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    Chapter 15   
 Artifi cial Intelligence and Pro-Social 
Behaviour 

             Joanna     J.     Bryson    

15.1             Introduction 

 Collective agency is not a discrete characteristic of a system, but rather a spectrum 
condition. Individuals composing a collective must invest some resources in 
maintaining themselves as well as some in maintaining the collective’s goals and 
structures. The question of how much to invest at which level of organisation is a 
complex one, for which there may be many viable solutions. For example, one 
might consider a married parent to be a member of three families—their parents’, 
their partners’ parents’, and the new one they have created with their partner; a 
citizen of a village, state and country; an employee of at least one organisation, in 
which they may also be members of either orthogonal or nested teams; and a mem-
ber of various other voluntary organisations. Some individuals will seek situations 
with more or fewer such memberships of collectives. Nevertheless, all of us con-
stantly make choices—not always explicit—about how much attention and effort to 
devote to infl uencing the behaviour of each collective of which we are members. 

 Artifi cial intelligence is ordinarily seen as something quite separate from all the 
complexity of human social arrangements (Gunkel  2012 ). We picture AI as also 
having agency, like a human, then generally dismiss this vision as not possible, or at 
least not present. Such dismissal of AI is a mistake.  Intelligent  is not a synonym for 
 human . Intelligence is just one attribute of humans, many other animals, and even 
plants (Trewavas  2005 ). In itself, intelligence does not determine personhood, nor is 
it suffi cient for moral subjectivity. It is neither necessary nor suffi cient for the auton-
omy that underlies moral agency. Mathematics is normally considered to require 
intelligence (Skemp  1961 ), yet calculators prove that arithmetic and geometry at 
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least can be conducted without a capacity for setting autonomous goals. Plants can 
autonomously pursue goals, and change their behaviour in response to their environ-
ment, but plants are not considered either moral patients deserving protection, 1  nor 
moral agents responsible for their actions. Therefore, artifi cial intelligence does not 
imply any sort of agency. Rather, like any other artefact, AI could be seen as an 
extension of human agency (Bryson and Kime  2011 ). 

 The purpose of this chapter is to examine how technology, particularly AI, is 
changing human collective behaviour and therefore both our collective and our indi-
vidual agency. My intention is to be primarily descriptive, but there is of course a 
normative subtext, which I will attempt to make as explicit as possible. This primar-
ily imposes on the fi nal section of the chapter, Sect.  15.5 , and results in some policy 
recommendations. This chapter’s principal normative motivation is that society 
should better understand itself, so that it can better choose goals for the regulation 
and governance of AI, privacy and personal data. This is because by using our data, 
AI can generate predictions of our behaviour, which increases the utility of and 
propensity for investment at the collective level. These increases can result in 
changes not only to our societies, but as a consequence to the experience and mean-
ing of being an individual. 

 In the following sections, I fi rst further describe intelligence and the current state 
of AI. Next I describe current scientifi c understanding concerning why humanity is 
in its unique situation of knowing and therefore having responsibility, and how this 
relates to our tendency for collective and pro-social action. I will then describe a 
series of scientifi c results, some from social simulations, demonstrating the ease 
with which pro-sociality can evolve, and which elucidate the limits to which we and 
other species can and should invest in the collective. Finally, I close by using the 
models from the earlier sections to project consequences of the advances in AI on 
human culture and human collectives. These predictions will be based simply on 
extending my description of intelligence and AI to the models of social investment 
and examining their consequences.  

15.2      Intelligence and the State of AI 

 To draw conclusions concerning the consequences of intelligence, we fi rst need to 
defi ne the term. For the purposes of this chapter, I will not attempt to capture its 
ordinary language meaning, but rather will introduce a simple, clear-cut computa-
tional defi nition of the term, which also relates to its characterisation in biology. 
Intelligence is capacity to

    1.    express an appropriate action,   
   2.    in real time, and   
   3.    in response to a perceived environment.     

1   Except where plants are seen as either a part of a broader ecosystem, or as a possession of a 
human. 
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 Each of these components must be explained in turn.  Expressing an action  is 
necessary for intelligence to be judged—we will not consider any ‘inner life’ that is 
not demonstrated through some action, though action may include communication. 
 Appropriate  implies some goal, so any intelligent system has some metric by which 
its performance is judged. For biological systems, this is generally something 
related to survival. 2  For AI, we the makers defi ne the goals. So for a calculator, it is 
suffi cient to respond to button presses without noticing weather events.  In real time 
 is not a theoretical requirement of intelligence, but rather indicates that I am limiting 
my consideration to what also might be called cognitive systems (Vernon et al. 
 2007 ). It means that the agent exists in a dynamic environment, and can express 
action quickly enough that that action is generally still appropriate. “Generally” 
because of course very intelligent systems occasionally have traffi c accidents—
intelligence is not all-or-nothing, but rather varies in extent. I include the real-time 
requirement to focus on competences that fi nd an appropriate action according to an 
agent’s own sensing. This is to discriminate from processes like evolution or other 
abstract mathematical algorithms which may contribute to intelligence but do not 
produce a direct action outcome. Finally,  in response to a perceived environment  
eliminates from consideration objects that act the same way at all times and just 
happen to sometimes be in an appropriate place and time when they do so. It also 
emphasises the importance of sensing to intelligence. Intelligence is judged by its 
actions as they relate to a context; the ability to perceive and discriminate contexts 
is therefore critical to intelligence. 

 Collective agency is not necessarily collective intelligence. Agency implies the 
capacity to be the author of environmental change. This change can be effected by 
a collective whether or not the authorship or motivation was achieved in a fully 
distributed way, as we might expect in collective intelligence (Williams Woolley 
et al.  2010 ). While intelligence originates change, that change can be effected by 
other agents that are not the original motivated entity. A captain may determine a 
team’s strategy, a gardener may determine which wall an ivy will cover. On the 
other hand, observable collective intelligence is necessarily a form of collective 
agency. A swarm of insects may choose a new hive location (Marshall et al.  2009 ); 
a company may sue for changes in law enforcement (Rosenbaum  2014 ). 

 An Internet search is a highly intelligent process, requiring enormous capacity 
for perception—the perceptual ability to categorise billions of web pages based on 
a context set by search terms, and the action competence to serve one of these bil-
lions to your screen. But the agent responsible for the act, and that (principally 3 ) 
benefi ts from that act is the human that requests the search. Here the expressed 
action of the individual user couldn’t have been achieved without intelligence 

2   The arguments in this chapter hinge on inclusive fi tness (Hamilton  1964 ; Gardner and West  2014 ) 
rather than individual survival, but I postpone that discussion here. It is appears in Sect.  15.3 . 
3   Search companies record information about searches and the response of users to the web pages 
served, so those companies are also intelligent and motivated agents that benefi t from the act of the 
search, but they do not originate it. 
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belonging to the corporation behind the search, but the motive force for the search 
is entirely individual. 

 A websearch is just one example of the AI-augmented individual capacities that 
have come to pervade twenty-fi rst century life. Others include processes on phones 
that facilitate our communication, scheduling and even picture taking; AI in our 
word processors that increases our capacity to effectively communicate by checking 
grammar and spelling; fi lters on email that detect spam; fi lters on credit card expen-
ditures that detect possible fraud; and fi lters on surveillance cameras that recognise 
faces, license-plate numbers, and even detect the emotions and intentions underly-
ing human voices and gestures (Valstar and Pantic  2012 ; Griffi n et al.  2013 ; Eyben 
et al.  2013 ; Kleinsmith and Bianchi-Berthouze  2013 ; Hofmann et al.  2014 ). 

 This intelligence enhances the agency of both individuals and corporations (see 
footnote 4) but has not produced a set of independent artifi cial actors competing 
with us for resources as imagined in science fi ction. This lack of immediate, appar-
ent, competitive threat, plus a heavy cultural investment in the privileges assumed to 
associate with human uniqueness, lead many to dismiss the possibility of AI, at the 
very time it is not only present but fundamentally changing our individual and social 
capacities. 

 AI has not yet caused signifi cant change to our direct mechanical capacity for 
action. In terms of physically altering the world, AI requires a robot. The most 
prominent robots today are mechanisations of machines we can also use without AI, 
such as vacuum cleaners, cars and other tele-operated vehicles. We are now capable 
of acting much faster and at a much greater distance than we could before, but this 
is primarily due to improvements in telecommunication which are largely (though 
not entirely) independent of AI. 

 The way in which current AI fundamentally alters humanity is by altering our 
capacity for perception—our ability to sense what is in the world. Part of this is also 
due to communication. For example, we can now see what is happening very far 
away very quickly. But much more than this, we can remember and recall identical 
or even similar situations to one we presently observe. Other apes can do that too, 
but with language and subsequently writing, humans have had a special advantage 
which is that we can recall situations and actions we have not directly experienced. 
The reason that we can exploit similar rather than just identical previous contexts 
for recall is because we store this knowledge in abstract models. Abstraction saves 
storage space, but even more importantly allows for generalisation to new situations 
(Bishop  2006 ). In the simplest case we can fi nd a ‘near neighbour’ context, treat the 
present one as the same, and expect similar outcomes (Lopez De Mantaras et al. 
 2005 ). Beyond this, we can use models to extrapolate to conditions we have not yet 
seen, so long as variation within the models tends to be continuous, and the new 
context does not differ extremely from our historical record. In such conditions we 
can generate novel variations on previous actions to meet the new conditions (Schaal 
and Atkeson  1998 ; Huang et al.  2013 ). 

 These processes are ordinarily referred to as machine learning. The reason I am 
describing them rather as perception is this: I want to emphasise that a great deal 
of intelligence is the problem of learning to recognise the categories of contexts in 
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which a particular action is appropriate. Or another way to think of this is that with 
enough experience and a well-structured model for storing and recalling that expe-
rience, we can use the past to recognise the present and therefore predict and 
address the future. 

 There are two reasons that AI is generating staggering increases in humanity’s 
available intelligence. First, the basic concepts of learning in general and machine 
learning in particular described above have been understood for decades (Hertz 
et al.  1991 ). In those decades our algorithms for building models have been steadily 
improving—the recently-trendy deep learning is just one of many fundamental 
improvements made over that time (Jacobs et al.  1991 ; McLachlan and Krishnan 
 2008 ; Hinton et al.  2006 ; Le Roux and Bengio  2008 ). Second, we have found ways 
to both acquire and store the data that makes up experience in digital format. Thus 
our models are better, bigger and over a vastly wider variety of human experience. 
For example, we no longer need to guess why and how people will vote or riot—
enough of them happily broadcast their intentions and concerns on the Internet. The 
important thing to understand is that our models have become suffi ciently good, that 
even where our data is biased, often we can compensate for that bias and still make 
accurate predictions (Beauchamp  2013 ; Wang et al.  2015 ; Rothschild et al.  2014 ).  

15.3       Cooperation and Collective Agency 

 Prosthetic intelligence affects our lives in innumerable ways, most notably simply 
by allowing us to make more informed decisions, whether by providing more 
immediate access to restaurant reviews, health care advice or the day’s weather 
forecast. But in this chapter, and in keeping with the rest of this book, I focus on an 
even more fundamental aspect of human behaviour—our propensity for coopera-
tion and information sharing, and how exponential rates of improvement in our AI 
may affect these. 

 The human propensity for cooperation is often seen as unique (Sober and Wilson 
 1998 ; Henrich et al.  2001 ). There is no denying that humans are extraordinary in a 
number of ways: the extent and variety of our built culture, our language and written 
histories, and our recent domination of the planet’s biomass (Haberl et al.  2007 ; 
Barnosky  2008 ). These indicators of uniqueness are not necessarily or even likely to 
be independent. For example, our propensity to share information might explain 
why we have accumulated the culture that allows us to dominate other species. 
Science considers the simplest viable explanation for any phenomena to be the most 
likely, so many researchers have been searching for a single-point explanation for 
human uniqueness. 

 Cooperation is however not at all unique to humans. Assuming only that we are 
talking about observed cooperative behaviour, not cooperative intent or forward 
planning, then cooperation is ubiquitous in nature. For the purpose of this chapter, I 
will defi ne cooperation as the expression of altruistic behaviour among a collection 
of individuals. For altruistic I use a standard defi nition: an action which at least 
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when executed is net costly to the actor, but provides net benefi t to another agent. 
Although standard (Gintis et al.  2005 ), this defi nition is not universally accepted. 
Some biologists (and philosophers) are only happy to label an action ‘altruistic’ if 
over the entire lifetime of the individual its expected net value is costly, a situation 
which never occurs in nature (cf. Sylwester et al.  2014 ). However, the current under-
standing and explanation of cooperation in fi elds like economics and biological 
anthropology is that cooperation consists of costly actions that produce a public 
good. Even if the actor or their relatives are likely to get a disproportionate amount 
of that good, the fact that it facilitates communal benefi ts makes it cooperative 
(Burkart et al.  2014 ; Silva and Mace  2014 ; Taylor  2014 ). These types of explana-
tions have been used to account for cooperation in nature—cooperation that often 
extends to one-way and even ultimate sacrifi ces by an individual agent for the col-
lective good (Ackermann et al.  2008 ; Ferguson-Gow et al.  2014 ; Carter et al.  2014 ; 
Hobaiter et al.  2014 ). 

 By this defi nition, we can see that even the ultimately ‘selfi sh’ genes in fact exist 
entirely in cooperative contexts, collaborating with their competitors to compose 
multi-gene organisms (Dawkins  1976 ,  1982 ). The level of agency we are used to 
reasoning about as individual, that is macroscopic animals and plants, are the vehi-
cles for hosts of competing replicators—genes, and arguably memes. 4  The vast 
majority of macroscopic life reproduces sexually, which is to say the individual 
agent is not replicated at all, but rather manages to replicate just (generally) half of 
its own genes in each of its offspring (Okasha  2012 ). However, these offspring are 
nearly always shared with another organism of the same species, and consequently 
necessarily share the vast majority of their replicators with both of their parents. 

 Cooperation between living individuals then is highly adaptive, 5  simply because 
copies of the same replicators that control the selection of the altruistic behaviour are 
very, very likely to reside in the individuals that receive the benefi t (Hamilton  1964 ; 
Gardner and West  2014 ). This explanation of altruism is currently known as inclusive 
fi tness, but has been mathematically related to the possibly more familiar concepts of 
kin selection and group selection (Gardner et al.  2011 ; Marshall  2011 ). To further 
complicate matters, social behaviour is in fact often controlled by replicators that are 
themselves socially communicated, whether in bacteria (Rankin et al.  2010 ), humans 
(Schroeder et al.  2014 ), or human institutions (Sytch and Tatarynowicz  2014 ). 6  What 
matters therefore is not overall relatedness, but a robust capacity of socialising 
behaviours to survive—presumably by replication—into the future. 

4   Memes are the hypothesised replicators for horizontal (non-genetic) transmission of behaviour. 
Like genes, they have yet to be precisely defi ned or measured (Mesoudi et al.  2004 ). It is also not 
yet clear the extent to which they change in frequency in accordance to Darwinian evolution 
(El Mouden et al.  2014 ). Nevertheless, memes are widely acknowledged as a useful abstraction for 
thinking about the transfer of traits expressed as behaviour between individuals by means other 
than biological reproduction. 
5   Adaptive in the biological sense of having been facilitating selection. The AI literature sometimes 
uses the term adaptive to mean plastic or mutable. 
6   Further, humans at least may choose to associate with those with similar gene structure even 
where they are not family members (Christakis and Fowler  2014 ). 
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 To return to the conundrum of human uniqueness, my own hypothesis is that 
human uniqueness results not from a single cause but from a unique conjunction, 
at least in terms of extent, of two relatively common traits—a reliance on cogni-
tion, culture, and memory, found also in the other great apes and probably other 
long- lived species (Whiten et al.  1999 ; McComb et al.  2001 ; Krützen et al.  2005 ; 
Perry and Manson  2003 ); and a capacity for vocal imitation, something no other 
ape (or monkey) exhibits, but that has evolved several times apparently indepen-
dently across a range of taxa 7  (Fitch  2000 ; Bispham  2006 ; Bryson  2008 ; Fitch and 
Zuberbühler  2013 ). Vocal imitation provides a communication medium suffi -
ciently rich to support the redundancy necessary for an unsupervised learning 
process like evolution to operate across our vocalisations (Bryson  2009 ). Evolution 
over primate vocalisations, where selection is on both utility and memorability, 
could produce the system of human language (as per Smith and Kirby  2008 ; Wray 
 1998 ; Wray and Grace  2007 ). Our ape characteristics—long lives and memories, 
and predisposition to use culturally-acquired behaviour—allowed us to accumu-
late suffi cient data to facilitate this process, and now allow the learning of com-
plex languages. 

 Thus no one invented language. Language evolved as a public good, and with it 
an accumulating catalogue of complex, useful concepts—far more than one indi-
vidual was otherwise likely to discover or invent for themselves (Dennett  2002 ). 
Language might be thought of as the fi rst AI—it is an artefact that massively extends 
our individual levels of intelligence. As I introduced earlier and will argue more 
forcefully in the fi nal section, taking our defi nition of AI to include the motivation-
less, locationless artefacts that are spoken and written language is a more useful and 
certainly less dangerous extreme than assuming something is not AI if it is not per-
fectly human-like. Regardless of whether you will accept language as AI, its intelli-
gence-enhancing properties have consequences for the extent of our cooperation, as 
I discuss in the next section. Language and culture also may have spectacular con-
sequences for human relatedness, as utilised in theoretical biology for computing 
the probability of altruistic acts due to inclusive fi tness. Language and the culture 
that it facilitates increase the proportion of our replicators that are shared horizon-
tally. This not only impacts the proportion of our relatedness, but also its plasticity, 
as humans can rapidly fi nd and communicate ideas that discriminate as well as unite 
(Krosch and Amodio  2014 ). 

 The fact that our relatedness depends on socially-communicated replicators has 
signifi cant ramifi cations for collective agency. Genes, individual animals, herds, 
families, villages, companies and religious denominations can all in some sense be 
said to be agents—they can all act in ways that effect change in the world. Many of 
these agencies are composed of others, and further at any level at which there can 
be seen to be action selection, there can also be seen to be evolutionary selection—
at least some reenforcement for decisions taken, and some competition with other 
actors for limited resources (Wilson  1989 ; Keller  1999 ). Every such point of selection 

7   The capacity to recognise novel sounds and to learn novel contexts to express sounds should not 
be confused with the capacity for vocal imitation (Bryson  2009 ; Fitch and Zuberbühler  2013 ). 
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an agent faces presents them with an action-selection conundrum: how much 
resource (including, for entities that have it, attention) should that collection of 
opportunities and threats be allocated?  

15.4      Factors Determining Investment in the Collective 

15.4.1      Problem Specifi cation and Methods 

 Before we can understand how AI may affect our identities and our societies, we 
need to form an understanding of how anything can affect these, and in what ways. 
In this section I address the question that both began this chapter and concluded the 
previous section: how do agents determine how much resource to devote to which 
level of the collectives in which they can have an effect? Because its answer hinges 
on perception and communication, this question will lead into the fi nal discussion 
of AI’s impact on our selves and our collectives. 

 Let us start by thinking about the problem in terms of a concrete case. An indi-
vidual is living with a large number of others on a collectivised farm. This farm has 
been set in competition with other farms, so that whichever farm performs the best 
will be allocated more resources such as water, seed and fertiliser by the state. 
Unfortunately, as is often the case in collectivised farming, the system is not very 
effi cient and not everyone is making enough money to have a family. Should our 
focal individual devote their time to raising their individual status within their own 
farm, so that their share of that farm’s product is increased? Or should they devote 
their time to ensuring their farm will be more productive, so that the farm receives 
more income to distribute? Either strategy might reward the individual with the 
desired level of income. Also, the strategies are not entirely mutually exclusive: 
some time could be allocated to either, and if the individual is talented at managing 
then perhaps both could be achieved with the same actions. 

 In general in biology, wherever we have tradeoffs like these we fi nd a diversity 
of solutions, with both different species and different individuals within species 
adopting different mixes of strategies (Darwin  1859 ). It is important to remember 
that while evolution is an optimising process, no species or individual is ever opti-
mal. This is for two reasons: both because the world constantly changes, altering the 
criteria of ‘optimum’; and because the number of possible strategies is inconceiv-
ably vast. The vast number of available strategies necessitates that any present solu-
tion is dependent not only on the optimising force of selection, but also on historical 
accidents that determined what available variation natural selection has been able to 
operate over. 8  

8   The vast numbers of possible strategies is produced by a process called combinatorial explosion, 
which I explain in more detail in Sect.  15.4.2 . The importance of having a varied set of available 
possible solutions in order for evolutionary selection to proceed is part of the ‘Fundamental 

J.J. Bryson



289

 Any such accident of variation may lead the locally-optimal strategy between 
two individuals to be different. For our farmer, the optimal decision for their strat-
egising may depend on contexts local to the farm, such as opportunities for pro-
motion based on the age of the management team, or might change by the year 
depending on the weather. In a good year, perhaps the best farms will be able to 
support a good standard of living for all employees, but in a drought it may be 
essential to be in the management tier. An individual farmer in a particular farm 
may have a better chance at promotion due to their charisma, or a better chance at 
a game-changing farming innovation due to their cleverness. The talents and posi-
tion of close friends or family among fellow employees could also determine the 
better strategy. 

 As the example above illustrates, we are unlikely to determine a single optimal 
level of investment in a particular collective agency for any individual. However, we 
can describe a set of factors which infl uence the utility of investment at different 
levels, and describe models of how these relate to each other. These models can 
inform us about what strategies are most likely to be chosen, and how these proba-
bilities might change when new technologies can be used to magnify or repress the 
impact of native characteristics. For example, if a new fertiliser is invented that 
allows all the farms to produce enough so every individual might be able to have a 
family, then this might eliminate the need to compete with other farms, and the 
farmer might best invest their time in ensuring equitable distribution within their 
own farm. 

 Factors contributing to individual versus group-level investment can be roughly 
decomposed into two categories:

    1.    Environmental: those factors exogenous to any of the agents’ replicators, such as 
the weather, or that most individuals have very little infl uence over, such as inter-
national policy on banking or the environment.   

   2.    Social: factors that infl uence how a collective can function, such as its capacity 
for communication, and the behavioural or genetic relatedness of its members 
(see discussion of inclusive fi tness, above).     

 There is good evidence that variation in environmental context can determine the 
utility and structure of a collective. For example, spiteful, anti-social behaviour 
seems to increase in regions with a low GDP (Herrmann et al.  2008a ) or scarce 
biomass (Prediger et al.  2013 ). Spite is the opposite of altruism—it is the willing-
ness to pay a cost in to infl ict a cost on others. This behaviour taken in isolation is 
necessarily maladaptive, as it hurts not only the individual but also another who 
almost certainly shares some measure of relatedness. It can only be accounted for if 
it covaries with some other attribute, for example if expressing spite increases social 
dominance and thus helps individuals in local competition (Rand et al.  2010 ; Powers 

theorem of evolution’ (Fisher  1930 ; Price  1972 ), and will be key in the fi nal section of this chapter, 
Sect.  15.5 . 
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et al.  2012 ). 9  These results imply that more cooperative behaviour occurs when 
resources are more prevalent, but doesn’t explain a mechanism. Perhaps the costs of 
a competitive strategy are less attractive when relative status is not essential to sur-
vival, or perhaps cooperation is a riskier strategy more often chosen when partici-
pants are better resourced. 

 The objective of this chapter however is to examine the impact of AI on collec-
tive agency. While AI certainly does and will continue to affect the workings of 
our fi nancial markets, our capacity to damage or protect the environment, and so 
forth; predicting the consequences of this impact requires an understanding of 
economics and politics beyond the scope of this chapter. Here I focus on what I’ve 
just termed the social aspects of investment in the collective. I review what is 
known about the ‘individual’ (animal- or vehicle-level) decision to invest in pub-
lic rather than private goods. Then in this chapter’s fi nal section, I examine how 
prosthetic intelligence might be expected to alter values in these equations to 
change our level of investment, and as a consequence, our identity. 

 Much of the evidence presented in this and the previous sections, including the 
papers just cited by Rand et al. ( 2010 ) and Powers et al. ( 2012 ), derives from formal 
models including social simulation. Given this chapter’s context in this volume—
where simulation has been presented by some (e.g. Arnold  2015 ) as somehow con-
troversial—I will briefl y revisit why and how simulations are now an accepted part 
of the scientifi c method. 

 The role of simulations in science has been at times confused, not only by occa-
sional bad practice (as with any method), but also by claims by some of the meth-
od’s innovators that simulations were a “third way” to do science (after induction 
and deduction, Axelrod  1997 ). However, more recently a consensus has been 
reached that simulation and modelling more generally are indeed a part of ordinary 
science (Dunbar  2002 ; Kokko  2007 ; Seth et al.  2012 ). The part that they are is the-
ory building. Every model is a theory—a very-well specifi ed theory. In the case of 
simulations, the models are theories expressed in so much detail that their conse-
quences can be checked by execution on a computer. Science requires two things: 
theories that explain the world, and data about the world which can be used to com-
pare and validate the theories. A simulation provides no data about the world, but it 
can provide a great deal of ‘data’ about a theory. First, the very process of construct-
ing a simulation can show that a theory is incoherent—internally contradictory, or 
incomplete, making no account for some part of the system intended to be explained 
(Axelrod  1997 ; Whitehouse et al.  2012 ). Secondly, modelling in general can show 
us a fuller range of consequences for a theory. This allows us to make specifi c, for-
mal hypotheses about processes too complex to entirely conceptualise inside a single 
human brain (Dunbar  2002 ; Kokko  2007 ). The wide-spread acceptance of simula-
tions as a part of the scientifi c method can be seen by their inclusion in the highest 
levels of academic publication, both in the leading general science journals and in 

9   There is decent evidence that association with dominance is indeed the ultimate evolutionary 
explanation for spiteful behaviour, see for a review Sylwester et al. ( 2013 ). 
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the fl agship journals for specifi c fi elds ranging from biology through political 
science. 

 Fortunately, a theory expressed formally as a simulation can also be expressed in 
the traditional, informal, ordinary-language way as well. This is the technique I use 
to describe the ‘outcomes’ (implications) of simulations throughout this chapter.  

15.4.2       Models of Social Investment 

 In order for evolution to direct individuals to invest at a collective level two condi-
tions need to hold. First, there needs to be some inclusive-fi tness advantage for the 
replicators involved in this ‘directing’ (cf. Sect.  15.3  above.) Second, this advantage 
has to be discoverable, and discovered. As mentioned in the fi rst part of this section, 
evolution optimises but never fi nds an optimum, partly because it cannot evaluate all 
possible candidates due to the infi nite size of the candidate pool. The size of this 
pool derives from the fact that candidate ‘solutions’ are composed of combinations 
of available features. The number of possible combinations is exponentially related 
to the number of features: it is the number of features per candidate ( f ) raised to the 
number of possible values for these features ( v ), or  f     v  . This problem of combinator-
ics affects all forms of directed plasticity—that is, any system capable of change 
which has an evaluation criterion. In the Computer Sciences, this problem is known 
as combinatorial explosion, and characterises both AI planning and (machine) 
learning. But the same problem characterises both evolution and cognition, and by 
‘cognition’ I also mean to include both learning and planning, where they are done 
by an individual over their or its lifetime. 

 To address the fi rst condition fi rst, inclusive-fi tness (IF) benefi t has proven a 
spectacularly complicated concept to reason about, although its fundamental verac-
ity has been demonstrated time and again in both simulation and empirical data 
(Gardner and West,  2014 , for a recent special issue). What makes IF diffi cult is not 
only the confound of memetic as well as genetic replicators, but also the problem of 
net benefi t. We share genes with all life, nevertheless predation—and grazing—
evolve (Folse and Roughgarden  2012 ; Ledgard  2001 ). We tend to favour those with 
whom we share more relatedness, yet our survival also depends on the stability of 
the ecosystem to which we are adapted. Still, since the focus of this chapter is on the 
impact of AI, I will neglect the Gaia-style analysis of ecosystemic agency (see 
instead Margulis and Hinkle  1997 ) and focus primarily on collectives consisting of 
a single species. Even here, IF leads to wildly counterintuitive effects, such as that 
promiscuity in socially-monogamous animals can lead natural selection to favour 
strategies that benefi t the public good, such as mutual defence and confl ict resolu-
tion (Eliassen and Jørgensen  2014 ). 

 Within species, families, or even swarms of clonal microbia, understanding IF 
requires consideration of the net benefi t of collaboration. The costs of cooperation 
are not limited to the costs of the altruistic act, but also include the costs of cohabit-
ing with close genetic relatives. These cohabitation costs include competition for 
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resources ranging from food to shelter to mates, and increased exposure to biologi-
cal threats such as disease and predation which will specialise to a particular spe-
cies, immune system, and locale. In large animals the advantages of communal 
living have long puzzled biologists, with avoidance of predation via ‘cover seeking’ 
with a mob being a key hypothesis (Hamilton  1971 ). However this relationship is 
also not simple. Large populations also serve to attract predation and sustain disease 
(e.g. Bischof et al.  2014 ; Bate and Hilker  2013 ), though smaller group size does 
seem to increase predation risk (Shultz and Finlayson  2010 ). Recently in the mega-
fauna literature there has been a new hypothesis: individuals in populations might 
benefi t from information transmission, of which vigilance against predators is just a 
special case (Crockford et al.  2012 ; Chivers and Ferrari  2014 ; Hogan and Laskowski 
 2013 ; Derex et al.  2013 ). Transmission of behaviour may be at least as important as 
information about localised threats (Jaeggi et al.  2008 ; Dimitriu et al.  2014 ). Note 
that behaviour itself, when transmitted horizontally (that is, not by genes to off-
spring), must be transmitted as information via perception (Shannon  2001 ). But 
information is just one example of public goods held by non-human species. Others 
include territory (including food, shelter and even mating resources, Preuschoft and 
van Schaik  2000 ; Dunbar et al.  2009 ), physical shelters, even digestive enzymes 
(MacLean et al.  2010 ). Much of this cooperative production is performed by micro-
bia, where in contrast to megafauna, genetic instructions for cooperative behaviour 
can be exchanged horizontally—even across species—and injected into the cellular 
organism to change a local population’s behaviour (Rankin et al.  2010 ; Dimitriu 
et al.  2014 ). 

 Cooperation requires not only that the species affords some sort of cooperative 
behaviour (e.g. the genetic coding for collaboratively building a hive), but also the 
capacity to detect when it is a good time to invest in such an activity, and further 
who is or are the best partners with which to engage. This last is of particular inter-
est, because we know that a variety of species appear to shift between cooperative 
phases of behaviour. Generalised reciprocity, fi rst observed in Norwegian rats, is an 
increase in expression of altruistic behaviour that follows the observation of others 
engaged in cooperative acts (van Doorn and Taborsky  2012 ; Gray et al.  2015 ). This 
sort of behavioural fl exibility might be thought useful for facilitating the spread of 
cooperation, since it allows potential cooperators to suppress cooperative behaviour 
in the presence of free riders that might exploit them. However such an interpreta-
tion may be biased. A better model might be more neutral, like our interpretation of 
the phase changes in collective behaviour exhibited by slime mould as an adaptation 
to localised environmental stress (Keller and Segel  1970 ; Leimgruber et al.  2014 ). 

 MacLean et al. ( 2010 ) have openly challenged the idea that cooperative behav-
iour (the creation of public goods) is always something to be maximised. They 
provide a case study of the production of digestive enzymes by the more altruistic 
of two isogenic yeast strains. The yeast must excrete these enzymes outside of their 
bodies (cell walls) as they can only directly absorb pre-digested food. The produc-
tion of these enzymes is costly, requiring diffi cult-to-construct proteins, and the 
production of pre-digested food is benefi cial not only to the excreting yeast but also 
to any other yeast in its vicinity. 
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 In the case of single-cell organisms there is no choice as to whether to be free- 
riding or pro-social—this is determined genetically by their strain. But the two strat-
egies are accessible to each other via a relatively common mutation. Natural 
selection performs the action selection for a yeast collective by determining what 
proportion of each strategy lives or dies. MacLean et al. ( 2010 ) demonstrate with 
both empirical experiments and models that selection operates such that the species 
as a whole benefi ts optimally. The altruistic strain in fact overproduces the public 
good (the digestive enzymes) at a level that would be wasteful if it were the only 
strategy pursued, while the free-riding strain underproduces. Where there are insuf-
fi cient altruists free-riders starve, allowing altruists to invade. Where there are too 
few free-riders excess food accumulates, allowing free-riders to invade. Thus the 
greatest good—the most effi cient exploitation of the available resources—is 
achieved by the species through a mixture of over-enthusiastic altruism and free 
riding. Why doesn’t evolution just optimise the species as a whole to produce the 
optimal level of enzyme? Because the temporal cost (delay) associated with a single 
genome discovering a particular production level is greater than the temporal stabil-
ity of that optimal value, which is of course determined by the dynamics of the 
ecosystem. In contrast, death and birth can be exceedingly rapid in microbia. A 
mixed population composed of multiple strategies, where the high and low produc-
ers will always over and under produce (respectively) and their proportions can be 
changed very rapidly is thus the best strategy for tracking the rate of environmental 
change—for rapidly responding to variation in opportunity. 

 Bryson et al. ( 2014 ) recently proposed that a similar dynamic may explain cul-
tural variation in the extent of apparently anti-social, spiteful behaviour. This varia-
tion was originally observed by Herrmann et al. ( 2008a ), but not explained. In the 
context of an anonymous economic game played in laboratories, 10  some proportion 
of nearly every population studied chose to punish (to pay a cost to penalise) altru-
ists who were acting in a way that benefi ted the punishers. This sort of behaviour, 

10   These were public goods games (PGG). Participants were separated by partitions and were 
unable to directly interact with or identify other group members. They played games in groups of 
four, with each participant able to either keep all of the endowment received from the experimenter 
(20 experimental currency units; ECU) or contribute some portion of the endowment to the public 
good. At the end of a round, all contributions were combined and the sum multiplied by 1.6. The 
obtained amount was divided evenly amongst all of the group members, regardless of their contri-
bution. The payoff of each participant was calculated by summing up the amount kept and the 
amount received from the public good. Ten rounds were played as described above, and also ten 
rounds with the addition of punishment: participants after seeing the contributions of other players 
to the pubic good and could decide how much they wished to spend on reducing the payoff to other 
players. Participants could spend up to 10 ECU punishing the other players. Each ECU spent on 
sanctioning resulted in 3 ECU being deducted from the payoff to the targeted individual. A partici-
pant’s payoff was calculated by subtracting the amount of ECU spent on sanctioning and the 
deduction points received from other players from the payoff from the PGG. Received deductions 
were capped so as not to exceed PGG earnings. Participants did not receive information about who 
deducted points from their payoff, making punishment anonymous. At the end of the experiment, 
participants received real money in the local currency in exchange for the total ECU accumulated 
across all rounds. See further Sylwester et al. ( 2014 ); Herrmann et al. ( 2008b ). 
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termed anti-social punishment (ASP), cannot be accounted for directly in evolution-
ary models, but must give some indirect benefi t (as mentioned earlier, Sect.  15.4.1 ). 
Herrmann et al. ( 2008a ) discovered that the propensity for ASP correlates with the 
gross domestic product (GDP) of the country where the experiments were con-
ducted, and also with its rule of law as measured by the World Values Survey 
(Inglehart et al.  2004 ). Using the Herrmann et al data set, Sylwester et al. ( 2014 ) 
discovered that ASP results in a signifi cant increase in variation in the level of 
investment in public goods, but not in any particular direction. In contrast, altruistic 
punishment (of free riders) produces a measurable increase in investment, while 
those receiving no punishment tend not to change their level of investment over 
repeated rounds of playing the game. This result is particularly striking because of 
the anonymous nature of the game—because individuals did not know who pun-
ished them, they could not tell whether they were being punished by those giving 
more or less than themselves. 11  Nevertheless, humans seem to be well-equipped to 
assess social context. We hypothesise that altruistic punishment is more likely to be 
coordinated, and coordinated punishment is taken as an indication of ingroup iden-
tity, signalling the construction of a collective, and this is what results in the 
increased investment. ASP in contrast signals a confl ict over social status, which 
results in more varied behaviour, and therefore a greater potential rate of change for 
the society (Fisher  1930 ; Price  1972 ). 

 This series of hypothesised mechanisms for adjusting investment in different 
levels of agency is key to the purpose of this chapter—to consider how AI changes 
human collective agency. There are two points at which AI fundamentally changes 
our social capacities: detecting appropriate contexts for expressing cooperative 
behaviours an agent already knows, and the discovery or innovation of new coop-
erative behaviours with or without the contexts for their expression. Both of these 
points benefi t by improved communication and superior perception. 

 Choosing appropriate partners is a particularly important part of detecting con-
texts for behaviour. Cooperative behaviour is most sustainable when the benefi t 
received from the agent’s cost will be high, and when there is similarly high benefi t 
for low cost likely to be produced by the agent’s collaborator(s). Thus where pos-
sible, cooperation often takes place in the context of a relationship where both the 
needs of the other and the likelihood of their reciprocation can be judged. Zahavi 
( 1977 ) hypothesises that the time one agent spends with another is an honest signal 
of the value the fi rst agent places on that relationship. Perry ( 2011 ) has used this 
bond-testing hypothesis to explain strange dysphoric games played amongst capu-
chins—monkeys well-known for both their intelligence and their aggressive coali-
tion behaviour where coalitions are not necessarily formed with close relatives. 
Atkinson and Whitehouse ( 2011 ) suggest that time spent in mutual dysphoric situ-
ations underlies human religion, which serves the purpose of assuring human bond-
ing across groups that require mutual support. Taylor ( 2014 ) has recently extended 
the bond-testing model, drawing attention to the fact that many human societies 

11   Those who gave the most or the least to the group could assess the nature of the punishment they 
received, but our results held even when these were excluded (Sylwester et al.  2014 ). 
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require temporally-expensive displays of investment in the lives of others with 
whom a family may have long-term economic relations, thus guaranteeing each 
other assistance in times of hardship. The time-costly displays (for example, con-
structing elaborate gifts) guarantee that a family is not making many shallow invest-
ments, but rather has only a few deeply-committed relationships. 

 In a more general and less specifi cally-human model than Taylor’s, Roughgarden 
et al. ( 2006 ) propose that an explanation for physical intimacy (beyond what is nec-
essary for procreation) may be that intimacy is a means of increased communication 
of physical status between potential coalition partners, allowing for the discovery of 
mutually-advantageous equilibria with respect to the extent of cooperative invest-
ment. The suggestion is that this intimacy goes beyond mere partner choice and 
timing to fi nding suffi cient information about potential shared goals to afford new 
cooperative activities (Roughgarden  2012 ). Consider the implications of these 
results on the earlier discussion of human exceptionalism. Language has made 
humans the most extraordinary communicators in nature, and writing and AI have 
accelerated these effects. But our exceptional communication is not limited to delib-
erate or linguistic mechanisms—for an ape, even the amount of our communication 
by scent is exceptional (Stoddart  1990 ; Roberts and Havlicek  2011 ). This could 
well explain the exceptional extent of our cooperation. 

 To summarise, these models show that there will always be a tradeoff between 
investment in the individual and the collective. Individuals (at least some of them) 
must be sustained for the collective to exist, so investment can never go to the 
extreme of being fully collective. However there are a large number of situations in 
nature that are not zero sum—where altruism can evolve because the cost to the 
individual is lower than the benefi t produced multiplied by the number of individu-
als helped, divided by their relatedness to the altruistic individual (Hamilton  1964 ). 
This idea of ‘relatedness’ is tricky though—it really depends only on how related 
the individuals are in whatever trait generates their social behaviour. Social behav-
iour may itself be transmitted socially, even in microbia (Rankin et al.  2010 ). Also, 
relatedness is judged based on the pool of others with which the individual com-
petes. So if competition is imposed on a large scale such as when a government 
forces collective farms to compete between each other, two individuals in the same 
farm may seem more related than when a drought sets in and the members of the 
farm are set to competing with each other for survival (Lamba and Mace  2011 ; 
Powers et al.  2011 ). 

 We have also seen that investment strategies may vary within a population to the 
benefi t of that population overall; provided that the various strategies are accessible 
to each other, again either by genetic or social transmission of the strategies. We 
have seen that selecting appropriate partners can increase the benefi t-to-cost ratio, 
and thus support investing more heavily in cooperative, collective strategies. This 
selection is dependent on being able to perceive the needs and abilities of others. 
What would be the outcome for cooperative behaviour if we could exactly know the 
needs and interests—and predict the future behaviour—of our neighbours?   
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15.5       The Impact of AI on Human Cooperation and Culture 

 My main objective in this chapter is this: to convince you that AI is already present 
and constantly, radically improving; and that the threats and promises that AI brings 
with it are not the threats and promises media and culture have focussed on, of moti-
vated AI or superintelligence that of themselves starts competing with humans for 
resources. Rather, AI is changing what collective agencies like governments, corpo-
rations and neighbourhoods can do. Perhaps even more insidiously, new affordances 
of knowledge and communication also change what even we as individuals are 
inclined to do, what we largely-unconsciously think is worth our while. ‘Insidious’ 
is not quite the right word here, because some of these effects will be positive, as 
when communities organise to be safer and more robust. But the fact that our behav-
iour can radically change without a shift in either explicit or implicit motivations—
with no deliberate decision to refocus—seems insidious, and may well be having 
negative effects already. 

 As I indicated in Sect.  15.2 , we are already in the process of fi nding out what 
happens when our ability to read and predict the behaviour of our fellows constantly 
improves, because this is the new situation in which we fi nd ourselves, thanks to our 
prosthetic intelligence. Assuming the output of commercial AI remains available 
and accessible in price, then the models of the previous section tell us we should 
expect to fi nd ourselves more and more operating at and infl uenced by the level of 
the collective. Remember that this is not a simple recipe for world-wide peace. 
There are many potential collectives, which compete for resources including our 
time. Also and it is possible to over-invest in many, perhaps most public goods. The 
models of Roughgarden and Taylor describe not systems of maximal cooperation, 
but rather systems of maximising individual benefi t from cooperation. There are 
still physical and temporal limits to the number of people with whom we can best 
collaborate for many human goals (Dunbar  1992 ; Dunbar et al.  2009 ). We might 
nevertheless expect that our improved capacity to communicate and perceive can 
help us to achieve levels of cooperation not previously possible for threats and 
opportunities that truly operate at a species level, for example response to climate 
change or a new pandemic. 

 Our hopes should be balanced and informed though also by our fears. One con-
cern is that being suddenly offered new capacities may cause us to misappropriate 
our individual investments of time and attention. This is because our capacity for 
cooperative behaviour is not entirely based on our deliberating intelligence or our 
individual capacity for plasticity and change. Learning, reasoning and evolution 
itself are facilitated by the hard-coding of useful strategies into our genetic reper-
toire (Depew  2003 ; Rolian  2014 ; Kitano  2004 ). For humans, experience is also 
compiled into our unconscious skills and expectations. These are mechanisms that 
evolution has found help us address the problems of combinatorics (see the fi rst 
paragraph of Sect.  15.4.2 ). But these same solutions leave us vulnerable for certain 
pathologies. For example, a  supernormal stimulus  is a stimulus better able to trigger 
a behaviour than any that occurred in the contexts in which the paired association 
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between stimulus and response was learned or evolved (Tinbergen and Perdeck 
 1950 ; Staddon  1975 ). Supernormal stimuli can result from the situation where, 
while the behaviour was being acquired, there was no context in which to evolve or 
learn a bound for the expression of that behaviour, so no limits were learned. The 
term was invented by Tinbergen to describe the behaviour of gull chicks, who would 
ordinarily peck the red dot on their parent’s bill to be fed, but preferred the largest, 
reddest head they could fi nd over their actual parents’. Natural selection limits the 
amount of red an adult gull would ever display, but not the types of artefacts an 
experimental scientist might create. Similarly, if a human drive for social stimula-
tion (for example) is better met by computer games than real people, then humans 
in a gaming context might become increasingly isolated and have a reduced possi-
bility to meet potential mates. The successful use of search engines—quick access 
to useful information—apparently causes a reduction in actual personal memory 
storage (Ward  2013 ). This effect may be mediated by the successful searcher’s 
increased estimation of cognitive self worth. Though Ward describes this new 
assessment as aberrant, it may in fact be justifi ed if Internet access is a reliable 
context. 

 The social consequences of most technology-induced supernormal stimuli will 
presumably be relatively transient. Humans are learning machines—our conscious 
attention, one-shot learning, and fantastic communicative abilities are very likely to 
spread better-adapted behaviour soon after any such benign exploitation is stumbled 
over. What may be more permanent is any shift between levels of agency in power, 
action, and even thought as a consequence of the new information landscape. The 
increased transparency of other people’s lives gives those in control more control, 
whether those are parents, communities or school-yard bullies. But control in this 
context is a tricky concept, linked also with responsibility. We may fi nd ourselves 
losing individual opportunities for decision making, as the agency of our collectives 
become stronger, and their norms therefore more tightly enforced. 

 The dystopian scenarios this loss of individual-level agency might predict are not 
limited to ones of governmental excess. Currently in British and American society, 
children (including teenagers) are under unprecedented levels of chaperoning and 
‘protection’. Parents who ‘neglect’ their children by failing to police them for even 
a few minutes can be and are being arrested (Brooks  2014 ). Lee et al. ( 2010  special 
issue) document and discuss the massive increase over the last two decades in the 
variety as well as duration of tasks that are currently considered to be parenting. Lee 
et al suggest that what has changed is risk sensitivity, with every child rather than 
only exceptional ones now being perceive as ‘at-risk’, by both parents and authori-
ties. This may not be because of increased behavioural transparency afforded by 
technology and AI. Another possible explanation is simply the increased value of 
every human life due to economic growth (Pinker  2012 ). But what I propose here is 
that the change is not so much in belief about the possibility of danger, as the actual-
ity of afforded control. Social policing is becoming easier and easier, so we need 
only to assume a fi xed level of motivation for such policing to expect the amount of 
actual policing to increase. 
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 Another form of AI-mediated social change that we can already observe is the 
propensity of commercial and government organisations to get their customers or 
users to replace their own employees. The training, vetting and supervision that 
previously had to be given to an employee can now be mostly encoded in a 
machine—and the rest transferred to the users—via the use of automated kiosks. 
While the machines we use to check out our groceries, retrieve our boarding cards 
and baggage tags, or purchase post offi ce services may not seem particularly intel-
ligent, their perceptual skills and capacities for interaction are more powerful and 
fl exible than the older systems that needed to be operated by experts. Of course, 
they are still not trivial to use, but the general population is becoming suffi ciently 
expert in their use to facilitate their replacement of human employees. And in 
acquiring this expertise, we are again becoming more homogenous in our skill sets, 
and in the way we spend that part of our time. 

 With AI public video surveillance our motions, gestures, and whereabouts can be 
tracked; with speech recognition our telephone and video conversations can be tran-
scribed. The fact some of us but not others spew information on social media will 
rapidly be largely irrelevant. As better and better models are built relating any form 
of personal expression (including purchases, travel, and communication partners) to 
expected behaviour (including purchases, votes, demonstrations, and donations), 
less and less information about any one person will be needed to predict their likely 
behaviour (Jacobs et al.  1991 ; McLachlan and Krishnan  2008 ; Hinton et al.  2006 ; 
Le Roux and Bengio  2008 ). 

 Although I’ve been discussing the likely homogenising impact of increased AI 
and increased collective-level agency, collective agency is not necessarily egalitar-
ian or even democratic. Again we can see this in nature and our models of the 
behaviours of animals very similar to us. In non-human primates, troops are 
described as either ‘egalitarian’, where any troop member can protest treatment by 
any other, and confl ict is frequent but not violent; or as ‘despotic’, where interaction 
is limited by the dominance hierarchy, aggression is unilateral from dominant to 
subordinate, and fi ghts while few are bloody (Thierry  2007 ). Which structure a spe-
cies uses is partially determined by historic accident (phylogeny, Shultz et al.  2011 ), 
but also signifi cantly by the species’ ecology. If a species’ preferred food source is 
defensible (e.g. fruit rather than insects) then a species will be more hierarchical, as 
it will under the pressure for safer spatial positions produced by the presence of 
predators (Sterck et al.  1997 ). The choice between social orders is not made by the 
individual monkeys, but by the dynamics of their ecological context. 

 Similarly, we cannot say exactly the power dynamics we expect to see as a con-
sequence of increasing agency at collective, social levels. However a worrying pre-
diction might be drawn from Rawls ( 1980 ), whose theory mandates that a ‘veil of 
ignorance’ is necessary to ensure ethical governance. Those in power should be 
under the impression that any law they make might apply to any citizen, including 
themselves. Can such ignorance be maintained in an age of prosthetic intelligence? 
If not, if those in power can better know the likely social position of themselves and 
their children or even the likely outcome of elections (Wang et al.  2015 ), how will 
this affect our institutions? As uncertainty is reduced, can we ensure that those in 
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power will optimise for the global good, or will they be more motivated—and 
able—to maintain control? 

 The answers to these questions are not deterministic. The models presented in 
Sect.  15.4  make ranges of predictions based on interactions between variables, all 
of which can change. Our future will be infl uenced by the institutions and regula-
tions we construct now, because these determine how easy it is to transition from 
one context into another, just as available variation partially determines evolution by 
determining what natural selection can select between (see footnote 9). Although 
many futures may be theoretically achievable, in practice the institutions we put in 
place now determine which futures are more likely, and how soon these might be 
attained. 

 Humans and human society have so far proved exceptionally resilient, presum-
ably because of our individual, collective and prosthetic intelligence. But what we 
know about social behaviour indicates signifi cant policy priorities. If we want to 
maintain fl exibility, we should maintain variation in our populations. If we want to 
maintain variation and independence in individual citizens’ behaviour, then we 
should protect their privacy and even anonymity. Previously, most people were 
anonymous due to obscurity. In its most basic form as absolute inaccessibility of 
information, obscurity may never occur again (Hartzog and Stutzman  2013 ). But 
previously, people defended their homes with their own swords, walls and dogs. 
Governments and other organisations and individuals are fully capable of invading 
our homes and taking our property, but this is a relatively rare occurrence because 
of the rule of law. Legal mandates of anonymity on stored data won’t make it impos-
sible to build the general models that can be used to predict the behaviour of indi-
viduals. But if we make this sort of behaviour illegal with suffi ciently strong 
sanctions, then we can reduce the extent to which organisations violate that law, or 
at least limit their proclivity for publicly admitting (e.g. by acting on the informa-
tion) that they have done so. If people have less reason to fear exposure of their 
actions, this should reduce the inhibitory impact on individuals’ behaviour of our 
improved intelligence. 

 Already both American and European courts are showing signs of recognising 
that current legal norms have been built around assumptions of obscurity, and that 
these may need to be protected (Selinger and Hartzog  2014 ). Court decisions may 
not be a substitute though for both legislation and the technology to make these 
choices realistically available. Legislating will not be easy. In Europe there has been 
concern that the de facto mechanism of access to the public record has been removed 
as search engines have been forced not to associate newspaper articles with indi-
viduals’ names when those individuals have asked to be disassociated from inci-
dents which are entirely in the past (Powles  2014 ). As we do come to rely on our 
prosthetic intelligence and to consider those of our memories externalised to the 
Internet to be our own, such cases of who owns access to which information will 
become increasingly complex (Gürses  2010 ). 

 The evolution of language has allowed us all to know the concept of responsibil-
ity. Now we are moral agents—not only actors, but authors responsible for our 
creations. As philosophers and scientists we have also professional obligations with 
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respect to considering and communicating the impacts of technology to our culture 
(Wittkower et al.  2013 ). AI can help us understand the rapid changes and ecological 
dominance our species is experiencing. Yet that same understanding could well 
mean that the rate of change will continue to accelerate. We need to be able to rap-
idly create, negotiate and communicate coherent models of our dynamic societies 
and their priorities, to help these societies establish a sustainable future. I have 
argued that the nature of our agency may fundamentally change as we gain new 
insights through our prosthetic intelligence, resulting in new equilibria between col-
lective versus individual agency. I’ve also described scientifi c models showing how 
these equilibria are established, and the importance of individual variation to a 
robust, resilient, mutable society. I therefore recommend that we encourage both 
legislatures and individual citizens to take steps to maintain privacy and defend both 
group and individual eccentricity. Further, I recommend we all take both personal 
and academic interest in our governance, so that we can help ensure the desirability 
of the collectives we contribute to.     
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