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    Chapter 16   
 Oxidative Stress in the Central Nervous 
System Complications of Chronic Liver 
Failure 

             Chantal     Bemeur     

16.1             Introduction 

 Chronic liver failure is the process of progressive destruction and regeneration of 
liver parenchyma leading to fi brosis and cirrhosis and would be responsible for an 
estimated 10.4, 7.3 and 5.3 deaths per 100,000 population in Europe, United States, 
and Canada, respectively [ 1 – 3 ]. The end-stage process of liver degeneration and 
failure, or cirrhosis, is the fi nal common pathway of most forms of liver disease. 
Chronic liver failure may be caused by several conditions including, among others, 
alcohol, virus, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steato- 
hepatitis (NASH), biliary disease as well as metabolic disorders. Many complica-
tions may arise from chronic liver failure, including portal hypertension, impaired 
metabolic capacity, synthesis dysfunction, malnutrition, ascites, hepatorenal syn-
drome, increased risk for the development of hepatocellular carcinoma as well as 
hepatic encephalopathy (Fig.  16.1 ).  

 Hepatic encephalopathy, which is observed in approximately 80 % of patients 
with chronic liver failure [ 4 – 6 ], is a debilitating neuropsychiatric complication of 
liver disease. Characterized by a constellation of symptoms, including cognitive, 
psychiatric, and motor disturbances, hepatic encephalopathy can progress to 
coma and death. Hepatic encephalopathy encompasses several clinical signs such 
as asterixis, stupor, seizures, and coma; its severity is usually graded with the 
West Haven Criteria (Table  16.1 ) [ 7 ]. However, in order to address the universal 
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concern about the accuracy of the West Haven scale in diagnosing the severity of 
overt hepatic encephalopathy, the International Society for Hepatic Encephalopathy 
and Nitrogen metabolism (ISHEN), the offi cial authority for issuing updates on 
terminology regarding hepatic encephalopathy, has recently proposed a revised 
classifi cation (Fig.  16.2 ) [ 8 ]. Overall, hepatic encephalopathy has a signifi cant 
impact on patients’ quality of life and on their ability to function daily. 
Furthermore, hepatic encephalopathy leads to a poor prognosis and a greater risk 
of mortality [ 9 ]. This chapter will summarize the involvement of oxidative stress 
in the pathogenesis of hepatic encephalopathy, its consequences, and its potential 
role in therapeutic strategy.
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  Fig. 16.1    Etiologic factors of chronic liver failure and resulting complications ( NAFLD  non- 
alcoholic fatty liver disease,  NASH  non-alcoholic steato-hepatitis)       

   Table 16.1    Grading of hepatic encephalopathy according to the West Haven criteria   

 Grade  Symptom 

 0  No signs or symptoms 
 I  Disturbed sleep-wake rhythm, restless, euphoria, anxiety, aimless, shortened 

attention span, trivial lack of awareness, impaired performance of addition 
 II  Lethargia or apathy, overt personality changes, disorientation for time/space, 

fl apping, memory weakness, impaired performance for subtraction 
 III  Somnolence, stupor, confusion, disturbed articulation, responsive to verbal stimuli 
 IV  Coma 

No HE Covert HE
(MHE + Grade I HE)

Moderate OHE
(Grade II HE)

Severe OHE
(Grade III HE)

Comatose OHE
(Grade IV HE)

MILD SEVERE

  Fig. 16.2    Proposed ISHEN classifi cation [ 8 ]. ( HE  hepatic encephalopathy,  MHE  minimal HE, 
 OHE  overt HE)       
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16.2         Pathogenesis of Hepatic Encephalopathy 

 The pathophysiologic basis of hepatic encephalopathy is multifactorial and remains 
unclear. However, there is general agreement that ammonia plays a key role [ 10 ]. 
Ammonia accumulates in the brain in chronic liver failure leading to impaired bio-
energetics [ 10 ,  11 ], altered neurotransmission [ 11 – 13 ], activation of peripheral ben-
zodiazepine receptors [ 12 ,  14 ], leading to the synthesis of neurosteroids [ 15 ] as well 
as glutamate-mediated excitotoxicity [ 16 ,  17 ] and excessive production of gluta-
mine [ 18 ,  19 ]. However, in the setting of chronic liver failure, the correlation 
between ammonia and severity of hepatic encephalopathy remains inconclusive 
[ 20 ,  21 ], suggesting that other pathogenic factors may be implicated. In recent 
years, oxidative stress has also been suggested to be part of the pathophysiologic 
cascade in hepatic encephalopathy. Among the factors responsible for oxidative 
stress development in the setting of hepatic encephalopathy are ammonia, manga-
nese, intracellular calcium, mitochondrial permeability transition (MPT), electron 
transport chain,  N -methyl  D -aspartate (NMDA) receptors, peripheral benzodiaze-
pine receptor, nuclear factor-Kappa B, infl ammation, and glutamine. Data from the 
literature suggests that the relationship between these factors and oxidative stress in 
the pathogenesis of hepatic encephalopathy is complex. However, a detailed review 
of these factors in relation to hepatic encephalopathy is beyond the scope of this 
chapter. In the present chapter, these factors will be tackled emphasizing the impli-
cation of ammonia and manganese-induced oxidative stress in relation with hepatic 
encephalopathy.  

16.3     Oxidative Stress in Hepatic Encephalopathy 

 Oxidative stress, a condition in which the production of free radicals is far in excess 
of their rate of detoxifi cation by endogenous mechanisms [ 22 ], refers to a state in 
which tissue and cellular redox balance is altered towards a more oxidizing envi-
ronment [ 23 ,  24 ]. Precisely, oxidative stress results from an imbalance between the 
generation of reactive oxygen species and the cellular antioxidant defense capacity, 
potentially able to affect molecular structure and function. Reactive oxygen spe-
cies include, among other, hydrogen peroxide (H 2 O 2 ), hydroxyl radical ( • OH), 
superoxide anion (O 2  •− ), and peroxynitrite (ONOO − ). These reactive oxygen inter-
mediates, which play important roles in cell signaling [ 25 ], are highly reactive due 
to the presence of unpaired valence shell electrons and are constantly produced 
during oxygen metabolism. However, in excess, reactive oxygen species are very 
harmful to the cell, for their reaction with cellular structures and macromolecules, 
and lead to cellular dysfunction. Indeed, oxidative stress affects major cellular 
components, including lipids, proteins, and DNA. In addition, the brain is abso-
lutely dependent upon oxidative metabolism for cell survival and, being a highly 
aerobic tissue accounting for 20 % of total oxygen consumed by the body, is prone 
to dysfunction due to oxidative stress. 
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 The neuropathology of hepatic encephalopathy in chronic liver failure reveals 
primarily changes in astrocytes (glial cells of the central nervous system) including 
cell swelling which consequently leads to brain edema [ 26 – 28 ]. Specifi cally, hepatic 
encephalopathy resulting from chronic liver failure refl ects the clinical manifesta-
tion of a low-grade cerebral edema that develops after exhaustion of the volume- 
regulatory capacity of the astrocytes in response to ammonia and other hepatic 
encephalopathy-precipitating factors (e.g., infl ammation, infection, hyponatremia) 
[ 29 ,  30 ]. As a consequence, astrocyte swelling triggers a complex signaling cascade 
which relies on NMDA receptor activation and elevation of intracellular calcium 
concentration, which result in increased formation of reactive oxygen species 
through activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase and nitric oxide synthase (NOS) [ 29 ,  31 ]. Since oxidative stress in turn 
 promotes astrocyte swelling, a self-amplifying signaling loop between osmotic- and 
oxidative stress is proposed [ 31 ,  32 ]. Among the consequences of this oxidative 
stress response are protein-tyrosine nitration, oxidation of RNA, and activation of 
Zn 2+ -dependent transcription [ 31 – 35 ]. 

16.3.1     Ammonia-Induced Oxidative Stress in Hepatic 
Encephalopathy 

 Evidence for the involvement of oxidative stress in hepatic encephalopathy initially 
arose from the observation that Alzheimer type II astrocytes, a distinctive neuro-
pathologic fi nding in brains of patient with hepatic encephalopathy, contain large 
amounts of lipofuscin pigments [ 36 ], consisting of peroxidized lipids [ 37 ]. Excessive 
amounts of lipofuscin pigments were also detected in ammonia-treated astrocyte 
cultures [ 37 ,  38 ]. Subsequently, more than 20 years ago, O’Connor and Costell [ 39 ] 
postulated that oxidative stress is implicated in the pathophysiologic mechanisms 
responsible for hepatic encephalopathy. They reported that hyperammonemic mice 
displayed evidence of lipid peroxidation in the brain [ 39 ]. Since these fi ndings have 
been reported, substantial evidence from cell cultures and animal studies for an 
important role of hyperammonemia and oxidative stress in the pathogenesis of 
hepatic encephalopathy has been reported. 

16.3.1.1     In Vitro Evidence of Ammonia-Induced Oxidative 
Stress in Hepatic Encephalopathy 

 Much of the evidence for a role of oxidative stress in ammonia neurotoxicity has 
been derived from cell culture studies [ 40 ]. Evidence suggests a close interrelation 
between astrocyte swelling, a characteristic feature of hepatic encephalopathy, and 
the production of reactive oxygen species leading to oxidative stress [ 41 ]. Specifi cally, 
astrocytes have been suggested to be a major source of reactive oxygen species under 
simulated hepatic encephalopathy conditions [ 41 ,  42 ]. Indeed, astrocytes exposed to 
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a pathophysiological concentration of ammonia were found to stimulate the production 
of free radicals and reactive oxygen species. In hypoosmotically treated cultured rat 
astrocytes, a NMDA receptor-dependent elevation of the intracellular calcium con-
centration was identifi ed to be essential to swelling- dependent reactive oxygen spe-
cies generation [ 43 ]. Ammonia-induced free radical generation via the activation of 
NADPH oxidase was observed in cultured astrocytes [ 42 – 44 ], while astrocyte swell-
ing triggers a p47(phox)-dependent NADPH oxidase-catalyzed reactive oxygen spe-
cies production [ 31 ]. In addition, in astrocyte cultures exposed to ammonia, increased 
heme oxygenase-1 (HO-1) [ 44 ] and inducible NOS (iNOS) expression as well as 
nitric oxide production were identifi ed [ 34 ,  45 ]. Ammonia has also been shown to 
signifi cantly increase soluble guanylyl cyclase [ 46 ], a source of nitric oxide, and 
decrease cellular glutathione (GSH) level [ 47 ], a major endogenous antioxidant, in 
cultured astrocytes. Furthermore, natriuretic peptides, which are known to attenuate 
the production of reactive oxygen species in other systems [ 47 ,  48 ], were shown to 
reduce the accumulation of reactive oxygen species in ammonia-treated cultured 
astrocytes [ 49 ]. Altogether, these studies suggest that oxidative stress is induced by 
astrocytes in conditions associated with increased levels of ammonia. 

 Another factor by which ammonia and oxidative stress have been related to 
hepatic encephalopathy is the MPT, a calcium-dependent process characterized by 
the opening of the permeability transition pore (PTP) in the inner mitochondrial 
membrane. Oxidative stress triggers the induction of the MPT and, as a conse-
quence, there is an increased permeability to protons, ions, and other solutes 
<1,500 Da [ 50 ], leading to a collapse of the mitochondrial inner membrane poten-
tial. Loss of the mitochondrial membrane potential results in osmotic swelling of 
the mitochondrial matrix, movement of metabolites across the inner membrane, 
defective oxidative phosphorylation, cessation of ATP synthesis, and the generation 
of reactive oxygen species. It was reported that, in cultured astrocytes, oxidative 
stress would be involved in the induction of the MPT by ammonia, suggesting that 
oxidative stress and the subsequent induction of the MPT contribute to the patho-
genesis of hepatic encephalopathy [ 51 ,  52 ]. Also, treatment of cultured astrocytes 
with ammonia caused a signifi cant dissipation of the mitochondrial membrane 
potential as well as an increase in the mitochondrial permeability to 2- deoxyglucose. 
Both of these changes were blocked by cyclosporin A, a MPT inhibitor. Similarly, 
ammonia caused a decrease in the mitochondrial calcein fl uorescence (an index of 
the MPT), which was also blocked by cyclosporin A [ 53 ].  

16.3.1.2     In Vivo Evidence of Ammonia-Induced Oxidative 
Stress in Hepatic Encephalopathy 

 Evidence for the implication of oxidative stress in the pathogenesis of hepatic 
encephalopathy has also been reported in studies in experimental animals. For 
example, NOS activity has been shown to be increased in the brains of portacaval- 
shunted rats [ 54 ]. iNOS and neuronal NOS (nNOS) protein expression is also 
increased in the brains of these animals [ 22 ,  55 ,  56 ], whereas brain endothelial NOS 

16 Oxidative Stress in the Central Nervous System…



362

(eNOS) protein expression is increased in thioacetamide (TAA)-induced cirrhosis 
in the rat [ 57 ]. It was also reported that astrocyte swelling stimulated the production 
of cerebral nitric oxide in ammonia-treated rats [ 58 ]. An increase in HO-1 mRNA 
expression as well as a decrease in copper/zinc-superoxide dismutase (Cu/Zn SOD) 
gene expression have been reported in the brains of portacaval-shunted rats [ 59 ]. 
Protein tyrosine nitration, a consequence of oxidative stress, was also demonstrated 
in the cerebral cortex of these animals [ 34 ,  56 ]. 

 In a rat model of chronic liver failure (portacaval anastomosis), neurons were 
immunoreactive to nNOS, whereas iNOS was expressed in pyramidal-like cortical 
neurons and perivascular astrocytes [ 56 ]. In the same animals, nitrotyrosine 
 immunoreactivity was found in pyramidal-like cortical neurons and in perivascular 
astrocytes. It was also demonstrated that nNOS and iNOS are produced in the 
Purkinje (neuronal) cells and Bergmann glial cells in rats following portacaval anas-
tomosis [ 55 ]. TAA-cirrhotic rats showed nNOS immunoreactivity in stellate and 
basket neurons and eNOS immunoreactivity in perivascular glial cells of the white 
matter [ 57 ]. In the same experimental model of chronic liver failure, eNOS was 
located in Purkinje cell bodies and vessels endothelial cells [ 57 ]. Taken together, 
these data suggest that neuronal, glial, and endothelial cells are all sources of free 
radicals and nitric oxide in hepatic encephalopathy indicating that oxidative stress 
in hepatic encephalopathy is a multicellular phenomenon. 

 Systemically, the relationship between hyperammonemia and oxidative stress 
differs from that depicted in the brain. Indeed, in another model of chronic liver 
failure and hyperammonemia/hepatic encephalopathy, the bile-duct ligated rat, 
Bosoi et al. [ 60 ] observed the presence of systemic oxidative stress and cerebral 
edema. The authors suggested that systemic oxidative stress might be an important 
“fi rst hit,” which, followed by increases in ammonia, leads to the onset of brain 
edema [ 60 ]. In a similar model of cirrhosis, an increase in lipid peroxidation and 
reduction in antioxidant enzymes in the cerebral cortex and cerebellum were 
reported [ 61 ]. Interestingly, the administration of  N -acetylcysteine exerted a protec-
tive effect through the attenuation of oxidative stress [ 61 ].  

16.3.1.3    Human Studies 

 While considerable evidence indicates the presence of oxidative stress markers in 
experimental models of hepatic encephalopathy, documentation of oxidative stress in 
humans is limited. Increased amount of lipofuscin pigments was found in brains of 
patients with hepatic encephalopathy [ 36 ,  40 ]. Elevated blood levels of reactive oxy-
gen species were also identifi ed in patients with hepatic encephalopathy resulting 
from chronic alcohol consumption, which was associated with decrease antioxidant 
capacity [ 62 ]. Increased SOD activity, thiobarbituric acid reactive substances, and 
decreased catalase activities were observed in cirrhotic children [ 63 ]. Increased nitric 
oxide after transjugular intrahepatic portosystemic shunt insertion in patients with 
cirrhosis was also reported [ 64 ]. Furthermore, postmortem cortical brain tissue 
samples from patients with cirrhosis dying with or without hepatic encephalopathy 
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were analyzed and compared with brains from patients without liver disease [ 35 ]. 
The results indicate that hepatic encephalopathy in patients with cirrhosis is associated 
with oxidative stress, protein tyrosine nitration, and RNA oxidation [ 35 ]. 

 In postmortem human brain tissue obtained from autopsies of patients with cir-
rhosis and hepatic encephalopathy, a whole human genome microarray approach 
revealed altered expression of genes related to oxidative stress [ 65 ]. Specifi cally, 
expression levels of genes involved in oxidative stress defense, such as HO-1, sele-
noprotein- V, peroxiredoxin-4, and peroxisome proliferator-activated receptor α 
(PPARα), were elevated in patients with cirrhosis with hepatic encephalopathy but 
not in patients with cirrhosis without hepatic encephalopathy, when compared with 
controls [ 65 ]. Taken together, these data strongly suggest a role for oxidative stress 
in the pathogenesis of hepatic encephalopathy in patients with chronic liver failure 
and indicate that cerebral oxidative stress is a hallmark of hepatic encephalopathy 
in patients with liver failure.   

16.3.2     Manganese-Induced Oxidative Stress in Hepatic 
Encephalopathy 

 Manganese is an essential trace element found in a variety of biological tissues and 
is necessary for normal functioning of several physiological processes including 
amino acid, lipid, protein, and carbohydrate metabolism [ 66 ]. Manganese is also an 
important component of a number of cerebral enzymes, in particular, glutamine 
synthetase, an ammonia detoxifying enzyme. At low levels, manganese binds with 
superoxide dismutase to form MnSOD, an important mitochondrial antioxidant 
enzyme [ 67 ]. However, when excessive, manganese contributes to neurological 
abnormalities such as parkinsonism and dystonia [ 68 ]. Occupational exposure to 
excessive manganese levels leads to neurotoxicity, referred to as manganism, which 
resembles Parkinson’s disease [ 69 ]. Chronic exposure of various cell types to man-
ganese was shown to induce oxidative stress [ 70 – 72 ]. 

 Manganese has also been implicated in the pathogenesis of hepatic encepha-
lopathy [ 73 ]. Manganese highly accumulates in astrocytes [ 74 ,  75 ], which renders 
these cells more vulnerable to its toxicity. Consistent with this vulnerability, man-
ganese has been shown to decrease antioxidant capacity [ 72 ] and generate oxida-
tive stress [ 72 ,  76 ,  77 ], which are prevented by pre-treatment with  N -acetylcysteine 
[ 78 ]. Manganese also brings about mitochondrial dysfunction [ 79 ,  80 ], including 
decreased energy production [ 72 ] and the induction of the MPT [ 81 ], and causes 
histopathological changes in astrocytes (Alzheimer type II change) [ 82 ]. 
Interestingly, morphologic and functional changes after exposure of astrocytes to 
manganese are similar to those observed after ammonia treatment. Cultured astro-
cytes exposed to ammonia (5 mM) or manganese acetate (100 mM) were shown 
to increase both free radicals production and  L -arginine uptake (a precursor of 
nitric oxide), and such effects were synergized when manganese was co-treated 
with ammonia [ 77 ,  83 ]. Similarly, exposure of primary cortical astrocytes to a low 
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concentration of manganese (10 μM) was shown to potentiate interferon-gamma 
and tumor necrosis factor-alpha-induced expression of iNOS mRNA and protein 
along with an increased production of nitric oxide [ 84 ]. The potentiating effect 
was a consequence of the activation of soluble guanylate cyclase and mitogen-
activated protein kinase (MAPK) signaling pathways [ 84 ]. Cultured astrocytes 
exposed to manganese were also shown to inhibit glutamate uptake by a process 
involving oxidative stress [ 85 ,  86 ]. Additionally, it was demonstrated that treat-
ment of rats with manganese chloride led to an increase in manganese level in 
brain that was accompanied by the development of pathological changes similar 
to those seen in hepatic encephalopathy (Alzheimer type II astrocytosis), and such 
changes were signifi cantly reduced when rats were treated with antioxidant 
 N -actetylcysteine. In primary rat cortical neurons exposed to manganese, an 
increase in biomarkers of oxidative damage (F(2)-isoprostanes), which was pre-
vented by pretreatment with the antioxidant Trolox (hydrophilic analog of vitamin 
E), was reported [ 87 ]. These results were confi rmed in mice exposed to manga-
nese [ 87 ]. Finally, it was recently demonstrated that manganese leads to an 
increase in markers of oxidative stress in rat brain chronically exposed to manga-
nese [ 88 ]. These studies suggest that manganese contributes to oxidative stress in 
hepatic encephalopathy and that such effect is exacerbated in the presence of 
ammonia. 

 Patients with chronic liver failure and those who had surgically created portal- 
systemic shunts have elevated plasma and brain manganese levels, most likely 
refl ecting the combined effects of hepatocellular failure, impaired biliary excretion, 
and the presence of portal-systemic shunting of blood [ 89 ]. This may lead to selec-
tive manganese accumulation in the globus pallidus, caudate nucleus, and putamen, 
and the adjacent areas of the basal ganglia manifest as hyperintensity of these brains 
areas on T1-Magnetic Resonance Imaging [ 89 ,  90 ]. Indeed, elevated manganese 
levels were found in the globus pallidus obtained at autopsy from patients with 
chronic liver failure [ 90 ,  91 ]. Disturbances of manganese homeostasis may partly 
account for the cognitive impairment associated with chronic liver failure [ 92 ].   

16.4     Antioxidant Strategies for the Treatment of Hepatic 
Encephalopathy 

 Treatment of experimental animals suffering from hyperammonemia and hepatic 
encephalopathy with antioxidants (e.g., ascorbate, alpha-tocopherol, dimethyl-
sulfoxide) was shown to have benefi cial effects by improving antioxidant status as 
well as their clinical condition [ 93 ,  94 ]. The antioxidant melatonin was shown to 
reduce blood and brain ammonia level as well as attenuate brain lipid peroxida-
tion in rats after TAA injection [ 95 ]. Additionally, increased malondialdehyde 
levels and decreased glutathione peroxidase, catalase, and SOD activities were 
found in the hippocampal tissue of rats with portal hypertension (a model of low-
grade hepatic encephalopathy), and such effects were reversed when rats were 
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treated with curcumin, a known antioxidant [ 96 ]. Rats treated with morin (3,4,7,2′,
4′-pentahydroxyfl avone), a fl avonol, were shown to be protected against oxidative 
stress in brains of chronic hyperammonemic rats [ 97 ]. It was recently demon-
strated that guanosine, a nucleoside exhibiting antioxidant properties [ 98 ,  99 ], 
was neuroprotective in a rat model of chronic hepatic encephalopathy by reducing 
oxidative stress markers in the brain [ 100 ]. 

 The antioxidant  N -acetylcysteine has proven useful in reducing brain edema in 
acute liver failure [ 101 ] and in the management of patients with acute liver failure 
[ 102 – 105 ]. In addition,  N -acetylcysteine was shown to delay the progression of 
encephalopathy in azoxymethane-induced acute liver failure in mice, as well as to 
reduce brain water content [ 101 ]. Finally, hypothermia, which has been shown to 
improve brain edema in animals and humans with acute liver failure, is also known 
to reduce free radical production [ 106 ]. Interestingly,  N -acetylcysteine was able to 
ameliorate spatial memory and motor coordination defi cits observed experimental 
chronic liver failure (bile-duct ligated rats) [ 61 ].  N -Acetylcysteine supplementation 
decreased lipid peroxidation and was also able to restore the activity of antioxidant 
enzymes as well as structural defi cits observed in the cortex and cerebellum of cir-
rhotic animals with hepatic encephalopathy. Together, these data clearly demonstrate 
that the protective effect of  N -acetylcysteine in experimental hepatic encephalopathy 
is mediated through attenuation of oxidative stress, suggesting a therapeutic role for 
 N -acetylcysteine in patients affl icted with hepatic encephalopathy.  

16.5     Conclusion 

 Oxidative stress has evolved in recent years as a major pathogenetic factor in hepatic 
encephalopathy and experimental evidence for oxidative stress in brain in experi-
mental models of hepatic encephalopathy due to chronic liver failure is increasing. 
Indeed, several reports suggest that oxidative stress participates in the pathophysi-
ologic cascade responsible for hepatic encephalopathy. While the factors responsi-
ble for oxidative stress formation in hepatic encephalopathy remain incompletely 
understood, it appears that ammonia and manganese would be partly responsible for 
the production of reactive oxygen species. Although increased oxidative stress in 
hepatic encephalopathy resulting from chronic liver failure has been demonstrated 
by some groups, its consequences are not fully established. Additional studies on 
the role of oxidative stress in chronic hepatic encephalopathy are warranted. 
Increased oxidative stress has been documented in several studies and antioxidants 
were shown to be protective against ammonia-induced astrocyte swelling and cere-
bral edema in liver failure. Antioxidant therapy such as  N -acetylcysteine is already 
being used in the management of acute liver failure and its complications. Other 
antioxidants could prove to be valuable adjuncts to traditional hepatic encephalopa-
thy therapies, such as ammonia- lowering strategies, in the context of chronic liver 
failure. Further studies are needed in order to assess these possibilities.   
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