41, 103–123 (1999)

6. Cook, B., Rybalchenko, A., Podelski, A.: Proving Program Termination. Commu-
nications of the ACM 54(5), 88–98 (2011)

7. Dershowitz, N., Lindenstrauss, N., Sagiv, Y., Serebrenik, A.: A General Framework
for Automatic Termination of Logic Programs. Applicable Algebra in Engineering,
Communication and Computing 12, 117–156 (2001)

8. Durán, F., Lucas, S., Meseguer, J.: MTT: The Maude Termination Tool (System
Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 313–319. Springer, Heidelberg (2008)

114 S. Lucas and J. Meseguer

9. Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving Operational
Termination of Membership Equational Programs. Higher-Order and Symbolic
Computation 21(1-2), 59–88 (2008)

10. Endrullis, J., de Vrijer, R., Waldmann, J.: Local termination: theory and practice.
Logical Methods in Computer Science 6(3:20), 1–37 (2010)

11. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving
Dependency Pairs. Journal of Automatic Reasoning 37(3), 155–203 (2006)

12. Giesl, J., Swiderski, P., Schneider-Kamp, P., Thiemann, R.: Automated Termina-
tion Proofs for Haskell by Term Rewriting. ACM Transactions on Programming
languages and Systems 33(2), Article 7 (2011)

13. Lucas, S., Meseguer, J.: Strong and Weak Operational Termination of Order-Sorted
Rewrite Theories. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 178–194.
Springer, Heidelberg (2014)

14. Lucas, S., Meseguer, J.: Proving Operational Termination Of Declarative Programs
In General Logics. In: Danvy, O. (ed.) Proc. of the 16th International Symposium
on Principles and Practice of Declarative Programming, PPDP 2014. ACM Press
(to appear, 2014)

15. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term
rewriting systems. Information Processing Letters 95, 446–453 (2005)

16. Meseguer, J.: General Logics. In: Ebbinghaus, H.-D., et al. (eds.) Logic Collo-
quium’87, pp. 275–329. North-Holland (1989)

17. Meseguer, J.: A Logical Theory of Concurrent Objects and its realization in the
Maude Language. In: Agha, G., Wegner, P., Yonezawa, A. (eds.) Research Direc-
tions in Concurrent Object-Oriented Programming, pp. 314–390. The MIT Press
(1993)

18. Meseguer, J., Rosu, G.: The Rewriting Logic Semantics Project: A Progress Report.
Information and Computation 231, 38–69 (2013)

19. Nguyen, M.T., Giesl, J., Schneider-Kamp, P., De Schreye, D.: Termination Analysis
of Logic Programs Based on Dependency Graphs. In: King, A. (ed.) LOPSTR 2007.
LNCS, vol. 4915, pp. 8–22. Springer, Heidelberg (2008)

20. de Scheye, D., Decorte, S.: Termination of Logic Programs: The Never-Ending
Story. Journal of Logic Programming 19, 199–260 (1994)

21. Schneider-Kamp, P., Giesl, J., Nguyen, M.T.: The Dependency Triple Framework
for Termination of Logic Programs. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS,
vol. 6037, pp. 37–51. Springer, Heidelberg (2010)

22. Winskel, G.: The Formal Semantics of Programming Languages. The MIT Press,
Cambrige Massachusetts (1993)

23. Wirsing, M.: Structured Algebraic Specifications: A Kernel Language. Theoretical
Computer Science 42, 123–249 (1986)

24. Wirsing, M.: Algebraic Specification. In: Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Sematics (B), pp. 675–788 (1990)

25. Wirsing, M., Knapp, A.: A formal approach to object-oriented software engineering.
Theoretical Computer Science 285(2), 519–560 (2002)

Partial Valuation Structures
for Qualitative Soft Constraints�

Alexander Schiendorfer, Alexander Knapp, Jan-Philipp Steghöfer, Gerrit Anders,
Florian Siefert, and Wolfgang Reif

Institute for Software and Systems Engineering, University of Augsburg, Germany
{schiendorfer,knapp,steghoefer,anders,siefert,reif}@isse.de

Abstract. Soft constraints have proved to be a versatile tool for the specifica-
tion and implementation of decision making in adaptive systems. A plethora of
formalisms have been devised to capture different notions of preference. Wirsing
et al. have proposed partial valuation structures as a unifying algebraic structure
for several soft constraint formalisms, including quantitative and qualitative ones,
which, in particular, supports lexicographic products in a broad range of cases.
We demonstrate the versatility of partial valuation structures by integrating the
qualitative formalism of constraint relationships as well as the hybrid concept of
constraint hierarchies. The latter inherently relies on lexicographic combinations,
but it turns out that not all can be covered directly by partial valuation structures.
We therefore investigate a notion for simulating partial valuation structures not
amenable to lexicographic combinations by better suited ones. The concepts are
illustrated by a case study in decentralized energy management.

1 Introduction

Adaptive systems consisting of a large number of interacting components as treated
in Organic Computing [26] or Ensembles [14] rely on formalisms to specify models
of their complex behavior. Equipped with adequate abstract goal models that describe a
corridor of correct behavior, these systems become amenable to formal verification [20]
as well as testing [11]. Modeling both the concrete and the abstract components’ behav-
ior in terms of relations of their system variables representing input and output naturally
leads to the framework of constraint programming. If these models are also used by
the system at runtime to actually implement the decision-making, constraint satisfac-
tion and optimization techniques can be applied. Clearly, problems can become over-
constrained. Hence, constraint satisfaction has been extended to soft constraints [19].

In constraint hierarchies [8], users qualitatively put constraints into layers repre-
sented by a family of sets of constraints (Hi)i∈I where a constraint in layer Hj is
valued less important than a constraint in layer Hi if j > i. A lexicographic ordering
is then established by prioritizing the satisfaction degree of more important layers. This
satisfaction degree is evaluated on an assignment and may include metric real-valued

� This research is partly sponsored by the German Research Foundation (DFG) in the project
“OC-Trust” (FOR 1085).

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 115–133, 2015.
c© Springer International Publishing Switzerland 2015

116 A. Schiendorfer et al.

error functions for constraints. So-called comparators define the ordering over assign-
ments. By definition, constraint hierarchies tend to ignore all constraints on higher lev-
els which leads to a strongly hierarchical evaluation. One satisfied constraint is possibly
worth more than a whole set of other, violated constraints.

More recently, constraint relationships [21] have been proposed to capture qualita-
tive statements over soft constraints such as “Prefer a solution violating constraint a
to one that violates b” without having to express this fact numerically. This allows for
flexible use especially with problems changing at runtime [22,17] as faced with dynam-
ically reconfiguring groups of power plants as described in Sect. 2. However, constraint
relationships only consider predicates in lieu of using error metrics. Problems from
distributed energy management [2] call for both those formalisms. If a problem admits
metric real-valued error functions, one may want to use constraint hierarchies. If, on the
other hand, the solution quality is measured by the number and importance of satisfied
boolean properties, constraint relationships provide a less restrictive framework.

A broad variety of soft constraint approaches have been captured by the generaliz-
ing algebraic formalisms of c-semirings and valued constraints. That way, users may
specify their preferences in the most suitable formalism for the task at hand and rely
on a well-defined algebraic underpinning. C-semirings [5] include a set of satisfaction
degrees, one operator to combine and one to compare (i.e., calculating a supremum)
them as well as a minimal and maximal element to express total dissatisfaction and
satisfaction. Frameworks and algorithms based on c-semirings have been devised to
build a general theory of soft constraints as well as to provide common solvers [18,10].
Valued constraints [24], on the other hand, use valuation structures, i.e., totally ordered
monoids instead of the partial order implied by the comparison operator in a c-semiring.
The theoretical connection between c-semirings and valued constraints is well under-
stood for totally ordered c-semirings [6]. Recently, the totality in valuation structures
was relaxed in [12] following earlier work by Hölzl, Meier and Wirsing [13] to form
partial valuation structures that also admit lexicographic products for many instances
– as opposed to c-semirings. This combination operator offers to specify one’s pref-
erences in a more structured way to capture different criteria of descending priority.
More complicated partial valuation structures can be formed from elementary ones –
allowing for modular implementations and (re)combinations at runtime. These consid-
erations pave the way for the further development of common constraint propagators [9]
and search algorithms based on partial valuation structures [13].

As a unifying effort we first represent constraint relationships as partial valuation
structures using an algebraically free construction in Sect. 4. For constraint hierarchies,
Hosobe established that a reasonable class can be expressed as c-semirings [15]. It re-
mained, however, unclear how to properly draw the boundary between expressible and
non-expressible hierarchies. Using Wirsing’s results, we can now exploit the lexico-
graphic ordering in constraint hierarchies by mapping layers to partial valuation struc-
tures in Sect. 5. Using the insight that certain elements of monoidal soft constraints can
be collapsing [12], i.e., making comparable elements equal when used with the com-
bination operator, we can give necessary conditions on the partial valuation structures
representing layers. In Sect. 5.2 we show that in particular idempotent comparators such
as the worst-case comparator in constraint hierarchies cannot directly be represented as

Partial Valuation Structures for Qualitative Soft Constraints 117

a collapse-free partial valuation structure and thus not used in a lexicographical product.
However, in Sect. 6 we introduce a notion of simulation where another partial valua-
tion structure reasonably mimics the behavior of the worst-case comparator by using a
suitable p-norm to induce a collapse-free partial valuation structure.

2 Soft Constraints in Distributed Energy Management

We first give elementary definitions in the realm of classical constraint programming
that are then exemplified by a real world application in distributed energy management.

A constraint domain (X,D) is given by a set X of variables and a family D =
(Dx)x∈X of variable domains where each Dx is a set representing the possible values
for variable x. An assignment for a constraint domain (X,D) is a dependent map v ∈
Πx ∈ X .Dx, i.e., v(x) ∈ Dx; we abbreviate Πx ∈ X .Dx by [X → D]. A constraint
c over a constraint domain (X,D), or (X,D)-constraint, is given by a map c : [X →
D]→ B. We also write v |= c for c(v) = tt .

A constraint satisfaction problem (CSP) consists in finding an assignment that yields
true for a set of constraints, i.e., a solution, and a constraint satisfaction optimization
problem (CSOP) further seeks to optimize an objective [28] among all solutions. Clas-
sical hard constraints are generalized to soft constraints by removing the restriction of
constraints to map to true or false [19] but rather an ordered domain. We call these
evaluations gradings of assignments. In particular, we consider CSOPs that search for
maximal gradings in terms of soft constraints.

Such problems occur in many adaptive systems. They are particularly interesting if
individual constraint problems must be combined. Adaptive power management pro-
vides us with an illustrative example. The main task in power management systems is
to maintain the balance between energy production and consumption to avoid instabil-
ities leading to blackouts. Since the prosumers’ ability to change their prosumption is
subject to physical inertia (e.g., limited ramping rates), the prosumption of controllable
prosumers has to be stipulated beforehand as schedules for future points in time.1

The concept of Autonomous Virtual Power Plants (AVPPs) [27] has been presented
as an approach to deal with scalability issues in future smart grids. Each AVPP rep-
resents a self-organizing group of two or more prosumers of various types and has
to satisfy a fraction of the overall consumption. To accomplish this task, each AVPP
autonomously and periodically calculates schedules for its prosumers. Due to uncer-
tainties such as weather conditions, AVPPs can change their composition at runtime
to remain manageable. Moreover, the rising complexity with increasing numbers of
controlled prosumers motivates the formation of a hierarchical structure of AVPPs fol-
lowing a system-of-systems approach in which hierarchy levels are dynamically created
and dissolved. Hence, each AVPP controls less prosumers (including AVPPs) compared
to the non-hierarchical case, resulting in shorter scheduling times for each AVPP.

When creating schedules, AVPPs not only have to respect the physical models – in
terms of hard constraints – but also their prosumers’ individual preferences concern-
ing “good” schedules. For example, a baseload power plant might be reluctant to be

1 We use the term “prosumer” to refer to producers and consumers, and the term “prosumption”
to refer to production and consumption.

118 A. Schiendorfer et al.

switched on and off frequently, whereas a peaking power plant is designed for exactly
that purpose. Certainly, prosumers should be free to use whatever specific formalism
is most adequate to model their real-life preferences. Consequently, the dynamics of
this self-organizing system calls for the treatment and combination of heterogeneous
preference specifications at runtime.

To illustrate these considerations, we regard a concrete example of an AVPP consist-
ing of three prosumers: A garbage incineration plant as a thermal power plant where
steam drives a generator (thermal), a biogas power plant using an engine to produce
power (biogas), and an electric vehicle that can be used as a power storage when con-
nected to the power grid (EV). Each of these prosumers is described by a relational
model restricting its physically and economically feasible behavior. These individual
models are combined and define the space of feasible schedules [22], ordered by the or-
ganizational goal, i.e., to keep mismatches between demand and production (violations)
low and the combined preferences of the prosumers. Since blackout prevention is crit-
ical, the organizational goal is compared “pessimistically”, i.e., by a schedule’s worst
anticipated violation over a set of future time steps. For instance, two schedules with
violations (0, 0, 3) and (3, 3, 3), respectively, for three time steps would be esteemed
equal due to the worst violation. For this process of combining shared and individual
aspects [23], a common constraint domain (X,D) is used consisting of the smallest set
of shared variables, e.g., those for scheduled prosumptions pat for the prosumed power
by prosumer a at time step t. Since we are particularly concerned with soft constraints,
we deliberately omit the prosumers’ hard constraints.

In addition, each prosumer defines its own set of soft constraints in a formalism
of its choice over the common constraint domain and additional individual variables.
As shown in Fig. 1, biogas and EV use constraint relationships while thermal uses
constraint hierarchies. The overall model lexicographically arranges the organizational
preference (violationorg) similar to constraint hierarchies where violationorg is put
at a higher levelHorg

1 than the individual soft constraints placed on levelHorg
2 since the

AVPP’s primary objective is arguably to reduce the probability of blackouts. This is
regulated by a limitation maxVio of the absolute value of the difference between de-
mand dt and produced power

∑
a∈A p

a
t . As indicated before, this reflects the semantics

of the worst case comparator in constraint hierarchies which could not be expressed by
c-semirings in [15]. We provide an explanation for this as well as a solution in Sect. 6.

The electric vehicle can also consume power to load its batteries in which case pat is
negative. With regard to the time horizon T schedules are created for, the error function
eviolationorg associated with the constraint violationorg maps to the maximum value
by which the threshold maxVio is exceeded:

violationorg ≡ ∀t ∈ T .
∣∣dt −∑a∈A p

a
t

∣∣ ≤ maxVio

eviolationorg ≡ max
t∈T

max{0,
∣∣dt −∑a∈A p

a
t

∣∣− maxVio}

The model for biogas specifies preferences regarding the use of its gas storage tank.
It is advisable that this tank is not entirely filled and that the plant runs upon a certain
filling threshold since inflow can not be regulated (gasFullbio). The plant has to run if
the tank is full. Furthermore, the power plant has an economic “sweet spot” which op-
timizes the ratio of fuel consumption to power production (ecoSweetbio) and it should

Partial Valuation Structures for Qualitative Soft Constraints 119

violationorgHorg
1

Horg
2

gasFullbio

ecoSweetbio onOffbio

biogas

prefBLEV earlyBirdEV

limitBUEV

EV Htherm
1

Htherm
2

ecoOpttherm

inertiatherm

ecoGoodtherm

thermal

Fig. 1. Case study depicting individual and organizational preference specifications in context

not be frequently switched on and off to minimize maintenance cost (onOffbio). Both
ecoSweetbio and onOffbio are desirable but deemed less important than gasFullbio.
No statement regarding their importance is however made. It need not hold that satisfy-
ing gasFullbio is worth violating the two others in a strict hierarchical sense. There-
fore, constraint relationships are used (see Sect. 4 for details on how an order over
assignments is thereby induced).

The preferences of EV address its battery status. A preferred battery level should be
maintained to allow for emergency trips (prefBLEV). To reduce the charging cycles, a
soft constraint prescribes that the amount of energy taken out of the battery should not
exceed a certain threshold within a specific time frame (limitBUEV). Finally, a higher
battery charge is required in the morning to assure the trip to work (earlyBirdEV).
Dually to biogas, limitBUEV is considered less important than the other constraints.

Finally, thermal restricts both the production ranges and the changes in power pro-
duction due to inertia. The former limitation ensures economically reasonable assign-
ments similar to biogas and the latter ensures that thermal does not have to be cooled
down and heated up all the time at high costs due to energy-intensive processes. As
metric error functions are easily found for these constraints, a constraint hierarchy is
employed which puts constraints for economical optimality (ecoOpttherm) and inertia-
based change limits (inertiatherm) on level Htherm

1 and constraints for economically
still good ranges (ecoGoodtherm) on level Htherm

2 .
Concluding, this example presents three challenges to a soft constraint framework:

Adaptive heterogeneous systems need 1) different preference formalisms, 2) combi-
nations of such preference specifications at runtime, and 3) algorithms to solve the
resulting soft constraint problems in a general manner.

3 Partial Valuation Structures as a Unifying Formalism

As presented, heterogeneous preference formalisms can show up in soft constraint based
systems. Yet, algorithms to find feasible and high quality solutions need some struc-
ture to perform constraint propagation or apply branch-and-bound techniques. Seminal

120 A. Schiendorfer et al.

work in unifying formalisms has been done in the frameworks of valuation structures
and c-semirings. Our following constructions rely on partial valuation structures [12]
that turn out to generalize valuation structures [24] by dropping the restriction that the
ordering has to be total. Connections with c-semirings are discussed in [16]. First soft
constraint solvers based on partial valuation structures using branch-and-boundand con-
straint propagation have been presented in [13] and [17]2.

3.1 Partial Valuation Structures

Partial valuation structures (also called ic-monoids [13] or meet monoids [16]) capture
essential operations for specifying gradings for assignments: Besides providing the set
of gradings, they show an associative, commutative multiplication for combining grad-
ings, a partial ordering on gradings such that the multiplication is monotone w.r.t. this
ordering, and a top element w.r.t. the partial ordering capturing the best grade, i.e., total
satisfaction, that simultaneously is the neutral element for the multiplication.

Definition 1. A partial valuation structure M = (X, ·, ε,≤) is given by an underlying
set X , an associative and commutative multiplication operation · : X × X → X ,
a neutral element ε ∈ X for ·, and a partial ordering ≤ ⊆ X × X such that the
multiplication · is monotone in both arguments w.r.t. to ≤, i.e., m1 ·m2 ≤ m′

1 ·m′
2 if

m1 ≤ m′
1 and m2 ≤ m′

2, and ε is the top element w.r.t. ≤.
We write m1 < m2 if m1 ≤ m2 and m1 �= m2, and m1 ‖ m2 if neither m1 ≤ m2

nor m2 ≤ m1. We write |M | for the underlying set and ·M , εM , and ≤M for the other
parts of M . ��

Intuitively, m ≤ n says that grading m is “worse than” n, so ε will be the top (and
best) element of the ordering. In fact, requiring that ε is top is equivalent to requiring
that m · n ≤ m. An illustrative example is the partial valuation structure (N,+, 0,≥)
used in weighted CSP [19]. The natural numbers represent penalties for violating con-
straints, with 0 representing satisfaction, and the goal is to minimize the sum of penal-
ties. Another example (previously considered in [4] as a c-semiring) is an inclusion-
based partial valuation structure (P(A),∪, ∅,⊇), where smaller sets are considered
better, i.e., ∅ being best. The sets could, e.g., represent violated constraints.

3.2 Soft Constraints

Classical CSPs are turned into soft CSPs by means of soft constraints mapping as-
signments to arbitrary gradings instead of B. For a partial valuation structure M , an
M -soft constraint over a constraint domain (X,D), or (X,D)-M -soft constraint, is
given by a map μ : [X → D] → |M |. The solution degree of an assignment w.r.t. a
finite set of (X,D)-M -soft constraints M is obtained by combining all gradings using
·M , i.e., M(v) =

∏
M{μ(v) | μ ∈ M}. This gives rise to the assignment comparison

�M ⊆ [X → D] × [X → D] with w �M v ⇐⇒ M(w) ≤M M(v), where w is con-
sidered worse. The maximum solution degrees and the maximum solutions of M, which
are the goal for solving algorithms, are given by

2 See http://git.io/mH_pOg for this solver.

http://git.io/mH_pOg

Partial Valuation Structures for Qualitative Soft Constraints 121

M∗ = Max≤M {M(v) | v ∈ [X → D]} ,

Max�M [X → D] = {v ∈ [X → D] | M(v) ∈ M∗} .

In the process of searching maximum solutions, a vital question is to ask whether
the problem formulation actually admits optima. Consider, for example, the constraint
domain (X,D) with X = {x}, Dx = [0, 1], and the partial valuation structure M =
([0, 1],max, 0,≥) with≥ the usual ordering on real numbers. Let μ : [X → D]→ |M |
be defined by μ({x → r}) = r if r > 0, and μ({x → 0}) = 1, and let M = {μ}. Then
M∗ = ∅ since the set of solution degrees is the open interval (0, 1], i.e., no maximum
solution degrees and no maximum solutions exist.

Definition 2. A set of (X,D)-M -soft constraints is admissible if M is finite and for
each v ∈ [X → D] there is an m ∈ M∗ such that M(v) ≤M m. ��

Sufficient conditions for the finite set M of (X,D)-M -soft constraints to be admis-
sible are that X and

⋃
x∈X Dx are finite, or that <M has no infinite ascending chains.

3.3 Product Operators for Partial Valuation Structures

For runtime combinations of different soft constraint formulations as are prevalent in
adaptive systems, partial valuation structures admit finite (direct) products but also lex-
icographic products, as shown by Gadducci, Hölzl, Monreale, and Wirsing [12].

First, let us consider the direct product that is defined component-wise obviously
yielding a partial valuation structure:

Definition 3. Let M and N be partial valuation structures. Let

– P = |M | × |N |,
– ·P : P × P → P given by (m1, n1) ·P (m2, n2) = (m1 ·M m2, n1 ·N n2),
– εP = (εM , εN),
– ≤P ⊆ P × P given by (m1, n1) ≤P (m2, n2)⇐⇒ m1 ≤M m2 ∧ n1 ≤N n2.

The (direct) product of M and N , written as M ×N , is given by the partial valuation
structure (P, ·P , εP ,≤P). ��

This product leaves many combinations incomparable. Let us thus turn our atten-
tion to lexicographic products introduced by [12] useful in situations where a prefer-
ence is composed of multiple criteria of decreasing priority. The lexicographic ordering
≤M�N ⊆ |M × N | × |M × N | on the direct product distinguishes first by ≤M and
then by ≤N if the first comparison yields equality:

(m1, n1) ≤M�N (m2, n2) ⇐⇒ (m1 <M m2) ∨ (m1 = m2 ∧ n1 ≤N n2) .

However, for ·M×N still to be monotone now w.r.t. ≤M�N , we would have to show
that (m1, n1) ·M×N (m,n) ≤M�N (m2, n2) ·M×N (m,n) holds if (m1, n1) ≤M�N

(m2, n2). But this fails, if there are m1,m2,m ∈ |M | such that m1 <M m2 and at the
same time m1 ·M m = m2 ·M m. In this case, order-preservation w.r.t. ≤N does not
hold, ifm1 <M m2 but n1 >N n2, since we would have (m1, n1)·M×N (m,n) >M�N

(m2, n2) ·M×N (m,n), clearly violating monotonicity.

122 A. Schiendorfer et al.

First, the notion of collapsing elements [12] captures the objectionable elements of
M as the set

C(M) = {m ∈ |M | | ∃m1,m2 ∈ |M | .m1 <M m2 ∧m1 ·M m = m2 ·M m} .

All idempotent elements w.r.t. ·M different from εM are collapsing: if m ·M m = m,
we havem <M εM but m ·M m = ε ·M m = m. On the other hand, εM /∈ C(M) since
m1 <M m2 implies m1 ·M εM <M m2 ·M εM . Furthermore, |M | \ C(M) is closed
under ·M , and thus (|M | \ C(M), ·M , εM ,≤M) forms a partial valuation structure.

Second, the notion of bounded partial valuation structures [12] allows to avoid the
comparison of pairs (m,n) with m ∈ C(M) by requiring that then n must be the
smallest element of N : A partial valuation structureN is bounded if |N | has a smallest
element⊥N w.r.t.≤M . Then⊥N is unique and annihilating for ·N , i.e., n ·N⊥N = ⊥N

for all n ∈ |N |. We can always lift a partial valuation structure M into a bounded
partial valuation structure M⊥ = (|M | ∪ {⊥}, ·M⊥ , εM ,≤M⊥) by using a fresh ⊥ and
extending ·M and ≤M by m ·M⊥ ⊥ = ⊥ and ⊥ ≤M⊥ m for all m ∈ |M | ∪ {⊥}.

Equipped with these concepts, we can define the lexicographic product of partial
valuation structures. The well-definedness of this construction, i.e., that it indeed yields
a partial valuation structure, has been shown in [12].

Definition 4. Let M be a partial valuation structure and let N be a bounded partial
valuation structure. Let

– L = ((|M | \ C(M))× |N |) ∪ (C(M)× {⊥N}),
– ·L : L× L→ L given by (m1, n1) ·L (m2, n2) = (m1 ·M m2, n1 ·N n2),
– εL = (εM , εN),
– ≤L ⊆ L × L given by (m1, n1) ≤L (m2, n2) ⇐⇒ (m1 <M m2) ∨ (m1 = m2 ∧
n1 ≤N n2).

The lexicographic product of M and N , written as M � N , is given by the partial
valuation structure (L, ·L, εL,≤L). ��

Consequently, all collapsing elements have to be ignored for the lexicographic prod-
uct. However, idempotent operators such as a worst case combination found in con-
straint hierarchies (and present in our case study in Sect. 2 when evaluating an assign-
ment based on the worst violation over several time steps) or fuzzy and possibilistic
constraints [19] necessarily lead to collapsing elements – an issue we address in Sect. 6.

However, using combinations of partial valuation structures by means of direct and
lexicographic products, we are able to model the scenario depicted in Sect. 2 and also
reuse them to present constraint hierarchies as partial valuation structures. But first we
consider constraint relationships as a representative.

4 Constraint Relationships as Partial Valuation Structures

Partial valuation structures enable us to give an algebraic structure capable of repre-
senting preferences specified with constraint relationships. We revisit this construction
first presented in [17] and [16], where we describe how to lift a quantitative preference
specification over constraints to sets of violated constraints (representing assignments).

Partial Valuation Structures for Qualitative Soft Constraints 123

4.1 Constraint Relationships

A directed acyclic graph, or DAG, G = (|G|,→G) is given by a set |G| and a binary
relation→G ⊆ |G|×|G| such that→+

G is irreflexive. If x→G y, then x is a predecessor
of y, and y is a successor of x. We obtain a partial order PO〈G〉 = (|G|,→∗

G) from G
by taking the reflexive, transitive closure of→G, and write g ≤PO〈G〉 h if g →∗

G h.
A constraint relationship over a constraint domain (X,D), or (X,D)-constraint

relationship, is given by a DAG C with |C| a finite set of (X,D)-constraints. We think
of a constraint c′ ∈ |C| as more important than another constraint c ∈ |C| if c→C c′.

For V,W ⊆ |C|, which we think of being sets of violated constraints by (X,D)-
assignments v and w (i.e., V = {c ∈ |C| | v �|= c} and similarly for W), we want to ex-
press thatW is worse than V w.r.t.C. We describe two kinds of liftings of the partial or-
dering induced by the DAG C to an ordering over subsets of |C|, using two dominance
properties p: single-predecessor dominance (p = SPD) and transitive-predecessors
dominance (p = TPD) as originally defined in [21]. Intuitively, dominance properties
denote how much more important a constraint is compared to its predecessors to the
quality of a solution. In SPD, a constraint can dominate only one less important one; in
TPD, a single constraint is deemed more important than a whole set of predecessors.

We write V �p
C W for “V worsens to W for dominance property p over C”. Both

dominance properties share the following worsening rule, expressing that violating
strictly more constraints is worse (V1 $ V2 denotes the union of V1 and V2 simulta-
neously requiring that V1 and V2 are disjoint):

V �p
C V $ {c} if c ∈ |C| (W)

The remaining rules for SPD and TPD express which constraint violations can be
“traded” under the ceteris paribus assumption represented by $:

V $ {c}�SPD
C V $ {c′} if c→C c′ (SPD)

V $ {c1, . . . , ck}�TPD
C V $ {c′} if ∀i . ci →+

C c′ (TPD)

These worsening relations induce partial orderings ≤p
C over sets of (violated) con-

straints for p ∈ {SPD,TPD}, when defining W <p
C V if, and only if, V (�p

C)
+ W

(meaning repeated sequential application of the rules); this is to be read as “W is worse
than V ”. Note that, by definition, the empty set is the top element w.r.t. to these or-
derings, meeting the intuition that “no violations” should be considered optimal since
∅ �p

C V �= ∅. By abuse of notation, for assignments we also write w <p
C v if

{c ∈ |C| | w �|= c} <p
C {c ∈ |C| | v �|= c}, also read as “w is worse than v”.

4.2 From Constraint Relationships to Partial Valuation Structures

When abstracting from constraint relationships and casting them as a partial valuation
structure, one might be tempted to start from the inclusion-based structure and extend-
ing it to accept an ordering over the constraints. The empty set, representing the fact that
no constraints are violated, is the top element and simultaneously the neutral element
for the union. But set union is idempotent. Consider an exemplary constraint relation-
ship C with |C| = {a, b} and b →C a. Then {a} <SPD

C {b} holds. Multiplying on

124 A. Schiendorfer et al.

both sides with {a}, i.e., taking the union, would result in {a} ≤SPD
C {a, b} by the re-

quired monotonicity of the multiplication. Hence, violating a only would be worse than
violating both a and b, contradicting (W). However, we can patch this defect by not
considering sets and their union but multisets and the multiset union as hinted by the
disjointness assumptions in (SPD) and (TPD). Incidentally, when equipping multisets
with an appropriate ordering induced by the partial order from the constraint relation-
ship, the free partial valuation structure over the constraint relationship is obtained.

We denote the set of finite multisets over a set S by Mfin(S), and the multiset union
by ∪−. For a partial order P = (|P |,≤P), we define the upper or Smyth ordering3 on
Mfin |P | as the binary relation ⊆− P ⊆ (Mfin |P |) × (Mfin |P |) given by the transitive
closure of

T ⊆− U implies T ⊆− P U ,

p ≤P q implies T ∪− �p� ⊆− P T ∪− �q� .

This relation is indeed a partial ordering on Mfin |P | and PVS〈P 〉 = (Mfin |P |,∪−, ��,
⊆− P) indeed a partial valuation structure. Moreover,PVS 〈P 〉 is the free partial valuation
structure over the partial order P in the sense of universal algebra. Thus, we have (for a
detailed proof, see [16, §12]):

Lemma 1. Let P be a partial order. Then PVS 〈P 〉 = (Mfin |P |,∪−, ��,⊆− P) is the free
partial valuation structure over P . ��

The upper ordering, when employed for sets, exactly corresponds to≤SPD
C−1 for a con-

straint relationshipC: We need to invertC, i.e., consider PVS 〈PO〈C−1〉〉, as violating
more important constraints has to lead to worse solutions. We get the corresponding set
of (X,D)-PVS 〈PO〈C−1〉〉-soft constraints P = {ϕc | c ∈ |C|} where ϕc(v) = �c�
if v �|= c and �� otherwise for v ∈ [X → D]. However, the transitive-predecessors
dominance can only be achieved by using a more specialized ordering.

This partial valuation structure can now be used to capture the preferences issued
by the prosumers EV and biogas from our case study, see Fig. 1. For biogas we have
the DAG C = ({onOffbio, gasFullbio, ecoSweetbio}, {onOffbio →C gasFullbio,
ecoSweetbio →C gasFullbio}). Assume we were to choose between the assignments
v1 and v2 with v1 �|= {gasFullbio, ecoSweetbio}, v2 �|= {onOffbio, ecoSweetbio}.
In PVS 〈PO〈C−1〉〉, v1 is graded as P(v1) = �gasFullbio, ecoSweetbio� and v2

is graded as P(v2) = �onOffbio, ecoSweetbio�. Thus we get that P(v1) ⊆− PO〈C−1〉

P(v2), i.e., P(v1) is worse than P(v2) since gasFullbio →C−1 onOffbio and therefore
gasFullbio ≤PO〈C−1〉 onOffbio. This meets our intuition as gasFullbio is denoted
more important (and thus more detrimental if violated) than onOffbio.

5 Expressing Constraint Hierarchies as Lexicographic Products

As motivated by Sect. 2, constraint relationships provide the ability to combine un-
related preferences without introducing bias, as would occur if categorizing unrelated

3 This multiset ordering mimics the eponymous ordering used in powerdomain constructions
[1, Ch. 9], where partial orders are lifted to semi-lattices with an idempotent multiplication.

Partial Valuation Structures for Qualitative Soft Constraints 125

constraints into more or less equivalent layers in constraint hierarchies. However, con-
straint hierarchies are more appropriate when metric error functions are available or a
clear dominance of one layer over others exists – as might be the case in relating orga-
nizational vs. individual goals. Using lexicographic combinations, both approaches can
be seamlessly combined.

We first recast the original definitions of constraint hierarchies [8] to position them
within the scope of partial valuation structures. In particular, we represent a constraint
hierarchy as a lexicographical product of partial valuation structures in place of the lay-
ers. We discuss the existing propositions of weighting functions but increase the gener-
ality of the approach as arbitrary partial valuation structures could eventually be lexico-
graphically combined to form hierarchies. The presence of collapsing elements gives us
a criterion that algebraic structures defining a combination operation for gradings such
as partial valuation structures or c-semirings representing layers in a constraint hierar-
chy need to show in order to be used in lexicographic combinations: Soft constraints in
all but the least important layer should not map to collapsing elements to preserve all
gradings. All constraint hierarchies classified as “rational” in [15] (and thus expressible
as c-semirings) are void of collapsing elements.

Formally, a constraint hierarchy H = (Ck)1≤k≤n over a constraint domain (X,D),
or (X,D)-constraint hierarchy, is given by a family of sets Ck of (X,D)-constraints.
The constraints in level 1 ≤ k ≤ n are considered as strictly more important than the
ones in level k + 1. An (X,D)-constraint hierarchy is finite if

⋃
1≤k≤n Ck is finite.

Let H = (Ck)1≤k≤n be a finite (X,D)-constraint hierarchy, let W = (Mk)1≤k≤n

be a corresponding family of partial valuation structuresMk representing the individual
layers, and let for each 1 ≤ k ≤ n and for each c ∈ Ck, μc be the associated (X,D)-
Mk-soft constraint. We call H = (Mk)1≤k≤n with Mk = {μc | c ∈ Ck} for 1 ≤ k ≤ n
a (X,D)-W -soft constraint hierarchy. For a v ∈ [X → D] the solution degree for
(Mk)1≤k≤n of v is defined to be (Mk(v))1≤k≤n. Define a binary relation <H ⊆ [X →
D]× [X → D] by

w <H v ⇐⇒ ∃1 ≤ k ≤ n . (∀1 ≤ i ≤ k − 1 .Mi(w) = Mi(v))

∧Mk(w) <Mk
Mk(v) ,

saying that the assignmentw is strictly worse than the assignment v if ties up to a certain
level k−1 (or no ties if k = 1) are resolved by a strict inequality in k. This corresponds
to the lexicographic order on the set {(Mk(v))1≤k≤n | v ∈ [X → D]}, i.e.,

w <H v ⇐⇒ (Mk(w))1≤k≤n <M1�...�Mn (Mk(v))1≤k≤n

if, on the one hand, everyMk is a bounded partial valuation structure for all 2 ≤ k ≤ n,
and, on the other hand, Mk(v),Mk(w) /∈ C(Mk) for all 1 ≤ k ≤ n, or, equivalently,
if μc(v), μc(w) /∈ C(Mk) for each c ∈ Ck, 1 ≤ k ≤ n. The first requirement, that
each Mk is bounded, can be achieved by moving from Mk to its lifted variant (Mk)⊥.
The second hinges on the selected partial valuation structure, guaranteeing order equiv-
alence only if no collapsing elements are present. In practice, this requires that no soft
constraint maps to any collapsing element.

126 A. Schiendorfer et al.

5.1 Locally Predicate Better

In the literature, many different variants are used for the comparison of solution degrees
of individual layers. A straightforward approach requests that an assignment is consid-
ered worse if it is Pareto-dominated in terms of soft constraints, i.e., it violates a strict
superset of constraints of another assignment’s violation set. Consider a single level k
of a finite (X,D)-constraint hierarchyH = (Ck)1≤k≤n, and letC = Ck. The so-called
locally-predicate-better (LPB)-comparator [8] for C corresponds to requiring

w <LPB
C v ⇐⇒ {c ∈ C | w �|= c} ⊃ {c ∈ C | v �|= c} .

This is expressed by the partial valuation structure M = (Pfin(C),∪, ∅,⊇) where
Pfin(C) stands for finite subsets of C and the set of (X,D)-M -soft constraints M =
{μc | c ∈ C} with μc(v) = {c} if v �|= c and μc(v) = ∅ otherwise, for each c ∈ C.
However, all elements of M are idempotent, and thus the collapsing elements of M
are Pfin(C) \ {∅}. Hence, M is not suitable for a lexicographic product. Choosing in-
stead the partial valuation structure N = (Mfin(C),∪−, ��, ⊆−), where Mfin(C) denotes
finite multisets over C, N has no collapsing elements and the set of (X,D)-N -soft
constraints N = {νc | c ∈ C} with νc(v) = �c� if v �|= c and νc(v) = �� otherwise, for
each c ∈ C, deviates this situation, since we have for all v, v′ ∈ [X → D] that

M(v) ≤M M(v′) ⇐⇒ N(v) ≤N N(v′)

as any ν(c) adds at most one occurrence of c to the combined grading.
One may think of the ordering over [X → D] induced by M as preference spec-

ification that is implemented by N which is applicable to lexicographic products due
to the absence of collapsing elements. More specifically, from a user’s point of view,
the used structure is not relevant as long as the intended ordering is preserved. We can
generalize this idea of substituting a specifying partial valuation structure by another
implementing collapse-free counterpart:

Definition 5. A finite set of (X,D)-M -soft constraints M and a finite set of (X,D)-
N -soft constraints N are optima equivalent, written as M ≈ N, if Max�M [X → D] =

Max�N [X → D]. ��

5.2 Globally Weighted Better

The locally predicate better comparator, however, leaves us with various incomparable
assignments due to the proper subset relation. Moreover, predicate evaluations may be
too strict and metric error functions can take their role. Additionally, constraints may be
weighted. Thus, a more general approach does not consider constraints at the individual
level but maps a layer to one aggregated value (corresponding toMk(v)). Borning called
these comparators global [8]. That way, we can also treat locally predicate (and metric)
better as special cases.

Formally, a weighting for a set C of (X,D)-constraints is given by a function g :
C × [X → D] → R≥0 with g(c, v) = 0 iff v |= c for v ∈ [X → D] and c ∈ C. This
function subsumes both the metric aspects and weights. Traditionally, the following
combinations of weights have been considered, where a valuation is deemed worse
than another if its combined weight is greater than the combined weight of the other.

Partial Valuation Structures for Qualitative Soft Constraints 127

– Weighted sum: W1(v) =
∑

c∈C g(c, v).

– Least squares: W2(v) =
√∑

c∈C g(c, v)
2.

– Worst case: W∞(v) = max{g(c, v) | c ∈ C}.
These comparators can be recast as partial valuation structures based on the real

numbers where the ordering is just ≥:

Definition 6. A real partial valuation structureR has 0 ∈ |R| ⊆ R≥0 for its underlying
set, 0 as its neutral element and the (inverted) usual ordering on the real numbers≥ as
its ordering. ��

The following real partial valuation structures capture the global comparators; the
notationR∞ is justified by the well-known fact that limp→∞(rp+sp)1/p=max{r, s}:4

– Weighted sum: R1 = (R≥0, ·1, 0,≥) with r ·1 s = r + s;
– Least squares: R2 = (R≥0, ·2, 0,≥) with r ·2 s =

√
r2 + s2;

– p-norm for p > 0: Rp = (R≥0, ·p, 0,≥) with r ·p s = (rp + sp)1/p;
– Worst case: R∞ = (R≥0, ·∞, 0,≥) with r ·∞ s = max{r, s}.

Given a real partial valuation structureR and a weighting g : C×[X → D]→ |R| ⊆
R≥0, the (R, g)-weighting of a v ∈ [X → D] is now given by W g

R(v) =
∏

R{g(c, v) |
c ∈ C}. Each such weighting W induces a relation �W

C ⊆ [X → D] × [X → D] on
assignments with w �W

C v denoting w is worse than v, defined by

w �W
C v ⇐⇒ W (w) ≥W (v) .

Let us now turn to the question how to use these real partial valuation structures
in a lexicographic product. All real partial valuation structures R with ·R = ·p for
some p > 0 are appealing as they have no collapsing elements, since r ·p s = (rp +
sp)1/p is strictly monotonic in both arguments. The choices of weighted-sum-better
and least-squares-better are thus readily applicable to lexicographic products. For real
partial valuation structures with ·R = ·∞, however, C(R) = |R| \ {0}, since ·∞ is
idempotent. Consequently, one cannot use them to mimic the ordering of a (X,D)-
W -soft constraint hierarchy using a lexicographic product since the resulting partial
valuation structures would degrade to ({0}, ·∞, 0,≥). Assume, e.g., that C has three
different constraints c1, c2, and c3; that there are assignments v1 violating only c1, v2
violating only c2, v13 violating exactly c1 and c3, and v23 violating exactly c2 and c3;
and that the weightings are independent of the valuation, i.e., g(c1, v1) = g(c1, v13) and
g(c2, v2) = g(c2, v23) and g(c3, v13) = g(c3, v23). Also assume that the weightings for
v1, v2, v13, and v23 are related by

W g
R∞(v1) = g(c1, v1) > g(c2, v2) = W g

R∞(v2) ,

W g
R∞(v13) = max{g(c1, v13), g(c3, v13)} =

max{g(c2, v23), g(c3, v23)} =W g
R∞(v23) .

4 The choice of ·R for a real partial valuation structure is somewhat limited by the following
theorem by Bohnenblust [7]: If |R| = R≥0 and (t · r) ·R (t · s) = t · (r ·R s) holds in the
real partial valuation structure R for all r, s, t ∈ R≥0 (where · is the usual multiplication),
then either 1 ·R 1 = 1 and r ·R s = max{r, s} for all r, s ∈ R≥0, or 1 ·R 1 > 1 and
r ·R s = (rp + sp)1/p for all r, s ∈ R≥0 for some p > 0.

128 A. Schiendorfer et al.

Intuitively, g(c3, v) is greater than g(c1, v) and g(c2, v) if v �|= c3, but as only the worst
case is considered, all other gradings do not contribute to the distinction. Therefore,
previously comparable assignments become equal when combined with g(c3, v). Any
set of (X,D)-M -soft constraints M = {μc | c ∈ C} reflecting the ordering induced by
W g

R∞ on assignments, i.e., M(v) ≤M M(v′) ⇐⇒ W g
R∞(v) ≥ W g

R∞(v′), would thus
have μc3 mapping to a collapsing element in M . To still implement a partial valuation
structure that meets our preference specifications originally stated in R∞, we have to
abandon the search for optima equivalence (see Def. 5) for a less restrictive property.

6 Simulating Partial Valuation Structures

A variety of application scenarios, however, motivate the evaluation of assignments
based on the worst criterion including our examples in Sect. 2. To still be able to use
“worst case” as a valid comparator for lexicographic products, we first relax our notion
of optima equivalence to the asymmetric optima simulation. A similar effort was made
by Bistarelli, Codognet, and Rossi, who discuss abstractions of c-semiring-based soft
constraint problems by means of Galois connections [3]. The problem can also be seen
in the context of viewpoints in model reformulation [25] in the sense that we seek an
alternative partial valuation structure that reflects the same underlying user preferences.

Definition 7. A finite set of (X,D)-N -soft constraints N optima simulates a finite set
of (X,D)-M -soft constraints M, written as N � M, if for each vM ∈Max�M [X → D]

there is a vN ∈ Max�N [X → D] with M(vM) = M(vN), and, vice versa, if for each
vN ∈Max�N [X → D] there is a vM ∈ Max�M [X → D] with M(vM) = M(vN). ��

Intuitively, our definition of optima simulation allows that assignments in the same
equivalence class w.r.t. M are further distinguished in N as long as each equivalence
class in Max�M [X → D] is represented in Max�N [X → D] (we do not “lose” optima)
and no assignment suboptimal in M is considered optimal in N. Then, N is a reasonable
candidate for substituting M, constituting a kind of refinement. Obviously, M ≈ N if,
and only if, N � M and M � N. We can furthermore give sufficient criteria for the
relations of assignments evaluated in M and N to check if N � M holds, provided that
both M and N are admissible:

Lemma 2. Let (X,D) be a constraint domain, and let M and N be admissible sets of
M - andN -soft constraints over (X,D), respectively, such that for all v, v′ ∈ [X → D]

M(v) <M M(v′) implies N(v) <N N(v′)

M(v) ‖M M(v′) implies N(v) ‖N N(v′)

Then N � M.

Proof. Let first v1 ∈ Max�M [X → D]. Let v1 /∈ Max�N [X → D]. Then, since N is ad-
missible, there is a v2 ∈ Max�N [X → D] with N(v1) <N N(v2). Moreover, there is a
v′1 ∈Max�M [X → D] with M(v2) ≤M M(v′1), since M is admissible. But M(v2) <M

M(v′1) is impossible, since then also N(v2) <N N(v′1) contradicting N(v2) ∈ N∗.

Partial Valuation Structures for Qualitative Soft Constraints 129

Thus M(v2) = M(v′1). Moreover, either M(v1) ‖M M(v′1) or M(v1) = M(v′1) since
both M(v1) and M(v′1) are elements of M∗. But M(v1) ‖M M(v′1) is impossible, since
we would have M(v1) ‖M M(v2) = M(v′1) and N(v1) <N N(v2). Thus M(v2) =

M(v′1) = M(v1). — Now let v2 ∈ Max�N [X → D]. If v2 /∈ Max�M [X → D], there
would be, since M is admissible, a v1 ∈Max�M [X → D] such that M(v2) <M M(v1),
i.e. N(v2) <N N(v1), contradicting N(v2) ∈ N∗. ��

The requirements of the lemma prove helpful in finding a collapse-free simulating
partial valuation structure for a real partial valuation structure using ·∞. In particular,
we investigate the use of ·p as a substitute for ·∞, since this directly avoids collapsing
elements. For that purpose, for a 0 ∈ V ⊆ R≥0, let, for each p > 0, Vp be the real
partial valuation structure (〈V 〉p, ·p, 0,≥) with 〈V 〉p the smallest subset of R≥0 with
r ·p s ∈ 〈V 〉p if r, s ∈ 〈V 〉p; and let V∞ denote the real partial valuation structure
(V, ·∞, 0,≥). The second requirement of the lemma for moving from a V∞ to some
Vp is trivially satisfied for real partial valuation structures, since ≥ is total. For the first
requirement we have the following characterization:

Lemma 3. Let 0 ∈ V ⊆ R≥0, and p > 0. Then for each n ≥ 1∏
∞ �r <

∏
∞ �s implies

∏
p �r <

∏
p �s for all �r, �s ∈ V n (∗p)

if, and only if,

r < s implies n1/p · r < s for all r, s ∈ V. (∗∗p)

Proof. Let first (∗p) hold and let r, s ∈ V with r < s. Choose r1 = . . . = rn = r,
s1 = . . . = sn−1 = 0, and sn = s. Then

∏
∞(ri)1≤i≤n = r < s =

∏
∞(si)1≤i≤n,

and thus n1/p · r =
∏

p(ri)1≤i≤n <
∏

p(si)1≤i≤n = s. — Now, let (∗∗p) hold and let
r =

∏
∞(ri)1≤i≤n <

∏
∞(si)1≤i≤n = s. Define r′1 = . . . = r′n = r and s′1 = . . . =

s′n−1 = 0, s′n = s. Then
∏

p(ri)1≤i≤n ≤
∏

p(r
′
i)1≤i≤n = n1/p · r, since ri ≤ r for

all 1 ≤ i ≤ n, and s =
∏

p(s
′
i)1≤i≤n ≤

∏
p(si)1≤i≤n, since 0 ≤ si for all 1 ≤ i ≤ n.

Then
∏

p(ri)1≤i≤n ≤ n1/p · r < s ≤
∏

p(si)1≤i≤n. ��

The lemma shows that r < n1/p · r < s is required for all 0 �= r < s ∈ V . But this
is only satisfiable if there is no t ∈ V with r < t ≤ n1/p · r, since by (∗∗p) we would
get r < n1/p · r < t. In particular, V = R≥0 cannot be simulated.

We call a 0 ∈ V ⊆ R≥0 δ-separated for some δ > 1 if s/r ≥ δ for all 0 �= r <
s ∈ V . For each δ-separated V and n ≥ 1, (∗∗p) holds if p > lnn/ ln δ, i.e. n1/p < δ:
Let r < s for r, s ∈ V . Then either r = 0, and thus n1/p · r = 0 = r < s, or r �= 0,
and thus n1/p · r < δ · r ≤ s. Moreover, not only does δ-separation provide us with a
suitable p, a set 0 ∈ V ⊆ R≥0 must be δ-separated for (∗∗p) to hold: If 0 ∈ V ⊆ R≥0

for each δ > 1 shows 0 �= r < s ∈ V with s/r < δ, then (∗∗p) is violated for each
p > 0, since we can choose 0 �= r < s ∈ V with s/r < n1/p, and then n1/p · r > s.

Example 1. (1) Let 0 ∈ V ⊆ R≥0 be finite. Then there is a ε > 0 such that |r1−r2| ≥ ε
for all r1 �= r2 ∈ V . Let 0 �= r < s ∈ V . Then s/r ≥ (r + ε)/r = 1 + ε/r ≥
1 + ε/maxV . Thus V is (1 + ε/maxV)-separated.

130 A. Schiendorfer et al.

(2) Let c ∈ R with c > 1 and let V c = {cn | n ∈ N} ∪ {0}. If 0 �= r < s ∈ V c, then
there are m < n with r = cm and s = cn. Then cn/cm = cn−m ≥ c holds. Thus, V c

is c-separated and unbounded.
(3) Let d ∈ R with d > 1 and let V d = {d−n | n ∈ N} ∪ {0}. If 0 �= r < s ∈ V d, then
there are m < n with r = d−n and s = d−m. Then d−m/d−n = d−m+n > d holds. In
addition, 0 < d−n ≤ d for all n ∈ N. Hence, V d is d-separated and bounded. ��

Wrapping up, we can define a suitable simulating partial valuation structure for V∞
by means of a p-norm to deal with preference specifications requiring the worst case.

Proposition 1. Let (X,D) be a constraint domain, 0 ∈ V ⊆ R≥0 δ-separated, M∞
an admissible set of (X,D)-V∞-soft constraints, and p > ln |M∞|/ ln δ. Define τp :
|V∞| → |Vp| by τp(r) = r and the finite set of (X,D)-Vp-soft constraints Mp by
Mp = {τp ◦ μ | μ ∈ M∞}. If Mp is admissible, then Mp � M∞.

Proof. The claim that Mp � M∞ follows from Lem. 2 by the choice of p and the
totality of the order in V∞. ��

This construction gives us a tool for practical scenarios requiring a worst-case com-
parator that are, as we showed, not directly expressible in lexicographic products of par-
tial valuation structures or c-semirings [15] due to the presence of collapsing elements.
For a finite set of (X,D)-constraints C and for a weighting g : C × [X → D]→ R≥0,
let V = {g(c, v) | c ∈ C, v ∈ [X → D]} ∪ {0}. It has now to be checked that V is
δ-separated for some δ > 1. Classical CSPs are dealing with finite domains, and thus
δ-separatedness is readily applicable in these scenarios. For real-valued possible error
values, one could turn to discretizing and bounding a domain according to Ex. 1(1). We
may then choose p > ln |C|/ ln δ. For each c ∈ C, we have the (X,D)-V∞-soft con-
straint cg∞ by cg∞(v) = g(c, v), and the (X,D)-Vp-soft constraint cgp by cgp(v) = g(c, v).
Then, since C is finite, we obtain {cgp | c ∈ C} � {cg∞ | c ∈ C}, provided that both
{cg∞ | c ∈ C} and {cgp | c ∈ C} are admissible. But if V is finite, this is guaranteed as
observed in Sect. 3.2. Example 1(3), however, shows that δ-separatedness alone does
not imply admissibility.

Let us apply the construction to the organizational preferences of Sect. 2. Assume
that the possible error values representing violations are given by V = {0, 1, 2, 3} and
that the finite set of Vx-soft constraints Vx = {υt | t ∈ T } represent the violations at
time step t ∈ T = {1, 2, 3} (with x = ∞ or x = p). Assume two assignments w1 and
w2 such that υ1(w1) = 3 and υt(w1) = 0 if t > 1; and further υt(w2) = 2 for all t ∈ T .
Since V is finite, by Ex. 1(1) we get that it is δ-separated with δ = 1+1/3 ≈ 1.3. In fact,
it is also 1.5-separated since 3 cannot take the role of r in Ex. 1(1). With n = |V| = 3,
we get that we have to choose p greater than ln 3/ ln 1.5 ≈ 2.71 for Vp � V∞ to work.
Indeed, we get that while V∞(w1) = 3 > V∞(w2) = 2, p = 2 is not high enough
to preserve this ordering as V2(w1) = 3 < V2(w2) ≈ 3.46, leading to an incorrect
preference decision. But choosing p = 3 already preserves the ordering correctly as
V3(w1) = 3 > V3(w2) = 2.88 and we thus have V3 � V∞.

This makes the construction applicable for a lexicographic product with its controlled
prosumers’ preferences. These are in turn also given as partial valuation structures: for
biogas and EV, we use the free partial valuation structure over the partial order induced

Partial Valuation Structures for Qualitative Soft Constraints 131

by their constraint relationships calling them Pbiogas and PEV; for thermal we use
p-norms to either directly translate the desired comparators or also use simulation to
get a worst-case comparator and a lexicographic product to obtain a partial valuation
structure P 1

thermal �P 2
thermal. Since no prosumer is considered more important than the

others, we combine their preferences with a direct product. In accordance with Fig. 1
we thus get the partial valuation structure

V3 � (Pbiogas × PEV × (P 1
thermal � P 2

thermal))

for the overall soft constraint problem where Pbiogas and PEV are partial valuation struc-
tures originating in constraint relationships and (P 1

thermal � P 2
thermal) represents a con-

straint hierarchy.

7 Conclusions

Based on results of Wirsing et al., we showed how to express different qualitative and
quantitative preference formalisms as partial valuation structures. First we expressed the
representation of constraint relationships as partial valuation structures by a free con-
struction. Second, the lexicographical product associated with partial valuation struc-
tures allowed us to reformulate constraint hierarchies to position them in a soft con-
straint framework. This process also led to the negative result that a direct translation of
the worst-case comparator necessarily leads to partial valuation structures with collaps-
ing elements. This fact hindered previous attempts at expressing constraint hierarchies
as c-semirings. However, it is possible to look for collapsing-free partial valuation struc-
tures that fulfill several qualities regarding the assignment ordering. We therefore intro-
duced the notion of optima simulation and provided an example of a real-valued partial
valuation structure implemented with p-norms which can be used to order assignments
in lieu of the original collapsing worst-case comparator. We have also demonstrated
by means of a small case study that adaptive and organic computing applications can
benefit from the presented ideas since reconfiguration and clustering call for composi-
tionality which the more conventional c-semirings do not offer to the same extent.

However, our simulation result for the worst-case comparator still is burdened by
some computational effort for the involved p-norms. In fact, it seems that a more general
construction for optima simulation at least for totally-ordered partial valuation struc-
tures (i.e., valuation structures) is reachable, that may avoid this effort. Furthermore,
based on these constructions, efficient solving and optimization algorithms and propa-
gators need to be devised to make them available to problems of practical interest.

Dedication. The authors express their gratitude to Martin Wirsing for his encouraging
style in research and teaching, displaying a kind and appreciative attitude towards the
work of colleagues as well as motivating to connect rigorous methods with software
engineering.

132 A. Schiendorfer et al.

References

1. Amadio, R.M., Curien, P.L.: Domains and Lambda-Calculi. Cambridge Tracts in Theoretical
Computer Science, vol. 46. Cambridge University Press (1998)

2. Anders, G., Schiendorfer, A., Steghöfer, J.P., Reif, W.: Robust Scheduling in a Self-
Organizing Hierarchy of Autonomous Virtual Power Plants. In: Stechele, W., Wild, T. (eds.)
Proc. 2nd Int. Wsh. Self-optimisation in Organic and Autonomic Computing Systems (SAOS
2014), pp. 1–8 (2014)

3. Bistarelli, S., Codognet, P., Rossi, F.: Abstracting Soft Constraints: Framework, Properties,
Examples. Artif. Intell. 139, 175–211 (2002)

4. Bistarelli, S., Frühwirth, T., Marte, M., Rossi, F.: Soft Constraint Propagation and Solving in
Constraint Handling Rules. Computational Intelligence 20(2), 287–307 (2004)

5. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Satisfaction and Optimiza-
tion. J. ACM 44(2), 201–236 (1997)

6. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-Based
CSPs and Valued CSPs: Frameworks, Properties, and Comparison. Constraints 4(3), 199–240
(1999)

7. Bohnenblust, H.F.: An Axiomatic Characterization of Lp-spaces. Duke Math. J. 6, 627–640
(1940)

8. Borning, A., Freeman-Benson, B., Wilson, M.: Constraint Hierarchies. LISP Symb. Comp. 5,
223–270 (1992)

9. Cooper, M., Schiex, T.: Arc Consistency for Soft Constraints. Artificial Intelligence 154(1),
199–227 (2004)

10. Delgado, A., Olarte, C.A., Pérez, J.A., Rueda, C.: Implementing Semiring-Based Constraints
Using Mozart. In: Van Roy, P. (ed.) MOZ 2004. LNCS, vol. 3389, pp. 224–236. Springer,
Heidelberg (2005)

11. Eberhardinger, B., Seebach, H., Knapp, A., Reif, W.: Towards Testing Self-organizing, Adap-
tive Systems. In: Merayo, M.G., de Oca, E.M. (eds.) ICTSS 2014. LNCS, vol. 8763, pp.
180–185. Springer, Heidelberg (2014)

12. Gadducci, F., Hölzl, M., Monreale, G.V., Wirsing, M.: Soft constraints for lexicographic
orders. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part I. LNCS, vol. 8265,
pp. 68–79. Springer, Heidelberg (2013)

13. Hölzl, M., Meier, M., Wirsing, M.: Which Soft Constraints do you Prefer? In: Proc. 7th Int.
Wsh. Rewriting Logic and its Applications (WRLA 2008). Electronic Notes in Theoretical
Computer Science, vol. 238(3), pp. 189–205 (2009)

14. Hölzl, M., Wirsing, M.: Towards a System Model for Ensembles. In: Agha, G., Danvy, O.,
Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS,
vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

15. Hosobe, H.: Constraint Hierarchies as Semiring-Based CSPs. In: Proc. 21st Int. Conf. Tools
with Artificial Intelligence (ICTAI 2009), pp. 176–183 (2009)

16. Knapp, A., Schiendorfer, A.: Embedding Constraint Relationships into C-Semirings.
Tech. Rep. 2014-03, Institute for Software and Systems Engineering, University
of Augsburg (2014), http://opus.bibliothek.uni-augsburg.de/opus4/
frontdoor/index/index/docId/2684

17. Knapp, A., Schiendorfer, A., Reif, W.: Quality over Quantity in Soft Constraints. In: Proc.
26th Int. Conf. Tools with Artificial Intelligence (ICTAI 2014), pp. 453–460 (2014)

18. Leenen, L., Anbulagan, A., Meyer, T., Ghose, A.K.: Modeling and Solving Semiring
Constraint Satisfaction Problems by Transformation to Weighted Semiring Max-SAT. In:
Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 202–212. Springer,
Heidelberg (2007)

http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/2684
http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/2684

Partial Valuation Structures for Qualitative Soft Constraints 133

19. Meseguer, P., Rossi, F., Schiex, T.: Soft Constraints. In: Rossi, F., van Beek, P., Walsh, T.
(eds.) Handbook of Constraint Programming, ch. 9 (2006)

20. Nafz, F., Seebach, H., Steghöfer, J.P., Anders, G., Reif, W.: Constraining Self-organisation
Through Corridors of Correct Behaviour: The Restore Invariant Approach. In: Müller-
Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing – A Paradigm Shift for
Complex Systems. Autonomic Systems, vol. 1, pp. 79–93. Springer (2011)

21. Schiendorfer, A., Steghöfer, J.P., Knapp, A., Nafz, F., Reif, W.: Constraint Relationships for
Soft Constraints. In: Bramer, M., Petridis, M. (eds.) Proc. 33rd SGAI Int. Conf. Innova-
tive Techniques and Applications of Artificial Intelligence (AI 2013), pp. 241–255. Springer
(2013)

22. Schiendorfer, A., Steghöfer, J.P., Reif, W.: Synthesis and Abstraction of Constraint Models
for Hierarchical Resource Allocation Problems. In: Proc. 6th Int. Conf. Agents and Artificial
Intelligence (ICAART 2014), vol. 2, pp. 15–27. SciTePress (2014)

23. Schiendorfer, A., Steghöfer, J.P., Reif, W.: Synthesised Constraint Models for Distributed En-
ergy Management. In: Proc. 3rd Int. Wsh. Smart Energy Networks & Multi-Agent Systems
(SEN-MAS 2014), pp. 1529–1538 (2014)

24. Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems: Hard and
Easy Problems. In: Proc. 14th Int. Joint Conf. Artificial Intelligence (IJCAI 1995), vol. 1,
pp. 631–639. Morgan Kaufmann (1995)

25. Smith, B.M.: Modelling. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint
Programming, ch. 11. Elsevier (2006)

26. Steghöfer, J.-P., et al.: Trustworthy Organic Computing Systems: Challenges and Perspec-
tives. In: Xie, B., Branke, J., Sadjadi, S.M., Zhang, D., Zhou, X. (eds.) ATC 2010. LNCS,
vol. 6407, pp. 62–76. Springer, Heidelberg (2010)

27. Steghöfer, J.P., Anders, G., Siefert, F., Reif, W.: A System of Systems Approach to the Evo-
lutionary Transformation of Power Management Systems. In: Wsh. Proc. 43th Nat. Conf.
GI Jahrestagung (INFORMATIK 2013). Lect. Notes Inf., vol. P-220, Bonner Köllen Verlag
(2013)

28. Tsang, E.P.K.: Foundations of Constraint Satisfaction. Computation in Cognitive Science
289. Academic Press (1993)

An Institution for Object-Z with Inheritance

and Polymorphism

Hubert Baumeister1, Mohamed Bettaz2,3, Mourad Maouche3,
and M’hamed Mosteghanemi2

1 DTU Compute, Technical University of Denmark
huba@dtu.dk

2 Laboratoire Méthodes de Conception de Systèmes, ESI, Algeria
{m.bettaz,m.mosteghanemi}@mesrs.dz

3 Philadelphia University, Jordan
mmaouch@philadelphia.edu.jo

Abstract. Large software systems are best specified using a multi-para-
digm approach. Depending on which aspects of a system one wants to
model, some logic formalisms are better suited than others. The the-
ory of institutions and (co)morphisms between institutions provides a
general framework for describing logical systems and their connections.
This is the foundation of multi-modelling languages allowing one to deal
with heterogeneous specifications in a consistent way. To make Object-
Z accessible as part of such a multi-modelling language, we define the
institution OZS for Object-Z. We have chosen Object-Z in part because
it is a prominent software modelling language and in part because it
allows us to study the formalisation of object-oriented concepts, like ob-
ject identity, object state, dynamic behaviour, polymorphic sorts and
inheritance.

Keywords: software engineering models, Object-Z, category theory, in-
stitution, inheritance, polymorphic types.

1 Introduction

Large and complex software systems are best modelled using a multi-paradigm
approach, which provides different views on the same software. The Unified
Modeling Language (UML) [1] is a good example of a modelling language using
different types of models to model the various aspects of a software system.
Component- and class diagrams, e.g., are used to describe the structural aspects,
while state-machines, activity diagrams, and interaction diagrams, e.g., focus on
the behavioural aspects of the software.

In the context of formal methods, the heterogeneous tool set (Hets) [2,3] uses
a similar, view based, approach to the formal specification of software systems.
Hets is based on the theory of institutions developed by Goguen and Burstall
in the late 1970s [4]. Originally intended to capture the basic concepts of logical
systems and model theory, it was used to define the semantics of formal specifi-
cation languages, like Clear [5], ASL [6], and later CASL [7], independent from

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 134–154, 2015.
c© Springer International Publishing Switzerland 2015

An Institution for Object-Z with Inheritance and Polymorphism 135

the particular formal logic. Furthermore, institutions provide logic independent
mechanisms for building larger specifications from smaller ones [6,8,9].

The concepts of (co)morphisms between institutions form the foundation for
relating logical systems. They provide a mechanism to specify multifaceted soft-
ware systems using appropriate languages backed by their logical systems. Such
a multi-paradigm specification language has been realised with Hets.

In this paper, we present an institution for Object-Z [10], thus providing a
first step to the integration of Object-Z with other specification languages in a
multi-paradigm specification language.

Our interest in Object-Z is motivated by the fact that Object-Z is known as
a prominent software/system modelling language based on the specification lan-
guage Z [11]. It supports most of the fundamental concepts of object-orientation,
such as object-identity, classes, inheritance, and polymorphism. In addition, like
UML, Object-Z offers possibilities for meta-modelling. Moreover, Object-Z spec-
ifications may be enhanced by adding detailed properties required for the system
under specification, that cannot be represented by using the UML alone [12].

The semantics of Object-Z in [10] is given in terms of Z, which is a first order
logic framework. It has been shown in [13] that Z itself forms an institution. The
contribution of this paper is, that we are addressing the issues of object identity,
object state and dynamic behaviour of objects, polymorphism, and inheritance
directly in the institution without resorting to the institution for Z. Using this
approach, we hope to provide a better understanding of these concepts in an
institution-based framework.

Other approaches for dealing with object-oriented concepts in the context of
institutions is [14], where the authors define an institution for UML 2.0 static
structures, starting from the abstraction of a UML class diagram example; class
diagrams’ methods are not given any meaning, and inheritance is interpreted as
subset inclusion; in [15] and [16] the authors define a heterogeneous approach
to UML semantics but are also limited to static structures, i.e., ignoring state
change by methods, and thus disregarding the dynamic behaviour of objects.

The institution defined in [17] deals with the dynamic behaviour of state based
systems using the concept of implicit state; however, this approach does not
explicitly deal with object-oriented concepts, like object-identity and inheritance.

In this work we define an institution for Object-Z specifications that is able
to deal with dynamic behaviour of the system under design by using an explicit
state approach. The state of objects can be constrained by (class) invariants
and changed by operations involving input/output parameters, local variables,
pre/post conditions as well as operation expressions. Inheritance in Object-Z
is not necessarily interpreted as subset inclusion, i.e., we are no more in the
case of subsort polymorphism [18], and cannot thus treat polymorphism such as
in [14]. To deal with polymorphism in our institution, we introduce the concept
of polymorphic sorts. Polymorphic sorts recall type classes of Haskell or kinds
such as defined in [19].

This contribution is in honour of MartinWirsing who first suggested to some of
the authors the use of institutions. His work entitled “What is a Multi-Modelling

136 H. Baumeister et al.

Language?” [16] was the starting point of a wide research that led to this contri-
bution. One author feels privileged to have had the chance to work closely with
Martin in several EU projects.

The remainder of this paper is organised as follows: Section 1.1 recalls basic
notions from institutions. In Section 1.2 we give an example aiming at intro-
ducing basic constructs from Object-Z and illustrating the concepts of our in-
stitution. Section 2 is devoted to the Object-Z institution. Section 3 discusses
inheritance in an institution independent setting and its relationship to poly-
morphism. In Section 4 we present concluding remarks and give some directions
for future work. We assume familiarity with basic notions in institutions [20] and
of Object-Z [10].

1.1 Institutions

Here, we recapitulate the definition of an institution. More information can be
found in [20]. An institution I = (Sig, Sen,Mod , |=) consists of:

– a category Sig, whose objects are called signatures and whose morphisms
are called signature morphisms,

– a functor Sen : Sig → Set , assigning to each signatureΣ a set whose elements
are called sentences over that signature, and for each signature morphism
φ : Σ → Σ′ in Sig a function Sen(φ) : Sen(Σ) → Sen(Σ′), translating
sentences over Σ to sentences over Σ′,

– a functor Mod : Sig → Catop , assigning to each Σ a category whose objects
are called Σ-models and whose arrows are called Σ-homomorphisms, and for
each signature morphism φ ∈ Sig a functor Mod(φ), most commonly written
as |φ, from Mod(Σ′) to Mod(Σ). Mod(φ)(M ′) = M ′|φ is called the φ-reduct
of M ′ ∈ Mod(Σ′),

– a satisfaction relation |=Σ⊆ Mod(Σ)× Sen(Σ) for each Σ ∈ Sig,

such that for each signature morphism φ : Σ → Σ′ in Sig, the satisfaction
condition

M ′ |=Σ′ Sen(φ)(ϕ) iff M ′|φ |=Σ ϕ

holds for all M ′ ∈ Mod(Σ′) and ϕ ∈ Sen(Σ).

1.2 An Introductory Example

In this section we give an example aiming at introducing basic constructs from
Object-Z and illustrating the concepts of our institution. Inspired by [21], the
example is about a liquid tank management system (LTMS) that illustrates
the control and monitoring actions associated with filling and emptying of liquid
containers. The operative part of the system involves two kinds of devices: liquid
tanks and indicators. Each liquid tank may be equipped with an indicator which
mainly serves as a display device. A (liquid tank or indicator) device is specified
by a dedicated Object-Z class providing a set of elementary operations that may
be invoked by an Object-Z control class.

An Institution for Object-Z with Inheritance and Polymorphism 137

The indicator is modelled by the class Indicator (Fig. 1), and its state by a
state schema comprising two basic attributes, namely light and danger, where
light is used to signal some critical situations and danger for storing the minimal
value of the amount of liquid that has to be always available in the tank. The
initial state schema INIT provides the two attributes light and danger with
their initial values which are respectively off and 0. SetLightOn, SetLightOff,
and UpdateDanger are operation schemas. SetLightOn and SetLightOff set light
to on, respectively to off ; SetLightOn is invoked each time a critical situation
happens, and UpdateDanger allows to update danger with the value stored in
the input parameter (d?).

The liquid tank is modelled by the class Tank (Fig. 3), where the type Liquid-
Kinds is defined in Fig. 2; ind is a reference attribute, capacity gives the max-
imum liquid amount that might be contained by the tank, level maintains the
liquid amount that is currently contained by the tank, and liquids identifies the
various kinds of liquids that can be contained by the tank. ind links a liquid tank
object with its equipped indicator object. The predicate (# ind ≤ 1) is a class
invariant describing a constraint on the number of indicator devices equipping a
tank device. INIT provides Tank attributes with their initial values. The opera-
tion EmptyOut (with input parameter q? and post-condition level ′ = level − q?)
allows to withdraw an amount q? of liquid. The predicate (level > q?) defines a
pre-condition requiring that the withdrawn amount cannot ‘exceed’ the amount
of liquid available in the tank. Fill allows to add the amount q? of liquid to
the tank; it is required that the new amount of liquid does not exceed the tank
capacity. SetSupportedLiquids defines the kinds of liquids that can actually be
supported by the tank. AttachIndicator allows to connect a liquid tank to an
indicator. AlertOn and AlertOff are operation names for operation expressions.
These expressions are used to send messages to objects from Indicator to set light
respectively to on and off . Both operations use the scope enrichment operator
(denoted by a •) to illustrate the correct use of promoted operations [10].

As an example for inheritance in Object-Z, take the specification of theWarm-
ingTank (cf. Fig. 4). The WarmingTank class describes a special kind of liquid
tank that offers the capability to warm up or cool down the liquid contained in
the tank; in addition to the attributes of the liquid tank, our warming liquid tank
has one more attribute: temp that stores the current temperature of the liquid
contained in the tank. Moreover, the class invariant is constrained by an addi-
tional predicate (flammable �∈ liquids), and SetSupportedLiquids requires that
flammable liquids are no more supported by the tank. WarmingTank provides
two additional operations: WarmUp that allows to increase the temperature of
the liquid contained by the tank, and CoolDown that allows to decrease the
temperature of the liquid contained by the tank. Both operations have an input
parameter (t?) representing respectively the amount of temperature by which
the current tank temperature has to be increased or decreased from the current
tank temperature.

138 H. Baumeister et al.

2 The OZS Institution

In the following, we define the Object-Z institution OZS by defining signatures,
models and sentences. For lack of space, we only include the definitions, facts,
and proofs needed for the understanding of the construction. We refer to the
technical report [22] for further details.

2.1 Signatures

Signatures declare sorts for classes and (primitive) types as well as operations for
basic attributes, reference attributes and operation schemas (returning values or
not returning values). We allow monomorphic sorts, like bool , Nat , Indicator ,
Tank and polymorphic sorts, like [Tank] = {Tank ,WarmingTank}, which are
sets of monomorphic class sorts.

A polymorphic sort [c] = {c1, . . . , cn} denotes a set of sorts c1, . . . cn instead
of a single sort. That is, for an element e to be of sort [c] it has to be at least
an element of one of the sorts c1, . . . , cn . As a consequence, we can access

STATUS ::= on | off

Indicator

light : STATUS

danger : N

INIT

light = off

danger = 0

SetLightOn

Δ(light)

light ′ = on

SetLightOff

Δ(light)

light ′ = off

UpdateDanger

Δ(danger)

d? : N

danger ′ = d?

Fig. 1. Indicator

An Institution for Object-Z with Inheritance and Polymorphism 139

LiquidKinds ::= flammable | ordinary | toxic
Fig. 2. Liquid Kinds

an attribute or apply an operation to that element only, if this attribute or
operation is common to all sorts in [c]. In the case, where [c] is given by the set
of all direct or indirect subclasses of c, then, the attributes and operations all
sorts in [c] have in common, are those of class c.

In the following, we often need to apply a function g : A → B to a subset
{a1, . . . , an} of A instead of just one element of A. In abuse of notation, we define
g({a1, . . . , an}) = {g(a) | a ∈ {a1, . . . , an}}. Furthermore, if g ′ is a function from
A to P(B), we define g ′({a1, . . . , an}) =

⋃
a∈{a1,...,an} g

′(a).

Definition 1. A signature Σ in OZS is a triple Σ = (S ,F , π) where,

– S = C ∪T ∪P is the disjoint union of class sorts C , primitive types T (seen
as abstract data types) and polymorphic sorts P.

– A function π : C → 2C , assigning a set of class sorts for each class sort.
We may write [c] for π(c).

– The set of polymorphic sorts is defined by P = {[c] | c ∈ C}.
– F = B ∪R∪O declares a family of operation symbols Bc→t , (c ∈ C, t ∈ T)

representing basic attributes, a family of operation symbols Rc→c′, c ∈ C,
c′ ∈ C ∪ P, representing reference attributes, and a family of operation
symbols Oc,w and Oc,w,s , (c ∈ C, w ∈ S ∗, s ∈ S) representing operation
schemas; Oc,w,s is used for operation schemas returning values, while Oc,w

is used for operation schemas not returning values.

A signaturemorphism φ : Σ → Σ′, whereΣ = (S ,F , π) andΣ′ = (S ′,F ′, π′),
is a map φ = (φS : S → S ′, φF : F → F ′) which is compatible with the sorts in S
and attributes and operations in F and φS ([c]) = φS (π(c)) = π′(φS (c)) = [φS (c)]
for all polymorphic sorts [c] ∈ P.

In the following, we use attr(c) for the set of all basic- and reference attributes
of class sort c ∈ C , i.e., attr(c) =

⋃
t∈T Bc→t ∪

⋃
c′∈C Rc→c′.

Conceptually, π(c) = [c] = {c1, . . . , cn} can be thought of as the set containing
c and all subclasses of c. However, this is not required by the definitions. π(c)
can be any set of class sorts and does not have to include c.

Example 1. Let’s take the signature of an Indicator (Ind for short) (cf. Fig. 1)
as an example. ΣInd = (SInd ,FInd , πInd). Here SInd = TInd ∪ CInd ∪ PInd ,
where TInd = {Nat ,Real , STATUS}, CInd = {Indicator} and π(Indicator) =
{Indicator} which gives PInd = {[Indicator]} = {{Indicator}}.

Furthermore, FInd = BInd→STATUS ∪ BInd→Nat ∪ OInd,<> ∪ OInd,<Nat>.
Here, <> denotes the empty sequence of sorts and <Nat> a sequence of sorts
consisting only of the sort Nat . Note that Rc→c′ is empty, as Indicator does not
have a reference to either itself, nor another class. Then we have BInd→STATUS =
{light}, BInd→Nat = {danger}, OInd,<> = {SetLightOn, SetLightOff }, and
OInd,<Nat> = {UpdateDanger}.

140 H. Baumeister et al.

Tank

level : N

capacity : N

liquids : PLiquidKinds

ind : P Indicator

#ind ≤ 1

INIT

level = 0

capacity = 1000

ind = ∅

liquids = ∅

Fill

Δ(level)

q? : N

level + q? < capacity

level ′ = level + q?

EmptyOut

Δ(level)

q? : N

level > q?

level ′ = level − q?

SetSupportedLiquids

Δ(liquids)

lk? : PLiquidKinds

liquids ′ = lk?

AttachIndicator

Δ(ind)

i? : Indicator

#ind = 0

ind ′ = ind ∪ {i?}
AlertOn =̂ [i? : Indicator | i? ∈ ind ∧ i?.danger ≥ level] • i?.SetLightOn

AlertOff =̂ [i? : Indicator | i? ∈ ind ∧ i?.danger < level] • i?.SetLightOff

Fig. 3. Liquid Tank

An Institution for Object-Z with Inheritance and Polymorphism 141

WarmingTank

Tank

temp : N

flammable �∈ liquids

INIT

temp = 0

SetSupportedLiquids

flammable �∈ lk?

WarmUp

Δ(temp)

t? : N

level �= 0

temp′ = temp + t?

CoolDown

Δ(temp)

t? : N

temp′ = temp − t?

Fig. 4. Warming Tank

Example 2. To give an example of the use of polymorphic sorts, consider Fig. 5,
an Object-Z specification of the system class TankManagementSystem (TMS for
short) that provides references to a set of tank objects (reference attribute tnks)
and a set of indicator objects (reference attribute inds).

Note that ↓Tank denotes a polymorphic sort, in our case
π(Tank) = {Tank ,WarmingTank}, i.e., all subclasses of class Tank. Further-
more, tnks is a polymorphic reference to Tank - and WarmingTanks objects,
that is tnks ∈ RTMS→[Tank]. This means, that tnks is a set that can contain at
the same time, both Tank objects and WarmingTank objects. In contrast, if we
had defined tnks : P(Tank), we could only have Tank objects stored in tnks , but
not WarmingTank objects.

Lemma 1. OZS signatures and OZS signature morphisms define a category de-
noted SigOZS .

The identity morphism φid : Σ → Σ is the family of identities on sorts and
operations. The composition of two signature morphisms is the corresponding
composition of functions on sorts and operations.

142 H. Baumeister et al.

TankManagementSystem

tnks : P(↓Tank)
inds : P Indicator

∀ tnk : tnks • tnk .ind ⊆ inds

Fig. 5. Tank Management System

Proposition 1. The category SigOZS is finitely co-complete.

To show that SigOZS is finitely co-complete, it suffices to show that SigOZS

has an initial object and pushouts [23]. Here, we only provide the construction
of the initial object and the pushout without any proofs.

The initial object, Σinit = (∅,∅, π∅), in SigOZS consists of the empty set for
sorts and operations, and π∅ is the empty function from ∅ to P(∅).

Given two signature morphisms φ1/2 : Σ0 → Σ1/2, where Σi = (Si ,Fi , πi) for
i ∈ {0, 1, 2}. The pushout of Σ1 and Σ2 wrt. φ1 and φ2, i.e., Σpo = (Spo ,Fpo , πpo)
is defined similar to the case of many-sorted signatures as the pushout of the
sets of sorts Spo and the family of operations Fpo [8]. In particular, since Si is
the disjoint union of Ci , Ti , and Pi , we have Spo = Cpo ∪Tpo ∪Ppo , where Cpo ,
Tpo , and Ppo are the pushouts given by the sets Ci , Ti , and Pi for i ∈ {0, 1, 2},
respectively.

Given the injections (ι0)S , (ι1)S , and (ι2)S from S0/1/2 to Spo , restricted to
class sorts from C0/1/2 to Cpo , given by the definition of pushouts, we can define
three functions fi : Ci → P(Cpo) by fi(ci) = (ιi)S (πi(ci)) for all ci ∈ Ci and i ∈
{0, 1, 3}. These three functions form a cocone from Ci to P(Cpo) which gives rise,
by the definition of the pushout Cpo , to a unique function πpo : Cpo → P(Cpo),
the missing component of our pushout signature.

2.2 Models

Our models are based on the definition of an explicit state that associates to
each object (of each class) a tuple of values of its attributes.

Definition 2. Given a signature Σ, a Σ–model M defines:

– A family of pairwise disjoint sets Ms for each sort s ∈ T ∪ C,
– A family of sets M[c] =

⋃
c′∈[c]Mc′ for each [c] ∈ P

– An (explicit) state, stateM =
∑

c∈C (Mc →
∏

a∈attr(c) Mtype(a)),

where type(a) = t if a ∈ Bc→t for some t ∈ T and type(a) = pow(c′) if
a ∈ Rc→c′ for some c′ ∈ C ∪ P and Mpow(c′) = P(Mc′). For an element σ
of stateM , σc(oid)(a) is in Mt or in P(Mc′), with c ∈ C, oid ∈ Mc, and
a ∈ attr(c),

An Institution for Object-Z with Inheritance and Polymorphism 143

– A function initM : C → stateM that provides the initial state of an object
of a class (assuming that the initial state is the same for all objects of the
same class), and

– A function (oM)c : stateM × Mc × Ms1 × ... × Msn → P(stateM) for each
operation o ∈ Oc,w , and a function (oM)c : stateM ×Mc×Ms1 × ...×Msn →
P(stateM ×Ms) for each operation o ∈ Oc,w,s , (w = s1...sn) .

Definition 3. Given two Σ-models M1 and M2, then a Σ-homomorphism h :
M1 → M2 consists of a familiy of functions hs : (M1)s → (M2)s for s ∈ T ∪ C
together with a function hst : stateM1 → P(stateM2) such that

– init(c)M2 ∈ hst (initM1(c)) for all c ∈ C
– hst ((oM1)c(σ1, oid ,m1, . . . ,mn)) ⊆

(oM2)c(hst (σ1), hc(oid), hs1 (m1), . . . , hsn (mn))
for all σ1 ∈ stateM1 , oid ∈ (M1)c, m1 ∈ (M1)s1 , . . .mn ∈ (Mn)sn for o ∈
Oc,w

– (σ′
2, hs(v)) ∈ (oM2)c(hst (σ1), hc(oid), hs1 (m1), . . . , hsn (mn)) for all (σ′

1, v) ∈
(oM1)c(σ1, oid ,m1, . . . ,mn) and σ′

2 ∈ hst (σ
′
1) where σ1 ∈ stateM1 , oid ∈

(M1)c, m1 ∈ (M1)s1 , . . .mn ∈ (Mn)sn , v ∈ Ms and o ∈ Oc,w,s

– htype(a)(σ1c(oid)(a)) ∈ hst (σ1)c(hc(oid))(a) where a ∈ attr(c), oid ∈ (M1)c,
and σ1 ∈ stateM1 .

The category of Σ-models has as objects Σ-models and as morphisms Σ-homo-
morphisms. The identiy morphism h : M → M are the identity functions on the
interpretation of sorts and hst (σ) = {σ}. The composition of Σ-homomorphisms
is the composition of the functions on the interpretation on sorts and
h1state(h2state(σ1)) =

⋃
σ2∈h2state(σ1)

h1state(σ2).

Example 3. Considering again the example of the Indicator (Example 1), a ΣInd

model M contains a set for each sort s ∈ SInd = TInd ∪CInd ∪PInd . For example,
for nat ∈ TInd we have MNat = N, for STATUS ∈ TInd , MSTATUS = {on, off }
or for Ind ∈ C , we have MInd = {i1, i2, . . .}.

PInd = {[Ind]} and M[Ind] = MInd because Ind is the only element of [Ind].
The value of attributes and object references is given by the state element σ ∈

stateM . For example, for light ∈ BInd→STATUS and i ∈ MInd , we have σInd is of
type MInd →

∏
a∈Bc→t∪Rc→c′

Mtype(a), that is, σInd (i)(light) = off ∈ MSTATUS .
The SetLightOff operation in OInd,<> is the function

SetLightOffM : stateM ×MInd → P(stateM), such that σ′ ∈ SetLightOffM (σ, i)
iff σ′

Ind (i)(light) = off and σ′
Ind (i

′)(light) = σInd (i
′)(light) for i �= i ′ and

σ′
Ind (i

′′)(danger) = σInd (i
′′)(danger) for all i , i ′, i ′′ ∈ MInd and σ′, σ ∈ stateM .

Example 4. Continuing the TankManagementSystem example (TMS), we have
M[Tank] = MTank ∪MWarmingTank for the polymorphic sort [Tank] in a ΣTMS -
model M . That means, that for σ ∈ stateM and reference tnks ∈ BTMS→[Tank],
we have that σTMS (tms)(tnks) ∈ P (MTank ∪MWarmingTank) for an element
tms ∈ MTMS . Thus the attribute tnks is a reference to a set of objects, both
from MTank and MWarmingTank . If we had defined tnks as tnks : P(Tank), tnks

144 H. Baumeister et al.

would be in BTMS→Tank and thus σTMS (tms)(tnks) ∈ P (MTank). In this case
tnks could only reference sets of objects with elements of sort MTank .

Definition 4. Given a signature morphism φ : Σ → Σ′ in SigOZS and a Σ′-
model M , the φ-reduct of M is defined by:

– (M |φ)s = MφS (s) for s ∈ T ∪ C,

– (M |φ)[c] = M |[φS (c)]
for [c] ∈ P,

– (oM |φ)c(σ, oid , v1, . . . , vn) =

{σ′′|φ | ∃σ′ : σ′|φ = σ and σ′′ ∈ (φF (o)M)φS (c)(σ
′, oid , v1, . . . , vn)}

for all o ∈ Oc,w , vi ∈ (M |φ)si , oid ∈ (M |φ)c,
– (oM |φ)c(σ, oid , v1, . . . , vn) = {(σ

′′|φ, v) | ∃σ′ : σ′|φ = σ

and (σ′′, v) ∈ (φF (o)M)φS (c)(σ
′, oid , v1, . . . , vn)} for all o ∈ Oc,w,s , vi ∈

(M |φ)si , v ∈ (M |φ)s , and oid ∈ (M |φ)c.

If h is a Σ′-homomorphism from M ′
1 to M ′

2, then h|φ is given by:

– (h|φ)s = hφ(s)
– (h|φ)st (σ1) = hst (φ(σ1))|φ where φ(σ1) = {σ′

1 ∈ stateM ′
1
| σ′

1|φ = σ1}
and (σ′

1|φ)c(oid)(a) = σ′
φS (c)

(oid)(φF (a)) for all c ∈ C, oid ∈ (M ′
1|φ)c =

(M ′
1)φS (c)

Note that stateM |φ is completely given by the family of sets (M |φ)s for s ∈
S . Furthermore, any state σ in stateM has a reduct σ|φ in stateM |φ given by

(σ|φ)c(oid)(a) = σφS (c)(oid)(φF (a)) for oid ∈ (M |φ)c , c ∈ C , σ ∈ stateM and
a ∈ B∪R. However, there may be situations, where not every state σ in stateM |φ
can be extended to a state σ′ in stateM such that σ = σ′|φ. This is, for example,
the case, when a signature morphism maps two different attributes of a class c
in Σ to the same attribute in Σ′.

Example 5. Since WarmingTank inherits from Tank (cf. Fig. 4), there exists a
signature morphism φ from ΣTank to ΣWarmingTank . φ maps Tank to Warming-
Tank and is the identity on all other components (sorts, attributes and opera-
tions) (cf. Sect. 3). Given a ΣWarmingTank -model M , M |φ is a ΣTank -model.

For example, (M |φ)Ind = Mφ(Ind) = MInd and (M |φ)Tank = Mφ(Tank) =
MWarmingTank for sort Ind ,Tank ∈ CTank , Ind ,WarmingTank ∈ CWarmingTank

and φ(Ind) = Ind and φ(Tank) = WarmingTank .
For σ ∈ stateM and an attribute, e.g., level ∈ (BTank)Tank→Nat , i.e., level is

a basic attribute of ΣTank , its evaluation wrt. σ|φ is defined by
(σ|φ)Tank (oid)(level) = σφS (Tank)(oid)(φF (level)) = σWarmingTank (oid)(level)
for all oid ∈ (M |φ)Tank = MWarmingTank .

For an operation, e.g., AttachIndicator ∈ (OTank)Tank ,<Ind>, σ and σ′ in
stateM , we have σ′|φ ∈ AttachIndicator(M |φ)(σ|φ, oid , i) iff
σ′ ∈ AttachIndicatorM (σ, oid , i) for oid ∈ (M |φ)Tank = MWarmingTank and i ∈
(M |φ)Ind = MInd .

An Institution for Object-Z with Inheritance and Polymorphism 145

The functor ModOZS from SigOZS to Cat takes each signature Σ to the cate-
gory having as objects Σ-models and as morphisms Σ-homomorphisms, and each
SigOZS -morphism φ from Σ to Σ′ to a functor from the category ModOZS (Σ

′)
to the category ModOZS (Σ), sending each Σ′-model M to its φ -reduct M |φ and
each Σ′-homomorphism h to its φ -reduct h|φ.

2.3 Sentences

Sentences are defined using EBNF. Here, o denotes an operation symbol, id an
identifier, and λ is the empty list. invc , initc and the symbols (,), ?, [,], :, etc. are
terminal symbols, while S , P , OE , Declaration, etc. are nonterminal symbols.
Finally, ::= is used to define a production rule and the vertical bar separates
alternatives.

– Sentences S ::= o(id? : id , . . . , id? : id ; id ! : id)[id , . . . , id] : P | invc : P |
initc : P | o =̂ OE

– Operation Expressions OE ::= E .o | [P] | [Declaration | P] | OE ∧ OE |
OE •OE

– Declaration ::= Delta−list Params
– Delta−list ::= λ | Δ(id , . . . , id)
– Params ::= λ | id? : id ...id? : id ; id ! : id | id? : id ...id? : id | id ! : id
– Predicates P ::= E op E | E ∈ E | E ⊆ E | P ∧ P | P ∨ P | P ⇒ P | ¬P |
∀X : E .P | ∃X : E .P , where op ∈ {=, <,≤, >,≥}

– Expressions E ::= id | id Decoration | E bop E | #E | E .id
– Decoration ::= ′ | ? | !

Example 6. Examples of sentences are

– invTMS : ∀ tnk : tnks . tnk .ind ⊆ inds from TankManagementSystem,
– UpdateDanger(d? : N)[danger] : danger ′ = d? from Tank,
– initInd : light = off ∧ danger = 0 from Indicator, and
– AlertOn =̂ [i? : Indicator | i? ∈ ind ∧ i?.danger ≥ level] • i?.SetLightOn

from Tank.

The concept of well-formedness of sentences is introduced to make sure that
the evaluation of sentences is always defined. Well-formedness can be seen as
static type checking of sentences. To this end, we introduce the concept of a
variable environment. The basic idea of a variable environment is, that it keeps
track of the available identifiers for evaluating the expressions, like the class c
the expression is evaluated in, together with its attributes (undecorated, e.g.
a ∈ attr(c), representing the state before an operation, and decorated with a
prime, e.g. a′, representing the state after an operation). In addition to the
attributes of a class, the variable environment keeps track of variables V and
their type (using a function τ from variables V to their type).

Given a signature Σ with class sorts C and polymorphic sorts P . For a sort
c ∈ C or a polymorphic sort [c] ∈ P , let pow(c) and pow([c]) denote the sort
representing the powerset of c and [c], respectively. Given a Σ-model M , then
pow(c) represents the set Mpow(c) = P(Mc) and pow([c]) represents the set
Mpow([c]) = P(Mc1 ∪ · · · ∪Mcn) for [c] = {c1, . . . , cn}.

146 H. Baumeister et al.

Definition 5. Let Σ be a signature, X ⊆ V ∪{v? | v ∈ V }∪{v ! | v ∈ V }, V a
set of variables/identifiers, τ : X → S∪{pow(c) | c ∈ C}∪{pow([c]) | [c] ∈ P} a
mapping of undecorated, i.e., elements of V , and decorated variables/identifiers,
i.e., of the form v? or v ! where v ∈ V , in X to sorts of Σ, c ∈ C, ς ⊆
Bc→t ∪ Rc→c′ and ς ′ = {a′ | a ∈ Attr} where Attr ⊆ Bc→t ∪ Rc→c′, then a
variable environment γ is defined as a triple (Σ, (X , τ), (c, ς, ς ′)).

In the next definition, we define the well-formedness of predicates and expres-
sions. Note that we here present only the interesting cases. The other cases can
be found in the technical report [22].

Let’s first look at the well-formedness of expressions e.id and e.o, where e is
of polymorphic sort [c] = {c1, . . . , cn}. Basically, well-formedness of e.id requires
that id has to be an attribute common to all the class sorts in [c]. Similarly, for
e.o, o has to be an operation defined for all class sorts ci ∈ [c] (1 ≤ i ≤ n).

Let o be an operation belonging to class c. Then o(x1? : s1, . . . , xn? : sn ; x ! :
s)[a1, . . . , am] : P is an operation expression, that defines an operation o through
a predicate P over the values of an object’s attributes before and after the
execution of o. The well-formedness of such an operation expression requires that
P is well-formed in a variable environment where P has access to the attributes
a1, . . . , am of class c in the state before the execution of o and after the execution
of o, that is, undecorated, i.e., ai , and decorated, i.e., a′

i , and where the input
variables xi? are of sort si , the output variable x ! is of sort s .

Definition 6. Given a variable environment γ, we define the well-formedness
of predicates and expressions as follows.

– id is well-formed wrt. γ if either id ∈ X or id ∈ ς, the type of id is τ(id) if
id ∈ X or t if id ∈ ς and id ∈ Bc→t or pow(c′) if id ∈ ς and id ∈ Rc→c′

– e.id is well-formed wrt. γ if e is well-formed wrt. γ and has type c and c is
a class sort in Σ and id ∈ attr(c). The type of e.id is either t or pow(c′),
depending on whether id was in Bc→t or in Rc→c′ for some t ∈ T and
c′ ∈ C ∪ P.

– e.id is well-formed wrt. γ if e is well-formed wrt. γ and has type [c] and
[c] is a polymorphic sort in P and id ∈

⋂
c′′∈[c](Bc′′→t ∪ Rc′′→c′). The type

of e.id is either t or pow(c′), depending on whether id was in Bc→t or in
Rc→c′

Then, the well-formedness of operation expressions is defined as:

– Operation expression e.o is well-formed wrt. γ if e is well-formed wrt. γ and
the type of e is c for o ∈ Oc,w ∪Oc,w,s

– Operation expression e.o is well-formed wrt. γ if e is well-formed wrt. γ and
the type of e is [c] is a polymorphic sort for o ∈

⋂
c′′∈[c]Oc′′,w ∪Oc′′,w,s

– [P] is well-formed wrt. γ if predicate P is well-formed wrt. γ
– [Δ(a1, . . . , am) | x1? : s1, . . . , xn? : sn ; x ! : s | P] is well-formed wrt. γ =

(Σ, (X , τ), (c, ς, ς ′)) if P is well-formed wrt. γ′ = (Σ, (X ∪ {x1?, . . . , xn?,
x !}, τ ′), (c, ς ∪ {a1, . . . , am}, ς ′ ∪ {a′

1, . . . , a
′
m})), τ ′(x1?) = s1, . . . , τ

′(xn?) =
sn , τ

′(x !) = s with τ ′(x) = τ(x) if x �∈ {x1?, . . . , xn?, x !}, ai ∈ attr(c) for
1 ≤ i ≤ n.

An Institution for Object-Z with Inheritance and Polymorphism 147

– oe1 ∧ oe2 is well-formed wrt. γ if oe1 is well-formed wrt. γ and oe2 is well-
formed wrt. γ.

– oe1 • oe2 is well-formed wrt. γ if oe1 is well-formed wrt. γ1 and oe2 is well-
formed wrt. γ2, where γ1 = (Σ, (X , τ), (ς, ς ′)) and γ2 =
(Σ, (X ∪{x1?, . . . , xn?, x !}, τ∪{(x1?, s1), . . . , (xn?, sn), (x !, s)}), (ς, ς ′)), where
x1?, . . . , xn?, x ! are the input/output variables defined in oe1 with their cor-
responding type si , where i ∈ {1, . . . ,n}, and s.

Based on these definitions, we define the well-formedness of sentences:

– o(x1? : s1, . . . , xn? : sn ; x ! : s)[a1, . . . , am] : P is well-formed wrt. Σ if P is
well-formed wrt. γ = (Σ, ({x1?, . . . , xn?, x !}, τ), (c, {a1, . . . , am},
{a′

1, . . . , a
′
m})), τ(x1?) = s1, . . . , τ(xn?) = sn , τ(x !) = s,

o ∈ Oc,w ∪Oc,w,s , and ai ∈ attr(c).
– invc : P is well-formed wrt. Σ if P is well-formed wrt. γ = (Σ, (∅,∅),

(c, attr(c),∅)).
– initc : P is well-formed wrt. Σ if P is well-formed wrt. γ = (Σ, (∅,∅),

(c,Bc→t ∪ Rc→c′,∅)).
– o(x1? : s1, . . . , xn? : sn ; x ! : s) =̂ oe is well-formed wrt. Σ if oe is well-

formed wrt. γ = (Σ, ({x1?, . . . , xn?, x !}, τ), (c, attr(c),∅))) where τ(x1?) =
s1, . . . , τ(xn?) = sn , τ(x !) = s and o ∈ Oc,w ∪Oc,w,s .

Example 7. In the following, we look at the well-formedness of the sentences
from Example 6.

– invTMS : ∀ tnk : tnks . tnk .ind ⊆ inds is well-formed wrt. ΣTMS because
∀ tnk : tnks . tnk .ind ⊆ inds is well-formed wrt.
γ = (ΣTMS , (∅,∅), (TMS , {tnks , inds},∅)), where tnks ∈ RTMS→[Tank] and
inds ∈ RTMS→Ind . We are not looking at the well-formedness of the overall
expression, but focus on tnk .ind . The type of tnk is [Tank] because the
type of tnks is pow([Tank]) given that tnks ∈ RTMS→[Tank]. For tnk .ind to
be well-formed, we have to check that ind is an attribute for all sorts in
[Tank]. Since [Tank] = {Tank ,WarmingTank} and ind ∈ RTank→Indicator

and ind ∈ RWarmingTank→Indicator , we get that tnk .ind is well-formed.
– UpdateDanger(d? : N)[danger] : danger ′ = d? is well-formed wrt. ΣTank if

danger ′ = d? is well-formed wrt.
γ = (ΣTank , ({d?}, τ), (Tank , {danger}, {danger ′})) where τ(d?) = Nat .
Then danger ′ = d? is well-formed wrt. γ, because danger ∈ BTank→Nat

and thus danger? has type Nat and τ(d?) = Nat .
– initInd : light = off ∧ danger = 0 is well-formed wrt. ΣInd if light = off ∧

danger = 0 is well-formed wrt. γ = (ΣInd , (∅,∅), (Ind , {light , danger},∅)).
This is true, because danger and light are in γ and danger ∈ BInd→Nat and
light ∈ BInd→STATUS .

– AlertOn =̂ [i? : Indicator | i? ∈ ind ∧ i?.danger ≥ level] • i?.SetLightOn is
well-formed wrt. ΣTank if [i? : Indicator | i? ∈ ind ∧ i?.danger ≥ level] is
well-formed wrt. γ = (ΣTank , (∅,∅), (Tank , {level , capacity, liquids , ind},
∅)) and [i? : Indicator | i? ∈ ind ∧ i?.danger ≥ level] is well-formed wrt.
γ, which is the case if i? ∈ ind ∧ i?.danger ≥ level is well-formed wrt.

148 H. Baumeister et al.

γ1 = (ΣTank ({i?}, τ(i?) = Ind), (Tank , {level , capacity, liquids , ind},∅))
which is easy to show.
Furthermore i?.SetLightOn needs to be well-formed wrt.
γ1 = (ΣTank , ({i?}, τ(id?) = Ind), (Tank , {levels , capacity, liquids , ind},∅)).
This is true, because τ(i?) = Ind and
SetLightOn ∈ OInd,<>.

Definition 7. The functor SenOZS maps OZS-signatures Σ to well-formed sen-
tences over Σ and signature morphisms φ : Σ → Σ′ to a function from Σ-
sentences to Σ′-sentences by replacing symbols f from Σ in a Σ-sentence with
symbols φ(f) from Σ′.

2.4 Satisfaction

The semantics is defined wrt. an evaluation environment ε compatible with a
variable environment γ. This means, that the evaluation environment provides
a concrete object, oid , together with a variable assignment of the variables in
the variable environment and finally, two states σ and σ′ representing the state
before and after the execution of an operation.

Definition 8. Let γ = (Σ, (X , τ), (c, ς, ς ′)) be a variable environment and M a
Σ-model. Then ε = (oid , {(x1, v1), . . . , (xn , vn)}, σ, σ′) is an evaluation envi-
ronment compatible with γ if oid ∈ Mc, xi ∈ X and vi ∈ Mτ(xi) and σ and
σ′ are in stateM .

In the following definition of the semantics of expressions and predicates, we
only present the interesting cases.

First, we look at the cases e.id and e.o where e is of polymorphic sort [c] =
{c1, . . . , cn}. Let M be a Σ-model. The result of evaluating e in an evaluation
environment is an object identifier oid ∈ Mci , for exactly one ci ∈ [c], because
we have required that all sets Mc for c ∈ C are disjoint. For an identifier id ,
representing an attribute of c, we then look at the state σ and return σci (oid)(id).
Note that this is well defined regardless the choice of ci ∈ [c], because id is an
attribute common to all sorts ci ∈ [c].

The evaluation of an operation expression e.o is either true or false and does
not return, as one might expect, a set of states. The reason is, that e.o represents
a relation between pre- and post states. Again, well-formedness of e.o requires
that o is an operation common to all sorts ci ∈ [c]. This means, that e.o evaluates
to true in an evaluation environment, if the post-state σ′ and the resulting value
v is in the set of states and result values returned by the interpretation of the
operation o of M , i.e., (oM)ci , when applied to the object identifier oid , i.e., the
result of evaluating e, and the values v1, . . . , vn . That is, e.o evaluates to true
in an evaluation environment iff (σ′, v) ∈ (oM)ci (σ, oid , v1, . . . , vn).

Definition 9. Given an evaluation environment ε compatible with a variable
environment γ, then we define the semantics of expressions and predicates wrt.
ε as follows.

An Institution for Object-Z with Inheritance and Polymorphism 149

– [|id |]ε = vi if id is well-formed wrt.
γ = (Σ, (X , τ), (c, ς, ς ′)), ε = (oid , {(x1, v1), . . . , (xn , vn)}, σ, σ′), and id =
xi . Or [|id |]ε = σc(oid)(id) if id ∈ ς

And for operation expressions:

– [|e.o|]ε evaluates to true if [|e|]ε′ = oid ′ where oid ′ ∈ Mc′ and (σ′, v) ∈
(oM)c′(σ, oid ′, v1, . . . , vn) for o ∈ Oc′,w ∪Oc′,w,s ,
ε = (oid , {(x1?, v1), . . . , (xn?, vn), (x !, v)}, σ, σ′), and ε′ = (oid ′, {}, σ, σ′). If
the type of e is the monomorphic type c′′ then c′ = c′′, and if the type of e
is the polymorphic type [c] then c′ ∈ [c].

– [|[p]|]ε evaluates to true if [|p|]ε evaluates to true.
– [|[Δ(a1, . . . , am), x1? : s1, . . . , xn? : sn ; x ! : s | p]|]ε evaluates to true if [|p|]ε′

evaluates to true, where ε = (oid , {(y1?, v1), . . . , (yn?, vn), (y!, v)}, σ, σ′) and
ε′ = (oid , {(x1?, v1), . . . , (xn?, vn), (x !, v))}, σ, σ′)

– [|oe1 ∧ oe2|]ε evaluates to true if [|oe1|]ε and [|oe2|]ε evaluate both to true.
– [|oe1 • oe2|]ε evaluates to true if [|oe1|]ε′ evaluates to true then [|oe2|]ε′ eval-

uates to true for ε = (oid , {(y1?, v1), . . . , (yn?, vn), (y!, v)}, σ, σ′) and ε′ =
(oid , {(x1?, v1), . . . , (xn?, vn), (x , v)}, σ, σ′).

Let o be an operation defined for class sort c. Then an operation expression
o(x1? : s1, . . . , xn? : sn ; x ! : s)[a1, . . . , am] : P is satisfied in a model M , if
P evaluates to true for all object identifiers oid ∈ Mc , variable assignments
(x?i , vi) and (x !, v) for the input and output variables, and for all states σ and
σ′ representing the state of the system before and after the execution of o, where
(σ′, v) is in (oM)c(σ, oid , v1, . . . , vn). In addition, it is required that σ and σ′ are
the same for all attributes in class c that are not in the list [a1, . . . , am]. That
is, only the value of the attributes [a1, . . . , am] of class c are allowed to change.

Definition 10. Finally the satisfaction of Σ-sentences ϕ in a Σ-model M ,
i.e., M |=Σ ϕ is defined by:

– M |=Σ invc : P iff for all oid ∈ Mc, σ ∈ stateM , ε = (oid ,∅, σ,∅) we have
[|P |]ε evaluates to true.

– M |=Σ o(x1? : s1, . . . , xn? : sn ; x ! : s)[a1, . . . , am] : P iff
for all σ, σ′ ∈ stateM , oid ∈ Mc, if (σ

′, v) ∈ (oM)c(σ, oid , v1, . . . , vn) then
[|P |]ε evaluates to true and σc(oid)(aj) = σ′

c(oid)(aj) for aj ∈ attr(c) \
{a1, . . . , am}, where ε = (oid , {(x1?, v1), . . . , (xn?, vn), (x !, v)}, σ, σ′).

– M |=Σ initc : P iff for all oid ∈ Mc we have that [|P |]ε evaluates to true for
ε = (oid ,∅, initM (c),∅).

– M |=Σ o =̂ oe iff for all (σ′, v) ∈ (oM)c(σ, oid , v1, . . . , vn) and [|oe|]ε evalu-
ates to true for ε = (oid , {(x1?, v1), . . . , (xn?, vn), (x !, v)}, σ, σ′).

Example 8. Here we look at the satisfaction of the sentences defined in Example 6:

150 H. Baumeister et al.

– Let M be a ΣTMS -model then M |= invTMS : ∀ tnk : tnks . tnk .ind ⊆
inds iff ∀ oid ∈ MTMS , σ ∈ stateM , ε = (oid ,∅, σ,∅) we have [| ∀ tnk :
tnks . tnk .ind ⊆ inds |]ε evaluates to true. We focus on [|tnk .ind ⊆ inds |]ε′
where ε′ = (oid , {(tnk , tid)}, σ,∅) for all tid ∈ [|tnks |]ε where [|tnks |]ε =
σTMS (oid)(tnks). Then tid ∈ M[Tank] = MTank ∪MWarmingTank because the
type of tnks is pow([Tank]).
We have [|tnk .ind ⊆ inds |]ε′ = true iff σc(tid)(ind) ⊆ σTMS(oid)(inds)
where c is Tank if tid ∈ MTank or c is WarmingTank if tid ∈ MWarmingTank .

– Let M be a ΣTank -model, then M |= UpdateDanger(d? : N)[danger] :
danger ′ = d? iff ∀ oid ∈ MTank , σ, σ

′ ∈ stateM , if σ′ ∈ UpdateDangerM (σ, n)
then [|danger ′ = d?|]ε = true where ε = (oid , {(d?, n)}, σ, σ′) and
σTank (oid)(a) = σ′

Tank (oid)(a) forall a �= danger . Then [|danger ′ = d?|]ε =
true iff σ′

Tank (oid)(danger) = n for all n ∈ N.
– Let M be a ΣInd -model, then M |= initInd : light = off ∧ danger = 0 iff
∀ oid ∈ MInd , [|light = 0ff ∧ danger = 0|]ε = true for
ε = (oid , {}, initM (Ind),∅). Let σ = initM (Ind), then this is the case when for
all oid ∈ MTank we have σInd (oid)(light) = off and σInd (oid)(danger) = 0.

– Let M be a ΣTank -model then M |= AlertOn =̂ [i? : Indicator | i? ∈
ind ∧ i?.danger ≥ level] • i?.SetLightOn iff ∀ oid ∈ MTank , σ, σ

′ ∈ stateM
if σ′ ∈ AlertOnM (σ) then [|[i? : Indicator | i? ∈ ind ∧ i?.danger ≥ level] •
i?.SetLightOn|]ε = true for ε = (oid , {}, σ, σ′).
The latter is true if [|[i? : Indicator | i? ∈ ind∧i?.danger ≥ level]|]ε evaluates
to true then [|i?.SetLightOn|]ε′ evaluates to true where
ε′ = (oid , {(i?, i)}, σ, σ′).
[|[i? : Indicator | i? ∈ ind ∧ i?.danger ≥ level]|]ε evaluates to true if [|i? ∈
ind ∧ i?.danger ≥ level |]ε′′ evaluates to true, where ε′′ = (oid , {(i?, i)}, σ, σ′)
for all i ∈ MInd . This is true if i ∈ σTank (oid)(ind) and σInd (i)(danger) ≥
σTank (oid)(level).
Then [|i?.SetLightOn|]ε′ = true if σ′ ∈ SetLightOnInd (i)(σ).

Proposition 2. Satisfaction condition. Given a signature morphism φ from
Σ to Σ′, a Σ′-model M and a formula ϕ ∈ SenOZS (Σ), then M |φ |=Σ ϕ iff
M |=Σ′ SenOZS (φ)(ϕ).

Proposition 3. The institution OZS has amalgamation.

The proof sketches for the satisfaction condition and amalgamation can be
found in the technical report [22].

3 Inheritance and Polymorphism

In the following, we will explain how to use inheritance in Object-Z. Inheritance is
a general construction that works in any institution I, not just in the institution
OZS being defined in this paper. To do this, we first introduce the well-known
concept of a specification over I (e.g. [17]).

A specification Sp = (Σ,Φ) over an institution I consists of a signature
Σ ∈ Sig and a collection of Σ-sentences Φ ⊆ Sen(Σ). A specification morphism

An Institution for Object-Z with Inheritance and Polymorphism 151

φ : (Σ,Φ) → (Σ′, Φ′) is a signature morphism φ : Σ → Σ′ preserving the truth
of sentences, i.e., for all Σ′ models M ′ such that M ′ |=Σ′ Φ′, we have that
M ′ |=Σ′ Sen(φ)(Φ). Specification and specification morphism form the category
SpecI . It is a well-known fact, e.g., [17], that SpecI is co-complete whenever the
category Sig of the underlying institution I is co-complete. That is, if we can
glue smaller signatures together to form larger signatures via colimits, then we
can also glue specifications together.

Now we can define inheritance between specifications as follows:

Definition 11. Let Sp1 = (Σ1, Φ1) be a specification in SpecI and φ a signature
morphism from Σ1 to Σ2. Let Φ be a set of sentences over Σ2. Then Sp3 =
(Σ2, Sen(φ)(Φ1)∪Φ) is a specification created by inheriting the specification Sp1
via φ.

Lemma 2. If Sp3 is a specification created by inheriting from specification Sp1
via φ, then φ is a specification morphism from Sp1 to Sp3.

As an example, take the specification of the WarmingTank from Fig. 4. We
see that WarmingTank is defined by inheritance from Tank due to the inclu-
sion of Tank in WarmingTank. In particular, let SpTank = (ΣTank , ΦTank), we
have that SpWarmingTank = (ΣWarmingTank , SenOZS (φ)(ΦTank) ∪ΦWarmingTank),
where φ : ΣTank → ΣWarmingTank is a signature morphism mapping Tank to
WarmingTank and is the identity on attributes, operations, and the remaining
sorts. According to Lemma 2 we have that φ is a specification morphism from
SpTank to SpWarmingTank . This means, in particular, that WarmingTank satis-
fies all the properties of Tank. Or, in other words, WarmingTank inherits all the
attributes, operations, and properties from Tank.

As we have seen, inheritance allows one to define a new class sort based
on an existing class sort. When a new specification is created by inheriting
from another specification, e.g., SpWarmingTank = (ΣWarmingTank , φ(ΦTank) ∪
ΦWarmingTank), then SpWarmingTank only contains the sort WarmingTank but
not the sort Tank . To have both sorts in the specification, we have to form the
union of SpWarmingTank and SpTank .

In general, an OZS specification is given as several class specifications Spc that
are added to a global specification Spall . That is, each additional specification is
added to the global specification in the following way: Spall = Sppre

all ∪Spc , where
originally Sppre

all is the empty specification, i.e. (Σ0,∅) where Σ0 = (∅,∅, π0 :
∅→ 2∅).

In contrast, polymorphic sorts allow one to apply operations and access to
attributes of objects belonging to different classes. Given an expression e of
polymorphic sort [c] = {c1, . . . , cn}, then any operation or attribute that is
common to all ci ∈ [c] can be applied to e. For example, in case of [Tank] =
{Tank ,WarmingTank}, all sorts have attributes level , capacity, liquids , and ind
and operations Fill , EmptyOut , SetSupportedLiquids , AttachIndicator , AlertOn,
and AlertOff in common.

In general, a polymorphic sort [c] = {c1, . . . , cn} describes a union of sorts,
that have attributes and operations in common, but are not necessarily required

152 H. Baumeister et al.

to be in a subclass relationship. Evaluating an expression e, i.e. [|e|]ε = oid ,
results in an oid ∈ Mci for some ci ∈ [c]. Since we have required that the set
of Mc for c ∈ C is pairwise disjoint (cf. Def. 2), Mci is unique. This uniqueness
allows us to choose the right value when accessing an attribute a of e, e.g. by
evaluating σc′(oid)(a). Similarly, for operations, this allows us to choose the
right operation (oM)c′ : stateM ×Mc′ → P(stateM).

However, a motivation for the definition of polymorphic sorts is that a poly-
morphic sort [c] contains all the subclasses of c defined by inheritance of spec-
ifications. Therefore, whenever we define a specification Sp2 by the inheritance
of Sp1, where c1 is the main class sort of Sp1 and c2 is the main class sort
of Sp2, we add πpre

all (c2) to πall , i.e., πall (c1) = {c2} ∪ πpre
all (c1), when forming

Spall = Sppre
all ∪ Sp2. Informally this means to add the subclass c2 of c1 and all

the direct and indirect subclasses of c2, i.e., [c2], to the polymorphic type [c1].

4 Concluding Remarks

We have shown in this work how to build an institution for Object-Z including
its static and dynamic aspects. We have included polymorphic sorts into the
definition and discussed inheritance and its relationship to polymorphic sorts.
The category of signatures is co-complete (cf. Prop. 1) and the institution has
amalgamation (cf. Prop. 3). Both properties are essential for building modular
systems, i.e., larger specifications from smaller ones.

In order to permit multi-paradigm formal specification including the use of
Object-Z institution, we plan, in a future work, to integrate OZS into heteroge-
neous tool set (Hets) [2,3]. We have defined the institution for Object-Z, but for
the integration into Hets, (co)morphisms between OZS and CASL [7] (the core
language of Hets) still have to be defined.

As an additional advantage, the set of proof tools, e.g. [24,25,26], that has
been developed by the Object-Z community, will enrich the set of proof tools
available in Hets. Moreover the Object-Z community will also take benefit from
some proof tools offered, for instance, by Maude and CASL, whose institutions
are already embedded into Hets.

To this end, we have to design and implement an interface allowing to provide
OZS with necessary tools for parsing and (static) analysis of OZS specifications.
This might be achieved using an institution independent abstract interface coded
into Haskell, the implementation language of Hets. This abstract interface will
be implemented by instantiating the so-called ‘Logic’ Haskell type class of Hets
for our target language, i.e., Object-Z. This class provides a set of methods that
implement a parser for basic Object-Z specifications, a static analyser transform-
ing basic specifications into theories (signature and sentences) of the Object-Z
institution, a sentence translator that gives the translation of a sentence along
a signature morphism [27]. The ‘Logic’ type class will be supported by a set of
related Haskell type classes that encode the language Object-Z itself (Object-Z
abstract syntax) and the Object-Z institution (signature, sentences, morphisms).

An Institution for Object-Z with Inheritance and Polymorphism 153

References

1. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language. Reference
Manual, 2nd edn. Addison-Wesley Professional (2004)

2. Mossakowski, T., Maeder, C., Codescu, M.: Hets user guide - verion 0.99. DKFI
GmbH, Bremen, Germany (2013)

3. Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set.
Habilitation thesis, University of Bremen (2005)

4. Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E., Kozen, D.
(eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg
(1984)

5. Burstall, R.M., Goguen, J.A.: The semantics of Clear, a specification language. In:
Bjorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332.
Springer, Heidelberg (1980)

6. Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information
and Computation (1988)

7. Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg
(2004)

8. Ehrig, H., Mahr, B.: Fundamentals of algebraic specification 1: Equations and
initial semantics. Springer (1985)

9. Smith, D.R.: Composition by colimit and formal software development. In:
Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Com-
putation. LNCS, vol. 4060, pp. 317–332. Springer, Heidelberg (2006)

10. Smith, G.: The Object-Z specification language. Kluwer Academic Publisher (2000)

11. Spivey, J.M.: The Z Notation - A Reference manual. Prentice-Hall (1989)

12. Kim, S.-K., Carrington, D.: A formal mapping between UML models and object-Z
specifications. In: Bowen, J.P., Dunne, S., Galloway, A., King, S. (eds.) B 2000,
ZUM 2000, and ZB 2000. LNCS, vol. 1878, pp. 2–21. Springer, Heidelberg (2000)

13. Baumeister, H.: Relating abstract datatypes and Z-schemata. In: Bert, D., Choppy,
C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 366–382. Springer,
Heidelberg (2000)

14. Cengarle, M.V., Knapp, A.: An institution for UML 2.0 static structures. Technical
Report TUM-10807, Technische Universität München (2008)

15. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach
to UML semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency,
Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)

16. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What is a multi-modeling
language? In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486,
pp. 71–87. Springer, Heidelberg (2009)

17. Baumeister, H.: Relations between Abstract Datatypes modeled as Abstract
Datatypes. PhD thesis, University of Saarbrücken (1999)

18. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: Equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theoretical Com-
puter Science 105(2), 217–273 (1992)

19. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

20. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. Journal of the ACM (JACM) 39(1), 95–146 (1992)

154 H. Baumeister et al.

21. Somerville, I.: Model-based specification (2000), http://www.cs.st-andrews.ac.
uk/~ifs/Resources/Notes/FormalSpec/ModelSpec.pdf

22. Baumeister, H., Bettaz, M., Maouche, M., Mosteghanemi, M.: Institutions
for Object-Z — technical report (2014), http://people.compute.dtu.dk/huba/

publications/OZReport.pdf

23. Mac Lane, S.: Categories for the working mathematician, 2nd edn., vol. 5. Springer
(1998)

24. Wen, Z., Miao, H., Zeng, H.: Generating proof obligation to verify Object-Z spec-
ification. In: IEEE International Conference on Software Engineering Advances,
pp. 38–38 (2006)

25. Stevens, B.: Implementing Object-Z with Perfect Developer. Journal of Object
Technology 5(2), 189–202 (2006)

26. Paige, R.F., Brooke, P.J.: Integrating BON and Object-Z. Journal of Object Tech-
nology 3(3), 121–141 (2004)

27. Codescu, M., Horozal, F., Jakubauskas, A., Mossakowski, T., Rabe, F.: Compiling
logics. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841,
pp. 111–126. Springer, Heidelberg (2013)

http://www.cs.st-andrews.ac.uk/~ifs/Resources/Notes/FormalSpec/ModelSpec.pdf
http://www.cs.st-andrews.ac.uk/~ifs/Resources/Notes/FormalSpec/ModelSpec.pdf
http://people.compute.dtu.dk/huba/publications/OZReport.pdf
http://people.compute.dtu.dk/huba/publications/OZReport.pdf

Abstract Constraint Data Types

José Luiz Fiadeiro1 and Fernando Orejas2

1 Dep. of Computer Science, Royal Holloway University of London,
Egham TW20 0EX, UK

jose.fiadeiro@rhul.ac.uk
2 Dep. de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya,

08034 Barcelona, Spain
orejas@lsi.upc.edu

Abstract. Martin Wirsing is one of the earliest contributors to the area
of Algebraic Specification (e.g., [2]), which he explored in a variety of
domains over many years. Throughout his career, he has also inspired
countless researchers in related areas. This paper is inspired by one of
the domains that he explored thirty years or so after his first contri-
butions when leading the FET Integrated Project SENSORIA [14]: the
use of constraint systems to deal with non-functional requirements and
preferences [13,8]. Following in his footsteps, we provide an extension of
the traditional notion of algebraic data type specification to encompass
soft-constraints as formalised in [1]. Finally, we relate this extension with
institutions [6] and recent work on graded consequence in institutions [3].

1 Introduction

Service-Oriented Architecture (SOA) [10] is a paradigm for the flexible con-
struction of systems based on the dynamic interconnection of components. This
interconnection takes place when a given component (the requester) needs to
discover another component that can provide a service that it needs, i.e., a com-
ponent (the provider) that, through an interface, offers the properties required
by the requester. In addition to the usual functional properties, components may
express preferences in their interfaces, in which case the requester will choose a
provider that can maximise the way those preferences are satisfied.

Interfaces are abstractions through which components can express proper-
ties that are independent of their implementations. Algebraic specification of
abstract data types [12] are one of the most established formalisms in which
interfaces can be defined. However, they are limited to functional properties of
the input/output behaviour of the operations that components implement. In
this paper, we extend algebraic specifications of component interfaces so that
preferences can be expressed as constraints and matching can be formalised in
terms of constraint satisfaction and optimisation.

In [1], Bistarelli, Montanari, and Rossi define a general framework for the
definition of constraint systems of several kinds. More precisely, their approach
allows us to describe both hard and (different types of) soft constraint systems.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 155–170, 2015.
c© Springer International Publishing Switzerland 2015

156 J.L. Fiadeiro and F. Orejas

The idea is to consider that constraint values form a semiring, where 0 represents
unsatisfiability, 1 represents satisfaction and the rest of the values represent the
different degrees of satisfiability of the given constraint system. The approach
outlined in this paper combines the ideas presented in [1] with algebraic speci-
fication to include preferences in component interfaces. Our ideas are presented
using the specification of a travel request as a running example.

The paper is organized as follows. In Section 2, we recall some basic elements
of algebraic specification theory (which does not dispense consulting [12]). In
Section 3, we extend algebraic specifications for the specification of constraints.
Then, in Section 4 we study how we can combine constraint specifications. Sec-
tion 5 is dedicated to presenting our ideas in the framework of institutions.
Finally, in Section 6 we draw some conclusions.

2 Basic Algebraic Concepts and Notation

We assume that the reader has some familiarity with category theory (for ex-
ample, at the level of the first chapters of [5].)

A signature Σ is a pair 〈S,Ω〉 where S is a finite set of sorts, and Ω is a finite
family of sets of operation and predicate symbols typed over sorts. A Σ-algebra
A consists of an S-indexed family of sets {As}s∈S and a function opA (resp., a
relation prA) for each operation symbol op (resp., predicate symbol pr) in the
signature1. A Σ-homomorphism h: A → A′ consists of an S-indexed family of
functions {hs : As → A′

s}s∈S commuting with the functions and preserving the
relations. Σ-algebras and Σ-homomorphisms form the category AlgΣ.

Given a signature Σ, we denote by TΣ the term algebra, which consists of all
the possible Σ-(ground) terms – where a ground term is either a nullary function
symbol or an expression of an operation symbol being applied to ground terms
of the types required by the operation. Given any Σ-algebra A there is a unique
homomorphism hA: TΣ → A through which hA yields the value of every term of
sort s ∈ S in As.

Given a set X of variables typed over S, we denote by TΣ(X) the algebra of
all Σ-terms with variables in X , and given a variable assignment σ: X → A, this
assignment extends to a unique homomorphism σ#: TΣ(X) → A yielding the
value of each term after the replacement of each variable x by its value σ(x). In
particular, when an assignment is defined over the term algebra, i.e. σ: X → TΣ ,
then σ#(t) denotes the term obtained by substituting each variable x in t by
the term σ(x). However, for simplicity, even if it is an abuse of notation, we will
write σ(t) instead of σ#(t).

Given a signature Σ = 〈S,Ω〉 and a set X of variables typed over S, we can
build sentences, which are either equalities of the form (t1 =s t2) where t1 and
t2 are terms of sort s, or predicates of the form p(t1, · · · , tn), or a result of ap-
plying the usual Boolean connectives over sentences. All sentences are implicitly

1 Predicates are not part of the usual staple of algebraic data type specification but
they are convenient for our purposes in this paper.

Abstract Constraint Data Types 157

universally quantified2, i.e., a sentence is true over a Σ-algebra A if, for each
possible variable assignment σ: X → A, the sentence is true, i.e., the two terms
of an equality (t1 =s t2) have the same values — σ(t1) is the same as σ(t2), the
value of the terms t1, · · · , tn of a predicate p(t1, · · · , tn) belong to the relation pA
— (σ(t1), · · · , σ(tn)) ∈ pA, or the Boolean operators return true when applied
to the sentences that they connect.

In this paper, we use distinguished variables for defining constraints and use
them to extend signatures and algebras. Given a set V of variables typed over
S, we denote by Σ ∪ V the extension of Σ with the variables taken as unary
operation symbols and, given a Σ-algebra A and an assignment χ: V → A, we
denote by A ∪ χ the extension of A to Σ ∪ V that coincides with χ on V . New
‘normal’ variables can be superposed using the usual construction of terms with
variables as explained above.

3 Extending Algebraic Specifications with Constraints

We put forward a number of definitions that relate to the so-called c-semiring ap-
proach to constraint satisfaction and optimisation proposed in [1]. As explained
therein, that approach is quite general and allows us to work with constraints of
different kinds, both hard and ‘soft’, the latter in many grades (fuzzy, weighted,
and so on). The c-semiring approach supports selection based on a character-
isation of ‘best solution’ supported by multi-dimensional criteria, for example
minimizing the cost of a resource while maximizing the work it supports.

We recall that a c-semiring is a commutative idempotent semiring where addi-
tion is extended to infinite sets. In summary, a c-semiring is a tuple 〈R,∨,∧, 0, 1〉
such that:

– R is a set and 0, 1 are elements of that set.
– ∨ is a commutative, associative, idempotent operation over subsets of R with

unit 0; we use
∑

for sums over sets and reserve ∨ for the binary case.
– ∧ is a binary, commutative, associative operation with unit 1 for which 0 is

absorbing, i.e., (a∧0 = 0) for every a; we use
∏

for products over finite sets.
– ∧ distributes over ∨.

The intuition is that R — the domain of the semiring — represents a space of
degrees of satisfaction, for example the set {0, 1} for ‘yes’/‘no’ or the interval [0, 1]
for intermediate degrees of satisfaction (which gives us a constraint model that is
richer than Boolean algebra). The operations ∧ and ∨ are used for composition
(conjunction) and choice, respectively.

A partial order ≤R (of satisfaction) is defined over R as follows: a ≤R b iff a∨
b = b. That is, b is better than a iff the choice between a and b is b. It follows that 0
is worse than any other degree of satisfaction — it represents dissatisfaction, and
1 is better than any other degree of satisfaction — it represents total satisfaction.
This partial order defines a complete distributive lattice.

2 Note that implicit quantification in many-sorted equational logic raises problems at
the level of proof theory, which we do not discuss herein [7].

158 J.L. Fiadeiro and F. Orejas

In order to define specifications that capture constraints interpreted over c-
semirings, we extend the traditional notion of signature as follows.

Definition 1 (Constraint Signature). A constraint signature (or c-signature
for short) is a tuple 〈S,Ω, V, sat, 0, 1,≤〉 where

– 〈S,Ω〉 is a signature as recalled above.
– V is a finite set of (constraint) variables (c-variables for short) disjoint from
Ω.

– sat∈S is a distinguished sort, 0, 1∈Ωsat are distinguished constants, and ≤
is a distinguished predicate symbol over sat.

For simplicity, we will often useΣ to denote both a c-signature and its underlying
algebraic signature and denote by VΣ its set of c-variables. We will denote by
Σc the algebraic signature 〈S,Ω ∪ VΣ〉.

Definition 2 (Constraint Algebra). Let Σ be a c-signature. A constraint
algebra (c-algebra for short) for Σ is a triple 〈A,R, χ〉 consisting of:

– A c-semiring R.
– A 〈S,Ω〉-algebra A such that Asat is the domain of R, 0A and 1A are the

units of R, and ≤A is the partial order defined by R.
– An assignment χ: V→A of values to the c-variables.

Notice that, given a term t in TΣc , χ(t) is the value that is assigned to t in the
extended algebra A ∪ χ.

We now adapt to our algebraic setting the concepts put forward in [1] for
expressing constraints:

Definition 3 (Constraints). Let Σ be a c-signature.

– A constraint is a term q∈TΣcsat, i.e., a ground term of sort sat.
– A constraint problem (c-problem for short) C is a finite set of constraints.

In our running example, we consider the case of a customer who wants to
book a flight. The data signature of our example could be as depicted in Fig. 1:
it sets out the domain of airports, cities, airlines and flights that are relevant for
a particular customer.

The c-signature of the customer, i.e., the one in which constraint variables are
introduced, could then be the extension of flightDataSign depicted in Fig. 2.

This signature includes three c-variables — flight, flightCost and payMode —
meaning that the customer wants to optimise the choice of the flight and the
payment mode. We use {DC, CC} as an abbreviation for a sort with two dif-
ferent constants DC and CC. In order to express the constraints that apply to
that optimisation, three operations are declared for expressing preferences (i.e.,
operations of sort sat): airlinePref, stopsPref, distPref.

The constraints themselves are expressed as terms of type sat, for example:

Abstract Constraint Data Types 159

Signature flightDataSign

Sorts nat, bool, city, airport, airline,money, flightCode
Opns distance : airport city→ nat

cost : airport city→ money

LHR, LGW, LTN, STN, BCN, GRO, . . . : airport
Iberia, BritishAirways, EasyJet, RyanAir, Vueling, . . . : airline
IB001, IB002, BA001, BA002, EZ001, RN001, VL001, . . . : flightCode
Egham, Barcelona, . . . : city
stops : flightCode→ nat

airline : flightCode→ airline

airDept, airDest : flightCode→ airport

Fig. 1. The signature flightDataSign

Signature customerSign extends flightDataSign with

Opns departure, destination : city
totalCost : flightCode→ money

airlinePref : airline→ sat

payPref : {DC, CC}→ sat

stopsPref : nat money→ sat

distPref : nat→ sat

c-Vars flight : flightCode; flightCost : money; payMode : {DC, CC}
Fig. 2. The signature customerSign

airlinePref(airline(flight)) — meaning that the customer has a preference on
the airline.

payPref(payMode) — meaning that the customer has a preference on the pay-
ment mode.

stopsPref(stops(flight),totalCost(flight)) — meaning that the customer wishes
to optimise the number of stops relative to the total cost of the journey.

distPref(distance(airDest(flight),destination)) — meaning that the customer
wishes to optimise the distance between the destination airport and city.

We discuss now how these preferences are evaluated.

Definition 4 (Constraint Evaluation).

Let Σ be a c-signature and 〈A,R, χ〉 a c-algebra for Σ.

– The degree of satisfaction of a constraint q is χ(q).

– Given a c-problem C:

• The degree of satisfaction χ(C) ofC is
∏

q∈C χ(q). That is, we take themin-

imum of the degrees of satisfaction that χ assigns to the constraints in C.

• The best level of consistency of C over A and R is
∑

χ:V →A χ(C), which

we denote by blevelA,R(C). That is, we take the maximum degree of

satisfaction across all assignments.

160 J.L. Fiadeiro and F. Orejas

• A c-problem C is consistent over A and R iff blevelA,R(C) > 0, i.e., if

there is an assignment for which all constraints have a non-zero degree of

satisfaction.

• A solution to a consistent c-problem C over A and R is an assignment

χ such that χ(C) > 0. A best solution is an assignment χ such that

χ(C) = blevelA,R(C).

We now consider specifications over a signature.

Definition 5 (Constraint Specification). A constraint specification (c-spec
for short) is a triple 〈Σ,Φ,C〉 where Σ is a c-signature, Φ is a finite set of
sentences over Σc and C is a finite set of constraints over Σ.

A model of 〈Σ,Φ,C〉 is a c-algebra 〈A,R, χ〉 such that (A ∪ χ) |=Σc Φ and
χ(C) > 0, i.e., the sentences in Φ are true and χ is a solution to C.

A best model of 〈Σ,Φ,C〉 is a model 〈A,R, χ〉 such that χ(C) = blevelA,R(C).

Notice that, as usual in algebraic specifications, Φ may involve (data) variables,
which should not be confused with the c-variables. The specification is quantified
over the former but not the latter.

Consider again our running example. The specification of the underlying data
type could be as depicted in Fig. 3. For simplicity, we use a tabular representation

Specification flightData

Signature flightDataSign

Axioms distance(X,Y)=D, cost(X,Y)=C where:

X Y D C

BCN Barcelona 10 5

GRO Barcelona 60 15

LHR Egham 10 5

LGW Egham 35 20

LTN Egham 40 30

STN Egham 70 50

.

airDept(X)=X1, airDest(X)=X2, airline(X)=X3, stops(X)=X4 where:

X X1 X2 X3 X4

IB001 LHR BCN Iberia 0

IB002 LGW BCN Iberia 1

BA001 LHR BCN BritishAirways 0

BA002 LGW BCN BritishAirways 1

EZ001 LTN BCN EasyJet 0

RN001 STN GRO RyanAir 0

VL001 LGW BCN Vueling 0

.

Fig. 3. The specification flightData

Abstract Constraint Data Types 161

for groups of equations; for example, the specification would contain the equations
distance(BCN,Barcelona)=10, cost(BCN,Barcelona)=5 and so on.

The specification of the customer could be as depicted inFig. 4(note that all sen-
tences are universally quantified). For example, the customer is not satisfied with
any flight that has two or more stops, no matter the total cost; nor is the customer
satisfied with any flight whose destination airport is fifty or more miles away from
the destination city, though if that distance is less than 50miles, the closer the bet-
ter. The customer is also willing to pay 20% more for a non-stop flight but prefers
the cheaper between any two flights with the same number of stops.

Notice that a specification does not necessarily fix a c-semiring: a specifier is
more likely to express conditions on preferences, as is the case of customer, which
will determine what c-semirings can be chosen to accommodate them.

Because customer does not have information on the actual cost of flights, we
cannot get a best choice for the c-constraints flight, flightCost and payMode. In the
next section we show how, by connecting the customer to a supplier (with flight
costs and own preferences) it is more meaningful to compute a best choice, and
also how to compare between different suppliers so that the one that offers the
best solution can be chosen by the customer.

Specification customer extends flightData with

Signature customerSign

Axioms d, d’, n, m, m’ : nat

departure = Egham

destination = Barcelona

totalCost(F) = flightCost +

cost(airDest(F),destination) + cost(airDept(F),departure)

payPref(CC) > payPref(DC)

airlinePref(Iberia) > airlinePref(RyanAir)

airlinePref(Iberia) > airlinePref(EasyJet)

airlinePref(Iberia) = airlinePref(Vueling)

airlinePref(Iberia) = airlinePref(BritishAirways)

stopsPref(0,m) < stopsPref(1,m’) if m > m’*1.2

stopsPref(0,m) > stopsPref(1,m’) if m ≤ m’*1.2

stopsPref(n,m) > stopsPref(n,m’) if m < m’ ∧ n ≤ 1

stopsPref(n,m) = 0 if n ≥ 2

distPref(d) = 0 if d ≥ 50

distPref(d) > distPref(d’) if d < d’ < 50

Constraints

airlinePref(airline(flight))

payPref(payMode)

stopsPref(stops(flight),totalCost(flight))

distPref(distance(airDest(flight),destination))

Fig. 4. The specification customer

162 J.L. Fiadeiro and F. Orejas

4 Composing Specifications

We start by stating some of the category-theory properties of c-specs, which are
useful to bring abstract constraint data types to the more established mathe-
matical frameworks of algebraic specification (see [4,12]).

Definition 6 (Morphisms of C-Signatures). A morphism of c-signatures
σ: Σ → Σ′ consists of:

– A morphism between the algebraic signatures that preserves the distinguished
elements.

– A total function between the sets of c-variables.

The image of a c-problem C by a c-signature morphism σ: Σ → Σ′ is σ(C)
where σ(〈Vk , qk〉) is the Σ′-constraint 〈σ(Vk), σ(qk)〉.

Proposition 7 (Category of C-Signatures). C-signatures form a finitely co-
complete category, which we denote by c-SIG. The c-signature 〈{sat}, 0, 1,≤, ∅〉,
which we denote by Σ∅, is an initial object and pushouts operate independently
over the algebraic signature and the c-variables.

Proposition and Definition 8 (Category of C-Specs). A morphism of con-
straint specifications σ: 〈Σ,Φ,C〉 → 〈Σ′, Φ′, C′〉 is a morphism of c-signatures
σ: Σ → Σ′ such that Φ′ |=Σ′c σ(Φ) and σ(C) ⊆ C′.

Morphisms of c-specs define a category, which we denote by CCS. This cate-
gory is finitely co-complete.

Proof. That a category is defined is trivial to prove. Finite co-completeness is
proved as follows:

Existence of Initial Objects. It is easy to prove that 〈Σ∅, ∅, ∅〉, where Σ∅ =
〈{sat}, {0 : sat, 1 : sat, ≤: sat sat}, ∅, sat, 0, 1,≤〉 is the initial c-signature,
is an initial object of CCS.

Existence of Pushouts. Let σi: 〈Σ,Φ,C〉 → 〈Σi, Φi, Ci〉 (i = 1, 2) be two
morphisms and μi: Σi → Σ′ a pushout of the corresponding c-signature
morphisms. Then, μi: 〈Σi, Φi, pi〉 → 〈Σ′, μ1(Φ1) ∪ μ2(Φ2), μ1(C1) ∪ μ2(C2)〉
is easily proved to be a pushout of c-specs.

Pushouts compute amalgamated unions, which provide the means for composing
specifications. The amalgamation is done over what is designated to be the
‘intersection’ of the two signatures, i.e., the sorts, operations, predicates and c-
variables that they are designated to share (composition is not based on syntactic
sharing, i.e., names are not considered to be universal but local to specifications).
The exceptions are the sort sat and the constants 0 and 1 of the c-semiring,
which are shared by construction – i.e., the initial c-signature Σ∅ is shared by
all c-specifications. An example of composition is given below.

Definition 9 (Reducts). Let σ: Σ → Σ′ be a morphism of c-signatures. The
σ-reduct of a c-algebra 〈A′, R′, χ′〉 for Σ′ is the c-algebra 〈A′|σ, R′|σ, χ′|σ〉 for Σ
where:

Abstract Constraint Data Types 163

– A′|σ is the σ-reduct of A′ in the usual algebraic sense, i.e., (A′|σ)s=A′
σ(s) for

every sort s and, for every operation or predicate op, opA′|σ=σ(op)A′ .
– R′|σ = R′.
– χ′|σ = σ;χ′.

That is, models are translated back along a morphism by adopting the same
data carriers and c-semiring, and giving symbols and variables at the source the
interpretations that their translations have in the models being translated.

It is important to study how properties of models relate to those of their
reducts:

Proposition and Definition 10. Let σ: 〈Σ,Φ,C〉 → 〈Σ′, Φ′, C′〉 be a mor-
phism of c-specs and 〈A′, R′, χ′〉 a model of 〈Σ′, Φ′, C′〉. The following properties
hold:

1. 〈A′|σ, R′|σ, χ′|σ〉 is a model of 〈Σ,Φ,C〉.
2. χ′(σ(C)) = χ′|σ(C) ≥ χ′(C′).
3. blevelA′|σ,R′|σ (C) ≥ blevelA′,R′(σ(C)) ≥ blevelA′,R′(C′).
4. If σ is injective on VΣ, then blevelA′|σ,R′|σ(C) = blevelA′,R′(σ(C)).
5. If C′ is consistent over 〈A′, R′〉, then C is consistent over 〈A′|σ, R′|σ〉 and,

for every solution χ′ of C′, χ′|σ is a solution of C.

Proof. All properties are easy to prove.

Notice that the difference between 3 and 4 is that, if σ is not injective on VΣ ,
the range of assignments to c-variables allowed by Σ′ is more restricted than
that allowed by Σ — certain c-variables are identified through σ. Property 5
is particularly important because it shows that consistency and solutions of c-
problems are preserved by reducts, i.e., by extending a specification, one does
not create new solutions for or make existing c-problems consistent; naturally,
one may lose solutions or make c-problems inconsistent because new constraints
can be introduced through the extension.

Let us analyze how we can check when a requester component and a provider
component can be connected. If the constraint specification 〈Σ,Φ,C〉 states the
preferences and conditions defined by the requester, and 〈Σ′, Φ′, C′〉 states the
functionality offered and the conditions that the provider can accept, then what
we need is that requester and the provider constraints are consistent. More pre-
cisely, that if we put together the two specifications:

〈Σ0, ∅, ∅〉

po

��

�� 〈Σ,Φ,C〉

��
〈Σ′, Φ′, C′〉 �� 〈Σ′′, Φ′′, C′′〉

where Σ0 is the common subsignature of Σ and Σ′, then the resulting specifica-
tion must be satisfiable, meaning that there must be a model of 〈Σ′′, Φ′′, C′′〉.

In order to illustrate this construction, we connect customers with suppliers.
Consider the following specification of a supplier given in Fig. 6 based on the

164 J.L. Fiadeiro and F. Orejas

Signature supplierSign extends flightDataSign with

Opns price : flightCode money payMode→ sat

available : flightCode→ sat

c-Vars flight : flightCode; flightCost : money; payMode : {DC, CC}
Fig. 5. The c-signature supplierSign

Specification supplier extends flightData with

Signature supplierSign

Axioms available(F)=1 iff F∈{IB001,IB002,BA001,BA002,EZ001,RN001}
price(F,M,C)=S where:

id F M C S

A1 IB001 120 DC 1

A2 IB001 120 CC 1

A3 IB002 150 DC 1

A4 IB002 150 CC 1

A5 BA001 250 DC 1

A6 BA001 250 CC 1

A7 BA002 145 DC 1

A8 BA002 145 CC 1

A9 EZ001 60 DC 1

A10 EZ001 65 CC 1

A11 RN001 40 DC 1

A12 RN001 45 CC 1

F M C 0

Constraints available(flight)

price(flight,flightCost,payMode)

Fig. 6. The specification supplier

signature given in Fig. 5. A supplier has a number of flights available for sale, for
each of which it has a price depending on the payment mode. All the constraints
are crisp meaning that the supplier will only accept to sell flights that it has
available and for the stated prices.

As before, we have used a tabular form to simplify the specification. In ad-
dition, we have named equations (using the attribute id): this is just for con-
venience when discussing constraint optimisation and is not part of the formal
specification, i.e., it has no semantics.

Consider now the amalgamated sum (pushout) of customer and supplier assum-
ing that sorts, operations, predicates and c-variables with the same names are
shared. The set of constraints is, as explained in Def. 8:

c0 : airline(flight)

c1 : payPref(payMode)

Abstract Constraint Data Types 165

c2 : stopsPref(stops(flight),totalCost(flight))

c3 : distPref(distance(airDest(flight),destination))

c4 : available(flight)

c5 : price(flight,flightCost,payMode)

Again, we have named constraints to simplify the way we refer to them.
The crisp constraint c4 reduces the space of solutions to the triples (F,M,C)

— corresponding to flight code, flight cost and payment mode, respectively — on
rows A1-A12. The constraint c3 eliminates the triples (F,M,C) on rows A11-A12
from that set. For each of the remaining constraints, we can derive the following
properties where we use = and > to compare the way those assignments order
the satisfaction of the corresponding constraint:

c0 : A1=A2=A3=A4 > A9=A10, and A5=A6=A7=A8 > A9=A10
c1 : A2=A4=A6=A8=A10 > A1=A3=A5=A7=A9
c2 : A9 > A10 > A1=A2 > A7=A8 > A3=A4 > A5=A6
c3 : A1=A2=A3=A4=A5=A6=A7=A8=A9=A10
c4 : A1=A2=A3=A4=A5=A6=A7=A8=A9=A10
c5 : A1=A2=A3=A4=A5=A6=A7=A8=A9=A10

In order to calculate c2, we computed the total costs as specified in the specifi-
cation customer (see Fig. 4):

id total cost id total cost id total cost id total cost

A1 130 A2 130 A3 175 A4 175

A5 260 A6 260 A7 160 A8 160

A9 95 A10 100 A11 105 A12 110

No best solution can be derived from these inequalities: for example, the pay-
mode preference conflicts with those that relate costs. Notice that, for every
algebra that satisfies the specification, a best solution can be obtained because
a specific level of satisfaction is assigned to every constraint. What happens in
this case is that there is no solution that is optimal for all such algebras.

In general, we can think that a customer could also wish to express an ordering
of importance on constraints, for example that c2 is the most important, followed
by c3, then c1, and then c0. This can be achieved by means of another preference
function, this time applied to sat:

constPref : sat sat→ sat

axiomatized by

constPref(N,M) = 0 if N=0

constPref(N,M) < constPref(N’,M) if N<N’

constPref(N,M) > constPref(N’,M) if N>N’>0

constPref(N,M) > constPref(N’,M’) if N�=0 ∧ M>M’

166 J.L. Fiadeiro and F. Orejas

One would then replace c0, c1, c2, c3 by

c : constPref(c0,constPref(c1,constPref(c3,c2)))

which would again exclude the triples on rows A11-A12 from the space of solu-
tions and return:

c : A9 > A10 > A1 > A2 > A7 > A8 > A3 > A4 > A5 > A6
c4 : A1=A2=A3=A4=A5=A6=A7=A8=A9=A10
c5 : A1=A2=A3=A4=A5=A6=A7=A8=A9=A10

This time, there is a best solution for the customer: the triple (EZ001,95,DC).
Our framework can also be used for selecting a best supplier (if one exists),

by analysing the composition of customer with that of every other supplier. For
example. consider the following specification of a different supplier depicted in
Fig. 7. The crisp constraint c4 now reduces the space of solutions to the triples
(F,M,C) on rows B1-B6. The constraint c3 eliminates the triples (F,M,C) on
rows B5-B6 from that set. The total costs are now:

id total cost

B1 75

B2 80

B3 90

B4 95

For each of the remaining constraints, we can derive the following properties
where we use the row numbers to refer to the triples:

c0 : B1=B2 > B3=B4
c1 : B2=B4 > B1=B3
c2 : B1 > B2 > B3 > B4
c3 : B1=B2=B3=B4
c4 : B1=B2=B3=B4
c5 : B1=B2=B3=B4

Applying the order on the customer’s constraints we obtain:

c : B1 > B2 > B3 > B4
c4 : B1=B2=B3=B4
c5 : B1=B2=B3=B4

From this set we can derive that (VL001,40,DC) is the best solution.
Consider now the combined specifications of the customer with the two sup-

pliers, sharing the data specification but nothing else. The amalgamation will
distinguish the triples that result from one pairing from those resulting from the
other pairing, leading effectively to the union of the two tables. This means that

Abstract Constraint Data Types 167

Specification otherSupplier extends flightData with

Signature supplierSign

Axioms available(F)=1 iff F∈{EZ001,RN001,VL001}
price(F,M,C)=S where:

id F M C S

B1 VL001 40 DC 1

B2 VL001 45 CC 1

B3 EZ001 55 DC 1

B4 EZ001 60 CC 1

B5 RN001 40 DC 1

B6 RN001 45 CC 1

F M C 0

Constraints available(flight)

price(flight,flightCost,payMode)

Fig. 7. The specification otherSupplier

some entries are duplicated but this is how it should be because they refer to
c-variables coming from different sources:

id F M C S id F M C S

A1 IB001 120 DC 1 A2 IB001 120 CC 1

A3 IB002 150 DC 1 A4 IB002 150 CC 1

A5 BA001 250 DC 1 A6 BA001 250 CC 1

A7 BA002 145 DC 1 A8 BA002 145 CC 1

A9 EZ001 60 DC 1 A10 EZ001 65 CC 1

B1 VL001 40 DC 1 B2 VL001 45 CC 1

B3 EZ001 55 DC 1 B4 EZ001 60 CC 1

For each of the constraints, we derive:

c0 : B1=B2=A1=A2=A3=A4 > A9=A10=B3=B4
and A5=A6=A7=A8 > A9=A10=B3=B4

c1 : B2=B4=A2=A4=A6=A8=A10 > B1=B3=A1=A3=A5=A7=A9
c2 : B1 > B2 > B3 > B4=A9 > A10 > A1=A2 > A7=A8 > A3=A4 > A5=A6
c3 : B1=B2=B3=B4=A1=A2=A3=A4=A5=A6=A7=A8=A9=A10

If we use the ordering on the customer’s constraints, then we get:

c : B1 > B2 > B3 > B4=A9 > A10 > A1=A2 > A7=A8 > A3=A4 > A5=A6

which means that, from the customer’s point of view, the optimal solution is the
triple (VL001,40,DC) and, therefore, the customer would prefer otherSupplier over
supplier.

168 J.L. Fiadeiro and F. Orejas

5 Relationship with Institutions

Algebraic specification of abstract data types has traditionally been studied in
the context of institutions [6,11]:

Definition 11 (Institution). An institution 〈Sig, Sen,Mod, |=〉 consists of

– a category Sig of signatures and signature morphisms,
– a functor Sen : Sig → Set, defining for every signature Σ the set Sen(Σ)

of Σ-sentences, and for every signature morphism σ : Σ → Σ′ a sentence
translation map Sen(σ) : Sen(Σ)→ Sen(Σ′),

– a functor Mod : Sig → Catop, defining for every signature Σ the category
Mod(Σ) of Σ-models and Σ-model homomorphisms, and for every signature
morphism σ : Σ → Σ′ the reduct functor Mod(σ) :Mod(Σ′)→Mod(Σ),

– a family of satisfaction relations |=Σ ⊆ |Mod(Σ)| × Sen(Σ), indexed by
signatures,

such that the following satisfaction condition holds:

M ′ |=Σ′ Sen(σ)(ρ) if and only if Mod(σ)(M ′) |=Σ ρ,

for every signature morphism σ : Σ → Σ′, Σ′-model M and Σ-sentence ρ.

The algebraic specification of abstract data types as recalled in Sect. 2 is a
variant of the institutions reviewed in [11].

Proposition 12. The extension to c-specifications as defined in Sect. 3 and 4
defines an institution:

– The category of signatures is as defined in Prop. 7;
– The sentence functor is the extension of classical conditional equational logic

with c-constraints as defined in Def. 3, i.e., sentences are either conditional
equations or c-constraints;

– The model functor is as in Def. 2 and Def. 9.
– The satisfaction relation is as usual on conditional equations and on c-

constraints is defined by

〈A,R, χ〉 |= c iff χ(c) > 0

The results presented in Sect. 4 about c-specifications actually follow from the
fact that c-constraints define an institution.

Another way of defining an institution of c-constraints is by framing them in
the context of institutions of graded consequence recently proposed by Razvan
Diaconescu [3], which differ from institutions by letting the satisfaction relations
take values in a space L, i.e., for every signature Σ,

|=Σ : |Mod(Σ)| × Sen(Σ)→ L

In this case, we would just have to take the domain of the c-semiring as the space
L and interpret the sentences that are not c-constraints as having the c-semiring
values 1 or 0 depending on whether they are satisfied or not satisfied in a model,
respectively. That is, we would treat equations as crisp constraints.

Abstract Constraint Data Types 169

6 Conclusions and Further Work

In this paper, we outlined a way in which specifications of abstract data types
can be extended to accommodate constraint specification using the c-semiring
approach proposed in [1]. This brings together two areas to which MartinWirsing
has made extensive contributions: algebraic specification theory (e.g., [12]) and
the use of constraint systems to deal with non-functional requirements in service-
oriented systems [13,14].

This work sets the stage for a more ambitious project of revisiting the for-
malism of symbolic graphs, proposed in [9], to use it as the basis for describing
service-oriented systems, where a symbolic graph is a typed attributed graph
together with a set of constraints. In particular, we can use symbolic graphs
to describe the states of systems and symbolic graph transformation rules to
describe computations including the interconnection of components. In this con-
text, constraints could be used to describe quality of service requirements, so that
computing service level agreements could be part of the computation associated
with component interconnection.

Acknowledgments. This work was developed while J L Fiadeiro was on study
leave at Universitat Politècnica de Catalunya with the generous support of the
Dep. de Llenguatges i Sistemes Informàtics.

References

1. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

2. Broy, M., Dosch, W., Partsch, H., Pepper, P., Wirsing, M.: Existential quanti-
fiers in abstract data types. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71,
pp. 73–87. Springer, Heidelberg (1979)

3. Diaconescu, R.: Graded consequence: an institution theoretic study. Soft Com-
put. 18(7), 1247–1267 (2014)

4. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics. Monographs in Theoretical Computer Science. An EATCS Series.
Springer (1985)

5. Fiadeiro, J.L.: Categories for Software Engineering. Springer (2004)
6. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification

and programming. J. ACM 39(1), 95–146 (1992)
7. Goguen, J.A., Meseguer, J.: Universal realization, persistent interconnection and

implementation of abstract modules. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP
1982. LNCS, vol. 140, pp. 265–281. Springer, Heidelberg (1982)

8. Hölzl, M.M., Meier, M., Wirsing, M.: Which soft constraints do you prefer? Electr.
Notes Theor. Comput. Sci. 238(3), 189–205 (2009)

9. Orejas, F., Lambers, L.: Lazy graph transformation. Fundam. Inform. 118(1-2),
65–96 (2012)

10. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: State of the art and research challenges. IEEE Computer 40(11), 38–45
(2007)

170 J.L. Fiadeiro and F. Orejas

11. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. In: Monographs in Theoretical Computer Science. An EATCS
Series. Springer (2012)

12. Wirsing,M.:Algebraic specification. In:Handbook ofTheoretical Computer Science,
Volume B: Formal Models and Semantics (B), pp. 675–788. MIT Press, Cambridge
(1990)

13. Wirsing, M., Denker, G., Talcott, C.L., Poggio, A., Briesemeister, L.: A rewriting
logic framework for soft constraints. Electr. Notes Theor. Comput. Sci. 176(4),
181–197 (2007)

14. Wirsing, M., Hölzl, M. (eds.): SENSORIA. LNCS, vol. 6582. Springer, Heidelberg
(2011)

Generate & Check Method

for Verifying Transition Systems in CafeOBJ

Kokichi Futatsugi

Research Center for Software Verification (RCSV)
Japan Advanced Institute of Science and Technology (JAIST)

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Abstract. An interactive theorem proving method for the verification
of infinite state transition systems is described.

The state space of a transition system is defined as a quotient set (i.e. a
set of equivalence classes) of terms of a topmost sort State, and the tran-
sitions are defined with conditional rewrite rules over the quotient set. A
property to be verified is either (1) an invariant (i.e. a state predicate that
is valid for all reachable states) or (2) a (p leads-to q) property for two
state predicates p and q, where (p leads-to q) means that from any reach-
able state swith (p(s) = true) the systemwill get into a state twith (q(t)
= true) no matter what transition sequence is taken.

Verification is achieved by developing proof scores in CafeOBJ. Suf-
ficient verification conditions are formalized for verifying invariants and
(p leads-to q) properties. For each verification condition, a proof score
is constructed to (1) generate a finite set of state patterns that covers all
possible infinite states and (2) check validity of the verification condition
for all the covering state patterns by reductions.

Themethodachieves significant automationofproof scoredevelopments.

1 Introduction

Constructing specifications and verifying them in the upstream of software de-
velopment are still one of the most important challenges in formal software
engineering. It is because quite a few critical bugs are caused at the level of do-
mains, requirements, and/or designs specifications. Proof scores are intended to
meet this challenge [9,10]. In the proof score approach, an executable algebraic
specification language (i.e. CafeOBJ [3] in our case) is used to specify a system
and system properties, and the reduction (or rewriting) engine of the language is
used as a proof engine to prove that the system satisfy the properties of interest.

Proof plans for verifying the system properties are coded into proof scores, and
are also written in the algebraic specification language. Usually, a proof score
describes modules and predicates in the modules that constitute a sufficient
condition for verifying a system property. The language processor interprets the
specification and proof score and verifies the validity of the sufficient condition by
checking all the predicates with reductions. Logical soundness of the reductions

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 171–192, 2015.
c© Springer International Publishing Switzerland 2015

172 K. Futatsugi

is guaranteed by the fact that the reductions are consistent with the equational
reasoning with the equations in the specification and the proof score [11].

The concept of proof supported by proof scores is similar to that of LP [14].
Proof scripts written in tactic languages provided by theorem provers (proof
assistants) such as Coq [6] and Isabelle/HOL [19] have similar nature as proof
scores. However, proof scores are written uniformly with specifications in an
executable algebraic specification language and can enjoy a transparent, simple,
executable and efficient logical foundation based on the equational and rewriting
logics [11,17].

Effective coordination of inference (à la theorem proving, e.g. [6,15,19,23])
and search (à la model checking, e.g. [5,13]) is important for making proof scores
more effective and powerful, and we have developed several techniques [22,10].
The generate & check method described in this paper is a recent development
of this kind. The method is based on (1) a state representation as a set of
observers, and (2) systematic generation of finite state patterns that cover all
possible infinite cases.

The rest of the paper is organized as follows. Section 2 explains necessary
mathematical concepts and notations. Section 3 presents system and property
specifications of the QLOCK protocol in the CafeOBJ language. Section 4 de-
scribes the generate & check method with necessary theoretical expositions. Sec-
tion 5 presents proof scores for QLOCK through the generate & check method.
Section 6 explains related work and future issue.

2 Preliminaries

2.1 Equational Specifications and Quotient Term Algebras

Let Σ = (S,≤, F) be a regular order-sorted signature [12], where S is a set of

sorts, ≤ is a partial order on S, and F
def
= {Fs1···sms}s1···sms∈S+ is S+-sorted set

of function symbols. Let X = {Xs}s∈S be an S-sorted set of variables, then the
S-sorted set of Σ(X)-term is defined inductively as follows. Regularity of an
order-sorted signature guarantees the existence of the least sort of a term and
makes the definition consistent [12].

– each constant f ∈ Fs is a Σ(X)-term of sort s,
– each variable x ∈ Xs is a Σ(X)-term of sort s,
– t is a Σ(X)-term of sort s′ if t is a Σ(X)-term of sort s and s < s′, and
– f(t1, . . . , tn) is a Σ(X)-term of sort s for each operator f ∈ Fs1...sns and
Σ(X)-terms ti of sort si for i ∈ {1, . . . , n}.

Let TΣ(X)s denote a set of Σ(X)-terms of sort s, and let TΣ(X)
def
=

{TΣ(X)s}s∈S , and let TΣ
def
= TΣ({}). TΣ(X) is called an S-sorted set of Σ(X)-

terms, and TΣ is called an S-sorted set of Σ-terms. A Σ-term is also called a
ground term or a term without variables. TΣ(X) can be organized as (Σ ∪X)-
algebras in the obvious way by using the above inductive definition of Σ(X)-
terms, where Σ∪X is a signature obtained by interpreting X as an order-sorted

Generate & Check Method for Verifying Transition Systems in CafeOBJ 173

set of fresh constants. Similarly, TΣ can be organized as Σ-algebras. For an

S-sorted set T , let (t ∈ T) def
= (∃s ∈ S)(s ∈ Ts).

Let l, r ∈ TΣ(X)s for some s ∈ S and c ∈ TΣ(X)Bool for a special sort Bool

with the two constructors true and false, a Σ-equation is defined as a sentence
of the form (∀X) (l=r ifc). If the condition c is the constant predicate true, the
equation is called unconditional and written as (∀X) (l = r). An equation that
is not unconditional is called conditional. Throughout this paper an equation
may be conditional, and the theory and the method presented are valid even if
considering conditional equations.

For a finite set of equations E = {e1, · · · , en}, (Σ,E) represents an equational

specification. (Σ,E) defines an order-sorted quotient term algebra TΣ/=E
def
=

{(TΣ)s/(=E)s}s∈S , where E defines an order-sorted congruence relation =E
def
=

{(=E)s}s∈S on TΣ = {TΣs}s∈S . Note that if ei = (∀X)(li = ri if ci) for i ∈
{1, · · · , n} and Y is disjoint from X , then TΣ(Y)/=E can be defined similarly by
interpreting TΣ(Y) as TΣ∪Y , where Σ∪Y is a signature obtained by interpreting
Y as an order-sorted set of fresh constants.

Proof scores in CafeOBJ are mainly developed for an equational specification
(Σ,E) (i.e. for TΣ/=E). Note that the description of TΣ/=E here is quite casual,
and refer to [11] for more detailed and precise descriptions including constructor-
based signatures, models and satisfaction, equational and specification calculi.

2.2 Rewrite Rules and Reductions

If each variable in r or c is a variable in l (i.e. (∀Y)(l ∈ TΣ(Y) implies r, c ∈
TΣ(Y))) and l is not a variable, an equation (∀X)(l = r ifc) can be interpreted
as a rewrite rule (∀X)(l → r if c). Given a set of Σ-equations E that can be
interpreted as a set of rewrite rules, the equational specification (Σ,E) defines
the one step rewrite relation →E on TΣ. Note that the definition of →E is not
trivial because some rule in E may have a condition (see Section 2.2 of [18] or
[26] for details).

The reduction (or rewriting) defined by (Σ,E) is the transitive and reflective
closure →∗

E of →E . In CafeOBJ each equation is interpreted as a rewrite rule,
and the reduction is used to check validity of predicates. The following is a
fundamental lemma about =E and →∗

E .

Lemma 1 [Reduction Lemma]. (∀t, t′ ∈ TΣ)((t→∗
E t′) implies (t=E t′)) �

Note that the Reduction Lemma holds even if the rewriting relation defined by
a specification (Σ,E) is not “terminating”, “confluent”, and “sufficiently com-
plete”. These properties of the rewriting relation are desirable but not necessary
for the theory and the method presented in this paper.

Let θ ∈ TΣ(Y)
X

be a substitution (i.e. a map) from X to TΣ(Y) for disjoint
X and Y then θ extends to a morphism from TΣ(X) to TΣ(Y), and t θ is the
term obtained by substituting x ∈ X in t with x θ.

The following lemma about the reduction plays an important role in the gen-
erate & check method.

174 K. Futatsugi

Lemma 2 [Substitution Lemma].

(∀p ∈ TΣ(X)Bool)((p→
∗
E true) implies (∀θ ∈ TΣ(Y)

X
)(p θ →∗

E true))

and

(∀p ∈ TΣ(X)Bool)((p→∗
E false) implies (∀θ ∈ TΣ(Y)

X
)(p θ →∗

E false))

where each x ∈ X in p and each y ∈ Y in p θ are treated as fresh constants in
the reductions (p→∗

E true), (p→∗
E false) and (p θ →∗

E true), (p θ →∗
E false)

respectively. �

Lemma 1 and lemma 2 with Y = {} imply the following lemma, where

(∀X)(p =E true)
def
= (∀θ ∈ TΣX)(p θ =E true).

Lemma 3 [Lemma of Constants].

(∀p ∈ TΣ(X)Bool)((p→∗
E true) implies (∀X)(p =E true))

where each x ∈ X in p is treated as a fresh constant in the reduction (p →∗
E

true). �

2.3 Transition Systems

It is widely recognized that the majority of systems/problems in many fields can
be modeled as transition systems and their invariants.

A transition system is defined as a three tuple (St ,Tr , In). St is a set of
states, Tr ⊆ St × St is a set of transitions on the states, and In ⊆ St is a set of
initial states. (s, s′) ∈ Tr denotes a transition from the state s to the state s′.
A sequence of states s1s2 · · · sn with (si, si+1) ∈ Tr for each i ∈ {1, · · · , n− 1}
is defined to be a transition sequence. Note that any s ∈ St is defined to be
a transition sequence of length 11. A state sr ∈ St is defined to be reachable if
there exists a transition sequence s1s2 · · · sn with sn = sr for n ∈ {1, 2, · · · } such
that s1 ∈ In. A state predicate p (i.e. a function from St to Bool) is defined to
be an invariant (or an invariant property) if (p(sr) = true) for any reachable
state sr.

Let (Σ,E) be an equational specification with a unique topmost sort (i.e. a
sort without subsorts) State, and let tr = (∀X)(l → r if c) be a rewrite rule
with l, r ∈ TΣ(X)State and c ∈ TΣ(X)Bool, then tr is called a transition rule
and defines the one step transition relation →tr∈ TΣ(Y)State × TΣ(Y)State for
Y being disjoint from X as follows.

(s→tr s
′)

def
= (∃θ ∈ TΣ(Y)

X
)((s =E l θ) and (s′ =E r θ) and (c θ =E true))

1 For the case in which n = 1, s1s2 · · · sn is s1 and {1, · · · , 0} is the empty set, and
((si, si+1) ∈ Tr for each i ∈ {1, · · · , 0}) could be interpreted valid.

Generate & Check Method for Verifying Transition Systems in CafeOBJ 175

Note that the rewriting mechanism is used to define the transition relation
but it is different from the rewrite relation that defines the one way (or non-
commutative) equality. Note also that =E is understood to be defined with
((Σ ∪ Y), E) by considering y ∈ Y as a fresh constant if Y is not empty.

Let TR = {tr1, · · · , trm} be a set of transition rules, let →TR
def
=
⋃m

i=1→tri ,
and let In ⊆ (TΣ)State/(=E)State. Then (Σ,E,TR) defines a transition system
((TΣ)State/(=E)State,→TR, In).

2 A specification (Σ,E,TR) is called a transition
specification.

The idea underlies the transition specification (Σ,E,TR) and the transition
system ((TΣ)State/(=E)State,→TR, In) is same as the one for the topmost rewrite
theory [24,25,17]. The generate & check method for (Σ,E,TR) is based on,
however, only reductions in proof scores.

2.4 Verification of Invariant Properties

Given a transition system TS = (St ,Tr , In), let init be a state predicate that
specifies the initial states (i.e. (∀s ∈ St) (init(s) iff (s ∈ In))), and let p1, p2,

· · · , pn (n ∈ {1, 2, · · · }) be state predicates of TS , and inv(s)
def
= (p1(s) and

p2(s) and · · · and pn(s)) for s ∈ St .

Lemma 4 [Invariant Lemma]. The following three conditions are sufficient for
pt to be an invariant.

(1) (∀s ∈ St)(inv(s) implies pt(s))
(2) (∀s ∈ St)(init(s) implies inv(s))
(3) (∀(s, s′) ∈ Tr)(inv(s) implies inv(s′))

�
A predicate that satisfies the conditions (2) and (3) like inv is called an

inductive invariant. If pt itself is an inductive invariant then taking p1 = pt

and n = 1 is enough. However, p1, p2, · · · , pn (n > 1) are almost always needed
to be found for getting an inductive invariant, and to find them is a most difficult
part of the invariant verification.

It is worthwhile to note that there are following two contrasting approaches
for formalizing p1, p2, · · · , pn for a transition system and its property pt.

• Make p1, p2, · · · , pn as minimal as possible to imply the target property pt;
◦ usually done by lemma finding in interactive theorem proving,
◦ it is difficult to find lemmas without some comprehensive understanding
of the system.

• Make p1, p2, · · · , pn as comprehensive as possible to characterize the system;
◦ usually done by specifying elemental properties of the system as much
as possible in formal specification development,

◦ it is difficult to identify the elemental properties without focusing on the
property to be proved (i.e. pt).

2 Note that (TΣ)State/(=E)State is better to be understood as TΣ/=E , for usually the
sort State can only be understood together with other related sorts like Bool, Nat,
Queue, etc.

176 K. Futatsugi

3 Specifications of QLOCK in CafeOBJ

A simple but non-trivial example QLOCK is used to explain the generate &
check method in this section and Section 5. You can find all the specifications
and proof scores for verifying QLOCK with the generate & check method on the
following web page.

http://www.jaist.ac.jp/~kokichi/misc/1411gcmvtsco/

Specifications and proof scores in CafeOBJ on the web page contain quite a few
comments that explain not only CafeOBJ language but also proof strategy and
technique used, and interested readers are encouraged to look into the web page.

This section contains a description, and explains system and property speci-
fications of QLOCK. Section 5 explains proof scores for verifying QLOCK with
the generate & check method.

3.1 QLOCK Description

The example used is a mutual exclusion protocol QLOCK. A mutual exclusion
protocol can be described as follows:

Assume that many agents (or processes) are competing for a common
equipment (e.g. a printer or a file system), but at any moment of time
only one agent can use the equipment. That is, the agents are mutually
excluded in using the equipment. A protocol (mechanism or algorithm)
which can achieve the mutual exclusion is called “mutual exclusion pro-
tocol”.

QLOCK is realized by using a global queue (first in first out storage) of agent
names (or identifiers) as follows.

– Each of unbounded number of agents who participates in the protocol be-
haves as follows:

• If the agent wants to use the common equipment and its name is not in
the queue yet, put its name at the bottom of the queue.

• If the agent wants to use the common equipment and its name is already
in the queue, check if its name is on the top of the queue. If its name is
on the top of the queue, start to use the common equipment. If its name
is not on the top of the queue, wait until its name is on the top of the
queue.

• If the agent finishes to use the common equipment, remove its name from
the top of the queue.

– The protocol starts from the state with the empty queue.

3.2 System Specification

The file qlock-sys.cafe on the web page contains a system specification of
QLOCK in CafeOBJ.

OTS (Obervational Transition System) is a scheme for formalizing transition
systems. A state is formalized as a collection of typed observed values given by

Generate & Check Method for Verifying Transition Systems in CafeOBJ 177

observers (or observation operations). A state transition is formalized as an
action that defines changes of the observed values between the current state
and the next state.

For the generate & check method, generations of finite state patterns (i.e. state
terms composed of constructors and variables) that subsume all the possible
infinite states is a key procedure, and states are assumed to be represented
with an appropriate data structure (or configuration). This is different from the
original OTS scheme where there is no assumption on the structure of a state
[20,21].

AOB, AID-QUEUE, and STATE: A state of QLOCK is defined as a pair of a queue
Qu and a set of observers Aobs by the following module STATE.

-- agent observer

mod! AOB {pr(LABEL) pr(AID)

[Aob] op (lb[_]:_) : Aid Label -> Aob {constr} .}

-- queue of Aid

mod! AID-QUEUE {pr(QUEUE(AID{sort Elt -> Aid}))}

-- a state is defined as a pair of a queue of Aid and a set of Aob

mod! STATE{pr(AID-QUEUE) pr(SET(AOB{sort Elt -> Aob})*{sort Set -> Aobs})

-- a state is a pair of Qu and Aobs

[State] op _$_ : Qu Aobs -> State {constr} .}

pr() indicates a protecting importation, and declares to import a module with-
out changing its models. The module LABEL defines the three labels rs (remainder
section), ws (waiting section), cs (critical section) for indicating the status of each
agent. The module AID defines unbounded number of agent names. The parame-
terized modules QUEUE and SET define the data structures needed to define STATE.
QUEUE(AID{sort Elt -> Aid}) defines the module obtained by instantiating the
parameter X of QUEUE by AID with the interpretation of Elt as Aid. Similarly
SET(AOB{sort Elt -> Aob}) defines sets of observers. *{sort Set -> State} de-
fines the renaming of Set to State. As a result, a state is presented as a pair of a
Q:Qu and a set of (lb[A:Aid]: L:Label) for all A:Aid, where the term (lb[A:Aid]:

L:Label) denotes that an agent A is in the status L.
Let STATE-n denote STATE with a n agent ids (i.e. Aid = {a1, · · · , an}), and let

ΣSTATE−n be a signature of STATE-n, then the state space of STATE-n is defined as

StSTATE−n
def
= TΣSTATE−n .

WT, TY, EX, and QLOCKsys: The QLOCK protocol is defined by the following
four modules. The transition rule of the module TY indicates that if the top
element of the queue is A:Aid (i.e. Qu is (A:Aid & Q:Qu)) and the agent A is at
ws (i.e. (lb[A:Aid]: ws)) then A gets into cs (i.e. (lb[A]: cs)) without changing
contents of the queue (i.e. Qu is (A & Q)). The other two transition rules can
be read similarly. Note that the module WT, TY, EX formulate the three actions
explained in the beginning of the Section 3 precisely and succinctly. QLOCKsys is
just combining the three modules.

178 K. Futatsugi

-- wt: want transition

mod! WT {pr(STATE)

trans[wt]: (Q:Qu $ ((lb[A:Aid]: rs) AS:Aobs))

=> ((Q & A) $ ((lb[A]: ws) AS)) . }

-- ty: try transition

mod! TY {pr(STATE)

trans[ty]: ((A:Aid & Q:Qu) $ ((lb[A]: ws) AS:Aobs))

=> ((A & Q) $ ((lb[A]: cs) AS)) . }

-- ex: exit transition

-- this transition can be defined by ’trans’ rule with two

-- (A:Aid)s in the left hand side like [ty], ’ctrans’ is used

-- here to show an example of conditional transition rule

mod! EX {pr(STATE)

ctrans[ex]: ((A1:Aid & Q:Qu) $ ((lb[A2:Aid]: cs) AS:Aobs))

=> (Q $ ((lb[A2]: rs) AS))

if (A1 = A2) . }

-- system specification of QLOCK

mod! QLOCKsys{pr(WT + TY + EX)}

A declaration of a transition rule starts with trans, contains rule’s name
[]:, current state term and next state term are placed before and after =>

respectively, and ends with “.”. Note that because a state configuration is a
set (i.e. a term composed of associative, commutative, and idempotent binary
constructors ()) the component of the left hand side (lb[A:Aid]: rs) of the
rule wt can match any agent in a state. This implies that the transition rule wt

can define unbounded number of transitions depending on the number of agents
a state includes. The same holds for the rules ty and ex.

For STATE-n with Aid = {a1, · · · , an}, the trans or ctrans rules wt,ty,ex de-
fines the one step transition relations →wt,→ty,→ex respectively on the state
space StSTATE−n = TΣSTATE−n . QLOCKsys-n with STATE-n defines a set of transitions

TrQLOCKsys−n ⊆ (StSTATE−n × StSTATE−n) as TrQLOCKsys−n
def
= (→wt ∪ →ty ∪ →ex).

3.3 Property Specification

The file qlock-prop.cafe on the web page contains a property specification of
QLOCK in CafeOBJ.

Property specification is supposed to define the initial state predicate init and
the possible inductive invariant inv in lemma 4. Both of init and inv are going
to be defined as conjunctions of elemental predicates. For defining the elemental
predicates of QLOCK, the module PNAT for Peano style unary natural numbers
Nat with addition _+_and greater than _>_operations is prepared. Using PNAT,
fundamental functions on State like “the number of a label in a state”, “the
number of an aid in a state”, “the number of an aid in a queue”, “label of an
agent in a State” are defined. All of these functions are naturally defined with
recursive equations.

In this property specification of QLOC, we adopt a strategy to formalize
necessary predicates based on the Peano style natural number PNAT. The strategy

Generate & Check Method for Verifying Transition Systems in CafeOBJ 179

works well especially for verifying a (p leads-to q) property (a liveness property,
see Section 5.2).

INIT: Using the fundamental functions on State, elemental state predicates like
“at least one agent in a state” (aoa), “no duplication of an Aid in a state”
(1a), “the queue is empty” (qe), “any Aid is in rs status” (allRs) are defined.
Using the elemental state predicates, the initial state predicate init of QLOCK
is defined as follows.

-- an initial state predicate

mod! INIT {pr(STATEpred-init)

op init : -> PnameSeq . eq init = aoa 1a qe allRs .

-- initial state predicate

pred init : State . eq init(S:State) = cj(init,S) . }

Note that cj is defined recursively based on the recursive structure of PnameSeq
as follows:

op cj : PnameSeq State -> Bool .

eq cj((PN:Pname PNS:PnameSeq),S:State) = cj(PN,S) and cj(PNS,S) .

and a conjunction of predicates is represented as a sequence of Pname (i.e. an
element of sort PnameSeq). The module PNAMEcj in the file qlock-prop.cafe defines
Pname and PnameSeq.

INV and QLOCKprop: The target predicate of QLOCK is a mutual exclusion
predicate defined as follows.

-- mutual exclusion predicate; this is the target predicate

op mx : -> Pname .

eq[mx]: cj(mx,S:State) = (#ls(S,cs) = 0) or (#ls(S,cs) = (s 0)) .

pred mx : State . eq mx(S:State) = cj(mx,S) .

where (#ls(S,cs) = 0) or (#ls(S,cs) = (s 0)) means there is zero or one agent
with cs status in a state. Elemental state predicates for the possible inductive
invariant are selected to specify the statuses like “if queue is empty” (qep), “if
agent is in rs” (rs), “if agent is in ws” (ws), “if agent is in cs” (cs), “if cs then it
should be the top of the queue” (cst), and the possible inductive invariant inv

of QLOCK is defined by the module INV as follows. The module QLOCKprop for
QLOCK property specification is just combining INIT and INV.

-- a possible inductive invariant predicate

mod! INV {pr(STATEpred-inv)

op inv : -> PnameSeq . eq inv = aoa 1a mx qep rs ws cs cst .

pred inv : State . eq inv(S:State) = cj(inv,S) .

}

-- property specification of QLOCK

mod! QLOCKprop{pr(INIT + INV)}

180 K. Futatsugi

4 Generate & Check Method

The idea underlies the generate & check method is simple and general. Let Srt
be a sort and p be a predicate on Srt , then by lemma 2 (Substitution Lemma)

(p(X :Srt)→∗
E true) implies (∀t ∈ (TΣ)Srt)(p(t) =E true)

holds, and (p(X :Srt)→∗
E true) is sufficient to prove (∀t)p(t). However, usually

p is not simple enough to obtain (p(X : Srt) →∗
E true) directly, and we need

to analyze the structure of terms in (TΣ)Srt and E for (1) generating a set of
terms {t1, · · · , tm} ⊆ TΣ(Y)Srt that covers all possible cases of (TΣ)Srt , and (2)
checking (p(ti)→∗

E true) for each i ∈ {1, · · · ,m}.
Note that the generate & check method is general enough for applying not

only to the sort State but also to any sort Srt. As a matter of fact, it can be
applied in quite a few occasions in which the necessary cases to be analyzed can
be covered by a finite set of term patterns of sort Srt. This paper only describes
a special but most important application to the sort State.

Note also that induction is an already established technique for proving
(p(X : Srt) →∗

E true) for a constrained sort Srt with proof scores [11], and
the generate & check method is another independent technique for coping with
sometimes a large number of cases.

4.1 Generate & Check for ∀st ∈ St

A term t′ ∈ TΣ(Y) is defined to be an instance of a term t ∈ TΣ(X) iff there

exits a substitution θ ∈ TΣ(Y)
X

such that t′ = t θ.
A finite set of terms C ⊆ TΣ(X) is defined to subsume a (may be infinite)

set of ground terms G ⊆ TΣ iff for any t′ ∈ G there exits t ∈ C such that t′ is
an instance of t.

Lemma 5 [Subsume Lemma].
Let a finite set of state terms C ⊆ TΣ(X)State subsume the set of all ground

state terms (TΣ)State, and let p be a state predicate, then the following holds.

((∀s ∈ C)(p(s)→∗
E true)) implies ((∀t ∈ (TΣ)State)(p(t)→∗

E true))

Proof. Let C = {s1, · · · , sm}. Note that p(si) ∈ TΣ(X)Bool for any si ∈
{s1, · · · , sm}. Then, by the definition of “subsume”, for any ground state term
t ∈ (TΣ)State, there exits sj ∈ {s1, · · · , sm} and a substitution θ ∈ TX

Σ such that
t = sjθ. Hence, if (p(si) →∗

E true) for all si ∈ {s1, · · · , sm} then (p(sj) →∗
E

true), and, by lemma 2 (Substitution Lemma), ((p(sj)θ = p(sjθ) = t) →∗
E

true) holds. �

Lemma 5 and lemma 1 imply the validity of following Generate&Check-S.
Note that (t1 	∗

E t2) means that the term t1 is reduced to the term t2 by the
CafeOBJ’s reduction engine, and (t1 	∗

E t2) implies (t1 →∗
E t2) but not necessary

(t1 →∗
E t2) implies (t1 	∗

E t2).

Generate & Check Method for Verifying Transition Systems in CafeOBJ 181

Generate&Check-S. Let ((TΣ)State/(=E)State,→TR, In) be a transition sys-
tem defined by a transition specification (Σ,E,TR) (see Section 2.3). Then doing
the following Generate and Check are sufficient for verifying

(∀t ∈ (TΣ)State)(pst(t) =E true)
for a state predicate pst.

Generate a finite set of state terms C ⊆ TΣ(X)State that subsumes (TΣ)State.
Check (pst(s) 	∗

E true) for each s ∈ C.

�
4.2 Built-in Search Predicate of CafeOBJ

The verification condition (3) for invariant verification in lemma 4 contains a uni-
versal quantification over the set of transitions Tr , and it is generally difficult to
specify Tr as a sort. CafeOBJ’s built-in search predicate makes it possible to trans-
late a universal quantification over Tr into a universal quantification over St .

The built-in search predicate is declared as follows.

pred _=(*,1)=>+_if_suchThat_{_} : State State Bool Bool Info .

Info is a sort for showing necessary information. The first argument is the cur-
rent state S:State; the second argument is the variable for binding the found
next state SS:State; the third argument is the variable for binding the found
condition CC:Bool; the fourth argument is a predicate p(S,SS,CC) whose validity
is to be checked; the fifth argument is a term i(S,SS,CC) for showing the nec-
essary information. Note that in the use of this predicate the second and third
arguments is always variables like SS:State and CC:Bool for binding the found
next state and condition respectively.

Let ((TΣ)State/(=E)State,→TR, In) be a transition system defined by a tran-
sition specification (Σ,E,TR) (see Section 2.3), and let TR = {tr1, · · · , trm}.
For a state term s ∈ TΣ(Y)State, the reduction of a Boolean term:

s =(*,1)=>+ SS:State if CC:Bool suchThat p(s,SS,CC) {i(s,SS,CC)}

with 	∗
E ∪ →TR is defined to behave as follows.

1. Search for every pair (trj , θ) of a transition rule tr j = (∀X)(lj → rj if cj)

in Tr and a substitution θ ∈ TΣ(Y)
X

such that s = lj θ.
2. For each found (trj , θ), let (SS = rj θ) and (CC = cj θ) and print out i(lj θ,

rj θ, cj θ) and trj if (p(lj θ, rj θ, cj θ) 	∗
E true) holds.

3. Returns true if some print out exits, and returns false otherwise.

Note that a user can define p(s,SS,CC) and i(s,SS,CC) freely, and it makes
many kinds of checks and result displays possible. Most typical usages are (1) to
check whether some predicate holds between a current state s and a next state
SS, and (2) to check whether (CC=cj θ 	∗

E true) for a pair (trj , θ).

4.3 Generate & Check for ∀tr ∈ Tr

Let q be a predicate “pred q : State State” for stating some relation of the cur-
rent state and the next state, like (inv(s) implies inv(s′)) in the condition (3) for

182 K. Futatsugi

invariant verification in lemma 4. Let the predicates _then_ and valid-q be de-
fined as follows in CafeOBJ using the built-in search predicate. Note that _then_
is different from _implies_ because (B:Bool implies true = true) for _implies_

but only (true then true = true) for _then_.

pred _then_ : Bool Bool .

eq (true then B:Bool) = B . eq (false then B:Bool) = true .

pred valid-q : State State Bool .

eq valid-q(S:State,SS:State,CC:Bool) =

not(S =(*,1)=>+ SS if CC suchThat not((CC then q(s,SS)) == true)

{i(S,SS,CC)}) .

For a state term s ∈ TΣ(Y)State, the reduction of the Boolean term:
valid-q(s,SS:State,CC:Bool)

with 	∗
E ∪ →TR behaves as follows based on the definition of the behavior of

the built-in search predicate.

1. Search for evey pair (trj , θ) of a transition rule trj = (∀X)(lj → rj if cj) in

Tr and a substitution θ ∈ TΣ(Y)X such that s = lj θ.
2. For each found (trj , θ), let (SS = rj θ) and (CC = cj θ) and print out i(lj θ,

rj θ, cj θ) and trj if (not((cj θ then q(lj θ, rj θ)) == true) 	∗
E true).

3. Returns false if any print out exits, and returns true otherwise.

Note that (not((cj θ then q(lj θ, rj θ)) == true) 	∗
E true) means ((cj θ then

q(lj θ, rj θ)) 	∗
E false) or ((cj θ then q(lj θ, rj θ)) 	∗

E <not-true-or-false>),
and no print out for (trj , θ) means that ((cj θ then q(lj θ, rj θ)) 	∗

E true). It
in turn means (cj θ 	∗

E false) or ((cj θ 	∗
E true) and (q(lj θ, rj θ) 	∗

E true)).
Hence, if (valid-q(s,SS:State,CC:Bool) 	∗

E ∪ →TR true) for s ∈ TΣ(Y), ((cj θ
	∗

E false) or ((cj θ 	∗
E true) and (q(lj θ, rj θ) 	∗

E true))) for any (trj , θ) such
that (s = lj θ).

We need the following definition of cover set for “Generate & Check for
∀tr ∈ Tr”.

Definition 6 [Cover] Let C ⊆ TΣ(Y) and C′ ⊆ TΣ(X) be finite sets. C is
defined to cover C′ iff for any ground instance t′g ∈ TΣ of any t′ ∈ C′, there
exits t ∈ C such that t′g is an instance of t and t is an instance of t′. �

The following lemma holds for cover sets.

Lemma 7 [Cover Lemma 1]. Let C′ ⊆ TΣ(X)State be the set of all the left
hand sides of the transition rules in TR, and let C ⊆ TΣ(Y) cover C′, then the
following holds.

(∀t ∈ C)(valid-q(t,SS:State,CC:Bool) 	∗
E ∪ →TR true)

implies

(∀(s, s′) ∈ ((TΣ × TΣ)∩ →TR))(q(s, s
′)→∗

E true))

Proof. For any (s, s′) ∈ TΣ × TΣ, if (s, s
′) ∈→TR, there exits a transition rule

tri = (∀X)(li → ri if ci) ∈ TR and a substitution θs ∈ TX
Σ such that (s = li θs)

Generate & Check Method for Verifying Transition Systems in CafeOBJ 183

and (s′ = ri θs) and (ci θs =E true) by the definition of →TR (see Section 2.3).
Because s is a ground instance of li ∈ C′ and C covers C′, there exits t ∈ C
such that (t = li θt) for a substitution θt ∈ TΣ(Y)X (i.e. t is an instance of
li) and (s = t ηs) for a substitution ηs ∈ T Y

Σ (i.e. s is an instance of t). If we
assume (valid-q(t,SS:State,CC:Bool) 	∗

E ∪ →TR true), because (t = li θt) for
the substitution θt ∈ TΣ(Y)X , we get ((ci θt 	∗

E false) or ((ci θt 	∗
E true) and

(q(li θt, ri θt) 	∗
E true))). By using lemma 2 (Substitution Lemma) with Y for

X and {} for Y and the fact (∗
E implies →∗

E), we get ((ci θtηs →∗
E false) or

((ci θtηs →∗
E true) and (q(li θt, ri θt)ηs = q(li θtηs, ri θtηs)→∗

E true))). Because
(ci θtηs = ci θs) and (ci θs =E true), (ci θtηs →∗

E false) can not hold, and we
get (q(li θtηs, ri θtηs)→∗

E true). Because (li θtηs = li θs) and (ri θtηs = ri θs), it
implies (q(s, s′) →∗

E true).

� if

� if

� ifθs

li

�
s = li θs

�
�
���

θt

ηs
�

�
���

t = li θt θs

ri

�
s′ = ri θs

�
�

���

θt

ηs
�
�
���

ri θt θs

ci

�
ci θs =E true

�
�

���

θt

ηs
�
�
���

ci θt

Fig. 1. Commutative Diagrams for the Cover Lemma 1

�

Lemma 7 and lemma 1 imply the validity of followingGenerate&Check-T1.

Generate&Check-T1. Let ((TΣ)State/(=E)State,→TR, In) be a transition sys-
tem defined by a transition specification (Σ,E,TR) (see Section 2.3), and let
C′ ⊆ TΣ(X) be the set of all the left hand sides of the transition rules in TR.
Then doing the following Generate and Check are sufficient for verifying

(∀(s, s′) ∈ ((TΣ × TΣ)∩ →TR))(qtr(s, s
′) =E true)

for a predicate “pred qtr : State State”.

Generate a finite set of state terms C ⊆ TΣ(Y)State that covers C′.
Check (valid-qtr(t,SS:State,CC:Bool) 	∗

E ∪ →TR true) for each t ∈ C.

�
By investigating the proof of lemma 7, it is seen that the following lemma

holds.

Lemma 8 [Cover Lemma 2]. Let TR = {tr1, · · · , trm} be a set of transition
rules. For i ∈ {1, · · · ,m}, let tri = (∀X)(li → ri if ci) and let Ci ⊆ TΣ(Y) cover
{li}. Then the following holds.

184 K. Futatsugi

(∀i ∈ {1, · · · ,m})(∀t ∈ Ci)(valid-q(t,SS:State,CC:Bool) 	∗
E ∪ →tri true)

implies

(∀(s, s′) ∈ ((TΣ × TΣ)∩ →TR))(q(s, s
′)→∗

E true)

�

Lemma 8 and lemma 1 imply the validity of followingGenerate&Check-T2.

Generate&Check-T2. Let TR = {tr1, · · · , trm} be a set of transition rules,
and let tri = (∀X)(li → ri if ci) for i ∈ {1, · · · ,m}. Then doing the following
Generate and Check for all of i ∈ {1, · · · ,m} is sufficient for verifying

(∀(s, s′) ∈ ((TΣ × TΣ)∩ →TR))(qtr(s, s
′) =E true)

for a predicate “pred qtr : State State”.

Generate a finite set of state terms Ci ⊆ TΣ(Y)State that covers {li}.
Check (valid-qtr(t,SS:State,CC:Bool) 	∗

E ∪ →tri true) for each t ∈ C. �

4.4 Generate & Check for Verification of Invariant Properties

The conditions (1) and (2) of lemma 4 can be verified by using Generate&Check-
S with pst-1(s) and pst-2(s) defined as follows respectively.

(1) pst-1(s) = (inv(s) implies pt(s))
(2) pst-2(s) = (init(s) implies inv(s))

Note that, if inv
def
= (p1 and · · · and pn), usually pt = (pi1 and · · ·and pim) for

{i1, · · · , im} ⊆ {1, · · · , n}, and condition (1) is directly obtained and no need to
use Generate&Check-S.

The condition (3) of lemma 4 can be verified by using Generate&Check-T1
or T2 with qtr-3(s, s

′) defined as follows.

(3) qtr-3(s, s
′) = (inv(s) implies inv(s′))

4.5 Verification of (p leads-to q) Properties

Invariants are fundamentally important properties of transition systems. They
are asserting that something bad will not happen (i.e. safety property). However,
it is sometimes also important to assert that something good will surely happen
(i.e. liveness property). A (p leads-to q) property is a liveness property defined
as follows.

Definition 9 [p leads-to q]. Let TS = (St ,Tr , In) be a transition system, let
Rst be the set of reachable states of TS , let Tseq be the set of transition se-
quences of TS , and let p, q be predicates with arity (St ,Data) of TS , where Data

Generate & Check Method for Verifying Transition Systems in CafeOBJ 185

is a data sort needed to specify p, q3. Then (p leads-to q) is defined to be valid
for TS iff the following holds, where St+ denotes the set of state sequences with
length more than zero, and s ∈ α means that s is an element in α for α ∈ St+.

(∀sα ∈ Tseq)(∀d ∈ Data)
(((s ∈ Rst) and p(s, d) and (∀s′ ∈ sα)(not q(s′, d)))
implies

(∃βt ∈ St+)(q(t, d) and sαβt ∈ Tseq))

It means that the system will get into a state t with q(t, d) from a state s with
p(s, d) no matter what transition sequence is taken. �

The (p leads-to q) property is adopted from the UNITY logic [4], the above
definition is, however, not the same as the original one. In the UNITY logic, the
basic model is the parallel program with parallel assignments, and (p leads-to
q) is defined through applications of inference rules.

It is worthwhile to note that (s ∈ Rst) is assumed in the premiss of the
definition of (p leads-to q) properties.

Lemma 10 [p leads-to q]. Based on the original transition system TS = (St ,Tr ,

In), let Ŝt
def
= St × Data, let (((s, d), (s′, d)) ∈ T̂r)

def
= ((s, s′) ∈ Tr), let În

def
=

In ×Data, and let T̂S
def
= (Ŝt , T̂r , În). Let inv be an invariant of T̂S and let m

be a function from Ŝt to Nat (the set of natural numbers), then the following 4

conditions are sufficient for the property (p leads-to q) to be valid for T̂S . Here

ŝ
def
= (s, d) for any d ∈ Data, p(ŝ)

def
= p(s, d) and q(ŝ)

def
= q(s, d).

(1) (∀(ŝ, ŝ′) ∈ T̂r)

((inv(ŝ) and p(ŝ) and (not q(ŝ))) implies (p(ŝ′) or q(ŝ′)))

(2) (∀(ŝ, s′) ∈ T̂r)

((inv(ŝ) and p(ŝ) and (not q(ŝ))) implies (m(ŝ) > m(ŝ′)))

(3) (∀ŝ ∈ Ŝt)

((inv(ŝ) and p(ŝ) and (not q(ŝ))) implies (∃ŝ′ ∈ Ŝt)((ŝ, ŝ′) ∈ T̂r))

(4) (∀ŝ ∈ Ŝt)
((inv(ŝ) and (p(ŝ) or q(ŝ)) and (m(ŝ) = 0)) implies q(ŝ))

Proof.Note that ̂s are omitted in the following. The condition (1) asserts that if
(p(s)and(not q(s))) for any reachable state s, and (not q(s′))) for any next state s′

of s, then p(s′). This implies, by induction on the length of a transition sequence
from s, that for any transition sequence sα ∈ Tseq , if (∀s′ ∈ sα)(not q(s′)) then
(∀s′ ∈ sα)(p(s′)). It means p(s′) keeps to hold while (not q(s′)). (2) asserts that
m(s) decreases properly for any next state s′ of s, if (p(s) and (not q(s))). (3)
asserts that a next state exits while (p(s′)and (not q(s′))). Hence, (2) and (3) im-
ply that m(s′) keeps to decease properly while (not q(s′)), but m(s′) is a natural

3 We may need some Data for specifying a predicate on a transition system like “the
agent with the name N is working” where N is Data .

186 K. Futatsugi

number and should stop to decrease in finite steps, and should get to the state t
with ((p(t)orq(t)) and (m(t) = 0)). (4) asserts that ((p(t)orq(t)) and (m(t) = 0))
implies q(t). Hence, (∃βt ∈ St+)(q(t) and sαβt ∈ Tseq)). �

4.6 Generat & Check for Verification of (p leads-to q) Properties

The conditions (1) and (2) of lemma 10 can be verified by using Generate
&Check-T1 or T2 in Section 4.3 with qtr-1(s, s

′) and qtr-2(s, s
′) defined as

follows respectively4.

(1) qtr-1(s, s
′) = ((inv(s) and p(s) and (not q(s))) implies (p(s′) or q(s′)))

(2) qtr-2(s, s
′) = ((inv(s) and p(s) and (not q(s))) implies (m(s) > m(s′)))

The conditions (3) and (4) of lemma 10 can be verified by using Generate
&Check-S in Section 4.1 with pst-3(s) and pst-4(s) defined as follows respec-
tively.

(3) pst-3(s) = ((inv(s) and p(s) and (not q(s))) implies (s =(*,1)=+ SS:State))
(4) pst-4(s) = ((inv(s) and (p(s) or q(s)) and (m(s) = 0)) implies q(s))

Note that (s =(*,1)=+ SS:State) is a built-in search predicate that returns true

if there exits s′ ∈ St such that (s, s′) ∈ Tr .

5 Proof Scores for QLOCK

Interested readers are encouraged to visit the web page:
http://www.jaist.ac.jp/~kokichi/misc/1411gcmvtsco/

for the full proof scores.

5.1 Proof Scores for Invariant Properties

The module INV of the QLOCK property specification in Section 3.3 defines a
possible inductive invariant inv as the conjunction of seven state predicates as
follows.

eq inv = aoa 1a mx qep rs ws cs cst .

The target predicate for QLOCK is mx, and the condition (1) of lemma 4 is
proved directly.

Proof Scores for (∀s ∈ St)(init(s) implies inv(s)). The condition (2) of
lemma 4 for QLOCK is verified by using Generate&Check-S of Section 4.1. The
file qlock-init-ps.cafe on the web page contains proof scores for verifying the
condition.

Just generating a set C ⊆ TΣ(Y)State that subsumes (TΣ)State or covers a
set C′ ⊆ TΣ(X)State is trivial. You can take C = {S :State} for the subsuming

4 ̂s are omitted.

Generate & Check Method for Verifying Transition Systems in CafeOBJ 187

and C = C′[X → Y] for the covering. The challenging part is to guarantee that
for the target predicate p the check (p(ti) 	∗

E true) for each ti ∈ C is successful.
Let a set C ⊆ TΣ(Y)State be called p-effective iff the check (p(ti) 	∗

E true) for
each ti ∈ C is successful.

The following set of state patterns {s1,s2,...,s7} covers the singleton set of
the most general state pattern {(Q:Qu $ AS:Aobs)} and subsumes the set of all
the ground state terms (TΣ)State.

--> case[1]: S:State = (Q:Qu $ empty)

eq s1 = (q $ empty) .

--> case[2]: S:State = (Q:Qu $ ((lb[A:Aid]: L:Label) AS:Aobs))

eq s2 = (empQ $ ((lb[a1]: rs) as)) . -- wt

eq s3 = (empQ $ ((lb[a1]: ws) as)) .

eq s4 = (empQ $ ((lb[a1]: cs) as)) .

--

eq s5 = ((a1 & q) $ ((lb[a2]: rs) as)) . -- wt

eq s6 = ((a1 & q) $ ((lb[a2]: ws) as)) . -- ty

eq s7 = ((a1 & q) $ ((lb[a2]: cs) as)) . -- ex

}

Here q is a variable of sort Qu, as is a variable of sort Aobs, a1, a2 are variables
of sort Aid. Note that variables q, as, a1, a2 are appearing in the terms to be
reduced and are declared as fresh constants in the proof scores in CafeOBJ.

It is easy to see that there is no overlap among s1,s2,...,s7 and they list up
all the state patterns with (1) the Qu part is empQ or (A1:Aid & Q:Qu), and (2)
the Aobs part is empty or ((lb[A:Aid]: L:Label) as:Aobs).

Let init-c be defined as:

pred init-c : State .

eq init-c(S:State) = init(S) implies inv(S) .

then it is shown that {s1,s2,...,s7} is a (init-c)-effective set by checking
(init-c(si) 	∗

E true) (i.e. “red init-c(si) .” returns true) for each si ∈
{s1,s2,...,s7}.

The cover set {s1,s2,...,s7} can be generated by the following combinatorial
generation script.

[(tg(2)[q,empty])]

||

[(tg(2)[(empQ),(tg(1)[(a1),(rs;ws;cs),(as)])])]

||

[(tg(2)[(a1 & q),(tg(1)[(a2),(rs;ws;cs),(as)])])]

-- t(1)/tg(1) and t(2)/tg(2) construct state terms

-- defined by the following two equations:

eq t(1)(A:Aid,L:Label,as:Aobs) = ((lb[A]: L) as) .

eq t(2)(Q:Qu,AS:Aobs) = (Q $ AS) .

Using the combinatorial generation of the cover set, Generate&Check-S for the
state predicate init-c can be done automatically by one reduction command in
CafeOBJ.

188 K. Futatsugi

Proof Scores for (∀(s, s′) ∈ Tr)(inv(s) implies inv(s′)). The condition
(3) of lemma 4 for QLOCK is verified by using Generate&Check-T2 of Sec-
tion 4.3. The file qlock-inv-ps.cafe on the web page contains proof scores for
verifying the condition.

In the QLOCK specification, the three transition rules wt, ty, ex are defined
in the module WT, TY, EX in Section 3.2 and the three left hand sides of the
transition rules are as follows.

l1 = (Q:Qu $ ((lb[A:Aid]: rs) as:Aobs))

l2 = ((A:Aid & Q:Qu) $ ((lb[A]: ws) as:Aobs))

l3 = ((A1:Aid & Q:Qu) $ ((lb[A2:Aid]: cs) as:Aobs))

Hence, a minimal set that covers {l1,l2,l3} can be obtained as follows.

-- State patterns

ops t1 t2 t3 t4 t5 t6 : -> State .

-- covering l1

eq t1 = (empQ $ ((lb[b1]: rs) as)) . -- wt

eq t2 = ((b1 & q) $ ((lb[b1]: rs) as)) . -- wt

eq t3 = ((b1 & q) $ ((lb[b2]: rs) as)) . -- wt

-- covering l2

eq t4 = ((b1 & q) $ ((lb[b1]: ws) as)) . -- ty

-- covering l2

eq t5 = ((b1 & q) $ ((lb[b1]: cs) as)) . -- ex

eq t6 = ((b1 & q) $ ((lb[b2]: cs) as)) . -- ex

Here b1, b2, b3 are literal variables of sort Aid. Literal variables are defined to
be variables which obey the rule that different literals variables denote different
objects, and literal variables b1, b2, b3 denote different elements of sort Aid.
Variables q, as, b1, b2, b3 are also declared as fresh constants. Let q and inv-c

be defined as follows, where valid-q is defined as in Section 4.3.

pred q : State State .

eq q(S:State,SS:State) = (inv(S) implies inv(SS)) .

--

pred inv-c : State State Bool .

eq inv-c(S:State,SS:State,CC:Bool) = valid-q(S,SS,CC) .

Let a set C ⊆ TΣ(Y)State be called p-effective with TR iff the check (p(ti) 	∗
E

∪→TR true) for each ti ∈ C is successful. Then it is shown that (1) {t1, t2,

t3} is (inv-c)-effective with {wt}, (2) {t4} is (inv-c)-effective with {ty}, and (3)
{t5, t6} is (inv-c)-effective with {ex}. This implies that {t1,...,t6} is (inv-c)-
effective with {wt,ty,ex}.

The cover set {t1,...,t6} can be generated by the following combinatorial
generation script.

[(tg(2)[(empQ),(tg(1)[(),(b1),rs,(as)])])]

||

[(tg(2)[(b1 & q),(tg(1)[(),(b1),(rs;ws;cs),(as)])])]

||

[(tg(2)[(b1 & q),(tg(1)[(),(b2),(rs;cs),(as)])])]

Generate & Check Method for Verifying Transition Systems in CafeOBJ 189

Using the combinatorial generation of the cover set, Generate&Check-T1 for
showing that {t1,...,t6} is (inv-c)-effective with {wt,ty,ex} can be done au-
tomatically by one reduction command in CafeOBJ.

5.2 Proof Scores for a (p leads-to q) Property

The file qlock-pqp-ps.cafe on the web page contains proof scores for verifying a
(p leads-to q) property of QLOCK.

QLOCK has an interesting (p leads-to q) property. Let lags be defined as
follows; where aos is a destructor for getting the Aobs part from a State.

-- label of an agent in a Aobs

op laga : Aobs Aid -> Label .

eq laga(((lb[A1:Aid]: L:Label) AS:Aobs),A2:Aid) =

if (A1 = A2) then L else laga((AS),A2) fi .

-- label of an agent in a State

op lags : State Aid -> Label .

eq lags(S:State,A:Aid) = laga(aos(S),A) .

Then QLOCK enjoys ((lags(S,A) = ws) leads-to (lags(S,A) = cs)) property.
That is, if an agent gets into the queue, it will get to the top of the queue with
“cs” label.

If we can identify inv and m of the lemma 10, proof scores for verifying this
property can be developed by using the generate & check method as shown in
Section 4.6. It turns out that it is sufficient to take (inv(S:State) = inv(S)) and
(m(S:State,A:Aid) = #dms(S,A)), where, inv is the state predicate proved to be
an inductive invariant in Section 5.1, and #dms is defined as follows.

-- the number of a label in a Aobs

op #lss : Aobs Label -> Nat .

eq #lss(empty,L:Label) = 0 .

eq #lss(((lb[A:Aid]: L1:Label) AS:Aobs),L2:Label) =

if (L1 = L2) then (s 0) + #lss((AS),L2)

else #lss((AS),L2) fi .

-- the number of a label in a state

op #ls : State Label -> Nat .

eq #ls(S:State,L:Label) = #lss(aos(S),L) .

-- the depth of the first appearence of an aid in a queue

op #daq : Qu Aid -> Nat .

eq #daq(A1:Aid & Q:Qu,A2:Aid) =

if (A1 = A2) then 0 else s(#daq(Q,A2)) fi .

-- counter count of cs

op #ccs : State -> Nat .

eq #ccs(S:State) = if (#ls(S,cs) > 0) then 0 else (s 0) fi .

-- decreasing Nat measure for the lockout freedom verification

op #dms : State Aid -> Nat .

eq #dms(S:State,A:Aid) = ((s s s 0) * #daq(qu(S),A))

+ #ls(S,rs) + #ccs(S) .

190 K. Futatsugi

The combinatorial generation scripts used are almost same as ones used in
Section 5.1, except we need to generate for the pattern (Q:Qu $ AS:Aobs, A:Aid)
instead of for the pattern (Q:Qu $ AS:Aobs).

6 Related Work and Conclusion

Related Work. There are a large number of researches and publications on
verifications of transition systems, and it is beyond the scope of this paper to
survey all the related work. We only give a brief general view and point out most
related recent researches based on the Maude [16].

Verification methods for transition systems are largely classified into deduc-
tive and algorithmic ones. Majority of the deductive methods are applications
of theorem proving methods/systems [6,15,19,23] to verifications of concurrent
systems or distributed protocols with infinite states. Most dominant algorithmic
methods are based on model checking methods/systems [2,5] and are targeting to
automatic verifications of temporal properties of finite state transition systems.
The generate & check method described in this paper is a deductive method
with algorithmic combinatorial generations of cover sets. Moreover, reduction is
only one deductive mechanism, and it makes theories and proof scores for the
method simple and transparent.

Maude [16] is a sister language of CafeOBJ and both languages share many
important features. Maude’s basic logic is rewriting logic [17] and verification
of transition systems with Maude focuses on sophisticated model checking with
a powerful associative and/or commutative rewriting engine. There are recent
attempts to extend the model checking with Maude for verifying infinite state
transition systems [1,8]. They are based on narrowing with unification, whereas
the generate & check method is based on cover sets with ordinary matching and
reduction.

Searches on Time Versus Space. There are quite a few researches on search
techniques in model checking [5,13]. It is interesting to observe that what we
have done for the generate & check method in this paper is a search in state
space with the built-in search predicate that amounts to the complete search
across all one step transitions, whereas the search for model checking is along
time axis (i.e. transition sequences) as shown in Figure 2.

Future Issue. This paper only describes CafeOBJ specifications and proof
scores for the rather small QLOCK example. We have, however, already checked
that the method proposed can be applied to larger examples like ABP (Alter-
nating Bit Protocol [21]). In the ABP example, a state configuration is a 4 tuple
of two agents and two channels, and is a little complex than that the QLOCK
example. As a result, the generate & check method should be used more exten-
sively in the ABP example. Generally speaking, the generate & check method
should be more important for large problems, for it is difficult to do case anal-
yses manually for them. Once a state configuration is properly designed, large

Generate & Check Method for Verifying Transition Systems in CafeOBJ 191

Fig. 2. Searches on Time versus Space

number of patterns (i.e. elements of a cover set) that cover all possible cases
are generated and checked easily, and it is an important future issue to con-
struct proof scores for important problems/systems of significant sizes and do
experiments for developing practical methods to obtain effective cover sets.

Acknowledgments. It is a great pleasure for the author (KF) to have the
chance to prepare this article for the Festschrift in honor of Professor Martin
Wirsing.

The author thanks referees for their valuable comments to improve the paper.
This work was supported in part by Grant-in-Aid for Scientific Research (S)

23220002 from Japan Society for the Promotion of Science (JSPS).

References

1. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state
systems using narrowing. In: van Raamsdonk, F. (ed.) RTA. LIPIcs, vol. 21, pp.
81–96. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

2. Baier, C., Katoen, J.P.: Principles of model checking, pp. 1–975. MIT Press (2008)
3. CafeOBJ (2014), http://cafeobj.org/, http://www.ldl.jaist.ac.jp/cafeobj/
4. Chandy, K.M., Misra, J.: Parallel program design - a foundation. Addison-Wesley

(1989)
5. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)
6. Coq (2014), http://coq.inria.fr
7. Dong, J.S., Zhu, H. (eds.): ICFEM 2010. LNCS, vol. 6447. Springer, Heidelberg

(2010)
8. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using

narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer,
Heidelberg (2007)

9. Futatsugi, K.: Verifying specifications with proof scores in CafeOBJ. In: Proc. of
21st IEEE/ACM International Conference on Automated Software Engineering
(ASE 2006), pp. 3–10. IEEE Computer Society (2006)

10. Futatsugi, K.: Fostering proof scores in CafeOBJ. In: Dong, Zhu (eds.) [7], pp. 1–20
11. Futatsugi, K., Găină, D., Ogata, K.: Principles of proof scores in CafeOBJ. Theor.

Comput. Sci. 464, 90–112 (2012)

http://cafeobj.org/
http://www.ldl.jaist.ac.jp/cafeobj/
http://coq.inria.fr

192 K. Futatsugi

12. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: Equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992)

13. Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking. LNCS, vol. 5000.
Springer, Heidelberg (2008)

14. Guttag, J.V., Horning, J.J., Garland, S.J., Jones, K.D., Modet, A., Wing, J.M.:
Larch: Languages and Tools for Formal Specification. Springer (1993)

15. HOL (2014), http://hol.sourceforge.net
16. Maude (2014), http://maude.cs.uiuc.edu/
17. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7-8),

721–781 (2012)
18. Nakamura, M., Ogata, K., Futatsugi, K.: Incremental proofs of termination, con-

fluence and sufficient completeness of OBJ specifications. In: Iida, S., Meseguer,
J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp.
92–109. Springer, Heidelberg (2014)

19. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

20. Ogata, K., Futatsugi, K.: Proof scores in the oTS/CafeOBJ method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

21. Ogata, K., Futatsugi, K.: Simulation-based verification for invariant properties in
the OTS/CafeOBJ method. Electr. Notes Theor. Comput. Sci. 201, 127–154 (2008)

22. Ogata, K., Futatsugi, K.: A combination of forward and backward reachability
analysis methods. In: Dong, Zhu (eds.) [7], pp. 501–517 (2010)

23. PVS (2014), http://pvs.csl.sri.com
24. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. technical

report. Tech. rep., University of Illinois at Urbana-Champaign (2010)
25. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In: Corra-

dini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 314–328.
Springer, Heidelberg (2011)

26. TeReSe (ed.): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

http://hol.sourceforge.net
http://maude.cs.uiuc.edu/
http://pvs.csl.sri.com

Institutions for OCL-Like Expression Languages

Alexander Knapp1 and Marı́a Victoria Cengarle2

1 Universität Augsburg, Germany
knapp@informatik.uni-augsburg.de
2 Technische Universität München, Germany

cengarle@in.tum.de

Abstract. In 2008, Martin Wirsing initiated the project of conceiving the “Unified
Modeling Language” (UML) as a heterogeneous modelling language. He proposed
to use the theory of heterogeneous institutions for providing individual semantics
to each sub-language, that can then be integrated using institution (co-)morphisms.
In particular, the proposal allows for seamlessly capturing the notorious semantic
variation points of UML with mathematical rigour. In this line of research, we con-
tribute an institutional framework for the “Object Constraint Language” (OCL),
UML’s language for expressing constraints.

1 Introduction

The “Unified Modeling Language” (UML), in its inception and according to its own
definition, “is a graphical language for visualizing, specifying, constructing, and doc-
umenting the artifacts of a software-intensive system” [1, p. XV]. The UML, on the
one hand, has been repeatedly criticized because of its lack of formal semantics. On
the other hand, UML has been praised for being the “lingua franca” that acts as an
Esperanto among stakeholders, be these application domain experts, system designers,
program developers, or clients.1 The scientific community has spent some effort in pro-
viding UML with a formal semantics that, among other things, allows for the rigorous
verification of properties of interest of the software system under consideration. These
efforts, however, have not been crowned with the success they might deserve, probably
because they impose a “straitjacket” to UML users, what in its turn is against a stance
advocated by the UML language designers that UML be somehow free in the way it
should be understood. Indeed, the standard foresees so-called semantic variation points
that allow language users to interpret language constructs differently.

Martin Wirsing, therefore, proposed a heterogeneous approach that allows UML users
the definition of the preferred semantics to the individual UML sub-languages, and is
such that the composition of those languages and their attached semantics permits com-
positional proofs; see [4] and also [2]. The proposed approach builds on the abstract
model theory framework of institutions [8], where each sub-language is captured as an
institution. Originally, institutions have been devised for formalizing logical systems
with their signatures, sentences, structures, and satisfaction relation, imposing only min-
imal constraints, namely that satisfaction be invariable under change of syntax. Formally,

1 Empirical evidence for the various, but rather limited usages of the UML in industrial practice
has been gathered by Petre [18].

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 193–214, 2015.
c© Springer International Publishing Switzerland 2015

194 A. Knapp and M.V. Cengarle

an institution (Sig, Str , Sen, |=) is given by (i) a category Sig whose objects are called
signatures; (ii) a contravariant functor Str : Sigop → Cat, called the structure func-
tor, from Sig to Cat, the category of categories; (iii) a functor Sen : Sig → Set,
called the sentence functor, from Sig to Set, the category of sets; and (iv) a family
|= = {|=Σ}Σ∈Sig of satisfaction relations between Σ-structures M ∈ Str(Σ) and
Σ-sentences ϕ ∈ Sen(Σ), such that for each σ : Σ → Σ′ in Sig, M ′ ∈ Str(Σ), and
ϕ ∈ Sen(Σ), the following satisfaction condition holds:

Str(σ)(M ′) |=Σ ϕ ⇐⇒ M ′ |=Σ′ Sen(σ)(ϕ) .

For the application to UML sub-languages, the syntactic elements available in each
sub-language are rendered as signatures, their meaning as structures, and their possi-
ble combinations as sentences. Semantic variation points or particular domain-specific
usages of a sub-language lead to different institutions. The framework of institutions
provides a rich family of institution (co-)morphisms for relating institutions in terms of
embeddings and projections. For UML sub-languages expressed as institutions, these
(co-)morphisms can be applied to express refinements and consistency conditions be-
tween sub-languages and different resolutions of semantic variation points.

The aim of this work is to give a definition of the “Object Constraint Language”
(OCL [16]) that satisfies the conditions associated with institutions. The OCL provides a
textual expression language for navigating through UML models, specifying guards and
pre-/post-conditions, and for defining constraints, like invariants, on model elements.
In the UML specification [15] the OCL is used for specifying well-formedness rules
on models. Though strictly speaking not a UML sub-language, the OCL constitutes a
natural modelling ingredient complementing the visual notation of the UML.

The first difficulty, that at first sight seems an incompatibility, is that OCL focuses
on terms and not on truth. This way, for instance, a three-valued logic is possible. So,
the core property of institutions, namely the satisfaction condition, needs be defined
for terms, in the form of an evaluation condition. In fact, this is already the case for,
e.g., classical first-order predicate logic with function symbols (for term construction),
predicate symbols (for atom construction), and logical connectives and quantifiers (for
formula construction). This means, the property called for is satisfied in the classical
setting and needs only be mimicked for a definition of OCL terms. Thus, it should be
possible to use some formal OCL expression semantics, like, e.g., [3], and derive an in-
stitution directly. However, it turns out that some OCL constructs like if-then-else,
iterate, or allInstances are more naturally handled as special term formers
than as function symbols directly. This motivates a two-level language definition for
OCL terms, namely the already mentioned function symbols and a construction functor
for the term formers. Using the language of indexed categories (see Sect. 2), we define
the notion of term charters for capturing such general term languages, their evaluation,
and, in particular, an evaluation condition in Sect. 3. We also show how languages de-
fined by means of term charters can be turned into an institution.2

A further characteristics of OCL is that it is constituted by many sub-theories: order-
sortedness, non-strict evaluation, three-valued logic, non-determinism, etc. For particular

2 The manuscript accompanying this article, that shows the proof of every assertion here, can be
found in [11].

Institutions for OCL-Like Expression Languages 195

domains, different combinations or extensions of the sub-theories may be useful, see, e.g.,
[3,12]. For this reason, and in order to provide the modelling language designer with a
powerful tool, means are defined that allow for a compositional definition of a term-based
constraint language. Each sub-language can be defined separately, and it is possible to
build different constraint languages, that contain the needed theories for the situation at
hand, by putting up different sub-theories. Therefore, a further goal of this work is the
elucidation of a (meta-)theory for the compositional integration of those sub-theories.
This is akin to the specification-building operators defined by Martin Wirsing in [21],
only on a meta-level. Examples of OCL theories are shown in Sect. 4, means for their
composition are presented in Sect. 5.

2 Indexed Categories

We briefly recall the basic notions of indexed categories (see, e.g., [20]) mainly for
fixing the notation.

An indexed categoryN over an index category I is a functorN : Iop → Cat. Given
an I-indexed category N : Iop → Cat, the Grothendieck category G(N) over N has
as objects the pairs 〈i, O〉 with i ∈ |I| and O ∈ |N(i)|, and as morphisms from 〈i, O〉
to 〈i′, O′〉 the pairs 〈u, o〉 with u ∈ I(i, i′) and o ∈ N(i)(O,N(u)(O′)); the identity
morphism on 〈i, O〉 is 〈1i, 1O〉, the composition of morphisms 〈u, o〉 : 〈i, O〉 → 〈i′,
O′〉 and 〈u′, o′〉 : 〈i′, O′〉 → 〈i′′, O′′〉 is 〈u, o〉; 〈u′, o′〉 = 〈u;u′, o;N(u)(o′)〉.

The projection functor πN from G(N) to I is defined by πN (〈i, O〉) = i and πN (〈u,
o〉) = u. For an i ∈ |I|, G(N)(i) denotes the sub-category of G(N) with objects 〈i, O〉
and morphisms 〈1i, o〉.

A morphism u : i→ i′ in I induces the reduct functor−|Nu : G(N)(i′)→ G(N)(i)
with 〈i′, O′〉|Nu = 〈i, N(u)(O′)〉 and 〈1i′ , o′〉|Nu = 〈1i, N(u)(o′)〉. For 〈i′, O′〉 ∈
|G(N)|, u : i→ i′ also induces the forward morphism u|N〈i′,O′〉 = 〈u, 1N(u)(O′)〉 : 〈i,
N(u)(O′)〉 → 〈i′, O′〉; in particular, u|N− : −|Nu →̇ 1G(N)(i′) is a natural transfor-
mation. Each morphism 〈u, o〉 : 〈i, O〉 → 〈i′, O′〉 can be uniquely factorized as 〈u,
o〉 = 〈1i, o〉;u|N 〈i′,O′〉 with 〈1i, o〉 : 〈i, O〉 → 〈i′, O′〉|Nu; we denote 〈1i, o〉 by 〈u,
o〉|N .

An indexed functor F from an I-indexed categoryM to an I-indexed categoryN is a
natural transformationF :M →̇ N . The Grothendieck functor G(F) : G(M)→ G(N)
over F is defined by G(F)(〈i, O〉) = 〈i, Fi(O)〉 and G(F)(〈u, o〉 : 〈i, O〉 → 〈i′,
O′〉) = 〈u, Fi(o)〉 : 〈i, Fi(O)〉 → 〈i′, Fi′(O

′)〉.
Lemma 1. Let M,N : Iop → Cat be indexed categories and F :M →̇ N an indexed
functor. Let u : i→ i′ in I and 〈i′, O′〉 ∈ |G(M)|. Then
(1) G(F); (−|Nu) = (−|Mu);G(F);
(2) u|NG(F)(〈i′,O′〉) = G(F)(u|M 〈i′,O′〉);
(3) πM = G(F);πN .

3 Term Charters

The core part of the OCL is an expression or term language, where formulae are cap-
tured as Boolean expressions that can then be used as guards, invariants, or pre-/post-
conditions. When institutionalizing OCL we thus want to focus on its expressions in

196 A. Knapp and M.V. Cengarle

their own right and extend the satisfaction condition for formulae to an “evaluation
condition” for terms. We therefore employ a framework that mimics and generalizes
classical term evaluation with valuations for variables [21]: Terms over a signature are
built by a construction functor C that takes values as variables X from a signature-
indexed categoryVal and yields the term language, again inVal . Evaluation of a term
over a given valuation β is described by a lifting (β)�M from C (X) to the values in a
structure M from a signature-indexed category Str . The evaluation condition requires
that evaluation is invariant w.r.t. signature changes.

We call our evaluation framework “term charters”, as it is inspired by the no-
tion of charters [7] for constructing institutions. A charter is given by an adjunction
(U, F, η, (−)) between a category of signatures Sign and a category of syntactic sys-
tems Syn, a ground object G ∈ |Syn| and a base functor B : Syn → Set with
B(G) = {ff , tt}. An institution is obtained from a charter by using Sign as the sig-
natures, and defining, for each Σ ∈ |Sign|, the Σ-structures as the Sign-morphisms
m : Σ → U(G), theΣ-sentences asB(F (Σ)), and the satisfaction relation bym |=Σ e
if, and only if B(m)(e) = tt .3 Term charters mainly deviate from charters in making
the variables of terms explicit in the indexed categoryVal such that evaluation by means
of (−) is shifted to taking into account valuations. In charters, these valuations are con-
tained in the single semantic ground object that also comprises all possible interpreta-
tions of the signatures, necessitating a “Procrustean ground signature” [7, p. 324] of this
ground object which sometimes may not seem the most natural choice; in term charters
the ground object is split into several semantic structure objects from the indexed cat-
egory Str representing different interpretations. Finally, term charters do not insist on
an adjunction between the syntactic domain G(Val) and the semantic domain G(Str)
which makes them applicable in situations where the evaluation structures should only
consist in standard interpretations but the syntactic domain may lead to non-standard
interpretations, as, e.g., for pre-defined data types or higher-order functions. However,
we show below that such an adjunction indeed induces a term charter.

3.1 Term Charter Domains and Term Charters

A term charter is defined over a term charter domain that fixes the signatures, the values
and variables, the semantic structures, and how the values are extracted from a structure.
A term charter then adds how terms or expressions over variables are constructed and
how they are evaluated over the values of a structure. We first give the formal definition
and then illustrate the notion of term charters by means of order-sorted algebras [21].

A term charter domain D = (S,Val , Str , U) is given by a category S of signatures,
an indexed categoryVal : Sop → Cat of values, an indexed category Str : Sop → Cat
of structures, and an underlying indexed functor U : Str →̇Val .

A term charter T = (C , ν, (−)�) over a term charter domain (S,Val , Str , U) is given
by a construction functor C : G(Val) → G(Val) with πVal = C ;πVal ; an embedding

3 In fact, an adjunction for a charter can be obtained systematically when using the notion of
parchments [7,17] that induce a suitable category of syntactic systems as the Grothendieck
category G(Syn) with Syn(Σ) = Alg(Lang(Σ)) where Lang is a functor from the signatures
to (many-sorted) algebraic signatures and the functor Alg yields the (many-sorted) algebras
over an algebraic signature.

Institutions for OCL-Like Expression Languages 197

natural transformation ν : 1G(Val) →̇ C with νX : X → C (X) in G(Val)(πVal (X));
and a |G(Str)|-family (−)� = ((−)�M)M∈|G(Str)| associating for each Σ ∈ |S| and
M ∈ |G(Str)(Σ)| to each morphism β : X → G(U)(M) in G(Val)(Σ) a morphism
(β)�M : C (X)→ G(U)(M) in G(Val)(Σ) such that
– for allΣ ∈ S,M ∈ |G(Str)(Σ)|, β : X → G(U)(M) in G(Val)(Σ), and ξ : Y → X

in G(Val)(Σ) the following diagrams commute:

(C)

X C (X)

G(U)(M)

νX

β
(β)�M (K)

C (Y) C (X)

G(U)(M)

C (ξ)

(ξ;β)�M
(β)�M

– for all σ : Σ → Σ′ in S, M ′ ∈ |G(Str)(Σ′)|, and β′ : X ′ → G(U)(M ′) in
G(Val)(Σ′) the following diagram commutes:

(E)

C (X ′|Valσ) C (X ′)

G(U)(M ′|Strσ) G(U)(M ′)

C (σ|ValX
′
)

(β′|Valσ)
�
M′|Strσ

G(U)(σ|StrM′
)

(β′)�M′

Requirement (E) is called the evaluation condition expressing that evaluation is invari-
ant w.r.t. signature changes. Condition (C) and (K) ensure that valuations are respected
by evaluation and that evaluation is compatible with variable renaming.

Example 1. In order to illustrate term charters, we reformulate order-sorted algebras
and their terms. For establishing a suitable term charter domain, we first have to fix
order-sorted signatures, value domains, and structures.

The category S≤ of order-sorted signatures has as objects the pairs (S,D) with
S = (|S|,≤S) a partial order for the sorts and D = (|D|, δD) function declarations
with δD : |S|∗ × |S| → P(|D|); and as morphisms pairs (γ, ρ) : (S,D)→ (S′, D′) of
a monotone function on the sorts and a sort-compatible function renaming.

For a Σ = (S,D), a Σ-value domain V consists of a family (Vs)s∈|S| of values
respecting sub-sorting, i.e., Vs ⊆ Vs′ if s ≤S s′; and a Σ-value domain morphism
ω : V → V ′ is given by a family of mappings ω = (ωs : Vs → V ′

s)s∈|S|. Similarly,
a Σ-structure (V,E) consists of a Σ-value domain V and a family E of evaluation
functions E = (Es,s)s∈|S|∗,s∈|S|, where Es,s : δD(s, s) → (Vs → Vs), that is, E
assigns to each function type in |D| a set of functions on the corresponding values;
and a Σ-structure morphism ω : (V,E) → (V ′, E′) is given by a Σ-value domain
morphism ω : V → V ′ satisfying the homomorphism condition ωs(Es,s(d)(�v)) =

E′
s,s(d)(ωs(�v)). The indexed categoriesVal≤, Str≤ : (S≤)op → Cat map each Σ to

Val≤(Σ) and Str≤(Σ), respectively, and each order-sorted signature morphism to the
usual renaming reduct functors. The indexed functor U≤ : Str≤ →̇Val≤ “forgets” the
evaluation functions of a structure.

We thus obtain the term charter domain (S≤,Val≤, Str≤, U≤). For a term charter
for order-sorted terms, we now address term construction and evaluation.

198 A. Knapp and M.V. Cengarle

The construction functor C≤ : G(Val≤)→ G(Val≤) assigns to 〈Σ,X〉 ∈ |G(Val≤)|
with Σ = (S,D) the value domain C≤(〈Σ,X〉) = 〈Σ, V ≤

X 〉 such that for each s ∈ |S|
the values in V ≤

X,s are given inductively by

– x ∈ V ≤
X,s for x ∈ Xs;

– d(�v) ∈ V ≤
X,s′ for all s′ ≥S s if d ∈ δD(s, s) and �v ∈ V ≤

X,s.

For the morphisms in G(Val≤), C≤ yields the corresponding renaming morphism in
G(Val≤). As natural transformation ν≤ : 1G(Val≤) →̇ C≤ for embedding values or
variables into the order-sorted terms we may simply choose the inclusions.

For evaluating order-sorted terms over a structure M = 〈Σ, (V,E)〉 in |G(Str≤)|
given a valuation β = 〈1Σ , β≤〉 : 〈Σ,X〉 → G(U≤)(〈Σ, (V,E)〉) define (β)�

≤
M =

〈1Σ , (β≤)�
≤
M 〉 : C≤(〈Σ,X〉)→ 〈Σ, (V,E)〉 inductively by

– (β≤)
�≤M
s (x) = β≤

s (x) for x ∈ Xs;

– (β≤)
�≤M
s (d(�v)) = Es,s(d)((β

≤)
�≤M
s)(�v)).

With these definitions, the term charter conditions (C), (K) and, (E) can be
checked straightforwardly by induction. Thus we obtain the order-sorted term char-
ter (C≤, ν≤, (−)�≤) over the term charter domain (S≤,Val≤, Str≤, U≤).

3.2 Term Charters from Adjunctions

The concrete construction of a term charter often involves quite many routine checks,
as already illustrated by the previous example of the order-sorted term charter. In the
special situation of an adjunction between the syntactic side ofVal and the semantic
side of Str this effort can be avoided completely.

In fact, let D = (S,Val , Str , U) be a term charter domain and assume that (G(U),T ,
η, (−)) forms an adjunction (expressed as a free construction [19]) with the func-
tor T : G(Val) → G(Str) satisfying πVal = T ;πStr the left-adjoint to G(U), the
natural transformation η : 1G(Val) →̇ T ;G(U) with ηX : X → G(U)(T (X)) in
G(Val)(πVal (X)) the unit, and the S-family (−) = ((−)Σ)Σ∈|S| associating for each
σ ∈ |S| and M ∈ |G(Str)(Σ)| to each morphism β : X → G(U)(M) in G(Val)(Σ) a
morphism βΣ : T (X) → M in G(Str)(Σ) the lifting. Then it can be shown that for
each σ : Σ → Σ′ in S, M ′ ∈ |G(Str)(Σ′)|, and β′ : X ′ → G(U)(M ′) in G(Val)(Σ′)
the following diagram expressing the evaluation condition commutes:

T (X ′|Valσ)

T (X ′)|Strσ T (X ′)

M ′|Strσ M ′

T (σ|ValX
′
)

(ηX′ |Valσ)
�Σ

(β′|Valσ)
�Σ

σ|StrT (X′)

β′�
Σ′ |Strσ β′�

Σ′

σ|StrM′

Institutions for OCL-Like Expression Languages 199

Using this form of the evaluation condition we obtain

Proposition 1. Let (G(U),T , η, (−)) form an adjunction. Then (T ;G(U), η, (−)�)
with (β)�M = G(U)(βΣ) for each Σ ∈ |S|, X ∈ |G(Val)(Σ)|, M ∈ |G(Str)(Σ)|, and
β : X → G(U)(M) is a term charter.

3.3 Constructing an Institution from a Term Charter

Let T = (C , η, (−)�) be a term charter over the term charter domain (S,Val , Str , U).
Let UVal : G(Val)→ Set be a functor such that UVal (σ

|ValX
′
) is the inclusion map from

UVal(X
′|Valσ) to UVal (X

′) for σ : Σ → Σ′ in S and X ′ ∈ |G(Val)(Σ′)|, and the
semantic truth value ∗ ∈ UVal(X) for all X ∈ |G(Str);G(U)| ⊆ |G(Val)|.
– Define the category SigUVal

T as G(Val).
– Define the functor SenUVal

T : SigUVal

T → Set as C ;UVal .
– Define the functor StrUVal

T : G(Val)op → Cat as

– the category StrUVal

T (X), where Σ = πVal(X), with the class of objects the pairs
(M,β) with M ∈ |G(Str)(Σ)| and β : X → G(U)(M) in G(Val)(Σ), and
the morphisms μ : (M1, β1) → (M2, β2) where μ ∈ G(Str)(Σ)(M1,M2) and
βi : X → G(U)(Mi) for 1 ≤ i ≤ 2 such that β1;G(U)(μ) = β2;

– the functor StrUVal

T (ξ : X → X ′) : StrUVal

T (X ′) → StrUVal

T (X), where σ =
πVal (ξ), with

StrUVal

T (ξ)(M ′, β′) = (M ′|Strσ, ξ|Val ;β
′|Valσ)

StrUVal

T (ξ)(μ′ : (M ′
1, β

′
1)→ (M ′

2, β
′
2)) = μ′|Strσ .

This is well-defined, since β′
1;G(U)(μ′) = β′

2 and hence also ξ|Val ;β
′
1|Valσ;

G(U)(μ′)|Valσ = ξ|Val ;β
′
1|Valσ;G(U)(μ′|Strσ) = ξ|Val ;β

′
2|Valσ.

– Define the family of relations (|=UVal

T,X)
X∈|SigUVal

T | with |=UVal

T,X ⊆ |StrUVal

T (X)| ×
|SenUVal

T (X)| by

(M,β) |=UVal

T,X ϕ iff UVal((β)
�M)(ϕ) = ∗ .

Proposition 2. (SigUVal

T , StrUVal

T , SenUVal

T , |=UVal

T) is an institution.

Proof. We have to show the satisfaction condition

StrUVal

T (ξ)(M ′, β′) |=UVal

T,X ϕ iff (M ′, β′) |=UVal

T,X′ Sen
UVal

T (ξ)(ϕ)

with ϕ ∈ SenUVal

T (X), ξ : X → X ′ and β′ : X ′ → G(U)(M ′). It suffices to prove

UVal((ξ|Val ;β
′|Valσ)

�
M′|Strσ)(ϕ) = UVal (C (ξ; (β′)�M′))(ϕ)

with σ = πVal (ξ). We have

200 A. Knapp and M.V. Cengarle

(ξ|Val ;β
′|Valσ)

�
M′|Strσ ;σ|ValG(U)(M ′) (K)

=

C (ξ|Val); (β
′|Valσ)

�
M′|Strσ ;σ|ValG(U)(M ′) (E)

= C (ξ|Val);C (σ|ValX
′
); (β′)�M′ =

C (ξ|Val ;σ
|ValX

′
); (β′)�M′ = C (ξ); (β′)�M′ .

The imageUVal (σ
|ValG(U)(M ′)) of the forward morphism is an inclusion map. Therefore,

UVal((ξ|Val ;β
′|Valσ)

�
M′|Strσ ;σ|ValG(U)(M ′))(ϕ) =

UVal((ξ|Val ;β
′|Valσ)

�
M′|Strσ)(ϕ) .

Now additionally assume that for each Σ ∈ |S| there is an object XΣ that is initial
in G(Val)(Σ). Then, for each each X ∈ |G(Val)|, there is a unique morphism ξX :
XΣ → X in G(Val)(Σ). In particular, for each M ∈ |G(Str)(Σ)|, there is a unique
morphism βΣ : XΣ → G(U)(M) in G(Val)(Σ). In this case, we can define a more
“classical” institution from the term charter T = (C , ν, (−)�) as follows:

– Define the category CSigUVal

T as S.
– Define the functor CSenUVal

T : CSigUVal

T → Set as

CSenUVal

T (Σ) = UVal(C (XΣ)) and

CSenUVal

T (σ : Σ → Σ′) = UVal(C (ξX
Σ′

|Valσ;σ|ValX
Σ′
)) .

– Define the functor CStrUVal

T : (CSigUVal

T)op → Cat as Str : Sop → Cat.
– Define the family of relations (|=UVal

T,Σ)Σ∈|CSig
UVal
T | with |=UVal

T,Σ ⊆ |CStrUVal

T (Σ)| ×
|CSenUVal

T (Σ)| by

M |=UVal

T,Σ ϕ iff UVal ((β
Σ)�M)(ϕ) = ∗ .

Corollary 1. (CSigUVal

T ,CStrUVal

T ,CSenUVal

T , |=UVal

T) is an institution.

4 OCL Terms and Evaluation

The main use of OCL for UML models is navigation through a system’s maze of objects
and links. A domain for this task is quite naturally captured by the notion of order-
sorted algebras [9], where the sort hierarchy of an order-sorted signature is induced
by the inheritance relation of a given model and its function symbols represent the
properties and queries specified in the model [10]. Following, the “states-as-algebras”
paradigm [6], each order-sorted algebra represents a particular configuration of objects
and links. In fact, we use order-sorted signatures, structures, and terms as substitutes
for the precise OCL declarations in order to avoid some of its idiosyncrasies [3].

For expressiveness and ease of use, the OCL provides a set of built-in types, like
Boolean or Integer, and collection constructors, like Sequence or Set, as well
as a rich standard library. On the one hand, this library features primitive functions

Institutions for OCL-Like Expression Languages 201

for computations on values like c->including(e) for adding e to the sequence or
set c. On the other hand, the construct c->iterate(i; a = e0 | e) is available on
collections which after initializing the accumulator variable a by e0 successively binds
the iteration variable i to the values in the collection c updating the accumulator with the
result of evaluating e for the current values of i and a, and finally returns the value stored
in a. Numerous operations on collections, like select, reject, or collect, but
also forAll and exists, are built on top of this general iteration construct [5]. For
accessing the currently available objects of a class allInstances() can be called
on a type identifier; this call only succeeds when a type with finitely many inhabitants
is used, such that Integer.allInstances()will not work.

In fact, OCL introduces a special value undefined for expressions like
Integer.allInstances() or division by zero that do not yield a proper value.
Instead of exception handling, the particular function isUndefined() can be used
to check whether an expression results in undefined. The built-in Boolean func-
tions and and or show a “parallel” (non-strict) behaviour for undefined, mandating
that true or e and e or true always result in true, regardless of whether e yields
undefined or not, and similarly for false and e and e and false.

We now consider these OCL features w.r.t. terms and evaluation one by one, but sep-
arately, starting with the order-sorted framework as a term charter and then accordingly
adapting this framework. We restrict ourselves to an informal account of the notions
mentioned above, that constitute the interesting cases within OCL. Formal, rigorous
definitions can be found in the Appendix A.

4.1 Built-ins

The built-in types of OCL can be viewed as a particular case of the order-sorted frame-
work in Ex. 1, namely the one that contains certain sorts and declarations and inter-
prets them in the “standard” way. If we want, for instance, sequences and sets with
membership test, then we require Bool ∈ |S| with {true, false} ⊆ δD(Bool), and
{Seq(s),Set(s)} ⊆ |S| with−→including(−) ∈ δD(Seq(s) s,Seq(s))∩δD(Set(s) s,
Set(s)) (together with some sanity conditions). The morphisms are required to be the
identity on these built-in types and function names. The signatures and morphisms ful-
filling these requirements are called primitives closed, the sub-category they define is
denoted by S◦. Primitives-closed structures interpret built-in sorts and declarations in
the standard way; this contravariant structure functor is denoted by Str◦. Value do-
mains, however, are not restricted: this means, in particular, that the value domain for
Set(s) not necessarily consists of the (finite) sets of values in the value domain for s.
The indexed category of values is thus the same as for order-sorted term charter, namely
Val≤. The underlying indexed functor relating structures and values is denoted by U◦.
The terms are constructed in the same manner as those of the order-sorted case. This
way, we obtain the primitives-closed order-sorted term charter (C≤, ν≤, (−)�≤) over
the term charter domain (S◦,Val≤, Str◦, U◦).

4.2 Iteration, All Instances, Undefinedness

The iteration construct of OCL is, in fact, a higher-order instrument since it binds both
an iteration variable and an accumulator variable. Therefore, it cannot be treated as

202 A. Knapp and M.V. Cengarle

the built-ins of above. It can however be added to primitive-closed term charters by
including a further inductive case to the definition of the term language. Besides the
base case of variables being a term and the inductive case of function symbols applied
to previously defined terms, we have a second inductive case constructing an OCL
iteration term: t′→iterate(x′;x = t0 | t) where t′ is a term of collection type (with
elements of type s′), t0 is a term of arbitrary type s, x and x′ are “new” variables of
type s′ and s, respectively, and t is a term of type s possibly containing x and x′. (For
the sake of simplicity, we disregard here sub-sorting.) The extension of order-sorted
signature morphisms to iteration terms is straightforward. The evaluation (β)�

it
along

a valuation β is defined on iteration terms, if not in a straightforward, nevertheless in
relatively simple manner by

(βit)
�it
M
s (t′→iterate(x′;x = t0 | t)) =

it((βit)
�it
M

s′ (t′), (βit)
�it
M
s (t0),

{(t1, t2) → ((βit{x : s → t2, x
′ : s′ → t1})�

it
M
s (t)})})

where it(ε, ta, f) = ta and it(ti :: !, ta, f) = it(!, f(ti, ta), f)

The charter domain used here is the one of order-sorted signatures, that is, the ob-
tained iteration term charter (C it, ν it, (−)�it

) is defined over the term charter domain
(S◦,Val≤, Str◦, U◦) .

Now, the introduction of the OCL query that returns all the instances of a given
type, namely allInstances, conveys the introduction of an undefined return value
if the type is infinite. Thus we consider a further special case of order-sorted value
domains: those that contain the undefined constant †. More formally, the value do-
mains remain unchanged, only the morphisms are “undef-lifted” and, in particular, the
structures do not change, i.e., they do not contain †. This yields an indexed category
Val† : (S≤)op → Cat and thus an indexed functor U † : Str◦ →̇Val†. Similarly as for
iteration, a further inductive case is added to the definition of term language, namely
s.allInstances() with s a sort. The extension of order-sorted signature morphisms as
well as the (strict) extension of valuations to allInstances is straightforward:

(βa)
�a
M

s′ (s.allInstances()) =

{
Vs if |Vs| <∞
† otherwise

and in any other case the extension of the valuation β is strict. An all-instances term
charter (C a, νa, (−)�a

) over the term charter domain (S◦,Val†, Str◦, U †) is obtained.
Having a way to treat undefinedness of allInstances, the possibility of treating unde-

finedness in general opens up. So, for instance, non-strict functions as, e.g., if-then-else
can be terms of the language. Three-valued Boolean connectives, moreover, need be
defined. Again, not function symbols are assumed but further cases to the inductive
definition of terms are added; in particular, the constant undef, the term construction
t.isUndef() for t a term, t1 and t2 and t1 or t2 are terms if t1 and t2 are terms of sort
Bool, and if t then t1 else t2 endif is a term if t is a term of sort Bool and t1 and t2 are
of the same sort (disregarding sub-sorting here for the sake of simplicity). Both undef-
lifted order-sorted signature morphisms and valuations are customarily defined on these
new terms, with valuations strict but for if-then-else:

Institutions for OCL-Like Expression Languages 203

(βu)
�u
M
s (v1 and v2) =

⎧⎪⎨⎪⎩
tt if (βu)

�u
M

Bool(v1) = tt and (βu)
�u
M

Bool(v2) = tt

ff if (βu)
�u
M

Bool(v1) = ff or (βu)
�u
M

Bool(v2) = ff

† otherwise

(βu)
�u
M
s (if v then v1 else v2 endif) =

⎧⎪⎨⎪⎩
(βu)

�u
M
s (v1) if (βu)

�u
M
s (v) = tt

(βu)
�u
M
s (v2) if (βu)

�u
M
s (v) = ff

† otherwise

The undefinedness term charter (C u, νu, (−)�u
) is thus defined over the term charter

domain (S◦,Val†, Str◦, U †), i.e., over the same term charter domain as “all instances”.

4.3 Institutions for OCL Sub-languages

The term charters of the preceding sections use primitives-closed signatures and struc-
tures. From each of them, by Prop. 2, corresponding institutions can be constructed by
instantiating UVal† and ∗. One possible choice is UVal†(〈Σ, V 〉) = VBool and taking the
semantic truth value ∗ to be tt . With this choice a term of type Bool evaluating to † is
per se not “true”. Due to the satisfaction condition, this evaluation is invariant under
change of notation.

Example 2. Assume that equality is one of the built-ins considered in Sect. 4.1 and
let us write t1 = t2 instead of =(t1, t2). In the undefinedness term charter Tu with
Σ ∈ |S◦|, X ∈ |G(Val†)(Σ)|, M ∈ |G(Str◦)(Σ)|, and β : X → G(U †)(M), we

have (β)
�u

M (undef = true) = † and therefore (M,β) �|=U
Val†

Tu,X undef = true. Similarly,

(β)
�u

M (false = true) = ff , and again (M,β) �|=U
Val†

Tu,X false = true.

5 Operators on Term Charters

Having provided a series of examples for term charters for various OCL features in
isolation, we now want to combine these term charters and thus the OCL features to
obtain a coherent OCL semantics out of which we can also form an institution. We
provide two first operators, which, however, both currently assume that all the involved
term charters are given over the same term charter domain.

By sequencing term charters we can stack construction functors and thus get a lev-
elled combination of their terms. Consider for example the all-instances term char-
ter Ta = (C a, νa, (−)�a

) and the undefinedness term charter Tu = (C u, νu, (−)�u
)

of Sect. 4.2 which are both defined over (S◦,Val†, Str◦, U †). In the term charter
Ta
 Tu = (C , ν, (−)�) resulting from sequencing these two term charters we obtain
the “heterogeneous” term (s.allInstances()).isUndef(). This sequencing can be iterated
thus adding more levels; a full combination, that allows the occurrence of terms from
both term charters on all levels, is in a co-limit construction provided below of the chain
νC (n) : C (n) → C (n+1) where C (n) is the construction functor of the n-th level.

204 A. Knapp and M.V. Cengarle

Both operators, sequencing and co-limit, work in the category TmCh(D) of term
charters over a given term charter domain D, where a term charter morphism μ :
T1 → T2 with term charters T1 = (C1, ν1, (−)�1) and T2 = (C2, ν2, (−)�2) over
D = (S,Val , Str , U) is given by a natural transformation μ : C1 →̇ C2 such that for all
Σ ∈ |S|, X ∈ |G(Val)(Σ)|, M ∈ |G(Str)(Σ)| and β : X → G(U)(M) in G(Val)(Σ)
the conditions ν1,X ;μX = ν2,X and μX ; (β)�2,M = (β)�1,M hold.

5.1 Sequencing of Term Charters

Let T1 = (C1, ν1, (−)�1) and T2 = (C2, ν2, (−)�2) be term charters over the term
charter domain (S,Val , Str , U). Then the sequencing T1
 T2 = (C , ν, (−)�) of first
T1 and then T2 is defined by

C = C1;C2 : G(Val)→ G(Val)
νX = ν1,X ; ν2,C1(X) = ν2,X ;C2(ν1,X) : X → C2(C1(X))

β�M = (β�1,M)�2,M

for all X ∈ |G(Val)(Σ)|, M ∈ |G(Str)(Σ)|, and β : X → G(U)(M) in G(Val)(Σ).

Proposition 3. Let D = (S,Val , Str , U) be a term charter domain. Let T1 = (C1, ν1,
(−)�1) and T2 = (C2, ν2, (−)�2) be term charters over D. Then T1
 T2 is a term
charter over D.

Example 3. Consider the “heterogeneous” term (Integer.allInstances()).isUndef() of
Ta
 Tu where we assume that Integer is a built-in sort standardly interpreted by Z.
This term is built by first constructing Integer.allInstances() in Ta, then taking this term
as a variable, which we may abbreviate by x, and constructing x.isUndef() in Tu. Con-
sequently, the evaluation of

((β)
�a

M)
�u

M ((Integer.allInstances()).isUndef()) = ((β)
�a

M)
�u

M (x.isUndef())

for an arbitrary β : X → G(U †)(M) with X ∈ |G(Val †)(Σ)|, M ∈ |G(Str◦)(Σ)|,
and Σ ∈ |S◦| first evaluates ((β)�

a

M)
�u

M (x), amounting to (β)
�a

M (x), since x is a variable,
which yields †. Thus the overall result is tt .

Also the natural transformation ν2,C1(−) : C1 →̇ C1;C2 induces a term charter
morphism from T1 to T1
T2, and, likewise, the natural transformationC2(ν1) : C2 →̇
C1;C2 induces a term charter morphism from T2 to T1
T2. The n-th iteration T(n) of
a term charter T for n ≥ 1 is inductively defined by T(1) = T and T(n+1) = T(n)
 T.

5.2 Co-limits of Term Charters

Let D = (Σ,Val , Str , U) be a term charter domain. For a term charter T =
(C , ν, (−)�) ∈ |TmCh(D)| let us write TC , Tν , and T� for the components of T. Con-
sider a diagram F : J → TmCh(D) where J is a small connected category. Assume
that for every X ∈ |G(Val)(Σ)| with Σ ∈ |S|, the diagram FC ,X : J → G(Val)(Σ)

Institutions for OCL-Like Expression Languages 205

with FC ,X(j) = F (j)C (X) and FC ,X(f : j → j′) = F (f)X has co-limit (CF,X ∈
G(Val)(Σ), γF,X : FC ,X →̇ Δ(CF,X)) (where, for a category C, Δ : C → CJ

denotes the diagonal functor mapping a C ∈ |C| to the functor Δ(C) : J → C

with Δ(C)(j) = C and Δ(C)(f : j → j′) = 1C). Then, by universality, for each
ξ : X → Y in G(Val)(Σ) there is a unique arrow cF,ξ : CF,X → CF,Y such that

F (j)C (ξ); γF,Y,j = γF,X,j; cF,ξ for all j ∈ |J | .

Define C F (X) = CF,X and C F (ξ) = cF,ξ. Furthermore, for all f : j → j′ in J ,

(F (j)ν)X ;F (f)X = (F (j′)ν)X and γF,X,j = F (f)X ; γF,X,j′

Define νFX = (F (j)ν)X ; ζF,X,j for some j ∈ |J |. For a morphism β : X → G(U)(M)

in G(Val)(Σ) with M ∈ |G(Str)(Σ)| let (β)�
F
M : C F (X)→ G(U)(M) be the unique

morphism with ζF,X,j ; (β)
�FM = F (j)�(β) for all j ∈ |J | which exists since

F (f)X ;F (j)�M (β) = F (j′)�M (β) for all f : j → j′ in J .

Then TF = (C F , νF , (−)�F) is a term charter and all γF,−,j are term charter mor-
phisms. In fact, (TF , γF) with (γFj)X = γF,X,j is the co-limit of F .

Proposition 4. (−)C : TmCh(S,Val , Str , U) → Fun(G(Val),G(Val)) creates pa-
rameterized small connected co-limits.

Example 4. Continuing the previous example, we now want to consider arbitrarily
nested terms from the all-instances term charter Ta and the undefinedness term char-
ter Tu. We thus consider the chain T

ν1−→ T(2) ν2−→ T(3) ν3−→ · · · for T = Ta
 Tu.
Writing C for the construction functor C a;C u, we have to check that the chain

C (X)
ν1,X−−−→ C (2)(X)

ν2,X−−−→ C (3)(X)
ν3,X−−−→ · · · has a co-limit in G(Val†)(Σ) for

X ∈ |G(Val†)(Σ)|. Indeed, the co-limit object of this chain is simply given by the
component-wise union of the value domains and thus we obtain a co-limit term charter
by Prop. 4. The evaluation of a term at a nesting level n of Ta and Tu then proceeds like
in T(n).

6 Conclusions and Future Work

Along the lines of Martin Wirsing’s proposal for the definition of an heterogeneous
semantics of UML in [4], we have presented above a semantics for the constraints
language OCL. The distinct characteristic of this approach is the compositional con-
struction of theories out of basic ones. Indeed, OCL can be obtained by sequencing
term charters and building the co-limit of the result. This way only the theories, pre-
sented as term charters and needed for the situation at hand, are combined into an OCL
sub-language (and therefore the theories that are dispensable need not be included).

Let us emphasize that OCL is not a logic but a term language. It it is imperative
to deal with its particularities, too, especially undefinedness and non-termination. The
OCL setting defines a logic that is not binary. That is, we have to deal with formulase

206 A. Knapp and M.V. Cengarle

that, instead of being either true or not, may be true, false, undefined or even non-
terminating. In order to mimic the implied three- or four-valued OCL logic (see [3] and
also [12]), the most natural to do is, on the one hand, to follow the definition of OCL as
closely as possible and construct a term language whose equality, on the other hand, is
invariant under change of notation. As pointed out above, we moreover addressed the
OCL sub-languages one by one, thus supporting compositional construction of term
languages that comply the satisfaction condition and can consequently be presented as
institutions.

Indeed, term charters for the OCL sub-languages can be composed by means of
the sequencing operator and the co-limit construction of Sect. 5, provided they are de-
fined over the same term charter domain. In particular, an OCL term charter can be ob-
tained by composing the term charters sketched in Sect. 4, that is, the primitives-closed
order-sorted term charter (see Sect. A.2), the iteration term charter (see Sect. A.3),
the all-instances term charter (see Sect. A.4), and the undefinedness term charter (see
Sect. A.5), only after their reformulation as term charters over a single term charter
domain. By Prop. 2, the resulting OCL term charter defines an institution for OCL.

Useful would be the possibility of combining term charters defined over different
term charter domains. The use of heterogeneous term charter domains could support
the construction of the four-valued logic with undef and non-termination by means of
operators on the corresponding three-valued term charters, i.e., by composing them di-
rectly, instead of resorting to their redefinition for a four-valued term charter domain.
A property not demonstrated yet is the associativity of sequencing. A further issue,
to be included in the framework presented in this work, is the treatment of pre-/post-
conditions. The present idea consists in testing them on pairs of “states”, one that rep-
resents the state at the time before the execution of a method and one that represents
the state afterwards. In the long term, we aim to define an entailment system for OCL
which, combined with the institution above, would yield an general logic; see [13]. Fi-
nally, an integration into the institution-based Heterogeneous Tool Set [14] for analysis
and proof support in multi-logic specifications is planned.

Acknowledgements. We thank Till Mossakowski and Hubert Baumeister for fruitful
discussions and comments on previous drafts of this work. We especially want to ex-
press our deep gratitude to Martin Wirsing for initiating this work, accompanying our
scientific lives, and particularly for being, both from the academic and personal point
of view, precisely Martin Wirsing.

References

1. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley (1999)

2. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What Is a Multi-modeling Language?
In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 71–87. Springer,
Heidelberg (2009)

3. Cengarle, M.V., Knapp, A.: OCL 1.4/1.5 vs. OCL 2.0 Expressions: Formal Semantics and
Expressiveness. Softw. Syst. Model. 3(1), 9–30 (2004)

Institutions for OCL-Like Expression Languages 207

4. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach to UML
Semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Mod-
els. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)

5. Clark, T.: Typechecking UML Static Models. In: France, R.B. (ed.) UML 1999. LNCS,
vol. 1723, pp. 503–517. Springer, Heidelberg (1999)

6. Ganzinger, H.: Programs as Transformations of Algebraic Theories (Extended Abstract).
Informatik Fachberichte 50, 22–41 (1981)

7. Goguen, J.A., Burstall, R.M.: A Study in the Foundation of Programming Methodology:
Specifications, Institutions, Charters, and Parchments. In: Poigné, A., Pitt, D.H., Rydeheard,
D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240,
pp. 313–333. Springer, Heidelberg (1986)

8. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification and Pro-
gramming. J. ACM 39(1), 95–146 (1992)

9. Goguen, J.A., Meseguer, J.: Order-sorted Algebra I: Equational Deduction for Multiple
Inheritance, Overloading, Exceptions and Partial Operations. Theo. Comp. Sci. 105(2),
217–273 (1992)

10. Hennicker, R., Knapp, A., Baumeister, H.: Semantics of OCL Operation Specifications. In:
Schmitt, P.H. (ed.) Proc. Wsh. OCL 2.0 — Industry Standard or Scientific Playground?
(WOCL 2003). Electr. Notes Theo. Comp. Sci., vol. 120, pp. 111–132. Elsevier (2004)

11. Knapp, A., Cengarle, M.V.: Institutions for OCL-like Expression Languages. Manuscript,
Universitt Augsburg (2014),
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/sse/
veroeffentlichungen/uau-2014/ocl-institutions.pdf

12. Lano, K.: Null Considered Harmful (for Transformation Verification). In: Proc. 3rd Int. Wsh.
Verification of Model Transformations, VOLT 2014 (2014), http://volt2014.big.
tuwien.ac.at/papers/volt2014_paper_3.pdf

13. Meseguer, J.: General Logics. In: Ebbinghaus, H.D., Fernández-Prida, J., Garrido, M.,
Lascar, D., Rodrı́guez Artalejo, M. (eds.) Proc. Logic Colloquium 1987, pp. 275–329.
North-Holland (1989)

14. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, HETS. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer,
Heidelberg (2007)

15. Object Management Group: Unified Modeling Language, Superstructure. Version 2.4.1.
Specification formal/2011-08-06, OMG (2011)

16. Object Management Group: Object Constraint Language. Version 2.3.1. Specification
formal/2012-01-01, OMG (2012)

17. Pawłowski, W.: Context Parchments. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS,
vol. 1376, pp. 381–401. Springer, Heidelberg (1998)

18. Petre, M.: UML in Practice. In: Proc. 35th Int. Conf. Software Engineering (ICSE 2013), pp.
722–731. IEEE (2013)

19. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software De-
velopment. EATCS Monographs in Theoretical Computer Science. Springer (2012)

20. Tarlecki, A., Burstall, R.M., Goguen, J.A.: Some Fundamental Algebraic Tools for the Se-
mantics of Computation, Part 3: Indexed Categories. Theo. Comp. Sci. 91, 239–264 (1991)

21. Wirsing, M.: Algebraic Specification. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics, pp. 675–788. Elsevier and
MIT Press (1990)

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/sse/veroeffentlichungen/uau-2014/ocl-institutions.pdf
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/sse/veroeffentlichungen/uau-2014/ocl-institutions.pdf
http://volt2014.big.tuwien.ac.at/papers/volt2014_paper_3.pdf
http://volt2014.big.tuwien.ac.at/papers/volt2014_paper_3.pdf

208 A. Knapp and M.V. Cengarle

A OCL Terms and Evaluation

We formally define the OCL features discussed in Sect. 4 following the same strategy,
i.e., one by one and each time adapting the framework.

A.1 Order-Sorted Terms and Evaluation

For the first basic step, we recapitulate the notions of order-sorted signatures, structures,
terms, and evaluation in terms of indexed categories.

Signatures, Values, and Structures. An order-sorted signature (S,D) consists of a sort
hierarchy S and a function declaration pair over S; where S = (|S|,≤S) is a partial
order with a set of sort names |S| and a sub-sorting relation ≤S; and D = (|D|, δD)
is a pair with |D| a set of function names and δD : |S|∗ × |S| → P(|D|) a function
such that |D| =

⋃
{δD(s, s) | s ∈ |S|∗, s ∈ |S|}. An order-sorted signature morphism

(γ, ρ) : (S,D)→ (S′, D′) is given by a monotone function γ : S → S′ and a function
ρ : |D| → |D′| such that ρ(d) ∈ δD′(γ(s), γ(s)) for each d ∈ δD(s, s). Order-sorted
signatures and morphisms between them define a category which we denote by S≤.

An (S,D)-value domain V consists of a family V = (Vs)s∈|S| of sets of values with
Vs ⊆ Vs′ if s ≤S s′. An (S,D)-value domain morphism ω : V → V ′ is given by a
family of mappings ω = (ωs : Vs → V ′

s)s∈|S|. (S,D)-value domains and morphisms
define a category Val≤(S,D). The indexed category Val≤ : (S≤)op → Cat maps
each Σ = (S,D) toVal≤(Σ) and each (γ, ρ) : Σ → Σ′ = (S′, D′) to the functor
Val≤(γ, ρ) :Val≤(Σ′) →Val≤(Σ) withVal≤(γ, ρ)((V ′

s′)s′∈|S′|) = (V ′
γ(s))s∈|S| and

Val≤(γ, ρ)((ω′
s′ : V

′
1,s′ → V ′

2,s′)s′∈|S′|) = (ω′
γ(s) : V

′
1,γ(s) → V ′

2,γ(s))s∈|S|.
An (S,D)-structure (V,E) consists of an (S,D)-value domain and a family of eval-

uation functions E = (Es,s)s∈|S|∗,s∈|S| with Es,s : δD(s, s) → (Vs → Vs). An
(S,D)-structure morphism ω : (V,E)→ (V ′, E′) is given by an (S,D)-value domain
morphism ω : V → V ′ such that the homomorphism condition ωs(Es,s(d)(�v)) =
E′

s,s(d)(ωs(�v)) is satisfied. (S,D)-structures and morphisms define a category

Str≤(S,D). The indexed category Str≤ : (S≤)op → Cat maps each Σ to Str≤(Σ)
and each (γ, ρ) : Σ → Σ′ = (S′, D′) to the functor Str≤(γ, ρ) : Str≤(Σ′) →
Str≤(Σ) with Str≤(γ, ρ)((V ′

s′)s′∈|S′|, (E
′
s′,s′)s′∈|S′|∗,s′∈|S′|) = ((V ′

γ(s))s∈|S|, ((E
′ ◦

ρ)γ(s),γ(s))s∈|S|∗,s∈|S|) and Str≤(γ, ρ)(ω′) =Val≤(γ, ρ)(ω′).
The indexed functor U≤ : Str≤ →̇ Val≤ “forgets” the evaluation functions of a

structure.

Terms and Evaluation. For constructing order-sorted terms over an order-sorted value
domain we define a functor C≤ : G(Val≤) → G(Val≤) as follows: For an object 〈Σ,
X〉 ∈ |G(Val≤)| with Σ = (S,D) set C≤(〈Σ,X〉) = 〈Σ, V ≤

X 〉 such that for each
s ∈ |S| the values in V ≤

s are given inductively by

– x ∈ V ≤
X,s for x ∈ Xs;

– d(�v) ∈ V ≤
X,s′ for all s′ ≥S s if d ∈ δD(s, s) and �v ∈ V ≤

X,s;

Institutions for OCL-Like Expression Languages 209

For a morphism 〈σ, ω〉 : 〈Σ,X〉 → 〈Σ′, X ′〉 in G(Val≤) with σ = (γ, ρ) and
Σ = (S,D) set C≤(〈σ, ω〉) = 〈σ, ω≤〉 : C≤(〈Σ,X〉) → C≤(〈Σ′, X ′〉) such that
inductively ω≤

s (x) = ωs(x) for x ∈ Xs and ω≤
s (d(�v)) = ρ(d)(ω≤

s (�v)).
For evaluating order-sorted terms over aΣ-structureM = 〈Σ, (V,E)〉 in |G(Str≤)|

given a valuation β = 〈1Σ , β≤〉 : 〈Σ,X〉 → G(U≤)(〈Σ, (V,E)〉) define (β)�
≤
M =

〈1Σ , ((β≤))�
≤
M 〉 : C≤(〈Σ,X〉)→ 〈Σ, (V,E)〉 inductively by

– (β≤)
�≤M
s (x) = β≤

s (x) for x ∈ Xs;

– (β≤)
�≤M
s (d(�v)) = Es,s(d)((β

≤)
�≤M
s)(�v)).

Term Charter. Given an order-sorted signature morphism σ : Σ → Σ′ in S≤,
a Σ′-structure 〈Σ′, (V ′, E′)〉 ∈ |G(Str≤)(Σ′)|, and a valuation β′ : 〈Σ′, X ′〉 →
G(U≤)(〈Σ′, (V ′, E′)〉) in G(Val≤)(Σ′) it is straightforwardly checked that the eval-
uation condition (E) for term charters

C≤(〈Σ′, X ′〉|Val≤σ) C≤(〈Σ′, X ′〉)

G(U≤)(〈Σ′, (V ′, E′)〉|Str≤σ) G(U≤)(〈Σ′, (V ′, E′)〉)

C≤(σ
|
Val≤〈Σ′,X′〉

)

(β′|
Val≤σ)

�
≤
〈Σ′,(V ′,E′)〉|

Str≤σ

G(U≤)(σ
|
Str≤〈Σ′,(V ′,E′)〉

)

(β′)
�
≤
〈Σ′,(V ′,E′)〉

indeed is satisfied. Also condition (K) is easily shown. As natural transformation
ν≤ : 1G(Val≤) →̇ C≤ for embedding values or variables into the order-sorted terms

we may simply choose the inclusions, i.e., ν≤〈(S,D),X〉 = 〈1(S,D), (ι〈(S,D),X〉,s : Xs →
V ≤
X,s)s∈|S|〉 which also satisfies (C).

Thus we obtain the order-sorted term charter (C≤, ν≤, (−)�≤) over the term charter
domain (S≤,Val≤, Str≤, U≤).

A.2 Adding Built-ins

The addition of OCL’s built-in types can be handled by a specialization of order-sorted
signatures and structures, requiring them to contain and interpret particular sorts and
declarations in a standard way. We demonstrate this by adding Booleans, sequences, and
sets as well as a few functions; these additions are by far not exhaustive, but meant to be
exemplarily. Nevertheless, we call the resulting order-sorted signatures and structures
“primitives closed”.

Signatures and Structures. An order-sorted signature (S,D) with S = (|S|,≤S) and
D = (|D|, δD) is primitives-closed whenever Bool ∈ |S|, and true ∈ δD(Bool) and
false ∈ δD(Bool); and the following conditions hold for all τ ∈ {Seq,Set} and all
s, s′ ∈ |S|:
– τ(s) ∈ |S| if, and only if, s ∈ |S|;
– τ(s) ≤S τ(s

′) if, and only if, s ≤S s
′;

– τ{} ∈ δD(τ(s)) and −→including(−) ∈ δD(τ(s) s, τ(s)).

210 A. Knapp and M.V. Cengarle

A morphism (γ, ρ) : (S,D) → (S′, D′) between primitives-closed order-sorted signa-
tures is primitives-closed if γ(Bool) = Bool, and ρ(true) = true and ρ(false) = false;
and the following conditions hold for all τ ∈ {Seq,Set} and all s ∈ |S|:
– γ(τ(s)) = τ(γ(s));
– ρ(τ{}) = τ{} and ρ(−→including(−)) = −→including(−).
Let S◦ be the sub-category of order-sorted signatures consisting of all the primitives-
closed order-sorted signatures and all the primitives-closed morphisms between them.

An (S,D)-structure (V,E) over a primitives-closed order-sorted signature (S,D) is
primitives-closed if VBool = {tt,ff }, and EBool(true) = tt and EBool(false) = ff ; and
for all s ∈ |S|:
– VSeq(s) = (Vs)

∗ and VSet(s) = Pfin(Vs) (i.e., all finite lists and sets over Vs);
– ESeq(s)(Seq{}) = ε and ESet(s)(Set{}) = ∅ (i.e., the empty list and set);
– ESeq(s) s,Seq(s)(−→including(−)) = {(l, v) → v :: l} (i.e., prepending an element

to a list) and ESet(s) s,Set(s)(−→including(−)) = {(m, v) → {v} ∪m} (i.e., adding
an element to a set);

An (S,D)-structure morphism ω : (V,E) → (V ′, E′) over a primitives-closed order-
sorted signature (S,D) is primitives-closed if ωBool(tt) = tt and ωBool(ff) = ff ; and
for all s ∈ |S|:
– ωSeq(s)(ε) = ε and ωSet(s)(∅) = ∅;
– ωSeq(s)(v :: l) = ωs(v) :: ωSeq(s)(l) and ωSet(s)({v} ∪m) = {ωs(v)} ∪ ωSet(s)(m).

The indexed category Str◦ : (S◦)op → Cat is defined like Str≤ but only involves
primitives-closed order-sorted signatures, structures, and morphisms.

The indexed functor U◦ : Str◦ →̇Val≤ is defined by U≤ restricted to Str◦.

Terms and Evaluation. As construction functor for primitives-closed order-sorted terms
we can still use C≤ : G(Val≤) → G(Val≤) as defined in Sect. A.1. Also the defini-
tion of the evaluation of primitives-closed order-sorted terms, though now involving
primitives-closed signatures and structures, stays the same, such that the corresponding
evaluation condition (E) again is satisfied. However, the primitives-closed order-sorted
terms do not directly give rise to primitives-closed structures (in the sense of term alge-
bras) due to the “standard interpretation” requirements on sequences and sets.

Term Charter. In particular, we obtain the primitives-closed order-sorted term char-
ter (C≤, ν≤, (−)�≤) over the term charter domain (S◦,Val≤, Str◦, U◦). Furthermore,
setting UVal≤(〈Σ, V 〉) = VBool and ∗ = tt we obtain, by applying Prop. 2, an institu-
tion for the primitives-closed order-sorted term charter. SinceVal≤(Σ) has initial value
domains for eachΣ ∈ |S◦|, we can also apply Cor. 1 and obtain a “classical” institution.

A.3 Iteration

For handling OCL’s iteration construct, we only extend the term language, but keep work-
ing over primitives-closed order-sorted signatures and structures. In fact, iteration is not
straightforwardly integrable into order-sorted signatures and structures themselves, since
it binds the iteration and the accumulator variable and thus involves higher-order terms.

Institutions for OCL-Like Expression Languages 211

Terms and Evaluation. The construction functor for iteration terms C it : G(Val≤) →
G(Val≤) is defined as follows: For the objects, set C it(〈(S,D), X〉) = 〈(S,D), V it

X〉
such that inductively
– x ∈ V it

X,s if x ∈ Xs;
– d(�v) ∈ V it

X,s′ for all s′ ≥S s if d ∈ δD(s, s) and �v ∈ V it
X,s;

– v′→iterate(y′; y = v0 | v) ∈ V it
X,s if v′ ∈ V it

X,Seq(s′) with s′ ∈ |S|, v0 ∈ V it
X,s,

and v ∈ V it
X�{y:s,y′:s′},s (where, for s0, s1 ∈ |S|, y0 /∈ Xs′0 for any s′0 ≥S s0,

(X $ {y0 : s0})s1 is defined by Xs1 if s0 �≤S s1 and by Xs1 ∪ {y0} if s0 ≤S s1).

For the morphisms, define the morphism C it(〈(γ, ρ), ω〉) = 〈(γ, ρ), ωit〉 : C it(〈(S,D),
X〉) → C it(〈(S′, D′), X ′〉) such that, by simultaneous induction, ωit

s(x) = ωs(x)
for x ∈ Xs; ωit

s(d(�v)) = ρ(d)(ωit
s(�v)); and ωit

s(v
′→iterate(y′; y = v0 | v)) =

ωit
s′(v

′)→iterate(y′; y = ωit
s(v0) | (ω{y : s → y : γ(s), y′ : s′ → y′ : γ(s′)})it

s(v)).
For each M = 〈Σ, (V,E)〉 ∈ |G(Str◦)| with Σ = (S,D) and each morphism

β = 〈1Σ, βit〉 : 〈Σ,X〉 → G(U◦)(M) define (β)�
it
Σ = 〈1Σ , (βit)�

it
Σ 〉 : C it(〈Σ,X〉) →

G(U◦)(M) inductively by

– (βit)
�it
M
s (x) = βs(x) for x ∈ Xs;

– (βit)
�it
M
s (d(�v)) = Es,s(d)((β

it)
�it
M

s (�v));

– (βit)
�it
M
s (v′→iterate(y′; y = v0 | v)) = it((βit)

�it
M

s′ (v′), (βit)
�it
M
s (v0),

{(v1, v2) → ((βit{y : s → v2, y
′ : s′ → v1})�

it
M
s (v)})}),

where it(ε, va, f) = va and it(vi :: !, va, f) = it(!, f(vi, va), f).

Term Charter. We obtain the iteration term charter (C it, ν it, (−)�it
) over the term char-

ter domain (S◦,Val≤, Str◦, U◦) when choosing the embedding natural transformation
ν it to consist out of inclusions. The evaluation of the iteration construct is completely
handled by the structure over which a term is evaluated. As for primitives-closed order-
sorted term charters we can construct the respective institutions.

A.4 All Instances

When accessing all instances of a type with an infinite number of inhabitants, an unde-
fined value, which we denote by †, shall be the result. We cover this addition by lifting
the order-sorted value domain morphisms to include also † in their co-domains.

Values. An undef-lifting value domain morphism ω† : V → V ′ from an (S,D)-value
domain V to an (S,D)-value domain V ′ over the order-sorted signature (S,D) is given
by a family of mappings ω† = (ω†

s : Vs → (V ′
s)†)s∈|S| where (M)† = M $ {†}

is the undef-lifting of the set M extending M by the special undefinedness symbol †.
The composition ω′† ◦ ω† : V → V ′′ of two undef-lifting value domain morphisms
ω† : V → V ′ and ω′† : V ′ → V ′′ between (S,D)-value domains is given by ω′† ◦
ω† = (ω′†

s ◦ ω†
s : Vs → (V ′′

s)†)s∈|S| with (ω′†
s ◦ ω†

s)(v) = † if ω†
s(v) = † and

(ω′†
s ◦ ω†

s)(v) = ω′†
s (ω

†
s(v)) otherwise; i.e., composition is strict w.r.t. undefinedness.

The identity undef-lifting value domain morphism 1†V : V → V between an (S,D)-
value domain V is given by 1†V = (1†V,s : Vs → (Vs)†)s∈|S| with 1†V,s(v) = v.

212 A. Knapp and M.V. Cengarle

(S,D)-value domains and undef-lifting morphisms between (S,D)-value do-
mains define a category which we denote by Val†(S,D). The indexed category
Val† : (S≤)op → Cat maps each order-sorted signature (S,D) to Val†(S,D) and
each order-sorted signature morphism (γ, ρ) : (S,D) → (S′, D′) to the functor
Val†(γ, ρ) :Val†(S′, D′) →Val†(S,D) withVal†(γ, ρ)((V ′

s′)s′∈|S′|) = (V ′
γ(s))s∈|S|

andVal†(γ, ρ)((ω′†
s′ : V

′
1,s′ → (V ′

2,s′)†)s′∈|S|) = (ω′†
γ(s) : V

′
1,γ(s) → (V ′

2,γ(s))†)s∈|S|.

For a primitives-closed Σ = (S,D)-structure (V,E) define U †
Σ(V,E) = V . For

a structure morphism ω : (V,E) → (V ′, E′) between primitives-closed Σ-structures
define U †

Σ(ω) = (ω†
s : Vs → (V ′

s)†)s∈|S| with ω†
s(v) = ω(v) which is an undef-lifting

value domain morphism fromU †
Σ(V,E) to U †

Σ(V
′, E′). This yields the indexed functor

U † : Str◦ →̇Val†.

Terms and Evaluation. The construction functor for all-instances terms C a :
G(Val†) → G(Val†) is defined as follows: For the objects, let C a(〈(S,D), X〉) =
〈(S,D), V a

X〉 such that inductively

– x ∈ V a
X,s if x ∈ Xs;

– d(�v) ∈ V a
X,s′ for all s′ ≥S s if d ∈ δD(s, s) and �v ∈ V a

X,s;
– s.allInstances() ∈ V a

X,s′ for all s ∈ |S| and s′ ≥S Set(s);

For the morphisms, define C a(〈(γ, ρ), ω†〉) = 〈(γ, ρ), (ω†)a〉 : C a(〈(S,D), X〉) →
C a(〈(S′, D′), X ′〉) such that, by simultaneous induction,

– (ω†)a
s(x) = ω†

s(x) for x ∈ Xs;

– (ω†)a
s′ (d(�v)) =

{
ρ(d)((ω†)a

s(�v)) if ω†
si
(�vi) �= † for all 1 ≤ i ≤ |�v|

† otherwise
;

– (ω†)a
s′ (s.allInstances()) = γ(s).allInstances().

For each M = 〈Σ, (V,E)〉 in |G(Str◦)| with Σ = (S,D) and each β = 〈1Σ , βa〉 :
〈Σ,X〉 → G(U †)(M) define (β)�

a
M = 〈1Σ, (βa)�

a
M 〉 : C a(〈Σ,X〉) → G(U †)(M)

inductively by

– (βa)
�a
M
s (x) = βa

s(x) for x ∈ Xs;

– (βa)
�a
M

s′ (d(�v)) =

{
Es,s(d)((β

a)
�a
M

s (�v)) if (βa)
�a
M

si
(�vi) �= † for all 1 ≤ i ≤ |�v|

† otherwise
;

– (βa)
�a
M

s′ (s.allInstances()) =

{
Vs if |Vs| <∞
† otherwise

.

Term Charter. Define the embedding natural transformation νa : 1G(Val†) →̇ C a again
as inclusions, though now as undef-lifting value domain morphisms, i.e., νa

〈(S,D),X〉 =

〈1(S,D), (ι
a
〈(S,D),X〉,s : Xs → (V a

X,s)†)s∈|S|〉. This yields the all-instances term charter

(C a, νa, (−)�a
) over the term charter domain (S◦,Val†, Str◦, U †), though checking the

term charter conditions (C), (K), and (E) becomes a little bit more tedious because of
case distinctions.

Institutions for OCL-Like Expression Languages 213

A.5 Undefinedness

Finally, let us consider OCL’s handling of undefinedness. We also add an if-then-else
clause as another non-strict function besides the test on undefinedness and the three-
valued Boolean connectives.

Terms and Evaluation. The construction functor for undefinedness terms C u :
G(Val†) → G(Val †) is defined as follows: For the objects, set C u(〈(S,D), X〉) =
〈(S,D), V u

X〉 such that inductively

– x ∈ V u
X,s if x ∈ Xs;

– d(�v) ∈ V u
X,s′ for all s′ ≥S s if d ∈ δD(s, s) and �v ∈ V u

X,s;
– undef ∈ V u

X,s for all s ∈ |S|;
– v.isUndef() ∈ V u

X,s′ for all s′ ≥S Bool if v ∈ V u
X,s for s ∈ |S|;

– v1 and v2 ∈ V u
X,s and v1 or v2 ∈ V u

X,s for all v1, v2 ∈ V u
X,Bool and s ≥S Bool;

– if v then v1 else v2 endif ∈ V u
X,s′ for all v ∈ V u

X,Bool and v1, v2 ∈ V u
X,s with s′ ≥S s.

For the morphisms, define C u(〈(γ, ρ), ω†〉) = 〈(γ, ρ), (ω†)u〉 : C u(〈(S,D), X〉) →
C u(〈(S′, D′), X ′〉) such that, by simultaneous induction,

– (ω†)u
s(x) =

{
undef if ω†

s(x) = †
ω†
s(x) otherwise

for x ∈ Xs;

– (ω†)u
s′ (d(�v)) = ρ(d)((ω†)u

s(�v)) for d ∈ δD(s, s);
– (ω†)u

s(undef) = undef;
– (ω†)u

s′ (v.isUndef()) = (ω†)u
s(v).isUndef();

– (ω†)u
s(v1 bop v2) = (ω†)u

Bool(v1) bop (ω†)u
Bool(v2) for bop ∈ {and, or};

– (ω†)u
s′ (if v then v1 else v2 endif) = if (ω†)u

Bool(v) then (ω†)u
s(v1) else (ω†)u

s(v2) endif.

(Although (ω†)u
s(x) = ω†

s(x) together with a strict extension for d(�v) could have been
defined, special measures for if v then v1 else v2 endif would have to be taken.)

For each M = 〈Σ, (V,E)〉 in |G(Str◦)| with Σ = (S,D) and each β = 〈1Σ , βu〉 :
〈Σ,X〉 → G(U †)(M) define (β)�

u
M = 〈1Σ , (βu)�

u
M 〉 : C u(〈Σ,X〉) → G(U †)(M)

inductively by

– (βu)
�u
M
s (x) = βu

s(x) for x ∈ Xs;

– (βu)
�u
M

s′ (d(�v)) =

{
Es,s(d)((β

u)
�u
M

s (�v)) if (βu)
�u
M

si
(�vi) �= † for all 1 ≤ i ≤ |�v|

† otherwise
;

– (βu)
�u
M
s (undef) = †;

– (βu)
�u
M

s′ (v.isUndef()) =

{
tt if (βu)

�u
M
s (v) = †

ff otherwise
;

– (βu)
�u
M
s (v1 and v2) =

⎧⎪⎨⎪⎩
tt if (βu)

�u
M

Bool(v1) = tt and (βu)
�u
M

Bool(v2) = tt

ff if (βu)
�u
M

Bool(v1) = ff or (βu)
�u
M

Bool(v2) = ff

† otherwise

;

– (βu)
�u
M
s (v1 or v2) =

⎧⎪⎨⎪⎩
tt if (βu)

�u
M

Bool(v1) = tt or (βu)
�u
M

Bool(v2) = tt

ff if (βu)
�u
M

Bool(v1) = ff and (βu)
�u
M

Bool(v2) = ff

† otherwise

;

214 A. Knapp and M.V. Cengarle

– (βu)
�u
M
s (if v then v1 else v2 endif) =

⎧⎪⎨⎪⎩
(βu)

�u
M
s (v1) if (βu)

�u
M
s (v) = tt

(βu)
�u
M
s (v2) if (βu)

�u
M
s (v) = ff

† otherwise

.

Term Charter. The undefinedness term charter (C u, νu, (−)�u
) over the term char-

ter domain (S◦,Val†, Str◦, U †) uses the analogous embedding natural transformation
νu : 1G(Val†) →̇ C u as the all-instances term charter. Checking the term charter con-
ditions (C), (K), and (E) now involves even more case distinctions. In contrast to the
all-instances case, the undef-lifting value domain morphism constructed by C u not sim-
ply is a strict extension to terms, but treats † specially in order to avoid problems with
the if-then-else clause.

Towards an Institutional Framework
for Heterogeneous Formal Development in UML

— A Position Paper —

Alexander Knapp1, Till Mossakowski2, and Markus Roggenbach3

1 Universität Augsburg, Germany
2 Otto-von-Guericke Universität Magdeburg, Germany

3 Swansea University, UK

Abstract. We present a framework for formal software development with UML.
In contrast to previous approaches to equipping UML with a formal semantics, we
propose an institution-based heterogeneous approach. This can express suitable
formal semantics of the different UML diagram types directly, without the need
to map everything to one specific formalism (let it be first-order logic or graph
grammars). We provide ideas how different aspects of the formal development
process can be coherently formalised, ranging from requirements over design and
Hoare-style conditions on code to the implementation itself. The framework can
be used to verify consistency of different UML diagrams both horizontally (e.g.,
consistency among various requirements) as well as vertically (e.g., correctness
of design or implementation w.r.t. the requirements).

Keywords: UML, heterogeneous formal methods, institutions.

1 Introduction

In Martin Wirsing’s research, the development of applicable formal methods plays an
important role. Martin has examined real-world modeling and programming languages
like UML and Java, and has studied suitable formal theories that can lead to increased
trustworthiness due to the possibility of formal verification. In this work, we build
on and extend the first author’s joint work with Martin Wirsing about views in soft-
ware development, heterogeneous semantics of UML, and multi-modeling languages
[24,34,3,7]. In fact, the integration of different, heterogeneous views on and in a soft-
ware system is a continual theme in Martin’s research, be it for data bases [10], multi-
media systems [20], or mobile systems [22]. We also build on joint work of Martin
Wirsing with the second and third author on the design of CASL [31]; indeed, in the
1990s, Martin hosted some of the CASL/COFI meetings and provided valuable input
for the CASL design. For the present paper, CASL forms a building block for the dis-
tributed ontology, modeling and specification language (DOL), which has evolved from
a generalisation of CASL to heterogeneous specifications.

In the industrial design of software for critical systems, the Unified Modeling Lan-
guage (UML) is an often used development mechanism. In aerospace industry, e.g., the
company Aero Engine Controls (AEC)1 uses the UML to define the software architecture

1 AEC is the former name of Rolls-Royce Control and Data Services,
http://www.controlsdata.com.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 215–230, 2015.
c© Springer International Publishing Switzerland 2015

http://www.controlsdata.com

216 A. Knapp, T. Mossakowski, and M. Roggenbach

of aeroplane engine controllers through various levels of abstraction from a layered ar-
chitecture overview to a detailed class, operation and attribute definition of the soft-
ware components. This model is then used for code generation. Typically, the software
components developed are either reactive or logic-based and/or stateful in nature, where
notations such as UML state diagrams are used to define the required behaviour [17].
Micro-controllers in the automotive sector or, in the medical sector, ventricular assis-
tance devices exemplify further uses of UML in the development of critical systems.

The UML is an OMG standard [32], which describes a language family of 14 types
of diagrams, of structural and behavioural nature. A typical development by AEC in-
volves about eight different UML diagrams [18]. The OMG specification provides an
informal semantics of nine sub-languages in isolation. The languages are mostly linked
through a common meta-model, i.e., through abstract syntax only. This situation leads
to a gap between standards’ recommendation to apply formal methods, and current
industrial practice, which by using the UML lacks the semantic foundations to apply
such methods. One common approach to deal with this gap is to define a comprehen-
sive semantics for the UML using a system model, e.g., [4,5]. However, this is a thorny
business, as every detail has to be encoded into one, necessarily quite complex seman-
tics. Furthermore, such an approach has difficulties to cater for UML’s variations of
usage, leading to company or domain-specific variations. On the other hand, there are
many approaches like component models (e.g. [16,2]) which are based on sound the-
ory, but do not meet the main goal of the present work: to set up a framework in which
one can eventually capture precisely the semantics and semantic variation points of the
UML standard (including all its idiosyncrasies), such that a holistic model-driven de-
velopment in UML can be complemented with rigorous consistency and verification
conditions.

In this position paper, we outline a competing approach by providing a heteroge-
neous semantics, where we extend [7] by considering a subset of diagrams rich enough
for industrial use, adding components and composite structures as well as behavioural
and protocol state machines. We substantiate this claim by a small case study that is
modelled holistically, using a variety of different diagram types. We distinguish be-
tween diagrams for properties, types and instances, where we express the meaning of
a model in a sub-language/diagram directly in an appropriate semantic domain. We
also distinguish diagrams for requirements, design, deployment and implementation.
This degree of completeness in the coverage of the development process has not been
achieved so far.

We further systematically identify meaningful connections given by the abstract syn-
tax of the UML specification or which can be gleaned from its semantic description. The
separation between the meaning of the individual diagrams and their relation allows our
approach to be adopted by different methodologies, for instance an object-oriented ap-
proach or a component-based one.

2 Methodology

Our overall aim is to provide qualified formal methods for dependable software design
for critical systems, especially embedded, reactive systems based on UML. We illustrate

Towards an Institutional Framework for Heterogeneous Formal Development in UML 217

this aim by first giving a case study in UML and then discussing desirable checks for
consistency between the various artefacts. We then explain how languages and UML
diagram types involved in a software design can be viewed as types, instances, and
properties, either on the modelling level or on the implementation level. Finally, we
address the topic of semantic variation points.

2.1 ATM Case Study

In order to illustrate our heterogeneous semantics and method, we present as a running
example the design of a traditional automatic teller machine (ATM) connected to a
bank. For simplicity, we only describe the handling of entering a card and a PIN with
the ATM. After entering the card, one has three trials for entering the correct PIN (which
is checked by the bank). After three unsuccessful trials the card is kept.

Requirements. Figure 1(a) shows a possible interaction between an atm and a bank,
which consists out of four messages: the atm requests the bank to verify if a card and
PIN number combination is valid, in the first case the bank requests to reenter the PIN,
in the second case the verification is successful.

The composite structure of the ATM-bank system is specified in the component dia-
gram in Fig. 1(b). In order to communicate with a bank component, the atm component
has a behaviour port called bankCom and the bank component has a behaviour port
atmCom. Furthermore, atm has a port userCom to a user. Figure 1(c) provides structural
information in the form of the interfaces specifying what is provided at the userCom
port of the atm instance (UserIn) and what is required (UserOut). An interface is a set
of operations that other model elements have to implement. In our case, the interface is
described in a class diagram. Here, the operation keepCard is enriched with the OCL
constraint trialsNum >= 3, which refines its semantics: keepCard can only be invoked if
the OCL constraints hold.

The communication protocol required between the atm’s port bankCom and the
bank’s port atmCom is captured with a protocol state machine, see Fig. 1(d): After a
verify message from atm, either verified or reenterPIN can be sent as a reply from bank;
atm can request a card to be rendered invalid whenever it has not just asked to verify a
card and a PIN.

Design. The dynamic behaviour of the atm component is specified by the state machine
shown in Fig. 1(e). The machine consists of five states including Idle, CardEntered, etc.
Beginning in the initial Idle state, the user can trigger a state change by entering the
card, where we indicate that the event card has to occur at port userCom. This has the
effect that the parameter c from the card event (declared for operation card in Fig. 1(c)) is
assigned to the cardId in the atm component. Entering a PIN triggers another transition to
PINEntered. Then the ATM requests verification from the bank using its bankCom port.
The transition to Verifying uses a completion event: No explicit trigger is declared and
the machine autonomously creates such an event whenever a state is completed, i.e., all
internal activities of the state are finished (in our example there are no such activities).
In case the interaction with the bank results in reenterPIN, and the guard trialsNum < 3
is true, the user can again enter a PIN. If, on the other hand, trialsNum >= 3, the user

218 A. Knapp, T. Mossakowski, and M. Roggenbach

ATM2Bank Scenario

verify(17, 4711)

reenterPIN()

verify(17, 4242)

verified()

sd

bank : Bankatm : ATM

(a) Interaction

«component» «component»atmCom

bankCom

userCom

Systemcmp

bank : Bankatm : ATM

(b) Composite structure

{ { OCL } trialsNum >= 3 }
«precondition»

card(in c : Integer)

«interface»
UserOut

PIN(in p : Integer)

«interface»
UserIn

keepCard()
ejectCard()

(c) Interfaces

markInvalid /

ATM2Bank { protocol }stm

VerifyingIdle

reenterPIN /

verified /

verify /

(d) Protocol state machine

userCom.card(c) /

cardId = c

[trialsNum >= 3] /

userCom.keepCard();
bankCom.markInvalid(cardId);
trialsNum = 0

bankCom.reenterPIN /

/ bankCom.verify(cardId, pin)

bankCom.verified /

/ userCom.ejectCard(); trialsNum = 0

pin = p

userCom.PIN(p) /

[trialsNum < 3] /
trialsNum++

Idle PINEntered

Verifying

Verified

CardEntered

ATM Behaviourstm

(e) State machine

Fig. 1. ATM example

is informed that the card is kept by userCom.keepCard(), and the bank is informed to
render the card invalid by bankCom.markInvalid(cardId).

Deployment. Although the UML allows to specify which component instances should
run on which computational resources and which physical connectors transport their
communication, we currently restrict ourselves to specifying which component and
connector instances have to be present at system start. This initial configuration is de-
scribed in a composite structure diagram, see Fig. 1(b) now interpreted at the com-
ponent instance level. In particular, instances of the behaviour specifications for the
components have to be deployed accordingly. The starting configuration could change

Towards an Institutional Framework for Heterogeneous Formal Development in UML 219

over time by changing the wiring of the connectors to ports as well as creating or delet-
ing component instances.

Code. The state machine shown in Fig. 1(e) can be implemented in the programming
language C, enriched with pre-/post-conditions written in the ANSI/ISO C Specification
Language (ACSL). The code example below shows how the event card is encoded as a
C function, where the ACSL annotations ensure that the system is in some defined state
and that the number of trials to re-enter the PIN is smaller than three.

typedef enum states {

EMPTY = 0, IDLE = 1, CARDENTERED = 2,

PINENTERED = 3, VERIFYING = 4, PINVERIFIED = 5

} states_t;

int cardId = 0; int pin = 0; int trialsNum = 0;

states_t state = EMPTY;

/*@
requires state != EMPTY; requires trialsNum <= 3;
ensures state != EMPTY; ensures trialsNum <= 3;
@*/
void card(int c) {

switch (state) {

case IDLE:

cardId = c;

state = CARDENTERED;

break;

default:

}

}

2.2 Consistency and Satisfaction

A typical software devolopment for a critical system will cover requirements, design,
deployment, and code using several sub-languages and diagram types summarised in
Fig. 2 and classified towards a software design process. In fact, class and component
diagrams also will be used for expressing requirement, as already illustrated by our
small case study.

Interactions Protocol State
Machines

Object Constraint
Language (OCL) Requirements

Class Diagram Component Diagram State Machines Design

Object Diagram
Composite Structure

Diagram
State Machine

Instances
Deployment

ACSL C Implementation

Fig. 2. Methodological use of languages and diagrams considered

220 A. Knapp, T. Mossakowski, and M. Roggenbach

It is desirable to detect inconsistencies at an early stage of the development in order
to ease corrections and avoid costly re-engineering at a late stage (e.g. during the im-
plementation phase). While there are some tools providing static inconsistency checks
based on UML’s meta-model, only few works consider dynamic checks, and generally
only for specific UML diagram types, e.g. [25].

The analysis of UML models can proceed either horizontally within the require-
ments or within the design level checking for consistency within the level, or vertically
checking for satisfaction between these two levels, see Fig. 4. A typical horizontal con-
sistency check on the requirements level would ask if the sequential composition of
actions in an interaction diagram is justified by an accompanying OCL specification. A
typical vertical satisfaction check between the requirements and the design level would
ask if the behaviour prescribed in an interaction diagram is realisable by several state
machine (instance)s cooperating according to a composite structure diagram. The no-
tion of a state machine instance will be explained in the next section. Code generation
transforms a UML logical design to code templates with semantic annotations in the
form of pre-/post-conditions and invariants. If the templates are completed satisfying
the semantic annotations, it is guaranteed that the resulting code is a correct model of
the logical design and therefore, by the vertical checks, also for the requirements.

Concerning Fig. 1, there are the following (succeeding) consistency and satisfiability
checks: speaking horizontally, the interaction in Fig. 1(a) can be realised by the protocol
state machine in Fig. 1(d), which in turn (vertically) refines to the behavioural state
machine in Fig. 1(e), which in turn (vertically) refines to the C code shown at the end
of Section 2.1.

A simple example for a failing horizontal check among several requirements is the
interaction in Fig. 3, which cannot be realised by the protocol state machine in Fig. 1(d).

ATM2Bank Scenario 2

verify(17, 4711)

verified()

verify(17, 4242)

reenterPIN()

sd

bank : Bankatm : ATM

Fig. 3. Interaction that cannot be realised by the protocol state machine in Fig. 1(d)

2.3 Levels and Views

The languages and UML diagram types that we consider are restructured into different
levels and views (according to the role they play in respective the languages) in Fig. 4.
On the modelling level we use parts of the UML and the Object Constraint Language
(OCL). On the implementation level we currently employ the programming language C
and ACSL. It is left for future work to also include a proper object-oriented language
such as Java together with some specification formalism.

Towards an Institutional Framework for Heterogeneous Formal Development in UML 221

In the types view of the modelling level we look at class diagrams for modelling data;
component diagrams for modelling components; and state machines for specifying dy-
namic behaviour. These diagrams can be instantiated in the instance view using com-
posite structure diagrams for showing component configurations; and object diagrams
for showing concrete data. Although they are not present in UML, we also have added
state machine instances (in a dashed box). Constraints on the models can be specified
in the properties view using interactions, i.e., sequence diagrams or communication di-
agrams, for prescribing message exchanges between components and objects; protocol
state machines for specifying port behaviour; and the OCL for detailing the behaviour
of components and objects in terms of invariants and method pre-/post-conditions.

Interactions

Protocol State
Machines

Object Constraint
Language (OCL)

State Machines

Component Diagram

Class Diagram

State Machine
Instances

Composite Structure
Diagram

Object Diagram

Modelling in UML

ACSL C
Implementation

Properties Types Instances

Fig. 4. Languages and diagrams considered

2.4 Semantic Variation Points

The UML specification uses the notion of “semantic variation point” whenever she does
not want to fix or enforce a particular meaning for a construct, but sees room for vari-
able but valid interpretations useful in different contexts. Examples of such semantic
variation points include the behaviour of an operation invocation when a pre-condition
is not satisfied; the compatibility of connectable elements, like components; the for-
warding of requests at a port with several outgoing connectors; the ordering of events
in event pools; the time intervals between event occurrence, event dispatching, and con-
sumption; or the reception of an event in an unexpected situation for a protocol state
machine. Different domains or implementation technologies will require different res-
olutions, like whether message overtaking is possible in a middle-ware. Additionally,
some resolutions may enable particular validation or verification techniques, e.g., when
using multi-sets or bounded queues for event pools.

However, the specification does not show clear-cut means to resolve these variation
points: Not surprisingly, no parameterised semantics is explained where the resolu-
tion of a semantic variation point would simply amount to setting a particular value —
which, in fact, would be quite hard more often than not. More embarrassingly, also no
dedicated syntactic means are provided for at least specifying that a particular meaning
is intended by the use of a feature subject to semantic variation. For the syntactical side,
the most common, though rather ad hoc, resort is to employ stereotypes to express that,

222 A. Knapp, T. Mossakowski, and M. Roggenbach

say, the event pool for a state machine is to be realised as a queue, or that the violation
of an operation’s precondition will result in an error. For the semantical issues, the use
of a comprehensive system model approach would require to corral all possible inter-
pretations of a semantic variation point into a single common ground using, e.g., loose
specifications.

By contrast, heterogeneous institutional semantics offer the additional possibility
to provide particular stand-alone semantics for different resolutions of semantic vari-
ation points. The mutual effects of combining different resolutions can be identified
and consistent resolutions can be plugged together. Also, different choices for semantic
variation points can be related via abstraction maps. For example, it is easy to design
an institution comorphism that abstracts the labelled transition system semantics of
state machines to a trace semantics. Depending on the choice of abstraction map, the
institution-independent notion of refinement [30,8] then will lead to refinement up to
trace equivalence of refinement up to bisimilarity.

3 UML as a Basis for Heterogeneous Formal Methods,
Using Institutions

In this section, we will provide some semantic foundations for model based specifi-
cation and design using a heterogeneous framework based on Goguen’s and Burstall’s
theory of institutions [14]. We handle the complexity of giving a coherent semantics
to UML by sketching several institutions formalising different diagrams of UML, and
several institution translations (formalised as so-called institution morphisms and co-
morphisms) describing their interaction and information flow. The central advantage
of this approach over previous approaches to formal semantics for UML (e.g. [25])
is that each UML diagram type can stay “as-is”, without the need of a coding using
graph grammars (as in [12]) or some logic (as in [25]). This also keeps full flexibility in
the choice of both the development method and the verification mechanisms. The for-
malisation of UML diagrams as institutions has the additional benefit that a notion of
refinement comes for free, see [30,8]. The exact nature of the thus obtained refinement
relation depends on the semantic choices that have been made.

This systematic coverage in a single semantic based meta-formalism is unique. We
discuss semantic links in the form of institution (co-)morphisms, that, on the one hand,
provide the basis for correct model transformations and validations, and on the other
hand give rise to an integrated semantic view (via the so-called Grothendieck institution
[9,26]) on the identified UML subset as well as the target implementation languages.
Institution theory provides an adequate abstraction level for such a semantic integration.
The framework is flexible enough to support various development paradigms as well as
different resolutions of UML’s semantic variation points. This is the crucial advantage
of the proposed approach to the semantics of UML, compared to existing approaches
in the literature which map UML to a specific global semantic domain in a fixed way.

3.1 Institutions and Their (Co)Morphisms

Institutions [14] are an abstract formalisation of the notion of logical system. Informally,
institutions provide four different logical notions: signatures, sentences, models and

Towards an Institutional Framework for Heterogeneous Formal Development in UML 223

satisfaction. Signatures provide the vocabulary that may appear in sentences and that is
interpreted in models. The satisfaction relation determines whether a given sentence is
satisfied in a given model. The exact nature of signatures, sentences and models is left
unspecified, which leads to a great flexibility. This is crucial for the possibility to model
UML diagrams types (which do not at first sight look like logics) as institutions.

An important feature of institutions is the presence of signature morphisms, which
can be seen as mappings between signatures. Sentences can be translated along sig-
nature morphisms, and models reduced against signature morphisms. The satisfaction
condition states that satisfaction is invariant under change of notation and enlargement
of context (along a signature morphism). For details, we refer to [14,33].

It is possible to define standard logical notions like logical consequence, logical the-
ory, satisfiabilty etc. as well as languages for structured specification and refinement in
an institution-independent way [33].

For relating institutions in a semantics preserving way, we consider institution mor-
phisms [14]. Given institutions I and J, an institution morphism consists of (i) a mapping
from I-signatures to J-signatures (also for signature morphisms); (ii) a mapping from
J-sentences to I-sentences; and (iii) a mapping from I-models to J-models. Again, there
is a satisfaction condition governing these mappings. Dually, we consider institution
comorphisms [15]. They are like institution morphisms, except that the direction of
sentence and model translations are reversed.

The methodological need for these two kinds of mappings between institutions will
be explained in Sect. 3.4 below. Both morphisms and comorphisms also come in a
“semi” variant (i.e. semi-morphisms and semi-comorphisms) [15]. These omit both the
sentence translation and the satisfaction condition. Semi-(co-)morphisms can provide
a model-theoretic link between institutions that are too different to permit a sentence
translation, e.g. OCL and state machines.

3.2 Heterogeneous Formal Semantics of Languages and Diagrams

Carrying out our program of institutionalising UML is ongoing work. In this position
paper, we review this work and sketch how it can be extended to all diagrams in Fig. 2.

Building on existing UML semantics, see [25] for an overview, we want to turn
UML’s sub-languages and diagram types into separate institutions2. For substantial
fragments of several UML diagram types, we have already provided a formalisation
as institutions:

Class diagrams In [7], we have sketched an institution for class diagrams, which has
been detailed in [19]. It includes a construction for stereotypes.

Component diagrams form an institution similar to that for class diagrams. The main
difference are the connector and port types, which however are quite similar to
associations.

Object diagrams are essentially reifications of models of class diagrams.
Composite structure diagrams are similar to object diagrams. The main difference

are the connectors, which however are quite similar to the links of object diagrams.

2 Alternative or complementing approaches like statecharts instead of UML state machines or
SysML/MARTE components could be added to this family of institutions.

224 A. Knapp, T. Mossakowski, and M. Roggenbach

Interactions In [7], we have sketched an institution for interactions, as well as their
interconnection (also with class diagrams) via institution comorphisms.

OCL In [7], we have sketched institutions for OCL. In [6], the OCL semantics is pre-
sented in more detail. An institution based on this is in preparation.

State machines In [23], we have provided in full detail institutions for UML state ma-
chines and protocol state machines (so far only for non-hierarchical states, a gener-
alization to hierarchical states is in preparation). Both institutions are very similar;
only their sentences differ in that UML protocol state machines have a post condi-
tion instead of an action. Post conditions can also speak about messages being sent
(using OCL).

Formalising both C and ACSL as institutions is future work.

3.3 Institutional Interaction of Heterogeneous UML Diagrams

We now will discuss how different diagram types can be linked using the institutional
approach. A characteristic example is the interplay between class diagrams, component
diagrams and state machines. Here, an environment institution [23] provides the inter-
face necessary to define state machines. Signatures in this environment institution fix
the conditions which can be used in guards of transitions, the actions for the effects of
transitions, and also the messages that can be sent from a state machine. The source
of this information are the class and component diagrams: The conditions and actions
involve the properties available in the classes or components, the messages are derived
from the available signals and operations. The sentences of this environment institu-
tion form a simple dynamic logic (inspired by OCL). This logic can express that if a
guard holds as pre-condition when executing an action, then a certain set of messages
has been sent out and another guard holds as post-condition. In particular, this environ-
ment institution forms the interface to the outside; different institutions for classes and
components can be linked to it via (co-)morphisms.

A family of institutions for state machines (and similarly for protocol state machines)
is then parameterized over such environment institutions. Using a product construction
on the state machine institution, communicating state machines, with their linkage de-
scribed in a composite structure, can be captured. The essential idea behind the product
construction is to control the flow of messages in such a way that each message is sent
to the correct event pool.

Example 1. Consider the composite structure diagram in Fig. 1(b), showing instances
atm and bank of the ATM and Bank components, respectively, that are connected through
their bankCom and atmCom ports. In execution, atm and bank will exchange messages,
as prescribed by their state machines, and this exchange is reflected by the product
which internalises those events that are part of the common signature. On the other
hand, messages to the outside, i.e., through the userCom port are still visible.

3.4 Transformations Among UML institutions

Figure 5 gives an overview of the transformations to be developed between the modeling
languages, diagram types, and additional languages. We claim that the transformations

Towards an Institutional Framework for Heterogeneous Formal Development in UML 225

in this Figure can be formalised as institution morphisms and comorphisms. An institu-
tion morphism (represented by a solid line in the figure) roughly corresponds to a pro-
jection from a “richer” to a “poorer” logic, expressing that the “richer” logic has some
more features, which are forgotten by the morphism. The main purpose of the institution
morphisms is the ability to express, e.g., that an interaction diagram and a state machine
are compatible because they are expressed over the same class diagram. Institution mor-
phisms thus enable the formalisation of heterogeneous UML specifications as structured
specifications over the Grothendieck institution, a flattening of the diagram of institu-
tions and morphisms [9]. Practically, these structured Grothendieck specifications can
be formulated in the distributed ontology, modeling and specification language (DOL),
which currently is being standardized in the OMG (see ontoiop.org and [28]).

Interactions

Protocol State
Machines

Object Constraint
Language (OCL)

State Machines

Component Diagram

Class Diagram

State Machine
Instances

Composite Structure
Diagram

Object Diagram

ACSL C

Properties Types Instances

OCL+Int

Automata, LTL SMT

Fig. 5. Institution morphisms (dashed arrows) and institution co-morphisms (solid arrows) be-
tween the languages and diagrams

By contrast, institution comorphisms (represented by dashed lines in Fig. 5) are often
more complex. Roughly, a comorphism corresponds to an encoding of one logic into
another one. The purpose of institution comorphisms is threefold: (1) to provide a means
for expressing the dynamic checks (see below) in the institutional framework, (2) to
obtain tool support for the various UML diagrams by using comorphisms into tool-
supported institutions, and (3) to transform UML diagrams into ACSL specifications
and C programs.

Dynamic checks and tool support involve additional institutions (also depicted in
Fig. 5, but not formalised in detail here) for certain automata, like those used in the
model checker SPIN, and satisfiability modulo theories (SMT) provers, as well as linear
temporal logic. The modeling language institutions can be embedded into these, paving
the way for tool and prover support.

3.5 Consistency and Satisfaction, Revisited

The horizontal dimension of the relationship between the different models has to en-
sure consistency of the models, i.e., that the models fit together and describe a coherent

ontoiop.org

226 A. Knapp, T. Mossakowski, and M. Roggenbach

system. The same has to be checked on the implementation level for the consistency be-
tween the C program and the ACSL specification; however, here we can reuse existing
theory and tools.

There are different kinds of consistency checks on the modelling level: Static checks
ensuring type consistency and type correctness between types and instances. Dynamic
checks include the properties and one or several cooperating instances or types. Most of
the dynamic checks are theoretically undecidable, thus fully automatic tools will not be
able to answer all instances. However, in many cases, useful automatic approximations
are possible, while in other cases, manual effort may be involved.

Interactions

Protocol State
Machines

Object Constraint
Language (OCL)

State Machines

Component Diagram

Class Diagram

State Machine
Instances

Composite Structure
Diagram

Object Diagram

Modelling in UML

ACSL C
Implementation

Properties Types Instances

FRA-

MAC

Fig. 6. Consistency relations (double-headed arrows) on the modelling and the implementation
level; the bold arrows represent the model transformations

Figure 6 gives an overview of useful relations between different kinds of diagrams,
along which consistency checks are possible. Here, we list only a few of these. Some
useful static checks are:
S1. Does an OCL specification or a composite structure diagram only use the methods

of a class diagram?
S2. Does a state machine or an interaction comply with the interfaces referred to in a

composite structure diagram?
S3. Does an instance diagram (an object or a composite structure diagram) comply to

its corresponding type diagram (a class or a component diagram)?
S4. Do the objects used in an interaction diagram form an object diagram complying

to a class diagram?
Here are some useful dynamic checks:

D1. Does an object or composite structure diagram satisfy an OCL invariant? Here
we use institution semi-comorphisms from the OCL institution to the object and
composite structure diagram institution that turn a model of the object or composite
structure diagram into a model of the OCL invariant.

D2. Does a state machine satisfy an OCL invariant or an OCL pre-/post-condition?
Here we use a semi-comorphism from the OCL institution to the state machines
institution that takes the runs of the state machine and selects those states and tran-
sitions that are relevant for the invariant or the method with pre-/post-conditions.

Towards an Institutional Framework for Heterogeneous Formal Development in UML 227

However, the UML does not specify the time point when the OCL post-condition
should be evaluated; one possibility is to choose the finishing of the fired transition.

D3. Do the protocol state machines at the ends of a connector of a composite structure
diagram fit together? Here we use a comorphism from the protocol state machine
institution into a temporal logic institution [13], where we can form the product
of the protocol state machines along the connector. However, the precise nature of
compatibility may be seen as a “semantic variation point”. An important question
is the absence of deadlocks and buffer overruns.

D4. Is the sequential composition of methods in an interaction diagram justified by the
state machines and/or the OCL specification? For the relation to an OCL spec-
ification we use a co-span of institution comorphisms between the interactions
institution and the OCL institution [7]. At least two links are possible: In a strict
interpretation, for each pair of successive methods in the interaction there must be
a state meeting the post-condition of the first method and the pre-condition of the
second method. In a more loose interpretation, a sequence of additional method
calls, not prescribed but also not excluded by the interaction, must be possible to
reach the pre-condition of the second method from the post-condition of the first
method. For also considering state machines, the co-span approach is extended by
also involving the state machines institution.

D5. Does an interaction comply with the protocol state machines? Here we proceed
similarly to the case where an interaction is checked against a state machine and
an OCL specification using a comorphism turning the protocol state machine into
an OCL specification.

D6. Does a state machine refine the protocol state machines in a component diagram?
This is expressible as a heterogeneous refinement from the protocol state machines
to the state machine using a semi-comorphism which keeps signatures and mod-
els as they are (protocol state machines and state machines only differ in their
sentences).

Example 2. Though our running example of an ATM machine is quite simple, it is rich
enough to illustrate some dynamic checks. The interface UserIn in Fig. 1(c) requires
the operation keepCard only to be invoked when the precondition trialsNum >= 3 holds.
This property holds for the state machine in Fig. 1(e) thanks to the guard trialsNum < 3
– an illustration of check D1. This property trivially holds for the interaction shown in
Figure 1(a) as keepCard is not invoked – an illustration of check D3.

4 Tools

The Heterogeneous Tool Set (Hets) [27,29] provides analysis and proof support for
multi-logic specifications. The central idea of Hets is to provide a general framework
for formal methods integration and proof management that is equipped with a strong
semantic (institution-based) backbone. One can think of Hets acting like a mother-
board where different expansion cards can be plugged in, the expansion cards here
being individual institutions (with their analysis and proof tools) as well as institution
(co)morphisms. The Hets motherboard already has plugged in a number of expansion
cards (e.g., SAT solvers, automated and interactive theorem provers, model finders,

228 A. Knapp, T. Mossakowski, and M. Roggenbach

model checkers, and more). Hence, a variety of tools is available, without the need to
hard-wire each tool to the logic at hand. Via suitable translations, new formalisms can
be connected to existing tools.

We have just started to integrate first institutions for UML, such as class diagrams,
into Hets. In order to obtain proof support for the methodology presented in this pa-
per, beyond the individual institutions, also the morphisms and comorphisms need to
be implemented in Hets. Moreover, we plan to connect Hets to the tool HugoRT [21].
HugoRT can, on the one hand, perform certain static checks on UML diagrams. More-
over, it provides transformations of UML diagrams to automata and linear temporal
logic formulas, which can then be fed into model checkers like SPIN in order to check
certain properties. The crucial benefit of our approach is a clear separation of con-
cerns: verification conditions for consistency and satisfaction checks can be formulated
abstractly in terms of the UML institutions and (co)morphisms described above. In a
second step, these checks can then be reformulated in terms of specific logics and tools
that have been connected to Hets.

5 Conclusion

We have outlined an institution-based semantics for the main UML diagrams. More-
over, we have sketched a methodology how consistency among UML diagrams and
with implementation languages can be modeled at the institutional level and supported
with tools.

Much remains to be done to fill in the details. Semantically, the greatest missing bit
is certainly the institutional formalisation of programming languages and their Hoare
logics, like C and ACSL, or Java and JML. Here, we want to follow the ideas sketched
by A. Tarlecki and D. Sannella [33, Ex. 4.1.32, Ex. 10.1.17] for rendering an impera-
tive programming language as an institution. The semantic basis could be a simplified
version of the operational semantics of C. Ellison and G. Rosu [11]. The concepts for
institutionalising a Hoare logic like ACSL on the basis of its specification [1] can be
similar as for OCL. On the tools side, it is future work to make UML institutions, checks
and code generation part of the tool Hets. This will allow also non-experts in institution
theory to apply the suggested framework.

Acknowledgements. The authors would like to thank the reviewers of their valuable
feedback, the editors for their considered handling of this paper, and Erwin R. Cates-
beiana for pointing out the many sources of inconsistency.

References

1. Baudin, P., Cuoq, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language. Report. In: CEA 2012 (2012)

2. Bauer, S.S., Hennicker, R.: Views on Behaviour Protocols and Their Semantic Foundation.
In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 367–382.
Springer, Heidelbrg (2009)

Towards an Institutional Framework for Heterogeneous Formal Development in UML 229

3. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What Is a Multi-modeling Language?
In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 71–87. Springer,
Heidelberg (2009)

4. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Considerations and Rationale for a
UML System Model. In: Lano (ed.) [25], ch. 3, pp. 43–60

5. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Definition of the System Model. In:
Lano (ed.) [25], ch. 4, pp. 61–93

6. Cengarle, M.V., Knapp, A.: OCL 1.4/5 vs. 2.0 Expressions — Formal Semantics and Expres-
siveness. Softw. Syst. Model. 3(1), 9–30 (2004)

7. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach to UML
Semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Mod-
els. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)

8. Codescu, M., Mossakowski, T., Sannella, D., Tarlecki, A.: Specification Refinements:
Calculi, Tools, and Applications (Submitted, 2014)

9. Diaconescu, R.: Grothendieck Institutions. Applied Cat. Struct. 10, 383–402 (2002)
10. Dosch, W., Mascari, G., Wirsing, M.: On the Algebraic Specification of Databases. In: Proc.

8th Int. Conf. Very Large Data Bases (VLDB 1982), pp. 370–385. Morgan Kaufmann (1982)
11. Ellison, C., Rosu, G.: An Executable Formal Semantics of C With Applications. In: Field,

J., Hicks, M. (eds.) Proc. 39th ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages (POPL 2012), pp. 533–544. ACM (2012)

12. Engels, G., Heckel, R., Küster, J.M.: The Consistency Workbench: A Tool for Consistency
Management in UML-Based Development. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML
2003. LNCS, vol. 2863, pp. 356–359. Springer, Heidelberg (2003)

13. Fiadeiro, J.L.: Categories for Software Engineering. Springer (2005)
14. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification and Pro-

gramming. J. ACM 39, 95–146 (1992)
15. Goguen, J.A., Rosu, G.: Institution Morphisms. Formal Asp. Comp. 13, 274–307 (2002)
16. Hennicker, R., Janisch, S., Knapp, A.: On the Observable Behaviour of Composite Compo-

nents. In: Proc. 5th Int. Wsh. Formal Aspects of Component Software (FACS 2008). ENTCS
260, pp. 125–153 (2010)

17. Hutchesson, S.: Chief software architect at AEC. Industrial case study outline (2012)
18. Hutchesson, S.: Chief software architect at AEC. Personal communication (2012)
19. James, P., Knapp, A., Mossakowski, T., Roggenbach, M.: Designing Domain Specific Lan-

guages – A Craftsman’s Approach for the Railway Domain Using CASL. In: Martí-Oliet,
N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 178–194. Springer, Heidelberg
(2013)

20. Knapp, A., et al.: Epk-fix: Methods and tools for engineering electronic product catalogues.
In: Steinmetz, R. (ed.) IDMS 1997. LNCS, vol. 1309, pp. 199–209. Springer, Heidelberg
(1997)

21. Knapp, A., Merz, S., Rauh, C.: Model checking - timed UML state machines and collabora-
tions. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 395–416.
Springer, Heidelberg (2002)

22. Knapp, A., Merz, S., Wirsing, M., Zappe, J.: Specification and Refinement of Mobile Sys-
tems in MTLA and Mobile UML. Theo. Comp. Sci. 351(2), 184–202 (2006)

23. Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An Institution for Simple UML
State Machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS. Springer (to appear,
2015)

24. Knapp, A., Wirsing, M.: A Formal Approach to Object-Oriented Software Engineering.
Theo. Comp. Sci. 285, 519–560 (2002)

25. Lano, K.: UML 2 — Semantics and Applications. Wiley, Chichester (2009)

230 A. Knapp, T. Mossakowski, and M. Roggenbach

26. Mossakowski, T.: Comorphism-Based Grothendieck Logics. In: Diks, K., Rytter, W. (eds.)
MFCS 2002. LNCS, vol. 2420, pp. 593–604. Springer, Heidelberg (2002)

27. Mossakowski, T., Autexier, S., Hutter, D.: Development Graphs — Proof Management for
Structured Specifications. J. Log. Alg. Program. 67(1–2), 114–145 (2006)

28. Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The Distributed Ontology, Modeling
and Specification Language. In: Proc. 7th Int. Wsh. Modular Ontologies (WoMO 2013).
CEUR-WS 1081, CEUR (2013)

29. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, HETS. In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg
(2007)

30. Mossakowski, T., Sannella, D., Tarlecki, A.: A Simple Refinement Language for CASL. In:
Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 162–185.
Springer, Heidelberg (2005)

31. Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004),
Free online version available at http://www.cofi.info

32. Object Management Group. Unified Modeling Language. Standard, OMG (2011)
33. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software

Development. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg
(2012)

34. Wirsing, M., Knapp, A.: View Consistency in Software Development. In: Wirsing, M.,
Knapp, A., Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 341–357. Springer,
Heidelberg (2004)

http://www.cofi.info

Formal Analysis of Leader Election in MANETs

Using Real-Time Maude�

Si Liu1, Peter Csaba Ölveczky2, and José Meseguer1

1 University of Illinois at Urbana-Champaign, USA
2 University of Oslo, Norway

Abstract. The modeling and analysis of mobile ad hoc networks
(MANETs) pose non-trivial challenges to formal methods. Time, geome-
try, communication delays and failures, mobility, and uni- and bidirection-
ality can interact in unforeseen ways that are hard tomodel and analyze by
automatic formal methods. In this work we use rewriting logic and Real-
Time Maude to address this challenge. We propose a composable formal
framework for MANET protocols and their mobility models that can take
into account such complex interactions.We illustrate our framework by an-
alyzing awell-studied leader election protocol forMANETs in the presence
of both mobility and uni- and bidirectional links.

1 Introduction

The human factor is everything, particularly in scientific research. Thanks to
the friendship, the creativity, the intellectual generosity, and the inspiration of
Martin Wirsing and his pioneering work (with Kosiuczenko) on timed rewriting
logic [20,11], two of us (Ölveczky and Meseguer) started working together on
a line of research that has kept us busy for almost twenty years and is at the
core of the present work. In 1995 Ölveczky visited Martin at LMU and was fired
up by Martin’s new ideas on formally modeling real-time systems with rewrite
rules. By various circumstances he made his way to Menlo Park, fell in love
with the place, and was allowed to work for his Bergen Ph.D. under Meseguer
at SRI. At the time it was not clear how timed rewriting logic and standard
rewriting logic, though by design very close to each other, were precisely related.
This was clarified in [21] and in Ölveczky’s dissertation [19], which proposed
the alternative model of real-time rewrite theories as a special class of ordinary
rewrite theories to specify real-time and hybrid systems. The associated Real-
Time Maude tool [18] also started in [19], and has since then been applied to a
wide range of real-time systems (see [17] for an overview).

It therefore seems fitting to honor Martin Wirsing on this festive occasion
with a work in an area that he initiated and to which he has continued mak-
ing important contributions up to this date. One of the key strengths of the

� Partially supported by NSF Grant CNS 13-19109 and AFOSR Grant FA8750-11-2-
0084.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 231–252, 2015.
c© Springer International Publishing Switzerland 2015

232 S. Liu, P.C. Ölveczky, and J. Meseguer

rewriting logic approach to the modeling and formal analysis of real-time sys-
tems is the flexibility and naturalness with which it can specify and analyze
many distributed object-based real-time systems whose discrete states may have
unbounded data structures and are therefore beyond the pale of timed automata
models [2]. Furthermore, this is accomplished without losing completeness of the
analysis and useful decidability properties [22].

The present work illustrates the use of the expressive power of real-time
rewrite theories to model not only time and distributed objects, but also geome-
try, mobility, and wireless communication, which are needed for wireless applica-
tions such as wireless sensor networks and mobile ad hoc networks (MANETs).
Real-Time Maude was first used on sensor network protocols in [24], and for
MANETs in the work started in [13] and continued here. The work in [13], which
is further developed in this paper, provides a general framework for modeling
and analyzing MANETs in which a protocol can be seamlessly composed with
various mobility models by exploiting the class inheritance features of Real-Time
Maude in the style of [23]. In particular, our framework allows us to formally
model different kinds of MANET protocols, and then formally analyze them
together with reasonably precise models of both

– any of several commonly used models for node mobility, and
– spatially bounded wireless communication, which takes into account both

link directionality (uni- or bidirectional) and the interplay between commu-
nication delay and mobility.

Simulation tools typically represent node locations explicitly and analyze MA-
NETs using common node mobility models [25,6], whereas formal approaches to
MANETs usually abstract from node locations and consider arbitrary topology
changes (if any), as explained in Section 7. Our framework allows us to see Real-
Time Maude as both a simulation tool and a formal analysis tool for MANETs.

In [13] we showed the power and flexibility of our framework by analyzing the
Ad hoc On-Demand Distance Vector (AODV) routing protocol under various
mobility models. In this paper we apply our framework on the well known leader
election (LE) protocol for MANETS by Vasudevan, Kurose, and Towsley [32].
Modeling and analyzing the LE protocol pose a number of challenges not en-
countered in the analysis of AODV, including:

– LE assumes that the underlying framework detects new and lost links that
appear/disappear due to nodes moving into, or out of, the transmission
ranges of other nodes; however, no neighborhood discovery process is given.

– LE features both one-hop and multi-hop communication; however, LE does
not present any transport protocol, but just assumes that the underlying
communication framework provides certain guarantees, such as “a message
must eventually be received if the receiver is connected to the sender forever.”

LE is defined and verified only for bidirectional links [31], but its developers
conjecture that LE also works correctly in the presence of unidirectional links.

Apart from providing a formal model of LE, our novel contributions in the
LE case study include:

Formal Analysis of Leader Election in MANETs 233

– Defining fairly abstract executable models of both multi-hop communication
and of neighbor discovery in MANETs.

– Defining LE also for unidirectional links.
– Model checking LE in a number of different settings, including with unidi-

rectional links, without finding flaws significant in LE, thereby strengthening
the confidence that LE also works correctly with unidirectional links.

This paper is organized as follows: Section 2 gives a background to Real-Time
Maude. Section 3 recapitulates our framework for modeling MANETs in Real-
Time Maude. Section 4 gives an overview of the LE protocol. Section 5 presents
our Real-Time Maude model of LE, and Section 6 describes its formal analysis.
Finally, Section 7 discusses related work and gives some concluding remarks.

2 Real-Time Maude

Real-Time Maude [18] extends Maude [5] to support the formal specification and
analysis of real-time systems. The specification formalism emphasizes ease and
generality of specification, and is particularly suitable for modeling distributed
real-time systems in an object-oriented style. Real-Time Maude specifications are
executable, and the tool provides a variety of formal analysis methods, including
simulation, reachability analysis, and LTL and timed CTL model checking.

Specification. A Real-Time Maude module specifies a real-time rewrite the-
ory [18] (Σ,E ∪A, IR,TR), where:

– Σ is an algebraic signature; that is, declarations of sorts, subsorts, and func-
tion symbols, including a data type for time, which can be discrete or dense.

– (Σ,E ∪A) is a membership equational logic theory [3], with E a set of (pos-
sibly conditional) equations, and A a set of equational axioms such as asso-
ciativity, commutativity, and identity. (Σ,E∪A) specifies the system’s state
space as an algebraic data type.

– IR is a set of labeled conditional rewrite rules specifying the system’s local
transitions, each of which has the form1 [l] : t −→ t′ if

∧m
j=1 cond j , where

each cond j is either an equality uj = vj (uj and vj have the same normal
form) or a rewrite tj −→ t′j (tj rewrites to t′j in zero or more steps), and l is
a label. Such a rule specifies an instantaneous transition from an instance of
t to the corresponding instance of t′, provided the condition holds.

– TR is a set of tick rules l : {t} −→ {t′} in time τ if cond that advance
time in the entire state t by τ time units.

We briefly summarize the syntax of Real-Time Maude and refer to [5] for more
details. Operators are declared op f : s1 . . . sn -> s, and can have user-definable
syntax, with underbars ‘_’ marking the argument positions. Some operators can
have equational attributes, such as assoc, comm, and id, stating, respectively,

1 An equational condition ui = vi can also be a matching equation, written ui:= vi,
which instantiates the variables in ui to the values that make ui = vi hold, if any.

234 S. Liu, P.C. Ölveczky, and J. Meseguer

that the operator is associative and commutative and has a certain identity ele-
ment, so that rewriting is performed modulo the declared axioms. Equations and
rewrite rules are introduced with, respectively, keywords eq, or ceq for condi-
tional equations, and rl and crl. The mathematical variables in such statements
are declared with the keywords var and vars. An equation f(t1, . . . , tn) = t with
the owise (for “otherwise”) attribute can be applied to a term f(. . .) only if no
other equation with left-hand side f(u1, . . . , un) can be applied.

A class declaration class C | att1 : s1, . . . , attn : sn declares a class C
with attributes att1 to attn of sorts s1 to sn. An object of class C in a given
state is represented as a term <O : C | att1 : val1, ..., attn : valn > of sort Object,
where O, of sort Oid, is the object’s identifier, and where val1 to valn are the
current values of the attributes att1 to attn. A message is a term of sort Msg.

The state of an object-oriented specification is a term of sort Configuration,
and is a multiset of objects and messages. Multiset union is denoted by an
associative and commutative juxtaposition operator, so that rewriting is multiset
rewriting. For example, the rewrite rule

rl [l] : m(O,w)

< O : C | a1 : x, a2 : O’, a3 : z, a4 : y >

=>

< O : C | a1 : x + w, a2 : O’, a3 : z, a4 : y >

dly(m’(O’,x), y) .

defines a family of transitions in which a message m, with parameters O and w,
is read and consumed by an object O of class C, the attribute a1 of object O is
changed to x + w, and a new message m’(O’,x) is generated; this message has a
message delay y, and will become the “ripe” message m’(O’,x) in y time units.
Attributes whose values do not change and do not affect the next state of other
attributes or messages, such as a3, need not be mentioned in a rule. Attributes
that are unchanged, such as a2, can be omitted from right-hand sides of rules.

A subclass inherits all the attributes and rules of its superclasses.

Formal Analysis. Real-Time Maude’s timed rewrite command simulates one of
the many possible system behaviors from the initial state by rewriting the initial
state up to a certain duration. The timed search command uses a breadth-first
strategy to search for states matching a search pattern that are reachable from
the initial state t within a certain time interval.

Real-Time Maude’s linear temporal logic model checker analyzes whether each
behavior satisfies a temporal logic formula. State propositions are operators of
sort Prop, and their semantics is defined by equations of the form

ceq statePattern |= prop = b if cond

for b a term of sort Bool, which defines prop to hold in all states t where t
|= prop evaluates to true. A temporal logic formula is constructed by state
propositions and temporal logic operators such as True, False, ~ (negation),
/\, \/, -> (implication), [] (“always”), <> (“eventually”), and U (“until”). Real-
Time Maude provides both unbounded and time-bounded LTL model checking.

Formal Analysis of Leader Election in MANETs 235

If the reachable state space is finite, the unbounded model checking command
(mc t |=u formula .) checks whether the temporal logic formula formula
holds in all behaviors starting from the initial state t. If the reachable state
space is infinite, the time-bounded model checking command

(mc t |=t formula in time <= timeLimit .)

in which each behavior is only analyzed up to time timeLimit , can be used to
ensure termination of the analysis.

3 Modeling MANETs in Real-Time Maude

Analyzing MANET protocols under reasonably realistic conditions is challeng-
ing. Models of node movement are needed, and must be combined with wire-
less communication, where typically only nodes within a certain distance of the
sender receive a message with sufficient signal strength. Since both the sender
and a potential receiver may move during the “messaging delay,” the potential
receiver could move into, or out of, the transmission range of the sender during
the messaging delay.

Combining node mobility with reasonably precise models of wireless commu-
nication is therefore nontrivial and is currently barely addressed by formal meth-
ods. In [13] we propose a framework for specifying and analyzing MANET proto-
cols under different mobility models in Real-Time Maude by: (i) formally speci-
fying several popular mobility models ; (ii) studying the different constituents of
wireless “messaging delay”; (iii) defining a model of wireless communication in
the presence of node movement; and (iv) explaining how our model of mobility
and communication is easily composable with a Real-Time Maude specification
of a MANET protocol. This section briefly recapitulates our framework.

Mobility Models. A number of different entity mobility patterns, where a
node’s movement is independent of the movements of the other nodes, have
been proposed to model node mobility in realistic scenarios. The following main
entity mobility models [4] are illustrated in Fig. 1:

– Random Walk: The node moves in “rounds” of fixed durations. At the be-
ginning of each round, the new speed and the new direction of a node are
randomly chosen, and the node moves accordingly.

– Random Waypoint: In each round, the node first pauses for some time, and
then randomly chooses a new destination and a new speed, and travels to
that destination at the chosen speed.

– Random Direction: The node chooses a random direction and speed, and
travels until it reaches the boundary of the area. The node then pauses for
some time, before randomly selecting a new direction and speed, and so on.

236 S. Liu, P.C. Ölveczky, and J. Meseguer

Fig. 1.Motion paths of a mobile node in three mobility models, where a bullet • depicts
a pause in the movement

Communication Delay. The per-hop communication delay can be seen as
consisting of three parts [30]. The sending delay is the time from the moment a
sender wants to send a message until the moment it is sent. This includes the
time that the sender needs to buffer the message in its radio output buffer, the
media access delay waiting for a clear channel to transmit, and the time needed
to transmit the message. The radio propagation delay is the time it takes for a
message to travel through the air from sender to receiver. The receiving delay
denotes the time spent on the receiver side to pass the received message from
device to application. Since the transmission range in MANETs usually ranges
from 10 to 100 meters, while the radio propagation speed is approximately 3×108
meters per second, we abstract from the radio propagation delay.

Formal Model of Mobility and Wireless Communication. We summa-
rize the Real-Time Maude model of mobility and wireless communication first
presented in [13] and improved in our current work (see [15] for more details).

Mobility Models. We assume that nodes move in a two-dimensional square with
length areaSize. A location is then represented as a pair x . y of rational num-
bers. We model a MANET node as an object of (a subclass of) the class Node,
whose attributes denote the node’s current location and its transmission range:

class Node | currentLocation : Location, transRange : Nat .

Since different nodes can have different transmission ranges, we may have uni-
directional connections.

A stationary node is an object instance of the subclass StationaryNode:

class StationaryNode . subclass StationaryNode < Node .

A mobile node is modeled as an object of a subclass of the class MobileNode:

class MobileNode | speedVector : SpeedVector, timer : TimeInf .

subclass MobileNode < Node .

Formal Analysis of Leader Election in MANETs 237

speedVector is a term < xSpeed , ySpeed > denoting the node’s speed and direc-
tion, with xSpeed (resp., ySpeed) denoting the distance traveled along the x-axis
(resp., y-axis) during one time unit. The timer attribute is used to ensure that
a node changes its movement (or lack thereof) in a timely manner.

A node moving according to the random walk (resp., random waypoint) model
is modeled by an object of the subclass RWNode or RWPNode, respectively:

class RWNode | speedVectorRange : SpeedVectorRange,

boundaryTimer : TimeInf .

class RWPNode | speedRange : SpeedRange, destRange : DestRange,

status : Status .

subclass RWNode RWPNode < MobileNode .

speedVectorRange,speedRange, and destRange denote the set of possible speed
vectors, speeds, and destinations, respectively. The status attribute is either
pausing or moving, and boundaryTimer denotes the time until the node hits
the area boundary. The rewrite rules modeling node movement are given in [15].

Modeling Wireless Communication in Mobile Systems. As mentioned above, if
we abstract from the radio propagation delay, the per-hop delay can be seen to
consist of two parts: the delay at the sender side and the delay at the receiver
side. The point is that exactly those nodes that are within the transmission
range of the sender when the sending delay ends should receive a message. Our
communication model assumes that the one-hop sending delay is a constant
sendDly; it therefore abstracts from issues such as buffering of multiple messages
at the sender or dynamic delays caused by network congestion, etc.

One-hop broadcast, one-hop unicast, and one-hop multicast are modeled using
the following “message wrappers:”

msg broadcast_from_ : MsgContent Oid -> Msg .

msg unicast_from_to_ : MsgContent Oid Oid -> Msg .

msg multicast_from_to_ : MsgContent Oid OidSet -> Msg .

where Oid is the identifier of a node; OidSet denotes sets of node identifiers; and
MsgContent is the sort for message contents. For example, when a node sender
wants to broadcast some message content mc in one hop, it sends a “message”
broadcast mc from sender.

Each node (in the set of intended receivers) that is within the transmission
range of the sender exactly when the sending delay expires should receive the
message, as a single message of the form mc from sender to receiver.2

Compositionality. A MANET protocol P can be specified, without having to
take mobility and communication into account, by letting a node in the protocol
description be specified as a subclass of Node:

2 Since there is also a delay on the receiver side, this message can only be
read/consumed when also the receiving delay has elapsed.

238 S. Liu, P.C. Ölveczky, and J. Meseguer

class PNode | protocol-specific attributes .

subclass PNode < Node .

A specification involving nodes of class PNode can then be analyzed under
different mobility models by defining the nodes in the initial state to be object
instances of a subclass of both PNode and a mobility class, such as RWPNode:

class RWPPNode .

subclass RWPPNode < RWPNode PNode .

4 The LE Leader Election Algorithm for MANETs

Leader election is a fundamental problem in distributed systems, and has a
variety of applications in wireless networks, such as key distribution, routing
coordination, and general control. One of the most well known leader election
algorithms targeting MANETs is the algorithm, which we call LE, of Vasudevan,
Kurose, and Towsley in [32]. The LE algorithm aims at electing the best-valued
node (according to some measure, such as the amount of remaining battery life)
in each connected component as the leader of that connected component.

In a static topology, LE works as follows. When an election is triggered at
a node, the node broadcasts an election message to its immediate neighbors. A
node that receives an election message for the first time, records the sender of
the message as its parent in the spanning tree under construction, and multicasts
an election message to its other immediate neighbors. When a node receives an
election message from a node that is not its parent, it immediately responds
with an ack message. When a node has received ack messages from all of its
children, it sends an ack message to its parent. Each such ack message to a
parent includes the identity and value of the best-valued node in the subtree
(of the spanning tree defined by the “parent” relation) rooted at the sender.
Therefore, when the source node has received an ack message from all of its
children, it can determine the best-valued node in the entire spanning tree. The
source node then broadcasts a leader message announcing the identity of this
new leader. Figure 2 shows a run of LE under a static topology of five nodes,
with node 1 being the source and node 5 the best-valued node (the higher the
node number, the better value it has).

Multiple nodes can concurrently initiate multiple elections; in this case, only
one election should “survive.” This is done by associating to each election a
priority, so that a node already in an election ignores incoming elections with
lower priority, but participates in an election with higher priority.

To deal with dynamic settings, with node mobility and the resulting new and
lost links, the algorithm is extended as follows:

1. When a parent-child pair becomes disconnected during the election process,
the parent removes the child from its waiting list of acknowledgments and
continues its election. The child terminates the current election by announc-
ing as the leader its maximal downstream node.

Formal Analysis of Leader Election in MANETs 239

Fig. 2. An LE run in a static topology

2. When a new link forms between two nodes that have already finished their
elections, the new neighbors exchange leader information. The node with the
lower-valued leader adopts the higher-valued leader as its new leader, and
propagates this new leader to the other nodes in its connected component.
If one or both of the nodes in the new link are still in the process of electing a
leader, they continue their separate election processes. When they have both
terminated their local leader elections, they exchange leader information with
each other and proceed as in the above case.

The report [31] gives a detailed pseudo-code specification of LE.
In [32,31] the authors prove the following main correctness theorem: The sys-

tem will reach the following situation: Each node i has a leader, which, further-
more, is the best-valued node reachable from i. The authors of [32] state that
they assume that the links are bidirectional, but add that “the algorithm should
work correctly even in the case of unidirectional links, provided that there is
symmetric connectivity between nodes.”

Communication. In LE, election messages are sent to “immediate neighbors,”
which should amount to one-hop broadcast/multicast. On the other hand, ack
messages use source-to-destination (i.e., “multi-hop”) unicast, and therefore rely
on the network infrastructure being able to transport messages to a given node.
This can be achieved by composing LE with some routing protocol, such as
AODV, and some transport protocol, such as UDP or TCP, that uses the ob-
tained routing information to transport messages from source to destination.
However, the description of LE does not specify any routing or message trans-
port. Instead, [31] assumes that (i) links between two neighbors are bidirectional
and FIFO, and (ii) that “a message sent by a node is eventually received by the
intended receiver, provided that the two nodes remain connected forever starting
from the instant the message is sent.”

240 S. Liu, P.C. Ölveczky, and J. Meseguer

Neighbor Discovery. LE assumes that each node knows its neighbors, and that
new links formed by node mobility are detected somehow. However, LE does
not specify any neighbor discovery algorithm, nor does it make explicit the as-
sumptions/requirements on the discovery of new links. The exception is that an
explicit “probe” protocol is used to discover the loss of connection to a node
from which a node awaits an ack message.

5 Modeling LE in Real-Time Maude

This section presents our Real-Time Maude model of the LE protocol as specified
in detail in [31]. We show 8 of the 23 rewrite rules in our specification. The
entire executable Real-Time Maude specification is available at https://sites.
google.com/site/siliunobi/leader-election.

5.1 Nodes and Messages

We model an LE node as an object of a subclass LENode of the class Node. The
new attributes are the identifier of the leader (leader), the parent (parent), the
current best-valued node (max), the node’s computation number (number), its
computation index (src), the set of neighbors from which the node has yet to
receive an ack message (acks), a flag indicating whether the node is currently
in an election (eflag), a flag indicating whether the node has sent an acknowl-
edgement to its parent (pflag), the node’s (immediate) neighbors (neighbors),
the new neighbors found by the neighbor discovery process (newNbs), and the
relevant nodes which can no longer reach the node (lostConxs):

class LENode | leader : Oid, parent : Oid, max : Oid,

number : Nat, src : CompIndex, acks : OidSet,

eflag : Bool, pflag : Bool, neighbors : OidSet,

newNbs : OidSet, lostConxs : OidSet .

subclass LENode < Node .

A computation index is a pair o ~ k, with o a node identifier and k a computation
number. As in [32], we assume that a node’s identifier determines its value.

The three message types in LE are represented as message contents of the
forms election(...), ack(...), and leader(...).

5.2 Modeling Communication

In LE, nodes broadcast/multicast election messages to immediate neighbors, and
unicast ack messages to their parent (and other) nodes. Sending to immediate
neighbors may be seen as one-hop broadcast/multicast, which we model as ex-
plained in Section 3: the sender sends a “broadcast message;” after time sendDly
this broadcast message is distributed to all nodes within transmission range of
the sender at that moment, and will arrive rcvDly time units later.

https://sites.google.com/site/siliunobi/leader-election
https://sites.google.com/site/siliunobi/leader-election

Formal Analysis of Leader Election in MANETs 241

Unicasting ack messages, however, may involve multiple hops, since a node
may have moved away from its parent by the time the ack message should
be sent. As mentioned in Section 4, LE does not specify a transport protocol
to transmit such messages, but only requires (i) that communication between
neighbors is FIFO and (ii) that the destination node must get the message if it
is connected to the sender forever from the time when the message is sent.

In this paper, we abstract from details about how messages are routed, and
model multi-hop message transmission as follows:

– the sender sends a multiHopUnicast message to the destination node;

– if there exists a communication path from source to destination exactly
multiHopSendDelay time units later, the message will be received by the
destination node multiHopSendDly + rcvDly time units after it was sent.

We model such communication as follows:3

op multiHopUnicast_from_to_ : MsgContent Oid Oid -> Msg .

op mhTransfer : MsgContent Oid Oid -> Configuration .

eq multiHopUnicast MC from O1 to O2 = dly(mhTransfer(MC, O1, O2), multiHopSendDly).

eq {mhTransfer(MC, O1, O2) CONF}

= if O2 in reachable(O1, CONF) then {dly(MC from O1 to O2, rcvDly) CONF}

else {CONF} fi .

op reachable : OidSet Configuration -> OidSet .

ceq reachable(O1 ; OS, --- add O2 to nodes reachable from (O1 ; OS)

< O1 : Node | currentLocation : L1, transRange : R >

< O2 : Node | currentLocation : L2 > CONF)

= reachable(O1 ; O2 ; OS, < O1 : Node | > < O2 : Node | > CONF)

if not (O2 in (O1 ; OS)) /\ L2 withinTransRange R of L1 .

eq reachable(OS, CONF) = OS [owise] . --- fixed point reached

Since this model abstracts from the actual route by which a message is trans-
ported, a message that happens to be transferred in one hop has the same delay
as one that uses 10 hops. Our model satisfies the requirement that messages
are delivered if there is a path from source to destination forever. However, our
model does not guarantee FIFO transmission between neighbors for two reasons:

1. Two one-hop messages sent “at the same time” results in two messages with
the same delay, since our model abstracts from details about the buffering
of outgoing messages.

2. Since we abstract from routing details, a “multi-hop” message has sending
delay multiHopSendDly even if it happens to need only one hop, and could
be overtaken by a one-hop broadcast message sent later along the same link.

3 We do not show the declarations of mathematical variables; they follow the Maude
convention that such variables are written with capital letters.

242 S. Liu, P.C. Ölveczky, and J. Meseguer

5.3 Neighbor and Connectivity Discovery

LE assumes that new (one-hop) links caused by node movement are detected. We
model such neighbor discovery abstractly by periodically updating the newNbs

attribute of each node with those nodes that are within transmission range
but are not included in the node’s neighbors attribute, and by removing from
neighbors those nodes that are no longer within transmission range.

In LE, the leader of a component “periodically sends out a heartbeat message
to other nodes,” which can then discover whether they are disconnected from
the leader. Each node n also periodically sends a probe message to each node
n′ from which it awaits an ack message. If n does not receive a reply message
from n′ within certain time, it assumes that the connection to n′ is lost. Finally,
LE assumes that a node knows when it becomes disconnected from its parent.
We abstract from heartbeat and probe/reply protocols, and instead periodically
check whether a connection is lost to nodes in acks, the leader, or the parent.

We include in the state a timer object < 100 : GlobalND | timer : t >

that triggers both the neighbor discovery process and the lost connectivity pro-
cess, periodically, each time the timer expires:

rl [computeNewNbsAndLostConnections] :

{< O : GlobalND | timer : 0 > CONF} =>

{< O : GlobalND | timer : period > updateNbsAndAck(CONF)} .

where, for each node object o in CONF, updateNbsAndAck:

1. sets o’s newNbs attribute to o’s current immediate neighbors minus the nodes
already in o’s neighbors attribute;

2. removes all nodes which are no longer o’s neighbors from o’s neighbors

attribute;
3. sets o’s lostConxs attributes to those relevant nodes that cannot reach o

(in multiple hops).

We refer to the online specification for the definition of this function.

5.4 Modeling the Behavior of LE

LE consists of five parts: initiating leader election, handling an election message,
handling an ack message, handling a leader message, and dealing with new
neighbors and lost connections.

Starting Leader Election. A “message” electLeader(o) kicks off a run of LE
with node o as initiator. Node o multicasts a message election(o~n) to all its
immediate neighbors, where n is the latest computation number.4 The source
will then wait for the ack messages from those neighbors by setting acks to OS.
Moreover, it sets eflag to true, indicating that it is currently in an election:

4 In case there are multiple concurrent runs of the protocol, this index helps deciding
which run should continue.

Formal Analysis of Leader Election in MANETs 243

rl [init-leader-election] :

electLeader(O)

< O : LENode | eflag : false, neighbors : OS, number : N, leader : O2 >

=>

< O : LENode | acks : OS, src : O ~ N, number : N + 1,

eflag : true, pflag : false, parent : O, max : O >

(multicast election(O ~ N, O2) from O to OS) .

Receiving an Election Message. When a node that is not involved in an election
(eflag is false) receives an election message from SND, the node sets SND as
its parent, and sets its src, eflag, and pflag attributes accordingly. The node
multicasts an election message to all its neighbors except the parent:5

crl [join-1] :

(election(I, LID) from SND to O)

< O : LENode | eflag : false, leader : LID, neighbors : OS1 >

=>

< O : LENode | src : I, acks : OS2, eflag : true, pflag : false,

parent : SND, max : O >

(multicast election(I, LID) from O to OS2)

if OS2 := delete(SND, OS1) .

There are five more rules for handling election messages; see [14] for details.

Receiving Ack Messages. When a node receives an ack message, for the current
computation I, from a node SND, it deletes SND from the set acks. If the reported
best node M’ is better than the node’s current best-valued node M, then the max

attribute is also updated accordingly:

rl [update-acks] :

(ack(I, FL, M’) from SND to O)

< O : LENode | pflag : false, src : I, acks : OS, max : M >

=>

< O : LENode | acks : delete(SND, OS),

max : (if FL and M’ > M then M’ else M fi) > .

All acks Received. When a node is no longer waiting for any ack message (acks
is empty), and it has not yet sent an ack to its parent (pflag is false), it sends
an ack message to its parent, with its best-valued node M. However, if the node
initiated this round of the protocol (and therefore is the root node) it starts
propagating the leader M to its immediate neighbors:

rl [all-acks-received-1] :

< O : LENode | acks : empty, src : (O’ ~ N), pflag : false,

parent : P, max : M, neighbors : OS >

=>

if O =/= O’ --- not root node

5 Multicast to the empty set generates no messages in our communication model [15].

244 S. Liu, P.C. Ölveczky, and J. Meseguer

then < O : LENode | pflag : true >

(multiHopUnicast ack(O’ ~ N, true, M) from O to P)

else < O : LENode | eflag : false, leader : M >

(multicast leader(O’ ~ N, M) from O to OS) fi .

Leader Message Handling. If a node already in an election receives a leader

message for the first time, it just updates the local leader, clears the eflag (its
election is over), and propagates the received message:

crl [adopt-new-leader-1] :

(leader(I, LID) from SND to O)

< O : LENode | pflag : true, eflag : true, max : M, neighbors : OS >

=>

< O : LENode | leader : LID, eflag : false, src : I >

(multicast leader(I, LID) from O to OS) if M <= LID .

New Links. If one or more new neighbors have been found from a node O that
has already finished its election, then the node multicasts the leader message to
the new immediate neighbors:

rl [new-links-found] :

< O : LENode | newNbs : O’ ; OS, eflag : B, src : I, leader : LID >

=>

< O : LENode | newNbs : empty >

(if not B and LID =/= 0 then

(multicast leader(I, LID) from O to (O’ ; OS)) else none fi) .

Lost Connections. If a node gets disconnected from its parent while still in an
election, it terminates the diffusing computation by announcing its maximal
downstream node as the leader:

rl [disconnected-from-parent] :

< O : LENode | lostConxs : OS ; P, pflag : true, eflag : true,

parent : P, max : M, src : I, neighbors : OS2 >

=>

< O : LENode | lostConxs : OS, eflag : false, leader : M >

(multicast leader(I, M) from O to OS2) .

Timed Behavior. Due to lack of space, we refer to [15,14] for the definition of the
timed behaviors. The main point is that time cannot advance when an instan-
taneous rule is enabled, so that all actions are performed in a timely manner.

6 Formal Analysis of the LE Protocol

This section shows how our modeling framework for MANETs can be composed
with our model of the LE protocol to analyze LE under realistic mobility and
communication models. As already mentioned, the LE developers prove the cor-
rectness of LE only for bidirectional links, although they “strongly believe that

Formal Analysis of Leader Election in MANETs 245

[LE] would still work correctly if links were unidirectional, as long as all nodes
have a path to each other.” We analyze LE with both bidirectional links and
unidirectional links; the latter are a consequence, e.g., of nodes sending with
different signaling power. We consider both static and dynamic topologies, and
also analyze a system with two connected components that repeatedly merge
and partition because of node movement.

Although many papers (e.g., [32,7,27,9,26,12,28,29,16,8]) have studied LE,
little is known by way of formal analysis about how it behaves with unidirectional
connections or under realistic mobility scenarios. We are also not aware of any
study taking into account the joint effects of communication delay and mobility.

6.1 Nodes

As mentioned in Section 3, we can combine our protocol specification with a
node mobility model by having nodes as object instances of a subclass of both
LENode and a mobility class, such as RWPNode for random waypoint mobility and
StationaryNode for stationary nodes:

class RWPLENode . subclass RWPLENode < RWPNode LENode .

class SLENode . subclass SLENode < StationaryNode LENode .

6.2 Modeling Checking the Correctness Property

We use model checking to analyze the main correctness property of LE, as de-
scribed in [32]:

“[E]very connected component will eventually select a unique leader,
which is the most-valued-node from among the nodes in that component.”

The following atomic proposition unique-leaders holds if and only if all nodes
in a connected component have the same leader, which is, furthermore, the
highest-valued node in that connected component:6

op unique-leaders : -> Prop [ctor] .

eq {< O : LENode | leader : 0 > REST} |= unique-leaders = false .

--- no leader (’0’) selected by some node

ceq {< O : LENode | leader : O’ > REST}

|= unique-leaders = false if O’ < O . --- O better than its leader

ceq {< O1 : LENode | leader : O’ > < O2 : LENode | > REST}

|= unique-leaders = false

if O’ < O2 --- wrong leader selected by O1

/\ O2 in reachable(O1, < O1 : LENode | > < O2 : LENode | > REST) .

eq {SYSTEM} |= unique-leaders = true [owise] .

6 Remember that the value of a node is given by its identifier.

246 S. Liu, P.C. Ölveczky, and J. Meseguer

The main correctness property can then be formalized as the LTL formula
<> unique-leaders. Given an initial state initConf, the following commands
return true if the property holds (possibly up to the duration of the test round,
roundTime); otherwise, a trace illustrating the counterexample is shown.

(mc {initConf} |=u <> unique-leaders .)

(mc {initConf} |=t <> unique-leaders in time <= roundTime .)

We can use unbounded model checking for static topologies. In dynamic topolo-
gies, the locations of the moving nodes contribute to an infinite reachable state
space, and model checking must be time-bounded in order to terminate.

6.3 Scenarios and Analysis

Our model enables us to experiment with LE under many different scenarios by
changing the values of system parameters such as node locations and movement
patterns, transmission ranges, one-hop and multi-hop send delays, node veloci-
ties, the frequency of the neighbor/connectivity detection process, the number
of concurrent runs of the protocol, and so on.

We use the following setting for our experiments, with additional scenario-
specific settings presented separately:

– The transmission range of a node is 10m, and the test area is 100m×100m.
– The one-hop delays at the sender side and the receiver side are 1 time unit

and 0, respectively. The multi-hop “send” delay is 2 time units.
– roundTime (i.e., the time bound in the model checking) is 20.

Scenario I. Scenario I corresponds to the topology in Fig. 2, and consists of five
stationary nodes with bidirectional connections. The nodes 1, 2, 3, 4, and 5 are
located at (45 . 45), (50 . 50), (50 . 40), (60 . 40), and (60 . 50), respectively.
We consider two sub-scenarios: (a) only node 1 initiates a round of the leader
election protocol; and (b) all five nodes initiate a run of the protocol. Time-
bounded model checking shows that the property holds: all five nodes elect the
best-valued node 5 as their leader within 20 time units; the execution times of
the analyses are 150 milliseconds (ms) and 4500 ms, respectively.

Scenario II. This scenario, shown in Fig. 3 (where a solid line denotes a bidi-
rectional link, an arrow denotes a unidirectional link, and a dashed circle shows
a node’s transmission area), considers a topology with three stationary nodes,
where the links between nodes 2 and 3 and between 3 and 1 are unidirectional.
This scenario defines a single connected component in the sense that there is a
directed path from each node to any other node. To form such a unidirectional
but connected component, we set the transmission ranges of the source 1 and
other two nodes 2 and 3 to 10m, 30m, and 20m, respectively.

Real-Time Maude model checking shows (in 100 ms CPU time) that the
desired property is satisfied in this topology with the above system parameters.

Formal Analysis of Leader Election in MANETs 247

Fig. 3. Topology in Scenario II

Scenario III. Scenario III, shown in Fig. 4 (where a dashed arrow denotes
a node’s motion path), considers a bidirectional dynamic topology with three
nodes, where the source node 1 is located at (50 . 50), and nodes 2 and 3 are
initially at (60 . 50) and (50 . 55), respectively. Node 3 is a random waypoint
node that moves back and forth along the dashed arrow with end points (50 .

55) and (60 . 55) (denoted by 3’). Note that the topology remains a connected
component despite node 3’s movement. We set the pause time of the moving
node to 0 and the period of the neighbor/connectivity discovery process to 2.

We experiment with three sub-scenarios: (a) the speed of the moving node is
10; i.e., the speedRange attribute is the singleton 10; (b) the speed is 5; and (c)
the speed is again 10, but now the pause time is 1 time unit. The initial state of
Scenario III-a is given by the term (with parts of the term replaced by ‘...’):

eq period = 2 . eq pauseTime = 0 .

eq initConfig

= electLeader(1)

< 100 : GlobalND | timer : period >

< 1 : SLENode | currentLocation : 50 . 50 , transRange : 10, leader : 0, max : 0,

neighbors : (2 ; 3), parent : 0, number : 100, src : 0 ~ 0,

acks : empty, eflag : false, pflag : false, newNbs : empty,

lostConxs : empty >

< 2 : SLENode | currentLocation : 60 . 50 , transRange : 10, leader : 0, max : 0,

neighbors : 1, parent : 0, ... >

< 3 : RWPLENode | currentLocation : 50 . 55 , transRange : 10, speed : 0,

speedVector : < 0 , 0 >, speedRange : 10 ,

destRange : (60 . 55) ; (50 . 55) , timer : pauseTime,

status : pausing, leader : 0, neighbors : 1, ... > .

Real-Time Maude model checking of Scenario III-a shows (in 240 ms CPU
time) that the desired property is not satisfied: Node 3 moves away from Node 1
during Node 1’s multicast to “immediate neighbors,” and is not within Node 1’s

248 S. Liu, P.C. Ölveczky, and J. Meseguer

Fig. 4. Topology in Scenario III

transmission range when the sending delay of the one-hop multicast of election
messages to “immediate neighbors” expires. Therefore, Node 3 does not get this
message. Furthermore, the neighbor discovery process takes place every 2 time
units, which exactly coincides with the moments when Node 3 is close to Node
1! The neighbor discovery process therefore never discovers that Node 3 is not
an immediate neighbor of Node 1, and will hence never discover that Node 3 is
a new neighbor. Node 3 will therefore be left out of the election process forever.

We cannot claim that this behavior invalidates the LE protocol, since LE may
be based on other assumptions, such as “continuous neighbor discovery” and/or
multi-hop communication even to nodes that are immediate neighbors when a
sending event begins. However, our “counterexample” shows the need to make
explicit subtle requirements of the underlying neighbor discovery process, and
to make more precise the meaning of sending to “immediate neighbors” when
an immediate neighbor may cease to be one during the sending process.

Real-Time Maude model checking of Scenarios III-b and III-c show that the
desired property holds in these scenarios. The only difference between Scenarios
III-a and III-c is that pauseTime is 1 in Scenario III-c. This implies that Node
3 takes three time units to move from location 3 to location 3’, and back. Since
the neighbor discovery process takes place every two time units, it will sooner or
later take place when Node 3 is in location 3’ in Fig 4, and hence no longer is
an immediate neighbor of Node 1. Some time later, the neighbor discovery will
take place when Node 3 is again close to Node 1, and will discover the “new”
link between Nodes 1 and 3, and will then involve Node 3 in the election.

In Scenario III-b, it takes Node 3 two time units to move between the locations
3 and 3’ in Fig. 4, and the neighbor discovery process will therefore update the
neighbor information every time Node 3 reaches one of these end-points.

Scenario IV. Finally, to analyze merge and partition of connected components
we consider the system with two connected components (consisting of Nodes 1

Formal Analysis of Leader Election in MANETs 249

Fig. 5. Topology in Scenario IV

and 2, and of Nodes 3, 4, and 5, respectively) in Fig. 5. Since Node 5 moves
back and forth between position 5 and position 5’ in Fig. 5, the two connected
components will repeatedly merge (when Node 5 is close to position 5’) and
partition (when Node 5 is close to position 5).

Our model checking analysis shows that the property holds when both Node
1 and Node 3 initiate elections at the same time and when pauseTime is 8.

7 Related Work and Conclusions

LE has been subjected to a number of formal analysis efforts in recent years.
Gelastou et al. [7] specify and verify LE using both I/O automata and process al-
gebra. They only consider static bidirectional topologies with non-lossy channels,
and communication delay is not taken into consideration. Singh et al. [27] present
the ω-calculus for formally modeling and reasoning about MANETs, and illus-
trate their techniques by developing and analyzing a formal model of LE. They
only consider dynamic bidirectional topologies where a node is free to move as
long as the network remains connected, without taking into account unidirectional
scenarios, communication delay, and message loss. Ghassemi et al. [9] provide a
framework for modeling and analyzing both qualitative and quantitative aspects
of MANET protocols, where communication delay and dynamic topologies (mod-
eled by probabilistic message loss) are considered. They focus on the performance
of LE under various parameters without giving any qualitative results. Sibilio et
al. [26,16] propose a calculus for trustworthy MANETs with which they analyze a
secure version of LE (neighbors trust each other at some security level) with three
stationary nodes connected by bidirectional links. Kouzapas et al. [12] propose a
calculus of dynamic networks whose semantics contain rules mimicking the behav-
ior of a neighbor discovery protocol. They analyze LE with an arbitrary derivative

250 S. Liu, P.C. Ölveczky, and J. Meseguer

of the initial state based on bisimilarity under the assumption of no message loss.
Song et al. [28,29] introduce a stochastic broadcast calculus for MANETs with
mobility modeled stochastically. They analyze a simplified model of LE with four
nodes, where the mobility of (only) one node affects the transmission probability.
In [8], Ghassemi et al. introduce both constrained labeled transition systems to
represent mobility and a branching-time temporal logic to model check MANET
protocols. They specify the correctness property of LE, but do not verify it in de-
tail. Finally, the developers of LE present in their accompanying technical report
[31] a “formal” specification of LE and use temporal logic to prove the correctness
of the protocol, assuming bidirectional connections and no message loss.

The work presented in this paper distinguishes itself by modeling node lo-
cations, transmissions ranges, message loss, communication delay, well known
mobility models, neighbor discovery, and uni/bidirectional connectivity, as well
as their interrelations. From a modeling perspective:

– Related work does not model node locations explicitly, but represent the
topologies abstractly as “neighborhood graphs.”

– Related work therefore does not consider realistic mobility models, but only
static topologies or simple dynamic topologies with arbitrary link breaks.

– Related work does not consider unidirectional connectivity.

– Our work is the only one that models a neighbor discovery process.

– Only [9,28,29] consider communication delay.

– No related work considers the the interplay of all the above ingredients.

Maude and Real-Time Maude have been applied to analyze wireless systems.
Our previous work [13] builds the modeling framework that serves as the basis for
this paper, and analyzes the Ad hoc On-Demand Distance Vector (AODV) rout-
ing protocol under different mobility models. The papers [10,24] model wireless
sensor networks in (Real-Time) Maude, but do not consider node mobility.

In this work we have used rewriting logic and Real-Time Maude to address
what we see as a real gap between the current application of formal methods to
MANETs and actual practice. Specifically, there is a need to formally analyze
MANET protocols with realistic models of node mobility and wireless commu-
nication. Our solution has taken the form of a composable formal framework in
rewriting logic for MANET protocols and mobility models that can take into
account time, space, directionality, and transmission failures and delays. We
have illustrated the usefulness of this approach by showing how it can discover a
potential problem with LE that is caused by the subtle interplay of neighbor dis-
covery, communication with “immediate neighbors,” and node movement during
a communication event.

Much work remains ahead. We should apply our framework to the analysis of
other MANET protocols and composition of protocols under various modes of
use. Finally, by using probabilistic rewrite theories and statistical model checking
in the style of [1], our framework could also be used for formal quantitative
analysis of MANET protocols to evaluate their performance and reliability.

Formal Analysis of Leader Election in MANETs 251

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language
for probabilistic object systems. Electronic Notes in Theoretical Computer Sci-
ence 153(2), 213–239 (2006)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoretical Computer Science 236(1-2), 35–132 (2000)

4. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless Communications and Mobile Computing 2(5), 483–502 (2002)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

6. Fall, K., Varadhan, K.: The ns Manual (2011), http://www.isi.edu/nsnam/ns/
doc/ns_doc.pdf

7. Gelastou, M., Georgiou, C., Philippou, A.: On the application of formal methods
for specifying and verifying distributed protocols. In: Proc. NCA 2008. IEEE (2008)

8. Ghassemi, F., Ahmadi, S., Fokkink, W., Movaghar, A.: Model checking MANETs
with arbitrary mobility. In: Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS,
vol. 8161, pp. 217–232. Springer, Heidelberg (2013)

9. Ghassemi, F., Talebi, M., Movaghar, A., Fokkink, W.: Stochastic restricted broad-
cast process theory. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 72–86.
Springer, Heidelberg (2011)

10. Katelman, M., Meseguer, J., Hou, J.: Redesign of the LMST wireless sensor pro-
tocol through formal modeling and statistical model checking. In: Barthe, G.,
de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer,
Heidelberg (2008)

11. Kosiuczenko, P., Wirsing, M.: Timed rewriting logic with an application to object-
based specification. Science of Computer Programming 28(2-3), 225–246 (1997)

12. Kouzapas, D., Philippou, A.: A process calculus for dynamic networks. In: Bruni, R.,
Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 213–227.
Springer, Heidelberg (2011)

13. Liu, S., Ölveczky, P.C., Meseguer, J.: A framework for mobile ad hoc networks in
real-time maude. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 162–177.
Springer, Heidelberg (2014)

14. Liu, S., Ölveczky, P.C., Meseguer, J.: Formal analysis of leader elec-
tion in MANETs using Real-Time Maude (2014), http://www.ifi.uio.no/

RealTimeMaude/leader-election-report.pdf

15. Liu, S., Ölveczky, P.C., Meseguer, J.: Modeling and analyzing mobile ad hoc net-
works in Real-Time Maude (submitted for publication, 2014), http://www.ifi.
uio.no/RealTimeMaude/manets-report.pdf

16. Merro, M., Sibilio, E.: A calculus of trustworthy ad hoc networks. Formal Aspects
of Computing 25(5), 801–832 (2013)

17. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Heidelberg (2014)

18. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-order and Symbolic Computation 20(1-2), 161–196 (2007)

19. Ölveczky, P.C.: Specification and Analysis of Real-Time and Hybrid Systems in
Rewriting Logic. Ph.D. thesis, University of Bergen, Norway (2000), http://

maude.csl.sri.com/papers

http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://www.ifi.uio.no/RealTimeMaude/leader-election-report.pdf
http://www.ifi.uio.no/RealTimeMaude/leader-election-report.pdf
http://www.ifi.uio.no/RealTimeMaude/manets-report.pdf
http://www.ifi.uio.no/RealTimeMaude/manets-report.pdf
http://maude.csl.sri.com/papers
http://maude.csl.sri.com/papers

252 S. Liu, P.C. Ölveczky, and J. Meseguer

20. Ölveczky, P.C., Kosiuczenko, P., Wirsing, M.: An object-oriented algebraic steam-
boiler control specification. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) For-
mal Methods for Industrial Applications. LNCS, vol. 1165, pp. 379–402. Springer,
Heidelberg (1996)

21. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science 285, 359–405 (2002)

22. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
Electronic Notes in Theoretical Computer Science 176(4), 5–27 (2007)

23. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods in
System Design 29(3), 253–293 (2006)

24. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theo-
retical Computer Science 410(2-3), 254–280 (2009)

25. OMNeT++., http://www.omnetpp.org/ (accessed November 24, 2014)
26. Sibilio, E.: Formal methods for wireless systems. Ph.D. Thesis, University of Verona

(2011)
27. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc

networks. Science of Computer Programming 75(6), 440–469 (2010)
28. Song, L.: Probabilistic models and process calculi for mobile ad hoc networks.

Ph.D. Thesis, IT University of Copenhagen (2012)
29. Song, L., Godskesen, J.C.: Broadcast abstraction in a stochastic calculus for mobile

networks. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS,
vol. 7604, pp. 342–356. Springer, Heidelberg (2012)

30. Su, P.: Delay measurement time synchronization for wireless sensor networks. Tech.
Rep. IRB-TR-03-013, Intel Research Berkeley Lab (2003)

31. Vasudevan, S., Kurose, J.F., Towsley, D.F.: Design and analysis of a leader elec-
tion algorithm for mobile ad hoc networks. Tech. Rep. UMass CMPSCI 03-20,
University of Massachusetts (2003)

32. Vasudevan, S., Kurose, J.F., Towsley, D.F.: Design and analysis of a leader election
algorithm for mobile ad hoc networks. In: Proc. ICNP 2004. IEEE (2004)

http://www.omnetpp.org/

The Foundational Legacy of ASL�

Donald Sannella1 and Andrzej Tarlecki2

1 Laboratory for Foundations of Computer Science, University of Edinburgh, UK
2 Institute of Informatics, University of Warsaw, Poland

Abstract. We recall the kernel algebraic specification language ASL and outline
its main features in the context of the state of research on algebraic specification
at the time it was conceived in the early 1980s. We discuss the most significant
new ideas in ASL and the influence they had on subsequent developments in the
field and on our own work in particular.

1 Introduction

One of Martin Wirsing’s most important contributions to the field of algebraic specifi-
cation was his work on the ASL specification language. ASL is one of the milestones of
the field and is one of Martin’s most influential lines of work. It was also the highlight
of our long-term collaboration and friendship with him — many thanks, Martin!!!

ASL is a simple algebraic specification language containing a small set of orthogo-
nal constructs. Preliminary ideas were sketched in [Wir82], then modified and further
developed in [SW83], with [Wir86] offering a complete, extended presentation. At the
time, the first fully-fledged algebraic specification languages had recently been defined
(Clear [BG80], CIP-L [BBB+85] etc.). In contrast, ASL was conceived as a kernel lan-
guage, with stress on expressive power, conceptual clarity, and simplicity, rather than
on convenience of use. The idea was to penetrate to the essential concepts, suitable for
foundational studies and supplying a basis that could be used to define other specifica-
tion languages.

Among the key characteristics of ASL, as listed in [Wir86], are the following:

– “ASL is a language for describing classes of algebras rather than for building sets
of axioms (theories)”; in particular, “an ASL specification may be loose (mean-
ing that it may possess nonisomorphic models)”: We will discuss the semantics of
specifications in Sect. 3, including the relationship between model-class semantics
and theory-level semantics.

– “The expressive power of ASL allows the choice of a simple notion of implemen-
tation” and “parameterization in ASL is λ-abstraction”: We will discuss aspects of
the software development process, as influenced by these two ideas, in Sect. 4.

– “ASL is oriented towards a ’behavioural’ approach . . . ASL includes a very general
observability operation which can be used to behaviourally abstract from a specifi-
cation”: We will discuss the technicalities of behavioural abstraction and its role in
the software development process in Sect. 5.

� This work has been partially supported by the National Science Centre, grant UMO-
2013/11/B/ST6/01381 (AT).

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 253–272, 2015.
c© Springer International Publishing Switzerland 2015

254 D. Sannella and A. Tarlecki

Further characteristics, also listed in [Wir86], are:

– “Infinite signatures and infinite sets of axioms can be described by finite ASL ex-
pressions” and “Algebras in ASL are generalized algebras . . . suitable for the de-
scription of strict and nonstrict operations”: We are not going to dwell on these
points as they are subsumed by the more general setup of [ST88a], where the se-
mantics of ASL is given for an arbitrary logical system (institution); we will follow
this approach in Sects. 2–4. The particular choices made in [Wir82], [SW83] and
[Wir86] arise from particular institutions.

– “ASL can be seen as an applicative (programming) language where the basic modes
are not only natural numbers, integers, or strings, but sorts, operation symbols,
terms, formulas, signatures, and specifications”: The novel feature here is that each
of these modes was treated as a first-class citizen in ASL. As far as we know, this
aspect of ASL has not been explicitly taken up in later work, at least not to the same
extent.

– “ASL is a universal specification language allowing to write every computable
transformation of specifications”: The power of parameterization in ASL comes
partly from the previous point. This universality property was an interesting tech-
nical point but in our view it evades the real question, concerning which semantic
entities (model classes and transformations between them) can be captured.

As indicated above, this paper discusses some of the ideas and themes that were
prominent in ASL and influenced further work. We comment on these from today’s
perspective, supported by pointers to the subsequent literature.

2 Preliminaries

We will rely here on the usual notions of many-sorted algebraic signatures Σ = 〈S,Ω〉
and signature morphisms σ : Σ → Σ′ mapping sorts in Σ to sorts in Σ′ and op-
eration names in Σ to operation names with corresponding arity and result sorts in
Σ′. This yields the category AlgSig. For each algebraic signature Σ, Alg(Σ) stands
for the usual category of Σ-algebras and their homomorphisms. We restrict attention
to algebras with non-empty carriers to avoid minor technical problems in the sequel,
which are by now well-understood, see [Tar11]. As usual, each signature morphism
σ : Σ → Σ′ determines a reduct functor σ : Alg(Σ′) → Alg(Σ). This yields a
functor Alg : AlgSigop → Cat. See [ST12] for a more detailed presentation.

Given a signature Σ, Σ-terms, Σ-equations, and first-order Σ-formulae with equal-
ity are defined as usual. The set of all Σ-terms with variables from X is denoted by
TΣ(X), and for sets IN ,OUT of sorts in Σ, TΣ(XIN)OUT denotes the set of Σ-terms
of sorts in OUT with variables of sorts in IN . Given a Σ-algebra A, a set of variables
X and a valuation v : X → |A|, the value tA[v] of a Σ-term t with variables X in A
under v and the satisfaction A[v] |= ϕ of a formula ϕ with variables X in A under v
are defined as usual. The parameter v is omitted when X is empty.

A derived signature morphism δ : Σ → Σ′ maps sorts in Σ to sorts in Σ′ and
function symbols f : s1 × . . . × sn → s in Σ to Σ′-terms of sort δ(s) with variables
{x1:δ(s1), . . . , xn:δ(sn)}. This generalises “ordinary” algebraic signature morphisms

The Foundational Legacy of ASL 255

as recalled above. A derived signature morphism δ : Σ → Σ′ still determines a reduct
functor δ : Alg(Σ′)→ Alg(Σ).

Given a (derived) signature morphism δ : Σ → Σ′, the δ-translation of Σ-terms,
Σ-equations, and first-orderΣ-formulae to Σ′-terms, Σ′-equations, and first-orderΣ′-
formulae are as usual: we write δ(t) etc. For any term t ∈ TΣ(X), Σ′-algebra A′,
and valuation v′ : δ(X) → |A′|, where δ(X)s′ =

⊎
δ(s)=s′ Xs, we have t

(A′
δ)[v]

=

δ(t)A′[v′], where v : X → |A′
δ| is the valuation of variables in X that corresponds to

v′ in the obvious way. Similarly for Σ-equations and Σ-formulae ϕ with free variables
X : (A′

δ)[v] |= ϕ iff A′[v′] |= δ(ϕ).
An institution [GB92] INS consists of:

– a category SignINS of signatures;
– a functor SenINS : SignINS → Set, giving a set SenINS(Σ) of Σ-sentences for

each signature Σ ∈ |SignINS|;
– a functor ModINS : Sign

op
INS → Cat, giving a category ModINS(Σ) of Σ-

models for each signature Σ ∈ |SignINS|; and
– a family 〈|=INS,Σ ⊆ |ModINS(Σ)| × SenINS(Σ)〉Σ∈|SignINS| of satisfaction

relations

such that for any signature morphism σ : Σ → Σ′ the translations ModINS(σ) of
models and SenINS(σ) of sentences preserve the satisfaction relation, that is, for any
ϕ ∈ SenINS(Σ) andM ′ ∈ |ModINS(Σ

′)| the following satisfaction condition holds:

M ′ |=INS,Σ′ SenINS(σ)(ϕ) iff ModINS(σ)(M
′) |=INS,Σ ϕ

We will omit the subscripts INS andΣ whenever they are obvious from the context. For
any signature morphism σ : Σ → Σ′, the translation Sen(σ) : Sen(Σ) → Sen(Σ′)
will be denoted by σ : Sen(Σ) → Sen(Σ′), and the reduct Mod(σ) : Mod(Σ′) →
Mod(Σ) by σ : Mod(Σ′) → Mod(Σ). Thus, the satisfaction condition may be
re-stated as: M ′ |= σ(ϕ) iff M ′

σ |= ϕ. For any signature Σ, the satisfaction relation
extends naturally to sets of Σ-sentences and classes of Σ-models.

Examples of institutions abound. The institution EQ of equational logic has the cat-
egory SignEQ = AlgSig of many-sorted algebraic signatures as its category of signa-
tures; its models are algebras, soModEQ is Alg : AlgSigop → Cat; for any signature
Σ ∈ |AlgSig|, SenEQ(Σ) is the set of all (universally quantified) Σ-equations, with
SenEQ(σ) : SenEQ(Σ) → SenEQ(Σ′) being the translation of Σ-equations to Σ′-
equations for any signature morphism σ : Σ → Σ′ in AlgSig. Finally, the satisfaction
relations |=EQ,Σ ⊆ |Alg(Σ)| × SenEQ(Σ) are defined as usual:A |=EQ,Σ ∀X.t = t′

iff tA[v] = t′A[v] for all valuations v : X → |A|. The institution FOEQ of first-order
equational logic shares with EQ its category of signatures and its model functor, with
its sets of sentences extended to include all closed formulae of first-order logic with
equality, together with the standard satisfaction relations. Any institution having the
same category of signatures and the same model functor as EQ (and FOEQ) will be
called standard algebraic. See [ST12] for detailed definitions of many other institutions.

For any signature Σ, a Σ-sentence ϕ ∈ Sen(Σ) is a semantic consequence of a set
of Σ-sentences Φ ⊆ Sen(Σ), written Φ |=Σ ϕ or simply Φ |= ϕ, if for all Σ-models

256 D. Sannella and A. Tarlecki

M ∈ |Mod(Σ)|, M |= ϕ whenever M |= Φ. A Σ-theory is a set of Σ-sentences that
is closed under semantic consequence.

Semantic consequence is often approximated by an entailment system, that is, a fam-
ily of relations 〈�Σ〉Σ∈|Sign| where, for Σ ∈ |Sign|, �Σ is a relation between sets
of Σ-sentences and individual Σ-sentences, subject to the usual requirements (reflex-
ivity, transitivity, weakening). An entailment system (and its presentation via a system
of proof rules) is sound for INS if for Σ ∈ |Sign|, Φ ⊆ Sen(Σ) and ϕ ∈ Sen(Σ),
Φ �Σ ϕ implies Φ |=Σ ϕ, and it is complete if the opposite implication holds. Sound
and complete proof systems for EQ and FOEQ are well known.

Institutional structure is rich enough to enable a number of key features of logical
systems to be expressed. For instance, amalgamation and interpolation properties may
be captured as follows.

Consider the following commuting diagram in Sign:

Σ

Σ1 Σ2

Σ′

�
�

��

	
	
	

	
	
	

�
�

��

σ1 σ2

σ′
2 σ′

1

This diagram admits amalgamation if for any two modelsM1 ∈ |Mod(Σ1)| andM2 ∈
|Mod(Σ2)| such that M1 σ1 = M2 σ2 , there exists a unique model M ′ ∈ |Mod(Σ′)|
such that M ′

σ′
2
= M1 and M ′

σ′
1
= M2 and similarly for model morphisms. An

institution is semi-exact if pushouts of signature morphisms always exist and admit
amalgamation. It is well-known that any standard algebraic institution (in particular,
EQ and FOEQ) is semi-exact.

The above diagram admits parameterized interpolation if for any Φ1 ⊆ Sen(Σ1),
Φ2 ⊆ Sen(Σ2) and ϕ2 ∈ Sen(Σ2), whenever σ′

2(Φ1) ∪ σ′
1(Φ2) |= σ′

1(ϕ2) then for
some Φ ⊆ Sen(Σ) such that Φ1 |= σ1(Φ) we have Φ2 ∪ σ2(Φ) |= ϕ2. The diagram
admits Craig interpolation if it admits parameterized interpolation with “parameter set”
Φ2 = ∅. INS admits parameterized (resp. Craig) interpolation if all pushouts in the
category of signatures admit parameterized (resp. Craig) interpolation.

The above reformulation of classical (first-order) Craig interpolation [CK90] has its
source in [Tar86]. It is well-known that single-sorted first-order equational logic admits
Craig as well as parameterized interpolation. But in the many-sorted case, interpola-
tion requires additional assumptions on the signature morphisms involved: a pushout
in FOEQ admits Craig and parameterized interpolation when at least one source mor-
phism involved is injective on sorts, see [Bor05]. Interpolation properties for equational
logic are even more delicate. EQ admits Craig interpolation for pushouts in which
all morphisms are injective, but the restriction to non-empty carriers cannot be dropped
[RG00], [Tar11]. Parameterized interpolation for EQ fails, unless injectivity and strong
“encapsulation” properties are imposed on the morphisms in the pushouts considered,
see [Dia08].

The Foundational Legacy of ASL 257

The interpolation requirement for an institution may be parameterized by classes of
morphisms used in the pushouts considered. For simplicity of exposition we avoid this
complication here; see [Bor05], [Dia08] for details.

3 Specifications and Their Semantics

Taking an institution as a starting point for talking about specifications and software
development, each signatureΣ captures static information about the interface of a soft-
ware system with each Σ-model representing a possible realisation of such a system,
and with Σ-sentences used to describe properties (axioms) that a realisation is required
to satisfy. As a consequence, it is natural to regard the meaning of any specification
SP built in an institution INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉 as given by its
signature Sig [SP] ∈ |Sign| together with a class Mod [SP] of Sig [SP]-models. Speci-
fications SP with Sig[SP] = Σ are referred to as Σ-specifications.

The stress here is not only on the use of model classes to capture the semantics
of specifications, but also on the lack of restriction on the models in the class and on
the class itself — so-called “loose semantics”. This is in contrast to the approach of
ADJ [GTW76] and its followers, see e.g. [EM85], in which the meaning of an (equa-
tional) specification SP was taken to be the isomorphism class of the initial models of
SP . Similar restrictions appear in other early approaches: final models [Wan79], gen-
erated models [BBB+85], etc. The clear benefit of the loose approach is that it avoids
placing premature constraints on the semantics of specifications, leaving choices of im-
plementation details open for later stages of the development process. Although based
in earlier work — the notion of the class of models of a set of axioms is a backbone of
mathematical logic — in the context of algebraic specification this loose view was first
consequently adopted in the work on ASL.

Different formulations of ASL share a kernel where specifications are built from
basic specifications using union, translation and hiding. We use a syntax that is close
to that of CASL [BM04], rather than choosing one of the variants in the ASL literature.

basic specifications: For any signature Σ ∈ |Sign| and set Φ ⊆ Sen(Σ) of Σ-
sentences, the basic specification 〈Σ,Φ〉 is a specification with:

Sig [〈Σ,Φ〉] = Σ
Mod [〈Σ,Φ〉] = {M ∈Mod(Σ) |M |= Φ}

union: For any signature Σ ∈ |Sign|, given Σ-specifications SP1 and SP2, their
union SP1 ∪ SP2 is a specification with:

Sig [SP1 ∪ SP2] = Σ
Mod [SP1 ∪ SP2] = Mod [SP1] ∩Mod [SP2]

translation: For any signature morphismσ:Σ→Σ′ andΣ-specificationSP,SP with σ
is a specification with:

Sig [SP with σ] = Σ′

Mod [SP with σ] = {M ′ ∈Mod(Σ′) |M ′
σ ∈ Mod [SP]}

hiding: For any signature morphismσ:Σ→Σ′ andΣ′-specificationSP ′,SP ′ hide via σ
is a specification with:

Sig [SP ′ hide via σ] = Σ
Mod [SP ′ hide via σ] = {M ′

σ |M ′ ∈ Mod [SP ′]}

258 D. Sannella and A. Tarlecki

Using this semantics as a basis, we can now study the expressible properties that a
specification ensures.

A Σ-sentence ϕ ∈ Sen(Σ) is a semantic consequence of a specification SP with
Sig [SP] = Σ if Mod [SP] |= ϕ; we write this SP |= ϕ. The set of all semantic
consequences of SP is called the theory of SP .

An alternative to the ASL model-class semantics for specifications is to assign a
theory to a specification as its meaning. This goes back to Clear [BG80], and is the
stance taken for instance in [DGS93] and [GR04]. See [ST14] for a careful analysis of
this alternative.

One standard way of presenting such a semantics is by giving a proof system for
deriving consequences of specifications. For the class of specifications described above,
the following proof rules are standard [ST88a]:

SP � ϕ for each ϕ ∈ Φ Φ � ψ
SP � ψ 〈Σ,Φ〉 � ϕ

ϕ ∈ Φ

SP1 � ϕ
SP1 ∪ SP2 � ϕ

SP2 � ϕ
SP1 ∪ SP2 � ϕ

SP � ϕ
SP with σ � σ(ϕ)

SP � σ(ϕ)
SP hide via σ � ϕ

where Φ � ψ calls upon a sound entailment system for the underlying institution INS.
This proof system is sound: SP � ϕ implies SP |= ϕ. Completeness (SP |= ϕ implies
SP � ϕ) is more difficult.

Theorem 3.1 ([ST14]). Given an institution INS that admits amalgamation, and an
entailment system 〈�Σ〉Σ∈|Sign| for INS that is sound and complete, the above proof
system is sound and complete for consequences of specifications built from basic spec-
ifications using union, translation and hiding if and only if INS admits parameterized
interpolation.

The assumption that INS admits parameterized interpolation is a rather strong one,
excluding important examples like EQ except under restrictive conditions (Sect. 2).
But strengthening the proof system above in an attempt to make it complete even in
the absence of this assumption has a high price. As explained in full technical detail in
[ST14], the above proof system cannot be improved without breaking the well-known
compositionality principle, whereby consequences of a specification are inferred from
consequences of its immediate component subspecifications.

It follows that a compositional theory-level semantics for the above class of struc-
tured specifications — or any larger class — that would assign to any specification the
theory of its model class can be given only under a rather strong assumption about the
underlying logical system.

This negative conclusion shows that there is an unavoidable discrepancy between
compositional theory-level and model-class semantics for specifications. As usual, proof
theory gives an approximation to semantic truth, and where there is a difference the latter
provides the definitive reference point.

The Foundational Legacy of ASL 259

That said, non-compositional sound and complete proof systems for consequences
of specifications can be given by collapsing the structure of specifications via normal-
isation [Bor05], even if INS does not admit interpolation. Various ways of avoiding
complete collapse of specification structure are possible, see [MAH06] and [MT14].

We may take the theory-level view a bit further and study consequence relative to a
specification. Any Σ-specification SP determines a consequence relation |=SP where
for any set Φ of Σ-sentences and any Σ-sentence ϕ, Φ |=SP ϕ if ϕ holds in all models
of SP that satisfy Φ. The corresponding semantics assigns to each specification an
entailment relation, possibly given by a proof system as in [HWB97]. The standard
proof rules for the above specifications are the following:

Φ � ψ
Φ �SP ψ �〈Σ,Φ〉 ϕ

ϕ ∈ Φ

Φ �SP1
ϕ

Φ �SP1∪SP2 ϕ

Φ �SP2
ϕ

Φ �SP1∪SP2 ϕ

Φ �SP ϕ

σ(Φ) �SP with σ σ(ϕ)

σ(Φ) �SP σ(ϕ)

Φ �SP hide via σ ϕ

These rules are sound: Φ �SP ϕ implies Φ |=SP ϕ. Again, completeness (Φ |=SP ϕ
implies Φ �SP ϕ) holds only under strong assumptions.

Theorem 3.2 ([Dia08]). Given an institution INS that admits amalgamation, and an
entailment system 〈�Σ〉Σ∈|Sign| for INS that is sound and complete, the above proof
system is sound and complete for consequence relative to specifications built from basic
specifications using union, translation and hiding if and only if INS admits parameter-
ized interpolation.

The negative remarks above concerning compositional theory-level semantics carry
over here as well.

3.1 An Example

Without complicating the semantic foundations, we may add specification-building op-
erations that are defined in terms of the ones above. For instance, in any algebraic insti-
tution, we may use the following operations:

sum: For any Σ-specification SP and Σ′-specification SP ′, their sum is:

SP and SP ′ = (SP with ι) ∪ (SP ′ with ι′)
where ι : Σ ↪→ Σ ∪Σ′ and ι′ : Σ′ ↪→ Σ ∪Σ′ are the signature inclusions.

enrichment: For anyΣ-specification SP withΣ = 〈S,Ω〉, set S′ of sort names, setΩ′

of operation names with arities and result sorts over S ∪S′, and set Φ′ of sentences
over the signature Σ′ = 〈S ∪ S′, Ω ∪Ω′〉, we define:

SP then sorts S′ ops Ω′ • Φ′ = (SP with ι) ∪ 〈Σ′, Φ′〉
where ι : Σ ↪→ Σ′ is the signature inclusion. Obvious notational variants (e.g.
omitting “sorts” when S′ = ∅) are used to enhance convenience.

260 D. Sannella and A. Tarlecki

hiding: Hiding with respect to signature inclusion may be written by listing the hidden
symbols. So, for any Σ-specification SP with Σ = 〈S,Ω〉 and signature inclusion
ι : 〈S′, Ω′〉 ↪→ Σ, we define:

SP hide sorts S \ S′ ops Ω \Ω′ = SP hide via ι

Assume given specifications BOOL of Booleans and NAT of natural numbers. Then,
working in FOEQ, we can build the following specifications:

spec NATBOOL =
NAT and BOOL then
ops > : nat × nat → bool
∀n,m : nat

• 0 > n = false
• succ(n) > 0 = true
• succ(n) > succ(m) = n > m

spec BAG =
NATBOOL then
sorts bag
ops empty : bag

add : nat × bag → bag
count : nat × bag → nat

∀x, y : nat , B : bag
• count(x, empty) = 0
• count(x, add(x,B)) = succ(count(x,B))
• x �= y⇒ count(x, add(y,B)) = count(x,B)

spec CONTAINER =
(BAG then

ops isin : nat × bag → bool
∀x : nat , B : bag

• isin(x,B) = count(x,B) > 0)
hide ops count

It is now easy to check that, for instance,

CONTAINER |= ∀x:nat , B:bag . isin(x, add(x,B)) = true
CONTAINER |= ∀x, y:nat , B:bag . isin(x, add(y, add(x,B))) = true
CONTAINER |= ∀x:nat . isin(x, empty) = false .

Since we are working in FOEQ, which admits parameterized interpolation, by The-
orem 3.1 these can be proved using the proof system given above. We encourage the
reader to write out the details.

One may now attempt to upgrade CONTAINER to give a specification of sets, for
example:

spec EXTCONTAINER =
CONTAINER then
∀B,B′ : bag
• (∀x:nat . isin(x,B) = isin(x,B′))⇒ B = B′

The Foundational Legacy of ASL 261

However, this specification has no models. To see this, note that1

BAG |= ∀x:nat . add(x, add (x, empty)) �= add(x, empty)

from which we encourage the reader to derive EXTCONTAINER |= φ for all first-order
formulae φ.

Instead, we may define

spec SET =
NATBOOL then
sorts bag
ops empty : bag

add : nat × bag → bag
isin : nat × bag → bool

∀x, y : nat , B : bag
• isin(x, empty) = false
• isin(x, add(x,B)) = true
• x �= y⇒ isin(x, add (y,B)) = isin(x,B)

and then

spec EXTSET =
SET then
∀B,B′ : bag
• (∀x:nat . isin(x,B) = isin(x,B′))⇒ B = B′

We may now prove

EXTSET |= ∀x, y:nat , B:bag . add(x, add (y,B)) = add(y, add(x,B))
EXTSET |= ∀x:nat , B:bag . isin(x,B) = true⇒ add(x,B) = B

as well as

EXTSET |= ∀x:nat , B:bag . isin(x, add(x,B)) = true
EXTSET |= ∀x, y:nat , B:bag . isin(x, add(y, add(x,B))) = true
EXTSET |= ∀x:nat . isin(x, empty) = false .

We will refer to these specifications throughout the rest of the paper.

4 Implementations and Parameterization

At the time when work on ASL began, one of the hottest research topics in alge-
braic specification was the search for the “right” definition of implementation of one
specification by another. The goal was to achieve the expected composability proper-
ties [GB80] while capturing practical data representation and refinement techniques.
Various approaches were proposed, of which the concept of implementation given in
[EKMP82] was probably the most influential and well developed; see [SW82] for a

1 This follows from NAT |= ∀n:nat . succ(n) �= n.

262 D. Sannella and A. Tarlecki

contribution from Martin. “Vertical composition” (transitivity) of two such implemen-
tations was the crucial goal, but this was not always possible except under additional
assumptions about the specifications involved. In retrospect, this is no surprise, since
the definitions proposed were all based on syntactic concepts and composition required
some form of normalisation of the transition from implemented to implementing spec-
ifications. This corresponds to requiring programs to be written in a rather restricted
programming language that provides no means of composing modules without syntac-
tically merging their actual code. In addition to problems with vertical composition,
these early definitions failed to cover certain naturally arising examples, and most dis-
regarded loose specifications.

The breakthrough of ASL for implementations was to take seriously the idea that a
loose specification has all of its legal realisations as models. Proceeding from an ab-
stract specification of requirements to a more refined specification is then a matter of
making a series of design decisions, each of which narrows the class of models un-
der consideration. Thus, implementation corresponds simply to the inclusion of model
classes of the specifications involved.

Given specifications SP and SP ′ with Sig [SP] = Sig [SP ′], we say that SP ′ is
a simple implementation of SP , written SP���SP ′, if Mod [SP] ⊇ Mod [SP ′]. For
instance, referring to Sect. 3.1, SET���CONTAINER. (But CONTAINER /���SET.)

Vertical composition is now immediate: if SP���SP ′ and SP ′
���SP ′′ then

SP���SP ′′. Thus, given a chain SP0���SP1���· · · ���SPn of simple implementa-
tion steps and a model M ∈ Mod [SPn], we have M ∈ Mod [SP0]. This ensures that
the correctness of the final outcome of stepwise development may be inferred from the
correctness of the individual implementation steps.

The definition of simple implementation requires the signatures of both specifica-
tions to be the same. Hiding may be used to adjust the signatures (for example, by
hiding auxiliary functions in the implementing specification) if this is not the case. This
is just one example of “wrapping” around specifications that may be needed to cap-
ture the relationship between implemented and implementing specifications when using
simple implementations. In general, such wrapping may incorporate design decisions
like definitions of types and operations in terms of other components that are yet to be
implemented. These are expressible using the simple specification constructs defined in
the last section, where definitions can be expressed using hiding via a derived signature
morphism. Proceeding this way, successive specifications in the chain will incorporate
more and more details arising from successive design decisions. Thereby, some parts
become fully determined, and remain unchanged as a part of the specification until the
final program is obtained. The following diagram is a visual representation of this situ-
ation, where κ1, . . . , κn label the parts that become determined at consecutive steps:�

�

�

�
SP0 ���

κ1

�
�

�
�SP1 ���

κ1
κ2

�
�

�
	SP2 ���· · · ���

κ1
κ2

· · · κn•

It is more convenient to separate the finished parts from the specification, putting them
aside, and proceeding with the development of the unresolved parts only:

The Foundational Legacy of ASL 263�

�

�

�
SP0 ����

κ1

�
�

�
�SP1 ����

κ2

�
�

�
	SP2 ����κ3

· · ·����
κn

• SPn = EMPTY

where EMPTY is a specification for which a standard model empty ∈ Mod [EMPTY] is
available.

Semantically, the finished parts κ1, . . . , κn are functions that map any realisation of
the unresolved part to a realisation of what is being implemented. We call such func-
tions constructors and capture the corresponding concept of implementation as follows
[ST88b]: given specifications SP and SP ′, we say that SP ′ is a constructor implemen-
tation of SP via κ, written SP���

κ
SP ′, if κ is a constructor from SP ′ to SP , that is, a

functionκ : |Mod(Sig [SP ′])| → |Mod(Sig [SP])| such thatκ(M ′) ∈ Mod [SP] for all
M ′ ∈ Mod [SP ′]. Again, vertical composition follows immediately: if SP���

κ
SP ′ and

SP ′
����

κ′
SP ′′ then SP������

κ′;κ
SP ′′. Furthermore, given a chain of constructor implemen-

tation steps SP0����
κ1

SP1����
κ2

· · ·����
κn

SPn = EMPTY we have κ1(κ2(. . . κn(empty)

. . .)) ∈ Mod [SP0].
The general notion of a constructor above covers various constructs used in early

notions of implementation. An important class of examples is reducts with respect to
derived signature morphisms δ : Sig [SP] → Sig [SP ′] which capture definitions of
types and operations in SP terms of components in SP ′.2 By definition, this yields
SP����

δ

SP ′ if M ′
δ ∈ Mod [SP] for all models M ′ ∈ Mod [SP ′], which is a semantic

statement of the correctness condition that needs to be verified.
For example, CONTAINER����

δ

BAG where δ : Sig [CONTAINER]→ Sig[BAG] maps

isin to the term count(x1, x2) > 0.
This successfully deals with the definition of implementation and the issue of verti-

cal composition. The other dimension, “horizontal composition” [GB80], captures the
idea that combining implementations of components of a structured specification should
yield an implementation of the whole original specification. This supposedly provides
for modular decomposition of development tasks during the stepwise development pro-
cess. Unfortunately, this does not allow for the very real possibility that there may be a
mismatch between the structure of the original requirements specification and its reali-
sation, see [FJ90]. For example, an implementation of CONTAINER would not need to
be built on top of an implementation of BAG. The requirement of horizontal composi-
tion is missing a way of distinguishing between, on the one hand, the structure of the
requirements specification used to facilitate its construction and understanding, and on
the other hand, binding decisions made during the development process concerning the
structure of the realisation. The latter fixes the design of the system architecture, and

2 This essentially gives a simple functional programming language if one generalises the notion
of derived signature morphisms by allowing terms that involve constructs like conditionals,
local (recursive) definitions, etc., see e.g. Example 4.1.25 of [ST12].

264 D. Sannella and A. Tarlecki

horizontal composition with respect to this structure is what really matters, see [ST06].
CASL [BM04] provides a way to capture designs of system architecture in the form of
architectural specifications [BST02].

Even though this crucial distinction was never pointed out in the work on ASL, and
it was not properly understood at the time, its technical roots are discernible in the ASL
notion of parameterized specification.

Before ASL, the predominant style of parameterization in algebraic specification
was in terms of pushouts in the category of specifications. These originated in Clear
[BG80] and were then taken further in [TWW82], [EM85]. There, parameterized spec-
ifications were viewed both as specification-building operations and as specifications
for the (free) functor mapping models of the parameter specification to models of the
result specification, with compatibility between the two views being a cornerstone of
this approach. This two-level view is another manifestation of the confusion between
the structure of requirement specifications and the structure of realisations.

Parameterized specifications in ASL were quite different, formed by λ-abstracting
specification expressions with respect to a specification variable. This obviously yields
a function from specifications to specifications, but in general such a function will not
correspond in any natural way to a function on the level of models, and in ASL there
was never any intention that it would.

For instance, define

spec EXT =
λX :Sig [SET] •
X then
∀B,B′ : bag
• (∀x:nat . isin(x,B) = isin(x,B′))⇒ B = B′

Then EXTCONTAINER = EXT(CONTAINER) and EXTSET = EXT(SET). Clearly,
EXT does not correspond to a function on the level of individual models: CONTAINER

has models but EXT(CONTAINER) does not.
An analysis of this situation suggests that what is missing is a distinction between

parameterized specifications and specifications of parameterized models (viz. generic
modules, constructors, ML-style functors). We studied this distinction in [SST92]: pa-
rameterized specifications denote functions that map model classes to model classes,
while parameterized programs denote functions that map models to models and speci-
fications of parameterized programs denote classes of such functions. The slogan is

parameterized (program specification) �= (parameterized program) specification.

Given this distinction, different specification constructs are appropriate for the two
kinds of specifications. We used the notationΠX :SP • SP ′[X] for the latter, following
dependent type theory, and ASL-style λ-abstraction as above for the former. There is
a Galois connection which links the two semantic domains, with closed elements cor-
responding to functions mapping models to non-empty classes of models [SST92]. A
natural example is to generalise from SET by taking the sort of elements as a parameter,
in place of nat .

The Foundational Legacy of ASL 265

This can be taken further, to higher-order parameterization mechanisms in which
objects of all kinds (parameterized specifications, parameterized programs, their spec-
ifications, etc.) are permitted as arguments and as results. This results in a complex
hierarchy with some “types” of objects in this hierarchy being more useful than others
[Asp97] and is closely related to issues involved in the design of module systems, see
e.g. [LB88] and [KBS91]. CASL architectural specifications, which feature parameter-
ized units and their specifications, may be viewed as providing a simple module system,
raising familiar issues of shared substructure [BST02].

5 Behavioural Specifications

Probably the most novel feature of ASL, which first appeared in [SW83], was be-
havioural abstraction. If two algebras “behave the same”, and one is a model of a spec-
ification, then it is natural to consider the specification in which the other is a model as
well. Behavioural abstraction performs such a closure, with respect to an equivalence
which is chosen to reflect the desired meaning of “behaves the same”.

There had been some work on behavioural interpretation of specifications before
ASL, notably [GGM76], [Rei81], [GM82] and [Gan83]. ASL introduced behavioural
abstraction as an explicit construct, which facilitated understanding of the relationship
between behaviourally abstracted specifications and “normal” specifications in a single
language. It also proposed a general notion of behavioural equivalence, parameterized
by an arbitrary set of terms W to be regarded as observable, which covered various
notions of behavioural equivalence proposed in the literature and more.

In the previous sections, we have been working in the context of an arbitrary institu-
tion, but discussion of behavioural equivalence and behavioural abstraction is simplest
in the context of ordinary algebraic signatures and algebras. Therefore, in this section
we will restrict attention to algebraic institutions, which share signatures and models
with EQ and FOEQ. See [ST87] for a possible generalisation to the framework of an
arbitrary institution, and Sect. 8.5.3 of [ST12] for some further remarks in this direction.

Given an algebraic signature Σ = 〈S,Ω〉, an S-sorted set of variables X , and a
set W ⊆ TΣ(X) of Σ-terms, two Σ-algebras A,B are W -equivalent via X , written
A ≡ASL

W (X) B, if there are surjective valuations vA : X → |A|, vB : X → |B| such that
for all terms t, t′ ∈W of the same sort, tA[vA] = t′A[vA] iff tB[vB] = t′B[vB].

The relation≡ASL
W (X) is clearly not reflexive onAlg(Σ): for algebrasAwith carrier of

cardinality larger than that of X , A �≡ASL
W (X) A. This was not a problem for ASL, where

only countable algebras were considered. However, a problem that has been overlooked
so far is that, in general,≡ASL

W (X) is not transitive either.

Counterexample 5.1. Consider a signatureΣ with sorts s, bool and operations g : s→
bool and true, false : bool , with X = {x, y:s, t, f :bool} and W = {g(x), true, false};
crucially, g(y) �∈ W . Consider Σ-algebras A,B,C such that As = Bs = Cs = {a, b}
and Abool = Bbool = Cbool = {tt,ff }, with trueA = trueB = trueC = tt , falseA =
falseB = falseC = ff , and gA(a) = gA(b) = tt , gB(a) = tt but gB(b) = ff ,
and gC(a) = gC(b) = ff . Then A ≡ASL

W (X) B via valuations vA, vB with vA(x) =

vB(x) = a, vA(y) = vB(y) = b, and B ≡ASL
W (X) C via valuations wB, wC with

266 D. Sannella and A. Tarlecki

wB(x) = wC(x) = b, wB(y) = wC(y) = a (extended surjectively to bool). But
A �≡ASL

W (X) C.

A consequence of this is that ASL’s behavioural abstraction as a function on model
classes is not a closure operation, contrary to some of the laws in [SW83], [Wir86].

The source of the problem indicated by the above counterexample is that when the
set of terms considered is not closed under renaming of variables, two algebras A,B
remain in the relation defined above if for each set of terms in W that share common
variables we can identify subalgebras of A and B in which these terms have the same
behaviour. Clearly, this is quite different from requiring these terms (and all terms inW)
to have the same behaviour throughoutA and B, and leads to the failure of transitivity.

To alleviate the above problems, we therefore need to allow the set of variables to be
arbitrarily enlarged and the set of terms to be closed under renaming of variables.

Given a set W ⊆ TΣ(X) of Σ-terms and another set Y of variables, the closure
of W from X to Y is W [X →Y] = {θ(t) | θ : X → Y, t ∈ W}. W is closed under
renaming of variables if W = W [X →X].

Now, we define two Σ-algebrasA,B to beW -equivalent, written A ≡W B, if there
is a set Y of variables such that A ≡ASL

W [X �→Y] B. Then we define

abstraction: For any Σ-specification SP and set W ⊆ TΣ(X) of Σ-terms with vari-
ables in X , abstract SP wrt W is a specification with:

Sig [abstract SP wrt W] = Σ
Mod [abstract SP wrt W] =

{A ∈Mod(Σ) | A ≡W B for some B ∈ Mod [SP]}

Proposition 5.2. For any signature Σ and set W ⊆ TΣ(X) of Σ-terms with variables
in X , W -equivalence is indeed an equivalence on Alg(Σ).

Proof. Reflexivity and symmetry are obvious. For transitivity, suppose A ≡W B as
witnessed by a set Y of variables with valuations vA : Y → |A| and vB : Y → |B|,
and B ≡W C as witnessed by a set Z of variables with valuations wB : Z → |B|
and wC : Z → |C|. Take YZ to be the set of variables given by a pullback v′ : YZ →
Y , w′ : YZ → Z of vB and wB . Then the equivalence A ≡W C is witnessed by
YZ with valuations v′;vA : YZ → |A| and w′;wC : YZ → |C|. First, since vB and
wB are surjective, so are v′ and w′, and hence also v′;vA and w′;wC . Then, for
any terms t, t′ ∈ W of the same sort, and θ : X → YZ , we have: θ(t)A[v′ ;vA] =
θ(t′)A[v′;vA] iff (θ;v′)(t)A[vA] = (θ;v′)(t′)A[vA] iff (since Y , vA, vB witness A ≡W B)
(θ;v′)(t)B[vB] = (θ;v′)(t′)B[vB] iff θ(t)B[v′;vB] = θ(t′)B[v′;vB] iff (since v′;vB =
w′;wB) θ(t)B[w′;wB] = θ(t′)B[w′;wB] iff (θ;w′)(t)B[wB] = (θ;w′)(t′)B[wB] iff (since
Z , wB , wC witness B ≡W C) (θ;w′)(t)C[wC] = (θ;w′)(t′)C[wC] iff θ(t)C[w′;wC] =
θ(t′)C[w′;wC].

We do not need to assume here that the set W is closed under renaming of variables —
the definition of W -equivalence invokes the closure now.

Furthermore, W -equivalence properly generalises the equivalence used in ASL:

The Foundational Legacy of ASL 267

Proposition 5.3. A ≡W B iff A ≡ASL
W (X) B provided that W is closed under renaming

of variables and card(X) ≥ card(|A|) + card(|B|).

Proof. We take the easy direction first: if A ≡ASL
W (X) B is witnessed by vA : X → |A|,

vB : X → |B| then, since W is closed under renaming of variables, A ≡W B is
witnessed by X with the same valuations.

For the opposite implication: suppose A ≡W B is witnessed by Y with valuations
vA : Y → |A|, vB : Y → |B|. Then, given the cardinality assumption to ensure that X
is sufficiently large, there exists θ : X → Y such that θ;vA : X → |A| and θ;vB : X →
|B| are surjective. A ≡ASL

W (X) B is witnessed by θ;vA and θ;vB .

Completely arbitrary choices of W , as permitted in ASL, may yield odd equivalences.
Even closing the sets of terms under variable renaming leaves an enormous wealth of
possibilities. Only a few of these have ever been used, capturing different notions of
behavioural equivalence. The most typical situation is where we want to indicate a set
IN of sorts to be viewed as input data, and a set OUT of sorts to be viewed as observ-
able outputs. Then ≡TΣ(XIN)OUT

identifies algebras that display the same input/output
behaviour for observable computations (presented as Σ-terms) taking inputs from IN
and yielding results in OUT . Often, one identifies a single set OBS of observable sorts
and takes IN = OUT = OBS . An important twist is to select a subset of operations
that are used to build observable terms, by considering≡TΣ′ (XIN)OUT

for a subsignature
Σ′ of Σ, see for instance [BH06].

The natural choice of observable sorts for the specifications SET, EXTSET and
CONTAINER in Sect. 3.1 is OBS = {bool , nat}; in particular, bag �∈ OBS . One may
now check that, in this context, it is sufficient to consider as observable terms W SET all
variables of sorts nat and bool as well as all terms of the form isin(x, tbag) where x is a
variable of sort nat and tbag is a term of sort bag built using empty , add , and variables
of sort nat .

A more general interesting case arises in the following situation. We consider an
additional signature Σ̂ with sets IN and OUT of input and output sorts, together with
a derived signature morphism δ : Σ̂ → Σ. We may think of δ as defining Σ̂-operations
in terms of Σ-operations. Suppose that we want to observe Σ̂-computations carried out
in Σ-algebras according to the definitions given by δ. Then the relevant equivalence on
Σ-algebras is given by the following set of terms: Wδ(IN ,OUT) = δ(T

̂Σ(X̂IN)OUT),

where X = δ(X̂IN).
In ASL, the abstraction construct defined above was available for arbitrary use, freely

intermixed with other specification constructs. This is in line with the idea that ASL
is a kernel language which provides raw specification power, free from pragmatic or
methodologically-motivated constraints.

In specification practice, the use of abstraction can be limited to specific contexts
where it fits a methodological need. In particular, if SP is a requirements specification
and W captures all of the computations that the user wishes to carry out in its realisa-
tion, then any implementation of abstract SP wrt W will be satisfactory. So this is the
specification that should be used as the starting point in the development. That is, we
want to have the liberty to implement SP up to ≡W . However, when using a realisation

268 D. Sannella and A. Tarlecki

of another specification SP ′ to implement SP , we still want to be allowed to assume
that it satisfies SP ′ “literally”. This is captured by the following definition.3

We say that SP ′ is a behavioural implementation of SP via κ wrt W , written
SP W

���

κ
SP ′, if abstract SP wrt W ���

κ
SP ′. Obviously, whenever SP ���

κ
SP ′

then also SP W
���

κ
SP ′. Hence, for instance, we have CONTAINER W SET

����

δ

BAG

where δ: Sig [CONTAINER]→Sig [BAG] maps isin to the term count(x1, x2) > 0 and
W SET is as described above. However, we also have EXTSET W SET

����

δ

BAG even though

EXTSET �����
δ

BAG.

The alert reader will have sensed that we are about to run into a problem: vertical
composability does not hold in general. SP W

���

κ
SP ′ and SP ′ W ′

����

κ′
SP ′′ does not

imply SP W
������

κ′;κ
SP ′′. However, these behavioural implementations compose if the

constructorκ is stable with respect toW ′ andW , that is,≡W ′ ⊆ κ−1(≡W). Or, spelling
this out, we require that for any A′, B′ ∈ Alg(Sig [SP ′]), whenever A′ ≡W ′ B′ then
κ(A′) ≡W κ(B′) [Sch90], [ST88b]. This technical notion captures a methodological
point:κmust not differentiate between behaviourally equivalent realisations ofSP′. This
is exactly the encapsulation principle of data abstraction and hierarchical decomposition.

Now, given a chain of behavioural implementation steps using stable constructors

SP0
W0
����

κ1

SP1
W1
����

κ2

· · · Wn−1
����

κn

SPn = EMPTY

we have κ1(κ2(. . . κn(empty) . . .)) ≡W0 A0, for some A0 ∈ Mod [SP0].
The crucial stability requirement on constructors may be approached in two differ-

ent ways. On the one hand, following the ideas in [Sch90] and [BST08], we can fix
the family of behavioural equivalences considered, referring to a fixed set of observ-
able built-in sorts (booleans, etc.), and then limit constructors to those that preserve that
equivalence. This is guaranteed by use of a programming language that appropriately
enforces abstraction barriers. The other option is, at each development step, to deter-
mine the behavioural equivalence that is appropriate to the context of use. Technically,
this means that given a behavioural implementation step SP W

���

κ
SP ′, we need a

set W ′ of Sig [SP ′]-terms such that κ is stable with respect to W ′ and W . Picking W ′

to achieve ≡W ′ = κ−1(≡W) gives maximal flexibility for further implementations of
SP ′, since only the precise context of use in the implementation of SP by SP ′ via κ
matters.

The latter option was proposed in [ST88b] but it does not seem to have been properly
explored. The following simple fact shows how this might go.

Proposition 5.4. Given a derived signature morphism δ : Σ → Σ′ and set W ⊆
TΣ(X) of Σ-terms closed under renaming of variables, let W ′ = δ(W) ⊆ TΣ′(X ′)

3 This is a special case of abstractor implementations as introduced in [ST88b]. We follow the
terminology of Sect. 8.4 in [ST12] but generalise the concept from equivalence with respect to
observable sorts to equivalence with respect to observable terms.

The Foundational Legacy of ASL 269

where X ′ = δ(X). Then for any Σ′-algebras A′, B′, A′ ≡W ′ B′ iff A′
δ ≡W B′

δ. In
particular the δ-reduct constructor is stable with respect to W ′ and W .

Proof. Suppose in Σ′, A′ ≡W ′ B′ is witnessed by Y ′ with valuations v′A′ : Y ′ → |A′|
and v′B′ : Y ′ → |B′|. Then in Σ, A′

δ ≡W B′
δ is witnessed by Y = Y ′

δ (only the
mapping on sorts matters here) with valuations v′A′ δ : Y → |A′

δ| and v′B′ δ : Y →
|B′

δ|.
Let then inΣ,A′

δ ≡W B′
δ be witnessed by Y with valuations v1 : Y → |A′

δ| and
v2 : Y → |B′

δ|. Let Y ′ be δ(Y) on sorts in the image of δ and Y ′
s′ = |A′|s′ $ |B′|s′

for all sorts s′ not in the image of δ. Let v′A′ : Y ′ → |A′| be given by v1 on variables
in δ(Y), and be any surjective function on the sorts not in the image of δ; similarly, let
v′B′ : Y ′ → |B′| be given by v2 on variables in δ(Y), and be any surjective function on
the sorts not in the image of δ. Then A′ ≡W ′ B′ is witnessed by Y ′ with valuations v′A′

and v′B′ .
Stability of the reduct is just the former implication.

For instance, in the context of use of BAG taken as an implementation of EXTSET as
indicated above, EXTSET W SET

����

δ

BAG, the relevant set of observable terms to deter-

mine equivalence up to which BAG is to be implemented is δ(W SET) which consists of
all variables of sorts nat and bool as well as all terms of the form count(x, tbag) > 0
where x is a variable of sort nat and tbag is a term of sort bag built using empty , add ,
and variables of sort nat . In particular, we do not care about keeping the exact count
of the number of occurrences in a bag, as long as we can distinguish between the cases
where it is 0 versus strictly positive.

6 Final Remarks

In this essay we have presented what we see as the key characteristics of ASL and have
outlined some of the developments that later emerged from this basis. We have focused
on tracing the flow of ideas rather than on technical details or new results, although the
technicalities in Sect. 5 regardingW -equivalence seem new.

Even though there has been a lot of work on these topics, some corners are worth
further exploration.

Semantics: It seems to us that the relationship between model-class and theory-level
semantics is completely resolved by Theorem 3.1 and its consequences, as discussed
in Sect. 3, even if the choice between the two may remain controversial in some
quarters. The class of specifications we consider is particularly well-understood with
clear proof techniques etc. For some other specification constructs, including for
instance behavioural abstraction, this is much less true.

Implementation: The semantic concept of implementation in Sect. 4 together with its
refinement in Sect. 5 capture what is needed. We have not discussed issues arising
from the need for proof techniques to establish the correctness of implementation
steps — see Chap. 9 of [ST12] for our summary of the state of the art.

270 D. Sannella and A. Tarlecki

Parameterization: All of the syntactic and semantic concepts are established but in a
raw form that is a little hard to use. We feel that this is still a somewhat open area
where more ideas are needed to limit the scope of possibilities to what is really
required and useful in practice.

Behavioural specifications: Following ASL, in Sect. 5 we sketched the “external” ap-
proach to behavioural interpretation of specifications, based on behavioural equiva-
lence between algebras. A widely-studied alternative is to re-interpret the meaning
of axioms, and hence of specifications, using the “internal” indistinguishability be-
tween values. The relationship between the two approaches is now well-understood,
see [BHW95], but only for behavioural equivalence with respect to a set of ob-
servable sorts. It would be interesting to investigate the same relationship for W -
equivalence. We also think that the methodological ideas on the use of context-
tailored behavioural equivalence at the end of Sect. 5 are worth further exploration.

References

[Asp97] Aspinall, D.: Type Systems for Modular Programming and Specification. Ph.D. the-
sis, University of Edinburgh, Department of Computer Science (1997)

[BBB+85] Bauer, F.L., Berghammer, R., Broy, M., Dosch, W., Geiselbrechtinger, F., Gnatz, R.,
Hangel, E., Hesse, W., Krieg-Brückner, B., Laut, A., Matzner, T., Möller, B., Nickl,
F., Partsch, H., Pepper, P.A., Samelson, K., Wirsing, M., Wössner, H.: The Munich
Project CIP. LNCS, vol. 183. Springer, Heidelberg (1985)

[BG80] Burstall, R.M., Goguen, J.A.: The semantics of Clear, a specification language. In:
Bjorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332.
Springer, Heidelberg (1980)

[BH06] Bidoit, M., Hennicker, R.: Constructor-based observational logic. Journal of Logic
and Algebraic Programming 67(1-2), 3–51 (2006)

[BHW95] Bidoit, M., Hennicker, R., Wirsing, M.: Behavioural and abstractor specifications.
Science of Computer Programming 25(2-3), 149–186 (1995)

[BM04] Bidoit, M., Mosses, P.D. (eds.): CASL User Manual. LNCS, vol. 2900. Springer,
Heidelberg (2004), http://www.informatik.uni-bremen.de/cofi/
index.php/CASL

[Bor05] Borzyszkowski, T.: Generalized interpolation in first order logic. Fundamenta In-
formaticae 66(3), 199–219 (2005)

[BST02] Bidoit, M., Sannella, D., Tarlecki, A.: Architectural specifications in CASL. Formal
Aspects of Computing 13, 252–273 (2002)

[BST08] Bidoit, M., Sannella, D., Tarlecki, A.: Observational interpretation of CASL speci-
fications. Mathematical Structures in Computer Science 18, 325–371 (2008)

[CK90] Chang, C.-C., Keisler, H.J.: Model Theory, 3rd edn. North-Holland (1990)
[DGS93] Diaconescu, R., Goguen, J.A., Stefaneas, P.: Logical support for modularisation. In:

Huet, G., Plotkin, G. (eds.) Logical Environments, pp. 83–130. Cambridge University
Press (1993)

[Dia08] Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser (2008)
[EKMP82] Ehrig, H., Kreowski, H.-J., Mahr, B., Padawitz, P.: Algebraic implementation of

abstract data types. Theoretical Computer Science 20, 209–263 (1982)
[EM85] Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. In: EATCS Mono-

graphs on Theoretical Computer Science, vol. 6. Springer (1985)

http://www.informatik.uni-bremen.de/cofi/index.php/CASL
http://www.informatik.uni-bremen.de/cofi/index.php/CASL

The Foundational Legacy of ASL 271

[FJ90] Fitzgerald, J.S., Jones, C.B.: Modularizing the formal description of a database
system. In: Langmaack, H., Hoare, C.A.R., Bjorner, D. (eds.) VDM 1990. LNCS,
vol. 428, pp. 189–210. Springer, Heidelberg (1990)

[Gan83] Ganzinger, H.: Parameterized specifications: Parameter passing and implementation
with respect to observability. ACM Transactions on Programming Languages and
Systems 5(3), 318–354 (1983)

[GB80] Goguen, J.A., Burstall, R.M.: CAT, a system for the structured elaboration of cor-
rect programs from structured specifications. Technical Report CSL-118, Computer
Science Laboratory, SRI International (1980)

[GB92] Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. Journal of the Association for Computing Machinery 39(1),
95–146 (1992)

[GGM76] Giarratana, V., Gimona, F., Montanari, U.: Observability concepts in abstract data
type specifications. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp.
567–578. Springer, Heidelberg (1976)

[GM82] Goguen, J.A., Meseguer, J.: Universal realization, persistent interconnection and
implementation of abstract modules. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP
1982. LNCS, vol. 140, pp. 265–281. Springer, Heidelberg (1982)

[GR04] Goguen, J.A., Roşu, G.: Composing hidden information modules over inclusive in-
stitutions. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to
Formal Methods. LNCS, vol. 2635, pp. 96–123. Springer, Heidelberg (2004)

[GTW76] Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the spec-
ification, correctness and implementation of abstract data types. Technical Report
RC 6487, IBM Watson Research Center, Yorktown Heights NY (1976), Also in:
Yeh, R.T. (ed.): Current Trends in Programming Methodology. Data Structuring,
vol. IV, pp. 80–149. Prentice-Hall (1978)

[HWB97] Hennicker, R., Wirsing, M., Bidoit, M.: Proof systems for structured specifica-
tions with observability operators. Theoretical Computer Science 173(2), 393–443
(1997)

[KBS91] Krieg-Brückner, B., Sannella, D.: Structuring specifications in-the-large and in-the-
small: Higher-order functions, dependent types and inheritance in SPECTRAL. In:
Abramsky, S. (ed.) TAPSOFT 1991, CCPSD 1991, and ADC-Talks 1991. LNCS,
vol. 494, pp. 103–120. Springer, Heidelberg (1991)

[LB88] Lampson, B., Burstall, R.M.: Pebble, a kernel language for modules and abstract
data types. Information and Computation 76(2-3), 278–346 (1988)

[MAH06] Mossakowski, T., Autexier, S., Hutter, D.: Development graphs — proof man-
agement for structured specifications. Journal of Logic and Algebraic Program-
ming 67(1-2), 114–145 (2006)

[MT14] Mossakowski, T., Tarlecki, A.: A relatively complete calculus for structured het-
erogeneous specifications. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS,
vol. 8412, pp. 441–456. Springer, Heidelberg (2014)

[Rei81] Reichel, H.: Behavioural equivalence — a unifying concept for initial and final
specification methods. In: Proceedings of the 3rd Hungarian Computer Science
Conference, pp. 27–39 (1981)

[RG00] Roşu, G., Goguen, J.A.: On equational Craig interpolation. Journal of Universal
Computer Science 6(1), 194–200 (2000)

[Sch90] Schoett, O.: Behavioural correctness of data representations. Science of Computer
Programming 14(1), 43–57 (1990)

[SST92] Sannella, D., Sokołowski, S., Tarlecki, A.: Toward formal development of programs
from algebraic specifications: Parameterisation revisited. Acta Informatica 29(8),
689–736 (1992)

272 D. Sannella and A. Tarlecki

[ST87] Sannella, D., Tarlecki, A.: On observational equivalence and algebraic specification.
Journal of Computer and System Sciences 34, 150–178 (1987)

[ST88a] Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information and
Computation 76(2-3), 165–210 (1988)

[ST88b] Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic
specifications: Implementations revisited. Acta Informatica 25, 233–281 (1988)

[ST06] Sannella, D., Tarlecki, A.: Horizontal composability revisited. In: Futatsugi, K.,
Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS,
vol. 4060, pp. 296–316. Springer, Heidelberg (2006)

[ST12] Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. In: Monographs in Theoretical Computer Science. An EATCS
Series. Springer (2012)

[ST14] Sannella, D., Tarlecki, A.: Property-oriented semantics of structured specifications.
Mathematical Structures in Computer Science 24(2), e240205 (2014)

[SW82] Sannella, D., Wirsing, M.: Implementation of parameterised specifications. In:
Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 473–488.
Springer, Heidelberg (1982)

[SW83] Sannella, D., Wirsing, M.: A kernel language for algebraic specification and im-
plementation. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 413–427.
Springer, Heidelberg (1983)

[Tar86] Tarlecki, A.: Bits and pieces of the theory of institutions. In: Poigné, A., Pitt, D.H.,
Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Program-
ming. LNCS, vol. 240, pp. 334–360. Springer, Heidelberg (1986)

[Tar11] Tarlecki, A.: Some nuances of many-sorted universal algebra: A review. Bulletin of
the European Association for Theoretical Computer Science 104, 89–111 (2011)

[TWW82] Thatcher, J.W., Wagner, E.G., Wright, J.B.: Data type specification: Parameteriza-
tion and the power of specification techniques. ACM Transactions on Programming
Languages and Systems 4(4), 711–732 (1982)

[Wan79] Wand, M.: Final algebra semantics and data type extensions. Journal of Computer
and System Sciences 19, 27–44 (1979)

[Wir82] Wirsing, M.: Structured algebraic specifications. In: Proceedings of the AFCET
Symposium on Mathematics for Computer Science, Paris, pp. 93–107 (1982)

[Wir86] Wirsing, M.: Structured algebraic specifications: A kernel language. Theoretical
Computer Science 42(2), 123–249 (1986)

Soft Agents: Exploring Soft Constraints
to Model Robust Adaptive Distributed Cyber-Physical

Agent Systems

Carolyn Talcott1, Farhad Arbab2, and Maneesh Yadav1

1 SRI International, Menlo Park, CA 94025, USA
{carolyn.talcott,maneesh.yadav}@sri.com

2 CWI Amsterdam, The Netherlands
Farhad.Arbab@cwi.nl

Abstract. We are interested in principles for designing and building open dis-
tributed systems consisting of multiple cyber-physical agents, specifically, where
a coherent global view is unattainable and timely consensus is impossible. Such
agents attempt to contribute to a system goal by making local decisions to sense
and effect their environment based on local information. In this paper we pro-
pose a model, formalized in the Maude rewriting logic system, that allows ex-
perimenting with and reasoning about designs of such systems. Features of the
model include communication via sharing of partially ordered knowledge, mak-
ing explicit the physical state as well as the cyber perception of this state, and the
use of a notion of soft constraints developed by Martin Wirsing and his team to
specify agent behavior. The paper begins with a discussion of desiderata for such
models and concludes with a small case study to illustrate the use of the modeling
framework.

With Best Wishes to Martin Wirsing

This work has roots in the joint work with Martin on the PAGODA project and soft
constraint solving[1], carried out when Martin spent a sabbatical at SRI in 2005. This
work was continued by Martin, Max Meier and Matthias Hölzl [2,3], leading to a new
notion of soft constraints that seems very well suited to the world of cyber-physical
agents. The present work also builds on many discussions over the last few years on the
challenges of cyber-physical systems, including several Interlink workshops [4] lead by
Martin.

It has been a great privilege and pleasure to know Martin, to have the opportunity
to work together from time to time, and to exchange ideas as our paths have crossed
over the years. I look forward to many more years of exchanging ideas and tackling
challenging problems.

1 Introduction

Consider a future in which an explosion of small applications running on mobile devices
combine and collaborate to provide powerful new functionality not only in the realms

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 273–290, 2015.
c© Springer International Publishing Switzerland 2015

274 C. Talcott, F. Arbab, and M. Yadav

such as large collections of automated vehicles, but also harnessing the underlying com-
munication and robust people power for new kinds of cyber crowd sourcing tasks.

Complex cyber-physical agents are becoming increasingly ubiquitous, in part, due
to increased computational performance of commodity hardware and the widespread
adoption of standard mobile computing environments (e.g. Android). At the time of
writing, one can purchase (for a few hundred US dollars in the retail market) a four ro-
tor “drone” capable of precise, controlled hovering that can be equipped with a portable
Android phone that provides integrated communication (e.g. wifi ad hoc) and sensing
(e.g. high resolution camera) capability as well as considerable processing power (e.g.
multiple GPU cores) and memory. The increasingly impressive capabilities of such plat-
forms have led to autonomous cyber-physical systems that implement realtime methods
for computer vision[5], machine learning[6] and computational aerodynamics[7]. Tech-
nology has progressed to the point that many of these capabilities can be easily applied
by non-specialists.

The disparity between the growing sophistication of cyber-physical agents and prac-
tical, scalable methods that autonomously coordinate agent collectives (without central
control) is clear from the lack of widely available frameworks. There are very few practi-
cal tools available to non-specialists that would enable them to specify joint goals across
a cyber-physical agent collectives in a way that is robust to a dynamic environment.

The specification of goals and constraints for agent collectives broadly falls under
a number of problem representations that have been long explored, these include Dis-
tributed Constraint Satisfaction Problems [8], Distributed Control Optimization Prob-
lems [9], Distributed Continual Planning [10], Multi-Agent Planning [11] and multi-
agent coordination[12]. Not all methods that we have surveyed in the literature have
proven correctness or bounds, but amongst those that have, coordination is clearly dif-
ficult since all methods that we are aware of are exponential in the number of messages
sent (with the exception of DPOP[13], where the number of messages is kept linear at
the cost of exponential memory usage).

Most methods focus on distributed systems, but practical distributed systems are of-
ten further complicated from unexpected changes in goals, (partial) agent failure and
delays in agent communication. In the context of such complicating factors, some coor-
dination methods will suffer (unbounded) delays in performing actions towards a spec-
ified goal (e.g., halt during consensus formation), when it would make eminent sense
for the agents to begin doing something towards achieving their goal. While many of
the problem representations that have explored distributed systems have carefully con-
sidered dynamic environments and failure, we use the term fractionated to emphasize
these aspects.

Our intent is to address the design, prototyping and eventually implementation of
systems which we call Fractionated Cyber-Physical Systems (FCPS) [14,15]. FCPS
are distributed systems composed of many small cyber-physical agents that must act
using only local knowledge in the context of an uncertain environment, communication
delays as well as agent failure/replacement/addition. Agents in FCPS interact by sharing
knowledge that is gained by sensing and by reasoning. We are particularly interested in
principles for designing FCPS in which desired cooperation/coordination emerges from
local behaviors, under practical conditions.

Soft Agents: Exploring Soft Constraints 275

FCPS promise robustness and fault tolerance using many small entities such that
no specific individual is critical. Entities can come and go without disrupting the sys-
tem, as long as the needed functionality is sufficiently represented. Defective, worn out,
or out-of-date entities can be easily replaced by fresh, improved versions. The term
“fractionated” was originally coined to describe replacing small sets of multifunctional
space satellites with an collective of smaller more specialized “nanosats” that could be
launched cheaply and easily replaced, providing a resilient system capable of complex
functionality at a lower overall cost[16]. We suggest that this notion has become much
more relevant with the advent of ubiquitous mobile computing and applicable to “down
to earth” problems such as package delivery.

Towards these goals, we propose a framework we call Soft Agents and describe a
prototype implementation in the Maude rewriting logic system [17] along with a small
package delivery case-study to illustrate the ideas.

The notion of fractionated cyber-physical systems is very similar to the notion of
ensemble that emerged from the Interlink project [4,18] and that has been a central
theme of the ASCENS (Autonomic Service-Component Ensembles) project [19]. In
[20] a mathematical system model for ensembles is presented. Similar to FCPS and
soft agents, the mathematical model treats both cyber and physical aspects of a system.
A notion of fitness is defined that supports reasoning about level of satisfaction. Adapt-
ability is also treated. In contrast to the soft-agent framework which provides an exe-
cutable model, the system model for ensembles is denotational. The two approached are
both compatible and complementary and joining them could lead to a very expressive
framework supporting both high-level specification and concrete design methodologies.

The soft agents framework combines ideas from several previous works: the use
of soft constraints [1,2,3] and soft constraint automata [21] for specifying robust and
adaptive behavior; partially ordered knowledge sharing for communication in disrupted
environments [14,22,23,15], and the Real-time Maude approach to modeling timed
systems [24].

Soft constraints allow composition in multiple dimensions, including different con-
cerns for a given agent, and composition of constraints for multiple agents. In [2] a new
system for expressing soft constraints called Monoidal Soft Constraints is proposed.
This generalizes the Semi-ring approach to support more complex preference relations.
In [3] partially ordered valuation structures are explored to provide operators for com-
bination of constraints for different features that respects the relative importance of the
features.

Given local constraints, a global theoretical model can be formed as a cross prod-
uct, that considers all inter-leavings of actions of individual agents. This is generally an
infeasibly complex problem to solve. We propose solving the complex problem by con-
current distributed solution of simpler local problems. This leads us to study questions
such as

– Under what conditions are the local solutions good enough?
– Under what conditions would it not be possible?
– How much knowledge is needed for satisfactory solution/behavior?
– What frequency of decision making is needed so that local solutions are safe and

effective?

276 C. Talcott, F. Arbab, and M. Yadav

Plan. Section 2 discusses desiderata for a framework for FCPS. Section 3 presents
the proposed framework and its formalization in Maude. Section 4 illustrates the ap-
plication of soft-agents to a simple autonomous drone packet deliver system. Section 5
summarizes and discusses future directions.

2 Desiderata for Soft Agents

CPS agents must maintain an overall situation, location, and time awareness and make
safe decisions that progress towards an objective in spite of uncertainty, partial knowl-
edge and intermittent connectivity. The big question is: how do we design, build, and
understand such systems? We want principles/tools for system designs that achieve
adaptive, robust functionality using diversity, redundancy and probabilistic behavior.

The primary desiderata for our FCPS are localness, liveness and softness. We explic-
itly exclude considering insincere or malicious agents in our current formulation.1

Localness. Cooperation and coordination should emerge from local behavior based on
local knowledge. This is traditionally done by consensus formation algorithms. Con-
sensus involves agreeing on what actions to take, which usually requires a shared view
of the system state. In a distributed system spread over a large geographic area beyond
the communication reach of individual agents, consensus can take considerable time
and resources, but an FCPS agent must keep going. Thus consensus may emerge but
can’t be relied on, nor can it be be forced.

In less than ideal conditions what is needed is a notion of satisficing consensus: for
any agent, consensus is satisficed when enough of a consensus is present so that agents
can begin executing actions that are likely to be a part of a successful plan, given that
there is some expectation for the environment to change.

Our POKS knowledge dissemination framework underlying an FCPS takes care of
agreeing on state to the degree possible. In a quiescent connected situation all agents
will eventually have the same knowledge base. As communication improves, an FCPS
approaches a typical distributed system without complicating factors. This should in-
crease the likelihood of reaching actual consensus, and achieving ideal behaviors.

A key question here is how a system determines the minimal required level of con-
sensus? In particular what quality of connection/communication is required to support
formation of this minimum level of consensus?

Safety and Liveness. Another formal property of an FCPS to consider concerns safety
and liveness: something bad does not happen and something good will eventually hap-
pen. From a local perspective this could mean avoiding preventable disaster/failure as
well as making progress and eventually sufficiently satisfying a given goal.

– An agent will never wait for an unbounded time to act.
– An agent can always act if local environment/knowledge/situation demands.

1 This is a strong assumption, although not unusual. The soft agents framework supports mod-
eling of an unpredictable or even “malicious” environment. We discus the issue of trust or
confidence in knowledge received as part of future work.

Soft Agents: Exploring Soft Constraints 277

– An agent will react in a timely manner based on local information.
– An agent should keep itself “safe”.

We note that the quality calculus [25,26] provides language primitives to support
programming to meet such liveness requirements and robustness analysis methods for
verification. One of the motivations of the Quality Calculus was to deal with unreali-
able communication. It will be interesting to investigate how soft constraints and the
quality calculus approach might be combined to provide higher level specification and
programming paradigms.

Softness. We want to reason about systems at both the system and cyber-physical en-
tity/agent level and systematically connect the two levels. Agent behavior must allow
for uncertainty and partial information, as well as preferences when multiple actions
are possible to accomplish a task, as often is the case.

Specification in terms of constraints is a natural way to allow for partiality. Soft con-
straints provide a mechanism to rank different solutions and compose constraints con-
cerning different aspects. We refer to [2] for an excellent review of different soft con-
straint systems. Given a problem there will be system wide constraints characterizing
acceptable solutions, and perhaps giving measures to rank possible behaviors/solutions.
Rather than looking for distributed solution of global constraints, each agent will be
driven by a local constraint system. Multiple soft constraint systems maybe be involved
(multiple agent classes) and multiple agents may be driven by the same soft constraint
system.

3 Soft Agent Model Formalized in Maude

3.1 Networked Cyber-Physical Systems and Partially-Ordered Knowledge
Sharing

To motivate the formal model we give a brief overview of our Networked cyber-physical
systems (NCPS) framework. The theoretical foundation is a distributed computing model
based on sharing knowledge that is partially ordered (POKS) [22,14,15]. An NCPS is a
collection of cyber-physical agents (CPAs or simply agents) with diverse capabilities and
resource limitations. They may cooperate and/or compete to achieve some global or lo-
cal goal. An agent can communicate directly with connected peers to share knowledge.
Information propagates opportunistically when connections arise. Communication, as
well as an agent’s own sensors, may update the agent’s local knowledge base. A CPA
must function somewhat autonomously, making decisions based on local information.
It should function safely even in absence of communication and should be capable of a
wide spectrum of operation between autonomy and consensus/cooperation to adapt to
resource constraints and disruptions in communication. Interpreting knowledge items
as facts or goals enables declarative specification of sensing and control. Conflicts be-
tween information received from various peers, through various channels, and/or local
sensors, acquired/received at different times, need to be resolved. The partial order on

278 C. Talcott, F. Arbab, and M. Yadav

knowledge provides a mechanism for revision, control, conflict resolution and consensus
under suitable conditions.

Soft agents are based on the NCPS framework with two additional features: formu-
lation of an agent’s goals as soft constraint problems and representation of an agent’s
physical state separated from its knowledge. Actions are carried out based on the physi-
cal state, and an agent makes decisions based on its local knowledge. In the following we
describe the formalization of Soft Agents in the Maude rewriting logic language [17].

3.2 Soft Agents in Maude

A Maude cyber-physical soft-constraint system is an executable model with two parts:
(1) the application independent modules (SOFT-AGENTS, SOFT-AGENT-RULES) and
(2) modules specifying capabilities and behavior of the agents by defining the abstract
functions used in the rewrite rules.

The following is a brief summary of the data structures and behavior rules used to
specify the framework, including the functions that must be defined for each applica-
tion. We present fragments of Maude code followed by informal discussion to clarify
and augment the fragments. 2

Knowledge. We use knowledge to represent properties of the world (the environment
perspective) as well as an agents local view. An agent can receive or post knowledge.
The environment, represented by rewrite rules, provides sensor information to agents.

sorts PKItem TKItem KItem Info .
subsort PKItem TKItem < KItem .
op _@_ : Info Nat -> TKItem .

Knowledge is represented as a set of knowledge items (sort KItem), and comes in
two flavors: persistent (sort PKItem) and ephemeral/temporary (sort TKItem). Per-
sistent knowledge is knowledge that doesn’t change over time, such as the class of an
agent, size of a packet or capacity of a drone. Ephemeral knowledge concerns things
that are expected to change over time such as sensor information, delivered by the
environment, (received) logical and shared state knowledge (received and/or posted).
Ephemeral knowledge is constructed from the underlying information (sort Info) and
a timestamp (info @ t).

op _<<_ : KItem KItem -> Bool . *** knowledge partial order
eq kitem << kitem’ = false [owise] . *** not ordered default

Knowledge is partially ordered (<<) providing a mechanism to discard knowledge that
is no longer valid/relevant. This allows an agent to deal with situations where, for exam-
ple, newer state knowledge is available, or knowledge representing a goal is no longer
valid because the goal has been satisfied or timed out. The equation with the [owise]

2 Maude specifications consist of sort and subsort declarations, specifying the data type hierar-
chy, function and constant declarations (keyword op) giving argument and result sorts, equa-
tions (keyword eq) used to define functions, and rewrite rules rl[rulename]: lhs =>
rhs. --- and *** precede comments.

Soft Agents: Exploring Soft Constraints 279

label says that the default is that two items are not ordered. It will be used if no other
equation for the relation << matches.

An agent is modeled by a structure of the form

[id : class | envkb | localkb | cachedkb | events]

where id is the agent’s identity and class is the agent’s class. The terms envkb,
localkb, and cachekb denote knowledge bases—sets of knowledge items, where
envkb contains facts representing an agent’s physical state. In mobile settings it will
include location and may include energy or fuel level, load, weight, etc.. The agent
doesn’t see envkb directly, only via sensor readings which maybe posted automatically
or upon request. The knowledge items in localkb contain the agent’s perception of its
state and other knowledge which could include mode, plans, and knowledge posted by
other agents. The knowledge items in cachedkb form the local cache of knowledge,
used by the environment to implement knowledge sharing. It is not directly visible
by the agent, although the agent has had the opportunity to process the knowledge in
the cache. An agent system evolves by application of event handling rules. Rules for
different types of event use information from different knowledge bases as appropriate.

Events, actions and tasks. Events include those that an agent handles and those handled
by the environment. There are four classes of event:

– received knowledge such as local sensor information or shared knowledge, handled
by the agent

– tasks scheduled by the agent, possibly with delay, to be handled by the agent
– actions to execute posted by agents, possibly with delay, handled by the environ-

ment (using rewrite rules that reflect the model physics)
– knowledge posted by an agent, handled by the communication system rewrite rules

sorts IEvent DEvent Event .
subsort IEvent DEvent < Event . --- immediate/delayed events
sorts Action Task ActTask . --- delayed event body
subsort Action Task < ActTask .

Events are classified as immediate (sort IEvent) or delayed (sort DEvent). Delayed
events are actions or tasks with a timestamp. The following are the event constructors.

op _@_ : ActTask Nat -> DEvent .
op rcv : KB -> IEvent [ctor] . *** receive event
op post : InfoSet -> IEvent [ctor] . *** posting information
op done : Action Bool -> Info [ctor] . *** action status
op tick : -> Task . *** built in task

Time For initial studies we assume a global clock. Agents can run at different speeds
by scheduling actions with different delays. In the current simple model only tasks
and actions cause time to pass. Other events are handled instantaneously. An agent’s
behavior rules can cause delay in handling received knowledge by posting tasks.

280 C. Talcott, F. Arbab, and M. Yadav

3.3 Rules

An agent system has the form

{ aconf clock(t) }

whereaconf is a multiset of agents, assumed to have distinct identifiers, andclock(t)
is the global clock. There are five rewrite rules for describing how an agent system
evolves over time. An agent may be reactive, and only respond when new knowledge
is received, or agents may be proactive, scheduling tasks rather than waiting for input.

Rules for communication, posting and receiving knowledge, and handling scheduled
tasks operate on a local part of the agent configuration. The rule for executing actions
and the rule for passing time must capture the whole system.

Knowledge sharing. Notation convention: In the following we use id (and decorated
variants) to range over agent identifiers, cl to range over agent classes, ekb for envi-
ronment knowledge bases, lkb for local knowledge bases, ckb for cache knowledge
bases, evs for event sets, and rcvk for received knowledge bases. For example, in
the following code ekb1 is the environment knowledge base of the agent with identity
id1, and evs1 is the set of pending events for this agent.

crl[KnowledgeSharing]:
[id1 : cl1 | ekb1 | lkb1 | ckb1 | evs1]
[id2 : cl2 | ekb2 | lkb2 | ckb2 | evs2]
=>
[id1 : cl1 | ekb1 | lkb1 | ckb11 |

evs1 (if rcvk1 == none then none else rcv(rcvk1) fi)]
[id2 : cl2 | ekb2 | lkb2 | ckb21 |

evs2 (if rcvk2 == none then none else rcv(rcvk2) fi)]
if inContact(id1,ekb1,id2,ekb2)
/\ {ckb11, rcvk1} := share(ckb2,ckb1,none) --- ckb2 to ckb1
/\ {ckb21, rcvk2} := share(ckb1,ckb2,none) --- ckb1 to ckb2
/\ rcvk2 rcvk1 =/= none .

Knowledge is propagated to neighbors upon contact. The definition of contact is part of
each specific model and a model could have several different forms of contact. This
is formalized by declaring a function inContact(id1,ekb1,id2,ekb2) that
takes two agent identifiers and their corresponding environment knowledge bases and
returns a boolean. A simple notion of contact is for two agents to be within a given dis-
tance of each other. Upon contact two agents fully exchange knowledge in their cache
knowledge base and each agent is notified (via a receive event) of any new knowl-
edge obtained. The function share(ckb2,ckb1,none) returns ckb11,rcvk1,
where ckb11 is ckb1 updated with knowledge from ckb2 that is not present or sub-
sumed/replaced by knowledge already in ckb1, and rcvk1 is the set of knowledge
items newly added, used to notify the agent via the rcv(rcvk1) event.

Future work could limit the number of knowledge items that can be exchanged upon
each contact, controlled by a policy or by the physics. Other properties of channels
could be modeled as well, such as one way channels.

Soft Agents: Exploring Soft Constraints 281

Posted Knowledge.

crl[post]:
[a : cl | ekb | lkb | ckb | post(iset) evs] clock(t)
=>
[a : cl | ekb | lkb’ | ckb’ | evs] clock(t)
if kb := tstamp(iset,t)
/\ ckb’ := addK(ckb,kb)
/\ lkb’ := addK(lkb,kb) .

Posted knowledge is time stamped (tstamp(iset,t)) with the current time and
added to the cached knowledge base and the local knowledge base. The function addK
adds knowledge items from its second argument, kb1, to its first argument, kb0, that
are not less than in the partial order to knowledge already present in kb0. It also re-
moves elements of kb0 that are less in the partial order than a newly added item.

Receiving Knowledge.

crl[rcv]:
[id : cl | ekb | lkb | ckb | rcv(rcvk) evs] clock(t)
=>
[id : cl | ekb | lkb’ | ckb | evs fixTime(evs’,t)] clock(t)
if {lkb’, evs’} := handle(cl,id, lkb,rcvk) .

Agents have class specific procedures for handling new knowledge. These procedures
specify how the local knowledge base is updated, possibly raising new events to sched-
ule. This is formalized by the function

handle(class,id,lkb,rcvkb) = {lkb1,evs1}

where lkb is the current local knowledge base, lkb1 is the updated local knowledge
base, and evs1 is the possibly empty set of events to schedule.

Tasks. Tasks provide a mechanism for an agent to control scheduling its activity.

crl[doTask]:
[id : cl | ekb | lkb | ckb | (task @ t) evs] clock(t’)
=>
[id : cl | ekb | lkb | ckb | evs fixTime(ev,t’)] clock(t’)
if t <= t’
/\ ev evs’ := doTask(cl, id, task,lkb) .

The event task @ t expresses that the agent plans to carry out task at time t. The
task can be carried out if its time stamp is not greater than the current time. The task
handling function, doTask(class,id,lkb,task), returns a set of alternative ac-
tions. task is the task to be carried out, lkb is the agents local knowledge base. One of
the alternative actions is chosen non deterministically and added to the agents event set.
The pattern ev evs’ models the selection of an event from a non-empty set of events.

The framework provides a generic task tickwhich an agent can use as a mechanism
to periodically check the local state and decide on possible actions, if any. In our appli-
cations the agent solves a soft constraint problem for this purpose, but the framework
allows other methods of deciding on actions.

282 C. Talcott, F. Arbab, and M. Yadav

Actions. For each agent class there is a (possibly empty) set of actions that its instances
can perform. The event act @ t expresses that the agent intends to execute the action
act at time t. For example the agent could move to a new location, press a button,
pickup or drop an object.

crl[doAct]:
{[id : cl | ekb | lkb | ckb | (act @ t’) evs] clock(t) aconf}
=>
{ updateAConf([id : cl | ekb | lkb | ckb | evs],{id,ekb’,evs’})

updateAConf(aconf,idkbevset) clock(t) }
if t’ <= t
/\ {id,ekb’,evs’} idkbevset := doAction(cl,id,act,t,ekb,aconf) .

The environment has an action execution function, doAction, parameterized by agent
class, formalizing the physics of the model. The physics may involve the state of the
local environment, which is represented in the environment knowledge base of nearby
agents. This is formalized by the abstract equation

doAction(class,id,act,t,ekb,aconf) = idekbevents

where act is the action to be executed,ekb is the agent’s local environment knowledge
base, and aconf contains the nearby agents. The variable idekbevents stands for a
set of updates of the form id,ekb’,evs’, one for the agent doing the action and one
for any nearby agent affected by the action. ekb’ is the new environment knowledge
base and evs’ is added to the existing event set.

Advancing time.

crl[timeStep]:
{ aconf clock(t) } => { aconf clock(ni) }
if ni := minTime(aconf,t)
/\ ni :: Nat .

Following the real-time Maude approach [24], time passes if there is nothing else to do
at the current time. The function minTime returns infinity (which will not satisfy the
membership ni :: Nat) if there are any immediate events or any knowledge sharing
enabled. Otherwise, it returns the smallest timestamp of a delayed action or task.

4 A Simple Packet Delivery System

The drones and packets simple package delivery problem was inspired by a small
startup in San Francisco developing an instant package delivery/courier service. There
is a service area; packets at various locations in the service area, that want to be at
another location (called the destination); and drones (mobile agents capable of mov-
ing around) that can transport packets. Drones use energy when moving and there are
charging stations where a drone can recharge. We start with a simple case where there
is one kind of packet and one kind of drone. The service area is a grid, locations are
points on the grid, some of these locations are charging stations.

Soft Agents: Exploring Soft Constraints 283

Knowledge partial order. The partially ordered knowledge for drones and packets adds
three kinds of knowledge items for packet state

dest(idp,loc) *** the destination of packet pid
pickupOk(pid,id,b) @ t *** models a pickup light indicating

*** permission for drone id to pickup pid
delivered(pid) @ t *** packet pid has been delivered

and one item for drone state

energy(id,e) @ t *** drone id has energy reserve e

where we use idp and id as variables for packet and drone identifiers; t, t0, t1
range over natural numbers representing discrete time; and loc,l0,l1 range over
locations. The partial order is given by the following equations.

ceq (atloc(id,l0) @ t0) << (atloc(id,l1) @ t1)
= true if t0 < t1 .

ceq (energy(id,n0) @ t0) << (energy(id,n1) @ t1)
= true if t0 < t1 .

*** once delivered, packet info disappears.
eq (atloc(idp,l0) @ t0) << (delivered(idp) @ t1) = true .
eq dest(idp,l0) << (delivered(idp) @ t1) = true .
eq (pickupOk(idp,id,b0) @ t0) << (delivered(idp) @ t1) = true .
eq class(idp,packet) << (delivered(idp) @ t1) = true .

The first two equations say that new information about energy or location of an agent
replaces older information. The last four formalize the policy that once a packet is
delivered, it is no longer part of the system.

Actions. Drones are proactive, periodically choosing an action and executing it. The
possible drone actions are

– mv(dir): moving in direction dir to an adjacent grid point, where dir is one of
N,S,E,W.

– charge: charge one charge unit, if located at a charging station
– pickup(idp): picking up packet idp, if permitted
– drop(idp): dropping packet idp, if carrying idp

It is permitted for a drone to pickup a packet if they are co-located and the packet agrees
to ride (it may prefer another drone). Packets are largely passive, they react to sensing
the presence of a drone by indicating whether they will accept a ride from that drone.
This is done by action setPickUpOk(id,b), where b is a boolean. If b is true the
pickup light should turn on, otherwise it turn off.

The system objective is that packets get delivered with minimal delay and minimal
cost (drone energy). Less delay gives more satisfaction as does less energy consumption.

Choosing actions. As a first step, drones operate independently. A drone repeatedly
chooses an allowed action to execute. The choice is formulated as a family of soft-
constraint problems parameterized by the drone’s local knowledge. This pro-activity of
individual drones is insufficient by itself to ensure liveness of the system, there are two
local criteria to consider, in designing the soft constraints.

284 C. Talcott, F. Arbab, and M. Yadav

(Safety) The drone should not run out of energy.
(Benefit) If there are packets needing transport, the drone should pick a packet
according to some notion of benefit gained for work done and transport that packet.

We start with a simple drone behavior in which the drone will try to pick a packet that
requires the least work to deliver, where work to deliver is a function of the distance to
the packets destination, going via the packet’s current location.

We use the definition of Soft Constraint Problem (SCP) presented in [2]. An SCP
over a set of variables V with values in domain D consists of a tuple of grading func-
tions

[(Gi, ci)|1 ≤ i ≤ k]

together with a ranking structure

(R, [pi|1 ≤ i ≤ k], I)

where each Gi is a monoid, ci maps variable value tuples d̄ to the domain of Gi, and
pi is an action of Gi on R (pi(gi) : R → R). The solution is the set of variable value
tuples with maximal rank.

maxS(SCP) = {(d̄, S(d̄)|S(d̄) is maximal over DV }

where S(d̄) =©1≤i≤k(pi(ci((d̄))(I))). Here© is the binary operation in the ranking
structure, ∗ in our case.

In the independent drone problem there is one variable, the action, and actions are
graded based on the state predicted to result from executing the action. Thus the drone
soft constraint problem DSCP is a family of SCPs parameterized by the drone identifier
and local knowledge base (the drones view of the system state). We use two grading
functions one for the Benefit criteria, one for the Safety constraint. Safety is a crisp
constraint – the value of an action is 0 if it leads to an unsafe situation and 1 otherwise.
An action is deemed safe if in the resulting state the drone has sufficient energy to
reach a charging station. Thus it should be provable that if a drone is initially in a safe
condition, it will remain safe. (Although it may not be able to move.)

Benefit ranges from 0 to maxBenefit. The ranking function combines Safety and
Benefit by multiplication, thus ensuring an unsafe action has rank 0.

DCP (id, lkb) =

[(NatMax ,Benefit(id , lkb)),

(ZeroOne, Safety(id , lkb)),

(NatMult , ∗, 1)]

where NatMax is the natural numbers ordered as usual taking max as the binary oper-
ator, and maxBenefit as the identity. NatMult is the natural numbers with multipli-
cation as the binary operator and 1 as the identity. ZeroOne is like the boolean ordered
monoid using 0, 1 rather than booleans to support the multiplicative action.

Only moves perceived to be possible are considered. Thusdropwon’t be considered
if the drone is not carrying a packet, and moves off the grid or to a point thought to be

Soft Agents: Exploring Soft Constraints 285

occupied by another drone will not be considered. This is done just to simplify the
grading functions, as such moves will be given a 0 grade.

The Benefit function is the key. It depends on the drone’s mode: searching (for a
packet) or carrying (a packet). In searching mode, if the drone is co-located with a
packet the only action with a non-zero grade is to pickup the packet. Otherwise the
grade is the max of 1 and the gain for delivering known packets, where the gain is the
max possible cost minus the actual cost. The actual cost for delivering a given packet is
the distance to the packets destination going via the packet’s current location.

In carrying mode if the drone’s location is the packet’s destination then the only
action with a non-zero grade is dropping the packet. Otherwise moves that decrease
distance to destination are preferred. Charging gets a maximal grade if the drone is at a
charging station and its energy is below the upper bound.

The doTask function for drones formalizes the above.

ceq doTask(drone,id,tick,lkb) = tstampA(bestActs,0)
if acts := droneActs(id,lkb)
/\ bestActs := selectMax(rankDroneActs(id,lkb,acts),1,none) .

The function droneActs(id,lkb) enumerates the allowed actions, and the func-
tion tstampA(acts,n) stamps each action in acts with delay n (0 in the above
equation). The function selectMax(rankDroneActs(...)...) selects the
maximal solutions.

4.1 The doAction and Handle Functions

The doAction function specifies the physical effects of an action as updates on local
environment knowledge bases and the perceived/sensed effects of the action by infor-
mation in a rcv event. Part of the sensed effects of the agent executing an action act
is the information item done(act,b) @ t where b is a boolean indicating success
or failure, and t is the time at which the action was executed.

Drone actions. The drone move and charge actions effect only the drone state. For
example the equation defining a move is

ceq doAction(drone,id,mv(dir),t,ekb,aconf) =
{id, addK(ekb,mvkb), rcv((done(mv(dir),b) @ t) mvkb)}
if l0 := getLoc(id,ekb)
/\ l1 := doMv(l0,dir)
/\ e := getEnergy(id,ekb)
/\ b := not(occupied(l1,aconf)) and e > 1
/\ mvkb := (if b

then mvInfo(id,l1,sd(e,1),t)
else mvInfo(id,l0,e,t) fi) .

where mvInfo computes the new location and energy information items for the drone.
The charging action succeeds if the drone is located at a charging station and the new
information is the new energy level.

286 C. Talcott, F. Arbab, and M. Yadav

The handle function for drones for response to receiving action information adds
the new information to the local knowledge base of the drone, schedules a tick at
delay droneDelay and posts new location information if any.

The dronepickup(idp)/drop(idp) actions, if successful also affect the packet
idp. In the case of a successful pickup(idp)/drop(idp) action the packet is
added/removed from the drone’s environment knowledge base. The packet environment
knowledge base is updated with new packet location and the packet is notified of its new
location. When the packet handles the new location information it will post this infor-
mation, thus the drone local knowledge base will be updated as well. A pickup(idp)
by a drone will fail if not co-located or if the packet environment knowledge base has
the pickupOk light off (explicitly or by default). A drop(idp) fails if the packet is
not carried by the drone (which should not happen in our simple setting). If pickup
or drop fails then nothing changes (except that the time stamp on packet location may
be updated).

Drones respond to received information that is not an action report by adding the
new information to their local knowledge bases.

Packet actions. The only packet action is setPickupOk(id,b). If the boolean b
is true, the action turns on the pickupOk light for id in the packet’s environment
knowledge base. This is represented by the knowledge item pickupOk(id,true)
@ t in the environment and local knowledge bases. When the boolean is false, the
pickupOk light is turned off. This is represented by pickupOk(id,false) in the
knowledge base, or by absence of a pickupOk fact. The packet is also notified of the
pickupOk information. This action should succeed (unless the light is broken).

A packet that is delivered, delivered(idp) @ t in the local knowledge base,
handles new information by ignoring it. A packet that is still active handles new self
location information atloc(idp,loc) @ t according to whether loc is its desti-
nation or not. In the first case, the packet posts delivered(idp)which will remove
other information about the packet as it propagates using the partial ordering. Otherwise
the packet remembers the new location (adds it to the local knowledge bases) and also
posts it.

A packet responds to new location for drone id by scheduling a setPickupOk
action for id with boolean true if the drone becomes co-located. In either case it
also remembers the new location. In other cases a packet simply remembers the new
information.

4.2 Experiments

We now describe the results of a few simple experiments in the setting of the drones
and packets model. The are number of parameters to be set. For this set of experiments,
these are fixed as follows.

eq commDistance = 2 . *** upper bound on contact distance
eq gridX = 10 . *** grid dimensions
eq gridY = 10 .
eq chargeLocs = pt(5,5) . *** one charging station at 5,5
eq maxBenefit = 20 .

Soft Agents: Exploring Soft Constraints 287

eq maxCharge = 25 . *** stop charging when full
eq costMv = 1 . *** energy used in a move
eq chargeUnit = 5 . *** energy gained per charge action
eq droneDelay = 2 . *** delay on tick action

Fig. 1. A depiction of the location grid with the drone at (2,2). packet at (4,4), charging station at
(5,5) and destination at (6,6).

Here is a simple ASystem, AS0, with one drone, d(0), at (2,2) with 10 energy units,
and one packet p(0) at (4,4) with destination (6,6).

AS0 =
{clock(1)
[d(0) : drone

| (atloc(d(0),pt(2,2)) @ 0)(energy(d(0),10) @ 0)class(d(0),drone)
| (atloc(d(0), pt(2, 2)) @ 0) (atloc(p(0), pt(4, 4)) @ 0)
(energy(d(0),10) @ 0) class(d(0),drone) class(p(0), packet)
dest(p(0), pt(6, 6))
| none
| tick @ 1]

[p(0) : packet
| (atloc(p(0),pt(4,4)) @ 0) class(p(0),packet)
| (atloc(p(0),pt(4,4)) @ 0) class(d(0),drone) class(p(0),packet)
dest(p(0),pt(6,6))
| none
| none]}

Rewriting this configuration with a limit of 100 results in a system state in which p(0)
was delivered at time 25, (delivered(p(0)) @ 25) is in the local KB of p(0).
Searching starting with AS0 for a state with p(0) delivered at some time using the
search pattern

{[p(0) : packet | ekb:KB | lkb:KB (delivered(p(0)) @ t:Nat)
| ckb:KB | evs:EventSet] ac:Conf }

288 C. Talcott, F. Arbab, and M. Yadav

finds a solution at state 201. If the drones initial energy is only 5, it will not move, as it
is in an unsafe situation. If the initial energy is 8, the drone will recharge before it drops
the packet.

As a next example we use an initial state, AS1, with one drone, d(0), at (2,2) with
10 energy units, and two packets p(0) at (2,6) with destination (4,6) and p(1) at (6,2)
with destination (6,6). Searching from AS1 for a state in which p(0) is delivered finds a
solution at state 66, and searching for a state in which p(1) is delivered finds a solution
at state 459. It the latter case p(0) has also been delivered and the drone has recharged.

Finally, we consider an initial state, AS2, with two drones, d(0), at (2,2) with 10
energy units and d(1), at (7,7) with 10 energy units, and two packets p(0) at (2,6)
with destination (4,6) and p(1) at (6,2) with destination (6,6). Rewriting leads to a state
with both packets delivered: p(0) at time 17, p(1) at 47. Searching from AS2 for a
state in which p(0) is delivered finds a solution at state 21276. Searching from AS2
for a state in which p(1) is delivered finds a solution at state 576171. In this solution
p(0) was delivered at time 15 by d(0) and p(1) was delivered at time 41 by d(1).

Note that it is possible, given an upper bound on the energy capacity that the drone
can not reach a packet to deliver it. This is a design flaw that could hopefully be discov-
ered by formal modeling. This is a topic for future investigation.

5 Conclusions and Future Directions

We have presented a framework for modeling fractionated cyber-physical systems called
Soft Agents, and a prototype using the Maude rewriting logic system. Three key fea-
tures of the framework are the partially ordered knowledge model of communication;
soft constraint problems for specifying robust, adaptive agent behavior; and explicit rep-
resentation of the physical state of an agent as well as its knowledge state. Use of the
framework was illustrated with a simple drones and packets case study, showing how
soft constraints can be used, and the use of partial ordering on knowledge to keep the
knowledge state relevant and simple.

The soft agents framework supports, but does not enforce, liveness as discussed in
section 2. Agents can control how often to check whether some action is needed, and
agents can be notified about change in their local state. It is up to the system designer
to use these capabilities to achieve the desired/necessary liveness.

The present work is just a first step. It lays a foundation for further exploration and
experimentation to understand the tradeoffs and the nature of emerging behavior. One
point of being able to experiment is to guide attempts to prove general properties.

The drones and packets case study can be complicated in many ways to explore
principles for defining soft constraints. For example, packets can have different weights,
require special accommodation such as refrigeration, and drones can have different load
capacity (with/without refrigeration), speed, energy consumption, etc. New packets can
appear as the system evolves. Packets can post ratings of their ride — giving other
packets a reason to refuse a ride from a low rated drone, and giving drones motivation
to provide better service. In addition, one can also consider local clocks, rather than a
global clock, to study different forms of synchronization.

In the presented case study, drones just planned one step ahead and didn’t try to ac-
count for actions of other drones. A next challenge is to consider multistep planning

Soft Agents: Exploring Soft Constraints 289

both independently and with knowledge of what other agents are planning. An agent
would make a plan (a set of reasonable plans) to achieve some objective, and start exe-
cuting a plan that it (locally) deems best. It would re-evaluate under certain conditions,
for example at every step, or when the next step is not possible. One possible approach
would be the reflecting planning approach that was used in a disruption tolerant net-
working project [27]. The idea is to reflect a model of the system based on the local
knowledge base to the meta-level, search for paths to a goal or subgoal, and use re-
sults as the space of solutions for soft constraint solving. This would not generally be
efficient but might lead to useful insights.

In our simple example with one variable, finding the maximal solutions to a con-
straint problem is simple. With multi-step plans and consideration of multiple agents
methods for efficient solution will be needed. There are some suggestions in [2]. Meth-
ods to reuse partial plans could also be useful.

As indicated by the number of states to be searched to find a solution for both packets
being delivered starting from the initial state, AS2, with 2 drones and 2 packets, work
is needed to scale the analysis. Interestingly, simple rewriting finds a solution, although
it may not be the best one, and it is very fast even for AS2. Methods to reduce the
interleaving need to be investigated. Another direction is to move to a probabilistic
model and use Monte-Carlo like simulation and statistical model checking.

The Fractionated CPS model assumes honest, non-malicious agents and provides
only weak guarantees about knowledge dissemination. The latter is to provide a general
and realistic model. Furthermore agents are anonymous, identities are not revealed by
by the system. A challenging problem is to identify primitives that, under suitable condi-
tions, support stronger communication guarantees, and primitives that support building
of trust both in the knowledge posted by other agents and in the capabilities and stated
intents of other agents. It is important to have a balance between strong guarantees and
the robustness enabled by weaker guarantees.

References

1. Wirsing, M., Denker, G., Talcott, C., Poggio, A., Briesemeister, L.: A rewriting logic frame-
work for soft constraints. In: Sixth International Workshop on Rewriting Logic and Its Appli-
cations (WRLA 2006). Electronic Notes in Theoretical Computer Science. Elsevier (2006)

2. Hölzl, M., Meier, M., Wirsing, M.: Which soft constraints do you prefer? In: Seventh Inter-
national Workshop on Rewriting Logic and Its Applications (WRLA 2008). Electronic Notes
in Theoretical Computer Science, Elsevier (2008)

3. Gadducci, F., Hölzl, M., Monreale, G.V., Wirsing, M.: Soft constraints for lexicographic
orders. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part I. LNCS, vol. 8265,
pp. 68–79. Springer, Heidelberg (2013)

4. Interlink project (last accessed November 15, 2014)
5. Bristeau, P.J., Callou, F., Vissiére, D., Petit, N., et al.: The navigation and control technology

inside the ar. drone micro uav. In: 18th IFAC world congress, vol. 18, pp. 1477–1484 (2011)
6. Krajnı́k, T., Vonásek, V., Fišer, D., Faigl, J.: AR-Drone as a Platform for Robotic Research

and Education. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. CCIS, vol. 161,
pp. 172–186. Springer, Heidelberg (2011)

7. Meng, L., Li, L., Veres, S.: Aerodynamic parameter estimation of an unmanned aerial vehicle
based on extended kalman filter and its higher order approach. In: 2010 2nd International
Conference on Advanced Computer Control (ICACC), vol. 5, pp. 526–531. IEEE (2010)

290 C. Talcott, F. Arbab, and M. Yadav

8. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint satisfaction
problem: Formalization and algorithms. IEEE Transactions on Formalization and algorithms.
Knowledge and Data Engineering 10(5), 673–685 (1998)

9. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed con-
straint optimization with quality guarantees. Artificial Intelligence 161(1), 149–180 (2005)

10. des Jardins, M.E., Durfee, E.H., Charles, L., Ortiz, J., Wolverton, M.J.: A survey of research
in distributed, continual planning. AI Magazine 20(4), 13 (1999)

11. de Weerdt, M., Clement, B.: Introduction to planning in multiagent systems. Multiagent Grid
Syst. 5(4), 345–355 (2009)

12. Bullo, F., Cortés, J., Martı́nez, S.: Distributed Control of Robotic Networks. Ap-
plied Mathematics Series. Princeton University Press (2009), Electronically available at
http://coordinationbook.info

13. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI 2005,
pp. 266–271. Morgan Kaufmann Publishers Inc, San Francisco (2005)

14. Stehr, M.-O., Talcott, C., Rushby, J., Lincoln, P., Kim, M., Cheung, S., Poggio, A.: Frac-
tionated software for networked cyber-physical systems: Research directions and long-term
vision. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 110–143. Springer, Heidelberg (2011)

15. Stehr, M.-O., Kim, M., Talcott, C.: Partially ordered knowledge sharing and fractionated
systems in the context of other models for distributed computing. In: Iida, S., Meseguer,
J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 402–433.
Springer, Heidelberg (2014)

16. Brown, O., Eremenko, P.: The value proposition for fractionated space architectures. In: Proc.
of AIAA, San Jose, CA (September 2006)

17. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.:
All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer,
Heidelberg (2007)

18. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive systems: State
of the art and research challenges. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A.
(eds.) Soft-Ware Intensive Systems. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg (2008)

19. Ascens: Autonomic service-component ensembles (last accessed: November 15, 2014)
20. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G., Danvy, O.,

Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS,
vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

21. Arbab, F., Santini, F.: Preference and similarity-based behavioral discovery of services. In:
Formal Methods (2012)

22. Kim, M., Stehr, M.O., Talcott, C.: A distributed logic for networked cyber-physical systems.
Science of Computer Programming (2012)

23. Choi, J.S., McCarthy, T., Yadav, M., Kim, M., Talcott, C., Gressier-Soudan, E.: Application
patterns for cyber-physical systems. In: Cyber-physical Systems Networks and Applications
(2013)

24. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time maude. Higher-Order
and Symbolic Computation 20(1-2), 161–196 (2007)

25. Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S., Salaün, G.
(eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg (2013)

26. Nielson, H.R., Nielson, F.: Safety versus security in the quality calculus. In: Liu, Z.,
Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS,
vol. 8051, pp. 285–303. Springer, Heidelberg (2013)

27. Stehr, M.O., Talcott, C.: Planning and learning algorithms for routing in disruption-tolerant
networks. In: MILCOM 2008. IEEE (2008)

http://coordinationbook.info

Structured Document Algebra in Action

Don Batory1, Peter Höfner2, Dominik Köppl3,
Bernhard Möller4, and Andreas Zelend4

1 Dept. of Computer Science, University of Texas at Austin, USA
2 NICTA and UNSW, Australia

3 Department of Computer Science, TU Dortmund, Germany
4 Institut für Informatik, Universität Augsburg, Germany

Abstract. A Structured Document Algebra (SDA) defines modules with
variation points and how such modules compose. The basic operations
are module addition and replacement. Repeated addition can create
nested module structures. SDA also allows the decomposition of mod-
ules into smaller parts. In this paper we show how SDA modules can
be used to deal algebraically with Software Product Lines (SPLs). In
particular, we treat some fundamental concepts of SPLs, such as refine-
ment and refactoring. This leads to mathematically precise formalization
of fundamental concepts used in SPLs, which can be used for improved
Feature-Oriented Software Development (FOSD) tooling.

Keywords: software product lines, feature-oriented design, algebraic
reasoning.

It is our pleasure to dedicate this paper to Martin Wirsing on the occasion of
his Formal Retirement. We contribute a study on a recently developed algebra
for all kinds of structured and interconnected documents, but particularly the
ones that describe product families or product lines in Feature Oriented Software
Design — a topic on which Martin has been quite active for a while now. The
frame of this are general formal methods and semantics. We pick up this latter
theme to endow the algebra, which previously had a more syntactic flavor, with a
semantic component, too. The particular approach we take uses the terminology
of algebraic specification; this gives the fourth author the opportunity to fondly
remember the days of the CIP project at TU Munich, in which Martin and he
cooperated quite a lot on that topic. We hope that Martin will enjoy that bit of
scientific nostalgia, too! Best wishes, Martin, for your Formal Retirement —
enjoy! — but also for many further successful years, since we do hope that your
Retirement is only Formal!

1 Introduction

A Software Product Line (SPL) is a family of related programs constructed
from a common set of assets. Variations in programs are explained by features—
increments in program functionality. The assets of an SPL are modules that
implement features. These modules are the building blocks of SPL programs [2].

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 291–311, 2015.
c© Springer International Publishing Switzerland 2015

292 D. Batory et al.

Today’s SPL researchers are exploring two rather different forms of feature-
based modularity: alternative-based variation (a.k.a. classical modularity) and
projectional variation (a.k.a. SYSGEN or virtual modularity). Classical modular-
ity is what you would expect: there are physical files that define a feature module
and tools that compose modules to produce a desired program. Here, files refer
to arbitrary documents, such as specifications, code composed of elementary pro-
gram features, text fragments or manuals. In contrast, virtual feature modularity
is a preprocessor technology called coloring. The idea is simple: the code of the
Blue feature is painted blue; code of the Green feature is painted green. When-
ever Blue is not needed in a product, all blue-colored code is removed or is said to
be projected out. The tools for virtual modularity are historically based on text
preprocessors; more advanced tools color abstract syntax trees (ASTs) [5,15,18].
The current debate is which implementation technique is most appropriate for
an SPL. Our position is that both implement the same abstractions—feature
modules—in very different ways. What is important is to understand the alge-
braic nature of these abstractions.

The Structured Document Algebra (SDA), partially first presented in [6], aims
at providing a simple, yet effective, algebra of feature modularity (e.g., the mod-
ularization of text files, text fragments, ASTs, etc.).

It is completely independent of the underlying programming paradigm, such
as Object-Oriented Programming or Functional Programming. In fact, it is even
independent of programming, since it is abstract enough to cover also general
structured documents, such as manuals or collections of web pages. It is meant
as an aid for formal reasoning about the process of decomposing larger docu-
ment pieces into smaller ones (and vice versa). It can be implemented on top
of or inside any text editor, IDE or web page editor. Depending on the desired
level of reasoning, it can be used purely syntactically or at a semantic level,
as demonstrated in the Appendix. Phenomena modelled by the algebra include
coherence, uniform transformations, deletion, overriding. In the special case of
SPL documents, SDA additionally allows a description of their fine structure.
This is in contrast to other algebraic approaches in this area (e.g., [1,24,25]),
where modules are often treated as atomic units.

In the present paper we extend the basic repertoire of the version of SDA
from [6] and show how it can be used to formally describe some standard tech-
niques used in feature oriented software construction and SPLs.

The basis of SDA are structured, inter-linked documents or document frag-
ments. A link is represented as a Variation Point (VP), i.e., a labeled position
in a fragment where contents can be inserted to yield a larger fragment. The
association between VPs and their assigned fragments, if any, is provided by
modules, i.e., partial functions from VPs to fragments.

SDA allows multiple “applied occurrences”, i.e., replication of one and the
same VP v; they all stand for (or share) the fragment assigned to v by some
module. Conversely, different VPs may be associated with the same fragment (a
module need not be an injective partial function).

Structured Document Algebra in Action 293

In this paper we show how modules and fragments can be treated algebraically
and discuss algebraic operations for module (de)composition and present an
operation for overriding.

2 Structured Document Algebra

This section recapitulates a formal model of VPs, modules containing VPs, and
compositions of such modules first presented in [6]. To keep SDA language-
independent, we leave the exact nature of fragments (e.g., text or abstract syntax
trees) unspecified and view it as a parameter of the algebra. For our examples
we will use Java code fragments.

2.1 SDA Basics

Variation Points and Fragments. We now formalize the notions mentioned
above. Let V be a set of VPs, denoted by v1, v2, . . . at which fragments may be
inserted and F(V) be a set of fragments, denoted by f1, f2, Fragments may
contain VPs from V.

In incremental software design it is often advantageous to leave certain parts
unspecified and to insert placeholders where (optionally) further features may
be added. As an abstraction of such placeholders we use default fragments. In
addition, it is convenient to introduce a special pseudo-fragment that represents
an error, namely that there has been an attempt to assign two or more non-
default and different fragments to the same VP. To this end we assume that the
set F(V) includes two special elements, a default fragment 0 and an error �.

The addition, or supremum, operator + on fragments has the axioms

0+ x = x , � + x = � , fi + fj = � (i �= j) , �

���
��

��
��

��

f1 f2 . . .

0

�����

where x, fi, fj ∈ F(V) with fi, fj �= 0. If we assume as-
sociativity, idempotence and commutativity of addition,
this structure forms a flat lattice with least element 0

and greatest element �.

Modules. A module is a partial function m : V � F(V). A VP v is assigned by
m if v ∈ dom(m), otherwise unassigned or external. Thus the domain dom(m) of
a module is the set of VPs it “knows about” or administers. By using partial
functions rather than relations, a VP can be filled with at most one fragment
(uniqueness).

Example 2.1. Figure 1(a) is a sample file/module, structured by the assignment
of fragments to its VPs. Its partial function is given in Figure 1(b). ��

Ducasse et al. [12] also use a flat lattice of composable units, called traits.
Our modules correspond to the method dictionaries there. However, these have
to be total rather than partial maps, which makes distinguishing assigned and
external VPs difficult. Had we taken the same decision, our algebraic laws would
have become much more cumbersome.

294 D. Batory et al.

v0 →

⎧⎪⎪⎨⎪⎪⎩

class Stack {

v1 →

⎧⎪⎪⎨⎪⎪⎩
int ctr = 0;

int size(){
return ctr;

}

String s = new String();

void empty() {
v3 →

{
ctr = 0;

s = "";

}
void push(char a) {

v4 →
{

ctr++;

s = String.valueOf(a)

.concat(s);

}
void pop() {

v5 →
{

ctr--;

s = s.substring(1);

}
char top() {
return s.charAt(0);

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

← � v2

}

class v0 → { class Stack { v1 v2 }

stack v2 → { String...v3...v4...v5

count

v1 → { int ctr = 0;...

v3 → { ctr = 0;

v4 → { ctr++;

v5 → { ctr--;

(a) (b)

Fig. 1. Variation Points, Fragments and Modules

A module m can be viewed in different ways:

– as a collection of fragments that instantiate the VPs of dom(m), i.e., a struc-
tured document;

– as filling certain VPs with contents (in term rewriting etc., it would be called
a substitution); and

– as a generalized context-free grammar with dom(m) as the set of nonterminals
and a production v → m(v) for each v ∈ dom(m).

The simplest module is the empty module 0, i.e., the empty partial map. An-
other very simple kind of module is provided by constant modules, i.e., modules
which assign one and the same fragment—for instance 0—to a number of VPs.
Let W ⊆ V be a set of VPs and f a fragment. We set

[W → f](v) =df

{
f if v ∈ W,
undefined otherwise.

If W = {w} is a singleton set, we abbreviate [{w} → f] to [w → f]. Such singleton
modules are the atomic building blocks from which all other modules can be
constructed by the addition operation introduced next.

Module Addition. We want to construct larger modules step by step by assign-
ing more and more fragments to VPs. The central operation for this is module
addition (+), which fuses two modules while maintaining uniqueness (and signal-
ing an error upon a conflict). Basically, module addition can be viewed as union
with flagged inconsistentVP/fragment associations.Desirable properties for+ are

Structured Document Algebra in Action 295

commutativity and associativity. If two modules have no VPs in common, the par-
tial functions characterizing them can easily be combined. For example, class+
stack (Figure 1(b)) is the partial function

class+ stack =

{
v0 → class Stack {v1 v2}
v2 → String ... v3 ... v4 ... v5

Module addition can be defined as the lifting of + on fragments

(m + n)(v) =df

⎧⎪⎪⎨⎪⎪⎩
m(v) if v ∈ dom(m)− dom(n)
n(v) if v ∈ dom(n)− dom(m)
m(v) + n(v) if v ∈ dom(m) ∩ dom(n)
undefined if v �∈ dom(m) ∪ dom(n)

If in the third case m(v) �= n(v) and m(v), n(v) �= 0 then (m + n)(v) = �, thus
signaling an error. By the above laws for fragment addition, the set of modules
forms a commutative and idempotent monoid under +.1 Therefore we can define
a submodule relation as the natural order

m ≤ n ⇔df m+ n = n . (1)

Example 2.2. Figure 1(b) shows three modules: class and stack contain single
fragments, assigned to v0 and v2 respectively; count contains fragments assigned
to v1, v3, v4, and v5. The module addition class+ stack+ count corresponds
to the code in Figure 1(a). ��

Implementation. A simple example suggests several ways in which SDA mod-
ules can be implemented. Figure 2(a) shows how preprocessor macros might de-
fine three non-default fragments (labeled BLUE, GREEN, RED) and a default for an
implicit variation point. Figure 2(b) shows how this might be rendered in a “col-
oring” tool (e.g., the one contained in the integrated development environment
CIDE [18,19,2]) where the fragments assigned to the VPs are explicitly shown.
(There is no need to actually “see” the names of VPs). However, Figure 2(b)
would require significant engineering: a Java compiler would have to understand
the preprocessor semantics of coloring (Figure 2(a)) so as not to alert program-
mers that the GREEN fragments and beyond are unreachable if BLUE is true. In
a Java-like language this can be accomplished by defining feature variables as
static Booleans and put a wrapper if (feature){ fragment } around each
fragment. So if the feature variable is false, the compiler will effectively ignore
the fragment as dead code. This is, for instance, offered by the CIDE compiler.

Amore likely possibility—which is consistent with current text coloring tools—
would be to “fool” the compiler by pretending that the code of Figure 2(c) is the
definition of the addmethod, where a projection would produce a simpler method
with only one assignment to the variable result.

1 Modules and module addition can be recoded in terms of total functions, which
makes it easier to see that the + operation indeed is commutative, associative and
idempotent, hence induces a lattice, too. Moreover, it has the empty module 0 as its
neutral element and satisfies dom(m+ n) = dom(m) ∪ dom(n).

296 D. Batory et al.

int add(int x) {
#if BLUE

return x+3;
#elif GREEN

return x+5;
#elif RED

return x+11;
#else

return x+1
#endif
}

int add(int x) {

v1 →
{

return x+3;

v1 →
{

return x+5;

v1 →
{

return x+11;

v1 →
{

return x+1;

}

int add(int x) {

v1 →
{

result = x+3;

v1 →
{

result = x+5;

v1 →
{

result = x+11;

v1 →
{

result = x+1;

return result;

}

(a) (b) (c)

Fig. 2. Module Implementations

These ideas are, in effect, standard fare for SPL development, except that
the tool support needs to be beautified by coloring and VP recognition. Code
fragments or mini-modules can indeed be expressed in terms of classical module
systems; see [10] for examples. Coloring also presents the connection between
modules and virtual modularity (cf. Sect. 1).

2.2 Structural Properties of Modules

Since fragments may contain VPs, cycles could occur when composing modules.
A module, however, should be cycle-free. To handle this we use a dependence
relation.

Cycle-Freeness. For a fragment f∈ F(V) let VP(f) be the set of VPs that occur
in f. We define a direct dependence relation depm ⊆ V× V within a module m by

v depm w ⇔df v ∈ dom(m) ∧ w ∈ VP(m(v)) .

This means that VP w occurs in the fragment assigned to VP v by m, so that
v depends on w. For example, in Figure 1(b), v2 depstack v3. A module m is
acyclic if no VP depends directly or indirectly on itself, i.e., no VP v satisfies
v depm

+
v, where depm

+
is the transitive closure of depm. Henceforth we only consider

cycle-free modules.
The concepts of dependence and module addition do not interfere. Since the

latter is just the “union” of VP/fragment associations, for acyclicity it does
not matter whether dependences occur inside one module or between different
modules.

Assembling Fragments. We now describe how to assemble a structured doc-
ument into a single fragment (while “forgetting” the structure). To define this
formally we use an auxiliary function single fill(f, m). It takes a fragment f
and a module m and yields the fragment that results from f by replacing, in
parallel, all occurrences of every v ∈ VP(f) by the corresponding fragment m(v)

Structured Document Algebra in Action 297

(if any). The precise definition of single fill depends on the special type of
fragments considered; as stated in the introduction we want to keep that para-
metric. For an acyclic module m and v ∈ dom(m), the fragment frag(v, m) can be
computed by iterating the single fill function. By the assumed acyclicity of
m this always terminates. To cope with unassigned (= external) VPs we assume
that every VP is also a fragment, i.e., that V ⊆ F(V). Then the external VPs can
simply be left unchanged by the assembly function. A corresponding program
looks as follows:

fragment frag (vp v, module m){
fragment f = v;
while (VP(f) ∩ dom(m) �= ∅)

f = single fill(f, m);
return f; }

Note that frag(v, m) = v if v �∈ dom(m).

Module Equivalence. Two modules m, n are equivalent if they generate the
same fragments for all VPs:

m ≡ n ⇔df ∀v ∈ VP : frag(v, m) = frag(v, n) .

Lemma 2.3. For modules m, n we have m ≡ n ⇒ dom(m) = dom(n).

Restructuring. Module m restructures into module n, in symbols m - n, if
m - n ⇔df dom(m) ⊆ dom(n) ∧ ∀ v ∈ dom(m) : frag(v, m) = frag(v, n) .

This means that n offers a possibly more detailed representation of the fragments
of m using auxiliary VPs in dom(n)− dom(m). The empty module is the smallest
one w.r.t. -, since it does not offer any choice—in particular since dom(0) = ∅.

It is easy to check that the relation- is reflexive and transitive, i.e., a preorder.
It is, however, not antisymmetric as the following example shows.

Example 2.4. Consider the modules m and n defined as follows:

m : v → i++; w; and w → j++;

n : v → i++; j++; and w → j++;

These are equivalent, i.e., m ≡ n, in that they produce the same text. Hence,
m - n and n - m. If - were antisymmetric, this should imply m = n, but m and
n are different as modules. ��
However, we always have m - n ∧ n - m ⇔ m ≡ n.

We provide some basic properties of - that can be used to restructure larger
modules in a modular fashion. To state them we define the set of all VPs occur-
ring in a module m by VP(m) =df dom(m) ∪

⋃
v∈dom(m)

VP(m(v)). First we treat the

case of decomposing the fragment belonging to a single VP.

Lemma 2.5. Assume fragments f, g and a module m with dom(m) = VP(g) and
f = single fill(g, m). This means that the VPs in g are filled by m yielding f.
Moreover let v be a fresh VP, i.e., v �∈ dom(m) ∪ VP(m). Then

[v → f] - ([v → g] + m) .

298 D. Batory et al.

The proof is immediate from the definitions and assumptions.

Lemma 2.6. For modules mi - ni(i = 1, 2) with VP(n1) ∩ VP(n2) = ∅ we have

m1 + m2 - n1 + n2 .

Proof. (Sketch) We first state an auxiliary property. Assume modules m, n such
that m+ n is acyclic and VP(m)∩ VP(n) = ∅. Then ∀ v ∈ dom(m) : frag(v, m+ n) =
frag(v, m). In words, if n does not mention the VPs of m then it cannot influence
the fragment represented by m. This is shown by induction on the length of
the longest depm-path (or equivalently the smallest natural number i such that
depm

i= ∅), which exists by the assumed acyclicity of m+ n and hence also of m.
With that, the main claim follows easily from the definition of -, because

VP(n1) ∩ VP(n2) = ∅ implies VP(mi) ∩ VP(nj) = ∅ (i �= j). ��

3 Additional SDA Operators

3.1 Subtraction

In this section we present a way of defining an “inverse” to addition. The useful-
ness of this operation might not be straightforward. However, as we will show, it
lays the foundation for more sophisticated operations such as overriding, which
is a common technique in feature-oriented software development.

For modules m and n we define the subtraction m− n via restriction | as

m− n =df m |dom(m)−dom(n) .2

This spells out to

(m− n)(v) =df

{
m(v) if v ∈ (dom(m)− dom(n))
undefined otherwise .

Among others, subtraction satisfies, for arbitrary modules m, n and p, the
following laws. (Proofs are straightforward.)

dom(m− n) = dom(m)− dom(n) m− n ≤ m

(m+ n)− p = (m − p) + (n− p) m− 0 = m

m− (n+ p) = (m − n)− p m− m = 0
m ≤ n ⇒ m− n = 0 0− n = 0 .

Note that the left law in the last line is only an implication, while the correspond-
ing one for set theoretic difference is an equivalence. For the reverse direction
we only have m− n = 0 ⇒ dom(m) ⊆ dom(n). Moreover, m− n - m need not hold.
Subtraction is isotone in its right argument and antitone in its left, i.e.,

m ≤ n ⇒ m− o ≤ n− o , and n ≤ o ⇒ m− o ≤ m− n .

2 Instead, one could define another subtraction operator � of type (V � F(V)) ×
P(V) → (V � F(V)) by m� U =df m |dom(m)−U and then set m− n =df m� dom(n).

Structured Document Algebra in Action 299

3.2 Overriding

Ideally, modules that are composed have disjoint domains. And by using subtrac-
tion or deletion, modules can be customized. Still, object-oriented programmers
are used to the notion of overriding or replacing definitions, an operation that
can be defined in terms of subtraction and addition. The module m−� n which
results from overriding n by m is defined as

m−� n =df m+ (n− m) .

This replaces all assignments in n for which m also provides a value. It may
destroy acyclicity. −� is associative and idempotent with neutral element 0, but
not commutative.

Example 3.1. A classic example of feature interaction and product lines is the
fire-and-flood control [17]. Assume a building is equipped with two systems: a
fire control and a flood control. The flood control turns off the water supply as
soon as sensors in the building indicate a water level is too high. It is specified
by the following module.

Flood :

{
pv → void flood(){ pt }

pt → if(isWaterHigh()) waterOff(); else waterOn();

Fire control works in an opposite manner: as soon as sensors detect a too high
temperature, sprinklers are turned on.

Fire :

{
pw → void fire(){ i1 }

i1 → if(isTemperatureHigh()) spriOn(); else spriOff();

Note that the sprinklers’ functionality depends on a working water supply.
Their composition/sum is FplusF = Fire + Flood:

FplusF :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pv → void flood(){ pt }

pt → if(isWaterHigh()) waterOff(); else waterOn();

pw → void fire(){ i1 }

i1 → if(isTemperatureHigh()) spriOn(); else spriOff();

After a fire has been detected, it must be guaranteed that the water supply is
not turned off; otherwise the building would burn down. This is not guaranteed
with Fire + Flood; it depends on a race condition determined by the order of
fire() and flood() execution.

The solution is to impose one more module, representing a feature interaction
FI, denoted Fire#Flood in [5], whose alterations make Flood and Fire work
correctly together. This is achieved by a shared VP pv and the use of overriding.
FI replaces Flood’s fragment at pv with FI’s fragment:

300 D. Batory et al.

FI :

{
pv → void flood(){ i2 }

i2 → if(isTemperatureHigh()) waterOn(); else { pt }

The occurrence of pt in the fragment of i2 may be viewed as an original call
to the respective method (e.g., [8]).

The composition of all three modules, FandF = FI−� (Fire+ Flood), yields
a correct implementation:

FandF :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pw → void fire(){ i1 }

i1 → if(isTemperatureHigh()) spriOn(); else spriOff();

pv → void flood(){ i2 }

i2 → if(isTemperatureHigh()) waterOn(); else { pt }

pt → if(isWaterHigh()) waterOff(); else waterOn();
��

To state further laws, we call modules m and n compatible, in signs m ↓ n, if
their fragments coincide on their shared domains. Formally,

m ↓ n ⇔df ∀ v ∈ dom(m) ∩ dom(n) : m(v) = n(v) .

All submodules of a module are pairwise compatible with each other. It follows
that the properties below are equivalent:

m ↓ n ⇔ m−� n = m+ n ⇔ m−� n = n−� m

Module addition and overriding interact by the following laws, where the left
implication ⇐ means “provided”.

m−� (n+ p) = (m−� n) + (m−� p) (left distributivity)
(m+ n)−� p = m−� (n−� p) ⇐ m ↓ n (sequentialisation)
(m+ n)−� p = n−� p ⇐ m ↓ n ∧ m−� n = n (absorption I)
(m+ n)−� p = m−� p ⇐ m ↓ n ∧ n−� p = p (absorption II)
m−� (n+ p) = n+ (m−� p) ⇐ dom(m) ∩ dom(n) = ∅ (localisation)

The sequentialisation law means that a complex overriding may also be done by
two successive simpler overridings. Absorption II, which is an immediate conse-
quence of sequentialisation, allows simplifying a complex overriding by omitting
the part that is “already there”. Finally, localisation allows propagating an over-
riding to the submodule it really affects.

The previous laws for overriding dealt with immediate links from VPs to
fragments. We now deal with preservation of transitive links under overriding.
Let depm

∗
be the reflexive, transitive closure of depm. For a module m and a

VP v ∈ dom(m) we define deps(v, m) =df {w | v depm
∗
w}, i.e., the set of VPs on

which v depends transitively, plus v itself. We now want to override or extend
a module n with a module m. If n does not alter the assignments of the VPs on
which v transitively depends in m then the overriding/extension does not change
the transitive dependence of v (cf. [23,13]):

deps(v, m+ n) = deps(v, m)
deps(v, m−� n) = deps(v, n)

}
⇐ deps(v, m) ∩ dom(n) = ∅ .

Structured Document Algebra in Action 301

3.3 Solving Module Equations

As discussed in [5], it is useful to be able to solve module equations. Subtraction
and its relatives enable us to do so. Suppose that m is a submodule of n, i.e.,
m ≤ n (see Equation (1)). Then the equation m + x = n has x = n − m as a
solution. Moreover, this is the unique solution that is domain-disjoint from m.3

Example 3.2. Consider a composition comp = a + b + c + d with pairwise
domain-disjoint modules a, b, c, d. Then the equation a + x + b + d = comp has
the unique solution x = c domain-disjoint from a+ b + d. ��

Note that the condition dom(m) ⊆ dom(n) is necessary for m + x = n to be
solvable, because we need to have dom(m+ x) = dom(m)∪dom(x) = dom(n), which
implies dom(m) ⊆ dom(n). The above assumption m ≤ n implies that necessary
condition. In fact, solvability of m+ x = n conversely implies m ≤ n, since

m+ n = m+ (m+ x) = (m+ m) + x = m+ x = n .

In short: m+ x = n is solvable iff m ≤ n.
Next, we have a brief look at equations involving overriding. Since

dom(m−� n) = dom(n−� m) = dom(m) ∪ dom(n) ,

again dom(m) ⊆ dom(n) is necessary for m−� x = n and x−� m = n to be solvable.
But by the definition of −� , solvability of m−� x = n even implies the stronger
necessary condition m ≤ n. In this case again x = n − m is the unique solution
domain-disjoint from m. A closer inspection shows that the same is the case for
the equation x−� m = n. This means that it is sufficient to restrict interest to
the solution of equations involving +.

3.4 Transformations

In this section we sketch another extension of SDA, intended to cope with some
standard techniques in software refactoring (e.g., [4,20]). Examples of such tech-
niques are consistent renaming of methods or classes in a large software system.
To stay at the same level of abstraction as before, we realize this by a mechanism
for generally modifying the fragments in SDA modules.

By a transformation or modification or refactoring we mean a total function
T : F(V) → F(V). By T · m we denote the application of T to a module m. It yields
a new module defined by

(T · m)(v) =df

{
T(m(v)) if v ∈ dom(m)
undefined otherwise .

We use the convention that · binds stronger than all other operators. The fol-
lowing properties hold:

(1) dom(T · m) = dom(m) , (2) T · (m+ n) = T · m+ T · n ⇐ m ↓ n ,
(3) T · (m− n) = T · m − T · n , (4) T · (m−� n) = T · m−� T · n .

3 Another solution is x = n, since m ≤ n means m+ n = n. Such solutions are uninter-
esting.

302 D. Batory et al.

The proofs are straightforward calculations.
The analogue of Equation (2) is also used in the feature algebra of [1]; it

entails that a transformation T is propagated and applied to all components of
a composed module.

This applies, in particular, to transformations like method renaming; there
T would be implemented using a global table with all the old-name/new-name
associations which would be consistently applied in all submodules of the overall
module under consideration. Note that, although T is supposed to be a total
function on all fragments, it might well leave many of those unchanged, i.e., act
as the identity on them.

Future work in this area will deal with further operators that reflect extended
transformations concerning several modules, like moving methods from one mod-
ule to another.

4 Using the Algebra

4.1 Projecting Out

Next, we deal with some aspects of modularity. In classical modularity there are
physical files that define the feature modules and tools that compose them to pro-
duce a desired program. This is also known as alternative-based variation. Con-
trarily, virtual modularity, also known as SYSGEN (e.g. [14]) or projectional vari-
ation is a preprocessor technology. A prominent representative of this technique is
the coloring approach of [5,15,18]. The idea is simple: every document is painted
in different colors, one color per feature. A color C that appears “inside” another
color D indicates a feature interaction—C changes the source of D (denoted C#D

in [5]). VPs are implicit in coloring. At every point in a document where coloring
changes, an implicit VP is created. Figure 1 is not only an example for variation
points, fragments and modules, but also for coloring: the code is colored white,
light gray and dark gray. If a feature is not needed in a product, all code colored
in the corresponding color (e.g., dark gray) is projected out, i.e., does not show up
in the final product. Since one colors the entire code base of a product line, it is
possible to compute the contents of SDA modules and their VPs.

We now show how this operation can be expressed in our algebra. Assume a
module m and a subset U ⊆ dom(m). Projection to U is supposed to hide everything
that does not correspond to a VP in U. This needs to be done in such a way
that later the hidden parts can be uncovered again. Therefore, a corresponding
operation should not remove the VPs outside U from m. We preserve the hidden
part n =df m|dom(m)−U and temporarily work with the module p =df [(dom(m)−
U) → 0]−� m which masks all VPs outside U with the default fragment. To restore
the original module, i.e., to switch the masked parts back on again we use that
n−� p = m.

Structured Document Algebra in Action 303

The difference between restriction and projecting out is that in the former case
all VPs outside U are removed and hence become external to the resulting module
so that they would be considered as “fresh” there, whereas after projection they
are still “known” and hence “protected” against unintentional change, so that
they can be refilled later.

4.2 Introducing Wrappers

We can use overriding for adding a wrapper to a module. Let m be a module and
v ∈ dom(m) be the VP where we want to insert the wrapper. Choose a “fresh”
VP w �∈ dom(m) and a non-trivial wrapper fragment f such that VP(f) = {w}
and w occurs only once in f. Then w marks the place in f where the original
“contents” of v is to be put and thereby wrapped. The old contents m(v) of v is
remembered by a link from w to it, so that it can be overridden by a link from
v to the wrapper f. Algebraically, the module with the wrapper is expressed by

m′ =df ([v → f]−� m) + [w → m(v)] .

An illustration is given in Figure 3.

m:

v0

v

m(v)

→ m′:

v0

v

w

m(v)

f

Fig. 3. Introducing a Wrapper (Splicing)

5 Small Case Study: Constructing Product Lines

There are often multiple ways how a finished product (i.e., a single fragment
without further VPs) can result within a product line. This is, for example, the
case when modules can be grouped into sets of features that are orthogonal to
each other. Conversely, one may wish to refactor an existing monolithic system
by decomposing it into directly re-usable or at least easily adaptable parts.

We illustrate this by taking up an example from [7]. Notationally we deviate a
bit from that paper by not distinguishing “defining” and “applied” occurrences
of VPs. All VP names start with @ (for text processing reasons); in a module
every VP is assigned the text indented to the position after the VP name. If no
text appears to the right of a VP this means that the default is assigned to it.

We look at software for a basic calculator. It deals with arithmetic expressions
composed by the operations addition and multiplication; expressions can be

304 D. Batory et al.

displayed and evaluated. First we present a program (or single module) CALC,
given in [7] (see Figure 4). Formally, this is a module that has only one single
root VP @0 to which the complete program is assigned, without any VPs in
its text. However, to prepare the restructuring to come, we already indicate a
number of further VPs, to be read as comments at this level. For operator signs
op, such as + or *, the abbreviation ?op? stands for the string concatenation
+ "op" +.

CALC

@0 abstract class Exp {
@1 String print();
@2 int eval();

}

class Int extends Exp {
int v;
Int(int a) { v=a; }
@3 String print() { return v; }
@4 int eval() { return v; }

}

class Plus extends Exp {
Exp l,r;
Plus(Exp L, Exp R) {l=L; r=R;}
@5 String print()

{ return l.print() ?+? r.print(); }
@6 int eval()

{ return l.eval() + r.eval(); }
}

class Times extends Exp {
Exp l,r;
Times(Exp L, Exp R) {l=L; r=R;}
@7 String print()

{ return l.print() ?*? r.print();}
@8 int eval()

{ return l.eval() * r.eval(); }
}

Fig. 4. The module CALC

CALC contains sub-packets, which may have interest of their own. For example,
a user may only want to deal with arithmetic expressions for addition. This can
be achieved by grouping the parts of CALC into Base, Plus and Times as given
in Figure 5 and then forming adequate sums of some of these. For instance, the
product line TPL combines all three submodules: TPL =df Base+ Plus+ Times.
Using the restructuring preorder from Sect. 2.2, we have the relation CALC - TPL

between the original code base CALC and TPL.
A second restructuring reflects that some users may only wish to evaluate

expressions but not to print them. This can be accommodated by decomposing
the original code base CALC into a Core module and two optional modules Print
and Eval, whose definitions are given in Figure 6. A new product line CPE =df

Core+ Print+ Eval combines these three submodules.
The original product line CALC relates to the new one by CALC - CPE.
Finally we can form a common restructuring of CPE and TPL. This SPL is pre-

sented in Figure 7 and corresponds to the EPL matrix of [7]. We use two sets of
feature names, F =df {core, print, eval} and G =df {base, plus, times}. We
use lower-case names here, since these are not module names but will serve as
indices for a matrix EPLmat, where every entry EPLmatij (i ∈ F, j ∈ G) is a sub-
module. Then setting EPL =df

∑
i∈F

∑
j∈G

EPLmatij we obtain our finest restructuring

of the original program CALC. As a consequence we have

CPE - EPL ∧ TPL - EPL .

Structured Document Algebra in Action 305

TPL:

Base: Plus: Times:

@0 abstract class Exp {
String print();
int eval();

}

class Int extends Exp {
int v;
Int(int a) { v=a; }
String print()

{ return v; }
int eval()

{ return v; }
}

@+
@*

@+ class Plus extends Exp {
Exp l,r;
Plus(Exp L, Exp R)

{l=L; r=R;}
String print()

{ return l.print() ?+?
r.print(); }

int eval()
{ return l.eval() +

r.eval(); }
}

@* class Times extends Exp {
Exp l,r;
Times(Exp L, Exp R)
{l=L; r=R;}

String print()
{ return l.print() ?*?

r.print();}
int eval()

{ return l.eval() *
r.eval(); }

}

Fig. 5. The module TPL

CPE:

Core: Print: Eval:

@0 abstract class Exp {
@1
@2

}

class Int extends Exp {
int v;
Int(int a) { v=a; }
@3
@4

}

class Plus extends Exp {
Exp l,r;
Plus(Exp L, Exp R)

{l=L; r=R;}
@5
@6

}

class Times extends Exp {
Exp l,r;
Times(Exp L, Exp R)

{l=L; r=R;}
@7
@8

}

@1 String print();

@3 String print()
{ return v; }

@5 String print()
{ return l.print()

?+? r.print(); }

@7 String print()
{ return l.print()

?*? r.print(); }

@2 int eval();

@4 int eval()
{ return v; }

@6 int eval()
{ return l.eval()

+ r.eval(); }

@8 int eval()
{ return l.eval()

* r.eval(); }

Fig. 6. The module CPE

If we sum the columns of EPLmat we obtain the constituent modules of CPE, while
the row sums give the constituent modules of TPL. Hence the small modules in
EPLmat can be considered as the elementary features in this product line. Of
course, by transitivity of -, the original code base is an element of this product
line too, i.e., CALC - EPL; but EPL offers many more products.

306 D. Batory et al.

EPLmat

core print eval
b
a
s
e @0 abstract class Exp {

@1
@2

}

class Int extends Exp {
int v;
Int(int a) { v=a; }
@3
@4

}
@*
@+

@1 String print();
eval print core

@3 String print()
{ return v; }

@2 int eval();

@4 int eval()
{ return v; }

p
l
u
s @+ class Plus extends Exp {

Exp l,r;
Plus(Exp L, Exp R)

{l=L; r=R;}
@5
@6

}

@5 String print()
{ return l.print()

?+? r.print(); }

@6 int eval()
{ return l.eval()

+ r.eval(); }

t
i
m
e
s @* class Times extends Exp {

Exp l,r;
Times(Exp L, Exp R)

{l=L; r=R;}
@7
@8

}

@7 String print()
{ return l.print()

?*? r.print(); }

@8 int eval()
{ return l.eval()

* r.eval(); }

Fig. 7. The matrix EPLmat

6 Related Work

Ideas similar to those of SDA can be found in [9], where elements of UML
models could be tagged with feature predicates. Given a set of selected features,
an element is removed from a model if its predicate is false.

Derivatives [21] were the first identified building blocks of feature modules.
Unfortunately, the mathematics of derivatives was incomplete, as composition of
derivatives was not associative. This made it impossible to algebraically calculate
the results of feature splitting (replacing T with R × S if T is split into features
R and S) and feature merging (replacing R × S with T). CIDE [18] showed a
simple and elegant way to visualize features and their interactions, resulting in
the coloring algebra, which does support splitting and merging.

Other algebras for feature-based composition, such as [1,22], focus on the
internal structure of modules. The algebra presented in [1] is (to our knowledge)
the first that dealt with feature replication. It uses the algebraic law of distant
idempotence (a form of idempotence where adjacency of identical features is not
required). Feature composition is not commutative and there is no operation of
subtraction on feature modules (called feature structure trees there). An algebra

Structured Document Algebra in Action 307

that also captures replicas is presented in [16]. However, this algebra only works
at a semantic level and cannot cope with real source code, as SDA does.

The Choice Calculus (CC) [25] offers an interesting and alternative approach
to our work. Among the goals of CC are to integrate classical and virtual modu-
larity, but to do so in the context of a formal programming language. Large-scale
fragments can be placed in modules of their own, while small-scale fragments
(suitable for annotations) can be embedded into other modules. As in coloring
and ifdef preprocessing, variation points are implicit. The key difference be-
tween our work and CC is that the issues of classical and virtual modularity are
not limited to a fixed set of programming languages.

Delta Oriented Programming (DOP) [24] is another interesting language-based
approach within our field. Delta modules are qualified to be composed into a
product when the corresponding where clause is satisfied. Such a clause is a
propositional formula over features, namely the conjunction of the feature for-
mulas that arise in coloring. Disjunction allows a single module to be reused
in different contexts (rather than requiring a module to be replicated for each
context). Negation seems to offer a more general way for defining alternatives.
Understanding this connection will be the subject of future work. Delta modules
also have after clauses, which specify a partial order in which to compose them.
We express the composition order of modules explicitly with our overriding op-
erator −� .

A project close in spirit and ideas is Kästner’s CIDE [18,19,2]. It started out
with a tool for software product line development (esp. analyzing and decompos-
ing legacy code), following the paradigm of virtual separation of concerns. For this
it offers the possibility of distinguishing fragments within the original code by dif-
ferent background colors. CIDE is also a compiler (and an IDE), closely related
to conditional compilation with preprocessors. Additionally it analyzes the deep
structure of the code and hence guarantees syntactic correctness as well as type
correctness of all generated products. Hence CIDE already provides, at the tool
level, some of the functionality that our algebra treats at the abstract level.

7 Conclusions and Outlook

We have presented a structured document algebra not only in concept, but also at
work on some essential phenomena of large-scale software construction. We hope
to have convinced the reader that SDA is both concise and precise, and comes
with a number of useful laws. These can be used to construct and reason about
structured modules in an algebraic fashion.

The main aim is to provide a formal basis for governing variability in large
interconnected collections of documents, in particular ones that define SPLs.
SDA can be used to implement tools which relieve developers from managing
variability manually. In particular, it provides a basis for precise reasoning about
complex and error-prone operations such as subtraction, overriding, and various
refactorings. Currently, work on a pilot implementation is under way.

308 D. Batory et al.

The algebra has interesting connections to other structures, such as the pointer
algebras presented in [13,23] and to the concept of the demonic join or compatible
union [3,11].

While so far SDA is presented along a concrete mathematical model, an ab-
straction to more general concepts like monoids, semirings and modules in the
linear algebra sense is under way.

Finally, so far SDA has a very syntactic flavor, since the nature of fragments
is left open. However, it is possible to work with fragments that have a semantic
character, such as functions from valuations of VPs in some semantic model to a
semantic value. We have sketched this in an Appendix; the elaboration of these
ideas will be the subject of future investigations.

Acknowledgments. We are grateful to the anonymous referees for helpful
comments and suggestions. We gratefully acknowledge support for this work by
NSF grants CCF 0724979 and OCI-1148125, as well as by DFG grant MO 690/7-
2. NICTA is funded by the Australian Government through the Department of
Communications and the Australian Research Council through the ICT Centre
of Excellence Program.

References

1. Apel, S., Lengauer, C., Möller, B., Kästner, C.: An algebraic foundation for auto-
matic feature-based program synthesis. SCP 75(11), 1022–1047 (2010)

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer (2013)

3. Backhouse, R., van der Woude, J.: Demonic operators and monotype factors. Math-
ematical Structures in Computer Science 3(4), 417–433 (1993)

4. Batory, D.: Program refactoring, program synthesis, and model-driven develop-
ment. In: Adsul, B., Odersky, M. (eds.) CC 2007. LNCS, vol. 4420, pp. 156–171.
Springer, Heidelberg (2007)

5. Batory, D., Höfner, P., Kim, J.: Feature interactions, products, and composition.
In: Generative Programming and Component Engineering (GPCE 2011), pp. 13–22.
ACM (2011)

6. Batory, D., Höfner, P., Möller, B., Zelend, A.: Features, modularity, and variation
points. In: Feature-Oriented Software Development, pp. 9–16. ACM (2013)

7. Batory, D., Shepherd, C.: Product lines of product lines, Department of Computer
Science, University of Texas at Austin (submitted, 2013)

8. Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/J: Controlling the scope of change
in Java. SIGPLAN Not. 40(10), 177–189 (2005)

9. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

10. Delaware, B., Cook, W.R., Batory, D.S.: Product lines of theorems. In: Lopes, C.V.,
Fisher, K. (eds.) Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2011, part of SPLASH2011, Portland, OR,USA,October 22-27, vol. 10, pp. 595–608.
ACM (2011)

Structured Document Algebra in Action 309

11. Desharnais, J., Belkhiter, N., Sghaier, S.B.M., Tchier, F., Jaoua, A., Mili, A.,
Zaguia, N.: Embedding a demonic semilattice in a relational algebra. Theor. Com-
put. Sci. 149(2), 333–360 (1995)

12. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, P.: Traits: A mechanism
for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28(2), 331–388 (2006)

13. Ehm, T.: The Kleene Algebra of Nested Pointer Structures: Theory and Appli-
cations. Ph.D. thesis, Fakultät für Angewandte Informatik, Universität Augsburg
(2003)

14. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison-Wesley (2004)

15. Heidenreich, F.: Towards systematic ensuring well-formedness of software product
lines. In: Feature-Oriented Software Development, ACM (2009)

16. Höfner, P., Khedri, R., Möller, B.: Feature algebra. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 300–315. Springer, Heidelberg
(2006)

17. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain
analysis (foda) feasibility study. Tech. Rep. CMU/SEI-90-TR-021, Carnegie Mellon
Software Engineering Institute, Carnegie Mellon University (1990)

18. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
Schäfer, W., Dwyer, M., Gruhn, V. (eds.) Conference on Software Engineering
(ICSE 2008). ACM (2008)

19. Kästner, C.: Virtual separation of concerns: toward preprocessors 2.0. Ph.D. thesis,
Otto von Guericke University Magdeburg (2010)

20. Kuhlemann, M., Batory, D., Apel, S.: Refactoring feature modules. In: Edwards,
S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 106–115. Springer,
Heidelberg (2009)

21. Liu, J., Batory, D.S., Lengauer, C.: Feature oriented refactoring of legacy appli-
cations. In: Osterweil, L.J., Rombach, H.D., Soffa, M.L. (eds.) 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, China, May 20-28,
pp. 112–121. ACM (2006)

22. Lopez-Herrejon, R., Batory, D., Lengauer, C.: A disciplined approach to aspect
composition. In: Partial Evaluation and Semantics-based Program Manipulation
(PEPM 2006). ACM (2006)

23. Möller, B.: Towards pointer algebra. SCP 21(1), 57–90 (1993)
24. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-

gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

25. Walkingshaw, E., Erwig, M.: A calculus for modeling and implementing varia-
tion. In: Generative Programming and Component Engineering, pp. 132–140. ACM
(2012)

26. Wirsing, M.: Algebraic specification. In: Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Semantics (B), pp. 675–788 (1990)

310 D. Batory et al.

Appendix: Sketch of a Semantic Model of SDA

For historical reasons, in particular in honour of Martin Wirsing, we have chosen
an approach based on the notions of algebraic specification [26]. Other variants
are conceivable, too.

Basic Definitions. Assume a signature Σ = (s, F) with a sort s and a set F of
operators f : sn → s. (For simplicity we restrict ourselves to the one-sorted case;
the generalisation to many sorts is straightforward.) The number n is called the
arity of f. An operator of arity 0 is called a constant operator. We also assume a
set V of variation points such that V is disjoint from the set of constant operators
of Σ (in logic the elements of V would be called variables). The set T(Σ, V) of
terms over Σ and V is defined as usual. If VP(t) = ∅ then t is called closed or
a ground term. For describing SDA modules we assume a signature with two
special constant symbols 0,�.

A Σ-algebra is a pair A = (sA, FA) where sA is a nonempty carrier set and
FA = {fA | f ∈ F} is a set of operations fA : (sA)n → sA associated with the
f : sn → s ∈ F. The set T(Σ, V) can be made into a Σ-algebra in the usual
way. A valuation of V in a Σ-algebra A (also called an environment) is a partial
function e : V � sA. The set of all environments is denoted by EA.
Syntactic Modules. A syntactic fragment simply is an element of T(Σ, V). By
this, all VPs are fragments, too. A syntactic module is an environment m : V �
T(Σ, V) from ET(Σ,V). The function single fill(t, m) is defined inductively as
syntactic substitution:

1. If t = v ∈ V is a VP then

single fill(t, m) =df

{
e(v) if v ∈ dom(e) ,
v otherwise .

2. If t = f(t1, . . . , tn) then

single fill(t, m) =df f(single fill(t1, m), . . . , single fill(tn, m)) .

For a constant operator f hence single fill(t, m) = f.

Term Evaluation. For a Σ-algebra A we define inductively the evaluation [[]] :
T(Σ, V) → (EA � sA) that assigns to every term a value using an environment,
if possible.

– For VP v we set

[[v]](e) =df

{
e(v) if v ∈ dom(e) ,
undefined otherwise .

– For other terms we set

[[f(t1, . . . , tn)]](e) =df{
fA(u1, . . . , un) if all [[ti]](e) are defined and ui = [[ti]](e) ,
undefined otherwise .

Hence for a constant symbol f we have [[f]](e) = fA for all e.

Structured Document Algebra in Action 311

This definition entails what is called the Coincidence Lemma in logic; the
proof is a straightforward induction.

Lemma 7.1. If two environments e, e′ agree on the VPs of a term t, i.e., if
e|VP(t) = e′|VP(t), then [[t]](e) = [[t]](e′).

Semantic Modules. The idea is now to make the mapping [[t]] : EA � sA

somehow into a semantic fragment corresponding to the syntactic object t and
to define a semantic module as a partial function from VPs to semantic frag-
ments. However, this is not entirely straightforward, since we need to have VP
information in some way to still be able to talk about cycle-freeness of modules.
The solution proposed here is to enrich a semantic fragment by a set of VPs it
“administers”. A semantic fragment over a set V of VPs and a Σ-algebra A is a
pair (W, g) where W ⊆ V and g : EA � sA satisfies the coincidence property on W:

∀ e, e′ : e|W = e′|W ⇒ g(e) = g(e′) .

We set VP(W, g) =df W and ev(W, g) =df g. The dependence relation for semantic
modules uses this definition of VP.

Every VP v can be made into the fragment ({v}, λe . 0A).
A semantic module is a partial function from V to the set of semantic frag-

ments. We can translate every syntactic module m into a semantic one called m̂

by setting m̂(v) =df (VP(m(v)), [[m(v)]]). If m is cycle-free then so is m̂.

The Single Fill Function for Semantic Modules. To make SDA work for
semantic modules we have to define the single fill function suitably:

single fill((W, g), m) =df ((W − dom(m)) ∪ Z, λe . g(e′)) ,

where Z =df

⋃
v∈dom(m)

VP(m(v)) and

e′(v) =df

{
m(v)(e) if v ∈ dom(m) ,
e(v) otherwise .

From EU Projects to a Family of Model Checkers
From Kandinsky to KandISTI

Maurice H. ter Beek, Stefania Gnesi, and Franco Mazzanti

Formal Methods && Tools lab (FM&&T)
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (ISTI)

Consiglio Nazionale delle Ricerche (CNR)
Via G. Moruzzi 1, 56124 Pisa, Italy

{terbeek,gnesi,mazzanti}@isti.cnr.it

Abstract. We describe the development of the KandISTI family of model
checkers from its origins nearly two decades ago until its very recent lat-
est addition. Most progress was made, however, during two integrated
European projects, AGILE and SENSORIA, in which our FM&&T lab
participated under the scientific coordination of Martin Wirsing. More-
over, the very name of the family of model checkers is partly due to
Martin Wirsing’s passion for art and science.

1 Introduction

We have had the pleasure to work with Martin in two European projects, namely
FP5-IP-IST-2001-32747 AGILE [2] and the FP6-IP-IST-016004 SENSORIA [57].
He coordinated both in an excellent manner.

AGILE created primitives for explicitly addressing mobility in architectural
models. Therefore algebraic models based on graph transformation techniques
were defined for the underlying processes to relate the reconfiguration of the
coordination structure and the mobility of components across the distribution
topology. Moreover, an extension of UML for mobility was developed to make the
architectural primitives available to practitioners, together with tool support.

SENSORIA resolved problems from Service-Oriented Computing (SOC) by
building novel theories, methods, and tools supporting the engineering of soft-
ware systems for service-oriented overlay computers. The results include a com-
prehensive service ontology, new semantically well-defined modeling and pro-
gramming primitives for services, new powerful mathematical analysis and ver-
ification techniques, tools for system behavior and quality of service properties,
and novel model-based transformation and development techniques [57].

Based on our expertise, our involvement in AGILE was mainly to develop
analysis techniques to support compositional verification of properties address-
ing the evolution of computation, coordination and distribution. In SENSORIA,
instead, we developed a logical verification framework for the analysis of func-
tional properties in SOC. In both projects, our work was strongly focused on the
realization of a model-checking framework, as a result of which we now have a
family of model checkers that we will describe in this paper.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 312–328, 2015.
c© Springer International Publishing Switzerland 2015

From EU Projects to a Family of Model Checkers 313

This paper is organized as follows. In Sect. 2 we explain the name we gave to
our family of model checkers, after which we briefly describe each family member
in Sect. 3–6. We then sketch their overall structure in Sect. 7, after which we
conclude the paper in Sect. 8.

2 From Kandinsky to KandISTI

In the beginning of 2008, one of the SENSORIA meetings included as social
event a visit to the Lenbachhaus, a museum which preserves one of the richest
collections of Wassily Kandinsky. At that time we were in the middle of the
process of reshaping our family of model checkers by separating the specifica-
tion language dependent details of the underlying ground computational model
from its abstract representation in terms of a so-called Doubly-Labeled Transi-
tion System (L2TS) [33], on which to carry out the analysis. While our ground
computational models (state machines, process algebras) are already a simplified
model of a real system, their correspondence with reality is still very immedi-
ate as they directly reflect the real system structure and behavior. Observing a
model at this level, as explicitly allowed by our model-checking framework, is
like exploring the real system which is being modeled. In some sense, our ground
models are similar to the early paintings of Kandinsky (e.g. Fig. 1(a)) in which
the correspondence of the painting to the reality is immediate.1

(a) Kallmünz - Gabriele
Münter Painting II, 1903

(b) St. George III, 1911 (c) Red Spot II, 1921

Fig. 1. By Wassily Kandinsky (Städtische Galerie im Lenbachhaus, Munich, Germany)

In a very short time, however, Kandinsky’s style of painting started to evolve
into a more abstract style and his paintings started to no longer directly reflect
reality in all its details. Instead, the painter chose to communicate just what he
felt was relevant to him (e.g. Fig. 1(b)). Again, this is precisely what we intend
1 The depicted thumbnails of Kandinsky paintings are among those observable on

the official website of the Städtische Galerie im Lenbachhaus in Munich, Germany
(cf. http://www.lenbachhaus.de/collection/the-blue-rider/), and are
used here for non-commercial and strictly illustrative purposes.

http://www.lenbachhaus.de/collection/the-blue-rider/

314 M.H. ter Beek, S. Gnesi, and F. Mazzanti

to achieve in our family of model checkers, when we define abstraction rules
which allow to represent the system as an L2TS in which the labels on the states
and edges directly represent just the abstract pieces of information we want to
observe, to be able to express the properties we want to verify. A specific feature
of our framework displays the model precisely at this abstraction level, even if at
this level we are still able to find a correspondence between the abstract L2TS
and the underlying computational model, since each state and each edge can
still be mapped back to a precise system state and system evolution.

In the last series of Kandinsky paintings, the disconnection between the ob-
served reality and the represented images is almost complete (e.g. Fig. 1(c)). His
paintings directly express just the author’s feelings that the observation of real-
ity stimulates. In our framework we have the possibility to apply to our abstract
L2TS a powerful minimization technique, which allows to observe in a graphical
and very concise way the system behavior with respect to the abstract pieces of
information we have selected to observe. In this way the resulting picture loses
its direct connection with the underlying model (it is no longer possible to map
a node to a single system state) and directly communicates most of the system
properties regarding the observed aspects of the system. The intuition on the
correctness of a system can be gained by just observing the representation of its
abstract minimized behavior.

During the aforementioned visit to the Lenbachhaus, Martin Wirsing did not
fail to notice the reminiscence of the various abstraction levels of our verification
framework to the various approaches to painting through which Kandinsky’s
style has evolved, and we enjoyed together this wonderful matching. This visit
inspired us to name our ISTI verification framework in a way that somehow
reflects and honors Kandinsky’s contribution to the art of painting, and this is
why we have decided to name it KandISTI.

The development of the KandISTI family of model checkers is an ongoing
effort [24,40,17]. The current versions of its family members are freely usable
online via:

http://fmt.isti.cnr.it/kandisti/

On that page you will see the front-end of the family depicted in Fig. 2 and
by clicking on one of its family members the specific tool will open.

In the next four sections, we briefly describe the different computational mod-
els underlying the model-checking tools of KandISTI, after which we will describe
the unique logical verification environment in more detail in Sect. 7.

3 FMC: The Origin of Our On-the-Fly Model-Checking Approach

Experiments at ISTI with on-the-fly model checking began with the FMC model
checker [39] for action-based CTL (ACTL) [32] extended with fixed-point opera-
tors. In FMC, a system is a hierarchical composition (net) of sequential automata
(terms). Terms can be recursively defined using a simple process algebra which
supports features coming from CCS, CSP and LOTOS [36]. Communication and
synchronization among terms is achieved through synchronous operations over

http://fmt.isti.cnr.it/kandisti/

From EU Projects to a Family of Model Checkers 315

Fig. 2. The front-end of the KandISTI family of model checkers

channels. The parallel operator /Channels / defined in the syntax below allows
the CCS synchronization between two participating networks, requires the CSP-
like synchronization when the participating networks evolve with a communica-
tion action controlled by the specified list of Channels, and lets the participants
proceed in interleaving when executing CSP actions not explicitly controlled.
Moreover, all participants of a communication/synchronization must agree on
the set of values exchanged during the operation.

All this allows to naturally model both binary client-server interactions and
n-ary barrier-like synchronizations. Term definitions can be parametrized, and
communication operations allow value passing. The only supported form of val-
ues are integer numbers, stand-alone identifiers can also be used as values and
behave like special implementation defined integer constants.

Summarizing, the structure of the process algebra accepted by FMC is de-
scribed by the following abstract syntax (where only the case in which term
definitions and communication actions have precisely one parameter is depicted,
but obviously their number can be arbitrary):

System ::= [Net]
Net ::= T (expr) | Net /Channels / Net | Net \ channel | Net [channel/channel]

where [Net] denotes a closed system, i.e. a process that cannot evolve on
actions that rely on input parameters (channel(?variable) as defined below);
T (expr) is a process instantiation from the set of process declarations of the form
T (variable) def

= Term ; and Channels is a list of channel names. Next to the par-
allel operator /Channels / mentioned before, \ channel and [channel/channel]
denote the classical operators of channel restriction and renaming, respectively.

316 M.H. ter Beek, S. Gnesi, and F. Mazzanti

The structure of Term definitions is described by the following abstract syntax:

Term ::= nil | T (expr) | Action .Term | Term +Term | [expr �� expr]Term
Action ::= channel(arg) | ?channel(arg) | !channel(arg)
arg ::= expr | ?variable
expr ::= variable | integer | identifier | expr ± expr

where ��∈ {<,≤,=, �=,≥, >} is a comparison operator and ± ∈ {+,−,×,÷} is
an arithmetic operation.

The basic idea underlying the design of FMC is that, given a system state,
the validity of a formula on that state can be evaluated analyzing the transitions
allowed in that state, and analyzing the validity of a subformula in only some
of the next reachable states, recursively. In this way (depending on the formula)
only a fragment of the overall state space might need to be generated and ana-
lyzed in order to produce the correct result. Such model-checking procedures are
also called local , in order to distinguish them from those called global , in which
the whole state space is explored to check the validity of a formula (cf. [27,7]).

For the evaluation of a formula, in order to be able to partially deal also with
infinite-state systems (potentially introduced by the presence of integer values),
a so-called bounded model-checking approach is adopted (cf. [27,7]). The evalua-
tion is started by assuming a certain value as a maximum depth of the evaluation.
If the evaluation of the formula reaches a result within the requested depth, then
the result holds for the whole system; otherwise the maximum depth is increased
and the evaluation is retried (preserving all useful partial results already found).
This approach, initially introduced to address infinite state spaces, can turn out
to be useful also for another reason: by setting a small initial maximum depth
and a small automatic increment of this bound at each re-evaluation failure,
once a result is finally found then we might also have a usable explanation for it.
Note, however, that depending on the structure of the formula (e.g. requesting a
check on all reachable states) and on the structure of the model (e.g. of a too big
size2) no result might be returned by the tool when all the available resources
(e.g. memory) are consumed.

The logic initially supported by FMC is an action-based branching-time logic
inspired by ACTL and enriched with weak until operators, box and diamond
operators and fixed-point operators. The fragment of this logic without fixed-
point operators allows verifications with a complexity which is linear with respect
to the size of the model and the size of the formula. With the integrations of
the other tools of the family this logic has been over the time extended with the
new features introduced for the support of state properties and data correlations
among actions.

So far, FMC has been used mainly in didactic contexts for the experimenta-
tion of various modeling and verification techniques. Its main limit for heavier
industrial use is the lack of support for more structured data types (e.g. lists,
sets, maps, vectors).

2 The current limit for an exhaustive verification is a statespace of millions of states.

From EU Projects to a Family of Model Checkers 317

4 UMC: Support for State/Event-Based Models and Logics

As an attempt to reduce the gap between software engineers and theoreticians,
the very same model-checking approach that was adopted for FMC has sub-
sequently been applied to a computational model directly inspired by UML
statecharts (cf. http://www.uml.org). This prompted the switching to an
action- and state-based logic, that would allow to express in a natural way not
only properties of evolution steps (i.e. related to the executed actions) but also
internal properties of states (e.g. related to the values of object attributes). The
result of this process has been the UMC model checker and its associated UCTL
logic [14].

The initial part of the design, development, and experimentation of the ap-
proach has been carried out in the context of the AGILE project. The purpose of
the project was the development of an architectural approach in which mobility
aspects could be modeled explicitly. The project proposed extensions of UML to
support mobile and distributed system design, including linguistic extensions of
the UML diagrammatic notations, extensions of the Unified Process and a pro-
totype for simulating and analyzing the dynamic behavior of designs of mobile
and distributed systems.

According to the UML paradigm, a dynamic system is seen as a set of evolv-
ing and communicating objects, where objects are class instances. The set of
objects and classes which constitute a system can be described in UML by a
structure diagram, while the dynamic behavior of the objects can be described
by associating a statechart diagram to their classes. Each object of the system
will therefore behave like a state machine; it will have a set of local attributes,
an event pool collecting the events that need to be processed, and a current
progress status. The progress status of a state machine is given by the set of
currently active states of the statechart diagram.

In UMC a system is described as a set of communicating UML-like state
machines. The structure of a state machine in UMC is defined by a Class decla-
ration, which has the following general structure:

class <name> is
Signals:
<list of asynchronous signals managed by the class’ objects>
Operations:
<list of synchronous call ops managed by the class’ objects>
Vars:
<list of local vars belonging to the class’ objects state>
Behavior:
<list of rules defining state evolutions of the class’ objects>

end <name>

The Behavior part of a class definition describes the possible evolutions of
the system. This part contains a list of transition rules which have the following
generic form:

http://www.uml.org

318 M.H. ter Beek, S. Gnesi, and F. Mazzanti

<Source> --> <Target> {<EventTrigger>[<Guard>] /<Actions> }

Each rule intuitively states that when the system is in state Source, the specified
EventTrigger is available and the Guard is satisfied, then all Actions of the
transition are executed and the system state passes from Source to Target .

In UMC, the actual structure of the system is defined by a set of active
object instantiations. A full UMC model is defined by a sequence of Class and
Object declarations and by a final definition of a set of Abstraction rules. The
overall behavior of a system is in fact formalized as an abstract L2TS and the
Abstraction rules allow to define what we want to see as labels of the states and
edges of the L2TS.

This approach to model the abstract system behavior as an L2TS, showing
only the essential information for the verification of system properties, proved to
be a winning idea. Hence it was applied also to the other tools of the family, thus
allowing the development of a common logical verification layer for our family of
model checkers, which consequently became independent from the details of the
particular specification language and computational model of the various tools.

The logic initially supported by UMC was just an extension of the logic sup-
ported by FMC with the possibility of using state predicates and pure CTL-like
operators. As we will see in the next section over time this logic has been ex-
tended with the new features introduced for the support of parametric formulas
allowing to express data correlations among actions.

The development and the experience gained with UMC has also helped in
clarifying the overall purpose for the development of our verification framework.
The main purpose of our tools is not just the final validation step of a completed
architectural design, but rather a formal support during all steps of the incre-
mental design phase (i.e. when ongoing designs are still likely to be incomplete
and, with a high probability, contain mistakes). Indeed, the UMC framework has
evolved having in mind the requirements of a system designer as end user: (s)he
intends to take advantage of formal approaches to achieve an early validation of
the system requirements and an early detection of design errors. Therefore, the
main goals of the development of UMC have been:

1. The possibility to manually explore a system’s evolutions and to generate a
summary of its behavior in terms of minimal abstract traces.

2. The possibility to investigate abstract system properties by using a branching-
time temporal logic supported by an on-the-fly model checker.

3. The possibility to obtain a clear explanation of the model-checking results
in terms of possible evolutions of the selected computational model.

In AGILE, planes landing and taking off from airports and transporting other mo-
bile objects, namely passengers, were considered as an example of mobile objects.
In a simplified scenario, departing passengers check in and board the plane, dur-
ing the flight they might consume a meal, and after the plane has arrived at the
destination airport, they deplane and claim their luggage. The complete dynamic

From EU Projects to a Family of Model Checkers 319

behavior of the objects of classes Passenger, Airport and Plane was modeled in
UMC in the form of statechart diagrams and subsequently a number of logical
properties were verified [2].

The experimentation with UMC has continued also in the context of the
SENSORIA project, where it was used to model and verify an asynchronous
version of the SOAP communication protocol. In the same project, UMC has
been used for the modeling of an automotive scenario, for the support of the
SRML modeling language, and for the conflict detection of policies in a scenario
from SENSORIA’s Finance case study [15,1,20,8].

More recently, UMC was successfully applied, in the context of the regional
project PAR-FAS-2007-2013 TRACE-IT (Train Control Enhancement via In-
formation Technology), to the development of a model-checking-based design
methodology for deadlock-free train scheduling [52,51].

5 CMC: Parametrized Logic Formulas for Expressing Data
Correlations Among Actions

A third application of our on-the-fly model-checking approach has been to the
process algebra COWS [44,56], developed in the context of the SENSORIA
project. This project developed a novel comprehensive approach to the engineer-
ing of software systems for SOC. Foundational theories, techniques and methods
were fully integrated in a pragmatic software engineering approach that focused
on global services that are context-adaptive, personalizable, and which may re-
quire hard and soft constraints on resources and performance. Moreover, the
fact that services have to be deployed on different, possibly interoperating global
computers to provide novel and reusable service-oriented overlay computers was
taken into account.

The Calculus for Orchestration of Web Services (COWS) is a modeling nota-
tion for all relevant phases of the life cycle of service-oriented applications, among
which service publication, discovery, and orchestration, as well as Service-Level
Agreement (SLA) negotiation. Besides service interactions and compositions, im-
portant aspects like fault and compensation handling can be modeled in COWS.
Extensions moreover allow timed activities, constraints and stochastic reasoning.
Application to the SENSORIA case studies [8] has demonstrated the feasibility
of modeling service-oriented applications with the specific mechanisms and prim-
itives of COWS [35].

Experimentation in this direction led to the development of the CMC model
checker for COWS terms and the definition of the SocL logic [24,35]. It is too
complex to explain in detail all the features and characteristics of the COWS
specification language. Here we only mention that COWS is a process-algebraic
language that allows recursive processes which can also be parallel process (unlike
FMC, which does not not allow parallelism inside recursion). Process synchro-
nization and communication occurs through input/output actions which have
the form p.o! < args > and p.o? < params > where p denotes a communica-
tion partner and o an operation request. Recursion is achieved through a ‘bang’

320 M.H. ter Beek, S. Gnesi, and F. Mazzanti

operator (∗P) meaning P |P |P | · · · . The language supports also the definition of
protected contexts ({P}), delimited contexts ([k]P) and kill operations (kill (k)).

This kind of systems require a logic that allows to express the correlation
between dynamically generated values appearing inside actions at different times.
The reason for this is that such correlation values then allow, e.g., to relate the
responses of a service to their specific request, or to handle the concept of a
session involving a long sequence of interactions among the interacting partners.
A typical example property that one would like to express in this context is that
whenever a process performs a request operation to a partner p, providing some
identification data id , in all cases the partner will reply with a response operation
with the same identification data. In CMC that property can be expressed by
the parametric formula:

AG [request(p, $id)] AF response(p,%id) true

CMC has been successfully used to model and analyze service-oriented sce-
narios from the SENSORIA project’s Automotive and Finance case studies and
to its Bowling Robot case study [19,15,20,14,21,8,35].

6 VMC: Behavioral Variability Analysis for Product Families

The final and most recent extension of the modeling and verification framework
that we will describe in this paper is a tool, called the Variability Model Checker
(VMC [25,16,23]), which was specifically developed for the specification and
verification of so-called product families or product lines .

Software Product Line Engineering (SPLE) [30,55] is by now an established
field of software-intensive system development which propagates the systematic
reuse of assets or features in an attempt to lower production costs and time-
to-market and to increase overall efficiency. SPLE thus aims to develop, in a
cost effective way, a variety of software-intensive products that share an overall
reference model, i.e. that together form a product family. Usually, commonality
and variability are defined in terms of so-called features , and managing variability
is about identifying variation points in a common family design and deciding
which combinations of features are to be considered valid products. There is by
now a large body of literature on the computer-aided analysis of feature models
to extract valid products and to detect anomalies, i.e. undesirable properties
such as superfluous or—worse—contradictory variability information (e.g. so-
called false optional or dead features) [26].

Until a few years ago, these analyses however did not take any behavior into
account, even though software products are often large and complex, and many
are used in safety-critical applications in the avionics, railways, or automotive
industries. The importance of specifying and verifying also behavioral variability
was first recognized in the context of UML [43,58]. Shortly after, in [37], Modal
Transition Systems (MTSs) were recognized as a promising formal method for
describing in a compact way the possible operational behavior of the products in

From EU Projects to a Family of Model Checkers 321

a product family. An MTS [3] is a Labeled Transition System (LTS) distinguish-
ing between ‘admissible’ may and ‘necessary’ must transitions. By definition,
every must transition is also a may transition.

In recent years, many variants and extensions of MTSs have been studied in
order to elaborate a suitable formal modeling structure to describe (behavioral)
variability [34,45,46,4,5,6]. This has resulted in a growing interest in modeling
behavioral variability in general, which has led to the application of a number of
formal methods different from MTSs but still with a transition system seman-
tics [42,54,41,47,53,22,29,10,11,12,48,28]. As a consequence, behavioral analysis
techniques like model checking have become available for the verification of (tem-
poral) logic properties of product families.

VMC accepts the specification of an MTS in process-algebraic terms, together
with an optional set of additional variability constraints. VMC then allows to
perform the following two kinds of behavioral variability analyses on a given
family of products:

1. A logic property expressed in a variability-aware version of ACTL (v-ACTL)
can directly be verified against the MTS modeling the product family behav-
ior, relying on the fact that under certain syntactic conditions the validity
of the property over the MTS guarantees the validity of the same property
for all products of the family.

2. The actual set of valid product behavior can explicitly be generated and the
resulting LTSs can be verified against the same logic property (expressed in
ACTL). This is surely less efficient than direct MTS verification but allows
to precisely identify the set of features whose interactions may cause the
original property to fail over the whole family.

The process algebra used by VMC to specify the MTS modeling of the behav-
ior of a product family is derived from the one of FMC by removing CCS-like
synchronizations and adding to the actions the notion of variability. In fact,
in VMC, communication/synchronization actions can accept an additional pa-
rameter (may) which expresses the property that the action is not necessarily
present in all derivable products of the family. The synchronization semantics
is also updated by taking this parameter into consideration, in the sense that
the result of the synchronization of an optional action with a mandatory action
results in an optional action [3].

In more detail, the structure of the process algebra accepted by VMC is de-
scribed by the following abstract syntax:

System ::= [Net]
Net ::= T (expr) | Net /Labels / Net

where [Net] denotes again a closed system, T (expr) is a process instantiation
from the set of process declarations of the form T (variable) def

= Term , and Labels
is a list of action names.

322 M.H. ter Beek, S. Gnesi, and F. Mazzanti

The structure of Term definitions is described by the following abstract syntax:

Term ::= nil | T (expr) | Action .Term | Term +Term | [expr �� expr]Term
Action ::= a(arg) | a(may, arg)
arg ::= expr | ?variable
expr ::= variable | integer | expr ± expr

where �� is a comparison operator and ± is an arithmetic operation.
In VMC, the abstract model associated to this variability-oriented process

algebra is an LTS in which edges are labeled with sets of labels, and where the
additional may label is added to the optional edges to specify their possible
absence in some of the family’s products.

The logic v-ACTL is built over a subset of ACTL, but enriched with the
deontic operators AF#, EF#, 〈〉#, and []# (cf. [18,23] for details). These op-
erators are actually implemented in VMC by a translation into plain ACTL.
For example, the formula 〈a〉# true, which means that there exists a mandatory
evolution from the current state which satisfies action a, can be encoded in plain
ACTL as 〈a and not may〉 true. Similarly, EF# φ can be encoded in plain ACTL
as E [true {not may} U φ] (where φ is a subformula).

We are currently experimenting with VMC in the context of the European
FP7-ICT-600708 project QUANTICOL [9] (cf. http://www.quanticol.eu).
So far the case studies taken into consideration (a bike-sharing system and a cof-
fee machine [13,18]) are relatively small and more effort is needed to evaluate
the approach on problems of a more realistic size.

7 The Overall Structure of the Model Checkers

In the previous sections, we have seen four different specification languages for
the four model checkers that are part of KandISTI. While their computational
models are rather different, ranging from statecharts to various kind of process
algebras, the evolution of the framework over time has led to the development
of a unique common temporal logic and verification engine, which encompasses
and integrates the various specific logics initially associated to the specific tools:
ACTL for FMC, UCTL for UMC, SocL for CMC and v-ACTL for VMC.

This had become feasible by splitting the statespace generation problem (which
depends on the underlying computational model), from the L2TS analysis prob-
lem, and by the introduction of an explicit abstraction mechanism which allows
to specify which details of the model should be observable as labels on the states
and transitions of the L2TS.

Another essential characteristic of our family of tools, which has been preserved
since its origins, is the so-called on-the-fly structure of the model-checking algo-
rithm: the L2TS corresponding to the model is generated on-demand , following
the incremental needs of the logical verification engine. Given a state of an L2TS,
the validity of a logic formula on that state is evaluated by analyzing the transi-
tions allowed in that state, and by analyzing the validity of the necessary subfor-
mulae possibly in some of the necessary next reachable states, all this recursively.

http://www.quanticol.eu

From EU Projects to a Family of Model Checkers 323

Indeed, each tool consists of two separate, but interacting, components: a
tool-specific L2TS generator engine and a common logical verification engine.
The L2TS generator engine is again structured in two logical components: a
ground evolutions generator, strictly based on the operational semantics of the
language, and an abstraction mechanism which allows to associate abstract ob-
servable events to system evolutions and abstract atomic propositions to the
system states. The verification engine is the component which actually tries to
evaluate a logic formula following the on-the-fly approach, and is described in
more detail in [14,35].

The L2TS generator engine maintains an archive of already generated system
states in order to avoid unnecesary duplications in the computation of the pos-
sibile evolutions of states. The logical verification engine maintains an archive
of logical computation fragments; this is not only useful to avoid unnecessary
duplications in the evaluation of subformulae, but also necessary to deal with
the recursion in the evaluation of a formula arising from the presence of loops in
the models. The overall structure of the framework is shown in Fig. 3.

Fig. 3. The architecture of the KandISTI framework

All the model checkers of our family are constituted by a command-line version
of the tool written in Ada, which can be easily compiled for the Windows, Linux,
Solaris and Mac OS X platforms. These core executables are wrapped with
CGI scripts handled by a web server, facilitating an html-oriented GUI and
integration with graph drawing tools. It is beyond the scope of this paper to
give detailed descriptions of the model-checking algorithms and architecture that
underly our family of model checkers. Instead, we refer the interested reader
to [24,40,14,35] for more details.

324 M.H. ter Beek, S. Gnesi, and F. Mazzanti

8 Discussion and Conclusions

In this paper, we have provided an overview of the KandISTI family of model-
checking tools, currently consisting of FMC, UMC, CMC and VMC. We have
briefly presented their different kind of underlying computational models and
their different contributions to the development of a general purpose action- and
state-based branching-time temporal modal logic (with special purpose dialects
for each of the KandISTI variants).

The differences between the described input models stem from the specific
field of application for which they were developed. In the end, however, each
of them is interpreted over an L2TS, which permits to use the same logical
verification engine for all, even though the specific logic associated to each of the
input models again has certain features that are specifically tailored towards the
application field for which they were developed.

FMC’s input model of automata networks was defined as an attempt to inte-
grate the communication and synchronization mechanisms from CCS, CSP and
LOTOS in a single process-algebra, thus allowing both multi-way synchroniza-
tion and value-passing.

UMC’s input model of UML-like state machines was inspired by the UML
paradigm of dynamic systems seen as sets of evolving and communicating ob-
jects, where objects are class instances. In UML, the set of objects and classes
constituting a system are described by a structure diagram, while the objects’
dynamic behaviour is described by associating a statechart diagram to their
classes. As a result, each system object behaves like a state machine, with a set
of local attributes, an event pool collecting the events to be processed, and the
currently active states of the state diagram.

CMC’s input model COWS was influenced by WS-BPEL principles for Web
service orchestration, thus supporting the correlation of different actions and the
management of long-running transactions. The pure process-algebraic specifica-
tion in COWS terms needs to be accompanied with a set of abstractions that
define the action semantics and state predicates.

VMC’s input model of process-algebraic interpretations of MTSs, possibly
enriched with variability constraints known from SPLE, was developed to study
the feasibility of using MTSs to describe (and consequently analyze) in a compact
way the possible operational behaviour of products from a product family.

The KandISTI model checkers are continuously being improved. This ranges
from more efficient generation of the computational models to a more user-
friendly web interface. An overall goal for the future is to experiment with in-
dustrial case studies of increasing size. In order to fulfill this aim, richer input
models are needed, in particular allowing more advanced data types (e.g. tuples,
sets, lists, etc., currently only supported by UMC), thus requiring more complex
computational models. The addition of some kind of global data space shared
among the concurrent objects/agents might moreover be a useful extension to
more easily support also the underlying models of other verification frameworks,
like Spin or SMV.

From EU Projects to a Family of Model Checkers 325

Future work that is specifically related to VMC concerns studying the specific
fragment of v-ACTL that is guaranteed to be preserved by product refinement.
This would allow built-in user notification in all cases in which a model-checking
result is guaranteed to be preserved from family to product level.

As already hinted at in Section 4, the main lesson learned by the use of our
framework is the usefulness of an easy-to-use formal framework for the early
analysis of initial system designs, i.e. the usefulness of formal methods in the
earliest stages of system design, when the first architectural/algorithmic ideas
are being prototyped and debugged. This is a very different application of formal
methods with respect to their classical use in the final validation/verification
steps, when the system is already supposed to be (hopefully) free of errors. In
the former case, it is important to be able to rely on formal frameworks which
simplify and make the task of modeling and debugging a system (which with a
high probability is expected to contain errors) easy, while in the latter case the
emphasis can be put on the power to deal with extremely large state spaces in
a very efficient way.

We believe that KandISTI can successfully match the needs of agile formal de-
signers (which constitute its natural set of target users) while still not disregarding
the issues introduced by the problems of the possible state space explosions.

Acknowledgements. Major progress on KandISTI was made during almost a
decade of EU projects under the inspiring coordination of Martin Wirsing. We
would like to take this opportunity to thank him for the work we did together.

The three paintings by Wassily Kandinsky that are part of the collection of
the Städtische Galerie im Lenbachhaus in Munich, Germany, and whose images
are used here for non-commercial strictly illustrative purposes, have entered the
public domain in the EU on January 1st, 2015 (70 years post mortem auctoris,
imposed by Article 1 of EU Directive 93/98/EEC as repealed and replaced by
EU Directive 2006/116/EC).

References

1. Abreu, J., Mazzanti, F., Fiadeiro, J.L., Gnesi, S.: A Model-Checking Approach
for Service Component Architectures. In: Lee, D., Lopes, A., Poetzsch-Heffter, A.
(eds.) FMOODS 2009. LNCS, vol. 5522, pp. 219–224. Springer, Heidelberg (2009)

2. Andrade, L., et al.: AGILE: Software Architecture for Mobility. In: Wirsing, M.,
Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 1–33.
Springer, Heidelberg (2003)

3. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wąsowski, A.: 20 Years of Modal
and Mixed Specifications. Bulletin of the EATCS 95, 94–129 (2008)

4. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Model-Checking Tool for
Families of Services. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS
2011. LNCS, vol. 6722, pp. 44–58. Springer, Heidelberg (2011)

5. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: Formal Description of Vari-
ability in Product Families. In: SPLC, pp. 130–139. IEEE (2011)

326 M.H. ter Beek, S. Gnesi, and F. Mazzanti

6. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Compositional Framework
to Derive Product Line Behavioural Descriptions. In: [49], pp. 146–161

7. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
8. ter Beek, M.H.: Sensoria Results Applied to the Case Studies. In: [57], pp. 655–677
9. ter Beek, M.H., Bortolussi, L., Ciancia, V., Gnesi, S., Hillston, J., Latella, D.,

Massink, M.: A Quantitative Approach to the Design and Analysis of Collective
Adaptive Systems for Smart Cities. ERCIM News: Smart Cities 98, 32 (2014)

10. ter Beek, M.H., de Vink, E.P.: Software Product Line Analysis with mCRL2. In:
[38], pp. 78–85

11. ter Beek, M.H., de Vink, E.P.: Towards Modular Verification of Software Product
Lines with mCRL2. In: [50], pp. 368–385

12. ter Beek, M.H., de Vink, E.P.: Using mCRL2 for the analysis of software product
lines. In: FormaliSE, pp. 31–37. IEEE (2014)

13. ter Beek, M.H., Fantechi, A., Gnesi, S.: Challenges in Modelling and Analyzing
Quantitative Aspects of Bike-Sharing Systems. In: [50], pp. 351–367

14. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Science of Com-
puter Programming 76(2), 119–135 (2011)

15. ter Beek, M.H., Gnesi, S., Koch, N., Mazzanti, F.: Formal verification of an auto-
motive scenario in service-oriented computing. In: ICSE, pp. 613–622. ACM (2008)

16. ter Beek, M.H., Gnesi, S., Mazzanti, F.: VMC: A Tool for the Analysis of Variability
in Software Product Lines. ERCIM News: Mobile Computing 93, 50–51 (2013)

17. ter Beek, M.H., Gnesi, S., Mazzanti, F.: KandISTI: A Family of Model Checkers
for the Analysis of Software Designs. ERCIM News: Software Quality 99, 31–32
(2014)

18. ter Beek, M.H., Gnesi, S., Mazzanti, F.: Model Checking Value-Passing Modal
Specifications. In: PSI. LNCS, Springer (to appear, 2014)

19. ter Beek, M.H., Gnesi, S., Mazzanti, F., Moiso, C.: Formal Modelling and Verifi-
cation of an Asynchronous Extension of SOAP. In: ECOWS, pp. 287–296. IEEE
(2006)

20. ter Beek, M.H., Gnesi, S., Montangero, C., Semini, L.: Detecting policy conflicts
by model checking UML state machines. In: ICFI, pp. 59–74. IOS Press (2009)

21. ter Beek, M.H., Lapadula, A., Loreti, M., Palasciano, C.: Analysing Robot Move-
ment Using the Sensoria Methods. In: [57], pp. 678–697

22. ter Beek, M.H., Lluch-Lafuente, A., Petrocchi, M.: Combining declarative and pro-
cedural views in the specification and analysis of product families. In: SPLC, vol. 2,
pp. 10–17. ACM (2013)

23. ter Beek, M.H., Mazzanti, F.: VMC: Recent Advances and Challenges Ahead. In:
[38], pp. 70–77

24. ter Beek, M.H., Mazzanti, F., Gnesi, S.: CMC–UMC: a framework for the verifica-
tion of abstract service-oriented properties. In: SAC, pp. 2111–2117. ACM (2009)

25. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: A Tool for Product Variability
Analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 450–454. Springer, Heidelberg (2012)

26. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated Analysis of Feature Models
20 Years Later: a Literature Review. Information Systems 35(6) (2010)

27. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
28. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: Formal seman-

tics, modular specification, and symbolic verification of product-line behaviour.
Science of Computer Programming 80(B), 416–439 (2014)

From EU Projects to a Family of Model Checkers 327

29. Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., Raskin, J.-
F.: Featured Transition Systems: Foundations for Verifying Variability-Intensive
Systems and Their Application to LTL Model Checking. IEEE Transactions on
Software Engineering 39(8), 1069–1089 (2013)

30. Clements, P.C., Northrop, L.M.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2002)

31. De Nicola, R. (ed.): ESOP 2007. LNCS, vol. 4421. Springer, Heidelberg (2007)
32. De Nicola, R., Vaandrager, F.W.: Action versus State based Logics for Transition

Systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

33. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. Journal
of the ACM 42(2), 458–487 (1995)

34. Fantechi, A., Gnesi, S.: A behavioural model for product families. In: ESEC/FSE,
pp. 521–524. ACM (2007)

35. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A
logical verification methodology for service-oriented computing. ACM Transactions
on Software Engineering and Methodology 21(3), 16 (2012)

36. Fidge, C.: A Comparative Introduction to CSP, CCS and LOTOS. Technical
Report 93-24, Software Verification Research Centre, University of Queensland
(January 1994)

37. Fischbein, D., Uchitel, S., Braberman, V.A.: A foundation for behavioural con-
formance in software product line architectures. In: ROSATEA, pp. 39–48. ACM
(2006)

38. Gnesi, S., Fantechi, A., ter Beek, M.H., Botterweck, G., Becker, M.: Proceedings
of the 18th International Software Product Line Conference (SPLC 2014), vol. 2.
ACM (2014)

39. Gnesi, S., Mazzanti, F.: On the Fly Verification of Networks of Automata. In:
PDPTA, pp. 1040–1046. CSREA Press (1999)

40. Gnesi, S., Mazzanti, F.: An Abstract, on the Fly Framework for the Verification of
Service-Oriented Systems. In: [57], pp. 390–407

41. Gnesi, S., Petrocchi, M.: Towards an executable algebra for product lines. In: SPLC,
vol. 2, pp. 66–73. ACM (2012)

42. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and Model Checking Soft-
ware Product Lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS,
vol. 5051, pp. 113–131. Springer, Heidelberg (2008)

43. Haugen, Ø., Stølen, K.: STAIRS – Steps To Analyze Interactions with Refine-
ment Semantics. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS,
vol. 2863, pp. 388–402. Springer, Heidelberg (2003)

44. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services.
In: [31], pp. 33–47

45. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: [31], pp. 64–79

46. Lauenroth, K., Pohl, K., Töhning, S.: Model Checking of Domain Artifacts in
Product Line Engineering. In: ASE, pp. 269–280. IEEE (2009)

47. Leucker, M., Thoma, D.: A Formal Approach to Software Product Families. In:
[49], pp. 131–145

48. Lochau, M., Mennicke, S., Baller, H., Ribbeck, L.: DeltaCCS: A Core Calculus for
Behavioral Change. In: [50], pp. 320–335

49. Margaria, T., Steffen, B. (eds.): ISoLA 2012, Part I. LNCS, vol. 7609. Springer,
Heidelberg (2012)

328 M.H. ter Beek, S. Gnesi, and F. Mazzanti

50. Margaria, T., Steffen, B. (eds.): ISoLA 2014, Part I. LNCS, vol. 8802. Springer,
Heidelberg (2014)

51. Mazzanti, F., Spagnolo, G.O., Della Longa, S., Ferrari, A.: Deadlock Avoidance in
Train Scheduling: A Model Checking Approach. In: Lang, F., Flammini, F. (eds.)
FMICS 2014. LNCS, vol. 8718, pp. 109–123. Springer, Heidelberg (2014)

52. Mazzanti, F., Spagnolo, G.O., Ferrari, A.: Designing a Deadlock-Free Train Sched-
uler: A Model Checking Approach. In: Badger, J.M., Rozier, K.Y. (eds.) NFM
2014. LNCS, vol. 8430, pp. 264–269. Springer, Heidelberg (2014)

53. Millo, J.-V., Ramesh, S., Krishna, S.N., Narwane, G.K.: Compositional Verification
of Software Product Lines. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS,
vol. 7940, pp. 109–123. Springer, Heidelberg (2013)

54. Muschevici, R., Proença, J., Clarke, D.: Modular Modelling of Software Product
Lines with Feature Nets. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM
2011. LNCS, vol. 7041, pp. 318–333. Springer, Heidelberg (2011)

55. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer (2005)

56. Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. Journal of
Applied Logic 10(1), 2–31 (2012)

57. Wirsing, M., Hölzl, M. (eds.): SENSORIA. LNCS, vol. 6582. Springer, Heidelberg
(2011)

58. Ziadi, T., Jézéquel, J.-M.: Software Product Line Engineering with the UML: De-
riving Products. In: Software Product Lines: Research Issues in Engineering and
Management, pp. 557–588. Springer (2006)

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 329–354, 2015.
© Springer International Publishing Switzerland 2015

Pragmatic Formal Specification
of System Properties by Tables

Dedicated to Martin Wirsing on the Occasion of his Emeritation

Manfred Broy

Institut für Informatik, Technische Universität München
80290 München Germany
broy@in.tum.de

http://wwwbroy.informatik.tu-muenchen.de

A picture is worth a 1000 words

Folklore

It takes a long time to understand a 1000 words

Engineering experience

A formula may make a 1000 words superfluous

Abstract. We suggest tables as pragmatic tractable specification formalism for
a precise as well as readable specification of systems, their interfaces, as well as
their functional properties. Translating tables into logical formulae defines a
precise semantics for them. Writing logical formulae in a structured way by ta-
bles makes them better usable for engineering purposes. Tables are considered
better structured, easier to read, to comprehend, to analyze, or at least easier to
communicate than large logical formulae. On the other hand logical formulae
are better suited to derive properties by deduction steps applying logical calculi.
By translating tables into formulae of predicate logic and vice versa, we provide
a bridge between the conciseness of readable suggestive specifications and the
preciseness of mathematical methods in software and systems engineering.

Keywords: Dynamic Systems, Mobility, Instantiation.

1 Introduction

Studies in the development of embedded software systems1 show that requirements
capture and system specification is one of the most decisive and critical tasks in sys-
tem development. There are at least three sources of difficulties in the task of re-
quirements engineering:

1 Embedded software systems are dedicated computing and control systems that are embedded

into a technical environment.

330 M. Broy

• Requirements are not completely and not accurately identified and understood
by the domain experts and system engineers and/or not properly communicated
to the requirements engineers.

• Requirements are not correctly documented, even when completely and accu-
rately identified and understood.

• Requirements are documented, using informal techniques, but not properly in-
terpreted and conceived by the system designers and programmers due to lack of
preciseness.

All three problems lead to serious errors and costly changes in the software develop-
ment process. As it is well known, misinterpretations and bugs in the requirements
tend to be very expensive, especially if they are captured only very late in the devel-
opment so that crucial redevelopment is needed.

Of course, errors cannot be fully avoided when developing complex information
processing systems. However, well worked out specification methods with adequate
methods and techniques for analyzing requirements can help to avoid some pitfalls.
By guaranteeing the quality and correctness of the specified requirements we obtain a
better control over the development process and the functional quality of the produced
documents.

There are a number of quality attributes for a tractable result of requirements engi-
neering and documentation. These are, among others:

• validity,
• consistency,
• preciseness,
• completeness,
• conciseness,
• understandability,
• expressiveness,
• generality,
• changeability,
• tractability with respect to the development method and process.
• traceability within requirements artifacts and between requirement artifacts and

for the development artifacts,
• modularity.

Obviously, several of these properties are in mutual conflicts. Therefore we have to
find acceptable compromises when designing or choosing specification methods to be
used in requirements engineering.

In this paper we concentrate mainly on the issues of consistency, understandability,
readability, conciseness, and preciseness. The other goals might be taken care of by
the development methods and the mathematical system models on which our descrip-
tion techniques are based.

It is well recognized that one of the most significant effects of applying formal tech-
niques to software development consists in their potential to improve the quality and
precision of specifications. A further goal is rigorous verification and the potential for

 Pragmatic Formal Specification of System Properties by Tables 331

tool support. Complex systems specifications tend to get fairly large and therefore have
to be well structured and modular. They have to be abstract, leaving out all unneces-
sary detail, concentrating on the interface description - also called the functional be-
havior of systems – not taking into account implementation details or low level consid-
erations. They have to be precise in the sense that they specify system properties un-
ambiguously.

The main purposes and advantages of using advanced modeling and specification
techniques in the system development process are fivefold:

• Requirements engineering: specification techniques help the requirements engi-
neer in the process of clarifying and documenting the required system properties.

• Communication medium: specifications are a basis for the communication be-
tween domain experts, requirements engineers, system designers and implement-
ers.

• Implementation: abstract descriptions of particular design and implementation
ideas provide guidelines in system realization.

• Documentation: specifications document the system properties for the use and
reuse of a system and its components.

• Verification: precisely specified requirements are the basis for verification of
correctness.

Adequate specification techniques provide helpful mental models (semantic models)
of systems, notations (syntactic formalism) for the concrete representation of specifi-
cations, and methods to reason about and to refine specifications (deduction and veri-
fication theory).

One of the striking arguments against mathematical and logical formalisms for the
specification of software requirements are difficulties with their scalability and com-
prehensibility due to their technical complexity and sophistication. However, these
arguments are often based on unjustified common sense and lack proper support by
experimental data. On the contrary, experiments have shown that graphical formal-
isms are not necessarily easier to understand than textual or mathematical ones (see
[14]). It is telling to observe that the problems that readers have with large diagrams
are similar to those they have with large logical formulae. If diagrams get very large,
they no longer provide helpful graphical patterns for intuitive understanding but rather
provide a large amount of information in a fairly unstructured way. It is not clear for a
reader which parts of a diagram to begin with when studying or producing a diagram
and in which order to work through it systematically.

This indicates that graphical documentation techniques do not help, per se, to make
specifications more readable and understandable, but need a careful choice of their
content and the design of their layout. Large formulae as well as large diagrams are
difficult to deal with. If the information contained in the formulae and diagrams ex-
hibits a particular structure it might be more appropriate to gather such information
outside the formulae or the diagrams and to present it in tables. Tables can be well
combined with diagrams. They help to avoid an overloading of the diagrams by for-
mulae and text. Moreover, tables support a very regular structure to present a large

332 M. Broy

amount of information, in particular, when – as typical for systems – a number of case
distinctions are to be considered. Then information look up is more efficient since one
knows where to look for it. Moreover, the systematics of tables makes it easier to
check, whether certain cases have been overlooked (completeness).

Tables are a well-known and well-accepted concept in many disciplines including
mathematics and engineering. They are and have been used for a long time to provide
well-structured descriptions of large amounts of information. For instance, engineers
often use tables and diagrams for specifying behavior and properties of mechanical or
electrical devices.

Of course, specifications are mainly thought to be helpful for documentation and
communication. Therefore comprehensibility, readability, and understandability are
first class goals of specification methods. Formal specifications are often considered
to be hard to understand and difficult to deal with. This applies, in particular, as long
as engineers are not trained and not familiar with the underlying formalisms such as
predicate logic.

Formulae of predicate logic can get rather big when complex large systems are to
be described. Therefore the appropriate structuring of such formulae is crucial for
their practical use. However, even with a perfect structuring and a well designed lay-
out, logical formulae may be hard to read and to comprehend, especially when dealing
with long lists of case distinctions. In such situations, tables are especially helpful.
We concentrate in the following, in particular, on tables for specifying interface be-
havior of systems. For this purpose, we introduce tables as a systematic, more reada-
ble representation of large logical formulae that provide some regular structure.

Diagrams complement tables in helping to illustrate behaviors, but often do not de-
scribe behavior precisely enough. Nevertheless, diagrams are successfully used in
many fields to software engineering. However, preciseness and understandability need
not be contradictory. Our goal is to address both of them. Therefore we also show how
tables can be represented by diagrams and be used in connection with diagrams.

Tables and table-directed notations have been advocated many times in computing
science. Prominent examples are decision tables as suggested in the 70’s. Less suc-
cessful were perhaps Nassi-Schneidermann style tables, an attempt to organize pro-
gram text in a table-oriented style. Significant work on tables has been done by the
group of David Parnas, beginning with the remarkable work on the A-7E aircraft (see
[8], [9]). This work has been continued in several directions exploring many ways of
working with tables in software development. What we present in the following does
not actually go beyond that work. Our goal is to provide ideas for the use of tables for
particular formal techniques including algebraic specifications and stream-based
models for the interface behavior of systems.

The main goal of this paper is to provide simple table and diagram techniques for
better structuring and readability of mathematical specification techniques. These
techniques are especially helpful when used to support axiomatic specifications. Our
concrete goal is the support of the algebraic specification language SPECTRUM and of
the functional system specification and development technique FOCUS, for which a
rich mathematical theory and powerful methods for specification, refinement, and

 Pragmatic Formal Specification of System Properties by Tables 333

verification are available (see [5] and [15]). Techniques to support logical formalisms
by tables carry over, of course, to most of the other formal methods that work with
logical formulae.

We do not advocate to use only tables or diagrams in specifications. We rather suggest
to use a fine mixture of textual explanations, mathematical formulae, tables, and dia-
grams in well-chosen combinations side by side. We regard formulae as syntactic entities
that can be represented by the tables and diagrams if they have a regular structure.

The paper is organized as follows: in Section 2 we introduce and recapitulate some
basic notions from algebraic specifications that are helpful when writing formulae in
multi-sorted predicate logics. Then, we take a brief look at value tables in Section 3.
Section 4 introduces some instances of term tables and discusses their semantics. In
Section 5 this concept is generalized to tables that carry predicates and entries. Sec-
tion 6 introduces a general concept for representing formulae by tables. Section 7
discusses quantifiers and abbreviations in tables. Section 8 treats specific tables for
the specification of interactive systems. Section 9 contains concluding remarks with a
short discussion of the relationship of tables to diagrams.

2 Many Sorted Algebra and Predicate Logic

We are convinced that mathematical logic is a good choice for providing a firm basis
for system specification. Whatever we write down in a table in the following can also
be expressed by a logical formula. Typically, logical formulae are less structured, less
readable and more difficult to understand for untrained persons. However, logic pro-
vides all the advantages of formal theories, such as a precise syntax and semantics as
well as a logical calculus for formal manipulation, analysis, transformation, and de-
duction2. This also allows us to give precise definitions when different description
methods are combined and related to form a comprehensive integrated system de-
scription. In this section, we introduce the basic concepts for our logical formulae that
are rather general and common.

Since we are convinced that type information3 is helpful for structuring and easier
comprehension of system descriptions, we work with a sorted (typed) higher-order
predicate logic as a mathematical basis to formulate specifications. In fact, throughout
this paper we mainly use classical first order predicate logic. In particular, we use the
following primitives for writing terms and formulae:

• sorts from a set S of sorts (including functional sorts),
• constants from a set F of function symbols and identifiers for data element,
• a sort assignment for the constants by a mapping srt: F → S,
• a set X of identifiers used as logical variables with given sorts.

2 We are aware of work that attempts to apply transformations and deductions directly to table

representations and diagrams. However, even in this case it may be useful to relate these ma-
nipulations to the manipulation of logical formulas, for instance, to show the correctness of
the transformation rules.

3 We follow the tradition of algebraic specifications and speak of sorts instead of types.

334 M. Broy

 The sorts in S and the function symbols in F with their associated sorts together
form what is commonly called a signature Σ = (S, F). Given a signature, we can form
ground terms and formulae of propositional logic. Given identifiers, we can construct
terms with free variables and formulae of predicate logic. Assigning carrier sets to
sorts as well as elements and functions to the symbols in F, we get algebras of a par-
ticular signature and use them to interpret terms. We assume that these concepts are
familiar to the reader (see [17] for an extensive introduction).

Whenever we use an identifier in a formula in the following, we fix its sort before.
Hence we can always assume that the function srt assigning sorts to constants can be
extended to a function

srt: X ∪ F → S
assigning sorts also to variables. We assume that the set of sorts S contains functional
sorts as well as polymorphic sorts (like in [15]).

3 Value Tables

Tables have a long tradition in mathematics and engineering. By tables, relations
between elements of given sets are represented. Therefore, tables can be used to de-
scribe relations and - as a special case - to describe functions. In their simplest form
tables contain only ground terms as denotations of values as entries. Such tables are
called value tables.

In a value table all entries are constants denoting elements. We show two simple
examples of value tables in Table 3.1 and Table 3.2, namely Boolean tables defining
the connective logical “or” of propositional logic.

Value tables seem to have an obvious meaning. But even for value tables different
semantic interpretations might exist, in particular, when specifying relations. Since
value tables are a special case of term tables as we treat them in the following section
we do not give any semantics or formal translation for value tables, here.

Nota bene, value tables help only when the domain of the functions that are speci-
fied is finite and, in particular, rather small. Nevertheless, also for functions on infinite
domains value tables can be used. Then, of course, only a finite set of argument/result
pairs can be covered. Traditionally, in mathematics value tables have been used to
provide the values of arithmetic and trigonometric functions such as logarithm, sine,
cosine etc. Today, algorithms on computers have replaced them. Nevertheless, still a
lot of value tables are in use in everyday life such as tax tables or timetables, etc.

Table 3.1. Value Table of the Logical Connective “or“

x y x ∨ y

0 0 0

0 1 1

1 0 1

1 1 1

 Pragmatic Formal Specification of System Properties by Tables 335

Table 3.2. Value Table of the Logical Connective “or“ in Matrix Form

x ∨ y 0 1

0 0 1

1 1 1

4 Term Tables

An obvious step to generalize value tables are term tables. In term tables, we permit
terms with free variables as entries, in addition to ground terms and constants denot-
ing values. A nice example of a term table is the table specifying conditional expres-
sion. The conditional expression can of course be represented by a value table
(provided the domain of values is finite), in a case distinction, or by logical formulae.
However, a term table as given in Table 4.1 is perhaps even more suggestive.

Table 4.1. Term Table for the Conditional if_then_else_fi

b if b then x else y fi

1 x

0 y

⊥ ⊥

Simple value tables for functions have a more or less obvious semantics. This also
holds for simple term tables as given in Table 4.1. For more sophisticated term tables
this no longer holds. Often, sophisticated term tables do not have an obvious interpre-
tation, since several possible interpretations may exist. Therefore we suggest a trans-
lation of term tables into logical formulae.

Both value tables and term tables can be understood as representations of possibly
large logical formulae in a canonical disjunctive normal form.

Table 4.2. A Scheme for a Term Table with m Rows and n Columns

x1 ... xn

... ...
i
1t i

nt

... ...

 Let x1, ..., xn be variables and i
1t , ..., i

nt be terms such that the sorts of the terms

t j
i and the identifiers xj coincide. Table 4.2 represents a large formula of predicate log-

ic. We associate with it the formal meaning as given by the following logical formula:

336 M. Broy

i=1

m

∨
j=1

n

∧ xj = t j
i

Given this logical interpretation we speak of a disjunctive table.
Consider the example of the if-then-else-table as given in Table 4.1. Its interpreta-

tion as a disjunctive table yields the following logical formula

 (b = 1 ∧ if b then x else y fi = x)

∨ (b = 0 ∧ if b then x else y fi = y)

∨ (b = ⊥ ∧ if b then x else y fi = ⊥)

This example shows already that tables can be more concise (shorter and clearer
structured) than logical formulae if in the formulae certain large terms have to be
repeated several times.

Disjunctive tables allow us to write only formulae with a simple logical structure
as tables. More common than formulae in disjunctive form are logical implications as
used in conditional equations for writing algebraic specifications. Implicative tables
can capture such conditional equations. Let us consider a simple example.

s:M

x
out1

out2

Storage
Cell

Fig. 4.1. Component with Input Channel x, Output Channels out1 and out2, and State s

Example: Specification of a storage cell
We give a specification of an interactive storage cell that stores a data message from
a set of messages M = Data ∪ {®} and returns it upon request. A request is indicated
by the signal ®. The syntactic interface is illustrated by a data flow node in Fig. 4.1
showing the communication channels. The state transition table given in Table 4.3
(let d, e ∈ Data) specifies the interface behavior.

Table 4.3 describes a state automaton. By i ∈ M we denote the input message on
channel x, by s ∈ Data the current state of the automaton. The input i stimulates a
state transition and some output. By state(s, i) we describe the successor state, by
out1(s, i) the output message on the first output channel, by out2(s, i) the output mes-

sage on the second output channel.

Table 4.3. Implicative Table of a State Transition System with Input i on Channel x and State s
(for all elements d, e ∈ Data)

i s state(s, i) out1(s, i) out2(s, i)

e d e ® d

® d d d ®

 Pragmatic Formal Specification of System Properties by Tables 337

The functions out1 and out2 are output functions for the cell in state s obtaining in-

put i. The function state yields the new state after the input i has been received in state
s. The vertical double line separates the input for state transitions from output.

As explained, the interpretation of a table by a disjunctive formula is rather inflexible,
since disjunctive tables require that all cases are covered. This is sometimes too rigid. A
more flexible concept of a table is obtained by an implicative table with the general form
as given in Table 4.4. Implicative tables are useful to describe weaker properties.

Table 4.4. Schematic Form of an Implicative Table

x1 ... xc xc+1 ... xn

...

i
1t

...

... i
ct i

1ct + ... i
nt

Table 4.4 has two blocks of columns separated by a vertical double line separating

premises from conclusions. The first block denotes premises, the second one conclu-
sions. The table has the semantic interpretation given by the following logical formu-

la (again x1, ..., xn are identifiers (or terms) and i
1t , ..., i

nt are terms and the respec-

tive sorts are consistent, m denotes the number of rows):

i =1

m∧((
j =1

c∧xj = t j
i) ⇒ (

j =c+1

n∧ xj = t j
i))

If a table provides a complete and disjunctive case distinction, the implicative and the
disjunctive interpretations of the table are logically equivalent (for a proof see appen-
dix). Note that the implicative interpretation requires that the table is divided into two
blocks, conditions and conclusions, that are - according to our convention - separated
by the vertical double line.

According to the translation scheme for implicative tables given above for our ex-
ample represented in Table 4.3 we obtain the following formulae as indicated by the
vertical double line between the second and the third column (let e, d ∈ Data):

 i = e ∧ s = d ⇒ state(s, i) = e ∧ out1(s, i) = ® ∧ out2(s, i) = d

 i = ® ∧ s = d ⇒ state(s, i) = d ∧ out1(s, i) = d ∧ out2(s, i) = ®

These formulae show very clearly that the table exactly captures the relevant entries
taken from the two conditional equations.

The vertical double line does not only show where the implication sign is to be
placed. In our example it also separates input from output. This is very helpful for the
intuitive understanding of implicative specifications from a conceptual and from a
methodological point of view.

338 M. Broy

The well-known definition of functions by cases is written in mathematics gener-
ally as follows

 f(x) =
⎩
⎨
⎧

22

11

c if t

c if t

It can be written in the form of a disjunctive table as shown in Table 4.5a or by a
implicative table as given by Table 4.5b.

Table 4.5a. Disjunctive Table Describing a Complete Case Distinction

true f(x)

c1 t1

c2 t2

Table 4.5b. Implicative Table for the Case Distinction

true f(x)

c1 t1

c2 t2

An implicative table can also represent a case distinction. We just have to replace

the vertical line in the middle of Table 4.5a by a double line as shown in Table 4.5b
separating conditions from conclusions. In the case of a complete, disjoint case dis-
tinction there is no semantic difference whether we write a disjunctive or an implica-
tive table. Replacing the single vertical line separating the two columns by a double
line to separate the columns into premises and conclusions leads to a logically equiv-
alent table as long as c1 ∨ c2 and ¬c1 ⇔ c2 hold, in other words, as long as the case

distinction is disjoint and complete.
In spite of the semantic equality between disjunctive and implicative tables for

complete, disjunctive case distinctions, we advocate to use implicative tables rather
than disjunctive ones. They provide more structure since they separate premises
(conditions) from conclusions.

The tables of Parnas (see [Parnas 92]) in their most basic form can be represented
in our approach, too. Parnas suggests using tables to represent formulae of the form

i = 1

n

∧ (Ci ⇒
j =1

m

∧v j
' = Ej

i)

by tables of the form shown in Table 4.6.

 Pragmatic Formal Specification of System Properties by Tables 339

Table 4.6. Parnas Table

 C1 ... Cn

...

v j
' Ej

1 ... Ej
n

...

By such a table Parnas represents specifications of programs (statements) that work

with the program variables v1, ..., vn. Primed variables v1
' , ..., vn

' denote the values

of the variables after the execution of the specified statements.
In our approach we may represent Table 4.6 in a straightforward way by the trans-

posed implicative table as shown in Table 4.7.

Table 4.7. Parnas Table as an Implicative Table

true v1
' ... vm

'

C1 E1
1 ... Em

1

...
Cn E1

n ... Em
n

This demonstrates that in its simplest form Parnas tables are a special case of im-

plicative tables. This gives a first hint on the generality and expressiveness of our
table concept.

5 Syntax and Semantics of Formula Tables

In this section we deal with a more general syntactic form of term tables and their
semantics. A table is structured by a head row (called its agenda), a number of rows,
and a number of columns. Also for the rows, a column with headings may be provid-
ed that may serve as comments. Every row and every column share an entry that is a
term or a formula.

Often we want to talk about conditions in a table. They can be included into tables
by allowing the head rows and the entries of a table to be arbitrary terms. If the head
row of the column j is the term hj of sort s ∈ S and the entry (in a row) for this col-
umn is a predicate P for elements of sort s then P(hj) is the proposition associated

with that entry in place of the equation we usually deal with. If the entry is a Boolean
formula, called an assertion, that may contain h as a free variable, then it is the propo-
sition associated with this entry.

A disjunctive table with m rows n columns represents the following logical formu-
la (where entries Eij denote logical formulae that are shown in the table entries)

340 M. Broy

∨
=

m

1i
∧
=

n

1j
Eij

An implicative table with c preconditions represents the following logical formula

i=1

m

∧ ((∧
=

c

1j
 Eij) ⇒ (

j=c+1

n

∧ Eij))

The formula Eij is called the basic proposition of the entry in row i and column j. The

meaning of the table is defined as follows: We distinguish three cases of entries:

(1) The head row entry hj of the jth column is of the same sort as the term tij that is

the table entry in column j and row i. Then entry Eij stands for the equation

 hj = tij

(2) The heading entry hj of column j is a term of sort s and the table entry Pij in col-

umn j and row i is a predicate for elements of sort s. Then entry Eij stands for the

proposition
 Pij(hj)

(3) In case the entry is a logical formula e, then e is the basic proposition. We also
permit formulae as entries in which hj occurs freely in the case hj is a variable.

In the example of the storage cell above a table with predicates reads as shown in
Table 5.1. Here isData is a predicate

 isData: M → Bool

that is specified by the following equation

 isData(z) = (z ∈ Data)

Often for this kind of tables, predicates have to be introduced. This yields some over-
head, however, it may help structuring a specification and thus support its understand-
ing provided the predicates and their names are well-chosen.

Table 5.1. Transition Systems with Predicates as Entries

i s state(s, i) out1(s, i) out2(s, i)

isData isData i ® s

® isData s s ®

6 Schematic Formulae and Their Representation by Tables

To provide sophisticated techniques for translating arbitrary formulae of predicate
logic into tables is perhaps an overkill. Tables are only helpful as means of abbrevia-
tion and structuring, if they are easy to comprehend.

 Pragmatic Formal Specification of System Properties by Tables 341

Example: Specification of a sender in the alternating bit protocol
As an example we specify a component that serves as the sender in the alternating bit
protocol example following the FOCUS approach (see [5]). The component can be
graphically illustrated by a data flow node (see [1]) as given in Fig 6.1.

Sender

b: Bool

x: Data

y: Bool

z: Data

Fig. 6.1. Sender as a Data Flow Node

We are particularly interested in syntactic representations of formulae by tables. There-
fore we do not give extensive explanations of the meaning of the example formulae
represented by the tables. However, it is helpful to give some brief hints. In the follow-
ing x, y, z are identifiers of the sort Stream of Data or Stream of Bool, as indicated in
Fig 6.1. A stream is a finite or infinite sequence of elements. The identifier b is an
attribute of the sort Data. The functions ft and rt operate on streams and deliver the first
element of a stream and the rest of a stream without the first element respectively.

The behavior of the sender is captured by the stream function Send(b) and by in-
stances of the logical formula of the form

Send(b)(x, y) = (ft.x', b')ˆSend(b')(x', rt.y)

with particular choices for the values b' and x' that depend on the actual message ft.y.
These choices are instantiated as specified in Table 6.1. The table shows two instanti-
ations of the formula above for the cases "matching acknowledgement" (Positive
Ack) and "not matching acknowledgement" (Negative Ack).

Table 6.1. Table of the Instances for the Sender of the Alternating Bit Protocol

Send(b)(x, y) = (ft.x', b')ˆSend(b')(x', rt.y)

case ft.y b' x'

Positive Ack b ¬b rt.x

Negative Ack ¬b b x

In the example above we only work with two instantiations of the schematic formula
and therefore with a table that has only two rows. More realistic protocol examples
have to be represented by tables that contain many more rows and columns. This us-
age of a table supports separating the schematic form of a set of formulae from their
often high number of instantiations.

As shown by our simple example, in specifications there often exists a set of for-
mulae having the same structure that differ only for certain significant sub-
expressions. We speak of instances of a formula or more precisely of a formula
scheme. Assume we work with a formula of the form

342 M. Broy

i=1

m∧E(t1
i,..., tn

i)

where E(t1
i,..., tn

i) is an arbitrary, maybe large, logical formula and where t1
i , ...,

tn
i are terms of sort s1, ..., sn. Let x1, ..., xn be fresh variables (variables that do not

occur in the considered formulae). Then, we may replace the original formula by a
logically equivalent formula of the form

i =1

m

∧ (
j =1

n

∧ xj = i
jt) ⇒ E(x1, ..., xn)

We represent this formula by a table as schematically shown by Table 6.2.

Table 6.2. Table for Representing a Schematic Formula and its Instances

E(x1, ... , xn)

x1 ... xn

... ...
i
1t ... i

nt

... ...

This form of tables for representing arbitrary schematic formulae gives us flexibility
in specifications. We can choose the schematic form of the formulae freely and de-
scribe its instantiations by the entries of the table.

The simple representation of the formula above may not work properly if E(x1, ...,
xn) is a formula that contains quantifiers and some of the xj occur in the range of the

quantifiers and the terms t j
i contain occurrences of identifiers that are bound by these

quantifiers. Then we specify the meaning of the table by replacing the identifiers xj

textually by the terms t j
i .

i=1

m

∧ E(t1
i
, ... , tn

i
)

Here terms t j
i replace the identifiers in E(x1, ... , xn) by straightforward substitutions

without renaming bound identifiers. This purely syntactic substitution is in contrast
with logical substitution or with function application in λ-notation where locally
bound identifiers are renamed by α-conversion to avoid name-clashes. However, we
should keep in mind that the identifiers x1, ..., xn are not introduced for reasons of

logical deduction as it is the case in predicate logic but as simple textual abbreviations
and placeholders (“macros”) in schematic formulae.

 Pragmatic Formal Specification of System Properties by Tables 343

A note on abbreviations:
Carefully chosen abbreviations help substantially to improve the readability of formu-
lae. For abbreviations, we distinguish between textual abbreviations, the semantics of
which is explained by simple textual substitutions called “macros”, and parameterized
abbreviations, which introduce functions that can be applied to a range of arguments.
The difference between these two paradigms becomes crucial when working with
bindings of identifiers by quantifiers. Consider the following formula that is again
taken from a FOCUS specification (we come back to this formula in Section 7):

 ∀ d ∈ D: f(‹d›) = ‹› ∧ ∀ x ∈ Mω: ∃ f': B(f') ∧ f(dˆ®ˆx) = ‹d›ˆf'(x)

Using textual abbreviations we may write for this formula

 ∀ d ∈ D: Case1 ∧ Case2

Where Case1 and Case2 are textual abbreviations standing for the following formulae
as shown below:

 Case1 ≡ (f(‹d›) = ‹›)

 Case2 ≡ (∀ x ∈ Mω: ∃ f': B(f') ∧ f(dˆ®ˆx) = dˆf'(x))

Using parameterized specifications of Case1 and Case2 we would write

 ∀ d ∈ D: Case1(d) ∧ Case2(d)

where Case1 and Case2 are predicates specified as follows:

 Case1(d) ≡ (f(‹d›) = ‹›)

 Case2(d) ≡ (∀ x ∈ Mω: ∃ f': B.(f') ∧ f(dˆ®ˆx) = dˆf'.(x))

Both concepts of dealing with abbreviations have advantages and disadvantages.
Both seem helpful in their own way. Therefore in a flexible specification formalism it
seems reasonable to have both concepts available. End_of_Note

Of course, all the tables introduced so far are cases of the technique of representing
a number of instances of a schematic formula.

Example: Specification of a Routing Cell
A routing cell has two input and two output channels. On one channel called x it re-
ceives messages and forwards them on one of its output channels, depending on the
value on its second Boolean input channel called y. The routing cell acts as a switch.
It can also be specified by the table technique for schematic formulae. The syntactic
interface of the cell is shown as a data flow node in Fig. 6.2.

Routing
Cell

x : M

y : Bool

r : M

s : M

Fig. 6.2. Routing Cell as a Data Flow Node

344 M. Broy

Again we specify the set M of messages by the equation

M = Data

The formula s:d ‹ F denotes a behavior which outputs d on channel s and then be-
haves like F. The formula F ‹ x:d denotes a behavior which receives d on channel x
and then behaves like F.

Table 6.3. Table of the Formula Specifying a Routing Cell

Cell ‹ x:m ‹ y:b = r:c ‹ s:e ‹ Cell

b c e

true m –

false – m

In the sample formula of Table 6.3 we use a notation for the algebraic specification

of interactive systems as introduced and explained in detail in [3].

Through the technique of schematic tables we achieve a valuable flexibility for writ-
ing conjunctions of instances of arbitrary logical formulae as tables. We can always
provide a schematic formula that is instantiated by the rows listed in the table.

7 Readability of Formulae and Structuring of Tables

In our approach each table represents a formula in predicate logic. Formulae contain-
ing quantifiers can be written as tables by using the techniques of Section 6 for repre-
senting schematic formulae, which of course may contain quantifiers.

Since each table can be seen as a specific representation of a logical formula, we
may combine tables like logical formulae. Of course, to form formulae with tables as
sub-expressions seems to be difficult, especially when tables get large. However, we
have the possibility to introduce names for tables. Then it is easy to build formulae
with tables by referring to their names.

Another option of representing nested formulae by tables is the nesting of tables
exactly as the logical formulae are nested. In this section we follow the second line of
thought. Our goal is a general method for the representation of large complex logical
formulae by hierarchically nested structured tables.

Often the terms or formulae we want to use as entries in tables get very large so
that they hardly fit into the columns of tables. Then tables get unreadable. Sometimes
the same large formula occurs in many entries. In both cases it is appropriate to work
with well-chosen abbreviations. Abbreviations by parameterized specifications and
textual abbreviations are a simple and well-known concept in predicate logic and
computing science as mentioned above.

 Pragmatic Formal Specification of System Properties by Tables 345

The readability of a logical formula is often difficult according to the use of local
variables bound by quantifiers, especially when a number of nested quantifiers occur.
For a given signature Σ = (S, F) that defines a set of sorted names we may write a
logical formula E. For such a formula we may require, in principle, that at most the
symbols in F occur as free identifiers. This forces us to introduce quantifiers for all
other identifiers that are used as bound local variables.

A convention that allows us to leave out and therefore to save the explicit writing
of some universal quantifiers is the universal closure. If identifiers occur in a formula
E that are not contained in the signature Σ, then they are assumed as (implicitly) uni-
versally quantified. Its sort then has to be deduced from the context. However, often it
improves the readability to write quantifiers explicitly.

The general scheme of representing quantifiers in tables is given in the following.
For the formula

 ∀ x ∈ M: P(x)

we write a table as shown in Table 7.1. Then we can apply a table along the lines of
using tables for schematic formulae to represent the formula P(x).

Table 7.1. Universal Quantification in a Table

∀ x: M:

P(x)

For the formula

 ∃ x ∈ M: P(x)

we write the table of the form given in Table 7.2.

Table 7.2. Existential Quantification in a Table

∃ x: M:

P(x)

In spite of all the possibilities of writing formulae in a more structured style, nested

quantification remains a concept that makes formulae more difficult to write, read,
understand, and manipulate. Sometimes, it is possible to replace existential quantifica-
tion by declarations. Existential quantification is closely related to the declaration of
identifiers and their binding and vice versa. Whenever we write a declaration

 Let x = t in e

or equivalently

 e where x = t

its meaning can be expressed logically (provided e is a Boolean expression) by the
formula:

 ∃ x: e ∧ x = t

346 M. Broy

Note that this formula is equivalent to the implicative formula

 ∀ x: x = t ⇒ e

provided the formula ∃ x: x = t is valid. The proposition ∃ x: x = t is trivially true, if
every term t denotes a value4. So it is true in classical equational logic.

In fact, non-recursive declarations may always be understood as abbreviations for
certain formulae in predicate logic. Clearly, in a declaration x = t we generally assume
that the formula

 ∃ x : x = t

is valid. This shows a remarkable difference between the roles of the sub-formula e
and that of sub-formula x = t in the formula

 ∃ x : e ∧ x = t.

The sub-formula x = t can be seen as just an auxiliary construction that can be always
satisfied (assuming that the term t always denotes a value) and serves as an auxiliary
construct for the formulation of formula e. If the declaration “Let x = t” is not recur-
sive which means that x does not occur in term t then the formula

 ∃ x : e ∧ x = t

expresses the same as the formula

 e[t/x].

In these cases we may decompose a formula into pieces by structuring quantifiers into
declarations. This idea of a structured specification of existential quantification can be
generalized to formulae of the form

 ∃ x : e ∧ B(x)

provided the proposition

 ∃ x : B(x) (*)

holds. In contrast to the equation x = t that we used in place of the sub-formula B(x)
above, the sub-formula B(x) does not necessarily identify the element x uniquely.
Then we may read the formula as the proposition

 e where x is arbitrary such that B(x) holds

provided, the logical value of e does not depend on the choice of x as long as proposi-
tion B(x) holds. Expressed in logical terms we require

 B(x) ∧ B(x') ⇒ (e ≡ e[x'/x]) (**)

4 Of course the situation gets more complicated if there are expressions t without a value (such

as in the presence of partial functions) or if x = t may have several solutions for x (such as in
the case of recursive declarations).

 Pragmatic Formal Specification of System Properties by Tables 347

Given the conditions (*) and (**) the formula ∃ x : e ∧ B(x) is equivalent to the formula5

 ∀ x: B(x) ⇒ e.

If the requirements described above are valid, we rather write the proposition ∃ x: t ∧
B(x) in the tabular form as given in Table 7.3.

Table 7.3. Representation of the Formula ∃ x : e ∧ B(x)

e

where x : B(x).

Here we require as a healthiness condition that propositions (*) and (**) hold.

We know how to specify the behavior of interactive systems, in principle, by logi-
cal formulae in FOCUS (see [FOCUS 92]). For complex components, these formulae
can get fairly large and unreadable. Therefore a better way of structuring can make
them easier to read and understand. In addition of using tables, one possibility is to
use appropriate formatting concepts and conventions for formulae (see [11] for an
example). In addition, the introduction of well-chosen auxiliary declarations may help
to shorten the formulae occurring in tables and to provide additional structure (see
[16] for an extended example).

A schematic table is used to abbreviate a sequence of implications connected by
logical conjunction. Sometimes, in the premise or in the conclusion local quantifiers
are used.

Example: Quantification in FOCUS
Using the description techniques of FOCUS (cf. [2]) we work with specifications de-
fining sets of functions via equations for predicates like in the following case. Here a
predicate B is specified that characterizes functions on streams:

 B(f) ≡ ∀ d ∈ D: f(‹d›) = ‹› ∧ ∀ x ∈ Mω: ∃ f': B(f') ∧ f(‹d›ˆ‹®›ˆx) = ‹d›ˆf'(x)

This specification of the predicate B essentially expresses that a function f mapping
streams of messages to streams of messages characterizes a one element buffer. The
formula indicates that f produces the empty output stream on the input stream that
carries exactly one data element, and that it produces the data element d as output on
the input stream that starts with the data message d followed by the request signal ®
followed by the stream x. Then the output d is followed by the stream that f produces
for the input stream x. The nested quantification is rather complicated here and diffi-
cult to read and to understand. A table specification as shown in Table 7.4 could
provide more structure. This is a first example of a hierarchically structured table.

5 As Wolfgang Naraschewski pointed out to me there is a relationship to dependent types in

type theory; there we express ∃ x: e ∧ B(x) as Σ x:e.B(x).

348 M. Broy

Table 7.4. Table of a Formula Specifying a Queue

B ≡ (f: Mω → Mω): ∃ f': B(f') ∧

∀ d ∈ D, x ∈ Mω: f(i) = o
i o

‹d› ‹›
dˆ®ˆx dˆf'(x)

Here existential and universal quantifiers are written in a more structured style,

which makes the formula hopefully easier to read.

We may include quantification into the heading of tables describing formulae.
This allows us also to work with tables for formulae with quantifiers as shown in
Table 7.4.

The readability of a formula critically depends on its layout. Especially, if a formu-
la is large the layout should be carefully chosen. Then the difference between a table
and a diagram may become more or less unimportant.

Often for large, uniformly structured formulae it may be better to choose the fol-
lowing layout (advocated by [11])

 ∧ t1

 ∧ t2

 ∧ t3

instead of the conventional layout

 t1 ∧ t2 ∧ t3

This way the structure of the formulae gets clearer and more uniform making for-
mulae get even more readable.

In a similar style it is preferable to write

 t1

 ⇒ t2

for large formulae t1 and t2 instead of the logical formula

 t1 ⇒ t2

to make the formula more structured and better readable.

8 Interaction Tables

The description of the interactive behavior of reactive systems is an important but
difficult task. As we have shown in earlier examples, tables are useful also for this
task. In this section, we consider a specific situation, which is typical for protocols in

 Pragmatic Formal Specification of System Properties by Tables 349

telecommunication systems. To illustrate this issue we use again a one element buffer
as a simple example, which in this case is lossy, however.

Example: Unreliable Buffer
We work with the following sets of input and output messages (let D be a set of data
elements):

 M = D ∪ {®}

 N = D ∪ {®, @}

The behavior of the unreliable buffer is described by a nondeterministic state ma-
chine with input and output:

 Δ: Σ × M → ℘(Σ × N)

where state space Σ is equal to M. The basic properties of the buffer can be described
by schematic formula table (let d1, d2 ∈ D), as it is shown in Table 8.1a.

Table 8.1a. State Transition System Described by a Table

(σ', r) ∈ Δ(σ, a)

σ a σ' r

d1
d1

d1

®
®

®

d2
®

®

d2
d2

®

®
®

®

®
d2

®

®
®

d1

®
@

®

Here σ denotes the current state, σ' the successor state, a the input message and r the
output message.

The meaning of Table 8.1a is simply

which is equal to

j = 1

6∧ (s j
3 , s j

4) ∈ Δ(s j
1 , s j

2)

Table 8.1b represents the same formula in a slightly different style. However, both

formulas are weak. We get but we do not

and cannot express this way

j = 1
6
∧ σ = s j

1∧ a = s j
2 ∧ σ' = s j

3 ∧ r = s j
4 ⇒ (σ', r) ∈ Δ(σ, a)

(®, d1) ∈ Δ(d1, ®) ∧ (®, ®) ∈ Δ(d1, ®)

Δ(d1, ®) = {(®, d1), (®, ®)}

350 M. Broy

Table 8.1b. State Transition System Described by an Implicative Table

P(σ) ∧ Q(a) ⇒ (σ', r) ∈ Δ(σ, a)
Pσ Q(a) σ' r

σ = d1
σ = d1
σ = d1
σ = ®
σ = ®
σ = ®

a = d2
a = ®
a = ®
a = d2
a = d2
a = ®

®
®
®
®
d2
®

®
®
d1
®
@
®

The specifications by Table 8.1a und 8.b are loose; they specify what are possible re-

actions of the system but they do not express that these are the only possible reactions.
Now consider the conjunctive Table 8.1c. Below the heading it has 4 rows. For in-

stance row 2 expresses

 (σ = d1 ∧ a = ® ∧ (σ', r) ∈ Δ(σ, a) ⇒ (σ' = ® ∧ r = ®) ∨ (σ' = ® ∧ r = d1)

Since Table 8.1c is a conjunctive table we get

 (σ = d1 ∧ a = d2 ∧ (σ', r) ∈ Δ(σ, a) ⇒ σ' = ® ∧ r = ®)

 ∧ (σ = d1 ∧ a = ® ∧ (σ', r) ∈ Δ(σ, a) ⇒ (σ' = ® ∧ r = ®) ∨ (σ' = ® ∧ r = d1)

 ∧ (σ = ® ∧ a = d2 ∧ ∧ (σ', r) ∈ Δ(σ, a) ⇒ (σ' = ® ∧ r = ®) ∨ (σ' = d2 ∧ r = @)

 ∧ (σ = ® ∧ a = ® ∧ (σ', r) ∈ Δ(σ, a) ⇒ σ' = ® ∧ r = ®)

Table 8.1c. State Transition System Described by a Conjunctive Table

P(σ) ∧ Q(a) ∧ ∧ (σ', r) ∈ Δ(σ, a) ⇒
j = 1

n∨ (σ', r) ∈ Δ(σ, a)

Pσ Q(a) σ' r

σ = d1 a = d2 ® ®

σ = d1 a = ® ®

®

®

d1

σ = ® a = d2 ®

d2

®

@

σ = ® a = ® ® ®

Note that, since tables are only syntactic sugar for formulae, we can freely combine
tables and formulae. One additional advantage of our technique is that it allows us to
translate the information given by tables into formulae of predicate logic, so that we
can use tables and formulae side by side with a definition of how they correspond to
each other.

 Pragmatic Formal Specification of System Properties by Tables 351

9 Combining Tables with Diagrams

There are many possibilities to combine tables with diagrams. Diagrams may, like
tables, be helpful to support a quick understanding of large specifications. Each table
represents a finite relation between terms. It can be rewritten into a diagram. Vice
versa, each diagram that is a directed labeled graph can be represented by a table.

A diagram is a labeled graph consisting of nodes and arcs. In computer science many
variations of diagrams are used. Often they differ only in the form of the symbols used
to represent their nodes. Of course, we cannot and do not want to treat all kinds of dia-
grams found in computer science in this section in a systematic way. Therefore, we
demonstrate the combination of tables with diagrams only for simple state transition
diagrams. For them the nodes represent states and the arcs represent transitions.

A diagram is a labeled graph with labels for its nodes and for its arcs. Every node
and arc may carry several labels such as names and values. The translation of a dia-
gram into a table and vice versa can be described by fixing the way an arc is repre-
sented by a table.

Fig. 9.1. An Arc Connecting Two Nodes

We can then associate an entry in the table with each arc as shown in Fig. 9.1 in the
form of a row in the table with the following entries:

k m h

After this translation scheme has been fixed, each diagram can be translated into a

table and vice versa. Note, however, that we can freely choose which columns are
used to represent arcs and which represent nodes. This may lead to quite different
options for diagrams to be represented by tables.

A general way to translate graphs into diagrams is sketched as follows. Assume a
directed graph with labeled arcs and labeled nodes. We may easily translate the graph
into a table with three columns. Then each arc corresponds to a row with the entry in
the first column being the source node label, the entry in the second column being the
arc label and the entry in the third column being the target node label. State transition
diagrams are discussed in detail in [4].

10 Concluding Remarks

Specifications that are readable but nevertheless precise constitute a valuable concept in
system development. The goals of readability and preciseness are not in contradiction.

k m h

352 M. Broy

On the contrary, a vague, imprecise specification is hardly actually understandable. Of
course, often complicated constructs in formulae make the understanding too difficult,
however. Improvements should correspond to abstraction and not to vagueness. A well-
chosen structure and layout may help a lot to keep formulae readable.

A well-chosen balance between explanatory text, formulae, tables, and diagrams is
a must for useful and tractable specification methods. Such a structuring of specifica-
tions requires insights into the application area and an understanding for the specifica-
tion methods and goals. Looking for methods along these lines, we are only at the
beginning in software engineering. Much more experience is needed on how to apply
specification techniques in practical projects. Furthermore, a scientific basis is neces-
sary that allows us to integrate the various description formalisms. This paper is in-
tended as an attempt to contribute to developing this basis.

The specification techniques used in practical applications in systems engineering
are often not precisely defined. Typical examples are statecharts or SDL (see [10]). In
both cases many proposal for semantics exist, while formal reference semantics is
missing. Obviously the concepts of such languages allow for a wide variety of seman-
tic interpretations. Experiments show that such languages lead to quite different inter-
pretations of descriptions, even by experts. This shows that the chosen description
concepts are too complex. Therefore, simple, suggestive concepts with a straightfor-
ward semantic interpretation of graphical description formalism and tables that are
suggestive and often more familiar to most users are indispensable. However, if one
hardly understands logical connectives, it is unlikely that one understands the mean-
ing of the diagrams and tables.

Acknowledgement. This paper has been influenced by discussions we had during the
design of [7]. I am grateful to Diego Marmsoler, Wolfgang Naraschewski, Jan
Philipps, Katharina Spies, and David Parnas for carefully reading versions of this
paper and providing feedback.

Appendix: Disjoint, Complete Case Distinctions

We consider a finite set of cases pi and a finite set of consequences ci, 1 ≤ i ≤ n. We
speak of a complete, disjoint case distinction if both the following two propositions hold

i=1

n∨ pi {completeness}

i=1

n∧
j=1
j≠i

n∧ (pi ⇒ ¬ pj) {disjointness}

Under these conditions we can show that the following two propositions are equivalent

i=1

n∨ (pi ∧ ci) {disjunctive normal form}

i=1

n∧ (pi ⇒ ci) {implicative form}

 Pragmatic Formal Specification of System Properties by Tables 353

We first prove the equivalence for n = 2. We start the deduction processes with the
implicative version:

 (p1 ⇒ c1) ∧ (p2 ⇒ c2)

≡ {definition of implication}

 (¬ p1 ∨ c1) ∧ (¬ p2 ∨ c2)

≡ {distributive law}

 (¬ p1 ∧ ¬ p2) ∨ (¬ p1 ∧ c2) ∨ (¬ p2 ∧ c1) ∧ (c1 ∧ c2)

≡ {disjointness, completeness implies ¬ p1 ≡ p2}

 (p2 ∧ c2) ∨ (p1 ∧ c2) ∨ (c1 ∧ c2)

≡ {disjointness, completeness implies (c1 ∧ c2) ⇒ (p1 ∧ c1) ∨ (p2 ∧ c2)}

 (p1 ∧ c1) ∨ (p2 ∧ c2)

We prove the equivalence for n > 2 by induction as follows:

i
∧ (pi ⇒ ci)

≡ {definition of iterated conjunction and completeness of case distinction}

 ((
i
∨ pi) ⇒

i
∧ (pi ⇒ ci)) ∧ (pn+1 ⇒ cn+1)

≡ {by the equivalence for n = 2 and induction}

 (
i=1

n∨ pi ∧
i=1

n∨ (pi ∧ ci)) ∨ (pn+1 ∧ cn+1)

≡ {since
i=1

n∨ (pi ∧ ci) ⇒
i=1

n∨ pi by absorption}

i=1

n+1∧ (pi ∧ ci)

The proved equivalence justifies the equivalence of disjunctive and implicative tables
in the case of complete, disjoint case distinctions.

References

1. Broy, M.: (Inter-)Action Refinement: The Easy Way. In: Broy, M. (ed.) Program Design
Calculi. Springer NATO ASI Series, Series F: Computer and System Sciences, vol. 118,
pp. 121–158. Springer, Heidelberg (1993)

2. Broy, M.: Specification and Refinement of a Buffer of Length One. Marktoberdorf Sum-
mer School 1994 (1994)

354 M. Broy

3. Broy, M.: Algebraic Specification of Reactive Systems. In: Nivat, M., Wirsing, M. (eds.)
AMAST 1996. LNCS, vol. 1101, pp. 487–503. Springer, Heidelberg (1996)

4. Broy, M.: The specification of System Components by State Transition Diagrams (un-
published Manuscript 1996)

5. Broy, M., Dederichs, F., Dendorfer, C., Fuchs, M., Gritzner, T.F., Weber, R.: The Design
of Distributed Systems - an Introduction to Focus. Technische Universität München,
Institut für Informatik, TUM-I9203 (January 1992)

6. Fuchs, M.: Funktionale Spezifikation einer Geschwindigkeitsregelung; Technische Universität
München, Institut für Informatik, TUM-INFO, SFB-Bericht 342/1/93 (January 1993)

7. GRAPES-Referenzmanual, DOMINO, Integrierte Verfahrenstechnik. Siemens AG,
Bereich Daten-und Informationstechnik (1990)

8. Heninger, K., Kallander, J., Parnas, D.L., Shore, J.: Software Requirementsforthe A-7E
Aircraft. NRL Report 3876 (November 1978)

9. Heninger, K.L.: Specifying Software Requirements for Complex Systems: New Tech-
niques and Their Application. IEEE Transactions Software Engineering SE-6(1) (January
1980)

10. CCITT, Recommendation Z.100, Specification and Description Language (SDL), ITU-T
(1993)

11. L. Lamport: How to Write a Long Formula. DIGITAL Systems Research Center, SRC 119
(December 1993)

12. Parnas, D.L.: Tabular Representation of Relations. CRL Report #260, McMaster Universi-
ty (September 1992)

13. Parnas, D.L.: Predicate Logic for Software Engineering. IEEE Transactions on Software
Engineering 19(9) (September 1993)

14. Petre, M.: Why Looking Isn’t Always Seeing. Comm. ACM 38(6), 33–44 (1995)
15. Broy, M., Facchi, Ch., Grosu, R., Hettler, R., Hußmann, H., Nazareth, D., Regensburger,

F., Stolen, K.: The Requirement and Design Specification Language SPECTRUM.
Technische Universität München, Institut für Informatik, TUM-I9140 (October 1991)

16. Spies, K.: Funktionale Spezifikation eines Kommunikationsprotokolls, Technische
Universität München, Institut für Informatik, TUM-I9414 (May 1994)

17. Wirsing, M.: Algebraic Specification. Handbook of Theoretical Computer Science, vol. B,
pp. 675–788. North Holland, Amsterdam (1990)

Formal Modelling for Cooking Assistance

Bernd Krieg-Brückner, Serge Autexier, Martin Rink,
and Sidoine Ghomsi Nokam

German Research Center for Artificial Intelligence, DFKI, and
Universität Bremen, Germany

{Bernd.Krieg-Brueckner,Serge.Autexier}@dfki.de,
{mrink,sidoine}@informatik.uni-bremen.de

Abstract. Structured ontologies, with various facets of abstraction, are
used to model food, ingredients, recipes, cookware and workflows. They
form the uniform knowledge base for modular software assistants. Pro-
cesses and monitors supervise the cooking process and advise the user.

1 Introduction

The Objective of this Paper is to show the complexity of Formal Modelling
for an application domain such as cooking, but at the same time to introduce
“Formal Methods Light” step by step and to illustrate their added value:

modelling data in ontologies, analogous to data types, with more
semantic rigor than in relational data bases;

flexibility, extendability of ontologies, easier to maintain than data types;
separation of concerns by structuring into domain ontologies;
abstraction in several ways to conquer complexity;
modelling processes at a high level, in particular for monitoring.

On the side of the application domain, the objective is to propose a uniform
approach for the integration of the many aspects of cooking, as a basis for software
“assistants”, which access the knowledge base and present it appropriately for
user interaction, see Sec. 5.1.

How is our protagonist, Ms. W., going to cook when several guests with all
sorts of health and other constraints are being invited together (cf. Sec. 7)? To
try to solve this and related problems, we shall accompany Ms. W. while she
plans a meal, develops recipes, manages ingredients, goes shopping, prepares for
cooking, and finally gets the cooking done — supported by DFKI’s emerging
technology, explained as we go along.

2 Food, Drink and Health

Food and drink are most likely the most important source of a persons well-being.
Chinese grandfathers and -mothers, when still living at home in the traditional
multi-generation family, supposedly live longer [26], for physical reasons, since

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 355–376, 2015.
c© Springer International Publishing Switzerland 2015

356 B. Krieg-Brückner et al.

they can expect a very diverse diet, but also for psychological reasons, since they
are pampered with a varying and attractive meal three times a day, and live by
looking forward to the next. Other great cuisines (such as the Italian or French
Cuisine) also thrive on variety, locally grown ingredients — and eating (slowly!)
with the family, friends, or at least colleagues, around a big table.

In modern Western (and increasingly other) societies, people suffer from
health problems due to stress and hectic eating without the soothing effects of
friendly society, but also unhealthy food products provided by an inconsiderate
and greedy food industry, marketing dietary dreams that turn out to deteriorate
health even further (e.g. “low fat”, where fat is substituted by sugar to provide
“taste”). One of the most important (health care political) issues is that food
producers are still not obliged to (and therefore do not) provide complete de-
tails about the composition of their products, and consumers are not sufficiently
informed about the effect of these products on their individual health.

Luckily, there are some (government, non-profit, and commercial) organisa-
tions, which try to provide the missing information about existing products, and
software (apps) to access it [29,21,22,27,32,8]. However, information about var-
ious aspects and their interrelation is still widely dispersed, often not directly
accessible to the layman, and not integrated.

We shall try to delineate an approach in the sequel to unify, integrate and
standardise such information to achieve a personalized added value for the user.

2.1 Food Classification and Properties

Ontologies. Let us start by classifying food and drink products such that we can
then add meaningful properties and relationships to other concepts. A hierarchy
of concepts, a taxonomy, becomes an ontology when relations or more semantics
are added. Every concept X at a lower level is subsumed by the parent class C,
the concept at the next higher level; we say X is-a C (a directed acyclic graph).
In Fig. 1, CourgetteVegetable is-a . . . is-a SquashVegetable is-a GourdFruitVegetable
and eventually . . . is-a Vegetable, and so on upwards in the hierarchy.

Abstraction of Properties is a central strength of modelling with ontologies.
In the hierarchy of concepts, each intermittent class concept abstracts away from
more particular, specialised properties of descendants at lower levels, retaining
the properties that hold for all descendants, while some may not hold any more
for ancestors or siblings. Indeed, classes may be declared to be disjoint, such that
(sub)classes (and associated specialised properties) cannot be shared. Unless
stated, hierarchies will be disjoint in the sequel.

Relations. The relation is-a is the standard relation between (sub)classes. The
interrelation between concepts is the core of semantics. As an example, take
fromPlant that relates a subclass of PlantProduct to the biological subclass of
Plant of which it is a part, see Sec. 2.2; isSourceOfPlantProduct is its inverse.

Formal Modelling for Cooking Assistance 357

� GourdFruitVegetable
� PumpkinVegetable

� CucurbitaArgyrospermaPumpkinVegetable
� CucurbitaMaximaPumpkinVegetable
� CucurbitaMoschataPumpkinVegetable

� SquashVegetable
� CucurbitaMaximaSquashVegetable
� CucurbitaMoschataSquashVegetable
� CucurbitaPepoSquashVegetable
• AcornSquashVegetable
• CourgetteVegetable
• DelicataSquashVegetable
• SpaghettiSquashVegetable
• . . .

� Cucurbitaceae
� . . .

� Cucurbita
� CucurbitaArgyrosperma
� CucurbitaMaxima
� CucurbitaMoschata
� CucurbitaPepo
• AcornSquash
• Courgette
• DelicataSquash
• SpaghettiSquash
• . . .

• . . .

Fig. 1. PlantProduct and Plant Ontologies (Excerpts)

Multi-Lingual Ontologies. Ontologies can be made multi-lingual by attaching
names or language terms as labels to a class name, one term for each desired
language (or more if there are synonyms). This helps in a search, but also for
automatic translation, for example of recipes. While there may be many labels,
denoting synonyms in the same language, a class name is always unique.

When we want to look up Zucchini in German, for example, we find the class
CourgetteVegetable, since Zucchini in German, Italian, and American English, is
called Courgette in French, and British English— and we use primarily European
terms for class names, i.e. British over American English.

We also take care of different traditions, e.g. by modelling German, French
and English/American butcher’s cuts of meat, relating them appropriately.

2.2 Where the Food Comes From

Biological Source. In fact, resolving such equivalencies between terms in sev-
eral languages, even synonyms within the same language family such as English,
with dictionaries alone may lead to inaccurate results, since “common names”
for plants or animals are often overlapping, ambiguous, or misleading.1

To be safe, we should resort to relating each food class (and the associated
linguistic labels) with the proper biological class with the relation fromPlant or
fromAnimal , respectively. Biologists have been using taxonomic hierarchies for
centuries (since Linné) to uniquely identify animals and plants (in Latin, the
common language of scientists of the time), and to group them according to
hereditary variations of properties. This way, we also relate breeds of cultivated
plants or domestic animals to the respective “wild forms” of their ancestors.

Squash and pumpkin are examples of “commonnames”2distinguishing and clas-
sifying groups of vegetables with certain culinary properties, cf. Sec. 2.1. In Fig. 1,

1 Savoy cabbage is confusingly called chou de Milan in French (Wirsing in German);
red cabbage is regionally called Rotkohl or Blaukraut, as cooking changes its colour.

2 Europeans need help with primarily American breeds of squashes and pumpkins.

358 B. Krieg-Brückner et al.

 
 

 
 
 

 
 

 
 

 
 

 
 

    
 

 
 

     
 
 

 

Fig. 2. Domain Ontologies and Import Structure

SquashVegetable and PumpkinVegetable are separate classes from a “vegetable/-
culinary point of view”: SquashVegetables can be cooked and eaten whole, whereas
PumpkinVegetables have a hard shell, only the inside of the pumpkin shell is edible.
However, they are closely related as plants : both are fromPlant Cucurbita. For ex-
ample, some kinds of SquashVegetable and some kinds of PumpkinVegetable both
are fromPlant CucurbitaMoschata, i.e. the same biological class.

Constraints on Relations in OWL. The Ontology Web Language, OWL [6],
is the standard for the formulation of ontologies. Intricate relationships such as

“all SquashVegetables are related with fromPlant to only Cucurbita”
may be axiomatised as a subclass constraint on the relation fromPlant:

SquashVegetable - fromPlant only Cucurbita.

Structuring Ontologies. It is a good idea to structure the multitude of ontolo-
gies into separate domain ontologies, where one ontology imports (classes, rela-
tions, etc.) from other ontologies, cf. Fig. 2, sometimes called “hyper-ontology”
[16,25]. A language for structuring ontologies by imports and morphisms is now
proposed as a standard for extending OWL [25,28]. Ontologies defining very gen-
eral concepts are called upper ontologies ; we use DUL [3] (derived from DOLCE
[2]) and QUDT [7] (for standardised quantities and measures).

Data Abstraction, Instances. An actual data object, e.g. a particular food
product, is modelled as an instance of a class (i.e. a member of the class regarded

Formal Modelling for Cooking Assistance 359

as a set), and serves as source or target for the relations contained in the data.
Thus the modelling by a ontology abstracts from the particular properties of
tens or hundreds of thousands of products contained in data bases, and provides
additional information by deductions as an “added value”. In fact, with today’s
technology, these data cannot all be held as instances; instead, data base access
from the ontology to several external data bases is provided in a hybrid approach,
such that only some instances are held as local (copies of) objects.

Integration of Sources for Domain Modelling. Notice the large variety of
aspects related to food or beverage products. It is the benefit of our modelling
that we integrate and structure this variety inspired by several sources.

The internet portals WikiFood [8], or Barcoo [1] provide a (rather coarse)
taxonomy and description of food and beverage products likely to be found in
(European, German) food stores. WikiFood is a non-commercial portal focussing
on the composition of food regarding nutrition or substances that might lead to
incompatibilities; a distinctive feature is the personalized filter for food additives
or content substances. WikiFood provides translation into English, German and
French. Barcoo maps directly from the barcode to a variety of product informa-
tion. The up-to-date management of their data bases relies on information from
manufacturers, but also strongly on the community of users providing content.
Challenging problems are the medical relevance and the quality (in particular the
“half-life”) of data regarding content substances (cf. Sec. 3.1, [11,10]). Compare
also the overview of food standards in [22,17], in particular the CEN standard.

While we want to access such portals as data bases for actual food products
on the market, we have to do the (integration of the) modelling, and mapping
between possibly different models ourselves. The upper part of the FoodOrBev-
erage taxonomy (not shown here, including PlantProduct in Fig. 1) follows the
hierarchy of the European Food Information Resource, EuroFIR [4,27,18], which
is intended as a standard for organisations, industry, and researchers in Europe.

To enable exchange and comparison of data, an approach to indexing of data
bases was established: the multi-lingual Langua aLimentaria Thesaurus, Lan-
guaL [5,29,21]. Langual defines some relations to target domains we are mod-
elling, but lacks e.g. information about nutrition impairments (cf. Sec. 3.1).

3 Planning a Meal

3.1 Guests and Their Peculiarities

Restricted Diets, Nutrition Impairments. When Ms. W. invites guests for
dinner, she may be faced with all sorts of peculiarities: a guest may have a mere
preference for a particular diet, such as a NoFlavorEnhancerDiet, or may insist on
a meatless diet, such as an OvoLactoPescetarianDiet, a religiously restricted diet,
such as a HalalDiet, a culturally restricted diet, such as a NoInnardsDiet, or have
a more or less severe NutritionImpairment requiring a medically restricted diet,
e.g. a PregnancyDietRestriction with specific requiresDiet constraints, cf. the list

360 B. Krieg-Brückner et al.

� NutritionImpairment
� Nutrition-

ImpairingDisease
� Nutrition-

Incompatibility
• Nutrition-

Allergy
� Nutrition-

Intolerance
• Pregnancy-

DietRestriction

� RestrictedDiet
� ReligiouslyRestrictedDiet
� WholeFoodDiet
� CulturallyRestrictedDiet
� MeatlessDiet
� MedicallyRestrictedDiet

� NoAlcoholDiet
� NoCaffeineDiet
� NoCruditesDiet
� NoHotSpicesDiet
� NoRawFishDiet
� NoRawMeatDiet
� NoMilkDiet
� NoNutDiet
� NoSugarDiet
� NoEggDiet
• . . .

� HotSpiceVegetable
� PepperSpice

� ChiliPepperSpice
• BirdsEyeChili-

PepperSpice
• Cayenne-

PepperSpice
• Jalapeno-

PepperSpice
• . . .

� PepperCornSpice
� Piment-

PepperSpice
� RootOfSpice
• GingerRoot
• HorseradishRoot

• WasabiSpice

NutritionImpairment
requiresDiet

RestrictedDiet
prohibitsFoodOrB

FoodOrBeverage

prohibitsFoodOrBeverage

Fig. 3. PregnancyDietRestriction, RestrictedDiets, and Prohibited HotSpiceVegetables

of MedicallyRestrictedDiets marked in italics in Fig. 3. Note that diet restrictions
might be elicited anonymously over a form on the Internet; anyway, a guest may
state a list of RestrictedDiets individually and need not reveal her pregnancy.

Several Guests, Joining Impairments. When Ms. W. plans a meal for sev-
eral such guests, she has to join impairments and associated dietary restrictions,
thus the allowed foods. Similar considerations apply to a group in a restaurant.

3.2 Relating Impairments to Allowed Foods

Intermediate Abstraction. When relating PregnancyDietRestriction to al-
lowed foods, cf. Fig. 3, it has been convenient to introduce the extra class hierar-
chy RestrictedDiet as an intermediate abstraction. It allows us to relate Nutrition-
Impairment via requiresDiet to RestrictedDiet on the left, and RestrictedDiet via
prohibitsFoodOrB to FoodOrBeverage on the right; otherwise each relationship
between PregnancyDietRestriction and prohibited FoodOrBeverages would have
to be defined individually for an overall relation prohibitsFoodOrBeverage.

Formal Modelling for Cooking Assistance 361

On the left, we can focus on all those subclasses of RestrictedDiet that should
be related to PregnancyDietRestriction, and define subclass constraints, e.g.

PregnancyDietRestriction - requiresDiet only NoHotSpicesDiet
(cf. Sec. 2.2) and analogously for NoAlcoholDiet,NoCaffeineDiet, NoRawMeatDiet,
NoRawFishDiet, NoCruditesDiet. Other NutritionImpairments are similarly related
to particular subclasses of MedicallyRestrictedDiet.

On the right, we can limit our attention to each subclass of RestrictedDiet and
its relation to FoodOrBeverage, e.g. for NoHotSpicesDiet to all spicy-hot food

NoHotSpicesDiet - prohibitsFoodOrB only HotSpiceVegetable
and similarly for other hot food. Note that it helps considerably to cluster food
into classes with culinary aspects, but also to define extra (super)classes with
other properties, such as the spicy-hot aspect; then we need to define subclass
constraints only for the clustering superclasses, and they are inherited. In the
case of HotSpiceVegetable, the culinary and the special spicy-hot aspects co-
incide: we distinguish the CayennePepperSpice as a HotSpiceVegetable from the
BellPepperVegetable as a bland PepperFruitVegetable (although CayennePepper-
Spice and BellPepperVegetable are both fromPlant CapsicumAnnuum, cf. Sec. 2.2).
The relation prohibitsFoodOrBeverage is defined as a composite relation

prohibitsFoodOrBeverage - requiresDiet ◦ prohibitsFoodOrB;
any HotSpiceVegetable is deduced to be prohibited for a PregnancyDietRestriction.

Separation of Concerns. The clou of intermediate abstraction is that requires-
Diet and prohibitsFoodOrB can be described independently. Perhaps even more
importantly, it allows us to define subclass constraints (cf. Sec. 2.2) for both
relations separately at a high level of property abstraction, cf. Sec. 2.1.

Relationships established by prohibitsFoodOrB can be reused for other diet
restrictions, e.g. NoHotSpicesDiet for the NutritionImpairment Gastritis.

3.3 Meals, Courses, Dishes

For the planning of a meal, potentially with a number of courses, dishes, side-
dishes, etc. (cf. Sec. 5.3), we have to consider the number of guests and their joint
restrictions, choose from a variety of cuisines, and select among the multitude of
recipes (or invent a new one). What is the culinary secret for the combination of
dishes? for a dish with an accompanying wine? or for the ingredients in a dish?

The secret is the interaction or “interplay” of aromas, their harmony, but also
the contrast, coverage and variety of different flavours in a dish (or a combination
of dishes); moreover, a similar harmony and variety of textures, colours and
shapes matters, which we will disregard here.

Flavour Affinities. Why does caviar taste good with white chocolate? or
Ms. W.’s heavenly Bavarian cream with raspberry sauce?

There has been considerable research in the analysis of aromas and their
chemical composition. “Food pairing” relates two ingredients that have one (or
more) flavour(s) in common: e.g. for caviar and white chocolate the flavour

362 B. Krieg-Brückner et al.

determining substance trimethylamine. It has become quite popular among food
researchers and technologists, star chefs, sommeliers, even perfumers.

“Pairing” refers to a semantic neighborhood of a flavour (or aroma) that is
shared by two ingredients in harmony.

Caviezel, in a commendably scientific approach, introduces a hierarchy of
flavour levels in [19], starting with the taste level (sweet, sour, salty, bitter,
umami, fat), the flavour created in the mouth by taste buds on the tongue, con-
tinuing with aromas sensed by the nose, ordered in 8 levels according to the
volatility of the corresponding molecules. Thus a flavour at a low level is usually
more prominent and persistent; some herbs or spices may overpower others (e.g.
“spicy hot” from chili). Note that (the stage of) the cooking may significantly
influence or even create a flavour, e.g. when roasting meat. In general, an ingredi-
ent contains several flavours that are more or less salient, and is thus related “in
several directions” to other ingredients. Thus complex and elaborate recipes can
be analysed w.r.t. the harmony and intentional contrast in their composition.

The net of [9] shows 381 regularly used ingredients and 1021 aroma substances.
To conquer such complexity, we hope to achieve a manageable set of intermediate
flavour abstractions (perhaps Caviezel’s flavour level sets), which allow us to
constructively propose compositions of ingredients, or substitutions of alternative
ingredients in existing recipes, for creative cooking.

4 Recipes

4.1 Recipe Structure

Cooking might be defined as the process of performing certain cooking steps on a
defined amount of ingredients in a specific order, utilizing cooking utensils, tools,
etc. A recipe is then a structured workflow for processing such cooking steps,
prescribed by recipe instructions, with corresponding ingredients (cf. Sec. 5.3).

We shall propose a structure for modelling recipes below, which takes care of
a variety of “culinary” semantic relationships; for a running example, see Fig. 4
for an Italian zucchini frittata, a courgette omelette. The rendering in Fig. 4,
ignoring the nested boxes, is similar to what you might expect in a cookbook.

Primary Ingredient(s), Culinary Options. The composition of ingredients
is, quite likely, the most characteristic feature of a recipe. Often, a user will search
for a recipe with one primary ingredient, and choose the others accordingly (cf.
pairing in Sect. 3.3). The recipe author should flag, whether an ingredient is
optional — an important semantic indication providing freedom for the user:

essential : not to be omitted
primary : essential reference ingredient, giving the recipe its name
optional : dispensable for a restricted diet or by personal preference
culinary : optional, intended as a special “culinary kick” by the author that

would be lost if omitted (or dispensable as a fad of that author)?

Formal Modelling for Cooking Assistance 363

In a vegetable omelette, eggs are essential; adding anchovies and capers to bland
cauliflowers adds a Mediterranean culinary touch (cf. Sec. 4.2). Deleting an op-
tional Ingredient, e.g. pepper, also deletes the dependent RecipeInstruction(s).

Balancing Amounts, Intervals. Amounts, for example, are likely to be de-
fined in terms of the amount for a primary ingredient, in particular, if its quantity
cannot be influenced; for example a large rather than a small turkey; for a jam,
fruit (as much as could be collected) matched on-to-one by sugar; in baking, just
so much yeast per flour quantity. This important dependency should be reflected
in the recipe, and tools should calculate dependent measures automatically.

While it is important in such cases to keep amounts and balancing strictly
controlled, the precise definition of amounts is often over-specified. The author of
a recipe should recommend the interval over which the amount of an ingredient
may range based on her/his expertise (and maybe indicate a preference), such
that the user may vary according to her/his personal taste or other constraints.

A recommended interval should also make it easier to achieve proper rounding
of measures when recomputing for a different number of portions. If, for example,
for 4 portions of an omelette, 5-7 (instead of 6) eggs are prescribed, then an
omelette for 3 should have 4-5 (and not 4.5) eggs in it.

Measures. There are various different approaches to measure ingredients, de-
pending on the cultural background in different geographic regions. While flour
is measured in weight (i.e. mass) in Germany, it is measured in volume in the
UK, the US, or Sweden; moreover, measurement units differ. We use the QUDT
ontology [7], providing quantities and measurement units, and their relation to
each other; so standards can be converted to a style preferred by the user, e.g.
0.23 Liters to a LiquidCupUS; the intervals above help rounding off.

Individual Adaptation of ingredients (adjusting amounts, omission, or sub-
stitution) now becomes possible, regarding the variety of dietary constraints, see
Sec. 3.1 — and flavour affinities should help find tasty substitutions, see Sec. 3.3.

In view of the abundant minced fish in Denmark, BKB substituted bacon by
fish in an Ærø zucchini frittata, suitable for an OvoLactoPescetarianDiet.

Recipe Instructions. RecipeInstructions (see Fig. 5) have been modelled to

set up an environment for cooking, i.e. get the requisite CookWare (see be-
low), add Ingredients, heat the Burner, serve or store
away result Ingredients (temporarily or for preserva-
tion), clean and restore CookWare for further use;

prepare Ingredients e.g. cut in a particular way, mix, or whisk;
cook Ingredients in the present environment, e.g. braise, or fry.

364 B. Krieg-Brückner et al.

� CookingContainer
• Casserole
• Lid
• CookingTin
• CakeTin
� Pan

� FryingPan
• CastIronPan
• NonStickPan

• GrillPan
• SaucePan

• . . .
� CookingDevice

� Burner
• Hob
• Hotplate
• InductionPlate
• . . .

� Cooker
• DeepFatFryer
• . . .

� GrillingDevice
� Microwave
• . . .

� PreparationDevice
• Blender
• FoodProcessor
• Juicer
• Masher
• . . .

� PreparationSurface
• BreadBoard
• ChoppingBlock
• CuttingBoard

� TableEquipment
� Crockery
• Bowl • Cup
� Dish • Mug
• Plate • . . .

� Cutlery
� ServingCutlery
� Spoon
� TableFork
� TableKnife

� ServingContainer

Fig. 4. Zucchini Frittata Recipe and CookWare Ontology (Excerpt)

Formal Modelling for Cooking Assistance 365

� CookingEnvironmentIns
� EstablishEnvironmentIns
• GetCookWareIns

� UpdateEnvironmentIns
• AddIngredientIns
� HeatIns

� ClearEnvironmentIns
� RemoveResultIns
• ServeIns
• StoreResultIns
• . . .

� PreparationIns
� CutIns

� ChopIns
• CrumbleIns
• MinceIns
� SliceIns
• . . .

� FlipWithLidIns
• FlipThenTransferIns
• TransferThenFlipIns

• MixIns
� WhiskIns
• . . .

� CookingIns
� CookInLiquidIns
• DeepFryIns
� PanFryIns
• BraiseIns
� FryIns
• FryBottom-

FirmIns
• FryCrispIns

• SauteIns
• StirFryIns
• . . .

� RoastIns
• SteamIns
• . . .

Fig. 5. RecipeInstruction Ontology (Excerpt; “Instruction” abbreviated as “Ins”)

� associatedWith-Recipe
• derivedFromRecipe
• hasDifficultyLevel
• hasIngredientCollection
• hasrecipeWorkflow
• yieldsResult

� associatedWith-Ingredient
• hasContent
• hasIngredientKind
• hasIngredientStatus
• isIngredientOf
• processedBy
• enablesRecipeInstruction

� associatedWith-RecipeInstruction
• hasCookingDuration
• hasWorkDuration
• isInstructionOf
• producesResult
• requiresCookWare
• requiresIngredient

� associatedWith-CookingStep
• hasAssignedCookWare
• processesIngredient

Fig. 6. Recipe Relations in the Ontology (Excerpt)

� PhysicalAspect
� SizeAspect
• LargeSizeAspect
• MediumSizeAspect
• SmallSizeAspect
• TinySizeAspect

� TemperatureAspect
� BurnerTemperature
• HighBurnerTemperature
• LowBurnerTemperature
• MediumBurnerTemperature

� OvenTemperature

� TextureAspect
� CookingTextureAspect
• GaseousTexture
� LiquidTexture
� SolidTexture
• FirmTexture
� HardTexture
• CrispTexture
• PowderedTexture
• . . .

• SoftTexture
• . . .

Fig. 7. PhysicalAspect Ontology (Excerpt)

366 B. Krieg-Brückner et al.

CookWare. The environment contains all CookWare required (see Figs. 4, 5):

PreparationSurface e.g. a CuttingBoard;
PreparationDevice e.g. a FoodProcessor;
CookingDevice e.g. a Cooker with a Burner;
CookingContainer e.g. a Pan to put on the Burner;
CookingUtensil e.g. a KitchenKnife as a FoodCutter, a Whisk;
TableEquipment e.g. a Bowl;

PreparationDevices and CookingDevices have their own power supply and control.
CookWare is modeled as Container since it may contain other CookWare (such

as a Pan on a Burner on top of a Cooker), or hold (part of) Ingredients (such as a
Bowl, a KitchenKnife, or a CuttingBoard). Note that the required environment of
CookWare and Ingredients is modelled with each RecipeInstruction (cf. Sec. 4.3).

BKB hardly uses a FoodProcessor, but cannot do without his ChineseChop-
pingKnife that doubles as a little plate for small pieces.

Details in a RecipeInstruction. Depending on the abilities of the cook,
RecipeInstructions should be more or less detailed. An experienced chef might
only need the list of ingredients and apply amounts according to experience,
taste and creativity, while a beginner would need to know the exact amount
(interval), which tools to use when, etc.

Moreover, RecipeInstructions vary according to the CookWare involved
(a RoastInstruction might refine to a GrillInstruction or a RoastInOvenInstruction)
or according to the cooking technique used (e.g. a FlipWithLidInstruction to ei-
ther a TransferThenFlipInstruction or a FlipThenTransferInstruction, cf. Fig. 5),
choosing an appropriate one during refinement (cf. Sec. 4.3).

In fact, a RecipeInstruction may be implementedAs a Recipe that is more de-
tailed; in particular, it provides an expanded RecipeWorkflow (e.g. for a Transfer-
ThenFlipInstruction or FlipThenTransferInstruction). Several implementations may
be provided when defining a new RecipeInstruction, giving different amounts of
detail for different user profiles (e.g. for a beginner, cf. Sec. 4.3), which may then
be used for adapting the interface displayed to the user (cf. Sec. 5.2).

We also expect that modelling a RecipeInstruction explicitly, instead of just
having a piece of text, will ease automatic translation of recipes.

Recipe Workflow, Nested Sub-Recipes. A RecipeWorkflow is a sequence of
RecipeInstructions, which relate to Ingredients and CookWare, and finally deliver
a result that is potentially used as an Ingredient later on. Since a Recipe depends
on its Ingredients, and an Ingredient may be the result of another Recipe (e.g.
for a seasoning), we are in fact dealing with sub-Recipes inside a Recipe, see
Fig. 4. Every sub-Recipe has a name on top referring to its result Ingredient(s),
e.g. FriedBacon, BaconFat.

A sub-Recipe may be cut out of a Recipe to become an independent, self-
contained Recipe, e.g. a Recipe for a seasoning such as CrumbledBacon. In the

Formal Modelling for Cooking Assistance 367

example recipe, it is purposely left unspecified whether Fat2, i.e. OilOrFat, should
contain leftover (flavoring) BaconFat ; this will only be possible, if it is scheduled
to be prepared before CookedVegetables, and is anyway a choice of the cook.

The relation Recipe contains Recipe is a partial order, denoting the dependency
of a recipe on another, whose result must be available as an ingredient (cf. also
dependent cooking processes in Sec. 5.3). For the ZucchiniFrittata to be fried, the
EggMixture must be ready; for the EggMixture, the CookedVegetables and the
Seasoning. The order, in which the CookedVegetables and the Seasoning have to
be prepared, is unspecified (and Mix is commutative); this leaves room for choice
in the scheduling of CookingSteps later on.

The overall environment of CookWare involved in a RecipeWorkflow can be
deduced from the RecipeInstructions used (cf. Sec. 4.3).

4.2 Generic Recipes, Recipe Development

When trying to find a suitable recipe, the user is faced with an overwhelming
number, distributed over many portals, blogs, or web-pages on the internet.
Being faced with restricted diets (cf. Sec. 3.1) aggravates the issue.

We hope to eventually provide a uniform (and standardised?) modelling and
data base access, not only for information about food (cf. Sec. 2.2), but also
recipes. This requires a standard recipe structure and representation (cf. Sec. 4.1)
to allow an intelligent search and adaptation in the presence of diet constraints.

We are looking for a way to cluster recipe variants together, encouraging
creativity. Ms. W. is famous for Apfel-, Topfen- and Gemüse-Strudel, cf. Sec. 7.

Variables, Parameter Abstraction. One way to make recipes generic (gen-
eralised, schematic) is to introduce a kind of parameter abstraction (compare
CASL generics [12]; not yet available for OWL, cf. Sec. 2.2).

The primary ingredient in the zucchini frittata (cf. Sec. 4.1), courgette/zuc-
chini, is more generally a vegetable, as seasonally available; but is it really? Can
we generalise from CourgetteVegetable to Vegetable, i.e. just navigate upwards
in the class hierarchy? No, not just any vegetable, e.g. no cabbage, but perhaps
Cauliflower3. One proper culinary abstraction would be SquashVegetable, serving
like a variable that can later be substituted by any product in a subclass.

To further generalize, an ingredient can be defined as a set of alternatives as
if an implicit super-class was created (cf. Oil | Fat for OilOrFat), e.g.
CourgetteVegetable | FennelVegetable | SpinachVegetable | RadicchioVegetable

for the classic frittata alla verdura; even more generally,
SquashVegetable | FlowerVegetable | StalkVegetable | PotatoVegetable |
SpinachVegetable | RadicchioVegetable

and so on. StalkVegetable includes fennel; the latter two are special subclasses
of LeafVegetable, which we want to avoid as it includes CabbageVegetable as well.

This abstraction, allowing seasonal variants and substitutions (cf. Sec. 4.1),
and ample room for creativity (cf. Sec. 3.3) with a corresponding abstraction of

3 cauliflower, the German Blumenkohl, is actually not a cabbage, but a FlowerVeg-
etable.

368 B. Krieg-Brückner et al.

culinary seasoning, includes some of Ms. W.’s favourites: the Sicilian frittata di
cavolfiore (CauliflowerVegetable, anchovies and capers) and Umbrian frittata ai
tartufi neri (PotatoVegetable, black truffles), a sister of the Spanish omelette.

4.3 Refinement

Stakeholders, Refinement Stages. When the user of a generic recipe deletes
options or provides substitutions for individual adaptation (cf. Sec. 4.1), chooses
among alternatives, or navigates down to a particular subclass, in fact when
being creative, s/he becomes an editor of a derived recipe variant that is a
refinement of the original one. Refinement for adaptation will happen in stages
at various occasions, and the editors will be different stakeholders (or assume
such roles) with different interests and, more importantly, different profiles :

basic author providing general generic recipes
culinary author creating recipes with individual culinary kicks
host gathering and joining the guests’ requirements
meal planner planning recipes for courses and beverages
recipe planner adapting recipes to the joint guests’ requirements
shopper adapting recipes to (seasonally) available ingredients
kitchen planner adapting recipes to CookWare available in the kitchen
scheduler scheduling cooks and RecipeWorkflows
cook adapting recipes to personal cooking abilities and preferences

Ms. W., as all experienced cooks, will assume all these roles at some time, and
change between them. In particular, she prefers to do the shopping herself; she
might want to change her mind about a recipe, since today’s offer of a fresh sea-
sonal vegetable is so attractive. However, when planning recipes with a derived
shopping list for another person as shopper, she will have to be careful to be
precise about generalizations and appropriate alternatives for ingredients, keep-
ing the personal shopping profile of the shopper in mind (who might be inclined
to choose what he likes, not necessarily in line with her wishes).

Recipe Design. The author of a recipe will be assisted by a special version of
a recipe editor (cf. Sec. 5.1), allowing navigation in the class hierarchy.

Ms. W. will start with the RecipeInstruction for the Ingredient in focus (cf.
Fig. 4). When choosing Bacon as an ingredient, a FryInstruction will be suggested
(modelled via enablesRecipeInstruction), and Ms. W. will choose the FryCrisp-
Instruction as a refinement. The FryCrispInstruction will be related to the Crisp-
TextureAspect, and, as a FryInstruction, require medium hot OilOrFat in a Pan;
this, in turn, will suggest a Burner with a MediumBurnerTemperature, and so on.
RecipeInstructions and Ingredients are modelled with corresponding specialised
attributes, enabling the Recipe Assistant to suggest appropriate choices.

Similarly, the other stakeholders will be able to navigate in the (generalised)
hierarchy of attributes in their refinement process; not only Ingredients, but also
RecipeInstructions and CookWare are generalised.

Formal Modelling for Cooking Assistance 369

 

 

 
 

 

 
 

 
 
 

Fig. 8. Software Assistants and Use Relationship

The Recipe Assistant, as a “kitchen planner” prior to the actual cooking,
will advise Ms. W. to use a NonStickPan for a Pan, since it knows, which Cook-
Ware is preferred and available from her profile as a cook and the profile of the
kitchen environment. BKB will get his beloved ChineseChoppingKnife.

Version and Change Management. It is important to record the whole
development, a sequence of refinements, for future reference. Thus a new version
is placed among a cluster of variants, sharing similar culinary properties.

Ms. W. may wish to revise previous decisions when re-using a recipe next
time, omitting a particular dietary constraint, or cooking in a different kitchen.
Her recipe variants are kept in a local, private repository.

5 Cooking Assistance

5.1 Software Assistants

Based on the modelling, several modular software assistants are presently under
development to help Ms. W. in her tasks, cf. Fig. 8. The Person Assistant

manages profiles of stakeholders (cf. Sec. 4.3); the Recipe Assistant helps
in the development of recipes, using the Product Assistant and Person

Assistant; it generates a shopping list for the Shopping Assistant, which, in
turn, uses the Product Assistant for information about food products, the
Inventory Assistant about their availability at home or in a shop, and the
Storage Assistant about their location.

When Ms. W. goes shopping and changes her mind about a recipe, the Shop-
ping Assistant will be able to trace back to the recipe, Ms. W. can adapt or
change it, the shopping list is adjusted accordingly, and the Inventory Assis-

tant bears the availability of food products at home in mind; the Product

Assistant will help her choose alternatives or substitutions.

Consistency of Data Updates. The assistants (cf. Fig. 8) correspond to soft-
ware modules linked to a central controller, which takes care of communication,

370 B. Krieg-Brückner et al.

Fig. 9. CookTop View

e.g. interface modules responsible for user interaction, or utility modules for data
base access. Assistant modules access data in the ontology (or associated data
bases) via the controller; the controller, triggered by an interface module request,
distributes the request to appropriate assistants, and forwards answers back to
the interface module. The ontology is managed by the SHIP-Tool [13,15], which,
apart from deductions with a standard reasoner, guarantees consistency of data
updates generated by the processing, a unique feature. The ontology hides and
abstracts from associated data bases. Since all the knowledge is represented in
the ontology, the assistants only need a minimal data representation internally.

5.2 The CookTop, the Cooking Desktop

The CookTop is the touch-screen via which the cooking assistance processes
communicate with the user, see Fig. 9. “Active” (sub)Recipes and CookingSteps,
currently being processed, are displayed together with the required Ingredients
and CookWare; already completed ones are not displayed any more, neither are
those that are not enabled yet, for instance, because the required Ingredients are
not yet ready as the result of other processes, or the CookWare is still in use.
Once a CookingStep has been completed, the user touches the CookingStep box
(or by clicking, voice interaction, etc.). This acknowledgement is recorded by the
assistance processes and other possible CookingSteps become enabled. Enabled
Recipes (and subsequent CookingSteps in a list) are displayed as gray; they are
activated by a user’s touch. Depending on the user’s abilities and preferences,
more or less information (e.g. associated CookWare or durations) is displayed.

5.3 Cooking Workflows, Processes

The RecipeWorkflow of a structured Recipe corresponds to a (partially ordered)
tree of sequences of RecipeInstructions for the (sub)Recipes, cf. Sec. 4.1 and Fig. 4.
The resulting CookingWorkflows prescribing the order of processing the Recipe-
Instructions, may be completely sequential, e.g. for an inexperienced cook, to do
all preparation work first, and then cook strictly sequentially. However, there is

Formal Modelling for Cooking Assistance 371

a potential for parallel work by one cook (or more than one); the scheduling has
to take different abilities and resulting prospective durations of workloads, pre-
liminary preparation, actual cooking, settling and cooling phases, into account.

Process Abstractions. The assistance processes control the execution of the
CookingWorkflow and can be described as processes in the SHIP-Tool at a high
level of abstraction. The SHIP-Tool is based on a logical state representation
modelling data as well as the state of the real world. States are modelled in
Description Logics, which provides the semantic foundation for OWL used to
model the recipes. A state consists of the defined classes and relations, and in-
stances (individuals) modelling the state. Considering our running example (cf.
Fig. 4): each Ingredient, CookWare, etc. is modelled as an instance of the respec-
tive class with relations to other instances as imposed by the class declarations
and (constraint) definitions. In SHIP notation, this is expressed as follows

courgette: CourgetteVegetable, (courgette, cquant): hasIngredientQuantity

which represents that the instance courgette belongs to the class CourgetteVe-
getable, and courgette hasIngredientQuantity cquant. If relations are functional
relations, then courgette.hasIngredientQuantity denotes the associated instance.

As modelling discipline we impose that all existential quantifiers have a wit-
nessing instance in the ontology. For instance, CookingSteps always have at
least one assigned CookWare, which is expressed by the subclass declaration
CookingStep � ∃hasAssignedCookware . CookWare; if fry1 is a CookingStep, this im-
poses that there exists an instance in the ontology which is the assigned CookWare

(cf. [13]). Available CookWare, the Recipe and instances of the specific Ingredients
and quantities (fitting a specific number of persons) are modelled this way.

The assistance processes need to track the status of CookingSteps. To this end,
we model the CookingStepStatus as StartedStatus or CompletedStatus. Ingredients
necessary for the different CookingSteps and resulting from other CookingSteps
create the dependencies between the CookingSteps, cf. Sec. 4.1; active Cooking-
Steps depend on the availability of CookWare; all this information is encoded in
an active CookingStep.

Based on the ontological state model, basic computation steps in SHIP are on-
tology updates which result in a new ontological state. The updates are restricted
to instances, the definitions of classes and relations cannot be changed. Updates
may result from the real world, such as, for instance, the user acknowledging
that a specific CookingStep is completed. But updates can also be computing
actions of the assistance processes, for instance to enable or initialise a new
CookingStep, or to delete a completed cooking step. In SHIP, actions can be de-
fined, which have ontological preconditions, checked on the current ontological
state, and effects describing the update. Based on the actions as basic steps,
named, recursive, parallel processes can be defined, used to describe the cooking
assistance processes.

Consider the FryBacon step in Fig. 4. The corresponding cooking step as-
sistance process is described in Fig. 10. While the process is presently written
manually, we aim at automatic generation from the RecipeWorkflow, cf. Sect. 5.3.

372 B. Krieg-Brückner et al.

1 process fryBacon (fat,bacon) = {
2 init F(fat.currentIngredientStatus:PreparedStatus and

bacon.currentIngredientStatus:PreparedStatus);
3 fix pan:CookingContainer and pan:UnassignedCookWare and burner:Burner and

burner:UnassignedCookWare;
4 createHeatupActivity(fat,pan,burner,:lowBurnerTemperature);
5 let d = fat.inv(rawIngredient)
6 prod = d.producedIngredient in
7 init F((fat,pan):at and (fat,:lowBurnerTemperature):hasTemperature and
8 (pan,:lowBurnerTemperature):hasTemperature and
9 prod.currentIngredientStatus:PreparedStatus);

10 closeActivity(d);
11 createFryActivity(bacon,pan,burner,:lowBurnerTemperature,:crisp);
12 let f = bacon.inv(rawIngredient)
13 crispbacon = f.producedIngredient in
14 init F((crispbacon,pan):containedIn and crispbacon.currentIngredientStatus:

PreparedStatus);
15 closeActivity(f);
16 createRemovalActivity(crispbacon,pan);
17 let doRemove = crispbacon.inv(rawIngredient)
18 storage = doRemove.requiredCookWare in
19 init F((crispbacon,storage):containedIn);
20 closeActivity(doremove) }

Fig. 10. Assistance Process for FryBacon

The assistance process is parameterized over the specific ingredients fat and
bacon of the cooking step. It then first waits until these are available, i.e. have
PreparedStatus. To this end the SHIP language allows to specify linear temporal
logic formulas over ontology expressions, which are monitored over the evolution
of the ontological state. We use the standard temporal connectives4 that allow to
start a monitor (line 2) waiting for an ontological state, where both ingredients
have PreparedStatus. Once this holds, the process execution continues and we
query the current ontological state for unassigned pan and burner (line 3) and
execute the action initialising the first subactivity, i.e. heating up the fat in the
pan on the burner (line 4).

Now the information is in the ontology and can be presented to the user on the
CookTop interface. We collect the instance d encoding the activity, but querying
the ontological state for the instance, of which fat is the rawIngredient (line 5),
as well as the instance prod introduced to denote the product of the heatup step.
Next we wait until the fat is in the pan and has the right temperature, which
the user or some sensing device has indicated, and the product is prepared. The
activity is now closed by the action closeActivity, which removes the instance
d from the ontological state. Subsequently the next subactivity is started, which

4 F = Eventually (Future), G = Globally, U = Until.

Formal Modelling for Cooking Assistance 373

1 monitor controlCooking () =
2 G(all s:CookingStep . ((s,r):fromRecipeInstruction and r:CookingInstruction and
3 (s,p):requiresCookWare and p:CookingDevice and
4 (p,ct):currentCookingTemperature and (p,rt):hasCookingTemperature)
5 => (ct =rt U s.yieldsResult.currentIngredientStatus:PreparedStatus))
6
7 process monitorCooking () = {
8 try { init controlCooking }
9 catch {

10 forall s:CookingStep and (s,r):fromRecipeInstruction and r:CookingInstruction and
11 (r,p):requiresCookWare and p:CookingDevice and
12 (p,ct):currentCookingTemperature and (p,rt):hasCookingTemperature and
13 r.yieldsResult.currentIngredientStatus:UnpreparedStatus and
14 ct != rt => if (ct < rt) signalHeatUp(s,p)
15 else signalCoolDown(s,p);
16 init F(ct =rt 〈‖〉 not(!s))
17 }; monitorCooking}

Fig. 11. Monitor and Monitor Process

consists of actually frying the bacon until it is crisp and finally the subactivity
to remove it from the pan. Again, these subactivities follow the same patterns
of (i) initializing the sub-activity possibly preceding a monitor waiting for the
availability of Ingredients and CookWare, (ii) a monitor waiting for the user or
a sensor in the real world to acknowledge completion of the subactivity, and
(iii) closing the subactivity.

For each CookingStep of the Recipe we have respective actions and assistance
processes, i.e., cutVegetables, fryBacon and eggMixture. The dependencies
between these are managed by the Ingredients and CookWare when they have
been produced or become available. Hence the overall assistance process is the
parallel composition of these three processes

cutVegetables(courgettes) 〈‖〉 fryBacon(fat,bacon) 〈‖〉 eggMixture(eggs)

The parallel composition is an interleaving of the basic actions of the different
processes, as they all operate over the same ontological state.

Monitoring Processes. The SHIP-Tool provides the possibility to define mon-
itors tracking ontological state evolutions, to be used alongside processes to ob-
serve the environment and react accordingly. An update violating a running
monitor causes a failure in the process semantics, which can be caught like an
exception, and processes can be defined to react. Furthermore, it is possible
to specify general properties not tied to a specific process, but rather global
invariants (in fact, the “common sense of cooking”).

374 B. Krieg-Brückner et al.

As an example consider the monitor controlCooking in Fig. 11. It specifies that
in each state, whenever there is an active CookingStep s derived from a RecipeIn-
struction r that is a CookingInstruction (in particular, a FryInstruction), then the
required CookingDevice p keeps the required temperature (its current tempera-
ture ct is equal to the required temperature rt associated with the CookingDevice
in the CookingInstruction) until the resulting Ingredient is prepared.

This monitor can be used in a monitorCooking process, running in parallel to
all other assistance processes, that monitors the invariant, signals the respective
action to take in case of a violation (heatUp or coolDown) to the user, and, once
the invariant is restored, recurses and resumes monitoring.

6 Conclusion

Status of the Modelling and Implementation. Structuring and modelling
an intricately interwoven domain such as Cooking is indeed a formidable task.
Presently, we do not aim for completeness, but for a very substantial coverage
that allows the demonstration of nontrivial examples. As the ontology is going
to be published in the public domain, we hope for community contributions.

At the same time, we plan to cooperate with other groups. The proper mod-
elling of nutrition impairing diseases or nutrition intolerances (allergies, incom-
patibilities), cf. Sec. 3.1, requires medical expertise and will be a challenge in
itself (see also [31,10,11]); we have only made a first attempt so far.

Supporting the CookTop and the actual cooking process by intelligent tools
and an intelligent monitoring environment is another direction, where we want to
bring in our expertise connected with DFKI’s Bremen Ambient Assisted Living
Lab, BAALL, and SHIP [14], and combine it with that of the sister Lab at DFKI
Saarbrücken, focussed on smart kitchen objects and appliances.

Several Master’s and Diploma’s theses [20,23,24,30] are under way to complete
the modelling, the deduction apparatus, and to develop prototype implementa-
tions for the corresponding assistants, to be available as web-apps online.

Cooking with Robots. While the instruction of an experienced cook should be
quite terse, a beginner, or an elderly person with slight dementia, needs detailed
instruction and detailed sequencing, see Sec. 4.1. It is interesting to note that
a cooking robot needs a very similar, if not the same, level of detail to model
cooking. We expect to share and combine our modelling with that for robots,
e.g. those at Michael Beetz’s lab at Universität Bremen.

7 Dedication to Martin Wirsing’s Health and Well-Being

How can Formal Modelling for Cooking Assistance contribute to Martin Wirs-
ing’s health and well-being?

The modelling and methodology described above cite many notions and con-
cepts that have been in the focus of Martin’s research on Formal Methods : loose

Formal Modelling for Cooking Assistance 375

(under)specification, abstraction and refinement, processes, temporal logic, etc.
He has also always appreciated interesting application domains; now Formal
Methods and Cooking come together!

It is, no doubt, primarily his wife Sabine’s, i.e. Ms. W.’s, excellent cooking
that is responsible for Martin’s good health and well-being. We, as friends, have
had the pleasure of sampling it in jolly company; definitely a source of well-being
for us, presumably also for Martin, and hopefully for Sabine as well.5 However,
we are getting older and have all sorts of health and other constraints6 of what
we can or wish to eat — so how is Sabine going to cook when a group of us is
being invited together?7

We hope that Sabine, and others, will eventually get some assistance from
the CookTop based on the modelling — and that Martin’s good health and
well-being will last for many more years to come!

References

1. Barcoo, www.barcoo.com
2. DOLCE - Descriptive Ontology for Linguistic and Cognitive Engineering,

www.loa.istc.cnr.it/old/DOLCE.html
3. DUL - DOLCE+DnS Ultralite ontology - Ontology Design Patterns (ODP),

www.ontologydesignpatterns.org/ont/dul/
4. EuroFIR AISBL, www.eurofir.org
5. LanguaL — the International Framework for Food Description, www.langual.org
6. OWL Web Ontology Language - Use Cases and Requirements - W3C Recommen-

dation 10 February 2004, www.w3.org/TR/2004/REC-webont-req-20040210/
7. QUDT - Quantities, Units, Dimensions and Data Types Ontologies, www.qudt.org/
8. WikiFood – Knowing what’s inside,

www.wikifood.eu/wikifood/struts/welcome.do
9. Ahn, Y.-Y., Ahnert, S.E., Bagrow, J.P., Barabási, A.-L.: Flavor network and the

principles of food pairing. Scientific Reports 1, 196 (January 2011)
10. Arens, A., Schnadt, S., Feidert, F., Mösges, R., Roesch, N., Herbst, R.: Prefer-

ences and satisfaction of food allergy sufferers using internet resources. Clinical
and Translational Allergy 3(3), 126 (2013)

11. Arens-Volland, A., Roesch, N., Feidert, F., Harpes, P., Mösges, R.: Change fre-
quency of ingredient descriptions and free-of labels of food items concern food al-
lergy sufferers. Allergy (European Journal of Allergy and Clinical Immunology) 65,
92 (2010)

12. Astesiano, E., Bidoit, M., Krieg-Brückner, B., Kirchner, H., Mosses, P.D., San-
nella, D., Tarlecki, A.: CASL - the Common Algebraic Specification Language.
Theoretical Computer Science 286, 153–196 (2002)

13. Autexier, S., Hutter, D.: Constructive DL update and reasoning for modeling and
executing the orchestration of heterogenous processes. In: Eiter, T., Glimm, B.,
Kazakov, Y., Krötzsch, M. (eds.) Informal Proceedings of the 26th International
Workshop on Description Logics, Ulm, Germany, vol. 1014, pp. 501–512. Technical
University of Aachen (RWTH) (July 2013)

5 With the generic vegetable omelette abstraction of Sec. 4.2, will Sabine get new ideas
for her famous vegetable strudel, so much appreciated by their friends?

6 Martin, Sabine and family of course excluded.
7 Many of us friends can appreciate such problems as enthusiastic amateur cooks.

www.barcoo.com
www.loa.istc.cnr.it/old/DOLCE.html
www.ontologydesignpatterns.org/ont/dul/
www.eurofir.org
www.langual.org
www.w3.org/TR/2004/REC-webont-req-20040210/
www.qudt.org/
www.wikifood.eu/wikifood/struts/welcome.do

376 B. Krieg-Brückner et al.

14. Autexier, S., Hutter, D., Mandel, C., Stahl, C.: SHIP-Tool Live: Orchestrating
the Activities in the Bremen Ambient Assisted Living Lab. In: Augusto, J.C.,
Wichert, R., Collier, R., Keyson, D., Salah, A.A., Tan, A.-H. (eds.) AmI 2013.
LNCS, vol. 8309, pp. 269–274. Springer, Heidelberg (2013)

15. Autexier, S., Hutter, D., Stahl, C.: An Implementation, Execution and Simulation
Platform for Processes in Heterogeneous Smart Environments. In: Augusto, J.C.,
Wichert, R., Collier, R., Keyson, D., Salah, A.A., Tan, A.-H. (eds.) AmI 2013.
LNCS, vol. 8309, pp. 3–18. Springer, Heidelberg (2013)

16. Bateman, J.A., Castro, A., Normann, I., Pera, O., Garcia, L., Villaveces, J.-M.:
OASIS Common hyper-ontological framework (COF). EU FP7 Project OASIS –
Open architecture for Accessible Services Integration and Standardization Deliv-
erable D1.2.1. Bremen University, Bremen (January 2010)

17. Becker, W.: Towards a CEN Standard on Food Data. European Journal of Clinical
Nutrition 64, S49–S52 (2010)

18. Burgos, M., Mart́ınez-Victoria, I., Milá, R., Farrán, A., Farré, R., Ros, G., Yago, M.,
Audi, N., Santana, C., Millán, L., et al.: Building a unified Spanish food database
according to EuroFIR specifications. Food Chemistry 113(3), 784–788 (2009)

19. Caviezel, R., Vilgis, T.A.: Foodpairing — Harmonie und Kontrast. FONA (2012)
20. Ghomsi Nokam, S.: A Food Ontology for the Assistance of Shopping and Cooking.

Master’s thesis, Universität Bremen (in preparation) (in German)
21. Ireland, J., Møller, A.: What’s new in LanguaL? Procedia Food Science 2, 117–121

(2013)
22. Ireland, J.D., Møller, A.: Review of international food classification and description.

Journal of Food Composition and Analysis 13(4), 529–538 (2000)
23. Kolloge, P.: Modelling Dietary Restrictions. Master’s thesis, Universität Bremen

(in preparation) (in German)
24. Kozha, D.: Shopping Assistance from the Kitchen Cabinet to the Supermarket

Shelf. Master’s thesis, Universität Bremen (in preparation) (in German)
25. Kutz, O., Mossakowski, T., Lücke, D.: Carnap, Goguen, and the Hyperontologies:

Logical Pluralism and Heterogeneous Structuring in Ontology Design. Logica Uni-
versalis 4(2), 255–333 (2010), Special Issue on ‘Is Logic Universal?’

26. Lo, K.: Chinese Cooking and Eating for Health. Mayflower Granada Publ. (1979)
27. Møller, A., Unwin, I.D., Becker, W., Ireland, J.: EuroFIR’s food databank systems

for nutrients and bioactives. Trends in Food Science & Technology 18(8), 428–433
(2007)

28. Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The distributed ontology,
modeling and specification language. In: Vescovo, C.D., Hahmann, T., Pearce, D.,
Walther, D. (eds.) WoMo 2013. CEUR-WS online proceedings, vol. 1081 (2013)

29. Pennington, J.A., Butrum, R.R.: Food descriptions using taxonomy and the Lan-
guaL system. Trends in Food Science & Technology 2, 285–288 (1991)

30. Rink, M.: Ontology Based Product Configuration Based on User Requirements.
Master’s thesis, Universität Bremen (in preparation)

31. Roesch, N., Arens, A., Feidert, F., Herbst, R., Mösges, R.: Computerised identi-
fication of allergens in food ingredient descriptions. Allergy: European Journal of
Allergy and Clinical Immunology 64, 363–364 (2009)

32. Snae, C., Bruckner, M.: Foods: a food-oriented ontology-driven system. In: 2nd
IEEE International Conference on Digital Ecosystems and Technologies, DEST
2008, pp. 168–176. IEEE (2008)

A Framework for Defining and Comparing

Modelling Methods

Gianna Reggio1, Egidio Astesiano1, and Christine Choppy2

1 DIBRIS – Università di Genova, Italy
2 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS UMR 7030, France

Abstract. There are a huge number of scientific papers and reports
intended for practitioners, not forgetting whole books and websites, pre-
senting modelling methods in the field of software development. Thus,
many questions naturally arise concerning both the nature of method
itself (say, e.g. its scope and intended use) and the relationships between
different methods, to compare them and choosing the most appropri-
ate for a specific application. Here we present a preliminary attempt at
proposing a “modelling method framework” suitable for presenting the
constituents, both technical and methodological, of a method in an or-
ganized and possibly precise way. The purpose of our framework is to
provide a setting for answering the above mentioned questions in a sys-
tematic and well-founded way. We will illustrate our proposed framework
using some existing methods for modelling service-based systems.

At the end of the paper we offer a short tribute to a long standing
friendship with Martin.

1 Introduction

Nowadays, in the field of software development, the issue of modelling is well
developed and a number of modelling notations/languages have been designed
together with methods for their use. Having contributed to the work in the
area for a while, we quite often have experienced an uneasy feeling when trying
to identify our own methods in comparison with some existent ones. Indeed,
we could not find a clearly defined, less to say commonly agreed, framework
for defining and compare modelling methods. Thus, we have taken the occasion
provided by this celebration of an outstanding contributor to the field for raising
that issue and offer a preliminary proposal for addressing it.

Let us start by clarifying the term denoting the topic of this article: modelling
method. First we recall a reasonable definition of model : “A model is a repre-
sentation of some aspects of an entity (either as-it-is or to-be) to be built for
a specific aim” then, the definition of a method : “a way of doing something, a
careful or organized plan that controls the way something is done.” So, modelling
method means “a way to represent some aspects of an entity (either as-it-is or
to-be) to be built for a specific aim”.

There are a huge number of technical scientific papers and reports intended
for practitioners, not forgetting whole books and websites, presenting modelling

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 377–408, 2015.
c© Springer International Publishing Switzerland 2015

378 G. Reggio, E. Astesiano, and C. Choppy

methods in the field of software development. Thus many questions concerning
modelling methods naturally arise which are important to answer in a systematic
and well-founded way, obviously after having decided whether the questions are
sensible (i.e. they admit an answer or better a factual answer not just based on
an opinion or a feeling). We list below some typical questions, all found either
in scientific papers or in technical documentation, forums or mailing lists.

• Questions about choosing a method

– Is modelling method A more appropriate than method B in a given context?
– Which are the relationships between modelling methods A and B?
– Does the modelling method A have any novelty with respect to method B?
– Does the model of X produced following modelling method A contain more

than/less than/the same information as the model of X produced following
method B?

– Is there a real difference between two modelling methods, i.e. can one model
something in a way that cannot be done in the other, or instead might they
be slightly modified to eliminate such a difference?

– Could the models produced following modelling method A be converted into
models produced following method B?

• Questions about the key features of a modelling method

– Is modelling method A adequate for a specific case?
– Is modelling method A mature?
– Is modelling method A operative?
– What do I have to do to learn modelling method A?
– What do I have to do to apply modelling method A to a specific case?
– Is there any tool support for modelling method A?

• Questions about presenting a modelling method

– I have designed a new modelling method, now which is the best way to
present it?

– Is there any motivation for designing modelling method A?
– Is there any difference between a modelling method and a modelling notation,

or indicating a notation is enough to propose a modelling method?
– How can I model X using notation N? Is this model of X prepared using no-

tation N correct? (these kinds of questions appear very frequently in forums
on the web and in mailing lists, and most frequently concern the UML).

As a contrasting remark, we note that questions of the form:
“Is notation N better than/can be easily replaced by notation M?”
“Should I use notation N or notation M in the case . . . ?”

are in our opinion ill-formed in the context of modelling methods, since only
methods should be compared/related, not the notations only; indeed a smart
method based on a simple notation may be more appropriate than a poor method
based on a powerful notation.

To provide a setting for answering some of the previous questions, our starting
consideration is that every modelling method, used as a tool for building (a model
in this case), should be qualified, as any other similar tool, by a “fact sheet”, so
to speak, following of course a peculiar pattern expressing in its structure the

A Framework for Defining and Comparing Modelling Methods 379

essential ingredients of a modelling method. Such fact sheet will be suitable to
evaluate/compare/. . .modelling methods in the same way we look at the fact
sheet about different versions of a product/of a software to decide which is the
best choice for our specific needs.

Our aim is a preliminary attempt at proposing a “framework” for presenting
a modelling method in an organized and possibly precise way considering all its
main constituents, both technical and methodological and their mutual relation-
ships. In our view presenting a method following our framework should result
in a fact sheet about the method covering all its main aspects. We say “main”
aspects purposely, since our framework does not pretend to be complete for a
number of reasons, first of all being a preliminary proposal, but also because
we believe that ideally there should be a framework agreed upon by the com-
munity of the researchers in the field. For example, our current framework does
not address the issue of “maturity” nor the one of “model quality”. It is easy
to imagine a number of extensions/enrichments, as well as refinements related
either to a specific modelling subject or for capturing specific aspects, and thus
making finer comparisons.

The core of the paper consists in providing our framework, with its com-
ponents and their relationships. Then, to make more understandable that idea
and, to some extent, to exemplify its use, we have put at work our framework
considering the specific field of service-based system modelling. We could have
chosen a different topic, e.g. business processes, but we have selected this specific
context first of all because we are familiar with it to some extent, since we have
developed some modelling methods for service-based systems, and also because
many proposals are available in the literature with either similar aspects (e.g.
they use the UML) or very different ones (e.g. the models are intended for formal
analysis of some specific aspects or to be automatically transformed into code).
We have selected several proposals in the literature, and then we have tried to
present the chosen modelling techniques following our framework. We have re-
stricted ourselves to consider approaches that are called formal at least in the
sense of the syntactical level, i.e. where a notation or a specification language is
used.

The roots of this work are to be found in “Formalism and Method” [2], a
paper by two of the authors (originally an invited talk at TAPSOFT ’97). There
we were trying to distinguish and, to some extent, deemphasize the formal from
other relevant aspects within a method for software development. In particular
we have introduced the concept of “modelling” in its restricted meaning of con-
necting the target item to its formal representation. A natural evolution of those
ideas was the introduction of what we have baptized well-founded methods [3],
namely those methods which hide the difficulties of the formal aspects from the
developers, while being grounded in solid formal foundations. And we find very
appropriate to conclude this introduction acknowledging a realization at a large
scale of these and similar ideas in the SENSORIA project1, both in its overall
structure and in many presentations by its leader Martin Wirsing.

1 www.sensoria-ist.eu/

www.sensoria-ist.eu/

380 G. Reggio, E. Astesiano, and C. Choppy

The paper is structured as follows. Sect. 2 introduces the modelling method
framework, then its constituents are presented in Sect. 3 (Method Definition
part) and 4 (Operational aspects), followed by some considerations on relating
methods in Sect. 5. Related work is in Sect. 6, whereas conclusions and future
developments are in Sect. 7.

2 A Modelling Method Framework

The proposed framework consists of a conceptual model of the modelling meth-
ods, exploiting their main constituents and their mutual relationships; from it
we can then derive a way to collect all relevant information about a method,
and to present it in a structured/organized way allowing to grasp all its aspects,
facilitating the understanding of its features and the comparison with other
methods.

The conceptual model of the modelling methods is described by means of
a UML class diagram2, shown in Fig. 1, and commented below. Note that an
instance of Models is a set of models, and similarly, an instance of Items is a set
of items.

– Items, the set of items to be modelled.
– Notation, the language used to represent the models (e.g. UML, BPMN, basic

place-transition Petri nets, linear temporal logic, and description logic).
– Models, the set of models that can be produced using Notation.
– Eligible Models, the subset of Models used by the method (a constraint in Fig. 1

expresses that eligible models are included in models).
– Modelling, a binary relationship between the modelled items and the eligible

models, linking the items with the (eligible) models “modelling” them.
– Intended Use of Models, the reason for doing the modelling and in which con-

text (e.g. automatic generation of code for mobile applications, simulation
of business processes, automatic verification of properties of protocols, doc-
umentation of object-oriented programs

– Tool Support, the available software tools to support the production and the
use of the models (e.g. only editing tools, no tool at all).

– User Guidance, the guidelines driving the modeller in the model production.

The constituents of a method are categorized in two groups (cf. Fig. 1):

– Method definition: they are the essential ingredients to define the modelling,
what is modelled (Items), by means of what (Notation, Models, Eligible Models),
and how (Modelling).

– Operational aspects: they concern the support to the task of performing the
modelling: why (Intended Use of Models), in which way (User Guidance), and
whether can be supported by software tools (Tool Support). These constituents
are optional (see the multiplicities [0..1] and * in Fig. 1 on the associations
connecting them with the modelling methods), whenever they are all present
we can say that the method has been made operative.

A Framework for Defining and Comparing Modelling Methods 381

Fig. 1. Modelling Method Conceptual Model

Using our modelling method framework to present a method simply requires
to explicitly provide all its constituents as presented before, and summarized in
Table 1.

Table 1. How present a Modelling Method (* denotes that the part is mandatory)

Items *

Notation *

Models *

Eligible Models *

Modelling *

Intended Use of Models

Tool Support
User Guidance

We illustrate in the next two sections the various constituents of a method
appearing in Fig. 1 by exemplifying them on the following modelling methods for
service-based systems. Some of them are explicitly presented as methods, while
for the others we consider the implicit method subsumed by the documents
presenting a notation.

– PreciseSoa [5], a method to model service-based systems based on a very
controlled and guided use of a UML profile, to overcome the fact that the
UML offers a huge number of diagrams and constructs, and many have no
well-defined semantics.

2 We omit the multiplicity of an association whenever it is equal to 1.

382 G. Reggio, E. Astesiano, and C. Choppy

– CASL4SOA property-oriented and constructive, two different methods based both
on the visual and formal specification language Casl4Soa [6] a profile of
the visual formal notation Casl-Mdl [5].

– SRMLMethod, the implicit method associated with SRML, the Sensoria Ref-
erence Modelling Language [9], as they state: “and discuss the methodological
approach that SRML supports”.

– RSDLMethod, the implicit method proposed by Engels et al. [11,12] for mod-
elling service-based systems using RSDL (Rich Service Description Lan-
guage), a UML based notation.

– SoaMLMethod, the implicit method associated with SoaML [14] the OMG
official UML profile for modelling service-based systems.

– WSPetriNet [13] one of the proposals to model web services using specific
coloured Petri nets.

For each method, we present in Appendix A an example of a service model.

3 Definitional Part of a Method

Here we introduce the constituents contributing to the method definition, pre-
cisely Items, Notation, Models, Eligible Models and Modelling.

3.1 The Items

The items to be modelled are one of the key ingredients of a modelling method,
and to have clearly in mind what they are is fundamental to define an effective
method. It is not sufficient to speak generically of service-based systems, SOA
systems, business processes, businesses, cyber-physical systems, cloud, . . . ; first
of all because there is no unique standard way to intend consider such things,
second because those things may have different aspects and features, and it is not
mandatory for a modelling method to consider all of them (e.g. in some cases the
performance is of paramount importance for a business process whereas in other
cases is completely irrelevant). So the method developers should determine which
are the items that they want to model and which are their relevant features.

A clearly written and well-structured natural language text may be a sensible
way to present the items, and indeed in [2] we followed this idea. Now, we propose
instead to present the items in a more precise way by means of a conceptual
model, which may be visually presented by means of a UML class diagram.

Notice however that the conceptual model of the items, that it is also the
perceived/assumed/supported view of them, may be biased by the design of
the modelling method; e.g. there is not “The Conceptual Model” of enterprise
applications as well as there is not “The Definition” of such kind of software
systems3.

3 See here, for example, some existing definitions of enterprise application:
www.webopedia.com/TERM/E/enterprise_application.html, en.wikipedia.org/

wiki/Enterprise_software, and msdn.microsoft.com/en-us/library/aa267045

%28v=vs.60%29.aspx.

www.webopedia.com/TERM/E/enterprise_application.html
en.wikipedia.org/wiki/Enterprise_software
en.wikipedia.org/wiki/Enterprise_software
msdn.microsoft.com/en-us/library/aa267045%28v=vs.60%29.aspx
msdn.microsoft.com/en-us/library/aa267045%28v=vs.60%29.aspx

A Framework for Defining and Comparing Modelling Methods 383

Let us now see how the selected sample modelling methods consider the items.

PreciseSoa, CASL4SOA property-oriented and constructive: Items. The items in the
case of these three methods are service-based systems, and we report here the
part of their description concerning the services.

A service is characterized by an interface, a contract, and a semantics.
The interface provides the static information needed to interact with the ser-

vice. A service interface is conceptually seen as a set of “in” and “out” messages,
where each message is characterized by a name and a list of typed parameters;
the in-messages are used to require the service functionalities from the service
provider and the out-messages to answer such requests.

The service contract defines which are the allowed interactions between who
uses the service and who provides it.

The service semantics defines which are the functionalities offered by the
service. We assume that a service is able to act over a portion of the real world
(that we call the realm of the service); it may modify such realm as the result
of receiving an in-message from a service user, and it may send out-messages
to the user of the service depending on the current status of the realm. Thus,
the semantics of a service consists of a description of the realm, of how the
in-messages may modify it, and how the out-messages may depend on it.

Fig. 2 summarizes this conception of services by means of a conceptual model.

Fig. 2. PreciseSoa, CASL4SOA property-oriented and constructive: Items (conceptual
model fragment)

SRMLMethod: Items. The items are service-based systems as intended in the
context of Service-Oriented Computing (SOC)4. Differently from the component
based paradigm, a system in SOC is considered as “an evolving universe of
software applications that service providers publish so that they can be discovered

4 “A new computational paradigm in which interactions are no longer based on fixed
or programmed exchanges between specific parties – what is known as clientship
in object-oriented programming – but on the provisioning of services by external
providers that are procured on the fly subject to a negotiation of service level agree-
ments (SLAs). In SOC, the processes of discovery and selection of services are not
coded (at design time) as part of the applications that implement business activi-
ties, but performed by the middleware according to functional and non-functional
requirements (SLAs).” [9].

384 G. Reggio, E. Astesiano, and C. Choppy

by (and bound to) business activities as they execute. For instance, if documents
need to be exchanged as part of a loan application, the bank may rely on an
external courier service instead of imposing a fixed one. In this case, a courier
service would be discovered for each loan application that is processed, possibly
taking into account the address to which the documents need to be sent, speed of
delivery, reliability, and so on. However, the added flexibility provided through
SOC comes at a price – dynamic interactions impose the overhead of selecting
the co-party at each invocation – which means that the choice between invoking
a service and calling a component is a decision that needs to be taken according
to given business goals”, again from [9].

From this excerpt we can see how in this case there is a strong emphasis on
the fact that services must be published and discovered dynamically. Another
relevant feature of the services supported by SRMLMethod concerns the interac-
tions between who provides and who uses a service, that may be of different
kinds, precisely:

– Receive&Send, the interaction is initiated by the co-party, which expects a
reply. The co-party does not block while waiting for the reply.

– Send & Receive, the interaction is initiated by the party and expects a reply
from its co-party. While waiting for the reply, the party does not block.

– Receive, the co-party initiates the interaction and does not expect a reply.
– Send, the party initiates the interaction and does not expect a reply.
– Ask, the party synchronizes with the co-party to obtain data.
– Reply, the party synchronizes with the co-party to transmit data.
– Tell, the party requests the co-party to perform an operation and blocks.
– Perform, the party performs an operation and frees the co-party that re-

quested it.

A party either offering or requiring a service specifies the protocol for accessing
to that service, which will be described in term of sequences of interactions. A
fragment of the conceptual model of the SRMLMethod items is shown in Fig. 3.

RSDLMethod: Items. A service-based system in the context of RSDLMethod is in-
tended as a set of partners that offer and require services in a common “service

Fig. 3. SRMLMethod: Items (conceptual model fragment)

A Framework for Defining and Comparing Modelling Methods 385

Fig. 4. RSDLMethod Items: conceptual model

marketplace”, where requests will be matched by suitable offers (a specific match-
ing mechanism based on ontologies is described in detail in [11]). The service offers
and requests are described using some “local language”, and each local language
should be mapped to a global language specific of each marketplace; Fig. 4 shows
a conceptual models of such systems (the diamond represent a UML ternary re-
lationships).

SoaMLMethod: Items. The SoaML specification [14] (in section 3.1 “Introduction
to SoaML”) also introduces the underlying view of service-based systems by
means of textual description (the items are quite similar to those of PreciseSoa,
indeed we took inspiration from them).

WSPetriNet: Items. The items in this case are the web services as intended in the
WSDL (Web Services Description Language) specification by W3C5.

3.2 The Notation and the Models

We have decided to use here the term notation but, in different communities, var-
ious synonyms may be used, such as modelling language, specification language
and description language. To propose a method, some appropriate documenta-
tion on the selected notation should be provided, for example user manuals.

As usual a notation should be defined by giving the set of artifacts – that
we call models – that can be produced using it, and a description of their in-
tended meaning (semantics); for example, for the UML or a UML profile, the
models are defined by a metamodel accompanied by well-formedness constraints,
and the semantics amounts to a natural language description of their meaning;
whereas for a formal textual specification language, the models (i.e. specifica-
tions) may defined using a BNF grammar plus a type checking mechanism, and
a denotational semantics may be available.

5 http://www.w3schools.com/Webservices/ws_wsdl_intro.asp

http://www.w3schools.com/Webservices/ws_wsdl_intro.asp

386 G. Reggio, E. Astesiano, and C. Choppy

Whenever the semantics associated with the models is given in a formal way
we have a formal notation, and an informal notation in the other cases. Other
relevant qualifications for the notation may be provided, e.g. object-oriented,
agent-based, visual or textual, general purpose or domain-specific.

PreciseSoa: Notation and Models. The notation is a UML profile presented in [6]
inspired by SoaML [14], and the models are defined in the usual way.

CASL4SOA property-oriented and constructive: Notation and Models. The two methods
use the same notation, precisely Casl4Soa [6,4] a profile of the visual formal no-
tation Casl-Mdl [5]. Casl-Mdl provides a visual counterpart to the algebraic
specification language Casl-Ltl [16]. It offers the possibility to define static and
dynamic datatypes (where the behavior of the latter is represented by a labelled
transition tree) introduced by means of type diagrams (visually presenting the
various types and their mutual relationships, such as refinement); the semantics
of the static and of the dynamic types may defined axiomatically by constraints
(first-order many sorted branching-time with edge temporal formulas) or con-
structively by conditional rules and by interaction machines (a specific form of
state-labelled transitions diagrams), respectively. The models are a collection of
type definitions.

SRMLMethod: Notation and Models. The notation is the formal visual-textual
specification language SRML [9], and the models are all possible specifications
written using SRML.

RSDLMethod: Notation and Models. The RSDLMethod notation is obviously
RSDL [11], and the form of the models of the services is given in Fig. 5.

A service model contains an ontology (represented by means of a UML class
diagram) defining the local language, a description of the service operations,

Fig. 5. RSDLMethod: Models (metamodel fragment)

A Framework for Defining and Comparing Modelling Methods 387

where each operation is described by a signature following the WSDL standard
(but represented by means of a UML operation signature), and by a visual con-
tract specifying its semantics (expressed by a pair of object diagrams showing
the situation before and after the operation call). Then, the service offer and re-
quest models differ in the way the protocol for accessing the service is described:
by means of a UML sequence diagram in the case of a request and by means of
UML state machine in the case of an offer.

SoaMLMethod: Notation and Models. The notation is SoaML which is a UML
profile defined in [14]. The models are all the models built using such profile.

WSPetriNet: Notation and Models. The notation, SWN, is defined as an extension
of coloured Petri nets with labels (that are operation names) on transitions. SWN
is also a restriction of coloured Petri nets since it requires to distinguish three set
of places, two special control places (initial and final), together with restrictions
on the marking that makes it straightforward to associate a workflow net with an
SWN. While it is not in the definition of SWN, they associate a polarity function
to transitions to reflect the fact that they represent an action sending/receiving
messages or not. Then, a notion of well-structuredness is defined, in relationship
with the well structuredness of the associated workflow net - some constraints
on how should be merged parallel branches initiated by an AND (resp. OR).

The models are coloured Petri nets of this notation SWN.

3.3 The Eligible Models and the Modelling

These two method constituents are strictly related and we present them together
in this subsection.

In general not all the models provided by a notation are eligible6 to be used
by a method. For instance, the UML class, object and sequence diagrams are
enough to model sequential Java programs, while the until and next temporal
logic combinators are adequate to specify simple protocols, and algebraic spec-
ification whose axioms are positive conditional formula are sufficient to specify
in a constructive way data structures. Our framework requires to explicitly de-
fine which are the models of the chosen notation that, following the method
indication, will be the result of the chosen items modelling. Thus, the Eligible

Models (technically a subset of the notation models) are another constituent of
a modelling method.

Here a natural objection arises: “trying to determine which are the eligible
models is losing time, just use what you need and forget the fact that there are
other models around”. We think that trying to determine the eligible models
may be useful for the following reasons:

– the eligible models may have a well-defined semantics whereas it may be
problematic to define it for other models;

6 From Merriam-Webster: able to be chosen for something.

388 G. Reggio, E. Astesiano, and C. Choppy

– a convenient tool support may be available only for the eligible models (e.g. a
theorem prover working only for algebraic specifications built using positive
conditional axioms);

– the modeller may save time by learning only the subset of the notation
needed for the eligible models;

– the quality of the produced models may improve, because “bad” models are
not eligible (e.g. if only UML classes with private attributes are eligible, then
there is no way to violate the encapsulation principle);

– the time needed to produce a model is reduced, since the modeller has to
look for the model to be produced in a restricted universe (e.g. all the 14
UML diagram types may be used versus only class, object and sequence
diagrams may be used, and the latter have to be built using only the cycle
and alternative combinators);

– the method designer is obliged to consider explicitly if and how to use the
various constructs of the selected notation.

Clearly, there are cases where the models provided by a notation coincide
with those used by a specific modelling method, especially when the notation
is a Domain Specific Language, that has been designed just for being used in
exactly a unique modelling method.

The modelling is the key ingredient of a modelling method, indeed it defines
how the modelling is performed. It consists in a description (that may be just a
natural language text) of a binary relationship between the items and the eligible
models, usually given by stating how the features of the items are represented
by the eligible models parts and, vice versa, i.e. how the parts of the eligible
models represent the features of the items.

There are no specific constraints on the form of the modelling. In general it
is not mandatory that the modelling is total, i.e. that it provides a means to
represent all the items and all their aspects. A modelling method will be more
or less powerful depending on how many items/aspects are considered by the
modelling. Similarly, it is not mandatory that the modelling is surjective, i.e.
that it hows a possible use for all the eligible models (this for example happens
whenever the eligible model set coincides with all the models provided by the no-
tation), in such case we may just state that the eligible models are not minimal.
Furthermore, the modelling may also lead to have different models representing
a given item also non semantically equivalent (i.e. it is not a function) or, con-
versely, to have that many different items are represented by the same model (it
is not injective).

The modelling may be quite easy to understand and almost obvious whenever
the structure of the items and of the eligible models are quite similar7, otherwise a
clever (also if perhaps not trivial) modelling may allow to use with a satisfactory
result a simple or general purpose notation for modelling specific items.

In many case the “distance” (i.e. the difference) between the items and the
models of the selected notation, say N, may render the definition of the modelling
(and of the eligible models) very hard if not impossible to use, or resulting in

7 Using a mathematical terminology we may say they are isomorphic.

A Framework for Defining and Comparing Modelling Methods 389

a really complicate and difficult to understand modelling. In such cases, many
well-established techniques may be used, for example:

– build a chain of notations N1, . . . , Nk = N, where for i = 1, k − 1 Ni may
be translated into Ni+1, where N1 is not very far from the items (e.g. build
a visual notation on the top of textual one), and then use N1 as method
notation;

– extend N by means of derived constructs (i.e. new constructs that correspond
however to a combination of already existing ones);

– profile N by marking in some way existing constructs to help to match them
with the various aspects of the items, and possibly by modifying their mean-
ing or by restricting their possible use; this technique has been introduced
by the UML but it may be used for other notations.

The above techniques have been used for example in the case of CASL4SOA

property-oriented and constructive, the used notation Casl4Soa is a profile of
Casl-Mdl, that it is in turn a visual counterpart to Casl-Ltl textual specifi-
cations (i.e. Casl-Mdl models can be translated into Casl-Ltl specifications).

PreciseSoa: Eligible Models and Modelling. In the PreciseSoa case the form of the
eligible models is quite precisely defined by a metamodel, and we show in Fig. 6
the fragment of such metamodel corresponding to services. The form of model
service strictly matches the view of the services supported by PreciseSoa (see
Fig. 2), indeed we can see that there are parts corresponding to the service
interfaces, contracts and semantics.

The service interface is defined by a class stereotyped �service interface� and
named as the service itself. It should realize and use two UML interfaces, defining
the in and the out-messages by means of operations, respectively. The operations
of the interfaces correspond to the messages exchanged between the service and
the participants using and providing it. The operations may have parameters
that must be typed by datatypes (either predefined or user defined), and cannot
have a return type. The definition of the needed datatypes should be given to-
gether with the two interfaces, thus a service interface consists of a class diagram,
that will include a class stereotyped by �service interface�, the two interfaces
and all needed datatypes.

The service contract consists of a UML collaboration stereotyped by �service

contract� and named as the service itself, and by a behaviour represented by
a set of UML sequence diagrams. The collaboration has exactly two parts cor-
responding to the roles the service provider and consumer, typed by interfaces,

Fig. 6. PreciseSoa: Eligible Models (metamodel fragment)

390 G. Reggio, E. Astesiano, and C. Choppy

and the sequence diagrams have exactly two lifelines (one for the service provider
role and one for the service user role). The sequence diagrams present all possible
scenarios of the provider using the service showing which messages and in which
order the provider and the consumer exchange.

The service semantics consists of a class named service realm realizing the
provided interface of the service itself, in such a way that its attributes define
the current status of the realm (obviously together with the needed datatypes,
and thus it will be represented by a class diagram). The behaviour part is a
“refinement” of the sequence diagrams part of the service contract, depicting how
the reception of the various in-messages modifies the realm status and how the
out-messages are influenced by the same status (technically they are obtained by
typing the provider lifeline with the realm class and adding action specifications
to represent the modifications of the realm status and further guards to influence
the choice of which messages to send out and which values they are carrying
depending on the status of the realm).

The Modelling is in this case quite obvious, since the form of the eligible models
is rather similar to that of the items.

CASL4SOA property-oriented and constructive: Eligible Models and Modelling. Also in
this case we present only the details relative to the modelling of the services, and
in Fig. 7 we present the form of the corresponding models following CASL4SOA

property-oriented and constructive.
A service interface is modelled by a dynamic type whose possible transitions

correspond to receive the in-messages and to send the out-messages; in more
detail the service interface lists the possible labels of its transitions (in and
out-messages of the service) and the contract its behavior in terms of possible
sequence of in/out-messages, whereas the semantics gives another dynamic type
refining the one describing the service contract by adding the information relative
to its realm.

CASL4SOA property-oriented and constructive methods use the same notation but
differ for the modelling and the form of the eligible models. In the first case the
service contract is specified by means of a set of temporal formulas stating which
transitions corresponding to out-messages must be performed by who provides
the service after having received the in-messages, and which out-messages may be

Fig. 7. CASL4SOA property-oriented and constructive: Eligible Models (metamodel frag-
ments)

A Framework for Defining and Comparing Modelling Methods 391

sent only after having received specific in-messages. The semantics of a service is
specified in a similar way, but the formulas may related the sent messages with the
current state of the realm. In the other case the contract is represented by means
of an interaction machine associated with the dynamic type modelling the service
provider defining all possible behaviours of the service provider for any possible
in-message, the semantic is represented similarly with an interaction machine as-
sociated with the dynamic type modelling the real of the service (thus the machine
transitions may be conditionated by the realm state and may affect it).

SRMLMethod: Eligible Models and Modelling. The eligible models of SRMLMethod

are all possible specifications written using SRML (this is not surprising since
SRML is a domain-specific notation built to be used just for this method). The
modelling is quite simple since there are specific constructs for each component
of the items. For example, there is a specific textual construct to define each
transition type.

RSDLMethod: Eligible Models and Modelling. The eligible models coincide with the
models of the RSDL notation, see Fig. 5, and the modelling is obvious since the
form of the eligible models is rather similar to that of the items.

SoaMLMethod: Eligible Models and Modelling. The models are obviously all the
models built using the SoaML profile, and no explicit definition of the eligible
models is given, only various examples are provided in [14]. Also the modelling
is presented by means of various examples.

WSPetriNet: Eligible Models and Modelling. The models are the one that follow the
restrictions and extension on the coloured Petri nets as defined by the language
WSN, and no explicit definition of the eligible models is given. The modelling
as such is not addressed.

4 Operational Part of a Method

In this section we present the constituents of the operational part of a method,
precisely Intended Use of Models, User Guidance, and Tool Support; again they will
be illustrated with the considered modelling methods for service-based systems.

4.1 The Intended Use of Models

Any model should be produced having in mind some use, at least a specific use
is needed to validate a modelling method, but obviously some models may be
aimed at several uses.

Here there is a list of common model uses:

– documentation, and in this case it may be useful to explicitly indicate who
are the expected readers of this documentation (e.g. experts of the domain,
requirement engineerings, designers, implementers);

392 G. Reggio, E. Astesiano, and C. Choppy

– verification, and in this case it should make explicit what it is the intended
idea of verification, and which means are planned to be used to perform it
(e.g. use of model checker MC that it is able to check formulas expressed
using notation N);

– to support some software engineering task, e.g. requirement specification,
testing;

– to (automatically/semi-automatically/by hand) generate some code, in this
case which kind of code has be produced should be made explicit together
with the means to use for the generation.

PreciseSoa, CASL4SOA property-oriented and constructive: Intended Use of Models. In
these methods the models of service-based systems are intended for documenting
the design of such systems, to help to build such systems; furthermore it is
planned to use them also to generate automatically the WSDL (Web Services
Description Language) description of the used services and part of the code
supporting the participants to use and provide the services.

SRMLMethod: Intended Use of Models. The SRML models are intended to:
– represent the design of a service-oriented system obtained by a business

model, see [9];
– perform some verifications on the modelled service-oriented systems;
– generate portions of the code of the resulting implementation.

RSDLMethod: Intended Use of Models. The RSDL models should be used to describe
the services requested and offered in a service marketplace in such a way to allow
the automatic matching between offers and requests.

SoaMLMethod: Intended Use of Models. The SoaMLMethod models are intended “for
the specification and design of services within a service-oriented architecture”
from [14].

WSPetriNet: Intended Use of Models. The purpose of this work is to provide a
framework where service compatibility can be checked, and obviously the nota-
tion developed and the well formedness property were defined in such a way that
service compatibility can be verified.

4.2 User Guidance

Once a modeller knows very well the form of the eligible models, which items
s(he) may model, and how the models should be linked with the items (the
modelling component of a method), s(he) still needs some help to start to produce
the models to overcome the blocking effect of an empty page/screen.

The user guidance should be presented either informally using the natural lan-
guage or using some visual notation for workflow (e.g. UML activity diagrams),
explaining which tasks to perform and which artifacts should be produced to
reach an eligible complete model.

A Framework for Defining and Comparing Modelling Methods 393

In many cases the user guidance is introduced together with the modelling
and the eligible models by just giving one or more complete examples; clearly
examples are useful, but they may convey only a part of the relevant informa-
tions, and may be also convey unwanted impressions to the method users, for
example by seeing a particular example s(he) may deduce that the methods can
be applied only to similar cases, on the other side giving a very complex example
including all the relevant features may require too much time to be prepared and
space to be presented, and may yield confusion for the user to be.

PreciseSoa, CASL4SOA property-oriented and constructive: User Guidance. In these
three cases the user guidance to build a model is presented using some UML
activity diagrams see [6]; in Fig. 8 we show the part relative to build a model of
a service following PreciseSoa8.

SRMLMethod: User Guidance. How to build a SRML model is described together
with how to use other notations developed in the Sensoria project by means
of some throughly commented examples that can be found on the project web
site9. In general, the important role of User Guidance in the Sensoria project has
been recognized, as it is witnessed by the definition of the Sensoria patterns [19],
presenting the user guidance to solve various development problems in the field
of the service oriented systems using various notations and techniques developed
in the project in form of patterns. Among them there is a pattern named “Service
Modelling” that however proposes to use some Sensoria UML profiles instead of
SRML.

RSDLMethod, SoaMLMethod and WSPetriNet: User Guidance. This constituent is
not available at least to the best of our knowledge.

4.3 Tool Support

It is important to know whether there are software tools supporting the various
activities related to applying the considered method. Many different kinds of
tools may be developed, supporting for example:

– model production: indeed an editor is the most common software tool sup-
porting the modelling, we can then distinguish if it is either a general editor
for the selected notation or if it helps to produce the eligible models, e.g. by
checking if they have all the required characteristics to be eligible;

– following the user guidance during the production of the models, for example
a wizard;

– helping to ensure the quality of the produced models, for example a tools
computing some metrics.

8 The rake construct, shown by a small rake-like icon at the bottom on the right of
some action rounded box, means that such action is defined by an activity with the
same name defined elsewhere, e.g. Model Service Interface.

9 www.sensoria-ist.eu

394 G. Reggio, E. Astesiano, and C. Choppy

Fig. 8. PreciseSoa: User Guidance (fragment)

When listing the tools supporting a method it is of paramount importance to
explicitly provide for each tool the following information:
– how to get a working copy of the tool (only tools publicly available may be
considered),
– the system requirements,
– and the tool status (academic, student project, free, community edition, com-
mercial and in this case the cost should be stated).

Concerning the tools supporting a modelling method it may be also interesting
to discuss which tools are potentially “feasible”, meaning that they may be built
using the current knowledge and technology by a professional software developer.

A Framework for Defining and Comparing Modelling Methods 395

PreciseSoa:Tool Support. General purposeUMLeditors supporting theprofilemech-
anismare currently the only available tool support for thePreciseSoamethod; among
themwe are now using VisualParadigmcommunity edition, and all the UMLmod-
els appearing in this paper have been produced using it. To check if a model is eli-
gible, it is possible to implement a particular model to model transformation using
ATL, where the target model is a description of the possible reasons for a model
not being eligible.

CASL4SOA property-oriented and constructive: Tool Support. The visual syntax of
Casl4Soa (as well as the one of Casl-Mdl) has been defined by reusing the
visual elements of the UML, thus any UML editor tool may be used to produce
Casl4Soa models.

SRMLMethod: Tool Support. A model checker UMC10 acting over communicating
UML state machines able to check the validity of temporal logic formulas may
be used to do some checks over the service modules, after having transformed
them into state machines.

RSDLMethod: Tool Support. Not available at the best of our knowledge.

SoaMLMethod: Tool Support. General purpose UML editors supporting the profile
mechanism may be used to produce SoaML models (also if specific tools are
available see e.g. the one of the Visual Paradigm family11).

WSPetriNet: Tool Support. A tool for checking web services compatibility (similar-
ity and equivalence verification) is built on top of PIPE12 (Platform Independent
Petri net Editor) [8] that provides editing facilities for coloured Petri nets.

5 Relating Modelling Methods

In this paper we have only the room to just give an idea of how the proposed
framework may be useful to relate different modelling methods allowing to grasp
the true differences among them and perhaps to discover hidden similarities, or
to find suggestions for moving features from one method to another.

By looking at the considered items we can already decide whether two meth-
ods may be compared or related in some way. Just considering the definition
of the items we can see that the methods for service-based systems considered
in this paper were designed with quite different ideas about the services. For
example in the case of PreciseSoa (and of CASL4SOA property-oriented and construc-

tive) there is no idea of dynamic service discovery, whereas that is an important
feature in the case of SRMLMethod and of RSDLMethod; instead in WSPetriNet

the services are intended as software artifacts presented by means of a kind of

10 fmt.isti.cnr.it/umc/V4.1/umc.html
11 http://www.visual-paradigm.com/features/soaml-modeling/
12 http://pipe2.sourceforge.net/

http://www.visual-paradigm.com/features/soaml-modeling/
http://pipe2.sourceforge.net/

396 G. Reggio, E. Astesiano, and C. Choppy

programming language. Thus, the first three methods, which consider exactly
the same items, may be surely compared, whereas a detailed analysis is needed
to decide whether SRMLMethod, RSDLMethod and WSPetriNet may be related, for
example SRMLMethod assumes that the interactions between who provides and
who consumes the services are of seven different kinds (see Fig. 3) while no
classification is made by RSDLMethod and WSPetriNet.

Methods may be also related by looking at the intended use of the models;
for example some kind of formal verification is considered by SRMLMethod and
WSPetriNet, whereas PreciseSoa and SoaMLMethod should allow automatic gener-
ation of code from the models.

The relationships among PreciseSoa and CASL4SOA property-oriented and construc-

tive are very strong, we can say that they are almost isomorphic methods; indeed
not only they consider the same items but the form of their models is isomorphic
(see Fig. 6 and 7, as well as Fig. 9, 10, and 11 where the Place Order service
is modelled using the three methods), even if they use quite different notations
(the informal object-oriented UML for PreciseSoa and the formal visual CASL4SOA

property-oriented and constructive).
Notice that, however, initial versions of such methods have some different fea-

tures [7], for example no semantics of the services was considered by the method
based on the UML, and no strict guidelines on how to represent the service con-
tract were given for CASL4SOA property-oriented (it was just required to express
any relevant property on the interaction between the service provider and the
service user using the temporal logic). Then, by looking at the presentations of
such different methods using our framework, it was simple to see that a semantic
part may be added to the method based on the UML, and that an interaction
machine modelling the service contract in CASL4SOA constructive presenting all
possible sequences of messages exchanged between service provider and user
could be moved to CASL4SOA property-oriented as a restriction on the form of the
temporal formulas specifying the contract (e.g. receiving and in-message implies
that eventually some out-messages will be sent, and then . . .).

Thus, the systematic presentation of modelling methods using our framework
may allow also some cross-fertilization among them, suggesting how some fea-
tures may be moved from one method to another one.

6 Related Work

To the best of our knowledge there are no other papers proposing a structured
and organized way to present a modelling method, except our old work on for-
mal specification methods [2]. Instead, there are many contributions considering
modelling methods for particular categories of items, for example business pro-
cesses and web applications, where aspects and properties specific to that items
are considered.

[1] proposes a framework for comparing different business process modelling
techniques along two criteria: purpose of the model andmodel change permissive-
ness. The first one corresponds to one of our method constituents (Intended Use of

A Framework for Defining and Comparing Modelling Methods 397

Models), whereas the latter requires also to express “Strengths and Weaknesses”
of a method from the point of view of the model users and of the modellers. Our
proposal, instead, does not lead explicitly to make any judgement, and so in our
framework there are no places where to insert the good and the bad points of a
method; we are only interested to present the methods thoroughly covering any
possible aspect, allowing to the modellers to decide which is the best method for
their jobs. In [1], moreover, the author equates notation to method, and indeed
they assume that the UML may correspond to just a unique way to model a
business process, whereas we proposed at least five different methods based on
the UML, see [17].

[15] proposes a procedure for selecting the most appropriate modelling method
for a given specific business process, considering many aspects of these kinds of
the methods (e.g. completeness, readability, etc.); then, by a decision procedure
(based on the AHP Analytic Hierarchical Process) considering all the relevant
aspects, the procedure ranks several methods with respect to the given business
processes. However, the presented approach is difficult to evaluate, since the
various methods are very vaguely presented and among them there is “π-calculus
by Milner”, a very abstract and scarcely readable formal notation, and “Petri
nets” without any other qualifications (not considering that Petri nets is a wide
range family, from very elementary to quite rich and expressive, as the coloured
nets). Thus, it is difficult to evaluate the value of the proposed approach.

[10] is about a taxonomy of modelling techniques for business processes and
information systems. The author understanding of the word technique also with
respect to method is suggested by this excerpt “Methodologies are taken to refer
to modeling paradigms (for example, data focused, object oriented, and so on)
and are outside the scope of this paper. Modeling methodologies are supported by
a number of techniques that provide the main analytical focus of our research.
Techniques are taken to refer to diagrammatic or other notations for studying
and analyzing modeled systems.” [10]. By looking at the techniques considered
in the paper (Data flow diagramming, Entity-relationship diagramming, State-
transition diagramming, IDEF techniques, UML, Flowcharting, Petri nets, Sim-
ulation, Knowledge-based techniques and Role activity diagramming) it is not
clear if this “technique” corresponds to our notation or to a typology of nota-
tions. In this paper, it is stressed that different techniques may consider different
aspects of business processes and information systems (e.g. the functional, be-
havioral, organizational and informational perspectives) that should considered
for classifying the modelling methods. However, this paper seems to suggest that
the notation (also if called technique) is different from the modelling method,
and that the tools have a relevant role.

[18] presents a framework to evaluate various modelling methods for web appli-
cations, again considering specific aspects of this activity (e.g. “Evolving Require-
ments Modelings”, “Content Modeling”, “Hypertext Modeling”, “Presentation
Modeling”, “Customization Modeling”, and “Structure and Behavior”), whereas
other aspects correspond to constituents of our framework (e.g. “Notation”, “Tool
Support”, “Code Generation available”, and “Process / Approach”, i.e. in which

398 G. Reggio, E. Astesiano, and C. Choppy

process development the method will be used, in our framework this will be part
of the intended use of the models). Finally, an aspect ”Strength” requires a form
of judgement of the methods, whereas our framework is absolutely objective.

7 Conclusions and Future Work

As announced in the introduction, we wanted to address questions about choos-
ing a method, the key features of a modelling method, and presenting a modelling
method. We have introduced a framework for presenting in a structured way the
modelling methods considering all their main constituents, and we have then
applied it to several modelling methods for service-based systems found in the
current literature.

Using our framework a modeller may decide whether a method may be used
for some specific modelling tasks, grasp the differences among several methods,
and distinguish a method based on a notation from a mere notation. Whereas a
method developer may be guided in presenting at the best a modelling method,
and s(he) may get hints on what to add to a notation to transform it in a fully
operative method. Moreover, we can now answer to the majority of the questions
we have listed in the Introduction, see Appendix B.

We put our framework at work on seven different approaches to model service-
based systems. In some cases the various constituents of a given method are
explicitly defined or can be more or less easily recovered; in other cases there are
no clues on which they may be, so this means that they may be defined in several
ways thus deriving different modelling methods. Thus, as expected, in various
cases several constituents of a given method cannot be given, nevertheless our
effort is in our opinion valuable, indeed:

– making explicit the considered items helps to preliminary decide whether
an approach is suitable for a specific case (in a local project concerning
logistic systems for maintenance of ships we have to model service-based
systems where each participant has to preliminary declare which services it
will provide, thus the considered services are not dynamically discovered,
and so the methods sharing the same view of services may be selected);

– it may be the starting point in the case the proposed approach should be
transformed in a fully operative modelling method, for example the method
developer may try to fill the lacking part of the framework;

– it may be of help to produce a better more structured and easy to grasp
method documentation; for example, in some cases, the modelled items are
not explicitly described and the form of the eligible models is mainly pre-
sented by means of examples, whereas in the case of SoaML [14] there is a
nice preliminary section in the specification document clearly presenting the
modelled items, but the form of the eligible models, as in many other case
when a UML profile is provided, is not defined at all.

In this initial version of the modelling method framework we have tried to
consider only the fundamental constituents, for what concerns the “Method Def-
inition” part we are quite confident to have considered all of them, but other

A Framework for Defining and Comparing Modelling Methods 399

constituents may be added to the “Operational Aspects”. We can think for ex-
ample, of Quality Assessment concerning the means provided by the method to
assess the level of quality of the produced models, obviously after having defined
what it means to be of good quality.

The proposed framework is general purpose, i.e. it may be used for presenting
any kind of modelling methods, but as future work we would like to investigate
if it is possible to derive from it some specializations for specific tasks or specific
items by adding new constituents or by specializing the form of those already
present. For example, we may try to provide a general reference model of the
business processes or of the service-based systems and to require that the item
model should be a restriction/specialization of this one, whereas for methods
intended for the automatic verification a new constituent may be “Verifiable
Properties” to be defined with respect to the models.

The current version of the framework presented in this paper tries to be as
much as possible agnostic and objective, avoiding to encompass personal ideas
and best practice concerning the modelling activities (for example the framework
does not support either “model as sketch” or “model as program” point of view,
not even “the cost of producing a model is only justified if the model is used
for formal verification” and “useful models are only visual”13. However, specific
ideas concerning what should be a good modelling method may be presented
using our framework, indeed it is sufficient to propose a refinement of it, either
adding new constituents or specializing the form of those already present. To
overcome some drawbacks of using the UML we have developed what we call
Precise UML modelling methods, by imposing that the form of the eligible models
must be given by a metamodel and by a large set of well-formedness constraints
(to mitigate the excessive freedom of the UML, and to reduce the effort of
the modeller to decide which among the 14 diagrams and the large number
of constructs to use), and that the User Guidance must be defined by means
of detailed UML activity diagrams; PreciseSoa is an example of a precise UML
modelling method. These personal ideas on UML modelling could be very easily
encompassed in a “precise-modelling framework”, where for example the eligible
models must be defined by a metamodel and by a set of constraints.

Finally, we want to acknowledge the real help provided by the referees with their
careful reading and wise remarks.

References

1. Aguilar-Saén, R.S.: Business process modelling: Review and framework. Interna-
tional Journal of Production Economics 90(2), 129 (2004)

2. Astesiano, E., Reggio, G.: Formalism and method. Theor. Comput. Sci. 236(1-2),
3–34 (2000)

13 These statements have been heard in some public events in the software engineering
community in the last years.

400 G. Reggio, E. Astesiano, and C. Choppy

3. Astesiano, E., Reggio, G., Cerioli, M.: From formal techniques to well-founded
software development methods. In: Aichernig, B.K. (ed.) Formal Methods at the
Crossroads. From Panacea to Foundational Support. LNCS, vol. 2757, pp. 132–150.
Springer, Heidelberg (2003)

4. Choppy, C., Reggio, G.: A well-founded approach to service modelling with
Casl4Soa: part 1 (service in isolation). In: Shin, S.Y., Ossowski, S., Schumacher,
M., Palakal, M.J., Hung, C. (eds.) Proceedings of the 2010 ACM Symposium on
Applied Computing (SAC), Sierre, Switzerland, March 22-26, pp. 2451–2458. ACM
(2010)

5. Choppy, C., Reggio, G.: casl-mdl, modelling dynamic systems with a formal
foundation and a UML-like notation. In: Mossakowski, T., Kreowski, H.-J. (eds.)
WADT 2010. LNCS, vol. 7137, pp. 76–97. Springer, Heidelberg (2012), http://
www-lipn.univ-paris13.fr/~choppy/REPORTS/casl-mdl-report.pdf

6. Choppy, C., Reggio, G.: Precise and formal modelling methods for service systems.
Technical Report TR-14-03, DIBRIS, Università di Genova (2014)

7. Choppy, C., Reggio, G., Tran, K.-D.: Formal or not, but precise modelling of ser-
vices with CASL4SOA and SoaML. In: Hung, D.V., Vo, H.T., Sanders, J., Bui,
L.T., Pham, S.B. (eds.) Fourth International Conference on Knowledge and Sys-
tems Engineering (KSE 2012), pp. 187–194. IEEE Computer Society (2012)

8. Dingle, N.J., Knottenbelt, W.J., Suto, T.: PIPE2: A tool for the performance evalu-
ation of generalised stochastic Petri nets. SIGMETRICS Perform. Eval. Rev. 36(4),
34–39 (2009)

9. Fiadeiro, J., Lopes, A., Bocchi, L., Abreu, J.: The sensoria reference modelling lan-
guage. In: Wirsing, M., Hölzl, M. (eds.) SENSORIA. LNCS, vol. 6582, pp. 61–114.
Springer, Heidelberg (2011)

10. Giaglis, G.M.: A taxonomy of business process modeling and information sys-
tems modeling techniques. International Journal of Flexible Manufacturing Sys-
tems, 13(2), 209 (2001)

11. Huma, Z., Gerth, C., Engels, G., Juwig, O.: Towards an automatic service discovery
for UML-based rich service descriptions. In: France, R.B., Kazmeier, J., Breu,
R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 709–725. Springer,
Heidelberg (2012)

12. Huma, Z., Gerth, C., Engels, G., Juwig, O.: A UML-based rich service descrip-
tion language for automatic service discovery of heterogeneous service partners.
In: Proceedings of the CAiSE 2012 Forum at the 24th International Conference on
Advanced Information Systems Engineering (CAiSE). CEUR Workshop Proceed-
ings, vol. 855, pp. 90–97 (2012)

13. Li, X., Fan, Y., Sheng, Q.Z., Maamar, Z., Zhu, H.: A Petri net approach to an-
alyzing behavioral compatibility and similarity of web services. Trans. Sys. Man
Cyber. Part A 41(3), 510–521 (2011)

14. OMG. Service oriented architecture Modeling Language (SoaML) Specification,
Version 1.0.1 (2012)

15. Pavlov, R., Shekhovtsov, V.A., Zlatkin, S.: Towards selecting among business pro-
cess modeling methodologies. In: Proceedings of 9th International Conference on
Business Information Systems, BIS 2006 (2006)

16. Reggio, G., Astesiano, E., Choppy, C.: Casl-Ltl: A Casl Extension for Dynamic
Reactive Systems Version 1.0–Summary. Technical Report DISI-TR-03-36, DISI –
Università di Genova, Italy (2003), ftp://ftp.disi.unige.it/person/ReggioG/
ReggioEtAll03b.pdf

http://www-lipn.univ-paris13.fr/~choppy/REPORTS/casl-mdl-report.pdf
http://www-lipn.univ-paris13.fr/~choppy/REPORTS/casl-mdl-report.pdf
ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtAll03b.pdf
ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtAll03b.pdf

A Framework for Defining and Comparing Modelling Methods 401

17. Reggio, G., Leotta, M., Ricca, F., Astesiano, E.: Business process modelling: Five
styles and a method to choose the most suitable one. In: Proceedings of 2nd Inter-
national Workshop on Experiences and Empirical Studies in Software Modelling,
EESSMod 2012, pp. 8:1–8:6. ACM (2012)

18. Schwinger, W., Koch, N.: Modeling web applications. In: Gerti, K., Birgit, P.,
Siegfried, R., Werner, R. (eds.) Web Engineering - The Discipline of Systematic
Development of Web Applications, pp. 39–64. John Wiley (2006)

19. Wirsing, M., et al.: Sensoria patterns: Augmenting service engineering with formal
analysis, transformation and dynamicity. In: Margaria, T., Steffen, B. (eds.) Lever-
aging Applications of Formal Methods, Verification and Validation. CCIS, vol. 17,
pp. 170–190. Springer, Heidelberg (2008)

A Tribute to a Long Lasting Friendship

It has been a very wet summer here in Genoa this year, followed by an even worse
autumn with some devastating floods, a pattern unfortunately not infrequent in
the last two decades. But in the late seventies and the eighties we had some long
periods of extremely serious drought and we still vividly remember that in one
of these occasions, late eighties, a member of our group (Gianna) came up with
the brilliant idea of proposing to the town Mayor inviting Martin to come to
Genoa as a special guest – a remedy to the drought. There was a clear reason
for that: Martin’s frequent visits since 1982 were almost invariably marked by
some heavy showers, “tropical” in his words; and indeed I personally remember
once being trapped in my car for about twenty minutes under a so heavy rain
to make impossible to pick up Martin and Sabine waiting under the arcade in
the central Piazza De Ferrari.

Nevertheless the lasting feeling of those visits, and of the overall long and
intense period of collaboration, does not suffer at all of the unpleasantness of
some bad weather; it is instead the feeling of a warm and emotionally sunny
atmosphere, the encounter with a young brilliant researcher who was also a
good friend, constantly received at our department as “the most latin of the
Germans we know” (copyrighted nickname of our staff at that time).

Of course there were also some really sunny days when we could work hard
in the relaxing beauty of the gardens of Villa Imperiale and Villa Cambiaso, or
taste some delicious fishes on the tiny beach of San Fruttuoso after a relaxing
walk in the wood of the Portofino Mount. And, outside Genoa, how to forget his
hospitality beginning in the Munich house in 1981 (a rose in every room), and
then in Passau and again in Munich; and . . .marching together, with Fulvia and
Sabine, in the middle of an exulting crowd along Rue de la République up to
Place de la Bastille, the evening of the 1988 second victory of Mitterrand?

I know, I have to stop the flow of the leisure memories and speak of work and
science. I will be short, since so many will have much more to say about that,
and though we have coauthored a number of papers, I will concentrate on two
lines of research.

Martin’s work on ASL, and algebraic specifications in general, has marked
a turning point in our approach to the specifications of concurrent systems.

402 G. Reggio, E. Astesiano, and C. Choppy

Putting together our experience of some work about CCS and variations (Egidio
and Elena) with Martin’s algebraic declination of labelled transition systems
has led to a joint paper presented at TAPSOFT ’85. Days ago Gianna was
recalling those days of hard work in Passau with Martin already involved in an
amazing amount of scientific and organizational duties, and I personally cannot
forget stopping a summer ’84 holiday with some friends in Corsica, to feverishly
improve an almost final version, then posted to Martin who was on holiday
on the island of Pantelleria. That paper has been a cornerstone of our future
developments on the algebraic specification of concurrent systems, that has also
seen the participation of Martin as an advisor in some significant applications
of that framework; to mention just two: the Cnet Italian National Project and
the EEC project on the Ada Formal Definition.

Then, it was a problem left open by Martin (as a fall-out of some work with
Manfred) on algebraic specifications with partial algebras the starting point of a
stream of work for the Ph.D. thesis of Maura and its following. That work has
meant for our group building up the knowledge that was later crucial for our con-
tribution to the CoFI/CASL project. Though Martin was not involved himself in
that project, during a three month stay in Santa Margherita and Genoa, he had
a number of nice discussions with us on many technically delicate points.

DearMartin, our best memories happily survive for us andwe hope for you too.

A Framework for Defining and Comparing Modelling Methods 403

A Service Model Examples

In Fig. 9 to 15 we present an example of service model (or of a model fragment)
for each of the methods considered in this paper.

B Answers to Some Questions Listed in the Introduction

– Is modelling method A more appropriate than method B in a given context?

Assuming that the context is given by one or more tasks to be done with
models of specific items, in a specific application field or in a specific domain,
the answer is yes.

Indeed, we need to examine

– the Items component of methods A and B to see to which extent they match
the things to model in that context, and
– the Intended Use of Models component of methods A and B to see to which
extent they include the task required in that context.

– Which are the relationships between modelling methods A and B?
We can state quite precisely whether the two methods concern more or less
similar modelling tasks, i.e. they are about modelling more or less simi-
lar items, whether the produced models may be used for similar tasks, and
whether the used notation are the same or have similar aspects.

– Does the modelling method A have any novelty with respect to method B?
A novelty may be to be able to model a larger class of items (this may be
deduced by looking at the Items components of the two methods), or to be able
to model more aspects of the same class of items (either the items of A have
more features than those of B, or the modelling of A provides a way to model
such aspects while they were not considered by the modelling of B.
In the case that both methods share the same items and the same notation
say N, it may be that the modelling of A shows how to represent some features
of the items using N in a more clever or simpler way than B.
Another kind of novelties may be given by the fact that A has a larger set of
tools supporting a larger set of tasks (e.g. a method for modelling business
processes using BPMN offering a model editor and a simulator versus a
method offering only an editor).

– Is modelling method A adequate for a specific case?

First of all check whether the “thing” that you have to model in that specific
case matches the items of method A, then whether the available tools and
intended uses cover what you have to do in this specific case.

– Is modelling method A mature?

A mature method should have been around for some time and should have
been used extensively. The main constituents of a method considered by our
framework (those defined in this paper) do not allow to answer to this ques-
tion. But, as mentioned here we have given only the “main” constituents of
a method, other ones may be added to capture further aspects.

404 G. Reggio, E. Astesiano, and C. Choppy

Interface

Contract

Semantics

Fig. 9. PreciseSoa: service model example from [6]

A Framework for Defining and Comparing Modelling Methods 405

Interface

Contract

Semantics

Fig. 10. CASL4SOA constructive: service model example from [6]

Contract

Semantics

Fig. 11. CASL4SOA property-oriented: service model from [6] (interface as in Fig. 10)

406 G. Reggio, E. Astesiano, and C. Choppy

Fig. 12. SRMLMethod: service model example fragment from [9]

Fig. 13. RSDLMethod: service model example from [11]

A Framework for Defining and Comparing Modelling Methods 407

Fig. 14. WSPetriNet: service model example fragment from [13]

Interface

Contract

Choreography

Fig. 15. SoaMLMethod: service model example from [14]

408 G. Reggio, E. Astesiano, and C. Choppy

We may consider a new component “Usages” defined as follows: it is a list
of cases studies and applications of the method, each one accompanied by
useful information (e.g. who made it [students, academics, professionals],
time, dimension, how to access it).

– Is modelling method A operative?
An operative method must have the User Guidance component, and either the
Eligible Models are defined or a good motivation to coincide with the Models

component should be provided (e.g. the notation is a DSL specifically defined
to be used in this method); moreover at least an editor tool must be available.

– What do I have to do to apply modelling method A to a specific case?
First of all check whether the “thing” that you have to model matches the
items of the selected method, then whether the available tools and intended
uses cover what you have to do in this specific case. Then following the
operative indication of the user guidance and the extensional indication of
the modelling produce the model of the “thing”.

– Is there any tool support for modelling method A?
Trivial

– I have designed a new modelling method, now which is the best way to
present it?
Provide all the constituents required by the proposed framework.

– Is there any motivation for designing modelling method A?
Decide whether the considered items are of interest for some one and whether
the intended use of them is again of some interest for someone (e.g. a method
for verifying by hand the termination of imperative program fragment built
using assignment, loop, and if-then-else using the Hoare logic is nowadays
scarcely motivated).

– Is there any difference between a modelling method and a modelling notation,
or indicating a notation is enough to propose a modelling method?
Trivial, the various modelling methods for service-based systems considered
in this paper show how the same notation may be used to build two different
methods for the same items.

– How can I model X using notation N? Is this model of X prepared using no-
tation N correct? (these kinds of questions appear very frequently in forums
on the web and in mailing lists, and most frequently concern the UML).
First of all you have to design a method using notation A such that X is one
of its items, then you can model X and check whether the produced model is
correct.

A Theory Agenda for Component-Based Design

Joseph Sifakis1, Saddek Bensalem2, Simon Bliudze1, and Marius Bozga2

1 EPFL, Rigorous System Design Laboratory, Station 14, 1015 Lausanne, Switzerland
2 Université Grenoble Alpes, VERIMAG, 38000 Grenoble, France

CNRS, VERIMAG, 38000 Grenoble, France

Dedicated to Martin Wirsing.

Abstract. The aim of the paper is to present a theory agenda for
component-based design based on results that motivated the develop-
ment of the BIP component framework, to identify open problems and
discuss further research directions. The focus is on proposing a semanti-
cally sound theoretical and general framework for modelling component-
based systems and their properties both behavioural and architectural
as well for achieving correctness by using scalable specific techniques.

We discuss the problem of composing components by proposing the
concept of glue as a set of stateless composition operators defined by a
certain type of operational semantics rules. We provide an overview of
results about glue expressiveness and minimality. We show how inter-
actions and associated transfer of data can be described by using con-
nectors and in particular, how dynamic connectors can be defined as an
extension of static connectors. We present two approaches for achieving
correctness for component-based systems. One is by compositional infer-
ence of global properties of a composite component from properties of
its constituents and interaction constraints implied by composition op-
erators. The other is by using and composing architectures that enforce
specific coordination properties. Finally, we discuss recent results on ar-
chitecture specification by studying two types of logics: 1) interaction
logics for the specification of sets of allowed interactions; 2) configura-
tion logics for the characterisation of architecture styles.

1 Introduction

Component-based design is the process leading from given requirements and a
set of predefined components to a system meeting the requirements.

Building systems from components is essential in any engineering discipline.
Components are abstract building blocks encapsulating behaviour. They can be
composed in order to build composite components. Their composition should
be rigorously defined so that it is possible to infer the behaviour of composite
components from the behaviour of their constituents as well as global properties
from the properties of individual components.

The problem of building systems from components can be defined as follows.
Given a set of components {C1, . . . , Cn} and a property of their product state

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 409–439, 2015.
c© Springer International Publishing Switzerland 2015

410 J. Sifakis et al.

space Φ find a coordinator Co such that the coordinated behaviour Co(C1, . . . ,
Cn) meets the property Φ.

This problem can be studied as a synthesis problem [31]. The coordinator
can be considered as a component that adequately restricts the behaviour of
the components so that the resulting behaviour meets Φ. Synthesis techniques
suffer from well-known complexity limitations. The coordinator is computed by
(semi)-algorithms on the product space of the coordinated components.

System design pursues similar and even broader objectives than synthesis: in-
cremental construction of systems meeting given requirements from a set of com-
ponents. In contrast to synthesis, design lacks rigorous theoretical foundations.
Existing frameworks are mostly informal. Designers use “ready-made” solutions
to coordination problems, e.g. architectures, protocols, that have been proven
correct practically or theoretically. In contrast to synthesis, design requires a
variety of composition operators. It is based on the concept of architecture as
a means to enforce specific characteristic properties by application of generic
coordination principles. A key idea is to ensure correctness by construction by
avoiding computationally expensive techniques implying state explosion.

Endowing component-based design with scientific foundations is a major sci-
entific challenge. This requires:

1. A general concept of component. Currently there is no agreement on a single
component model. System designers deal with heterogeneous components
with different characteristics. One source of heterogeneity is the distinction
between synchronous and asynchronous components. Hardware components
as well as components in some data flow applications are synchronous. An-
other source of heterogeneity reflects the difference in programming styles.
Thread-based programming allows for components to be accessed by an arbi-
trary number of threads sharing common data. It does not allow a strict sep-
aration between behaviour and coordination mechanisms as the programmer
explicitly handles synchronisation primitives to ensure coherency of shared
data, e.g. to avoid races. This style is hardly amenable to formalisation and
analysis. On the contrary, actor-based programming assumes that each com-
ponent has its own data transformed by a single local thread. Coordination
is external to the atomic components of the application and can be ensured
using general mechanisms such as protocols.

2. Theory for composing components. We need theory for describing and
analysing the coordination between components in terms of tangible, well-
founded and organised concepts. The theory should propose a set of compo-
sition operators meeting the following requirements:

– Orthogonality, meaning that composition operators are stateless to re-
spect a clear separation between behaviour and coordination. Many
component-based frameworks do not meet this requirement. Some allow
arbitrary behaviour in coordination mechanisms. This which precludes
rigorous mathematical treatment focusing on coordination. Others allow
a limited number of types of behaviour such as buffers or queues to the
detriment of mathematical elegance.

A Theory Agenda for Component-Based Design 411

– Minimality, meaning that none of the coordination primitives can be
expressed as the combination of others without using behaviour.

– Expressiveness, meaning that the considered set of composition operators
can be used to express any coordination problem. This requirement is
further explained and formalised in the paper.

Notice that most of the existing component composition frameworks fail
to satisfy these requirements. Some are formal such as process algebras,
e.g. CCS, CSP, π-calculus, and use single composition operators that are
not expressive enough. Others are ad hoc such as most frameworks used in
software engineering, e.g. architecture description languages [28] which are
not rooted in rigorous semantics and are hardly amenable to formalisation.

3. Theory for ensuring correctness of components. Being able to check or assert
correctness of the built components using scalable techniques is an essential
requirement. The idea is to avoid a posteriori verification and establish cor-
rectness incrementally by applying easy-to-check rules that follow the system
construction.
A key concept in this approach is that of architectures as well-established
coordination schemes enforcing given properties. The problem is then to
decompose any component coordination property as the conjunction of pre-
defined characteristic properties enforced by predefined architectures.

The aim of the paper is to propose a theory agenda for rigorous component-
based design. The agenda is built on existing results developed for the BIP
framework [6]. It identifies work directions addressing open problems and cover-
ing a good deal of the needs. The exposition of the results is mainly informal. We
provide references to technical papers for the interested reader. One of the objec-
tives is to show mathematical relations between three hierarchically structured
domains encompassing the basic concepts:

– The domain of components offering the possibility of interaction through
their ports p and associated variables Xp through which they make available
the data transferred when interactions occur.

– The domain of connectors, used to model coordination between components.
Each connector is characterised by an interaction between ports and asso-
ciated computation on the exported data. Interactions are arbitrary sets of
ports. Their execution implies the atomic synchronisation of the involved
components. Clearly if P is the set of the ports then the set of interactions
I is a subset of 2P .

– The domain of configurations which are sets of connectors characterising
architectures. Clearly if I is the set of interactions of an architecture then
the set of configurations Γ is a subset of 2I .

The paper is structured as follows. In Section 2, we discuss the problem of
composing components by proposing the concept of glue. Glue is a set of stateless
composition operators defined by a certain type of operational semantics rules.
We provide an overview of results about expressiveness and minimality that led

412 J. Sifakis et al.

to the definition of the BIP component framework. In Section 3, we show how
interactions and associated data transfer can be described by using connectors.
We show in particular, how dynamic connectors can be defined as an extension
of static connectors. Two approaches for achieving correctness for component-
based systems are presented in Section 4. One is by compositional inference of
global properties of a composite component from properties of its constituents
and synchronisation constraints implied by composition operators. The other is
by using and composing architectures that enforce specific coordination proper-
ties. Section 5 discusses recent results on architecture specification by studying
two types of logics: 1) interaction logics for the specification of sets of allowed in-
teractions; 2) configuration logics for the characterisation of architectural styles.
The last section concludes and discusses further research directions.

2 Composing Components

2.1 The Concept of Component

A component is a tuple C = (Σ,P,X,→), where

– Σ is a set of control locations;
– P is a set of ports;
– X is a set of variables partitioned in two disjoint sets XL and XP of, re-

spectively, local and port variables; the variables in XP are indexed by ports,
that is XP = {Xp}p∈P ;

– → ⊆ Σ×P ×G(X)×F (X)×Σ is a transition relation; transitions between
control locations are labeled by triplets (p, g, f) where p is a port, g and f
are, respectively, a guard Boolean expression and an update function on the
variables in X .

A shorthand notation σ
p,g,f−−−→ σ′ is commonly used to denote (σ, p, g, f, σ′) ∈ →.

Intuitively, a component can be considered as an open transition system, that
is a system that performs coordination-driven computation. Coordination is de-
fined by the environment of the component and involves two aspects: interaction
(synchronisation) and data transfer. Denoting by X the set of all valuations of
the variables in X , a state of the transition system is a pair s = (σ, v) where
σ ∈ Σ is a control location and v ∈ X is a valuation of the component variables.
Thus the state space of the transition system is S = Σ ×X.

If σ
p,g,f−−−→ σ′ then the transition system has a transition from state s = (σ, v)

to state s′ = (σ′, v′) if g(v) = true and the external environment offers an
interaction involving p. The execution of a transition consists in exporting the
value v(Xp) of the variable Xp

1 associated with port p and receiving back a
new value up. The resulting valuation is v′ = f

(
v[up/Xp]

)
where v[up/Xp] is the

valuation obtained by replacing, in v, the value of Xp by up.

1 For the sake of simplicity of notations, we consider that ports p have associated
exactly one variable Xp. This restriction is, however, irrelevant and we’ll consider
later examples where any number of variables are associated to ports.

A Theory Agenda for Component-Based Design 413

Sometimes, for the sake of simplicity and when data treatment is irrelevant,
we will use components without data, i.e. C = (Σ,P,→) with → ⊆ Σ × P ×Σ.
Notice that, since there are no data variables, X = X = ∅ and S = Σ, i.e.
the notions of state and control location coincide. Therefore, in the rest of this
section, we will use ‘s’ to denote both.

The proposed concept of component does not distinguish between input and
output ports. We consider that such a distinction is not specific to ports. It can
be inferred from the data-flow relation between ports specified in the coordina-
tion mechanisms. Similarly, we do not distinguish between synchronous and asyn-
chronous components. This distinction is also inferred from the context of use.

2.2 Glue Operators

The problem of component-based design can be understood as follows. Given
a component framework and a property Φ, build a composite component C
which satisfies Φ. A component framework comprises a set of components C, an
equivalence relation ∼= and a set G of glue operators on these components. The
glue G includes general composition operators, i.e. behaviour transformers, such
as parallel composition.

A general formalisation of the notions of component framework and glue is
provided in [13]. Below, for the sake of simplicity, we assume that components
are characterised by their behaviours specified directly as Labeled Transition
Systems (LTS). In this context, a component framework can be considered as a
term algebra equipped with an equivalence relation ∼= compatible with strong
bisimulation on transition systems. A composite component is any (well-formed)
expression built from atomic components.

The meaning of a glue operator gl : Cn → C can be specified by using a
set of Structural Operational Semantics (SOS) rules [38], defining the transition
relation of the composite component gl(C1, . . . , Cn) as a partial function of tran-
sition relations of the composed components C1, . . . , Cn. A formal and general
definition of glue operators on LTS components is provided in [15]. Equation (1)
shows a typical—although not general—form taken by SOS rules defining glue
operators.

{si
pi−→ s′i}i∈I {sj �

pj−→}j∈J {si = s′i}i�∈I

s1 . . . sn
a−→ s′1 . . . s

′
n

. (1)

Note 1. In the general case, as opposed to (1), several negative premises can
apply to a single component. In any case, at most one positive premise can
apply to a component.

The rule (1) has two parts: premises (above the line) and conclusion (below
the line). Sets I, J ⊆ [1, n] (with I �= ∅) index two subsets of components, which

need not be disjoint: components {Ci}i∈I contribute positive premises si
pi−→ s′i,

whereas components {Cj}j∈J contribute negative premises sj �
pj−→.

414 J. Sifakis et al.

The rule (1) is interpreted as follows. The state space Σ of the composite
component is the Cartesian product of the state spaces of composed components:
Σ =

∏n
i=1 Σi. If 1) for each i ∈ I, componentCi can execute a transition from the

state si to s′i (with si, s
′
i ∈ Σi) labeled by the port pi ∈ Pi and 2) for each j ∈ J ,

component Cj cannot execute any transition from the state sj ∈ Σj labeled by
the port pj ∈ Pj , then the composite component gl(C1, . . . , Cn) can execute a
transition from the state s = s1 . . . sn to s′ = s′1 . . . s

′
n (with s, s′ ∈ Σ) labeled

by an interaction a, where s′i = si, for all components that do not participate,
i.e. Ci with i �∈ I.

Notice that the negative premises play the role of priorities. A transition of
the composite component can be executed only if a set of transitions of the
constituent components are disabled.

An interaction a, in the conclusion of (1), corresponds to the atomic syn-
chronous execution of transitions in the composed components. Depending on
the component framework, the interaction label a is obtained by combining the
ports {pi}i∈I in different manners.

Example 1. In CCS [34], ports are actions belonging to a given set L = A ∪
A∪ {τ}, where actions in A = {a | a ∈ A} are complementary to those in A and
τ �∈ A ∪A is a special “silent” action. The binary parallel composition operator
is defined by the following three rules:

s1
p−→ s′1

s1s2
p−→ s′1s2

,
s2

p−→ s′2

s1s2
p−→ s1s

′
2

, for all p ∈ L , (2)

s1
p−→ s′1 s2

p−→ s′2

s1s2
τ−→ s′1s

′
2

, for all p ∈ A ∪ A (with p
def
= p). (3)

In the conclusion of the rule (3), the resulting interaction is the silent action τ ,
replacing the combination of two complementary actions p and p. ��

In [25], the authors propose a notion of label structures, providing a generic
mechanism for defining interaction labels of the composite components. Below,
for the sake of simplicity, we consider a in the conclusion of (1) to be the set of
ports {pi}i∈I in the positive premises of the rule.

As shown above, positive premises in a rule of form (1) define interactions syn-
chronising transitions of the constituent components. In a given global state of the
system, several such interactions could be possible introducing non-determinism
in the composed behaviour. Negative premises define priority rules, which allow
reducing this non-determinism.

Example 2. Consider the two components C1 and C2 shown in Figures 1a and
1b. Let gl be a glue operator defined by the following three rules:

s1
p−→ s′1

s1s2
p−→ s′1s2

,
s1

q−→ s′1 s2
r−→ s′2

s1s2
qr−→ s′1s

′
2

,
s1

q−→ s′1 s2 � r−→

s1s2
q−→ s′1s2

. (4)

A Theory Agenda for Component-Based Design 415

C1

p

q

1

2

3

(a)

C2
r

1 2

(b)

gl(C1, C2)

r

q

p

p
qr

pr
r

q

r

32

22

12

31

21

11

(c)

Fig. 1. Component behaviours for Example 2

The composed component gl(C1, C2) is shown in Figure 1c. The dashed arrows
show the transitions of the component obtained by composing C1 and C2 with
the most liberal parallel composition operator, allowing any combination of tran-
sitions of the two components. Solid arrows show the transitions of gl(C1, C2).

Among the transitions labeled by q, only the transition 22
q−→ 32 is enabled

and not 21
q−→ 31 (Figure 1c). Indeed, the negative premise in the third rule

of (4) suppresses the interaction when a transition labeled r is possible in the

second component. Here, this results in giving 21
qr−→ 32 “higher priority” over

21
q−→ 31. Notice that, in the state 22 of gl(C1, C2), r is no longer possible, i.e.

2 � r−→ in C2. Hence, the third rule of (4) applies and we have 22
q−→ 32. ��

Priorities are presented in more detail in Section 2.5, below.

2.3 Properties of Glue

Glue operators must meet the following requirements.

Incrementality. If a composite component is of the form gl(C1, C2, . . . , Cn) for
n ≥ 2, then there exist glue operators gl1 and gl2 such that

gl(C1, C2, . . . , Cn) ∼= gl1
(
C1, gl2(C2, . . . , Cn)

)
.

Incrementality is a kind of generalised associativity2. It requires that coordination
between n components can be expressed by first coordinating n − 1 components
and then by coordinating the resulting component with the remaining argument.

2 Notice that, for any permutation σ : [1, n] → [1, n], one can define a glue

operator glσ(C1, . . . , C2)
def
= gl

(
Cσ(1), . . . , Cσ(n)

)
. Applying incrementality to

glσ with the permutation σ = (2, 3, . . . , i, 1, i + 1, . . . , n), we conclude that
there must exist glue operators gl1 and gl2 such that gl(C1, . . . , Ci, . . . Cn) =
glσ(Ci, C1, . . . , Ci−1, Ci+1, . . . , Cn) = gl1

(
Ci, gl2(C1, . . . , Ci−1, Ci+1, . . . , Cn)

)
, for

any i ∈ [1, n].

416 J. Sifakis et al.

Flattening. Conversely, G must be closed under composition, i.e. if a composite
component is of the form gl1(C1, gl2(C2, . . . , Cn)) then there exists an operator
gl such that

gl1
(
C1, gl2(C2, . . . , Cn)

) ∼= gl(C1, C2, . . . , Cn) .

This property is essential for separating behaviour from glue and treating glue as
an independent entity that can be studied and analysed separately. Flattening
enables model transformations, e.g. for optimising code generation or component
placement on multicore platforms [18,20].

Compositionality. The equivalence relation ∼= must be a congruence with respect
to the glue operators. For all gl ∈ G, all C,C1, . . . , Cn ∈ C and i ∈ [1, n],

Ci
∼= C must imply gl(C1, . . . , Ci, . . . , Cn) ∼= gl(C1, . . . C, . . . , Cn) .

Compositionality is fundamental for reasoning about systems. It allows consid-
ering properties of components in isolation and separately from the properties of
glue operators to infer global properties of the system by construction. Further-
more, compositionality allows component providers to protect their intellectual
assets by providing only an abstract specification of a component—any obser-
vationally equivalent implementation can then be substituted without affecting
the semantics of the system.

It can be shown that glue operators defined by SOS rules, as in (1), are
always compositional if the equivalence relation ∼= is compatible with strong
bisimulation (recall the assumption of Section 2.2).

It should be noted that almost all existing frameworks fail to meet all three
requirements. Process algebras are based on two composition operators (some
form of parallel composition and hiding) which are orthogonal to behaviour, but
fail to meet the flattening requirement as formulated above: in order to flatten
a composite component, the operand components might have to be modified
or additional components (e.g. context) might need to be introduced. General
component frameworks, such as [2,24], adopt more expressive notions of com-
position by allowing the use of behaviour for coordination between components
and thus do not separate behaviour from interaction. Furthermore, most of these
frameworks are hardly amenable to formalisation through operational semantics.

2.4 Expressiveness of Glue

Comparison between different formalisms and models is often made disregard-
ing their structure and reducing them to behaviourally equivalent formalisms,
such as Turing machine. This leads to a notion of expressiveness which is not
adequate for the comparison of high-level languages. All programming languages
are deemed equivalent (Turing-complete) disregarding their adequacy for solving
problems. For component frameworks separation between behaviour and coor-
dination mechanisms is essential.

A Theory Agenda for Component-Based Design 417

A notion of expressiveness for component frameworks characterising their abil-
ity to coordinate components is proposed in [15]. It allows the comparison of two
component frameworks with glues G and G′ respectively, the same set of com-
ponents and equipped with the same congruence relation ∼=.

We say that G′ is more expressive than G—denoted G � G′—if, for any com-
posite component gl(C1, . . . , Cn) obtained by using gl ∈ G, there exists gl′ ∈ G′,
such that gl(C1, . . . , Cn) ∼= gl′(C1, . . . , Cn). That is, any coordination expressed
by using G can be expressed by using G′.

Example 3. Let P be a set of ports and consider two gluesBin and Ter generated

respectively by families of binary and ternary rendezvous operators: rdv
(2)
a,b and

rdv
(3)
a,b,c, defined by the following rules (for all interactions a, b, c ∈ 2P):

rdv
(2)
a,b :

s1
a−→ s′1 s2

b−→ s′2

s1s2
ab−→ s′1s

′
2

, rdv
(3)
a,b,c :

s1
a−→ s′1 s2

b−→ s′2 s3
c−→ s′3

s1s2s3
abc−−→ s′1s

′
2s

′
3

.

(5)
Clearly, Ter � Bin. Indeed, for any a, b, c ∈ 2P , and any C1, C2, C3 ∈ C, we

have rdv
(3)
a,b,c(C1, C2, C3) ∼= rdv

(2)
a,bc

(
C1, rdv

(2)
b,c (C2, C3)

)
. On the contrary, Bin ��

Ter, since any two components at any given state can only perform two actions
(one action each), whereas three are needed for a ternary synchronisation. ��

We call universal glue the set Guniv , which contains all glue operators that
can be defined by the rules similar to (1) in the general form defined in [15]
(see also Note 1). An interesting question is whether the expressiveness of Guniv
can be achieved with a minimal set of operators. Results in [15] bring a positive
answer to this question. It is shown that the glue of the BIP framework [6]
combining two classes of operators, interactions and priorities, is as expressive
as Guniv . Furthermore, this glue is minimal in the sense that it loses universal
expressiveness if either interactions or priorities are removed.

A consequence of these results is that most existing formal frameworks using
only interaction such as process algebras are less expressive. This comparison
can be strengthened by using the following weaker notion of expressiveness.

Often component frameworks consider certain behaviours, such as, for in-
stance, FIFO buffers, to be part of the coordination primitives. To address such
cases, we introduce a weaker form of expressiveness comparison. We say that
G′ is weakly more expressive than G—denoted G �W G′—if there exists a finite
set of coordinating components D ⊆ C, such that, for any component gl(C1, . . . ,
Cn) with gl ∈ G there exist gl′ ∈ G′ and D1, . . . , Dk ∈ D, such that gl(C1,
. . . , Cn) ∼= gl′(C1, . . . , Cn, D1, . . . , Dk). That is, to realise the same coordination
as gl, additional behaviour is needed. The term “weakly more expressive” is
justified by the observation that, taking D = ∅, G � G′ clearly implies G �W G′.

Example 4. Taking on Example 3, it is clear that Bin �W Ter. Indeed, let
D =

(
{∗}, {τ}, {∗ τ−→ ∗}

)
(with τ �∈ P) be the only coordinating component.

Considering τ as the “silent” action, it is easy to see that, for all a, b ∈ 2P and

418 J. Sifakis et al.

CCS BI BIP

SCCS

CSP

���

���

���

���

�W

�W

�
�W , � �W , �

�

Fig. 2. Summary of relations between glues

C1, C2 ∈ C, we have rdv
(2)
a,b(C1, C2) ∼= rdv

(3)
τ,a,b(D,C1, C2). Therefore, we say that

Bin and Ter are weakly equivalent. ��

It can be shown that glues including only interactions fail to match universal
expressiveness even under this definition. Adding new atomic components does
not suffice if the behaviour of the composed components is not modified.

Relations between the glues of BIP (see Section 2.5 below) and classical pro-
cess algebras, namely CCS [34], SCCS [33] and CSP [26], which were obtained
in [15], are summarised in Figure 2. BI denotes the BIP glue without priorities.

2.5 The BIP Component Model

In the light of the above results the BIP component model has been defined in
[6,14]. BIP uses two types of glue. Given a set of atomic components C1, . . . , Cn

a composite component is modelled by an expression of the form πγ(C1, . . . , Cn)
where γ is a set of interactions and π a priority relation.

Let Ci = (Σi, Pi,−→), for i ∈ [1, n], with disjoint sets of ports, i.e. Pi ∩Pj = ∅,
for i �= j and denote P =

⋃n
i=1 Pi. The glue operator corresponding to a set

of interactions γ ⊆ 2P is defined by the following set of rules in the format
generalising (1) (see Note 1):{

si
a∩Pi−−−→ s′i

}
i∈I

{
si = s′i

}
i�∈I

s1 . . . sn
a−→ s′1 . . . s

′
n

, for all a ∈ γ , (6)

where I = {i ∈ [1, n] | a ∩ Pi �= ∅} is the set indexing the components that par-
ticipate in the interaction. Notice that (6) has only positive premises.

Priority is a strict partial order relation π ⊆ 2P × 2P . For two interactions
a, b ∈ 2P , we write a ≺ b as a shorthand for (a, b) ∈ π. As described in Section 2.2,
priority introduces negative premises in the derivation rules. Intuitively, for an
interaction a to be executed, it has to be enabled (cf. (6)) and all interactions
with higher priority than a must be disabled.

For an interaction a ∈ 2P , denote by π(a) =
{
b ∈ 2P

∣∣ a ≺ b
}

the set of
interactions having higher priority than a. For an interaction b ∈ π(a) to be
disabled, a corresponding transition must be disabled in at least one of the
contributing components. To assign such a component to each b ∈ π(a) we use,
in the derivation rules (7) below, indexing functions j : π(a)→ [1, n], such that,
for all b ∈ π(a), we have b ∩ Pj(b) �= ∅. Thus the glue operator πγ is defined by
the following set of rules:

A Theory Agenda for Component-Based Design 419{
si

a∩Pi−−−→ s′i

}
i∈I

{
sj(b) �

b∩Pj(b)−−−−−→
}
b∈π(a)

{
si = s′i

}
i�∈I

s1 . . . sn
a−→ s′1 . . . s

′
n

,

for all a ∈ γ and j : π(a)→ [1, n] such that ∀b ∈ π(a),
(
b ∩ Pj(b) �= ∅

)
, (7)

where I = {i ∈ [1, n] | a ∩ Pi �= ∅} is the set indexing the components that par-
ticipate in the interaction a. In [15], we have shown that any operator of the
universal glue Guniv can be obtained in such manner by combining a priority π
and a set of interactions γ.

Besides meeting the universal expressiveness property, BIP meets the incre-
mentality, flattening and compositionality requirements discussed in Section 2.3
(see the detailed discussion in [5]). Glue is a first class entity that can be analysed
and composed.

The BIP model is implemented by the BIP language and an extensible tool-
box. The BIP language can be considered as a general component coordination
language. It leverages on C++ style variables and data type declarations, expres-
sions and statements, and provides additional structural syntactic constructs for
defining component behaviour, describing connectors and priorities. Moreover,
it provides constructs for dealing with parametric and hierarchical descriptions
as well as for expressing timing constraints associated with behaviour. The BIP
toolbox includes tools for checking correctness, for source-to-source transforma-
tions and for code generation. Correctness can be either formally proven using
invariants and abstractions, or tested by using simulation. For the latter case,
simulation is driven by a specific middleware, the BIP engine, which allows ex-
ploration and inspection of traces corresponding to BIP models. Source-to-source
transformations allow static optimizations as well as specific transformations to-
wards implementation, i.e. distribution. Finally, code generation targets different
platforms and operating systems support (e.g. distributed, multi-threaded, real-
time, for single/multi-core platforms).

In the rest of the paper, we focus on modelling interactions by using con-
nectors as well as the formalisation of architectures and their use for achieving
correctness by construction.

3 Connectors and Their Properties

In this section we study connectors as a means for expressing coordination con-
straints between components. Connector descriptions involve a control part de-
scribing interactions and a data transfer part describing data transformations
of the interacting components. We provide a principle for the hierarchical struc-
turing of connectors and show how hierarchical connectors can be flattened into
equivalent simple connectors. Finally, we propose a formalism for describing dy-
namic connectors that is currently under study.

420 J. Sifakis et al.

3.1 Simple Connectors

We consider a set of components {Ci}i∈I with disjoint sets of ports {Pi}i∈I . We
denote for a set of ports P by XP the associated set of variables. A connector γ
is an expression of the form

γ = (a).
[
g(Xa) : Xa := f(Xa)

]
,

where a is an interaction, that is a set of ports such that |a∩Pi| ≤ 1 for all i ∈ I.
The interaction describes the control part of the connector. It is an n-ary

atomic strong synchronisation between ports specified by the set of the synchro-
nised ports. The term in brackets consists of a guard on the exported variables
followed by an assignment. It describes the data transfer part of the connector.
The execution of a connector is possible only if ports involved in the interac-
tion a are enabled in the components and the guard g evaluates to true for the
exported values. It consists in modifying the exported variables as specified by
the assignment and letting the involved components complete the synchronised
transitions.

The figure below depicts a connector between ports p, q and r with associated
exported variables Xp, Xq and Xr. An interaction can occur only when at least
two of the exported values differ (the guard is true). It is completed by assigning
the maximum of their values to the port variables.

p Xp q Xq r Xr

(pqr).
[
(Xp �= Xq) ∨ (Xp �= Xr) : Xp, Xq, Xr := max(Xp, Xq, Xr)

]
Fig. 3. Simple connector

The effect of the application of connectors on a set of components is formally
defined in [17].

3.2 Hierarchical Connectors

Hierarchical connectors are useful when we want to build systems incrementally.
The idea is to equip each connector with a port and an associated variable.
The port can be then used further in other connectors, and hence lead to a
hierarchical structuring of connectors. Syntactically, a hierarchical connector γ
is an expression of the form

γ = (w ← a).
[
g(Xa) : (Xw, XL) := fup(Xa) //Xa := fdown(Xw, XL)

]
.

As for simple connectors, the coordination in hierarchical connectors involves
two parts. The control part w ← a defines a dependency relation between the

A Theory Agenda for Component-Based Design 421

connector port w and its interaction a. That is, w is enabled if and only if the
interaction a is enabled. The data part

[
g(Xa) : (Xw, XL) := fup(Xa) //Xa :=

fdown(Xw, XL)
]
defines the computation realised on local variables XL and data

associated to ports. The interaction is enabled and the computation is performed
only if the guard g(Xa) evaluates to true. In this case, computation involves two
steps. First, an up function fup is used to compute Xw and XL depending on in-
teraction variables Xa. Second, if an (upper) interaction involving w takes place,
the down function fdown is used to update Xa based on Xw and XL. Moreover,
in an hierarchical connector, execution of up and down steps is coordinated: first,
all up steps are performed bottom-up (as long as guards are satisfied), then, if
a top-level interaction is executed, all down steps are performed top-down.

As an example, the coordination enforced by the simple connector presented
in Figure 3 can be equally obtained by using the hierarchical connector depicted
in Figure 4. The ternary connector and its associated data transfer is split in
two binary connectors, glued together by the port w.

p Xp q Xq r Xr

u Xu

w Xw, Yw

(w ← pq).[true : Xw := max(Xp, Xq), Yw := (Xp �= Xq) //Xp, Xq := Xw]

(u← wr).[Yw ∨ (Xw �= Xr) : Xu := max(Xw, Xr) //Xw, Xr := Xu]

Fig. 4. Hierarchical connector

Hierarchical connectors can be statically flattened, that is, transformed into
functionally equivalent simple connectors. For the control part, flattening amounts
to substituting the inner connector ports by the associated interactions. For the
data part, it reduces to static composition of up and down functions together with
propagation of the guards. Flattening has been formally defined as a rewriting sys-
tem on hierarchical connectors and proven confluent and terminating [17]. As an
example, flattening of the connector from Figure 4 transforms it back into the sim-
ple connector from Figure 3.

3.3 Dynamic Connectors

How can we reason about architectures whose structure changes dynamically?
There exists a variety of paradigms dealing with dynamic change in coordina-
tion. One is based on the use of process algebras such as the π-calculus [35].
Nonetheless, there is no clear distinction between behaviour and coordination
and thus it is hard to come up with a concept of architecture in this context.

422 J. Sifakis et al.

Another considers architectures as graphs and studies their possible config-
urations by using graph grammars. Technically architecture styles and possible
configurations are described by context-free graph grammars [32,36]. This ap-
proach implicitly assumes the existence of a global coordinator. Furthermore,
the focus is on changing structure and it is not easy to account for data trans-
fer. Other more ad hoc techniques consider that dynamic architectures are just
coordinators between components that can modify the architecture connectivity
[1]. The approach closest to the one presented below is explored in [21], where
dynamic BI(P) (BIP without priorities) allows spawning new components and
interactions during execution.

We show below how dynamic connectors can be defined as a direct extension
of connectors in BIP. We assume that system models are built using arbitrary
numbers of typed components. The type T of a component defines its set of
ports and associated exported variables. Two kinds of variables can be used in
descriptions: 1) component variables ci with an associated component type T ,
denoted ci :T ; 2) variables Ui representing sets of components of the same type
T , denoted Ui :T . We denote by c.p the port p of component c.

A connector description consists of a set of initialisation statements followed
by a set of rules. The initialisation statements define initial values of the variables
U representing sets of components. The rules define sets of dynamic connectors.
The format for the description is the same as for static connectors. The main
difference is that the rules may involve guards and computation that modifies
the sets of components.

The following example models a ring architecture composed of n elements

U := {ci : T, for 0 ≤ i < n} , (8)

ri := (ci.out, c(i+1)%n.in).[true : Xc(i+1)%n.in := Xci.out], for 0 ≤ i < n . (9)

Line (8) initialises a variable U with an array of component instances by using
the iterator primitive for 0 ≤ i < n. Line (9) gives a set of n rules for specifying
connectors transferring data from outputs to inputs.

The following example models a set of n components that must strongly syn-
chronise through their port p, with the possibility of disconnecting a component
when it detects a failure and the possibility to rejoin the group in case of recov-
ery. The first line creates an array of n instances of components c of type T . The
description uses two variables U and Uact representing sets of components. The
former is used to record the universe of the created components and the latter
to record the set of the active components.

The configurations are described by three rules. Rule (10) involves an inter-
action requiring the synchronisation of all the active components. The corre-
sponding computation consists in assigning to the synchronised port variables
the maximum of the exported values. Rule (11) describes disconnection of the
i-th component ci when it detects a failure. Rule (12) describes insertion of a
component after recovery.

A Theory Agenda for Component-Based Design 423

U := {ci : T, for 0 ≤ i < n} , Uact := U ,

r := (c.p, for c ∈ Uact).
[
true : xc.p := max{xc.p | c ∈ Uact}, for c ∈ Uact

]
,

(10)

rfailc := (c.fail).[true : Uact := Uact − c], for c ∈ Uact , (11)

rjoinc := (c.join).[true : Uact := Uact + c], for c ∈ U \ Uact . (12)

As a final illustration, consider the Master-Slave example presented in [19].
Systems are constructed from two types of components, respectively masters
(M) and slaves (S). Every master mi requests sequentially two distinct slaves
sj , sk (rules 13, 14) and then interacts with both of them (rule 15 above). The
rules are graphically depicted in Figure 5.

U := {mi : M, sj : S, for 0 ≤ i < n, 0 ≤ j < m} ,
req1ij := (mi.req sj .get)[xmi.req = ∅ : xmi.req := xmi.req ∪ sj], (13)

for 0 ≤ i < n, 0 ≤ j < m

req2ik := (mi.req sk.get)[sk �∈ xmi.req : xmi.req := xmi.req ∪ sk], (14)

for 0 ≤ i < n, 0 ≤ k < m

compijk := (mi.comp sj .work sk.work)[sj , sk ∈ xmi.req : xmi.req := ∅], (15)

for 0 ≤ i < n, 0 ≤ j, k < m

sj : S sk : S

comp work work

req get get

mi : M

comp

req req

work

get get

work

(mi.req sj .get)[xmi.req = ∅ : xmi.req := xmi.req ∪ sj]

(mi.comp sj .work sk.work) [sj, sk ∈ xmi.req : xmi.req := ∅]

(mi.req sk.get)[sk �∈ xmi.req : xmi.req := xmi.req ∪ sk]

Fig. 5. Dynamic Connectors for the Master-Slave example

4 Achieving Correctness

We present two approaches for achieving correctness for component-based sys-
tems. The first is by compositional inference of global properties of a composite
component from properties of its constituents and synchronisation constraints
implied by composition operators. The second is by using and composing archi-
tectures that enforce specific coordination properties.

424 J. Sifakis et al.

4.1 Compositional Verification

Compositional verification techniques are used to cope with state explosion in
concurrent systems. The idea is to apply divide-and-conquer approaches to in-
fer global properties of complex systems from properties of their components.
Separate verification of components limits state explosion. Nonetheless, com-
ponents mutually interact in a system and their behaviour and properties are
inter-related. This is a major difficulty in designing compositional techniques.
We developed for BIP a compositional verification method [11,10,9] for safety
properties (invariants) based on the following rule:{

Ci |= �Φi

}
i

Ψ ∈ II
(
γ, (Ci)i

) (∧
i Φi

)
∧ Ψ ⇒ Φ

γ((Ci)i) |= �Φ
. (16)

ψ

φ2

φ1

Fig. 6. Rule illustrated

This rule allows one to prove invariance of
Φ for systems γ((Ci)i) constructed by using a
parallel composition operation parameterised
by a set of connectors γ on a set of com-
ponents (Ci)i. It relies on computing auxil-
iary invariants as the conjunction of compo-
nent invariants Φi and an interaction invariant
Ψ . Component invariants Φi are computed lo-
cally for components Ci, hence, they satisfy
Ci |= �Φi, for all is. Interaction invariants Ψ
expresses constraints on the global state space
induced by interactions between components.
They are obtained automatically from finite-
state abstractions of the system to be veri-
fied and without explicitely constructing the
product space, that is, denoted by Ψ ∈ II

(
γ, (Ci)i

)
. Finally, if the implication(∧

i Φi

)
∧Ψ ⇒ Φ holds, i.e. can be effectively proven by using a SAT/SMT solver,

then Φ is an invariant of the composed system.
The principle of the rule is graphically illustrated in Figure 6 for two com-

ponents C1, C2 assuming that each dimension corresponds to the state space
of each component. Component invariants define restrictions represented as a
vertical and a horizontal strip. The intersection of component invariants is a
rectangular area including all the states of the Cartesian product of the sets of
states meeting each invariant. The restriction induced by interaction invariants
is an oblique strip that removes states of the rectangular area that are forbidden
by the interactions.

As a concrete illustration, let us consider a simple benchmark example from
[11]. The Temperature Control System models the control of the coolant tem-
perature in a reactor tank by moving two independent refrigerating rods. The
goal is to maintain the coolant between the temperatures θm = 100◦C and
θM = 1000◦C. When the temperature reaches its maximum value θM , the tank
must be refrigerated with one of the rods. The temperature rises at a rate

A Theory Agenda for Component-Based Design 425

tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1
t1 := 0

rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2
t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1 Controller Rod2

Fig. 7. Temperature Control System in BIP

vr = 1◦C/s and decreases at rate vd = 2◦C/s. A rod can be moved again only if
T = 3600s has elapsed since the end of its previous movement. If the temperature
of the coolant cannot decrease because there is no available rod, a complete shut-
down is required. A discretised time model of the Temperature Control System
in BIP is provided in Figure 7. The model consists of three atomic components, a
Controller handling the temperature and two components Rod1, Rod2 modelling
the rods. The variable θ within the Controller stores the temperature of the re-
actor. Its evolution depends on the state respectively, at l5 (heating) it increases
by one every time unit and at l6 (cooling) it decreases by 2 every time unit. The
transitions between states depend on the value of θ, as explained earlier. The
Rod1,2 components are identical. The t1,2 variables are discrete clocks measuring
the resting time. They increase by one every time unit. A rod can be used for
cooling only when the resting time is greater than 3600. The Controller and
the Rods are interconnected by five connectors (tick tick1 tick2), (cool cool1),
(cool cool2), (heat rest1), (heat rest2) modelling respectively, the discrete time
progress and the usage/releasing of the rods. In the BIP model, complete shut-
down corresponds to a deadlock situation, henceforth, checking for functional
correctness amounts to checking deadlock-freedom. The invariants computed on
the BIP model are as follows:

ΦController = (at l5 ∧ 100 ≤ θ ≤ 1000) ∨ (at l6 ∧ 100 ≤ θ ≤ 1000)

ΦRod1 = (at l1 ∧ t1 ≥ 0) ∨ (at l2 ∧ t1 ≥ 3600)

ΦRod2 = (at l3 ∧ t2 ≥ 0) ∨ (at l4 ∧ t2 ≥ 3600)

Ψ = (at l2 ∨ at l4 ∨ at l5) ∧ (at l1 ∨ at l3 ∨ at l6)

As explained in [11], deadlock-freedom of BIP models can be characterised as an
invariant state property. For our example, potential deadlocks states include, e.g.

426 J. Sifakis et al.

D1 = (at l1 ∧ t1 < 3600) ∧ (at l3 ∧ t2 < 3600) ∧ (at l6 ∧ θ = 100)

D2 = (at l1 ∧ t1 < 3600) ∧ (at l3 ∧ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

Proving deadlock-freedom amounts to checking that no states within D1 or D2

are reachable, or equivalently, that both Φ1 = ¬D1 and Φ2 = ¬D2 are invariants.
Using a SAT solver it can be checked that the following assertion holds

(ΦController ∧ ΦRod1 ∧ ΦRod2 ∧ Ψ)⇒ Φ1

therefore Φ1 is a system invariant and all deadlock states within D1 are unreach-
able. But, the implication above does not hold when Φ2 is considered instead of
Φ1. This means that Φ2 cannot be proven invariant and hence deadlock states
in D2 are potentially reachable. In this case, complementary verification tech-
niques, e.g. backward reachability analysis, can be used to confirm/infirm their
reachability in the model.

Table 1 taken from [10] provides an overview of experimental results obtained
for several benchmarks. For the columns: n is the number of BIP components in
the example, q is the total number of control locations, x is the total number of
boolean and integer variables, D provides, when possible, the estimated number
of deadlock configurations, Dc (resp. Dci) is the number of deadlock configura-
tions remaining once component respectively interaction invariants are used and
t is the total time for computing invariants and checking for satisfiability.

Table 1. Checking deadlock-freedom on classical benchmarks

example n q x D Dc Dci t

Temperature Control System (2 rods) 3 6 3 8 5 3 3s
Temperature Control System (4 rods) 5 10 5 32 17 15 6s
Readers-Writer (7000 readers) 7002 14006 1 - - 0 17m27s
Readers-Writer (10000 readers) 10002 20006 1 - - 0 36m10s
Gas station (100 pumps - 1000 customers) 1101 4302 0 - - 0 9m14s
Philosophers (2000 Philos) 4000 10000 0 - - 3 32m14s
Philosophers (3001 Philos) 6001 15005 0 - - 1 54m34s

The original method from [11] has been extended in several directions. In-
cremental extensions, where invariants and properties are established along the
model construction, have been studied in [8,7]. Moreover, it has been combined
with backward reachability analysis and automatic strengthening of invariants
for elimination of false positives [12]. More recently, the method has been ex-
tended to timed models and timed properties [3].

4.2 Property Enforcement—Architectures

Property enforcement consists in applying architectures to restrict the behaviour
of a set of components so that the resulting behaviour meets a given property.

A Theory Agenda for Component-Based Design 427

Depending on the expressiveness of the glue operators, it may be necessary to
use additional components to achieve a coordination to satisfy the property.

Architectures depict design principles, paradigms that can be understood by
all, allow thinking on a higher plane and avoiding low-level mistakes. They are
a means for ensuring global properties characterising the coordination between
components—correctness for free. Using architectures is key to ensuring trust-
worthiness and optimisation in networks, OS, middleware, HW devices etc.

System developers extensively use libraries of reference architectures ensuring
both functional and non-functional properties, for example fault-tolerant archi-
tectures, architectures for resource management and QoS control, time-triggered
architectures, security architectures and adaptive architectures. The proposed
definition is general and can be applied not only to hardware or software archi-
tectures but also to protocols, distributed algorithms, schedulers, etc.

An architecture is a partial operator A : Cn → C, imposing a characteristic
property Φ and defined by a glue operator gl and a set of coordinating compo-
nents D, such that:

– A transforms a set of components C1, . . . , Cn into a composite component
A[C1, . . . , Cn] = gl(C1, . . . , Cn,D);

– A[C1, . . . , Cn] meets the characteristic property Φ.

An architecture is a solution to a coordination problem specified by Φ, using
a particular set of interactions specified by gl. It is a partial operator, since the
interactions of gl should match actions of the composed components.

Application and platform restrictions entail reduced expressiveness of the glue
operator gl that must be compensated by using the additional set of components
D for coordination. For instance, glue operators defined by connectors (cf. Sec-
tions 3.1–3.3) are memoryless. Hence, they can only be used to impose state
properties. Imposing more complex safety properties requires additional coordi-
nation behaviour. Similarly, for distributed architectures, interactions are point-
to-point by asynchronous message passing. Synchronisation among the compo-
nents is achieved by stateful protocols.

The characteristic property assigns a meaning to the architecture that can be
informally understood without the need for explicit formalisation (e.g. mutual
exclusion, scheduling policy, clock synchronisation).

In addition to imposing the characteristic property, an architecture must pre-
serve essential properties of the composed components. In particular, any invari-
ant of a component Ci must be an invariant of A[C1, . . . , Cn]. In Section 4.3, we
provide results about preservation of safety and liveness properties by architec-
ture composition. Since there exists a unary identity architecture, which does not
modify the behaviour of its operand, preservation of properties by architectures
follows from that by architecture composition.

Architectures should, in principle, preserve deadlock-freedom: if components
Ci are deadlock-free then A[C1, . . . , Cn] should be deadlock-free too. However, in
general, preservation of deadlock-freedom cannot be guaranteed by construction,
since architectures restrict the behaviour of components they are applied to.

428 J. Sifakis et al.

Instead, deadlock-freedom has to be verified a posteriori using techniques such
as the one presented in Section 4.1.

4.3 Property Composability

In a design process it is often necessary to combine more than one architectural
solution on a set of components to achieve a global property. System engineers
use libraries of solutions to specific problems and they need methods for com-
bining them without jeopardising their characteristic properties.

For example, a fault-tolerant architecture combines a set of features building
protections against trustworthiness violations. These include 1) triple modular
redundancy mechanisms ensuring continuous operation in case of single com-
ponent failure; 2) hardware checks to be sure that programs use data only in
their defined regions of memory, so that there is no possibility of interference;
3) default to least privilege (least sharing) to enforce file protection. Is it pos-
sible to obtain a single fault-tolerant architecture consistently combining these
features? The key issue here is feature interaction in the integrated solution. Non-
interaction of features is characterised below as property composability based on
our concept of architecture.

Consider two architectures A1, A2, enforcing respectively properties Φ1, Φ2

on components C1, . . . , Cn. That is, A1[C1, . . . , Cn] and A2[C1, . . . , Cn] satisfy
respectively the properties Φ1, Φ2. Is it possible to find an architecture A[C1, . . . ,
Cn] that meets both properties? For instance, if A1 ensures mutual exclusion and
A2 enforces a scheduling policy is it possible to find architectures on the same
set of components that satisfies both properties?

A full, rigorous definition of the notions of architecture and property en-
forcement is provided in [4] alongside a constructive definition of an associative,
commutative and idempotent architecture composition operator ⊕. An architec-
ture is defined as a triple A = (D, PA, γ), where D is a finite set of coordinating
components, PA is a set of ports and γ ⊆ 2PA is an interaction model over
PA. Noticing that the interaction model γ can be represented by the corre-
sponding characteristic predicate ϕγ on variables in PA, the composition of two
architectures A1 = (D1, PA1 , γ1) and A2 = (D2, PA2 , γ2) is defined by putting

A1 ⊕ A2
def
= (D1 ∪ D2, PA1 ∪ PA2 , γ) where γ is such that ϕγ = ϕγ1 ∧ ϕγ2 .

The properties of ⊕ are studied and applied for building correct-by-construction
components incrementally. In particular ⊕ has a neutral element Aid, which is
the most liberal architecture enforcing no coordination constraints.

When applying an architecture A to enforce a property Φ on components
C1, . . . , Cn, the property Φ is expressed in terms of the states of C1, . . . , Cn.
The states of the coordinating components D (see Section 4.2) are irrelevant.
Therefore, we say that an architecture A enforces a property Φ on components
C1, . . . , Cn if the projection of every trace of A[C1, . . . , Cn] onto the state space
of Aid[C1, . . . , Cn] satisfies Φ. In [4], we show that if two architectures A1 and
A2 enforce the respective safety properties Φ1 and Φ2 on components C1, . . . ,
Cn, then A1 ⊕A2 enforces on these components the conjunction Φ1 ∧ Φ2 of the
two properties.

A Theory Agenda for Component-Based Design 429

C1

f1b1

sleep

work
C2

f2b2

sleep

work

(a)

D12

f12b12

free

taken

(b)

Fig. 8. Components (a) and coordinator (b) for Example 5

Example 5 (Mutual exclusion). Consider the components C1 and C2 in Fig-
ure 8a. In order to ensure mutual exclusion of their work states—Φ12 = (s1 �=
work ∨ s2 �= work), where s1 and s2 are, respectively, state variables of C1 and
C2—we apply the architecture A12 consisting of a coordinating component D12,
shown in Figure 8b, and the glue operator defined by the set of interactions and
γ12 = {b1b12, b2b12, f1f12, f2f12} (see Section 2.5).

Assuming that the initial states of C1 and C2 are sleep, and that of D12

is free, neither of the two states (free, work, work) and (taken, work, work) is
reachable, i.e. the mutual exclusion property Φ12 holds in A12[C1, C2].

Let C3 be a third component, similar to C1 and C2, with the set of ports
{b3, f3}. We define two additional architectures A13 and A23 similar to A12: they
consist, respectively, of coordinating components D13 and D23, which, up to the
renaming of ports, are the same as D12 in Figure 8b, γ13 = {b1b13, b3b13, f1f13,
f3f13} and γ23 = {b2b23, b3b23, f2f23, f3f23}. As above, A13 and A23 enforce
on A13[C1, C3] and A23[C2, C3], respectively, the mutual exclusion properties
Φ13 = (s1 �= work ∨ s3 �= work) and Φ23 = (s2 �= work ∨ s3 �= work). The
composition of the three architectures A12 ⊕ A13 ⊕ A23, imposing the mutual
exclusion property Φ12∧Φ13∧Φ23 = (s1 �= work∧s2 �= work)∨(s2 �= work∧s3 �=
work) ∨ (s1 �= work ∧ s3 �= work) on the three components C1, C2 and C3, is
given by the set of coordinating components {D12, D13, D23} and the set of
interactions γ = {b1b12b13, f1f12f13, b2b12b23, f2f12f23, b3b13b23, f3f13f23} (see
[4] for details). ��

One can define a canonical lattice on the set of architectures. The lattice is
induced by the partial order relation <, defined by putting A1 < A2 if and only
if A1 ⊕A2

∼= A1. The neutral architecture Aid is the top element of the lattice;
the bottom element is the “blocking” architecture, inhibiting all actions of the
components, thus leading to a global deadlock.3 The composition A1 ⊕ A2 is
then the greatest lower bound of A1 and A2 with respect to <. It represents the
most liberal architecture enforcing both Φ1 and Φ2.

In the above setting, interfering features of a system are translated as contra-
dictory properties. For example, the following two features can be required from
an elevator cabin [23,37]:

3 A deadlocked system trivially satisfies all safety properties.

430 J. Sifakis et al.

1. If the elevator is full, it must stop only at floors selected from the cabin and
ignore outside calls.

2. Requests from the second floor have priority over all other requests.

Clearly these two requirements are contradictory, since they cannot be jointly
satisfied when the elevator is called from the second floor while it is full. Applying
the composition of two architectures enforcing respectively these two properties
on the components forming the elevator cabin would generate deadlocks.

Thus, although architecture composition ⊕ preserves safety properties, it does
not preserve deadlock-freedom. Deadlock-freedom can be compositionally veri-
fied by techniques such as the one presented in Section 4.1.

The treatment of liveness properties is based on the idea that each coordina-
tor must be “invoked sufficiently often” for the corresponding liveness properties
to be imposed on the system as a whole. For each coordinator, one designates
the set of its “idle states”. It is then required that each coordinator be executed
infinitely often, unless, from some point on, it remains forever in an idle state [4].
In [4], it is shown that this notion of liveness is preserved by the composition
of architectures, provided that the composed system is deadlock-free and the
composed architectures are pairwise non-interfering in the following sense. Ar-
chitecture A1 is non-interfering w.r.t. architecture A2 and a set of components
C1, . . . , Cn, if each path in (A1 ⊕A2)[C1, . . . , Cn], which executes transitions of
the coordinators of A1 infinitely often, either executes transitions of the coordi-
nators of A2 or visits their idle states infinitely often.4

Example 6. Consider the system (A12⊕A23⊕A13)[C1, C2, C3], as in Example 5.
Let each coordinator have a single idle state free. Consider the applications of
each pair of coordinators, i.e. (A12⊕A23)[C1, C2, C3], (A23⊕A13)[C1, C2, C3] and
(A12 ⊕A13)[C1, C2, C3]. For (A12 ⊕A23)[C1, C2, C3], we observe that along any
infinite path, either D12 executes infinitely often, or remains forever in its idle
state after some point. Hence, A23 is non-interfering w.r.t. A12 and C1, C2, C3.
Likewise for the five other ordered pairs of coordinators. It can be verified that
(A12 ⊕A23 ⊕ A13)[C1, C2, C3] is deadlock-free. Hence, we conclude that (A12 ⊕
A23 ⊕A13) is live. ��

Thus, verifying liveness in a composed system is reduced to checking the
deadlock-freedom and pairwise non-interference of architectures, both of which
can be performed compositionally.

To put the above vision for correctness into practice, we need to develop a
repository of reference architectures. The repository should classify existing ar-
chitectures according to their characteristic properties. There exists a plethora
of results on distributed algorithms, protocols, and scheduling algorithms. Most
of these results focus on principles of solutions and discard essential operational
details. Their correctness is usually established by assume/guarantee reasoning:
a characteristic global property is implied from properties of the integrated com-
ponents. This is enough to validate the principle but does not entail correctness

4 Notice that the “non-interference w.r.t.” relation is not commutative.

A Theory Agenda for Component-Based Design 431

of particular implementations. Often, these principles of solutions do not spec-
ify concrete coordination mechanisms (e.g. in terms of operational semantics),
and ignore physical resources such as time, memory and energy. The reference
architectures included in the repository, should be

– described as executable models in the chosen component framework;
– proven correct with respect to their characteristic properties;
– characterised in terms of performance, efficiency and other essential non-

functional properties.

For enhanced reuse, reference architectures should be classified according to
their characteristic properties. A list of these properties can be established;
for instance, architectures for mutual exclusion, time-triggered, security, fault-
tolerance, clock synchronisation, adaptive, scheduling, etc. Is it possible to find
a taxonomy induced by a hierarchy of characteristic properties? Moreover, is it
possible to determine a minimal set of basic properties and corresponding archi-
tectural solutions from which more general properties and their corresponding
architectures can be obtained?

The example of the decomposition of fault-tolerant architectures into basic
features can be applied to other architectures. Time-triggered architectures usu-
ally combine a clock synchronisation algorithm and a leader election algorithm.
Security architectures integrate a variety of mitigation mechanisms for intru-
sion detection, intrusion protection, sampling, embedded cryptography, integrity
checking, etc. Communication protocols combine sets of algorithms for signalling,
authentication and error detection/correction. Is it possible to obtain by incre-
mental composition of features and their characteristic properties, architectural
solutions that meet given global properties? This is an open problem whose so-
lution would greatly enhance our capability to develop systems that are correct-
by-construction and integrate only the features needed for a target characteristic
property.

5 Architecture Specification

So far we have focused on modelling component-based systems and on methods
for proving their behavioural correctness. In this section, we study logics for the
specification of properties of architectures. Notice that the presented architec-
ture modelling adopts an imperative description style: the coordination between
components is given by a set of connectors. No interaction is allowed except
the ones specified by connectors. In contrast, logics adopt a declarative style. A
logical specification is the conjunction of formulas; its meaning is the set of the
models belonging to the intersection of the meanings of the formulas. Conse-
quently, logical specifications characterise not a single model but a set of models
that may be empty. In the latter case, the specification is inconsistent.

Typically, an architecture defines a set of interactions between types of com-
ponents. On the contrary, a class of architectures, what is usually called an
architecture style, is represented by a set of congurations. We propose two types

432 J. Sifakis et al.

of logics for architectures: 1) Interaction logics to specify a particular architec-
ture as the set of the allowed interactions; 2) Configuration logics to specify
families of architectures as the set of the allowed configurations of interactions.

Configurations are defined as follows. Given a set of ports P an interaction a
is a subset of P ; there exist 2|P | interactions on P . A configuration is a set of
interactions a1, . . . , an represented by a term of the form a1 + · · ·+ an where +
is an associative commutative and idempotent operator. Notice that there exist

22
|P |

configurations on the alphabet P . For instance, if P = {p, q} then the set
of non-empty interactions is {p, q, pq} and the set of non-empty configurations
is {p, q, pq, p+ q, pq + p, pq + q, pq + p+ q}.

For example, it is shown in the next subsection that the dynamic Master/Slave
architecture presented in Section 3.3 can be specified in Interaction Logic. The
class of Master/Slave architectures can be characterized by a formula of the
configuration logic that specifies all the allowed configurations of interactions
involving some master and slaves.

5.1 Interaction Logics

Let P be an alphabet of ports. The set of the formulas of the propositional
interaction logic PIL(P) is defined by the syntax:

f ::= true | p ∈ P | f ∧ f | f . (17)

The models of the logic are interactions a on P . The semantics defined by the

following satisfaction relation
i|=.

a
i|= true, for any a,

a
i|= p, if p ∈ a,

a
i|= f1 ∧ f2, if (a

i|= f1) ∧ (a
i|= f2),

a
i|= f, if (a

i|= f) does not hold.

We use the logical connectives ∨ and ⇒ with the usual meaning. Notice that
the formulas of the logic can be put in the form of the disjunction of monomials∧

p∈I p ∧
∧

p∈J p, such that I ∩ J = ∅. An interaction a is characterised by the
monomial

∧
p∈a p ∧

∧
p�∈a p. Propositional interaction logic has been extensively

studied in [16] where it is shown that it can provide a basis for the efficient
representation of connectors. For example, the interaction between p1, p2 and p3
is defined by the formula f1 = (p1 ⇒ p2)∧(p2 ⇒ p3)∧(p3 ⇒ p1). Broadcast from
a sending port s towards receiving ports r1 and r2 is defined by the formula f2 =
(p1 ⇒ s)∧ (p2 ⇒ s). Notice that the non-empty solutions are the interactions s,
sp1, sp2, sp1p2.

In [19], we have shown that PIL(P) can be extended into a first order logic
to represent architectures built from arbitrary numbers of components, instanti-
ating a finite number of component types. We present a slightly different version

A Theory Agenda for Component-Based Design 433

of this logic. As in [19], we assume that system specifications are built using
arbitrary numbers of typed components. The type T of a component defines its
set of ports and associated exported variables. Furthermore, we consider a set
of component variables ci with associated component types T . The fact that
the component variable ci is of type T is denoted by ci : T . The syntax of the
formulas of the first order interaction logic is defined by:

f ::= true | c.p | c = c′ | f ∧ f | f | ∀c :T.f , (18)

where c and c′ are component variables.
In this definition, T denotes a component type. Each component type repre-

sents a set of component instances with identical interface and behaviour. The
variables c and c′ range over component instances. They are strongly typed and,
moreover, they can be tested for equality. The semantics of the logic can be
derived from the semantics of the propositional logic as follows.

A formula of the logic defines the set of the interactions of a system built from
known instances of typed components. Quantifiers can be eliminated by using
the identity: ∀c :T.F (c) ≡ F (t1)∧· · ·∧F (tk), where t1, . . . , tk are the instances of
components of type T in the model. After quantifier elimination, we get a formula
of the propositional logic. This logic can be used to specify dynamic architectures.
For instance the formula ∀c :Sender.∃c′ :Receiver.(c.send ∧ c′.receive), means
that for any Sender there exists a Receiver such that their ports send and
receive, respectively, interact. Relevant specification examples using this logic
are provided in [19]. Furthermore, it is shown that for a given model the specified
interactions can be computed efficiently by using a symbolic representation.

We provide logical specifications for the architecture of the Master-Slave ex-
ample already seen in Section 3.3. Following the approach in [19], we introduce
some additional notations that prove to be very useful for writing specifications:

Y.p requires R.q ≡ ∀c : Y. ∃c′ : R. (c.p⇒ c′.q)

(every p port requires a q port for interaction)

Y.p accepts R.q ≡ ∀c : Y.
∧

(T,r) �=(R,q)

∀c′ : T.((c.p �= c′.r)⇒ c′.r)

(every p port can only interact with q ports)

unique Y.p ≡ ∀c : Y. ∀c′ : Y.(c.p ∧ c′.p⇒ c = c′)

(no interaction between ports p)

Using the above abbreviations the architecture of the Master-Slave example is
described by the following interaction logic formula:

(M.req requires S.get) ∧ (M.req accepts S.get) ∧ (unique S.get)

(S.get requires M.req) ∧ (S.get accepts M.req) ∧ (unique M.req)

(M.comp requires S.work) ∧ (M.comp accepts S.work)

(S.work requires M.comp) ∧ (S.work accepts M.comp) ∧ (unique M.comp)

434 J. Sifakis et al.

Notice the difference in the description styles for the same example. When con-
nectors are used, the style is imperative. The set of the interactions is constructed
by enumerating connectors. When formulas are used, the style is declarative. The
set of the interactions is in the intersection of the meanings of formulas which
express constraints on the interactions required and accepted by each compo-
nent. It has been shown that the two approaches are equivalent as long as we
deal with interactions without data transfer. The association of computation
and data transfer with formulas is not as natural as for connectors and raises
methodological and technical issues.

The two styles correspond to two different approaches for eliciting architec-
tural knowledge [22]. One is bottom-up and is adopted for building architectural
models in various architecture description languages [28]. The other is top-down
and is used to capture essential dependencies between features.

5.2 Configuration Logics

Let P be an alphabet on ports. The set of the formulas of the propositional
configuration logic PCL(P) is defined by the syntax:

f ::= true |m ∈ PIL(P) | f ∧ f | ¬f | f + f , (19)

where m is a monomial of the interaction logic.
The models of the logic are configurations γ on P , of the form γ = a1+· · ·+an

where the ai’s are interactions on P . The semantics is defined by the satisfaction
relation |=.

γ = a1 + · · ·+ an |= m, if, for each ai, ai
i|= m,

γ = a1 + · · ·+ an |= f1 + f2, if, for each ai, (ai |= f1) or (ai |= f2) ,

where m is a monomial of the interaction logic. For logical constants and con-
nectives we take the standard meaning.

Notice the overloading of the + operator. The meaning of the formula f1+f2 is
the set of the configurations obtained by combining some configuration satisfying
f1 with some configuration satisfying f2. In particular, we have the property:
f1 + (f2 ∨ f3) = (f1 + f2) ∨ (f1 + f3).

A simple example illustrates the expressive power of this logic. Let P =
{p, q, r, s} be an alphabet of ports. The monomial p ∧ q ∧ r specifies, in the
interaction logic, the set of interactions pq and pqs. In the configuration logic, it
specifies the set of configurations pq, pqs and pq+pqs. The formula p∧q∧r+true

characterises all the configurations of the form γ = γ1 + γ2, where γ1 satisfies
p∧ q ∧ r and γ2 is an arbitrary configuration. Notice, in particular, that true is
not an absorbing element for +. Hence, γ1 cannot be empty.

In general, a formula of the form f + true characterises all the configurations
comprising the configurations satisfying f . This type of formulas is particularly
useful for writing specifications. We write ∼f = f + true for any formula f
of the logic. The operator ∼ is idempotent and satisfies the following property:
∼f∧ ∼g = ∼(f + g) for any formulas f and g.

A Theory Agenda for Component-Based Design 435

We extend PCL(P) into a second order logic. We assume that system models
are built using arbitrary numbers of typed components. The type T of a com-
ponent defines its set of ports and associated exported variables. We consider a
set of component variables ci with an associated component type T . The fact
that the component variable ci is of type T is denoted by ci :T . Furthermore, we
consider a set of variables Ui ranging over sets of components. This set includes
a particular variable U representing the set of all the components of a model.
We also adopt the notation Ui : T to signify that all components in the set Ui

are of type T .
The syntax of the second order configuration logic formulas is defined by:

f ::= true |m ∈ PIL(P) | c = c′ | c ∈ U |U ⊆ U ′ |
f ∧ f | ¬f | f + f | ∀U :T.f | ∀c :T.f , (20)

where m is a monomial, c, c′ are component variables and U , U ′ are variables
over sets of components.

The semantics can be derived from the semantics of the propositional logic.
For a given model γ(C1, . . . , Cn), quantifiers can be eliminated in a formula to
obtain a formula of the propositional logic.

The specification of a ring architecture composed of components c :T having
ports c.in and c.out is the conjunction of the following formulas:

∀c :T.∃c′ :T ∼(c.out = c′.in) ∧ ∀c′′ :T (c′ �= c′′).¬ ∼(c.out = c′′.in) , (21)

∀c :T.∃c′ :T ∼(c.in = c′.out) ∧ ∀c′′ :T (c′ �= c′′).¬ ∼(c.in = c′′.out) , (22)

∀U ′ :T (U ′ �= U).∃c ∈ U ′, c′ ∈ U \ U ′. ∼(c.out = c′.in) . (23)

Formula (21) characterises all the configurations such that each output port
c.out of a component c is connected to some input port c.in of some other
component c′ and explicitly excludes connections of c.out with input ports of
components other than c′. Formula (22) requires symmetrically connectivity of
each input port to a single output port. The two formulas guarantee cyclical
connectivity. Formula (23) requires that there exists a single (maximal) cycle. It
says that any subset U ′ of components of the universal set U has a component
that is connected to some component of its complement.

A comparison between the ring architecture model given in Section 3.3 and
the above logical specification shows significant differences in both the style of
expression (imperative vs. declarative) and the basic connectivity concepts. The
model does not allow other configurations than the ones explicitly specified.
Logical specifications characterise configurations that include token ring archi-
tectures without excluding other compatible connectivity properties.

6 Conclusion

The paper discusses research issues related to the design of component-based
systems by distinguishing three main problems. The first problem is modelling

436 J. Sifakis et al.

composite components as the composition of atomic components characterised
by their interface and behaviour. We propose a general framework for component
composition and study expressiveness of families of operators. For universal ex-
pressiveness, it is necessary to combine multiparty interaction and priorities. We
propose the concept of connector as a means for structuring interaction between
components. So far, static connectors and their properties have been thoroughly
studied. We present an extension for the description of dynamic connectors that
needs to be further studied and validated through application.

The second problem is achieving correctness of component-based systems by
application of scalable techniques. We identify two possible avenues. One re-
lies on compositionality principles and proceeds by analysis of the composed
components and their coordination. The other relies on enforcement of specific
properties. A key problem in the application of this approach is composability:
how to obtain a system meeting a given global property by composing archi-
tectures meeting specific properties? Existing results limit both approaches to
particular classes of properties, e.g. deadlock-freedom and state invariants. We
believe that a significant research effort is needed to overcome these limitations.

The third problem is using logics to characterise architectures and their prop-
erties. We show that two types of logics are needed for this purpose. Interaction
logics characterise the possible interactions of a system, that is of a particular
architecture. These logics have been studied to a large extent and applied in
the BIP framework. In contrast, configuration logics can be used to characterise
families of architectures, e.g. architecture styles. They are languages used for a
feature-oriented analysis of architectures, such as OCL [27]. The relationships
between configuration logic and other approaches for the description of architec-
tures styles [1,29,30,32] need to be investigated.

The paper clearly distinguishes between architecture models and two types
of logic-based specification formalisms. It also establishes links between the two
types of description through satisfaction relations. Table 2 depicts the main
characteristics of each formalism and significant differences.

Table 2. Architectures and Architectural Properties

Formalism
features

Architecture
Modeling
Connectors
(Imperative)

Architecture
Modeling
Interaction Logics
(Declarative)

Architecture Styles
Specification -
Configuration Logics

Fixed set of
components and
connectors

Static connectors
I(P)
[g(XP):XP :=f(XP)]

Propositional
interaction logic,
e.g. causality rules

Propositional
configuration logic,
e.g. connectivity
primitives ≈a and ∼a

Typed components;
variables over
components

Generic connectors First-order
interaction logic,
e.g. Dy-BIP

First-order
configuration logic

Variables over
sets of components

Dynamic connectors Second-order
interaction logic

Second-order
configuration logic

A Theory Agenda for Component-Based Design 437

Interestingly, static models correspond to propositional logics, while dynamic
models to higher order logics. Both dynamic models and higher order logics
share the same basic concepts, e.g. they are defined on a set of typed compo-
nents by using variables ranging over components and sets of components. Notice
that component variables are needed to describe generic models and proper-
ties, while variables over sets of components are needed to describe dynamic
creation/deletion and dynamic configurations. These similarities should allow
a tight comparison of the three proposed formalisms, that needs to be further
investigated.

References

1. Allen, R.B., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382,
pp. 21–37. Springer, Heidelberg (1998)

2. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

3. Aştefănoaei, L., Ben Rayana, S., Bensalem, S., Bozga, M., Combaz, J.: Compo-
sitional invariant generation for timed systems. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 263–278. Springer, Heidelberg
(2014)

4. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework for
architecture composability. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014.
LNCS, vol. 8702, pp. 128–143. Springer, Heidelberg (2014)

5. Baranov, E., Bliudze, S.: Offer semantics: Achieving compositionality, flattening
and full expressiveness for the glue operators in BIP. Technical Report EPFL-
REPORT-203507, EPFL IC IIF RiSD (November 2014),
http://infoscience.epfl.ch/record/203507.

6. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: 4th IEEE International Conference on Software Engineering and Formal
Methods (SEFM), pp. 3–12. IEEE Computer Society (2006)

7. Bensalem, S., Bozga, M., Boyer, B., Legay, A.: Incremental generation of linear
invariants for component-based systems. In: 13th International Conference on Ap-
plication of Concurrency to System Design (ACSD), pp. 80–89. IEEE (2013)

8. Bensalem, S., Bozga, M., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.: Incre-
mental component-based construction and verification using invariants. In: Bloem,
R., Sharygina, N. (eds.) 10th International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pp. 257–256. IEEE (2010)

9. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-finder: A tool for compo-
sitional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

10. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: Compositional verification for
component-based systems and application. IET Software 4(3), 181–193 (2010)

11. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional verification for
component-based systems and application. In: Cha, S(S.), Choi, J.-Y., Kim, M.,
Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer,
Heidelberg (2008)

http://infoscience.epfl.ch/record/203507

438 J. Sifakis et al.

12. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Peled, D.: Efficient dead-
lock detection for concurrent systems. In: Singh, S., Jobstmann, B., Kishinevsky,
M., Brandt, J. (eds.) 9th IEEE/ACM International Conference on Formal Methods
and Models for Codesign (MEMOCODE), pp. 119–129. IEEE (2011)

13. Bliudze, S.: Towards a theory of glue. In: Carbone, M., Lanese, I., Silva, A.,
Sokolova, A. (eds.) 5th International Conference on Interaction and Concurrency
Experience (ICE). EPTCS, vol. 104, pp. 48–66 (2012)

14. Bliudze, S., Sifakis, J.: The algebra of connectors — Structuring interaction in BIP.
In: 7th ACM& IEEE International Conference on Embedded Software (EMSOFT),
pp. 11–20. ACM SigBED (2007)

15. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508–522. Springer, Heidelberg (2008)

16. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal
Methods in System Design 36(2), 167–194 (2010)

17. Bliudze, S., Sifakis, J., Bozga, M., Jaber, M.: Architecture internalisation in BIP.
In: Proceedings of The 17th International ACM Sigsoft Symposium on Component-
Based Software Engineering (CBSE), pp. 169–178. ACM (July 2014)

18. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level
component-based models to distributed implementations. In: 10th ACM Interna-
tional Conference on Embedded Software (EMSOFT), pp. 209–218. ACM, New
York (2010)

19. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using
dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS,
vol. 7306, pp. 1–16. Springer, Heidelberg (2012)

20. Bozga, M., Jaber, M., Sifakis, J.: Source-to-source architecture transformation for
performance optimization in BIP. In: IEEE International Symposium on Industrial
Embedded Systems (SIES), pp. 152–160 (July 2009)

21. Bruni, R., Melgratti, H., Montanari, U.: Behaviour, interaction and dynamics. In:
Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS,
vol. 8373, pp. 382–401. Springer, Heidelberg (2014)

22. Dhungana, D., Rabiser, R., Grünbacher, P., Prähofer, H., Federspiel, C., Lehner,
K.: Architectural knowledge in product line engineering: An industrial case study.
In: 32nd EUROMICRO Conference on Software Engineering and Advanced Appli-
cations (EUROMICRO-SEAA), pp. 186–197. IEEE (2006)

23. D’Souza, D., Gopinathan, M.: Conflict-tolerant features. In: Gupta, A., Malik, S.
(eds.) CAV 2008. LNCS, vol. 5123, pp. 227–239. Springer, Heidelberg (2008)

24. Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs,
S., Xiong, Y.: Taming heterogeneity—The Ptolemy approach. Proceedings of the
IEEE 91(1), 127–144 (2003)

25. Fares, E., Bodeveix, J.-P., Filali, M.: Event algebra for transition systems compo-
sition - application to timed automata. In: Sánchez, C., Venable, K.B., Zimányi, E.
(eds.) 20th International Symposium on Temporal Representation and Reasoning
(TIME), pp. 125–132 (September 2013)

26. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
Series in Computer Science. Prentice Hall (April 1985)

27. ISO/IEC. Information technology – Object Management Group – Object Con-
straint Language (OCL). Technical Report ISO/IEC 19507, ISO, Object Manage-
ment Group (2012)

28. ISO/IEC/IEEE. Systems and software engineering – Architecture description.
Technical Report ISO/IEC/IEEE 42010, ISO (2011)

A Theory Agenda for Component-Based Design 439

29. Koehler, C., Lazovik, A., Arbab, F.: Connector rewriting with high-level replace-
ment systems. Electr. Notes Theor. Comput. Sci. 194(4), 77–92 (2008)

30. Kumar, A.: Software architecture styles a survey. International Journal of Com-
puter Applications 87(9) (2014)

31. Lustig, Y., Vardi, M.: Synthesis from component libraries. International Journal
on Software Tools for Technology Transfer 15(5-6), 603–618 (2013)

32. Metayer, D.L.: Describing software architecture styles using graph grammars. IEEE
Trans. Software Eng. 24(7), 521–533 (1998)

33. Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Sci-
ence 25(3), 267–310 (1983)

34. Milner, R.: Communication and Concurrency. Prentice Hall International Series in
Computer Science. Prentice-Hall (1989)

35. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press (1999)

36. Papadopoulos, G.A., Arbab, F.: Configuration and dynamic reconfiguration of
components using the coordination paradigm. Future Generation Computer Sys-
tems 17, 1023–1038 (2001)

37. Plath, M., Ryan, M.: Feature integration using a feature construct. Science of
Computer Programming 41(1), 53–84 (2001)

38. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

Effective and Efficient Model Clone Detection

Harald Störrle

Department of Applied Mathematics and Computer Science
Technical University of Denmark (DTU)

hsto@dtu.dk

Abstract. Code clones are a major source of software defects. Thus, it
is likely that model clones (i.e., duplicate fragments of models) have a
significant negative impact on model quality, and thus, on any software
created based on those models, irrespective of whether the software is
generated fully automatically (“MDD-style”) or hand-crafted following
the blueprint defined by the model (“MBSD-style”). Unfortunately, how-
ever, model clones are much less well studied than code clones. In this
paper, we present a clone detection algorithm for UML domain models.
Our approach covers a much greater variety of model types than existing
approaches while providing high clone detection rates at high speed.

1 Introduction

Code clones (i.e., duplicate fragments of source code), have been identified as
“a major source of faults, which means that cloning can be a substantial prob-
lem during development and maintenance” (cf. [8, p. 494]). As a consequence, a
large body of research has been developed on how to prevent, or spot and elim-
inate code clones (see [12] and [21] for surveys). The problem with code clones
is that they are linked only by their similarity, i.e., implicitly rather than explic-
itly which makes it difficult to detect them. Therefore, changes like upgrades or
patches that are often meant to affect all clones in a similar way, are frequently
not applied to all of them uniformly. Therefore, code quality deteriorates, and
maintenance becomes more costly and/or error prone. Jürgens et al. report that
“nearly every second unintentionally inconsistent change to a clone leads to a
fault ” (cf. [8, p. 494]). Experiences with large-scale models suggest that the phe-
nomenon of clones arises in models in a very similar way to how it does in source
code. Deißenböck et al. even consider it “obvious [that] the same [clone-related]
problems also occur [. . .] in model-based development ” (cf. [5, p. 57]). Conse-
quently, the issue of clones has to be addressed for models, too: “detecting clones
in models plays the same important role as in traditional software development”
to use the words of Pham et al. [18, p. 276]. Observe that it is irrelevant whether
the models are used as the primary specification of a system, where production
quality code is to be generated from models only (as is frequently the case in
the automotive industry), or whether models are used in a more liberal way,
informing the software creation process rather than dictating it, as is the case
for more traditional domain models.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 440–457, 2015.
c© Springer International Publishing Switzerland 2015

Effective and Efficient Model Clone Detection 441

1.1 Approach

In [23], we have studied the origins of model clones, derived a formal definition of
model clones, and developed an algorithm for detecting them. Our approach was
the first to address all of UML’s 14 sub-languages rather than just a single model
or diagram type, and so it is not surprising that it left room for improvement
in terms of clone detection quality. In this article, we propose a modified algo-
rithm and new similarity heuristics that improve on our previous results, while
maintaining its generality. We also validate our approach far better, including 3
new case studies, and a field test.

1.2 Historical Background

As a young PhD-student under the tutelage of Martin, the author participated in
the first UML-conference in Mulhouse. There was a great amount of enthusiasm
about an important emerging topic, both in academia and industry, and the
excitement spread over to Martin’s chair, which of course was in a prime position
to pick up the trend. Soon, many people at LMU worked on UML, and to this
day, it is an important facet of the work done there.

One of the reasons why academia (and many formal-methods-inspired re-
searchers in particular) picked up UML so readily is that it could be viewed as a
visual front end to formal methods which had been less than popular with indus-
try. UML, many researchers hoped, might be a way to bring formal methods to
practice in a way that is easier to use. In fact, the author, in a fit of juvenile ex-
citement, proclaimed that it had to be so easy as to push the proverbial button.
While Martin was wise enough never to subscribe to the push-button bench-
mark, he was always keen on finding novel ways to improve software quality, one
of them being presented here.

1.3 Paper Outline

The remainder of this article is structured as follows. In the next Section, we
define the notion of model clone, and provide a taxonomy of clone types. In
Section 3 we introduce an algorithm for clone detection and the model fragment
similarity heuristics used at its core. In Section 5 we evaluate the effectiveness
of our approach, and compare it to the related work in Section 6. Finally, we
summarize our approach and draw conclusions.

2 Defining Model Clones

Probably the biggest problem in model clone detection is defining exactly what
a model clone is—just as for code clones (cf. [9]). Fig. 1 shows a small part of
a domain model of the “Library Management System” case study (LMS) which
we use as our standard research object. The figure shows a part of the LMS

442 H. Störrle

information model with two Packages.1 Fig. 1 shows two alternative views of
the models: two class diagrams on the left, and the containment tree on the
right. Most UML modeling tools today will allow several visual representations
of the same model element, such as the Class “Reservation”: it appears in both
diagrams but exists only once in the containment tree. Thus, it is not a clone, but
just one element appearing in two views. On the other hand, the Class “Book”
occurs twice in the containment tree (highlighted by the red arrows). Looking
closer, we analyze how similar the two model elements are. Assume that in this
case, we find that they are identical in all but their internal identifier, so this
model element is certainly a duplicate model fragment, i.e., a model clone. This
kind of clone arises frequently in practical modeling, typically as a consequence
of restructuring models, or from combining independent contributions that are
not properly synchronized.

Requiring duplicate model fragments to be identical is clearly no adequate
definition for the notion of “model clone”. Instead, we propose to define a model
clone as a set of model fragments each of which is closed under the containment-
relationship and that have a high degree of similarity. Observe that this definition
includes clones of all sizes, from individual elements via larger sets of model
elements like a Property to large Packages containing entire subsystems. In order
to refine this definition, we propose a taxonomy of model clone types. For code
clone detection, there is a commonly accepted taxonomy of four types (see e.g.
[12,21,26]). It can be generalized and adapted to accommodate our observations
of natural model clones, as follows.

– Type A: Exact model clones are identical up to secondary notation and
internal identifiers.

– Type B: Modified model clones may have small changes to names (e.g.,
typos) and other values, plus few additions/removals of parts.

– Type C: Renamed model clones may have any change to names, at-
tributes, and parts, plus many additions/removals of attributes and parts.

– Type D: Semantic model clones are duplicates in content arising, e.g.,
from convergent modeling.

Formal definitions of the notions model, submodel, and clone are found in
[23]. Orthogonal to the classification of the kind and degree of changes, model
clones can also be classified in other ways.

– Secondary clones are pairs of duplicate model elements that satisfy the
definition of a clone, but are each parts of larger model fragments, which
in turn are clones of each other. For instance, the Class “Book” in the first
example is a primary clone, and the Property “author” is a secondary clone.

– Loophole clones are duplicates introduced through idiosyncrasies of the
modeling language. For instance, any two Activities that refer to the same
data item will contain identical copies of a DataFlowNode, because the struc-
ture of the UML meta model forces these elements to be contained in an Ac-
tivity rather than existing on their own. The modeler has no choice but to

1 We adopt the UML convention of using CamelCaps for UML meta classes.

Effective and Efficient Model Clone Detection 443

create such duplicates. In another modeling language (or in a future version
of UML), they might not occur.

Both secondary and loophole clones will be among the detected clone candi-
dates, and they may score substantially higher than actual clones, so they are
presented before those clone candidates that, arguably, a modeler would expect
to be presented first. Clearly, this depends on the similarity measure. For sec-
ondary clones, this is easily solved: out of a set of clones that can be (partially)
ordered by containment, select only the largest one. But observe that loophole
clones can be bigger than true clones. For instance, ActivityPartitions often con-
tain many more elements than Properties, or even Classes. This is a substantial
obstacle in similarity scoring, and thus in clone detection.

CD Catalog

CD Lending

Lease

Medium

Book

DVD

1

getMedium() : Medium

lent: date
\due: date

type: String

*

reserver: Reader
issued: Date

Book

rec_age: Integer
state: State
signature: String

queue

copy

reserved by

1
{ordered}

{ordered}
*

 LMS Model

 Reader Class
 Lease Class

 <anonymous>
 <anonymous>

 <anonymous>

 Medium Class

 <anonymous>
 <anonymous>
 DVD Class
 <anonymous>

res_med

Fig. 1. Duplicate occurrence in diagrams does not constitute a clone (left, class “Reser-
vation”); duplicates in the containment tree may be model clones (right, class “Book”)

444 H. Störrle

3 Detecting Model Clones

The starting point of the work reported here is the model clone detection algo-
rithm N2 [23]. We now describe its shortcomings and how we overcome them,
resulting in the new algorithm NWS. The improvements are based on (a) the
detailed analysis of the algorithms’ outputs for a great number of samples, and
(b) the systematic exploration of a large number of alternative improvements
and settings. We describe the various improvement steps from N2 to NWS.

The basic idea for detecting model clones is straightforward: (1) generate a set
of (possibly) matching pairs of model fragments, (2) compute the similarity of
each pair, and (3) select those pairs with the highest similarity. The problem with
this approach is that, clearly, a model with n elements has up to 2n fragments,
so that naively matching all pairs of fragments would result in exponential run-
time. We will now discuss the three stages of the algorithm in turn.

3.1 Model Matching

Many previous approaches to model matching have been guided by the intuition
that models are more or less graphs, with the added assumption that a large part
of the model information is encoded in the links between nodes rather than by
the nodes themselves. Following this idea, matching models is essentially finding
a subgraph isomorphism which is known to be NP-complete [3].

We believe that this idea is indeed a valid assumption for Matlab/Simulink
flow models as considered by much of the related work. We have observed, how-
ever, that this intuition does not fit very well with UML models: here, important
aspects of the model information are stored in node attributes, e.g. the element
names. Furthermore, most of the links between nodes (typically about 85%,
see [23]) encode the containment relationship, and thus play a different role.
Therefore, looking at models as graphs is somewhat misleading in the case of
UML. Instead, we propose to look at models as sets of rich nodes owning small
trees, and consider the link structure only in a second step. Considering only the
containment structure, on the other hand (as is the case with XML-matching),
would leave out the semantic information stored in the graph-structure. Also
exploiting the symmetry of similarity, we can limit the number of pair-wise com-
parisons of model elements to n2

2 rather than having to consider all O(2n) pairs
of subgraphs.

Furthermore, in most UML tools it is not possible to change the meta class of
a model element once it is created. Thus, creating a clone with a changed type
can only be done intentionally or through convergent evolution. We ignore this
case and consider only pairs of model elements that are instances of the same
meta class. Since a typical UML model contains instances of between 50 and 60
different meta classes, this further reduces the number of fragment pairs to be
considered from n2

2 to around 1
2 (

n
50...60)

2 per element type on average.
Finally, the containment structure of UML models as defined by the UML

standard implies that there are many model elements in a model that will typ-
ically not be considered as clones by a human modeler, i.e. the loophole clones

Effective and Efficient Model Clone Detection 445

described in the previous Section. We exclude instances of these meta classes up
front, which typically account for more than half of all model elements in a UML
model. Thus, the number of pairs to be considered is halved again. Together,
these three assumptions drastically reduce the number of clone candidate pairs
to be compared in our algorithm. These assumptions are realized in the first part
of Algorithm 1.

3.2 Element Similarity (comparison and weighing)

In the second step, suitable pairs of elements are compared using different heuris-
tics that are encapsulated in the sim-function used in step (2a) of Algorithm 1.
The model element similarity function in N2 is based on similarities of the names
of elements. We justified this by the observation that element names are very
important in domain models. Of course, this notion of similarity is sensitive to
renaming, a common operation in domain modeling. Thus, N2 also includes at-
tributes other than the element name. Also, matching of neighbor elements is
considered (by types and names).

While experimenting with this approach, we observed that the results were
often skewed towards small fragments, because the degree of similarity computed
by N2 is normalized by the number of potential similarities. Practically speaking,
that means that a pair of fragments that coincide in 3 out of 5 possible ways are
assigned a higher similarity measure than a pair of fragments that coincide in
30 of 51 possible ways. However, from a user’s perspective, the latter is a more
promising clone candidate by far: there is ten times as much evidence for the
second pair being a clone than for the first one.

In order to account for this factor, we have implemented a new similarity
heuristic in the NWS that includes the “weight” and “binding strength” of clone
candidates. The weight which is computed as the number of elements and at-
tributes of the elements contained in the clone candidates normalized by the
binding strength. The contained elements are the transitive closure of a model
element under UML’s containment relationship (meta attribute “ownedMem-
ber”). This way, large clones with many small, slightly similar parts may take
precedence over smaller clones with high similarity.

3.3 Candidate Selection

In practical modeling, clone detection very much resembles a web search: there
are many potential hits, but modelers only ever explore a small fraction of them.
So, the design goal of model clone detection is to provide the highest possible
accuracy in a result set of a given (small) size. While weighing reduces the num-
ber of false positive clones, it is vulnerable against the phenomena of secondary
and loophole clones we have explained in Section 2. In order to reduce these
influences, NWS adds weighing and prioritizing to N2 (see stages 2b and the
loop in stage 3 of Algorithm 1, respectively.

Clones of non-trivial size in UML domain models usually imply the existence of
very similar sub-fragments, i.e., secondary clones. For instance in Fig. 1, a result

446 H. Störrle

Algorithm 1. The NWS clone detection algorithm
Input:
– model M ,
– result set size k > 0,
– threshold parameter sensitivity

Output:

– k clone candidates (pairs of elements of M)

1 - MATCH
Elements ← {e ∈M | type(e) ∈ T{Action, Actor,Class, . . .}};
Candidates ← {〈e1, e2〉 | type(e1) = type(e2) ∧ e1 �= e2 ∧ {e1, e2} ⊆ Elements};
2a - COMPARE
Comparisons ← ∅;
forall the 〈e1, e2〉 ∈ Candidates do

E1 ← transitive closure of e1 wrt. ownedMember;
E2 ← transitive closure of e2 wrt. ownedMember;
% sim is a new heuristics for NWS
s← sim(E1, E2);
if sensitivity > 1/s then

Comparisons ← Comparisons ∪ 〈E1, E2, s〉

2b - WEIGH %new in NWS
Results ← ∅;
forall the 〈E1, E2, s〉 ∈ Comparisons do

s′ ← s · |E1|+|E2|
binding(E1,E2,Comparisons)

;
Result ← Result ∪ 〈root(E1), root(E2), s

′〉;
3 - SELECT
sort Results by decreasing similarity;
Selection ← ∅;
%prefer primary over secondary clones
while |Selection | < k do

Pick ← first element in Results ;
forall the X ∈ Selection do

if X is contained in Pick then
Selection ← Selection −X

Selection ← Selection ∪ {Pick};
return Selection ;

Functions
type : type of model element (i.e. meta class)
sim : heuristic similarity of model elements, different for N2 and NWS

binding : binding strength between two fragments relative to a given set
of similarities binding(E1, E2, C) =

∑{s | 〈E1, E2, s〉 ∈ C}
root : root element of a fragment
|E | : number of model elements in a fragment

Effective and Efficient Model Clone Detection 447

set might contain a reference to class “Book” as well as to the property “author” it
contains. This can happen despite weighing due to the large variety of similarities
and sizes of model clones: the secondary clones of one original may be both more
similar and larger than the primary clones of another original. Human modelers
usually have the insight to group together primary clones and secondary clones
belonging to them, but this puts an extra burden on the modeler. In order to
reduce this burden, we explicitly remove secondary clones from the result set (see
the comment “case distinction in NWS only” in Algorithm 1). Loophole clones,
on the other hand, are excluded by simply adding the respective meta classes to
the list of types that are not considered when selecting comparison candidates
(see parameter sensitivity in Algorithm 1).

4 Implementation

We have implemented our approach and integrated it into the MACH toolset [24].
MACH is available in various variants. First, there is stand-alone version with
a textual user interface (called “Subsonic”) which is available for download from
the MACH homepage www.compute.dtu.dk/~hsto. Subsonic is also available in
a pre-installed virtual machine that can be run remotely without installation or
configuration on the SHARE platform http://fmt.cs.utwente.nl/redmine/
projects/grabats/wiki, see the respective link at the MACH homepage.

Second, we have also provided a web-service based on MACH (called “Hyper-
sonic”, see [1]), where users simply upload a model in a web browser and receive
a report on the most likely clone candidates. The implementation technology in
all MACH variants (including the Hypersonic web server) is SWI Prolog (see
swi-prolog.org). The web service is publicly available via the MACH home-
page (http://www2.compute.dtu.dk/~hsto/tools/mach.html).

5 Evaluation

5.1 Samples

The work reported in this paper derives from the author’s experience from two
very large scale industrial projects. Due to legal and technical constraints, how-
ever, we could not use the models from these case studies directly for this paper.
In order to evaluate the quality of our approach, we ran our implementation on
four sample models created by students as part of their course work.

The first of these models, called LMS, has been created by a team of four
students over 10 weeks; it contains 2,781 model elements (before clone seeding)
and 74 diagrams. We used this model for exploration and experimenting with
our approach. For the validation, we used three different case studies (called
MMM, SBK, and HOS, respectively), created by teams of 5 to 6 students each
over a period of 7 weeks. Table 1 presents some size metrics of these models. All
of them were created using MagicDraw UML 16.9 (see www.magicdraw.com).

www.compute.dtu.dk/~hsto
http://fmt.cs.utwente.nl/redmine/projects/grabats/wiki
http://fmt.cs.utwente.nl/redmine/projects/grabats/wiki
swi-prolog.org
http://www2.compute.dtu.dk/~hsto/tools/mach.html
www.magicdraw.com

448 H. Störrle

The LMS model was clone seeded by the author, the other models were clone
seeded by their respective authors (i.e., teams of graduate students) as part of a
challenge to create clones that our tool could not detect. Identification of seeded
clones was achieved through a model difference. A typical example of a seeded
Type A clone would be class “Book” in Fig. 1.

Table 1. The sizes of the sample models after seeding

Model MMM SBK HOS LMS Sum

Elements 837 1,037 1,650 2,893 6,417
Attributes 2,097 2,915 10,493 17,196 32,701
Diagrams 26 54 33 74 191

Activity 10 27 9 36 82
Use Case 9 21 8 27 65

Class 4 4 7 7 22
Other 3 2 6 8 19

Diagram Types 6 5 8 6

5.2 Method

As we have discussed in Section 1, there is no undisputed and precise definition
of what is and is not a model clone. Relying on industrial models with natural
clones, we have no control over the kinds and numbers of clones in them. Since
our main objective is to develop algorithms, we resorted to manually seed models
with clones. To do so, we randomly picked three typical examples of each of the
meta classes UseCase, Class, and Activity in the sample model. We copied them
(and their contained model elements), and changed them to emulate Type A, B,
and C model clones. Then we marked both the nine original model fragments
and the nine copied (and modified) model fragments manually as originals and
clones, respectively. This resulted in 145 model elements being marked as clones
and 155 being marked as originals, out of a total of 2893 model elements in the
model after seeding, i.e., approx. 5.5% of the model elements were marked. A
manual inspection of the LMS model did not reveal any natural model clones.

Our annotation allows automatic computation of precision and recall with re-
spect to the seeded clones. The annotation was done by attaching comments to
the elements. This way, the elements as such were not changed, as the connection
between an element and its comments is established by a link in the comment,
not in the commented element. Thus, we can exclude any influence on the clone
detection by the annotation. Initially, we ran the clone detection algorithm with-
out restricting the selection, thus yielding a very long list of clone candidates
that contained a mixture of seeded clones, natural clones, and false positives.
In order to identify the natural clone candidates, we manually reviewed them;
almost all of them were loophole clones. We then annotated them so that they
could be automatically classified by the test instrumentation of our tool. In order

Effective and Efficient Model Clone Detection 449

Table 2. Measurements of clone detection quality: each box represents an individual
seeded clone, a black box indicates detection within the respective constraints

Heuristic N2 NWS
Results @10 @20 @30 @100 @10 @20 @30 @100

Precision (seeded) 100.0% 54.5% 37.5% 16.7% 85.7% 53.8% 38.9% 13.3%
Recall (seeded) 44.4% 66.7% 66.7% 66.7% 66.7% 77.8% 77.8% 88.9%
F measure (seeded) 61.5% 60.0% 48.0% 26.7% 75.0% 63.6% 51.9% 23.1%
Type A Clones ��� ��� ��� ��� ��� ��� ��� ���
Type B Clones ��� ��� ��� ��� ��� ��� ��� ���
Type C Clones ��� ��� ��� ��� ��� ��� ��� ���

to control for bias originating from seeding by the experimenter, we conducted
a second experiment. We challenged our students in a modeling class to seed
their models with clones that our approach would not detect. This resulted in
three clone-seeded models (SBK, HOS, MMM) which were comparable in terms
of size and structure to the LMS model (see Table 1 for size metrics of these
models). Subsequently, we ran the three detection algorithms on these models.

5.3 Data

Table 2 shows results for the heuristics N2 and NWS with varying result-set sizes.
The first two lines show the precision and recall rates as percentages (based on
seeded clones only). Since the LMS model did not contain natural clones prior
to seeding, we compute recall and precision based on the seeded clones alone.
The next three lines show the detection for different kinds of clones. Every box
represents a particular seeded clone: the first box is a cloned UseCase, the second
one is a cloned Class, and the third one is a cloned Activity. If a box is filled, the
respective clone has been detected in the respective result set. So, for instance,
��� in line “Type C” and column “NWS @30” means that neither the seeded
UseCase nor Activity clones of type C were detected by algorithm NWS within
the first 30 results, but the seeded Class clone was correctly identified. Similarly,
��� in row “Type A” and column “N2 @10” means that the N2 algorithm did
not detect an identical copy of an Activity among the first ten results.

Table 3 shows the clone detection results in the models that were seeded by
the students. We inspected the models manually to check detection results for
accuracy. We also manually classified the clones according to our taxonomy;
interestingly, the students’ models also contained a number of natural clones
that the students apparently were not aware of, but which our tool detected. See
Table 3 for the detection rates.

5.4 Observations

Table 2 shows that precision decreases when recall increases, as is to be expected.
Also, Type C clones are less often discovered than Type A and B clones. This is
also no surprise since Type C clones have the greatest difference to the originals,

450 H. Störrle

Table 3. Clone detection accuracy by case study and model type: N stands for natural
clones, precision and recall are given relative to the first ten results, computed on seeded
as well as natural clones

Detected/Seeded Clones NWS @10

Model A B C Natural Precision Recall F-Measure

MMM 4/ 4 2/ 2 1/ 4 1/- 80.0% 88.9% 84.2%
SBK 6/ 6 2/ 2 0/ 2 2/- 100.0% 83.3% 90.9%
HOS 3/ 3 1/ 2 2/ 5 2/- 80.0% 80.0% 80.0%
All 13/13 5/ 6 3/11 5/- 86.7% 84.1% 85.4%

and thus the least similarity. The table also shows that NWS provides better
detection rates than N2: among the first 10 hits, it covers more seeded Type A
and Type B clones than N2. Among the first 20 hits, NWS yields fewer false
positives. The same is true when extending the search focus to the first 30 hits.
Then, most noticeably, NWS also finds the first Type C clone. Extending the
search focus even further to the first 100 hits gives the same result. The increase
in the number of false positives indicates that less duplicates are reported. The
second Type C clone is reported among the first 100 hits.

Clearly, the results reported so far could have been achieved by tuning the
algorithm to fit to the data, in particular to the seeding process. In order to
ensure this is not biasing the results in a misleading way, we repeated the clone
detection experiments with the models SBK, HOS, and MMM. They present
a greater variety of models, and the seeding was done by students, not the
author, with the specific instruction to try and break the approach. Even in
these samples, however, we found the same differences in the detection rates of
different clone types. Similar to the results obtained for the LMS model, Type
A and B clones were detected reliably by NWS, that is, all seeded clones with no
or little changes were among the first ten clone candidates. In the three models
MMM, SBK, and HOS together, three out of eleven Type C clones were also
correctly identified. Five natural (i.e., non-seeded) clones were identified, four of
which were type A clones, and one of which was a type B clone.

In Fig. 2 (left), we show the first ten hits for each combination of the three
algorithms and four models we have studied. We have sorted these ten reported
clone suspects by the following four conditions: primary, secondary, duplicate,
and false positive. Clearly, the goal is to have as many of the first kind in the
result set as they will lead the modeler directly to a clone. Finding a secondary
clone is second best, as it does lead the modeler to a clone, but only after
having lead the modeler to some suspicious fragment of the clone first. Increasing
either of these groups increases the detection precision and recall. Duplicate
detections of clones do not add to the set of true positives, thus they do not
increase precision and recall, though they still are, technically speaking, correctly
identified clones. Finally, false positives are clearly the least desirable kind of
reported clone candidates. The perfect score is to have ten primary clones among
the first ten reported clone candidates.

Effective and Efficient Model Clone Detection 451

0.0

0.25

0.5

0.75

1.0

1.25

1.5

MMM SBK HOS LMS

[s] [#]

[Case Study]

Duplicate
Secondary
Primary

0

1

2

3

4

5

6

7

8

9

10

MMM SBK HOS LMS

[#]

N2 NW NWS N2 NW NWS N2 NW NWS N2 NW NWS [Algorithm]
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000Elements

N2

NWS

Fig. 2. Performance of three approaches to clone detection: a closer look at the first
ten candidates (left); run-time vs. model size (right)

Obviously, the relative difference in clone detection accuracy between the three
approaches that we have found in the previous experiment can be observed again
in this sample: NWS outperforms N2 in all samples, if not in terms of precision
then in terms of a higher rate of primary clones (case studies SBK and LMS).
It is also clear, that the different case studies resulted in very different detection
rates. Judging by these samples, our approach performs better on clone seeding
done by other persons than the author.

Another important aspect of clone detection is the run-time. We have shown
the measurements in Fig. 2 (right) by lines. We show the average of three sub-
sequent runs to cancel out any effects due to garbage collection and similar
factors. All of the experiments were conducted on a modest laptop computer
(Intel i5-2520M 64bit processor at 2.5GHz with 8GB RAM running Windows
7). The run-time differed only insignificantly between NWS and N2 and seems to
be independent from the size of the result set (see last row of Table 2). For N2,
the run-time seems to slightly increase with the result size, but more detailed
measurements would be required to support any stronger claims. The detection
run-times are generally very low. To assess the relationship between run-times
and model sizes, we have added the number of model elements and attributes
in models as grey and blue bars, respectively. The measurements indicate that
run-times of all algorithms are mildly polynomial in the model size. In fact,
the polynomial appears to be so small, that for the model sizes at hand, it ap-
pears to be little more than linear, implying that the approach scales well and
is applicable to real models.

5.5 Interpretation of Findings

The improvements of NWS over N2 come as no surprise: large duplicates are
preferred over small duplicates with the same similarity. However, the details
of the detection quality of NWS shown in Table 2 seem to be counter-intuitive:
more false positives, and yet a higher coverage rate of seeded clones. This is
entirely explained by the specific contribution of NWS, namely, the elimination

452 H. Störrle

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250

Co
ve

ra
ge

 o
f s

ee
de

d
cl

on
es

First

NWS
N2

180

48
19

9

5

68
28

15

16

217

Fig. 3. Both heuristics find all seeded clones eventually, but NWS finds them faster
than N2. The numbers in the graph indicate the rank of the last five detected seeded
clones for NWS and N2, respectively.

of secondary clones. When there are indeed secondary clones for one primary
clone in a given result set, removing all the secondary clones will promote the
next batch of even less likely clone candidates into the result set. Sometimes,
this batch contains another, true positive primary clone, but most of the time,
there are just more false positives. And so, the precision drops. What NWS does
in comparison to N2 is that it compresses the result set towards the top of the
list, i.e., the quality of the first hits is improved. This can be seen quite clearly in
Fig. 3, where we ran the three heuristics again and kept increasing the result set
until all of them had perfect recall. We recorded the earliest position where each
of the seeded clones was detected (x-axis) and plotted these against the number
of detected clones in terms of the coverage (y-axis). It is easy to see how NWS
consistently finds the seeded clones earlier than the other two heuristics.

Considering the run-time, it is at first sight surprising that the more elaborate
heuristics in NWS would run faster than that of N2. However, recall that the
largest part of the run-time is determined by model size, and that more selective
similarity heuristics also imply an earlier elimination of potential solutions, re-
ducing resource consumption. It is difficult to compare other approaches in terms
of run-time: different settings may strongly influence the results. It does seem
to be true, though, that competing approaches generally have higher run-times,
that are either in the same order of magnitude (eScan), or one to three orders
of magnitude larger (CloneDetective and aScan, respectively, see [18, p. 285]).

5.6 Threats to Validity

We have argued that code clones are actually occurring in practical settings,
and that they are potentially damaging. However, most of our argument is only
based on plausibility and subjective observations. Also, since this is a new area
of research, there is not yet a large body of literature on this topic we can refer
to support our point of view. Roy & Cordy described this as: “more empirical

Effective and Efficient Model Clone Detection 453

studies with large scale industrial and open source software systems are required.”
(cf. [21, p. 87]). However, it is very difficult to get access to industrial models,
and there are very few suitable freely available models, a problem that impedes
progress in this field (cf. the “Free Models Initiative”, [25]).

The generalizability of our findings is limited by the number and the nature
of the models used to develop and validate our approach and the nature of the
clones in them: First, the model sample was not created in an industrial context,
but in an academic environment, so the models may not be representative. Sec-
ond, the clones in the sample models are not natural but seeded, i.e. artificial,
so they may not be representative of the phenomena found in real models.

With regards to the first argument, consider that the related work in this area
has similar limitations: while they may use models of industrial origin, they use
very small sets of such models: e.g., the validations of [8], [6], and [18] are based
on five, one, and four different models, respectively. Clearly, such small samples
do not exhibit a higher level of representativeness than our models do. In the
absence of large scale representative field studies, using “real” models cannot
claim higher validity than using seeded models—only a large scale field study
will allow more general conclusions. However, in vitro work such as presented in
this paper is a necessary step towards such a large scale field study.

This observation applies to the second argument, too: seeded clones might
not be representative of real clones, but using such specimen is a necessary
stepping stone while better sample models are missing. Moreover, by seeding
the clones manually we can ensure that all kinds of clones are present in defined
quantities and qualities. In natural models, such properties are rarely found, and
any such selection would of course introduce undue bias, thus threatening the
representativeness of the model sample again. Since the primary purpose of the
work reported in this article is to develop algorithms, however, we think manual
seeding with full control over quantity and quality of clones across all categories
is not just acceptable, but actually essential. Developing our approach with the
models seeded by students would have been much more difficult, as the detection
results in Fig. 2 (left) suggest.

Still, one might object that it is unacceptable if the seeding is done by the
author himself; clearly, he is a potential source of bias. Therefore we also con-
ducted the second experiment where we had no control over the models or the
clone seeding process. Surprisingly, the detection rates there are better than for
the models under the control of the authors, suggesting that the original bench-
marks were biased, but no in favor of the algorithm under test, but against it.
As we have remarked, the resulting clone seedings were indeed different from
what we had expected, sometimes in quite surprising ways. However, our system
recognized 18 out of 18 seeded Type A and B clones, and 3 out of 11 seeded
Type C clones, within the very low threshold of just ten candidates. The seeded
clones that were not among the top ten candidates had undergone substantial
changes that made them hardly recognizable as clones, even to human observers
(in some cases, this included the students that created the respective clones).

454 H. Störrle

5.7 End User Evaluation

The original implementation of our approach [23] had well over 100 parameters
to be set manually. It required a deep understanding of the algorithms limit-
ing the audience. Therefore, we have integrated our approach into the MACH
model analysis and checking tool. We then deployed MACH to an undergraduate
course on model based software development (41 students). After the course, we
surveyed the students for their tool usage during the course (68% response rate),
and found that students had some trouble installing MACH, and were unused
to command line interfaces as such, but there were no negative remarks on the
clone detection facilities. However, there were several positive remarks about
this feature, e.g., students reported that it had helped them assess the quality
of their models in unexpected ways. There were no problems in interpreting the
results of clone detection either, although these results were not always perfect.

The field test clearly demonstrated, that it is possible to empower students
with a very low level of qualification to routinely run an advanced clone detection
algorithm without any additional support, without any noticeable problems. It
is quite telling that the most negative comment on the clone detection was
that “at some point it reported clones that were actually not clones” (i.e., false
positives). We have since then used MACH in two more classes (48 and 54
students, respectively), without any problems.

6 Related Work

There is a large body of work on code clones: [12] provides a survey of the field,
and [4] gives an overview of the state of the art. Clones in models, on the other
hand, have received much less attention, only in the last few years have there
been investigations into this topic. They can be divided broadly into four classes.

First, the CloneDetective system by Deißenböck et al. detects clones in Mat-
lab/Simulink flow graph models [6,5]. This approach suffers from “a large num-
ber of false positives” (cf. [6, p. 609]), as the authors admit. It is also relatively
slow (see [18]), since it effectively uses a graph isomorphism algorithm, Pham
et al. [18] report run-times for CloneDetective in the range of a few hundreds
of seconds for non-trivial models. Pham et al. then address this shortcoming
with their ModelCD system using a hash-based clone detection algorithm. They
achieve run-times roughly comparable to the ones we have presented above. Both
CloneDetective and ModelCD are limited to Matlab/Simulink flow-models.

Second, there are various approaches dealing with matching of individual UML
model types such as interactions [13,20] or state charts [17]. In contrast, our ap-
proach deals with all the UML’s notations, including flow-like models such as
activities, but also class models, use case models, interactions (“sequence dia-
grams”), and state machines.

Third, there have been approaches that have explored graphs and graph gram-
mars as a generic underlying data structure for all types of models (cf. the
PROGRESS system, [16,22]). These approaches have developed graph matching
algorithms that might possibly be used for clone detection, but have not been

Effective and Efficient Model Clone Detection 455

studied under this angle. It does not seem like a promising avenue to explore,
however, due to the fact that UML models do not store (much of) their semantic
information in a graph structure. Rather than relatively dense and homogeneous
networks of light-weight nodes, UML models are trees of heavy-weight nodes with
some additional non-tree connections. Generic graph algorithms do not exploit
this fact and thus miss a valuable opportunity (see [19] for a survey of graph-
and tree-matching algorithms). In particular, consider Similarity Flooding (SF)
[14], which is a fixed point computation that may take many iterations. Given
the large number and size of potential mappings between duplicate fragments,
such algorithms will not be applicable to clone detection for realistic models. To
use the words of the inventors of Similarity Flooding: “This approach [Similar-
ity Flooding] is feasible for small schemas, but it does not scale to models with
tens of thousands of concepts.” (cf. [15, p. 3]). The heuristics we propose, how-
ever, appear to scale almost linearly. Moreover, Similarity Flooding depends on
a reasonable initial seed value which is available for model matching in version
control, but not for the kind of matching task we find in model clone detection.

Fourth, there are approaches that explore model matching for version control
of models. Alanen and Porres [2] study set theory-inspired operators on models.
Kolovos et al. on the other hand have proposed the Epsilon Merge Language
([11]) using a identifier-based matching process, while Kelter et al. [10] uses the
Similarity Flooding algorithm in their SiDiff tool. Observe that in version control
one can reasonably expect most model elements to have the same unchanged
internal identifier in two subsequent model versions. Thus, it is easy to find a
high-quality mapping to seed a matching algorithm. In clone detection, however,
the problem is to efficiently find the mapping in the first place.

7 Conclusion

Model clones increasingly are a problem for model based development: there
is “strong evidence that inconsistent [code] clones constitute a major source of
faults” (cf. [8, p. 494]) and “detecting clones in models plays the same important
role as in traditional software development ” (cf. [18, p. 276]). However, there is
currently not much published work on model clones, in particular on clones in
UML models. In [23], we have developed a clone type taxonomy, and proposed
an algorithm to detect clones. In this paper, we improved our earlier algorithm
in terms of detection quality, and provide new front-ends to our implementation
so that it can be used by non-experts. We also improved the scientific validity of
our results by testing our approach with additional case studies that were clone
seeded by independent parties, and a field test to assess the practical usability
of our tool and approach.

The published data on approaches such as ModelCD and CloneDetective is
somewhat incomplete making it difficult to compare them, though it seems that
our approach is at least as good in terms of run-time and detection quality,
while being applicable to a far wider range of model types: existing approaches
cover only a single model type (e.g., UML State machines, or Matlab/Simulink
models), while our approach applies to all of UML, and even DSLs.

456 H. Störrle

Improving our previous work, the NWS algorithm provides much better de-
tection rates, in particular with respect to improving the ranking of the first few
clone candidates. Thus, from a modeler’s point of view, the findings presented
by NWS are of much higher quality. We have evaluated our approach, including
also a field test with undergraduate students, underlining that clone detection is
a practical tool rather than a mere research prototype. Reducing the number of
false positives was made possible by understanding the structure of clones; these
insights will likely be applicable in use cases of model similarity, too.

References

1. Acretoaie, V., Störrle, H.: Hypersonic - Model Analysis as a Service. In: Sauer,
S., Wimmer, M., Genero, M., Qadeer, S. (eds.) Joint Proc. MODELS 2014 Poster
Session and ACM Student Research Competition. CEUR, vol. 1258, pp. 1–5 (2014),
http://ceur-ws.org/Vol-1258

2. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg
(2003)

3. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd Ann.
ACM Symp. Theory of Computing, pp. 151–158. ACM (1971)

4. Cordy, J.R., Inoue, K., Koschke, R., Jarzabek, S. (eds.): Proc. 4th Intl. Ws. Software
Clones (IWSC 2010). ACM (2010)

5. Deißenböck, F., Hummel, B., Juergens, E., Pfaehler, M., Schätz, B.: Model Clone
Detection in Practice. In: Cordy, et al. (eds.) [4], pp. 57–64

6. Deißenböck, F., Hummel, B., Schaetz, B., Wagner, S., Girard, J., Teuchert, S.:
Clone Detection in Automotive Model-Based Development. In: Proc. IEEE 30th
Intl. Conf. Software Engineering (ICSE), pp. 603–612. IEEE Computer Society
(2008)

7. Proc. IEEE 31st Intl. Conf. Software Engineering (ICSE). IEEE Computer Society
(2009)

8. Juergens, E., Deißenböck, F., Hummel, B., Wagner, S.: Do code clones matter? In:
ICSE 2009 [7], pp. 485–495

9. Kapser, C., Anderson, P., Godfrey, M., Koschke, R., Rieger, M., Van Rysselberghe,
F., Weißgerber, P.: Subjectivity in clone judgment: Can we ever agree?. Tech. Rep.
06301, Internationales Begegnungs- und Forschungszentrum für Informatik Schloß
Dagstuhl (2007)

10. Kelter, U., Wehren, J., Niere, J.: A Generic Difference Algorithm for UML Models.
In: Proc. Natl. Germ. Conf. Software-Engineering (SE 2005). Lecture Notes in
Informatics, GI e.V, vol. P-64, pp. 105–116 (2005)

11. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging Models with the Epsilon
Merging Language (EML). In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 215–229. Springer, Heidelberg (2006)

12. Koschke, R.: Survey of research on software clones. In: Walenstein, A., Koschke,
R., Merlo, E. (eds.) Duplication, Redundancy, and Similarity in Software. Dagstuhl
Seminar Proceedings, no. 06301, Intl. Conf. and Research Center for Computer
Science, Dagstuhl Castle (2006)

13. Liu, H., Ma, Z., Zhang, L., Shao, W.: Detecting duplications in sequence diagrams
based on suffix trees. In: 13th Asia Pacific Software Engineering Conf. (APSEC),
pp. 269–276. IEEE CS (2006)

http://ceur-ws.org/Vol-1258

Effective and Efficient Model Clone Detection 457

14. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: Proc. 18th Intl.
Conf. Data Engineering (ICDE 2002), pp. 117–128. IEEE (2002)

15. Mork, P., Bernstein, P.A.: Adapting a Generic Match Algorithm to Align Ontolo-
gies of Human Anatomy. In: Proc. 20th Intl. Conf. Data Engineering (ICDE 2004),
pp. 787–791. IEEE Computer Society (2004)

16. Nagl, M., Schürr, A.: A Specification Environment for Graph Grammars. In: Ehrig,
H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532,
pp. 599–609. Springer, Heidelberg (1991)

17. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
merging of statecharts specifications. In: Proc. 29th Intl. Conf. Software Engineer-
ing (ICSE), pp. 54–64. IEEE Computer Society (2007)

18. Pham, N.H., Nguyen, H.A., Nguyen, T.T., Al-Kofahi, J.M., Nguyen, T.N.: Com-
plete and accurate clone detection in graph-based models. In: ICSE 2009 [17],
pp. 276–286

19. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. VLDB Journal 10, 334–350 (2001)

20. Ren, S., Rui, K., Butler, G.: Refactoring the Scenario Specification: A Message
Sequence Chart Approach. In: Masood, A., Léonard, M., Pigneur, Y., Patel, S.
(eds.) OOIS 2003. LNCS, vol. 2817, pp. 294–298. Springer, Heidelberg (2003)

21. Roy, C.K., Cordy, J.R.: A Survey on Software Clone Detection. Tech. Rep. TR
541, Queen’s University, School of Computing (2007)

22. Schürr, A.: Introduction to PROGRESS and an Attribute Graph Grammar Based
Specification Language. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 151–165.
Springer, Heidelberg (1990)

23. Störrle, H.: Towards Clone Detection in UML Domain Models. J. Softw. Syst.
Model 12(2), 307–329 (2013)

24. Störrle, H.: UML Model Analysis and Checking with MACH. In: van den Brand,
M., Mens, K., Moreau, P.-E., Vinju, J. (eds.) 4th Intl. Ws. Academic Software
Development Tools and Techniques (2013)

25. Störrle, H., Hebig, R., Knapp, A.: The Free Models Initative. In: Sauer, S., Wim-
mer, M., Genero, M., Qadeer, S. (eds.) Proc. MODELS 2014 Poster Session and
ACM Student Research Competition, vol. 1258, pp. 36–40. CEUR (2014)

26. Tiarks, R., Koschke, R., Falke, R.: An Assessment of Type-3 Clones as Detected
by State-of-the-Art Tools. In: Intl. Ws. Source Code Analysis and Manipulation,
pp. 67–76. IEEE Computer Society (2009)

Living Modeling of IT Architectures:

Challenges and Solutions

Thomas Trojer, Matthias Farwick, Martin Häusler, and Ruth Breu

Institute of Computer Science,
University of Innsbruck,

Innsbruck, Austria
{firstname.lastname}@uibk.ac.at

Abstract. Enterprise Architecture Models (EA Models) are documen-
tations capturing the elements of an enterprise’s IT infrastructure, set-
ting these elements in relation to each other and setting them into the
context of the business. EA Models are a crucial backbone for any IT
management process and activities like analysing IT related risks and
planning investments. The more companies depend on reliable IT ser-
vices and use IT as innovation driver, the more high quality EA Models
provide competitive advantage. In this paper we describe core challenges
to the maintenance of EA Models based on previously conducted sur-
veys and our longstanding experience in industrial collaborations. This
is followed by a sketch of an innovative solution to solve these challenges.

1 Introduction

Enterprise Architecture Management (EAM) is an IT management process to
describe, structure and plan complex IT systems in the context of the business.
A core task within this process is to document the current state of business
and IT infrastructure elements, e.g. business functions, software applications,
servers, and to set these elements in relation to each other. The resulting Enter-
prise Architecture Model (EA Model) is usually very large in size, i.e. typically
comprising several thousands of elements, and captures distributed knowledge
of manifold stakeholders within the organization. There are a variety of tools
for Enterprise Architecture Management off-the-shelf [22]. These tools typically
support the documentation of architectural elements according to a given meta
model and provide a set of representations, both of tree-like, graph-like or chart-
like nature.

As we have shown in several surveys conducted with experts from indus-
try [8,9], the quality of EA models in practice is an issue. Parts of this quality
issue originate from organizational aspects, others stem from drawbacks of the
available tools. One core drawback of available tools concerns the inflexibility of
the EA Meta Model which does not adapt to grown terminology in organizations.
A second drawback is deficiencies in the currentness of EA Models. EA Models
which do not reflect the current state of the IT landscape may lead to wrong de-
cisions on the management level. As two sources of this drawback we have been

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 458–474, 2015.
c© Springer International Publishing Switzerland 2015

Living Modeling of IT Architectures: Challenges and Solutions 459

able to identify lacking automation capabilities and inappropriate user interfaces
to maintain the model [7]. In addition, largely static visualizations of the EA
Model in current tools are regularly mentioned to not adequately support the
tasks of stakeholders like IT architects, operations staff and project managers.

In this paper we will start with a more thorough discussion of the challenges of
tool support regarding EA models in the context of large IT infrastructures that
are managed by geographically and organizationally distributed teams. These
teams involve manifold stakeholders ranging from information officers, enterprise
and IT architects to system administrators. This is followed by a presentation of
possible corner stones for a solution to these challenges (see Section 3). Overall
we call this modeling solution to be living in the respect that models and meta
models can be maintained and visualized with a much higher degree of flexibility
than in state of the art solutions.

We will demonstrate the materialization of the sketched solution within the
novel EA modeling tool Txture1 which has been developed by our team in the
course of two industrial collaborations. Finally, we reference related work (see
Section 4) and draw conclusions in Section 5.

2 Challenges

Typically IT management teams in enterprises have their own distinct terminol-
ogy and levels of detail to document their IT systems and business functions.
Hence, the need for flexible meta models is among the conclusions from con-
ducted surveys. Flexibility means e.g. that the EA Meta Model which is under-
lying the architecture documentation needs to be customizable in order to fit the
current information demand of an organization and its stakeholders. Over time
these information demands usually change, e.g. due to the use of new technology
or modified catalogues of provided business services. Hence, a properly usable
EA Meta Model needs to adapt accordingly. This is in line with the work of
Schweda [25], who also describes evolving organization-specific meta models as
important and defines them as a requirement for successful EAM.

Once the EA Meta Model is aligned with the documentation requirements of
an enterprise, a corresponding EA Model can be developed and describes the
current state of the IT architecture and business assets. Modeling the EA is
an incremental process and needs collaboration of a diverse set of stakeholders
providing their knowledge about different enterprise aspects. While the enter-
prise transforms over time, the EA Model, in order to stay usable, needs to
be adapted. Our experience has shown that enterprise stakeholders are often
reluctant to keep the EA Model in-sync with reality, mostly because their doc-
umentation tools do not integrate well in their working environments. Recently
we have described the use of text-based EA modeling [11], specifically tailored
to support stakeholders with technical background. In general we argue that an
EAM tool has to provide modeling support tailored towards the needs of its
stakeholders. In particular this comprises consideration of both business-level

1 See http://www.txture.org

http://www.txture.org

460 T. Trojer et al.

stakeholders (preferring e.g. forms and charts) and technology-level stakeholders
(preferring e.g. programming style or graphical representations).

Up-to-date EA Models are a prerequisite to EAM activities such as the analy-
sis of current IT architectures and planning upcoming developments and projects.
These analysis and planning steps require dedicated consideration and are com-
monly supported by a set of static visualizations providing specific views on the
EA models [20]. Feedback received by experts from industry has shown that
stakeholder-specific visualizations are to a large extent missing in current EAM
tools. By stakeholder-specific visualizations we mean dynamic and navigable
views, supporting an individual user to analyze the EA model. This is in line
with trends in Business Intelligence, where such visualizations are also known
and part of the self-service aspect2.

Finally, an integral challenge to all of the aforementioned aspects is to main-
tain high computational performance of operations on top of EA Models. When
dealing with large-scale EA Models optimized and automated adaptations based
on a changed meta model, the browsing and querying of arbitrary EA Model el-
ements and the creation of visualizations from the entire EA Model need to be
accomplished in a timely manner. Otherwise, the usability of an EA modeling
tool and the tool’s acceptance by enterprise stakeholders may be heavily affected.

Overall, we summarize the EAM tool challenges we have outlined in this
section as follows:

– Implementation of flexible IT architecture modeling
– Need for stakeholder-centric modeling editors
– Provision of dynamic and navigable visualizations
– High performance of EAM operations on top of large-scale EA Models

3 Solutions within the Living Modeling Environment
Txture

In 2011 we started a consulting project with a banking data center and subse-
quently a research project with the data center of a large semiconductor man-
ufacturer. The overall goal of both projects was to make the documentation of
EA more efficient and effective. Enhanced flexibility as well as usability features
and stakeholder orientation of the implemented tool were generally seen as im-
portant. In addition, requirements to support common EAM activities on top of
an EA Model were considered.

The key features of the resulting modeling tool Txture are as follows:

– Modeling of the architecture via a form-based web-client to support less
technically skilled users.

– Textual architecture modeling via a meta-model aware Eclipse-based text
editor [11] provided to technical staff.

– Dynamic and flexible graph visualizations of EA Models.

2 BI Survey ’13, “The latest market trends”, http://barc-research.com/bi-survey/

http://barc-research.com/bi-survey/

Living Modeling of IT Architectures: Challenges and Solutions 461

Fig. 1. The Txture environment showing the EA model persistence at its core and
auxiliary components for EA management purposes

– High performance model queries via optimized persistence of models in a
graph database.

– The ability to define and change the EA Meta Model at runtime.

– Configurable import mechanisms to automatically use architectural data con-
tained in external sources such as in Configuration Management Databases
(CMDB), Excel spreadsheets, source code or relational databases.

These key features are reflected in the architecture of the Txture modeling
environment (see Figure 1).

Figure 2 depicts a graph-based architecture visualization (see top-most screen-
shot). There, relationships between application containers, an application and
the underlying (clustered) hardware infrastructure are shown. Such visualiza-
tion is used e.g. to perform impact and risk analysis of application deployments.

Several other key visualization features can be seen in the corresponding part
of the figure:

– Architectural elements are assigned to layers, hence the visualization auto-
matically shows an intuitive architectural stack.

– The visualization is navigable and dynamic via a set of modification opera-
tions (see the context menu depicted in the screenshot).

– Graph nodes are styled based on their type or other attributes, like mission-
criticality (cf. the elements VMWare Cluster and VMWare Server).

Furthermore, Figure 2 shows the meta modeling capabilities via a form-based
editor. This editor allows the user to change the EA Meta Model at runtime

462 T. Trojer et al.

Fig. 2. The Txture environment showing the architecture browser (left screenshot),
dynamic visualizations (top-most) and the ability to view and change the EA Meta
Model (bottom-most)

which in turn directly influences the visualizations and the import configurations
for mapping EA data of external data sources.

Finally, basic search and query functionality is implemented via an architec-
ture browser and is indicated on the left side of Figure 2.

3.1 Modeling Framework

In this section we outline Txture’s employed modeling framework using a sample
model (see Figure 3).

The EA Model in Figure 3 shows documented instances of IT system compo-
nents. The example describes an application container instance “JBoss Inst T3”
which “runsOn” a physical server named “Server Prod T3”. As we have de-
scribed in the previous section, such a model can be used e.g., to perform impact
analysis (“What happens if the specific server crashes?”) or to do infrastructure
planning (“Is the specific server appropriately dimensioned to run such soft-
ware?”).

Additional to modeling IT component instances and their structural depen-
dencies, a simple notion of ontology can be seen on the right side of the figure.
Such ontological classifications are modeled as part of the documentation activity
and allow responsible persons for EA elements to further describe and catego-
rize their documented instances. In our example case, the application container
instance is of type “JBoss EAP 6.2.0” which reflects a part of the enterprise’s

Living Modeling of IT Architectures: Challenges and Solutions 463

Fig. 3. A simple EA Model showing IT infrastructure elements

modeled ontology. Furthermore it is tagged with “Servlet Container” to indicate
its relatedness (“isA”) to Java servlet technology. Ontologies in EA Models are
established to introduce enterprise-specific terminology (e.g., by means of em-
ployed technology), but are also used in Txture to enhance browsing, search and
filter functionality.

Figure 4 provides an extended view of our example model by including its
corresponding meta-model hierarchy. On the EA Meta Model level, the expres-
siveness of the underlying EA Model is set. At this level the structure of a EA
documentation that architects agreed upon is modeled.

The top-level artifact, the meta-meta model, defines all concepts that are
needed to properly describe IT infrastructures. The meta-meta model defines
the concepts of class, association (i.e. association classes) and property to de-
velop the structure of an organization-specific architecture modeling language
and the concepts type, tag and mixin that allow shaping the ontological model.

Classical Hierarchies to Separate Modeling Activities. One of the expe-
riences we gained from modeling workshops with our industry partners is that
modeling novices or software developers understand modeling best when using
strict and limited hierarchies in which modeling concepts and their instantiations
are described. In our case the modeling levels that users have to interact with
are manifested by the EA Meta Model and the EA Model as its instantiation.

Besides understandability of concepts, having a clear cut betweenmodeling lev-
els also supports a permission and concern-oriented separation for managing the
EA documentation and the meta model it relies on. This separation is important
as different modeling activities are performed by individual stakeholders with po-
tentially diverse domain expertise. This is further explained in Section 3.2.

Types to Mitigate Invasive Meta Model Changes. Another experience
we made was that adapting the EA Meta Model is typically a recurring ac-
tivity, triggered by frequent change requests from our partners and driven by
adjustments, extensions and simplifications to modeled concepts.

It is common to any modeling activity, that changes to models may involve
corresponding changes on dependent models, as part of re-establishing confor-
mance in the model hierarchy. To minimize the efforts and consequences of such

464 T. Trojer et al.

Fig. 4. The Txture modeling environment. Annotation boxes (black) reflect where a
model element gets instantiated (@MM= EAMeta Model, @Onto = Ontological model
and @M = EA Model)

changes, either well-defined automated model refactoring procedures are required
or a meta model needs to be realized in a way such that the most common
changes to it only minimally interfere.

For our industry partners a manual refactoring after changes to the EA Meta
Model was out of question. This is why we settled on a modeling pattern similar
to the one of power types [23] that allows for creating types at the EA Model
level and therefore reduces the need to actually adapt the related meta model.

Our original modeling approach made heavy use of inheritance on the meta
model level. For example we applied a deep inheritance structure to model dif-
ferent Application Containers according to their vendor, software version or
required runtime platform. This rendered the meta model both large in size
(i.e. number of model elements) and prone to frequent changes (e.g. on software
version changes).

Using types greatly helped to reduce the size of the meta model and therefore
maintaining comprehensibility and lowering the frequency in which changes to it
needed to be applied. Amodeling environment that allows types, can rely solely on
generic meta model elements like Physical Server or Application Container and
therefore provides stable modeling concepts that are invariant to an organization
and all of its stakeholders. This means e.g. that no highly-specific vendor-based

Living Modeling of IT Architectures: Challenges and Solutions 465

product terminology would be described within the EA Meta Model which would
only be understood by a minority of the enterprise’s stakeholders and which is
likely to change over time (cf. JBoss-specific server software in the example of
Figure 3).

Our understanding of types, as part of the ontological model, is that ad-
justments to them can be easily applied during the regular EA documentation
processes. This is in line with Atkinson and Kühne [3], who describe the need for
changes and newly added types that are possible while the system is running.
Our type concept delivers a light-weight way for dynamic additions and proved
to be intuitively usable in EA documentation practice.

In addition to types, we use tags to further categorize model elements. Tags
are comparable to UML stereotypes3 and can be applied to types and individ-
ual instances. In Txture both type and tag elements are modeled by responsible
persons for EA elements and are part of the EA Model.

Multi-Level Instantiation to Support Dynamic Extensions. With the
introduction of types on the EA Model level, we are able to limit the amount of
changes that otherwise are applied to the meta model. While this is beneficial,
maintaining an EA Meta Model of only generic concepts bares issues regarding
the expressiveness of the documentation: Generic EA Meta Model concepts leave
out detail and shift the specification of properties of model elements onto types.

Our documentation activities require that types and instances can be man-
aged by the same stakeholders within the EA Model. For proper architecture
documentation, types not only define properties to be instantiated by their re-
lated instances, but need to specify values for certain properties themselves.

Figure 4 shows that the JBoss-example type defines values for the proper-
ties version and vendor, whereas our example application container defines a
text value reflecting its deployment location to be “Shanghai”. In our example
we assume this property to be dependent on the actual type, as e.g., not for
all application containers the location is known or relevant to be documented.
Because of this, we needed to realize a property-like concept, so called mixins,
that can be instantiated on both the level of types and the level of documented
instances. This is comparable to the concept of deep instantiation [2] or that of
intrinsic attributes in the MEMO meta-modelling language [14].

The mixin concept aligns well with the flexible nature of our type concept and
allows the documenting stakeholders to adapt the EA Model to cater for their
particular documentation needs.

3.2 Stakeholder-Centric Editors

A key challenge in the context of EAM is to cater for the many different stake-
holder types that are typically involved in editing the EA model. These range
from database administrators and software developers to enterprise application
architects, to process owners, project managers and even the CIO in some cases.

3 cf. UML 2.4.1 infrastructure specification, http://www.omg.org/spec/UML/2.4.1/

http://www.omg.org/spec/UML/2.4.1/

466 T. Trojer et al.

It is clear that each of these stakeholder types has different requirements when it
comes to proper user interfaces. As we have described in our previous work [10],
one problem in the EA management process is that users are often reluctant to
enter data into an EA tool because of the time overhead involved. One reason
for this problem are the potentially diverging conceptions between developers of
an EA tool’s features and its eventual users.

Following from this, we argue that adequate user interfaces for the different
stakeholder groups can mitigate this problem by reducing the barriers for stake-
holders to document the EA. Along this line we previously presented an approach
to enter EA data in a textual way [11]. Our experience has shown that the tex-
tual editing approach generally works well for technical staff that is accustomed
to work in text-based environments such as they are used for programming (e.g.,
via Eclipse4) or systems configuration (e.g., of databases or server applications).
In other cases it might be more appropriate to let users enter data via simple
form-based applications. Finally there are also users that commonly work with
standard office applications like spreadsheets (most commonly Microsoft Excel).

In the following, we provide some detail on the different stakeholder-oriented
editing functionality that we have implemented in Txture. The specific challenges
that all EA model editors have in common is that they need to seamlessly cope
with a changing underlying meta model and the multi-level modeling concepts
like runtime-added types and attributes (cf. Section 3.1).

Textual Modeling Editor. While working with our first industry partner,
we implemented textual editing of EA models. In a number of interviews with
a variety of technologically educated stakeholders, we learned that text-based
tools are commonly used by them. We decided to implement a textual editor for
EA management in order to yield a high level of acceptance in this specific user
group.

The editor (see Figure 5) was developed to be accessible within the Eclipse de-
velopment environment and builds upon the textual modeling framework Xtext5

in order to offer sophisticated textual editor functionality and user assistance out
of the box. Visual support is provided via font- and color-based highlighting of
known syntactical elements, including EA Meta Model classes, attribute names
and types. The so called outline view (see the right part in the figure) delivers a
navigable tree view that lists all described elements in a compact way. Besides
the regular in-text search functionality, the outline view can be used to quickly
overview the entire documentation and search for specific elements.

Beyond visual appeal and standard text editor functionality, our EA model
editor also provides advanced features like automatic text completion for known
syntax, error highlighting on failed model validations and the ability to insert
placeholder text templates to help documenting new EA elements.

In a previous work [15] we have demonstrated textual modeling challenges,
specifically by taking collaborative modeling efforts into account that involve the

4 http://www.eclipse.org
5 See http://www.xtext.org

http://www.eclipse.org
http://www.xtext.org

Living Modeling of IT Architectures: Challenges and Solutions 467

Fig. 5. The textual editor as Eclipse plugin with file management, syntax highlighting,
automatic text completion and outline support, developed with the Xtext framework

use of non-text based modeling editors as well. The main discrepancies between
these two natures of editing are regarding the representation and persistence of
EA model data. While models are commonly stored in a way so that only dedi-
cated modeling tools can open and modify them (cf. XML-based persistence via
e.g., XML Metadata Interchange (XMI)), any text editor can be used to work
with a textual representation of models. Still, specific methods are required in
order to manage the necessary file and folder based persistence of textual model
parts and strategies which help to translate back and forth between text and
other EA model representation formats. Considerations on e.g. the order of ele-
ments in text files or the storing of textual user comments had to be made and
led to the requirement of maintaining extensional information about EA models.

Form-Based Modeling Editor. In addition to textual editing, Txture provides
web-based forms to conveniently allow management of data by users with less
technical background. There, the typical user interface elements like text fields
and combo boxes are used to maintain attribute values of EA elements and
cross-references between them.

Similar to the textual editor that provides syntactical keywords based on
the currently employed EA Meta Model, the form-based editor is dynamically
generated to reflect all available elements and their valid structure.

This type of editor is directly integrated as a web-based application within
the Txture environment which we have shown in Figure 2.

Other Modeling Editors. To cover the entire range of stakeholder types for
EA documentation, additional modeling editors can be considered for implemen-
tation. E.g. in a previous work [15] we have described our current efforts about

468 T. Trojer et al.

an easy-to-use modeling extension for Excel. By now we have implemented a first
prototype which renders documented EA elements together with their attributes
and references into the cells of a spreadsheet. Such an editor is helpful to support
business stakeholders and to integrate data that pre-exists in spreadsheet tables
as external data sources.

Another current effort is to use Java code annotations to allow software de-
velopers to indicate a rough underlying software architecture. Such annotations
get processed by a code analyzer and are fed into the EA documentation as
well. The banking data center that we work together with, also operates a large
software development department which established the use case of annotation-
based modeling capabilities.

Our experience over the last years has shown the importance of first determin-
ing typical stakeholder tools and trying to adapt them, prior to making plans for
custom tool developments. We have seen that users more easily accept and learn
new functionality provided by familiar tools, as opposed to operating entirely
new tools. Learning new tools, besides having to execute one’s daily working ac-
tivities, is often perceived as cumbersome and may in turn lead to an abandoned
EA documentation.

3.3 Dynamic Architecture Visualizations

Architecture visualizations constitute a key reason why EA models are created.
They are the means to reduce the architectural complexity and make potential
problems visible to the persons responsible. The main challenge for EA visual-
izations is to present large models in a way that only the relevant information
regarding a specific EA or IT architecture question are shown.

A typical approach is to allow users to pre-configure visualizations in a form-
based manner and then generate graphical representations from this
view-definition [24]. We argue that the roundtrip between configuration and
the generation of the visualization presents a hurdle for the efficiency of cre-
ating adequate visualizations. In Txture, visualizations can be both created
from a selection of EA elements or from a pre-defined view definition, but also
edited dynamically from within a given visualization. Some of the editing func-
tionality is shown within the top right screenshot in Figure 2, visible as the
context menu that contains several options for editing the current visualiza-
tion.

During the EA projects with our industry partners we gathered a number of
requirements that useful architecture visualizations need to implement. Accord-
ingly, visualizations should

– be able to represent EA model elements in different ways,
– be easily navigable in order to make the architecture’s structure understand-

able,
– implement filter mechanisms to allow simplifications of the visualization and
– be visually extensible (e.g., via visual groups and separators derived from

extensional EA model information), hence providing additional meaning to
what is depicted.

Living Modeling of IT Architectures: Challenges and Solutions 469

The actual types of visualizations and the way EA model elements are rep-
resented are numerous and need to be adapted to the requirements of certain
user groups. For instance, we interviewed system administrators who declared
treemap-based visualizations as helpful in order to quickly determine runs on
or hosted by-relationships between server applications and virtual systems that
run on top of physical hardware. Software developers and IT systems archi-
tects felt comfortable with graph-based visualizations or a mixture of treemaps
and graphs. With treemaps, the typical containment relationships are reflected,
whereas a graph allowed them to determine system communication paths, e.g.
implemented via services. By contrast, project managers and business-oriented
stakeholders were interested in matrix or list-based representations of EA model
elements. These stakeholder groups were mostly only interested in visualizing
types that occur in an architecture, but no specific instances. We were told that
this would allow them to get an overview of the employed technology stack or
to make abstract business processes visible.

In the current version of Txture, navigation within visualizations is possible
due to a number of operations. For example, the show neighbours-operation helps
to explore the neighbourhood of a given model element by showing all of its di-
rectly related elements (via EA model cross-references). The navigate-operation
allows to insert directly related model elements into the current visualization, by
choosing a specific relationship of interest. Finally the resolve path functional-
ity enables a user to resolve arbitrary dependencies of a selected model element
to all elements of a specific type or class. This operation is intended to show
transitive dependencies between EA elements. E.g. one could select a specific
application and resolve all physical hardware that this application relies on.

Filter operations applied to current visualizations are a helpful tool to simplify
what is depicted. E.g., we implemented the removal, grouping and bridging of
EA model elements. The removal operation, as its name implies, deletes elements
from the current visualization in order to simplify them if unnecessarily loaded.
Grouped elements are visualized as a single node within the visualization. A
label for the replacing group node is either automatically generated or can be
defined manually. Groups can also be dissolved via an inverse ungroup-operation.
Lastly, the bridging of nodes allows to transitively skip arbitrary model elements
in the visualization. The skipped nodes are replaced by new relationships that are
either labeled automatically or receive custom names. The purpose of bridging
is to lower visual complexity by means of raising the abstraction level.

In order initiate new or extend current visualizations, an adding-operation en-
ables a user to insert a selection of documented EA model elements. If requested,
any direct dependencies to already visualized elements are shown as well.

Additional to these operations, other functionality is planned as well. Current
efforts include the implementation of the aforementioned visual extensions by
means of visual groups to mark arbitrary collections of elements. This will be
done with the help of colors, separating boxes and custom labels.

470 T. Trojer et al.

One of the greatest challenges we encountered while implementing our vi-
sualization components was to keep the runtime performance of the described
operations high. To us, this highlighted the need to establish an efficient, per-
formance optimized model query framework.

3.4 Efficient Querying of Large EA Models

Querying EA models is especially important to perform analysis and to select
EA model elements along with certain criteria. Results of such model queries
are typically interpreted by enterprise stakeholders. Furthermore, query results
are the basis of Txture’s visualizations.

Two main requirements guided our design decisions regarding a query frame-
work. Namely, high performance in obtaining query results and access to a query
expression language that is easy and intuitive to use.

In order to find out about the technology that best caters our requirements,
we performed a number of benchmarks with different query frameworks. E.g., the
Object Constraint Language6 (OCL) and EMF Model Query7 have been used.
We were dissatisfied with all of the tested frameworks, regarding performance
results or the high complexity as well as the low expressiveness of the query
languages they offer.

We finally decided to create a query framework based on a graph persistence
to store the structure of an EA model (cf. Figure 1, central part). Regarding
performance, this decision reflects the choice of e.g. Barmpis and Kolovos [5],
who evaluated graph database to be fastest for querying, out of a number of
other model query and persistence approaches. Additionally, a regular indexed
data container (in our case a relational database) is employed and holds the
actual data of all model elements. As graph databases are typically capable of
storing vertices and edges as well as properties for both of these entities, we
found that these graphs are able to resemble the nature of EA models well.

The graph database we use is called Titan8 and the query language it supports
is Gremlin9 . Gremlin is a highly sophisticated graph traversal language that
is widely supported by current graph database systems. With it we were able
to mitigate any performance issues while expressing queries. Nevertheless, its
complexity would have not allowed any regular users of Txture to take advantage
of its capabilities. Therefore we established an extensible set of high-level queries
that build upon complex graph queries, but provide a simple interface to users.
E.g., each of the visualization operations described in Section 3.3 is implemented
as such a high-level query.

The graph-based mapping of EA models, low-level graph-based querying to-
gether with the layer containing the high-level queries is depicted as part of
Figure 1 (see the right side of the core part of Txture’s architecture).

6 See http://www.omg.org/spec/OCL/
7 See http://www.eclipse.org/modeling/emf/?project=query
8 See http://thinkaurelius.github.io/titan/
9 See https://github.com/tinkerpop/gremlin/wiki

http://www.omg.org/spec/OCL/
http://www.eclipse.org/modeling/emf/?project=query
http://thinkaurelius.github.io/titan/
https://github.com/tinkerpop/gremlin/wiki

Living Modeling of IT Architectures: Challenges and Solutions 471

4 Related Work

This paper presents an overview of our experience in EAM, the Txture tool as
well as a diverse set of challenges in the field. Accordingly, related work is simi-
larily diverse. We start its discussion by naming advancements in three research
fields that made the development of Txture possible. These are:

Advancements in Model-Driven Software Engineering. Runtime changes
of the underlying EA Meta Model and the consecutive adaptation of an EA
model is a complex problem. With the increased adoption of model-driven soft-
ware development this problem has received considerable attention in research
literature (see e.g. Favre [12]). In addition, allowing to model on multiple mod-
eling layers, such as it is required in the context of EAM is another challenge.
In particular, the work of Atkinson et al. [3] has helped in forming a better un-
derstanding of the problems of standard modeling languages such as the UML.
Also, work on textual domain-specific languages (like Xtext is used for) has con-
tributed to the development of the textual modeling editor of Txture.

Proliferation of Graph-databases. The already mentioned size of practical
models in the EA context requires efficient methods for querying and storing
models. Graph databases have recently gained much attention because of their
utility for the use in social media applications and also other areas (an overview
is given by Angles and Gutierrez [1]). Fortunately, this resulted in the develop-
ment of several open-source, quality graph databases that are particularly useful
for querying EA model element relationships.

Advancements in Web-Engineering for Visualizations. A key-factor for
the utility of EA models are their visualizations. Building flexible client-side
visualizations for web-applications was, until recently, limited by the lack of
standards and accompanying technologies. With the adoption of new standards
(like HTML 5 10) by most modern browsers, major obstacles were removed,
leading to sophisticated graphing and drawing libraries for the web.

In the context of EAM it is common that tools provide predefined EA Meta
Models that can often only be adapted in a very limited way. For example,
the EAM tool iteraplan11 only allows for the extension of existing classes via
attributes. As shown in the EAM tool survey by Matthes et al.[22] there exist
some configurable tools, their technical foundation, however, is not clear. Other
tools work with fixed EA Meta Models based on EA modeling standards such as
The Open Group Architecture Framework [16] or Archimate [21]. We argue that
these standards are inflexible as it is difficult to adapt them to the terminology
used in an organization or to evolve. Schweda, on the other hand, presents a
sophisticated approach to pattern-based creation of organization-specific meta

10 cf. http://www.w3.org/TR/html5/
11 http://www.iteraplan.de/en

http://www.w3.org/TR/html5/
http://www.iteraplan.de/en

472 T. Trojer et al.

models [25]. However, its practical applicability was not shown. With the MEMO
meta-modeling language, Frank et al. [14] present a language and a tool suite for
building modeling languages in the enterprise context. The tool is Eclipse-based
and needs code generation steps in order to react on a changed meta model. The
proposed language for IT infrastructure modeling, ITML [13], provides fixed
concepts and can not support organization-specific meta models. Additionally,
we found that some of the complex virtualization and clustering patterns that
we have witnessed in practice cannot be modeled with this approach. In line with
Kattenstroth [17], we conclude that although the need for organization-specific
and evolving EA Meta Models has already been identified in literature [10,25],
most related work focus on formulating generic and fixed meta models that
cannot be adapted to the requirements of specific organizations.

Despite the existence of many commercial EA tools on the market, their
capabilities for flexible visualizations are rather limited. A relatively recent de-
velopment in the area of EA visualizations is to separate the model from the
visualization unlike e.g. Archimate which makes use of a graphical modeling
notation. This separation is suggested in several research works [24,18,6].

In the general model engineering community much groundwork has been laid.
Recently, the multi-level modeling paradigm gained more attention due to the
criticism of classical (two level) modeling, like done e.g. in the UML which only
allows a model and an instantiation at the same time [4,19]. This paradigm has
influenced the meta-modeling capabilities of Txture, in particular, by providing
mechanisms to model types and mixins. Still, multi-level modeling mainly dis-
cusses requirements from software engineering and does not necessarily consider
modeling techniques from other domains. Regarding our work on Txture we use
a mixture of classical and multi-level modeling approaches and unified them in
a novel way to contribute a usable EA documentation method.

5 Conclusion and Outlook

In this paper we have described the EA modeling framework underlying our
research prototype Txture. It provides a unique feature set including classical
meta-modeling, type-based modeling and mixins and tackles some of the pressing
problems of EA and IT systems documentation.

As our research elicites requirements from practical experience, we believe that
our work can be useful for other EA researchers as well, but also for vendors of
existing EA tools.

Challenges we specifically discussed are:

1. The difficulty to adapt EA Meta Models at runtime which we tackle with a
combination of multi-level modeling techniques and classical approaches like
stereotyping and power typing.

2. Issues regarding dynamic and navigable visualizations that entail the prob-
lem of efficient queries over large EA Models. We solve this by using a graph-
based model persistence together with a layer of high-level EAModel queries.

Living Modeling of IT Architectures: Challenges and Solutions 473

3. The requirement to be able to edit EA Models by considering preferences of
different stakeholder groups. We solve this by implementing model editors
that either extend existing tools or align custom editors with the require-
ments named by their prospective users.

In our future work we aim to further evaluate our approach in practice and
conduct empirical studies that will assess to what extent our approach assists
and motivates different stakeholder groups to contribute to EA documentation
processes. So far, textual editing and dynamic visualizations have already shown
their usefulness at work for both of our industry partners. In the banking data
center enterprise architects, software developers and DevOps teams document
their work in the EA model, without having to change tools. The semiconductor
manufacturer uses pre-defined architecture visualizations as a starting point for
impact analysis of systems in their data center. In discussions, users have con-
firmed the value for them to be able to define their own custom visualizations
that support their daily working activities.

Recent developments in the fields of Model-driven Software Development,
graph databases and web-engineering have made the development of the pre-
sented framework and prototypical tool implementation possible.

References

1. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Computing
Surveys (CSUR) 40(1) (2008)

2. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. The Unified
Modeling Language. Modeling Languages, Concepts, and Tools (2001)

3. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling foundation.
IEEE Software 20(5) (2003)

4. Atkinson, C., Gerbig, R.: Harmonizing Textual and Graphical Visualizations of
Domain Specific Models Categories and Subject Descriptors. In: Proceedings of the
Second Workshop on Graphical Modeling Language Development. ACM (2013)

5. Barmpis, K., Kolovos, D.: Evaluation of contemporary graph databases for efficient
persistence of large-scale models. Journal of Object Technology, JOT (2014)

6. Buckl, S., Ernst, A.M., Lankes, J.: Generating Visualizations of Enterprise Ar-
chitectures using Model Transformations.. Enterprise Modelling and Information
Systems Architectures 2(2) (2007)

7. Farwick, M.: A Situational Method for Semi-automated Enterprise Architecture
Documentation. Ph.D. thesis, University of Innsbruck (2014)

8. Farwick, M., Berthold, A., Breu, R., Ryll, S., Voges, K., Hanschke, I.: Requirements
for Automated Enterprise Architecture Model Maintenance. In: International Con-
ference on Enterprise Information Systems (ICEIS). SciTePress (2011)

9. Farwick, M., Breu, R., Hauder, M., Roth, S., Matthes, F.: Enterprise Architecture
Documentation: Empirical Analysis of Information Sources for Automation. In:
Hawaii International Conference on System Sciences (HICSS). IEEE, Wailea (2013)

10. Farwick, M., Schweda, C.M., Breu, R., Hanschke, I.: A situational method for
semi-automated Enterprise Architecture Documentation. SoSyM (2014)

11. Farwick, M., Trojer, T., Breu, M., Ginther, S., Kleinlercher, J., Doblander, A.:
A Case Study on Textual Enterprise Architecture Modeling. In: Enterprise Dis-
tributed Object Computing Conference Workshops (EDOCW), IEEE (2013)

474 T. Trojer et al.

12. Favre, J.M.: Meta-model and model co-evolution within the 3d software space. In:
Workshop on Evolution of Large-scale Industrial Software Applications (2003)

13. Frank, U., Heise, D., Kattenstroth, H., Ferguson, D.F., Hadar, E., Waschke, M.G.:
ITML: A Domain-Specific Modeling Language for Supporting Business Driven IT
Management. In:Proceedings of the 9thOOPSLAworkshop ondomain-specificmod-
eling (DSM). ACM (2009)

14. Frank, U.: The MEMO meta modelling language (MML) and language architec-
ture. 2nd Edition. Tech. rep., Institut für Informatik und Wirtschaftsinformatik
(ICB) Universität Duisburg-Essen (2011)

15. Haeusler, M., Farwick, M., Trojer, T.: Combining textual and web-based modeling.
Submitted to 16th IEEE/ACM MODELS (2014)

16. Haren, V.: TOGAF Version 9.1. Van Haren Publishing (2011)
17. Kattenstroth, H.: DSMLs for enterprise architecture management. In: Workshop

on Domain-specific modeling (DSM). ACM Press (2012)
18. Kruse, S., Addicks, J.S., Postina, M., Steffens, U.: Decoupling models and visualisa-

tions for practical ea tooling. In: Service-Oriented Computing. ICSOC/ServiceWave
2009 Workshops (2010)

19. Kühne, T.: Matters of (Meta-) Modeling. SoSyM 5(4) (2006)
20. Lankes, J., Matthes, F., Wittenburg, A.: Softwarekartographie: Systematische

darstellung von anwendungslandschaften. In: Wirtschaftsinformatik (2005)
21. Lankhorst, M.: Enterprise Architecture at Work, 3rd edn., vol. 36. Springer,

Heidelberg (2012)
22. Matthes, F., Buckl, S., Leitel, J., Schweda, C.M.: Enterprise Architecture Man-

agement Tool Survey 2008. Tech. rep., Technische Universität München, Chair for
Informatics 19, sebis (2008)

23. Odell, J.J.: Power Types. Journal of OO Programming (1994)
24. Roth, S., Hauder, M., Zec, M., Utz, A., Matthes, F.: Empowering Business Users to

Analyze Enterprise Architectures: Structural Model Matching to Configure Visu-
alizations. In: International Enterprise Distributed Object Computing Conference
Workshops (EDOCW). IEEE (2013)

25. Schweda, C.M.: Development of Organization-Specific Enterprise Architecture
Modeling Languages Using Building Blocks. Ph.D. thesis, Technical University
of Munich (2011)

A Flow Analysis Approach

for Service-Oriented Architectures

Bernhard Bauer, Melanie Langermeier, and Christian Saad

Software Methodologies for Distributed Systems, University of Augsburg,
Augsburg, Germany

{bauer,langermeier,saad}@ds-lab.org

Abstract. The discipline of SOA (Service-oriented Architecture) pro-
vides concepts for designing the structural and behavioral aspects of
application landscapes that rely on the interaction of self-contained ser-
vices. To assess an architecture’s quality and validate its conformance
to behavioral requirements, those models must be subjected to sophis-
ticated static analyses. We propose a comprehensive methodology that
relies on data flow analysis for a context-sensitive evaluation of service-
oriented system designs. The approach employs a model-based format
for SOA artifacts which acts as a uniform basis for the specification and
execution of various analyses. Using this methodology, we implement
two analyses which reveal blocking calls and assess performance metrics.
These applications are evaluated in the context of two case studies that
have been developed in the SENSORIA and the ENVIROFI projects.

1 Introduction

The field of SOA is concerned with methods that enable the conceptual design
of the relevant aspects of software ecosystems whose components interact in
complex yet well-defined patterns to provide high-level services to consumers.
This abstraction not only supports the task of documenting service landscapes
in enterprises, the model-based formalization also facilitates automated code
generation, following the principles of model-driven development (MDD). In this
sense, SOAmodels represent integral artifacts of software development processes.
Usually, the target system is first described at a higher level of abstraction
with iterative refinements. To avoid the multiplication of errors in later stages,
problems must be identified as early as possible. Analysis at the model level can
also help in assessing the architecture’s quality and in validating its conformance
to functional and technical requirements before implementation begins.

Current approaches for the analysis of object-oriented models often focus on
trivial metrics such as the number of classes, the number of methods per class
or the number of sub/super classes [6]. Typically, the information aggregated
by these methods only considers immediate neighbors [7]. For some use cases,
canonical analysis techniques are not well-balanced with respect to their expres-
siveness and the resulting implementation effort: For context-sensitive measures
and validation scenarios, methods such as the OCL are not sufficient while sys-
tems based on formal logic tend to introduce unnecessary complexity. The fact

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 475–489, 2015.
c© Springer International Publishing Switzerland 2015

476 B. Bauer, M. Langermeier, and C. Saad

that business models are often incomplete or inconsistent further hinders the
application of strict formal systems.

To close this gap, we establish a unified analysis methodology which relies on
the principle of information propagation to enable a context-sensitive evaluation
of SOA models. The motivation for this approach can therefore be summed up
as follows: We intend to provide developers with a generic framework for imple-
menting analyses in the SOA domain that do not necessitate the usage of formal
semantics but, nevertheless, cannot be expressed using traditional constraint
languages such as OCL due to their context-sensitive nature. The technique
is therefore intended as an extension, rather than a replacement, for existing
methods such as formal verification [22].

For this purpose, we employ a uniform model-based format which acts as
a foundation for the specification and execution of analyses to abstract from
the diversity found in canonical modeling languages for SOA. Based on this
representation, we employ the model-based data flow analysis as a declarative
“programming language” for the implementation of various analyses that depend
on the computation of a fixed point (for approximating a system’s run-time be-
havior) and/or the modeling of complex information flows through the designed
architecture. We subsequently demonstrate how this methodology can be applied
to compute performance metrics and check for potential blocking calls in con-
tract and interface-based architectures. The approach is evaluated in the context
of two case studies, that have been published by the SENSORIA [17] and the
ENVIROFI project [8] respectively. We base our work on previous research, in
which we applied a similar strategy to the field of enterprise architecture manage-
ment (EAM) [12]. More specifically, the contributions of this paper comprise the
adaptation of the methodology to the SOA domain, its evaluation in the context
of existing case studies and the implementation of relevant analysis scenarios.
Furthermore, the application to SOA is intended to emphasize the viability of
the proposed methodology across different fields of research.

In the following section, we present an overview over related work and es-
tablish the link to the SENSORIA project. In section 3, we detail the different
aspects of the analysis methodology, namely the flow-based analysis of models
and the generic representation of SOA data. The next two sections describe two
different analysis scenarios and their application to the use cases. The first one
checks for blocking calls (section 4) while the second one derives performance
measures (section 5). We conclude with a discussion of our method (section 6).

2 Related Work

Although service-oriented architectures have attracted much attention, the con-
cept has often only been applied in an ad-hoc fashion. The SENSORIA project
[17] defines a comprehensive approach for the design, formal analysis and auto-
mated deployment as well as the re-engineering of service-oriented applications
[22]. SOA models are analyzed using formal methods such as process calculi,
temporal logic and stochastic logic. Analyses are both qualitative and quantita-
tive, e.g. conformance with contracts, deadlock freedom of compositions or the

Flow Analyses for SOA 477

analysis of service properties like availability [22]. The formal foundation is tied
to the UML4SOA [13] profile, a high-level domain specific language which incor-
porates behavioral aspects. This profile extends a previous version of the SoaML
standard (to which the first author contributed) with concepts for modeling the
behavior of services, service orchestrations, and service protocols. The current
version of SoaML [3] (published in 2012) introduces two different architectural
styles, based on interfaces and service-contracts respectively, and integrates UML
sequence diagrams for the specification of communication protocols.

The Object Constraint Language (OCL) [2] is a widely used method for the
specification of simple model analyses. For example, [6] provides a library for
the extraction of metrics. OCL constraints enrich the abstract syntax of a mod-
eling language, i.e. the meta model, with a definition of its static semantics.
This means that analysis specifications are tightly integrated with the modeling
ecosystem (i.e. canonical standards and tools) and therefore naturally support
concepts such as generalization and instantiation. In contrast to the proposed
flow-based method, OCL does however not support information propagation and
fixed point convergence and is therefore restricted to basic validation scenarios.

In [12], we established a generic meta model (GMM) which encodes the struc-
tural composition of enterprise architectures in the form of a stereotyped graph.
While we were able to redefine existing analyses using this unified representa-
tion, the lack of specific semantics has been identified as a challenge that must
be addressed in future work.

3 Adaptive Analysis Methodology for SOA

This section describes an adaptive analysis methodology for the SOA domain
which relies on static derivation of context-sensitive properties to validate an
architecture’s correctness and assess different types of quality attributes. The
resulting approximation of the modeled system’s runtime properties can provide
valuable feedback, especially in early stages of the development process.

The design of an analysis methodology intended for use in the SOA domain
poses different challenges: For one, architectures may be encoded in a variety of
modeling languages, e.g. SoaML, UML4SOA or BPMN1. Furthermore, architec-
tures may rely on different paradigms, such as contract- or interface-based styles.
To avoid conceptual and technological gaps, the analysis technique should also
be well-integrated with modeling standards such as the Meta Object Facility
(MOF) and be capable of addressing a wide range of application scenarios.

We address these issues by combining a unified representation of SOA-specific
(meta) model data with a framework for model-based flow analysis. Translation
of the target SOA model into the unified SOA format can be achieved using
canonical methods for model transformation such as Query/View/Transformation
(QVT). Subsequently, the analyses can be executed. Figure 1 provides an overview
of this process. This technique has already been successfully implemented for

1 The Business Process Model and Notation (BPMN) can be used to specify behavioral
aspects of services [16].

478 B. Bauer, M. Langermeier, and C. Saad

Fig. 1. Procedure of the data flow analysis approach for SOA

the EAM domain [12], a field which shares many of the described challenges,
including the diversity of modeling standards and the fact that models may
be incomplete or even inconsistent. To alleviate the problem of complex anal-
ysis specifications, we will subsequently extend the generic representation with
domain-specific SOA concepts. Sections 4 and 5 exemplify the approach in the
context of two case studies from the SENSORIA and the ENVIROFI project
and two analysis scenarios, detection of blocking calls and computation of per-
formance metrics.

3.1 Flow-Based Model Analysis

The technique of data flow analysis (DFA) is commonly employed in the area of
compiler construction to analyze and optimize the control flow of programs by
examining how information that is computed locally at the nodes (basic blocks)
of a program control flow graph is disseminated. A canonical examples consists
in the reaching definitions analysis, in which variable definitions generated inside
basic blocks are propagated through the graph to determine the availability of
variable assignments at subsequent instructions. By applying fixed point evalua-
tion semantics, it is possible to compute with cyclic equation systems that result
from the presence of loops in the control flow. Analyses are usually specified in a
way that ensures that the result represents a conservative approximation of the
program’s run-time behavior.

The analysis specifications presented in the subsequent sections rely on the
approach detailed in [15] which transfers the notion of data flow analysis to the
modeling domain. Inspired by the related technique of attribute grammars [5], it
supports the declaration of data flow attributes which can be assigned to classes
in a target meta model. In some respects, this process can therefore be compared
to the Object Constraint Language which is often used to formalize the static
semantics of modeling languages by assigning constraints to meta model classes.
However, each data flow attribute is connected to two data flow equations, which
compute the attribute’s initial value and its fixed point iteration result(s) respec-
tively. Furthermore, to compute the result for a specific attribute, its data flow
equation may access values of neighboring attributes, thereby inducing an infor-
mation flow between the model’s elements.

To execute the analysis, the data flow solver is supplied with the meta model,
the data flow specification and the target model. In a first step, the attributes

Flow Analyses for SOA 479

are instantiated for model elements of the respective types and initialized with
their start value. Afterwards, the iteration values are computed by executing the
associated equations. The solver monitors the propagation of data flow informa-
tion between attribute instances and, if necessary, initiates the recomputation
of unstable instances, until a fixed point has been reached.

This approach has multiple advantages: The method is fully integrated with
the modeling domain, thus avoiding potential semantic gaps between different
technological spaces. Furthermore, the declarative nature of the data flow specifi-
cations allows for an intuitive definition of analyses which rely on the (transitive)
propagation of information along model paths. When computing the result for
a concrete element in the model, it is therefore possible to take into account
its overall context, that results from (transitive) connections to other elements.
Finally, the fixed point semantics enable a conservative approximation of the
run-time behavior of the modeled system.

3.2 Generic Meta Model

In the field of SOA, many competing standards and practices exist. It is therefore
essential to provide a unified basis for analysis specifications to avoid the constant
adaptation of existing analyses. Instead, the interpretation of language artifacts
will be encoded in transformations for different source languages such as SoaML.

In previous work [12] we established a generic meta model (GMM) for enter-
prise architecture analysis. This format constitutes a high-level view on model
data by abstracting from characteristics which may vary between different stan-
dards. In essence, it conforms to a stereotyped graph which incorporates model-
oriented extensions such as properties and generalization relationships. It is im-
portant to note that a GMM instance represents both meta and model data. Case
studies carried out in the field of enterprise architecture analysis have shown that
this approach supports a wide variety of different modeling paradigms although
the lack of domain-specific semantics tends to complicate analysis specification.

To provide better support for SOA-specific features, we extended the origi-
nal GMM with concepts found in canonical ontologies, modeling languages and
reference models from the SOA domain [10]. In their work, Kreger and Estefan
examine different standards and conclude that the specifications agree on a set of
core concepts. Based on this study, we established an abstract SOA model which
incorporates features from The Open Group’s SOA ontology [19] and Reference
Architecture [20] as well as the OASIS Reference Model [14]. Figure 2 shows the
resulting meta model with the essential classes and relationships.

The identified core concepts have been woven into the GMM as shown in figure
3. This representation can therefore be understood as a domain-specific language
tailored to the specification of structural analyses in the SOA domain. While the
right hand side encodes model data in the form of stereotyped Nodes, Edges and
Properties, the left hand side represents the meta structure of the respective SOA
language. Each specific concept inherits from the generic MetaModelNode while
each relationship type is represented as a sub class ofMetaModelEdge. Since they

480 B. Bauer, M. Langermeier, and C. Saad

Fig. 2. Meta model capturing the core structure of service-oriented architectures

Fig. 3. Generic Meta Model [12] adapted for the SOA domain

are also specializations of the abstract class StereotypedElement, these concepts
act as “data types” for model data.

The chosen layout allows for a certain degree of freedom when importing SOA
models, as language-specific characteristics can be represented without modifica-
tions to the GMM, eliminating the need to adapt existing analyses. This generic
approach is viable, since data flow analyses rely on information propagation and
can therefore cope with extensive changes in the underlying language’ structure.

The potential downside of this approach consists of increased complexity in
the transformation logic. The benefits of the generic representation, namely the
robustness of the analyses themselves, must therefore be weighed against the
effort required for the translation of SOA models. If it can be expected that the
underlying structure remains constant, it can therefore be beneficial to tie the
data flow specifications directly to the target language’s meta model.

3.3 Case Studies

The case studies, which form the basis for the evaluation of the proposed method-
ology, consist of two models that rely on different architectural styles. The first

Flow Analyses for SOA 481

is an extended version of the automotive case study On Road Assistance from
the SENSORIA [17,9] project. The second describes a Personal Environmental
Information System (PEIS) and was developed in the ENVIROFI [8,11] project.

Fig. 4. Service Architecture for the participant Scheduler in the PEIS use case [11]

The On Road Assistance scenario supports the driver of a car if an engine
failure makes it impossible to reach the planned destination. For this purpose,
the SOA participant OnRoadAssistant invokes multiple services to find the
“best” repair shops (garages) and rental car stations nearby, once the driver
has made a security payment. The architecture uses the interface-based style of
the SoaML specification [3] while behavioral aspects regarding service compo-
sition are modeled using the UML4SOA profile [13] developed by SENSORIA.
We extended the definitions from [9] with a second participant AssistanceStore
(excerpts can be seen in figure 5). The interactions between both participants
form the basis for the analysis of blocking calls in section 4. Mappings between
the UML4SOA/Activity Diagram and the extended GMM are shown in table 1.

The second scenario represents a Personal Environmental Information Sys-
tem, which generates personalized reports of pollen, air quality and meteoro-

Table 1. Mapping of UML4SOA concepts to the extended GMM

Ext. GMM concept UML4SOA/Activity Diagram concept

ServiceNode ServiceInterface

OrchestrationNode ActivityDiagram

AggregationEdge ServiceInterface � Port

BehaviorEdge Port � LinkPin � ActivityDiagramElement � ActivityDiagram

UseEdge ActivityDiagram � ServiceSendAction � LinkPin � Port � Ser-
viceInterface

482 B. Bauer, M. Langermeier, and C. Saad

logical data depending on the current location of the user (cf. figure 4). The
architecture relies on the contract-based SoaML approach [3]. Internal partici-
pant behavior is modeled using BPMN [1]. As proposed in [11] and [16], the
BPMN diagrams have been enriched with mappings that connect service actions
to their corresponding service interfaces. In this case, a different set of mapping
rules has to be applied to correctly represent the contract based architectural
style as depicted in table 2.

Table 2. Mapping of (contract-based) SoaML/BPMN concepts to the extended GMM

Ext. GMM concept SoaML/BPMN concept

ServiceNode ServiceContract

OrchestrationNode BPMNDiagram

AggregationEdge ServiceContract � ServiceContract

BehaviorEdge ServiceContract � Participant � BPMNDiagram, ServiceCon-
tract � Participant � ServiceArchitecture

UseEdge BPMNDiagram � SendAction � Service

4 Analysis of Blocking Calls

Dependencies relating to the orchestration of services are an important aspect
of service-oriented architectures. In larger systems, the call hierarchies (directly
and indirectly invoked services) are often not obvious which may lead to blocking
calls/deadlocks. In [4], Acciai et al. propose a type system to ensure deadlock
freedom of the subsequent conversations after service invocation in well-typed
CaSPiS processes. We implement a light-weight alternative to this approach
based on a static approximation of the system’s runtime behavior with the goal
of detecting potential cyclic invocations.

In the general case, detecting blocking calls in an orchestrated architecture
requires the identification of all the direct and indirect service calls that are
required for the execution of a service. If this set contains the original service, the
architectural design may result in a deadlocked system. Since orchestrations are
typically described via process diagrams (e.g. UML Activity Diagrams, BPMN
or BPEL models), the analysis has to focus both on the internal composition of
a process and the (transitive) interactions between different orchestrations. By
computing a fixed point of required service calls for each service, it is possible
to either guarantee that the architecture will not result in blocking calls or to
indicate potentially problematic situations to the user. In the following we will
describe how this analysis can be specified and applied to both case studies.

4.1 Analysis Specification

To assess implicit service calls, we assign a data flow attribute requiredServices to
the ServiceNode class in the architecture’s GMM representation whose instances

Flow Analyses for SOA 483

compute the sets of invoked services for each node. A second data flow attribute
serviceCalls computes the set of called services for OrchestrationNodes. The
respective data flow equation rules are shown in algorithms 1 and 2.

Algorithm 1. Data flow equation for the attribute requiredServices

1: DFA-EQUATION ServiceNode::requiredServices returns Set<ModelNode>

2: Set<ModelNode> services = new Set<ModelNode>();

3: // acquire values from composed services
4: foreach (ModelEdge outgoingAggregation in self.outgoing)
5: if (outgoingAggregation.target.stereotype is ’ServiceNode’)
6: services.addAll(outgoingAggregation.target.requiredServices());

7: // acquire values from called services in the orchestration
8: foreach (ModelEdge outgoingBehavior in self.outgoing)
9: if (outgoingBehavior.target.stereotype is ’Orchestration’)
10: services.addAll(outgoingBehavior.target.serviceCalls());

11: return services;

Algorithm 2. Data flow equation for the attribute serviceCalls

1: DFA-EQUATION OrchestrationNode::serviceCalls returns Set<ModelNode>

2: Set<ModelNode> services = new Set<ModelNode>();

3: // acquire values of called services from the orchestration
4: foreach (ModelEdge outgoingCall in self.outgoing)
5: if (outgoingCall.target.stereotype is ’ServiceNode’)
6: services.addAll(outgoingCall.target.requiredServices());

7: return services;

The result set for the attribute requiredServices is first initialized with an
empty call set (line 2). For aggregated services, the required calls of the sub-
structures must be added as well. This is accomplished by requesting the value
of requiredServices at those elements (which will implicitly trigger the data flow
solver to recursively evaluate these dependencies) and adding them to the result
(lines 4 - 6). To include behavior-related invocations, lines 8 - 10 process service
calls of orchestrations (computed by serviceCalls for OrchestrationNodes).

The data flow solver will automatically terminate once a fixed point has been
reached, i.e. no more elements are added to any result set. By examining the
values computed by requiredServices for ServiceNodes, it is possible to detect
whether a service may trigger its own invocation. If this is not the case for any
service, the system will never execute a blocking call. Otherwise, a deadlock
might exist, although not every execution necessarily results in that situation.

4.2 Case Study

The described analysis has been carried out for both use cases. For this purpose,
the meta and model data has been transformed into the extended GMM format
using the mappings from tables 1 and 2. For reasons of clarity, we will depict
the results in the original representation rather than using the GMM concepts.

484 B. Bauer, M. Langermeier, and C. Saad

Fig. 5. Illustration of the blocking call in the use case On Road Assistance[9]

Figure 5 shows the identified potential deadlock for the OnRoadAssistance
model. In this case, we assume that data flow analysis started with the Service-
Interface SelectGarageService, which relies on the providing participant Assis-
tanceStore (bottom). Its ServicePoint delegates to the internal component Sort-
AndEvaluate, which has an associated Activity Diagram describing its internal
behavior (right corner of figure 5). In this diagram, the selectGarageService is
connected to the ReplyAction selectBestGarage via a LinkPin. Here, the set of
preceding SendActions contains only the action getGarageEvaluation, which is
linked to the RequestPort EvaluationService. This service, in turn, is connected
to a ServicePort of the OnRoadAssistance participant.

Analysis of the component’s behavior indicates that the EvaluationService
may trigger the execution of the selectGarageService and the selectRentalCarSer-
vice. As both implement SelectBestInterface, this element will be added to the re-
sult set. Subsequently, the algorithm determines the service calls of selectRental-
CarService, which is provided by the SortAndEvaluate participant and uses the
EvaluationService. Afterwards, the execution of the data flow rules terminates,
as the analysis has converged in a fixed point. Because the call hierarchy of Se-
lectBestInterface is cyclic, the absence of blocking behavior cannot be guaranteed
for this architecture. The concrete result sets for all services are as follows2:

ClientInterface: { LocationService, creditChargeService, EvaluationService,
SelectBestInterface, FindInterface }

EvaluationService: { SelectBestInterface, EvaluationService }
SelectBestInterface: { EvaluationService, SelectBestInterface }

For the PEIS example, the connection of BPMN actions to the used services is
modeled via links as proposed by [16] and [11]. The call hierarchies for Resource

2 Since the LocationInterface, the CreditChargeInterface and the FindInterface have
no required service calls, they have been omitted from this representation.

Flow Analyses for SOA 485

Discovery Service and Publishing Service are empty since they have no required
service calls. The result set for Pollen Data Service, Meterological Data Service
and Air Quality Data Service consists only of the Publishing Service. Finally,
the Environmental Data Retrieval Service may request the invocation of Re-
source Discovery Service, Pollen Data Service, Meteorological Data Service, Air
Quality Data Service and Publishing Service. Since no result for the attribute
requiredServices contains the associated service itself, we can conclude that the
architecture of the Scheduler participant in the PEIS has no blocking calls. This
is also evident from the structural overview shown in figure 4: Even without
detailed knowledge about the inner structure of the participants, there exists no
sequence of service calls that could potentially result in a cyclic invocation.

5 Performance Analysis

Performance aspects can be of vital importance in an SOA environment, espe-
cially if the architecture relies on a complex orchestration of many services. In
this case, a static assessment of the run-time properties can provide valuable
early feedback to the developer which can help in improving the system design
to shorten response times for critical components. Examples for this kind of anal-
ysis include a method based on layered queuing networks for UML4SOA models
that have been extended with MARTE (a UML profile for real-time systems)
[21] or the use of queuing network modeling [18]. The latter proposal applies the
analysis to a distributed message passing architecture with asynchronous mes-
sage streams (messages are being queued at the components) where the response
time of a system is defined as the Population/Arrival Rate. The latter denotes
the number of incoming requests per time unit while the former describes the
sum of currently processed and all waiting requests [18].

Transferring this method to the SOA domain necessitates some adaptations
since the system’s functionality is not only expressed by participants’ internal
components but also by service orchestrations. Furthermore, instead of having a
single arrival rate for the whole system, each service may possess its own arrival
rate which has to be based on the rates of all its requestors and an internal rate.
The population of a service then depends on the internal population plus the
population of all requested services during the provisioning.

It should be noted, that - in contrast to the blocking calls analysis - the eval-
uation of the performance metrics does not induce a fixed point computation.
Instead, the declarative nature of data flow analysis specifications in combina-
tion with the information propagation principle is used to realize succinct and
intuitive implementations of the recursive formulae.

5.1 Analysis Specification

Response time for (composite) services is computed by three data flow attributes:

– arrivalRate (rs): the arrival rate for each service,
– population (ps): the population for each service, and
– responseTime (ts): the response time for each service

486 B. Bauer, M. Langermeier, and C. Saad

Furthermore, the SOA model must be enriched with additional data: Services
require a property service time (ss) which denotes the execution time for internal
actions (excluding external service requests). A second property local arrival
rate (rls) specifies the number of local consumer requests not triggered by other
services. Based on this information, the attribute arrivalRate can be computed
using the data flow equation shown in algorithm 3.

Algorithm 3. Data flow equation for the attribute arrivalRate

1: DFA-EQUATION ServiceNode::arrivalRate returns Integer

2: Integer rate = self.localArrivalRate;

3: // for all calling services
4: foreach (ModelEdge incomingCall in self.incoming)
5: if (incomingCall.source.stereotype is ’Orchestration’)
6: rate += incomingCall.source.arrivalRate();

7: return rate;

The arrival rate of a Service equals to the sum of the local arrival rate (line 2)
and the arrival rates of all requesting services (lines 4 - 6). For this purpose, the
latter part requests the arrivalRate result for the orchestration(s) from which
the service is invoked, thereby computing the arrival rate from its service (and,
if necessary, the compound services) recursively.

After the arrival rate has been determined, it is possible to calculate the
internal and the composed population. The internal population is defined as pis =
us

1−us
, with us = rs · ss representing the utilization of service s. The population

of a composition is given as ps = pis +
∑

pi, where pi are the populations of the
requested services. The data flow equation is listed in algorithm 4.

Algorithm 4. Data flow equation for the attribute population

1: DFA-EQUATION ServiceNode::population returns Integer

2: Integer utilization = self.arrivalRate() * self.serviceTime;
3: Integer population = utilization / (1 - utilization); // internal population

4: // add populations of all directly requested services
5: foreach (ModelEdge outgoingEdge in self.outgoing)
6: if (outgoingEdge.target.stereotype is ’Orchestration’)

7: foreach (ModelEdge outgoingCall in outgoingEdge.target.outgoing)
8: if (outgoingCall.target.stereotype is ’ServiceNode’)
9: population += outgoingEdge.target.population();

10: return population;

The internal population of a Service is computed using the model property
service time and the data flow attribute arrivalRate (lines 2 - 3). For the overall
population, this result is added to the populations of all Services, that are called
in the respective Orchestration (lines 5 - 9). This process involves a recursive
access to the population attribute (line 9) for which the data flow solver ensures
that the indirectly required services are considered as well.

Flow Analyses for SOA 487

5.2 Case Study

We will now illustrate the performance analysis for the service FindInterface in
the OnRoadAssistance model. The mappings of the meta model concepts are
equal to those in the blocking calls scenario. In this case, we assume deadlock
freedom and therefore will not consider the EvaluationInterface and its con-
nections. The internal service times are given as sFindInterface = 0, 03s and
sClientInterface = 0, 05s. The local arrival times are rlClientInterface = 10 and

rlfindGaragesServices = rlfindRentalCarStationsService = 5 requests/s. Analysis exe-
cution starts by evaluating the FindInterface’s population which automatically
triggers the computation of its arrivalRate. In addition to the arrival rates of the
implementing service ports rfindGaragesService and rfindRentalCarStationsService,
the corresponding request ports are determined based on the behavior diagram
of the OnRoadAssistant participant. The ports are used to provide the client
service port, i.e. the set of usingServicePorts for both request ports, which con-
tains only one element, the client. The arrival rate of the client service port
is equal to its local arrival rate, because this port has no connections to other
request ports. The arrival rate for the FindInterface is thus computed by:

RFindInterface = rfindGaragesService + rclient + rfindRentalCarStationsService

+rclient = 5 + 10 + 5 + 10 = 30

The utilization is then calculated as uFindInterface = rFindInterface · sFindInterface

= 30 · 0,03 = 0,9 and, consequently, the internal population yields:

pFindInterface =
uFindInterface

1−uFindInterface
= 9

Since no service calls are required for the provisioning of the FindInterface,
its overall population is equal to the internal population and the analysis of
this interface is finished. The results show that the FindInterface will have a
utilization of 90%, with a population of 9. The application of the performance
analysis for the PEIS use case can be carried out in an identical fashion.

6 Discussion and Conclusion

In this paper we presented a comprehensive analysis methodology for SOA mod-
els, which combines a generic representation of (meta) model data with an analy-
sis technique that relies on information propagation and fixed point computation
to enable a context-sensitive evaluation of model elements and the approximation
of run-time behavior. We have demonstrated the viability of this methodology
in the context of two use cases and two analysis scenarios, which implement a
deadlock analysis and an evaluation of performance metrics respectively.

As shown in previous work, the unified representation has the benefit of pro-
viding a simple, yet concise foundation for the specification of flow sensitive
analyses. To further improve the accessibility of this approach, we extended the
generic structure of the GMMwith SOA specific characteristics. It is thereby pos-
sible to base analyses on common SOA semantics while preserving the support
for a wide range of different modeling languages and styles. By propagating lo-
cally computed information through the model, the data flow technique supports

488 B. Bauer, M. Langermeier, and C. Saad

the implementation of context-sensitive analyses. As information is propagated
across multiple (transitive) relationships, the specifications are invariant against
a variety of structural changes in the underlying modeling language.

It should be noted that complications may arise if the concepts of the re-
spective SOA language cannot be directly mapped to the analysis specification
types. While it would generally be possible to implement the necessary adapta-
tions in the transformation logic, a more generic solution for this problem would
be advantageous. This could, for example, be realized through a sophisticated
mapping technology which supports the translation of complex SOA concepts
to suitable structures in the GMM representation. Possible implementations of
this are for example graph transformations or semantic web technologies.

Dedication. We would like to thank the organizers for their hard work in co-
ordinating this festschrift in honor of Martin Wirsing’s emeritation and for the
opportunity to contribute to it.

Personal Dedication of Bernhard Bauer: At the University of Passau, Martin
teached me in Software Engineering and logic based specification methods. No
other person influenced my research interests as profoundly as Martin did. I am
deeply grateful to him for giving me the opportunity to conduct my first research
steps at his chair in Passau and for always being open to my ideas. Apart from
being a great researcher, Martin has also impressed me as a person. His helpful
and friendly guidance as well as his professional expertise formed the motivation
that made Software Engineering my passion and primary research interest.

Thank you very much for the many interesting and enjoyable years!

References

1. Business Process Modeling Notation (BPMN) 2.0 Specification (2011)
2. Object Constraint Language (OCL) 2.3.1 Specification (January 2012)
3. Service oriented architecture modeling language 1.0 specification. Tech. rep. (2012)
4. Acciai, L., Bodei, C., Boreale, M., Bruni, R., Vieira, H.T.: Static Analysis Tech-

niques for Session-Oriented Calculi. In: Wirsing, M., Hölzl, M. (eds.) SENSORIA.
LNCS, vol. 6582, pp. 214–231. Springer, Heidelberg (2011)

5. Babich, W.A., Jazayeri, M.: The Method of Attributes for Data flow Analysis. Acta
Inf 10, 245–264 (1978)

6. El-Wakil, M., El-Bastawisi, A., Boshra, M., Fahmy, A.: Object-Oriented Design
Quality Models - A Survey and Comparison. In: 2nd International Conference on
Informatics and Systems (INFOS 2004) (2004)

7. Engelhardt, M., Hein, C., Ritter, T., Wagner, M.: Generation of Formal Model
Metrics for MOF based Domain Specific Languages. ECEASST 24 (2009)

8. ENVIROFI: Environmental Observation Web and its Service Applications within
the Future Internet - Environmental Usage Area, http://www.envirofi.eu

9. Koch, N., Heckel, R., Gönczy, L.: UML for Service-Oriented Systems (second
version). Sensoria Deliverable D1.4b,
http://pst.ifi.lmu.de/projekte/Sensoria/del_54/D1.4.b.pdf

10. Kreger, H., Estefan, J.: Navigating the SOA Open Standards Landscape Around
Architecture. Whitepaper W096, The Open Group (2009)

http://www.envirofi.eu
http://pst.ifi.lmu.de/projekte/Sensoria/del_54/D1.4.b.pdf

Flow Analyses for SOA 489

11. Langermeier, M.: A model-driven approach for open distributed systems. Technical
Report 2013-03, University of Augsburg (2013)

12. Langermeier, M., Saad, C., Bauer, B.: A unified Framework for Enterprise Archi-
tecture Analysis. In: Proceedings of the Enterprise Model Analysis Workshop in
the Context of the 18th Enterprise Computing Conference, EDOC 2014 (2014)

13. Mayer, P., Koch, N., Schroeder, A., Knapp, A.: The UML4SOA Profile. Technical
Report, LMU Muenchen Version 3.0 (2010)

14. Metz, R., McCabe, F., Laskey, K., MacKenzie, C.M., Brown, P.F.: Reference Model
for Service Oriented Architecture 1.0. Official OASIS Standard (2006),
http://docs.oasis-open.org/soa-rm/v1.0/

15. Saad, C., Bauer, B.: Data-Flow Based Model Analysis and Its Applications. In:
Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013.
LNCS, vol. 8107, pp. 707–723. Springer, Heidelberg (2013)

16. Sadovykh, A., Desfray, P., Elvesæter, B., Berre, A.-J., Landre, E.: Enterprise archi-
tecture modeling with SoaML using BMM and BPMN - MDA approach in practice.
In: 6th Central and Eastern European Software Engineering Conference, pp. 79–85.
IEEE (2010)

17. SENSORIA: Software Engineering for Service-Oriented Overlay Computers (2010),
http://www.sensoria-ist.eu

18. Spitznagel, B., Garlan, D.: Architecture-based performance analysis (1998)
19. The Open Group: Service-Oriented Architecture Ontology. Standard (2011)
20. The Open Group: SOA Reference Architecture. Standard (2011)
21. Tribastone, M., Mayer, P., Wirsing, M.: Performance prediction of service-oriented

systems with layered queueing networks. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2010, Part II. LNCS, vol. 6416, pp. 51–65. Springer, Heidelberg (2010)

22. Wirsing, M., Hölzl, M., Koch, N., Mayer, P.: sensoria – software engineering for
service-oriented overlay computers. In: Wirsing, M., Hölzl, M. (eds.) SENSORIA.
LNCS, vol. 6582, pp. 1–14. Springer, Heidelberg (2011)

http://docs.oasis-open.org/soa-rm/v1.0/
http://www.sensoria-ist.eu

Service Composition

for Collective Adaptive Systems

Stephen Gilmore1, Jane Hillston1, and Mirco Tribastone2

1 Laboratory for Foundations of Computer Science, University of Edinburgh,
Edinburgh, UK

2 Electronics and Computer Science, University of Southampton,
Southampton, UK

Abstract. Collective adaptive systems are large-scale resource-sharing
systems which adapt to the demands of their users by redistributing
resources to balance load or provide alternative services where the cur-
rent provision is perceived to be insufficient. Smart transport systems
are a primary example where real-time location tracking systems record
the location availability of assets such as cycles for hire, or fleet vehicles
such as buses, trains and trams. We consider the problem of an informed
user optimising his journey using a composition of services offered by
different service providers.

1 Introduction

Flexible composition of services lies at the heart of collective adaptive systems
(CAS) where the collective interaction of users of the system shapes future sys-
tem behaviour because the system adapts to patterns of use. Adaptive systems
such as these are subject to a continuous process of tuning based on measure-
ment data collected by the system itself through integrated instrumentation.
Use of the services provided by the system achieves goals which are important
to the user (perhaps a goal as simple as travelling across the city to enjoy a social
occasion with friends and colleagues) but it also alters the system so that user
experience in the future will be affected by this use of this service, even if only
very subtly. Service provision in the future depends on decisions made by trans-
port system operators, based on perceived demand for services as determined by
collective journey statistics.

CAS depend on real-time measurement and monitoring of their services cou-
pled with the dissemination of service availability information, allowing users to
make informed choices. The provision of real-time information makes it possible
for users to interact intelligently with adaptive systems and to make informed
decisions which are supported by vital, current information.

Investigation of such systems by the construction of formal models of their
behaviour is a hugely productive activity. A formal model provides a compact
representation of an important aspect of a complex system, throwing light on
the most significant issues and giving us the intellectual tools to study them
closely. In this paper we consider a formal model of a collective adaptive system

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 490–505, 2015.
c© Springer International Publishing Switzerland 2015

Service Composition for CAS 491

which is composed of distributed services. In particular we study an integrated
smart transport system which blends public transport and self-powered transport
in an effort to solve the so-called last mile transport problem experienced in
modern cities. This problem arises because although public transport can be
used to transport a passenger close to their intended destination, a final stage
of the journey (the “last mile”) remains to be travelled in another way. The
consequence of not addressing the last mile transport problem is that users
become disenchanted with the service and resort to private transport, putting
more cars on the road with negative consequences for road congestion and the
environment.

Specifically, we consider the interaction between a real-time public-transport
tracking service, a location-identification service, a transport-planning service,
and a cycle-hire service, from the point-of-view of public transport passengers.
These passengers also subscribe to a cycle-hire scheme and wish to optimise
their journey to their destination. Subscribers in a cycle-hire scheme can borrow
cycles from a cycle station when they need one, use the cycle for their allotted
time, and then return the cycle to the cycle station nearest to their destination.

Authors’ Note. Our interest in service composition, and the development of
stochastic modelling techniques suitable for studying the performance of com-
posed services, can be directly attributed to Martin. We had the great privilege
of working with him on the SENSORIA project and we look forward to future
opportunities to travel through Munich to enjoy a Maß with him, availing our-
selves of smart transport services (such as those described in our scenario below).

2 Scenario: Travel in Munich

As our running example, we consider how the situation of users of an integrated
smart transport system can be assisted by automated tools which allow them to
make an optimal choice between alternative routes to reach a desired destination.
If journey times were deterministic it would be possible to easily compute the
shortest path. However, in reality all transport systems exhibit a great deal of
uncertainty in journey times due their inherent stochasticity: a tram can break
down, a bicycle tyre can go flat, traffic congestion may affect a bus journey,
and so on. Our idea is to be able to compute an optimal path on-line using the
current state of the system.

To be more concrete and to provide a familiar scenario, we set our example
in Munich during Oktoberfest, and assume that the hard-working staff of the
Ludwig-Maximilians-Universität at the LMU building in Oettingenstrasse wish
to plan their journey to Theresienwiese for their well-earned Maß1 after a long
day in the office. Naturally they prefer to minimise their journey time. We assume
that a user, hereby denoted by M , has a choice between the following three
routes:

1 Maß is the Bavarian for a mug of beer, equivalent to 1 litre.

492 S. Gilmore, J. Hillston, and M. Tribastone

1. Take the 54 bus from Hirschauer Strasse to Giselastrasse. We assume that a
bike-sharing station is available at Giselastrasse. Thus M has three options:
directly walk or cycle to Theresienwise, or change with the underground line
U6 to Odeonsplatz. At Odeonsplatz is another bike-sharing station; now M
has the choice to either walk or cycle to Theresienwise.

2. M may prefer to start the journey with a relaxing stroll through the English
Gardens, and take the occasion to drop off a document at the LMU building
in Leopoldstrasse. The journey can then continue by walking to nearby Uni-
versität U-Bahn station. There M will decide between continuing by bike
to Theresienwise, or taking the U3 to Odeonsplatz, where he will choose
between cycling or walking, as in Route 1.

3. Take the tram 18 to Lehel from Tivolistrasse, and change with the U4 to
Hauptbahnhof. We assume the existence of a bike-sharing station at Lehel
and Hauptbahnhof, thus M has always the choice to directly walk or cycle
to Theresienwise.

We will refer to these as routes #1, #2 and #3.

3 Modelling

We may now represent this problem as a formal model with a network structure
where the intermediate stops on the journey are represented as nodes in the
network. We number the stops on each route to remind us of the journey. Thus
route #1 has stops S10, S11 and S12. We can identify 12 nodes in the network.
These are not all distinct and thus correspond to our 11 destinations of interest.
The nodes and corresponding locations are given in Table 1.

Table 1. Nodes and locations in the network

Node Location

S0 Origin: The LMU building in Oettingenstrasse, at the end of the day

S10 Hirschauer Strasse

S11 Giselastrasse

S12 Odeonsplatz

S20 The English Gardens

S21 The LMU building in Leopoldstrasse

S22 Universität U-Bahn station

S23 Odeonsplatz

S30 Tivolistrasse

S31 Lehel

S32 Hauptbahnhof

D Destination: Theresienwise, Oktoberfest, and a well-earned Maß

Service Composition for CAS 493

S0start S20

S21 S22 S23

S10 S11 S12

S30 S31 S32

D

d1

d2

d3

b10 u11

c11

w11

c12

w12

w20
w21 u22

c22 c23
w23

t30 u31

c31
w31

c32

w32

Fig. 1. Possible routes to the destination

Having named the nodes of interest we can now express the journey as a
network such as the one illustrated in Figure 1 with our traveller M starting at
the origin of the journey (S0) with options to travel via routes #1, #2 or #3,
each of which has intermediate stops along the way.

Every route eventually passes relatively close to their desired destination (D),
but not so close that walking is the preferred option. Fortunately, cycle-hire
stations are located at intermediate stops S11 and S12 on route #1, intermediate
stops S22 and S23 on route #2, and intermediate stops S31 and S32 on route #3.
The real-time public-transport tracking service predicts delays d1, d2 and d3 for
the public-transport services needed.

We write bn and similarly for the average bus journey times from stop n. We
write tn for a tram journey from stop n and we use un to denote a journey
by underground train. We write cn for the average cycle journey time from
stop n to the destination, and wn for the average walking time. Journeys are
always completed either by cycling or by walking, ending at the destination of
Oktoberfest in our example (D).

In this scenario there are eleven possible journeys, depending on the route
chosen, and where passenger M decides to alight in order to collect a cycle for
the last stage of the journey.

• d1→ • b10→ • c11→ • • d2→ • w20→ • w21→ • c22→ • • d3→ • t30→ • c31→ •
• d1→ • b10→ • w11→ • • d2→ • w20→ • w21→ • u22→ • c23→ • • d3→ • t30→ • w31→ •
• d1→ • b10→ • u11→ • c12→ • • d2→ • w20→ • w21→ • u22→ • w23→ • • d3→ • t30→ • u31→ • c32→ •
• d1→ • b10→ • u11→ • w12→ • • d3→ • t30→ • u31→ • w32→ •

Cycle stations can store only a limited number of cycles meaning that on a
given day, some of these potential journeys might not be viable. If there are no

494 S. Gilmore, J. Hillston, and M. Tribastone

cycles available for hire at the cycle stations near intermediate stops S11, S12

and S22 (say) then cycling from these intermediate stops on these routes is not
an option.

A ‘smart’ solution to this problem would integrate the real-time informa-
tion services offered by the different public-transport service providers involved,
informing us about arrival times of buses, trams, underground trains, and the
real-time cycle tracking service, keeping subscribers to the cycle-hire scheme
informed about the number of cycles available at each station.

Location-tracking services play a role in this scenario because it is not suf-
ficient to compute a best route at the start of the journey and not revisit this
decision en route. If a downstream cycle station becomes depleted while the
journey is underway then it is important to be aware of this. We would like
the systems which we use to be locally adaptive as well as collectively adaptive.
Knowing that downstream options are no longer viable may promote a possible
choice to being the only choice.

In order for it to be possible to compute results from our model, we must
determine model parameters by estimating concrete values for journey times
whether journeys are made by bus, tram, underground train, cycling or walking.
Fortunately, in our data-rich times this information is readily available from a
variety of web-based sources and we have been able to find all of the model
parameters which we need for our example.

A more comprehensive treatment of all aspects of this scenario should also
consider additional complications which we do not address here. As with all
service-oriented computing, we should consider the possibility of lack-of-service
for all of the services which the system depends upon. The actor in our story, M ,
may be unable to connect to the real-time bus information service because no 3G
connection is available. Location-tracking services may be unavailable because
of an occluded GPS signal. The cycle-hire tracking service may be unable to
respond to our request for information because of excessive load on the server,
software failures, network failures, a period of maintenance activity, or a host
of other reasons. Failures are ubiquitous in distributed and service-oriented sys-
tems, so it is necessary to represent them in our models. We are aware that the
model which we present in this paper misses many other sources of complexity
in real-time-informed travel such as these.

We would also like our algorithm to prefer cycle stations where more cycles
are available. It might at first seem that the number of cycles which are available
should not play a role in the decision of which route to take: it is enough to know
whether some are available, or none. However, there are at least two complicating
factors. The first complication is that some of the cycles, although present, might
not be usable because of flat tyres, missing saddles, damaged wheels, or other
reasons. Cycle stands at cycle stations report whether a cycle is attached to
the stand, but have no way of knowing whether or not the cycle is usable. The
second complication is that CAS are resource-sharing systems. Other passengers,
and other pedestrians, are also borrowing cycles concurrently, so a small supply
of cycles might be depleted by the time that the bus, tram, or underground

Service Composition for CAS 495

train has made its journey to the cycle station. For these, and other reasons,
the number of cycles available is significant, not just the presence or absence of
cycles.

Similarly, we should prefer those routes which offer more cycle stations,
because this maximises the number of options which remain open to us once
we have committed to a particular route, but we do not address this here.

4 Model

Our high-level representation of the system in Figure 1 is not yet in a form which
is suitable for analysis. The reason for this is that although we have detailed
durations and dependencies, we have not yet clarified the decision which the
user has to make when they have to choose between cycling, or walking, or
continuing to travel to the next cycle station (if there is a feasible cycle station
further along the route).

If at the end of the route (say at stop S12) then there is a two-way choice
between cycling and walking. We can represent this choice by saying that the pre-
vious part-journey had two possible outcomes, leading to committing to cycling
(Sc

12 is reached with probability pc12) or committing to walking (Sw
12, reached

with probability pw12 = (1−pc12)). Committing to cycling may incur a delay while
waiting for a cycle to be returned by another user.

If instead there is another cycle station further along the route, then the user
has a three-way choice, which we represent as being between states (for example
Sc
11, S

u
11 and Sw

11 representing being at location S11, having committed to travel
the next part of the route by cycling, underground train, or walking respectively).
These are reached with probabilities pc11, p

u
11 and pw11, summing to 1. Figure 2

shows how these probabilities play a role in determining the journey to the
destination.

Our next challenge in modelling arises from the fact that we have populations
of users of the cycle-sharing scheme, and populations of cycles which can be
borrowed. Cycle stations may vary from having the capacity to store as few
as 10 cycles, or as many as 100. Without cycle stations having a finite capacity,
and without a population of users concurrently borrowing cycles, the aspect of
competition for resources which is a defining aspect of resource-sharing collective
systems would not be captured in the model.

Cycle stations consist of an array of cycle stands, each of which is a simple
process recording the presence or absence of a cycle at this stand, together with
the activities which cause a change of state. Figure 3 illustrates the idea.

This modelling decision incorporates the simple but powerful abstraction that
individuals in a population are identityless. One cycle in a cycle-sharing scheme
is treated as being just like any other: each only represents the capacity to
allow M to complete his journey more quickly than he would if he was walking.
Similarly, the individual identities of the users of the cycle-hire scheme is not
important in this modelling context. Each user just represents the potential to
remove a cycle which was previously available for hire and hence possibly force

496 S. Gilmore, J. Hillston, and M. Tribastone

S0start Sb
10

Sc
11

Su
11

Sw
11

Sc
12

Sw
12

D
d1

pc
11 × b10

pu
11 × b10

pw
11 × b10

c11

w11

pc
12 × u11

pw
12 × u11

c12

w12

Fig. 2. Exploring route number #1 in greater detail

SE
31 SF

31

return31

borrow31

Fig. 3. A cycle station has several stands, each of which may be empty or full

the outcome that M must complete his journey by walking (if there are no cycles
left to borrow at the chosen cycle station).

Appendix A presents the complete PEPA model for this scenario.

5 Analysis

We encoded our model in the stochastic process algebra PEPA [1] and analysed
it with the PEPA Eclipse Plug-in [2], a modelling tool developed in the Euro-
pean project SENSORIA (Software Engineering for Service-Oriented Overlay
Computers) and subsequently used in teaching and research internationally.

PEPA is a compact formal modelling language which provides the appro-
priate abstract language constructs to represent the model in our example. It
has stochastically-timed activities which can be used to encode activities which
take time to complete, such as travelling between intermediate stops in a jour-
ney and a probabilistic choice operator to express the likelihood of taking dif-
ferent routes. Different patterns of behaviour are encoded in recursive process
definitions. Features such as these are found in many modelling formalisms [3]
but a distinctive strength of the PEPA language is that populations of compo-
nents, encoded as arrays of process instances, are both convenient to express in
the language and efficiently supported by the dynamic analysis which reveals
the collective behaviour which emerges from the interactions of the populations
of components. The PEPA language has found application in many modelling

Service Composition for CAS 497

problems such as scalable and quantitative analysis of web-services [4,5,6], com-
paring communications protocols [7], response-time analysis of safety-critical
systems [8], software performance engineering with UML-based models [9,10],
software patterns [11], software architecture [12], signalling pathways [13], model-
driven development [14], and robot movement [15].

Many of these models would have been impossible to construct without an
efficient method of analysing large-scale population-based models. A mapping
from the PEPA language to systems of ordinary differential equations is pre-
sented in [16], making these analyses possible. A formal semantic account of the
transformation is available [17], together with supporting theory enabling the
definition of reward structures on top of the underlying fluid model [18].

These efficient analysis methods are implemented in the PEPA Eclipse Plug-in
which provides an integrated modelling environment for PEPA. It incorporates a
custom editor for PEPA models, model visualisation and static analysis tools, a
model debugger, Markov chain analysis tools, stochastic simulation and discrete
analysis tools, a model compiler which delivers a continuous representation of the
system, efficient ODE-based solvers, and plotting functions for analysis results.

6 The Optimisation Problem

There are several possible optimisation problems which could be of interest to
the traveller in our story, many of which depend heavily on the choice of which
route to take at the outset of the journey because this makes a commitment to
certain cycle stations.

Figure 4 depicts one aspect of the optimisation problem which we intend to
solve. We assume that all model parameters except p1, p2, and p3, are known.
In practice, we may assume that these other parameters are inferred from mea-
surements on the real system. Indeed, journey times were set using data col-
lected from the Google Maps and the MVV (Munich’s public transportation
provider) websites. The probabilities related to traveller commitment were arbi-
trarily fixed. Here we present results with varying configurations of the cycle

S0start

S1 S10 · · ·

S2 S20 · · ·

S3 S30 · · ·

p1

p2

p3

d1

d2

d3

Fig. 4. The optimisation problem: choose p1, p2 and p3 to minimise the time to travel
to the destination

498 S. Gilmore, J. Hillston, and M. Tribastone

stations. Our problem is to find the optimal values of p1, p2, and p3 to minimise
the average journey time of a traveller wishing to start a journey at location S0.
We envisage this optimisation problem to be solved by a service provider which
computes the optimal route, given the current conditions of the system. The
solution can be interpreted as a randomised algorithm: for instance, p1 repre-
sents the probability with which the service provider suggests to go to Hirschauer
Strasse. This implicitly guarantees some balancing in the system— if all requests
returned the same route, this would introduce contention for shared cycles along
the route to which the traveller commits.

We solved the optimisation problem by means of genetic algorithms; in par-
ticular we used the implementation available in Matlab R2013b, with its default
settings. Figure 5 shows the results of the optimisation problem for three different

0 10 20 30
60

80

100

120

140

160

180

200

Generation

F
itn

es
s

va
lu

e

Best: 64.6606 Mean: 64.6627

Best fitness
Mean fitness

(a) 0.20, 0.23, 0.57

0 10 20 30
30

40

50

60

70

80

90

100

Generation

F
itn

es
s

va
lu

e

Best: 37.5671 Mean: 37.5738

Best fitness
Mean fitness

(b) 0.20, 0.23, 0.57

0 10 20 30
35.8

36

36.2

36.4

36.6

36.8

37

37.2

Generation

F
itn

es
s

va
lu

e

Best: 35.9276 Mean: 35.9278

Best fitness
Mean fitness

(c) 0.97, 0.01, 0.02

Fig. 5. Optimisation results. Best and mean fitness values (i.e., average journey time,
measured in minutes) against generation for three different conditions of the bike shar-
ing system. (a) 10 users per bike; (b) 5 users per bike; (c) 1 user per bike. Each caption
shows the optimal configuration of p1, p2, and p3, respectively.

Service Composition for CAS 499

load conditions on the cycle sharing system, characterised by the ratio between the
number of users and the number of cycles available. For simplicity, we fixed the
same capacity for all cycle stations.

Figure 5(a) plots the best and mean fitness values in the situation where the
system has 10 users per available cycle. The optimal configuration suggests a
preferential choice for route through Tivolistrasse, with probability 0.57. The
average journey time is ca. 1 hour in this case.

Figure 5(b) shows the results for a less loaded cycle sharing system, where
there are 5 users per available cycle. Although the optimal configuration is the
same as in Figure 5(a), we observe that the average journey time is substantially
reduced; this is explained by a lower contention for bikes at the cycle stations,
leading to a higher probability that a traveller will find a cycle as soon as they
arrive.

Finally, Figure 5(c) shows an ideal situation with no contention for bikes in
the network. This leads to a slight improvement in the average journey time
experienced by the user; more interestingly, the algorithm suggests a substantial
preference for the route through S10, unlike the previous cases.

7 Conclusions

Systems which are built as compositions of services are ubiquitous. The ability
to consume services provided by others and to compose services from different
sources plays a crucial role in the design and evolution of the systems of today.
Services make systems work.

In part the impetus towards these kinds of service composition architectures
has been fuelled by a change in attitude towards open systems and open data.
Transport operators in particular have embraced the challenges of providing
open access to their data about the state of their service, allowing others to build
apps which give users access to information about journey times, disruptions,
availability of cycles, and other key system descriptors. More recently apps and
applications have been developed which aggregate disparate sources of data to
give richer insights and open up new possibilities, as in the scenario considered
here where bus and cycle services are integrated.

Possessing the ability to efficiently analyse such service-oriented systems is
equally important. Advances in analysis tools and frameworks are needed to keep
pace with the ever-increasing challenges which stem from the complex systems
which surround us in our technology-dense lives.

Acknowledgements. This work is supported by the EU project QUANTICOL,
600708.

500 S. Gilmore, J. Hillston, and M. Tribastone

References

1. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

2. Tribastone, M., Duguid, A., Gilmore, S.: The PEPA Eclipse Plug-in. Performance
Evaluation Review 36(4), 28–33 (2009)

3. Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic Process Algebras
(chapterStochasticProcessAlgebras). In:Bernardo,M.,Hillston, J. (eds.) SFM2007.
LNCS, vol. 4486, pp. 132–179. Springer, Heidelberg (2007)

4. Gilmore, S., Tribastone, M.: Evaluating the scalability of a web service-based
distributed e-learning and course management system. In: Bravetti, M., Núñez,
M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226. Springer,
Heidelberg (2006)

5. Bravetti, M., Gilmore, S., Guidi, C., Tribastone, M.: Replicating web services
for scalability. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912,
pp. 204–221. Springer, Heidelberg (2008)

6. Cappello, I., Clark, A., Gilmore, S., Latella, D., Loreti, M., Quaglia, P., Schivo, S.:
Quantitative analysis of services. In: Wirsing, Hölzl (eds.) [19], pp. 522–540

7. Wang, H., Laurenson, D., Hillston, J.: Evaluation of RSVP and Mobility-aware
RSVP Using Performance Evaluation Process Algebra. In: Proceedings of the IEEE
International Conference on Communications, Beijing, China (May 2008)

8. Argent-Katwala, A., Clark, A., Foster, H., Gilmore, S., Mayer, P., Tribastone, M.:
Safety and response-time analysis of an automotive accident assistance service. In:
Margaria, Steffen (eds.) [20], pp. 191–205.

9. Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models
from UML activity diagrams annotated with the MARTE profile. In: Proceedings
of the 7th International Workshop on Software and Performance (WOSP 2008),
pp. 67–78. ACM Press, Princeton (2008)

10. Tribastone, M., Gilmore, S.: Automatic translation of UML sequence diagrams into
PEPA models. In: 5th International Conference on the Quantitative Evaluation of
SysTems (QEST 2008), pp. 205–214. IEEE Computer Society Press, St Malo (2008)

11. Wirsing, M., Hölzl, M., Acciai, L., Banti, F., Clark, A., Fantechi, A., Gilmore, S.,
Gnesi, S., Gönczy, L., Koch, N., Lapadula, A., Mayer, P., Mazzanti, F., Pugliese,
R., Schroeder, A., Tiezzi, F., Tribastone, M., Varró, D.: Sensoria patterns: Aug-
menting service engineering with formal analysis, transformation and dynamicity.
In: Margaria, Steffen (eds.) [20], pp. 170–190

12. Knapp, A., Janisch, S., Hennicker, R., Clark, A., Gilmore, S., Hacklinger, F.,
Baumeister, H., Wirsing, M.: Modelling the coCoME with the java/A compo-
nent model. In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The
Common Component Modeling Example. LNCS, vol. 5153, pp. 207–237. Springer,
Heidelberg (2008)

13. Geisweiller, N., Hillston, J., Stenico, M.: Relating continuous and discrete PEPA
models of signalling pathways. Theor. Comput. Sci. 404(1-2), 97–111 (2008)

14. Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribastone, M., Varró, D.: Non-
functional properties in the model-driven development of service-oriented systems.
Software and System Modeling 10(3), 287–311 (2011)

Service Composition for CAS 501

15. Clark, A., Duguid, A., Gilmore, S.: Passage-end analysis for analysing robot move-
ment. In: Wirsing, Hölzl (eds.) [19], pp. 506–521

16. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Sec-
ond International Conference on the Quantitative Evaluation of Systems, Torino,
Italy, pp. 33–43. IEEE Computer Society Press (September 2005)

17. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process
algebra models. IEEE Trans. Software Eng. 38(1), 205–219 (2012)

18. Tribastone, M., Ding, J., Gilmore, S., Hillston, J.: Fluid rewards for a stochastic
process algebra. IEEE Trans. Software Eng. 38(4), 861–874 (2012)

19. Margaria, T., Steffen, B.: ISoLA 2008. CCIS, vol. 17. Springer, Heidelberg (2008)
20. Wirsing, M., Hölzl, M. (eds.): SENSORIA. LNCS, vol. 6582. Springer, Heidelberg

(2011)

502 S. Gilmore, J. Hillston, and M. Tribastone

A PEPA Model

This section contains the complete PEPA model for the scenario described in
Section 4. It is presented with the syntax accepted by the PEPA Eclipse Plug-in.
1 // Pro ba b i l i t i e s of choosing routes .
2 p 1 = 0 . 2 0 ;
3 p 2 = 0 . 2 3 ;
4 p 3 = 0 . 5 7 ;
5

6 // Pro ba b i l i t i e s of cyc l ing , walking or buss ing from S11
7 p 11 c = 0 . 4 5 ;
8 p 11 w = 0 . 1 5 ;
9 // Ensure p 11 c+p 11 w+p 11 b = 1

10 p 11 u = 1 − (p 11 c + p 11 w) ;
11

12 // Pro ba b i l i t i e s for S12
13 p 12 c = 0 . 3 8 5 ;
14 p 12 w = 1 − p 12 c ;
15

16 // Pro ba b i l i t i e s for S22
17 p 22 c = 0 . 3 5 ;
18 p 22 u = 1 − p 22 c ;
19

20 // Pro ba b i l i t i e s for S23
21 p 23 c = 0 .3853232 ;
22 p 23 w = 1 − p 23 c ;
23

24 // Pro ba b i l i t i e s for S31
25 p 31 c = 0 . 5 5 ;
26 p 31 w = 0 . 2 7 5 ;
27 p 31 b = 1 − (p 31 c + p 31 w) ;
28

29 // Pro ba b i l i t i e s for S32
30 p 32 c = 0 . 5 2 5 ;
31 p 32 w = 1 − p 32 c ;
32

33 // Rate parameters : uni t time i s minutes
34

35 t = 1 ; // Think time
36

37 // Delays wait ing for the buses
38 d 1 = 1/5 ;
39 d 2 = 1/8 ;
40 d 3 = 1/12 ;
41

42

43 b 10 = 1/17 ; // Bus time
44 t 30 = 1/10 ; // Tram time
45

46 // Cycle times
47 c 11 = 1/10 ;
48 c 12 = 1/7 ;
49 c 22 = 1/7 ;
50 c 23 = 1/9 ;
51 c 31 = 1/12 ;
52 c 32 = 1/15 ;
53

54 // Walking times are roughly twice the cyc l e times
55 w 11 = 1/20 ;
56 w 12 = 1/14 ;
57 w 20 = 1/6 ;
58 w 21 = 1/10 ;
59 w 23 = 1/18 ;
60 w 31 = 1/24 ;
61 w 32 = 1/30 ;
62

Service Composition for CAS 503

63 // Underground times
64 u 11 = 1/11 ;
65 u 22 = 1/14 ;
66 u 32 = 1/17 ;
67

68 // Return and borrow from S11
69 r r 1 1 = 0 .21431 ;
70 r b 11 = 0 .8239457 ;
71

72 // Return and borrow from S12
73 r r 1 2 = 0 .21431 ;
74 r b 12 = 0 .8239457 ;
75

76 // Return and borrow from S22
77 r r 2 2 = 0 .21242321 ;
78 r b 22 = 0.2822223294527 ;
79

80 // Return and borrow from S23
81 r r 2 3 = 0 .212431 ;
82 r b 23 = 0.8222329457 ;
83

84 // Return and borrow from S31
85 r r 3 1 = 0 .73453 ;
86 r b 31 = 0 .21348 ;
87

88 // Return and borrow from S32
89 r r 3 2 = 0 .37845 ;
90 r b 32 = 0 .13534 ;
91

92 // Return and borrow from D
93 r r D = 0 .37845 ;
94 r b D = 0 .13534 ;
95

96 // Work
97 w = 1 ;
98

99 User 0 = (choose , p 1/ t) . User 1
100 + (choose , p 2/ t) . User 2
101 + (choose , p 3/ t) . User 3 ;
102

103 // User tak ing the #1 route
104 User 1 = (delay 1 , d 1) . User 10 ;
105

106 User 10 = (bus to 11 , p 11 c ∗b 10) . User c 11
107 + (bus to 11 , p 11 w∗b 10) . User w 11
108 + (bus to 11 , p 11 u∗b 10) . User u 11 ;
109 User c 11 = (borrow 11 , r b 11) . (cyc l e f rom 11 , c 11) . (return D , r r D) . User W ;
110 User w 11 = (walk from 11 , w 11) . User W ;
111 User u 11 = (underground to 12 , p 12 c ∗ u 11) . User c 12
112 + (underground to 12 , p 12 w ∗ u 11) . User w 12 ;
113 User c 12 = (borrow 12 , r b 12) . (cyc l e f rom 12 , c 12) . (return D , r r D) . User W ;
114 User w 12 = (walk from 12 , w 12) . User W ;
115

116 // User tak ing the #2 route
117 User 2 = (delay 2 , d 2) . User 20 ;
118

119 User 20 = (walk to 21 , w 20) . User w 21 ;
120 User w 21 = (walk from 21 , p 22 c ∗ w 21) . User c 22
121 + (walk from 21 , p 22 u ∗ w 21) . User u 22 ;
122 User c 22 = (borrow 22 , r b 22) . (cyc l e f rom 22 , c 22) . (return D , r r D) . User W ;
123 User u 22 = (underground from 22 , p 23 c ∗ u 22) . User c 23
124 + (underground from 22 , p 23 w ∗ u 22) . User w 23 ;
125 User c 23 = (borrow 23 , r b 23) . (cyc l e f rom 23 , c 23) . (return D , r r D) . User W ;
126 User w 23 = (walk from 23 , w 23) . User W ;
127

128 // User tak ing the #3 route
129 User 3 = (delay 3 , d 3) . User 30 ;
130

504 S. Gilmore, J. Hillston, and M. Tribastone

131 User 30 = (tram to 31 , p 31 c ∗ t 30) . User c 31
132 + (tram to 31 , p 31 w ∗ t 30) . User w 31
133 + (tram to 31 , p 31 b ∗ t 30) . User u 31 ;
134

135 User c 31 = (borrow 31 , r b 31) . (cyc l e f rom 31 , c 31) . (return D , r r D) . User W ;
136 User w 31 = (walk from 31 , w 31) . User W ;
137 User u 31 = (underground to 32 , p 32 c ∗ u 32) . User c 32
138 + (underground to 32 , p 32 w ∗ u 32) . User w 32 ;
139 User c 32 = (borrow 32 , r b 32) . (cyc l e f rom 32 , c 32) . (return D , r r D) . User W ;
140 User w 32 = (walk from 32 , w 32) . User W ;
141

142 // User at work
143 User W = (work , w) . User 0 ;
144

145 // Def in i t i ons of s t a t i on s
146 Station 11 Empty = (return 11 , r r 1 1) . S t a t i on 11 Fu l l ;
147 S ta t i on 11 Fu l l = (borrow 11 , r b 11) . Station 11 Empty ;
148

149 Station 12 Empty = (return 12 , r r 1 2) . S t a t i on 12 Fu l l ;
150 S ta t i on 12 Fu l l = (borrow 12 , r b 12) . Station 12 Empty ;
151

152 Station 22 Empty = (return 22 , r r 2 2) . S t a t i on 22 Fu l l ;
153 S ta t i on 22 Fu l l = (borrow 22 , r b 22) . Station 22 Empty ;
154

155 Station 23 Empty = (return 23 , r r 2 3) . S t a t i on 23 Fu l l ;
156 S ta t i on 23 Fu l l = (borrow 23 , r b 23) . Station 23 Empty ;
157

158 Station 31 Empty = (return 31 , r r 3 1) . S t a t i on 31 Fu l l ;
159 S ta t i on 31 Fu l l = (borrow 31 , r b 31) . Station 31 Empty ;
160

161 Station 32 Empty = (return 32 , r r 3 2) . S t a t i on 32 Fu l l ;
162 S ta t i on 32 Fu l l = (borrow 32 , r b 32) . Station 32 Empty ;
163

164 Station D Empty = (return D , r r D) . S ta t i on D Fu l l ;
165 Sta t i on D Fu l l = (borrow D , r b D) . Station D Empty ;
166

167 // Def in i t i ons for other users
168 Use r 11 Id l e = (borrow 11 , r b 11) . User 11 Busy ;
169 User 11 Busy = (return 11 , r r 1 1) . U s e r 11 Id l e ;
170

171 Use r 12 Id l e = (borrow 12 , r b 12) . User 12 Busy ;
172 User 12 Busy = (return 12 , r r 1 2) . U s e r 12 Id l e ;
173

174 Use r 21 Id l e = (borrow 21 , r b 21) . User 21 Busy ;
175 User 21 Busy = (return 21 , r r 2 1) . U s e r 21 Id l e ;
176

177 Use r 22 Id l e = (borrow 22 , r b 22) . User 22 Busy ;
178 User 22 Busy = (return 22 , r r 2 2) . U s e r 22 Id l e ;
179

180 Use r 23 Id l e = (borrow 23 , r b 23) . User 23 Busy ;
181 User 23 Busy = (return 23 , r r 2 3) . U s e r 23 Id l e ;
182

183 Use r 31 Id l e = (borrow 31 , r b 31) . User 31 Busy ;
184 User 31 Busy = (return 31 , r r 3 1) . U s e r 31 Id l e ;
185

186 Use r 32 Id l e = (borrow 32 , r b 32) . User 32 Busy ;
187 User 32 Busy = (return 32 , r r 3 2) . U s e r 32 Id l e ;
188

189 User D Id le = (borrow D , r b D) . User D Busy ;
190 User D Busy = (return D , r r D) . User D Id le ;
191

192 (User 0 [6 0] <> Use r 11 Id l e [1] <> Use r 12 Id l e [1] <>
193 Use r 21 Id l e [1] <> Use r 22 Id l e [1] <> Use r 23 Id l e [1] <>
194 Use r 31 Id l e [1] <> Use r 32 Id l e [1] <> User D Id le [1]) <∗> (
195 S ta t i on 11 Fu l l [2] <> S ta t i on 12 Fu l l [2] <>
196 (S t a t i on 22 Fu l l [2] <> S ta t i on 23 Fu l l [2]) <>
197 (S t a t i on 31 Fu l l [2] <> S ta t i on 32 Fu l l [2] <> Sta t i on D Fu l l [2]))

Service Composition for CAS 505

Lines 2–4 define the probabilities of choosing routes. These are the variables
in our optimisation problem; here they are set to the optimal values for the
scenarios illustrated in Figures 5(a) and 5(b). Using the same notation as in
the main text, lines 6–93 define all the other model parameters. Journey times
were inferred from information available on the web, as discussed; the remaining
parameters were arbitrarily fixed. Traveller behaviour is modelled in lines 98–
142. The dynamics of a cycle station is characterised by a two-state automaton
associated with each docking point, lines 145-164.We consider exogenous arrivals
and departures to each cycle station by modelling further users, lines 1767–189.
Finally, lines 191–296 defines the system equation, specifying the total population
of users and the number of docking points for each cycle station. From [18], we
compute the average journey time experienced by a user using Little’s law as

Average Journey Time =
60

User 0× w
,

where the numerator gives the total number of users of interest and User 0 gives
the total number of users in the steady state which are about to start their
journey.

The Evolution of Jolie

From Orchestrations to Adaptable Choreographies

Ivan Lanese1, Fabrizio Montesi2, and Gianluigi Zavattaro1

1 Dep. of Computer Science and Engineering, INRIA FoCUS Team - Univ. Bologna
Mura A. Zamboni 7, 40127 Bologna, Italy

{lanese,zavattar}@cs.unibo.it
2 Dep. of Mathematics and Computer Science, University of Southern Denmark

Campusvej 55, 5230 Odense, Denmark
fmontesi@imada.sdu.dk

Abstract. Jolie is an orchestration language conceived during Sensoria,
an FP7 European project led by Martin Wirsing in the time frame 2005–
2010. Jolie was designed having in mind both the novel –at project
time– concepts related to Service-Oriented Computing and the traditional
approach to the modelling of concurrency typical of process calculi. The
foundational work done around Jolie during Sensoria has subsequently
produced many concrete results. In this paper we focus on two distinct
advancements, one aiming at the development of dynamically adaptable
orchestrated systems and one focusing on global choreographic specifi-
cations. These works, more recently, contributed to the realisation of a
framework for programming dynamically evolvable distributed Service-
Oriented applications that are correct-by-construction.

1 Introduction

Sensoria (Software Engineering for Service-Oriented Overlay Computers)1 is a
research project funded by the European Commission under the 7-th Frame-
work Programme in the time frame 2005–2010. Supervised by Martin Wirs-
ing, the project has defined a novel approach for the engineering of advanced
Service-Oriented applications. In fact, at project time, Service-Oriented Comput-
ing (SOC) was emerging as a novel and promising technology but, as frequently
happens, the success of a promising technology requires the establishment of a
mature methodology for the development of applications based on such technol-
ogy. Easy-to-use tools are also needed to make the development methodology
popular and largely diffused.

The success of Sensoria is demonstrated by the realisation of an integrated
set of theoretical and concrete tools. In particular, UML-like visual languages
have been developed for the high-level modelling of Service-Oriented applications
(see, e.g., [18,7]), several process calculi have been designed to formally repre-
sent the operational aspects of such applications (see, e.g., [4,30,29,5]), analysis

1 http://www.sensoria-ist.eu

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 506–521, 2015.
c© Springer International Publishing Switzerland 2015

http://www.sensoria-ist.eu

The Evolution of Jolie 507

techniques have been developed to perform both qualitative and quantitative
analysis on these formal models of the applications (see, e.g., [19,37,13]), and
also runtime support for application deployment has been realised by providing
some of the proposed calculi with an execution environment (see, e.g., [34,31]).

Among the implementations of process calculi, Jolie [34] was conceived as a
fully fledged Service-Oriented programming language that, on the one hand, is
based on a formally defined semantics and, on the other hand, turns out to be
easy to integrate with state-of-the-art technologies (in particular those based
on the Java platform). This marked technological flavour of the language is
witnessed by the birth of the spin-off company italianaSoftware s.r.l.2 whose
mission is indeed the exploitation in industrial environments of Jolie and its
related tools.

Beyond the initial development of Jolie within Sensoria, many advancements
took place even after Sensoria ended. For instance, in [22] Jolie is extended with
primitives for fault handling and compensations; in [15] linguistic primitives are
proposed for easy realisation of software architectures including advanced con-
nectors like proxies, wrappers, and load balancers; and in [21] Jolie is studied as
a language for workflow management by showing how to implement the popular
van der Aalst’s workflow patterns [38].

In this paper, we narrate some of the extensions of Jolie in order to demon-
strate how our experience in the development of an orchestration language during
Sensoria provided us with valuable insights in related research lines.

We start by presenting two independent frameworks based on Jolie. The first
one is JoRBA [27], a framework for the programming of service-oriented appli-
cations that can dynamically adapt to their execution context. JoRBA uses the
code mobility mechanisms offered by Jolie to adapt the behaviour of services at
runtime; the need for adaptation is decided by special rules given by program-
mers in a declarative way. The second one is Chor [11], a choreographic language
allowing for the programming of distributed systems from a global viewpoint.
Chor is equipped with a compiler that generates executable Jolie programs,
which are guaranteed to be correct by construction from the originating global
program. We finally present AIOCJ [16], a choreography language that combines
the global approach of Chor to distributed programming with the adaptability
features of JoRBA. The Jolie programs compiled by AIOCJ are guaranteed to be
correct not only as far as the initial code is concerned, but also when the updates
specified in AIOCJ are dynamically applied to the application endpoints.

Paper Structure. In Section 2 we recall the basics of the Jolie language. In Sec-
tion 3 we discuss the importance of dynamic adaptation for modern applications
and present JoRBA, an extension of Jolie that supports rule-based dynamic
program updates. In Section 4 we discuss Chor, the Jolie based approach to the
correct-by-construction realisation of communication-centred distributed appli-
cations. Finally, in Section 5 we present how in AIOCJ we have been able to
combine the rule-based dynamic adaptation mechanisms explored with JoRBA

2 http://www.italianasoftware.com

http://www.italianasoftware.com

508 I. Lanese, F. Montesi, and G. Zavattaro

to the correct-by-construction approach characterising Chor. Related work is
discussed in Section 6. We report some conclusive remarks in Section 7.

2 Service-Oriented Programming with Jolie

Jolie programs contain two parts related, respectively, to the behaviour of a ser-
vice and to its deployment. Here, we describe in more details the basic primitives
for programming the behavioural part of Jolie, while we simply mention that the
deployment part is used to instantiate networking and lower-level communica-
tion aspects like the definition of the ports and of the communication protocols
to be used.

Jolie combines message-passing and imperative programming style. Scopes,
indicated by curly brackets {...}, are used to represent blocks and procedures.
Procedures are labelled with the keyword define; the name of a procedure is
unique within a service and the main procedure is the entry point of execution
for each service. Traditional sequential programming constructs like conditions,
loops, and sequence are standard. In addition, Jolie includes a parallel operator |
that executes the left and right activities concurrently. Concerning communica-
tion, Jolie supports two kinds of message-passing operations, namely One-Ways
(OWs) and Request-Responses (RRs). On the sender’s side, the former operation
sends a message and immediately passes the thread of control to the subsequent
activity in the process, while the latter sends a request and keeps the thread of
control until it receives a response. On the receiver’s side, OWs receive a message
and store it into a defined variable, whilst RRs receive a message, execute some
internal code, and finally send the content of a second variable as response.

Jolie provides also an input-guarded choice [η1]{B1} . . . [ηn]{Bn}, where ηi,
i ∈ {1, . . . , n}, is an input statement and Bi is the behaviour of the related
branch. When a message on ηi is received, ηi is executed and all other branches
are deactivated. Afterwards, Bi is executed. A static check enforces all the input
choices to have different operations to avoid ambiguity.

Figure 1 reports a Jolie program taken from [21] including two services A and
B. A sends in parallel the content of variables a and b through OW operations
op1 and op2, respectively, at (@) B. When B receives a message on one of the
corresponding OW operations, it stores the content of the message in the cor-
responding variable. After the completion of the scope at Lines 2-5, A proceeds
with the subsequent RR operation op3, which sends the content of variable e

and stores its response in h. The scope linked to op3, in Lines 6-8 of service B,
is the activity executed before sending the response to A; as this activity assigns
"Hello, world" to the return variable g, this string is returned to A, and thus A
assigns it to its return variable h. The command at Line 8 of the service A sends
the content of h to the println operation of the Console; in this way "Hello,

world" is printed.
An interesting feature of Jolie is that it provides dynamic embedding. Dynamic

embedding is a mechanism allowing to take the code of a Jolie service and
dynamically run the service inside the current application. This mechanism is

The Evolution of Jolie 509

1 // s e r v i c e A
2 {

3 op1@B(a)

4 � op2@B(b)

5 }�

6 op3@B(e)(h)�

7 println@Console (h)()

1 // s e r v i c e B
2 {

3 op1(c)

4 � op2(d)

5 }�

6 op3(f)(g){

7 g = "Hello , world"

8 }

Fig. 1. An example of composition and communication between services

used quite extensively when programming adaptive applications in Jolie, since
it allows one to dynamically load new code to deal with unexpected needs.

3 Managing Dynamic Adaptation with JoRBA

Modern software applications change their behaviour, reconfigure their structure
and evolve over time reacting to changes in the operating conditions, so to always
meet users’ expectations. This is fundamental since those applications live in
distributed and mobile devices, such as mobile phones, PDAs, laptops, etc., thus
their environment may change frequently. Also, user goals and needs may change
dynamically, and applications should adapt accordingly, without intervention
from technicians. We aim at dynamic adaptation, where the application is able
to face unexpected adaptation needs. Dynamic adaptation is challenging since
information on the update to be performed is not known when the application
is designed, deployed, or even started.

JoRBA (Jolie Rule-Based Adaptation framework) [27] is a Jolie-based frame-
work for programming adaptable applications, which is based on the separation
between the application behaviour and the adaptation specification. An adapt-
able application should provide some adaptation hooks, i.e., information on part
of its structure and its behaviour. The adaptation logic should be developed sep-
arately, for instance as a set of adaptation rules, by some adaptation engineer,
and can be created/changed after the application has been deployed without af-
fecting the running application. Adaptation should be enacted by an adaptation
middleware, including an adaptation manager and some, possibly distributed,
adaptation servers. The latter are services that act as repositories of adapta-
tion rules. Running adaptation servers register themselves on the adaptation
manager. The running application may interact with the adaptation manager
to look for applicable adaptation rules. Whether a rule is applicable or not may
depend on environment conditions (e.g., date, workload), including user prefer-
ences, and on properties of the current implementation (e.g., performance, code
version, cost). The adaptation manager checks the available rules and returns
one of them which can be applied, if it exists. The effect of an adaptation rule
is to replace an activity with new code that answers a given adaptation need.

510 I. Lanese, F. Montesi, and G. Zavattaro

Table 1. List of possible (Travelling) domain activities

Activity Functional Parameters Non-functional
Parameters

Activity Name Number Source Destination Time Cost

Take Train IC2356 Bologna Train Station Munich Train Station 7 h 41 m 80 euros

Take Bus 13 Munich Train Station LMU 30 m 1 euro

Take Taxi 25 Munich Train Station LMU 10 m 15 euros

Go To Meeting - Bob’s House LMU 9 h 100 euros

We describe now on a sample scenario the approach used in JoRBA to deal
with dynamic adaptation.

Travelling Scenario. Consider Bob travelling from Bologna to LMU (Martin
Wirsing’s university) for a Sensoriameeting. He may have on his mobile phone an
application instructing him about what to do, taking care of the related tasks.
A set of possible tasks are in Table 1. For instance, the activity Take Train
connects to the information system of Bologna train station to buy the train
ticket. It also instructs Bob about how to take the train, and which one to take.

Assume that such an application has been developed for adaptation. This
means that its adaptation interface specifies that some of the activities are adapt-
able. Each adaptable activity has a few parameters, e.g., Number, specifying the
code of the train, bus or taxi to be taken, Source specifying the desired leav-
ing place and Destination specifying the desired arrival place, all visible from
the adaptation interface. Also, a few non-functional parameters for the activi-
ties may be specified as Time and Cost. We show now a couple of examples of
adaptation.

Example 1. When Bob arrives to Bologna train station, its Travelling applica-
tion connects to the adaptation server of the train station. Assume that a new
“Italo”(Italian high speed train) connection has been activated from Bologna to
Munich providing a connection with Time=4 h 23 m and Cost=92 euros. This
is reflected by the existence of an adaptation rule specifying that all the applica-
tions providing an activity Take Train for a train for which the new connection
is possible may be adapted. Adaptation may depend on Bob’s preferences for
comparing the old activity and the new one, or may be forced if, for instance, the
old connection is no more available. If adaptation has to be performed, the new
code for the activity is sent by the adaptation server to the application, where
it becomes the new definition of activity Take Train. Note that the new code
can be quite different from the old one, e.g., if the new trains are booked using
a different communication protocol. Thus Bob can immediately exploit the new
high speed connection, which was not expected when the application has been
created.

The Evolution of Jolie 511

Example 2. Suppose that the train from Bologna to Munich is one hour late.
Bob mobile phone may have an adaptation server taking care of adapting all
Bob’s applications to changing environment conditions. The adaptation server
will be notified about the train being late, and it may include an adaptation rule
specifying that if Bob is late on his travel, he can take a taxi instead of arriving
to LMU by bus. The adaptation rule thus replaces the activity Take Bus of the
travelling application with a new activity Take Taxi. Again, this can be done
even if different protocols and servers are used to buy bus tickets and to reserve
a taxi.

A Rule-Based Approach to Dynamic Adaptation. Instead of presenting
the syntax of JoRBA, we discuss its approach to dynamic adaptation which is
general enough to be applied to applications developed using any other language,
provided that (i) the application exposes the desired adaptation interface and
(ii) the language is able to support the code mobility mechanism necessary for
performing adaptation. At the end of this section we briefly show that Jolie
supports both these features.

Thus we want to build an adaptable application using some language L and
following the approach above to dynamic adaptation. The application must ex-
pose a set of adaptable domain activities (or, simply, activities) {Ai}i∈I , together
with some additional information. Activities Ai are the ones that may require
to be updated to adapt the application to changes in the operating conditions.
While it is necessary to guess where adaptation may be possible, it is not neces-
sary to know at the application development time which actual conditions will
trigger the adaptation, and which kind of adaptation should be performed.

The adaptable application will interact with an adaptation middleware pro-
viding the adaptation rules. The environment has full control over the set of
rules, and may change them at any time, regardless of the state of the running
application. Each such rule includes a description of the activity to be adapted,
an applicability condition specifying when the rule is applicable, the new code of
the activity, the set of variables required by the activity, and some information
on the non-functional properties of the activity.

At runtime, the rule is matched against the application activity to find out
whether adaptation is possible/required. In particular:

– the description of the activity to be adapted in the rule should be compatible
with the description of the activity in the application;

– the applicability condition should evaluate to true; the applicability condi-
tion may refer to both variables of the environment (retrieved by the adap-
tation manager) and variables published by the adaptation interface of the
application;

– the non-functional properties guaranteed by the new code provided by the
adaptation rule should be better than the ones guaranteed by the old imple-
mentation, according to some user specified policy;

– the variables required by the new code should be a subset of the variables
provided by the application for the activity.

512 I. Lanese, F. Montesi, and G. Zavattaro

If all these conditions are satisfied then adaptation can be performed, i.e.
the new code of the activity should be sent by the adaptation manager to the
application, and installed by the application replacing the old one. Since the
update may also influence the state, we also allow the adaptation rule to specify
a state update for the adaptable application.

More precisely, the following steps are executed:

1. the adaptation server sends the new code to the application, which replaces
the old code of the activity;

2. the adaptation interface of the application is updated, with the new non-
functional properties, e.g., Time=4 h 23 m and Cost=92 euros, replacing
the old ones;

3. the state of the application is updated, e.g., by setting variable Number to
IT 82, the number of the “Italo” train.

The first step is the most tricky, since the new code needs to be sent from
the adaptation server to the application and integrated with the rest of the
application. For instance, it should be able to exploit the public variables of the
application.

JoRBA is a proof-of-concept implementation of our adaptation mechanism
based upon the Jolie language. Indeed, both the adaptation middleware, includ-
ing the distributed adaptation servers, and the adaptable application are built
as Jolie services. Thus, interactions between them are obtained using Jolie OWs
and RRs communication primitives. The code inside adaptable activities is ex-
ternalized from the main body of the application as a separate service. In this
way adaptation is realized by disabling the service implementing the adaptable
activity and replacing it with the new code coming from the adaptation man-
ager, which is launched using Jolie dynamic embedding. Since both the main
part of the application, the old service and the new one should share part of the
state, this is externalized as a separate service accessible from all of them.

4 Correct-by-Construction Development with Chor

In the context of Service-Oriented Computing and, more in general, for the
development of distributed communication-centred applications, the top-down
approach based on global specifications that are automatically projected to end-
point code has recently emerged as a popular approach for the realisation of
correct-by-construction applications [10,25,40,28,12]. Global specifications are
expressed using so-called choreography languages: the message flow among the
partners in the application is expressed from a global viewpoint as it happens,
e.g., in Message Sequence Charts [23] or when security protocols are specified by
using actions like, e.g., Alice→ Bob : {M}k meaning that Alice sends to Bob the
message M encrypted with the key k. These global specifications are guaranteed
to be correct, in particular deadlock- and race-free, because only successful and
completed communications among two interacting partners can be expressed.
In other terms, it is not possible to specify an endpoint that remains blocked

The Evolution of Jolie 513

Chor IDE

Code
Editing/

Verification

...

Jolie
Endpoint

Jolie
Endpoint

Jolie EPP
(automatic)

Execution

Execution
Deployment Programming

(Optional)

Deployment Programming
(Optional)

Fig. 2. Chor development methodology, from [11]

waiting indefinitely for a never arriving message. The actual communication be-
haviour of each single partner is in turn obtained by projection from the global
specification: the obtained projected code is guaranteed to adhere to the global
specification, thus correctness is preserved.

This popular approach has been also adapted to Jolie. In this case, the chore-
ographic language is Chor [11]. Chor offers a programming language, based on
choreographies, and an Integrated Development Environment (IDE) developed
as an Eclipse plugin for the writing of programs. In the development methodol-
ogy suggested with Chor, depicted in Figure 2, developers can first use the IDE to
write protocol specifications and choreographies. The programmer is supported
by on-the-fly verification which takes care of checking (i) the syntactic correct-
ness of program terms and (ii) the type compliance of the choreography w.r.t.
the protocol specifications, using a (behavioural) typing discipline.

Once the global program is completed, developers can automatically project
it to an endpoint implementation. Endpoint implementations are given in Jolie.
Nevertheless, Chor is designed to be extended to multiple endpoint languages:
potentially, each process in a choreography could be implemented with a different
endpoint technology.

Each Jolie endpoint program comes with its own deployment information,
given as a term separated from the code implementing the behaviour of the
projected process. This part can be optionally customised by the programmer
to adapt to a specific communication technology. Finally, the Jolie endpoint
programs can be executed; as expected, they will implement the originating
choreography.

In order to give an idea of how global specifications can be expressed in Chor,
we present a simple example.

Example 3 (Chor program example).

1 ������� simple�

2
3 ���	�
�� SimpleProtocol { C � S� hi(�	����) }

4
5 �����
 a� SimpleProtocol

6
7 ����

8 {

9 client[C] �	��	 server[S] � a(k)�

514 I. Lanese, F. Montesi, and G. Zavattaro

10 ����client("[client] Message?", msg)�

11 client.msg � server.x � hi(k)�

12 �����server("[server] " + x)

13 }

Program simple above starts by declaring a protocol SimpleProtocol, in which
role C (for client) sends a string to a role S (for server) through operation hi.
In the choreography of the program, process client and a fresh service process
server start a session k by synchronising on the public channel a.3 Process
client then asks the user for an input message and stores it in its local variable
msg, which is then sent to process server through operation hi on session k,
implementing protocol SimpleProtocol. Finally, process server displays the
received message on screen.

As mentioned above, Chor has been equipped with an automatic endpoint
projection (EPP) that generates Jolie code; the following example shows (part
of) the result of the endpoint projection of the simple choreography presented
above.

Example 4 (Endpoint Projection in Chor). We give an example of EPP by re-
porting a snippet of the code generated for process server from Example 3:

1 ����

2 {

3 _start()�

4
��	�.tid = ����

5 _myRef.binding << ������.inputPorts .MyInputPort �

6 _myRef.tid =
��	�.tid�

7 _start_S@a (_myRef)(_sessionDescriptor .k)�

8 k_C << _sessionDescriptor .k.C.binding�

9 hi(x)�

10 showMessageDialog@SwingUI("[server] " + x)()

11 }

The Jolie code above for process server waits to be started by receiving an input
on operation _start. This starts the generation of the session k (Lines 4–8, that
we do not comment in detail). Finally, in Lines 9–10, the server receives the
message on operation hi from the client and displays it on screen as indicated
by the choreography.

5 Correct-by-Construction Adaptive Applications

The JoRBA approach to adaptation and the use of choreographies to ensure
that applications are deadlock- and race-free by construction can be combined.

3 Session keys are necessary to keep track of the protocols: see, e.g., the presence of
the session key k in Line 11 indicating that this interaction between client and
server is part of the protocol started at Line 9.

The Evolution of Jolie 515

We describe below AIOCJ [16]4, a framework to program adaptive choreogra-
phies. AIOCJ combines an Eclipse plugin to edit adaptable applications and
generate code for each participant using a projection similar to the one of Chor,
with an adaptation middleware similar to the one of JoRBA managing adapta-
tion. The main point is that adaptation should be coordinated, so to ensure that
no error occurs because of inconsistent updates.

We consider applications composed by processes deployed as services on dif-
ferent localities, including local state and computational resources. Each process
has a specific duty in the choreography. As for JoRBA, adaptation is performed
by interacting with an adaptation middleware storing adaptation rules. The main
difference is that now a rule requires to update many participants of the chore-
ography in a coordinated way. The parts of the choreography to be updated are
syntactically delimited by adaptation scopes.

The language for programming AIOCJ applications relies on a set of roles that
identify the processes in the choreography. Let us introduce the syntax of the
language using an example where Bob invites Alice to see a film (Listing 1.1).

The code starts with some deployment information (Lines 1-9) that we discuss
later on. The description of the behaviour starts at Line 11. The program is made
by a loop where Bob first checks when Alice is available and then invites her
to the cinema. Before starting the loop, Bob initialises the variable end to the
boolean value ����� (Line 12). The variable is used to control the exit from the
loop. Note the annotation @bob meaning that end is a local variable of Bob. The
first instructions of the while loop are enclosed in an adaptation scope (Lines
14-18), meaning that this part of the program may be adapted in the future. The
first operation within the adaptation scope is the call to the primitive function
getInput that asks to Bob a day where he is free and stores this date into the
local variable free_day. At Line 16 the content of free_day is sent to Alice via
operation proposal. Alice stores it in its local variable bob_free_day. Then,
at Line 17, Alice calls the external function isFreeDay that checks whether she
is available on bob_free_day. If she is available (Line 19) then Bob sends to
her the invitation to go to the cinema via the operation proposal (Line 21).
Alice, reading from the input, accepts or refuses the invitation (Line 25). If
Alice accepts the invitation then Bob first sets the variable end to ���� to end
the loop. Then, he sends to the cinema the booking request via operation book.
The cinema generates the tickets using the external function getTicket and
sends them to Alice and Bob via operation notify. The two notifications are
done in parallel using the parallel operator 	 (until now we composed statements
using the sequential operator
). Lines 20-32 are enclosed in a second adaptation
scope with property N.scope_name = "event selection". If the agreement is
not reached, Bob decides, reading from the input, if he wants to stop inviting
Alice. If so, the program exits setting the variable end to ����.

We remark the different possible meanings of annotations such as @bob and
@alice. When prefixed by a variable, they identify the owner of the variable.
Prefixed by the boolean guard of conditionals and loops, they identify the role

4 http://www.cs.unibo.it/projects/jolie/aiocj.html

http://www.cs.unibo.it/projects/jolie/aiocj.html

516 I. Lanese, F. Montesi, and G. Zavattaro

1 ������� isFreeDay �	
� "calendar .org�80" with http
2 ������� getTicket �	
� "cinema.org�8000" with soap
3
4 	������ {
5 ���	��	 � bob
6 �
����
��bob = "socket �// localhost�8000"
7 �
����
��alice = "socket�//alice.com�8000"
8 �
����
��cinema = "socket�//cinema.org�8001"
9 }

10
11 ��
�{
12 end�bob = ������
13 �����(� end)�bob{
14 ��
� �bob {
15 free_day �bob = �������("Insert your free day")�
16 proposal � bob(free_day) -> alice(bob_free_day)�
17 is_free �alice = isFreeDay(bob_free_day)�
18 } 	
 { �� scope_name = "matching day" }�
19 ��(is_free)�alice {
20 ��
� �bob {
21 proposal � bob("cinema") -> alice(event)�
22 agreement�alice = �������("Bob proposes " + event +
23 ", do you agree?[y/n]")�
24 ��(agreement == "y")�alice{
25 end�bob = �	���
26 book� bob(bob_free_day) -> cinema(book_day)�
27 ticket�cinema = getTicket(book_day)�
28 { notify� cinema(ticket) -> bob(ticket)
29 � notify� cinema(ticket) -> alice(ticket)
30 }
31 }
32 } 	
 { �� scope_name = "event selection" }
33 }�
34 ��(�end)�bob {
35 _r�bob = �������("Alice refused . Try another date?[y/n]")�
36 ��(_r �= "y")�bob{ end�bob = �	�� }
37 }
38 }
39 }

Listing 1.1. Appointment program

that evaluates the guard. Prefixed by the keyword ����, they identify the pro-
cess coordinating the adaptation of that scope. An adaptation scope, besides the
code, may also include some properties describing the current implementation.
These can be specified using the keyword prop and are prefixed by N. For in-
stance, each adaptation scope of the example includes the property scope_name,
that can be used to find out its functionality.

AIOCJ can interact with external services, seen as functions. This allows
both to interact with real services and to have easy access to libraries from
other languages. To do that, one must specify the address and protocol used to
interact with each service. For instance, the external function isFreeDay used
in Line 17 is associated to the service deployed at the domain “calendar.org”,
reachable though port 80, and that uses http as serialisation protocol (Line 1).
External functions are declared with the keyword �������. To preserve dead-
lock freedom, external services must be non-blocking. After function declaration,
in a preamble section, it is possible to declare the locations where processes are
deployed. The keyword starter is mandatory and defines which process must

The Evolution of Jolie 517

be started first. The starter makes sure all other processes are ready before the
execution of the choreography begins.

Now suppose that Bob, during summer, prefers to invite Alice to a picnic
rather than to the cinema, provided that the weather forecasts are good. This
can be obtained by adding the following adaptation rule to one of the adaptation
servers. This may even be done while the application is running, e.g., while Bob
is sending an invitation. In this case, if Bob first try is unsuccessful, in the second
try he will propose a picnic.

1 rule {
2 ������� getWeather from "socket�// localhost�8002"
3 on { N.scope_name == "event selection" and E.month > 5 and E.month < 10 }
4 do {
5 forecasts@bob = getWeather(free_day)�
6 ��(forecasts == "Clear")@bob{
7 eventProposal� bob("picnic") -> alice(event)
8 } ���� { eventProposal� bob("cinema ") -> alice(event) }�
9 agreement@alice = getInput ("Bob proposes " + event +

10 ", do you agree?[y/n]")�
11 ��(agreement == "y")@alice {
12 end@bob = �	�� �
13 ��(event == "cinema")@alice {
14 //cinema t i c k e t s purchase procedure
15 }
16 }
17 }
18 }

Listing 1.2. Event selection adaptation rule

A rule specifies its applicability condition and the new code to execute. In
general, the applicability condition may depend only on properties of the adap-
tation scope, environment variables, and variables belonging to the coordinator
of the adaptation scope. In this case, the condition, introduced by the keyword
on (Line 3), makes the rule applicable to adaptation scopes having the property
scope_name equal to the string "event selection" and only during summer.
This last check relies on an environment variable month that contains the current
month. Environment variables are prefixed by E.

The new code to execute if the rule is applied is defined using the keyword do

(Line 4). The forecasts can be retrieved calling an external function getWeather

(Line 5) that queries a weather forecasts service. This function is declared in
Line 2. If the weather is clear, Bob proposes to Alice a picnic, otherwise he
proposes the cinema. Booking (as in Listing 1.1, Lines 26-29) is needed only if
Alice accepts the cinema proposal.

6 Related Work

Choreography-like methods for programming distributed systems have been ap-
plied for a long time, for example in MSC [26], security protocols [6,9,3] and
automata theory [20]. Differently from Chor, these works were not intended as
fully-fledged programming languages. For example, they do not deal with con-
crete data or different layers of abstraction (protocols and choreographies).

518 I. Lanese, F. Montesi, and G. Zavattaro

The development of Chor was partially inspired by the language WS-CDL [39]
and the choreography fragment of BPMN [8]. Differently from those, Chor comes
with a formal model defining its semantics and typing discipline. This model
introduced a precise understanding of multiparty sessions and typical aspects
of concurrency, such as asynchrony and parallelism, to choreographies [11]. The
typing discipline is based on multiparty session types [25] (choreography-like pro-
tocols), bringing their benefits to choreographies; for example, Chor programs
are statically guaranteed to follow their associated protocols (session fidelity,
initially introduced in [24]). Remarkably, the development of Chor proved that
the mixing of choreographies with multiparty session types yields more than
just the sum of the parts. For example, it naturally supports a simple proce-
dure for automatically inferring the protocols implemented by a choreography
(type inference); and, it guarantees deadlock-freedom for a system even in the
presence of arbitrary interleavings of session behaviours, without requiring ad-
ditional machinery on top of types as is needed when dealing with processes
instead of choreographies [2]. The theoretical model of Chor has been recently
extended for supporting the reuse of external services in [35]. We refer the in-
terested reader to [33] for a detailed explanation of these aspects and for an
evaluation of Chor w.r.t. some concrete scenarios. Exploring a similar direction,
Scribble is a choreography-like language for specifying communication protocols,
based on multiparty session types [40]. Differently from Chor, Scribble protocols
are not compiled to executable programs but to local abstract behaviours that
are used to verify or monitor the concrete behaviour of endpoints in a distributed
system (see, e.g., [36]).

Like choreographies, also adaptation is a lively research topic, as shown by the
survey [32]. However, most of the approaches propose mechanisms for adaptation
without any guarantee about the properties of the application after adaptation,
as for JoRBA.

A few approaches try to apply multiparty session types to adaptation, ob-
taining some formal guarantee on the behaviour of the system. In this sense,
they are different from Chor and AIOCJ, which are fully-fledged languages. For
instance, [1] deals with dynamic software updates of systems which are concur-
rent, but not distributed. Furthermore, dynamic software updates are applied on
demand, while enactment of adaptation depends on the environment and on the
state of the running application. Another related approach is [14], which deals
with monitoring of self-adaptive systems. There, all the possible behaviours are
available since the very beginning, both at the level of types and of processes,
and a fixed adaptation function is used to switch between them. This difference
derives from the distinction between self-adaptive applications, as they discuss,
and applications updated from the outside, as in our case. We also recall [17],
which uses types to ensure no session is spoiled because of adaptation, and that
needed services are not removed. However, [17] allows updates only when no
session is active, while AIOCJ changes the behaviour of running interactions.

The Evolution of Jolie 519

7 Conclusions

The aim of the European project Sensoria was to devise a methodology for the
development of Service-Oriented applications, and realise the corresponding the-
oretical and practical tools. Most of the research effort of our research group in
Bologna has been dedicated to the investigation of appropriate models and lan-
guages for specifying and programming such applications. The Service-Oriented
programming language Jolie has been one of our main achievements. In this paper
we have discussed how the activity initiated during the Sensoria project produced
results far beyond our initial aims. In particular, we are still nowadays exploiting
Jolie in the realisation of a framework for programming adaptable communication-
centred applications that are correct-by-construction. Correctness is guaranteed
because the updates are expressed from a global view-point, and then automati-
cally projected and injected in the endpoints code. For instance, if in an application
it is necessary to update a security protocol because of a detected flaw, the interact-
ing partners need to bemodified in order to replace the old protocolwith a new one.
Applying these dynamic unexpected updates is a critical task for modern applica-
tions. Our approach consists of describing the updates at the global level, generate
the new endpoint code by projecting such updates on the affected partners, and
then inject the new code to the endpoints in a coordinated manner.

A final remark is dedicated to Martin Wirsing, the coordinator of the Sensoria
project. He did not limit his activity to the (hard) work of amalgamating the
several heterogeneous partners of the Sensoria Integrated Project, but he con-
tinuously solicited the participants to conduct research that were innovative –in
order to give to the project a long-term vision– as well as close to actual ap-
plication needs –in order to avoid losing effort on abstract useless research. We
consider the specific experience reported in this paper a concrete and relevant
result of this enlightened Martin’s approach to project coordination.

Acknowledgements. Montesi was supported by the Danish Council for Inde-
pendent Research (Technology and Production), grant n. DFF–4005-00304.

References

1. Anderson, G., Rathke, J.: Dynamic software update for message passing programs.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 207–222.
Springer, Heidelberg (2012)

2. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida,
N.: Global progress in dynamically interleaved multiparty sessions. In: van Breugel,
F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer,
Heidelberg (2008)

3. Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., Leifer, J.J.: Cryptographic
protocol synthesis and verification for multiparty sessions. In: CSF, pp. 124–140.
IEEE Computer Society (2009)

4. Boreale, M., et al.: SCC: A service centered calculus. In: Bravetti, M., Núñez,
M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer,
Heidelberg (2006)

520 I. Lanese, F. Montesi, and G. Zavattaro

5. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

6. Briais, S., Nestmann, U.: A formal semantics for protocol narrations. Theor. Com-
put. Sci. 389(3), 484–511 (2007)

7. Bruni, R., Hölzl, M., Koch, N., Lluch Lafuente, A., Mayer, P., Montanari, U.,
Schroeder, A., Wirsing, M.: A service-oriented UML profile with formal support. In:
Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900,
pp. 455–469. Springer, Heidelberg (2009)

8. Business Process Model and Notation, http://www.omg.org/spec/BPMN/2.0/
9. Caleiro, C., Viganò, L., Basin, D.A.: On the semantics of Alice & Bob specifications

of security protocols. Theor. Comput. Sci. 367(1-2), 88–122 (2006)
10. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-

gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)
11. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous

global programming. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 263–274.
ACM (2013)

12. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods in Computer Science 8(1) (2012)

13. Clark, A., Gilmore, S., Tribastone, M.: Quantitative analysis of web services using
SRMC. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS,
vol. 5569, pp. 296–339. Springer, Heidelberg (2009)

14. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-adaptive monitors for multi-
party sessions. In: PDP, pp. 688–696. IEEE Computer Society (2014)

15. Dalla Preda, M., Gabbrielli, M., Guidi, C., Mauro, J., Montesi, F.: Interface-based
service composition with aggregation. In: De Paoli, F., Pimentel, E., Zavattaro, G.
(eds.) ESOCC 2012. LNCS, vol. 7592, pp. 48–63. Springer, Heidelberg (2012)

16. Dalla Preda, M., Giallorenzo, S., Lanese, I., Mauro, J., Gabbrielli, M.: AIOCJ: A
choreographic framework for safe adaptive distributed applications. In: Combe-
male, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706,
pp. 161–170. Springer, Heidelberg (2014)

17. Di Giusto, C., Pérez, J.A.: Disciplined structured communications with consistent
runtime adaptation. In: Shin, S.Y., Maldonado, J.C. (eds.) SAC, pp. 1913–1918.
ACM (2013)

18. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A formal approach to service component
architecture. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 193–213. Springer, Heidelberg (2006)

19. Foster, H., Uchitel, S., Magee, J., Kramer, J.: LTSA-WS: a tool for model-based
verification of web service compositions and choreography. In: Osterweil, L.J., Rom-
bach, H.D., Soffa, M.L. (eds.) ICSE, pp. 771–774. ACM (2006)

20. Fu, X., Bultan, T., Su, J.: Realizability of conversation protocols with message
contents. International Journal on Web Service Res. 2(4), 68–93 (2005)

21. Gabbrielli, M., Giallorenzo, S., Montesi, F.: Service-oriented architectures: From
design to production exploiting workflow patterns. In: Omatu, S., Bersini, H.,
Corchado Rodŕıguez, J.M., González, S.R., Pawlewski, P., Bucciarelli, E. (eds.)
Distributed Computing and Artificial Intelligence 11th International Conference.
AISC, vol. 290, pp. 131–139. Springer, Heidelberg (2014)

22. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service
oriented applications. Fundam. Inform. 95(1), 73–102 (2009)

23. Harel, D., Thiagarajan, P.: Message sequence charts. In: UML for real, pp. 77–105.
Kluwer Academic Publishers (2003)

http://www.omg.org/spec/BPMN/2.0/

The Evolution of Jolie 521

24. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998.
LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

25. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

26. International Telecommunication Union. Recommendation Z.120: Message se-
quence chart (1996)

27. Lanese, I., Bucchiarone, A., Montesi, F.: A framework for rule-based dynamic adap-
tation. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS,
vol. 6084, pp. 284–300. Springer, Heidelberg (2010)

28. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: SEFM, pp. 323–332. IEEE
Computer Society (2008)

29. Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining orchestration
and conversation in service-oriented computing. In: SEFM, pp. 305–314. IEEE
Computer Society (2007)

30. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

31. Lapadula, A., Pugliese, R., Tiezzi, F.: Using formal methods to develop WS-BPEL
applications. Sci. Comput. Program. 77(3), 189–213 (2012)

32. Leite, L.A.F., Oliva, G.A., Nogueira, G.M., Gerosa, M.A., Kon, F., Milojicic, D.S.:
A systematic literature review of service choreography adaptation. Service Oriented
Computing and Applications 7(3), 199–216 (2013)

33. Montesi, F.: Choreographic Programming. Ph.D. thesis, IT University of Copen-
hagen (2013), http://www.fabriziomontesi.com/files/m13_phdthesis.pdf

34. Montesi, F., Guidi, C., Zavattaro, G.: Composing Services with JOLIE. In: Proc.
of ECOWS, pp. 13–22. IEEE Computer Society (2007)

35. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R., Mel-
gratti,H. (eds.)CONCUR2013–ConcurrencyTheory.LNCS,vol. 8052, pp. 425–439.
Springer, Heidelberg (2013)

36. Neykova, R., Yoshida, N., Hu, R.: SPY: Local verification of global protocols. In:
Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 358–363. Springer,
Heidelberg (2013)

37. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/State-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp.
133–148. Springer, Heidelberg (2008)

38. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

39. W3C WS-CDL Working Group. Web services choreography description language
version 1.0 (2004), http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

40. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In: Abadi,
M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41. Springer,
Heidelberg (2014)

http://www.fabriziomontesi.com/files/m13_phdthesis.pdf
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

Stochastic Model Checking

of the Stochastic Quality Calculus

Flemming Nielson, Hanne Riis Nielson, and Kebin Zeng

DTU Compute, Technical University of Denmark,
2800 Kgs. Lyngby, Denmark

Abstract. The Quality Calculus uses quality binders for input to ex-
press strategies for continuing the computation even when the desired
input has not been received. The Stochastic Quality Calculus adds gen-
erally distributed delays for output actions and real-time constraints on
the quality binders for input. This gives rise to Generalised Semi-Markov
Decision Processes for which few analytical techniques are available.

We restrict delays on output actions to be exponentially distributed
while still admitting real-time constraints on the quality binders. This
facilitates developing analytical techniques based on stochastic model
checking and we compute closed form solutions for a number of inter-
esting scenarios. The analyses are applied to the design of an intelligent
smart electrical meter of the kind to be installed in European households
by 2020.

1 Introduction

Networked communication is the key for modern distributed systems – encom-
passing service-oriented systems as well as cyber-physical systems – and includ-
ing systems that are essential for the infrastructure in the 21st century. The
classical “super-optimistic” programming style of traditional software develop-
ment no longer suffices – we need to take into account that the expected com-
munications might not occur and that the systems still have to coordinate to the
extent possible: we have to turn to a “realistic-pessimistic” programming style.

The Quality Calculus introduced in [15] is a first step towards a calculus
supporting this change of paradigm; the communication paradigm is point-to-
point (as in the π-calculus [12]) and is accompanied by a SAT-based analysis
for checking whether the processes are vulnerable to unreliable communication.
Probabilistic reasoning is added to the calculus in [14] in a setting where each
input binder is annotated with a probability distribution indicating the trust-
worthiness of the inputs received with respect to a security lattice; a probabilistic
trust analysis is then developed in order to identify the extent to which a robust
programming style has been adhered to. Furthermore, a broadcast version of the
calculus is developed in [17]; here it is additionally extended with cryptographic
primitives and the focus is on the development of a rewriting semantics allowing
us to reason – in a discrete setting – about unsolicited messages as well as the
absence of expected communications.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 522–537, 2015.
c© Springer International Publishing Switzerland 2015

Stochastic Model Checking of the Stochastic Quality Calculus 523

The Stochastic Quality Calculus (SQC) introduced in [20] is an extension of
the previous works, and it differs in several aspects. It supports truly concurrent
broadcast communication meaning that several processes may send messages at
the same time (also over the same channel) and all processes that are ready
to receive these messages must do so. Also timing aspects play a central role.
The time for completing a communication depends on the hardware architec-
ture and the communication protocols but also the cyber environment. Hence
real-time considerations are relevant for those communications taking exact du-
ration, and stochastic time considerations are relevant for those taking random
time influenced by the cyber environment. In its most general form we allow gen-
eral (not necessarily continuous) distributions, and processes give rise to Gener-
alised Semi-Markov Decision Processes for which few analytical techniques are
available.

In the present paper we restrict delays on output actions to be exponentially
distributed while still admitting hard real-time constraints in the quality binders
for input. We show that this facilitates developing analytical techniques based
on stochastic model checking and we compute closed form solutions for a number
of interesting scenarios. The analyses are applied to the design of an intelligent
smart electrical meter of the kind to be installed in European households by
2020.

Related work studying the challenge of combining concurrency and stochas-
ticity include PEPA [8] and IMC [5]; the challenge of combining concurrency,
stochasticity and mobility have been addressed in the stochastic π-calculus [16]
and StoKLAIM [7]; the challenge of combining concurrency and real-time have
been addressed in timed CCS [19] and PerTiMo [6] as well as in [2–4]. Most
stochastic calculi make use of exponential distributions to express random de-
lay, and can then use classic techniques and tools for Markov chain analysis.
However, the real-time (exact duration) delays are much less frequently incorpo-
rated in stochastic process calculi. This is the combination studied in the present
paper.

The paper reviews the Stochastic Quality Calculus in Section 2, performs
stochastic model checking on the exponential fragment in Section 3, applies the
development to the Smart Meter example in Section 4, concludes in Section 5,
and contains a dedication to Martin Wirsing in the Acknowledgements.

2 Stochastic Quality Calculus

In the Stochastic Quality Calculus [20] with exponential distributions (SQCexp)
we use exponentially distributed random variables to characterise communica-
tion delays. An output process has the form

c1
�,G!c2.P

524 F. Nielson, H.R. Nielson, and K. Zeng

Table 1. Syntax of the Stochastic Quality Calculus with exponential delays

P ::= (νc)P | 0 | t1
�,G!t2.P | b.P | case x of some(y) : P1 else P2

| P1 ||P2 | A

b ::= t?x | &I
q(t1?x1, · · · , tn?xn)

t ::= y | c | f(t)

specifying that the value c2 should be communicated over the channel c1 within
some time determined by the exponential distribution G and where the channel
c1 has trust classification �. We use intervals to indicate real-time constraints on
when communication is allowed to happen. An input binder of the form

&[a,a′)
q (c1?x1, · · · , cn?xn).

specifies that the process is waiting for n inputs over the channels c1, · · · , cn;
it is waiting for at least a time units and at most a′ time units, where a < a′,
and within the time interval [a, a′) it will only progress if the quality predicate q
determines that sufficient inputs have been obtained. The continuation process
will then have to inspect which inputs have been received and take appropriate
actions in each case – thereby enforcing the “realistic-pessimistic” programming
style alluded to above.

The formal syntax consists of processes P , binders b, and terms t, and is
given in Table 1. A system S consists a number of process definitions and a
main process:

define A1 � P1

...

An � Pn

in P∗
using c1, · · · , cm

Here Ai is the name of a process, Pi is its body, P∗ is the initial main process
and c1, · · · , cm is a list of channels.

Each output t1
�,G!t2 has a trust level � and an exponential distribution G

to express the delay of communications. To indicate the trust level, we use an
element � from a finite trust lattice L and we write ≤ for the ordering on L. As an
example, we might use L = ({l,m,h},≤) to denote that available channels are
classified into low (l), medium (m) or high (h) trust and with the obvious linear
ordering on these elements. The delay of communication is determined by the
output, therefore all the values communicated have the corresponding trust � and
stochasticity G. We use broadcast transmission, so that all the receivers waiting
on channel t1 must receive the value t2. All the channels used in a system are
introduced either in the list c1, · · · , cm or using the syntax (νc)P for introducing
a new channel c to its scope P .

Stochastic Model Checking of the Stochastic Quality Calculus 525

As a member of the quality calculus family, an input process is written b.P ,
where b is a binder specifying the desired inputs with real-time constraints to be
satisfied before continuing with P . The simplest case of a binder is t?x stating
that some value should be received over channel t, and stored in variable x. A
binder is in general of the form &I

q(t1?x1, · · · , tn?xn) indicating that n inputs are
simultaneously active. A time interval I determines when the binder b may be
passed; it can be [0, a) meaning that the binder will wait at most until time a; it
can be [a,∞) meaning that the binder has to wait at least until time a; it can be
[a, a′) meaning that the binder has the minimum waiting time a and maximum
waiting time a′ (for a < a′); as a special case, it can be [0,∞) meaning that there
is no time constraint. During the interval I the quality predicate q determines
whether sufficient inputs have been received to continue before I has ended. The
quality predicate q can be ∃ meaning that one input is required, or it can be ∀
meaning that all inputs are required; formally ∃(x1, · · · , xn)⇔ x1 ∨· · ·∨xn and
∀(x1, · · · , xn) ⇔ x1 ∧ · · · ∧ xn. For more expressiveness, we shall allow quality
predicates as for example [1 ∨ (2 ∧ 3)](x1, x2, x3)⇔ x1 ∨ (x2 ∧ x3).

As an example, &
[a,a′)
∃ (c1?x1, c2?x2) || c�1,G1

1 !t1 || c�2,G2

2 !t2 expresses that both
output processes are simultaneously active at time 0, and that we wait for their
output to be performed. The quality predicate ∃ of the input process will be
evaluated at time a for the first time, the process will continue if at least one of
the two inputs has arrived. If not, the process will wait until one input arrives
in the period [a, a′) but if no input arrives until time a′, the process shall stop
waiting and continue even though no input was received.

As a consequence of using b.P , some variables might not obtain proper val-
ues as the corresponding inputs are missing. To model this, let y denote data
variables and x denote optional data variables like in the programming language
Standard ML [11], and let some(· · ·) express the presence of some data and none
the absence of data. A case construct case x of some(y) : P1 else P2 has the
following meaning: if x evaluates to some value some(c), bind c to y and con-
tinue with P1; otherwise x evaluates to none and continue with P2. The syntax
of terms t make it clear that they can be data variables, constants or funtions
applied to terms.

A process can also be a recursive call A to one of the defined processes. We
require that recursion through parallel composition is not permitted, so that
we ensure the resulting semantics to have a finite state space. We say A � P
has no recursion through parallel if the syntax tree for P does not contain any
occurrence of the process name B in a descendant of a || construct, such that
B might (perhaps indirectly) call A. We also require that the creation of a new
channel in recursion is not permitted, so that we have a finite number of channels
that can be used. We say A � P has no creation of a new channel in recursion
if the syntax tree for P does not contain any occurrence of a process name in a
descendant of a (νc) construct.

526 F. Nielson, H.R. Nielson, and K. Zeng

3 Stochastic Model Checking

To show how to use Stochastic Model Checking to analyse a number of interest-
ing scenarios in the Stochastic Quality Calculus with exponential distributions
we need to review Continuous-Time Markov Chains (CTMC) and Continuous
Stochastic Logic (CSL).

Continuous-Time Markov Chains. (CTMC) [1, 9] are tuples (S, s0, T, L) where
S is a finite and nonempty set of states, s0 ∈ S is the initial state, T : S ×
S → R≥0 is a mapping of pairs of states to a nonnegative rate of exponential
distributions, L : S → P(AP) is a function that labels each state with a set
of atomic propositions drawn from the set AP . We interpret T in the following
way: if T (s, s′) = 0 then there is no transition from s to s′ and if T (s, s′) > 0
then there is a transition from s to s′ with rate T (s, s′).

Continuous Stochastic Logic. (CSL) [1,9] has path formulae φ and boolean state
formulae Φ defined as follows:

Φ ::= true | a | ¬Φ | Φ1 ∧ Φ2 | P[φ] �� p | S[Φ] �� p

φ ::= XI Φ | Φ1 U
I Φ2

Here P[φ] �� p indicates whether or not the probability of the event φ has the
relation �� (chosen among <, ≤, =, �=, ≥ and >) to the probability p; we shall feel
free to use P[φ] for the actual value (motivated by the notation of CSLMSR [13]).
In a similar way S[Φ] �� p indicates whether or not the steady-state probability of
satisfying Φ has the relation �� to p. The events are described by path formulae
that essentially are LTL path formulae; the formula XI Φ indicates that Φ is true
in the next state and that the transition to that state takes place at some time
point in the interval I; and the formula Φ1 U

I Φ2 indicates that Φ1 holds until
eventually Φ2 holds at some time point in the interval I.

For completeness let us recall the formal definition of the semantics of CSL
focussing only on the fragment needed for our development. Given a CTMC
(S, s0, T, L), a path η is an alternating sequence s0, t0, s1, t1, · · · of states si from
S and positive real numbers ti indicating time durations, subject to the following
conditions: each T (si, si + 1) > 0, and the path is infinite unless the final state
sn is absorbing, meaning that ∀s : T (sn, s) = 0. Write η[i] = si to express the
i’th state in the path and η〈i〉 = ti to denote the amount of time spent in the
i’th state; for a finite path with final state sn we informally set η〈n〉 =∞. (With
this definition we shall follow the usual convention of ignoring paths η for which
Σi η〈i〉 < ∞ as their joint probability measure will be 0.) We then define η@t
to be the state η[j] for the minimal value j such that Σi≤j η〈i〉 ≥ t where t is a
non-negative real number. The fact that a path η satisfies a path formula φ is
written η |= φ, and the fact that a state s satisfies a state formula Φ is written
s |= Φ, and they are defined by mutual recursion on the size of formulae as
follows:

Stochastic Model Checking of the Stochastic Quality Calculus 527

s |= true⇔ true
s |= a⇔ a ∈ L(s)

s |= ¬Φ⇔ ¬(s |= Φ)
s |= Φ1 ∧ Φ2 ⇔ s |= Φ1 ∧ s |= Φ2

s |= P[φ] �� p⇔ Probs({η | η |= φ}) �� p
η |= Φ1 U

I Φ2 ⇔ ∃t ∈ I : η@t |= Φ2 ∧ ∀t′ < t : η@t′ |= Φ1

where Probs denotes the probability measure on sets of measurable paths ob-
tained via the cylinder set construction and assuming that s is the start state of
the CTMC (referring to [1, 9] for the details).

Our development will determine the probabilities that a process would need to
survive the absence of desired data. For instance, how likely is it that the suffi-
cient inputs specified by the binder &I

q(c1?x1, · · · , cn?xn) will become available
in the desired period I? Such information should then be propagated through
the process in order to argue that “undesirable” code fragments are only reached
with an acceptably low probability. We performed such a development in [14],
relying on the distribution π of probabilities on security levels arising from a
binder b, and used the notation � b � π to specify this. The development
of [14] then propagated such probability distributions throughout the process
of interest, wheras the development of the present paper shows how to obtain
� b � π.
The remainder of this section considers four scenarios of processes waiting for

inputs from external services:

1. The first is where we simply conduct a race between the stochastic external
services as &q(c1?x1, · · · , cn?xn) without real-time constraints.

2. The other is when the race is subject to a minimum real waiting time a as

&
[a,∞)
q (c1?x1, · · · , cn?xn).

3. The third is when the race is subject to a maximum real waiting time a as

&
[0,a)
q (c1?x1, · · · , cn?xn).

4. The last is when the race is subject to a minimum waiting time a as well as

a maximum waiting time a′, &
[a,a′)
q (c1?x1, · · · , cn?xn).

In each case the analysis is performed over CTMCs that are obtained by ignoring
all the real-time constraints from the binders. Thereafter, we perform the desired
numerical analysis on the CTMCs for all the disjoint time intervals given from
the time interval of a binder.

The intuition for analysing the availability of a binder &
[a,a′)
q (c1?x1, · · · , cn?xn)

is depicted in Fig 1. Part 1 illustrates the probability that sufficient inputs be-
come available in the interval [0, a); however, since a is the minimum waiting
time, the process will have to wait until time a in order to proceed. Part 2 il-
lustrates that sufficient inputs become available in the interval [a, a′) with the
condition that they are not available in the interval [0, a); the process is allowed

528 F. Nielson, H.R. Nielson, and K. Zeng

Fig. 1. Determine the availability of &
[a,a′)
q (c1?x1, · · · , cn?xn) using CTMCs

to proceed as soon as this happens. Part 3 illustrates the probability that suf-
ficient inputs are not available in the interval [0, a′); at time a′ the process is
required to proceed nonetheless.

Scenario 1: Race between Stochastic Processes. Here n stochastic external ser-
vices have started transmitting the outputs c�1,λ1

1 !t1, · · · , c�n,λn
n !tn, and they then

compete to provide the required input(s):

&q(c1?x1, · · · , cn?xn).

As motivated by [14] and the above discussion, we intend to determine the
relationship

� &q(c1?x1, · · · , cn?xn) � π

between the binder &q(c1?x1, · · · , cn?xn) and a probability distribution π ∈
D({x1, · · · , xn} → L⊥) indicating the probability of the various inputs having
been received. Here ⊥ denotes the absence of input and L⊥ is the lifted trust
lattice obtained from L by adding the new element ⊥ as the least element,
i.e. L⊥ = ({⊥, l,m,h},≤).

We first consider the CTMC obtained from the exponential distributions of the
outputs. Let the CTMC for the c�i,λi

i be given by (Si = {s0i , s�i }, s0i , Ti(s
0
i , s

�
i) =

λi, Li(s
�
i) = {ci}). We now construct the CTMC (S⊗, s

0
⊗, T⊗, L⊗) from the

CTMCs (Si, s
0
i , Ti, Li)

n
i=1 by setting

– S⊗ = S1 × · · · × Sn,
– s0⊗ = (s01, · · · , s0n),
– L⊗(s1, · · · , sn) = L1(s1) ∪ · · · ∪ Ln(sn), and

– T⊗((s1, · · · , sn), (s′1, · · · , s′n)) =

⎧⎪⎨⎪⎩
0 if |{i | si �= s′i}|≥ 2,

Ti(si, s
′
i) if {i | si �= s′i} = {i},

0 if {i | si �= s′i} = ∅,

where |X | denotes the size of the set X and AP = {c1, · · · , cn}.
We now formulate the CSL query to be evaluated in the start state of

(S⊗, s⊗, T⊗, L⊗) for determining the probability distribution π resulting from
the race &q(c1?x1, · · · , cn?xn). Let σ be a mapping from the variables
{x1, · · · , xn} to elements of the lifted trust lattice L⊥. In the case where

Stochastic Model Checking of the Stochastic Quality Calculus 529

∃i : σ(xi) �∈ {⊥, �i} we set π(σ) = 0. In the case where ∀i : σ(xi) ∈ {⊥, �i}
we define the formulae

Φqn = q(c1, · · · , cn) (1)

and
Φσ = (

∧
σ(xi)=�i

ci) ∧ (
∧

σ(xi)=⊥
¬ci) (2)

and we set
π(σ) = P

[
(¬Φqn)U

[0,∞) (Φqn ∧ Φσ)
]

This indicates the event that the quality predicate is satisfied and that input
has been received as indicated by ci and ¬ci.

We can use a stochastic model checker as PRISM [10] to compute π numeri-
cally but it is worthwhile mentioning some special cases where the probabilities
can be determined analytically. When the quality predicate q is ∀ we obtain

π(σ) =

{
1 if ∀i > 0 : σ(xi) = �i

0 otherwise

When the quality predicate q is ∃ we obtain

π(σ) =

{
λi

λ1+···+λn
if σ(xi) = �i ∧ ∀j �= i : σ(xj) = ⊥

0 otherwise.

This correctly reflects that only one process can win the race, meaning that the
other processes do not provide any data.

Scenario 2: Race between Stochastic Processes Subject to a Minimum Waiting
Time. Here n stochastic external services have started transmitting the outputs
c�1,λ1

1 !t1, · · · , c�n,λn
n !tn, and they then compete to provide the required input(s),

subject to a minimum waiting time given by a. It is helpful to imagine that

&
[a,∞)
q (c1?x1, · · · , cn?xn) is transformed to &q̇(c1?x1, · · · , cn?xn, ca?xa), where

q̇(x1, · · · , xn, xa) = q(x1, · · · , xn) ∧ xa and where xa indicates whether or not
the minimum waiting time has been adhered to. This is motivated by the de-
velopment in the full Stochastic Quality Calculus [20] where we would be able
to model a “clock” a by means of an output ch,δaa !• where δa denotes the Dirac
distribution that makes a transition exactly at time a. This also makes it clear
that we regard the “clock” a as being highly trusted, giving it trust level h.

As in the previous scenario, we intend to determine the relationship

� &q̇(c1?x1, · · · , cn?xn, ca?xa) � π

between the transformed binder &q̇(c1?x1, · · · , cn?xn, ca?xa) and the probability
distribution π ∈ D({x1, · · · , xn, xa} → L⊥) indicating the probability of the
various inputs having been received, subject to the minimum waiting time a.

530 F. Nielson, H.R. Nielson, and K. Zeng

This scenario involves calculating two contributions in Fig. 1: one is from the
Part 1 and the other is from the merge of Part 2 and 3.

Unless otherwise specified, let i, j range over 1, · · · , n and xi, xj range over
x1, · · · , xn. We now formulate the CSL query to be evaluated in the start state of
the CTMC (S⊗, s⊗, T⊗, L⊗) for determining the probability distribution π. Let
σ be a mapping from variables {x1, · · · , xn, xa} to elements of the lifted trust
lattice L⊥. In the case where σ(xa) �= h ∨ ∃i : σ(xi) �∈ {⊥, �i} we set π(σ) = 0.
In the case where σ(xa) = h∧ ∀i : σ(xi) ∈ {⊥, �i}, taking Φqn from Formula (1)
and Φσ from Formula (2) we set

π(σ) = P
[
true U[a,a] (Φqn ∧ Φσ)

]
+ P

[
(¬Φqn)U

[a,∞) (Φqn ∧ Φσ)
]

where a is the minimum waiting time. This indicates the event that the quality
predicate is satisfied and that input has been received as indicated by ci and
¬ci; the left summand takes care of the contribution from Part 1 (where it is
acceptable that inputs arrive before time a but the system is not allowed to
proceed until time a) and the right summand takes care of the contributions
from Parts 2 and 3. Notice that, by the continuity of continuous distributions,
the probability measure for the joint paths of the two contributions is strictly
zero, i.e. P

[
(¬Φqn)U

[a,a] (Φqn ∧ Φσ)
]
= 0.

Some special cases are worth mentioning. When q is ∀ we obtain

π(σ) =

{
1 if σ(xa) = h ∧ ∀i : σ(xi) = �i

0 otherwise

When the quality predicate q is ∃, we may solve this analytically as follows. The
first contribution π1 = P

[
true U[a,a] (Φqn ∧ Φσ)

]
is given by

π1(σ) =

⎛⎝ ∏
σ(xi)=⊥

e−aλi

⎞⎠ ⎛⎝ ∏
σ(xi)=�i

(1− e−aλi)

⎞⎠
if σ(xa) = h ∧ ∀j : σ(xj) ∈ {�j,⊥} ∧ ∃j : σ(xj) = �j; otherwise π1(σ) = 0. The
π1(σ) expresses the probability of the events that one or more inputs have arrived
by the time a. The second contribution π2 = P

[
(¬Φqn)U

[a,∞) (Φqn ∧ Φσ)
]
is

given by

π2(σ) = e−a(λ1+···+λn)
λi

λ1 + · · ·+ λn

if σ(xa) = h ∧ ∃i : σ(xi) = �i ∧ ∀j �= i : σ(xj) = ⊥; otherwise π2(σ) = 0. The
π2(σ) expresses the probability of the joint events that none of inputs has arrived
by time a, corresponding to the part e−a(λ1+···+λn), and the input ci wins the
race, corresponding to the part λi

λ1+···+λn
. We then get the overall contribution

π(σ) = π1(σ) + π2(σ) for the special case when q is ∃:

Stochastic Model Checking of the Stochastic Quality Calculus 531

π(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∏
σ(xi)=⊥ e−aλi

) (∏
σ(xi)=�i

(1− e−aλi)
)

if σ(xa) = h ∧ 1 <|{j | σ(xj) = �j}|

e−a(λ1+···+λn)
(
eaλi + λi

λ1+···+λn
− 1

)
if σ(xa) = h ∧ σ(xi) = �i ∧ 1 =|{σ(xj) = �j}|

0 otherwise

Scenario 3: Race between Stochastic Processes Subject to a Maximum Waiting
Time. Here n stochastic external services have started transmitting the outputs
c�1,λ1

1 !t1, · · · , c�n,λn
n !tn, and they then compete to provide the required input(s),

subject to a maximum waiting time given by the “clock” a. As in the previ-

ous case it is helpful to imagine that &
[0,a)
q (c1?x1, · · · , cn?xn) is transformed to

&q̇(c1?x1, · · · , cn?xn, ca?xa), where q̇(x1, · · · , xn, xa) = q(x1, · · · , xn) ∨ xa and
where xa indicates whether or not the maximum waiting time actually passed
or not. We intend to determine the relationship

� &q̇(c1?x1, · · · , cn?xn, ca?xa) � π

between the transformed binder &q̇(c1?x1, · · · , cn?xn, ca?xa) and the probability
distribution π ∈ D({x1, · · · , xn, xa} → L⊥) indicating the probability of the
various inputs having been received, subject to the maximum waiting time a.
This scenario involves calculating two contributions in Fig. 1: one is from the
merge of Part 1 and 2, and the other is Part 3.

We now formulate the CSL query to be evaluated in the start state of
(S⊗, s⊗, T⊗, L⊗) for determining the probability distribution π. Let σ be a map-
ping from variables {x1, · · · , xn, xa} to elements of the lifted trust lattice L⊥. In
the case where ∃σ(xi) �∈ {⊥, �i} ∨ σ(xa) �∈ {⊥,h}, we set π(σ) = 0. In the case
where ∀σ(xi) ∈ {⊥, �i} ∧ σ(xa) ∈ {⊥,h}, taking Φqn from Formula (1) and Φσ

from Formula (2) we set

π(σ) =

{
P
[
(¬Φqn)U

[0,a) (Φqn ∧ Φσ)
]

if σ(xa) = ⊥
P
[
(¬Φqn)U

[a,a] ((¬Φqn) ∧ Φσ)
]
if σ(xa) = h

where a is the maximum waiting time. The case σ(xa) = ⊥ is when acceptable
input has been received by time a and the case σ(xa) = h is when no accept-
able input has been received by time a (at which time the real-time constraint
terminates the race).

Some special cases are worth mentioning. When the quality predicate q is ∀,
we may solve this analytically giving

π(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∏
i (1− e−aλi) if σ(xa) = ⊥ ∧ ∀j : σ(xj) = �j(∏
σ(xi)=⊥ e−aλi

)(∏
σ(xi)=�i

(1− e−aλi)
)

if σ(xa) = h ∧ ∀j : σ(xj) ∈ {lj,⊥} ∧ ∃j : σ(xj) = ⊥

0 otherwise

532 F. Nielson, H.R. Nielson, and K. Zeng

When the quality predicate q is ∃, we may solve this analytically giving

π(σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1− e−a(λ1+···+λn)) λi

λ1+···+λn

if σ(xa) = ⊥ ∧ σ(xi) = �i ∧ ∀j �= i : σ(xj) = ⊥

e−a(λ1+···+λn) if σ(xa) = h ∧ ∀j : σ(xj) = ⊥

0 otherwise

Scenario 4: Race between Stochastic Processes Subject to Both a Minimum and a
Maximum Waiting Time. Here n stochastic external services have started trans-
mitting the outputs c�1,λ1

1 !t1, · · · , c�n,λn
n !tn, and they then compete to provide the

required input(s), subject to both a minimum waiting time a and a maximum

waiting time a′ > a. As before, imagine that&
[a,a′)
q (c1?x1, · · · , cn?xn) is trans-

formed to &q̇(c1?x1, · · · , cn?xn, ca?xa, ca′?xa′), where, q̇(x1, · · · , xn, xa, xa′) =
(q(x1, · · · , xn) ∧ xa) ∨ xa′ . We intend to determine the relationship

� &q̇(c1?x1, · · · , cn?xn, ca?xa, ca′?xa′) � π

between the transformed binder &q̇(c1?x1, · · · , cn?xn, ca?xa, ca′?xa′) and the
probability distribution π ∈ D({x1, · · · , xn, xa, xa′} → L⊥) indicating the prob-
ability of the various inputs having been received, subject to both the minimum
waiting time a and the maximum waiting time a′. This scenario involves calcu-
lating three contributions corresponding to the three parts in Fig. 1.

We now formulate the CSL query to be evaluated in the start state of
(S⊗, s⊗, T⊗, L⊗) for determining the probability distribution π. Let σ be a map-
ping from variables {x1, · · · , xn, xa, xa′} to elements of the lifted trust lattice L⊥.
In the case where ∃σ(xi) �∈ {⊥, �i}∨σ(xa) �= h∨σ(xa′) �∈ {⊥,h}, we set π(σ) = 0.
In the case where ∀σ(xi) ∈ {⊥, �i} ∧ σ(xa) = h ∧ σ(xa′) ∈ {⊥,h}, taking Φqn

from Formula (1) and Φσ from Formula (2) we set

π(σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P
[
true U[a,a] (Φqn ∧ Φσ)

]
+ P

[
(¬Φqn)U

[a,a′) (Φqn ∧ Φσ)
]
,

if σ(xa) = h ∧ σ(xa′) = ⊥,

P
[
(¬Φqn)U

[a′,a′] ((¬Φqn) ∧ Φσ)
]

if σ(xa) = h ∧ σ(xa′) = h,

where a is the minimum waiting time and a′ is the maximum waiting time.
In the case where σ(xa) = h ∧ σ(xa′) = ⊥, there are two contributions: the
probability that required inputs are satisfied before a, P

[
true U[a,a] (Φqn ∧ Φσ)

]
,

and the probability that required inputs are not satisfied before a but satisfied

in the interval [a,′), P
[
(¬Φqn)U

[a,a′) (Φqn ∧ Φσ)
]
. The case where σ(xa) = h ∧

σ(xa′) = h expresses that the required inputs were not received by time a′.

Stochastic Model Checking of the Stochastic Quality Calculus 533

Fig. 2. The Smart Meter scenario

Some special cases are worth mentioning. When the quality predicate q is ∀,
we may solve this analytically giving

π(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏
i (1− e−a′λi)

if σ(xa) = h ∧ σ(xa′) = ⊥ ∧ ∀j : σ(xj) = �j(∏
σ(xi)=⊥ e−a′λi

)(∏
σ(xi)=�i

(1 − e−a′λi)
)

if σ(xa) = h ∧ σ(xa′) = h ∧ ∀j : σ(xj) ∈ {lj,⊥} ∧ ∃j : σ(xj) = ⊥

0 otherwise

When the quality predicate q is ∃, we may solve this analytically giving

π(σ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∏
σ(xi)=⊥ e−aλi

) (∏
σ(xi)=�i

(1− e−aλi)
)

if σ(xa) = h ∧ σ(xa′) = ⊥ ∧ 1 <|{j | σ(xj) = �j}|,

e−a(λ1+···+λn)(eaλi − 1) + e−a(λ1+···+λn)(1− e−(a′−a)(λ1+···+λn)) λi
λ1+···+λn

if σ(xa) = h ∧ σ(xa′) = ⊥ ∧ σ(xi) = li∧ |{j | σ(xj) = �j}|= 1,

e−a′(λ1+···+λn) if σ(xa) = h ∧ σ(xa′) = h ∧ ∀j : σ(xj) = ⊥,
0 otherwise

4 Implementation of a Smart Meter

We now consider a scenario inspired by [18] where a smart meter SM of a house-
hold communicates with a service provider SP to obtain a schedule for operating
a number of appliances taking pricing and availability of energy into account.
Unfortunately, the SP is subject to denial of service attacks, therefore the SM is
equipped with a local computer LC for computing a schedule to be used when-
ever the SP does not produce a schedule. The schedule computed by the SP is
the preferred one, therefore only if no schedule is received from SP within some
time period will the locally computed schedule be used. The overall scenario is
illustrated in Fig. 2 and 3 and we shall now describe the individual processes
in more detail. We shall feel free to use a polyadic version of the calculus when
it eases the presentation, and we write (νd) , global(·), local(·) for creating data
d, performing functions global and local (taking data as input and returning

534 F. Nielson, H.R. Nielson, and K. Zeng

define SP � · · · (see text) · · ·
LC � · · · (see text) · · ·
SM � · · · (see text) · · ·

in SP || LC || SM
using request, req, repL

Fig. 3. The Smart Meter system

data and called f in the syntax in Table 1). We shall not further specify how
the functions global and local compute schedules based on the data available to
them.

The service provider SP is defined by:

SP � &∃(request?(xi xr)).
case xi of some(yi) :

case xr of some(yr) :
yi

m,λg !(global(yr)).SP
else SP

else SP

The SP first obtains a request of xr resources from a smart meter identifying
itself as xi. The next three lines express that SP computes a schedule using
the function global and returns it to the smart meter before recursing. The case
constructs ensure that the proper data is extracted and supplied to the function.

A local computer LC operates similarly to the service provider, but without
checking identification:

LC � &∃(req?(xr)). case xr of some(yr) : repL
l,λl !local(yr).LC else LC

It uses the function local to compute the schedule and uses the channel repL
l,λl

to send the schedule; once more the case construct is used to extract the request.
Finally, let us consider the control process SM for a smart meter:

SM � (νrepG) (νd) request
h,λg !(repG d). reqh,λl !d.

&
[5,∞)
∃ (repG?xg , repL?xl).

case xg of some(yg) :
1install(yg).SM

else case xl of some(yl) :
2install(yl).SM

else 3warning.SM

For later reference we have added labels to three subprocesses. The first line
declares a response channel repG and a data d, then issues two requests, one
to the SP and one to the LC. The binder of the second line expresses that the
SM has to wait for 5 time units and that at least one schedule must have been
received before continuing. As in the previous examples the case constructs are
used to extract the required data: the third line will give priority to the global

Stochastic Model Checking of the Stochastic Quality Calculus 535

schedule (the process labelled 1), whereas in the absence of a global schedule the
fourth line will install the local schedule before recursing (the process labelled
2), and the final else branch (labelled 3) corresponds to failure.

As an alternative we might replace the binder in the second line by

&
[5,8.7)
∀ (repG?xg, repL?xl),

meaning that there is a maximum time bound for receiving schedules and that
we prefer to wait for both schedules. If no schedule arrives by time 8.7, the SM
will reach the final else branch (labelled 3).

Stochastic Model Checking of the Smart Meter. Let us consider the process SM
and recall that the processes computing the global and local schedules are expo-
nentially distributed with rates λg and λl, respectively. We want to determine a
distribution π such that

� &
[5,∞)
∃ (repG?xg , repL?xl) � π

so we are in the special case described above. Let us assume that λg = 0.2 and
λl = 0.5, Then we get

π([xg → m, xl → l, xa → h]) = 0.5802
π([xg → m, xl → ⊥, xa → h]) = 0.0605
π([xg → ⊥, xl → l, xa → h]) = 0.3593

and π(σ) = 0 in all other cases. It follows that there is no risk (or to be more
pedantic, that the risk is 0%) that no schedules are received, and that there is a
35.93% risk that the global schedule is missing.

Now, let us consider the variant of SM using the binder

� &
[5,8.7)
∀ (repG?xg, repL?xl) � π

gives rise to the following distribution using the same parameters as above:

π([xg → m, xl → l, xa → h, xa′ → ⊥]) = 0.8138
π([xg → m, xl → ⊥, xa → h, xa′ → h]) = 0.0106
π([xg → ⊥, xl → l, xa → h, xa′ → h]) = 0.1733
π([xg → ⊥, xl → ⊥, xa → h, xa′ → h]) = 0.0023

and π(σ) = 0 in all other cases. It follows that there is 0.23% risk both schedules
are missing, 17.33% risk the global schedule is missing, and only 1.06% risk the
local schedule is missing.

We have obtained the results reported above both by employing CSL model
checking using PRISM and by our own implementation of the analytical formulae
using MATLAB.

536 F. Nielson, H.R. Nielson, and K. Zeng

5 Conclusion

We believe future programming languages need to support a more robust (“pes-
simistic”) programming style:What conceivably might go wrong, probably will go
wrong. A major cause of disruption is due to the networked communication be-
tween distributed software components. The Quality Calculus [15] proposes a very
robust way of programming distributed systems where default data should always
be available to allow the system to continue its operation as best it can, rather than
simply terminating with an error or getting stuck in an input operation. However,
it does not contain any quantitative information about the robustness, typically
showing how likely it is that the default data will be used due to a failure on receiv-
ing ideal data, which can eventually impact the system performance. This suggests
extending the Quality Calculus to consider stochastic aspects.

This paper developed Stochastic Model Checking to determine the probabil-
ity of a process surviving the absence of data in the exponential fragment of the
Stochastic Quality Calculus (SQC). In the full Stochastic Quality Calculus [20],
the communications had general distributed stochastic delay and were running
concurrently and independently with clocks; here we allow only exponentially
distributed delays in order to be able to apply model checking techniques. For the
restricted Stochastic Quality Calculus with exponential distributions (SQCexp),
we showed how to perform numerical analysis by transforming real-timed delay
into time boundaries, such that a probability measure on the availability of in-
puts is split into more than one availability query on Continuous-Time Markov
Chains. The CTMC-based numerical analysis were performed both by means
of stochastic model checking and by means of explicit analytical formulae. The
whole development was demonstrated on the design of an intelligent smart elec-
trical meter.

In our opinion, these analyses provide a foundation for supporting a new dis-
cipline of robust programming. We believe that with quantitative information
on the robustness, it will be possible to better determine whether or not the soft-
ware continues to deal appropriately with risks and threats as their application
environment changes.

Acknowledgements. The research has been supported by IDEA4CPS study-
ing the Foundations for Cyber Physical Systems and granted by the Danish
Research Foundation for Basic Research (DNRF86-10). Cyber Physical Systems
may be seen as an amalgamation of embedded systems and service-oriented sys-
tems, the latter being the topic of the European Integrated Project SENSORIA
being led by Martin Wirsing and in which we participated. As in SENSORIA
our focus is on identifying appropriate programming mechanisms for which also
analysis methods can be developed.

References

[1] Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time
Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102,
pp. 269–276. Springer, Heidelberg (1996)

Stochastic Model Checking of the Stochastic Quality Calculus 537

[2] Bravetti, M.: An integrated approach for the specification and analysis of stochas-
tic real-time systems. Electr. Notes Theor. Comput. Sci. 68(5), 34–64 (2002)

[3] Bravetti, M.: Stochastic and real time in process algebra: A conceptual overview.
Electr. Notes Theor. Comput. Sci. 162, 113–119 (2006)

[4] Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: Concepts, discussions
and relations of stochastic process algebras with general distributions. In: Baier,
C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004)

[5] Brinksma, E., Hermanns, H.: Process Algebra and Markov Chains, pp. 183–231.
Springer, Heidelberg (2001)

[6] Ciobanu, G., Koutny, M.: PerTiMo: A Model of Spatial Migration with Safe Access
Permissions. Newcastle University, Computing Science (2011)

[7] De Nicola, R., Katoen, J.-P., Latella, D., Massink, M.: Stoklaim: A stochastic
extension of klaim. CNR-ISTI Technical Report number ISTI-2006-TR-01 (2006)

[8] Hillston, J.: A compositional approach to performance modelling. Cambridge Uni-
versity Press, New York (1996)

[9] Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270.
Springer, Heidelberg (2007)

[10] Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic model checking for
performance and reliability analysis. ACM SIGMETRICS Performance Evaluation
Review 36(4), 40–45 (2009)

[11] Milner, R.: A proposal for Standard ML. In: Proceedings of the 1984 ACM Sym-
posium on LISP and Functional Programming, pp. 184–197. ACM (1984)

[12] Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press (1999)

[13] Nielsen, B.F., Nielson, F., Nielson, H.R.: Model checking multivariate state re-
wards. QEST 17, 7–16 (2010)

[14] Nielson, H.R., Nielson, F.: Probabilistic analysis of the quality calculus. In: Beyer,
D., Boreale, M. (eds.) FORTE 2013 and FMOODS 2013. LNCS, vol. 7892,
pp. 258–272. Springer, Heidelberg (2013)

[15] Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S.,
Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg
(2013), http://dx.doi.org/10.1007/978-3-642-35861-6_12

[16] Priami, C.: Stochastic π-calculus. The Computer Journal 38(7), 578–589 (1995)
[17] Vigo, R., Nielson, F., Nielson, H.R.: Broadcast, denial-of-service, and secure com-

munication. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp.
412–427. Springer, Heidelberg (2013)

[18] Wang, C., Groot, M.d.: Managing end-user preferences in the smart grid. In:
Proceedings of the 1st International Conference on Energy-Efficient Computing
and Networking, e-Energy 2010, pp. 105–114. ACM (2010)

[19] Yi, W.: CCS+time = an interleaving model for real time systems. In: Albert,
J.L., Monien, B., Artalejo, M.R. (eds.) Automata, Languages and Programming.
LNCS, vol. 510, pp. 217–228. Springer, Heidelberg (1991)

[20] Zeng, K., Nielson, F., Nielson, H.R.: The Stochastic Quality Calculus. In: Kühn,
E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 179–193.
Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-642-35861-6_12

Software-Intensive Systems for Smart Cities:

From Ensembles to Superorganisms

Nicola Bicocchi, Letizia Leonardi, and Franco Zambonelli

University of Modena and Reggio Emilia, Italy
name.surname@unimore.it

Abstract. Smart cities infrastructures can be considered as large-scale,
software-intensive systems exhibiting close sinergies among ICT devices
and humans. However, current deployments of smart city technologies
rely on rather traditional technologies. This chapter introduces a novel
perspective in which large-scale ensembles of software components, ICT
devices, and humans, can be made working together in an orchestrated
and self-organized way to achieve urban-level goals as if they were part
of a single large-scale organism, i.e., a superorganism. Accordingly, we
delineate our vision of urban superorganisms and overview related ap-
plication areas. Finally, we identify the key challenges in engineering self-
organizing systems that can work as a superorganism, and we introduce
the reference architecture for an infrastructure capable of supporting our
vision.

1 Introduction

The increasing diffusion of sensor networks, actuators, and computational re-
sources is transforming urban environments [19,9]. In addition, social networks
are promoting innovative models and tools to engage people in situated collabor-
ation activities [28,20]. In smart city scenarios, these factors suggest integrating
the complementary sensing, computing, and acting capabilities of ICT devices,
software components, and of humans [36]. Further evolutions of this process
could lead to large-scale, software-intensive systems [34,33] via which municip-
alities could continuously monitor their environment, and eventually control the
system itself.

Unfortunately, the highly decentralized and open ended nature of this scenario
(where it is impossible to exert control over each of its components, and definitely
impossible to rely on their availability), make traditional approach to software
composition inadequate [8]. Our vision comprises heterogeneous urban-scale en-
semble of ICT devices, software components, and humans, becoming capable of
spontaneously self-organize their collective activities to adaptively achieve spe-
cific urban-level goals as if they were part of a single organism. That is, what in
biology is usually called a “superorganism” [15].

In this chapter, we start from the assessed biological perspective on super-
organisms and sketch the future vision of urban superorganisms. In particular,

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 538–551, 2015.
c© Springer International Publishing Switzerland 2015

Software-Intensive Systems for Smart Cities 539

we discuss how the urban superorganism as a whole will be able to: (i) com-
bine a wide range of information sources (e.g., environmental data from sensor
networks, mobility data and social network posts) [29,12]; (ii) perform advanced
reasoning, identify patterns and situations, and plan actions [3,1,25]; (iii) engage
in large-scale, coordinated tasks to achieve specific goals (e.g., optimise traffic
flow in the city, make it more environmentally sustainable, etc.) [13]. Accord-
ingly, we overview how such capabilities can be exploited to deploy applications
and services, pushing the current smart city vision forward [19].

The road towards the full realization of this vision is plenty of challenging
open research questions. These range from scientific questions (e.g., how can
we enforce “by design” a specific self-organizing behavior?) to engineering (what
coordination models and technologies better suit a large system of heterogeneous
components?) and social ones (how can we made people willing to act as part of
an urban superorganism?). This chapter analyzes the most prominent challenges
and proposes a reference architecture aimed at supporting the deployment and
execution of superorganisms services.

The rest of the chapter is organised as follows. Section 2 details our vision
on urban superorganisms. Section 3 overviews innovative application areas for
future urban superorganisms. Section 4 discusses the key research challenges.
Section 5 proposes a general-purpose architecture addressing those challenges.
Finally, section 6 draws conclusions.

2 From Ensembles to Urban Superorganisms

Very large ensembles of inter-connected components –humans, ICT devices and
software components – can be potentially exploited to create dynamic, goal-
oriented, collective entities usually defined in biology as superorganisms [15].
That is, large ensembles of individual organisms capable of behaving in a col-
lectively orchestrated way to serve the good of the ensemble itself. In particular,
closing the sensing, computing, and acting capabilities in a loop might lead to co-
herent collective behaviours, as it is observable in a number of natural situations
[5].

2.1 Natural Superorganisms

A single ant, for example, has very limited sensing and acting capabilities, and
little or no cognitive abilities. Yet, ants can indirectly coordinate their move-
ments and activities, via spreading and sensing of pheromones in the environ-
ment, so as to exhibit, as a colony, very powerful collective behaviors.

This can occur because the pheromones mechanism induces coordinated activ-
ities that – by closing into a feedback loop – turns the limited individual cap-
abilities of sensing, understanding and acting into collective ones [24,5]. More
specifically:

– Sensing: To find food, an ant senses existing pheromone field gradients (if
any, or wanders randomly otherwise). Such field gradients, if followed uphill,

540 N. Bicocchi, L. Leonardi, and F. Zambonelli

eventually lead the ant to food. This makes the ant spreading pheromones in
its turn and producing further paths that increase the chances for the ants
of the colony to find food.

– Understanding: All that an individual ant has to do in terms of cognitive
activities is computing the direction of the uphill gradient. However, the
colony as a whole exhibits an incredible efficiency in finding food sources,
in computing the shortest paths to food, and in adaptively reshaping the
pheromone fields to account for contingencies.

– Acting: When an ant finds some food source, it starts spreading pheromones
in the environment, thus creating a path that leads to food. The overall
activities of the ants of the colony in spreading pheromones eventually shape
a distributed field of pheromones that can be used to find food.

As ants behave as if they were a single superorganism, we envision that hu-
mans, along with software components and ICT devices, can be engaged in
large-scale coordinated activities. All the involved entities from now on will be
generally called agents. This would allow cities to become a sort of superorganism
composed of heterogeneous agents.

2.2 From Individual to Collective Behaviors

Figure 1 illustrates the sensing-understanding-acting feedback loop that – as in
ant colonies – can contribute leveraging individual capabilities into collective
ones, and eventually make collective behaviours possible. More specifically:

– Sensing activities in which citizens, supported by ICT devices and services,
get information about the current state of the environment (e.g., people
location data) and can share such information (e.g., as already happens for
mobile phone sport trackers).

– Understanding activities in which advanced forms of contextual information
are derived from the sensed data (e.g., individual citizens mobility patterns),
and possibly aggregated to evaluate the global properties of a city (e.g., the
global mobility rhythms).

– Acting activities, in the form of seemingly goal-directed global coordinated
tasks, supported by the extracted information, and put in actions by groups
of agents (e.g., traffic steering on the basis of the identified mobility patterns,
car sharing on the basis of people mobility routines, etc.).

To close the feedback loop, the results of acting activities clearly affect the
overall state of the city and the individual state of citizens. Citizens can sense
such changes at both the individual and collective levels, recognising the effects
of their actions [23].

2.3 The Complementary Role of Humans Agents and ICT Agents

Citizens are increasingly equipped with smart phones that are very powerful
in terms of battery life, sensing, computational power and connectivity. At the

Software-Intensive Systems for Smart Cities 541

Fig. 1. Collaborative sensing, understanding and acting can be used to deploy advanced
urban-level behaviours

same time, autonomous ICT infrastructures (sensor networks, security cameras,
robots, etc.) are likely to pervade cities in the near future. Accordingly, the
future urban environment is becoming a sort of dense digital ecosystem, whose
components are characterised by heterogeneous and complementary sensing, un-
derstanding, and acting capabilities (Figure 2).

Sensing capabilities from the ICT agents side can be provided by: (i) mobile
phones equipped with GPS, accelerometers and cameras; (ii) sensors networks
and smart objects that follow the Internet of Things paradigm; (iii) tags that
exploit the near field communication technologies (NFC, RFID and Bluetooth).
From the human agents side, the five senses of humans can, in many situations,
supply and be more accurate than ICT sensors (think about the possibility of
sensing opinions and “moods”, which sensors can hardly provide). Also, they can
be easily put at work for the community, due to the possibility of continuous
accessing to online social networks, where to express and make public the sensed
information [29].

Understanding capabilities from the ICT agents side makes it possible to
collect and digest very large amounts of urban data in a short time, and to
perform some limited pattern analysis on such data. However, from the human
agents side, one can effectively exploit the capability of recognising complex
situations and patterns (so called human computation [35]), which machines
can hardly tackle. Think, for example, of recognising a situation in which two
friends pretend to fight just for joking and are not really hurting each other.

Acting capabilities from the ICT agents side can be provided by: (i) traffic
controllers supporting control of vehicles movement (e.g., traffic lights); (ii) public

542 N. Bicocchi, L. Leonardi, and F. Zambonelli

ICT Agents Human Agents

Sensing Sensor networks, camera networks,
RFID tags, opportunistic access to
smart phone sensors

5 human senses, facts-opinions-
feelings posted on social networks,
proactive usage of smart phone
sensors

Understanding Data analysis, data aggregation,
simple pattern analysis, basic situ-
ation recognition

Advanced pattern analysis, ad-
vanced situation recognition, emo-
tion recognition

Acting Traffic lights, digital signage,
pervasive public displays, acting
devices of critical infrastructures
such as water distribution, energy
grid, robots, etc.,

Physical movements of individuals
and of manned vehicles, physical ac-
tions, social persuasion

Fig. 2. The table summarises sensing, computing, and acting capabilities of both hu-
mans and ICT devices that could mutually interact within an urban superorganism

displays that can be exploited to suggest specific behaviours to citizens;
(iii) all kinds of actuators related to critical infrastructures (e.g., energy grid);
(iv) robots (e.g. delivery drones). From the human agents side, the key elements
involved are users themselves, which can perform a variety of actions related to
moving items around or changing the properties of some physical entities. In
addition, citizens could accomplish actions – such as social persuasion – based
on their peculiar abilities. The goal-directed integration of the above capabilit-
ies and activities will allow to close the collective-awareness feedback loop, thus
enabling large-scale coordinated behavior among humans and ICT devices and
services.

3 Emerging Application Scenarios

Let us now introduce some exemplary application scenarios that could be en-
abled by the vision of self-organizing urban superorganisms, and by the defined
collective feedback cycle.

3.1 Smart Mobility

Among many capabilities that future urban superorganisms will exhibit, the first
that we expect to be in place, and for which we already observe embryonic ex-
amples around, will relate to urban mobility [16,13]. Specifically, it will relate to
the capability of sensing, predicting, and affecting (i.e., steering) the movements
of vehicles or pedestrians, thus improving overall efficiency of urban mobility,
but also making it possible for citizens to dynamically satisfy at the best their
mobility needs.

A variety of sensors already exist to detect the conditions of traffic or crowd
in urban environments. In addition, users are increasingly given the possibility
to contribute to such sensing activities by posting information on social net-
works or by opening access to their navigators and smart phone sensors. All this

Software-Intensive Systems for Smart Cities 543

information can be used to understand how to improve traffic flow or how to
avoid congestions. To this end: actuators such as traffic lights and digital traffic
signs can be put at work for vehicles; public (wall mounted) displays [10] and
private (smart phone) displays can be exploited to suggest directions to pedes-
trians.

However, one could push the capabilities of superorganisms much beyond [30].
For instance, one can think ofdynamically matching the similarity of the planned
routes of vehicles, pedestrians, and merchandises to be delivered, in order to
dynamically self-organize very flexible ride sharing and shipment services. In
general, urban superorganisms induce a change in the dominant paradigm for the
provisioning of mobility services: from sensing mobility patterns and adapting
existing services to them, to dynamically collecting mobility needs and self-
organizing the role and mobility patterns of vehicles accordingly.

3.2 Improved Sustainability

An additional example of how urban superorganisms can impact urban life is
related to energy consumption [7]. Just imagine sensing energy consumption
data to compute instantaneous carbon footprints for specific areas of the city or
for specific groups of citizens.

Public displays can then be exploited to share this information and possibly
some summaries of the factors contributing to it, and personal displays can be
possibly exploited to let individual and groups become aware of their own con-
tributions to the urban carbon footprint. Staring from these considerations, one
could think of steering the behaviour of individual citizens towards more energy
efficient behaviours. Also, one could engage groups of citizens in self-organized
collaborative actions, with the aim of solving/improving specific energy prob-
lems in specific urban areas and thus supply the lack of actuators suitable to the
purpose (e.g., detecting open windows and closing them).

3.3 Taking Care

Via similar means, it could be possible to dynamically involve citizens in proact-
ively helping to take care of the city, e.g., to help keeping it cleaner or making it
a safer place for everyone. For instance, one can think of dynamically engaging
people to temporarily take care of children on their way to school, whenever the
current activity and known habits of some persons suggests.

Ideally, in the presence of enough matching people and possibly of the neces-
sary complementing sensors (e.g., cameras) and actuators (e.g., robots) already
in place for that purpose, one could make sure that the whole path from home
to school of every children in a city is properly covered and taken care of. Such a
scenario is possibly a bit scary as of today, but a day will come when the idea of
connected citizens and devices will become very common, and all related urban
services will be perceived as highly trusted.

544 N. Bicocchi, L. Leonardi, and F. Zambonelli

3.4 Feeling Part of It

Urban superorganisms, also, might show their advantages in the (not easily meas-
urable) way by which they will improve our living. In particular, acting and mov-
ing around in a city by being given feedbacks on the effect of our own existence
in it (and observing ourselves in relation with our environment and with the
other citizens), can make most of our everyday actions inherently more pleasant
and rewarding, and can promote a renewed and stronger sense of citizenship.

Indeed, there are already a variety of examples in which the adoption of social
networks to exchange information and discuss problems within neighborhood of
a city has helped promoting a renewed sense of citizenship. The so called “social
streets” phenomena, in particular, help people understanding the fact that living
in a specific part of the city implies belonging to a community and serving the
community. We expect urban superorganisms will bring such understanding to
a much wider scale.

4 Engineering Challenges

The vision of urban superorganisms raises challenges that can hardly be dealt by
present networking and middleware architectures. In this section, and without
the ambition of being exhaustive, we present several challenges and analyze how
an infrastructure designed for urban superorganisms should address them.

4.1 Bringing Human and ICT Agents Together

The activities of urban superorganisms will involve a variety of heterogeneous
agents: humans equipped with a mobile phone, ICT sensors and actuators, cam-
eras, public displays, self-driving cars, different classes of robots [31]. Their cap-
abilities are very different from each other: just think about how differently
humans and artificial vision systems see and classify images [27], or at how dif-
ferently robots and humans can assist people [31].

An infrastructure for future urban superorganisms should be able to support
a general model for representing such different classes of agents and their specific
features, as well as a general model to invoke them and properly collect their
results. Also, the infrastructure should integrate a proper coordination model
supporting the orchestration [21] of heterogeneous agents physically spread over
an urban area.

4.2 Collective Situation Awareness

New types of sensors become available to sense information about environment,
weather, presence or movements of different entities. Furthermore humans in-
creasingly act as a kind of social sensor through mobile phones and social net-
works [29]. So, the availability of sensorial data is not an issue. The problems
arise when trying to turn such large amounts of data into knowledge about
situations [3].

Software-Intensive Systems for Smart Cities 545

In the past few years, there have been a notable progress in the identification
of algorithms and data classification techniques for individual or homogeneous
sensorial streams. The new challenge is to find ways of properly aggregate mul-
tiple streams from multiple and heterogeneous sources, so as to classify more
complex and multifaceted situations. Early proposals towards advanced classi-
fication techniques exploiting multiple sensors can indeed be found in literature
[4,14]. Yet, a general approach to sensor fusion and complex situation recogni-
tion, also accounting for global situations at urban scale are still missing, and
so it is missing the identification of a proper infrastructure to support such a
general approach.

4.3 Reconfiguration and Self-adaptivity

Reaching high-levels of awareness is necessary to understand what actions to
undertake to achieve specific global level objectives. However, it is also necessary
to continuously monitor – in a close feedback loop – the effect of the actions and
to dynamically plan corrective actions if needed [8]. Such corrective actions may:
(i) be caused by local effects and involve simply a change in how some individuals
act; or (ii) be of a more global nature and involve a large number of individuals
and their interaction schemes.

Accordingly, the general model for urban superorganisms should support dy-
namic discovery of components and dynamic reconfiguration (that is, the dy-
namic composition of agents and their involvement in different types of coordin-
ation patterns over time). And, clearly, this should take place in a self-adaptive
way, without requiring human intervention.

4.4 Bottom Up Self-organization vs Top-Down Design

Due to their inherent decentralized nature and the lack of central control, the
behaviours of urban superorganisms will have to be mostly based on bottom up
self-organization. This means that the local activities and interactions of their
components will have to make global patterns of behavior – serving specific
urban-scale purposes – emerge despite the fact that such global behaviours will
not be explicitly coded into any of the individual components [21,2].

However, engineering individual behaviors so as to achieve specific global goals
is quite a challenge, and is mostly possible only by reverse engineering of known
natural self-organizing phenomena [2]. Thus, a relevant thrust of research on
adaptive and evolvable software systems is focussing on integrating adaptation
in software systems according to the most assessed approaches of software engin-
eering. This implies explicitly encoding global goals in a system that is designed
and coordinated in a top-down way [8], and promoting adaptivity by having the
system explicitly account for its awareness of the global situation.

The key question that arises in this context is how it is possible to define
methodologies to smooth the tension between the two approaches, i.e., identi-
fying how the two approaches can co-exist (and they will indeed have to) and
possibly conflict in future urban superorganisms. The ultimate goal would be to

546 N. Bicocchi, L. Leonardi, and F. Zambonelli

tolerate development methodologies in which the bottom-up and self-adaptive
endeavour of nature-inspired self-organizing systems can become part of a more
traditional top-down approach to software engineering.

4.5 Predicting and Controlling Emergent Behaviors

Emergent bottom-up self-organization in natural systems, leading to self-adaptive
properties, is by definition a non-deterministic and irreducible process. Although
it is possible to design a self-organizing system that will probabilistically behave
as desired, it is impossible to exactly predict its final configuration but by ex-
ecuting the system itself.

Probabilistic non-determinism may be satisfactory in some non-critical cases,
e.g., in the diffusion of non-critical traffic information in a network of vehicles
[17], where the existence of some vehicles not reached by the information is not
critical. However, in other cases it may not be acceptable, e.g., in the exploration
of an urban environment by a swarm of robots during a rescue operation [6],
where one cannot tolerate the swarm to ignore some portion of the environment.
Accordingly, a key issue is to compensate such unpredictability by defining tools
to dynamically tune urban superorganisms if needed [11].

Some research in software engineering and distributed systems explicitly ad-
dress this issue mostly with simulations for multi-agent systems or cellular auto-
mata [22]. Yet, a general understanding of how to control emergent behaviours
in complex software systems is still to be reached. In our opinion, norm-based
multi-agent systems and electronic institutions [26,18] can be an effective start-
ing point towards achieving predictable and controllable urban superorganisms.

5 An Infrastructure for Urban Superorganisms

Let us now introduce the reference architecture for a general-purpose mid-
dleware infrastructure supporting urban superorganisms. The architecture re-
lies on that developed in the context of the EU-funded SAPERE project
(http://www.sapere-project.eu/). [38,37]. The reference architecture and its
coordination laws can support coordination among heterogeneous agents, can ex-
press situation-awareness by integrating advanced classification techniques, and
can support and control a variety of self-organizing coordination patterns.

5.1 Reference Architecture

The architecture (see Figure 3) supports the coordination of agents in an urban
area by abstracting the urban environment itself in terms of a computational
spatial substrate, in which the coordinated activities of urban agents take place.
From the implementation viewpoint, such spatial substrate could be realized as
a service in the cloud, or it also could be distributed across the actual pervas-
ive ICT infrastructure, i.e., the dense connected system of heterogeneous ICT

http://www.sapere-project.eu/

Software-Intensive Systems for Smart Cities 547

Fig. 3. A reference architecture for urban superorganisms infrastructures

devices that populate our urban environments (from smart phones to embedded
sensors and actuators).

The spatial substrate acts as a sort of shared coordination media embed-
ding the basic laws of coordination that rule the interactions between the urban
agents. The agents include all those autonomous components providing (or can
in turn request) resources and services to the overall urban environment. In the
spatial substrate, agents can interact and combine with each other (in respect of
the coordination laws and typically based on their spatial relationships), serving
their own individual needs as well as those of the overall urban environment. Hu-
man agents, in particular, can access the urban environment in a decentralised
way via their mobile phones (or any other portable devices that will be made
available in the coming years) to use and consume data and services. They can
also act as servers, to make available own human services.

For the heterogeneous urban agents living in the superorganisms, the architec-
ture should adopt a common modelling and a common treatment. In particular,
we propose this to be a semantic representation (which we call Live Semantic
Annotations, or LSAs) associated to services and functionalities that the com-
ponents of the superorganism can provide. An LSA is tightly associated to the
agent it describes, and – unlike static service descriptions – must be capable of
dynamically reflecting in their values the current situation and context of the
services. In particular, the current situation should also account for the diverse
means by which a service can be provided by different types of agents (e.g.,
whenever connected in the case of ICT devices, when available and willing to

548 N. Bicocchi, L. Leonardi, and F. Zambonelli

participate in the case of human agents), and should reflect to current availability
and quality of response of the service.

More in general, LSAs can act as observable interfaces of resources, as well as
the basis for enforcing semantic forms of dynamic interactions (both for service
aggregation/composition and for data/knowledge management). Getting back
to the paradigmatic example of ant colonies, the LSAs of an agent can be assim-
ilated to sorts of “pheromone” signals that express the existence of an agent in
an environment, and that make available to all other agents information about
some of its current and/or past activities and knowledge.

The coordination laws integrated within the infrastructure define the basic
laws driving virtual bio-chemical interactions that dynamically connects the
LSAs of the various components. In particular, the idea is to enforce on a spatial
basis, and possibly relying on diffusive and distributed aggregation mechanisms,
dynamic networking and composition of data and services, so as to eventually
head to the emergence of self-organized coordination patterns.

From the viewpoint of individual agents, the middleware should provide the
possibility of advertising themselves via an LSA, and supporting the continuous
updating of their LSAs. As LSAs are injected in the spatial substrate, they
trigger coordination laws. Also, by accessing LSAs and reading their values,
agents can access the results of distributed self-organized computations in the
forms of the shape of LSAs structure and their stored information.

5.2 Addressing the Challenges

First, the LSA approach can be effective in representing both human and ICT
components. In fact, being all LSAs residing in the same spatial substrate and
being subject to the same coordination laws, this makes it possible to seamlessly
involve in coordinated activities both human and ICT agents.

Second, concerning situation-awareness, at the local level LSAs can express
local contextual information, and the connection to LSAs can provide for fusing
information coming from heterogeneous sensors. In addition, the deployment
of special classes of agents devoted to access LSAs containing raw sensorial
information and of injecting back the results of pattern analysis and classification
techniques, can be used to integrate advanced forms of situation-awareness in
the overall activities of urban superorganisms.

Third, self-adaptivity and reconfiguration can be promoted not by the capab-
ility of individual components, but rather by the overall self-organizing dynamics
of the superorganism. In particular, adaptivity is ensured by the fact that any
change in the system will reflect in the firing of different coordination laws,
thus possibly leading to the establishment of new connectors or in the breaking
existing ones. Also, the proposed coordination laws make it possible to real-
ise a wide variety of nature-inspired self-organized coordination patterns, from
physically-inspired to chemically- and biologically-inspired ones, within the same
infrastructure and with the same basic programming approach.

Software-Intensive Systems for Smart Cities 549

Fourth, to control emergent behaviours, one can think of deploying in the
infrastructure special classes of agents that, by spreading “fake” LSAs that have
the only goal of triggering some coordination-laws, eventually affecting the way
coordination laws apply to LSAs of other agents [32]. The result could be in an
overall adaptation of the behaviour of the superorganism, yet obtained in a fully
decentralised way. In a similar way, special classes of agents capable of enforcing
control could be used to properly mix the self-organized bottom-up behaviour
of the urban superorganism with some forms of top-down behaviour, where such
special classes of agents can explicitly encode the high-level goals to be achieved
and act in a goal-oriented way.

6 Conclusion and Future Work

Innovative, large-scale, software-intensive services are emerging and dramatically
changing the way we move, live, and work, in urban environments. However, to
fully develop the superorganism vision we introduced, many research challenges
still need to be addressed, and suitable models and infrastructures have to be
developed. Nevertheless, we are aware that a number of additional scientific and
social challenges – beside those we have identified – will emerge as the first
instances of urban superorganisms will hit the ground. As future work, we plan
to make use of the presented archicture and its coordination model to experiment
with innovative university services within the campuses of our university.

Acknowledgements. Work supported by the ASCENS project (EU FP7-FET,
Contract No. 257414).

References

1. Aiello, F., Bellifemine, F., Fortino, G., Galzarano, S., Gravina, R.: An agent-based
signal processing in-node environment for real-time human activity monitoring
based on wireless body sensor networks. Engineering Applications of Artificial In-
telligence 24(7), 1147–1161 (2011)

2. Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G.A., Ducatelle, F., Gambar-
della, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.:
Design patterns from biology for distributed computing. ACM Transactions on
Autonomous and Adaptive Systems 1(1), 26–66 (2006)

3. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan,
A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive
and Mobile Computing 6(2), 161–180 (2010)

4. Bicocchi, N., Castelli, G., Lasagni, M., Mamei, M., Zambonelli, F.: Experiences
on sensor fusion with commonsense reasoning. In: IEEE Workshop on Context
Modeling and Reasonings, Lugano, CH (2012)

5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: from Natural to
Artificial Systems. Oxford University Press, London (1998)

6. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)

550 N. Bicocchi, L. Leonardi, and F. Zambonelli

7. Brenna, M., Falvo, M.C., Foiadelli, F., Martirano, L., Massaro, F., Poli, D., Vac-
caro, A.: Challenges in energy systems for the smart-cities of the future. In: IEEE
International Energy Conference and Exhibition, pp. 755–762 (September 2012)

8. Cheng, B.H.C., et al.: Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26.
Springer, Heidelberg (2009)

9. Chourabi, H., Nam, T., Walker, S., Ramon Gil-Garcia, J., Mellouli, S., Nahon, K.,
Pardo, T., Scholl, H.: Understanding smart cities: An integrative framework. In:
IEEE Hawaii International Conference on System Sciences, Maui (HI), USA (2012)

10. Davies, N., Langheinrich, M., José, R., Schmidt, A.: Open display networks: A
communications medium for the 21st century. IEEE Computer 45(5), 58–64 (2012)

11. Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Stevenson, G., Ye, J., Dobson,
S., Zambonelli, F.: Self-Managing and Self-Organising Mobile Computing Applic-
ations: a Separation of Concerns approach. In: Proceeding of the 29th Symposium
on Applied Computing, SAC 2014 (2014)

12. Fortino, G., Li, X., Lin, X., Mayora, O., Natalizio, E., Yuce, M.: Wireless technology
for pervasive healthcare. Mobile Networks and Applications 19(3), 273–275 (2014)

13. Harnie, D., D’Hondt, T., Gonzales Boix, E., De Meuter, W.: Programming urban-
area applications for mobility services. ACM Transactions on Autonomous and
Adaptive Systems 9(2) (2014)

14. Helaoui, R., Riboni, D., Stuckenschmidt, H.: A probabilistic ontological framework
for the recognition of multilevel human activities. In: ACM International Joint
Conference on Pervasive and Ubiquitous Computing, Zurich, CH (2013)

15. Holldobler, B., Wilson, O.: The Superorganism: the Beauty, Elegance, and Strange-
ness, of Insect Societies. W. W. Norton and Company, New York (2009)

16. Hu, X., Wang, W., Leung, V.: Vssa: A service-oriented vehicular social-networking
platform for transportation efficiency. In: International Symposium on Design and
Analysis of Intelligent Vehicular Networks and Applications, New York (NY), USA
(2012)

17. Jelasity, M., Montresor, A., Babaoglu, Ö.: Gossip-based aggregation in large dy-
namic networks. ACM Transactions on Computer Systems 23(3), 219–252 (2005)

18. Jones, A.J.I., Artikis, A., Pitt, J.: The design of intelligent socio-technical systems.
Artificil Intelicence Review 39(1), 5–20 (2013)

19. Kehoe, M., et al.: Understanding IBM Smart Cities. Redbook Series, IBM Corpor-
ation (2011)

20. Lathia, N., Pejovic, V., Rachuri, K.K., Mascolo, C., Musolesi, M., Rentfrow, P.J.:
Smartphones for large-scale behavior change interventions. IEEE Pervasive Com-
puting 12(3), 66–73 (2013)

21. Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-
organization in computer science. Journal of Systems Architecture 52(8-9), 443–460
(2006)

22. Mamei, M., Roli, A., Zambonelli, F.: Emergence and control of macro-spatial struc-
tures in perturbed cellular automata, and implications for pervasive computing
systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A 35(3),
337–348 (2005)

23. Mitchell, M.: Self-awareness and control in decentralized systems. In: AAAI Spring
Symposium: Meta-cognition in Computation, Palo Alto (CA), USA (2005)

24. Van Parunak, H.D.: Go to the ant: Engineering principles from natural multi-agent
systems. Annals of Operations Research 75, 69–101 (1997)

Software-Intensive Systems for Smart Cities 551

25. Pitt, J., Bourazeri, A., Nowak, A., Roszczynska-Kurasinska, M., Rychwalska, A.,
Rodriguez Santiago, I., Lopez Sanchez, M., Florea, M., Sanduleac, M.: Transform-
ing big data into collective awareness. Computer 46(6), 40–45 (2013)

26. Pitt, J., Schaumeier, J., Artikis, A.: Axiomatization of socio-economic principles
for self-organizing institutions: Concepts, experiments and challenges. ACM Trans-
actions on Autonomous and Adaptive Systems 7(4), 39 (2012)

27. Radu, A.-L., Ionescu, B., Menéndez, M., Stöttinger, J., Giunchiglia, F., De Angeli,
A.: A hybrid machine-crowd approach to photo retrieval result diversification. In:
Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.)
MMM 2014, Part I. LNCS, vol. 8325, pp. 25–36. Springer, Heidelberg (2014)

28. Rahwan, I., Dsouza, S., Rutherford, A., Naroditskiy, V., McInerney, J., Venanzi,
M., Jennings, N., Cebrian, M.: Global manhunt pushes the limits of social mobil-
ization. IEEE Computer 46(4), 68–75 (2010)

29. Rosi, A., Mamei, M., Zambonelli, F.: Integrating social sensors and pervasive ser-
vices: approaches and perspectives. Journal of Pervasive Computing and Commu-
nications 9(4), 294–310 (2013)

30. Sassi, A., Zambonelli, F.: Towards an agent coordination framework for smart
mobility services. In: 8th International workshop on agents in traffic and trans-
portation (May 2014)

31. Scerri, P., Ma, Z., Chien, S.Y., Wang, H., Lee, P.-J., Lewis, M., Sycara, K.P.: An
initial evaluation of approaches to building entry for large robot teams. Journal of
Intelligent and Robotic Systems 64(2), 145–159 (2011)

32. Scheidler, A., Merkle, D., Middendorf, M.: Swarm controlled emergence for ant
clustering. International Journal on Intelligent Computing and Cybernetics 6(1),
62–82 (2013)

33. Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.): Soft-Ware Intensive
Systems. LNCS, vol. 5380. Springer, Heidelberg (2008)

34. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering
Autonomic Service-Component Ensembles. In: Beckert, B., Damiani, F., de Boer,
F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer,
Heidelberg (2012)

35. Yuen, M., Chen, L., King, I.: A survey of human computation systems. In: Interna-
tional Conference on Computational Science and Engineering, Vancouver, Canada
(2009)

36. Zambonelli, F.: Toward sociotechnical urban superorganisms. IEEE Com-
puter 45(8), 76–78 (2012)

37. Zambonelli, F., Castelli, G., Mamei, M., Rosi, A.: Programming self-organizing
pervasive applications with SAPERE. In: Zavoral, F., Jung, J.J., Badica, C. (eds.)
IDC 2013. SCI, vol. 511, pp. 93–102. Springer, Heidelberg (2013)

38. Zambonelli, F., Viroli, M.: A survey on nature-inspired metaphors for pervas-
ive service ecosystems. Journal of Pervasive Computing and Communications 7,
186–204 (2011)

A White Box Perspective

on Behavioural Adaptation�

Roberto Bruni1, Andrea Corradini1, Fabio Gadducci1,
Alberto Lluch Lafuente2, and Andrea Vandin3

1 Department of Computer Science, University of Pisa, Italy
2 DTU Compute, Technical University of Denmark, Denmark

3 Electronics and Computer Science, University of Southampton, UK

Abstract. We present a white-box conceptual framework for adapta-
tion developed in the context of the EU Project ASCENS coordinated
by Martin Wirsing. We called it CoDa, for Control Data Adaptation,
since it is based on the notion of control data. CoDa promotes a neat
separation between application and adaptation logic through a clear iden-
tification of the set of data that is relevant for the latter. The framework
provides an original perspective from which we survey a representative
set of approaches to adaptation, ranging from programming languages
and paradigms to computational models and architectural solutions.

Keywords: Adaptation, Self-*, Autonomic Computing, Programming
Languages, Software Architectures, Computational Models, Computa-
tional Reflection.

1 Introduction

Self-adaptive systems have been widely studied in several disciplines like Biology,
Engineering, Economy and Sociology. They have become a hot topic in Computer
Science in the last decade as a convenient solution to the problem of master-
ing the complexity of modern software systems, networks and architectures. In
particular, self-adaptation is considered a fundamental feature of autonomic sys-
tems, often realized by specialized self-* mechanisms like self-configuration, self-
optimization, self-protection and self-healing, as discussed for example in [43].

The literature includes valuable works aimed at capturing the essentials of
adaptation both in the most general sense (see, e.g., [52]) and more specifically
fields such as software systems (see, e.g., [72,14,56,5,69]) providing in some cases
very rich surveys and taxonomies. A prominent and interesting example is the
taxonomy of concepts related to self-adaptation presented in [72], whose authors
remark the highly interdisciplinary nature of the studies of such systems. Indeed,
just restricting to the realm of Computer Science, active research on self-adaptive
systems is carried out in Software Engineering, Artificial Intelligence, Control
Theory, and Network and Distributed Computing, among others.

� Research supported by the European projects IP 257414 ASCENS and STReP
600708 QUANTICOL, and the Italian project PRIN 2010LHT4KM CINA.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 552–581, 2015.
c© Springer International Publishing Switzerland 2015

A White Box Perspective on Behavioural Adaptation 553

Despite all these classification efforts, there is no agreement on the conceptual
notion of adaptation, neither in general nor for software systems. Lofti Zadeh
noticed in [83] that “it is very difficult—perhaps impossible—to find a way of
characterizing in concrete terms the large variety of ways in which adaptive be-
havior can be realized”. Zadeh’s concerns were conceived in the field of Control
Theory but as many authors agree (e.g., [69,72,5,52]), they are valid in Com-
puter Science as well. One reason for Zadeh’s lack of hope in a concrete unifying
definition of adaptation is the attempt to subsume two aspects under the same
hat: the external manifestations of adaptive systems, and the internal mecha-
nisms by which adaptation is achieved. We shall refer to the first aspect as the
black-box view on adaptation, and to the second aspect as the white-box one.1

Actually, in the realm of Software Engineering there are widely spread infor-
mal definitions, according to which a software system is called “self-adaptive” if it
“modifies its own behavior in response to changes in its operating environment” [64],
where such “environment” has to be understood in the widest possible way, includ-
ing both the external environment and the internal state of the system itself. Typ-
ically, such changes are applied when the software system realizes that “it is not
accomplishing what the software is intended to do, or better functionality or per-
formance is possible” [50]. Such definitions can be exploited to measure what is
often called the degree of adaptivity, i.e., to estimate the system robustness under
some conditions. This approach can be traced back to Zadeh’s proposal [83], but
has been later adopted by many other authors (e.g., [62,41]).

The problem is that almost any software system can be considered self-adaptive
according to the above definitions, as it can modify its behaviour (e.g., by redi-
recting the control flow) as a reaction to a change in its context of execution (like
the change of variables). Thus, such definitions, concerned with the observational
perspective only, are of difficult applicability for distinguishing adaptive systems
from “non-adaptive” ones. Also, they are of little use for design purposes, where
separation of concerns, modularization, reuse are crucial aspects.

The development and success of many emergent Computer Science paradigms
is often strongly supported by the identification of key principles around which
the theoretical aspects can be conveniently investigated and fully worked out. For
example, in the case of distributed computing, there have been several efforts in
studying the key primitives for communication, including mechanisms for passing
communication means (name mobility) or entire processes (code mobility), which
led to a widely understood theory of mobile process calculi. There is unfortunately
no such agreement concerning (self-)adaptation, as it is not clear what are the char-
acterizing structural features that distinguish such systems from plain ones.

Summarizing: (i) existing definitions of adaptation (and also adaptivity and
adaptability) are not always useful in pinpointing adaptive systems, but they
allow to discard many systems that certainly are not, and (ii) their focus is often
more on the issue of how much a system adapts than in which manner.

1 The black- and white-box perspective should not be confused with the white- and
black-box component adaptation techniques as discussed, e.g., in [13], where black
refers to exploiting the interface of a component and white to exploiting its internals.

554 R. Bruni et al.

Contributions and Structure. The paper presents a conceptual framework for
adaptation by means of a simple structural criterion. This framework, intro-
duced in Section 2, is called CoDa, Control Data Adaptation. Our contribu-
tion is a definition of adaptation that is applicable to most approaches in the
literature, and in fact it is often coincident with them once it is instantiated to
each approach. Also, we aim at a separation of concerns to distinguish changes
of behaviour that are part of the application logic from those where they real-
ize the adaptation logic, calling “adaptive” only those systems capable of the
latter. More precisely, we propose concrete answers to basic questions like “is
a software system adaptive?” or “where is the adaptation logic in an adaptive
system?”. We take a white-box perspective that allows us to inspect, to some
extent, the internal structure of a system. Moreover, we provide the designer
with a criterion to specify where adaptation is located and, as a consequence,
which parts of a system have to be adapted, by whom and how. Note that while
adaptation can be concerned with a single component as well as with a whole
system, we will not push this distinction and will address both situations in the
paper: each time the case under consideration will be evident by the context.

The second part of the paper (Sections 3–5) is devoted to a proof of concept : we
overview several approaches to adaptation and validate how the CoDa definition
of adaptation is applied to them. This part of the paper is organized according
to different pillars of Computer Science: architectural approaches (Section 3),
foundational models (Section 4), and programming paradigms (Section 5). Ap-
proaches that cover more than one of such aspects are discussed only once.

It is worth remarking that it is not the programming paradigm, the archi-
tecture or the underlying foundational model what makes a system adaptive or
not. For example, adaptive systems can be programmed in any language, exactly
like object-oriented systems can in imperative languages, albeit with some effort.
However, it is beyond the scope of this paper to discuss approaches that do not
address adaptation in an explicit way, even if they might do so implicitly.

Section 6 overviews other surveys and taxonomies that address the same aim
of our work. Finally, Section 7 concludes the paper and discusses future research.

Our work would not be the same without the support and insights from Mar-
tin Wirsing. It was indeed conceived in early meetings of the ASCENS project,
coordinated by Martin. The main questions under discussion were the meaning
of adaptation and its formalization. We presented some preliminary ideas essen-
tially based on the use of logical reflection in algebraic specifications. Though
sharing our passion for such disciplines and understanding our points, Martin
warned us about the difficulties of meta-programming techniques and encour-
aged us to consider other approaches, including those proposed by other teams
of the project. This lead us to investigate the essence of adaptation, and resulted
first in the shorter, less inclusive version of this paper appeared as [21], and ulti-
mately in the present work. We would like to express infinite gratitude to Martin,
for his tenacious guidance, his calm patience and his pointed intuitions during
all these beautiful years of fruitful research collaborations.

A White Box Perspective on Behavioural Adaptation 555

2 When Is a Software Component Adaptive?

The behavior of a software component is governed by a program, and, according
to the traditional view (e.g., [82]), a program is made of control (i.e., algorithms)
and data. This basic view of programs is sufficient for the sake of introducing our
approach. CoDa requires to make explicit that the behaviour of a component
depends on some control data that can be changed to adapt it. At this level of
abstraction we are not concerned with the structure of control data, the way they
influence the behaviour of the component, or the causes of their modification.

Our definition of adaptation is then very straight: Given a component with a
distinguished collection of control data, adaptation is the runtime modification
of such control data. From this definition we can easily derive several others.
A component is adaptable if its control data may be modified at runtime, it is
adaptive if its control data are actually modified at runtime in some execution,
and it is self-adaptive if it modifies its own control data at runtime.

The CoDa point of view is in line with other white-box perspectives on adap-
tation as we discuss in Section 6. Our goal is to show that the conceptual view
of CoDa enjoys two key properties: concreteness and generality.

Concreteness. Any definition of adaptation should face the problem that the
judgement whether a system is adaptive or not is often subjective. From the
CoDa perspective, this is captured by the fact that the collection of control
data of a component can be defined, at least in principle, in an arbitrary way,
ranging from the empty set (“the system is not adaptable”) to the collection of
all the data of the program (“any data modification is an adaptation”). As a
concrete example, consider the following conditional statement:

if the hill is too steep then assemble with others else proceed alone

Can it be interpreted as a form of adaptation? From a black-box perspective
the answer is “it depends”. Indeed, the above statement is typical of controllers
for robots operating collectively as swarms and having to face environments with
obstacles (see, e.g., [63]). As some authors observe [39] “obstacle avoidance may
count as adaptive behaviour if [...] obstacles appear rarely. [...] If the “normal”
environment is [...] obstacle-rich, then avoidance becomes [...] normal behaviour
rather than an adaptation”. In sum, the above conditional statement can be a
form of adaptation in some contexts but not in others.

Now, suppose that the statement is part of the software controlling a robot,
and that the hill is too steep is a boolean variable set according to the value
returned by a sensor. Then, in our framework the change of behaviour caused
by a modification of its value is considered as an adaptation or not depending
on if the hill is too steep is considered as part of the control data or not.

Such a boolean variable is not in itself a datum obtained by a sensor: it is
controlled by an adaptation logic that changes its value when a given threshold
is reached in the information received by the sensors: thus, control data do not
by necessity coincide with sensor data. In more general terms, the difference is
going to be made explicit e.g. when we will instantiate our CoDa approach in

556 R. Bruni et al.

the context of computational models that support meta-programming or reflec-
tive features, where a program-as-data paradigm holds: the issue is tackled in
Section 4.2 and in the summary of forms assumed by control data in Fig. 1.

Summing up, the above question (“can it be interpreted as a form of adapta-
tion?”) can be answered only after the identification of the control data. Thus,
from the white-box perspective of CoDa the answer is still “it depends”. With
a fundamental difference: the responsibility of declaring which behaviours are
part of the adaptation logic is passed from the observer to the designer. Ideally,
a sensible collection of control data should enforce a separation of concerns, al-
lowing to distinguish neatly the activities relevant to adaptation (those affecting
the control data) from those relevant to the application logic only.

Generality. Any definition of adaptation should be general enough to capture the
essence of the most relevant approaches to adaptation proposed in the literature.
The generality of CoDa is witnessed by the discussion of Sections 3–5 where we
overview several approaches to adaptation, pointing out for each of them what
we consider the natural candidates for control data. More explicitly, the criterion
that we shall use for determining such data is the following: a system designed
according to one of such approaches manifests an adaptation exactly when the
corresponding control data are modified.

Adaptive systems are realized by resorting to a variety of computational mod-
els and programming paradigms. The nature of control data can thus vary con-
siderably: from simple configuration parameters to a complete representation of
the program in execution that can be modified at runtime.

The variety of formalisms makes it hard to compare approaches with each
other, unless one manages to map them into a unifying model of computation
(which is far beyond the scope of this paper). However, for the sake of a brief
discussion we enrich our intuitive view of a system as made of control, control
data and ordinary data, with additional features such as the system’s architecture
(in a general sense, including the interconnection of components, communication
stacks, workflows, etc.), and the adaptation strategy used to enact adaptation.
Moreover we shall assume that the behavior of the system or component (i.e.,
its control) may be structured into sub-parts that we call operation modes.

Such simple perspective on adaptive systems helps us in classifying the main
approaches surveyed in this paper as depicted in Figure 1. Symbol “*” is used to
denote generic approaches that propose reference models where control data de-
pends on concrete instances of the approach. The table also contains the control
data as-it-is and the section where the approach is discussed.

Such classification has several advantages: (i) It provides a criterion that is or-
thogonal to those of the surveys and taxonomies discussed in Section 6 and to the
classification by research areas along which we structure Sections 3–5. (ii) It allows
to relate approaches presented independently and in different areas but sharing,
essentially, the same category of control data. This is the case of the approaches
based on modes of operation proposed by the Software Engineering
community with paradigm-oriented approaches and by the Theoretical Computer
Science community with automata and process-algebraic ones. (iii) It allows to

A White Box Perspective on Behavioural Adaptation 557

CONTROL DATA CONTROL DATA Section

(as-it-is) (class)

[42] * * 3.1

[25] * * 3.1

[81] * * 3.1

[45] * * 3.2

[66] * * 4.3

[11] adaptation coordination strategies adaptation strategy 4.1

[51] adaptation rules adaptation strategy 5.3

[16] architecture architecture 3.1

[49] architecture architecture 3.2

[64] architecture architecture 3.2

[70] module stack architecture 3.2

[23] current workflow architecture 3.2

[7] connectors architecture 3.2

[11] architecture architecture 4.1

[80] effector channel architecture 4.3

[51] set of activities architecture 5.3

[65] entire programs entire program 4.1

[59] rewrite rules entire program 4.2

[37] processes entire program 4.3

[32] processes entire program 4.3

[30] features operation mode 4.1

[57] regions operation mode 4.1

[87] operation mode operation mode 4.1

[1] active configuration operation mode 4.1

[76] active configuration operation mode 4.1

[20] control proposition operation mode 4.1

[86] steady state programs operation mode 4.1

[44] state space zones operation mode 4.1

[35] graph rewrite rules operation mode 4.2

[84] base level Petri net operation mode 4.3

[55] adaptor processes operation mode 4.3

[17] adaptable (local) processes operation mode 4.3

[73] context stack operation mode 5.1

[38] advices operation mode 5.2

[46] policies operation mode 5.3

Fig. 1. Summary of some of the control data forms discussed

compare approaches apparently similar (and falling in the same section) but
based on different categories of control data. In some process-algebraic approaches
the control data may e.g. reside in the communication topology or in the entire
program. The classification depends on the envisioned conceptual computational
formalisms where we map the approaches. We propose a simple one to illustrate
a way of exploiting the notion of control data for comparison purposes.

3 Architectural Approaches to Adaptation

Several contributions to the literature describe architectural approaches to auto-
nomic computing and self-adaptive software systems. In this section we survey
some of such proposals, organizing the discussion around two main themes: ref-
erence models (Section 3.1) and reconfiguration-based approaches (Section 3.2).

558 R. Bruni et al.

3.1 Reference Models for Adaptation

In this section we review two influential reference models for adaptive systems:
MAPE-K [42] and FORMS [81]. Both approaches propose general guidelines for
the architecture of (self-)adaptive systems, the first one based on the presence
of a control loop, the second one on the use of computational reflection. The
identification of control data at this level of abstraction can only be generic, as
concrete instances may realize the reference models in different ways.

The first reference model we consider is MAPE-K (Monitor, Analyse, Plan,
Execute, Knowledge), introduced in the seminal [42]. A self-adaptive system is
made of a component implementing the application logic, equipped with a control
loop that monitors the execution through suitable sensors, analyses the collected
data, plans an adaptation strategy, and finally executes the adaptation of the
managed component through some effectors; all the phases of the control loop
access a shared knowledge repository. The managed component is considered to
be an adaptable component, and the system made of the component and the
manager implementing the control loop is considered a self-adaptive component.

Fig. 2. Control data in MAPE-K

The conceptual role of the control loop in-
duces a natural choice for the control data:
while in the monitor phase a wide range of
data from the managed component may be
sensed, the control data are those that are
modified by the execute phase of the control
loop. Thus the control data of a managed com-
ponent is (explicitly or implicitly) available
via the interface it offers to its manager, which
can use it to enact its control loop, as shown
in Fig. 2. Clearly, the concrete structure of
control data (e.g., variables, policies, . . .) de-
pends on the specific instance of the MAPE-K
model and on the computational model or programming language used, as dis-
cussed in the next two sections. The construction can be iterated, as the manager
itself can be an adaptable component.

Fig. 3. Tower of adaptation

Concrete instances of this scenario can be found,
among others, in [11,51,24]. For example, in the lat-
ter, components follow plans to perform their tasks
and re-planning is used to overcome unpredicted
situations that may make current plans inefficient
or impossible to realize. A component in this sce-
nario can be adaptable, having a manager which de-
vises new plans according to changes in the context
or in the component’s goals. In turn, this planning
component might itself be adaptable, with another
component that controls and adapts its planning
strategy, e.g., on the basis of a tradeoff between op-
timality of the plans and computational cost of the

A White Box Perspective on Behavioural Adaptation 559

Fig. 4. External (top-left) and internal (bottom-left) control loop patterns and their
presentation in terms of the MAPE-K model (center), and the reactive pattern (right)

planning algorithms. In this case, the planning component (that realizes the con-
trol loop of the base component) exposes some control data (conceptually part
of its knowledge), thus enabling a hierarchical composition that allows building
towers of adaptive components (Fig. 3).

The MAPE-K control loop is very influential in the autonomic computing com-
munity, but control loops in general have been proposed and extensively studied
also by others as a key mechanism for achieving self-adaptation in software sys-
tems, also on the basis of the crucial role they play in engineering disciplines
like Control Theory. An interesting survey of several types of control loops is
presented in [19], which among others identifies the Model Reference Adaptive
Control loop, where the control loop is fed with a model of the controlled com-
ponent, and the Model Identification Adaptive Control loop, where the control
loop tries to infer such a model directly from the behaviour of the component.

Typical control loop patterns are also proposed in [25], which presents a tax-
onomy of design patterns for adaptation (see Fig. 4). In the internal control
loop pattern, the manager is a wrapper for the managed component and it is not
adaptable. Instead, in the external control loop pattern, the manager is an adapt-
able component that is connected with the managed component. The distinction
between external and internal control loops is also discussed in [72], where it is
stressed that internal control loops offer poor scalability and maintainability due
to the intertwining of the application and the adaptation logic. Indeed this con-
tradicts the separation-of-concerns principle that the authors (and many others)
promote as key feature of self-adaptive systems. Like for MAPE-K, also for these
control-loop centered approaches to adaptivity a precise identification of control
data is only possible in concrete instances.

The taxonomy of [25] includes a third pattern called reactive pattern that
describes reactive components capable of modifying their behavior in reaction
to an external event, without any control loop (or, equivalently, with a degen-
erate, “empty” control loop). In order to apply our definition of adaptation as

560 R. Bruni et al.

Fig. 5. The FORMS reference model

runtime modification of control data to a reactive system of this kind, one could
simply identify as control data those data that, when modified by sensing the
environment, cause an adaptation of the system. This is a good example of the
generality of our definition of adaptation, which is applicable also to such quite
extreme case.

The reference model in [6] promotes computational reflection as a necessary
criterion for any self-adaptive software system. Reflection implies the presence,
besides of base-level components and computations, of meta-level subsystems
and meta-computations that act on a meta-model. Meta-computations inspect
and modify the meta-model that is causally connected to the base-level system,
so that changes in one are reflected in the other. The authors argue that most
methodologies and frameworks for the design and development of self-adaptive
systems rely on some form of reflection, even if not explicitly. Building on these
considerations, they introduce the FOrmal Reference Model for Self-adaptation
(FORMS) [81], providing basic modeling primitives, and relationships among
them, for the design of self-adaptive systems (cf. Fig. 5), and making explicit
the presence of reflective (meta-level) subsystems, computations and models.

The goals of [6] are not dissimilar from ours, as they try to capture the essence
of self-adaptive systems, identifying it in computational reflection (one of the
key features of self-adaptive systems according to [56] as well). The FORMS

modeling primitives can be instantiated and composed in a variety of ways. For
example, [81] provides one example that conforms to the MAPE-K reference
model and another one that follows an application-specific design.

A precise identification of control data depends on the specific instance of the
approach, and more precisely on the way modifications to the meta-level affect
the base level, causing an adaptation. In instances featuring some kind of hot-
linking from the meta- to the base-level component, the meta-level itself can be
considered as control data. Otherwise, in general, control data will be identified
at the boundary between the meta-level and the base-level components.

A White Box Perspective on Behavioural Adaptation 561

3.2 Reconfiguration-Based Approaches to Adaptation

Several approaches to the design of (self-)adaptive systems look at a system as a
network of components, suitably arranged in a logical or physical topology that
constraints the interactions or communications among components. Adaptations
in this context are typically realized via reconfigurations, which can range from
the replacement of a single component to local or even global changes to the
interaction topology. Usually such reconfigurations do not modify the function-
alities of the individual components, but only the way they are connected and/or
interact with each other (see the survey [16], summarized in Section 6, and [49]).
Therefore the control data in these approaches can be identified with the inter-
connection topology itself, which depending on the approaches can be made of
channels, connectors, gates, protocol stacks, links, and so on.

A first example is the approach presented in [64], where dynamic software ar-
chitecture has a dominant role. The proposed methodology combines an Adapta-
tion Management loop, which is essentially a distributed, agent-based MAPE-K
control loop, with an Evolution Management loop. In the latter, an architectural
model is maintained at runtime, that describes the running implementation and
that plays the role of our control data. In fact the architectural model, made
of components and connectors, can be modified by the control loop, by adding
or removing components or connectors or by changing the topology. An Archi-
tecture Evolution Manger mediates the changes of the architectural model and
maintains the consistency between the model and the running implementation.

The Ensemble system [70] is a network protocol architecture conceived with
the aim of facilitating the development of adaptive distributed applications.
The main idea is that each component of the application relies on a reconfig-
urable stack made of simple micro-protocol modules, which implement different
component-to-component communication features. The module stack imposes a
layered structure to the communication infrastructure which is used to guide
its adaptation. Adaptation can e.g. be triggered in a bottom-up way, when a
layer n discovers some environmental changes that require an adaptation. Then
the module at layer n may be adapted and, if not possible, the adaptation re-
quest is propagated to the upper layer n + 1. Such structure is also exploited
when a coordinated, distributed adaptation is needed, which is tackled by the
Protocol Switching Protocol, one the key features of the approach. The proto-
col is initiated by a global coordinator that sends the notification of the need
of adaptation to each component. Within each component the notification is
propagated through the protocol stack, so that each layer applies the necessary
actions. Adaptation can happen at different points. In particular it may affect
the components participating to the distributed application (or to groups within
it) or the communication infrastructure (i.e., the module stack). Hence, gener-
ally speaking, the set of components, their state and the module stack form the
control data of the adaptive application.

The authors of [45] discuss how to apply this model-based approach to Model-
Integrated Computing to adaptive systems. Adaptation is mainly reconfiguration
followed by automatic deployment, triggered at runtime by the user or by the

562 R. Bruni et al.

system as a reaction to some events. In the proposed case study, a simple finite-
state automaton determines the transitions from one behaviour to another: here,
the natural choice of control data consists of the states of the automaton.

A life-cycle for service-based applications where adaptation is a first-class
concern is defined in [23]. Such life-cycle continues during runtime to cope with
dynamic requirements and the corresponding adaptations. In addition to the
life-cycle, [23] focuses on the identification of a number of design principles and
guidelines that are suitable for adaptable applications. Essentially, adaptation
is understood as the modification of the workflow implementing a service-based
application, from substituting individual services by equivalent ones, to recom-
posing a piece of the workflow to obtain an equivalent result. Therefore, roughly
speaking, the current workflow is the control data of the service-based applica-
tions.

In the architectural approach of [7] a system specification has a two-layered ar-
chitecture to enforce a separation between computation and coordination. The
first layer includes the basic computational components and their interfaces,
while the second one is made of connectors (called coordination contracts) that
link the components to ensure the required system’s functionalities. Adaptation
in this context is obtained by reconfiguration, which consists of removal, addition
or replacement of both base components and connectors among them. The pos-
sible reconfigurations of a system are described declaratively with suitable rules,
grouped in coordination contexts : such rules can be either invoked explicitly, or
triggered automatically when certain conditions are satisfied. In this approach,
as adaptation is reconfiguration, the control data consist of the whole two-layered
architecture, excluding the internal state of the computational components.

4 Computational Models for Adaptation

Computational reflection is widely accepted as one of the key instruments to
build self-adaptive systems (cf. [56,33]). Indeed computational paradigms
equipped with reflective, meta-level or higher-order features, allow one to rep-
resent programs as first-class citizens. In these cases adaptation emerges, ac-
cording to our definitions, if the program in execution is represented in the
control data of the system, and it is modified during execution. Prominent ex-
amples of such formalisms are, e.g., rewrite theories with logical reflection like
rewriting logic [58] or process calculi with higher-order or meta-level aspects like
HO π-calculus [75]. Systems represented within these paradigms can realize self-
adaptation in a straightforward manner. Of course, computational reflection
assumes different forms and, despite of being a very convenient mechanism, it is
not strictly necessary: as we argued in Section 1 any programming language can
be used to build a self-adaptive system.

We outline now some rules of thumb for the choice of control data within
some well-known computational formalisms (deferring programming paradigms
and languages to Section 5). In doing so, we restrict the attention to computa-
tional models that have been purposely introduced to represent adaptation and

A White Box Perspective on Behavioural Adaptation 563

we point out how they can be used for modeling the behavior of self-adaptive
systems. In addition, we survey a representative set of models that have been con-
ceived with the purpose of modeling self-adaptive systems and supporting their
formal analysis. We structure the presentation along three strands: automata-
like computational models (Section 4.1), declarative, rule-based computational
models (Section 4.2), and computational models from concurrency theory (Sec-
tion 4.3).

4.1 Automata-Based Approaches to Adaptation

In many frameworks for the design of adaptive systems the base-level system
has a fixed collection of possible behaviours (or behavioural models), and adap-
tation consists of passing from one behaviour to another. Some of the approaches
discussed in this section achieve this by relying on a multi-layered structure rem-
iniscent of hierarchical state machines and automata.

A first example of this tradition are the Adaptive Featured Transition Sys-
tems (A-FTS) of [30], which were introduced for the purpose of model checking
adaptive software (with a focus on software product lines). A-FTSs are a sort of
transition systems where states are composed by the local state of the system,
its configuration (set of active features) and the configuration of the environ-
ment. Transitions are decorated with executability conditions that regard the
valid configurations. Adaptation corresponds to reconfigurations (changing the
system features). Hence, in terms of our white-box approach, reconfigurable sys-
tem features play the role of control data. The authors introduce the notion of
resilience as the ability of the system to satisfy properties despite of environmen-
tal changes (which essentially coincides with the notion of black-box adaptivity
of [41]). Properties are expressed in AdaCTL, a variant of the computation-tree
temporal logic CTL.

Another example of layered computational structures are S[B] systems [57],
a model for adaptive systems based on 2-layered transitions systems. The base
transition system B defines the ordinary behavior of the system, while S is the
adaptation manager, which imposes some regions (subsets of states) and tran-
sitions between them (adaptations). Further constraints are imposed by S via
adaptation invariants. Adaptations are triggered to change region (in case of
local deadlock). Such regions, hence, form the control data of the system accord-
ing to our white-box approach. The paper also formalizes notions of weak and
strong adaptability, defined as the ability to conclude a triggered adaptation in
some or all possible behaviors, respectively, and characterized by suitable CTL
formulae.

Mode automata [53] have been also advocated as a suitable model for adap-
tive systems. For example, the approach of [87] represents adaptive systems with
two layers: a functional layer, which implements the application logic and is rep-
resented by state machines called adaptable automata, and an adaptation layer
that implements the adaptation logic and is represented with a mode automaton.
Adaptation here is the change of mode, and these are the control data of this
approach. The approach considers three kinds of specification properties: local

564 R. Bruni et al.

(to be satisfied by the functional behavior of one particular mode, not involving
adaptation), adaptation (to be satisfied by adaptation phases, i.e., transitions
between modes), and global (to be satisfied by all behaviors). An extension of
linear-time temporal logic (LTL) called mLTL is used to express such properties.

Overlap adaptations [11] arise in long-running open and dynamic distributed
applications where components can be removed, added or replaced with a certain
frequency. Under these premises, it is clear that the set of components of the
application corresponds to its control data. An overlap adaptation occurs when
the execution of old components (i.e., components that need to be adapted)
overlaps with the execution of new components (i.e., adapted components). This
overlap introduces non-trivial issues but is required in order to adapt the whole
application in a distributed manner without stopping it.

The authors identify several kinds of overlap adaptations which vary in the
kind of allowed interactions between old and new components. The main con-
cern of the approach is verifying the correctness of adaptations. For this purpose
the approach relies on the concept of transitional adaptation lattices, roughly,
diamond-shaped graphs whose nodes are automata and whose transitions corre-
spond to atomic adaptation actions (cf. Fig. 6). Each automaton represents the
behavior of the whole system in some state. The top automaton corresponds to
the system before adaptation starts, while the bottom automaton corresponds to
the system when adaptation ends. The diamond shape of the lattice implicitly
imposes a confluent behavior of individual atomic adaptations.

Fig. 6. Adaptation lattice

Actually, the approach considers a finer granular-
ity of components in terms of fractions, which are es-
sentially the local instances of components in process
locations, introducing a combinatorial explosion in
the size of the lattices which has a negative impact in
the effort required in their analysis. To mitigate this
the authors propose a framework based on particu-
lar architectures and coordination protocols, where
some specialized modules drive the adaptation phase
through designated paths in the adaptation lattices.
This implicitly introduces a higher-level adaptation
since a system may vary the strategy of such mod-
ules according to various factors: the control data of
the system correspond to such strategies.

Another example of labelled transition system
variant used for modeling self-adaptive systems are the Synchronous Adaptive
Systems of MARS [1,76], where systems are modeled as sets of modules, each
having a set of configurations. At runtime only one configuration is active. Adap-
tation consists on changing the active configuration, selected according to the
configuration and environment status. Control data are thus those that deter-
mine the active configuration.

While the “programs-of-programs” spirit can raise scalability and complex-
ity issues, the layered structure of some of the above models can be exploited to

A White Box Perspective on Behavioural Adaptation 565

study adaptive systems compositionally. The authors of [86] propose a technique
to verify properties of adaptive systems in a modular way. Adaptive programs are
modeled with n-plex adaptive programs which are essentially sets of finite state
machines, some of which representing steady state programs [4] and the rest rep-
resenting adaptation transitions between those programs. The structure of an
n-plex adaptive program makes explicit the separation of functional concerns
(realized by steady state programs) and adaptation concerns (realized by adap-
tation transitions), which is exploited to reason about such systems in a modular
way. Clearly, the separation of concerns coincides with the spirit of CoDa. In
particular, control data here are the individual steady state programs.

This separation of concerns has its counterpart in the property specification
language used, Adapt-operator extended LTL (A-LTL) [85]. A-LTL extends LTL
with an operator that does not provide more expressive power but allows to
express properties of adaptive systems more concisely. The modular verification
phase exploits the separation of concerns and the assume/guarantee paradigm in
order to avoid the state explosion problem, thus providing a more scalable solu-
tion. This allows the authors to tackle e.g. transitional properties of adaptation
(graceful adaptation, hot-swapping adaptation, etc.) in an efficient manner.

Structuring the behavior of adaptive system is a major concern in [44]. The
authors identify four main modes of operation (called state space zones) in an
adaptive system: the normal behavior zone (the system operates as expected),
the undesired behavior zone (the system has violated some constraint and needs
to be adapted), the invalid behavior zone (the system has violated some con-
straint and cannot be adapted), and the adaptation behavior zone (the system
is adapting to re-enter the normal behavior zone). The work is motivated by the
necessity of shifting the focus to behavioral aspects of adaptation, as evidenced
in previous experiences of the authors that were mainly concerned with archi-
tectural aspects [81]. In this approach, hence, the control data are those used to
characterize the state space zones. The approach is validated with a case study
of a decentralized adaptive traffic control system using timed automata and a
timed extension of CTL. The authors distinguish two different adaptation capa-
bilities (from the black-box perspective): flexibility (ability to adapt to changing
environments, e.g., in order to improve performance) and robustness (ability to
recover from failures).

Some of the above approaches rely on logical reasoning mechanisms to prove
properties of adaptation. To this end, base steady programs are annotated with
the properties they ensure (cf. the above discussed adaptation lattices [11]). This
idea of specification-carrying programs is investigated in [65]. Suitable semanti-
cal domains aimed at capturing the essence of adaptation are identified. The be-
haviour of a system is formalized in terms of a category of specification-carrying
programs (also called contracts), i.e., triples made of a program, a specification
and a satisfaction relation among them; arrows between contracts are refinement
relations. Contracts are equipped with a functorial semantics, and their adap-
tive version is obtained by indexing the semantics with respect to a set of stages
of adaptation, yielding a coalgebraic presentation potentially useful for further

566 R. Bruni et al.

generalizations. An adaptation is a transformation of a specification-carrying-
program into another one, satisfying some properties. Therefore, the control
data includes the entire program being executed.

Different in spirit is our proposal in [20] where we studied the consequences
of making a particular choice of control data in Interface Automata [3], a foun-
dational model of component-based systems. For this purpose we introduced
Adaptable Transition Systems and their instantiation to Adaptable Interface
Automata (AIA), an essential model of adaptive systems inspired by our white-
box approach. The key feature of AIAs are control propositions, the formal
counterpart of control data. The choice of such propositions is arbitrary, but it
imposes a clear separation between ordinary behaviors and adaptive ones.

4.2 Rule-Based Models for Adaptation

Rule-based programming is an excellent example of a successful and widely
adopted declarative paradigm, thanks to the solid foundations offered by rule-
based theoretical frameworks like term and graph rewriting. As many other
programming paradigms, several rule-based approaches have been tailored or
directly applied to adaptive systems (e.g., graph transformation [35]). Typical
solutions include dividing the set of rules into those that correspond to ordinary
computations and those that implement adaptation mechanisms, or introducing
context-dependent conditions in the rule applications (which essentially corre-
sponds to the use of standard configuration variables). The control data are
identified by the above mentioned separation of rules in the first case, and they
correspond to the context-dependent conditions in the latter.

The situation is different when we consider rule-based approaches which enjoy
higher-order or reflection mechanisms. A good example is logical reflection, a
key feature of frameworks like rewriting logic [58]. At the ground level, a rewrite
theory R (e.g., a software module) lets us infer a computation step R � t → t′

from a term (e.g., a program state) t into t′. A universal theory U lets us infer the
computation at the “meta-level”, where theories and terms are meta-represented
as terms: the above computation step can be expressed in U as U � (R, t) →
(R, t′); moreover, the rewrite theoryR can be also rewritten by meta-level rewrite
rules, like in U � (R, t)→ (R′, t′). Since U itself is a rewrite theory, the reflection
mechanism can be iterated yielding what is called the tower of reflection, where
not only terms t, but also rewrite rules of the lower level can be accessed and
modified at runtime. This mechanism is efficiently supported by Maude [28] and
has given rise to many interesting meta-programming applications.

Fig. 7. RRD

In particular, rewriting logic’s reflection has
been exploited in [59] to formalize a model for
distributed object reflection, suitable for the
specification of adaptive systems. Such model,
called Reflective Russian Dolls (RRD), has a
structure of layered configurations of objects,
where each layer can control the execution of
objects in the lower layer by accessing and

A White Box Perspective on Behavioural Adaptation 567

executing their rules, possibly after modifying them, e.g., by injecting some spe-
cific adaptation logic in the wrapped components (cf. Fig. 7). The RRD model
falls within our conceptual framework by identifying as control data for each
layer the rules of its theory that are possibly modified by the upper layer. Note
that, while the tower of reflection relies on a white-box architecture, the Rus-
sian Dolls approach can deal equally well with black-box components, because
wrapped configurations can be managed by message passing. RRD has been
further exploited for modeling policy-based coordination [77], for the design of
PAGODA, a modular architecture for specifying autonomous systems [78], in
the composite actors used in [34], and, by ourselves, in the design and analysis
of self-assembly strategies for robot swarms [22].

4.3 Concurrency Models for Adaptation

Languages and models conceived in the area of concurrency theory are also good
candidates for the specification and analysis of self-adaptive systems. We inspect
some paradigmatic formalisms to see how the conceptual framework can help us
in the identification of the adaptation logic within each model.

Petri nets are the most popular model of concurrency, based on a set of repos-
itories (places), and a set of activities (transitions). The state of a Petri net is
called a marking: a distribution of resources, called tokens, among the places of
the net. A transition is an atomic action that consumes several tokens and pro-
duces fresh ones, possibly involving several repositories at once. In coloured Petri
nets, tokens represent structured data and transitions can manipulate them.

Fig. 8. Adaptive system’s Petri net

The approach in [84] emphasizes the use
of Petri nets to validate the development of
adaptive systems. It represents the local be-
havioural models with coloured Petri nets,
and the adaptation change from one local
model to another with an additional Petri
net transition labeled adapt (cf. Fig. 8).
Such adapt transitions describe how to
transform a state in the source Petri net into
a state in the target one, thus providing a
clean solution to the state transfer problem
(i.e., the problem to consistently transfer the
state of the system before and after the adap-
tation) common to these approaches. In this
context, a natural choice of control data
would be the Petri net that describes the
current base-level computation, which is replaced during an adaptation.

Petri nets are used in [66] to formalize multi-layer adaptation in large scale
applications spanning over heterogeneous organizations and technologies. Here
the multi-layered architecture is motivated by the presence of different languages
and technologies addressing their own concerns and views within the same ap-
plication in a coherent manner and multi-layered adaptation must ensure that

568 R. Bruni et al.

coherence between views is always maintained. For example, a three-layers archi-
tecture is typical of service-based applications: one layer for service specification
(e.g., WSDL); one for behavior description (e.g., BPEL); and one for the organi-
zational view that specifies the stakeholders involved in the business process.

Multi-layer adaptation is triggered by adaptation events that are raised by
human stakeholders or by layer-specific monitors that discover, e.g., message-
ordering mismatches (at the behavior level), or invocation mismatches (at the ser-
vice layer). Application mismatches are organized along tree-based taxonomies
that are put in correspondence with suitable adaptation templates. The main
idea is that adaptation techniques that can tackle one application mismatch m
can also be used to adapt mismatches that are “below” m in the taxonomy.
Cross-layer adaptation is achieved by linking templates at different application
layers: templates may trigger the executions of other templates both through
direct invocation or by raising other adaptation events. Adaptation templates,
the taxonomy navigation and the template-selection environment are modeled
as Petri nets (they support the search of the templates starting from the more
specific to the more general, w.r.t. the raised adaptation event). As the emphasis
is the specification of a generic adaptation model for pervasive applications, the
Petri net abstracts away from the execution of multi-layered applications and
thus the identification of control data is only possible for concrete instances.

Classical process algebras (CCS, CSP, ACP) are tailored to the modeling of
reactive systems and therefore their processes easily fall under the hat of the
reactive pattern of adaptation. Instead, characterizing the control data and the
adaptation logic is more difficult in this setting. The π-calculus, the join calculus
and other nominal calculi can send and receive channels names, realizing some
sort of reflexivity at the level of interaction: they transmit communication media.

An example of use of π-calculus for modeling autonomic systems is [80]. There,
adaptive systems are organized in two-levels, local and global. The local level is
formed by autonomic elements structured in the MAPE-K spirit as a managed
element and an autonomic manager, defined by π-calculus processes that commu-
nicate over designated channels. The effector process enacts adaptation requests
by sending messages to its managed element over the effector channel, which
acts as the control data (storing a message in the channel triggers adaptation)
of the local adaptive behavior. At the global level a centralized autonomic man-
ager monitors and controls the locally distributed autonomic managers. Again,
adaptation is realized by sending messages through suitable effector channels.

Fig. 9. A KLAIM node

Similar approaches have been explored
within process calculi that feature primitives
adequate to model autonomic systems, includ-
ing explicit locality aspects and code mobility.
A paradigmatic example is KLAIM [31], which
has been studied as a convenient language for
modeling self-adaptive systems in [37]. The au-
thors describe how to adopt in KLAIM three
paradigms for adaptation: two that focus on

A White Box Perspective on Behavioural Adaptation 569

the language-level, namely, context-oriented and aspect-oriented programming
(cf. Sections 5.1 and 5.2, respectively), and one on the architectural-level
(MAPE-K).

The main idea is to rely on process tuples, that is, tuples (the equivalent of mes-
sages in the tuple-space paradigm) that denote entire processes. Process tuples
are sent by manager components (locations in KLAIM) to managed components,
which can then install them via the eval primitive of KLAIM (cf. Fig. 9), i.e.,
adaptation is achieved by means of code mobility and code injection. The control
data in this case amounts to the set of active processes in each location.

Stemming from this approach, the Service Component Ensemble Language
(SCEL) has been proposed in [32] which realizes adaptation by combining differ-
ent paradigms, i.e., policy-based programming (discussed in Section 5.3), tuple-
space communication, and knowledge-based reasoning. In this case control data
are spread among the policy rules, the process tuples and the knowledge facts.

In [55] the authors present a lightweight approach to service adaptation based
on process algebraic techniques. As in [15], adaptation is achieved by the design-
time synthesis of service adaptors that act as mediators for the communication
between two services and allow to overcome signature and behaviour mismatches
between their contracts. Differently from [15], an adaptor process is deployed
that is itself adaptive, in the sense that its behaviour is initially distilled on
the basis of adaptation contracts and then the adaptor is progressively refined
at run-time exploiting the collected information about interaction failures. This
is useful when service behavior may evolve at runtime due to changes of the
environmental conditions in ways not foreseeable in the contract, e.g., depending
on the current load of its server. The approach is lightweight because it introduces
low overhead. Learning adaptors have been implemented and included in the
Integrated Toolbox for Automatic Composition and Adaptation (ITACA) [26].
The control data of the approach are the adaptors themselves.

We conclude this section by mentioning the approach in [17], where the con-
cept of adaptable process has been put forward to model dynamic process evo-
lution patterns in process algebras. Adaptable processes are assigned a location
and can be updated at runtime by executing an update prefix related to that
location. Roughly, if P is an adaptable process running at location a, written
a[P], and U is a process context, called update pattern, then the execution of the
update prefix ã{U} stops the execution of P within a (i.e., a[P] is removed) and
replaces it with U(P). Note that location a is not necessarily preserved by the
update, providing flexibility on the allowed update capabilities. For example, the
prefix ã{nil} would just remove a[P]; the prefix ã{a[Q]} would replace a[P] by
a[Q]; the prefix ã{b[·]} would move P from location a to the location b; and the
prefix ã{a[·|·]} would spawn an extra copy of P within a. The authors exploit the
formal model to study undecidability issues of two verification problems, called
bounded and eventual adaptation, i.e., that there is a bound to the number of
erroneous states that can be traversed and that whenever a state with errors is
entered, then a state without errors will be eventually reached, respectively. The
control data of [17] are the adaptable processes of the form a[P].

570 R. Bruni et al.

5 Programming Paradigms for Adaptation

As we observed, the nature of control data can vary considerably depending
both on the degree of adaptivity of the system and on the nature of the com-
putational formalisms used to implement it. Examples of control data include
configuration variables, rules and plans (in rule-based programming), code varia-
tions (in context-oriented programming), interactions (in connector-centered ap-
proaches), policies (in policy-driven languages), advices (in aspect-oriented lan-
guages), monads and effects (in functional languages), and even entire programs
(in models of computation exhibiting higher-order or reflective features). Indeed,
many programming languages that consider such forms of control data as first-
class citizens have been promoted as suitable for programming adaptive systems
(see the overviews of [36,74]). Just restricting to Java, technologies supporting
adaptation include Jolie [61], ContextJ [8], JavAdaptor [68] and Chameleon [9].
This section surveys a representative set of such programming paradigms and
explain their notion of adaptation in terms of CoDa. The approaches are orga-
nized according to three paradigms: context-oriented programming (Section 5.1),
aspect-oriented programming (Section 5.2), and policy-oriented programming
(Section 5.3).

5.1 Context-Oriented Programming for Adaptation

Context-oriented programing [40] (COP) has been designed as a convenient
paradigm for programming autonomic systems [73]. The main idea is to rely
on a pool of code variations chosen according to the program’s context, i.e., the
runtime environment under which the program is running. Under this paradigm
the natural choice of control data is the current set of active code variations.

Fig. 10. MAPE-K archi-
tecture in COP

Many languages have been extended to adopt this
paradigm. We mention among others Lisp, Python,
Ruby, Smalltalk, Scheme, Java, and Erlang. The no-
tion of context varies from approach to approach and
it might refer to any computationally accessible in-
formation. Without giving any concrete reference, a
typical example is the environmental data collected
from sensors. In many cases the universe of all possible
contexts is discretised in order to have a manageable,
abstract set of fixed contexts. This is achieved, for in-
stance by means of functions mapping the environmen-
tal data into the set of fixed contexts. Code fragments
like methods or functions can then be specialized for
each possible context. Such chunks of behaviours as-
sociated with contexts are called variations.

COP can be used to program autonomic systems by de/activating variations
in reaction to context changes. The key mechanism is the dynamic dispatching of
variations. When a piece of code is executed, a dispatcher examines the current
context of the execution in order to decide which variation to invoke. Contexts

A White Box Perspective on Behavioural Adaptation 571

thus act as some sort of possibly nested scopes. Indeed, often a stack is used to
store the currently active contexts, and a variation can propagate the invocation
to the variation of the enclosing context. To achieve adaptation along the lines
of the MAPE-K framework, the manager controls the context stack and the
managed component accesses it in a read-only manner. The points of the code
in which the managed component queries the context stack are called activation
hooks (adaptation hooks in [51] and in [37], see Sections 5.2 and 5.3, respectively).

Given our informal description, COP falls into CoDa assuming the context
stack as control data. The only difference between the approach proposed in [73]
(cf. Fig. 10) and our ideas is that the former suggests the context stack to reside
within the manager (this may not be clear in the figure, and we refer to the
example in [73]), while for us the control stack resides in the interface of the
managed component, in order to identify such component as an adaptable one.

5.2 Aspect-Oriented Programming for Adaptation

Aspect-oriented programming [47] and, in particular, dynamic aspect-oriented
programming [67] have been advocated as a convenient mechanism for devel-
oping self-adaptive software by many authors since the original proposal of [38].
The main idea is that the separation-of-concerns philosophy of aspects facilitates
the addition of autonomic computing capabilities. Indeed, while early works [38]
put the stress on monitoring as an aspect, subsequent works have generalized
this idea to other capabilities. Adaptation can be realized through aspect weav-
ing, i.e., the activation and deactivation of advices (the code to be executed at
join points), possibly enacted by an autonomic manager. Advices, hence, can be
understood as the control data of the aspect-based adaptation paradigm. Dy-
namic aspect oriented programming languages, equipped with dynamic aspect
weaving mechanisms, thus facilitate the realization of dynamic adaptation.

5.3 Policy-Oriented Programming for Adaptation

As we have seen in Section 4.2, rule-based approaches have been advocated as
a convenient mechanism for realizing self-adaptation. Another example of this
tradition are policies. Generally speaking, policies are in fact rules that determine
the behavior of an entity under specific conditions. Policies have been seen as
mechanisms enjoying the flexibility required by self-* systems, and tackling the
problem at the right (high-) level of abstraction. Quite naturally, adaptation can
be realized by changing policies according to the program’s current status. The
natural choice of control data is then the current set of active policies.

A prominent example is the Policy-based Self-Adaptive Model (PobSAM) [46],
a framework for modeling and analyzing self-adaptive systems which relies on
policies as a high-level mechanism to realize adaptive behaviors. Building upon
the authors experience in the PAGODA framework [78] (cf. Section 4.2), Pob-
SAM combines the actor model of coordination [2] with process algebra machin-
ery and shares the white-box spirit of separating application and adaptation
concerns. The overall architecture of the system is composed by managed actors,

572 R. Bruni et al.

which implement the functional behavior, and autonomic manager (meta-)actors,
which control managed actors by enforcing policies. Thus, the adaptation logic is
encoded in policies whose responsibility relies on well-identified components (i.e.,
the managers), and their configuration is determined by sets of policies which
can vary dynamically. The currently active set of policies represents the control
data. Adaptation is indeed the switch between active policies. Policies are rules
that determine under which condition a specified subject must or must not do
a certain action. PobSAM distinguishes between governing policies, which con-
trol the managed actors in their stable (cf. steady, normal) state and adaptation
policies, which drive the actors in the transient states (cf. adaptation phases).

The authors of [51] propose a framework for dynamic adaptation based on
the combination of adaptation hooks, which specify where to apply adaptation,
and policies called adaptation rules, which specify when and how to apply it.
An adaptable application exposes part of its states and the set of activities that
it performs in an interface called application interface. Adaptation is enacted
by managers that exploit the adaptation rules to introduce changes in the ap-
plication through its interface. In particular, the rules define adaptations that
may change the activities by instantiating new code or changing their configu-
ration parameters and may change part of the application state. Thus, in this
approach both the set of activities and the exposed application state are to be
considered as control data in the basic adaptation layer. On top of this layer,
dynamic adaptation can occur, which consists on modifying the adaptation rules
at runtime. This makes adaptation managers adaptable as well. At this layer,
hence, the control data are the adaptation rules, which determine the behavior
of the adaptation managers.

The approach is instantiated in the Java Orchestration Language Interpreter
Engine (Jolie) [61], a framework for rapid prototyping of service oriented ap-
plications. The approach is, however, language agnostic, as the authors identify
the basic ingredients needed to implement their approach in other settings and a
generic architecture to structure it. The former consists of mechanisms needed to
implement the adaptation interface and its manipulation based on code mobility.
At the architectural level applications are structured as clients which rely on an
activity manager to run their activities. Adaptation is governed by adaptation
servers, which are coordinated globally by an adaptation manager service.

6 Related Work

We have already discussed some of our sources of inspiration in the previous
sections and spelled out how their underlying notion of adaptation can be recast
in terms of our approach. This section discusses two kinds of related works. Sec-
tion 6.1 is devoted to works that propose a definition of adaptation. Section 6.2
discusses works that provide a classification of approaches and techniques, guided
by a set of dimensions or facets relevant to adaptive systems. Clearly, the refer-
ences considered here represent only a fragment of the vast literature on adap-
tive systems: we refer the interested reader to the bibliography of the surveys
discussed in this section for completing the picture.

A White Box Perspective on Behavioural Adaptation 573

6.1 On the Essence of Adaptation

This sections focuses on other approaches that aim to provide conceptual notions
of adaptation. Several proposals follow a black-box perspective that, as discussed
in the Introduction, focuses on the external observation of self-adaptive systems.

An interesting contribution is [52], which analyses the notion of adaptation
in a general sense and identifies the main concepts around adaptation drawn
from different disciplines, including evolution theory, biology, psychology, busi-
ness, control theory and cybernetics. Furthermore it provides guidelines on the
essential features of adaptive systems in order to support their design and un-
derstanding.

The author claims that “in general, adaptation is a process about changing
something, so that it would be more suitable or fit for some purpose that it
would have not been otherwise”. The term adaptability denotes the capacity of
enacting adaptation, and adaptivity the degree or extent to which adaptation is
enacted. This leads to the identification of four issues that typically play a role
in adaptation: context, goals, time-frames, and granularity that are discussed
in Section 6.2. The author concludes suggesting that “due to the relativity of
adaptation it does not really matter whether a system is adaptive or not (they
all are, in some way or another), but with respect to what it is adaptive”.

A formal black-box definition is proposed in [18]. If a system reacts differently
to the same input stream at different times, then the system is considered to
be adaptive, because ordinary systems should exhibit a deterministic behavior.
Thus, a non-deterministic reaction is interpreted as an evidence of the fact that
the system adapted its behaviour after an interaction with the environment.
Despite its appeal and crispness, we believe that this and similar definitions
of adaptation are based on too strong assumptions, restricting considerably its
range of applicability. For example, a system where a change of behaviour is
triggered by an interaction with the user would not be classified as adaptive.

As we argued in the Introduction, black-box approaches are useful for evaluat-
ing the system robustness under some conditions. However, they are of little use
for design purposes where modularization and reuse are critical aspects. There-
fore, we believe that a formal definition of adaptation should not be based on
the observable behaviour of systems only. At the same time, we do believe that
research efforts are needed to conciliate black-box and white-box perspectives.
Ideally, the internal mechanisms and external manifestations of adaptive behav-
ior should be coherent, so that, for instance, a black-box analysis can validate
that the degree of adaptability is strongly dependent on the adaptation mecha-
nisms.

A different perspective on adaptation, inspired by the seminal work of IBM on
autonomic computing, has been adopted by many authors, e.g., [72]. The starting
point is the observation that modern software can be seen as an open loop. Indeed,
a software system is inevitably subject to continuous modifications, reparations
and maintenance operations which require human intervention. Self-adaptation is
seen as the solution to such openness by closing the loop with feedback from the
software itself and its context of operation. In this view self-adaptation is seen

574 R. Bruni et al.

as a complex feature built upon self-awareness and other self-* mechanisms.
Control loops are seen as a fundamental process to achieve adaptive behaviors.

The kind of adaptation discussed so far is concerned essentially with individ-
ual components. However it may also happen that a complex system made of
non-adaptive components exhibits a collective behavior which is considered to
be adaptive (see, e.g., the discussion in [52]). Such emergent adaptation, typical
of massively parallel and distributed systems such as swarms, results from the
components’ interactions. Often, emergent adaptation relies on decentralized co-
ordination mechanisms (e.g., based on the spatial computing paradigm [79,10]).
Interesting in this regard can be to shift the focus to Singerian forms of adapta-
tion [71,14], where the subject of adaptation is the environment, as opposed to
the Darwinian one we have focused on, where it is the system that adapts.

A conceptual framework for emergent adaptation would require to shift from
a local notion of control data to a global one, where the control data of the
individual components are treated as a whole, possibly requiring mechanisms to
amalgamate them for the manager, and to project them back to the components.

6.2 The Facets of Adaptation

The literature on adaptive systems contains several interesting surveys and tax-
onomies based on the identification of the main facets of adaptation. The concept
of control data provides one such facet that has been used in this paper to clas-
sify many proposals as discussed in Sections 3–5 and summarized in Fig. 1. In
this section we relate control data with other facets proposed in the literature.
In most cases these are orthogonal and provide complementary classification cri-
teria. In a few cases they are closely related with control data, thus providing a
more concrete perspective on the corresponding approaches.

The survey on self-adaptive software of [72] is one of the most comprehensive
studies on the topic, including also approaches to adaptation from the fields of
artificial intelligence, control theory and decision theory. It presents a taxonomy
of adaptation concerns, surveys a wide set of representative approaches from
many different areas, and identifies some key research challenges. The discus-
sion is driven by the so-called six honest men issues in adaptation: (1) Why
is adaptation required? Is the purpose of adaptation to meet some robustness
criteria, to improve the system’s performance or to satisfy some other goal? (2)
When should adaptation be enacted? Should adaptation be applied reactively
or proactively? (3) Where is the need to do an adaptation manifested? That is,
which artifacts (sensors, variables, etc.) indicate that it is necessary to perform
an adaptation? (4) What parts of the system should be adapted? That is, which
artifacts (variables, components, connectors, interfaces, etc.) have to be modi-
fied in order to adapt? (5) Who should enact the adaptation? Which entity (e.g.,
human controller, autonomic manager) is in charge of each adaptation? (6) How
should adaptation be applied? That is, which is the plan that establishes the
order in which to apply the necessary adaptation actions?

A White Box Perspective on Behavioural Adaptation 575

Our conceptual framework fits well with this approach and is mainly devoted
to the identification of the where, which facilitates finding the right characteriza-
tion for the remaining honest men of the adaptation mechanism. In fact, in our
view the where includes control data, since their manipulation forces a system to
adapt. The taxonomy may distinguish between weak adaptation (e.g., modifying
parameters) and strong adaptation (e.g., replacing entire components): the gran-
ularity of control data provides a finer spectrum between these two extremes.

The authors of [56] identify three technologies that enable the development
of adaptive systems: component-based design, separation of concerns, and com-
putational reflection. We remark that our aim is devoted to provide a common
understanding of adaptation rather than promoting particular mechanisms. They
argue that there are two main approaches to adaptation: parameter and composi-
tional adaptation. In the former, control data can be identified in those program
variables that affect the system behavior, and adaptation coincides with the mod-
ification of those variables. In the latter, control data can be identified in the
system architecture, i.e., in the system components and interconnection, and
adaptation coincides with architectural reconfiguration, from replacing whole
components to modifying only parts of them. The authors pay attention to com-
positional adaptation and propose a taxonomy that focuses on three questions:
the when, how, and where to compose. While our aim is centered around the
conceptual forms of control data, the authors focus on concrete technological
mechanisms and do not consider foundational models such as those in Section 4.

The authors of FORMS (cf. the discussion on [6,81] in Section 3) provide in [5]
a classification of modeling facets for self-adaptive systems. The focus is on the
underlying conceptual models rather than on the concrete technologies used to re-
alize them. As a result, four main groups of facets are identified: those regarding
the goals of adaptation, the changes that trigger it, the mechanisms that realize
it, and its effects. Goal dimensions include flexibility, duration, and dependency
of the system objectives. Change dimensions regard e.g. the source, the frequency,
and the level of anticipation of the adaptation triggers. The mechanism-related
dimensions range from the type to the level of autonomy, passing through scope,
duration, and timeliness. Last, the dimensions concerning the effects of adap-
tation include criticality, predictability, and resilience. The proposed classes for
each facet seem however orthogonal with respect to the choice of control data.

The authors exploit such classes to identify the research challenges of adapta-
tion. They e.g. stress the need of mechanisms to conciliate conflicting goals of par-
ticipants in open systems; of decentralized mechanisms for coordinating adapta-
tion in distributed systems; and of verification, validation, and prediction mecha-
nisms to ensure that self-adaptive systems behave correctly and predictably.

The survey [16] provides an overview of those approaches that support self-
adaptation based on architectural reconfiguration. The authors consider that an
architecture is self-managed if it can perform architectural changes at runtime
by initiating, selecting, and assessing them by itself, without the assistance of an
external entity. Contrary to other surveys on architectural reconfiguration (e.g.,
[29,60]) the focus is on formal models such as graphs, process algebras and logic.

576 R. Bruni et al.

The considered approaches are evaluated in terms of their support for basic re-
configurations such as component or connector addition/removal and composite
reconfiguration operations such as sequentialization, iteration and choices. With
respect to our proposal, they clearly identify the software achitectures themselves
as control data (cf. also the discussion in Section 3.2).

7 Conclusion

We presented CoDa, a white-box conceptual framework for adaptation that pro-
motes a neat separation of the adaptation logic from the application logic through
a clear identification of control data. To validate CoDa we described a represen-
tative set of approaches to (self-)adaptation ranging from architectural solutions
(Section 3), to computational models (Section 4), and to programming languages
and paradigms (Section 5). For each of them we highlighted the main distinguish-
ing features and discussed the way they fit inCoDa. As a byproduct, our work pro-
vides an original perspective from which to survey Computer Science approaches
to adaptive systems. We also discussed (Section 6) other surveys and taxonomies
conceived with the aim to establish a common ground for fruitful research debates
by clarifying and identifying the key features of adaptive systems.

The discussion of this paper helped us to identify many different forms of
control data that can be found in the literature. Our position is that the best form
of control data does not exist. However, we strongly believe that the choice of
control data should adhere to the following three principles (cf. [56]): separation
of concerns, component-based design and computational reflection.

Regarding the first two principles, we believe that the choice of control data
should neatly separate the application logic from the adaptation logic, and should
be clearly identified and encapsulated in a specific component of a suitable
adaptation loop, in order to guarantee an understandable, modular design. For
this purpose, sound design principles should be developed in order to ensure
correctness-by-design, and guidelines for the development of adaptive systems
conforming to well-understood patterns.

As for the third principle, we believe that higher-order forms of control data
are to be preferred if computationally affordable, since they make it easy to
carry the life-cycle of reliable adaptive systems to runtime, by providing runtime
models that can be used to monitor, predict and modify the systems.

In Fig. 11 we recap how the (macro) classes of control data identified in
Fig. 1 and discussed in Sections 3–5 (i.e., the rows of the table in Fig. 11) have
been exploited for adaptation along three pillars of Computer Science (i.e., the
columns of the table Fig. 11). Broadly speaking, the presence of blank cells in
the table suggests us two main interesting and maybe surprising facts, which are
concerned with: (i) the use of reflection in programming languages for adaptation;
and (ii) the abstraction from operational aspects in architectural approaches.

While reflection offers a natural mechanism to implement adaptation, our
analysis shows that it is more common to allow only a controlled form of reflec-
tion in languages designed for programming adaptive systems, as witnessed by
the fact that the class “entire program” has no direct representative in the pillar

A White Box Perspective on Behavioural Adaptation 577

Architectures Models Languages

adaptation strategy 4.1 5.2 5.3

architecture 3.1 3.2 4.1 4.3 5.3

entire program 4.1 4.2 4.3

operation mode 4.1 4.2 4.3 5.1 5.3 4.3

Fig. 11. Control data classes per pillars

“Languages”. Our understanding is that reflection as-it-is does not offer a conve-
nient abstraction to programmers: too powerful and too risky (i.e., error-prone).

Regarding the pillar “Architectures”, it seems that the only class of control data
exploited for adaptation is “architecture” itself (e.g., components and their connec-
tions), whereas operational aspects such as those related to the how and why are
disregarded. While one can argue that both classes “entire program” and “opera-
tion mode” can be represented at the architecture level (e.g., the notion of com-
ponent replacement can be instantiated to each class), we think that the same
does not apply to the class “adaptation strategy”. This remark was implicit in [16],
where a lack in meta-levels for architectural formalisms was noted. To fill the gap,
defining an architectural referencemodel of adaptation that has adaptation strate-
gies as control data seems a topic worthy of further studies.

References

1. Adler, R., Schaefer, I., Schuele, T., Vecchié, E.: From model-based design to for-
mal verification of adaptive embedded systems. In: Butler, M., Hinchey, M.G.,
Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp. 76–95. Springer,
Heidelberg (2007)

2. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press (1986)

3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001. ACM
SIGSOFT Software Engineering Notes, vol. 26(5), pp. 109–120. ACM (2001)

4. Allen, R.B., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, pp. 21–37.
Springer, Heidelberg (1998)

5. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: Cheng, et al. (eds.) [27], pp. 27–47

6. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Reflecting on self-adaptive
software systems. In: SEAMS 2009, pp. 38–47. IEEE Computer Society (2009)

7. Andrade, L.F., Fiadeiro, J.L.: An architectural approach to auto-adaptive systems.
In: ICDCSW 2002, pp. 439–444. IEEE Computer Society (2002)

8. Appeltauer, M., Hirschfeld, R., Haupt, M., Masuhara, H.: ContextJ: Context-
oriented programming with Java. Journal of the Japan Society for Software Science
and Technology on Computer Software 28(1), 272–292 (2011)

9. Autili, M., Benedetto, P.D., Inverardi, P.: A programming model for adaptable
java applications. In: Krall, A., Mössenböck, H. (eds.) PPPJ 2010, pp. 119–128.
ACM (2010)

10. Beal, J., Cleveland, J., Usbeck, K.: Self-stabilizing robot team formation with proto:
Ieee self-adaptive and self-organizing systems 2012 demo entry. In: SASO 2012, pp.
233–234. IEEE Computer Society (2012)

578 R. Bruni et al.

11. Biyani, K.N., Kulkarni, S.S.: Assurance of dynamic adaptation in distributed sys-
tems. Journal of Parallel and Distributed Computing 68(8), 1097–1112 (2008)

12. Boella, G., Dastani, M., Omicini, A., van der Torre, L.W., Cerna, I., Linden, I.
(eds.): CoOrg 2006 & MTCoord 2006. ENTCS, vol. 181. Elsevier (2007)

13. Bosch, J.: Superimposition: a component adaptation technique. Information & Soft-
ware Technology 41(5), 257–273 (1999)

14. Bouchachia, A., Nedjah, N.: Introduction to the special section on self-adaptive
systems: Models and algorithms. ACM Transactions on Autonomous and Adaptive
Systems 7(1), 13:1–13:4 (2012)

15. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
Journal of Systems and Software 74(1), 45–54 (2005)

16. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: Garlan, D.,
Kramer, J., Wolf, A.L. (eds.) WOSS 2004, pp. 28–33. ACM (2004)

17. Bravetti, M., Giusto, C.D., Pérez, J.A., Zavattaro, G.: Adaptable processes. Logical
Methods in Computer Science 8(4), 13:1–13:71 (2012)

18. Broy, M., Leuxner, C., Sitou, W., Spanfelner, B., Winter, S.: Formalizing the notion
of adaptive system behavior. In: Shin, S.Y., Ossowski, S. (eds.) SAC 2009, pp. 1029–
1033. ACM (2009)

19. Brun, Y., Serugendo, G.D.M., Gacek, C., Giese, H., Kienle, H.M., Litoiu, M.,
Müller, H.A., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feed-
back loops. In: Cheng, et al. (eds.) [27], pp. 48–70

20. Bruni, R., Corradini, A., Gadducci, F., Lafuente, A.L., Vandin, A.: Adaptable
transition systems. In: Mart́ı-Oliet, Palomino (eds.) [54], pp. 95–110

21. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A con-
ceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012.
LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg (2012)

22. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with Maude. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 118–138. Springer, Heidelberg (2012)

23. Bucchiarone, A., Cappiello, C., Di Nitto, E., Kazhamiakin, R., Mazza, V., Pis-
tore, M.: Design for adaptation of service-based applications: Main issues and re-
quirements. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009.
LNCS, vol. 6275, pp. 467–476. Springer, Heidelberg (2010)

24. Bucchiarone, A., Pistore, M., Raik, H., Kazhamiakin, R.: Adaptation of service-
based business processes by context-aware replanning. In: Lin, K.J., Huemer, C.,
Blake, M.B., Benatallah, B. (eds.) SOCA 2011, pp. 1–8. IEEE Computer Society
(2011)

25. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-
based collaboration patterns for autonomic service ensembles. In: Smari, W.W.,
Fox, G. (eds.) CTS 2011, pp. 508–515. IEEE Computer Society (2011)

26. Cámara, J., Mart́ın, J.A., Salaün, G., Cubo, J., Ouederni, M., Canal, C., Pimentel,
E.: Itaca: An integrated toolbox for the automatic composition and adaptation of
web services. In: ICSE 2009, pp. 627–630. IEEE Computer Society (2009)

27. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Software En-
gineering for Self-Adaptive Systems. LNCS, vol. 5525. Springer, Heidelberg (2009)

28. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

29. Clements, P.: A survey of architecture description languages. In: IWSSD 1996,
pp. 16–25. IEEE Computer Society (1996)

A White Box Perspective on Behavioural Adaptation 579

30. Cordy, M., Classen, A., Heymans, P., Legay, A., Schobbens, P.-Y.: Model checking
adaptive software with featured transition systems. In: Cámara, J., de Lemos, R.,
Ghezzi, C., Lopes, A. (eds.) Assurances for Self-Adaptive Systems. LNCS, vol. 7740,
pp. 1–29. Springer, Heidelberg (2013)

31. De Nicola, R., Ferrari, G.L., Pugliese, R.: Klaim: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering 24(5),
315–330 (1998)

32. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: The SCEL language. ACM Transactions on Autonomous
and Adaptive Systems 9(2), 7:1–7:29 (2014)

33. Dowling, J., Schäfer, T., Cahill, V., Haraszti, P., Redmond, B.: Using reflection to
support dynamic adaptation of system software: A case study driven evaluation. In:
Cazzola, W., Houmb, S.H., Tisato, F. (eds.) Reflection and Software Engineering.
LNCS, vol. 1826, pp. 169–188. Springer, Heidelberg (2000)

34. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Statistical model-
checking for composite actor systems. In: Mart́ı-Oliet, Palomino (eds.) [54],
pp. 143–160

35. Ehrig, H., Ermel, C., Runge, O., Bucchiarone, A., Pelliccione, P.: Formal analysis
and verification of self-healing systems. In: Rosenblum, D.S., Taentzer, G. (eds.)
FASE 2010. LNCS, vol. 6013, pp. 139–153. Springer, Heidelberg (2010)

36. Ghezzi,C.,Pradella,M., Salvaneschi,G.:An evaluation of the adaptation capabilities
in programming languages. In: Giese, H., Cheng, B.H.C. (eds.) SEAMS 2011, pp. 50–
59. ACM (2011)

37. Gjondrekaj, E., Loreti, M., Pugliese, R., Tiezzi, F.: Modeling adaptation with a
tuple-based coordination language. In: Ossowski, S., Lecca, P. (eds.) SAC 2012, pp.
1522–1527. ACM (2012)

38. Greenwood, P., Blair, L.: Using dynamic aspect-oriented programming to imple-
ment an autonomic system. In: DAW 2004, pp. 76–88. RIACS (2004)

39. Harvey, I., Paolo, E.A.D., Wood, R., Quinn, M., Tuci, E.: Evolutionary robotics:
A new scientific tool for studying cognition. Artificial Life 11(1-2), 79–98 (2005)

40. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology 7(3), 125–151 (2008)

41. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G., Danvy,
O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Sys-
tems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

42. Horn, P.: Autonomic computing: IBM’s perspective on the state of information
technology. IBM (2001)

43. IBM Corporation: An architectural blueprint for autonomic computing. IBM
(2005)

44. Iftikhar, M.U., Weyns, D.: A case study on formal verification of self-adaptive
behaviors in a decentralized system. In: Kokash, Ravara (eds.) [48], pp. 45–62

45. Karsai, G., Sztipanovits, J.: A model-based approach to self-adaptive software.
Intelligent Systems and their Applications 14(3), 46–53 (1999)

46. Khakpour, N., Jalili, S., Talcott, C., Sirjani, M., Mousavi, M.: Formal modeling
of evolving self-adaptive systems. Science of Computer Programming 78(1), 3–26
(2012)

47. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin,
J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

48. Kokash, N., Ravara, A. (eds.): FOCLASA 2012. EPTCS, vol. 91. EPTCS (2012)

580 R. Bruni et al.

49. Kramer, J., Magee, J.: A rigorous architectural approach to adaptive software
engineering. Journal of Computer Science and Technology 24(2), 183–188 (2009)

50. Laddaga, R.: Self-adaptive software: BAA 98-12 proposer information pamphlet.
DARPA (1997)

51. Lanese, I., Bucchiarone, A., Montesi, F.: A framework for rule-based dynamic adap-
tation. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010. LNCS,
vol. 6084, pp. 284–300. Springer, Heidelberg (2010)

52. Lints, T.: The essentials in defining adaptation. IEEE Aerospace and Electronic
Systems Magazine 1(27), 37–41 (2012)

53. Maraninchi, F., Rémond, Y.: Mode-automata: About modes and states for reactive
systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 185–199. Springer,
Heidelberg (1998)

54. Mart́ı-Oliet, N., Palomino, M. (eds.): WADT 2012. LNCS, vol. 7841. Springer,
Heidelberg (2013)

55. Mart́ın, J.A., Brogi, A., Pimentel, E.: Learning from failures: A lightweight ap-
proach to run-time behavioural adaptation. In: Arbab, F., Ölveczky, P.C. (eds.)
FACS 2011. LNCS, vol. 7253, pp. 259–277. Springer, Heidelberg (2012)

56. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive
software. IEEE Computer 37(7), 56–64 (2004)

57. Merelli, E., Paoletti, N., Tesei, L.: A multi-level model for self-adaptive systems.
In: Kokash, Ravara (eds.) [48], pp. 112–126

58. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

59. Meseguer, J., Talcott, C.: Semantic models for distributed object reflection. In:
Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer, Heidelberg
(2002)

60. Mikic-Rakic, M., Medvidovic, N.: A classification of disconnected operation tech-
niques. In: SEAA 2006, pp. 144–151. IEEE Computer Society (2006)

61. Montesi, F., Guidi, C., Lucchi, R., Zavattaro, G.: JOLIE: a Java orchestration
language interpreter engine. In: Boella, et al. (eds.) [12], pp. 19–33

62. Mühl, G., Werner, M., Jaeger, M., Herrmann, K., Parzyjegla, H.: On the defini-
tions of self-managing and self-organizing systems. In: KiVS 2007. IEEE Computer
Society (2007)

63. O’Grady, R., Groß, R., Christensen, A.L., Dorigo, M.: Self-assembly strategies in
a group of autonomous mobile robots. Autonomous Robots 28(4), 439–455 (2010)

64. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-
adaptive software. Intelligent Systems and their Applications 14(3), 54–62 (1999)

65. Pavlovic, D.: Towards semantics of self-adaptive software. In: Robertson, P., Shrobe,
H.E., Laddaga, R. (eds.) IWSAS 2000. LNCS, vol. 1936, pp. 50–64. Springer,
Heidelberg (2001)

66. Popescu, R., Staikopoulos, A., Brogi, A., Liu, P., Clarke, S.: A formalized,
taxonomy-driven approach to cross-layer application adaptation. ACM Transac-
tions on Autonomous and Adaptive Systems 7(1), 7:1–7:30 (2012)

67. Popovici, A., Alonso, G., Gross, T.R.: Just-in-time aspects: efficient dynamic weav-
ing for Java. In: AOSD 2003, pp. 100–109. ACM (2003)

68. Pukall, M., Kästner, C., Cazzola, W., Götz, S., Grebhahn, A., Schröter, R., Saake,
G.: Javadaptor - flexible runtime updates of Java applications. Software, Practice
and Experience 43(2), 153–185 (2013)

69. Raibulet, C.: Facets of adaptivity. In: Morrison, R., Balasubramaniam, D., Falkner,
K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 342–345. Springer, Heidelberg (2008)

A White Box Perspective on Behavioural Adaptation 581

70. van Renesse, R., Birman, K.P., Hayden, M., Vaysburd, A., Karr, D.A.: Building
adaptive systems using ensemble. Software, Practice and Experience 28(9), 963–979
(1998)

71. Sagasti, F.: A conceptual and taxonomic framework for the analysis of adaptive
behavior. General Systems XV, 151–160 (1970)

72. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems 4(2), 14:1–14:42
(2009)

73. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: A pro-
gramming paradigm for autonomic systems. Tech. Rep. abs/1105.0069, CoRR (2011)

74. Salvaneschi, G., Ghezzi, C., Pradella, M.: Towards language-level support for
self-adaptive software. ACM Transactions on Autonomous and Adaptive Systems
(to appear, 2014)

75. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. Ph.D. thesis, University of Edinburgh (1992)

76. Schaefer, I., Poetzsch-Heffter, A.: Using abstraction in modular verification of syn-
chronous adaptive systems. In: Autexier, S., Merz, S., van der Torre, L.W.N., Wil-
helm, R., Wolper, P. (eds.) Trustworthy Software. OASICS, vol. 3. IBFI, Schloss
Dagstuhl, Germany (2006)

77. Talcott, C.L.: Coordination models based on a formal model of distributed object
reflection. In: Brim, L., Linden, I. (eds.) MTCoord 2005. ENTCS, vol. 150(1),
pp. 143–157. Elsevier (2006)

78. Talcott, C.L.: Policy-based coordination in PAGODA: A case study. In: Boella, et
al. (eds.) [12], pp. 97–112

79. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of
pervasive services through chemical-inspired tuple spaces. ACM Transactions on
Autonomous and Adaptive Systems 6(2), 14:1–14:24 (2011)

80. Wang, H., Lv, H., Feng, G.: A self-reflection model for autonomic computing sys-
tems based on π-calculus. In: Xiang, Y., Lopez, J., Wang, H., Zhou, W. (eds.) NSS
2009, pp. 310–315. IEEE Computer Society (2009)

81. Weyns, D., Malek, S., Andersson, J.: FORMS: Unifying reference model for for-
mal specification of distributed self-adaptive systems. ACM Transactions on Au-
tonomous and Adaptive Systems 7(1), 8:1–8:61 (2012)

82. Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall (1976)
83. Zadeh, L.A.: On the definition of adaptivity. Proceedings of the IEEE 3(51),

469–470 (1963)
84. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-

ware. In: Osterweil, L.J., Rombach, H.D., Soffa, M.L. (eds.) ICSE 2006, pp. 371–380.
ACM (2006)

85. Zhang, J., Cheng, B.H.C.: Using temporal logic to specify adaptive program se-
mantics. Journal of Systems and Software 79(10), 1361–1369 (2006)

86. Zhang, J., Goldsby, H., Cheng, B.H.C.: Modular verification of dynamically adap-
tive systems. In: Sullivan, K.J., Moreira, A., Schwanninger, C., Gray, J. (eds.)
AOSD 2009, pp. 161–172. ACM (2009)

87. Zhao, Y., Ma, D., Li, J., Li, Z.: Model checking of adaptive programs with mode-
extended linear temporal logic. In: EASe 2011, pp. 40–48. IEEE Computer Society
(2011)

Rule-Based Modeling and Static Analysis

of Self-adaptive Systems
by Graph Transformation

Antonio Bucchiarone1, Hartmut Ehrig2,
Claudia Ermel2, Patrizio Pelliccione3, and Olga Runge2

1 Fondazione Bruno Kessler, Trento, Italy
bucchiarone@fbk.eu

2 Technische Universität Berlin, Germany
firstname.lastname@tu-berlin.de

3 Chalmers University of Technology and University of Gothenburg, Sweden
patrizio.pelliccione@gu.se

Abstract. Software systems nowadays require continuous operation de-
spite changes both in user needs and in their operational environments.
Self-adaptive systems are typically instrumented with tools to
autonomously perform adaptation to these changes while maintaining
some desired properties. In this paper we model and analyze self-adaptive
systems by means of typed, attributed graph grammars. The interplay
of different grammars representing the application and the adaptation
logic is realized by an adaption manager. Within this formal framework
we define consistency and operational properties that are maintained de-
spite adaptations and we give static conditions for their verification. The
overall approach is supported by the AGG tool for modeling, simulating,
and analyzing graph transformation systems. A case study modeling a
business process that adapts to changing environment conditions is used
to demonstrate and validate the formal framework.

1 Introduction

Self-adaptive systems are systems that autonomously decide (e.g., without or
with minimal interference) how to adapt at runtime according to the inter-
nal reconfiguration and optimization requirements or to environment (context)
changes and threats [1]. Thus, a self-adaptive system should be able to monitor
itself and its context, to detect context changes that require system adaptations,
to decide how to react and act to execute such decisions [2].

On their common basis of self-awareness, self-monitoring and context-aware-
ness, self-adaptive systems are further classified by their characteristics, known
as self-* properties [3,4]. The initial four self-* properties of self-adaptive systems
are self-configuration, self-healing1, self-optimization, and self-protection [3]. Self-
configuration comprises components installation and configuration based on some

1 Following [5] we consider self-healing and self-repair as synonyms.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 582–601, 2015.
© Springer International Publishing Switzerland 2015

Rule-Based Modeling and Static Analysis of Self-adaptive Systems 583

high-level policies. Self-healing deals with automatic discovery of system failures,
and with techniques to recover from them. Self-optimization monitors the system
status and adjusts parameters to increase performance when possible. Finally,
self-protection aims to detect external threats and to mitigate their effects [6].

In previous work [7,8], the authors modeled and verified dynamic software ar-
chitectures and self-healing systems by means of graph transformation systems,
and proposed a formal approach to prove consistency and operational proper-
ties. In this paper, we extend the work in [8] by formally modeling, simulating
and validating self-adaptive systems based on the framework of algebraic graph
transformation. Our modeling and validation framework is supposed to be used
off-line to evaluate and evolve a self-adaptive system: the framework helps the
developer to decide which adaptation solutions used and logged in the past have
desired properties and should become part of the final system model.

Self-adaptive systems are modeled in our approach as a set of typed graph
grammars where three kinds of system rules are distinguished: normal, context,
and adaptation rules. Normal rules define the normal and ideal behavior of the
system. Context rules define context flags (also called adaptation hooks) that
trigger adaptation rules. Different sets of adaptation rules define the adaptation
logic. The choice of the ”right” set of adaptation rules is performed manually by
an adaptation manager, while the adaptation itself is executed automatically.

Based on the formal model, we specify and analyse operational properties of
self-adaptive systems. Such properties concern overall conflicts and dependencies
of normal system behavior and adaptations. Hence, the analysis is not tailored to
specific desired properties concerning e.g., security aspects in self-protective sys-
tems or performance analysis of self-optimization. Operational properties define
(i) when a system in an adaptation state can be adapted in a system-enhancing
way to be in a normal state again, (ii) if the nature of the adaptation is cor-
rective, i.e., the system state before adaptation can be recovered completely.
Operational properties can be checked statically for the given system rules in an
automatic way using the AGG2 modeling and analysis tool for typed attributed
graph transformation systems. The theory is presented by use of a running exam-
ple, a car logistics scenario in a seaport terminal. Please note that not all formal
background definitions concerning the theory of graph transformation can be
reviewed in this paper due to lack of space. We refer the interested reader to
[9,10].

The paper is organized as follows. Sec. 2 presents our running example. Sec. 3
introduces the framework for modeling and analyzing self-adaptive systems.
Sec. 4 models the car logistics scenario by using the algebraic graph transfor-
mation framework. Sec. 5 describes how to formally verify desirable consistency
and operational properties of self-adaptive systems. In Sec. 6, we compare the
approach proposed in this paper with related work, and we conclude the paper
in Sec. 7. For full proofs of the technical theorems and all details of our case
study, the reader is referred to our technical report [10].

2 AGG (Attributed Graph Grammars): http://www.tfs.tu-berlin.de/agg

http://www.tfs.tu-berlin.de/agg

584 A. Bucchiarone et al.

2 Running Example

In this section we describe the Car Logistics System (CLS) scenario that will be
used throughout the paper to explain the approach. At the automobile terminal
of the Bremerhaven sea port [11], nearly 2 million of new vehicles are handled
each year; the business goal is to deliver them from the manufacturer to the
dealer. Several intermediate business activities are involved, to unload and store
cars from a ship, apply treatments to them to meet the customer’s requirements
and to distribute them to the retailers. The CLS must implement the business
process depicted in Fig. 1 by invoking and orchestrating the set of available ser-
vices in a proper way. Each business activity of the process is executed invoking
a set of available services (i.e., Car Check Service, Unloading Service, etc.) that can
be atomic or composite (i.e., Store Car Service). Additional services, i.e., services
that are not directly attached to the business process, are defined and they may
be used during the application execution. For example, the Car Repair Service may
be invoked during the application execution according to a context in which the
vehicle under consideration is damaged and needs to be repaired.

Ship
Unloading Storage Technical

Treatment Consignment Truck
Loading

Wait For
Treatment
Service

Pull To
Treatment
Service

Drop Ticket
Service

Car Repair
Service

Move To
Terminal
Service

Unloading
Service

Equipment
Service

Car Check
Service

Cleaning
Service

Painting
Service

Treatment
Report Service

Move To
Treatment
Service

Store Car
Service

Move To
Storage
Service

Move To
Consignment
Service

Loading
Service

Other Available Services

Request
Ticket
Service

Move To
Storage
Service

Move To
Place
Service

Fig. 1. Business Process and Services of the Car Logistics Scenario

The CLS executes the business process for each vehicle under the following
assumptions: (i) each business activity is executed in the defined order; (ii) the
context in which the business process is executed can evolve in time.

Yet, there may occur situations in which the business process cannot proceed
according to the defined CLS execution. The main reasons for that are: (i) some
specific business process variants have not been specified at design time (e.g., due
to some error) and (ii) it is not possible to predict a priori which variants should
be followed (due to lack of information on the execution contexts). Assume, for
instance, the following case that might happen at run-time:

– Severe Vehicle Damage: A vehicle has been unloaded from the ship and has
requested a ticket (using the Request Ticket Service) to park in the storage
area. It receives a ticket and starts to move to the storage (using the Move

To Storage Service). While moving, the vehicle is severely damaged.

Rule-Based Modeling and Static Analysis of Self-adaptive Systems 585

In this case, the business process should not proceed as planned. A system
adaptation is required. In the next section we present a framework for rule-based
dynamic adaptation to model and analyze systems that exhibit the aforemen-
tioned characteristics and problems.

3 Framework for Rule-Based Dynamic Adaptation

The framework manages the dynamic adaptation by specifying when and how
adaptation is triggered, how the choice among the possible adaptations is per-
formed, and, finally, how the nature of adaptations can be characterized.

Requirements: To be able to execute system behaviour also in case of unexpected
situations, an adaptation framework needs to address the following problems:

● Context-Awareness: To relate the application execution to the context, the
application must be context-aware, i.e., during the execution information on the
underlying environment can be obtained (e.g., relevant information on entities
involved, status of the business process execution, human activities, etc.). To
be adaptable, an application should provide adaptation hooks, i.e., context in-
formation on parts of the application’s structure and behavior. The adaptation
hooks should be used to select the most suitable adaptation strategy.

● Separation of Concerns: The adaptation logic should be developed separately
from the application logic, which can be created and/or changed after the appli-
cation has been deployed without modifying the running application. At runtime,
the context (adaptation hooks) should be checked to control whether any adap-
tations are required; if this is the case, the system should be adapted in the best
suitable way.

Components: Our adaptation framework (AF) is composed of three fundamen-
tal components as shown by Fig. 2: the Context Monitor describes properties
on the application operational environment and how they evolve (by context
rules and adaptation hooks), the Application Logic describes how the applica-
tion evolves (by application rules). The Adaptation Manager specifies how a
system is adapted in case of adaptation needs (using adaptation rules).

According to the scenario in Sec. 2, the considered self-adaptive system is the
Car Logistics application. Its application logic describes what are the different
activities that can be executed (i.e., Ship Unloading, Storage, Technical Treatment,
Consignment, and Truck Loading), the set of available services that can be used to
realize such activities (i.e., Store Car Service, Move To Treatment Service, Cleaning

Service, etc.) and the assumed behavior of the overall application. The behavior
describes the order of the activities a car must execute. For each activity, a
number of services must be used (in arbitrary order).

586 A. Bucchiarone et al.

Fig. 2. AF Components

The Context Monitor models the addition of
adaptation hooks to the system to trigger the adap-
tation process. If one or more adaptation hooks are
found, an adaptation problem is reported to the
Adaptation Manager. In response, the Adaptation
Manager (manually) selects a suitable set of adap-
tation rules and applies them, thereby doing its
best to “recover” the system, so that the blocked
activity can be executed and the main process can
continue. The recovered system state is returned
as adaptation solution to the application logic.

Formalization: The formal model of a self-adaptive
system is a set of graph grammars typed over the
same type graph. A main system grammar con-
sists of system rules modeling normal behavior
(the Application Logic) and context rules modeling
changes that require adaptation by generating adaptation hooks. Context Mon-
itoring is modeled by context constraints in the main system grammar that are
violated in the presence of adaptation hooks and trigger the (semi-automatic)
selection of a corresponding adaptation grammar (the Adaptation Logic). An
adaptation grammar contains adaptation rules modeling reactions to the detec-
tion of context changes. The interplay of the different grammars representing
the adaptation logic is realized manually by the Adaptation Manager.

Ordering Adaptations: Different adaptations may be applicable during the sys-
tem execution. The choice of which adaptation to apply may influence the final
result. In our framework, adaptations are selected manually by the adaptation
manager.

Nature of Adaptations: We consider two classes of adaptations that can be ap-
plied and treated in different ways [12,13], in particular:

● Corrective Adaptations take care of adapting the application when the cur-
rent implementation instance cannot proceed with the execution in the current
context (i.e., a car is damaged). The main objective is to recover the application
and hence focuses on the self-healing property. The adaptation starts from the
actual context state and performs the necessary changes to bring the applica-
tion and its context to the expected state where it can be executed again. In our
framework, an adaptation is corrective if each adaptation state can be repaired,
i.e., the normal state before the adaptation became necessary is reestablished.
● Enhancing Adaptations expand existing services of the application; this may
for instance change the non-functional properties of the service, or provide new
services with the same or augmented functionalities. In our framework, an adap-
tation is enhancing if each adaptation state can become a normal state, possibly
by adding new functionalities and services. The adaptation solution is not nec-
essarily identic with the normal state before the adaptation became necessary.

Rule-Based Modeling and Static Analysis of Self-adaptive Systems 587

4 Modeling SA Systems by Graph Transformation

In this section, we show how to model self-adaptive (SA-) systems in the for-
mal framework of algebraic graph transformation (AGT) [9]. Specifically, typed
graphs, introduced in Def. 1, are used to model the static part of the system.
Typed graphs are enriched with constraints that SA-systems have to satisfy
even during adaptation. Moreover, we model the behavior and the adaptation
of SA-systems by means of graph grammars, introduced in Def. 2.

Definition 1 (Typed Graphs). A graph G = (N,E, s, t) consists of a set of
nodes N , a set of edges E and functions s, t ∶ E → N assigning to each edge
e ∈ E the source s(e) ∈ N and target t(e) ∈ N . A graph morphism f ∶ G→ G′ is
given by a pair of functions f = (fN ∶ N → N ′, fE ∶ E → E′) which is compatible
with source and target functions, i.e., fN ○ s = s′ ○ fE, and fN ○ t = t′ ○ fE. A
type graph TG is a graph where nodes and edges are considered as node and
edge types, respectively. A TG-typed graph G = (G, t) consists of a graph G
and a graph morphism t ∶ G → TG, called typing morphism of G. Morphisms
f ∶ G→ G′ of typed graphs are graph morphisms f ∶ G→ G′ which are compatible
with the typing morphisms t ∶ G→ TG and t′ ∶ G′ → TG, i.e., t′ ○ f = t.

For simplicity, we abbreviate G = (G, t) by G in the following. Moreover, the
approach is also valid for attributed and typed attributed graphs where nodes and
edges can have data type attributes [9], as used in our running example. Note
that we also use the extended concept of type graphs with inheritance and mul-
tiplicities, stemming from object-oriented (meta) modeling. Typed attributed
graphs with inheritance enable an elegant, formal description of hierarchy [9,14].
Formally, a type graph with inheritance consists of a type graph according to
Def. 1 and an inheritance graph. The type graph consists of all nodes and the
arrows with filled arrowheads. The inheritance graph consists of all nodes and
the arrows with empty arrowheads. Abstract nodes are marked by {}-brackets.
In addition, our type graph may contain multiplicity constraints on edge types
that constrain how many objects may be connected by an instance of a cer-
tain edge type. A node type may have a multiplicity constraint, restricting the
number of instances of this node type [9].

Example 1 (CLS Type Graph and Initial State). Fig. 3 shows the type graph with
inheritance for the Car Logistics System, which contains types used for modeling
the “normal” aspects of the car logistics scenario, as well as the context types
used for adaptation, e.g., the adaptation hooks (context flags) that trigger the
adaptation rules.

In the integrated type graph, we have the following types for normal behavior:

– Start, End and BusinessActivity are the main business activities (the colored
nodes in Fig. 1). They all inherit from (are subtypes of) the abstract type
Activity, hence, their instances may be linked by next edges. The source and
target multiplicities of the next edge type are “0..1”, meaning that each
business activity node is the source [target] of at most one next edge. Node

588 A. Bucchiarone et al.

Fig. 3. Type Graph of the Car Logistics Case Study

types Start, End have “1” as multiplicities, denoting that exactly one instance
of each of these types must occur in a valid typed graph; type BusinessActivity

has multiplicity “*”, meaning that we allow arbitrary many instances.
– Service is a service station belonging (linked) to a BusinessActivity. A service

may be a composite service. Then it contains other services which are ordered
(linked by next arcs). Containment of sub-services in a composite service is
modeled by c edges from the sub-services to its composite service.

– Vehicle is a car running through the business process. At the beginning it will
be linked (by a v link) to the Start activity and is ready to enter a service. Note
that the v link in the type graph links the Vehicle type to the abstract Activity
type, meaning that vehicle instances may be linked to instances of arbitrary
subtypes of Activity. A todo link between a vehicle and each service of each
BusinessActivity is generated when a Vehicle starts the business process. The
successful processing of a service leads to the deletion of the corresponding
todo link. When all services belonging to the business process have been
processed (all todo links are removed), the Vehicle arrives at the End activity
as a completed product ready to be delivered to a retailer.

For adaptation handling we have the following types:

– Context is the super-type for all possible context signals, including adaptation
hooks. These hooks are used for triggering the adaptation grammars. We
specify two main context types AdaptV and AdaptS.

– AdaptV with refinement Damage denotes that a car is damaged and needs to
be repaired (SlightlyDamaged) or disposed (SeverelyDamaged).

– AdaptS is the super-type for all possible Service context signals. An edge of
type extraSrvBy connects a Vehicle to an adaptation service.

– AdService is an adaptation service not directly attached to a BusinessActiv-

ity. Such additional services are used during the business process execution
according to an adaptation scenario.

Rule-Based Modeling and Static Analysis of Self-adaptive Systems 589

Fig. 4. Initial State Graph of the Car Logistics Case Study

Fig. 4 shows the initial state graph of a scenario with two vehicles.

In order to model consistency and adaptation constraints of a self-adaptive
system, we use (TG-typed) graph constraints [10]. Graph constraints denote
graph patterns (invariants) that are required or forbidden in each reachable
state. A graph constraint is given by an injective graph morphism c ∶ P → C
(where P is called premise and C conclusion). Constraint c ∶ P → C is satisfied
by a graph G, written G ⊧ c, if the existence of an injective graph morphism
p ∶ P → G implies the existence of an injective graph morphism q ∶ C → G,
such that q ○ c = p. Graph constraints can be negated or combined by logical
connectors (e.g., ¬c). If P is empty, only the existence of C is required.

Example 2 (Graph constraints for the Car Logistics system). The set Cconsist =

{noFalseServiceConnect , sameBAforComp ,noEqualContextFlags} contains some
consistency constraints, i.e. structural system requirements that cannot be ex-
pressed directly by the type graph and have to be satisfied throughout all states
of the car logistics model. For example, the constraint noFalseService-Connect ,
shown in Fig. 5, means that there must be no next or containment loops, a ve-
hicle must not be served (todo edge) by a service which is a container of other
services, and a subservice must not be a composite service.

The constraint sameBAforComp (not depicted) means that all subservices
belonging to the same composite service are linked to the same BusinessActivity
and to the same composite service node. Constraint noEqualContextFlags (not
depicted) requires that the same element (vehicle or service) is not marked by
more than one adaptation hook of the same type.

Apart from consistency constraints, we have the set Cadapt = {Damage} of
adaptation constraints (not depicted), containing the adaptation hooks that are
required for certain adaptations to occur, i.e., a node of type SlightlyDamaged or
SeverelyDamaged connected to a vehicle.

590 A. Bucchiarone et al.

Fig. 5. Graph constraint noFalseServiceConnect

We model the behavior of the main scenario and the adaptations in different
graph grammars. Whenever an adaptation becomes necessary, the respective
adaptation rules are loaded manually into the main case study grammar.

Definition 2 (Typed Graph Grammar). A typed graph grammar GG =
(TG,Ginit,Rules) consists of a type graph TG, a TG-typed initial graph Ginit

and a set of graph transformation rules (Rules). Each rule r ∈ Rules is given
by a span (L ← I → R), where L, I and R are TG-typed graphs, called left-hand
side, interface and right-hand side, respectively. Moreover, I → L, I → R are
injective typed graph morphisms where in most cases I can be considered as the
intersection of L and R. A rule r ∈ Rules is applied to a TG-typed graph G by

a match morphism m ∶ L → G leading to a direct transformation G
r,m
	⇒ H

via (r,m) in two steps: first, we delete the match m(L) without m(I) from G
to obtain a context graph D, and then, we glue together D with R along I,
i.e., we construct a union of D and R with the intersection graph I, leading to a
TG-typed graph H. This gluing construction is represented in the diagram below,

where square (1) (resp. (2)) corresponds to gluing
G of L and D along I (resp. to gluing H of R and
D along I). Note that square (1) in step 1 only
exists if the match m leads to a well-defined TG-

N

q
∣

���

����
�

L

(1)m ��

nac�� I

(2)

l�� r ��

��

R

m∗��
G D�� �� H

typed graph D, leaving no dangling edges3. Moreover, rules are allowed to have
one or more Negative Application Conditions (NACs). A NAC is a negative
graph constraint nac ∶ L→N . A rule r with a NAC can only be applied at match
m ∶ L→ G if this match satisfies the negative constraint, i.e., there is no injective
morphism q ∶ N → G with q ○ nac = m. This means intuitively that r cannot be

applied to G if graph N occurs in G. A transformation G0
∗

	⇒ Gn via Rules
in GG consists of n ≥ 0 direct transformations G0 ⇒ G1 ⇒ ... ⇒ Gn via rules

r ∈ Rules. For n ≥ 1 we write G0
+

	⇒ Gn.

For transformations of typed attributed graphs with inheritance, abstract
nodes and edges may be used in the rules. By matching, they are instantiated

3 Formally, (1) and (2) are pushouts in the category GraphsTG of TG-typed graphs.

Rule-Based Modeling and Static Analysis of Self-adaptive Systems 591

to concrete nodes and edges in the model whose types must be subtypes of the
abstract types used in the rules.

Example 3 (Normal behavior rules for the Car Logistics system). Fig. 6 shows
as example the normal behavior rule ServiceToDo4. It models the first step for
each vehicle, i.e. entering the business process by creating todo edges between
the vehicle and each service not yet marked. Three NACs ensure that a todo

edge is created only if there is not already a todo edge between the vehicle
and the service (NAC ServiceNotDone), that the vehicle is not marked by an
adaptation hook (NAC NoAdaptV) and that it is not linked to a composite service
(NAC NoSubService). Note that the NAC containing the adaptation hook realizes
a priority of adaptation rules over normal rules: normal behavior is blocked
at places where adaptation hooks have been placed. Other normal behavior
rules move Vehicles to the next BusinessActivity (rules EnterBP, NextBA), process
services of the current BusinessActivity by removing todo edges (rules DoService,

DoSubService), and finish the business process (rule FinishBP).

Fig. 6. The normal behavior rule ServiceToDo

In addition to the normal behavior rules, the main grammar contains context
rules that are applicable at any time simulate unforeseen system changes by
creating adaptation hooks.

Example 4 (Context rules for the Car Logistics system). In the CLS, context
rules mark vehicles or services with an adaptation hook, i.e., they create a node
of one of the context node types AdaptV or AdaptS, respectively. For example, if
a car is slightly damaged, rule SlightlyDamage marks it by an adaptation hook of
type SlightlyDamaged as shown in Fig. 7. Analogously, rule SeverelyDamaged marks
a severely damaged car.

The adaptation hooks trigger the adaptation logic, modeled by adaptation
grammars.

4 The rule interface I is not shown by our tool. Equal numbers at graph objects
denote mappings in rule and NAC morphisms. An object that is numbered by the
same number in L and in R does also occur in I and is hence preserved by the rule.

592 A. Bucchiarone et al.

Fig. 7. The context rule SlightlyDamage

Example 5 (Adaptation rules for the Car Logistics system). We may have dif-
ferent adaptation grammars that are suitable for the same adaptation hook. For
instance, if a damaged car is in the midst of a composite service, first a rollback
adaptation has to be performed and then a repair adaptation (see Fig. 8). In a
rollback-adaptation, the already finished sub-services are “rolled back” by apply-
ing rule RollBack as long as possible before the vehicle is moved to the treatment
area to be repaired. When repair is needed, two additional services are evoked,
i.e., the Vehicle is linked to them, one after the other. Rule TakePullToTreat-
mentService in Fig. 8 uses an extra service to pull up the damaged Vehicle to the
treatment area.

Fig. 8. The rollback-adaptation rule RollBack and the repair-adaptation rule TakePull-
ToTreatmentService

Rule TakeRepairService (not depicted) allocates an extra repair service for the
slightly damaged Vehicle. After repair, the Vehicle should continue its normal
behavior. The composite service it left before (and which has rolled back by ap-
plying the rollback-adaptation) may now start again from the beginning. Note
that the Vehicle does not forget which services have been done already and which
are still to do. Severely damaged cars are picked up by a disposing service apply-
ing rule TakeDisposingService. Before the vehicle can be disposed of, its todo links
and all flags of kind SlightlyDamaged or SeverelyDamaged are removed by applying
rules RemoveToDo and RemoveDamageFlag. Finally, the vehicle is disposed of by
rule DisposeVehicle.

Rule-Based Modeling and Static Analysis of Self-adaptive Systems 593

An SA-system is defined in Def. 3 by a typed graph grammar where system
rules can be partitioned into normal, context and adaptation rules. Moreover, we
have two kinds of constraints, namely consistency and adaptation constraints.

Definition 3 (Self-Adaptive system in AGT-framework). A self-adaptive
system (SA-system) is given by SAS = (GG, Csys), where:

– GG = (TG, Ginit, Rsys) is a typed graph grammar with type graph TG, a
TG-typed initial graph Ginit, a set of TG-typed rules Rsys (system rules),
defined by Rsys = Rnorm∪Rcont∪Radapt, where Rnorm (normal rules), Rcont

(context rules) and Radapt (adaptation rules) are pairwise disjoint.
– Csys is a set of TG-typed graph constraints, called system constraints, with

Csys = Cconsist ∪Cadapt, where Cconsist (called consistency constraints) and
Cadapt (called adaptation constraints) are pairwise disjoint.

We distinguish reachable, adaptation and normal states, where reachable
states are partitioned into normal and adaptation states.

– Reach(SAS) = {G ∣ Ginit
∗

	⇒ G via Rsys}, i.e., all states reachable via
system rules,

– Adapt(SAS) = {G ∣ G ∈ Reach(SAS) ∧ ∃C ∈ Cadapt ∶ G ⊧ C}, the adaptation
states, i.e., all reachable states satisfying some adaptation constraints,

– Norm(SAS) = {G ∣ G ∈ Reach(SAS) ∧ ∀C ∈ Cadapt ∶ G ⊭ C}, the normal
states, i.e., reachable states not satisfying any adaptation constraints.

For SA-systems, we require that

1. each pair of a context and a normal rule (p, r) ∈ Rcont × Rnorm is sequen-
tially independent [9] (i.e., if there exists a sequence where a context rule is
applied first, and a normal rule is applied afterwards (to a different part of
the system), then the two rule applications may be swapped),

2. SAS is system consistent: all reachable states are consistent, i.e., they fulfill
the consistency constraints: ∀G ∈ Reach(SAS),∀C ∈ Cconsist ∶ G ⊧ C,

3. SAS is normal-state consistent, i.e., normal rules must not create adaptation
hooks: the initial state is normal and all normal rules preserve and reflect

normal states: Ginit ∈ Norm(SAS) and ∀G0
r
	⇒ G1 via r ∈ Rnorm [G0 ∈

Norm(SAS) ⇔G1 ∈ Norm(SAS)]
4. The set of adaptation rules Radapt is confluent and terminating, i.e., adap-

tation results are unique and do not depend on the order or location of the
adaptation rule applications.

The requirements of SA-systems can be checked in a static way by inspecting
the corresponding rules. This means e.g. that we do not need to check the con-
sistency of all states reachable via system rules; instead, we only check Ginit for
consistency and then check the system rules whether they preserve consistent
states. In particular, we can check statically that different adaptations do not in-
terfere with each other, i.e., they are confluent and terminating (see requirement
4). This property is interesting, if more than one set of adaptation rules have to
be used to adapt a given state, which is a highly relevant practical problem.

594 A. Bucchiarone et al.

Example 6 (Car Logistics System as SA-system). We define the Car Logistics
SA-system CLS = (GG,Csys) by the type graph TG in Fig. 3, the initial state
Ginit in Fig. 4, and the sets of rules and constraints (previously explained in
Examples 2 to 5):

– Rnorm = { ServiceToDo, EnterBP, DoService, DoSubService, NextBA, FinishBP},
– Rcont = { SlightlyDamage, SeverelyDamage},
– Radapt = R

1
adapt ∪R

2
adapt ∪R

3
adapt with

– R1
adapt = { Rollback},

– R2
adapt = {TakePullToTreatmentService, TakeRepairService, RepairVehicle}

– R3
adapt = {TakePullToTreatmentService, TakeRepairService, TakeDisposingService,

RemoveTodo, RemoveDamageFlag, DisposeVehicle}
– Cconsist={noFalseServiceConnect , sameBAforComp ,noEqualContextFlags},
– Cadapt = {Damage}

It is shown in [10] that the requirements for SA-systems in Def. 3 are satisfied
for the Car Logistics System.

5 Static Analysis of Self-adaptive Systems

In this section, we define desirable operational properties of SA-systems and pro-
pose static analysis techniques to verify them. With the enhancing-adaptation
property below, we require that a system in an adaptation state is eventually
adapted, i.e., transformed again to a normal state, by adding new functional-
ities to the system. Corrective self-adaptation means that the system will be
repaired leading to the normal state before the adaptation hook was created. In
the following, we write G⇒! G′ to denote a transformation where the rules are
applied as long as possible; we write G⇒∗ G′ to denote a transformation where
the rules are applied arbitrarily often, and the transformation G⇒+ G′ consists
of at least one rule application.

Definition 4 (Self-Adaptation Classes). An SA-System SAS is called

1. enhancing, if each adaptation state is adapted to become a normal state,
possibly by adding or by removing functionalities and services:
∀Ginit ⇒

∗ G via (Rnorm ∪ Rcont) with G ∈ Adapt(SAS) ∃ G ⇒! G′ via
Radapt with G′ ∈ Norm(SAS).

2. corrective, if each adaptation state is adapted in a corrective way (repaired):
∀Ginit ⇒

∗ G via (q1 . . . qn) ∈ (Rnorm ∪ Rcont)
∗ with G ∈ Adapt(SAS) ∃

G⇒! G′ via Radapt with G′ ∈ Norm(SAS) and ∃ Ginit ⇒
∗ G′ via (r1 . . . rm) ∈

R∗norm, where (r1 . . . rm) is the subsequence of all normal rules in (q1 . . . qn).

Remark 1. - By definition, each corrective SA system is also enhancing, but not
vice versa. In corrective SA systems, state G′ obtained after adaptation is not
only normal but can be generated by all normal rules in the given mixed sequence
(q1 . . . qn) of normal and context rules, as if no context rule had been applied.

Rule-Based Modeling and Static Analysis of Self-adaptive Systems 595

In Def. 5, we define adaptation properties, which imply that the SA-system
is corrective/enhancing under suitable conditions, stated in Thm. 1. We want
to ensure that for each context rule that adds an adaptation hook, there are
suitable adaptation rules leading again to a state without this adaptation hook,
even if they are not applied immediately after the hook was set but later when
the context monitor reveals that the adaptation must be invoked. This means
that other normal and context rules may have been applied before the occurrence
of the adaptation hook is monitored.

Definition 5 (Self-Adaptation (SA) Properties). Let SAS be an SA-system
and G0 ∈ Reach(SAS). SAS has the

1. direct adaptation property, if the adaptation can be performed directly, i.e.,

∀G0
p
	⇒ G1 via p ∈ Rcont ∃ G1 ⇒

∗ G0 via Radapt;
2. normal adaptation property, if the adaptation can be performed up to normal

transformations leading to a possibly different normal state that is reachable

from the state before the adaptation hook was set, i.e., ∀G0
p
	⇒ G1 via

p ∈ Rcont ∃ G1 ⇒
+ G2 via Radapt s.t. ∃ G0 ⇒

∗ G2 via Rnorm;
3. rollback adaptation property, if the adaptation can be performed up to nor-

mal transformations leading to a possibly different normal state from which

the state before the adaptation hook was set is reachable, i.e., ∀G0
p
	⇒ G1

via p ∈ Rcont ∃ G1 ⇒
+ G2 via Radapt s.t. ∃ G2 ⇒

∗ G0 via Rnorm.

Theorem 1 (Self-Adaptation Classes and their SA Properties)
An SA-System SAS is
I. corrective, if we have property 1 below
II. enhancing, if we have a) property 2, or b) properties 3 and 4 below.

1. SAS has the direct adaptation property.
2. SAS has the normal adaptation property.
3. SAS has the rollback adaptation property,
4. each pair (r, q) ∈ Rnorm × Radapt is sequentially independent.

Proof Sketch. (For a complete proof, see [10].)
I. Given Ginit ⇒

∗ G via (q1, . . . qn) ∈ (Rnorm ∪Rcont)
∗ with G ∈ Adapt(SAS) we

have n ≥ 1, because Ginit ∈ Norm(SAS) since SAS is normal-state consistent.
By sequential independence we can switch the order of (q1, . . . qn), s.t. first all
normal rules ri ∈ Rnorm and then all context rules pi ∈ Rcont are applied. As
example let us consider Ginit ⇒

+ G via (r1, p1, r2, p2, r3) with ri ∈ Rnorm and
pj ∈ Rcont. Then sequential independence leads by the Local Church-Rosser
theorem to equivalent sequences in subdiagram (1), (2), (3) respectively.

Ginit
r1 �� G1

r2 ��
��

���
���

��
p1 �� G2

r2 ��

(1)

G3

r3 ���
��

��
�

��
��

��
p2 �� G4

r3 ��

(2)

G

R+adapt

		G′2

p1

������
������

r3 ���
���

��

���
���

(3) G′4

p2

�������
�����

R+adapt

��G′3 = G
′

p1

������
������

596 A. Bucchiarone et al.

By the direct adaptation property 1, we have G′4 ⇒
∗ G′3 and G ⇒∗ G′4

via R∗adapt. With G′ = G′3 we have G ⇒+ G′ via R∗adapt and Ginit ⇒
∗ G′ via

(r1, r2, r3) ∈ R
∗

norm where (r1, r2, r3) is the subsequence (r1, p1, r2, p2, r3) which
consists of only normal rules, and normal-state consistency implies Ginit,G

′
∈

Norm(SAS). Note that in the adaptation sequence G⇒+ G′ the (possible) adap-
tations due to the adaptation hooks caused by p1, p2 ∈ Rcont are performed in
opposite order. In general, the sequence (q1, . . . qn) (n ≥ 1) contains at least one
rule in Rcont, because otherwise G /∈ Adapt(SAS) (due to normal-state consis-
tency), which is a contradiction to the assumption G ∈ Adapt(SAS). This implies
that we have an adaptation sequence G⇒+ G′ via Radapt. Since adaptation rules
are confluent and terminating, all possible adaptation transformations G⇒+ G
lead to the same result G ≅ G′. Hence SAS is corrective.

II. The second part of the proof works analogously, by arguing that rules can be
switched due to independence, leading to the required normal rule sequences in
an enhancing SAS . ◻

Remark 2. Note that our sufficient conditions for Thm. 1 are also necessary in
case that the context rules are sequentially independent. It is advisable to model
the set of context rules in this way because usually the need for adaptation may
arise in any possible states from independent sources of disturbances issued by
the environment. In our example, the context rules are all independent, i.e. if
they are applicable in a sequence, their order can be swapped.

In Thm. 2 we give static conditions for the direct, normal and rollback adap-
tation properties. In part 1 of Thm. 2 we require that for each context rule p
the inverse rule p−1 = (R ← I → L) is SAS-equivalent to the concurrent rule q∗

constructed from an adaptation rule sequence (q1, . . . , qn) ∈ Radapt. Two rules
r1, r2 are SAS -equivalent (written r1 ≃ r2) if they model the same possible sys-

tem changes, i.e., (∃G
r1
	⇒ G′) ⇐⇒ (∃G

r2
	⇒ G′) with G ∈ Reach(SAS). A

concurrent rule summarizes a given rule sequence in one equivalent rule [9]. A
concurrent rule p ∗E q is constructed from two rules p and q that may be se-
quentially dependent via an overlapping graph E by modeling all deletions and
creations of elements that are modeled either in p or in q.

In Thm. 2.1, we require that each context rule p has a corresponding adap-
tation sequence (q1 ∗ . . . ∗ qn) ∈ Radapt, which is not necessarily inverse to p.
In Thm. 2.2, it is sufficient to require for the normal adaptation property that
we can construct a concurrent rule p ∗E0 (q1, . . . , qn)E which is SAS -equivalent
to a concurrent rule r constructed from a normal rule sequence (r1, . . . , rm) ∈
Rnorm. Analogously, for the rollback adaptation property we require that p ∗E0

(q1, . . . , qn)E is SAS -equivalent to an inverse concurrent normal rule r−1 .

Theorem 2 (Verification of Self-Adaptation Properties)
Let SAS be an SA-system and G a reachable system state. SAS has

1. the direct adaptation property, if for each context rule p there is an adap-
tation rule sequence that directly reverses the effect of the context rule i.e.,

Rule-Based Modeling and Static Analysis of Self-adaptive Systems 597

∀p ∈ Rcont∃q = (q1 ∗ . . . ∗ qn)E via E = (E1, . . . ,En−1) and n ≥ 1, qi ∈ Radapt

with q ≃ p−1.
2. the normal (resp. rollback) adaptation property, if for each context rule p

there is an adaptation rule sequence that reverses the effect of the context
rule up to normal rule applications, i.e., ∀p ∈ Rcont we have

(a) ∃q = (q1 ∗ . . . ∗ qn)E via E = (E1, . . . ,En−1) and n ≥ 1, qi ∈ Radapt, and q
is applicable after p has been applied,

(b) ∀ overlappings E0 of p and q leading to a concurrent rule p ∗E0 q ∃r =
(r1 ∗ . . .∗rm)E′ with m ≥ 1 via E′ = (E′1, . . . ,E

′

m−1) with ri ∈ Rnorm such
that p ∗E0 q ≃ r (resp. p ∗E0 q ≃ r

−1 in case of rollback).

Proof. See [10].

In Ex. 7, we verify the SA properties for one variant of our Car Logistics
System CLS. More examples are elaborated in [10], including a counterexam-
ple, where the self-adaptation properties do not hold. In Ex. 7, we have the
normal rules Rnorm = {ServiceToDo, EnterBP, DoService, DoSubService, NextBA,
FinishBP} and the context rule Rcont = {SlightlyDamage} of CLS. Hence, we
have sequential independence of context rules and normal rules, and, since CLS
is normal-state consistent, also CLSRepair is normal-state consistent.

Example 7 (SA-System CLSRepair is corrective).
CLSRepair contains one context rule Rcont = {SlightlyDamage} (Fig. 7), and
the set of adaptation rules Radapt = R2

adapt = {TakePullToTreatmentService,
TakeRepairService, RepairVehicle}. Moreover, Cadapt = {Damage} is the set of
adaptation constraints.

According to Thm. 1, we have to show that CLSRepair has the direct adap-
tation property. According to Thm. 2, CLSRepair has the direct adaptation
property if for p = SlightlyDamage we have (q1, . . . , qn) ∈ Radapt with q = (q1 ∗
. . . ∗ qn)E ≃ p

−1, where q is the concurrent rule of the adaptation rule sequence
(q1, . . . , qn). This means, we have to find an adaptation rule sequence that re-
sults in a concurrent rule q which is SAS -equivalent to the inverse context rule
p = SlightlyDamage (i.e., it removes the SlightlyDamaged flag).

We consider the adaptation rule sequence s = {TakePullToTreatmentService,
TakeRepairService, RepairVehicle} together with suitable dependencies (overlap-
ping) of the right-hand side of qi and the left-hand side of qi+1, and construct
a concurrent rule from this sequence in an iterated way5. For our sequence, we
get the concurrent adaptation rule q shown in Fig. 9, which is SAS -equivalent to
the inverse context rule p = SlightlyDamage due to the following argumentation:
The additional elements in rule q wrt. rule p (the PullToTreatment and Repair

nodes) are preserved by rule q, and are always there in all possible states, since
no system rule ever adds or deletes PullToTreatment and Repair nodes.

Hence, CLSRepair has the direct adaptation property, and due to Thm. 1, we
can conclude that CLSRepair is corrective.

5 In AGG, concurrent rules can be computed from rule sequences automatically.

598 A. Bucchiarone et al.

Fig. 9. Concurrent Adaptation Rule q constructed from sequence s in CLSRepair

6 Related Work

A conceptual framework for adaptation is presented in [15]. Adaptation is defined
as the run-time modification of the control data. Our approach is compatible
with this framework, in the sense that the control data can be identified by the
different rule sets that correspond to ordinary computations and to adaptations.

Software Architectures: There is a wealth of Architecture Description Lan-
guages (ADLs) and architectural notations which provide support for dynamic
software architectures analysis [16]. The Genie approach [17] offers manage-
ment of structural variability of adaptive systems. Genie can be considered as
an ADL with generative capabilities to reconfigure from one system structure
to another according to changes in the environment and to decide what kind of
structural reconfiguration has to be performed. The main limit of this approach
is the absence of a way to guarantee desired properties of the systems after each
adaptation execution; from the modeling point of view, the approach is specif-
ically architectural, whereas we propose a general approach that can be used
at different levels of abstraction. The SA-framework Rainbow [18] uses external
mechanisms and an SA model to monitor a managed system, detect problems,
determine a course of action, and carry out adaptation actions at explicit cus-
tomization points. In our approach, we do not rely on pre-defined customization
points to manage the adaptation, but we monitor context properties to adapt the
system. Becker and Giese [19] present a graph transformation based approach to
model SA-systems on a high level of abstraction. The correctness of the modeled
SA-systems is checked by using simulation and invariant checking techniques to
verify that a given set of graph transformations will never reach a forbidden
state. The limitation of this approach is that a unique model is used for appli-
cation and adaptation logics. This means that when a new adaptation case is
added, the overall model must be refined. In our approach, the adaptation logic
is developed separately from the application logic in terms of adaptation rules.

Service-Oriented Computing (SOC): In the SOC community, various ap-
proaches supporting self-healing have been defined, e.g., triggering repair strate-
gies as a consequence of a requirement violation [20], and optimizing QoS of
service-based applications [21],Repair strategies usually are specified by means
of policies to manage the dynamism of the execution environment [22,23]. The
goals of the strategies proposed by the aforementioned approaches range from

Rule-Based Modeling and Static Analysis of Self-adaptive Systems 599

service selection to rebinding and application reconfiguration [24]. Some tech-
niques enable the definition of various adaptation strategies but they all lack a
coherent design approach to support designers in this complex task.

Summarizing, our approach abstracts from particular languages and nota-
tions6 and can be applied at different levels of granularity. In our framework,
the system can be modeled together with adaptation strategies and mechanisms,
and their properties can be verified in a semi-automatic way using static analysis.

7 Conclusion and Future Work

In [7,8], we already modeled self-healing (SH) systems using algebraic graph
transformation and formulated preliminary sufficient conditions allowing for a
static analysis of self-healing system properties. In this paper, we built on these
preliminary results and generalised the approach to the class of adaptive systems
that is identified in Sec. 2 and that includes corrective and enhancing adaptive
systems, i.e., systems that need rollback adaptations or adaptations that extend
existing services of the application.

We classified SA-systems by their operational properties and defined adapta-
tion properties concerning the behavior of adaptations w.r.t. their influence on
the normal system behavior. The classification helps to reason about system be-
havior, where e.g., systems with the rollback adaptation property may be more
in danger of repeated failures than systems with normal adaptation property,
since states that preceded failures are reached again after the adaptation. Note
that the operational properties concern all reachable system states, whereas they
are checked in our approach in a static way by inspecting only the rules without
producing all reachable states explicitly.

Fig. 10. Static SAS analysis

Our main results concerning oper-
ational properties are summarized in
Fig. 10, where most of the static condi-
tions in Thm. 1 and Thm. 2 can be au-
tomatically checked by AGG. We needed
some manual effort to show termination
and SAS -equivalence of rules, but it was
always possible to perform the analysis
statically. Although static conditions lead
to over-approximating systems, we found
that the conditions to be checked were reasonable to be expected in SA-systems
and did not restrict our intuitive notion of SA-system properties. Exemplarily,
the different properties have been verified for different adaptations of our car
logistics system in a seaport terminal [10].

Work is in progress to evaluate the usability of our approach by larger case
studies, and to further automate the checks currently needing manual effort with
AGG. Finally, we plan an integration of our formal framework with a real process
engine like JBoss jBPM [25]. The idea is to use our framework as an analysis
tool to guarantee the system consistency when each adaptation is executed.

6 Several other related SA-modeling approaches are discussed in [10].

600 A. Bucchiarone et al.

Acknowledgement. This paper is dedicated to Martin Wirsing as one of the
pioneers of algebraic specification and data types in the early 1980ies in Germany.
As member of the famous CIP-group in Munich he influenced the development
of algebraic specification languages, especially ASL [26], which is based on loose
semantics with hierarchy constraints. In contrast to the CIP-group, the TFS-
group of Hartmut Ehrig in Berlin followed the ADJ-approach based on initial
algebra semantics leading to the algebraic specification language ACT ONE [27].
Actually there was a fruitful cooperation between these and other European
groups leading to the European project COMPASS [28] and later on to the
algebraic specification language CASL7. In the European project SENSORIA8,
that was coordinated by Martin Wirsing, these foundational theories, techniques
and methods were integrated in a pragmatic software engineering approach. One
of the authors, Antonio Bucchiarone, was working for SENSORIA in Lucca, and
got his PhD when Martin was PhD school board member of the IMT Institute for
Advanced Studies. Today, algebraic specifications and data types are integrated
in several other software development concepts and languages. Especially in
this paper, we demonstrated the use of attributed graph transformations, which
combine algebraic specification with graph transformation.

References

1. Brun, Y., Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller,
H., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feedback loops.
Software Engineering for Self-Adaptive Systems, 48–70 (2009)

2. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. 4(2), 14:1–14:42 (2009)

3. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

4. Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A.,
van Steen,M. (eds.): SELF-STAR2004.LNCS, vol. 3460. Springer,Heidelberg (2005)

5. Rodosek, G.D., Geihs, K., Schmeck, H., Burkhard, S.: Self-healing systems: Foun-
dations and challenges. In: Self-Healing and Self-Adaptive Systems. Number 09201
in Proc. Dagstuhl Seminar (2009)

6. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Segal, A., Kephart, J.O.:
Autonomic computing: Architectural approach and prototype. Integr. Comput.-
Aided Eng. 13(2), 173–188 (2006)

7. Bucchiarone, A., Pelliccione, P., Vattani, C., Runge, O.: Self-repairing systems
modeling and verification using AGG. In: IEEE Joint Working IEEE/IFIP Con-
ference on Software Architecture (WICSA 2009), pp. 181–190 (2009)

8. Ehrig, H., Ermel, C., Runge, O., Bucchiarone, A., Pelliccione, P.: Formal analysis
and verification of self-healing systems. In: Rosenblum, D.S., Taentzer, G. (eds.)
FASE 2010. LNCS, vol. 6013, pp. 139–153. Springer, Heidelberg (2010)

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. In: EATCS Monographs in Theor. Comp. Science. Springer (2006)

7 http://en.wikipedia.org/wiki/Common Algebraic
Specification Language

8 http://www.sensoria-ist.eu

http://en.wikipedia.org/wiki/Common_Algebraic_Specification_Language
http://en.wikipedia.org/wiki/Common_Algebraic_Specification_Language
http://www.sensoria-ist.eu

Rule-Based Modeling and Static Analysis of Self-adaptive Systems 601

10. Bucchiarone, A., Ehrig, H., Ermel, C., Pelliccione, P., Runge, O.: Modeling and
analysis of self-adaptive systems based on graph transformation. Technical Report
2013/03, TU Berlin (2013), http://www.eecs.tu-berlin.de/menue/
forschung/forschungsberichte/2013

11. Böse, F., Piotrowski, J., Scholz-Reiter, B.: Autonomously controlled storage man-
agement in vehicle logistics - applications of RFID and mobile computing systems.
Int. Journal of RT Technologies: Research an Application 1(1), 57–76 (2009)

12. Chapin, N., Hale, J.E., Kham, K.M., Ramil, J.F., Tan, W.G.: Types of software
evolution and software maintenance. Software Maintenance 13(1), 3–30 (2001)

13. Lanese, I., Bucchiarone, A., Montesi, F.: A framework for rule-based dynamic adap-
tation. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS,
vol. 6084, pp. 284–300. Springer, Heidelberg (2010)

14. Golas, U., Lambers, L., Ehrig, H., Orejas, F.: Attributed graph transformation
with inheritance: Efficient conflict detection and local confluence analysis using
abstract critical pairs. Theor. Comput. Sci. 424, 46–68 (2012)

15. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A
conceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) Fundamen-
tal Approaches to Software Engineering. LNCS, vol. 7212, pp. 240–254. Springer,
Heidelberg (2012)

16. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: Proc. 1stACMSIG-
SOFTWorkshop on Self-Managed Systems (WOSS 2004), pp. 28–33. ACM (2004)

17. Bencomo, N., Blair, G.S.: Using architecture models to support the generation and
operation of component-based adaptive systems. Software Engineering for Self-
Adaptive Systems, 183–200 (2009)

18. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

19. Becker, B., Giese, H.: Modeling of correct self-adaptive systems: A graph transfor-
mation system based approach. In: Soft Computing as Transdisciplinary Science
and Technology (CSTST 2008), pp. 508–516. ACM Press (2008)

20. Spanoudakis, G., Zisman, A., Kozlenkov, A.: A service discovery framework for ser-
vice centric systems. In: Proc. Int. Conf. on Services Computing, pp. 251–259 (2005)

21. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-aware
service composition based on genetic algorithms. In: Proc. Conf. on Genetic and
Evolutionary Computation (GECO 2005), pp. 1069–1075 (2005)

22. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo
and the JBoss rule engine. In: ESSPE 2007, pp. 11–20. ACM (2007)

23. Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A service composition execu-
tion environment supporting dynamic changes disciplined through rules. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer,
Heidelberg (2006)

24. Pfeffer, H., Linner, D., Steglich, S.: Dynamic adaptation of workflow based service
compositions. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.)
ICIC 2008. LNCS, vol. 5226, pp. 763–774. Springer, Heidelberg (2008)

25. JBoss: jBPM Engine, http://www.jboss.org/jbpm
26. Wirsing, M.: Structured algebraic specifications: A kernel language. Theor. Com-

put. Sci., 123–249 (1986)
27. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and

Initial Semantics, Berlin. EATCS Monographs on Theoretical Computer Science,
vol. 6 (1985)

28. Krieg-Brückner,B.: Seven years ofCOMPASS. In:COMPASS/ADT,pp. 1–13 (1995)

http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2013
http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2013
http://www.jboss.org/jbpm

Formalization of Invariant Patterns

for the Invariant Refinement Method

Tomáš Bureš, Ilias Gerostathopoulos, Jaroslav Keznikl,
Frantǐsek Plášil, and Petr Tůma

Charles University in Prague
Faculty of Mathematics and Physics

Prague, Czech Republic
{bures,iliasg,keznikl,plasil,tuma}@d3s.mff.cuni.cz

Abstract. Refining high-level system invariants into lower-level soft-
ware obligations has been successfully employed in the design of ensemble-
based systems. In order to obtain guarantees of design correctness, it is
necessary to formalize the invariants in a form amenable to mathemati-
cal analysis. This paper provides such a formalization and demonstrates
it in the context of the Invariant Refinement Method. The formalization
is used to formally define invariant patterns at different levels of abstrac-
tion and with respect to different (soft) real-time constraints, and to
provide proofs of theorems related to refinement among these patterns.

Keywords: architecture refinement, requirements, assume-guarantee.

1 Introduction

Invariant-based design is advantageous for designing adaptive self-organizing
systems formed by ensembles of autonomic components [7–9] – see e.g. SOTA [1]
– as it explicitly captures the valid states of the system, i.e., the invariant proper-
ties of a correct system. Such ensemble-based systems [2] operate autonomously
in an open-ended environment, and invariants are well-suited for capturing the
properties of a component with respect to its environment.

The problem of invariant refinement is that the requirements of a system are
typically described in a much higher level of abstraction than the properties
(invariants) of the individual constituents of system architecture (components,
component processes, ensembles). The transition from high-level obligations to
low-level constraints includes a number of design choices without firm borders
and guidelines, and thus is prone to errors.

In our work we have proposed to bridge this gap by gradual step-wise refine-
ment (decomposition) of invariants, which ends up with detailed specification
of the behavior of the involved architectural elements – ensembles, components.
We call this approach Invariant Refinement Method – IRM [2, 10]. IRM how-
ever requires the steps of the refinement to be well-defined (ideally formally), so
that the refinement itself represents a proof of the correctness of the design. In

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 602–618, 2015.
c© Springer International Publishing Switzerland 2015

Formalization of Invariant Patterns for the Invariant Refinement Method 603

other words, it is necessary to have (formal) means allowing for deciding upon
the correctness of the refinement.

Having a formal framework that formalizes these relations allows for (i) design-
time guarantees of design correctness, i.e., guarantees that the system design
truly addresses the high-level requirements, and (ii) runtime monitoring, i.e.,
detection of discrepancies in system design during execution.

In this paper we provide such a formal framework, and also provide mathe-
matical proofs of “correctness by construction”, as a continuation of the work
presented in [10]. To do so, we first describe and formalize the invariant con-
cept and invariant refinement in the light of our running example (Section 2).
We then provide a formal account of the invariant patterns that can guide the
IRM design (Section 3), and provide the main contribution of the paper, i.e.,
the set of theorems and lemmas that formally ground the relations between the
invariant patterns (Section 4). Finally, we discuss some of the implications of
our approach and conclude (Section 5).

Personal Note: Ideas presented in this paper have been inspired by the work of
Martin Wirsing in the field of formal software engineering of autonomous service-
components. We have known Martin for a long time, and we have been able to
stay up-to-date with the advancements of his research group at LMU, as one of
the authors has been a visiting professor at LMU for the past years. We have also
had the opportunity to work with him and his colleagues from his department
in the ASCENS project, which he was coordinating. Cooperating with Martin
is always both enjoyable and inspiring, not only because of his firm knowledge
and fresh ideas, but also because of his kind and welcoming personality.

1.1 Running Example

To illustrate the IRM-based design, we use a running example from the ASCENS
e-mobility case study [14]. In this case study, electric vehicles (e-vehicles) have
to coordinate in order to reach particular places of interest (POIs) within cer-
tain time constraints specifying the expected POI arrival and departure times,
as prescribed by the drivers’ daily schedules (calendars). At the same time, e-
vehicles compete for stopovers in limited energy charging stations (CSs) along
their route. Specifically, each e-vehicle has to plan its individual trip according
to the driver’s calendar and the (perceived) available time slots for charging at
each relevant charging station. This results in a fully decentralized – and thus
scalable – system.

To simplify the presentation of our approach, we assume for the running
example that each vehicle has a single driver and a single destination POI. This
results in the scenario where the goal of every vehicle is to reach its POI in
time, while visiting charging stations during the trip if necessary. The charging
stations may however become unavailable at any time and thus it is necessary
to introduce monitoring of charging stations and potential re-planning.

604 T. Bureš et al.

2 Background

2.1 Invariant Refinement

In principle, IRM employs invariants to describe a desired state of the system-
to-be at every time instant; i.e., to describe the operational normalcy of the
system-to-be, essential for its continuous operation. When using IRM to design
ensemble-based systems, the objective is to refine the overall system goal(s) in
an iterative way and end up with the invariants that concern the individual
constituents of system architecture – components, component processes, and
ensembles.

The refinement is performed by decomposing a higher-level invariant into a
set of lower-level sub-invariants (AND-decomposition). In order for the decom-
position of a parent Ip into the children Is1, . . . , Isn to be an actual refinement,
the conjunction of the children have to entail the parent, i.e., it has to hold:

Is1 ∧ . . . ∧ Isn ⇒ Ip (entailment)
Is1 ∧ . . . ∧ Isn �⇒ false (consistency)

This type of decomposition is applied iteratively, starting from the high-level
invariants that reflect system-level goals and ending with low-level ones that
refer to a single component or an ensemble of components. The outcome is a
graph capturing the structural elaborations and design decisions at different
abstraction levels. Since each decomposition step may involve a design decision,
it is important to ensure that this decision complies with the entailment and
consistency conditions.

Invariant Refinement of the Running Example. An invariant-based design
of a system targeting the running example is presented in Figure 1. A description
of each individual invariant follows.

(1) This is the main goal of the scenario.
(2) This expresses a specific requirement on the designed system and the vehi-

cle’s planner input in particular. In this context, a plan is a black-box giving
for each time instance the expected position of the vehicle at that time.

(3) This reflects the assumption that the plan is always realistic (i.e., that it is
actually possible to follow it given the traffic and car characteristics), and
that the driver would follow it precisely.

(4) This expresses the assumption that charging station availability does not
change too quickly and that the initial set-up of the environment is “planning-
friendly”.

(5) A specific system requirement that constrains the input and timing of the
planner. In particular, we assume read consistency with respect to the belief
(i.e., new plan is always based on the same or newer belief than the previous
plan). Moreover, (5) and (6) together represent the design decision of divid-
ing the activity of computing the plan from remote data into two activities
of (i) creating a local belief of the remote data and (ii) computing the plan
from the local belief.

Formalization of Invariant Patterns for the Invariant Refinement Method 605

The vehicle’s position is The vehicle’s plan is

Fig. 1. Invariant refinement of the running example

(6) A specific system requirement that constrains the timing of charging station
monitoring and belief updating.

(7) A specific system requirement precisely determining the input and timing of
the planner. In particular, we assume real-time periodic computation.

(8) A specific system requirement precisely determining the timing of CS moni-
toring. In particular, we assume (distributed) real-time periodic monitoring.

Note that the invariant-based design such as the one presented in Figure 1
is hardly ever a product of a top-down design process. In practice, a mixed
top-down/bottom-up process is followed, where sub-invariants are identified by
asking “how can this invariant be satisfied” and parent invariants are identified
by asking “why should this invariant(s) be satisfied”.

2.2 Invariant Formalization

In general, the goal of invariant-based system design is to formally capture prop-
erties of a valid system. Thus, we will first discuss the necessary characteristics
of such formalization (i.e., characteristics implied by the domain).

In the domain of (soft) real-time component ensembles, the way of expressing
properties of a valid system is, as indicated by the running example, to capture a
valid evolution of knowledge values in time. To do that, the underlying formalism
has to provide means for referring to knowledge values at arbitrary time instants.
When generalized, we can say the formalism needs to refer to timed sequences
of knowledge values (i.e., timed streams of data), which provide a complete view
on the knowledge value evolution in time.

606 T. Bureš et al.

This is explicitly formalized in the following definitions, where we consider

time to be a non-negative real number, i.e., T
def
= R+

0 .

Definition 1. (Knowledge and its valuation) Knowledge is a set K = {k1, . . .
kn} of knowledge elements, where the domain of ki is denoted as Vi. Knowledge
valuation of element ki is a function T→ Vi which for each time t yields a value
of ki (denoted ki[t]).

Definition 2. (Invariant) An invariant is a predicate (in a higher-order predi-
cate logic with arithmetic) over knowledge valuation and time.

In general, an invariant may refer to the knowledge valuation at an arbitrary
time point/interval.

As further illustrated by the running example, when formalizing system de-
sign, it is critical to introduce formal assumptions about the environment of
the system. Although this is often omitted in informal design approaches, with-
out explicit assumptions the formalized system design is neither complete nor
correct. Thus we differentiate between two types of invariants:

– System invariants reflect properties of the individual architectural elements
of the system. Their validity is to be ensured by the implementation of the
system.

– Assumptions reflect the properties of the system’s environment assumed by
system invariants. Validity of these invariants is usually out of control of the
designer and is necessary for correct operation of the implementation.

For example, invariant (2) from the running example is a system invariant
while invariant (4) is an assumption.

3 Invariant Patterns

In general, the form of invariants is not explicitly restricted. However, at par-
ticular levels of abstraction (when describing architectural elements) there are
several patterns virtually omnipresent in any invariant-based design [10]. It is
thus beneficial to have means for concise and consistent representation of such
invariant patterns.

General Invariants. At the highest abstraction level, general invariants relate
to system-level goals. They capture the operational normalcy of a system by re-
lating the past and current knowledge valuations to future knowledge valuations.
Therefore, a general invariant can have an arbitrary internal structure.

Present-past Invariants. At a lower abstraction level, the invariants express
that some knowledge is based on other knowledge, which, at the same time, is
no older than a particular time interval – lag. This reflects the fact (abstracted
by general invariants) that software systems cannot employ future knowledge to

Formalization of Invariant Patterns for the Invariant Refinement Method 607

maintain their operational normalcy, but have to depend on present and/or past
knowledge instead.

In this case, such invariants typically capture that there is a particular relation
(frequently capturing a post-condition P of a computation) between current
knowledge and knowledge no older than the lag L. In the idealized case where
all components have always up-to-date beliefs and their actions are instant the
lag is equal to zero. In general, though, the lag is inversely proportional to the
observed precision (assuming that precision depends on the oldness of observed
data) and robustness (as in the case of real-time software control systems).

Definition 3. (Present-past invariants) For a predicate P capturing the relation
between valuation of knowledge elements I1, . . . , In and O1, . . . , Om, and the lag
L, the expression PL

p−p[I1, . . . , In][O1, . . . , Om] denotes the following present-past
invariant:

∀t ∈ T, ∃t1, . . . , tn : 0 ≤ t− ti ≤ L, i ∈ 1..n :

P (I1[t1], . . . , In[tn], O1[t], . . . , Om[t])

In this context, we call I1, . . . , In “input” variables and O1, . . . , Om “output”
variables of the invariant so as to denote the correspondence of these variables
to the inputs/outputs of the computation that is responsible for maintaining the
invariant.

During refinement of a general invariant into (a conjunction of) present-past
invariants, it is necessary to introduce assumptions to guarantee that main-
taining the operational normalcy based on the current and/or past knowledge
valuation will eventually result in reaching the operational normalcy based on a
future knowledge valuation – e.g. assumption (4) in Figure 1.

Activity Invariants. Another frequent form of timed invariants, used at a
lower level of abstraction, closely reflects properties of a (soft) real-time activity
while assuming read consistency with respect to the input knowledge of this
activity, i.e., that each output knowledge valuation is based on the same or
newer input knowledge valuation than the previous one. This is illustrated in
Figure 2.

In this case, an activity invariant captures that the output knowledge val-
uation changes only as a result of performing the activity. Moreover, although
reading the input knowledge of the activity, as well as computing and writing
the output knowledge, takes some time, it never (altogether) exceeds the corre-
sponding time limit (i.e., lag).

More rigorously, at any time the output knowledge valuation corresponds
to the outcome of the activity applied on input knowledge valuation not older
than the lag. Moreover, each output is based on same or newer inputs than the
previous output.

608 T. Bureš et al.

≤L ≤L ≤L

Fig. 2. Illustration of a valid knowledge valuation with respect to an activity where
the output O represents sum of inputs I1 and I2, while meeting lag L

Definition 4. (Activity invariant) For a predicate P reflecting the post-condition
of an activity with inputs I1, . . . , In and outputs O1, . . . , Om, and for lag L, the
expression PL

act[I1, . . . , In][O1, . . . , Om] denotes the following activity invariant:

∃a1, . . . , an : T→ T, ∀t ∈ T, 0 ≤ t− ai(t) ≤ L, ai non-decreasing, i ∈ 1..n :

P (I1[a1(t)], . . . , In[an(t)], O1[t], . . . , Om[t])

where the non-decreasing function ai gives for each time t the corresponding
time t′ such that the valuation of Ii at t′ was “used to compute” the valuation
of O1, . . . , Om at t, as shown in Figure 2.

Process Invariants. At the lowest level of abstraction (i.e., in the leaves of the
invariant decomposition), an activity invariant that captures local computation
(i.e., with no distributed knowledge involved) while assuming read consistency
is refined into an invariant capturing a periodic real-time component process –
a process invariant.

Compared to activity invariants, process invariants introduce the additional
constraint that the activity is performed exactly once in every period. The period
thus becomes an elaboration of the activity lag, and the output knowledge eval-
uation is determined by the release time (time at which a task becomes ready
for execution) and finish time in each period [3].

Specifically, such an invariant captures that if the current time is before the
finish time of the process in the current period, then the outputs are the same as
in the previous period (i.e., they correspond to the inputs used in the previous
period). Otherwise, the outputs correspond to the inputs at the release time of
the process in this period.

Definition 5. (Process invariant) For a predicate P reflecting the post-condition
of a periodic real-time process with inputs I1, . . . , In, outputs O1, . . . , Om, and

Formalization of Invariant Patterns for the Invariant Refinement Method 609

period L, the expression PL
proc[I1, . . . , In][O1, . . . , Om] denotes the following pro-

cess invariant:

∃R,F : N→ T : E(x− 1) ≤ R(x) < F (x) < E(x) ∀x ∈ N,

∀p ∈ N, ∀t ∈ 〈E(p− 1), E(p)) :

t < F (p)⇒ P (I1[R(p− 1)], . . . , In[R(p− 1)], O1[t], . . . , Om[t])

t ≥ F (p)⇒ P (I1[R(p)], . . . , In[R(p)], O1[t], . . . , Om[t])

where E(n) : N0 → T = n · L, i.e., the end of the n-th period. R(n) and F (n)
denote the release and finish time of the real-time process in the n-th period.

Note that unlike activity invariants, there is the same R for each I, reflecting
that at the release time the process reads all the inputs atomically.

Exchange Invariants. Similar to a process invariant, an activity invariant at
the lowest level of abstraction that captures establishment of a belief (that can
be addressed by ensemble knowledge exchange) while assuming distributed read
consistency is refined into an invariant capturing periodic knowledge exchange
of an ensemble – an exchange invariant.

Contrary to process invariants, exchange invariants assume that the input
values might have been read at different times, since the inputs are potentially
distributed (however, the times have to fit into the same period). Another differ-
ence is that exchange invariants consider also the knowledge propagation delays
stemming e.g. from delays in data transfer over the network. An exchange invari-
ant thus models a composite activity consisting of (i) knowledge transfer (with
an upper bound on its duration), and (ii) periodic evaluation of the membership
condition and knowledge exchange.

An important assumption is that each component executes the incoming
knowledge exchange (i.e., knowledge exchange that updates the local compo-
nent’s knowledge) on its own, while the other components asynchronously send
the required input knowledge. These composite activities may be partially over-
lapping to cater for situations where the knowledge transfer time is larger than
the knowledge exchange period.

Definition 6. (Exchange invariant) Let P be a predicate reflecting the post-
condition of a periodic knowledge exchange with inputs I1, . . . , In, outputs O1, . . . ,
Om, and period L. Provided that it takes at most T for the knowledge to be-
come available at the component executing the knowledge exchange, the expres-
sion PL,T

exc [I1, . . . , In][O1, . . . , Om] denotes the following exchange invariant:

∃a1, . . . , an : T→ T, ∀t ∈ T, 0 ≤ t− ai(t) ≤ T, ai non-decreasing, i ∈ 1..n :

∃R,F : N→ T : E(x− 1) ≤ R(x) < F (x) < E(x) ∀x ∈ N,

∀p ∈ N, ∀t ∈ 〈E(p− 1), E(p)) :

t < F (p)⇒ P (I1[a1(R(p− 1))], . . . , In[an(R(p− 1))], O1[t], . . . , Om[t])

t ≥ F (p)⇒ P (I1[a1(R(p))], . . . , In[an(R(p))], O1[t], . . . , Om[t])

610 T. Bureš et al.

where E(n) : N0 → T = n · L, i.e., the end of the n-th period. R(n) and F (n)
denote the release and finish time of the real-time knowledge exchange in the
n-th period. Finally, ai gives for each time t the corresponding time t′ such that
the valuation of Ii that was available to the component executing the knowledge
exchange at t was sent to the component at t′.

Note, that there is a (potentially) different ai for each Ii, reflecting that the
inputs can be sent to the component executing the knowledge exchange at dif-
ferent times. Moreover, there is the same t for each Oi, which corresponds to the
assumption, that knowledge exchange is unidirectional, i.e., it writes only into
the knowledge of one component, and thus the writes can be atomic.

3.1 Illustration of Invariant Patterns on the Running Example

Using the above-defined invariant patterns, the case-study invariants can be
formalized as follows. Note that the patterns are not applicable for invariants 1
and 3, and are only partially applicable for invariant 4 (only for the left hand side
of the implication), since 1 is a general invariant and 3 and 4 are assumptions.

(1) The vehicle reaches its destination in time:

∃t ∈ T, t ≤ DEADLINE : v.pos[t] = DEST

(2) The vehicle’s plan is always based on CS data at most 6 minutes old:

Plan6min
p−p [t, v.pos, v.charge, CS1, . . . , CSn][v.plan]

where the Plan predicate denotes the post-condition of the planning algo-
rithm given the current time, current position, current charge, and CS data.

(3) The vehicle’s position is always in sync with the current plan:

∀t ∈ T : v.pos[t] = v.plant

(4) When considering CS data no older than 10 minutes, the planner schedules
reaching the destination in time.

Plan10min
p−p [t, v.pos, v.charge, CS1, . . . , CSn][v.plan]

⇒ ∃t′ ∈ T, t′ ≤ DEADLINE : v.plan[t](t′) = DEST

(5) The vehicle’s plan is always computed from the local belief (over CS data)
at most 2 minutes old.

Plan2min
act [t, v.pos, v.charge, v.belief][v.plan]

(6) The belief of the vehicle over CS data is at most 4 seconds old.

Belief4min
p−p [CS1, . . . , CSn][v.belief]

where the Belief predicate denotes the condition of the vehicle’s belief being
equal to the CS data.

Formalization of Invariant Patterns for the Invariant Refinement Method 611

(7) The vehicle computes the plan from the local belief (over CS data) periodically
every 1 minute.

Plan1min
proc [t, v.pos, v.charge, v.belief][v.plan]

(8) The vehicle updates its belief (over CS data) periodically every 2 minutes.

Belief2min
exc [CS1, . . . , CSn][v.belief]

Naturally, the usage of invariant patterns particularly simplifies the lower-
level, more technical invariants that capture computation activities. This allows
for more concise and consistent invariant-based design.

4 Correctness by Construction

A simplification of invariant-based design is not the only benefit of using the
invariant patterns during invariant-based design. The main advantage is the
ability of formal reasoning on the level of patterns instead of reasoning on the
level of predicate logic upon knowledge valuations (since state-of-the-art theorem
provers for such complex logics still do not have the necessary performance).

Thus, we propose a formal framework allowing for formal reasoning on the
level of invariant patterns.

4.1 Basic Pattern Relations

First, we elaborate on the basic relations of the invariant patterns which cor-
respond to the natural relations among the related software concepts of activ-
ity/activity with read consistency/process/ensemble.

A straightforward observation for a present-past invariant is that, given a par-
ticular knowledge valuation, if the outputs are always based on inputs within the
given time limit, increasing the limit maintains this property. A similar obser-
vation holds for activity invariants. This is formalized in the following theorem.

Theorem 1. (Maximal lag refinement) For K ≤ L:

PK
p−p[I1, . . . , In][O1, . . . , Om]⇒ PL

p−p[I1, . . . , In][O1, . . . , Om]

PK
act[I1, . . . , In][O1, . . . , Om]⇒ PL

act[I1, . . . , In][O1, . . . , Om]

Proof. A direct corollary of the lag/activity invariant definition. In particular,
the existence of ti such that 0 < t− ti ≤ K in PK

p−p[I1, . . . , In][O1, . . . , Om] guar-

antees the existence of ti such that 0 < t−ti ≤ L in PL
p−p[I1, . . . , In][O1, . . . , Om]

(similarly for ai and 0 < x− ai(x) ≤ L). �

One can also observe that the requirement of read consistency of inputs in
addition to the time limit (in activity invariants) is a stronger requirement than
the time limit only (in present-past invariants); this is formalized in the following
theorem.

612 T. Bureš et al.

Theorem 2. (Activity invariant implies present-past invariant) Assuming that
I = I1, . . . , In and O = O1, . . . , Om, it holds:

PL
act[I][O]⇒ PL

p−p[I][O]

Proof. The existence of t1, . . . , tn for PL
p−p[I][O] is given by a1, . . . , an of

PL
act[I][O]. In particular, ∀t we set ti = ai(t). �

A similar theorem can be formulated for the process and activity invariants.
Here, the idea is that, in reality, a periodic process is actually a strict refinement
of an activity with read consistency and time limit on input data. However,
instead of considering the same time limit for both invariants as in previous
cases, the activity invariant needs twice the time limit of the process invariant.
This also complies with the well-known fact in the area of real-time scheduling: in
order to achieve a particular end-to-end response time with a real-time periodic
process, the period needs to be at most half of the desired response time [3]. For
our invariant patterns, this fact is formalized in the following theorem.

Theorem 3. (Process invariant implies activity invariant) Assuming that I =
I1, . . . , In and O = O1, . . . , Om, it holds:

PL
proc[I][O]⇒ P 2L

act[I][O]

Proof. Without loss of generality let us assume that |I| = |O| = 1. Given t ∈ T

let p =
⌈

t
L

⌉
. The required a : T → T for P 2L

act[I][O] is given by R and F from
PL
proc[I][O] as follows:

a(t) =

{
R(p− 1) if t < F (p)
R(p) if t ≥ F (p)

First, we prove that 0 < t− a(t) ≤ 2L. Since p =
⌈

t
L

⌉
, then also (p− 1) · L ≤

t ≤ p · L. According to Definition 5, E(p − 1) ≤ R(p) < F (p) ≤ E(p), where
E(p) = p·L. Therefore, given the properties of R, F , and a(t), we have E(p−2) ≤
R(p − 1) ≤ a(t) and a(t) < t. Together, we have (p − 2) · L ≤ a(t) < t ≤ p · L.
Therefore, 0 < t− a(t) ≤ 2L.

Further, a is non-decreasing since R and F are non-decreasing. Thus, from
PL
proc[I][O] we get P 2L

act[I][O]. �

Similarly, it holds that the exchange invariant pattern is a refinement of the
activity invariant pattern with lag equal twice the period of the exchange invari-
ant pattern plus the time for distributed transfer of the knowledge, as formulated
by the following theorem.

Theorem 4. (Exchange invariant implies activity invariant) Assuming that
I = I1, . . . , In and O = O1, . . . , Om, it holds:

PL,T
exc [I][O]⇒ P 2L+T

act [I][O]

Formalization of Invariant Patterns for the Invariant Refinement Method 613

Proof. The proof is similar to Theorem 3, differing only in the part relevant
to knowledge transfer over network. For the purpose of the proof, we denote
Ri(p) = ai(R(p)), ∀p ∈ N for R and ai from PL,T

exc [I][O].
Given t ∈ T let p =

⌈
t
L

⌉
. The required ai : T→ T for P 2L+T

act [I][O] is given by
Ri and F from PL,T

exc [I][O] as follows:

ai : (t) =

{
Ri(p− 1) if t < F (p)
Ri(p) if t ≥ F (p)

First, we prove that 0 < t − ai(t) ≤ 2L + T . Since p =
⌈

t
L

⌉
, then also

(p − 1) · L ≤ t ≤ p · L. According to Definition 6, E(p − 1) − T ≤ R(p) − T ≤
Ri(p) < F (p) ≤ E(p), where E(p) = p·L (recall that x−aensi (x) ≤ T). Therefore,
given the properties of Ri, F , and a(t), we have E(p− 2)−T ≤ Ri(p− 1) ≤ a(t)
and a(t) < t. Together, we have (p − 2) · L − T ≤ a(t) < t ≤ p · L. Therefore,
0 < t− a(t) ≤ 2L+ T .

Further, ai is non-decreasing since Ri and F are non-decreasing. Thus, from
PL,T
exc [I][O] we get P 2L+T

act [I][O]. �

4.2 Pipeline Decomposition

Here, we present a logical framework that would enable for formal reasoning
about refinement in a particular form of decomposition – pipeline decomposi-
tion, which due to its relative generality covers most practical cases of invariant
decomposition. Specifically, we focus on the level of activity invariants, as they
represent a suitable level of abstraction, generalizing both process and exchange
invariants.

As an important observation, the fact that a decomposition is actually a
refinement of the parent invariant is, with respect to time, largely affected by
sharing of invariant variables among the child invariants. Thus, we introduce the
concept of dependency chain. A vector of activity invariants forms a dependency
chain if some of the output variables of a invariant in the vector are among
the input variables of the next invariant in the vector. This is formalized in the
following definition.

For brevity, we introduce the following notation. Given an activity (or pro-
cess/exchange) invariant PL

act[I1, . . . , In][O1, . . . , Om], In(P) denotes the set {I1,
. . . , In}, while Out(P) denotes the set {O1, . . . , Om}.

Definition 7. (Dependency chain) Each vector
(
P1

L1
act, . . . , Pp

Lp

act

)
of invariants

forms a dependency chain iff:

∀i ∈ {1, . . . , p− 1} ∃O, I :

O ∈ Out(Pi) ∧ I ∈ In(Pi+1) ∧O = I

In a pipeline decomposition the children reflect simple pipeline-like flows
among the corresponding activities that refine the parent activity. A formal
interpretation is given in the following definition.

614 T. Bureš et al.

Definition 8. (Pipeline decomposition) Having a parent invariant PL
act, a set

of child invariants
{
Pi

Li
act, i = 1..p

}
forms a pipeline decomposition of PL

act iff:

(i) each input variable of the parent is an input variable of exactly one child:

∀I ∈ In(P) ∃!j ∈ {1, . . . , p} : I ∈ In(Pj)

(ii) each output variable of the parent is an output variable of exactly one child:

∀O ∈ Out(P) ∃!j ∈ {1, . . . , p} : O ∈ Out(Pj)

(iii) the decomposition includes only such dependency chains, in which (a) all
input variables of the first invariant are input variables of the parent, (b) all
output variables of the last invariant are output variables of the parent,
(c) for each two consecutive invariants within the dependency chain, the
output variables of the former are exactly the input variables of the latter:

∀C =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
, {i1, . . . , iq} ⊆ {1, . . . , p} , C dependency chain:

In(Pi1) ⊆ In(P) ∧Out(Piq) ⊆ Out(P)

∧ ∀j = i1..iq−1 Out(Pj) = In(Pj+1)

(iv) the decomposition includes only such dependency chains that do not share
input/output variables:

∀C1 =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
, {i1, . . . , iq} ⊆ {1, . . . , p} , C1 dependency chain,

∀C2 =
(
Pj1

Lj1
act , . . . , Pjr

Ljr
act

)
, {j1, . . . , jr} ⊆ {1, . . . , p} , C2 dependency chain,

∀Pk
Lk
act ∈ C1, ∀Pl

Ll
act ∈ C2 :

C1 �= C2 ⇒
(
In(Pk

Lk
act) ∪Out(Pk

Lk
act)

)
∩
(
In(Pl

Ll
act) ∪Out(Pl

Ll
act)

)
= ∅

An example is the decomposition of (2) into (5) and (6) in the running example.
Intuitively, the definition of pipeline decomposition requires the children to

reflect simple parallel pipeline-like flows (dependency chains) among the corre-
sponding activities that refine the parent activity.

For pipeline decomposition, a straightforward rule for determining refinement
can be formulated. In a correct refinement, provided that the decomposition is
logically consistent with the parent invariant when not considering time, the lag
of the parent invariant should be at least the sum of the lags of the invariants
in the longest (in terms of time) pipeline (i.e., dependency chain) of the decom-
position. Indeed, this intuitive observation was confirmed in our invariant-based
formalism as demonstrated in the following theorem.

Theorem 5. (Activity invariant pipeline refinement) Having invariant PL
act

[I1, . . . , In][O1, . . . , Om] and its pipeline decomposition D =
{
P1

L1
act, . . . , Pp

Lp

act

}
,

the decomposition is a refinement of the parent, i.e., it holds that P1
L1
act ∧ · · · ∧

Pp
Lp

act ⇒ PL
act, if:

Formalization of Invariant Patterns for the Invariant Refinement Method 615

(i) P1 ∧ · · · ∧ Pp ⇒ P , i.e., the decomposition is logically consistent without
considering time

(ii) for each dependency chain C =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
in D it holds that∑iq

j=i1
Lj ≤ L, i.e., the lag of the parent invariant is at least the sum of

the lags of the longest (in terms of time) dependency chain among the child
invariants.

Proof. To prove the above theorem, we need to prove that given D, P , and the
assumptions (i) and (ii), the following lemma holds:

P1
L1
act ∧ · · · ∧ Pp

Lp

act ⇒ (P1 ∧ · · · ∧ Pp)
L
act

Then, the correctness of the theorem is an immediate result of this lemma and

the assumption (i). To prove the lemma, let QL
act

def
= (P1 ∧ · · · ∧ Pp)

L
act.

Without loss of generality, let us assume that each dependency chain C =(
Pi1

Li1
act , . . . , Piq

Liq

act

)
in D, its first invariant Pi1

Li1
act in particular, has only one

input variable (i.e., IC). Also, let us assume that C, its last invariant Piq

Liq

act in
particular, has only one output variable (i.e., OC). Similarly, we assume that
all the intermediate invariants within C have exactly one input and one output
variable. This assumption is safe since the multiple input/output variables can
be merged into one as they are referred exactly from one other invariant (which
is also in C).

For the variable IC , we define the aC : T→ T required for QL
act (according to

the Definition 4) as follows:

aC(t)
def
= ai1

(
ai2

(
. . . aiq (t) . . .

))
where ai1 , . . . , aiq are taken from to Pi1

Li1
act , . . . , Piq

Liq

act .

Because
∑iq

j=i1
Lj ≤ L and 0 < x− ai1(x) ≤ Li1 , . . . , 0 < x− aiq (x) ≤ Liq , it

holds that 0 < x− aC ≤ L.
The assumption of the above lemma (i.e., P1

L1
act ∧ · · · ∧Pp

Lp

act) and the proper-

ties of the dependency chain C =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
as a part of the pipeline

decomposition D give us the following corollary:

Pi1(IC [ai1(ai2(. . . aiq (t) . . .))], Oi1 [ai2(. . . aiq (t) . . .)]) ∧Oi1 = Ii2∧
Pi2(Ii2 [ai2(ai3(. . . aiq (t) . . .))], Oi2 [ai3(. . . aiq (t) . . .)]) ∧Oi2 = Ii3∧

...
Piq (Iiq [aiq (t)], OC [t])

By combining these corollaries for each dependency chain in the pipeline de-
composition D of Q (i.e., each input and output variable of Q), we get:

Q (I1 [a1 (t)] , . . . , In [an (t)] , O1 [t] , . . . On [t])

where Ii, Oi, and ai correspond to the dependency chain Ci in D.
By combining all the above facts, we get: P1

L1
act ∧ · · · ∧ Pp

Lp

act ⇒ QL
act

�

616 T. Bureš et al.

≤

Fig. 3. A counterexample illustrating the importance of the pipeline refinement as-
sumption in Theorem 5

4.3 More Complex Types of Refinement

The assumption of pipeline decomposition in Theorem 5 is essential for its cor-
rectness. This means that in the case of a decomposition that does not respect
all four points of Definition 8, applying Theorem 5 can lead to the wrong re-
sults. To support this claim and highlight the importance of strictly following
the above-mentioned definition, we present the following counterexample to the
relaxed Theorem 5 (where the assumption of pipeline decomposition is lifted).

Counterexample to relaxed Theorem 5. Consider the parent invariant Pp
def
=

(v = 2u)2sact[u][v], that is decomposed into three sub-invariants:

Pα
def
= (x = u)1sact[u][x], Pβ

def
= (y = u)1sact[u][y], Pγ

def
= (v = x+ y)1sact[x, y][v].

This decomposition is not a pipeline decomposition, because the input variable
of the parent (variable u) is input of more than one children in the decomposition
(both Pα and Pβ), thus invalidating the first point of Definition 8. The relaxed
Theorem 5 would ensure that this decomposition is a refinement. However, if we
consider the trace illustrated in Figure 3, it is obvious that although the trace
is valid for all the sub-invariants Pα, Pβ , and Pγ , it is not valid for the parent
invariant Pp, as there cannot be an ap(t) such that v[t1] = 1 = 2 ∗ u[ap(t1)]. �

The reason why the relaxed Theorem 5 does not work for the counterexample
is that while the parent works with the valuation of a at a single time instant,
the decomposition employs the valuation of a at two different time instants (by
aliasing to x and y). This observation applies in general. Moreover, for some
decompositions it appears that it is not possible to formulate similar theorems.

Formalization of Invariant Patterns for the Invariant Refinement Method 617

5 Discussion and Conclusions

The choice of the proposed formalization of invariants and invariant patterns
in higher-order predicate logic was driven by the practical reason of being able
to formulate and prove the relevant theorems that hold in different invariant
refinements. Other forms of formalization would have been more appropriate
when different goals are pursued by the formalization task. For example, the use
of a real-time temporal logic [12] would have been a sensible choice if we would
like to use IRM model fragments as input for model-checking purposes.

Indeed, formalization of goals in goal models in real-time LTL has already
been pursued in the context of both KAOS [13] and Tropos [6] (e.g., Formal
Tropos [5]), two of the most prominent requirements engineering frameworks.
Our invariant refinement patterns can be compared to the goal refinement pat-
terns à la KAOS [4], which encode known refinement tactics. The difference is
that KAOS patterns can be formally checked with a theorem prover, while our
patterns have to be manually proven, as state-of-the-art theorem provers cannot
cope with the complexity of our expressive logic.

The invariant decomposition in IRM is inspired by the decomposition of
system-level goals into sub-goals, assumptions and domain properties in KAOS.
A similar approach is also pursued within Tropos, where goals, soft-goals, tasks,
and dependencies and identified and iteratively decomposed from the perspective
of the individual agents. The differences lie in that (i) neither KAOS nor Tropos
provide a direct translation to the implementation-level concepts of autonomic
components and ensembles; (ii) the objective of IRM is not to produce require-
ments documents (like KAOS), but software architectures; (iii) IRM invariants
do not focus on future states (like goals in Tropos), but on knowledge valuation
at every time instant, fitting better the design of feedback-based systems.

The diagrams used to illustrate the knowledge valuation in time in IRM (e.g.,
Fig. 2 and 3) are reminiscent of timed UML 2 interaction diagrams [11], as they
capture the system behavior over time in a declarative way. However, UML 2
activity diagrams focus on the message exchange between predefined instances,
whereas IRM invariants capture the evolution in the knowledge of distributed
components (which could be implemented by exchange of messages among them)
that is necessary in order for certain system-level requirements to be met.

To conclude, in this paper we have provided a formal framework for invari-
ant refinement in the context of the Invariant Refinement Method (IRM). Our
approach is modeling the invariants in higher-order predicate logic and iden-
tifying common invariant types (patterns) at different levels of abstraction.
Some of the refinement relations between different patterns have also been for-
mally proven (via mathematical theorems): present-past to activity invariants,
activity to process/exchange invariants, and pipeline decomposition of activ-
ity/process/exchange invariants. More complex types of refinement have to be
investigated separately in order to be able to formulate similar theorems. This
is the focus of our future work.

Another element of future work is to test the proposed design method in a
real-scale case study with real system designers.

618 T. Bureš et al.

Acknowledgements. This work was partially supported by the EU project
ASCENS 257414 and by Charles University institutional funding SVV-2014-
260100. The research leading to these results has received funding from the Eu-
ropean Union Seventh Framework Programme FP7-PEOPLE-2010-ITN under
grant agreement no264840.

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a General
Model for Self-Adaptive Systems. In: Proc. of WETICE, pp. 48–53. IEEE (2012)

2. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECo — an Ensemble-Based Component System. In: Proc. of CBSE 2013, Van-
couver, Canada, pp. 81–90. ACM (June 2013)

3. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Al-
gorithms and Applications, 3rd edn. Springer (2011)

4. Darimont, R., van Lamsweerde, A.: Formal Refinement Patterns for Goal-Driven
Requirements Elaboration. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039,
pp. 179–190. Springer, Heidelberg (1996)

5. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model Checking Early Re-
quirements Specifications in Tropos. In: Proc. of RE 2001, Toronto, ON, Canada,
pp. 174–181. IEEE (August 2001)

6. Giorgini, P., Kolp, M., Mylopoulos, J., Pistore, M.: The Tropos Methodology:
An Overview. In: Methodologies and Software Engineering For Agent Systems,
pp. 89–106. Kluwer Academic Publishers (2004)

7. Hölz, M., Wirsing, M.: Towards a System Model for Ensembles. In: Formal mod-
eling, pp. 241–261. Springer (2012)

8. Hölzl, M., et al.: Engineering Ensembles: A White Paper of the ASCENS Project.
ASCENS Deliverable JD1.1 (2011), http://www.ascens-ist.eu/whitepapers

9. Hölzl, M., Rauschmayer, A., Wirsing, M.: Software engineering for ensembles. In:
Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Soft-Ware Intensive
Systems. LNCS, vol. 5380, pp. 45–63. Springer, Heidelberg (2008)

10. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.:
Design of Ensemble-Based Component Systems by Invariant Refinement. In: Proc.
of CBSE 2013, Vancouver, Canada, pp. 91–100. ACM (June 2013)

11. Knapp, A., Störrle, H.: Efficient Representation of Timed UML 2 Interactions. In:
Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.) SAM 2014. LNCS, vol. 8769,
pp. 110–125. Springer, Heidelberg (2014)

12. Koymans, R. (ed.): Specifying Message Passing and Time-Critical Systems with
Temporal Logic. LNCS, vol. 651. Springer, Heidelberg (1992)

13. Lamsweerde, A.V.: Requirements engineering in the year 00: a research perspective.
In: Proceedings of ICSE 2000, Limerick, Ireland, pp. 5–19. ACM (June 2000)

14. Serbedzija, N., Reiter, S., Ahrens, M., Velasco, J., Pinciroli, C., Hoch, N., Werther,
B.: Requirement Specification and Scenario Description of the ASCENS Case Stud-
ies. Deliverable D7.1 (2011), http://www.ascens-ist.eu/deliverables

http://www.ascens-ist.eu/whitepapers
http://www.ascens-ist.eu/deliverables

On StocS: A Stochastic Extension of SCEL�

Diego Latella1, Michele Loreti2, Mieke Massink1, and Valerio Senni3

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Italy
2 Università di Firenze, Italy

3 IMT-Lucca, Italy

Abstract. Predicate-based communication allows components of a sys-
tem to send messages and requests to ensembles of components that
are determined at execution time through the evaluation of a predicate,
in a multicast fashion. Predicate-based communication can greatly sim-
plify the programming of autonomous and adaptive systems. We present
a stochastically timed extension of the Software Component Ensemble
Language (SCEL) that was introduced in previous work. Such an exten-
sion allows for quantitative modelling and analysis of system behaviour
(e.g. performance) but rises a number of non-trivial design and formal
semantics issues with different options as possible solutions at different
levels of abstraction.

1 Introduction

SCEL (Software Component Ensemble Language) [5,8], is a kernel language
that is equipped with programming abstractions for the specification of system
models within the framework of the autonomic computing paradigm, and for
programming such systems. These abstractions are specifically designed for rep-
resenting behaviours, knowledge, and aggregations according to specific policies,
and to support programming context-awareness, self-awareness, and adaptation.

The main focus of the SCEL language is on supporting the development of
autonomous, loosely-coupled, component-based software systems. For this pur-
pose, a number of underlying assumptions are made on the kind of peculiarities
of these software systems, among which adaptivity, open-endedness, ensemble-
orientedness, high ability of reconfiguration, and support for heterogeneity. Two
novel key aspects of SCEL, that distinguish it from other languages, are de-
signed to support these peculiarities: predicate-based communication and the
role of the component knowledge-base. Predicate-based communication allows
to send messages to ensembles of components that are not predetermined at
modeling time, but are defined at execution time, depending on how the com-
munication predicate evaluates w.r.t. the destination interface. The component
knowledge-base allows to realise various adaptation patterns, by explicit sepa-
ration of adaptation data in the spirit of [3], and to model components view

� This research has been partially funded by the EU projects ASCENS (nr. 257414)
and QUANTICOL (nr. 600708), and the IT MIUR project CINA.

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 619–640, 2015.
c© Springer International Publishing Switzerland 2015

620 D. Latella et al.

on (and awareness of) the environment. SCEL has been developed in the EU
ASCENS project1 and it has been used to specify many scenarios related to
the project case studies [12,10,14,13]. These specifications witness how SCEL

primitives simplify the programming of autonomous and adaptive systems.
In [11] we addressed the problem of enriching SCEL with information about

action durations, which results in a stochastic semantics for the language. In
fact, our goal is to provide a formal, language based, framework for quantita-
tive (e.g. performance) modelling and analysis of autonomic computing systems.
Even if there exist various stochastic process languages, including some which
incorporate notions of spatial distribution (see [4,9] and references therein) and
frameworks that support the systematic development of stochastic languages
(see [7] and references therein), the main challenge in developing a stochastic se-
mantics for SCEL is in making appropriate modeling choices, both taking into
account the specific application needs and allowing to manage model complexity
and size. Our contribution in [11] was the proposal of four variants of StocS,
a Markovian extension of a significant fragment of SCEL. These variants adopt
the same syntax of SCEL but denote different underlying stochastic models,
having a different level of granularity.

StocS, and its support framework extend SCEL by providing the system
modeller with means for characterising relevant delays—related to the execution
of SCEL actions—modelling them as random variables (RVs) with negative ex-
ponential distributions. The resulting models are continuous time Markov chains
(CTMCs).

In the design of StocS, we deliberately omit to incorporate certain advanced
features of SCEL, such as the presence and role of policies.

In this book we focus on the network oriented variant of StocS briefly intro-
duced in [11]. The semantics of this variant entails that actions are non-atomic.
Indeed, they are executed through several intermediate steps, each of which re-
quires appropriate time duration.

The work we present in this book is only the latest step of a long journey
started more than ten years ago with the AGILE EU project, and carried on first
within the SENSORIA EU project and later within the ASCENS EU project.
The collaboration with Martin Wirsing, who acted as Coordinator of all these
projects, gave us the possibility to study the specific formal tools to use for pro-
viding stochastic semantics of domain specific languages as well as to investigate
general issues concerning such tools. We would like to thank Martin for the many
stimulating discussions we had and for his excellent coordination work. Thank
you Martin.

The outline of this chapter is as follows. Section 2 discusses the intuitions
behind the stochastic extension of SCEL which is presented in 4 after some
preliminary definitions are recalled in Section 3. In Section 5 we present a simple
case study to illustrate the use of the various language primitives of StocS.

Concluding remarks and lines for possible future research are presented in
Section 6.

1 http://www.ascens-ist.eu/

http://www.ascens-ist.eu/

On StocS: A Stochastic Extension of SCEL 621

Table 1. StocS syntax (Knowledge K, Templates T , and Items t are parameters)

Systems: S ::= C
∣∣ S ‖ S

Components: C ::= I [K, P]

Processes: P ::= nil
∣∣ a.P

∣∣ P + P
∣∣ P | P ∣∣ X

∣∣ A(p̄)

Actions: a ::= get(T)@c
∣∣ qry(T)@c

∣∣ put(t)@c

Targets: c ::= self
∣∣ p

Ensemble Predicates: p ::= tt
∣∣ e �� e

∣∣ ¬p ∣∣ p ∧ p with ��∈ {<,≤, >,≥}
Expressions: e ::= v

∣∣ x
∣∣ a

∣∣ . . .

2 StocS: A Stochastic Extension of SCEL

In this section we present the main features of StocS. We start by illustrating its
main syntactic ingredients. Then, we discuss the stochastically timed semantics
we present in this chapter.

2.1 Syntax

The syntax of StocS is presented in Table 1. The basic category defines Pro-
cesses that are used to specify the order in which Actions can be performed.
Sets of processes are used to define the behavior of Components, that in turn
are used to define Systems. Actions operate on local or remote knowledge-
bases and have a Target to determine which other components are involved in
the action. As we mentioned in the Introduction, for the sake of simplicity, in
this version of StocS we do not include Policies, whereas, like SCEL, StocS
is parametric w.r.t. Knowledge, Templates and Items.

We define the following domains for variables and for defining functions signa-
ture: A is the a of attribute names (which include the constant id used to indicate
the component identifier), V is a set of values, K is a set of possible knowledge
states, I is a set of knowledge items, T is a set of knowledge templates. So, in
Table 1, a ∈ A, v ∈ V, K ∈ K, t ∈ I, T ∈ T.

Example 1 (Items and Templates as Tuples and Patterns). Consider a signature
(V ,F) where V is a set of variables and F is a set of function symbols with arity
(we indicate by f/n a function symbol f with arity n) such that 〈〉/i ∈ F for
i = 0, 1, 2, We denote by Terms(V ,F) the set of all possible finite terms on
the given signature (i.e. the terms with variables, constructed respecting function
symbols arities) and by Terms(F) the set of all possible finite ground terms. A
pattern is a term of the form 〈t1, . . . , tn〉, with ti ∈ Terms(V ,F) for i = 1, . . . , n.
A tuple is a term of the form 〈t1, . . . , tn〉, with ti ∈ Terms(F) for i = 1, . . . , n.
In this example we have defined the set of Templates T as the set of patterns
and the set of Items I as the set of tuples.

622 D. Latella et al.

Systems and Components. We let Sys , ranged over by S, S1,. . . , S
′. . . denote

the set of systems defined by the syntax in Table 1. A system S consists of an
aggregation of components obtained via the (parallel) composition operator
‖ . A component I [K, P] consists of:

1. An interface, which is a function I : K→ (A→ V) used for publishing infor-
mation about the component’s state in the form of attribute values. Among
the possible attributes, id is mandatory and is bound to the name of the
component. Component names are not required to be unique, so that repli-
cated service components can be modelled. The evaluation of an interface
I in a knowledge state K is denoted as I(K). The set of possible interface
evaluations is denoted by E.

2. A knowledge repository K, managing both application data and awareness
data (following the approach of [3]), together with the specific handling mech-
anism.

3. A process P , together with a set of process definitions. Processes may ex-
ecute local computations, coordinate local and remote interaction with a
knowledge repository, or perform adaptation and reconfiguration.

Processes. Processes are the active computational units. Each process is built
up from the inert process nil via action prefixing (a.P), nondeterministic choice
(P1 + P2), parallel composition (P1|P2), process variable (X), and parameterised
process invocation (A(p̄)). We feel free to omit trailing occurrences of nil, writing
e.g. a instead of a.nil, whenever there is no confusion arising. Process variables
can be used in templates so that processes can also be stored in / retrieved from
knowledge repositories.

We assume that A ranges over a set of parameterised process identifiers that
are used in recursive process definitions. We also assume that each process iden-
tifier A has a single definition of the form A(f̄) � P where all free variables in P
are contained in f̄ and all occurrences of process identifiers in P are within the
scope of an action prefixing. p̄ and f̄ denote lists of actual and formal parame-
ters, respectively. In the sequel we will use Proc to denote the set of processes,
ranged over by variables P , Q,. . . , P1,Q1.. . . , P

′,Q′,. . . .

Actions and Targets. Processes can perform three different kinds of Actions:
get(T)@c, qry(T)@c and put(t)@c, used to act over shared knowledge repos-
itories by, respectively, withdrawing, retrieving, and adding information items
from/to the knowledge repository identified by c.

These actions exploit templates T as patterns to select knowledge items t in
the repositories. The precise syntax of templates and knowledge items depends
on the specific instance of knowledge repository that is used. Indeed, in Example 1
we provided the syntax for items (I) and templates (T) for one possible instance
of the repository. In the next section we show how StocS is in fact parametric
with respect to different types of knowledge repository.

For the sake of simplicity, in this book we restrict targets c to the distinguished
variable self, that is used by processes to refer to the component hosting it, and

On StocS: A Stochastic Extension of SCEL 623

to component predicates p, i.e. formulas on component attributes. A component
I [K, P] is identified by a predicate p if I(K) |= p, that is, the interpretation
defined by the evaluation of I in the knowledge state K is a model of the for-
mula p. Note that here we are assuming a fixed interpretation for functions and
predicate symbols that are not within the attributes (A). E.g. battery < 3 is a
possible predicate, where < and 3 have a fixed interpretation, while the value
of battery depends on the specific component addressed.

The informal, abstract, semantics of the actions is the following:

– put(t)@c is non-blocking, its execution causes knowledge item t be added
to the knowledge repository of all the components (the interface of which is)
identified by c, if any;

– get(T)@c (qry(T)@c, respectively) is blocking, it causes a knowledge item t
matching pattern T be withdrawn (retrieved, respectively) from the knowl-
edge repository of any of the components (the interface of which is) identified
by c, if any. If no such component/item is available, the process executing
it is blocked in a waiting state. The two actions differ for the fact that get
removes the requested item from the knowledge repository while qry leaves
the target repository unchanged.

The set of components satisfying a given target c of a communication action
can be considered as the ensemble with which the process performing the action
intends to interact.

Knowledge Behavior. Since StocS is parametric w.r.t. the specific knowl-
edge repository used in a specification, we provide no specific syntax/semantics
for knowledge repositories. We only require that a knowledge repository type is
completely described by a tuple (K, I,T,⊕,0,�) where K is the set of possible
knowledge states (the variables K, K1, . . . , K

′, . . . range over K), I is the set
of knowledge items (the variables t, t1,. . . ,t

′,. . . range over I) and T is the set of
knowledge templates (the variables T , T1,. . . , T

′,. . . range over T). Knowledge
items have no variable, while knowledge templates have. We assume to have a
partial function match : T × I → Subst(I) (where Subst(X) is the set of sub-
stitutions with range in X) and we denote as match(T, t) = ϑ the substitution
obtained by matching the pattern T against the item t, if any. By a small abuse
of notation, we write ¬match(T, t) to denote that match(T, t) is undefined.

The operators ⊕, 0, � are used to add, withdraw, and infer knowledge items
to/from knowledge repositories in K, respectively. These functions have the fol-
lowing signature, where Dist(X) denotes the class of probability distributions on
set X with finite support:

– ⊕ : K× I→ Dist(K).
– 0 : K× T ↪→ Dist(K× I);
– �: K× T ↪→ Dist(I);

Function ⊕ is total and defines how a knowledge item can be inserted into a
knowledge repository: K ⊕ t = π is the probability distribution over knowledge

624 D. Latella et al.

states obtained as the effect of adding t. If the item addition operation is mod-
elled in a deterministic way, then the distribution π is a Dirac function. One
advantage of allowing a probabilistic item addition operation is, for example,
the ability of modeling possible.

Function 0 is partial and computes the result of withdrawing a template from
a knowledge state in terms of a probability distribution K 0 T over the set of
pairs (K, t) ∈ (K × I) such that the item t matches the template T . Intuitively,
if K 0T = π and π(K ′, t) = p then, when one tries to remove an item matching
template T from K, with probability p item t is obtained and the resulting
knowledge state is K ′. If a tuple matching template T is not found in K then
K 0 T is undefined, which is indicated by K 0 T = ⊥.

Function � is partial and computes (similarly to 0) a probability distribution
over the possible knowledge items matching template T that can be inferred from
K. Thus, if K � T = π and π(t) = p then the probability of inferring t when
one tries to infer from K a tuple matching T is p. If no tuple matching T can
be inferred from K then K � T is undefined, which is indicated by K � T = ⊥.

2.2 Informal Timed Semantics

The semantics of SCEL does not consider any time related aspect of compu-
tation. More specifically, the execution of an action of the form act(T)@c . P
(for put/get/qry actions) is described by a single transition of the underlying
SCEL Labelled Transition System (LTS) semantics. In the system state reached
by such a transition it is guaranteed that the process which executed the action
is in its local state P and that the knowledge repositories of all components
involved in the action execution have been modified accordingly. In particular,
SCEL abstracts away details concerning:

1. when the execution of the action starts;
2. if c is a predicate p, when the possible destination components are required

to satisfy p;
3. when the process executing the action resumes execution (i.e. becomes P);

and their consequent time relationship. If we want to extend SCEL with an ex-
plicit notion of (stochastic) time, we need to take into account the time-related
issues mentioned above. These issues can be addressed at different levels of ab-
straction, reflecting a different choice of details that are considered in modeling
SCEL actions.

In the following, the process/component initiating an action will be often
called the source of the action execution, while the other components involved
in the execution will be the destinations.

Point (1) above does not require particular comments. Point (2) requires to
define when a component satisfies p with respect to a process executing an ac-
tion, when time and possibly space are taken into consideration. We assume
that source components are not aware of which are the components satisfying
predicate p. Therefore, we define the notion of observation of the component

On StocS: A Stochastic Extension of SCEL 625

by the process, the result of which allows to establish whether the component
satisfies the predicate or not. In the context of distributed systems this is often
realised by means of a message, called an envelope, carrying the actual data
item, sent by the process to the other components. According to this view, the
check whether a component satisfies predicate p is performed when the message
reaches it. This means that, as e.g. in PALOMA [9], a StocS action may require
broadcast communication to be executed, even if its effect involves a few and
possibly no components. In distributed systems different components may have
different response times depending on different network conditions.

Finally, point (3) rises the issue on when source component execution is to
be resumed. In particular, it is necessary to identify how the source compo-
nent is made aware that its role in the communication has been completed.
Get/query actions are blocking and they terminate when the source receives a
knowledge item from any component. A reasonable choice is that further re-
sponses received are ignored. We assume appropriate mechanisms that ensure
no confusion arises between distinct actions and corresponding messages. Put
actions are non-blocking, so it is sufficient that the source component is aware
that all reachable components are involved in the evaluation of the predicate. A
possible choice is to set-up the transmission of one request of predicate evalu-
ation for each component and then terminate the execution on the source side
immediately. On the destination side, it is necessary to model the reception
time as well as subsequent evaluation and corresponding knowledge repository
modification.

In this book, we assume a network-oriented (net-or) view on the system, i.e.
the execution of the various phases sketched above is explicitly modelled in detail
by the operational semantics, which entails that actions are non-atomic. Indeed,
they are executed through several intermediate steps, each of which requires
appropriate time duration modelling. This kind of semantics is appropriate for
models with spatial aspects, where distribution is a sensible aspect influencing
the duration of communications on the basis of the location of components.

In order to obtain an underlying CTMC semantics, in StocS relevant delays—
related to the execution of SCEL actions—are modelled as random RVs with
negative exponential distributions. Therefore, in the following, whenever we as-
sociate a rate λ with a duration, the duration is exponentially distributed with
rate λ. Non-determinism in process behaviour gives raise to race-conditions.

2.3 Explanatory Example

Let us consider three components (seeFig. 1):C1 = I1 [K1, P1],C2 = I2 [K2, P2],
and C3 = I3 [K3, P3] and let us assume process P1 is defined as put(t)@p . Q2.
Note that different components may be in different locations.

The execution of put(t)@p starts in C1 with the first phase in which one copy
of the envelope message {t@p} is sent, on behalf of P1, to each other component

2 For the sake of notational simplicity, in this book we assume that predicate p in
process actions implicitly refers only to the other components, excluding the one
where the process is in execution.

626 D. Latella et al.

λ

μ3

μ2

(a)

λ

μ3

μ2

(b)

Fig. 1. Dynamics of the put action

of the system3. In our example two copies are created/sent, one for/to C2 and
one for/to C3. The time required for this phase (denoted in grey in Fig. 1 (a))
is modelled by a RV with rate λ: this value is computed as a function of several
factors, among which is (the size of) t. Each envelope travels in the system and
reaches the component it is associated with. Different envelopes may experience
different transmission delays; therefore, distinct rates μ2 and μ3 are associated
to each target (in Fig. 1 (a) this is illustrated by two arrows) and each rate
may depend on t as well as other parameters like the distance between C1 and
the destination component. After message creation, P1 can proceed—since put
actions are non-blocking—behaving like Q; the light-grey stripe in Fig. 1 (a)
illustrates the resumed execution of P1 in C1. The evaluation of predicate p is
performed in each destination component Cj when the message arrives at Cj ,
and appropriate actions are taken on Kj. For example, it may happen that C2

satisfies p at the time the message reaches C2, which causes item t to be added
to K2—while C3 does not satisfy p at the time the message reaches C3—so that
K3 is left unchanged.

In practice, one can be interested in modeling also the event of failed delivery
of the envelopes. This is interesting for instance for producing more realistic
models with unreliable network communication. Furthermore, the inclusion of
additional branches for failure modelling helps reducing discontinuities, which
may facilitate the application of advanced analysis techniques based on fluid
approximation [2], such as fluid model-checking [1]. Therefore, we add an error
probability to the envelopes delivery, which we indicate as perr (or simply err, in
the figure). This more detailed semantics of the put(t)@p action is illustrated
in Fig. 1 (b).

3 In an implementation of SCEL, this corresponds to a request sent either via a broad-
cast, that is not really efficient, or via a multicast to all the components potentially
involved in the operation. jRESP, the runtime-environment of SCEL, provides both
of these communication mechanisms [8].

On StocS: A Stochastic Extension of SCEL 627

λ

μ2
μ3

β2

β3

β4

(a)

λ

μ2
μ3

(b)

Fig. 2. Dynamics of the get action

Let us now consider a scenario with four components C1 = I1 [K1, P1],
C2 = I2 [K2, P2], C3 = I3 [K3, P3], and C4 = I4 [K4, P4] with P1 of the
form get(T)@p.Q (or qry(T)@p.Q).

Similarly to the execution of put(t)@p, the first phase consists in the creation
of the envelope messages—with rate λ; this is represented by the grey stripe in
Fig. 2 (a). Since the get (resp. qry) action is blocking, P1 is then put into a
waiting state (denoted by a dashed line in the figure). Each copy of the message
is sent to the corresponding component Cj , with transmission rate βj . Upon
envelope arrival, each component checks for satisfaction of predicate p and avail-
ability of an item t matching template T . Those components for which such a
check gives a positive result, say C2 and C3, are eligible to answer the request
with item t2 and t3 respectively, and a race condition takes place, so that only
one component, say C2, succeeds in providing the item, as required by SCEL

semantics. Once the item (t2) reaches C1, P1 can restart its execution from Qϑ,
with a suitable variable binding match(T, t) = ϑ; when the other item (t3) will
reach C1 it will be disregarded. Transmission rate from C2 (C3 respectively) is
μ2 (μ3).

In order to simplify the semantics of the get/qry actions and to make it more
similar to the two-steps semantics of the put action, we decided to model the
two phases of envelope delivery and response collection as a single one. So, on
message creation, the source (P1) is blocked on waiting for some destination to
synchronise with it on the exchange of the retrieved item tmatching the template
T , as illustrated in Fig. 2 (b). During this synchronization, the predicate p is also
checked, on the side of the destination, and the knowledge is changed accordingly.
The synchronization attempt of all other candidates (C3, in the example) is
simply lost. In terms of the underlying stochastic model, we are replacing a
phase-type distribution, consisting of the sequence of two exponential RVs, with
an exponential RV. This choice is also convenient for simplifying the definition
of the formal semantics, since it avoids the need of giving a unique id to envelope
messages, to be used in the subsequent response collection phase.

628 D. Latella et al.

3 Preliminary Definitions for Operational Semantics

In this section we provide preliminary notions to support the presentation of the
semantics of StocS formalising the ideas described in the previous section. The
semantics definition is given in the FuTSs style [7] and, in particular, using its
Rate Transition Systems (RTS) instantiation [6].

In RTSs, a transition is a triple of the form (P, α,P), the first and second
components of which are the source state and the transition label, as usual,
and the third component P is the continuation function4 that associates a real
non-negative value with each state P ′. A non-zero value represents the rate of
the exponential distribution characterising the time needed for the execution of
the action represented by α, necessary to reach P ′ from P via the transition.
Whenever P P ′ = 0, this means that P ′ is not reachable from P via α. RTS
continuation functions are equipped with a rich set of operations that help to
define these functions over sets of processes, components, and systems. Below we
show the definition of those functions that we use in this chapter, after having
recalled some basic notation, and we define them in an abstract way, with respect
to a generic sets X , X1, X2, . . .

Let TF(X,R≥0) denote the set of total functions from X to R≥0, and F , P,
Q, R, . . . range over it. We define FTF(X,R≥0) as the subset of TF(X,R≥0)
containing only functions with finite support: F is an element of FTF(X,R≥0)
if and only if there exist {d1, . . . , dm} ⊆ X , the support ofF , such that F di �= 0
for i = 1 . . .m and F d = 0 for all d ∈ X \{d1, . . . , dm}. We equip FTF(X,R≥0)
with the operators defined below. The resulting algebraic structure of the set
of finite support functions will be crucial for the compositional features of our
approach.

Definition 1

1. For elements d1, . . . , dm ∈ X and γ1, . . . , γm ∈ R≥0 we use the notation
[d1 → γ1, . . . , dm → γm] for denoting the following function:

[d1 → γ1, . . . , dm → γm] d =def

{
γi if d = di ∈ {d1, . . . , dm},
0 otherwise.

the 0 constant function in FTF(X,R≥0) is denoted by [];
2. We define addition on FTF(X,R≥0) as the point-wise extension of + on R,

i.e. (F1 +F2) d =def (F1 d) + (F2 d);
3. For any injective binary operator • : X1 ×X2 → X we define its lifting to

FTF(X1,R≥0)× FTF(X2,R≥0)→ FTF(X,R≥0) by letting

(F1 •F2)d =def

{
(F1 d1) · (F2 d2) if ∃d1 ∈ X1, d2 ∈ X2. d = d1 • d2,
0 otherwise.

4. We use the characteristic function X on X with X : X → FTF(X,R≥0)
such that X d =def [d → 1]

4 In the sequel, Currying will be used for continuation function application.

On StocS: A Stochastic Extension of SCEL 629

Definition 2. An A-RTS is a tuple (S,A,R≥0,�) where S and A are count-
able, non-empty, sets of states and transition labels, respectively, and relation
�⊆ S ×A× FTF(S,R≥0) is the A-labelled transition relation.

In order to distinguish and identify the rules of the semantics definition, we
label them by unique names. Note that a rule with name r may have one or more
associated blocking rules rB which have the role of allowing the execution of no
actions other than those explicitly allowed by existing inference rules. These
b-rules will not be further commented in the following sections.

4 Network-Oriented Operational Semantics

We recall that the evaluation of an interface I in a knowledge state K is denoted
as I(K). The set of possible interface evaluations is denoted by E. Interface
evaluations are used within the so-called rate function R : E×Act × E→ R≥0,
which defines the rates of actions depending on the interface evaluation of the
source of the action, the action itself (where Act denotes the set of possible
actions), and the interface evaluation of the destination. For this purpose, in-
terface evaluations will be embedded within the transition labels to exchange
information about source/destination components in a synchronisation action.
The rate function is not fixed but it is a parameter of the language. Considering
interface evaluations in the rate functions, together with the executed action,
allows us to take into account, in the computation of actions rates, various as-
pects depending on the component state such as the position/distance, as well as
other time-dependent parameters. We also assume to have a loss probability func-
tion ferr : E×Act ×E→ [0, 1] computing the probability of an error in message
delivery. In the semantics, we distinguish between output actions (those issued
by a source component) and input actions (those accepted by a destination com-
ponent). To simplify the synchronisation of input and output actions, we assume
input actions are probabilistic, and output actions are stochastic, therefore their
composition is directly performed through multiplication.

In order to realise this semantics we extend the set of labels of actions per-
formed by processes and systems as described in the following.

4.1 Operational Semantics of Processes

The net-or semantics of StocS processes is the RTS (Proc ,ActProc ,R≥0,−⇁e).
Proc is the set of process terms defined according to the syntax of StocS given
in Table 1 ActProc is the set of labels defined according to the grammar below
(where t ∈ I, T ∈ T, gq∈{get,qry}, c is a Target, and e is the evaluation of
an interface) and it is ranged over by α, α′, . . . :

ActProc ::= τ
∣∣ {t@p}

∣∣ e : put(t)@c
∣∣ e : gq(T : t)@c

The transition relation−⇁⊆ Proc×ActProc×FTF(Proc ,R≥0) is the least relation
satisfying the rules of Table 2. −⇁e is parametrized by e, which is the interface

630 D. Latella et al.

Table 2. Operational semantics of StocS processes

Inactive process and envelopes:

nil
α−⇁ []

(nil)

{t@p}μ {t@p}−−−−⇁ [nil → μ]

(env)
α �= {t@p}
{t@p}μ α−⇁ []

(envB)

Actions (where, gq ∈ {get,qry}, c is a Target, and p is a Predi-

cate):

λ = R(σ,put(t)@c,)

put(t)@c . P
put(t)@c−−−−−−⇁σ [P → λ]

(put)
α �= put(t)@c

put(t)@c.P
α−⇁ []

(putB)

match(T, t) = ϑ λ = R(σ, gq(T : t)@self,)

gq(T)@self.P
σ : gq(T :t)@self−−−−−−−−−⇁σ [Pϑ → λ]

(gql)

¬match(T, t)

gq(T)@self.P
: gq(T :t)@self−−−−−−−−−⇁ []

(gqlB1)
α �= : gq(T : t)@self

gq(T)@self.P
α−⇁ []

(gqlB2)

λ = R(σ, gq(T :)@p,)

gq(T)@p.P
τ−⇁σ [{gq(T)@p}.P → λ]

(gqw)

α �= τ

gq(T)@p.P
α−⇁ []

(gqwB)

match(T, t) = ϑ β = R(σ, {gq(T : t)@p}, δ)
{gq(T)@p}.P δ:{gq(T :t)@p}−−−−−−−−−⇁σ [Pϑ → β]

(gqd)

¬match(T, t)

{gq(T)@p}.P :{gq(T :t)@p}−−−−−−−−−⇁ []

(gqdB1)
α �= : {gq(T : t)@p}
{gq(T)@p}.P α−⇁ []

(gqdB2)

Choice, definition, and parallel composition:

P
α−⇁e P Q

α−⇁e Q

P +Q
α−⇁e P +Q

(cho)

A(−→x)
def
= P P [−→v /−→x]

α−⇁e P

A(−→v)
α−⇁e P

(def)

P
α−⇁e P Q

α−⇁e Q

P | Q α−⇁e P | (X Q) + (X P) | Q
(par)

evaluation of the component in which the process resides: we feel free to omit
the parameter, if not used in the rule.

We now briefly illustrate the rules of Table 2. We assume to have additional
syntactical terms (not available at the user syntax level) which we call envelopes.
They are of the form {t@p}μ, can be put in parallel with processes, and denote

On StocS: A Stochastic Extension of SCEL 631

messages that are currently traveling towards targets. A second syntactical con-
struct we introduce is {get(T)@p} ({qry(T)@p}, respectively) which denotes a
waiting state of the process and it is treated as an action.

(nil) nil is the terminated process, since no process is reachable from it via any
action;

(env) allows to complete envelope delivery with duration specified by μ;
(put)/(putB) describe possible transitions of a process of the form put(t)@c.P .

The first rule states that put(t)@c.P evolves with rate λ to P after a tran-
sition labeled put(t)@c. This rate is computed by using rate function R.
The execution of a put(t)@c action depends on the source component and
all the other components in the system, which are involved as potential des-
tinations. Consequently, the execution rate λ can be seen as a function of
the action and of the source component (interface evaluation) only; in par-
ticular, the action rate does not depend on (the interface evaluation of) a
specific (destination) component; this is represented by using the symbol
in the destination argument of R. On the contrary, rule (putB) states that
put(t)@c.P cannot reach any process after a transition with a label that is
different from put(t)@c.

(gql) allows a process to issue a get (qry, respectively) action over the local
knowledge repository (i.e. with target self). The rule models the execution
of action get(T)@self (qry(T)@self, respectively) by process get(T)@self.P
(qry(T)@self.P , respectively). The duration of this action is described by a
rate λ computed using the function R depending on the interface evaluation
of the source σ (i.e. the container component) and on the action; the con-
tinuation associates λ with Pϑ, i.e. the process obtained by applying to P
the substitution ϑ resulting from match-ing template T against item t;

(gqw) realises the first step of a get (qry, respectively) action over a remote
knowledge in a component satisfying a predicate p, which consists in prepar-
ing an envelope {get(T)@p} ({qry(T)@p}, respectively), which takes a time
interval exponentially distributed with rate λ, and brings process P to a wait
state {get(T)@p}.P ({qry(T)@p}.P , respectively). Recall that get/qry ac-
tions are blocking and the execution of P is resumed only when a counterpart
satisfying p has a knowledge item t matching T available and the delivery
of t is completed. The duration of this first step is described by a rate λ
computed using the function R depending only on the interface evaluation
of the source σ (i.e. the container component) and the sent template T ;

(gqd) realises the second step of a get (qry, respectively) action, which consists
in the delivery of the knowledge item t matching T and has a duration
described by a rate β computed by the function R. Note that in this case
the function R is computed considering interface evaluation of the source σ
and the destination δ, as well as the sent item t, which means that this rate
can be made dependent (for example) on the distance of the two parties.

(cho) cumulates the relevant rates by means of the application of the choice
operator + on the continuation of P (P) and that of Q (Q), thus conforming
to the race condition principle of CTMCs;

632 D. Latella et al.

Table 3. Operational semantics of StocS components (Part 1)

put actions:

σ = I(K) P
put(t)@self−−−−−−−⇁σ P K ⊕ t = π

I [K, P]
←−−−−−−−−→
σ:put(t)@self−−−−−−−−→ I[π,P]

(c-putl)

σ = I(K) P
put(t)@p−−−−−−⇁σ P

I [K, P]
σ :put(t)@p−−−−−−−→ I[(XK),P]

(c-puto)

δ = I(K) μ = R(σ, {t@p}, δ) perr = ferr(σ, {t@p}, δ)
I [K, P]

σ :put(t)@p−−−−−−−→ [I [K, P] → perr, I[K,P |{t@p}μ] → (1− perr)]
(c-puti)

P
{t@p}−−−−⇁ P I(K) |= p K ⊕ t = π

I [K, P]
{t@p}−−−−→ I[π,P]

(c-enva)

P
{t@p}−−−−⇁ P I(K) �|= p

I [K, P]
{t@p}−−−−→ I[(XK),P]

(c-envr)

(def) is the rule for process instantiation;
(par) realises process parallel composition P | Q and uses Def. 1, item (3)

applied to the process parallel composition syntactic constructor | (which is
obviously injective). Therefore, given two functions R1 and R2, the function
R1 | R2 applied to process term R returns the product (R1 R1) · (R2 R2),
whenever R is of the form R1 | R2, for some terms R1 and R2, and 0
otherwise. In the rule, also the characteristic function X is used. Function
P | (XQ) applied to R returns P R′ if R = R′ | Q for some R′ and 0
otherwise; i.e. the function behaves as the continuation of P (P) for terms
where Q does not progress (for one step). In conclusion, P | (X Q)+(X P) |
Q correctly represents process interleaving, keeping track of the relevant
rates.

4.2 Operational Semantics of Components and Systems

The net-or semantics of StocS systems is the RTS (Sys ,ActSys ,R≥0,−→). Sys
is the set of system terms defined according to the syntax of StocS given in
Table 1. Set ActSys of labels is defined according to the grammar below (where
gq∈{get,qry}, t ∈ I, T ∈ T, p is a Predicate, and e is the evaluation of an
interface):

On StocS: A Stochastic Extension of SCEL 633

Table 4. Operational semantics of StocS components (Part 2)

get/qry actions (where, gq∈{get,qry}):

σ = I(K) P
σ : get(T :t)@self−−−−−−−−−−⇁σ P K � T = π

I [K, P]
←−−−−−−−−−−→
σ : get(T :t)@self−−−−−−−−−−→ I[π(t),P]

(c-getl)

σ = I(K) P
σ :qry(T :t)@self−−−−−−−−−−⇁σ P K ! T = π

I [K, P]
←−−−−−−−−−−→
σ :qry(T :t)@self−−−−−−−−−−→ I[(XK) · π(t),P]

(c-qryl)

K � T = ⊥
I [K, P]

←−−−−−−−−−−→
σ : get(T :t)@self−−−−−−−−−−→ []

(c-getlB)
K ! T = ⊥

I [K, P]
←−−−−−−−−−−→
σ :qry(T :t)@self−−−−−−−−−−→ []

(c-qrylB)

σ = I(K) P
δ : {gq(T :t)@p}−−−−−−−−−⇁σ P

I [K, P]
δ : {gq(T :t)@p}−−−−−−−−−→ I[(XK),P]

(c-gqo)

δ = I(K) δ |= p K � T = π

I [K, P]
δ : {get(T :t)@p}−−−−−−−−−−→ I[π(t), (XP)]

(c-geti)

δ �= I(K) ∨ I(K) �|= p ∨ K � T = ⊥
I [K, P]

: {get(T :t)@p}−−−−−−−−−−→ []
(c-getiB)

δ = I(K) δ |= p K ! T = π

I [K, P]
δ : {qry(T :t)@p}−−−−−−−−−−→ [I [K, P] → π(t)]

(c-qryi)

δ �= I(K) ∨ I(K) �|= p ∨ K ! T = ⊥
I [K, P]

: {qry(T :t)@p}−−−−−−−−−−→ []
(c-qryiB)

τ actions: ρ = I(K) P
τ−⇁ρ P

I [K, P]
τ−→ I[(XK),P]

(c-tau)

634 D. Latella et al.

ActSys ::= e : put(t)@p
∣∣ e : {gq(T : t)@p}

∣∣ (input actions)

e : put(t)@p
∣∣ e : {gq(T : t)@p}

∣∣ (output actions)

τ
∣∣ ←−−−−−−−−−−−→e : {gq(T : t)@p}

∣∣ (synchronisations)

{t@p} (envelopes)

The transition relation −→⊆ Sys ×ActSys ×FTF(Sys ,R≥0) is the least relation
satisfying the rules of Tables 3, 4 and 5, where the process relation defined in
Table 2 is also used.

Table 5. Operational semantics of StocS systems

put synchronization:

S1
σ :put(t)@p−−−−−−−→ S o

1 S1
σ :put(t)@p−−−−−−−→ S i

1 S2
σ :put(t)@p−−−−−−−→ S o

2 S2
σ :put(t)@p−−−−−−−→ S i

2

S1 ‖ S2
σ :put(t)@p−−−−−−−→ S o

1 ‖ S i
2 +S i

1 ‖ S o
2

(s-po)

S1
σ :put(t)@p−−−−−−−→ S1 S2

σ :put(t)@p−−−−−−−→ S2

S1 ‖ S2
σ :put(t)@p−−−−−−−→ S1 ‖ S2

(s-pi)

get/qry synchronization (gq∈{get,qry}):

S1

←−−−−−−−−−−→
δ:{gq(T :t)@p}−−−−−−−−−→ S s

1 S1
δ:{gq(T :t)@p}−−−−−−−−−→ S o

1 S1
δ:{gq(T :t)@p}−−−−−−−−−→ S i

1

S2

←−−−−−−−−−−→
δ:{gq(T :t)@p}−−−−−−−−−→ S s

2 S2
δ:{gq(T :t)@p}−−−−−−−−−→ S o

2 S2
δ:{gq(T :t)@p}−−−−−−−−−→ S i

2

S1 ‖ S2

←−−−−−−−−−−→
δ:{gq(T :t)@p}−−−−−−−−−→ S s

1 ‖ (X S2) +S o
1 ‖ S i

2 +S i
1 ‖ S o

2 + (X S1) ‖ S s
2

(s-gqs)

S1
δ:{gq(T :t)@p}−−−−−−−−−→ S1 S2

δ:{gq(T :t)@p}−−−−−−−−−→ S2

S1 ‖ S2
δ:{gq(T :t)@p}−−−−−−−−−→ S1 ‖ (X S2) + (X S1) ‖ S2

(s-gqi)

Internal actions, for α ∈ { τ, ←−−−−−−−−−→e : put(t)@self,
←−−−−−−−−−−−→
e : gq(T : t)@self, {t@p} } :

S1
α−→ S1 S2

α−→ S2

S1 ‖ S2
α−→ S1 ‖ (X S2) + (X S1) ‖ S2

(s-spl)

The definition of the semantics of system parallel composition S1 ‖ S2 uses
Def. 1, item (3) applied to the system parallel composition constructor ‖, which
is injective. As usual, interleaving is modelled as a combination of lifted ‖, + on

On StocS: A Stochastic Extension of SCEL 635

functions and the characteristic function. In the rules, we also use Def. 1, item (3)
applied to the component syntactic constructors I[·, ·], which is injective.

In Table 3 and Table 4, rules are grouped to illustrate how the various action
types are realised.

(c-putl) describes the execution of put actions operating at self. Let I [K, P]
be a component; this rule states that P executes action put(t)@self with
local interface evaluation σ = I(K) and evolves to P , then a local execu-
tion of the action can occur and the entire component evolves with label←−−−−−−−−−→
σ : put(t)@self to I[π,P], where π = K ⊕ t is a probability distribution
over the possible knowledge states obtained from K by adding the knowl-
edge item t, while I[π,P] is the function which maps any term of the form
I [K, P] to (πK) · (PP) and any other term to 0.

(c-puto) this rule is used when the target of a put is not self but a predi-
cate p; the rule simply lifts an output put action from the process level to
the component level and transmits to its counterpart its current interface
evaluation σ by including it in the transition label.

(c-puti) models the initiation of the execution of action put(t)@c, which re-
quires several steps to complete, it allows the reception of a put action,
and it is responsible for the creation of the envelope (carrying the incoming
message) in parallel to the local process of a component, thus modeling its
travel towards that component in terms of the time necessary to reach it,
parametrized by rate μ (the fact that the envelope is in parallel with the pro-
cess of the potential receiver component by no means should be interpreted
as the representation of the fact that the message reached the component;
simply, the association between the message and the component is repre-
sented by means of a parallel composition term; in other words, the fact
that a specific message is ‘addressed’ to a component is represented syntac-
tically by such a parallel composition); this action is executed with rate λ,
computed using the function R depending on the interface evaluation of the
source σ (i.e. the container component) and the sent item t; this is postu-
lated by the rule (put) and realised at system level by the broadcast rules
of Table 5.

(c-enva)/(c-envr) realise envelope delivery by specifying the conditions under
which a component accepts or refuses, respectively, an arriving envelope;

(c-getl)/(c-qryl) realise the local get (qry) action retrieving an item t ∈ I

matching the pattern T , if possible, in the execution of process P (in the
label of the process action we include the item t and we include the interface
evaluation σ of the component for computing the action rate) and, since the
get (qry) action may result in several distinct knowledge bases, these need
to be summed together considering all possibilities: π is a distribution over
pairs (knowledge base and knowledge item) and the possible components in
the continuation are weighted by using π;

(c-gqo) realises an output get/qry action as in the act-or semantics, but
with a different label ({. . .}) which denotes the synchronization on a waiting
state;

636 D. Latella et al.

(c-geti)/(c-qryi) realise an input get/qry action, again as in the act-or

semantics, but with a different label ({. . .});
(c-tau) allows a component to make a τ whenever its process makes such an

action.

Finally, we discuss the rules in Table 5:

(s-po)/(s-pi) realise the broadcast communication of put: (s-po) ensures that
if any subsystem executes an output put action (i.e. it executes a transition
with label σ : put(t)@p), then the remaining subsystem must execute the
corresponding input put action (i.e. it should execute a σ : put(t)@p la-
beled transition); the composed system does not exhibit a synchronization
label, but it rather propagates the output σ : put(t)@p to allow further syn-
chronization with all the other components in parallel; in the computation
of the final rate it is necessary to consider output on the left sub-system
and input on the right as well as the symmetric case; while (s-pi) allows an
input put action forcing all of the components of a sub-system to perform
that action;

(s-gqs) realises one-to-one synchronization of get/qry actions (which are not

broadcast), denoted by a
←−−−−−−−−−→
e : gq(T : t)@p label, and performs aggregation of:

(1) the synchronization rate of the left (right) sub-system, with the right
(resp. left) subsystem that must not progress (this is realised using the X
characteristic function), and (2) output rates of the left sub-system and input
rates of the right subsystem (as well as the symmetric case), combined with
the ‖ operator;

(s-gqi) realises the input get (resp. qry) action for systems in which one com-
ponent, among those satisfying the target predicate and having a matching
knowledge item, can answer;

(s-spl/s-sgql) allow a system to execute an internal action and exposes the
label denoting the type of action to allow appropriate aggregation of the
observed rates.

5 StocS at Work

In this section we use a simple example to show how StocS can be used to
specify and verify quantitative properties of adaptive systems. We consider a
cloud scenario where users can execute their task in a distributed environment.
A QoS profile is associated to each user. Possible profiles are: basic, standard,
premium and super premium. Our system has two main requirements. First, we
have to reduce the number of tasks submitted by premium and super premium
users that are waiting for the execution. Moreover, we have to minimise the
number of computational resources allocated for the execution of tasks.

In StocS both users and computational resources can be rendered via com-
ponents. We refer to the first group of components as user components, while
the components in the second group are referred as computational components.

On StocS: A Stochastic Extension of SCEL 637

Components associated to users publish in the interface the user QoS level.
Moreover, users communicate the need to execute a task via their knowledge.
Computational components retrieve the corresponding knowledge element. The
following process, executed at users components, models this behaviour:

UTask()
def
= put(“TASK”)@self.UTask()

We assume that tasks requests arrive at a rate λtr = 50.0. We also assume that
40% of the requests come from basic users; 35% come from standard users while
15% and 10% arrive from premium and super premium users respectively.

Computational resources can execute at most k tasks at the same time (in
the following we consider k = 15). This value corresponds to the number of Ser-
viceAgents that are executed at each computational component. These processes
retrieve and execute tasks. We can vary the method used by ServiceAgent to
retrieve pending tasks from users to obtain different kinds of specifications. In
particular, we consider three possible approaches: static allocation, progressive
allocation and dynamic allocation. When static allocation is used, each com-
putational component only handles tasks from users of a given level. In the
progressive allocation, like in the previous case, each computational component
is associated with a QoS level. However, differently from the static allocation,
each process is able to handle tasks from users with a QoS level that is equal or
higher than the associated one. Finally, in the dynamic allocation, the class of
users that a component can handle depends on the computation load : the higher
is the number of executed tasks in a component, the higher is the QoS level that
the same component can handle.

Process ServiceAgent is defined as follows:

ServiceAgent()
def
= get(“TASK”)@c.

put(“EXECUTE”)@self.
ServiceAgent()

The get action is activated with rate λ = 1 that is also the rate of data trans-
mission. The execution time of action put(“EXECUTE”)@self mimics the task
execution time and it is exponentially distributed with rate λe = 1

3 . All the
above mentioned rates do not appear explicitly in the syntax of the specifica-
tions. These are obtained via the appropriate rate function R according to the
kind of action performed, the data transmitted and the interfaces of the involved
components, provides the actual action rate. Due to lack of space we omit the
explicit definition of function R that can be easily inferred from the informal
description.

Note that in process ServiceAgent, the term c varies according to the consid-
ered allocation method :

static allocation
this.level == I.level

progressive allocation
this.level <= I.level

638 D. Latella et al.

dynamic allocation

((this.load <= 50%) ∧ I.level >= base)∨
((this.load <= 66%) ∧ I.level >= standard)∨
((this.load <= 88%) ∧ I.level >= premium)∨
(I.level == superpremium)

The formulas listed above identifies the specific predicates used by ServiceAgent
to retrieve requests from user components. Above, this is used to refer to the
interface of the local component (i.e. the computational component executing
a ServiceAgent) while I refers to the target interface, i.e. the component from
which the request is retrieved. Two attributes are used in the considered pred-
icates: level and load. These identify the user QoS level and the workload of a
component, respectively.

Note that in the case of dynamic allocation, self-awareness is rendered directly
in the target predicated used to retrieve user requests. A ServiceAgent handles
base (resp. standard, premium) users only when the component’s load is under
50% (resp. 66%, 88%), while super premium users are always executed. The actual
value of attribute load is transparently published on the component interface and
dynamically computed according to the number of executed tasks.

To perform analyses of the considered system we use jRESP 5. This is a Java
environment that provides a simulation environment that, while implementing

0 20 40 60 80 100
Time Units

0

0.2

0.4

0.6

0.8

W
ai

tin
g

Ta
sk

s

Base

Standard

Premium

Super Premium

0 20 40 60 80 100
Time Units

0

0.5

1

1.5

2

2.5

W
ai

tin
g

Ta
sk

s

Base
Standard
Premium
Super Premium

0 20 40 60 80 100
Time Units

0

0.5

1

1.5

2

2.5

3

W
ai

tin
g

Ta
sk

s

Base
Standard
Premium
Super Premium

C1 C2 C3

Fig. 3. Simulation results: Number of waiting tasks

0 20 40 60 80 100
Time Units

0

0.2

0.4

0.6

0.8

Wo
rk

loa
d %

Min. Load
Avg. Load
Max. Load

0 20 40 60 80 100
Time Units

0

0.2

0.4

0.6

0.8

1

Wo
rk

loa
d %

Min. Load
Avg. Load
Max. Load

0 20 40 60 80 100
Time Units

0

0.2

0.4

0.6

0.8

1

Wo
rk

loa
d %

Min. Load
Avg. Load
Max. Load

C1 C2 C3

Fig. 4. Simulation results: Workload

5 http://jresp.sourceforge.org

http://jresp.sourceforge.org

On StocS: A Stochastic Extension of SCEL 639

the stochastic semantics presented in Section 4, can be used to analyse StocS

specifications.
We consider three configurations:

C1 static allocation with 16 components: 6 for base, 5 standard, 3 premium and
2 super premium;

C2 progressive allocation with 13 components: 7 for base, 4 standard, 2 premium;
C3 dynamic allocation with 12 components.

The results of simulations are reported in Figure 3 and Figure 4. If we compare
the three configurations with respect to the average number of waiting tasks,
the model C1 is the one guaranteeing better quality of service (see Figure 3
). However, if we consider the workload, C3 is the one that, by using a less
number of computational resources, guarantees a well balanced use of resources
(see Figure 4).

6 Conclusions and Future Work

We have introduced StocS, a stochastic extension of SCEL, for the modeling
and analysis of performance aspects of ensemble based autonomous systems.
One of the original features of the language is the use of stochastic predicate
based multi-cast communication which poses particular challenges concerning
stochastically timed semantics. The proposed semantics models the execution
StocS actions through several intermediate steps modelling the behaviour of
an underling framework providing the machinery for realising the StocS com-
munication primitives. A case study concerning an abstract model of a cloud
system was presented to illustrate the use of the various language primitives of
StocS. As a future work we plan to develop fluid semantics of StocS together
with the related verification techniques that can be used to address the analysis
of large scale collective systems along the lines of work in [1,2].

References

1. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)

2. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: A tutorial. Perform. Eval. 70(5), 317–349 (2013)

3. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A con-
ceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) Fundamen-
tal Approaches to Software Engineering. LNCS, vol. 7212, pp. 240–254. Springer,
Heidelberg (2012)

4. De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: Model
Checking Mobile Stochastic Logic. Theoretical Computer 382(1), 42–70 (2007),
http://dx.doi.org/10.1016/j.tcs.2007.05.008, doi:10.1016/j.tcs.2007.05.008.

5. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based approach
to autonomic computing. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue,
M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012)

http://dx.doi.org/10.1016/j.tcs.2007.05.008

640 D. Latella et al.

6. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based transition sys-
tems for stochastic process calculi. In: Albers, S., Marchetti-Spaccamela, A., Ma-
tias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556,
pp. 435–446. Springer, Heidelberg (2009)

7. Nicola, R.D., Latella, D., Loreti, M., Massink, M.: A uniform definition of stochastic
process calculi. ACM Comput. Surv. 46(1), 5:1–5:35 (2013)

8. Nicola, R.D., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: The SCEL language. TAAS 9(2), 7 (2014)

9. Feng, C., Hillston, J.: PALOMA: A process algebra for located markovian agents.
In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 265–280.
Springer, Heidelberg (2014)

10. N. Koch, M. Hölzl, A. Klarl, P. Mayer, T. Bures, J. Combaz, A.L. Lafuente, R.D.
Nicola, S. Sebastio, F. Tiezzi, A. Vandin, F. Gadducci, V. Monreale, U. Montanari,
M. Loreti, C. Pinciroli, M. Puviani, F. Zambonelli, N. Šerbedžija, E. Vassev.: JD3.2:
Software engineering for self-aware SCEs. ASCENS Deliverable JD3.2 (2013)

11. Latella, D., Loreti, M., Massink, M., Senni, V.: Stochastically timed predicate-
based communication primitives for autonomic computing. In: Bertrand, N., Bor-
tolussi, L. (eds.) Proceedings Twelfth International Workshop on Quantitative As-
pects of Programming Languages and Systems, QAPL 2014, Grenoble, France,
April 12-13. EPTCS, vol. 154, pp. 1–16 (2014)

12. Nicola, R.D., Hölzl, M., Loreti, M., Lafuente, A.L., Montanari, U., Vassev, E.,
Zambonelli, F.: JD2.1: Languages and knowledge models for self-awareness and
self-expression. ASCENS Deliverable JD2.1 (2012)

13. Šerbedžija, N., Hoch, N., Pinciroli, C., Kit, M., Bures, T., Monreale, V., Montanari,
U., Mayer, P., Velasco, J.: D7.3: Third report on wp7 - integration and simulation
report for the ascens case studies, ASCENS Deliverable D7.3 (2013)

14. Šerbedžija, N., Massink, M., Pinciroli, C., Brambilla, M., Latella, D., Dorigo, M.,
Birattari, M., Mayer, P., Velasco, J.A., Hoch, N., Bensler, H.P., Abeywickrama, D.,
Keznikl, J., Gerostathopoulos, I., Bures, T., Nicola, R.D., Loreti, M.: D7.2: Second
report on wp7 - integration and simulation report for the ascens case studies.
ASCENS Deliverable D7.2 (2012)

Programming Autonomic Systems

with Multiple Constraint Stores�

Ugo Montanari1, Rosario Pugliese2, and Francesco Tiezzi3

1 Università di Pisa, Italy
ugo@di.unipi.it

2 Università degli Studi di Firenze, Italy
rosario.pugliese@unifi.it

3 IMT Institute for Advanced Studies, Lucca, Italy
francesco.tiezzi@imtlucca.it

Abstract. Developing autonomic systems is a major challenge due
to their distributed nature, large dimension, high dynamism, open-
endedness, and need of adaptation. In this paper, we tackle this challenge
by proposing a language, called ccSCEL, that combines abstractions and
primitives specifically devised for programming autonomic systems by
also using constraints and operations on them. We show that constraints
permit addressing issues related to the programming of autonomic sys-
tems, since they are suitable means to deal with, e.g., partial knowledge,
multi-criteria optimisation, preferences, uncertainty. We also present an
advanced form of interaction that is particularly convenient in this set-
ting. It allows a component of a system to access the constraint-based
knowledge of all components checking its consistency and implications.

1 Introduction

Developing massively distributed and highly dynamic computing systems which
interact with and control the physical world is a major challenge in software
engineering [17]. Many difficulties arise from the fact that large-scale distributed
systems are open-ended and dynamic, meaning that their components may freely
appear and disappear as well as change their interaction partners. Other difficul-
ties arise from the fact that the external environment can be non-deterministic
and subject to unpredictable changes. Hence, hardware and software systems
operating in these settings should be autonomic [11], that is they should fea-
ture a certain degree of self-awareness and self-adaptability for achieving desired
behaviour while at the same time hiding intrinsic complexity to users.

Ensembles of components is a promising way of building autonomic sys-
tems which is being pursued by the EU project ASCENS. Contrary to classical
component-based software engineering, it features important, related concepts
of knowledge and ensembles. The knowledge of a component is a set of facts with

� This work has been partially sponsored by the EU project ASCENS (257414) and
by the Italian MIUR PRIN project CINA (2010LHT4KM).

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 641–661, 2015.
c© Springer International Publishing Switzerland 2015

642 U. Montanari, R. Pugliese, and F. Tiezzi

well-defined relations. The facts in the knowledge change at runtime to reflect the
state of the component and its belief about the environment, thus effectively ad-
dressing the self-awareness of the component. Ensembles are interaction groups
of several, possibly heterogeneous, components, formed on demand to reflect in-
tentions of components relatively to the current state of their environment. This
way, ensembles address the dynamicity and self-adaptivity of components.

Ensembles are often required to solve complex problems of real life, even
situations in which the level of interaction between humans and components of
the ensemble is strongly limited or absent. Therefore, their components usually
collaborate with each other in order to achieve a common goal. This calls for
further features, such as self-configuration, self-optimisation, self-healing and
self-protection, that increase the self-management capability of the systems.

With the goal of developing a coherent, integrated set of linguistic primitives
specifically devised to model and program ensembles, in previous work we have
proposed the language SCEL (Software Component Ensemble Language, [8]).
In SCEL, autonomic components are entities with dedicated knowledge reposi-
tories and resources that can cooperate while playing different roles. Knowledge
repositories also enable components to store and retrieve information about their
working environment, and to use it for redirecting and adapting their behav-
ior. Each component is equipped with an interface, consisting of a collection
of attributes, such as provided functionalities, spatial coordinates, group mem-
berships, trust level, response time, etc. Attributes are used by the components
to dynamically organize themselves into ensembles. The way sets of partners
are selected for interaction, and thus how ensembles are formed, is one of the
main novelties of SCEL. In fact, individual components can not only single
out interaction partners by using their identities, but they can also select part-
ners by exploiting the attributes in the interfaces of the individual components.
Predicates over such attributes are used to specify the targets of interaction
actions, thus providing a sort of attribute-based interaction. In this way, the for-
mation rule of ensembles is endogenous to components: members of an ensemble
are connected by the interdependency relations defined through predicates. An
ensemble is therefore not a rigid fixed network, but rather a highly dynamic
structure where components linkages are dynamically established.

SCEL has proven to be suitable to model many different autonomic systems
scenarios [8,5,6,13,14,3,12,9,7]. In the context of intelligent navigation of electric
vehicles (e-Mobility), in [3] we have complemented the SCEL specification of
the system with an approach based on soft constraint programming specifically
targeting intuitive specification of optimization problems that frequently appear
in autonomic systems. The interplay of the two approaches has turned out to
be very useful for describing mutually related activities of interaction and coor-
dination among vehicles combined with finding a tradeoff between local-global
optima (reflecting both the complexity of a globally optimal policy and the need
of harmonizing the selfish and cooperative concerns of vehicles).

In this paper we further push forward the integration of soft constraints
with SCEL. Technically, we exploit the fact that the SCEL language definition

Programming Autonomic Systems with Multiple Constraint Stores 643

abstracts from a few ingredients of the language and we appropriately specialize
these parameters of the language so that constraints and operations on them are
smoothly incorporated in SCEL. We obtain in this way a dialect of SCEL, that
we call ccSCEL, specifically devised for enabling soft concurrent constraint pro-
gramming (SCCP) [2] via the interaction primitives of SCEL. We demonstrate
that using constraints as a form of knowledge of SCEL components can bring ben-
efits to address issues related to ensembles of components. Constraints are indeed
suitable to represent partial knowledge, to deal with multi-criteria optimization,
to express preferences, fuzziness, and uncertainty1.

The contribution of this work is twofold. On the one hand, we define a fully-
specified dialect of SCEL for programming autonomic systems in terms of both
tuple-based and constraint-based coordination. Both coordination approaches
are supported by a common set of primitives and are hence formalised by means
of a uniform semantics. This permits using ccSCEL for programming a wide
range of relevant autonomic systems, since one can deal at once with such issues
as constraint-driven decision making, achievement of service-level agreements,
coordination of asynchronous interactions, concurrent activities, resource usage,
self-awareness and adaptation, in a distributed, open-ended setting. From the
constraint programming point of view, we present a novel distributed variant
of the SCCP paradigm, where constraints are stored in the local stores of the
components of an ensemble but, when specifically required by a component, they
may be involved in a global check of consistency at ensemble level.

More specifically, in ccSCEL each component is equipped with a local store
which is a multiset of constraints. This store is independent from the stores of the
other components since the variables occurring in the constraints stored locally
are private to the component and are thus distinct from the variables used in
the other stores. Processes running at components can operate on (possibly non
local) stores by inserting, entailing and withdrawing constraints. The language
semantics ensures that when such an operation is performed, the consistency
of the target store is preserved. ccSCEL also provides policies for regulating
the behaviour of components. In case of remote insertion of a constraint, some
of these policies require to check the consistency of multiple stores temporar-
ily related through constraints equating variables of the different components.
Similarly, in case of remote retrieval of a constraint, these policies require to
check the entailment of a constraint by the multiset of constraints obtained by
temporarily relating different stores. This sort of ‘global’ consistency, unlike the
‘local’ consistency of a single store, is however not guaranteed to be preserved
while the computation progresses: it surely holds when a constraint is inserted
(as it is a necessary condition for the insertion), afterwards it could be violated
because of, e.g., local insertion of constraints.

We also present an extension of the ccSCEL dialect enabling a form of
ensemble-wide interaction. By resorting to this kind of interaction, a compo-
nent can access the knowledge of the components of an ensemble as a whole. In
particular, it can send a constraint to the ensemble components and check for

1 Additional details and motivations on the use of constraints can be found in [1,16].

644 U. Montanari, R. Pugliese, and F. Tiezzi

consistency of the multiset of all their constraints. Similarly, it can check if a
constraint is entailed from the multiset of all ensemble components’ constraints.

It is worth noticing that there is neither automatic generation and propagation
of entailed constraints, nor automatic saturation of constraint stores. This design
choice enables (syntactic) constraints withdrawal and is in line with the highly
dynamic and open-ended nature of the systems under consideration. Of course,
enrichment of stores with some of the constraints entailed at a certain point of
the computation can be explicitly programmed. These constraints may represent
knowledge that is acquired also thanks to the contribution of other members of
an ensemble, whose knowledge might thus be only temporarily available (i.e. as
long as the component is part of the ensemble). In this way, ccSCEL turns out to
be flexible enough for adequately modelling both ‘memory-full’ scenarios, where
it might be useful to preserve the knowledge acquired during the computation,
and ‘memoryless’ scenarios, where only the knowledge that can be inferred at
each computation step is taken into account.

We also want to remark that an important design aspect of programming lan-
guages is about the delicate tradeoff between expressiveness of constructs and
their conceptual and implementation complexity. In our case, ccSCEL does not
require any extension of SCEL, but only a specialisation. Also, the logical inde-
pendence of the constraint stores of the various components allows for smaller
complexity (checking for constraint satisfaction is NP-complete even in the sim-
plest cases) and for different deduction approaches, e.g. monotonic increase in
a component and retract capability in another. Conversely, the ccSCEL exten-
sion enabling to check for global consistency is a powerful, expressive feature
which could be very useful in the design phase, and possibly implemented in an
approximated way in the refined implementation.

The rest of the paper is structured as follows. In Section 2, we provide the
background notions on (soft) constraints used in Section 3 to define the ccSCEL

dialect. Section 4 shows ccSCEL at work on a Web hosting example. Section 5
presents the extension of the language to support the ensemble-wide interaction.
Finally, Section 6 concludes by touching upon comparisons with related work
and directions for future work. To save space, we refer the interested reader to
[15] for the complete definitions of the semantics of ccSCEL and its extension.

During the last twelve years the authors had the chance to collaborate with
Professor Martin Wirsing in several occasions, especially in the context of the
European projects he recently coordinated: Agile, Sensoria and Ascens. He has
been a source of inspiration and enrichment, from both a scientific and a human
point of view. In particular, this paper proposes an integration of autonomic
systems programming and soft constraint programming, two key topics of Ascens
Martin significantly contributed to. Many thanks Martin, this paper is dedicated
to you on the occasion of your Emeritation!

2 Semiring-Based Constraints

In this section, we report some basic definitions concerning the concept of (soft)
constraints.

Programming Autonomic Systems with Multiple Constraint Stores 645

Among the many available formalizations, hereafter we refer to the one based
on c-semirings [1,16], which generalizes many of the others. Intuitively, a con-
straint is a relation that gives information on the possible values that the vari-
ables of a specified set may assume. We adopt a functional formulation. Hence,
given a set V of variables and a domain D of values that the variables may
assume, assignments and constraints are defined as follows.

Definition 1. An assignment η of values to variables is a function η : V → D.

Definition 2. A constraint χ is a function χ : (V → D)→ {true, false}.
A constraint is then represented as a function that, given an assignment η,
returns a truth value indicating if the constraint is satisfied by η. An assignment
that satisfies a constraint is called a solution.

In ccSCEL, V is the set of constraint variables and D is the set of SCEL

basic values (e.g., integers and strings). Constraint variables are written as pairs
of names of the form n@n′ (e.g., cost@client and battery level@robot), where n
is the variable name and n′ the name of the component that owns the variable.
Notably, different components may own variables with the same name; such
variables are distinct and may thus store different values.

When convenient, we will denote an assignment as a collection of pairs of
the form n@n′ → v, where n@n′ and v range over variables and values, re-
spectively. Such pairs explicitly specify the associations for only the variables
relevant for the considered constraint; these variables form the so-called sup-
port [2] of the constraint, which is supposed to be finite. For example, given the
constraints cost@client ≥ 350 and cost@client = bw@client · 0.05, the assign-
ment {cost@client → 500, bw@client → 8000} satisfies the first constraint (i.e.,
returns true) but does not satisfy the second one (i.e., returns false).

The constraints introduced above are called crisp in the literature, because
they can only be either satisfied or violated. A more general notion is represented
by soft constraints. These constraints, given an assignment, return an element
of an arbitrary constraint semiring (c-semiring [1]). C-semirings are partially
ordered sets of ‘preference’ values equipped with two suitable operations for
comparison (+) and combination (×) of (tuples of) values and constraints.

Definition 3. A c-semiring is an algebraic structure 〈S,+,×, 0, 1〉 such that:
S is a set and 0, 1 ∈ S; + is a binary operation on S that is commutative,
associative, idempotent, 0 is its unit element and 1 is its absorbing element;
× is a binary operation on S that is commutative, associative, distributes over
+, 1 is its unit element and 0 is its absorbing element. Operation + induces a
partial order ≤ on S defined by a ≤ b iff a+ b = b, which means that a is more
constrained than b or, equivalently, that b is better than a. The minimal element
is thus 0 and the maximal 1.

Definition 4. Let 〈S,+,×, 0, 1〉 be a c-semiring. A soft constraint χ is a func-
tion χ : (V → D)→ S.

In particular, crisp constraints can be understood as soft constraints on the
c-semiring 〈{true, false},∨,∧, false, true〉.

646 U. Montanari, R. Pugliese, and F. Tiezzi

By lifting the c-semiring operators to constraints, we get the operators

(χ1 + χ2)(η) = χ1(η) + χ2(η) (χ1 × χ2)(η) = χ1(η) × χ2(η)

(their n-ary extensions are straightforward). We can formally define the notions
of consistency and entailment. The consistency condition χ �= 0 stands for

∃ η : χ(η) �= 0

i.e. a constraint is consistent if it has at least one solution; the entailment con-
dition χ1 ≤ χ2 stands for

∀ η, χ1(η) ≤ χ2(η) .

3 The ccSCEL Dialect

SCEL is a kernel language for programming autonomic computing systems in
terms of Behaviours, Knowledge and Aggregations, according to specific Policies.
Behaviours describe how computations progress and are modelled as processes
executing actions. Knowledge is represented through items containing either ap-
plication data enabling the progress of components’ computations, or awareness
data providing information about the environment in which the components are
running (e.g., monitored data from sensors) or about the status of a compo-
nent (e.g., its current location). Aggregations describe how different entities are
brought together to form components and ensembles. In particular, components
result from a form of syntax-based aggregation that puts together a knowledge
repository, a set of policies and a set of behaviours, by wrapping them in an
interface providing a set of attributes, i.e. names referring to information stored
in the knowledge repository. Components’ composition and interaction are im-
plemented by relying on predicates over the attributes exposed in components’
interfaces. This semantics-based aggregation of components permits defining en-
sembles, representing social or technical networks of components, and configur-
ing them to dynamically adapt to changes in the environment. Finally, policies
control and adapt the actions of the different components for guaranteeing ac-
complishment of specific tasks or satisfaction of specific properties.

In the design of SCEL, some ingredients of the language have been intention-
ally left unspecified in order to fit different paradigms and application domains.
Different dialects can thus be derived by simply instantiating the SCEL’s pa-
rameters without modifying the semantics. These parameters are

1. the languages for representing knowledge items and the templates to be used
to retrieve these items from the repositories;

2. the language for representing knowledge repositories, together with the three
operations, i.e. withdrawal, retrieval and insertion, that each knowledge
repository’s handling mechanism must provide;

3. interaction predicate and authorisation predicate;
4. the language for expressing policies.

Programming Autonomic Systems with Multiple Constraint Stores 647

Table 1. ccSCEL syntax

Systems: Components:

S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S C ::= I[K, Π, P]

Processes:

P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1 |P2

∣∣ X
∣∣ A(p̄)

Actions:

a ::= get(T)@c
∣∣ qry(T)@c

∣∣ put(t)@c
∣∣ fresh(n)

∣∣ new(I,K, Π,P)

Targets:

c ::= n
∣∣ x

∣∣ self
∣∣ P

∣∣ p

Knowledge: Policies:

K ::= ∅ ∣∣ t ‖ K Π ::= Π1store

∣∣ Π2store

∣∣ ΠN

Items: Templates:

t ::= χ
∣∣ 〈f〉 T ::= χ

∣∣ 〈F 〉
Data Tuple Fields: Data Template Fields:

f ::= e
∣∣ c

∣∣ P
∣∣ f1, f2 F ::= e

∣∣ c
∣∣ ?x

∣∣ ?X
∣∣ F1, F2

We introduce the syntax and (a sketch of the) semantics of the ccSCEL di-
alect, which enables (soft concurrent) constraint programming via the interaction
primitives of SCEL

2. To define ccSCEL, the SCEL parameters are instanti-
ated as follows: 1. items are constraints and data tuples, while templates are
constraints and data templates; 2. knowledge repositories behave as constraint
stores and tuple spaces, i.e., according to the considered kind of knowledge, the
withdrawal, retrieval and insertion operations act as the SCCP actions tell, ask
and retract or as the tuple-based actions out, read and in, respectively; 3. the
interaction predicate is defined so that the different kinds of knowledge items are
appropriately taken into account (e.g., pattern-matching is used to pick a tuple
matching a given template out of a repository) and evaluated; similarly, the au-
thorisation predicate is defined so that the different policies are appropriately
enforced (e.g., the insertion of a constraint is always allowed if it occurs locally,
otherwise consistency of the combination of the constraint to be added with the
remote and local constraint repositories is required); 4. the policy language is
very basic and only includes three elementary policies which only differ for the
requirements about consistency in case of constraint insertion and entailment.

3.1 Syntax

The syntax of ccSCEL is illustrated in Table 1. The grammar definitions in the
upper part of the table are directly borrowed from SCEL without any change.
Thus, the basic syntactic category is the one defining Processes that are used

2 We refer the interested reader to [8] for a full account of the SCEL language.

648 U. Montanari, R. Pugliese, and F. Tiezzi

to build up Components that in turn are used to define Systems. Processes
specify the flow of the Actions that can be performed. Actions can have a
Target to determine the other components that are involved in that action. In
particular, there are five different kinds of actions: get, qry and put are used to
withdraw/retrieve/add information items from/to knowledge repositories; fresh
generates fresh names; new creates new components. The grammar definitions
in the lower part of the table are specific to the notion of knowledge considered
in ccSCEL which is the topic of the rest of this section.

A knowledge repository K can contain two kinds of items: constraints χ and
data tuples 〈f〉. Thus, a repository can play the role of both a constraint store3

and a tuple space.
Constraints stored in knowledge repositories are as introduced in Section 2,

while constraints used as action arguments may only involve process variables
and underspecified constraint variables. These latter ones are constraint variables
lacking the name of the owner component and thus ending with the symbol @,
as e.g. cost@, which permits to distinguish them from process variables. The
owner of such a variable is the component target of the action. Its name will
be automatically added to the variable name at the time of the insertion of the
constraint in the target store (see Section 3.2). The restriction of using only
underspecified constraint variables in action arguments ensures that all the con-
straints stored in the same repository only involve variables owned by the same
component, which is the owner of the repository. Thus, for example, it will never
happen that the client’s repository stores a constraint like cost@provider < 100.

A data tuple is a sequence of actual fields, while a data template 〈F 〉 is a
sequence of actual and formal fields. Actual fields can either be expressions or
targets. We assume that expressions contain boolean, integer, float, and string
values and variables, together with the corresponding standard operators. Tar-
gets can be (component) names or variables, the distinguished variable self,
predicates or predicate names. Formal fields, written as ?x or ?X , are used to
bind variables to values or to processes, respectively. More precisely, actions
get(〈F 〉)@c and qry(〈F 〉)@c bind the variables occurring in the data template
〈F 〉. Action fresh(n) is a binder for the name n which is ensured to be different
from any other name previously used. For all these three action binders, the
scope is the process P syntactically following the action in a prefix form a.P .
Instead, the restriction operator (νn) binds the name n in the scope .

ccSCEL also relies on three policies regulating the behaviour of components.
They only differ for the requirements in case of constraints insertion and en-
tailment. Indeed, when the insertion is local to the component performing the
action, only the consistency of the local store is checked, no matter what the
policy is. Otherwise, policy Π1store prescribes to combine (by means of operation
×) and check for consistency only the constraints within the remote store. Policy
Π2store prescribes to combine, and check for consistency, the constraints within

3 In the rest of the paper, we will use the term ‘repository’ to refer to a generic
container of knowledge items and the term ‘store’ to refer to (the part of) a container
storing constraints.

Programming Autonomic Systems with Multiple Constraint Stores 649

the remote and local stores. The two stores are temporarily related through
some constraints equating all the homonymous variables owned by the two com-
ponents. Entailment is handled similarly. Notice that if a variable in a store has
no counterpart in the other store no problem arises, simply no equation is gen-
erated. The consistency/entailment check over the combined store is performed
when at least one between the component performing the action and the target
one is exposing the Π2store policy. Policy ΠN is similar to Π2store, but for the
fact that only variables in the set of names N are equated.

3.2 Semantics

In ccSCEL, arguments of actions can either be constraints or data tuples; there-
fore, their semantics is specialized as follows. When the argument of actions put,
qry and get is a constraint, they play the role of actions tell, ask and retract,
respectively, commonly used in the SCCP paradigm to add a constraint to a
store, to check entailment of a constraint by a store and to remove a constraint
from a store. Instead, when the argument of actions put, qry and get is a data
tuple, they play the role of actions out, read and in, respectively, commonly
used in the tuple-based coordination paradigm [10] to add, read and withdraw
tuples to/from a tuple space via pattern-matching.

Constraints used as action arguments are evaluated in order to assign a com-
ponent owner to each underspecified constraint variable occurring in the con-
straints. The use of underspecified constraint variables is just a shorthand for
the corresponding constraint variables in case of point-to-point interaction (i.e.,
when the target of the action is a specific component), while it has a key role
in case of group-oriented interaction (i.e., when the target of the action is an
ensemble predicate), because in this latter case the involved components are
dynamically determined. For example, the action put(cost@ < 100)@provider
executed by the client component adds the constraint (cost@provider < 100)
to the provider’s store. Similarly, the action put(cost@ < 100)@P , where P is a
predicate identifying at runtime an ensemble of two components, say provider1
and provider2, adds the constraint (cost@provider1 < 100) to provider1’s store
and (cost@provider2 < 100) to provider2’s store.

According to SCEL’s operational semantics, processes interact with knowl-
edge repositories by means of the following operations that each knowledge repos-
itory’s handling mechanism must provide:

– K 0 t = K′: the withdrawal of item t from the repository K returns K′;
– K � t: the retrieval of item t from the repository K is possible;
– K ⊕ t = K′: the insertion of item t into the repository K returns K′.

In ccSCEL, the three operations above are defined in two different ways, de-
pending on whether the item t is a data tuple (rules in the upper part of Table 2)
or a constraint (rules in the lower part of Table 2). Given a repository K, we use
Ktuples (resp. Kconst) to denote the knowledge corresponding to all data tuples
(resp. constraints) within K; in other words, each ccSCEL repository K can

650 U. Montanari, R. Pugliese, and F. Tiezzi

Table 2. Knowledge repository operations

K�n 〈f〉 = K′ if K ≡ K′ ‖ 〈f〉 K !n 〈f〉 if K ≡ K′ ‖ 〈f〉 K ⊕n 〈f〉 = K ‖ 〈f〉

K �n χ =

{K′ if K ≡ K′ ‖ χ@n
K otherwise

K !n χ if K ≡ (Ktuples ‖ χ1 ‖ . . . ‖ χm) and (χ1 × . . .× χm) ≤ χ@n

K⊕n χ = K ‖ χ@n if K ≡ (Ktuples ‖ χ1 ‖ . . . ‖ χm) and (χ1 × . . .× χm × χ@n) �= 0

be seen as the composition Ktuples ‖ Kconst of two repositories, where Ktuples is
of the form 〈f1〉 ‖ . . . ‖ 〈fn〉 and Kconst is of the form χ1 ‖ . . . ‖ χm. We use
K1 ≡ K2 to denote that K1 and K2 are equal up to commutation of items and
addition/removal of the unit element ∅. Operation 0 (resp. �, resp. ⊕) takes
as a further parameter a component identifier n, used to fill the underspecified
constraint variables occurring in the constraint to be retracted (resp. entailed,
resp. added). Notation χ@n indicates the constraint obtained from χ by com-
pleting each underspecified constraint variable occurring therein by using the
identifier n. In the definition of K �n χ and K ⊕n χ, if the constraint store is
empty (i.e. m = 0), then it suffices to verify that χ is a tautology (i.e., it is a
constant function returning the c-semiring value 1 for any assignment) and that
χ@n has at least one solution (i.e., it differs from the c-semiring value 0), resp.

Another parameter that we need to instantiate for defining the ccSCEL

dialect is the interaction predicate Π, I : α 1 λ, σ,Π ′. It is used to evaluate
the parameters of the action α which is going to be performed by a process
running at a component with policy Π and interface I. This evaluation returns
the label λ corresponding to the action actually performed and the effects of its
execution: the substitution σ (i.e. a partial function from variables to values)
associates values to the variables possibly occurring in the formal fields of α
and is used to capture the changes induced by interaction; the policy Π ′ is in
force after the transition (in principle, it may differ from that in force before
the transition, but in ccSCEL it remains unchanged). The predicate is defined
by a set of inference rules an excerpt of which is shown in Table 3 (the full
definition is reported in [15]). We only show the rules for action qry, whose
corresponding system label is I : t� γ denoting the intention of component I
to retrieve item t from the repository at γ. Rules for actions get and put are
similar. For each of these actions, we have two rules4 to separately deal with two
different kinds of arguments: in case of a data template, the pattern-matching
with a data tuple is checked and a substitution is generated (by means of the
function match, whose definition is straightforward and can be found in [15]);
in case of a constraint, no pattern-matching evaluation is needed and the empty

4 Instead, for each of the actions new and fresh, we have only one straightforward
rule.

Programming Autonomic Systems with Multiple Constraint Stores 651

Table 3. The interaction predicate Π,I : α $ λ, σ,Π ′ (excerpt of rules)

E [[〈F 〉]]I = 〈F ′〉 E [[c]]I = γ match(F ′, f) = σ

Π,I : qry(〈F 〉)@c $ I : 〈f〉�γ, σ,Π

E [[χ]]I = χ′ E [[c]]I = γ

Π, I : qry(χ)@c $ I : χ′�γ, {}, Π

substitution (denoted by {}) is returned. Moreover, the parameters of the action
are evaluated with respect to the interface of the component performing the
action through the auxiliary function E [[]] . Specifically, E [[T]]I (E [[c]]I , resp.)
denotes the evaluation of the data template T (target c, resp.) with respect to
interface I, where the attributes occurring in T (c, resp.) are replaced by the
corresponding values in the interface I; in particular, the target self is replaced
by the component name (which is bound to I.id). Instead, the predicates possibly
occurring in targets are left unchanged. For example, if a process executes the
action put(resources@self = res)@self and its component interface I specifies
the attributes (id, provider) and (res, 15), then the constraint to be added to
the local store is E [[resources@self = res]]I = (resources@provider = 15).

The last parameter that we need to instantiate for completing the definition
of the ccSCEL dialect is the interaction predicate Π � λ,Π ′. It means that un-
der policy Π , the label λ (which can be thought of as an authorisation request) is
allowed and the policyΠ ′ is produced. The predicate is defined by the set of infer-
ence rules shown in Table 4. These rules enforce the policies Π1store and Π2store

informally described in Section 3.1 (the rules for constraint entailment in case of
policy Π2store and all rules for policy ΠN can be found in [15]). In the table, KI
and KJ stand for the knowledge repository of the components with interface I
and J , respectively. The first rule authorises any action different from the accep-
tance of a put action having a constraint as argument; such an action is autho-
rised by the second rule provided that the store resulting from the addition of the
constraint is consistent. The third rule is similar to the first one, it also does not
authorises the acceptance of a qry action having a constraint as argument. The
fourth rule authorises the local insertion of a constraint (indeed, the target com-
ponent J coincides with the component executing the action) provided that the
store resulting from the addition of the constraint is consistent. The case of a re-
mote put action is covered by the last rule that, when the policy isΠ2store, checks
the consistency of the (temporary) combination of the constraint to be added with
the remote and local stores. This combination is further enriched with some con-
straints equating all homonymous constraint variables occurring in the stores of
the two components. To generate these constraints we use the function

eq(KI ,KJ) =
∏

n@n1∈v(KI),n@n2∈v(KJ) n@n1 = n@n2

where function v(K) returns the set {n@n′ ∈ cv(χ) | K ≡ (K′ ‖ χ)} of constraint
variables used in K, while cv(χ) returns the set of constraint variables used in
χ. The (omitted) rules for ΠN are like the three rules for Π2store, but for the
last rule where the eq function is replaced by

eqN (KI ,KJ) =
∏

n@n1∈v(KI),n@n2∈v(KJ),n∈N n@n1 = n@n2

652 U. Montanari, R. Pugliese, and F. Tiezzi

Table 4. The authorisation predicate Π ! λ,Π ′ (for policies Π1store and Π2store)

λ /∈ {I : χ �̄J }
Π1store ! λ,Π1store

KJ ⊕J .id χ

Π1store ! I : χ �̄J ,Π1store

λ /∈ {I : χ �̄J , I : χ �̄J }
Π2store ! λ,Π2store

KJ ⊕J .id χ

Π2store ! J : χ �̄J ,Π2store

I �= J (KI ‖ KJ ‖ eq(KI ,KJ))⊕J .id χ

Π2store ! I : χ �̄J ,Π2store

Thus, only the constraint variables whose names are in the set N are equated.

4 ccSCEL at Work

In this section, we show an application of ccSCEL to a Web hosting example,
where the involved parties behave in an autonomic fashion in order to optimize
their goals and utility functions. In particular, in our scenario, there is a client
that aims at identifying in its working environment a service provider offering a
Web hosting solution at an affordable price. On the other hand, there could be
many providers offering different solutions, varying in cost and in bandwidth,
and possibly relying on third party services. Providers act in a dual way with
respect to the client: they aim at selling their services at the highest price.
Constraint-based programming is used here as a suitable means for allowing the
parties to autonomously interact in order to negotiate the service provision and
possibly achieve a Service Level Agreement (SLA).

Firstly, consider a scenario including a client C and a single service provider
P . Before the execution of the service, C and P want to sign a SLA contract. For
the sake of simplicity, in this example we assume the constraint system to be
based on crisp constraints. The scenario can be rendered in ccSCEL as follows:

IC [∅, ΠC , PC] ‖ IP [∅, ΠP , PP]

where IC .id = C and IP .id = P . The repositories of the two components initially
contain no constraints. Concerning policies and processes of the components, we
show below different modelling approaches.

4.1 Point-to-point Interaction

According to the policies ΠC and ΠP exhibited by C and P to regulate the
consistency checking of their stores, the behaviour of the two components may
be specified in different ways in order to achieve the desired SLA.

Let us first consider the case ΠC = ΠP = Π1store, where no combination
between constraints stored by components C and P is performed during the

Programming Autonomic Systems with Multiple Constraint Stores 653

consistency evaluation. The process PP running in the provider component, in
charge of negotiating the SLA with the client, is as follows:

PP � put(price@ � 50)@self. P ′
P

By performing the put action, the provider imposes the minimum price of 50
Euros for the service by adding the constraint price@P � 50 to its store. Instead,
the process PC running in the client component is defined as follows:

PC � put(price@ � 100)@P

The client’s constraint specifies the maximum cost 100 Euros the client is willing
to pay for the service. In particular, by means of the put action, which tries
to add the constraint price@P � 100 to the provider store, the client process
activates the consistency check of this constraint with respect to the constraint
imposed by the provider. If the constraint price@P � 100 is successfully added
to the provider store, then the SLA is achieved, and the resulting contract is the
combination (the logical conjunction, in this case) between the two constraints.
This means that there exists a price between the minimum and the maximum
price required by the provider and the client, respectively.

It is worth noticing that in this case the execution order of the put actions
performed by provider and client does not matter, since the values 50 and 100
permit achieving a SLA. Instead, if the SLA could not be achieved, the pro-
cess performing the first put action would proceed, while the other would be
blocked. When necessary, such situations can be handled by means of explicit
coordination mechanisms (e.g., via tuple-based synchronisation, as in the exam-
ple in Section 4.4) or specific policies (which, e.g., authorise external access to
the repositories only after the writing of local constraints is terminated).

Now, let us suppose that at least one between ΠC and ΠP is set to Π2store.
In this case, the consistency of the local constraints of the provider is evaluated
in combination with the local constraints of the client. Of course, the processes
described in the previous case can be used also in this setting. However, for
increasing loose-coupling among components, a different approach can be applied
in this case: the client sets locally its constraint about the maximum price and,
then, interacts with the provider to negotiate the SLA. In this way, if the SLA is
not achieved, the client could exploit the stored constraint for other negotiations.

While process PP remains the same as before, this time process PC is defined
as follows:

PC � put(price@ � 100)@self.put(true)@P
The client fixes the maximum price it can pay for the service, using the first put
action that acts locally. Then, with the second put action, it requests a consis-
tency check of the combination of its local constraint with the provider’s one. The
two constraints are put in relation by means of the temporary constraint price@P
= price@C automatically generated when controlling authorisation with respect
to policy Π2store. If the check succeeds, then the SLA is achieved. Notably, the
constraints composing the contract are distributed among the stores of the client
and the provider, but the consistency of the contract is verified globally.

654 U. Montanari, R. Pugliese, and F. Tiezzi

4.2 Constraint Variables with Restricted Access

We discuss here two approaches for restricting the access to given constraint
variables from other components.

The first approach relies on the use of fresh names. If we assume that con-
straint variables are names, they can be dynamically generated by means of the
fresh action and are subject to scope restriction as all other names in ccSCEL.
For example, in the Web hosting scenario, the client could make private its vari-
able price@C, and the involved constraint, by means of the following process:

PC � fresh(price).put(price@ � 100)@self. P ′
C

Now, the action fresh produces a restriction (ν price), at system level, whose
scope is the client component. This means that the name price, as well as the
corresponding variable price@C occurring in the local constraint generated by
the put action, are only visible from within the client component. Therefore,
all other components cannot refer to this variable in their actions get, qry and
put, unless the name price has been previously exchanged in interactions (as
part of a data tuple). In fact, as in the π-calculus, when a name is sent via a
message, its scope is extruded; this enables the receiving process to access the
corresponding remote variable. In the considered example, in order to share the
name, the client could perform the action put(〈“share var”, price〉)@P while
the provider could then read the name and bind it to variable x by means of
action get(〈“share var”, ?x〉)@self.

Another way to prevent unauthorised access to constraint variables can be
achieved by using access control policies (we refer to [13] for their definition
and integration with SCEL). This kind of policies permit denying access to the
repository of a component to other components. Suppose that, e.g., a component
with identifier n has attached the following policy:

〈 permit-unless-deny
rules : (deny target : subset({price},action/item.vars)

∧ equal(n,object/id)) 〉

Intuitively, the policy states that all actions are allowed (algorithm
permit-unless-deny) except those involving a constraint variable with name price
at n. Indeed, attribute action/item.vars is used here to retrieve the names of all
constraint variables occurring in the item argument of the action under autho-
risation evaluation. Thus, if this item is a constraint involving price and if the
target of the action (retrieved by means of attribute object/id) is the component
n, then the inner rule returns deny. This leads to an unsuccessful evaluation of
the authorisation predicate, which thus blocks the action execution.

4.3 Group-Oriented Interaction

In the previous examples, only a form of point-to-point interaction has been used
by the components in order to enact dyadic interactions. We show here how the

Programming Autonomic Systems with Multiple Constraint Stores 655

group-oriented interaction primitives provided by ccSCEL can be used for a
convenient form of negotiation in an autonomic system where more parties can
be dynamically involved at the same time.

Consider again the Web hosting scenario, where now the client will contact
an ensemble of providers offering the same service. The client is not interested in
interacting with a specific provider or knowing its identity, but it wants to achieve
a SLA concerning the service price with as many providers in the ensemble as
possible, because it is acting as a broker that intends to resell the services.

This scenario can be rendered in ccSCEL as follows:

IC [KC , Π1store, PC] ‖ IP1[KP1, Π1store, PP1] ‖ . . . ‖ IPn[KPn, Π1store, PPn]

where, for all j ∈ J with J ⊆ {1..n}, we have that IPj .srvType = webHosting
and KPj contains a constraint of the form (price@Pj � vj). Notably, both the
client and all providers enforce the policy Π1store.

Now, in order to interact with the ensemble of providers, the client uses the
predicate Pred defined as (srvType = webHosting), which identifies all compo-
nents that offers a Web hosting solution as a service type. In particular, the
process PC running in the client component is defined as follows:

PC � put(price@ � 100)@Pred . qry(price@ � 100)@Pred . P ′
C

In this way, the client tries to send its constraint about the maximum price
it is willing to pay to any provider within the ensemble; for each involved Pj ,
the client’s constraint (price@Pj � 100) will be stored or not in the provider
repository depending on the minimum price vj specified by the provider. Indeed,
the execution of a put for group-oriented communication is non-blocking, i.e. it
is performed regardless of whether there are components in the system that do
not satisfy the ensemble predicate or do not authorise the action. The latter case
includes the situation where the insertion of the constraint to the repository of
a target component would make it inconsistent. Afterwards, the client checks if
the agreement has been achieved with at least a provider of the ensemble, by
resorting again to a group-oriented interaction, and in the positive case proceeds
as P ′

C . Indeed, the semantics of the group-oriented qry action prescribes that it
can be successfully executed only if the client’s constraint has been added to at
least a provider, regardless of its identity.

4.4 Towards Multiparty Negotiation

Now, let us extend the considered scenario by adding another actor: a third party
T that provides bandwidth services to P . Thus, the success of the SLA negoti-
ation also depends on the services provided by T and, hence, on the constraints
this actor imposes. The new scenario can be rendered in ccSCEL as follows:

IC [KC , Π{price}, PC] ‖ IP [KP , Π{price}, PP] ‖ IT [KT , Π1store, PT]

where IT .id = T and actors C and P exhibit the policy Π{price}.

656 U. Montanari, R. Pugliese, and F. Tiezzi

The process PT running in the third party component is as follows:

PT � put(bw@ � vmax bw)@P .put(〈“max bandwidth fixed”〉)@P

The third party fixes the maximum bandwidth vmax bw that it can supply, by
adding a constraint to the provider’s store. Then, it notifies the provider by
adding the tuple 〈“max bandwidth fixed”〉 to the provider’s repository.

The process PP running in the provider component is as follows:

PP � put(price@ � vmin price)@self .put(price@ = bw@ · 25)@self .
get(〈“max bandwidth fixed”〉)@self.put(〈“ready for negotiation”〉)@self

The provider specifies the minimum price vmin price for the service and the
price per unit of bandwidth. Then, after the third party has fixed the max-
imum bandwidth (this is guaranteed by the execution of the get action), it
notifies the clients that it is ready to negotiate, by locally adding the tuple
〈“ready for negotiation”〉.

The process PC running in the client component is as follows:

PC � put(price@ � vmax cost)@self.get(〈“ready for negotiation”〉)@P .
put(true)@P

Now, the second put action can be performed only after the provider has no-
tified that it is ready for negotiation. This action activates the consistency check
of the combination of the client and provider stores, by also taking into account
the temporary constraint price@P = price@C. Notice that policy Π{price} al-
lows the generation of only this equation, while other variables of KC and KP
not involved in this negotiation are kept apart. If the check is successful, then
the SLA is achieved.

It is worth noticing that, although the negotiation involves three parties, only
dyadic interactions are performed. Thus, to avoid inconsistency, such interac-
tions are coordinated via tuple-based synchronisation (see the use of tuples
〈“max bandwidth fixed”〉 and 〈“ready for negotiation”〉). This coordination
protocol uses a sort of dynamic programming technique to distribute the com-
putation between the locations, similarly to the example shown in Section 7
in [2]. Moreover, since according to policy ΠN only the stores of the interacting
components are combined while the stores of the others are ignored, the third
party has to add its constraint about the maximum bandwidth to the provider
store, rather than storing it locally and then putting it in relationship with the
provider constraints.

Also resorting to the group-oriented interaction, by defining the three compo-
nents as an ensemble identified by a predicate, the problem above is not solved.
Indeed, the stores of all components of an ensemble do not represent a distributed
store of the ensemble, since their global consistency5 is never checked (only a
form of dyadic consistency can be checked when a constraint is added to the

5 Of course, the same problem occurs in case of entailment.

Programming Autonomic Systems with Multiple Constraint Stores 657

repositories of the ensemble components). This need of a global consistency/en-
tailment check at ensemble level has motivated the extension of the language
presented in the next section.

On the other hand, existing algorithms for distributed constraint satisfaction
(see e.g. [16, Chapter 20]) operate in a way similar to the example above. While
the computation proceeds, the global constraint is internalised more and more in
the local constraints of the components, until either an inconsistency is found, or,
in the worst case, the whole global constraint is reconstructed inside a component
and fully checked. Therefore, the ensemble-wide interaction described in the next
section could be programmed in ccSCEL using the above algorithms.

5 Extending ccSCEL with Ensemble-Wide Interaction

We consider now an extension of the language with a form of ensemble-wide
interaction, where a component can add a constraint to the store of the compo-
nents that are part of a given ensemble, or check the entailment of a constraint,
by involving in the consistency check the constraints stored in every ensemble
component. In this section, we present the extensions which are necessary to
enable this form of interaction.

Firstly, we extend the syntactic category Targets with ek : P . The idea is
that the new form of interaction is triggered by using the keyword ek (which
stands for ensemble knowledge) in addition to the predicate P identifying the
target ensemble.

A component can specify which constraints generated by ensemble-wide in-
teractions it is interested to accept in its store. This can be achieved by means
of an interface attribute, called voi (variables of interest), whose value is a list
of variable names relevant for the component. Thus, only constraints containing
at least one variable whose name is in this list are considered for insertion in
the component store. To perform this check we will use the auxiliary function
v(χ), which returns the set of names {n | n@n′ ∈ cv(χ) ∨ n@ ∈ ucv(χ)}, where
function ucv(χ) returns the set of underspecified constraint variables used in χ.

The (operational) semantics of extended ccSCEL is defined by a set of in-
ference rules: those specific to the ensemble-wide put action are reported in
Table 5, while, due to lack of space, the remaining ones can be found in [15].

For enabling the ensemble-wide interaction, a labelled transition relation
λ

−→
K

is

introduced, where λ describes the action performed by the component, while K
is a partial computation, performed while the inference of the transition pro-
ceeds, of the knowledge involved in the interaction. In particular, the labels λ
considered here are as follows: I : χ � ek : P denotes the intention of component
I to synchronise with the stores of the components that are part of the ensemble
identified by P in order to check the insertion of constraint χ; I : χ �̄J indicates
that component I is allowed to add constraint χ to the store of component J .
Below, we comment on the operational rules.

Rule (pr-sysputens) generates the appropriate label λ corresponding to an
ensemble-wide put action, and registers the knowledge K of the local store in

658 U. Montanari, R. Pugliese, and F. Tiezzi

Table 5. Additional rules for ensemble-wide interaction (via put action)

P ↓put(χ′)@ek:P P ′ Π, I : put(χ′)@ek : P $ I : χ � ek : P , {}, Π ′ I |= P

I[K, Π, P]
I:χek:P

K
� I[K, Π ′, P ′]

(pr-sysputens)

Π ! I : χ �̄J , Π ′ K ⊕J .id χ = K′ v(χ) ∩ J .voi �= ∅
J [K, Π, P]

I:χ ̄J
K′
� J [K′, Π ′, P]

(accputens-p)

Π ! I : χ �̄J , Π ′ v(χ) ∩ J .voi = ∅
J [K, Π, P]

I:χ ̄J
K
� J [K, Π ′, P]

(accputens-d)

S1
I:χek:P

K1

� S′
1 S2

I:χ ̄J
K2

� S′
2 K1 ⊕K2 = K J |= P I.π ! I : χ �̄J , Π ′

S1 ‖ S2
I:χek:P

K
� S′

1[I.π := Π ′] ‖ S′
2

(syncputens)

S1
I:χek:P

K
� S′

1 (J �|= P ∨ Π �! I : χ �̄J , Π ′)

S1 ‖ J [K, Π, P]
I:χek:P

K
� S′

1 ‖ J [K, Π, P]
(asyncputens)

the produced transition. Differently from standard group-oriented interaction,
the rule applies only if the acting component I belongs to the ensemble defined
by P (i.e., I |= P). Notably, the interaction predicate extends naturally to the
actions (hence, the labels) using the keyword ek.

Rules (accputens-p) and (accputens-d) are applied when component J is ready
to participate in the ensemble-wide consistency check triggered by the insertion
of the constraint χ by I. In particular, the first rule checks that the store of
the component J , enriched with the new constraint χ (whose underspecified
constraint variables are properly filled), is consistent; if this holds, the local
store of the component is updated and the knowledge of the local store enriched
with the new constraint is registered in the label of the produced transition. This
rule is applied only if the constraint χ involves some variable of interest for J
(i.e., v(χ) ∩ J .voi �= ∅); otherwise the second rule is used to register the local
knowledge of the component J in the transition label without performing any
constraint insertion. Notably, in case of ensemble-wide interaction, the policies
do not play any role. Therefore, the authorization predicate Π � I : χ �̄J , Π ′

is always satisfied regardless of whether Π is either Π1store, Π2store or ΠN .
Anyway, the authorization predicate is still used in the rules in Table 5 in order
to keep the possibility of exploiting other kinds of policies in ccSCEL.

Rule (syncputens) deals with the interaction among components willing to
take part in it. The rule broadcasts the put action to any component of the
ensemble identified by P by spreading the label I : χ � ek : P into the whole
system, together with the partial knowledgeK (resulting from the composition of
the partial knowledge K1 previously computed along the inference and the local

Programming Autonomic Systems with Multiple Constraint Stores 659

knowledge K2 of the accepting component). Formally, the composition K1 ⊕K2

is defined as follows:

K1 ⊕K2 = K1 ‖ K2 ‖ eq(K1,K2) if K1 ≡ (K1
tuples ‖ χ1

1 ‖ . . . ‖ χ1
m) and

K2 ≡ (K2
tuples ‖ χ2

1 ‖ . . . ‖ χ2
l) and

eq(K1,K2) ≡ (χ3
1 ‖ . . . ‖ χ3

h) and
(χ1

1 × . . .× χ1
m × χ2

1 × . . .× χ2
l × χ3

1 × . . .× χ3
h) �= 0

Thus, the consistency is evaluated by also taking into account all constraints
equating constraint variables that are homonymous in K1 and K2. Such equation
constraints are also returned in the composed knowledge and, hence, they will
be registered in the transition label.

Rule (asyncputens) prevents involving in the interaction those components that
do not authorise the interaction or do not belong to the ensemble.

We conclude this section by revisiting the Web hosting example introduced in
Section 4.4 in order to demonstrate how to take advantage of the ensemble-wide
interaction mechanism just introduced.

Now, the three participants expose the attribute (srvType, webHosting) in
their interfaces, and exhibit the policy Π{price,bw}. Moreover, we let IT .voi =
{bw} and IP .voi = {bw, price}.

The third party and the provider set their constraints locally:

PT � put(bw@ � vmax bw)@self

PP � put(price@ � vmin price)@self.put(price@ = bw@ · 25)@self

Notably, the values of the two variables with name bw will be connected by a
temporary equation. This will permit to take into account the constraint con-
cerning the maximum bandwidth posed by the third party during the evaluation
of the constraints from the client and the provider. Afterwards, the client can
check the consistency of its requirement with respect to the ensemble knowledge
by simply performing the following action:

PC � put(price@ � vmax cost)@ek : (srvType = webHosting)

This action triggers the evaluation of the stores consistency at ensemble-level, by
also including the temporary constraint bw@T = bw@P . If the action execution
succeeds, the store of C is unchanged, while the stores of P and T become:

K′
P

def
= KP ‖ price@P� vmin price ‖ price@P= bw@P · 25 ‖ price@P� vmax cost

K′
T

def
= KT ‖ bw@T � vmax bw

Notice that the constraint price@T � vmax cost is not added to the store of the
third party, because price is not one of its variables of interest.

660 U. Montanari, R. Pugliese, and F. Tiezzi

6 Concluding Remarks

We have introduced ccSCEL (and a mild extension), a formal language pro-
viding interaction primitives for programming distributed autonomic systems in
terms of (i) constraints manipulation (i.e., generation, retraction, check of con-
sistency and entailment), both at component and ensemble level; and (ii) tuple-
based coordination, via pattern-matching over multiple tuple spaces. This com-
bined approach permits dealing in a convenient way with the design and develop-
ment of systems featuring self-adaptation, self-awareness and self-optimisation.

ccSCEL is a novel distributed variant of the SCCP paradigm, where knowl-
edge (i.e., variables and constraints) is distributed among the stores of the in-
teracting ensemble components but, when specifically required by a component,
it can be involved in a global check of consistency at ensemble level. Our set-
ting supports in a natural way the implementation of distributed solutions to
constraint satisfaction problems. It is thus particularly suitable for autonomic
computing systems, where knowledge cannot be centralised for different reasons,
such as e.g. dynamicity and open-endedness, system partitioning, complexity of
constraint formalisation, security/privacy issues.

Our main concern was the development of a coherent, integrated set of lin-
guistic primitives to model and program ensembles. Many techniques have been
proposed in the literature for constraint satisfaction and optimisation in dis-
tributed settings. For an overview we refer the reader to [16, Chapter 20].

In this paper, we have shown how to incorporate basic (soft) concurrent con-
straint programming features in SCEL. We intend to continue this programme
by transporting more advanced SCCP functionalities, borrowed from [2], in our
language. For example, when soft constraints are used, it is also natural to ex-
ploit interaction primitives that explicitly deal with the c-semiring levels. This
requires to extend the constraint items used in ccSCEL with a further param-
eter representing a consistency threshold, which is used to determine the success
of the corresponding interaction actions. Another possibility is to use soft semir-
ing extensions, as shown in [4], to enrich ask and tell actions with priorities.
Among the enabled actions, a dynamic (partial) ordering is established, where
only those actions in the top position are actually (nondeterministically) exe-
cuted. It may also be useful to have the possibility of tuning the consistency of
the store of each component with respect to its best level of consistency. Finally,
in an ensemble-wide interaction, each component that is part of the ensemble
currently contributes to the global knowledge with all constraints in its store.
However, for the sake of efficiency (and privacy), each component should have
the possibility of specifying the knowledge it would like to share with the other
members of the ensemble. This could be achieved by resorting to suitable pro-
jection functions.

Programming Autonomic Systems with Multiple Constraint Stores 661

References

1. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

2. Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming.
ACM Trans. Comput. Log. 7(3), 563–589 (2006)

3. Bures, T., De Nicola, R., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N., Mon-
reale, G., Montanari, U., Pugliese, R., Serbedzija, N., Wirsing, M., Zambonelli, F.:
A Life Cycle for the Development of Autonomic Systems: The e-mobility showcase.
In: SASOW, pp. 71–76. IEEE (2013)

4. Buscemi, M.G., Montanari, U.: QoS negotiation in service composition. J. Log.
Algebr. Program. 80(1), 13–24 (2011)

5. Cesari, L., De Nicola, R., Pugliese, R., Puviani, M., Tiezzi, F., Zambonelli, F.:
Formalising adaptation patterns for autonomic ensembles. In: Fiadeiro, J.L., Liu,
Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 100–118. Springer, Heidelberg
(2014)

6. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based approach
to autonomic computing. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue,
M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012)

7. De Nicola, R., Lluch Lafuente, A., Loreti, M., Morichetta, A., Pugliese, R., Senni,
V., Tiezzi, F.: Programming and verifying component ensembles. In: Bensalem,
S., Lakhneck, Y., Legay, A. (eds.) From Programs to Systems. LNCS, vol. 8415,
pp. 69–83. Springer, Heidelberg (2014)

8. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: The SCEL language. ACM Transactions on Autonomous
and Adaptive Systems 9(2), 7:1–7:29 (2014)

9. Cabri, G., Capodieci, N., Cesari, L., De Nicola, R., Pugliese, R., Tiezzi, F., Zam-
bonelli, F.: Self-expression and Dynamic Attribute-Based Ensembles in SCEL. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 147–163.
Springer, Heidelberg (2014)

10. Gelernter, D.: Generative Communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

11. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36,
41–50 (2003)

12. Loreti, M., Margheri, A., Pugliese, R., Tiezzi, F.: On Programming and Policing
Autonomic Computing Systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014,
Part I. LNCS, vol. 8802, pp. 164–183. Springer, Heidelberg (2014)

13. Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic abstractions for programming and
policing autonomic computing systems. In: UIC/ATC, pp. 404–409. IEEE (2013)

14. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl,
J., Bures, T.: The Autonomic Cloud: A vision of voluntary, peer-2-peer cloud com-
puting. In: SASOW, pp. 89–94. IEEE (2013)

15. Montanari, U., Pugliese, R., Tiezzi, F.: Programming autonomic systems with mul-
tiple constraint stores. Technical Report (2014), http://rap.dsi.unifi.it/scel/

16. Rossi, F., Beek, P.v., Walsh, T.: Handbook of Constraint Programming. Elsevier
(2006)

17. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.,
Mcdermid, J., Paige, R.: Large-scale Complex IT Systems. Commun. ACM 55(7),
71–77 (2012)

http://rap.dsi.unifi.it/scel/

Adaptive and Autonomous Systems

and Their Impact on Us

Nikola Šerbedžija

Fraunhofer FOKUS, Berlin, Germany

Abstract. With technology becoming increasingly ubiquitous and
through a wide use of interconnected “smart devices”, the impacts these
advanced products have on us is gaining in significance. As technology
providers, we are very proud to share the tribute for creating new in-
frastructures that bring benefits to individuals and society and make life
easier. But we may also be held responsible for the possible detrimental
impacts that new technology brought about. Especially, if we ignore the
threatening consequences and fail to offer some protective solutions. Up
to now, there has been some attention paid to privacy issues and secu-
rity of commercial transactions, but the negative influence of “smart”
technology on human behavior has been widely neglected. This paper
considers the effects that adaptive and autonomous technologies have
on their users. As the impacts can best be observed in practice, a num-
ber of application scenarios are taken into account, illustrating both the
technical aspects and their possible effects on us.

1 Introduction

As a field initially derived from mathematics and electrical engineering, com-
puter science in its early days performed mostly numeric and data processing
in various application domains. Gradually, a number of other disciplines merged
into the field, extending digital paradigm with principles taken from physics,
chemistry, biology, psychology and social sciences. The application domain also
spread to almost all aspects of our activities, making computers unavoidable
in industry, administration, commerce and entertainment. Furthermore, present
cyber-physical systems are bridging the gap between virtual and real worlds,
placing humans directly in the processing loop, increasing the impact the tech-
nology has on us. We are not anymore just users that exploit the benefits of the
technology, we ourselves are becoming a part of the computation and thus ex-
posed to possible manipulation. More and more often, we rely on computers and
do what they instruct us to do. We are guided by the rules imposed by technical
systems, modifying our behavior accordingly. Mostly it is done with the user
consent, but not rarely the changes in our behavior happen unconsciously.

This paper focuses on adaptive and autonomous systems as an important
segment of technology advances and investigates the effects that practical de-
ployments may have on us. Engineering the natural phenomena like awareness,

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 662–675, 2015.
c© Springer International Publishing Switzerland 2015

Adaptive and Autonomous Systems and Their Impact on Us 663

adaptation and autonomy does include a human in the processing loop affect-
ing and controlling personal behavior, causing impacts that may go beyond our
ethical norms. Having in mind that artificial adaptation and autonomy are not
the same as the natural ones, the challenges, difficulties and solutions for de-
velopment and deployment of adaptive and autonomous systems are explored.
The reasoning described here stems from two concrete methodologies and their
applications. The two approaches are presented rather descriptive, focusing on
a general strategy necessary to explore technology impacts.

Further references for the detailed technical solutions could be found at [1, 3].
One case study is specially highlighted: the cyber-race, where our autonomous
robot competes with a human and wins. The example helps in better framing
the rationale of use, indicating in which domains we should or should not apply
autonomous systems and to what extent we are sacrificing our own autonomy
when using autonomous systems.

The paper is structured in six sections. After introduction, the section 2 con-
siders technology advances and their possible influence on people and society.
Then, the two approaches for adaptive (section 3) and autonomous (section 4)
systems are presented together with a number of concrete use cases. A repre-
sentative deployment scenario of autonomous system is given in more details
(section 5) and the concluding remarks (section 6) highlight major conclusions
and trace further work.

2 Technology Impacts: A Digital Storm

Brainstorming is a popular phrase among scientists. It denotes an intense ex-
change of ideas on a specific research challenge. But brainstorming our brain
in order to understand it and engineer something similar, is like going through
a labyrinth of controversy. Neural networks, artificial intelligence, psychological
and evolutionary computing are examples of the domains with numerous break-
throughs, but no real “silver bullet”. In a way, this is understandable since we
are dealing with extremely hard problem. If our brain were simpler, we would
be simpler too, and it would be even more difficult for us to comprehend how
it functions and engineer something similar. Even when a natural characteristic
is successfully re-created, its deployment often brings dual effects. For example,
reasoning about autonomous systems and their impacts, brings us in a dilemma:
“should we use the autonomous systems, and if yes, in which domains”. Namely,
if we define autonomy as “acting according to own rules”, a question arises:
are we autonomous when we use autonomous system? Obviously a use of au-
tonomous systems requires giving up a part of the own autonomy. Considering
a wider arena of smart technology, one could observe a resembling situation in
today market: there are numerous advertisement of a kind: “be smart use smart
systems” luring people to purchase some smart product. Mostly the people who
do not doubt their own reasoning fall in the trap. Sometimes, an artificial achieve-
ments may weaken its natural counterpart, not intentionally, but rather as a side
effect. It seems that brainstorming the natural phenomena resulted in a digital

664 N. Šerbedžija

storm, characterized by a wide and premature acceptance of digital technology,
where we cannot be only proud of its positive impacts but also held responsible
for some of its negative consequences.

Many technical breakthroughs stem from imitating the nature and its spec-
tacular wonders. But how can it be, that imitating something so harmonious can
result in controversy? Probably, it is our inappropriate interference with nature
that creates puzzling situation. Concentrated on a specific engineering goal, we
often overlook the wide spectrum of the problem, solving one aspect and ne-
glecting the others that constitute the natural harmony. It seems that we are
impatient: we try to solve the problem before we truly understood it. For exam-
ple in the artificial intelligence or neural networks domain an engineer interferes
with something, not fully understood even by neuro-experts. It seems that we are
dealing with multifaceted assignments, appealing but hard, maybe Sisyphus’s.
The controversy often occurs when advanced computing model includes humans
into the processing loop creating obvious benefits and hidden harms. Especially
when interfering with subtle subjective experiences like senses, feelings or (sub)
consciousness. Essentially, we are all very skeptical in submitting our autonomy,
privacy and habits to the others (especially machines). Practically, however, we
have been guided, data minded and exposed to commercialization to the point
that we do not see the obvious anymore.

Since 1995, the famous Weiser’s statement on disappearing computers [4] has
been inspiring the work in ubiquitous computing domain. It envisages that “com-
puters will be disappearing i.e. they will be miniaturized and integrated in fabrics
of everyday life, omni-present and invisible”. In 2005, Streitz and Nixon further
elaborated: “The rate at which computers disappear will be matched by the rate
at which information technology will increasingly permeate our environment and
determine our lives” [6]. The man-computer interaction will intensify to such
an extent that even absence of interaction will gain an interaction significance
(scaring but true). In another words you cannot not communicate in inevitably
ubiquitous environment (the statement known as the first of five /sometimes
paradoxical/ axioms of communication, from Watzlawick [6]). It seems the bet-
ter we are in our technical achievements, the controversial it gets. Yet another
paradoxical situation could be observed on the Internet arena. Once conceptual-
ized as a highly distributed network, World Wide Web is being more and more
controlled. Some of the leading Web2.0 players are squeezing the Web into an
almost centralized system with millions of thin clients communicating with a
few major sites, that collect and process data (often silently and without user
consent) for commercial purposes.

Being aware of promises and threats that modern technology has brought
about we should strive to enhance the benefits, reduce (collateral) damages and
avoid controversy. Otherwise we have not learned much from the past. Back in
1818, M. Shelley[7] frightened the generation to come with her gothic Franken-
stein tale about curse of man using technology to “play God”. Today, modern
“Smart-kensteins” are devouring our privacy, social spirits, and physicality, ac-
cording to Huxleys [8] nightmarish observation on how control can be achieved

Adaptive and Autonomous Systems and Their Impact on Us 665

by giving people what they want. We are stunned, but instead of adapting our
high-tech products to us (our norms and practices) we are changing our behav-
ior according to the technical systems rules: we are re-defining our ethics and
conducts (e.g. often we hear that privacy is not that important as traditionally
thought; virtual contacts are as important as physical; etc,), letting our wash-
prone brain to adapt to a new situation. And being so naturally adaptive it will
continue to do so.

Fig. 1. Smart Sisyphus

Aware that a success in engineering a natural phenomenon may be a Pyrrhic
victory for humanity, especially when carelessly mass-applied on individuals and
society, we should try to explore both the principles of adaptive and autonomous
systems and possible impacts of their use, thus maximizing the benefits and min-
imizing drawbacks and paradoxical traps. Not to repeat the mistakes from more
mature Internet domains where the impacts are being discovered a posteriori,
here the possible drawbacks are considered in time, hoping that they could be
avoided.

666 N. Šerbedžija

3 Adaptive Systems

One approach to construct a user-centric adaptive systems is the reflective tech-
nology [1]. It is an interdisciplinary endeavor aiming to construct smart envi-
ronments with pervasive adaptive control. A general purpose assistance should
enrich control systems with implicit man-machine interaction sensitive to cog-
nitive, emotional and/or physical state of the user. The ultimate goal of such
reflective assistance is to observe people in a specific real-life situation, diagnose
their psychological and behavioral state and influence the ambient accordingly.
The system uses reflective technology to exercise pervasive adaptation through
non explicit man-machine interaction based on context awareness. Recent results
demonstrates its effective use in vehicular domain and promise further applica-
tions in environmental, ambient assisted living and health care areas [1].

3.1 Reflective Technology

In effort to mimic the adaptation process, as it appears in the nature, and to
apply it within man-machine interaction, reflective approach deploys the biocy-
bernetic loop to make users psychophysiological data a part of computer control
logic. The function of the loop is to monitor changes in users state in order to
initiate an appropriate computer response. This approach extends the original
concept to a wider set of input information (e.g. social and behavioral) allowing
for a composite analyses and decision making. It also takes results of affec-
tive/physiological computing and combines it with high level understanding of
social and goaloriented situations. Bio-cybernetic loop [2] is implemented with
the help of sense-analyse-react control troika. Firstly, reflective ontology classifies
numerous factors that determine users states, social situation and application
goals, defining elements for decision making. The ontology is then expressed in a
number of XML-based taxonomies that allow for a uniform deployment in data
acquisition, users state diagnoses and activation of corrective actions.

Reflective framework is service- and component-oriented dynamic and re-
active middleware that runs multiple bio-cybernetic loops featuring pervasive
adaptation at different time scales. The software architecture is layered as fol-
lows:

– Tangible layer - a low-level subsystem that controls sensor and actuator
devices. It offers its services (sensor measurements/actuator controls) to the
rest of the system.

– Reflective layer - a core of the system that combines tangible services with
users profile and scenario descriptions to perform diagnoses of users state
and provoke system (re-) action relative to the situation and the application
goals.

– Application layer - a high level part of the system that defines application
scenario and system goals. By combining low and high level services and
components from other layers, application layer runs and controls the whole
system.

Adaptive and Autonomous Systems and Their Impact on Us 667

The reflective framework has been developed using the software components
paradigm and implemented in the Java programming language on top of OSGI
environment.

Fig. 2. System architecture

Figure 2 illustrates the reflective software architecture with three major stages,
exercising different bio-cybernetic loops at tangible, reflective and application
level. The control loop (initialized with users profile and scenario settings de-
noted by human hand on the top of Figure 2) starts by sampling the psycho-
physiological measurements, continues with their analyses and finishes by adap-
tive system reaction (denoted by a “digital hand” on top of Figure 2). In a next
iteration the system influence (caused by the reaction) can also be sensed and
further tuned.

3.2 Reflective Use Cases

The developed reflective system is able to grasp and influence human mental and
physical state. Together with psychologists [2] and bio-engineers [1], we imple-
mented a personal advertiser that could tailor advertising content to the mental
reaction of the viewer; a mood player that selects the music to comfort the
listeners emotional state; a computer game that adapts its difficulty level accord-
ing to mental effort of the player, a smart seat that recognizes how comfortable
it is for a person and re-shape accordingly. Putting some of the stated results
together, we prototyped a “vehicle as co-driver” [1] system with a capability
to configure and dynamically modify vehicles settings and performance according

668 N. Šerbedžija

to emotional, cognitive and physical drivers condition. When deployed, a re-
flective system is personalized and its reactions are tuned to the person being
observed. In a number of case studies a positive impact in terms of comforting
users physical emotional and cognitive situation have been experimentally proved
[1]. However, a spectrum of possible misuses is also very wide. An adaptive ad-
vertiser could mislead a consumer, a mood player could manipulate emotional
state of a person, adaptive computer game could exhaust a passionate player
and a wary “co-driver” silently collects and maintains personal information that
the driver would not necessarily share with others.

4 Autonomous Systems

Within the ASCENS approach [3] we developed numerous tools and methods
that support one or more development life cycles of autonomous systems, from
requirements specification up to run-time monitoring and verification. Here we
choose ethically neutral terrain, deploying awareness and autonomic behavior
purely in software, making our systems “aware” of their functional and opera-
tional requirements, performance and surroundings. However, keeping a human
out of the processing loop has not saved us completely from the ethical concerns.
The impact there is less direct as in affective user-centric systems, but relying
on system autonomy does indirectly affect our own autonomy.

4.1 ASCENS Technology

ASCENS approach explores awareness, adaptation and self-organization offering
high-level methods and practical tools for developing autonomous systems. Un-
der the motto simplifying complexity, the technological challenge is in controlling
the dynamics of inherently distributed environments while harmonizing and op-
timizing individual and collective goals. Trail examples are on: how to organize
a rescue operation with self-aware and self-healing robot swarms; how to build
a scientific cloud platform that turns a huge number of voluntary computing
devices into a super computer; and how to optimally control mobility with elec-
tric vehicles taking into account energy restrictions, multiple itineraries, parking
availability and traffic conditions.

To behave autonomously, a control system needs to maintain knowledge about
itself (particular objectives, capabilities, execution state and restrictions) and
about its environment. Such collection of facts yields awareness of own func-
tionality and effects it has on the environment which further allows for adap-
tive performance. Being capable of operating according to these three principles
(knowledge, awareness, adaptation), the system is able to re-configure, re-tune
and act appropriately thus behaving in autonomous manner.

The approach breaks up a complex control problem into its elementary con-
stituents. It deals with complications at a bottom level, solving issues at a lower
scale and then harmonizing these solutions with more global ones. Localization

Adaptive and Autonomous Systems and Their Impact on Us 669

and de-centralization is the fourth major principle of our approach. Service com-
ponents with clearly defined elementary objectives are basic system elements.
They gather in larger symbiosis called ensembles in order to fulfill collective
goals. As the controlled situation changes, i.e. goals are (partially) fulfilled, re-
grouping takes place and the symbiosis re-structures. The criteria to construct
an ensemble of service-components is some joint interest which can be expressed
as a logical sentence, e.g. “connect all robots that can carry up to 4kg and are in
the radius of 100m with the aim to cooperatively transport 25kg heavy object”
or “select all free parking lots in the radius of 300m that have a charging plug”.
That makes the communication implicit and predicate-based. The connections
are established at run-time, depending on the live situation at particular time.
These logical rules for highly dynamic grouping are further used for formal rea-
soning on optimization and coordination among distributed elements.

The overall system development life cycle consists of the following phases: rig-
orous design (requirement specification, modelling and validation/verification),
deployment (programming) and run-time monitoring (live examination of aware-
ness, adaptation and autonomous behavior). A number of tools have been made
[3] that support the development process at each step, thus guiding and facili-
tating the whole development process.

Requirement specification is a phase where the dissection of the problem to
be solved takes place. Each system element is separately defined both function-
ally (what to do) and non-functionally (how to do) yielding a set of goals that
embrace the terms of functioning and description of environment. The knowl-
edge required for system awareness and adaptation is used as a major attribute
repository for system construction. The SCEL (service-component ensembles
language) [9] has been developed for high-level system modelling with service
components and their ensembles. Both service-components and ensembles have
local knowledge used to express their goals. Knowledge is represented by ontolo-
gies that contain hierarchical and meaningful description of system properties
and system goals. The goals are described as rules i.e. logical expressions with
system properties.

The adaptation phenomenon is formally modeled as a progress in a multi-
dimensional space where each axis represents one orthogonal aspect of system
awareness (facts about its own functional, operational, or any other necessities
defined within requirement specification phase). Adaptation actually happens
when the system state moves from one to another position within the space
according to the pre and post- condition on each of its awareness- dimensions.
Adaptation is a continuous process where a system acts appropriately i.e. in
harmony with own capabilities and the observed environment. The adaptation
model called SOTA (State of the Affairs) [10] is used to extract major application
requirements and offer appropriate adaptation patterns that effectively control
system dynamics with numerous feedback-loops.

In order to guarantee correct and timely behavior in such demanding and
highly dynamic circumstances this approach relies on formal methods. The ma-
jor safety and liveness properties are formally proved using SCEL process algebra

670 N. Šerbedžija

(e.g. prove that two e-vehicles will never block each other while competing for a
free charging station, or prove that the foraging algorithm of a robot converges
in a given time). Further validation and verification of specific optimization al-
gorithms are performed in order to guarantee correct system behavior in early
design phase (e.g. prove that the optimization method will deliver the most
energy-efficient route for a given multi-routing problem). Once the system is rig-
orously modelled and validated, the actual deployment may take place sewing
the system together. The jRESP[3] and jDEECO [3] deployment tools offer direct
Java programming support for the SCEL and SOTA models. Due to a seamless
functioning of autonomous systems, where system changes are means for “ap-
propriate” behavior, possible malfunctions are difficult to discover. Therefore, a
number of tools have been developed for run-time monitoring where internal sys-
tem knowledge and topology (ensemble construction) as well as awareness and
adaptive characteristics are observed. For example, the monitoring tools can vi-
sualize how the robots, close to the target and with enough battery-charge are
grouped into ensemble to perform joint transport of a heavy object. Once the
task is performed, the ensembles are dismantled freeing robots for another as-
signment. Monitoring inspects and displays major system principles: knowledge,
awareness and adaptation, offering a visualization of dynamic ensemble building
criteria, thus directly observing autonomous behavior. If some malfunctioning
is discovered at run-time, a system modification is considered going back to
modelling and design system development phases.

4.2 ASCENS Use Cases

Pragmatic orientation means building technical systems that perform concrete
tasks, like autonomous robot swarms performing rescue operation, autonomous
cloud platforms transforming numerous small computers into a super comput-
ing environment or autonomous e-mobility support that ensures energy-aware
transportation services. These are highly dynamic environments where physical
and social context, operational and functional requirements and workloads are
constantly changing. Through practical deployments we want to show that our
approach behaves autonomously and at the same time it integrates smoothly
into our ethical codex. Since autonomous behavior means functioning without
human intervention, we need to ensure that rules driving system autonomy does
not collide with our own independence.

By design our robots know their own functionality, battery state, position, and
the location of nearby robots, so they indeed perform actions according to that
knowledge. The collective knowledge is constructed dynamically based on the
contextual situation, making the whole system highly cooperative, self-healing
and autonomous. In the cloud computing scenario, the system knowledge is based
on the computing capabilities of voluntary computers that join the cloud. Most of
the control functions are exercised at ensemble level featuring self-monitoring,
self-organized and distributed deployment and execution. The control system
for e-mobility takes into account on-going information about routing, vehicle en-
ergy states, traffic conditions and parking/charging availabilities and calculates

Adaptive and Autonomous Systems and Their Impact on Us 671

optimal routing. The system is highly dynamic with ensembles, representing dif-
ferent system goals, being continuously (re-)organized offering alternatives for
optimized control (like ensembles of near-by parking places, ensembles of vehicles
travelling in same directions, etc.). In a live system, adaptive behavior is crucial
as sudden changes in real settings require re-optimization and re-allocation of
resources.

The autonomy model we are using is based on presupposed knowledge and
real-time awareness and adaptation. Contrary to natural autonomy which is
based on learning, experience and evolution, here, the autonomy is much more
rigid, based on prior system knowledge and corresponding rules and policies. It
is restricted to our understanding of the control environment, without support of
(artificial) intelligence, learning, or similar strategies that would ensure skillful
handling of unknown problems. Such systems should be used only where human
control is not possible due to different dangers, heavy tasks, compute intense
calculations, etc. or when delegating a task to a machine is a genuine benefit
for people. The application area should comprise well known domains where
problems to be solved can be predicted or their solution depends on huge num-
ber of factors that is overwhelming for us (e.g. traffic conditions, multi-route
optimization, scientific computing, etc.). Further application domains include
operations in places dangerous for humans (emergency situations), or assisting
by disabilities (medical assistance systems), or even doing boring tasks for us.

Fig. 3. Digital clouds

672 N. Šerbedžija

The cases where autonomous systems may interfere with our own autonomy
should be considered carefully. In general, where a person is a part of the control
loop, possibilities of negative impacts are higher: the autonomous system may
pursuit the goals which are not necessarily the same as those the person using
autonomous system wants to follow.

5 Cyber Race

The challenges of controlling the robot behavior in performing certain task can
best be understood if seen from the robot perspective. The complexity does not
primarily come from the task itself, but rather from the interaction that goes on
between the robot sensory system, environment and self-directed robot perfor-
mance. To illustrate that, we set an exhibition at well attended ICT conference
[11] where our autonomous robot competes with a human-controlled robot. The
task is to find building blocks in a closed area, grab them (one by one), and
carry them to the place where a wall should be constructed. The robot is oper-
ated by a joystick which can move the robot left/right; forward/backwards and
instruct it to grab/release the building blocks. The task seems trivial, so most
of the competitors believe our robot does not stand a chance. That proved to be
wrong. Most people lost, only a couple of young, joystick-virtuous competitors
won. Then, we imposed a “fair-play” rule: since the robots sensory system is less
sophisticated than ours, we reduced the vision of the human competitor to the
visual system of the robot, giving the competitors equal chances. When both
competitors have exactly the same information about environment, our robot
performed much better. That shows how seemingly simple assignment (from our
point of view) is actually complex for a fully autonomous robot. Taking into ac-
count relatively primitive robot sensory system, the robot performance is quite
good and reliable, especially well-suited for the kind of tasks that we do not want
to participate in (like removing objects in a poisoned/radiated/high temperature
areas, carrying heavy objects, underwater operations, etc.) [12].

6 Conclusion: Sunshine Breaks through Digital Fog

The illustrations presented summarize the approach in dissecting and sewing
adaptive and autonomous behavior. The first figure shows a swarm of au-
tonomous robots rolling the human brain up the hill, a task too difficult to
complete. It illustrates the way out of one of the hardest and most controversial
assignments men can get. Instead of doing the task ourselves, we can assign it
to a multi-robot system. Metaphorically, the figure also expresses our belief that
overthrowing human brain is a Sisyphus task. The second figure illustrates reflec-
tive approach to create a personal assistant that adapts to physical and mental
state of a user. Iterative and ubiquitous nature of the system is metaphorically
presented by a spinning top that sense, diagnose and react in each of its rounds
(being driven by measurement and computer generated actions). A dazzling

Adaptive and Autonomous Systems and Their Impact on Us 673

Fig. 4. Cyber runners

character of the approach that may influence person involved, both positively
and negatively, is illustrated by “magic circles” casted by the spinning top.

The third figure illustrates our approach to decompose a complex system into
simple elements, structure them in digital symbioses (depicted as clouds) and use
them to control swarm of robots, electrical vehicles transportation or to manage
the cloud computation itself. These are all ethically non problematic practices,
delegating a part of tasks we are either not willing to get involved in, or not
capable to solve, to a technical system. In this case: (1) rescue operation in pres-
ence of dangerous material, (2) optimization of multi-route problems in presence
of energy restrictions and (3) performing scientific calculations on a cloud plat-
form. The whole approach features de-centralization, symbiotic grouping and
implicit communication. The resulting system behavior is autonomous based on
local/global knowledge, awareness and adaptation. The absence of central con-
trol is crucial for our approach and in all cases the application scenarios run in
a truly distributed manner.

The fourth figure metaphorically shows our competition arena [11] where
an autonomous robot wins the race against its human rival. The cyber run-
ner experiment places the human competitor into “the robot perspective” and
demonstrates how a cyber-vision may reduce our skills. Often, cyber glasses are
advertised as something that “extend” our perception which is not necessarily
always the case. Besides offering extra information, they can also decline our
concentration, sometime mislead and in general weaken our performance.

674 N. Šerbedžija

The times of paradoxical “centralized network” may be passing as we are
adding more and more smart devices into the network that cannot be effectively
managed centrally, but is rather self-organized and performs in an ad hoc man-
ner. Evolving cyber-physical systems are melting man-machine interaction into
a man-machine confluence where protecting human virtues and ethical codices
could be imbedded into system requirements level and more effectively supported
in all development phases. The near future technology may bring new generation
of simple and highly de-centralized autonomous devices that self-assemble (dis-
assemble) in fulfilling a temporal goal. Businesses may look for new methods
of technical symbioses with dynamic grouping and dismantling, which would
perform tasks autonomously and much more efficiently. Big data mining and
collecting everything about anything may lose its significance, because new gen-
eration of systems will work much more effectively if bypassing the overloaded
and busy Internet, concentrating rather on qualitative then on quantitative data
analyses. Re-gaining our privacy and social norms may be a collateral benefit,
coming as a sunshine through the digital clouds.

Acknowledgements. All the credits for the work described here goes to the
REFLECT [1] and ASCENS [3] project teams. However, if there is a single
person to be highlighted as a pillar of the research being conducted, then it is
Martin Wirsing [13]. He and his LMU team inspired and contributed to the two
projects significantly. Working with Martin was like balancing at the pinnacle
of the computer science breakthroughs, both fascinating and provocative at the
same time. The more successful we were the more controversial it got. This paper
recalled some joint achievements, thoughts and afterthoughts steaming from our
collaboration and is dedicated to Martin Wirsing. The tribute for the cartoons
on figures 1, 3 and 4 go to Jens-Helge Dahmen (Fraunhofer FOKUS Berlin), who
designed them for the purpose of this paper.

References

[1] REFLECT project - Responsive Flexible Collaborating Ambient,
http://reflect.pst.ifi.lmu.de/

[2] Serbedzija, N., Fairclough, S.: Reflective Pervasive Systems. ACM Transactions
on Autonomous and Adaptive Systems (TAAS) 7(1) (April 2012)

[3] ASCENS Project - Autonomic Service-Component Ensembles,
http://www.ascens-ist.eu/

[4] Weiser, M.: The computer for the 21st century. Scientific American, 94–104
(September 1991)

[5] Streitz, Nixon: The Disappearing Computer. Communications of the ACM 8(3)
(2005)

[6] Watzlawick, P., Beavin-Bavelas, J., Jackson, D.: Some Tentative Axioms of Com-
munication. In: Pragmatics of Human Communication - A Study of Interactional
Patterns, Pathologies and Paradoxes. W.W. Norton, New York (1967)

http://reflect.pst.ifi.lmu.de/
http://www.ascens-ist.eu/

Adaptive and Autonomous Systems and Their Impact on Us 675

[7] Shelley, M., Frankenstein, E.J.M., Smith, J.M.: The first edition of Frankenstein;
or, The Modern Prometheus was published anonymously in three volumes by
Lackington, Hughes, Harding, Mavor and Jones on January 1, 1818. St. Martins,
Boston (1992)

[8] Huxley, A.: Brave New World. Harper and Bros, New York (1946)
[9] De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic

systems programming: the SCEL Language. ACM Transactions on Autonomous
and Adaptive Systems, 1–29 (in press, 2014) ISSN 1556-4665

[10] Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a General
Model for Self-Adaptive Systems. In: IEEE 21st International Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE,
pp. 48–53 (2012)

[11] Serbedzija, N.: The beauty is in the eye of the beholder, blog,
http://blog.ascens-ist.eu/2013/11/beauty-is-in-the-eye-of-the-

beholder/

[12] Soleymani, T., Trianni, V., Bonani, M., Mondada, F., Dorigo, M.: Autonomous
Construction with Compliant Building Material. In: Proc. 13th International Con-
ference on Intelligent Autonomous Systems, IAS-13. AISC, vol. 301. Springer
(2014)

[13] Wirsing, M., http://www.pst.ifi.lmu.de/people/staff/wirsing/

http://blog.ascens-ist.eu/2013/11/beauty-is-in-the-eye-of-the-beholder/
http://blog.ascens-ist.eu/2013/11/beauty-is-in-the-eye-of-the-beholder/
http://www.pst.ifi.lmu.de/people/staff/wirsing/

The KnowLang Approach to Self-adaptation

Emil Vassev and Mike Hinchey

Lero–The Irish Software Engineering Research Centre,
University of Limerick, Limerick, Ireland

{emil.vassev,mike.hinchey}@lero.ie

Abstract. Self-adaptive systems autonomously monitor their behavior and even-
tually modify that behavior according to changes in the operational environment
or in the system itself. In this entry, we present an approach to implementing
self-adaptation capabilities with KnowLang, a special framework for knowledge
representation and reasoning. KnowLang provides for a special knowledge con-
text and a special reasoner operating in that context. The approach is formal and
demonstrates how knowledge representation and reasoning help to establish the
vital connection between knowledge, perception, and actions that realize self-
adaptive behavior. Knowledge is used against the perception of the world to gen-
erate appropriate actions in compliance with some set of goals and beliefs.

1 Introduction

There are many advantages to self-adaptation. Among the most promising are the fact
that self-adaptation enables software-intensive systems to become more versatile, flex-
ible, resilient, dependable, robust, energy-efficient, recoverable, customizable, config-
urable, and self-optimizing by adapting to changing operational contexts, environments
or system characteristics. Prof. Wirsing’s work on developing large software-intensive
systems with self-adaptive capabilities [1] has revealed a new niche in this extremely
challenging domain of computer science and software engineering. Here, it is important
to mention the personal contribution of Prof. Wirsing in defining the concept of auto-
nomic ensembles. Being a group leader in the ICT-FET project InterLink [2], his con-
tribution helped that project to coin the term ensemble for a particular kind of system:
Ensembles are software-intensive systems with massive numbers of nodes or complex
interactions between nodes, operating in open and non-deterministic environments in
which they have to interact with humans or other software-intensive systems in elabo-
rate ways. Therefore, ensembles have to dynamically adapt to new requirements, tech-
nologies or environmental conditions without redeployment and without interruption
of the system’s functionality, thereby blurring the distinction between design-time and
runtime.

One of the key challenges of developing autonomic ensembles is the problem of
Knowledge Representation and Reasoning (KR&R) for awareness and self-adaptive
behavior. In this entry, we present KnowLang, an approach to knowledge represen-
tation for self-adaptive behavior and awareness based on the methodology discussed
above. KnowLang [3–5] is an initiative undertaken by Lero–the Irish Software Engi-
neering Research Center within Lero’s mandate in the ASCENS Project [6]. Autonomic

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 676–692, 2015.
c© Springer International Publishing Switzerland 2015

The KnowLang Approach to Self-adaptation 677

Service-Component ENSembles (ASCENS)1 is an FP7 (Seventh Framework Program)
project targeting the development of a coherent and integrated set of methods and tools
providing a comprehensive approach to developing ensembles (or swarms) of intelli-
gent, self-aware and adaptive service components. One of the main scientific contri-
butions that we expect to achieve with ASCENS is related to KR&R. Note that it is
of major importance for an ASCENS system to acquire and structure comprehensive
knowledge in such a way that it can be effectively and efficiently processed, so such
a system becomes aware of itself and its environment. Moreover, ASCENS is an AI
project tackling self-adaptation of systems operating in open-ended environments, e.g.,
our physical world. Such systems need to be developed with initial knowledge and
learning capabilities based on knowledge processing and awareness. How the system
knowledge is both structured and modeled is very important to providing the essence of
self-adaptation.

The rest of this entry is organized as follows. Section 2 introduces a running example
intended to assist the reader in uderstanding the concept of self-adaptation. Section 3
presents KnowLang as a formal specification language for knowledge representation
in self-adaptive systems. In Section 4, we present a proof-of-concept case study where
KnowLang is used to build a KR model for the running example presented in Section 2.
Section 5 presents related work and finally, Section 6 presents a brief conclusion and
future work.

2 eMobility: A Case Study of Self-adaptation

To better understand the concept of self-adaptive systems, in this section, we present
a running example, based on the ASCENS eMobility [6] case study. Note that this
example is further used as a case study presenting the KnowLang approach to KR&R
for self-adaptive systems.

An eMobility system [7, 8] needs to thematically, temporally and spatially coordinate
mobility entities where the system must be modeled as a heterogeneous system com-
posed of intelligent and self-aware nodes, which are cross-connected by information
and communication technology. In such a system, e-vehicles are competing for infras-
tructure resources of the traffic environment where the infrastructure resources are con-
strained. For example, roads, parking lots and charging stations have a limited capacity.
The cost for a e-vehicle to use the infrastructure capacity is variable and changes with
time and location. Situations occur in which the availability of infrastructure resources
does not match the demand.

eMobility brings most of the challenges that the theories and methodologies devel-
oped for self-adaptive systems are striving to solve. Hence, self-adaptation has emerged
as an important paradigm making eMobility capable of modifying the system behavior
and/or structure in response to increasing workload demands and service failures. A
common characteristic of self-adaptive eMobility is to emphasize the self-adaptations
required to ensure that services will be provided in a fail-safe manner and under con-
sideration of system goals.

1 The ASCENS Project (2010-2014) was coordinated by Prof. Martin Wirsing.

678 E. Vassev and M. Hinchey

In eMobility, vehicles move according to a schedule defined by a driver [7, 8]. Ev-
ery e-vehicle component is responsible for driving along the optimal route, meeting
time constraints imposed by the driver’s schedule and reserving spaces at a particular
Point of Interest (POI). Vehicles are competing for infrastructure resources of the traffic
environment and a set of locally optimal solutions should be computed for each individ-
ual driver. Each e-vehicle is equipped with a Vehicle Planning Utility (Route Planner)
that plans travel, including a set of alternative routes. Traffic routes are composed of
multiple driving locations, e.g., POIs. A set of locally optimal solutions is computed
for each individual user. This set is negotiated at a global level in order to satisfy the
global perspective. The set of locally optimal solutions guarantees a minimum quality
for each individual driver. The global optimization scheme guarantees optimal resource
distribution within the local constraints. The size of the set of locally optimal solutions
determines the cooperative nature of the individual driver. The smaller the set, the more
competitive the driver is. The larger the set, the more cooperative the driver is. The pro-
cess of Route Selection (RouteSAM) advises on a route choice, which is made from a
set of alternative routes generated by the route planner. The RouteSAM considers road
capacity and traffic levels. It optimizes overall throughput of the roads by balancing the
route assignments of the vehicles. From a local vehicle perspective, the journey time is
minimized; from a global perspective, congestion levels are minimized. The route selec-
tion process strives to satisfy global optimality criteria of road capacity. Once a vehicle
is in the close vicinity of a destination, it computes a set of locally optimal parking
lots. Again, the process of selecting parking lots satisfies global optimality criteria of
parking capacity.

Fig. 1. eMobility Example [8]

Figure 1 shows a formal Petri net representation of a real example scenario that con-
siders four destinations (Wolfsburg, Gifhorn, Braunschweig, and Hannover), the road
network between the destinations and the processes which are taking place at the desti-
nation locations [8]. The road network is described by several transition framed subnets

The KnowLang Approach to Self-adaptation 679

(e.g., RNet15). It is assumed that the journeys between destinations contain a limited
set of variants. Typically three alternative routes and three alternative driving styles are
considered, generating a maximal set of nine variants. Each destination is represented
by a transition framed subnet (e.g., Hannover), which models both the vehicle charging
process (e.g., CarPark H) and user specific processes (e.g., User H) such as appoint-
ments. The charging stations that are connected to the car parks support three different
charging modes (normal, fast and ultra-fast charging). In this constraint environment,
self-adaption is required in situations that occur when the availability of infrastructure
resources does not match the demand - not enough capacity, or environment constraints
(e.g., speed limit, or delay due to high traffic) hinder the e-vehicle goals. eMobility
considers five different levels of self-adaptation [9]:

– Level-1: A vehicle computes a set of alternative routes for its current destination.
This operation is performed locally by use of the vehicle’s planning utility.

– Level-2: A vehicle chooses the best option from those alternatives that are computed
in the previous level. The vehicle observes the situation and adapts by triggering a
new adaptation cycle, starting at Level-1 to the changes in the environment. This
operation may require central planning and reasoning at group (ensemble) level.

– Level-3: A vehicle computes a set of parking lots near the current destination. This
operation is local and is performed by the vehicle’s planning utility.

– Level-4: A central parking lot planner (PLCSSAM) chooses the best option from
those alternatives that are provided by the vehicle in the previous level. As a result,
vehicles are assigned an optimal or near-optimal parking lot reservation. At the
same time, a “near-optimal parking lot” load-balancing is established.

– Level-5: A vehicle issues a reservation request for the selected parking lot. As a
result the parking space at that parking lot is booked. Both the vehicle and the
parking lot monitor the situation. If required, a new adaptation cycle is triggered.

3 KnowLang

A key feature of KnowLang [5] is a formal language with a multi-tier knowledge spec-
ification model allowing for integration of ontologies together with rules and Bayesian
networks [10]. The language aims at efficient and comprehensive knowledge structur-
ing and awareness based on logical and statistical reasoning. It helps us tackle: 1) ex-
plicit representation of domain concepts and relationships; 2) explicit representation of
particular and general factual knowledge, in terms of predicates, names, connectives,
quantifiers and identity; and 3) uncertain knowledge in which additive probabilities are
used to represent degrees of belief [3]. Other noteworthy features are related to knowl-
edge cleaning (allowing for efficient reasoning) [3, 5] and knowledge representation for
autonomic behavior [4, 5]. By applying the KnowLang’s multi-tier specification model
(see Figure 2) we build a Knowledge Base (KB) structured in three main tiers [5, 3]:
1) Knowledge Corpuses; 2) KB Operators; and 3) Inference Primitives. The tier of
Knowledge Corpuses is used to specify KR structures. The tier of KB Operators pro-
vides access to Knowledge Corpuses via special classes of ASK and TELL Operators,
where ASK Operators are dedicated to knowledge querying and retrieval and TELL
Operators allow for knowledge update. When we specify knowledge with KnowLang,

680 E. Vassev and M. Hinchey

Fig. 2. KnowLang Specification Model

we build a KB with a variety of knowledge structures such as ontologies, facts, rules
and constraints where we need to specify the ontologies first in order to provide the
“vocabulary” for the other knowledge structures. A KnowLang ontology is specified
over concept trees, object trees, relations and predicates. Concepts are specific domain
terms, e.g., in the eMobility case study, some good candidates for domain concepts
are vehicle, journey, and route (see Section 2). Each concept is specified with spe-
cial properties and functionalities and is hierarchically linked to other concepts through
PARENTS and CHILDREN relationships. For reasoning purposes every concept spec-
ified with KnowLang has an intrinsic STATE attribute that may be associated with a
set of possible state values these concept instances may be in. Concept instances are
considered as objects and are structured in object trees — a conceptualization of how
objects existing in the world of interest are related to each other. The relationships in
an object tree are based on the principle that objects have properties, where the value of
a property is another object, which in turn also has properties. Moreover, concepts and
objects may be connected via relations. Relations are binary and may have probability-
distribution attributes (e.g., over time, over situations, over concepts’ properties, etc.).

The KnowLang Approach to Self-adaptation 681

Probability distribution is provided to support probabilistic reasoning and by specifying
relations with probability distributions we actually specify Bayesian networks connect-
ing the concepts and objects of an ontology. Figure 3 shows a KnowLang specification
sample demonstrating both the language syntax [11] and its visual counterpart — a con-
cept map based on interrelations with no probability distributions. Modeling knowledge
with KnowLang requires a number of phases:

– Initial knowledge gathering – involves domain experts to determine the basic no-
tions, relations and functions (operations) of the domain of interest.

– Behavior definition – identifies situations and behavior policies as “control data”
helping to identify important self-adaptive scenarios.

– Knowledge structuring – encapsulates domain entities, situations and behavior into
KnowLang structures such as concepts, objects, relations, facts and rules.

Fig. 3. KnowLang Specification Sample

3.1 Modeling Self-adaptive Behavior

KnowLang employs special knowledge structures and a reasoning mechanism for mod-
eling autonomic self-adaptive behavior [4]. In eMobility, self-adaptive behavior is ex-
hibited by the five levels of self-adaptation (see Section 2). Such a behavior can be
expressed via KnowLang policies, events, actions, situations and relations between
policies and situations (see Definitions 1 through 10). Policies (Π) are at the core of
autonomic behavior. A policy π has a goal (g), policy situations (Siπ), policy-situation
relations (Rπ), and policy conditions (Nπ) mapped to policy actions (Aπ) where the
evaluation of Nπ may eventually (with some degree of probability) imply the evaluation

of actions (denoted Nπ
[Z]→ Aπ) (see Definition 2). A condition is a Boolean expression

over an ontology (see Definition 4), e.g., the occurrence of a certain event.
Policy situations Siπ are situations (see Definition 7) that may trigger (or imply) a

policy π , in compliance with the policy-situations relations Rπ (denoted by Siπ
[Rπ]→ π),

thus implying the evaluation of the policy conditions Nπ (denoted by π → Nπ)(see Defi-
nition 2). Therefore, the optional policy-situation relations (Rπ) justify the relationships

682 E. Vassev and M. Hinchey

between a policy and the associated situations (see Definition 10). Note that in order to
allow for self-adaptive behavior, relations must be specified to connect policies with sit-
uations over an optional probability distribution (Z) where a policy might be related to
multiple situations and vice versa. Probability distribution is provided to support proba-
bilistic reasoning and to help the reasoner to choose the most probable situation-policy
“pair”. Thus, we may specify a few relations connecting a specific situation to different
policies to be undertaken when the system is in that particular situation and the prob-
ability distribution over these relations (involving the same situation) should help the

reasoner decide which policy to choose (denoted by si
[Z]→ π – see Definition 10). Hence,

the presence of probabilistic beliefs in both mappings and policy relations justifies the
probability of policy execution, which may vary with time. A goal g is a desirable tran-
sition to a state, or from a specific state to another state, (denoted by s⇒ s′) (see Defini-
tion 5). A state s is a Boolean expression over ontology (be(O))(see Definition 6), e.g.,
“a specific property of an object must hold a specific value”. A situation is expressed
with a state (s), a history of actions (A ←

si) (actions executed to get to state s), actions Asi

that can be performed from state s and an optional history of events E ←
si that eventually

occurred to get to state s (see Definition 8).

Definition 1. Π := {π1,π2,,πn},n≥ 0 (Policies)

Definition 2. π :=< g,Siπ , [Rπ],Nπ ,Aπ ,map(Nπ ,Aπ , [Z])>

Aπ ⊂ A,Nπ
[Z]→ Aπ (Aπ - Policy Actions)

Siπ ⊂ Si,Siπ
[Rπ]→ π → Nπ (Siπ - Policy Sitns)

Rπ ⊂ R (Rπ-Policy-Situation Relations)

Definition 3. Nπ := {n1,n2,,nk},k≥ 0 (Policy Condtns)

Definition 4. n := be(O) (Boolean Expression over Ontology)

Definition 5. g := 〈⇒ s′〉|〈s⇒ s′〉 (Goal)

Definition 6. s := be(O) (State)

Definition 7. Si := {si1,si2,,sin},n≥ 0 (Situations)

Definition 8. si :=< s,A ←
si , [E

←
si],Asi > (Situation)

A ←
si⊂ A (A ←

si - Executed Actions)
Asi ⊂ A (Asi - Possible Actions)
E ←

si⊂ E (E ←
si - Situation Events)

Definition 9. R := {r1,r2,,rn},n≥ 0 (Relations)

Definition 10. r :=< π , [rn], [Z],si > (rn - Relation Name)

si ∈ Si,π ∈Π ,si
[Z]→ π

The KnowLang Approach to Self-adaptation 683

Ideally, KnowLang policies are specified to handle specific situations, which may
trigger the application of policies. A policy exhibits a behavior via actions generated in
the environment or in the system itself. Specific conditions determine, which specific
actions (among the actions associated with that policy – see Definition 2) shall be exe-
cuted. These conditions are often generic and may differ from the situations triggering
the policy. Thus, the behavior not only depends on the specific situations a policy is
specified to handle, but also depends on additional conditions. Such conditions might
be organized in a way allowing for synchronization of different situations on the same
policy. When a policy is applied, it checks what particular conditions are met and per-
forms the mapped actions (map(Nπ ,Aπ , [Z]) – see Definition 2). An optional probability
distribution may additionally restrict the action execution. Although specified initially,
the probability distribution at both mapping and relation levels is recomputed after the
execution of any involved action. The re-computation is based on the consequences of
the action execution, which allows for reinforcement learning.

3.2 Converting Sensory Data to KR

One of the biggest challenges is “how to map sensory raw data to KR symbols”. Our
approach to this problem is to specify special explicit concepts called METRICS. In
general, a self-adaptive system has sensors that connect it to the real world and even-
tually help it listen to its internal components. These sensors generate raw data that
represent the physical characteristics of the world. The problem is that these low-level
data streams must be: 1) converted to programming variables or more complex data
structures that represent collections of sensory data; 2) those programming data struc-
tures must be labeled with KR Symbols. Hence, it is required to relate encoded data
structures with KR concepts and objects used for reasoning purposes. KnowLang as-
sumes that each sensor is controlled by a software driver where appropriate methods
are used to control the sensor and read data from it. Considering the eMobility case
study, good candidates for metrics are the sensors used to measure the vehicle speed
and the battery level (see Section 2). Both the sensory data and sensors should be rep-
resented in the KB by using METRIC explicit concepts and instantiate objects of these
concepts. By specifying a METRIC concept we introduce a class of sensors to the KB
and by specifying objects, instances of that class, we give the actual KR of a real sensor.
KnowLang allows the specification of four different types of metrics [11, 5]:

– RESOURCE – measure resources like capacity;
– QUALITY – measure qualities like performance, response time, etc.;
– ENVIRONMENT – measure environment qualities and resources;
– ENSEMBLE – measure complex qualities and resources; might be a function of

multiple metrics both of RESOURCE and QUALITY type.

3.3 KnowLang Reasoner

A very challenging task is the R&D of the inference mechanism providing for knowl-
edge reasoning and awareness. In order to support reasoning about self-adaptive

684 E. Vassev and M. Hinchey

Fig. 4. KnowLang Reasoner

behavior and to provide a KR gateway for communication with the KB, we have de-
veloped a special KnowLang Reasoner. The reasoner communicates with the system
and operates in the KR Context, a context formed by the represented knowledge (see
Figure 4).

The KnowLang Reasoner should be supplied as a component hosted by the system
and, thus, it runs in the system’s Operational Context as any other system’s component.
However, it operates in the KR Context and on the KR symbols (represented knowl-
edge). The system talks to the reasoner via special ASK and TELL Operators allow-
ing for knowledge queries and knowledge updates (See Figure 4). Upon demand, the
KnowLang Reasoner can also build up and return a self-adaptive behavior model - a
chain of actions to be realized in the environment or in the system.

4 Knowledge Representation for eMobility with KnowLang

In order to specify a KR model for eMobility, the first step is to specify a knowledge
base (KB) representing the eMobility system, i.e., e-vehicles, parking lots, routes, traffic
lights, etc. To do so, we need to specify an ontology structuring the knowledge domains
of eMobility. Note that these domains are described via domain-relevant concepts and
objects (concept instances) related through relations. To handle explicit concepts like
situations, goals, and policies, we grant some of the domain concepts explicit state
expressions where a state expression is a Boolean expression over the ontology (see
Definition 6 in Section 3.1).

Figure 5 depicts a graphical representation of the eMobility ontology relating most
of the domain concepts within an eMobility system. Note that the relationships within a
concept tree are “is-a” (inheritance), e.g., the RoadElement concept is a TraficEntity and
the Action concept is a Knowledge and subsequently Phenomenon. The following is a
sample of the KnowLang specification representing three important concepts: Vehicle,
Journey, and Route. As specified, the concepts in a concept tree might have properties
of other concepts, functionalities (actions associated with that concept), states (Boolean
expressions validating a specific state), etc. For example, the Vehicle’s IsMoving state
holds when the vehicle speed (the VehicleSpeed property) is greater than 0.

// e-Vehicle
CONCEPT Vehicle {

PARENTS {eMobility.eCars.CONCEPT_TREES.Entity}
CHILDREN { }

The KnowLang Approach to Self-adaptation 685

Fig. 5. eMobility Ontology Specified with KnowLang

PROPS {
PROP carDriver {

TYPE {eMobility.eCars.CONCEPT_TREES.Driver} CARDINALITY {1} }
PROP carPassengers {

TYPE {eMobility.eCars.CONCEPT_TREES.Passenger} CARDINALITY {*} }
PROP carBattery {

TYPE {eMobility.eCars.CONCEPT_TREES.Battery} CARDINALITY {1} }
}
FUNCS {
FUNC startEngine {TYPE {eMobility.eCars.CONCEPT_TREES.StartEngine}}
FUNC stopEngine {TYPE {eMobility.eCars.CONCEPT_TREES.StopEngine}}
FUNC accelerate {TYPE {eMobility.eCars.CONCEPT_TREES.Accelerate}}
FUNC slowDown {TYPE {eMobility.eCars.CONCEPT_TREES.SlowDown}}
FUNC startDriving {TYPE {eMobility.eCars.CONCEPT_TREES.StartDriving}}
FUNC stopDriving {TYPE {eMobility.eCars.CONCEPT_TREES.StopDriving}}

}
STATES {
STATE IsOperational{

NOT eMobility.eCars.CONCEPT_TREES.Vehicle.PROPS.carBattery.STATES.batteryLow }
STATE IsMoving{ eMobility.eCars.CONCEPT_TREES.VehicleSpeed > 0 }

}
}

CONCEPT Journey {
PARENTS {eMobility.eCars.CONCEPT_TREES.Phenomenon}
CHILDREN {}
PROPS {
PROP journeyRoute {TYPE {eMobility.eCars.CONCEPT_TREES.Route} CARDINALITY {1}}
PROP journeyTime {TYPE {DATETIME} CARDINALITY {1}}
PROP journeyCars {TYPE {eMobility.eCars.CONCEPT_TREES.Vehicle} CARDINALITY {*}}

}
STATES
{
STATE InSufficientBattery {/* to specify */}
STATE InNotSufficientBattery {

NOT eMobility.eCars.CONCEPT_TREES.Journey.STATES.InSufficientBattery}
STATE Arrived {eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyRoute.STATES.AtEnd}
STATE ArrivedOnTime { eMobility.eCars.CONCEPT_TREES.Journey.STATES.Arrived AND

(eMobility.eCars.CONCEPT_TREES.JourneyTime <=
eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyTime)

}
}

}

CONCEPT Route {
PARENTS {eMobility.eCars.CONCEPT_TREES.Phenomenon}
CHILDREN {}
PROPS {
PROP locationA {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {1}}
PROP locationB {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {1}}
PROP intermediateStops {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {*}}
PROP currentRoad {TYPE {eMobility.eCars.CONCEPT_TREES.Road} CARDINALITY {1}}
PROP alternativeRoads {TYPE {eMobility.eCars.CONCEPT_TREES.Road} CARDINALITY {*}}

}

686 E. Vassev and M. Hinchey

FUNCS {
FUNC getCurrentLocation {TYPE {eMobility.eCars.CONCEPT_TREES.GetCurrentLocation}}
FUNC takeAlternativeRoad {TYPE {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad}}
FUNC recomputeRoads {TYPE {eMobility.eCars.CONCEPT_TREES.RecomputeRoads}}

}
STATES {
STATE AtBeginning {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.getCurrentLocation =

eMobility.eCars.CONCEPT_TREES.Route.PROPS.locationA}
STATE AtEnd {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.getCurrentLocation =

eMobility.eCars.CONCEPT_TREES.Route.PROPS.locationB}
STATE OnRoute { NOT eMobility.eCars.CONCEPT_TREES.Route.STATES.AtBeginning AND

NOT eMobility.eCars.CONCEPT_TREES.Route.STATES.AtEnd}
STATE InHighTraffic {

eMobility.eCars.CONCEPT_TREES.Route.PROPS.currentRoad.STATES.InHighTraffic}
STATE InLowTraffic {

eMobility.eCars.CONCEPT_TREES.Route.PROPS.currentRoad.STATES.InFluentTraffic}
}

}

As mentioned above, the states are specified as Boolean expressions. For example, the
state Route’s OnRoute holds (is true) while the Route is neither in AtBeginning nor
at AtEnd states. A concept realization is an object instantiated from that concept. As
shown, a complex state might be expressed as a Boolean function over other states.
For example, the Journey’s state ArrivedOnTime is expressed as a Boolean expression
involving the Journey’s Arrived state and Journey’s properties.

Note that states are extremely important for the specification of goals (objectives),
situations, and policies. For example, states help the KnowLang Reasoner determine at
runtime whether the system is in a particular situation or a particular goal (objective)
has been achieved.

4.1 Specifying Self-adaptive Behavior

To specify self-* objectives with KnowLang, we use goals, policies, and situations.
These are defined as explicit concepts in KnowLang, and for the eMobility Ontology
we specified them under the concepts Virtual entity→Phenomenon→Knowledge (see
Figure 5). Figure 6, depicts a concept tree representing the specified eMobility goals.
Recall that KnowLang specifies goals as functions of states where any combination of

Fig. 6. eMobility Ontology: eMobility Goal Concept Tree

The KnowLang Approach to Self-adaptation 687

states can be involved (see Section 3.1). A goal has an arriving state (Boolean function
of states) and an optional departing state (another Boolean function of states) (see Def-
inition 5 in Section 3.1). A goal with a departing state is more restrictive; i.e., it can be
achieved only if the system departs from the specific goal’s departing state.

The following code samples present the specification of two simple goals. Usually,
goals’ arriving and departing states can be either single states or sequences of states.
Note that the states used to specify the goals below are specified as part of both Journey
and Route concepts.
//
//==== eMobility Goals ===
//
CONCEPT_GOAL ArriveOnTime {

CHILDREN {eMobility.eCars.CONCEPT_TREES.Goal}
PARENTS {}
SPEC {
DEPART { eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyRoute.STATES.AtEnd }
ARRIVE { eMobility.eCars.CONCEPT_TREES.Journey.STATES.ArrivedOnTime }

}
}
CONCEPT_GOAL LowRouteTraffic {

CHILDREN {eMobility.eCars.CONCEPT_TREES.Goal}
PARENTS {}
SPEC {
DEPART { eMobility.eCars.CONCEPT_TREES.Route.STATES.InHighTraffic }
ARRIVE { eMobility.eCars.CONCEPT_TREES.Route.STATES.InLowTraffic }

}
}

The following is a specification sample showing an eMobility policy called Reduce-
RouteTra f f ic – as the name says, this policy is intended to reduce the route traffic. As
shown, the policy is specified to handle the goal LowRouteTra f f ic and is triggered by
the situation RouteTra f f icIncreased. Further, the policy conditionally triggers via its
MAPPING sections (e.g., there is a CONDITONS directive that requires the Route’s
state OnRoute to be hold) the execution of a sequence of actions. When the conditions
are the same, we specify a probability distribution among the MAPPING sections in-
volving same conditions (e.g., PROBABILITY 0.7), which represents our initial belief
in action choice.
CONCEPT_POLICY ReduceRouteTraffic {

CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Policy}
SPEC {
POLICY_GOAL {eMobility.eCars.CONCEPT_TREES.LowRouteTraffic}
POLICY_SITUATIONS {eMobility.eCars.CONCEPT_TREES.RouteTrafficIncreased}
POLICY_RELATIONS {eMobility.eCars.RELATIONS.Situation_Policy_1}
POLICY_ACTIONS {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad,

eMobility.eCars.CONCEPT_TREES.RecomputeRoads}
POLICY_MAPPINGS {

MAPPING {
CONDITIONS {eMobility.eCars.CONCEPT_TREES.Route.STATES.OnRoute}
DO_ACTIONS {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}
PROBABILITY {0.7}

}
MAPPING {

CONDITIONS { eMobility.eCars.CONCEPT_TREES.Route.STATES.OnRoute}
DO_ACTIONS { eMobility.eCars.CONCEPT_TREES.Route.FUNCS.recomputeRoads,

eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}
PROBABILITY {0.3}

}
MAPPING {

CONDITIONS { eMobility.eCars.CONCEPT_TREES.Route.STATES.AtBeginning}
DO_ACTIONS { eMobility.eCars.CONCEPT_TREES.Route.FUNCS.recomputeRoads,

eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}
}

}
}

}

As specified, the probability distribution gives the initial designer’s preference about
what actions should be executed if the system ends up in running the ReduceRouteTra-
f f ic policy. Note that at runtime, the KnowLang Reasoner maintains a record of all the

688 E. Vassev and M. Hinchey

action executions and re-computes the probability rates every time when a policy has
been applied and subsequently, actions have been executed. Thus, although initially the
system will execute the function takeAlternativeRoad (it has the higher probability rate
of 0.7), if that policy cannot achieve its goal with this action, then the probability distri-
bution will be shifted in favor of the function sequence recomputeRoads, takeAlterna-
tiveRoad, which might be executed the next time when the system will try to apply the
same policy. Therefore, probabilities are recomputed after every action execution, and
thus the behavior changes accordingly.

Moreover, to increase goal-oriented autonomicity [12] in policy specification, we
may use a special operator implemented in KnowLang called GENERATE NEXT
ACTIONS. This operator will automatically generate the most appropriate actions to be
undertaken by eMobility. The action generation is based on the computations performed
by a special reward function implemented by the KnowLang Reasoner. The KnowLang
Reward Function (KLRF) observes the outcome of the actions to compute the possible
successor states of every possible action execution and grants the actions with a special
reward number considering the current system state (or states, if the current state is a
composite state) and goals. KLRF is based on past experience and uses Discrete Time
Markov Chains [13] for probability assessment after action executions [5].

Note that when generating actions, the GENERATE NEXT ACTIONS operator
follows a sequential decision-making algorithm where actions are selected to maximize
the total reward. This means that the immediate reward for the execution of the first
action, or the generated list of actions, might not be the highest one, but the overall
reward of executing all the generated actions will be the highest possible one. Moreover,
note that, the generated actions are selected from the predefined set of actions (e.g., the
implemented eMobility actions). The principle of the decision-making algorithm used
to select actions is as follows:

1. The average cumulative reward of the reinforcement learning system is calculated.
2. For each policy-action mapping, the KnowLang Reasoner learns the value function,

which is relative to the sum of average rewards.
3. According to the value function and Bellman optimality principle2, the optimal

sequence of actions is generated.

As mentioned above, policies are triggered by situations. Therefore, while specifying
policies handling eMobility objectives, we need to think of important situations that
may trigger those policies. These situations will eventually be outlined by scenarios.
A single policy is required to be associated with (related to) at least one situation (see
Section 3.1), but for polices handling self-* objectives we eventually need more situa-
tions. Actually, because the policy-situation relation is bidirectional, it is maybe more
accurate to say that a single situation may need more policies, those providing alterna-
tive behaviors or execution paths out of that situation. The following code represents
the specification of the situation RouteTra f f icIncreased, used for the specification of
the ReduceRouteTra f f ic policy.

2 The Bellman optimality principle: If a given state-action sequence is optimal, and we were to
remove the first state and action, the remaining sequence is also optimal (with the second state
of the original sequence now acting as initial state).

The KnowLang Approach to Self-adaptation 689

CONCEPT_SITUATION RouteTrafficIncreased {
CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Situation}
SPEC {

SITUATION_STATES {eMobility.eCars.CONCEPT_TREES.Route.STATES.InHighTraffic}
SITUATION_ACTIONS {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad}

}
}

}

As shown, the situation is specified with SITUATION STATES (e.g., InHighTra f -
f ic) and SITUATION ACTIONS (e.g., TakeAlternativeRoad). To consider a situa-
tion effective (i.e., the system is currently in that situation), the situation states must
be effective (evaluated as true). For example, the situation RouteTra f f icIncreased is
effective if the Route’s state InHighTra f f ic is effective (is hold). The possible ac-
tions define what actions can be undertaken once the system falls into a particular
situation. For example, the RouteTra f f icIncreased situation has one possible action:
TakeAlternativeRoad.

Recall that situations are related to policies via relations (see Definition 2 in Sec-
tion 3.1). The following code demonstrates how we related the situation RouteTra f f ic-
Increased to the policy ReduceRouteTra f f ic .

RELATION Situation_Policy_1{
RELATION_PAIR {
eMobility.eCars.CONCEPT_TREES.RouteTrafficIncreased,
eMobility.eCars.CONCEPT_TREES.ReduceRouteTraffic}

}
}

Recall that the representation of monitoring sensors in KnowLang is handled via the
explicit Metric concept (see Section 3.2). The following is a specification of metrics
mainly used to assist the specification of states in the specification of the eMobility
concept (see Section 6).

// metrics
CONCEPT_METRIC RoadTrafficLevel {

CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}
SPEC {
METRIC_TYPE { ENVIRONMENT }
METRIC_SOURCE { "ECarClass.GetRoadTrafficLevel" }
DATA_TYPE { NUMBER }

}
}
CONCEPT_METRIC BatteryEnergyLevel {

CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}
SPEC {
METRIC_TYPE { RESOURCE }
METRIC_SOURCE { "ECarClass.GetBatteryEnergyLevel" }
DATA_TYPE { NUMBER }

}
}
CONCEPT_METRIC VehicleSpeed {

CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}
SPEC {
METRIC_TYPE { RESOURCE }
METRIC_SOURCE { "ECarClass.GetVehicleSpeed" }
DATA_TYPE { NUMBER }

}
}
CONCEPT_METRIC JourneyTime {

CHILDREN {}
PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}
SPEC {
METRIC_TYPE { RESOURCE }
METRIC_SOURCE { "ECarClass.GetJourneyTime" }
DATA_TYPE { DATETIME }

}
}

690 E. Vassev and M. Hinchey

5 Related Work

Developing self-adaptive systems with KR&R has been an increasingly interesting topic
for years. Examples are found in semantic mapping [14], improving planning and con-
trol aspects [15], and most notably in human-robotic interaction (HRI) systems [16, 17].
Overall, KR&R aims to solve complex problems where the operational environment is
non-deterministic and a system needs to reason at runtime to find missing answers.
Decision-making is a complex process that is often based on more than logical conclu-
sions. Probability and statistics may provide for the so-called probabilistic and statisti-
cal reasoning intended to capture uncertain knowledge in which additive probabilities
are used to represent degrees of belief of rational agents in the truth of statements. For
example, the purpose of a statistical inference might be to draw conclusions about a
population based on data obtained from a sample of that population. Probability theory
and Baye’s theorem [18] lay the basis for such reasoning where Bayesian networks [10]
are used to represent belief probability distributions, which actually summarize a po-
tentially infinite set of possible circumstances. The key point is that nodes in a Bayesian
network have direct influence on other nodes; given values for some nodes, it is possible
to infer the probability distribution for values of other nodes.

Knowledge representation for self-adaptive systems is a wide-open research area
with only a limited number of approaches yet considered. The work that is most sim-
ilar in spirit to our own is that on developing cognitive robots relying on deliberative
controllers. Architectures for autonomous control in robotic systems require concur-
rent embedded real-time performance, and are typically too complex to be developed
and operated using conventional programming techniques. The core of an autonomous
controller is an execution system that executes commands and monitors the environ-
ment [19]. Execution systems with deliberative controllers are based on knowledge that
contains an explicitly represented symbolic model of the world. Deliberation is the ex-
plicit consideration of alternative behaviors (courses of actions).

In [20], an agent programming language called Goal is used to program a cognitive
robot control architecture that combines low-level sub-symbolic control with high-level
symbolic control. The Goal language helps to realize a cognitive layer where low-level
execution control and processing of sensor data are delegated to components in other
layers. Similar to KnowLang, Goal supports the goal-oriented behavior and decomposi-
tion of complex behavior by means of modules that can focus their attention on relevant
sub-goals. However, KnowLang is far more expressive than Goal, especially at the level
of modeling self-adaptive behavior, which is not supported by Goal. The integration of
situations, goals, policies, and actions with a Bayesian network probability distribution
allows for self-adaptation based on both logical and statistical reasoning.

In [21], the high-level language Golog is used for robot programming. Golog sup-
ports writing control programs in a high-level logical language, and provides an inter-
preter that, given a logical axiomatization of a domain, will determine a plan. Similar
to KnowLang, Golog also supports actions and situations (actually the language incor-
porates the Situation Calculus), but again, KnowLang is far more expressive with its
Ontology-logical framework knowledge structuring. Moreover, Golog does not provide
a means for self-adaptive KR, which is provided by KnowLang.

The KnowLang Approach to Self-adaptation 691

All known approaches to KR&R pay scant attention to the problem of self-adaptation
in software-intensive systems. To the best of our knowledge, KnowLang is unique by
its capabilities to handle KR&R for self-adaptive behavior. Through special knowledge
constructs and mechanisms, such as probability distribution at different levels of KR,
KnowLang allows for the specification of self-adaptive behavior and reasoning on the
same. As a result, systems implementing the KnowLang Reasoner can query the KB
at runtime for behavior, expressed as sequence of actions that will help the system to
transit from an undesirable state to a desirable one.

6 Conclusion and Future Work

In this entry, we have presented the KnowLang Framework as an approach to KR&R
allowing for self-adaptive behavior in software-intensive systems. The ultimate goal
is to structure computerized knowledge so that a computerized system can effectively
process it and gain awareness capabilities and eventually derive its own behavior. The
approach allows for efficient and comprehensive knowledge structuring and awareness
based on logical and statistical reasoning. The KnowLang Reasoner provides for a
mechanism for self-adaptive behavior where KR&R help to establish the vital connec-
tion between knowledge, perception, and actions realizing self-adaptive behavior. The
knowledge is used against the perception of the world to generate appropriate actions
in compliance to some goals and beliefs. The mechanism incorporates special ASK and
TELL operators used by the system to talk to the KnowLang Reasoner.

KnowLang adds to Prof. Wirsing’s work on defining the concept of autonomic en-
sembles by introducing KR&R to it. So far, KnowLang has been successfully used to
specify and implement knowledge representation for self-adaptive behavior for four
different case studies: swarm robotics, scientific clouds, eMobility (all provided by the
ASCENS Project), and BepiColombo (as part of a joint project between Lero and ESA).
At the time of writing this entry, KnowLang was being finalized as part of the AS-
CENS Project. In addition, our plans for future work and further KnowLang extensions
include: 1) to continue enhancing the reasoner, especially its ability for state evalua-
tion, and probability distribution needed by reinforcement learning; and 2) to develop
an additional KnowLang toolset for knowledge validation and verification (currently
KnowLang provides automated tools for syntax and consistency checking only). This
will help us verify and validate the specification models before integrating them into
the targeted systems.

Acknowledgments. This work was supported by the European Union FP7 Integrated
Project Autonomic Service-Component Ensembles (ASCENS) and by Science Foun-
dation Ireland grant 03/CE2/I303 1 to Lero–the Irish Software Engineering Research
Centre.

References

1. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive systems: State
of the art and research challenges. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer,
A. (eds.) Soft-Ware Intensive Systems. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg
(2008)

692 E. Vassev and M. Hinchey

2. InterLink Project, http://interlink.ics.forth.gr/central.aspx (last
accessed: November 7, 2014)

3. Vassev, E., Hinchey, M.: Knowledge representation for cognitive robotic systems. In: Pro-
ceedings of the 15th IEEE International Symposium on Object/Component/Service-oriented
Real-time Distributed Computing Workshops (ISCORCW 2012), pp. 156–163. IEEE Com-
puter Society (2012)

4. Vassev, E., Hinchey, M., Gaudin, B.: Knowledge representation for self-adaptive behavior.
In: Proceedings of C* Conference on Computer Science & Software Engineering (C3S2E
2012), pp. 113–117. ACM (2012)

5. Vassev, E., Hinchey, M., Montanari, U., Bicocchi, N., Zambonelli, F., Wirsing, M.: D3.2:
Second Report on WP3: The KnowLang Framework for Knowledge Modeling for SCE Sys-
tems. ASCENS Deliverable (2012)

6. ASCENS: ASCENS - Autonomic Service-Component Ensembles (2012),
http://www.ascens-ist.eu/

7. Serbedzija, N., Massink, M., Pinciroli, C., Brambilla, M., Latella, D., Dorigo, M., Birat-
tari, M., Mayer, P., Velasco, J., Hoch, N., Bensler, H.P., Abeywickrama, D., Keznikl, J.,
Gerostathopoulos, I., Bures, T., Nicola, R.D., Loreti, M.: D7.2: Second Report on WP7 En-
semble Model Syntheses with Robot, Cloud Computing and e-Mobility, ASCENS Deliver-
able (2012)

8. Serbedzija, N., Reiter, S., Ahrens, M., Velasco, J., Pinciroli, C., Hoch, N., Werther, B.: D7.1:
First Report on WP7 Requirement Specification and Scenario Description of the ASCENS
Case Studies, ASCENS Deliverable (2011)

9. Serbedzija, N., Hoch, N., Pinciroli, C., Kit, M., Bures, T., Monreale, G., Montanari, U.,
Mayer, P., Velasco, J.: D7.3: Third Report on WP7 Integration and Simulation Report for the
ASCENS Case Studies, ASCENS Deliverable (2013)

10. Neapolitan, R.: Learning Bayesian Networks. Prentice Hall (2003)
11. Vassev, E.: KnowLang Grammar in BNF. Technical Report Lero-TR-2012-04, Lero, Univer-

sity of Limerick, Ireland (2012)
12. Vassev, E., Hinchey, M.: Autonomy Requirements Engineering for Space Missions. NASA

Monographs in Systems and Software Engineering. Springer (2014)
13. Ewens, W., Grant, G.: Stochastic processes (i): Poison processes and Markov chains. In:

Statistical Methods in Bioinformatics, 2nd edn., Springer, New York (2005)
14. Galindo, C., Fernandez-Madrigal, J., Gonzalez, J., Saffiotti, A.: Robot task planning using

semantic maps. Robotics and Autonomous Systems 56(11), 955–966 (2008)
15. Mozos, O., Jensfelt, P., Zender, H., Kruijff, G.J.M., Burgard, W.: An integrated system for

conceptual spatial representations of indoor environments for mobile robots. In: Proceed-
ings of the IROS 2007 Workshop: From Sensors to Human Spatial Concepts (FS2HSC),
pp. 25–32 (2007)

16. Holzapfel, H., Neubig, D., Waibel, A.: A dialogue approach to learning object descriptions
and semantic categories. Robotics and Autonomous Systems 56(11), 1004–1013 (2008)

17. Kruijff, G.J.M., Lison, P., Benjamin, T., Jacobsson, H., Hawes, N.: Incremental, multi-level
processing for comprehending situated dialogue in human-robot interaction. In: Proceedings
of the Symposium on Language and Robots (2007)

18. Robinson, P., Bauer, S.: Introduction to Bio-Ontologies. CRC Press (2011)
19. Ocón, J., et al.: Autonomous controller - survey of the state of the art, ver. 1.3. Technical Report

GOAC, GMV-GOAC-TN01, Contract No. 22361/09/NL/RA, October 31, ESTEC (2011)
20. Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Programming

Multi-Agent Systems (ProMAS) Workshop Affiliated with AAMAS 2012, Valencia, Spain,
pp. 55–68 (2012)

21. Soutchanski, M.: High-level robot programming and program execution. In: Proceedings of
the ICAPS 2003 Workshop on Plan Execution. AAAI Press (2003)

http://interlink.ics.forth.gr/central.aspx
http://www.ascens-ist.eu/

Author Index

Anders, Gerrit 115
Arbab, Farhad 273
Areces, Carlos 30
Astesiano, Egidio 377
Autexier, Serge 355

Batory, Don 291
Bauer, Bernhard 475
Baumeister, Hubert 134
Beek, Maurice H. ter 312
Bensalem, Saddek 409
Bergstra, Jan A. 46
Bettaz, Mohamed 134
Bicocchi, Nicola 538
Bliudze, Simon 409
Bozga, Marius 409
Breu, Ruth 458
Broy, Manfred 329
Bruni, Roberto 552
Bucchiarone, Antonio 582
Bureš, Tomáš 602

Cengarle, Maŕıa Victoria 193
Choppy, Christine 377
Corradini, Andrea 552

De Nicola, Rocco 1

Ehrig, Hartmut 582
Ermel, Claudia 582

Farwick, Matthias 458
Fiadeiro, José Luiz 155
Fontaine, Pascal 30
Futatsugi, Kokichi 171

Gadducci, Fabio 552
Gerostathopoulos, Ilias 602
Ghomsi Nokam, Sidoine 355
Gilmore, Stephen 490
Gnesi, Stefania 312

Häusler, Martin 458
Hennicker, Rolf 1

Hesse, Wolfgang 24
Hillston, Jane 490
Hinchey, Mike 676
Hofmann, Martin 62
Höfner, Peter 291
Hölzl, Matthias 13
Hussmann, Heinrich 27

Keznikl, Jaroslav 602
Knapp, Alexander 115, 193, 215
Koch, Nora 13
Köppl, Dominik 291
Krieg-Brückner, Bernd 355
Kurz, Alexander 75

Lanese, Ivan 506
Langermeier, Melanie 475
Latella, Diego 619
Leonardi, Letizia 538
Liu, Si 231
Lluch Lafuente, Alberto 552
Loreti, Michele 619
Lucas, Salvador 91

Maouche, Mourad 134
Massink, Mieke 619
Mayer, Philip 13
Mazzanti, Franco 312
Merz, Stephan 30
Meseguer, José 91, 231
Milius, Stefan 75
Möller, Bernhard 291
Montanari, Ugo 641
Montesi, Fabrizio 506
Mossakowski, Till 215
Mosteghanemi, M’hamed 134

Nielson, Flemming 522
Nielson, Hanne Riis 522

Ölveczky, Peter Csaba 231
Orejas, Fernando 155

Pattinson, Dirk 75
Pelliccione, Patrizio 582

694 Author Index

Plášil, Frantǐsek 602
Ponse, Alban 46
Pugliese, Rosario 641

Reggio, Gianna 377
Reif, Wolfgang 115
Rink, Martin 355
Roggenbach, Markus 215
Runge, Olga 582

Saad, Christian 475
Sannella, Donald 253
Schiendorfer, Alexander 115
Schröder, Lutz 75
Schroeder, Andreas 13
Senni, Valerio 619
Šerbedžija, Nikola 662
Siefert, Florian 115
Sifakis, Joseph 409

Steghöfer, Jan-Philipp 115
Störrle, Harald 440

Talcott, Carolyn 273
Tarlecki, Andrzej 253
Tiezzi, Francesco 641
Tribastone, Mirco 490
Trojer, Thomas 458
Tůma, Petr 602

Vandin, Andrea 552
Vassev, Emil 676

Yadav, Maneesh 273

Zambonelli, Franco 538
Zavattaro, Gianluigi 506
Zelend, Andreas 291
Zeng, Kebin 522

	Preface
	Organization
	Table of Contents
	A Homage to Martin Wirsing
	1 Martin's Origins, Positions and Services
	2 Martin's Research
	2.1 Selected Publications
	2.2 Research Projects

	3 Martin's Students

	Ode to the PST
	1 Welcome to the PST
	2 Science and Education
	3 Research Projects across Europe
	4 Promoting the Future: PhDs, Habils, and Junior Professors
	5 The Social Framework: It's a Group Thing!
	6 Closing Words
	References

	From Formal Logic through Program Transformations to System Dynamics: 40 Years of Meeting Points with Martin Wirsing
	The Broad View: How To Spawn a Radical Organizational Transformation `En Passant'
	1 Introduction
	2 The Broad View on Scientific Topics
	3 The Broad View on Organizational Structures
	4 Finding Creative Solutions for Organizational Problems
	5 Conclusion
	References

	Modal Satisfiability via SMT Solving
	1Introduction
	2Background
	2.1Basic Modal Logic
	2.2SMT Solving for Modal Satisfiability: Overall Setup

	3Decision Procedure for Basic Modal Logic
	3.1Instantiation Rules
	3.2Soundness and Completeness
	3.3Termination

	4Extensions of the Basic Modal Logic
	4.1Global Modalities
	4.2Hybrid Logic
	4.3SMT-Based Decision Procedure for Hybrid Logic
	4.4Soundness, Completeness, and Termination

	5Conclusions and Related Work
	References

	Division by Zero in Common Meadows
	1Introduction
	1.1Common Meadows versus Involutive Meadows
	1.2Motivating a Preference for Common Meadows

	2Common Meadows
	2.1Meadow Signatures
	2.2Axioms for Common Meadows
	2.3Conditional Equations

	3Models and Model Classes
	3.1Common Cancellation Meadows
	3.2A Basis Theorem For Common Cancellation Meadows of Characteristic Zero

	4Concluding Remarks
	5References

	Logical Relations and Nondeterminism
	1 Introduction
	2 Language
	2.1 Examples

	3 Operational Semantics
	4 Denotational Semantics
	5 Program Equivalences
	6 Lifting Predicates to Sets
	7 Typed Program Equivalence
	8 Observational Equivalence
	9 Operational Adequacy
	10 Conclusion
	References

	Simplified Coalgebraic Trace Equivalence
	1 Introduction
	2 Preliminaries
	3 A Simple Definition of Coalgebraic Trace Equivalence
	4 Examples
	5 Relation to Other Frameworks
	6 Conclusions
	References

	Localized Operational Termination in General Logics
	1Introduction
	2Logics and Operational Termination
	3Localized Operational Termination
	4Proof Jumps and Localized Operational Termination
	5Proof Graph
	6Mechanizing Proofs of Localized Operational Termination
	7Some Processors for the Localized OT Framework
	7.1Expansion of Localizations and Proof Jumps
	7.2Removing Useless Proof Jumps and Localizations
	7.3SCC Processor
	7.4Use of Well-Founded Relations

	8Related Work and Conclusions
	References

	Partial Valuation Structures for Qualitative Soft Constraints
	1Introduction
	2Soft Constraints in Distributed Energy Management
	3Partial Valuation Structures as a Unifying Formalism
	3.1Partial Valuation Structures
	3.2Soft Constraints
	3.3Product Operators for Partial Valuation Structures

	4Constraint Relationships as Partial Valuation Structures
	4.1Constraint Relationships
	4.2From Constraint Relationships to Partial Valuation Structures

	5Expressing Constraint Hierarchies as Lexicographic Products
	5.1Locally Predicate Better
	5.2Globally Weighted Better

	6Simulating Partial Valuation Structures
	7Conclusions
	References

	An Institution for Object-Z with Inheritance and Polymorphism
	1Introduction
	1.1Institutions
	1.2An Introductory Example

	2The OZS Institution
	2.1Signatures
	2.2Models
	2.3Sentences
	2.4Satisfaction

	3Inheritance and Polymorphism
	4Concluding Remarks
	References

	Abstract Constraint Data Types
	1Introduction
	2Basic Algebraic Concepts and Notation
	3Extending Algebraic Specifications with Constraints
	4Composing Specifications
	5Relationship with Institutions
	6Conclusions and Further Work
	References

	Generate Check Method for Verifying Transition Systems in
	1Introduction
	2Preliminaries
	2.1Equational Specifications and Quotient Term Algebras
	2.2Rewrite Rules and Reductions
	2.3Transition Systems
	2.4Verification of Invariant Properties

	3Specifications of QLOCK in CafeOBJ
	3.1QLOCK Description
	3.2System Specification
	3.3Property Specification

	4Generate & Check Method
	4.1Generate & Check for st St
	4.2Built-in Search Predicate of CafeOBJ
	4.3Generate & Check for tr Tr
	4.4Generate & Check for Verification of Invariant Properties
	4.5Verification of (p leads-to q) Properties
	4.6Generat & Check for Verification of (p leads-to q) Properties

	5Proof Scores for QLOCK
	5.1Proof Scores for Invariant Properties
	5.2Proof Scores for a (p leads-to q) Property

	6Related Work and Conclusion
	References

	Institutions for OCL-Like Expression Languages
	1 Introduction
	2 Indexed Categories
	3 Term Charters
	3.1 Term Charter Domains and Term Charters
	3.2 Term Charters from Adjunctions
	3.3 Constructing an Institution from a Term Charter

	4 OCL Terms and Evaluation
	4.1 Built-ins
	4.2 Iteration, All Instances, Undefinedness
	4.3 Institutions for OCL Sub-languages

	5 Operators on Term Charters
	5.1 Sequencing of Term Charters
	5.2 Co-limits of Term Charters

	6 Conclusions and Future Work
	References
	A OCL Terms and Evaluation
	A.1 Order-Sorted Terms and Evaluation
	A.2 Adding Built-ins
	A.3 Iteration
	A.4 All Instances
	A.5 Undefinedness

	Towards an Institutional Framework for Heterogeneous Formal Development in UML
	1Introduction
	2Methodology
	2.1ATM Case Study
	2.2Consistency and Satisfaction
	2.3Levels and Views
	2.4Semantic Variation Points

	3UML as a Basis for Heterogeneous Formal Methods, Using Institutions
	3.1Institutions and Their (Co)Morphisms
	3.2Heterogeneous Formal Semantics of Languages and Diagrams
	3.3Institutional Interaction of Heterogeneous UML Diagrams
	3.4Transformations Among UML institutions
	3.5Consistency and Satisfaction, Revisited

	4Tools
	5Conclusion
	References

	Formal Analysis of Leader Election in MANETs Using Real-Time Maude
	1 Introduction
	2 Real-Time Maude
	3 Modeling MANETs in Real-Time Maude
	4 The LE Leader Election Algorithm for MANETs
	5 Modeling LE in Real-Time Maude
	5.1 Nodes and Messages
	5.2 Modeling Communication
	5.3 Neighbor and Connectivity Discovery
	5.4 Modeling the Behavior of LE

	6 Formal Analysis of the LE Protocol
	6.1 Nodes
	6.2 Modeling Checking the Correctness Property
	6.3 Scenarios and Analysis

	7 Related Work and Conclusions
	References

	The Foundational Legacy of ASL
	1Introduction
	2Preliminaries
	3Specifications and Their Semantics
	3.1An Example

	4Implementations and Parameterization
	5Behavioural Specifications
	6Final Remarks
	References

	 Soft Agents: Exploring Soft Constraints to Model Robust Adaptive Distributed Cyber-Physical Agent Systems
	1Introduction
	2Desiderata for Soft Agents
	3Soft Agent Model Formalized in Maude
	3.1Networked Cyber-Physical Systems and Partially-Ordered Knowledge Sharing
	3.2Soft Agents in Maude
	3.3Rules

	4A Simple Packet Delivery System
	4.1The doAction and Handle Functions
	4.2Experiments

	5Conclusions and Future Directions
	References

	Structured Document Algebra in Action
	1Introduction
	2Structured Document Algebra
	2.1SDA Basics
	2.2Structural Properties of Modules

	3Additional SDA Operators
	3.1Subtraction
	3.2Overriding
	3.3Solving Module Equations
	3.4Transformations

	4Using the Algebra
	4.1Projecting Out
	4.2Introducing Wrappers

	5Small Case Study: Constructing Product Lines
	6Related Work
	7Conclusions and Outlook
	References
	Appendix

	From EU Projects to a Family of Model Checkers
	1Introduction
	2From Kandinsky to KandISTI
	3FMC: The Origin of Our On-the-Fly Model-Checking Approach
	4UMC: Support for State/Event-Based Models and Logics
	5CMC: Parametrized Logic Formulas for Expressing Data Correlations Among Actions
	6VMC: Behavioral Variability Analysis for Product Families
	7The Overall Structure of the Model Checkers
	8Discussion and Conclusions
	References

	Pragmatic Formal Specification of System Properties by Tables
	1 Introduction
	2 Many Sorted Algebra and Predicate Logic
	3 Value Tables
	4 Term Tables
	5 Syntax and Semantics of Formula Tables
	6 Schematic Formulae and Their Representation by Tables
	7 Readability of Formulae and Structuring of Tables
	8 Interaction Tables
	9 Combining Tables with Diagrams
	10 Concluding Remarks
	Appendix
	References

	Formal Modelling for Cooking Assistance
	1Introduction
	2Food, Drink and Health
	2.1Food Classification and Properties
	2.2Where the Food Comes From

	3Planning a Meal
	3.1Guests and Their Peculiarities
	3.2Relating Impairments to Allowed Foods
	3.3Meals, Courses, Dishes

	4Recipes
	4.1Recipe Structure
	4.2Generic Recipes, Recipe Development
	4.3 Refinement

	5Cooking Assistance
	5.1Software Assistants
	5.2The CookTop, the Cooking Desktop
	5.3Cooking Workflows, Processes

	6Conclusion
	7Dedication to Martin Wirsing's Health and Well-Being
	References

	A Framework for Defining and Comparing Modelling Methods
	1Introduction
	2A Modelling Method Framework
	3Definitional Part of a Method
	The Items
	The Notation and the Models
	The Eligible Models and the Modelling

	4Operational Part of a Method
	The Intended Use of Models
	User Guidance
	Tool Support

	5Relating Modelling Methods
	6Related Work
	7Conclusions and Future Work
	References

	A Theory Agenda for Component-Based Design
	1 Introduction
	2 Composing Components
	2.1 The Concept of Component
	2.2 Glue Operators
	2.3 Properties of Glue
	2.4 Expressiveness of Glue
	2.5 The BIP Component Model

	3 Connectors and Their Properties
	3.1 Simple Connectors
	3.2 Hierarchical Connectors
	3.3 Dynamic Connectors

	4 Achieving Correctness
	4.1 Compositional Verification
	4.2 Property EnforcementArchitectures
	4.3 Property Composability

	5 Architecture Specification
	5.1 Interaction Logics
	5.2 Configuration Logics

	6 Conclusion
	References

	Effective and Efficient Model Clone Detection
	1Introduction
	1.1Approach
	1.2Historical Background
	1.3Paper Outline

	2Defining Model Clones
	3Detecting Model Clones
	3.1Model Matching
	3.2Element Similarity (comparison and weighing)
	3.3Candidate Selection

	4Implementation
	5Evaluation
	5.1Samples
	5.2Method
	5.3Data
	5.4Observations
	5.5Interpretation of Findings
	5.6Threats to Validity
	5.7End User Evaluation

	6Related Work
	7Conclusion
	References

	Living Modeling of IT Architectures:Challenges and Solutions
	1 Introduction
	2 Challenges
	3 Solutions within the Living Modeling Environment Txture
	3.1 Modeling Framework
	3.2 Stakeholder-Centric Editors
	3.3 Dynamic Architecture Visualizations
	3.4 Efficient Querying of Large EA Models

	4 Related Work
	5 Conclusion and Outlook
	References

	A flow analysis approach for service-oriented architectures
	1 Introduction
	2 Related Work
	3 Adaptive Analysis Methodology for SOA
	3.1 Flow-Based Model Analysis
	3.2 Generic Meta Model
	3.3 Case Studies

	4 Analysis of Blocking Calls
	4.1 Analysis Specification
	4.2 Case Study

	5 Performance Analysis
	5.1 Analysis Specification
	5.2 Case Study

	6 Discussion and Conclusion
	References

	Service Composition for Collective Adaptive Systems
	1 Introduction
	2 Scenario: Travel in Munich
	3 Modelling
	4 Model
	5 Analysis
	6 The Optimisation Problem
	7 Conclusions
	References
	A PEPA Model

	The Evolution of Jolie
	1 Introduction
	2 Service-Oriented Programming with Jolie
	3 Managing Dynamic Adaptation with JoRBA
	4 Correct-by-Construction Development with Chor
	5 Correct-by-Construction Adaptive Applications
	6 Related Work
	7 Conclusions
	References

	Stochastic Model Checking of the Stochastic Quality Calculus
	1Introduction
	2Stochastic Quality Calculus
	3Stochastic Model Checking
	4Implementation of a Smart Meter
	5Conclusion
	References

	Software-Intensive Systems for Smart Cities: From Ensembles to Superorganisms
	1 Introduction
	2 From Ensembles to Urban Superorganisms
	2.1 Natural Superorganisms
	2.2 From Individual to Collective Behaviors
	2.3 The Complementary Role of Humans Agents and ICT Agents

	3 Emerging Application Scenarios
	3.1 Smart Mobility
	3.2 Improved Sustainability
	3.3 Taking Care
	3.4 Feeling Part of It

	4 Engineering Challenges
	4.1 Bringing Human and ICT Agents Together
	4.2 Collective Situation Awareness
	4.3 Reconfiguration and Self-adaptivity
	4.4 Bottom Up Self-organization vs Top-Down Design
	4.5 Predicting and Controlling Emergent Behaviors

	5 An Infrastructure for Urban Superorganisms
	5.1 Reference Architecture
	5.2 Addressing the Challenges

	6 Conclusion and Future Work
	References

	 A White Box Perspective on Behavioural Adaptation
	1Introduction
	2When Is a Software Component Adaptive?
	3Architectural Approaches to Adaptation
	3.1Reference Models for Adaptation
	3.2Reconfiguration-Based Approaches to Adaptation

	4Computational Models for Adaptation
	4.1Automata-Based Approaches to Adaptation
	4.2Rule-Based Models for Adaptation
	4.3Concurrency Models for Adaptation

	5Programming Paradigms for Adaptation
	5.1Context-Oriented Programming for Adaptation
	5.2Aspect-Oriented Programming for Adaptation
	5.3Policy-Oriented Programming for Adaptation

	6Related Work
	6.1On the Essence of Adaptation
	6.2The Facets of Adaptation

	7Conclusion
	References

	Rule-Based Modeling and Static Analysis of Self-adaptive Systems by Graph Transformation
	1Introduction
	2Running Example
	3Framework for Rule-Based Dynamic Adaptation
	4Modeling SA Systems by Graph Transformation
	5Static Analysis of Self-adaptive Systems
	6Related Work
	7Conclusion and Future Work
	References

	Formalization of Invariant Patterns for the Invariant Refinement Method
	1Introduction
	1.1Running Example

	2 Background
	2.1Invariant Refinement
	2.2Invariant Formalization

	3Invariant Patterns
	3.1Illustration of Invariant Patterns on the Running Example

	4Correctness by Construction
	4.1Basic Pattern Relations
	4.2Pipeline Decomposition
	4.3More Complex Types of Refinement

	5Discussion and Conclusions
	References

	On StocS: A Stochastic Extension of SCEL
	1Introduction
	2StocS: A Stochastic Extension of SCEL
	2.1Syntax
	2.2Informal Timed Semantics
	2.3Explanatory Example

	3Preliminary Definitions for Operational Semantics
	4Network-Oriented Operational Semantics
	4.1Operational Semantics of Processes
	4.2Operational Semantics of Components and Systems

	5StocS at Work
	6Conclusions and Future Work
	References

	Programming Autonomic Systems with Multiple Constraint Stores
	1Introduction
	2Semiring-Based Constraints
	3The ccSCEL Dialect
	3.1Syntax
	3.2Semantics

	4ccSCEL at Work
	4.1Point-to-point Interaction
	4.2Constraint Variables with Restricted Access
	4.3Group-Oriented Interaction
	4.4Towards Multiparty Negotiation

	5Extending ccSCEL with Ensemble-Wide Interaction
	6Concluding Remarks
	References

	Adaptive and Autonomous Systems and Their Impact on Us
	1 Introduction
	2 Technology Impacts: A Digital Storm
	3 Adaptive Systems
	3.1 Reflective Technology
	3.2 Reflective Use Cases

	4 Autonomous Systems
	4.1 ASCENS Technology
	4.2 ASCENS Use Cases

	5 Cyber Race
	6 Conclusion: Sunshine Breaks through Digital Fog
	References

	The KnowLang Approach to Self-adaptation
	1Introduction
	2eMobility: A Case Study of Self-adaptation
	3KnowLang
	3.1Modeling Self-adaptive Behavior
	3.2Converting Sensory Data to KR
	3.3KnowLang Reasoner

	4Knowledge Representation for eMobility with KnowLang
	4.1Specifying Self-adaptive Behavior

	5Related Work
	6Conclusion and Future Work
	References

	Author Index

