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    Chapter 3   
 PFASs in the General Population 

             Kayoko     Kato    ,     Xiaoyun     Ye    , and     Antonia     M.     Calafat    

    Abstract     Perfl uoroalkyl and polyfl uoroalkyl substances (PFASs) have been 
 manufactured since the 1950s for use as surface protectants for textiles and leather 
treatment, as protection additives in food packaging and paper products, and in 
fi refi ghting foams. Some PFASs are persistent in the environment and in people, 
and can be transported to remote regions. The main pathways of exposure to PFASs 
in humans include diet, drinking water, and indoor dust, but predictors of PFASs 
exposures are not clearly understood. Since 2002, changes in manufacturing  practices 
appear to have reduced exposure to some of these PFASs both in the  environment 
and in people,- but exposure to PFASs is still widespread. We review relevant 
research published up to the fi rst quarter of 2014 to understand the demographic, 
geographic, and temporal differences that contribute to general population exposures 
to PFASs around the world. We also present data on exposures to PFASs in some 
vulnerable population groups (e.g., pregnant women, infants, young children).  

  Keywords     Biomonitoring   •   Exposure assessment   •   PFOA   •   PFOS  

3.1         Introduction 

 Polyfl uoroalkyl chemicals (PFASs) have been manufactured since the 1950s (Buck 
et al.  2011 ). Because of their chemical inertness and heat stability, PFASs have been 
used extensively in a variety of industrial and commercial applications, such as 
surfactants, lubricants, paper and textile coatings, polishes, food packaging, and 
fi re-retarding foams (Lau et al.  2007 ; Prevedouros et al.  2006 ). 
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 Some PFASs persist in the environment and in people, and can be transported to 
remote locations (Paul et al.  2009 ; Armitage et al.  2009 ; Ahrens  2011 ; Houde et al. 
 2006 ). Because of widespread exposure to certain PFASs in wildlife and people, 
and the potential adverse health impacts associated with such exposures (Lau et al. 
 2007 ; Steenland et al.  2010a ), in 2002, 3M, the main worldwide manufacturer of 
perfl uorooctane sulfonic acid (PFOS), discontinued the production of PFOS precur-
sors and related compounds in the United States. PFOS is still produced in other 
countries (Paul et al.  2009 ; Pistocchi and Loos  2009 ). Other PFASs including per-
fl uorooctanoic acid (PFOA), its salts, and precursors are also produced in other 
countries and still manufactured in the United States (Buck et al.  2011 ). However, 
efforts from U.S. industry and government exist to limit emissions of PFOA into the 
environment to reduce by 2015 the global emissions of PFOA and longer chain 
perfl uoroalkyl acids (including their relevant precursors) to 95 % of the year 2000 
levels (Buck et al.  2011 ; Prevedouros et al.  2006 ; US  2006 ). Similarly, regulatory 
and other initiatives intended to reduce environmental emissions of PFASs also 
exist in Canada and the European Union (Buck et al.  2011 ). All of these efforts 
appear to have reduced exposure to some of these PFASs not only in the ecosystem 
(Butt et al.  2007 ; Furdui et al.  2008 ; Hart et al.  2008 ) but also in people (Calafat 
et al.  2007a ; Olsen et al.  2008 ; Haug et al.  2009 ) as discussed later in this chapter. 

 The main pathway(s) of exposure to PFASs in humans include diet (Ericson et al. 
 2008 ; Fromme et al.  2007a ; Tittlemier et al.  2007 ; Yamaguchi et al.  2013 ; Holzer 
et al.  2011 ; Weihe et al.  2008 ; Vestergren et al.  2012 ; Bjermo et al.  2013 ; Dallaire 
et al.  2009 ), drinking water (Vestergren et al.  2012 ; Emmett et al.  2006 ; Holzer et al. 
 2008 ), and indoor dust (Vestergren et al.  2012 ; Kato et al.  2009a ; Katsumata et al. 
 2006 ; Kubwabo et al.  2005 ; Martin et al.  2002 ; Moriwaki et al.  2003 ; Shoeib et al. 
 2005 ; Strynar and Lindstrom  2008 ; Fraser et al.  2012 ,  2013 ) although sources and 
routes of exposure to PFASs for children and adults may differ (Calafat et al.  2007a , 
 b ; Olsen et al.  2004a ). Data on the actual levels of PFASs in people (i.e., biomoni-
toring data) can facilitate the exposure assessment because concentrations of these 
compounds in biological fl uids represent an integrative measure of exposure to the 
target chemicals from multiple sources and routes. Blood (plasma, serum, or whole 
blood) is a commonly used biomonitoring matrix for assessing exposure to PFASs. 

 Biomonitoring data in combination with indirect measures of exposure (e.g., 
environmental monitoring, questionnaire information) are the most appropriate 
tools for exposure assessment and can provide useful information about differences 
in exposures by geography, demographic factors (e.g., age, sex), and socio- economic 
status, as well as time trends. Literature on population exposures to PFASs is 
exhaustive and cannot be covered comprehensively in this review. In this chapter, 
we present an overview of environmental exposures to PFASs in human populations 
based on available information up to the fi rst quarter of 2014. Specifi cally, we dis-
cuss demographic, geographic, and temporal differences in exposures to PFASs 
among the general population. We also discuss exposures to PFASs in vulnerable 
population groups (e.g., pregnant women, infants, young children).  
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3.2     PFASs in General Population Studies 

 Exposure to PFASs has been estimated from the concentrations of the target PFASs 
in serum, plasma, or whole blood in numerous PFASs biomonitoring studies con-
ducted around the world since the early 2000s (Haug et al.  2009 ; Yamaguchi et al. 
 2013 ; Holzer et al.  2011 ; Bjermo et al.  2013 ; Dallaire et al.  2009 ; Olsen et al.  2003 , 
 2004b ,  2005 ,  2012 ; CDC  2013a ; Midasch et al.  2006 ; Fromme et al.  2007b ,  2009 ; 
Vassiliadou et al.  2010 ; Schroter-Kermani et al.  2013 ; Ericson et al.  2007 ; Kannan 
et al.  2004 ; Yeung et al.  2013a ,  b ; Harada et al.  2007 ; Toms et al.  2009 ; Haines and 
Murray  2012 ; Jin et al.  2007 ; Audet-Delage et al.  2013 ; Schecter et al.  2012 ; Pinney 
et al.  2014 ; Frisbee et al.  2010 ; Ingelido et al.  2010 ; Zhang et al.  2010 ; Wan et al. 
 2013 ; Ji et al.  2012 ; Bao et al.  2014 ; Pan et al.  2010 ; Kim et al.  2014 ). In Table  3.1 , 
we present a selection of studies with a sample size of at least 100 participants, 
including two national surveys: the National Health and Nutrition Examination 
Survey (NHANES) (CDC  2013b ), conducted by the National Center for Health 
Statistics of the Centers for Disease Control and Prevention in the United States, 
and the Canadian Health Measures Survey (CHMS) (Tremblay and Gorber  2007 ) 
administered by Statistics Canada. NHANES is designed to assess the health and 
nutritional status of adults and children in the United States. The survey is unique in 
that it combines interviews, physical examinations, and analysis of biological sam-
ples for environmental contaminants (CDC  2013b ), including PFASs for Americans 
12 years of age and older. Similar to NHANES, CHMS provides national data on 
indicators of general health, chronic and infectious diseases, and environmental bio-
markers; PFASs exposure data are available for Canadians 20–79 years of age 
(Tremblay and Gorber  2007 ).

   For the majority of the general populations examined, the four most commonly 
studied PFASs have been PFOS, PFOA, perfl uorohexane sulfonic acid (PFHxS), 
and perfl uorononanoic acid (PFNA) (Table  3.1 ). Generally, PFOS showed the high-
est serum concentrations followed by PFOA, while other PFASs are detected both 
at lower concentrations and frequencies. In occupational settings or in populations 
accidentally exposed to specifi c PFASs (Emmett et al.  2006 ; Holzer et al.  2008 ; 
Frisbee et al.  2010 ; Brede et al.  2010 ; Holzer et al.  2009 ; Wilhelm et al.  2009 ; 
Winquist et al.  2013 ; Hoffman et al.  2011 ; Seals et al.  2011 ; Shin et al.  2011a ,  b ; 
Bartell et al.  2010 ; Steenland et al.  2009 ; Frisbee et al.  2009 ; Beesoon et al.  2013 ), 
the concentration patterns observed may differ from those reported among the gen-
eral population. We will not cover occupational exposures (the main subject of 
Chap.   4    ), but will discuss some general aspects of accidental exposures later in this 
chapter.  

3 PFASs in the General Population
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3.3     Determinants of General Population Exposure to PFASs 

 Exposure to PFASs in the general population of developed countries and many 
developing countries is widespread, but the extent of such exposures may vary con-
siderably (Yamaguchi et al.  2013 ; Vassiliadou et al.  2010 ; Kannan et al.  2004 ; Jin 
et al.  2007 ; Audet-Delage et al.  2013 ; Calafat et al.  2006a ; Hemat et al.  2010 ). 
Comparing PFASs concentrations among populations is diffi cult because of differ-
ences in study design—including age, sex, and race of the populations examined—, 
years of sample collection, geographical location, and analytical methodologies 
used (e.g., isomeric profi les). Interestingly and despite these challenges, the ranges 
of concentrations of PFOS, PFOA, PFHxS, and PFNA are remarkably similar 
worldwide. For example, NHANES data in the United States during 1999–2010 are 
in agreement with those from American Red Cross donors in 2000–2010 (Olsen 
et al.  2012 ); from Canada in 2007 to 2008 (Haines and Murray  2012 ); from several 
European countries in 2005 to 2006 (Fromme et al.  2009 ), 2005–2009 (Haug et al. 
 2009 ; Vassiliadou et al.  2010 ; Ingelido et al.  2010 ) and 2010–2011 (Bjermo et al. 
 2013 ); and from China in 2009 (Zhang et al.  2010 ; Wan et al.  2013 ). 

 Research is ongoing to evaluate the determinants of exposure to PFASs, but 
exposures to PFASs may be associated with demographic factors such as age, sex 
and race. Racial differences in PFASs (e.g., PFOA, PFNA, PFHxS) serum concen-
trations were observed in the United States (Kato et al.  2011 ). For instance, regard-
less of age, Americans of Mexican descent had lower adjusted geometric mean 
serum concentrations of PFNA than non-Hispanic white and non-Hispanic black 
Americans (Kato et al.  2011 ). For PFHxS, non-Hispanic whites and non-Hispanic 
blacks had similar concentrations, and both were higher than for Mexican 
Americans; at older ages, however, concentrations were different only among 
Mexican Americans and non-Hispanic whites (Kato et al.  2011 ). These differences 
may refl ect variability in exposures as a result of differences in lifestyle, diet (Holzer 
et al.  2011 ; Zhang et al.  2010 ; Halldorsson et al.  2008 ; Rylander et al.  2010 ), use of 
products containing PFASs, physiology (e.g., elimination) (Han et al.  2008 ), or a 
combination of these factors. 

 Higher concentrations of PFOS, PFOA, and PFHxS among males than among 
females have been reported in diverse adult populations around the world (Calafat 
et al.  2007a ; Olsen et al.  2008 ; Bjermo et al.  2013 ; Dallaire et al.  2009 ; Fromme 
et al.  2007b ,  2009 ; Vassiliadou et al.  2010 ; Ericson et al.  2007 ; Yeung et al.  2013a , 
 b ; Haines and Murray  2012 ; Ingelido et al.  2010 ; Ji et al.  2012 ; Kato et al.  2011 ), 
suggesting the possibility of sex-related exposure differences, perhaps in terms of 
lifestyle or diet. In North America, NHANES (Kato et al.  2011 ) and CHMS (Haines 
and Murray  2012 ) data suggested differences in PFASs concentrations according to 
sex. Canadian men had higher plasma PFOS and PFOA concentrations than women 
(Haines and Murray  2012 ). In the United States, males had higher adjusted geomet-
ric mean serum concentrations of PFOS, PFOA, and PFHxS than females regardless 
of age (Kato et al.  2011 ). In addition, males had higher adjusted geometric mean 
serum concentrations of PFOA, PFHxS, and PFNA than females regardless of race/

K. Kato et al.
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ethnicity. Differences in concentrations of PFOS, PFOA, PFNA, and PFHxS by sex 
appeared to be more pronounced in younger than in older Americans. These con-
centration trends may be related to sex-related differences in exposures to these 
PFASs even at an early age; they may also be related to physiological differences by 
sex, including differences in urinary elimination due to the renal resorption of per-
fl uoroalkyl acids by organic anion transporters (Han et al.  2008 ). In addition, men-
ses (Harada et al.  2005 ; Taylor et al.  2014 ), pregnancy (Yamaguchi et al.  2013 ; 
Monroy et al.  2008 ) and lactation (Bjermo et al.  2013 ; Kubwabo et al.  2013 ; 
Karrman et al.  2007a ) may affect elimination of PFASs in females and also contrib-
ute to differences in PFASs exposure between men and women (Knox et al.  2011 ; 
Harada et al.  2004 ). 

 Increasing serum concentrations as people age are common for lipophilic persis-
tent pollutants, such as polychlorinated biphenyls, but PFASs do not partition into 
fat deposits in the body (Conder et al.  2008 ). Nonetheless, suggestive associations 
between age and exposure to some PFASs have been reported, although without 
consistent trends among studies. Geometric mean serum concentrations of PFOS, 
PFOA, and PFNA did not differ signifi cantly among age groups for Americans 
older than 12 years from NHANES 1999–2000 (Calafat et al.  2007a ), in agreement 
with fi ndings from several other studies outside the United States (Olsen et al.  2008 ; 
Vassiliadou et al.  2010 ; Ericson et al.  2007 ). By contrast, geometric mean serum 
concentrations of PFOS and PFNA tended to increase with age regardless of sex 
when combining data from four NHANES cycles (1999–2008) (Kato et al.  2011 ). 
In another study, PFOS concentration in pooled serum collected from over 2000 
Australian donors between 2006 and 2007 was also signifi cantly higher in adults 
(>60 years) than in children (Toms et al.  2009 ). The increase of production of PFASs 
since 1970s might have resulted in increased exposure over time for persons aged 
>30 years at the time of blood collection in the mid 2000s (Toms et al.  2009 ). Other 
studies also reported increase of PFASs concentrations with age (Haug et al.  2009 ; 
Yamaguchi et al.  2013 ; Bjermo et al.  2013 ; Dallaire et al.  2009 ; Holzer et al.  2008 ; 
Fromme et al.  2007b ). 

 For PFHxS, however, the adjusted geometric mean serum and 95th percentile 
concentrations were higher for adolescents than for adults in NHANES (Kato et al. 
 2011 ). Higher concentrations of PFHxS in adolescents could be related to youth’s 
increased contact with carpeted fl oors because PFHxS had been used for specifi c 
postmarket carpet-treatment applications (Olsen et al.  2004a ); carpets and uphol-
stered furniture are known to trap dust, which may also contain PFHxS (Vestergren 
et al.  2012 ; Kato et al.  2009a ; Katsumata et al.  2006 ; Kubwabo et al.  2005 ; Martin 
et al.  2002 ; Moriwaki et al.  2003 ; Shoeib et al.  2005 ; Strynar and Lindstrom  2008 ; 
Fraser et al.  2012 ,  2013 ). The lack of consistent age trends for PFASs may be related 
to differences in early life—including in-utero—exposure to these compounds, 
ongoing exposures being much lower than previous historical exposures when pro-
duction of the chemicals peaked, poor urinary elimination due to the renal resorp-
tion of perfl uoroalkyl acids by organic anion transporters (Han et al.  2008 ), or a 
combination of these factors. 
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 Even though exposure to PFASs is widespread, differences in exposures between 
urban and suburban locations or among various countries also exist (Yamaguchi 
et al.  2013 ; Vassiliadou et al.  2010 ; Kannan et al.  2004 ; Jin et al.  2007 ; Audet- 
Delage et al.  2013 ; Calafat et al.  2006a ; Hemat et al.  2010 ). Factors such as the 
environment (e.g., air and water quality), diet, and other lifestyle choices which can 
vary considerably among regions and even within the same country (Fromme et al. 
 2009 ; Zhao et al.  2011 ; Martin et al.  2010 ; Trudel et al.  2008 ; Vestergren et al.  2008 ; 
Paustenbach et al.  2007 ; Washburn et al.  2005 ) likely play a role in the observed 
differences. Accidental exposure to certain PFASs (Brede et al.  2010 ; Oliaei et al. 
 2013 ; Post et al.  2013 ; Weiss et al.  2012 ; Lindstrom et al.  2011 ; Wilhelm et al.  2010 ; 
Renner  2009 ), mainly from contaminated drinking water, is one specifi c example of 
within country differences. 

 In the mid–Ohio River Valley in the United States, almost 70,000 residents living 
near a fl uoropolymer production facility had mean PFOA serum concentrations 
much higher than the geometric mean serum concentration in NHANES partici-
pants during the same time period (Emmett et al.  2006 ; Frisbee et al.  2010 ; Winquist 
et al.  2013 ; Hoffman et al.  2011 ; Seals et al.  2011 ; Shin et al.  2011a ,  b ; Bartell et al. 
 2010 ; Steenland et al.  2009 ; Frisbee et al.  2009 ). The increased PFOA concentration 
was associated with consumption of drinking water contaminated with PFOA 
(Emmett et al.  2006 ; Winquist et al.  2013 ; Hoffman et al.  2011 ; Seals et al.  2011 ; 
Shin et al.  2011a ,  b ; Bartell et al.  2010 ; Steenland et al.  2009 ). A similar situation 
occurred in Arnsberg, Germany, where about 40,000 residents were exposed to 
PFOA-contaminated drinking water (Holzer et al.  2008 ; Brede et al.  2010 ; Holzer 
et al.  2009 ; Wilhelm et al.  2009 ). In another study from Germany, blood PFOS 
 concentrations in a group of ten people who drank contaminated water from private 
wells were higher than among the general population (Weiss et al.  2012 ). 

 Of interest, exposure patterns in populations accidentally exposed to specifi c 
PFASs (Emmett et al.  2006 ; Holzer et al.  2008 ,  2009 ; Brede et al.  2010 ; Wilhelm 
et al.  2009 ; Winquist et al.  2013 ; Hoffman et al.  2011 ; Seals et al.  2011 ; Shin et al. 
 2011a ,  b ; Bartell et al.  2010 ; Steenland et al.  2009 ; Beesoon et al.  2013 ; Weiss et al. 
 2012 ) can differ considerably from those reported among the general population 
(Emmett et al.  2006 ; Holzer et al.  2008 ,  2009 ; Brede et al.  2010 ; Wilhelm et al. 
 2009 ; Winquist et al.  2013 ; Hoffman et al.  2011 ; Seals et al.  2011 ; Shin et al.  2011a , 
 b ; Bartell et al.  2010 ; Steenland et al.  2009 ). Studies of such populations may be 
useful to both evaluate associations between exposures to PFASs and potential 
health effects (Frisbee et al.  2010 ; Barry et al.  2013 ; Darrow et al.  2013 ; Vieira et al. 
 2013 ; Lopez-Espinosa et al.  2011 ,  2012 ; Savitz et al.  2012 ; Innes et al.  2011 ; Stein 
and Savitz  2011 ; Nolan et al.  2010 ; Steenland et al.  2010b ; Nolan et al.  2009 ; Stein 
et al.  2009 ) as well as the effi cacy of interventions to remove the PFASs from the 
contamination source (e.g., water) (Pinney et al.  2014 ; Bartell et al.  2010 ; Rumsby 
et al.  2009 ). For instance, certain drinking water treatments including granular 
 activated carbon adsorption can remove PFOA and other long chain PFASs from the 
potable water supply (Eschauzier et al.  2012 ; Flores et al.  2013 ; Rahman et al.  2014 ; 
Takagi et al.  2011 ) and effectively reduced exposure to PFOA in consumers of 
treated drinking water (Pinney et al.  2014 ; Bartell et al.  2010 ; Rumsby et al.  2009 ). 
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 Biomonitoring concentrations provide an integrated measure of exposures 
through all potential sources and routes of exposure (Calafat et al.  2006b ), but 
 biomonitoring data may also be useful to identify potential exposure pathways. 
Synthesis of PFASs has employed electrochemical fl uorization (ECF) or fl uorotel-
omerization. ECF generates linear as well as branched isomers, but telomerization 
exclusively generates linear isomers (Vyas et al.  2007 ). In a standard product after 
ECF, the proportion of PFOS isomers was 70 % linear and 30 % branched; ECF 
PFOA had a consistent isomer composition of 78 % linear and 22 % branched 
(Benskin et al.  2010a ). The presence of PFOS and PFOA branched isomers was fi rst 
noted in 2001 (Hansen et al.  2001 ). Limited data exist on the toxicokinetics of the 
various isomers (Benskin et al.  2009a ,  b ; De Silva et al.  2009 ), but the structural 
isomer patterns in humans may be useful for understanding the routes and sources 
of exposure to PFASs (De Silva and Mabury  2006 ; Karrman et al.  2007b ; Benskin 
et al.  2010b ). 

 In 70 blood samples collected in 1997–2003 from Sweden, the United Kingdom, 
and Australia, linear PFOS was the main isomer comprising 58–70 % of the total 
PFOS measured, depending on the location (Karrman et al.  2007b ); similarly, linear 
PFOS was 53 % of the total PFOS measured in 20 Canadians’ blood samples col-
lected in 2007–2008 (Zhang et al.  2013a ). Differences in isomeric distributions may 
relate to different isomer patterns in the source products or to country-specifi c dif-
ferences in the major human exposure pathways (Karrman et al.  2007b ). The differ-
ent ratio of the PFOS isomers could also indicate differential uptake of the branched 
and linear PFOS isomers, and also refl ect different renal clearances (Zhang et al. 
 2013a ) or tranceplacental transfer (Hanssen et al.  2010 ) in humans. 

 From 1947 to 2002, worldwide production of PFOA was mainly by ECF and 
exposure to both linear and branched isomers likely occurred. Branched PFOA iso-
mers were detected in 96.9 % of NHANES 1999–2000 participants sera, with a 
median (25th–95th percentiles) percentage of branched PFOA isomers of 4.2 % 
(2.7–9.9 %) (Kato et al.  2011 ). By contrast, only the linear PFOA isomer was 
detected among NHANES 2007–2008 participants (Kato et al.  2011 ). Similarly, in 
16 pooled sera collected across the Midwest United States during 2004 and 2005, 
only between 1.6 and 2.3 % of the mean concentrations of PFOA, PFNA, and 
another PFAS, perfl uoroundecanoate, were branched isomers (De Silva and Mabury 
 2006 ). The relatively high proportion of linear PFOA in serum in these studies may 
be partly due to exposure to and metabolism of fl uorotelomer alcohols and olefi ns, 
two classes of PFASs synthesized by the telomerization process (Benskin et al. 
 2010a ). Linear isomers of PFASs also predominated in wildlife during 1999–2003 
(Butt et al.  2010 ). Together, the above fi ndings suggest that telomer products may 
have contributed to PFOA burden after the phase-out of ECF products (Prevedouros 
et al.  2006 ; Ellis et al.  2004 ). 

 Paired blood and urine samples (N = 86) collected from Chinese adults in 2010 
were analyzed for linear and branched PFOS and PFOA isomers (Zhang et al. 
 2013a ). PFOS and PFOA concentrations in urine and blood were correlated, but the 
percentage of linear and branched isomers in the two matrices differed. The mean 
percentage of linear PFOS in blood (53 %) was signifi cantly lower than in the ECF 
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standard (70 %), but the mean percentage of linear PFOA (97 %) was higher than in 
the ECF standard (78 %) (Zhang et al.  2013a ). Interestingly, the mean percentage of 
linear isomers in urine (PFOS, 45 %; PFOA, 94 %) was lower than in blood (Zhang 
et al.  2013a ) suggesting preferential excretion of the branched isomers of PFOA and 
PFOS in urine (Zhang et al.  2013a ). Results from this study also suggested that 
perfl uoroalkyl carboxylates (PFCAs) were excreted more effi ciently in urine than 
their corresponding perfl uoroalkane sulfonates of the same carbon chain-length. 
Also, although urinary excretion was a major elimination route for short PFCAs 
(C ≤ 8), other routes of excretion likely contribute to overall elimination for longer 
PFCAs (e.g., PFOA), PFHxS and PFOS.  

3.4     Temporal Trends in Exposure to PFASs 

 PFASs manufacturing started in the 1950s and peaked in the 1980s–1990s 
(Prevedouros et al.  2006 ; Paul et al.  2009 ). Estimates suggest that the global produc-
tion volumes and environmental releases of PFOS and its precursors started to 
decrease in the mid 1990s, but voluntary emission reduction measures were not 
implemented before 1997 (Paul et al.  2009 ). Concerns about the potential environ-
mental and toxicological impact of certain PFASs led to (a) several major changes 
in manufacturing practices (Prevedouros et al.  2006 ; Paul et al.  2009 ; Pistocchi and 
Loos  2009 ; US  2006 ), and (b) other initiatives to reduce environmental emissions of 
these compounds or their precursors (Buck et al.  2011 ). First, 3M Company, the 
main global manufacturer of perfl uorooctanesulfonyl fl uoride (POSF)-based mate-
rials (Prevedouros et al.  2006 ), including PFOS, PFOA and related compounds, 
phased out the production of these chemicals in 2000–2002. Furthermore, the US 
Environmental Protection Agency and eight leading global companies participated 
in a stewardship agreement to reduce emissions and product content of PFOA and 
related chemicals by 95 % by 2010 and to work toward their elimination by 2015 
(US  2006 ). Canadian environmental and health authorities and fi ve companies 
reached a similar agreement to restrict certain PFASs in products, and a European 
Union Marketing and Use Directive restricted the use of “perfl uorooctane  sulfonates” 
in the European Union (Buck et al.  2011 ). Last, PFOS was added to the persistent 
organic pollutants list of the Stockholm Convention in May 2009 as an Annex B 
substance (i.e., restricted in its use) (Ahrens  2011 ). All of these changes have 
impacted exposure to PFASs as discussed below. 

 Temporal trends have been investigated in the United States (Olsen et al.  2005 , 
 2012 ; Kato et al.  2011 ), Germany (Schroter-Kermani et al.  2013 ; Yeung et al.  2013a , 
 b ), Norway (Haug et al.  2009 ), Sweden (Glynn et al.  2012 ), Australia (Toms et al. 
 2009 ), Japan (Harada et al.  2007 ), and China (Jin et al.  2007 ; Chen et al.  2009 ). 
Despite differences in design among studies—pools vs individual specimens, 
plasma vs serum, sample size, time period—, PFASs concentrations in people 
 follow similar increasing trends from the 1970s to the mid 1990s because of the 
high production and widespread use of this class of compounds and their resulting 
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emissions (Prevedouros et al.  2006 ; Paul et al.  2009 ). For instance, participants in 
two community-based cohorts from Maryland in the United States had blood 
 concentrations of PFOS, PFOA, and PFHxS, among other PFASs, signifi cantly 
higher in 1989 than in 1974 (Olsen et al.  2005 ). In Japan, serum concentrations of 
PFOS and PFOA from urban females increased 3 and 14 times, respectively, 
between 1977 and 1995, before plateauing between 1991 and 2003 (Harada et al. 
 2004 ). In Chinese students, faculty members and university workers, median serum 
concentrations of PFOA and PFOS increased signifi cantly from 1987 until 2002 
(Jin et al.  2007 ). Similar time trends were observed in Sweden using pooled milk 
samples: PFOS and PFOA concentrations increased signifi cantly from 1972 to 
2000, and showed statistically signifi cant decreasing trends during 2001–2008 
(Sundstrom et al.  2011 ). 

 Compared to the late 1990s, serum concentrations of PFOS and PFOA have 
shown a downward trend worldwide since the 2000s. In a Norwegian study using 57 
pooled samples collected from 1976 to 2007, serum concentrations of PFOS and 
PFOA in men increased ninefold from 1977 to the mid 1990s, then reached a pla-
teau before starting to decrease around the year 2000 (Haug et al.  2009 ); PFOA 
concentrations decreased by about 40 % between 2000 and 2006 in Norwegian men 
40–50 years old (Haug et al.  2009 ). Similarly, plasma concentrations of PFOS and 
PFOA in 420 samples collected from residents of two German cities decreased 
between 2000 and 2009 (Yeung et al.  2013a ,  b ). Sera collected from Swedish 
 primiparous women sampled three weeks after delivery in 1996–2010 also showed 
decreasing concentrations of PFOS and PFOA (Glynn et al.  2012 ). In the period 
from 2002 to 2009, PFOA concentrations in serum pools from Australians older 
than 16 years decreased by about 50 % (Toms et al.  2009 ). In American Red Cross 
donors, PFOA geometric mean serum concentrations decreased from 4.7 ng/mL 
(2000–2001) to 2.44 ng/mL (2010) (Olsen et al.  2012 ). Similar trends were observed 
among the US general population with geometric mean serum concentrations 
decreasing from 5.2 ng/mL (PFOA) and 30.4 ng/mL (PFOS) in 1999–2000 to 
3.07 ng/mL (PFOA) and in 9.32 ng/mL (PFOS) in 2009–2010 (CDC  2013a ) 
although from 2005 to 2008, PFOA adjusted concentrations appeared to increase 
for males but remained the same for females (Kato et al.  2011 ). 

 Compared with PFOS and PFOA, concentrations of PFNA in NHANES partici-
pants showed an upward trend, regardless of race/ethnicity since 1999–2000 (Kato 
et al.  2011 ). The geometric mean serum concentration of PFNA in the US general 
population increased more than twofold between 1999–2000 and 2009–2010 (CDC 
 2013a ). In German residents, plasma concentrations of PFNA also increased during 
2000–2009 while those of PFOS and PFOA decreased (Yeung et al.  2013a ,  b ). 
Because PFNA was present as a reaction by-product in POSF-based materials 
(Prevedouros et al.  2006 ) which are no longer produced in the United States since 
2000–2002, the observed PFNA concentration trends may be related to the degrada-
tion of volatile fl uorotelomer alcohols (Ellis et al.  2004 ). These human data are also 
in agreement with wildlife data suggesting that concentrations of PFNA and certain 
longer chain-length PFASs show an upward trend in the same time period (Olsen 
et al.  2012 ; Yeung et al.  2013a ; Glynn et al.  2012 ; Dietz et al.  2008 ).  
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3.5     Exposure to PFASs in Vulnerable Populations 

 Biomonitoring studies among pregnant women, infants, and young children are of 
interest because stressors, including chemical exposures, during these critical time 
periods may impact health later in life. Unfortunately, these segments of the popula-
tion are poorly represented in general population biomonitoring surveys such as 
NHANES (CDC  2006 ) and CHMS (Haines and Murray  2012 ). For instance, to 
date, published data on background exposure to PFASs among pregnant women in 
the United States general population are limited to only 180 of 1,079 women 
17–39 years of age who participated in 2003–2008 NHANES (Woodruff et al.  2011 ; 
Jain  2013 ). Information on background exposure to PFASs exist for pregnant 
women or newborns in other countries including Great Britain (Maisonet et al. 
 2012 ), Denmark (Kristensen et al.  2013 ; Fei et al.  2009 ), Norway (Ode et al.  2013 ), 
Sweden (Starling et al.  2014 ), Canada (Monroy et al.  2008 ; Hamm et al.  2010 ), 
China (Wu et al.  2012 ), and Japan (Washino et al.  2009 ). In Table  3.2 , we present 
concentrations of PFASs in women during pregnancy or at delivery, or infants 
shortly after birth from select studies with sample sizes of at least 30 participants 
(Monroy et al.  2008 ; Karrman et al.  2007a ; Maisonet et al.  2012 ; Kristensen et al. 
 2013 ; Fei et al.  2009 ; Ode et al.  2013 ; Starling et al.  2014 ; Hamm et al.  2010 ; Wu 
et al.  2012 ; Washino et al.  2009 ; Whitworth et al.  2012 ; Stein et al.  2012 ; Liu et al. 
 2011 ; Lee et al.  2013 ; Kim et al.  2011a ; Inoue et al.  2004 ; Hanssen et al.  2013 ; 
Fromme et al.  2010 ),

   Research has also shown that PFASs can be transported across the placenta 
and several PFASs have been detected in cord serum (Monroy et al.  2008 ; Hanssen 
et al.  2010 ; Glynn et al.  2012 ; Ode et al.  2013 ; Liu et al.  2011 ; Lee et al.  2013 ; Kim 
et al.  2011a ; Inoue et al.  2004 ; Hanssen et al.  2013 ; Fromme et al.  2010 ; 
Arbuckle et al.  2013 ; Lien et al.  2013 ; Porpora et al.  2013 ; Zhang et al.  2011 , 
 2013b ; Chen et al.  2012 ; Gutzkow et al.  2012 ; Llorca et al.  2012 ; Beesoon et al. 
 2011 ; Kim et al.  2011b ; Lien et al.  2011 ; Apelberg et al.  2007 ; Midasch et al.  2007 ; 
Needham et al.  2011 ). Furthermore, data on paired maternal and cord blood PFASs 
concentrations also exist for populations around the world (Monroy et al.  2008 ; 
Hanssen et al.  2010 ; Glynn et al.  2012 ; Ode et al.  2013 ; Liu et al.  2011 ; Lee et al. 
 2013 ; Kim et al.  2011a ,  b ; Hanssen et al.  2013 ; Fromme et al.  2010 ; Porpora et al. 
 2013 ; Zhang et al.  2013b ; Gutzkow et al.  2012 ; Beesoon et al.  2011 ; Midasch 
et al.  2007 ; Needham et al.  2011 ). Interestingly, the ratio of concentrations between 
maternal and infant’s samples vary depending on the compound. For example, ratios 
between maternal and cord serum concentration were ~1 for PFOA but ~2 for PFOS 
(Monroy et al.  2008 ; Hanssen et al.  2010 ; Ode et al.  2013 ; Lee et al.  2013 ; Kim et al. 
 2011a ,  b ; Fromme et al.  2010 ; Porpora et al.  2013 ; Zhang et al.  2013b ; Gutzkow 
et al.  2012 ; Beesoon et al.  2011 ; Midasch et al.  2007 ) suggesting differences in the 
partition of these compounds. Taken together, these results suggest that PFAS 
exposure is  ubiquitous in pregnant women and their newborns. 

 Although infants and young children are exposed to PFASs, data in these age 
groups are still rather limited (Olsen et al.  2004a ; Toms et al.  2009 ; Schecter et al. 
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 2012 ; Pinney et al.  2014 ; Kato et al.  2009b ) in part because of the diffi culties in 
obtaining blood from newborns and young children. Using dry blood spots (DBS) 
or residual specimens can overcome this limitation. In the United States, DBS are 
collected routinely from newborns within 48 h of birth for the main purposes of 
screening for metabolic and other health disorders. A couple of studies relied on 
using residual newborn DBS stored by state public health departments to demon-
strate exposure to PFASs including PFOS, PFOA, PFNA, and PFHxS in Texas 
(Kato et al.  2009c ) and New York infants (Spliethoff et al.  2008 ) (Table  3.2 ). 

 Three studies, two in the United States and one in Australia, used residual serum 
specimens collected during routine health exams to evaluate exposure to PFASs 
among young children (Toms et al.  2009 ; Schecter et al.  2012 ; Kato et al.  2009b ). 
In the fi rst study, researchers used 936 samples collected from U.S. children partici-
pants in NHANES in 2001–2002 to prepare pools that were analyzed for several 
PFASs. Mean concentrations of PFOS, PFOA, PFNA, and PFHxS in these pools 
were similar regardless of age (3–5 or 6–11 years) or sex, but were higher than the 
mean concentrations reported in pools from adolescents and adults NHANES 
2001–2002 participants (Kato et al.  2009b ). In the second US study, PFASs were 
detected in serum collected in late 2009 from 300 Texas children from birth through 
12 years of age, several years after phasing out the manufacture of POSF-based 
materials (Schecter et al.  2012 ). Of note, serum concentrations of PFOS, PFOA, 
PFNA, and PFHxS did not signifi cantly differ by sex, unlike fi ndings from adult 
populations (Calafat et al.  2007a ; Olsen et al.  2008 ; Bjermo et al.  2013 ; Dallaire 
et al.  2009 ; Fromme et al.  2007b ,  2009 ; Vassiliadou et al.  2010 ; Ericson et al.  2007 ; 
Yeung et al.  2013a ,  b ; Haines and Murray  2012 ; Ingelido et al.  2010 ; Ji et al.  2012 ; 
Kato et al.  2011 ). By constrast, concentrations appeared to increase with age, 
 perhaps because the older children experienced higher exposures to PFASs in the 
late 1990s–early 2000s when environmental levels of these compounds were higher. 
In another study (Toms et al.  2009 ), investigators examined the concentrations of 
 several PFASs in pools made from individual sera collected in 2006–2007 in 
 southeast Queensland, Australia from 2,420 male and female donors between birth 
to >60 years of age. PFOS, PFOA and PFNA were detected in all pools; PFOS was 
detected at the highest mean concentration followed by PFOA. Concentration 
 differences by sex were not apparent among children <12 years, in agreement with 
the results from the Texas children (Schecter et al.  2012 ), and concentration patterns 
by age varied depending on the compound. 

 The relevance of sources and routes of exposure to certain PFASs in children 
may differ from those in adults. For example, investigators reported higher serum 
mean concentrations of selected PFASs, specifi cally PFHxS and 2-(N-methyl- 
perfl uorooctane sulfonamido) acetate (Me-PFOSA-AcOH), from U.S. children than 
from adults (Olsen et al.  2004a ). Me-PFOSA-AcOH is a known oxidation product 
of 2-(N-methyl-perfl uorooctane sulfonamido) ethanol, which was used primarily in 
surface treatment applications for carpets and textiles (Olsen et al.  2003 ). PFHxS 
was used as a building block for compounds incorporated in fi re-fi ghting foams and 
specifi c postmarket carpet treatment applications (Olsen et al.  2003 ). One explana-
tion for the apparent greater mean concentrations of PFHxS and Me-PFOSA-AcOH 
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in children than in adolescents and adults was increased exposure among children 
resulting from increased contact with carpeted fl oors and upholstered furniture 
 coupled with hand-to-mouth activity. Carpets and upholstered furniture are known 
to trap dust, which may contain PFHxS. In fact, the mean concentrations of PFHxS 
in house dust samples collected in North America were higher than for other PFASs 
(Kato et al.  2009a ; Strynar and Lindstrom  2008 ; Beesoon et al.  2013 ) indoor dust 
concentration data on Me-PFOSA-AcOH were also relatively high (Kato et al. 
 2009a ). 

 Unlike lipophilic persistent organic pollutants such as polychlorinated  biphenyls, 
PFASs bind to plasma proteins (Butenhoff et al.  2012 ; Wu et al.  2009 ; Han et al. 
 2003 ). However, PFASs have also been detected in human milk (Kubwabo et al. 
 2013 ; Karrman et al.  2007a ; Sundstrom et al.  2011 ; Barbarossa et al.  2013 ; Guerranti 
et al.  2013 ; Karrman and Lindstrom  2013 ; Croes et al.  2012 ; Fujii et al.  2012 ; Kadar 
et al.  2011 ; Karrman et al.  2010 ; Liu et al.  2010 ; Llorca et al.  2010 ; Nakata et al. 
 2009 ; von Ehrenstein et al.  2009 ; Tao et al.  2008 ; So et al.  2006 ; Lankova et al. 
 2013 ), albeit at concentrations approximately one order of magnitude lower than in 
serum. Therefore, breast milk can be a source of exposure to PFASs and nursing 
may reduce the PFASs body burden in lactating women (Pinney et al.  2014 ; 
Loccisano et al.  2013 ; Haug et al.  2011 ; Mondal et al.  2014 ).  

3.6     Conclusions 

 Diet, drinking water, and indoor dust are important sources of human exposure to 
PFASs; in utero and lactational exposure to PFASs are also relevant for certain 
 segments of the population. Comparing PFASs concentrations among populations 
is diffi cult because of differences in study design (e.g., age, sex, race of the popula-
tions examined), timing of sample collection, geographical location, and analytical 
methodologies used (e.g., isomeric profi les). Interestingly, the concentration ranges 
of the most commonly studied PFASs, PFOS and PFOA, are remarkably similar in 
people worldwide, although important differences may exist (e.g., accidental 
 exposures; developed vs developing countries). 

 Due to regulatory and voluntary efforts to reduce emissions of PFASs, human 
exposure to some of the PFASs appears to have decreased since the early 2000s. 
However, PFASs are still ubiquitously detected in people around the world. 
Concerns remain regarding the importance of past and present exposure sources on 
the human body burden of PFASs and on the potential adverse health effects of such 
exposures. Age; diet; route, frequency, and magnitude of exposure; potential 
 synergistic or antagonistic interactions among chemicals; and genetic factors, 
among others, are critical in determining health outcomes associated with exposure 
to PFASs and other environmental chemicals. 

 Biomonitoring efforts are important to facilitate the risk assessment of PFASs. 
Comprehensive biomonitoring programs, such as NHANES and CHMS, provide a 
reliable estimate of PFASs internal dose among the general population. In addition, 
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future research should continue to improve our understanding of (i) determinants of 
exposure to PFASs, (ii) PFASs toxicokinetics with emphasis on fetal and neonatal 
exposures, when susceptibility to potential adverse health effects of environmental 
chemicals may be highest, and (iii) specifi c populations with known source(s) of 
exposure to evaluate potential health effects as well as the effi cacy of intervention 
strategies to reduce exposures.     
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