
Jelena Mirkovic
Yong Liu (Eds.)

 123

LN
CS

 8
99

5

16th International Conference, PAM 2015
New York, NY, USA, March 19–20, 2015
Proceedings

Passive and Active
Measurement

Lecture Notes in Computer Science 8995

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Jelena Mirkovic • Yong Liu (Eds.)

Passive and Active
Measurement
16th International Conference, PAM 2015
New York, NY, USA, March 19–20, 2015
Proceedings

123

Editors
Jelena Mirkovic
Information Sciences Institute
University of Southern California
Marina Del Rey, CA
USA

Yong Liu
New York University
New York, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-15508-1 ISBN 978-3-319-15509-8 (eBook)
DOI 10.1007/978-3-319-15509-8

Library of Congress Control Number: 2015931068

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

We are excited to welcome you to the Passive and Active Measurement Conference
(PAM) 2015 in New York, NY, USA. PAM seeks to bring together the network
research and operations communities, to consider network measurement and analysis
techniques, particularly those in the earlier stages of research.

PAM’s focus is on research and practical applications of network measurement,
measurement of networked applications, content distribution networks, online social
networks, overlay networks, and more. Measurement technology is needed at all layers
of the stack: for power profiling of hardware components; at the MAC/network/
transport layers; as well as up the stack for application profiling and even to collect user
feedback. Measurement technologies are being designed for the digital home, resi-
dential access networks, wireless and mobile access, enterprise, ISP, and data center
networks.

PAM encourages a broad range of submissions across these recently important
topics. We aim to understand the role that measurement techniques can play in net-
worked environments and applications, across different layers, and how they can serve
as critical building blocks for broader measurement needs. At the same time, PAM also
continues with its original goal, to expand the techniques, tools, and practical uses of
network measurement technology.

Submission Statistics

This year, PAM has received 100 submissions. Each submission was reviewed by at
least three reviewers, judging its technical content, intellectual merit, and clarity of
writing. After the initial review process, the reviewers discussed all submissions until
they reached consensus to accept or reject. There were 27 accepted papers.

March 2015 Jelena Mirkovic
Yong Liu

Organization

PAM 2015 was organized and supported by the following committees.

Conference Organizers

Yong Liu (General Chair) New York University, USA
Jelena Mirkovic

(Program Chair)
University of Southern California/Information

Sciences Institute, USA
Anyi Wang (Publicity Chair) New York University, USA

Steering Committee

Nevil Brownlee University of Auckland, New Zealand
Rocky K.C. Chang Hong Kong Polytechnic University, Hong Kong
Michalis Faloutsos University of New Mexico, USA
Aleksandar Kuzmanovic Northwestern University, USA
Fabio Ricciato University of Salento, Italy
Matthew Roughan University of Adelaide, Australia
Nina Taft Google, USA

Program Committee

Emile Aben RIPE NCC, The Netherlands
Pere Barlet-Ros UPC BarcelonaTech/Talaia Networks, Spain
Genevieve Bartlett University of Southern California/Information

Sciences Institute, USA
Robert Beverly Naval Postgraduate School, USA
Rocky K.C. Chang Hong Kong Polytechnic University, Hong Kong
Italo Cunha Universidade Federal de Minas Gerais, Brazil
Alberto Dainotti CAIDA, University of California, San Diego, USA
Alessandro D'Alconzo Forschungszentrum Telekommunikation Wien,

Austria
Xenofontas Dimitropoulos FORTH, Greece and ETH Zurich, Switzerland
Kensuke Fukuda National Institute of Informatics, Japan
Dongsu Han KAIST, Korea
Gentian Jakllari University of Toulouse, France
Thomas Karagiannakis MSR, UK
Ethan Katz-Bassett University of Southern California, USA
Amir Khakpour Verizon EdgeCast, USA
Youngseok Lee Chungnam National University, Korea
Richard Nelson The University of Waikato, New Zealand
Maria Papadopouli University of Crete and FORTH, Greece
Gyan Ranjan Narus, Inc. USA

Dario Rossi Télécom ParisTech, France
Subhabrata Sen AT&T Labs Research, USA
Affan Syed FAST-NU, Pakistan
Xuetao Wei University of Cincinnati, USA
Udi Weinsberg Facebook, USA

VIII Organization

Contents

DNS and Routing

�Open Resolvers: Understanding the Origins of Anomalous Open DNS
Resolvers . 3

Andrew J. Kaizer and Minaxi Gupta

Characterizing Optimal DNS Amplification Attacks and Effective Mitigation . . . 15
Douglas C. MacFarland, Craig A. Shue, and Andrew J. Kalafut

Measuring BGP Route Origin Registration and Validation 28
Daniele Iamartino, Cristel Pelsser, and Randy Bush

On the Diversity of Interdomain Routing in Africa 41
Rodérick Fanou, Pierre Francois, and Emile Aben

Mobile and Cellular

AppPrint: Automatic Fingerprinting of Mobile Applications
in Network Traffic . 57

Stanislav Miskovic, Gene Moo Lee, Yong Liao, and Mario Baldi

Uncovering the Footprints of Malicious Traffic in Cellular Data Networks . . . 70
Arun Raghuramu, Hui Zang, and Chen-Nee Chuah

Characterizing Instant Messaging Apps on Smartphones 83
Li Zhang, Chao Xu, Parth H. Pathak, and Prasant Mohapatra

Do Mobile Data Plans Affect Usage? Results from a Pricing Trial
with ISP Customers. 96

Carlee Joe-Wong, Sangtae Ha, Soumya Sen, and Mung Chiang

IPv6

IPv6 AS Relationships, Cliques, and Congruence . 111
Vasileios Giotsas, Matthew Luckie, Bradley Huffaker, and Kc Claffy

Measuring and Characterizing IPv6 Router Availability 123
Robert Beverly, Matthew Luckie, Lorenza Mosley, and Kc Claffy

UAv6: Alias Resolution in IPv6 Using Unused Addresses 136
Ramakrishna Padmanabhan, Zhihao Li, Dave Levin, and Neil Spring

http://dx.doi.org/10.1007/978-3-319-15509-8_1
http://dx.doi.org/10.1007/978-3-319-15509-8_1
http://dx.doi.org/10.1007/978-3-319-15509-8_2
http://dx.doi.org/10.1007/978-3-319-15509-8_3
http://dx.doi.org/10.1007/978-3-319-15509-8_4
http://dx.doi.org/10.1007/978-3-319-15509-8_5
http://dx.doi.org/10.1007/978-3-319-15509-8_5
http://dx.doi.org/10.1007/978-3-319-15509-8_6
http://dx.doi.org/10.1007/978-3-319-15509-8_7
http://dx.doi.org/10.1007/978-3-319-15509-8_8
http://dx.doi.org/10.1007/978-3-319-15509-8_8
http://dx.doi.org/10.1007/978-3-319-15509-8_9
http://dx.doi.org/10.1007/978-3-319-15509-8_10
http://dx.doi.org/10.1007/978-3-319-15509-8_11

Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure Via Active
Fingerprinting . 149

Robert Beverly and Arthur Berger

Internet-Wide

On the Power and Limitations of Detecting Network Filtering via Passive
Observation . 165

Matthew Sargent, Jakub Czyz, Mark Allman, and Michael Bailey

Distilling the Internet’s Application Mix from Packet-Sampled Traffic 179
Philipp Richter, Nikolaos Chatzis, Georgios Smaragdakis,
Anja Feldmann, and Walter Willinger

Enabling Internet-Wide Deployment of Explicit Congestion Notification 193
Brian Trammell, Mirja Kühlewind, Damiano Boppart, Iain Learmonth,
Gorry Fairhurst, and Richard Scheffenegger

Internet Outages, the Eyewitness Accounts: Analysis of the Outages
Mailing List . 206

Ritwik Banerjee, Abbas Razaghpanah, Luis Chiang, Akassh Mishra,
Vyas Sekar, Yejin Choi, and Phillipa Gill

Transparent Estimation of Internet Penetration from Network Observations 220
Suso Benitez-Baleato, Nils B. Weidmann, Petros Gigis,
Xenofontas Dimitropoulos, Eduard Glatz, and Brian Trammell

Web and Peer-to-Peer

A Quantitative Study of Video Duplicate Levels in YouTube 235
Yao Liu, Sam Blasiak, Weijun Xiao, Zhenhua Li, and Songqing Chen

Measuring YouTube from Dual-Stacked Hosts . 249
Saba Ahsan, Vaibhav Bajpai, Jörg Ott, and Jürgen Schönwälder

Investigating Transparent Web Proxies in Cellular Networks 262
Xing Xu, Yurong Jiang, Tobias Flach, Ethan Katz-Bassett,
David Choffnes, and Ramesh Govindan

TrackAdvisor: Taking Back Browsing Privacy from Third-Party Trackers . . . 277
Tai-Ching Li, Huy Hang, Michalis Faloutsos, and Petros Efstathopoulos

Exploring Miner Evolution in Bitcoin Network. 290
Luqin Wang and Yong Liu

X Contents

http://dx.doi.org/10.1007/978-3-319-15509-8_12
http://dx.doi.org/10.1007/978-3-319-15509-8_12
http://dx.doi.org/10.1007/978-3-319-15509-8_13
http://dx.doi.org/10.1007/978-3-319-15509-8_13
http://dx.doi.org/10.1007/978-3-319-15509-8_14
http://dx.doi.org/10.1007/978-3-319-15509-8_15
http://dx.doi.org/10.1007/978-3-319-15509-8_16
http://dx.doi.org/10.1007/978-3-319-15509-8_16
http://dx.doi.org/10.1007/978-3-319-15509-8_17
http://dx.doi.org/10.1007/978-3-319-15509-8_18
http://dx.doi.org/10.1007/978-3-319-15509-8_19
http://dx.doi.org/10.1007/978-3-319-15509-8_20
http://dx.doi.org/10.1007/978-3-319-15509-8_21
http://dx.doi.org/10.1007/978-3-319-15509-8_22

Wireless and Embedded

Measuring the Performance of User Traffic in Home Wireless Networks 305
Srikanth Sundaresan, Nick Feamster, and Renata Teixeira

Enabling Wireless LAN Troubleshooting . 318
Ilias Syrigos, Stratos Keranidis, Thanasis Korakis, and Constantine Dovrolis

Improving the Packet Send-Time Accuracy in Embedded Devices. 332
Ricky K.P. Mok, Weichao Li, and Rocky K.C. Chang

Software Defined Networking

What You Need to Know About SDN Flow Tables 347
Maciej Kuźniar, Peter Perešíni, and Dejan Kostić

Software-Defined Latency Monitoring in Data Center Networks 360
Curtis Yu, Cristian Lumezanu, Abhishek Sharma, Qiang Xu,
Guofei Jiang, and Harsha V. Madhyastha

Author Index . 373

Contents XI

http://dx.doi.org/10.1007/978-3-319-15509-8_23
http://dx.doi.org/10.1007/978-3-319-15509-8_24
http://dx.doi.org/10.1007/978-3-319-15509-8_25
http://dx.doi.org/10.1007/978-3-319-15509-8_26
http://dx.doi.org/10.1007/978-3-319-15509-8_27

DNS and Routing

∼Open Resolvers: Understanding the Origins
of Anomalous Open DNS Resolvers

Andrew J. Kaizer(B) and Minaxi Gupta

Indiana University - Bloomington, Bloomington, USA
akaizer@indiana.edu

Abstract. Recent distributed denial-of-service attacks on the Internet
have been exploiting necessarily open protocols, such as DNS. The
Spamhaus attack is one of the largest ever examples of such attacks.
Although much research has been conducted to discuss how to mitigate
these threats, little has been done to understand why open resolvers exist
in the first place. In particular, 60% of the open resolvers have anom-
alous behavior and causes for their behavior remain a mystery, which
hurts mitigation efforts. Our research produces the first detailed inves-
tigation of the 17 million anomalous open resolvers and find that these
are primarily ADSL modems made by four manufacturers. These devices
behave anomalously and respond to DNS queries with the wrong source
port due to improper NAT configurations and are unfortunately hard to
fix without a concerted effort by ISPs and manufacturers. We also find
that anomalous open resolvers are clustered, which has the potential for
them to be exploited in more crippling DDoS attacks.

1 Introduction

Over the last several years, attackers have utilized a wide variety of techniques
to launch DoS attacks. TCP-based DoS attacks have long been in use, with
new exploits being uncovered such as the recent Wordpress XML-RPC pingback
attack [1]. However, most of the recent devastating attacks have been leveraging
open UDP protocols, such as DNS and NTP, to amplify and launch crippling
distributed denial of service (DDoS) attacks. One of the most prominent attacks
of this type occurred in Spring 2013 against Spamhaus, where attackers leveraged
approximately 31,000 open DNS resolvers – that accept DNS queries on behalf of
any client around the world – to generate over 300 Gbps of network traffic against
Spamhaus’s servers [9]. This highly public attack has spurred considerable focus
to the problem of open DNS resolvers, with sources such as the Open Resolver
Project running weekly scans to determine the number of open resolvers and
advice from Team Cymru on how to close open resolvers [5,7].

While open resolver scans have found approximately 30 million devices func-
tioning as open resolvers in 2013, there is a large percentage – approximately
60 % – whose behavior is anomalous and can hinder mitigation efforts, as simple
solutions to identify open resolvers would fail to account for them correctly.
Specifically, these anomalous open resolvers (AORs) appear to resolve DNS
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-15509-8 1

4 A.J. Kaizer and M. Gupta

queries correctly but respond back to clients using the wrong source port1,
which makes it appear that no response was received. In turn, this obscures
the involvement of DNS in these attacks. Unfortunately, there is a lack of expla-
nation about AOR behavior. The Open Resolver Project has continually noted
their behavior, but no explanation has been provided [7]. Another open resolver
scan conducted by an FCC working group – WG5 – on DNSSEC deployment
found a large number of responses coming back with erroneous source ports, but
provided no explanation for why this behavior was occurring [2]. Note that the
AOR behavior is not explained by source port randomization that is in place
in many DNS resolvers for DNS queries since the source ports used in AOR
responses are sequential.

In order for clients to correctly receive responses from an AOR, they would
need to be listening for all incoming responses to the port they sent their DNS
query on and not just for a response from UDP port 53. This requires using raw
sockets on the client-side and creates hurdles in identifying AORs as one has to
consider all incoming responses on a specific port and verify that the response
is a valid DNS response with the correct payload. A graphical example of the
behavior of an AOR can be seen in Fig. 1.

Given the rich potential for AORs to be exploited in DNS-based DDoS
attacks, the key goal of this paper is to explain the underlying causes for their
behavior so better informed mitigation efforts can be undertaken. Toward this
goal, we conduct an IPv4 wide scan to identify AORs by separating them from
open resolvers. Once the AORs are found, we run a suite of tests to finger-
print what specific devices are participating in this behavior and find that they
are primarily ADSL modems and routers made by Huawei, TP-Link, ZTE, and
D-Link. The fingerprinting process is then used to isolate behavior and infer
that AORs are a result of improper NAT configurations. We also experimentally
develop a NAT rule that leads to the observed AOR behavior. Unfortunately,
consumers cannot easily secure their own ADSL modems from being exploited as
AORs since the particular NAT configuration changes are not accessible to them.
Thus, concerted efforts from manufacturers and ISPs are required to eliminate
consumer devices from becoming AORs.

Beyond the fact that malicious actors can easily find AORs, our experi-
ments reveal that many of the AORs are highly clustered in autonomous sys-
tems (ASes). This means that if an attacker can successfully identify several
ASes with these devices in them, then scanning the rest of these ASes will result
in many additional vulnerable devices that can be exploited to easily find AORs
and amplify effortlessly in launching DDoS attacks. In turn, this can cause more
fierce and sustained DDoS attacks.

2 Overview of Methodology

The experimental design was split into two phases. In the first phase, we conduct
an IPv4 wide scan to determine where AOR devices are located. This involved
1 The response does not come from UDP port 53 as expected for DNS responses.

∼Open Resolvers: Understanding the Origins of Anomalous 5

Client
1.2.3.4

Open
Resolver
8.8.8.8

Client
1.2.3.4

Anomalous
Resolver
9.9.9.9

Correct Behavior Anomalous Device Behavior

DNS Query: <1.2.3.4, 43523, 8.8.8.8, 53>

DNS Response: <8.8.8.8, 53, 1.2.3.4, 43523>

DNS Query: <1.2.3.4, 43523, 9.9.9.9, 53>

DNS Response: <9.9.9.9, 10123, 1.2.3.4, 43523>

<Src IP, Src Port, Dst IP, Dst Port>

Fig. 1. The left figure: response from DNS resolver is sent from expected src port, 53.
The right figure: response from AOR is sent from unexpected src port, 10123.

locating all open resolvers. In the second phase, we fingerprint and conduct tests
to identify the causes for AORs’ anomalous behavior. For the second phase, we
focus on AORs belonging to ASes that met at least one of two criteria. The AS
had a large number of AORs or a sizable percentage of the total IP pool in the
AS were AORs.

The AS granularity was selected, instead of individual prefixes, to account
for the fact that IP addresses inside an ISP – which are part of ASes – are not
guaranteed to be contiguous. For example, an ISP may have 200.0.0.0/24 and
1.2.0.0/24, both of which have AORs in them. The two prefixes share no obvious
commonality until their AS is accounted for. As a result, these criteria allowed
us to focus our exploration where we would have a high success rate to find
AORs and not unnecessarily intrude upon ASes that do not have these devices,
where our scans might be considered as an attack on that network.

3 Phase I: Identifying AORs

In this phase, we linearly query the entire IPv4 space for open resolvers so that
we could uncover AORs. Specifically, we use a local test machine and query each
IPv4 address for the A record for the host name of a domain we control, www.
coffeestaples.com. To identify cases where a response comes back incorrectly, we
make each DNS request uniquely identifiable by using the target IP address as
a portion of the host name. For example, the host name in the request to 1.2.3.4
would be 1.2.3.4.coffeestaples.com. The timeout in our requests was set to one
second to strike a reasonable trade-off between speed of data collection while
accounting for commonly expected DNS response times.

The authoritative DNS server for www.coffeestaples.com, which is responsible
for providing responses for the queries, is also hosted locally with logging enabled.
This logging, along with the unique tags on the requests, allows us to determine
whether the authoritative DNS server received the query directed to the target,
even if the response is lost in transit. Based on our methodology, any unique
IP identifier in the hostname that appears in our authoritative log but does not
appear with a valid source port in a DNS response to our local test machine was
considered an AOR.

www.coffeestaples.com
www.coffeestaples.com
www.coffeestaples.com

6 A.J. Kaizer and M. Gupta

After the above processes were completed, we found what AS each IP
belonged to, in order to determine where these AORs were located. This ASN
mapping was achieved via Team Cymru’s IP-to-ASN mapping tool to generate
the list of IPs that an AS broadcasts [4].

3.1 Phase I Results

Phase one scanning revealed a total of approximately 29 million open resolvers,
which is the number that other open resolver scans have found when using a
linear scan technique [2,7]. Of these devices, approximately 12 million were true
open resolvers and 17 million were AORs.

From our initial scan we observed that the AORs were more concentrated
by prefix than the correctly behaving open resolvers. For correctly behaving
open resolvers, we observed 12 million devices in approximately 1.8 million/24
prefixes. The 17 million AORs were observed in only 1.06 million/24 prefixes –
more AORs for fewer prefixes.

Next, we clustered AOR IP addresses into their respective ASes. We observed
an even higher degree of concentration with this approach: the 18 ASes with the
most AORs accounted for 50 % of all AORs; the top 34 represented 67 %; the
top 50 represented 75 %. The worst offending AS accounted for 8.02 %, approx-
imately 1.4 million devices. Table 1 shows the top-10 ASNs with the highest
concentration of AORs.

Table 1. Top-10 ASNs with the highest number of AORs which account for 35.21 %
of all AORs.

Rank ASN ASN Name AS Country AS Size % of AORs % Total

in AS AORs

Running

Total

1 8151 Uninet S.A. de C.V Mexico 12357888 11.08 % 8.03 %

2 45899 VNPT Corp Vietnam 3273472 20.66 % 11.99 %

3 22927 Telefonica de Argentina Argentina 3646720 18.08 % 15.86 %

4 17974 PT Telekomunikasi
Indonesia

Indonesia 3689984 15.24 % 19.15 %

5 9121 Turk Telekomunikasyon
Anonim Sirketi

Turkey 6934528 8.05 % 22.43 %

6 45758 TripleT Internet ISP
Bangkok

Thailand 1069056 44.71 % 25.23 %

7 9737 TOT Public Company
Limited

Thailand 1238528 38.52 % 28.03 %

8 13285 TalkTalk Communica-
tions Limited

United
Kingdom

3506432 13.30 % 30.76 %

9 8452 TE-AS Egypt 3925504 9.87 % 33.03 %

10 3269 Telecom Italia S.p.a Italy 18880256 1.97 % 35.21 %

∼Open Resolvers: Understanding the Origins of Anomalous 7

We conclude that AORs are clustered, which implies that it is easy for attack-
ers to find large numbers of AORs quickly. The clustering also suggests that ISPs
are likely responsible for providing AOR devices to their clients. Since if these
were consumer purchased devices, they might exhibit less clustering since con-
sumers might purchase a wider array of devices.

4 Phase II: Identifying AOR Behavior

The second phase of our methodology seeks to fingerprint AORs and also under-
stand why AORs behave anomalously. As stated earlier, we focus on AORs
belonging to ASes that met at least one of two criteria: The AS has a large num-
ber of AORs or a sizeable percentage of the total IP pool in the AS are AORs.
For each AS under consideration, we retrieve the IP addresses it announces using
Hurricane Electric (www.bgp.he.net). For each IP address that responds back on
an invalid source port, which implies an AOR, we then conduct several finger-
printing tests to determine if a device make/model can be determined. Finally,
randomly selected devices are chosen for further testing based on how long the
device maintains the anomalous source port and how it handles responses sent
to the anomalous source port. This further testing allows us to test if the AOR
behavior is attributable to either a NAT or a firewall, which are common features
of the devices the ISPs give to their clients.

4.1 Fingerprinting Methodology

Our scanning process utilized scapy – a Python packet creation and manipulation
program – on a local test machine where we had super user access [8]. This
was a necessity to handle raw sockets. The combination of scapy and Python
provided the best framework for other tasks related to fingerprinting, such as
strong support for building HTTP and FTP requests.

The scan process worked by scanning specific ASes for AORs. For each IP
address scanned, worker processes listened for incoming responses. All incom-
ing responses would be added to a queue for fingerprinting, whose goal was to
determine what specific devices were exhibiting this AOR behavior. Using the
methodology above, we are able to scan approximately 1 million IP addresses in
60 min to achieve a throughput of around 550 outgoing packets per second. We
fingerprinted all IPs in 14 ASes with large concentrations of AORs.

4.2 Protocols for Effective Fingerprinting of AORs

Fingerprinting AORs is a hard problem. The primary point of difficulty is that
for a device to respond to a request on a specific service or protocol, it needs to
be open to external network traffic on the protocol of interest that is accidentally
volunteering identifying device details: HTTP, FTP, and telnet are all services
that may do this on the devices that we found exhibiting the anomalous behavior.
Any devices following good practices and only allowing intranet access, should

www.bgp.he.net

8 A.J. Kaizer and M. Gupta

make it difficult – if not impossible – to extract the necessary information to
identify it.

During fingerprinting, we found that there are two generic, high-coverage
services we could utilize: HTTP and FTP. These two services were the only two
that reliably gave us specific model/manufacturer of the device. Other services,
such as telnet or ssh, would state the version of the service they were running,
but not device details. Other efforts to find additional services to use in finger-
printing – e.g. telnet, SSH, CWMP (a WAN management protocol), bit level
inspection of the responses – was attempted, but none were found to be overly
successful [6]. Even in rare cases where a response was observed from an AOR,
we found that the case was not broadly applicable due to low coverage, so we
excluded all such cases from the AS-wide scans.

The following list describes the fingerprinting cases we considered:

HTTP. Sending requests for a default landing page ‘/’ via Python’s urllib2
functionality had the best coverage in identifying devices [10]. For many
devices, the title of the webpage in its HTML source would reveal details
about the device such as its model or its manufacturer. For each AS, we also
inspected cases where the title did not give enough details and attempted to
extract more information from either the content of the page itself or found
an additional webpage that volunteered information based on the device
itself. Both content and other URLs are applied to specific devices in specific
AS, due to the fact that two devices with the same model usually did not
share certain special URLs or content due to minor customization differences
among ASes/ISPs.

HTTP Authorization Headers. Many devices would not respond with a
default landing page, but instead would send authorization headers which
often leaked the device model under the www-authenticate field of the HTTP
header. In these cases we could simply extract that value.

FTP. Device information was sometimes leaked in the FTP welcome message –
namely, many FTP welcome messages stated exactly what the device you
were trying to connect to was. Python’s ftplib was used to extract these
details [3]. In certain cases, if a title was found during the HTTP phase
but was too generic, we would make an FTP request to observe if we could
identify a more specific model. The FTP case would not be run if a device
could be extracted during the HTTP process.

4.3 Fingerprinting Results

The countries and AS included in our phase II scans of 14 ASes are: Mexico
(AS8151), Vietnam (AS45899), Argentina (AS22927), Thailand (AS45758,
AS9737), Egypt (AS8452), Belarus (AS6697), Colombia (AS19429, AS3816),
Kazakhstan (AS9198), Romania (AS9050), Slovakia (AS6855), Ecuador
(AS14420), and Russia (AS28812). Countries that have two AS scanned were
selected because the number of vulnerable devices in each AS was similar enough
that selecting one over the other made little sense. The overall results of fingerprint

∼Open Resolvers: Understanding the Origins of Anomalous 9

scanning resulted in finding 5.218 million AORs and attributing a device type to
2.872 million AORs. The vast majority of the responses we observed were valid
DNS responses, with only 7500 responses that had a failure DNS rcode.

The common trait among almost all the devices is their functionality: they
are all-in-one ADSL modems which have router, firewall, and NAT function-
ality built in. If we inspect Table 2, we see that almost all devices listed are
ADSL modems, with some consumer grade web cameras and DVRs also in the
mix. Furthermore, we see the results are dominated by handful of manufactur-
ers: Huawei, TP-Link, ZTE, and D-Link. The top-10 device responses that our
fingerprinting process found were as follows: Huawei HG530, ZXV10 W300, TD-
W8901G, TD-8817, Huawei HG520b, TD-8840T, HG530, TD854W, HG521c,
and HG520c. These ten accounted for 41.14 % of the approximately 5.2 million
AORs observed. An explanation for why these devices are found in large num-
bers compared to other devices observed as AORs is cost. When ISPs listed
multiple devices a consumer could purchase, these modems were often among
the least expensive, which means consumers would gravitate towards purchasing
these devices.

Table 2. The list of top-10 fingerprinted devices observed in the 14 ASes scanned.
This represents 2.1 million devices (41.14 % of all AORs observed).

Device Type % of Total Device Type % of Total

Huawei HG530 19.72 % TD-8840T 2.08 %

ZXV10 W300 5.05 % HG530 1.84 %

TD-W8901G 3.09 % TD854W 1.70 %

TD-8817 2.76 % HG521c 1.27 %

Huawei HG520b 2.44 % HG520c 1.19 %

4.4 Determining Root Cause of Anomalous Behavior

We begin by noting that AOR behavior is not explained by source port random-
ization that many DNS clients use for their DNS queries to a resolver. In the case
of AORs, it is the response that comes back on an incorrect source port, which
rules this type of behavior out. Moreover, one way source port randomization,
as in the case of AORs, is never done since it would cause the receiver to ignore
the response, which would always come back on an unexpected port. Another
reason this fails to explain AOR behavior is that the source ports used in AOR
responses are sequential and not random.

After we identified what manufacturer/make the AORs were and that they
were clustered, we needed to determine what could lead to this underlying behav-
ior. The AORs we observed were primarily ADSL routers that were sold by ISPs,
which have three key roles: routers, firewall, and NAT. The router is unlikely to
be the cause for anomalous behavior, as it simply routes packets. A firewall drops

10 A.J. Kaizer and M. Gupta

or allows packets based on rule sets, but it can also change the underlying infor-
mation2, so a firewall could lead to the AOR behavior observed. The anomalous
behavior could also be NAT based, which is responsible for re-routing packets
that meet certain conditions as they enter and exit the network. We devised to
determine if the NAT or the firewall was the underlying cause of the behavior.
The four tests are as follows:

Port Range - The port range test checks if source ports in incoming DNS
responses look similar to how NAT assigns ports. It creates a raw socket
to listen on a specific port and then makes a request to an AOR. When a
response comes back, an ICMP packet is generated by the system and sent
to the target3. After this ICMP is sent, our system resends the request and
sees how the source port changes by watching the response. We note if the
source port does not change, changes linearly, changes randomly, or stays
within a range. If it changes, that suggests NAT as the culprit, as NATs will
release an assigned port that has received an ICMP unreachable message as
no longer in use.

Port Accessibility: Part I - This test checks the output of sending a DNS
request to the AOR using the same erroneous source port that it sent
the response from as the destination port. The goal of this test is deter-
mine if the AOR’s behavior is simply a response using a wrong port or if
there exists a mapping between the wrong port and the DNS software that is
also listening when our requests are sent to UDP port 53. A response would
be a key indicator that NAT was responsible for the AOR behavior, instead
of a firewall, as it would mean that an external mapping existed between the
anomalous port and the DNS process.

Port Accessibility: Part II - While the previous test keeps the IP address of
the sending machine the same as the one that received a DNS response from
the AOR, this test sends DNS queries to AORs from other IP addresses as
well while keeping all other details the same as in the previous test. The goal
of this test is also to find out if a mapping exists between the anomalous
port and the DNS process. A positive response would again indicate that a
NAT was responsible for AOR behavior.

Port Statefulness - The port statefulness test is designed to explore how long
the state of the anomalous port is maintained at the AOR. It does so by
observing if an AOR response used the same anomalous port with multiple
client requests, and for how long an AOR maintained that state. Since UDP
is a stateless protocol, any statefulness would have to be maintained by a
feature in the device. In particular, if the behavior lasted for a consistent
amount of time and passed the port accessibility tests, then the behavior
would have to be NAT based as it would be keeping statefulness on a mapping
between ports.

2 Modern firewalls, such as iptables, have the capacity to re-route packets if they meet
a certain rule.

3 This ICMP behavior occurs on Linux machines when dealing with UDP raw sockets
because we are not bound to the port, therefore the kernel responds with an ICMP
regarding that no one is listening (bound) to that port.

∼Open Resolvers: Understanding the Origins of Anomalous 11

4.5 Anomalous Behavior Results

One of the surprising outcomes of the port range test is that AORs maintain a
fixed source port-range for these AORs. Of the 5.2million results, 99.67% fell
within the range of UDP ports 10000–30000. Using our test case for determining
how these source ports are assigned, we observed a linear behavior; e.g. if we
got a DNS response back on source port 21953, the next source port would be
219544. Once a device hits 30000, we would observe the source port roll back to
10000. This range of 10 k–30 k is arbitrary, so it is surprising to see it consistently
appear across ASes.

Likewise, with respect to how long these AORs kept the same source port
[the statefulness test], we observed a 150 s timeout that was consistent across
ASes. After waiting 150 s, we would observe a new source port based on the
behavior we described above. These ranges and timeout values do not conform
to the standard – laid out in RFC4787 about UDP responses on NAT – and
therefore represent some sort of common source to this anomalous behavior [11].

For the accessibility results, we notice that after an anomalous source port has
been granted, any machine can communicate with the resolver that is behind
the target on either UDP53 or the anomalous source port. The target device
will always respond back to our client machines on that same anomalous port,
regardless of who the request came from (X or Y) and what port was targeted
(53 or the anomalous port). Additionally, this AOR behavior will not cause
accessibility issues for DNS requests made by intranet clients, because the NAT
translation will be corrected to the original source port when it comes back into
the network and will not be translated again as it will not leave the network
again. Therefore only requests coming from the Internet will suffer from this
behavior.

Overall, we conclude that NAT is the reason for AOR behavior. Alternative
hypotheses, such as manufacturer of a specific piece of software being responsible,
fail to explain the behavior of AORs, since then, we would not expect to see it
across many different devices and ASes.

4.6 NAT Rule to Explain AOR Behavior

In order to further ascertain the NAT-based explanation for AORs, we setup
a virtual environment and tested a variety of possible iptables rules that alter
packets. iptables was selected because the AOR devices that we could find spec-
ifications for stated that the code was built on top of a Linux base code that
included iptables as one of its default programs.

We found that the behavior would likely be caused by an iptables rule of the
following nature: iptables -t nat -A postrouting -p udp –dport 53 -j SNAT -
to :10000–30000. This type of rule would change outgoing packets that hit
the source NAT [-j SNAT] and convert the source port to 10000–30000 UDP
[-p UDP]. The 150 s timeout would have required the alteration of IP masquerade
4 The next number may also be a bit bigger than x+ 1 because other interactions with

the AOR may have incremented the counter forward.

12 A.J. Kaizer and M. Gupta

(a NAT style 1-to-many component of iptables) timeout settings, accessible via
ipchains -M -S tcp tcpfin udp, where the udp option would have 150 as its value.

5 Discussion

Here, we describe how AORs can be exploited, why they may be difficult to
patch, and further detail some of the tradeoffs involved when fingerprinting
AORs.

5.1 Exploitation Potential of AORs

The key concern about the AORs is their potential for DDoS. It is trivial to locate
large numbers for use in a DNS amplification attack the moment an attacker finds
ASes to exploit. We discussed earlier how the DDoS attack on Spamhaus utilized
31,000 open resolvers to achieve a 300 Gbps attack. For an attack based on AORs,
we could choose any of the top 80 ASes from Table 1 to find at least 31,000 AORs.
If we only consider the top 35 ASes, we could enlist 100 k+ devices to at least
triple our attack capacity to over 900 Gbps. This scale of attack could make the
next DNS amplification attack even more damaging, even if the attacker only
cycles through devices in each ASN to try and avoid saturating the local ISP
connections.

5.2 Issues in Correcting AORs

While patching AORs is hardly controversial, because of efforts around shut-
ting open resolvers, actually patching them poses practical complications. First,
the steps necessary to patch AORs will not be the same as those for patch-
ing true open resolvers. This is because many of the ADSL modems that made
up the bulk of the AORs we identified make use of DNS relay technology, to
carry out DNS queries. Thus, they are not necessarily true resolvers. Since the
terminology of a DNS relay is nonstandard, we do not know if the DNS relay is
a full resolver that can handle rules to restrict the clients it serves. As a result,
there may not be a full resolver to be patched on AORs. Instead, the iptables
rules that make up the device’s NAT/firewall rules will need to be corrected to
not accept arbitrary Internet-based DNS requests.

A further complication comes that AORs are consumer devices that may
not allow easy access to iptables or the native DNS resolver. We tested this
issue with a TD-88175, and could not find a way to directly modify the rules
that lead to this behavior. Using the limited NAT/firewall configuration settings
only allowed blocking all UDP 53 traffic which only hides the problem and would
be cumbersome for consumers to implement. As a result, without manufacturer
or ISP cooperation, the number of AORs may decline more slowly than true
open resolvers as they will only be patched when a ISPs upgrade their devices
5 We selected the TD-8817 (4th most common AOR) because it was sold in the US

and we could gain access to it. The same cannot be said for the other devices.

∼Open Resolvers: Understanding the Origins of Anomalous 13

to versions that do not exhibit AOR behavior or push updates to the AOR to
correct the anomalous behavior.

5.3 Fingerprinting Tradeoffs

One of the goals of the phase II scanning process was to make it perform quickly
without sacrificing accuracy in the fingerprinting process we detailed in Sect. 4.2.
Reasonable speed is important in order to allow the scans to be conducted fast
enough to avoid too much IP address turnover from IP leases expiring and to
ensure double counting devices assigned a new IP address was kept to a mini-
mum. In order to keep our fingerprinting scan within a desirable coverage and
time bounds we took two approaches. Leaving out cases that have no coverage
in an AS and leaving out cases that cover only a very small, specialized subset.

With respect to leaving cases with no coverage out. Each AS that we scanned
was initially surveyed on multiple/16 prefixes for AORs in that subset of the AS.
The results of these smaller scans were then used to develop the special cases that
was discussed in Sect. 4.2 regarding HTTP response content. This pre-scanning
was also done to select fingerprinting cases we already developed that applied to
each AS and leave out cases that had no coverage. This helps us avoid the slow
down related to running cases which were never found in an AS. Discarding no
coverage cases had minimal risk when tested experimentally: the speedup was
considerable and loss of coverage was negligible.

Avoiding adding too many specialized cases to our fingerprinting process also
helped the scan run in a reasonable time with minimal coverage tradeoff. For
example, we could look for HTTP services on unlikely ports: 81, 8080, 8000,
8001, 8081, etc. All the previous ports were observed in at least one of our more
detailed device pre-scans, but when we added these cases to be used in the AS-
wide scan process, they yielded very few additional device identifications while
adding considerable overhead to the scanning process.

6 Related Work

Although no related work has explored these AORs results directly, several orga-
nizations have conducted open DNS resolver scans. Both the FCC working group
and the open resolver project have conducted IPv4 wide scans and identified
this anomalous behavior [2,7]. The DNS Measurement Factory has been con-
ducting scans for open resolvers based on a more targeted approach, but does
not appear to discuss anomalous results [14]. Likewise [15] loosely hypothesized
that this AOR behavior may be related to faulty low-grade NAT devices, which
is something we have proven in this paper. Our work complements and expands
upon this existing work by explaining why the anomalous behavior exists. Our
technique of inspecting HTTP authorization headers is also motivated by [15].

Other research has focused on how to attack the results given by DNS resolvers.
Dagon, et. al. in 2008 studied the use of open and rogue recursive resolvers to
mislead users and resolve them to incorrect sites [12]. Research by [13] addresses
the risk of on-path DNS poisoning where non-DNSSEC enabled resolvers can be

14 A.J. Kaizer and M. Gupta

poisoned by malicious responses that beat the legitimate response back. Although
the AOR issue is not directly related to these types of attacks, the presence of
AORs can exacerbate the situation.

7 Conclusion

In this paper, we unearthed the devices, manufacturers and root causes for AOR
behavior, which can be exploited to produce much stronger DNS amplification
attacks. We also found that finding AORs in large numbers is relatively easy
since they tend to be clustered in ASes. Unfortunately, there does not appear to
be an easy way for consumers to patch AORs, which are mostly ADSL modems,
as NAT configurations do not appear to be easily accessible to the user.

It is up to ISPs and manufacturers to act and correct AOR behavior. We
hope that by having explored and isolated the issues and risks of AORs, that
stakeholders will be compelled to fix this behavior. In doing so, the attack surface
of DDoS attacks can be greatly reduced.

References

1. Anatomy of wordpress XML-RPC pingback attacks. https://blogs.akamai.com/
2014/03/anatomy-of-wordpress-xml-rpc-pingback-attacks.html

2. Communications security, reliability and interoperability council III — FCC.gov.
http://www.fcc.gov/encyclopedia/communications-security-reliability-and-intero
perability-council-iii

3. FTP protocol client. https://docs.python.org/2/library/ftplib.html
4. IP to ASN mapping - Team Cymru. https://www.team-cymru.org/Services/

ip-to-asn.html
5. Million plus resolver challenge - Team Cymru. https://www.team-cymru.org/

Services/Resolvers/instructions.html
6. nmap - Network mapper. http://nmap.org/
7. Open resolver project. http://openresolverproject.org/
8. Scapy - Packet manipulation and construction program. http://www.secdev.org/

projects/scapy/
9. Technical details behind a 400 Gbps NTP amplification DDoS attack — CloudFlare

blog. http://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplifi
cation-ddos-attack

10. urllib2 - Extensible library for opening urls. https://docs.python.org/2/library/
urllib2.html

11. Audet, F., Jennings, C.: Ietf RFC 4787 — network address translation (NAT)
behavioral requirements for unicast UDP, Jan 2007. http://tools.ietf.org/search/
rfc4787

12. Dagon, D., Provos, N., Lee, C., Lee, W.: Corrupted DNS resolution paths: the
rise of a malicious resolution authority. In: Proceedings of ISOC Network and
Distributed Security Symposium (NDSS) (2008)

13. Duan, H., Weaver, N., Zhao, Z., Hu, M., Liang, J., Jiang, J., Li, K., Paxson, V.:
Hold-on: Protecting against on-path DNS poisoning. In: Securing and Trusting
Internet Names, IEEE (2012)

14. Measurement factory. Open DNS scanner. http://www.measurement-factory.com/
15. Schomp, K., Callahan, T., Rabinovich, M., Allman, M.: On measuring the client-

side DNS infrastructure. In: Internet Measurement Conference, ACM (2013)

https://blogs.akamai.com/2014/03/anatomy-of-wordpress-xml-rpc-pingback-attacks.html
https://blogs.akamai.com/2014/03/anatomy-of-wordpress-xml-rpc-pingback-attacks.html
http://www.fcc.gov/encyclopedia/communications-security-reliability-and-interoperability-council-iii
http://www.fcc.gov/encyclopedia/communications-security-reliability-and-interoperability-council-iii
https://docs.python.org/2/library/ftplib.html
https://www.team-cymru.org/Services/ip-to-asn.html
https://www.team-cymru.org/Services/ip-to-asn.html
https://www.team-cymru.org/Services/Resolvers/instructions.html
https://www.team-cymru.org/Services/Resolvers/instructions.html
http://nmap.org/
http://openresolverproject.org/
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
http://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack
http://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack
https://docs.python.org/2/library/urllib2.html
https://docs.python.org/2/library/urllib2.html
http://tools.ietf.org/search/rfc4787
http://tools.ietf.org/search/rfc4787
http://www.measurement-factory.com/

Characterizing Optimal DNS Amplification
Attacks and Effective Mitigation

Douglas C. MacFarland1, Craig A. Shue1(B), and Andrew J. Kalafut2

1 Worcester Polytechnic Institute, Worcester, MA, USA
{dcmacfarland,cshue}@cs.wpi.edu

2 Grand Valley State University, Allendale, MI, USA
kalafuta@gvsu.edu

Abstract. Attackers have used DNS amplification in over 34% of
high-volume DDoS attacks, with some floods exceeding 300Gbps. The
best current practices do not help victims during an attack; they are
preventative measures that third-party organizations must employ in
advance. Unfortunately, there are no incentives for these third parties to
follow the recommendations. While practitioners have focused on reduc-
ing the number of open DNS resolvers, these efforts do not address the
threat posed by authoritative DNS servers.

In this work, we measure and characterize the attack potential
associated with DNS amplification, along with the adoption of coun-
termeasures. We then propose and measure a mitigation strategy that
organizations can employ. With the help of an upstream ISP, our strat-
egy will allow even poorly provisioned organizations to mitigate massive
DNS amplification attacks with only minor performance overheads.

1 Introduction

In 2013 and early 2014, attackers used DNS amplification in 34.9 % of high vol-
ume DDoS attacks (those creating at least 20 Gbps of attack traffic) and in 18.6 %
of all network DDoS attacks [8]. In mid-March 2013, attackers used DNS ampli-
fication to launch a high-profile attack against Spamhaus, with attack traffic
volume exceeding 300 Gbps [1]. DNS amplification attacks are particularly valu-
able to attackers for a few reasons: (1) the amplification effect allows attackers
to create a disproportionate amount of traffic at the victim, (2) by IP address
spoofing and reflection, the attackers can conceal the identities of the attacking
systems, preventing them from being blacklisted or cleaned, and (3) the vic-
tim cannot blacklist the IP addresses of the reflecting DNS servers without also
hindering legitimate DNS resolutions.

In a typical DNS amplification attack, the attacker sends a DNS query packet
from an attack system to a DNS server. In the process of creating this query
packet, the attacker forges the packet’s source IP address field so that it contains
the IP address of the targeted victim, rather than the actual sender of the packet.
Upon receiving and processing the query packet, the DNS server then dutifully
sends a response back to the indicated source address of the query, which in
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 15–27, 2015.
DOI: 10.1007/978-3-319-15509-8 2

16 D.C. MacFarland et al.

this case is the address of the victim. When the response packet arrives at the
victim, the victim will process the packet, realize it is unsolicited, and discard
it. However, at this point, the attack has already succeeded: the DNS response
consumed a portion of the victim’s bandwidth and computational resources at
the victim’s DNS resolvers. Even better from the viewpoint of the attacker,
since the DNS response packet from the DNS server is larger than the query
packet the attacker sent, the attack traffic at the target is increased by a certain
amplification factor.

While DNS amplification attacks are well understood, the best defensive
strategy is less obvious. In a July 2013 bulletin, the United States Computer
Emergency Response Team (US-CERT) made a few recommendations [16]:
(1) reduce the number of open DNS resolvers, (2) disable public recursion on
authoritative DNS servers, (3) rate limit responses [18], and (4) limit IP address
spoofing. Unfortunately, there is little incentive for organizations to employ these
recommendations: these actions help other organizations, not the organization
performing the remediation. The spoofing prevention measure, in particular, has
been encouraged for over a decade, yet over 25 % of Autonomous Systems still
allow arbitrary IP spoofing on the Internet [2]. Further, these steps are not
actionable for an organization under attack.

While these recommendations may be well intentioned, they likely will not
have the desired impact. In particular, efforts to reduce the number of open
DNS resolvers will not solve the DNS amplification problem: rather than using
an open resolver, attackers can simply query authoritative servers directly and
still create effective DDoS conditions.

In this work, we make the following contributions:

1. Measure and Characterize the Attack Potential: We perform DNS
queries to the authoritative servers for each of the 129 million DNS domains
registered in 9 top-level domains (TLDs) to determine the amplification factor
associated with four types of queries. We then focus on the highest amplification
factor queries that can be issued and characterize the attack volume that could
result. We found that we could create an attack of 1,444 MBytes/s at the target
by sending only 44 MBytes/s of attack traffic at the application layer. We found
that such attacks could be scaled up, allowing even relatively small botnets to
launch damaging attacks, all without the use of open DNS resolvers.

2. Measure the Adoption of Query Rate-Limiting: We randomly sampled
0.5 % of the IP addresses for authoritative DNS servers we previously studied and
issued repeated queries to the server to determine whether the domain employed
query rate limiting, and if so, what settings were used in the configuration. We
found that 2.69 % of the studied domains employed rate limiting. Of those, 7.38 %
rate limited at 5 queries per second or less and the remaining 92.62 % used a
rate limit between 9 and 14 queries per second.

3. Propose and Evaluate a Novel Mitigation Method: We propose and
measure a straightforward mitigation approach that targeted organizations can
employ to mitigate attacks. We propose organizations employ remote hosting

Characterizing Optimal DNS Amplification Attacks and Effective Mitigation 17

for their authoritative DNS servers. We then propose organizations request
upstream filtering of all DNS traffic, mitigating the DDoS attack. To preserve
DNS functionality for the organization, we propose and test a solution to tunnel
DNS queries to a remote DNS resolver, such as a remote VM hosted by a cloud
provider or ISP. We found that we could automatically activate a remote DNS
resolver, activate the tunnel, and forward all local DNS traffic to the remote node
in less than 0.67 s, on average. All queries would then have a median additional
latency of 16 ms. Accordingly, our approach will allow organizations to weather
extremely high-volume DNS amplification attacks with minimal effort.

2 Background and Related Work

Traditional reflection attacks, such as the Smurf attack [15], simply forge the
source IP address of a packet to be the address of the intended victim. The
attacker sends the packet to an innocent third-party system called a reflector.
The reflector then issues a legitimate reply that arrives at the victim. When a
large number of attack packets are sent to reflectors, or when a reflector is a
broadcast network address for many hosts, the combined volume at the victim
can be crippling.

In a 2001 article, Paxson [11] described how reflectors can be used as part
of a distributed reflector denial of service (DRDoS) attack. He argued for five
possible defenses against the attacks: (1) filter reflected attack traffic at the vic-
tim, (2) prevent source address spoofing, (3) detect and block spoofed packets
at the reflector, (4) allow traceback to the origin even through the reflector, and
(5) detect the attack traffic from the compromised systems. With the exception
of the first defense, in which the victim employs filtering, each of these defenses
requires a third-party organization to detect and block attack traffic. The specific
third-party organization affected depends on the details of the attack (e.g., the
origin of the attack and the particular reflectors in use), but each of them must
implement the solution. Solutions which require 100 % adoption by third-parties
are unlikely to succeed, especially when these third-parties have no incentives for
adoption. For example, the second option, source address filtering, is compara-
tively straightforward for organizations to employ, yet over 25 % of Autonomous
Systems still allow arbitrary IP spoofing on the Internet [2].

Attackers often try to increase the amount of traffic generated by a reflection
attack. These attacks, called amplification attacks, typically leverage protocol-
specific attributes to increase the attack volume. Recent attacks using NTP
amplification [12,17] were able to create floods of 400 Gbps against a victim.
In the NTP attack, the attacker found a list of susceptible NTP servers and,
spoofing the IP address of the victim, issued a query requesting a list of the last
600 clients that accessed the server. These NTP responses were much larger than
the query, creating a massive amplification attack against the victim. Earlier this
year, Rossow [13] examined 14 different network protocols to look for reflection
attacks that yield significant amplification. While Rossow’s analysis did include

18 D.C. MacFarland et al.

DNS, it was not the focus of the work and the analysis was not as comprehensive
as our own; we compare and contrast our results in the appropriate sections of
our paper. Kührer et al. discuss the prevalence of DNS amplifiers, compared to
other UDP-based protocols, and discusses fingerprinting techniques [10]; how-
ever, they do not expand on the amplification results. The solutions they propose
focus on efficient identification, the notification of vulnerable amplifiers for var-
ious protocols, and on curtailing ASes that allow spoofing. Their approach is
orthogonal to our own solution.

US-CERT recommends that organizations focus on eliminating open DNS
resolvers [16], which echoes RFC 5358 [5]. However, this advice ignores the hun-
dreds of thousands of authoritative DNS servers that are, by design, required to
answer DNS queries to anyone who asks. These servers are well provisioned and
capable of handling large volumes of traffic [7]. Attackers could use these servers
to launch crippling attacks, even without using open resolvers. Accordingly, we
focus on the risks associated with authoritative servers in this work.

Other reflector and amplification attacks can be damaging. However, we focus
on DNS amplification because the protocol is widely used and the amplification
attack can be indistinguishable from legitimate usage. Further, measures such
as filtering, which may be used to mitigate other amplification attacks, would
have unacceptable consequences for DNS (such as leaving a victim without the
ability to resolve host names).

3 DNS Amplification Potential

We begin by determining the inherent DNS amplification risks associated with
today’s DNS authoritative servers. We examined over 129 million domains and
over 1.1 million unique DNS authoritative servers to determine the amplification
factor associated with common DNS queries.

3.1 Data Collection

As a starting point for our measurements, we used a DNS zone snapshot from
July 2, 2013 for a collection of nine generic top-level domains (gTLDs). We
obtained the DNS zone files for the biz, com, info, mobi, name, net, org, travel,
and us zones from their respective maintainers. These zone files list the domain
names and associated name servers for each of the domains registered under these
TLDs. We collected records for 129, 300, 870 unique domains, each of which had
one or more name servers listed, by host name, as authoritative for the domain.
In total, 2, 771, 768 unique host names were listed as name servers, which upon
resolving to IP addresses yielded 1, 101, 446 unique name server IP addresses. We
collected these records in a distributed fashion and used delays between queries
to minimize the impact on other users and the queried servers. We had an opt-
out approach for queried providers; however, we did not receive any out-out
requests.

Characterizing Optimal DNS Amplification Attacks and Effective Mitigation 19

Using these zone files, we constructed a set of pairs of the form (domain name,
NS IP address). This resulted in 363, 263, 970 unique pairs. For each pair, we
issued a set of DNS queries to the associated name server for the domain name
without indicating any subdomains or hosts (e.g. a query for example.com).

Based on the results reported in our prior work [9], we knew that A records,
which provide the IPv4 address for an indicated host name, would be quite
common. Queries for A records are commonly issued by hosts on the Internet and
are not be likely to be noticed by network operators. Recent DNS amplification
attacks have used the ANY record type in their queries, which asks a name server
to return any records associated with a host name. Since we used the base
domain name, an ANY query would be likely to return the SOA, NS, and MX records
associated with the domain, along with an A record for the host name. These
four records were the most common in DNS zones in our prior work [9]. While
the ANY query may yield the most records, such queries are not as commonly
used by normal Internet hosts and their role in attacks may make them more
noticeable when queried. Accordingly, we collect data for both the ANY query
and the more common A query.

Traditional DNS packets are limited to a maximum length of 512 bytes at the
application layer. However, the extension mechanisms for DNS (EDNS) [6] allow
larger DNS packets if supported by both the resolver and authoritative server.
To communicate support, the resolver sends a pseudo-resource record, OPT, that
indicates the supported packet size. The OPT record can indicate DNSSEC sup-
port [4], indicating the server should send any associated DNSSEC records.

Attackers have a tactical consideration with using EDNS. Including an OPT
record requires the attacker to include an additional 11 byte record in the query.
If the server does not support EDNS, or the response would fit within the stan-
dard 512 byte limit, the response size remains the same. Accordingly, EDNS use
would decrease the amplification factor associated with the query. However, if
the EDNS support results in a larger response, it may dwarf the size of the OPT
record and increase the amplification factor. Accordingly, we measure amplifica-
tion, both with and without EDNS enabled (indicating a maximum application
layer packet size of 4096 bytes as recommended by RFC 6891).

We also issued queries for AAAA records associated with IPv6. However, they
were not widely used and did not provide a meaningful amplification over the
other queries types. Accordingly, we omit any further discuss of these records.

In summary, we issued the following DNS queries for each domain: (1) A record
without EDNS or DNSSEC support, (2) A record with EDNS and DNSSEC sup-
port, (3) ANY record without EDNS or DNSSEC support, and (4) ANY record with
EDNS and DNSSEC support.

We issued the queries from July 29, 2013 to Aug. 1, 2013. To perform the
massive number of queries quickly, we used a dedicated querying process and a
separate packet capture process to collect and store each of the DNS responses
sent to our server. Some packets may have been dropped, but for expediency, we
accepted these losses and did not attempt a retransmission. Accordingly, each
of the results we report will be conservative estimates of possible amplification.

20 D.C. MacFarland et al.

3.2 Analysis of Servers and DNS Responses

We now examine the DNS responses. We exclude analysis of malformed packets,
since we are unable to properly parse them, which amounts to 0.07 % of the data
set. In Table 1, we show the overall success rates of our queries and statistics
on the degree of amplification resulting from each. We calculated all packet
sizes at the application layer (i.e., the DNS headers and payload). This excludes
extraneous factors, such as the IPv4/IPv6 or UDP/TCP headers, and focuses on
DNS. In Fig. 1, we show the amplification factor distribution for each of the data
sets. For each query type, the attacker receives at least a 129 % increase in traffic
volume at the application layer using DNS reflection. However, only 0.35 % of
A record queries and 1.54 % of ANY queries had a packet size greater than the
512 byte limit when EDNS was enabled. Accordingly, the query overhead of
using EDNS reduced the average amplification factor for both the A and the
ANY groups. Simply put, an attacker does not benefit from using EDNS in the
average case since few responses must be shortened to fit within 512 bytes.

Table 1. DNS Responses to Queries. Results are presented in the aggregate along with
statistics on the top 1 million largest responses of each group.

Query Type Response Top Million Queries Amplification Ratio

Rate Total (MB)

Record Uses EDNS Sent Received All Queries Top 1million

A no 90 % 34 485 2.74 14.42

A yes 89 % 44 725 2.29 16.37

ANY no 84 % 35 534 6.22 15.32

ANY yes 85 % 44 1,444 5.03 32.77

While this degree of amplification may be worthwhile for an attacker, a more
potent strategy may be to focus on the queries and responses that yield the
greatest amplification factor. To highlight the benefits of doing so, we provide
statistics on the top 1 million packets, by response size, of each data set in
Table 1. These packets make up roughly 0.3 % of each data set. Additionally,
while EDNS did not help an attacker sending queries to random domains, it
does benefit the attacker who focuses on those providing the most amplification.
In both groups, EDNS yielded a notable increase in amplification among the
million largest amplifying responses. This selective querying can help an attacker
increase the amplification ratio to over 14.42 in the worst case and up to 32.77
in the best case.

The attacker receives the best amplification while using ANY queries, but
we note that this record type may raise suspicions. An attacker that wishes to
use A record queries to avoid detection can still achieve an amplification factor
of 16.37. As an anecdotal result, in issuing the roughly 1.5 billion DNS queries
associated with this study, our organization was contacted only once by a queried

Characterizing Optimal DNS Amplification Attacks and Effective Mitigation 21

Fig. 1. Cumulative distribution func-
tion of the amplification ratio com-
pared to the percent of queries for each
data set.

Fig. 2. Amplification ratios ordered
from the most amplifying server to the
least. Some data points are aggregated
for readability.

organization. That report was from an automated system indicating that the
ANY query it received from our querying host may be the result of an attacker
launching a reflection attack against us. Organizations may begin filtering ANY
queries to reduce the amplification factor, but the amplification potential of A
queries is unlikely to change.

To provide context for these results, we consider the theoretical maximum
amplification, at the application layer, for DNS with EDNS using the recom-
mended maximum response size of 4096 bytes. The DNS header itself is 12
bytes, with an additional n+ 5 bytes for a query record, with a domain name of
length n, and another additional 11 bytes for the OPT record to enable EDNS.
The average maximum amplification with EDNS can then be expressed as 4096

N+28
where N is the average domain name length in the queries. In our dataset, the
average domain name length was 17 characters, which yields a maximum aver-
age amplification of roughly 91.02. Our overall amplifications are much lower
than this, indicating most queried systems are not providing maximum-sized
responses. However, looking at our top 10 % of amplifying name servers, we
see an amplification of 78.13 indicating longer domain names on average with
nearly maximum length responses. These highly amplifying servers are closer
to the ratios reported in Rossow’s DNSNS set [13]. However, our dataset-wide
averages are much lower than those in Rossow’s data set. These are likely due to
our different methodologies: Rossow used the Common Crawl project while we
used the zone files themselves. Our data sets are larger and we did not pre-filter
based on the deployment of DNSSEC, reducing potential sources of bias.

While attackers want to maximize the amplification factors associated with
attacks, they must also ensure they use a large, distributed base of reflectors. If
the attackers focus on a small number of highly amplifying reflectors, the reflector
bandwidth may become a bottleneck. Even worse, the defenders may be able to
filter a small number of reflector IP addresses with little collateral damage. To
highlight this point, we note that although we received responses from 669, 090
reflecting name servers, a much smaller pool of servers are responsible for the

22 D.C. MacFarland et al.

1 million highest amplifying queries. For the top 1 million A record queries, the
number of servers ranges from 24, 782 in the “without EDNS” group to 24, 841
servers in the “with EDNS” group. For the top 1 million ANY queries, the number
of servers ranges from 22, 508 in the “without EDNS” group to 28, 101 in the
“with EDNS” group. In other words, less than 3.8 % of authoritative name servers
are associated with the highest degrees of amplification. In Fig. 2, we demonstrate
the amplification ratios associated with each name server.

3.3 Impact of Record Type on Response Size

In Table 2, we show the contributions each resource record makes to the typical
DNS packet from the Top 1 million EDNS groups. Attackers may consider which
record types have the largest payload for the response and compose queries
to elicit these responses. Not all record types are present in each packet. For
example, the SOA record typically signals that no valid records are being returned.
Thus, it is unsurprising it typically represents a large percentage of the responses
where it appears. Likewise records associated with DNSSEC tend to be large,
constituting a majority of the packet size in the instances where those records
occur.

Interestingly, the use of DNSSEC to ensure the authenticity of DNS records
has the unintended consequence of improving DNS amplification attacks. As
one countermeasure, DNS servers may choose to apply rate-limiting separately
to DNSSEC records. If a server continually asks for a response, the servers may
discontinue providing DNSSEC records in duplicate responses before cutting the
server off entirely. This would effectively decrease the amplification factor of an
attack. However, it would limit clients’ ability to get authenticated records in
cases of high DNS packet loss. Operators may wish to consider these tradeoffs.

Table 2. Average number of bytes by resource record type for Top 1million EDNS
groups, as well as the occurrence percentages. We omit negligible results for readability.

Record Type Packet Bytes (Percent) Packet Occurrence %

A ANY A ANY

A 171 (22.13 %) 115 (7.63 %) 87.2 % 97.7 %

AAAA 158 (19.60 %) 181 (15.76 %) 60.7 % 48.8 %

NS 220 (28.54 %) 126 (8.39 %) 85.9 % 99.5 %

SOA 70 (11.10 %) 63 (3.37 %) 12.5 % 67.1 %

TXT - 141 (9.17 %) - 19.1 %

All DNSSEC 623 (71.3 %) 1,688 (84.1 %) 40.2 % 60.0 %

RRSIG 590 (67.5 %) 1,308 (65.2 %) 40.2 % 60.0 %

DNSKEY - 444 (20.8 %) - 47.4 %

NSEC3 89 (14.4 %) - 11.8 % -

Characterizing Optimal DNS Amplification Attacks and Effective Mitigation 23

4 Measuring the Adoption of DNS Rate Limiting

A recent standard specified the rate-limiting of DNS responses at the DNS server
to limit the use of DNS amplification in practice [18]. US CERT recommended
organizations employ such rate-limiting, where possible, with a limit of five iden-
tical responses to the same origin per second [16]. However, CERT acknowledged
that some popular DNS servers, notably Microsoft’s DNS server, lack response
rate limiting functionality, making rate-limiting impractical for many organiza-
tions. At the time of writing, this repeated response rate-limiting is the only
standardized scheme available at DNS servers. We thus focus our measurement
study on this approach.

CERT also acknowledged that rate-limiting may cause legitimate DNS queries
to go unanswered if there is significant packet loss or other patterns. In our own
prior work [14], where we monitored the DNS queries being issued to the author-
itative servers at the Oak Ridge National Laboratory, we found that over 26,000
DNS resolvers re-issued a repeated query before the expiration of the five-minute
TTL associated with the record. We found about 35 % of the repeated queries
were issued within the first 10 s of the original resolution request, likely due to
DNS packet loss. Further, we saw that some large Internet service providers load
balanced their clients’ DNS requests across caching DNS resolvers on contiguous
IP addresses. Because the DNS rate limiting standard recommends rate-limiting
at the /24 network prefix, it is possible that the combination of packet loss and
load balancing will cause legitimate servers to exceed the rate-limit. This will
deny clients access to the organization’s services. Organizations have an incentive
to avoid rate limiting or to set a high rate-limit value to avoid losing business or
negatively affecting their customers.

To determine the impact of rate limiting, we used a random 0.5 % sample
of name servers from our previous study and issued a set of repeated queries to
each to find out what limit, if any, the server used for repeated requests. We
issued these queries on May 3, 2014. We used an iterative process, ranging from
3 repeated queries to 15 repeated queries, with all queries in a set being issued
within a single millisecond. Between iterations, we delay roughly 6 min to ensure
any rate-limits are reset.

Using this methodology, we declare a particular name server as employing
response rate limiting if there is a consecutive sequence from some number, x, to
our limit of 15 in which each set of queries is missing at least one response. How-
ever, if a set of y queries, where y > x, successfully receives all of its responses, it
is unlikely that the server uses a rate limit of x, since rate limiting is determinis-
tic by nature. We note that this is a conservative approach, which may cause us
to overestimate rate limiting adoption, since some responses could be lost due
to chance. However, our methodology will not detect limits set at more than 15
queries a second.

In doing this probing, we found only 149 (2.69 %) of the studied name servers
employed rate limiting. Of those, 7.38 % rate limited at 5 queries/second or less.
The remaining 92.62 % used a rate limit between 9 and 14 queries/second.

24 D.C. MacFarland et al.

These results show that rate-limiting is rarely used in practice and thus is
unlikely to be a significant factor in a DNS amplification attack.

5 Countermeasure: Tunnel to Remote Resolver

Under normal flooding-based DDoS attacks, the victim can employ filtering at
the victim’s organization. However, victim organizations often also enlist filtering
support from the organization’s upstream Internet provider. These providers
often have greater capacity and can employ filters before the traffic would reach
the organization’s last-mile link, which is often a bottleneck link. These providers
can also employ such filtering at each ingress router to achieve more scalable,
distributed filtering for providers with many peering points.

While a similar approach could also be used to filter all DNS response pack-
ets destined to the victim organization, this would also prevent legitimate DNS
traffic both to and from that organization. Inbound traffic to the organization’s
authoritative DNS servers can be outsourced to one of the many entities, such
as CloudFlare [3], which offer robust, off-site DNS hosting services using any-
casting techniques. Since these approaches only focus on protecting externally
accessible resources, they do not protect resolvers performing outbound local
DNS resolutions.

We propose to address this problem in a simple way: create an off-premises
DNS resolver for the organization and create a tunnel, using virtual private
network protocols such as IPSec or SSL, between the off-premise resolver and the
organization’s on-site DNS resolver. We can then configure the on-site resolver
to forward all DNS requests through the tunnel to the off-site DNS resolver
while configuring the off-site resolver to operate recursively on behalf of the
organization. Organizations could then simply request their upstream Internet
providers to filter all DNS response traffic to the organization. This will filter
the attack traffic, but will not affect the tunneled traffic between the resolvers,
allowing organizations to maintain full DNS resolver functionality.

Many cloud providers would allow an organization to cheaply store and run a
virtual machine that acts as an off-site DNS resolver. Since the resolver requires
minimal computational resources, such hosting would be widely available for less
than a dollar per day of use. As long as the organization’s upstream provider
can filter the attack, organizations could shrug off DNS amplification attacks
of arbitrary size with minimal expense. With widespread adoption, the value of
amplification attacks would decrease for attackers and their use may decline.

To demonstrate the feasibility of the approach, we used PlanetLab to host
a DNS resolver off-site. The remote node was located in Rhode Island, USA,
while our local resolver was hosted at our organization in Massachusetts, USA.
We used BIND 9.5 as the DNS software on both our local resolver and on the
remote PlanetLab resolver. We used OpenSSL to create an encrypted tunnel
between the resolvers. We pre-install the DNS and OpenSSL software on each
machine.

We then measured the amount of time required to transition from the resolver
performing queries locally to performing the queries through the remote resolver.

Characterizing Optimal DNS Amplification Attacks and Effective Mitigation 25

We found that our solution’s average start time was 1.36 s across 10,000 trials
with a 0.55 s standard deviation. This overall time is the sum of the time required
to start the remote BIND instance, establish the SSL tunnel, alter the configu-
ration file on the local BIND resolver, and to reload the local resolver to apply
these changes. We also determine the client’s perspective of perceived downtime
during the switch to the solution, after it has been set up, using a host that
issued a query every 100 ms. Across 10,000 runs, it took an average of an addi-
tional 0.66 s (standard deviation of 0.81 s) from initiating the change until the
first response was received by the client.

While using a remote resolver, the latency associated with each query increased
to accommodate the propagation delays between the local and remote resolvers, as
shown in Table 3. This had an impact on the latency for lookups. We first measured
the delay between issuing a DNS query and receiving its response at the remote
machine (which we label the baseline). We then measured the delay between issu-
ing a DNS query and receiving the response at the local resolver, which forwards
the query over the encrypted tunnel and to the remote machine for a recursive
resolution (which we label the solution). The mean additional latency was 16 ms.
Naturally, the geographical location and connectivity of the remote resolver will
impact the overall latency. However, we can see that the overhead of the solution
itself is minimal.

Table 3. Latency comparison of DNS resolutions on directly from the remote resolver
to those forwarded by a targeted network to the remote resolver.

Approach Query Response Time (ms) Standard Deviation Number of Queries

Minimum Median Mean

Baseline 7 69 128 166 1,547

Forwarded 22 85 94 62 1,344

We note that the adversary could learn about the victim’s use of a remote
resolver by having a client inside the victim’s network, which can cause queries
to traverse the remote resolver, and by operating an authoritative server that
would be queried by the remote resolver. However, the victim can easily adapt
to this by creating N remote resolvers, requiring the attacker to divide their
resources. The victim organization may also monitor the attack, discover the
colluding entities, and secure the internal client.

While this solution does require the cooperation of a third-party, that third-
party is the victim organization’s ISP, which has a financial interest in assisting
its customer. Furthermore, the involvement of the ISP is minimal, constituting
the addition of a simple filter rule.

6 Conclusion

In this work, we analyze the attack potential associated with DNS amplifica-
tion attacks that focus on using authoritative servers as amplifiers. We find that

26 D.C. MacFarland et al.

attackers can launch damaging attacks of 1,444 MBytes/s of traffic at the target
by sending only 44 MBytes/s of attack traffic from the source, and that botnets
could scale up such attacks easily. We find that less than 3.8 % of authorita-
tive servers are responsible for the highest amplification factors. Further, we
note that DNSSEC played a significant role in amplification: by securing the
DNS infrastructure, defenders are increasing the amplification potential of DNS
reflector attacks. Further, we note that DNS response rate limiting has minimal
adoption, with less than 3 % of name servers using the approach.

While much discussion has focused on open resolvers, they functionally serve
as distributed mirrors of the top amplifying authoritative servers. These resolvers
could also let attackers bypass rate-limiting at servers; however, with less than
3 % of servers using rate-limiting, open resolvers only seem valuable to have a
larger base to distribute attacks.

While attackers have powerful tools at their disposal, we provide a simple
mechanism that allows a victim organization to mitigate an on-going attack
while incurring only modest latency increases in the organization’s own DNS
queries. Further, we note that organizations may be able to decrease their role in
DNS amplification attacks by rate-limiting DNSSEC responses when repeatedly
queried by a single source.

References

1. Bright, P.: Spamhaus DDoS grows to Internet-threatening size, March 2013.
http://arstechnica.com/security/2013/03/spamhaus-ddos-grows-to-internet-threat
ening-size/

2. Center for Measurement and Analysis of Network Data, Naval Postgraduate
School: Spoofer project: State of IP spoofing, February 2014. http://spoofer.
cmand.org/summary.php

3. CloudFlare: Cloudflare advanced ddos protection. https://www.cloudflare.com/
ddos

4. Conrad, D.: Indicating resolver support of DNSSEC. IETF RFC 3225, December
2001

5. Damas, J., Neves, F.: Preventing use of recursive nameservers in reflector attacks.
IETF RFC 5358, October 2008

6. Damas, J., Vixie, P.: Extension mechanisms for DNS (EDNS(0)). IETF RFC 6891,
April 2013

7. Elz, R., Bush, R., Bradner, S., Patton, M.: Selection and operation of secondary
dns servers. IETF RFC 2182, July 1997

8. Incapsula Inc: 2013–2014 ddos threat landscape report, April 2014. http://www.
imperva.com/docs/RPT 2013-2014 ddos threat landscape.pdf

9. Kalafut, A.J., Shue, C.A., Gupta, M.: Touring DNS open houses for trends and
configurations. IEEE/ACM Trans. Netw. PP(99), 1 (2011)

10. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from hell? reducing the
impact of amplification ddos attacks. In: USENIX Security Symposium (2014)

11. Paxson, V.: An analysis of using reflectors for distributed denial-of-service attacks.
ACM SIGCOMM Comput. Commun. Rev. 31(3), 38–47 (2001)

http://arstechnica.com/security/2013/03/spamhaus-ddos-grows-to-internet-threatening-size/
http://arstechnica.com/security/2013/03/spamhaus-ddos-grows-to-internet-threatening-size/
http://spoofer.cmand.org/summary.php
http://spoofer.cmand.org/summary.php
https://www.cloudflare.com/ddos
https://www.cloudflare.com/ddos
http://www.imperva.com/docs/RPT_2013-2014_ddos_threat_landscape.pdf
http://www.imperva.com/docs/RPT_2013-2014_ddos_threat_landscape.pdf

Characterizing Optimal DNS Amplification Attacks and Effective Mitigation 27

12. Prince, M.: Technical details behind a 400gbps NTP amplification DDoS attack,
February 2014. http://blog.cloudflare.com/technical-details-behind-a-400gbps-
ntp-amplification-ddos-attack

13. Rossow, C.: Amplification hell: Revisiting network protocols for DDoS abuse. In:
Network and Distributed System Security (NDSS) Symposium (2014)

14. Shue, C., Kalafut, A.: Resolvers revealed: Characterizing DNS resolvers and their
clients. ACM Trans. Internet Technol. (TOIT) 12(4), July 2013

15. US-CERT: Smurf ip denial-of-service attacks. Advisory (CA-1998-01), January
1998. http://www.cert.org/historical/advisories/CA-1998-01.cfm

16. US-CERT: Dns amplification attacks. Alert (TA13-088A), July 2013. https://www.
us-cert.gov/ncas/alerts/TA13-088A

17. US-CERT: NTP amplification attacks using CVE-2013-5211. Alert (TA14-013A),
January 2014

18. Vixie, P., Schryver, V.: Dns response rate limiting (DNS RRL), April 2012. http://
ss.vix.su/∼vixie/isc-tn-2012-1.txt

http://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack
http://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack
http://www.cert.org/historical/advisories/CA-1998-01.cfm
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A
http://ss.vix.su/~vixie/isc-tn-2012-1.txt
http://ss.vix.su/~vixie/isc-tn-2012-1.txt

Measuring BGP Route Origin Registration
and Validation

Daniele Iamartino1,2(B), Cristel Pelsser1, and Randy Bush1

1 Internet Initiative Japan, Tokyo, Japan
2 Politecnico di Milano, Milano, Italy
daniele.iamartino@mail.polimi.it

Abstract. BGP, the de-facto inter-domain routing protocol, was
designed without considering security. Recently, network operators have
experienced hijacks of their network prefixes, often due to BGP mis-
configuration by other operators, sometimes maliciously. In order to
address this, prefix origin validation, based on a RPKI infrastructure,
was proposed and developed. Today, many organizations are registering
their data in the RPKI to protect their prefixes from accidental mis-
origination. However, some organizations submit incorrect information
to the RPKI repositories or announce prefixes that do not exactly match
what they registered. Also, the RPKI repositories of Internet registries
are not operationally reliable. The aim of this work is to reveal these
problems via measurement. We show how important they are, try to
understand the main causes of errors, and explore possible solutions. In
this longitudinal study, we see the impact of a policy which discards route
announcements with invalid origins would have on the routing table, and
to a lesser extent on the traffic at the edge of a large research network.

1 Introduction

Mis-originations, an Autonomous System (AS) announcing an IP prefix to which
it has no rights, regularly appear in the Internet. Sometimes they arise from BGP
misconfigurations. They may also result from malice. A notorious prefix mis-
origination was the “YouTube incident” [9] where Pakistan Telecom advertised
one of YouTube’s IPv4 prefixes. The original intent was to censor traffic from
Pakistan destined to YouTube. However, when PT “leaked” the prefix to the
world, the event had a much larger impact than desired; traffic destined YouTube
was blackholed at global scale. A more recent example is the “Indosat event”
[17,19]. In April 2014, Indosat originated 417,038 prefixes normally announced by
other ASs. This is believed likely due to a mis-configuration, a maintenance event
gone bad [17]. In August 2014, a bitcoin miner [16] was attacked with the goal
of diverting the traffic from the miners to relay the result of their computation
and divert the monetary benefit of their work. The attack on bitcoin miners was
malicious. This last example shows the limitations of route origin validation.
Attackers will find another way to perform the attack if route origin validation
is widely deployed.
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 28–40, 2015.
DOI: 10.1007/978-3-319-15509-8 3

Measuring BGP Route Origin Registration and Validation 29

In the current taxonomy, there are three pieces to improving BGP security,
the RPKI, RPKI-based origin validation, and in the future path validation. In
this paper, we focus on RPKI and RPKI-origin validation.

The RPKI is an X.509 based hierarchy congruent with the Internet IP
address allocation administration, the IANA on top, then Regional Internet
Registries (RIRs), and ISPs, . . . It is the substrate on which origin and path
validation are based. It is currently deployed by all five RIRs, AfriNIC, APNIC,
ARIN, LACNIC, and RIPE.

RPKI-based origin validation uses RPKI data to allow routers to verify
that the AS originating an IP prefix is in fact authorized to do so. This is not
crypto checked, as a BGP update message does not carry signatures, so can be
violated. But it should prevent the vast majority of accidental’hijackings’ on the
Internet today, e.g. the Pakistani accidental announcement of YouTube’s address
space. RPKI-based origin validation is in shipping code from Cisco and Juniper,
and others soon.

A Route Origination Authorization (ROA) is an RPKI object which
verifiably asserts that a specified AS is authorized to originate BGP announce-
ments for a given set of prefixes [15]. A ROA is composed of an AS number, a list
of IP prefixes, and for each prefix, a maximum length. The maximum length is
a macro to authorize the AS to advertise more specific prefixes than the original
prefix, up to the length as specified.

It is important to understand the status of deployment of route origin valida-
tion. For this purpose, we have been collecting data from the RPKI infrastructure
since April 2012. Here we analyse these data to show the scale of deployment of
ROA registrations. We find that registration is significantly deployed in Europe
and Latin America, but is extremely poorly deployed in north America, Asia/
pacific, and Africa. We illustrate some of the events that occurred while publish-
ing entities, the RIRs, learned to operate the RPKI system. There were serious
problems regarding reliability of the RIR’s RPKI infrastructure. Overall, it var-
ied from bad to acceptable.

The incentive for operators to register ROAs is high, as it protects their
resources. In order for this to be effective other operators need to deploy route
origin validation in their ASs. That is, their routers need to check the validity of
each route’s origin. The drive to do this is multifold. It protects one’s customer
traffic from following a bogus/malicious route and it protects one’s infrastructure
from accepting many more routes than usual from a given peer (this can lead
to a session reset or the restart of the router). It will also become common good
practice, on the same level as prefix filtering, in that the effect of misconfigura-
tions are contained close to the source of the event instead of affecting the entire
Internet infrastructure. The second part of our study focuses on the validation
of routes based on the registered ROAs. We take the views from public BGP
monitors [8], and study the evolution of route origin validity over a 2.5 year time
period with the objective to show that mis-origination occurred and could have
been detected. In addition, we are interested in mis-matches between informa-
tion registered in the RPKI and advertised routes. We try to understand these

30 D. Iamartino et al.

as they may highlight misunderstanding of the technology by network operators
or poor tools or controls at the publishers. Does the validity of a route depend on
the location where the advertisement is received? We try to answer that question
next by looking at the validity status of routes at multiple locations.

Among the invalid prefixes, 81 % are covered by a valid prefix or a prefix
not registered in the RPKI. A network operator strictly enforcing route-origin
validation would not drop many prefixes. 54 % of the invalid prefixes result from
a mis-match between the prefix length and the MaxLength in the ROAs. The
other major issue results from ISPs not helping their multi-homed customers to
register their sub-allocations.

Last, performing route origin validation means BGP routes selected by
routers may change and thus can affect traffic forwarding. We try to understand
the traffic impact by looking at the statistics of an operational router within an
American research network. The router counts traffic forwarded by routes with
valid, notfound, and invalid origin. This tells us the amount of traffic that would
be dropped by the router should different BGP policies be adopted. It shows that
if an operator was to configure its routers to strictly drop routes with invalid
origin, the effect on the traffic would be negligible.

The paper is organized as follows. We describe our methodology and data sets
in Sect. 2. In Sect. 3 we look first at the extent of RPKI ROAs publication across
the different administrative regions. Second, we study the different causes of mis-
match between route advertisements and RPKI registrations. Third, we present
traffic statistics for each class of routes (valid origin, invalid, and unknown).
We present some related work in Sect. 4, and conclude in Sect. 5.

2 Methodology

2.1 Validation Process

As we are analyzing historical data, to determine the validity of a BGP route
advertisement at some point in time, the first step is to get all the published
ROAs for a given time and build a radix tree. The radix tree will then be used
to validate the route entries of subsequent BGP RIB dumps.

Each ROA file is composed of an AS number, multiple IP prefixes, and a
maximum length for each prefix. For all X.509 validated ROA files, we extract
tuples (ASN, Prefix, MaxLen, Expiration time). We insert these tuples as nodes
of a radix tree where the key is the IP Prefix of the tuple. That is, each node of
the radix tree is identified by the IP prefix that it is covering. Note that more
than one ROA record might exist for a particular prefix. Consequently, each
node may contain more than one ROA record.

After building the radix tree, we take the BGP RIB dump following the down-
load of the ROAs from the RPKI infrastructure, and before the next download
of ROAs. We validate the content in each RIB dump separately. Each dump
gives us a view of the validity at a different point in time. For each announce-
ment found in a RIB dump, we search for the longest prefix match in the radix
tree. If no such node is found, we mark the announcement as “ROA not found”.

Measuring BGP Route Origin Registration and Validation 31

Then, for each ROA present in the node, we check if the max length of the node
covers the announced prefix and if the AS number specified in the ROA record is
equal to the origin AS number of the announcement. If these conditions are met,
the ROA validates the route announced for the prefix. If no validating ROA is
found in the given node, we traverse upward to shorter prefixes until we either
find a validating ROA or there is no parent node. If we moved upward in the
tree and never found a matching ROA, the route is marked as invalid, else its
origin AS is deemed valid.

In a RIB dump, there may be multiple announcements for a single prefix,
as a monitor may learn the same prefix from different BGP peers. We validate
each announcement separately.

2.2 Datasets

This study relies on a number of datasets: (1) the download of ROAs from the
RPKI infrastructure every hour from March 2012 to August 2014, (2) BGP RIB
dumps from RouteViews [8] for the same period. RouteViews RIB dumps are
available every two hours, and (3) the marked statistics taken from a live router
in a research network. We perform most validation on the LINX RIB dumps.
To determine the sensitivity of route origin validity at different locations we also
consider the ISC, Sao Paulo, Sidney, and WIDE RouteViews monitors.

Regarding the first dataset, as the IANA has not been allowed to provide an
RPKI root, we chose trust anchors following the recommendation of the IETF
SIDR working group [15], using the rcynic tool [7] to download ROAs from the
RIPE, LACNIC, AfriNIC, APNIC and CA0 trust anchors, with two exceptions;
for legal reasons, we only have ARIN data starting from August 2014 and we
add the CA0 data. ARIN has a policy of providing access to the data only to
those who have signed a document. CA0 is the trust anchor for some legacy and
experimental address space that ARIN will not register.

As ROAs can not cover AS-SETs, we excluded from our study the minuscule
portion of BGP announcements which have an AS-SET for the origin AS.

When we validate the origins of advertisements in a RIB dump, we take the
ROAs gathered during the rcynic run prior but closest in time to the time-stamp
of the RIB dump.

3 Results

3.1 RPKI Deployment

First we look at the extent of RPKI registration deployment. Table 1 shows the
number of IPv4 host addresses (/32 s) covered by ROAs by each RIR publication
point. The 3rd column shows the total number of IPv4 addresses delegated by
each RIR. We observe that while ARIN has allocated most of the address space,
it lags far behind the other Northern RIRs in registrations, giving many North
Americans a distorted view of RPKI deployment. The same is true for APNIC.

32 D. Iamartino et al.

Table 1. Deployment status of the registration of IPv4 addresses on September 8, 2014
(data from [1]) compared to the allocation of IPs by these RIRs on the same day [2–6].

Publication Number of IPv4 addresses Number of IPv4 Percentage

point covered by a ROA allocated coverage

RIPE NCC 125,133,312 797,906,680 15.68 %

ARIN 30,187,520 1,733,372,928 1.74 %

LACNIC 19,089,408 189,833,472 10.05 %

AfriNIC 2,814,464 119,534,080 2.35 %

APNIC 744,960 872,194,816 0.08 %

Total 177,969,664 3,712,841,976 4.79 %

Fig. 1. Accepted (valid) ROA files below the six trust anchors. The discontinuous
increases in number of ROAs observed for RIPE NCC occur during key rollovers.
LACNIC and APNIC face a loss of valid ROAs for roughly seven months, likely due to
an expiration of their X.509 certificate. There is a hole in our data, for all trust anchors
between July and August 2013.

RIPE NCC is currently the leader in terms of both absolute and relative amount
of allocated address space covered by ROAs, and LACNIC is quite active.

In Fig. 1 we can see, for each RIR, the number of ROAs authenticated by
rcynic between March 2012 and September 2014. There is a one-month hole
between July and August 2013 due to a problem in our data collection. We only
started collecting ARIN’s data in August 2014, due to ARIN’s legal barriers
placed on RPKI use. We see LACNIC data being interrupted from the end
of December 2012 to mid August 2013; we believe the reason for this is X.509
expiration of their trust anchor. That this went undetected is operationally quite
disturbing. Also the APNIC repository had a similar event for seven months
between January and August 2013. Between November 2012 and February 2013

Measuring BGP Route Origin Registration and Validation 33

we can see the effects of key roll-over on the RIPE data. We started to collect
CA0 data on August 2013. We observe regular drops in the number of ROAs
for CA0 because this data is hosted on a machine that is regularly disconnected
from the Internet for extended periods of time giving time for objects to expire
without being renewed on time.

3.2 Validity Status of Prefix Announcements Over Time

For this analysis we use a BGP RIB dump taken every 30 days on the LINX
monitor of Route-Views. In a RIB dump we usually find several announcements
for the same prefix received from different BGP peers. For origin-validation pur-
poses, each announcement is identified by: its time-stamp, the prefix announced,
and the origin AS (the right-most AS on the AS PATH). Note that in the case
of a RIB dump file, the time-stamp is always equal to the global time-stamp of
the RIB dump. We validate each announcement as described in Sect. 2.1. In a
given RIB dump, we might have several announcements with different origin AS
for the same prefix. Consequently, we classify every prefix in one of the following
groups:

– Valid only: All announcements observed for this prefix are valid.
– Invalid only: All announcements observed this prefix are invalid.

Fig. 2. Validity status of routes seen by route-views LINX monitor between June 2012
and September 2014. The first (green, pink and yellow) bar shows the status of prefixes
independently from the existence of covering prefixes. The second bar (blue, red and
grey) illustrates the reachability of a prefix considering that an invalid prefix might be
covered by another valid or “ROA not found” prefix (Color figure online).

34 D. Iamartino et al.

Table 2. A few data points to compare valid and invalid prefixes to the reachability
of these prefixes should the LINX monitor drop invalid prefixes. Most invalid prefixes
are still reachable because of the existence of a covering prefix that is either marked as
“valid” or “ROA not found”.

Date Total Valid Invalid Valid and Percentage of Reachable Unreachable Percentage of

prefixes prefixes prefixes invalid RPKI-covered prefixes prefixes invalid covered

seen prefixes prefixes

2012/06/01 432,516 7,253 1,621 0 2.05% 8,648 226 86.05%

2012/11/28 454,601 9,258 2,123 13 2.50% 11,149 245 88.45%

2012/12/28 458,955 5,097 1,368 16 1.41% 6,276 205 85.01%

2013/09/24 504,733 17,567 3,400 8 4.15% 20,537 438 87.11%

2014/05/22 525,241 23,531 2,693 31 4.99% 25,731 525 80.50%

2014/07/21 534,519 24,511 2,916 18 5.13% 26,904 541 81.44%

2014/08/20 538,926 25,973 3,168 17 5.41% 28,565 593 81.28%

– Valid and invalid: We found both valid and invalid announcements for the
prefix. That is, some announcements have a different origin ASs.

– ROA not found: There is no ROA covering this prefix.

As seen in Sect. 3.1, only 4.79% of IP addresses are covered by ROAs. This
means that a lot of prefix advertisements will fall in the “ROA not found”
category. For readability, we do not show this case in the following figures. When
we look at the validity of the advertisements using the above taxonomy (left-
side bars of Fig. 2) we can first see a very significant decrease of prefixes being
validated between December 2012 and August 2013. This is due to the problem
in the LACNIC repository mentioned in Sect. 3.1. Almost all ROA files of the
LACNIC repository disappeared. Thus, all the prefixes which were previously
covered by these ROAs are labelled “ROA not found”.

To validate the last RIB dump (August 2014), we added ARIN ROAs. This
is not the case for the other months, as we had not captured those data (see
Sect. 3.1). For this reason, some prefixes which were “ROA not found” become
covered by an ARIN ROA, leading to a slight increase of the total coverage of
prefixes to a final value of 5.41 % on August 2014 (see last line, 6th column of
Table 2).

Prefixes tagged both “valid and invalid” are very rare. In some dumps they
are not present at all. We observed a peak of 31 on 2014/05/22. We believe that
these could be due to either an anycast prefix with ROAs missing for some of
the potential origin AS, a misconfiguration (some origins are private AS numbers
that in theory should not be leaked to the route-views monitor), or an attack.
We saw that, for several of these, the failing AS and the valid AS have very
similar AS names, hinting that these are likely not attacks.

Table 2 shows some of the data points of Fig. 2. Column 3–5 correspond to the
elements of the first bar for some times on the x-axis in the figure. We can further
deduce the amount of’ROA not found’ prefixes by looking at column 6. In June
2012, 97.95% of the prefixes were not covered by any ROAs. This decreases to
94.59% in August 2014.

Measuring BGP Route Origin Registration and Validation 35

Table 3. Reachable and unreachable prefixes from different route-views monitors on
20 August 2014

Monitor All prefixes RPKI-covered RPKI-covered un- Percentage of Percentage of

name seen reachable prefixes reachable prefixes unreachable RPKI-covered

seen seen prefixes

ISC 540,197 27,587 591 2.14% 5.21%

LINX 538,926 28,565 593 2.07% 5.41%

Sao Paulo 547,554 28,521 580 2.03% 5.31%

Sydney 538,378 28,741 596 2.07% 5.44%

WIDE 528,883 27,457 588 2.14% 5.30%

3.3 Taking Coverage into Account

It is often assumed that operators who validate advertisements will drop invalids.
In order to better understand the effect of that policy on reachability, we cannot
simply look at prefixes separately. We need to consider the coverage of invalids
by other prefixes. Let’s assume that a BGP border router receives the same
routes as our LINX monitor. It drops all “invalid only” prefixes. In addition, in
the deployment phase, we expect operators to also accept announcements for
prefixes with no ROA. If a prefix is “valid” or “valid and invalid”, we consider
it as reachable, because it means that at least one valid announcement for that
prefix was present. When a prefix is marked “invalid only”, there are some cases
when it could be reached:

– The invalid prefix is up-covered by another valid prefix (Example:
announcement of 10.1.2.0/24 is invalid, but 10.1.0.0/16 is also announced and
valid, so the monitor can reach 10.1.2.0/24 anyway exploiting the covering
valid announcement)

– The invalid prefix is completely down-covered by other valid prefixes
(Example: announcement of 10.1.0.0/16 is invalid, but 10.1.0.0/17 and
10.1.128.0/17 are also announced and valid)

– The invalid prefix is up-covered by a “ROA not found” prefix (Example:
announcement of 10.1.2.0/24 is invalid, but 10.1.0.0/16 is also announced and
there is no covering ROA for the latter)

So we can finally say that a given prefix is reachable if it is “ROA not
found”, “valid only”, “valid and invalid” or “invalid only” covered as in one of
the three cases above. Instead, when a prefix is “invalid only” and there is no
coverage by another valid or “ROA not found”, we mark it as unreachable. The
right-side bars of Fig. 2 show the reachability of prefixes considering coverage.
Table 2 list of few of the key values in columns 7–9. We note that around 80 %
of invalid prefixes are in fact reachable. They are “rescued” by another valid or
a “ROA not found” covering prefix.

36 D. Iamartino et al.

3.4 The Effect of Monitors

Up to now we considered the data from the LINX monitor because it has a
lot of peering links. This monitor is interesting because it receives a lot of het-
erogeneous announcements. Here we aim to see if our observations are highly
dependent on that monitor. For that purpose, we consider 4 additional route-
views collection points: ISC (Palo Alto CA, USA), SAOPAULO (Sao Paulo,
Brazil), SYDNEY (Sydney, Australia), WIDE (Tokyo, Japan). The main dif-
ference between monitors is that they do not receive routes for the same amount
of prefixes (see Table 3). However, the percentage of RPKI-covered prefixes seen
is very similar. We think that in order to detect specific events, it might be better
to combine the data from all monitors, but for the purpose of our measurements
it’s enough to consider one of the biggest. The percentage of unreachable prefixes
due to an invalid origin is almost the same at any of the 5 locations considered.

3.5 The Causes Behind Invalids

What are the reasons behind failed route origin validations? For every “invalid
only” or “valid and invalid” prefix, we look at the reason why the ROA record(s)
present in the longest-prefix matching node of the radix tree does not match the
advertisement under validation. We analyze all invalid prefixes, discarding their
potential coverage by other prefixes, contrary to Sect. 3.3. We divide the failed
validations into three categories:

– Invalid maximum prefix length: For example, the monitor receives an
announcement for 10.1.2.0/24 but the ROA record covers only 10.1.0.0/16-16.

– Invalid origin AS number: The monitor receives an announcement by
AS666 for 10.1.2.0/24 but the ROA record authorize 10.1.2.0/24 only from
AS42.

Fig. 3. Breakdown of invalid prefixes, by failing cause, as seen by LINX monitor

Measuring BGP Route Origin Registration and Validation 37

Table 4. Percentage of invalid prefixes, divided by failing reason: MaxLength/ASN/
both. Data from LINX monitor of route-views project.

Date Prefixes invalid Prefixes invalid Prefixes invalid due to

due to MaxLength due to wrong ASN MaxLength and ASN

2012/06/01 989 (61.01 %) 387 (23.87 %) 245 (15.11 %)

2012/11/28 1053 (49.30 %) 644 (30.15 %) 439 (20.55 %)

2014/06/21 1661 (55.61 %) 462 (15.47 %) 864 (28.93 %)

2014/07/21 1690 (57.60 %) 411 (14.01 %) 833 (28.39 %)

2014/08/20 1736 (54.51 %) 584 (18.34 %) 865 (27.16 %)

– Both maximum length and AS number: At least two ROAs are found
in the longest-prefix matching node for the prefix, one or more of them failing
on AS number, the other(s) failing on MaxLength; or there is a single ROA
failing for both reasons. This may cover a lot of different causes and we don’t
have enough information to classify them.

In Fig. 3 we can see that mismatched maximum length is the most widespread
cause for invalids (see Table 4 for some numbers relative to the figure). There
are less invalids due to non-matching origin ASs.

We can further subdivide the class of “invalid origin AS number” and “both
maximum length and AS number” errors by looking for the valid AS within
the AS path. This indicates that the up-stream provider registered the covering
prefix but did not do their job and create a ROA for their customer’s sub-
allocation. For example, the service provider (ISP) registers (prefix 10.0.0.0/16,
AS42) and allocates 10.0.1.0/24 to its multi-homed customer AS666. The mon-
itor receives the AS path 100 200 42 666. The announcement of the customer is
invalid because only AS42 is authorized by the ROA. However AS42 is present
in the AS path. We took invalid prefixes of the last RIB dump of August 2014,
and for each of them we check whether at least one of the announcements of that
prefix contains a correct AS in the AS path. Results are that 57.36 % of “invalid
origin AS number” invalid prefixes and 83.23 % of “both maximum length and
AS number” invalid prefixes contains the correct AS on the AS path.

Summing the percentages, when we see an announcement coming from the
wrong origin AS, in %72 of the cases we can find the correct AS in one of the AS
paths of that prefix. As the customer (AS666 in the example) is multi-homed,
there are likely one or more other AS Paths also starting from AS666 but not
having the allocating up-stream in the path. However, the 54.51 % percentage
of MaxLength problems alone is still the overwhelming invalid cause, and could
be easily fixed by submission of correct ROA records by organizations.

This study highlights the need for operators to monitor the status of their
prefixes with regard to what is registered in the RPKI. In addition, customers
should make sure that their provider registers the prefixes they have been allo-
cated or should perform the registration themselves. Most invalids today are

38 D. Iamartino et al.

Fig. 4. Percentage of bytes or packets coming or going to an IP address of an RPKI-
covered prefix

probably a result from operators learning a new technology and have not yet
developed good procedures. By monitoring the validity of their prefixes they
should be able to learn from their mistakes and fix them. RIRs and researchers
could also publish these problems and notify those who should fix them.

3.6 Effect on Traffic in a Real Network

BGP announcement data can give us an idea about the deployment of origin-
validation on the global Internet. However, most of the common traffic on the
Internet is usually directed to just few destinations. For this reason, we gath-
ered data about how many “RPKI-protected” packets/bytes are passing across
a real router within a large research network. We say that a packet/byte is
‘RPKI-protected’, if the packet/byte was received from an IP address part of an
RPKI-covered prefix or sent to such an IP destination. We observe in Fig. 4 that
very little traffic is RPKI-covered, likely because this is an American research
network whose prefixes ARIN will not certify. The embedded figure shows the
percentages of bytes/packets with invalid source or destination that cross the
router. Traffic from/to invalid origins is negligible in this case. This finding is
consistent with [10,13].

4 Related Work

The closest works to ours are [13] and [10]. They provide snapshots of route val-
idation in specific deployments. Here we go further as we study route validation
over an extended period of time. In addition, we provide statistics regarding the
RPKI infrastructure, and the registration of resources and events caused by the
operation of the infrastructure.

Measuring BGP Route Origin Registration and Validation 39

In [18], Wählisch et al. aim to distinguish misconfiguration from intentional
hijacks. For this purpose they rely on route origin validation. On the other hand,
PHAS [14] offers a real-time hijacking detection service. PHAS monitors the set
of origin ASs observed in public data. It notifies operators that register to the
system of changes in observed origin ASs. In the RPKI, publication points can
remove resources from the distributed database with the adverse effect that
advertisements from some prefixes may not be validated anymore. The work
of Heilam et al. [12] aims to prevent publication points from removing resources
from the system without the consent of the owner(s) of the resources. The objec-
tive of [11] is to measure the effect of attacks on the traffic. The authors observe
that even with secure routing mechanisms, it is possible to attract a large amount
of traffic by advertising routes along valid paths but infringing the BGP policies
for targeted prefixes.

5 Conclusion

In this paper, we studied the extend of RPKI deployment. We observed that
Europe and Latin America are leading today, with many ROAs registered.
Regarding the RIRs RPKI infrastructure, there were serious problems. The entire
dataset became unavailable for extended periods of time for a couple of RIRs.
We then quantified the state of origin-validation deployment. It is about 5 %,
and increasing. Among the invalid BGP announcements, the number of invalid
prefixes due to the MaxLength error alone are the majority, and they could be
easily fixed by just correct ROA submissions. We also discovered that many
invalid prefixes are due to coverage by a ROA of a service provider. This shows
that organizations that are still not planning to deploy RPKI should care about
what their service provider is doing.

While we found several invalid BGP announcements of prefixes, most of them
are “rescued” by another valid or “ROA not found” covering prefix. This means
that, today, filtering invalid prefixes could leave few unreachable prefixes, but
not as many as one would think. When looking at the actual effect on the traffic
crossing a router, we find that dropping invalids leads to negligible amount of
traffic being dropped, and hence is safe to do.

Acknowledgments. We thank the operator of the large American research network
for setting up the collection of the traffic statistics. Rob Austein was a great help toward
understanding the mechanics of the RPKI infrastructure and the different events we
observed.

References

1. IPv4 Address Space in ROAs (/24s). http://certification-stats.ripe.net/?type=
roa-v4

2. IPv4 Prefixes Delegated by AfriNIC. ftp://ftp.afrinic.net/stats/afrinic/delegated-
afrinic-extended-latest

http://certification-stats.ripe.net/?type=roa-v4
http://certification-stats.ripe.net/?type=roa-v4
ftp://ftp.afrinic.net/stats/afrinic/delegated-afrinic-extended-latest
ftp://ftp.afrinic.net/stats/afrinic/delegated-afrinic-extended-latest

40 D. Iamartino et al.

3. IPv4 Prefixes Delegated by APNIC. ftp://ftp.apnic.net/pub/apnic/stats/apnic/del
egated-apnic-extended-latest

4. IPv4 Prefixes Delegated by ARIN. ftp://ftp.arin.net/pub/stats/arin/delegated-
arin-extended-latest

5. IPv4 Prefixes Delegated by LACNIC. ftp://ftp.lacnic.net/pub/stats/lacnic/dele
gated-lacnic-extended-latest

6. IPv4 Prefixes Delegated by RIPE NCC. ftp://ftp.ripe.net/ripe/stats/delegated-
ripencc-extended-latest

7. rcynic RPKI validator. http://rpki.net/wiki/doc/RPKI/RP/rcynic
8. University of oregon route views project. http://www.routeviews.org
9. YouTube Hijacking: A RIPE NCC RIS case study, March 2008. http://www.

ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-
ripe-ncc-ris-case-study

10. Fincham, M.: RPKI, NZNOG 2014, February 2014. http://hotplate.co.nz/archive/
nznog/2014/rpki/

11. Goldberg, S., Shapira, M., Hummon, P., Rexford, J.: How secure are secure inter-
domain routing protocols? Comput. Netw. 70, 260–287 (2014)

12. Heilman, E., Cooper, D., Reyzin, L., Goldberg, S.: From the consent of the routed:
improving the transparency of the RPKI. In: Sigcomm 2014 (2014)

13. Kloots, J.: RPKI Routing Policy Decision-Making, A SURFNET Perspective,
February 2014. https://blog.surfnet.nl/?p=3159

14. Lad, M., Massey, D., Pei, D., Wu, Y., Zhang, B., Zhang, L.: PHAS: a prefix hijack
alert system. In: Proceedings of USENIX Security Symposium (2006)

15. Lepinski, M., Kent, S.: An Infrastructure to Support Secure Internet Routing, RFC
6480, February 2012

16. Litke, P., Stewart, J.: BGP Hijacking for Cryptocurrency Profit, August 2014.
http://www.secureworks.com/cyber-threat-intelligence/threats/bgp-hijacking-for-
cryptocurrency-profit/

17. Toonk, A.: Hijack Event Today by Indosat, April 2014. http://www.bgpmon.net/
hijack-event-today-by-indosat/

18. Wählisch, M., Maennel, O., Schmidt, T.C.: Towards detecting BGP route hijacking
using the RPKI. In: Sigcomm 2012 (Poster) (2012)

19. Zmijewski, E.: Indonesia Hijacks the World, April 2014. http://www.renesys.com/
2014/04/indonesia-hijacks-world/

ftp://ftp.apnic.net/pub/apnic/stats/apnic/delegated-apnic-extended-latest
ftp://ftp.apnic.net/pub/apnic/stats/apnic/delegated-apnic-extended-latest
ftp://ftp.arin.net/pub/stats/arin/delegated-arin-extended-latest
ftp://ftp.arin.net/pub/stats/arin/delegated-arin-extended-latest
ftp://ftp.lacnic.net/pub/stats/lacnic/delegated-lacnic-extended-latest
ftp://ftp.lacnic.net/pub/stats/lacnic/delegated-lacnic-extended-latest
ftp://ftp.ripe.net/ripe/stats/delegated-ripencc-extended-latest
ftp://ftp.ripe.net/ripe/stats/delegated-ripencc-extended-latest
http://rpki.net/wiki/doc/RPKI/RP/rcynic
http://www.routeviews.org
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://hotplate.co.nz/archive/nznog/2014/rpki/
http://hotplate.co.nz/archive/nznog/2014/rpki/
https://blog.surfnet.nl/?p=3159
http://www.secureworks.com/cyber-threat-intelligence/threats/bgp-hijacking-for-cryptocurrency-profit/
http://www.secureworks.com/cyber-threat-intelligence/threats/bgp-hijacking-for-cryptocurrency-profit/
http://www.bgpmon.net/hijack-event-today-by-indosat/
http://www.bgpmon.net/hijack-event-today-by-indosat/
http://www.renesys.com/2014/04/indonesia-hijacks-world/
http://www.renesys.com/2014/04/indonesia-hijacks-world/

On the Diversity of Interdomain
Routing in Africa

Rodérick Fanou1,2(B), Pierre Francois2, and Emile Aben3

1 IMDEA Networks Institute, Madrid, Spain
2 Universidad Carlos III de Madrid (UC3M), Madrid, Spain

{roderick.fanou,pierre.francois}@imdea.org
3 RIPE NCC, Amsterdam, The Netherlands

emile.aben@ripe.net

Abstract. With IP networking booming in Africa, promotion of BGP
peering in the region emerge, and changes in the transit behavior of ISPs
serving Africa are expected. However, little is known about the IP tran-
sit topology currently forming the African Internet. Enhancing the RIPE
Atlas infrastructure, we evaluate the topology interconnecting ISPs based
on the continent. We reveal a variety of ISP transit habits, depending
on a range of factors such as the official language or the business profile
of the ISP. We highlight the emergence of IXPs in Africa, evaluating its
impact on end-to-end connectivity. Our results however emphasize the
remaining dominance of ISPs based outside Africa, for the provision of
intra-continental paths. We study the impact of this aspect on AS path
length and end-to-end delay. Such results illustrate that performing mea-
surements from a broad, diversified, range of vantage points is necessary
to assess interdomain routing on the continent.

Keywords: RIPE Atlas · IP transit · African Internet · IXP

1 Introduction

Despite major investments in submarine and terrestrial cable deployments in
Africa, Internet access is still perceived as of low quality, with high latency
and low bandwidth [1,2]. According a study of the African Union [3], Africa
spends between US $400 millions and $600 millions per year in transit fees for
intra-African traffic. Initiatives such as the African Internet eXchange System
have thus been launched to promote the creation of IXPs and regional carri-
ers, and improve the fragmented status of the IP infrastructure [4]. It provides
an enabling environment for cross-border interconnection to thrive and become
more competitive to reduce transit costs paid by Africa for intra-African traffic
exchange. Meanwhile, caches and peering points have been deployed by CDNs
(Google, Akamai, Cloudfare, etc.) in the region proving the capacities to offload
traffic from the expensive transit links. However, little is known about the cur-
rent state of the Internet topology in Africa, due to its low representation in

c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 41–54, 2015.
DOI: 10.1007/978-3-319-15509-8 4

42 R. Fanou et al.

existing measurement projects. Obtaining relevant topological data, especially
for access-to-access interconnection is thus essential to understand its current
state and observe its foreseen evolution. Recent work focusing on Africa, such as
[2,5,6], relied on a very limited set of vantage points, and had different focuses,
as explained later.

In this paper, we set as key milestone to obtain an interdomain map that is
not biased towards the South African perspective. To this end, we met ISPs in
Benin, Burkina Faso, Congo, Ghana, Ivory Coast, Mauritania, Morocco, Niger,
Nigeria, Senegal, and Togo, to deploy RIPE Atlas probes within their networks.
We complemented our set of probes with those deployed by RIPE Atlas Ambas-
sadors. To obtain insights on the evolution of the peering ecosystem, our mea-
surement campaign covers 6 months, monitoring end-to-end paths among v4 and
v6 probes scattered on the continent [7]. We discover a large variety of ISP tran-
sit habits, notably correlated with the location, the official language, and the
monetary union of the country in which operate the ISP. Our results illustrate
that, with the exception of ISPs based in South Africa, the provision of intra-
continental paths is dominated by ISPs based outside Africa, while South Africa
is being adopted as a hub for East-West African communications. We study the
impact of such aspects on the end-to-end delay between ISPs, notably among
networks based in the same country. Finally, we illustrate the benefits of new
IXPs with respect to end-to-end delay.

The remainder of this paper is structured as follows. Section 2 discusses related
work. Section 3 presents our methodology, while Sect. 4 exposes our results.
Section 5 concludes the paper and describes our plans for further research.

2 Related Work

An extensive amount of research has been carried out on the discovery of the
Internet topology, both at the router level and the AS level [8–10]. Archipelago
has the goal of reducing the efforts needed to develop and deploy sophisticated
large-scale measurements [11]. Of its 94 monitors, only 5 are deployed in Africa.
For this study, a larger deployed base of vantage points was needed. Similarly,
although the PingER project [12] involves 46 African countries, only Burkina
Faso and South Africa host a monitoring site, preventing us from doing large
scale end-to-end measurements.

Gilmore et al. mapped, in [5], both the router level and AS level graphs of
intra-African traffic. Traceroutes from South Africa towards all the IPs allocated
by AFRINIC were performed for a week. To improve their results, they extracted
from the RIBs of routers in the South African Tertiary Education Network,
the links among ASes registered in AFRINIC and those towards their direct
neighbouring ASes. As a consequence, they obtained one way paths from which
they infered a tree, of which South Africa is the root. They acknowledged that
the link density might look different if the traceroute probes were sent out from
other countries in Africa.

Recently, Gupta et al. investigated Internet connectivity between Kenya,
Tunisia, and South Africa [6], by performing traceroutes from access networks

On the Diversity of Interdomain Routing in Africa 43

to sites hosting popular content. They noticed that 66.8 % of paths from their
vantage points towards Google cache servers located in Africa leave the continent.
They generalized, from their results, the nature of intra-domain interconnectivity
on the continent. Nevertheless, broadband access networks in those countries are
more developed in comparison with most African countries, so that, as acknowl-
edged by the authors, the obtained dataset may not reflect the nature of the
paths in other countries.

In contrast, our study presents discoveries of the Internet infrastructure based
on measurements performed from access to access networks, as we aim at study-
ing how Africans communicate with one another. We perform these measure-
ments among a large variety of networks, and for a long enough period of time
to study the dynamics of the African Internet topology. The paths in our dataset
are typically not seen in RouteViews, RIS and PCH datasets, as these do not
host monitors in the studied regions. We also show that ISP transit and peer-
ing habits vary throughout the continent. By exhibiting newly established IXPs
located in Africa, as well as the use of other ones, we show that ISPs do peer
now in Africa, illustrating the first benefits of the initiatives promoting peering.
An exploration of how these measurements in Africa compare to measurements
in other regions is left to future work.

3 Methodology

3.1 Data Collection

Multiple challenges influenced our choice for the measurement infrastructure.
First, whereas network operators are reticent to the intrusion of foreign devices,
for legitimate security and privacy reasons, we had to find a relevant num-
ber of hosting locations for the measurement devices. Such devices have to
be robust, as power outages and surges frequently occur in the studied coun-
tries. Finally, we preferred an open measurement infrastructure, as we wanted
to provide means for network operators and researchers to further study African
networking. We chose the RIPE Atlas measurement platform, which consists of
over 7400 deployed worldwide [7]. These devices are free, secure, and require no
maintenance.

In June 2013, Africa only hosted a few active RIPE Atlas devices, with almost
no deployment in the West. To improve the situation, we deployed 21 RIPE Atlas
probes in 15 ISPs networks covering 11 countries, focusing on that region. These
devices are hosted by either ISPs, universities, or home networks. None of them
are behind a wireless access link, to reduce the impact of last mile latency on our
results. Collaborating institutions such as AFRINIC and ISOC also deployed a
considerable amount of probes in the Southern and Eastern regions, which we
used in this study.

We used paris-traceroute for all our measurements to discover as many paths
as possible, and not suffer from inconsistent results caused by load balancing,
as happens with classic traceroute [13]. Probes performed traceroutes with 16
different paris id defaults. We used the UDP-traceroute to reduce the potential

44 R. Fanou et al.

bias caused by differentiated traffic handling of ICMP packets [14]. We conducted
3 measurement campaigns. During the first one, we performed traceroutes among
all probes located in Africa, with a period of 3 h, from November 30, 2013 to
April 06, 2014. It results in total in 675,421 traceroute outputs. Second, we issued
v4 and v6 traceroutes, at the same frequency, focusing on countries hosting IPv6
enabled probes, from June 01, 2014 to August 01, 2014, in order to compare v4
and v6 routing. It results in total in 408,383 v4 and 21,744 v6 traceroute outputs.
Finally, to highlight the launch of the Serekunda IXP in GM1, we performed
hourly, during the second week of August 2014, 3,161 traceroutes among all
RIPE Atlas probes in GM, publicly available in a Technical Report [15].

An essential step is to undertake an in-depth sanity-check on the raw data
to only consider the valid traceroute outputs during our analysis. Before this
filtering process, our raw data involved 214 probes hosted in 90 ASes operating
in 32 African countries. The geographical and networking spread of the used
probes are available in [15]. As for the granularity of our results, the percentage
of ASes allocated by AFRINIC [16] covered per country is 21.7 % on average [15].
With this dataset, we first map IPs into Country Codes (CCs) in order to infer
the set of countries traversed by the packets during each traceroute. Second, we
map IPs into ASes to infer the ASes sequences.

3.2 Data Analysis

3.2.1 IP to Country Code Mapping and Validation
Geolocation is said to be of poor quality, especially for IPs located in Africa
[17]. To geographically locate the 8,328 v4 and 465 v6 public IPs found in the
traceroute data as accurately as possible, we thus analyzed 6 public databases
(DBs), that we cross-correlated with delay measurements, as explained in this
section. We used OpenIPMap (OIM) [18], Reverse DNS lookups (RDNS), Max-
Mind GeoIP2City (MM) [19], Team Cymru (TC) [20], the AFRINIC DB (AF)
[16], and Whois (Whois).

When all databases providing an entry for an IP returns the same CC, we
retain it for that IP. When DBs are inconsistent for an entry, we use a latency-
based method to tie-break among them. We ping each IP from up to 10 random
RIPE Atlas probes hosted in each country returned by the DBs2. We compute
the minimum delay recorded per possible country, and assume that the IP is
located in the country for which the minimum delay is the lowest. We compare
in Table 1 the entries of the selected DBs. The coverage column (Cov.) is the
percentage of addresses of our dataset for which the DB provided a valid country
field. Trust is the percentage of IPs for which the DB entry is equal to the country
that we finally selected for that IP.

5,430 v4 IPs (resp. 292 v6 IPs) out of the 8,328 v4 (resp. 465 v6) have
an identical CC mapping among all DBs for which an entry was available.
1 In this paper, we refer to countries using ISO 2-letter country codes, that we list

in [15].
2 The raw data for these delay measurements can be found in [15].

On the Diversity of Interdomain Routing in Africa 45

Table 1. Comparison of Geolocation databases

DB IPv4 entries IPv6 entries DB IPv4 entries IPv6 entries

Cov. Trust Cov. Trust Cov. Trust Cov. Trust

OIM 26 % 93.8 % 30.1 % 92.8 % TC 86.7 % 71 % 99.1 % 79.4 %

RDNS 56.7 % 88.8 % 46.7 % 78.5 % AF 36.2 % 93 % 56.7 % 83.7 %

MM 83.9 % 74 % 99.1 % 71.4 % Whois 85.6 % 68 % 43.2 % 67.7 %

Our delay-based tie-breaking approach was used to geolocate the rest of the
IPs that responded to pings (81.2 % of IPv4, 92.2 % of IPv6). That is for 2,406
v4 IPs (resp. 164 v6 IPs), the ping technique allows us to deduce the country.
At the end of this process, 94.1 % v4 IPs (98.1 % v6 IPs) of our dataset are
associated with a location. With the obtained geolocation data, we can compute
the country path corresponding to the IP path of each traceroute output [17].

3.2.2 IP to as Lookup and Raw Data Sanity Check
We map, using TC, public IP addresses of our traceroute data into ASes, with
the following filtering procedure: We first keep traceroutes for which the obtained
AS Sequence contains source and destination ASes corresponding to the ASes
which are known to host the probes. If it is not the case, we check if the first
AS on the path is a known direct upstream of the source and the last AS on the
path is a known direct upstream of the destination, as observed in the previous
set of traceroutes. If these checks succeed, we keep the traceroute as well. Note
that we only use this second set of inferred AS sequences for AS Path analysis,
and excluded them from our RTT analysis.

To assess the accuracy of the inferred AS Paths, we keep track of intermediate
traceroute hops for which the IP has no entry in TC, or for which we did not
receive a reply [10]. We respectively refer to them as unresolved and unknown
ASes.

We then compress AS Paths into AS Sequences. Unresolved or unknown
hops found between two resolved hops of the same given AS, are considered
as belonging to that AS. Consecutive equal AS numbers are compressed into a
single AS hop. We only infer an edge between two ASes if there are no unresolved
or unknown hops in the IP path, and if both ASes are consecutive in the AS
sequence.

In our first campaign, we identified 4,648 traceroutes with inferred AS path
loops. The top 3 ASes in those paths with loops were AS3356 (Level3, US),
AS37282 (MainOne, NG) and AS37054 (Data Telecom Service, MG) at respec-
tively 32 %, 15 % and 11 %. Similar results were found in our second campaign.
These paths are a small fraction of the total dataset, so we decided to filter them
out. Including these paths in our results is part of our ongoing work.

By the end of this raw data cleaning method, we retained, for the first cam-
paign, 87.81 % of v4 traceroutes. For the second one, we retained 97.27 % of v4
traceroutes and 90.11 % of v6 traceroutes. For the last campaign, we retained

46 R. Fanou et al.

86.93 % of v4 traceroutes outputs. The corresponding total numbers are listed
in Sect. 3.1. The dataset resulting from this filtering process comprises paris-
traceroutes outputs from 181 probes located in 30 African countries, hosted in
90 ASes.

Finally, we estimate the RTT between the source and the destination AS as
the difference between the RTT from the source probe to the ingress point of the
destination AS, and the RTT from the source probe to the egress point of the
source AS.

4 Results

In this section, we first discuss the biases of our dataset, and compare it with the
view of the African topology that can be made from public BGP data. We then
investigate the dynamics of the observed paths. Next, we discuss the length of
the AS Paths, highlighting different trends among the studied regions. We then
illustrate the impact of the intercontinental aspect of paths on the RTTs among
African ISPs. We finally detect new peering links and IXPs in Africa to shed
light on the progress made by some operators towards localizing interdomain
routing. We provide a detailed analysis of the coverage of the IP ranges per
country, path dynamics, the AS-Centrality of our dataset in [15].

4.1 Dataset Limitations and Public BGP Data

We acknowledge that not all the probes were deployed at the beginning of
our initial measurement campaign. The constant evolution of the RIPE Atlas
infrastructure on the continent leads us to daily add new probes to the set of
probes that we use. As of today, our dataset involves 7.2 % of the ASes allocated
by AFRINIC. Shortcomings of IP to AS mapping also have to be considered.
For instance, 40.6 % (resp. 35.9 %) of the unique v4 (resp. v6) AS paths either
contain one unknown or an unresolved AS.

We extracted from Routeviews, RIPE RIS, and PCH, all the paths containing
one of the 90 ASes hosting a probe (2,258,692 v4 and 840,180 v6 paths), using
all available data for 2013 and 2014 [21–23]. We compare these paths with our
set of (2,529 v4 and 91 v6) paths containing no unknown or unresolved ASes.
As most of the routes collectors are hosted outside the continent, our dataset
is more precise when it comes to end-to-end African paths. Among the 960 v4
(resp. 63 v6) AS adjacencies that we inferred from the discovered paths, 733 v4
(resp. 35 v6) are not visible in these public datasets. Note that most of the AS
adjacencies found in both datasets are among ASes based outside the continent.
Quite intuitively, entire African AS paths - 2,519 v4 (resp. 79 v6) - are not visible
in RouteViews, RIS, and PCH either. The only AS paths found in both datasets
actually belong to the set of paths measured from AS3741 (Internet Solutions,
ZA); this ISP hosts a RouteViews collector.

On the Diversity of Interdomain Routing in Africa 47

4.2 Path Dynamics

Considering the data of our first two campaigns, we identify all unique AS paths
for each pair of monitored ASes, and compute their frequency of observation. In
the rest of this paper, we refer to the path among two ASes which has the highest
frequency of observation, as the preferred path for that AS pair. About 72.6 %
(resp. 82 %) of the v4 (resp. v6) preferred paths have been used with a frequency
higher than 90 %. Only 4 % of the v4 AS pairs have used their preferred paths
at a frequency lower than 50 %, whereas no v6 preferred path has a frequency
of usage lower than 50 %.

Some outliers were found in this analysis. Among them, Isocel Telecom (BJ)
was showing 42 different AS Paths towards Onatel/FasoNet-AS (BF), and 22
paths were observed in the opposite direction. Link, node failures, and flapping
could be listed as the possible reasons of such changes. However, we validated
these results by visiting Isocel Telecom, and discovered that this ISP is constantly
performing interdomain traffic engineering in order to offer the best possible QoS
to its customers. As Onatel is doing the same, a large number of paths were
explored between these two ASes.

4.3 As Path Length Distribution

Based on our first two measurement campaigns, we study the distribution of
the length of AS Sequences among pairs of ASes. We notably take a perspective
focused on West Africa and South Africa, to highlight differentiated trends.
We also carry out a specific analysis for pairs of ASes located within the same
country. Note that we remove unknown and unresolved ASes from paths used
for plotting graphs of Fig. 1, except for those corresponding to paths length
distribution within countries. Thus, the AS paths in those cases could be even
longer than what is presented.

On Fig. 1(d), we show the AS path length distribution for all the paths of
the dataset. Since ASes in West Africa are based in geographically collocated
countries, one could guess that paths would be shorter. However, based on the
specific view provided in Fig. 1(a), we discover unusually long AS paths in West
African communications. Figure 1(b) and (f) highlight that short paths tend to
be found in Southern Africa, and precisely in ZA. Paths among ASes operating
in the same country (Fig. 1(c) and (f)), are much shorter in South Africa than
in West Africa. IPv6 AS paths, all observed in SAf, tend to be short, reflecting
similar peering and localized transit habits as for v4 in the region. These obser-
vations confirm that focusing solely on measurements from ZA does not provide
a representative sample of Internet paths characteristics for the rest of Africa.

4.4 Trends in African Interdomain Routing

We now study the role of transit played by each ISP found in our data. To this
end, we use the concept of AS-centrality of an AS, defined as the percentage
of paths containing that AS [17], but for which that AS is neither the source

48 R. Fanou et al.

(a) West Africa (WAf): 815 v4 paths

AS path Length

P
er

ce
nt

ag
e

0.0

0.1

0.2

0.3

0.4

(b) ZA: 420 v4 paths

AS path Length

P
er

ce
nt

ag
e

0.0

0.1

0.2

0.3

0.4

(c) Same WAf countries: 47 v4 paths

AS path Length

P
er

ce
nt

ag
e

0.0

0.1

0.2

0.3

0.4

(d) within Africa: 4,293 v4 paths

AS path Length

P
er

ce
nt

ag
e

0.0

0.1

0.2

0.3

0.4

(e) Southern Africa (SAf): 142 v6 paths

AS path Length

P
er

ce
nt

ag
e

0.0

0.1

0.2

0.3

0.4

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 11

(f) Same SAf countries: 452 v4 paths

AS path Length
P

er
ce

nt
ag

e

0.0

0.1

0.2

0.3

0.4

Fig. 1. Path length distributions for all paths and for some African regions

nor the destination. Note that AS-centrality is not equivalent to the betweenness
centrality of ASes on the AS graph. We only account for presence within AS paths
among pairs of ASes, radically diverging from betweenness centrality in the AS
graph. We then define the concept of “joint AS-centrality”, which captures the
centrality of tuples of ASes present together on AS paths.

We classify the 164 ASes of our dataset into 5 categories, depending on
their region of operation: WAf (for ASes based in West Africa), SAf (Southern
Africa), EAf (East Africa), RAf (ASes operating in Africa but not in any of
the previous regions), and Int - Intercontinental - (all ASes based outside the
continent). Note that we find 61 Int Ases.

The 4 most central ASes in our view of the v4 African interdomain topology
are all intercontinental ones: Level3 (US) with 23.4 % of the 4,293 AS paths,
TATA (US) with 22 %, Cogent (US), 13.6 %, and Orange (FR), 12 %. 65.2 % of
the AS pairs were served using at least one of these 4 ASes. The most central
African AS, Internet Solutions (ZA) has an AS-centrality of 11.6 %. In contrast,
Orange is the dominating ISP when it comes to paths among ASes in the WAf
category, with an AS-centrality of 37.8 %, while TATA and Level3 respectively
own 32 % and 26.1 % of the market share. We notice that a relevant percentage
of paths (18.9 %) connecting WAf ASes transit via MTN (ZA). The most central
local AS is MainOne (NG), found on 17.2 % of the paths.

The reliance on Int transit providers is considerably lower within the South-
ern African region; the top 2 ASes remain Level3 with 20.5 % and TATA (15.3 %),
but Internet Solutions (ZA), SAIX-NET, a private IXP owned by Telkom SA
(ZA), and MWEB (ZA) follow with respectively 15 %, 12.9 %, and 11.2 %.

On the Diversity of Interdomain Routing in Africa 49

SAf ASes appear to benefit from diversity in their transit offerings, and resort a
lot to peering, as no ISP was found to completely dominate transit in the region.
Note that the reliance of SAf ASes on ISPs based on other African regions is
insignificant.

Some ASes which are not relevant for v4 routing, show a high AS-centrality
when it comes to v6. The top 3 ASes in v6 are Hurricane Electric (US) with
23.9 %, TENET (ZA) with 22.5 %, and Liquid Telecom (GB) with 21.1 %. They
are followed by IXPs AS5459 (LINX-AS, GB) and AS1200 (AMSIX, NL) tra-
versed respectively by 19.7 % and 14.7 % of the paths while Level3 and TATA
are present on only 9.8 % and 9.1 %.

One can observe a diversity of transit trends based on technico-economical
factors. In Fig. 2, we present the centrality of Orange, TATA, and Level3, dis-
cussing whether these ASes jointly serve a path, or are lying on the path on
their own. The three left-most triplet of barplots are based on all the paths of
the dataset, while the last triplet focuses on the WAf category.

Fig. 2. Joint AS-centrality of AS3356 (Level3, US), AS6453 (TATA, US), and AS5511
(Orange, FR), for paths among various categories of ASes (Color figure online)

French speaking countries mostly rely on Orange, which serves 17 % of the
West African AS pairs, without TATA nor Level3. Another 14.5 % of AS pairs
are also served by Orange, but jointly with TATA or Level3. Orange completely
disappears from our internetworking map when it comes to communications
among English speaking countries. Such diverse transit habits are also observed
when classifying ASes according to the monetary region to which they belong.
Within the XAF-XOF (CFA Franc) monetary union, Orange has a centrality of

50 R. Fanou et al.

36.7 %, but is barely present in the market of communications among ISPs that
are not belonging to this union.

From the same figure, we learn that Orange and TATA are lying together on
33 % of the paths among the public owned WAf ASes3, and Orange is lying alone
on another 45.8 % of these paths. In [15], we discuss the transit behaviour of these
ISPs as a function of their ownership by Orange. No public operator seems to get
transit from Level3. However, in the same region, a relevant proportion of pairs
of ASes involving a private owned AS are served via Level3. Finally, the second
triplet of barplot shows that African inland AS pairs rely much more on TATA
(54.17 %) than on Level3 (29.16 %), dominating Orange. Such differences can be
explained by the scarcity of Internet transit offerings in inland countries, mostly
relying on Satellite transport companies which peer with Level3 and TATA.

4.5 Impact of Transit Localization on End-to-end Delay

We identify, per AS path, the IP path over which the minimum RTT was
observed, as well as its corresponding country path. We group AS paths into
two categories; continental AS paths (from 1 to 1,073) are those which stay
within Africa, whereas intercontinental ones (from 1,074 to 4,082) are via at
least one node geolocated outside the continent (i.e. the country path contains
at least one country outside Africa).

Fig. 3. Minimum RTT distribution

Figure 3 shows the distribution of the minimum RTTs among our probes.
Continental paths with very low RTTs mostly correspond to paths among pairs
of ASes based in the same country, or those passing through collocated regional
ISPs. As highlighted by the yellow crosses, many of such paths are through
South Africa, acting as a regional hub. Note that all the continental v6 paths
traverse ZA.
3 We categorized the WAf ASes as public or private, based on gathered private infor-

mation.

On the Diversity of Interdomain Routing in Africa 51

Slightly longer RTTs (50–150 ms) are seen among AS pairs from geograph-
ically distant countries. For instance, a path from a KE ISP to a ZA ISP, only
served by African transit ISPs, shows a minimum RTT of 80 ms. A striking result
comes from the presence of very long RTTs in paths that are categorized as con-
tinental ones. These v4 paths are typically those between Eastern African ISPs
and Western African ISPs, which are served by ZA transit ISPs. However, a v4
path, between GA and NG, categorized as continental, appears with an RTT of
2.6 s. Actually, this path is probably mis-categorized, as its IP level traceroutes
contains many non answering hops. The following long RTTs are recorded on
paths from TZ to ZA via AS37100 (SEACOM, MU), from Internet Solutions
(ZA) to Simbanet (TZ) via KE, or from SAIX-NET to TENET in ZA. They are
having the same issue of mis-categorization, as per our manual checks, but we
have no data allowing us to certify that they leave the continent.

Let us now analyze the paths categorized as intercontinental. Intercontinental
paths with a low RTT (i.e. ≺100 ms) also reveal the weakness of geolocation.
These AS paths contain Int ASes, as per TC, and have also been consistently
geo-located in either GB, NL, FR or US by the geo-location databases. These
are cases where all geo-location databases are returning the same Country Code,
located outside Africa, although delay-based measurements clearly indicate that
the device is located on the continent. Our ongoing work includes the correction
of such databases, in order to account for the new measurements performed
towards these mislocalized IPs.

Most of the measured RTTs in this category however reflect intercontinental
transit of continental traffic, with a RTT around 200 ms. 95,4 % of the paths with
a RTT between 100 ms and 400 ms are through Europe. Paths with RTTs scat-
tered around 750 ms are mostly from and towards ISPs that are served by Satel-
lite providers, routing traffic through another continent. For example, a path in
this group is from Connecteo in BF to AFNET in CI, passing through SkyVision,
Level3 (in New York), Level3/Global-Crossing (in London), and MTN (ZA). The
paths measured with an RTT above 1000 ms are mostly those served via 2 satel-
lite links. For instance, one is from Connecteo in BF to Sonitel in NE, going
through the US and Europe, but arriving in NE via another satellite, provided
by IntelSat. Finally, we highlight the RTTs between ISPs operating in same
African countries, exchanging packets over intercontinental AS paths. These are
notably observed in BJ, CM, MA, MZ, and MU.

4.6 Emergence of New IXPs

Let us now focus our analysis on paths revealing the use of IXPs to exchange
traffic. We collected IXP information from [23–25]. We also learned, through
word-of-mouth, that new IXPs were being deployed in BJ, SC, and GM. We
crossed such information with our traceroute results, and detected IPs used to
address interfaces to these IXP in our traceroute data.

We notice some frequently used IXPs, notably JINX, CINX, DINX, and NAP
Africa in ZA. Actually, 58,6 % of the continental paths which traverse ZA, go
through one of these IXPs. We found the new IXPs in SC, BJ and GM. In SC,

52 R. Fanou et al.

4 members of the new IXP were hosting one of our probes, at the beginning of
the 2nd campaign. We could observe a delay around 1 ms among each pair of this
clique, formed by CWS, Intelvision, Telecom Seychelles, and Kokonet Ltd. In the
data collected during our third measurement campaign, we find probe hosts con-
nected to SIXP, in GM: QCell, Netpage, and GAMTEL. RTTs are around 1.5 ms
among QCell and NetPage, while RTTs involving GAMTEL fluctuate between
1 ms and 460 ms. Measurements performed between the GAMTEL probe and
the IXP platform itself actually revealed unstability of the link from GAMTEL
to SIXP, as detailed in [15].

Fig. 4. RTTs from Benin Telecom to Isocel Telecom during Benin-IX (BJ) establishment

Let us now analyze the measurements performed among members of Benin-
IX, being Benin Telecom, Isocel Telecom, and OTI Telecom. From December
2013 to the end of our first measurement campaign, in April 2014, RTTs mea-
sured among those ASes considerably drop from 314 ms on average between
November 30th and December 20th 2013, to 42 ms on average from January 2nd
to April 6th 2014. Figure 4 illustrates the benefit brought by this IXP, depicting
the RTT among two members of that IXP, as well as the length of the measured
AS Sequence. The figure also shows that our probes lost internet connectivity
during the establishment of the IXP, as very few traceroutes succeeded during
that period.

5 Conclusions and Future Work

In this paper, we assessed the global African interdomain routing topology. To
this end, we deployed new RIPE Atlas probes, and carried out active measure-
ments from 214 RIPE Atlas probes located in 90 ASes, covering 32 African
countries4.
4 As of December 10, 2014, the RIPE Atlas platform has evolved to 318 probes hosted

in 147 ASes and spread across 44 countries all over Africa [7].

On the Diversity of Interdomain Routing in Africa 53

We notice striking differences in transit habits of ISPs, notably depending
on the official language of the country, the monetary region, or the business pro-
file of the ISP. These illustrate how critical it is to have a large, diversified set
of vantage points before drawing conclusions on the state of interdomain rout-
ing on the continent. Our results show a lack of interconnection among African
ISPs (South Africa being an exception), confirming the interest of initiatives to
promote peering on the continent. We highlight the remaining reliance on inter-
continental ISPs for the establishment of continental connectivity. We correlate
such trombonning paths with long RTTs among our probes. Nevertheless, new
IXPs are emerging in Africa, notably in the West. We illustrate their benefits
by showing the improvement in terms of RTT observed among their members.

In the future, we plan to measure the connectivity between African ISPs and
the rest of the world. We also plan to provide a model to study the opportunities
for cost reduction brought by IXP initiatives on the continent.

Acknowledgement. We are grateful to whoever deploys or hosts a RIPE Atlas probe.
We also thank Michuki Mwangi, Nishal Goburdhan, Vesna Manojlovic, Andra Lutu,
Camilo Cardona, Ignacio De Castro, and Pablo Camarillo for their insightful comments.

References

1. Les Cottrell, R.: How Bad Is Africa’s Internet? January 2013. http://spectrum.
ieee.org/telecom/internet/how-bad-is-africas-internet

2. Chetty, M., Sundaresan, S., Muckaden, S., Feamster, N., Calandro, E.: Measur-
ing broadband performance in South Africa. In: Proceedings of the 4th Annual
Symposium on Computing for Development, ACM DEV-4 ’13. ACM, New York
(2013)

3. African Union: Study On Harmonisation of Telecommunication, Informa-
tion and Communication Technologies Policies and Regulation in Africa,
March 2008. http://www.itu.int/ITU-D/projects/ITU EC ACP/hipssa/docs/2
Draft Report Study on Telecom ICT Policy 31 March 08.pdf

4. African Union: African Internet eXchange System. http://pages.au.int/axis
5. Gilmore, J., Huysamen, N., Cronje, P., de Klerk, M., Krzesinski, A.: Mapping the

African internet. In: Proceedings Southern African Telecommunication Networks
and Applications Conference (SATNAC), Mauritius, September 2007

6. Gupta, A., Calder, M., Feamster, N., Chetty, M., Calandro, E., Katz-Bassett, E.:
Peering at the internet’s frontier: A first look at ISP interconnectivity in Africa. In:
Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 204–213.
Springer, Heidelberg (2014)

7. RIPE NCC: Global RIPE Atlas Network Coverage (2014). https://atlas.ripe.net/
results/maps/network-coverage/

8. Mao, Z.M., Rexford, J., Wang, J., Katz, R.: Towards an accurate AS-level tracer-
oute tool. In: Proceedings of ACM SIGCOMM, pp. 365–378 (2003)

9. Subramanian, L., Agarwal, S., Rexford, J., Katz, R.H.: Characterizing the internet
hierarchy from multiple vantage points. In: Proceedings of IEEE INFOCOM, p. 12
(2002)

10. Haddadi, H., Rio, M., Moore, A.: Network topologies: inference, modeling, and
generation. IEEE Commun. Surv. Tutor. 10(2), 48–69 (2008). IEEE

http://spectrum.ieee.org/telecom/internet/how-bad-is-africas-internet
http://spectrum.ieee.org/telecom/internet/how-bad-is-africas-internet
http://www.itu.int/ITU-D/projects/ITU_EC_ACP/hipssa/docs/2_Draft_Report_Study_on_Telecom_ICT_Policy_31_March_08.pdf
http://www.itu.int/ITU-D/projects/ITU_EC_ACP/hipssa/docs/2_Draft_Report_Study_on_Telecom_ICT_Policy_31_March_08.pdf
http://pages.au.int/axis
https://atlas.ripe.net/results/maps/network-coverage/
https://atlas.ripe.net/results/maps/network-coverage/

54 R. Fanou et al.

11. Hyun, Y.: Archipelago Infrastructure. http://www.caida.org/projects/ark
12. PingER: PingER Project (2013). http://www-iepm.slac.stanford.edu/pinger/
13. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,

Magnien, C., Teixera, R.: Avoiding traceroute anomalies with Paris traceroute. In:
IMC ’06 Proceedings of the 6th ACM SIGCOMM Conference on Internet Mea-
surement, pp. 153–158, October 2006

14. Cristel, P., Luca, C., Stefano, V., Bush, R.: From Paris to Tokyo: On the suitability
of ping to measure latency. In: IMC ’13 Proceedings of the 13th IMC, pp. 427–432
(2013)

15. Fanou, R., Francois, P., Aben, E.: African measurement campaigns: Techni-
cal Report, September 2014. https://fourier.networks.imdea.org/external/techrep
amc/

16. AFRINIC: AFRINIC database (2014). ftp://ftp.afrinic.net/
17. Karlin, J., Forrest, S., Rexford, J.: Nation-state routing: Censorship, wiretapping,

and BGP. CoRR, vol. abs/0903.3218 (2009). http://arxiv.org/abs/0903.3218
18. RIPE NCC: OpenIPMap database (2014). https://labs.ripe.net/Members/

emileaben/infrastructure-geolocation-plan-of-action
19. MaxMind: GeoIP (2014). http://www.maxmind.com/en/geolocation landing
20. Team Cymru: Team Cymru Services. https://www.team-cymru.com/
21. RouteViews Project (2005). http://routeviews.org
22. RIPE, RIS: Raw data
23. Packet Clearing House (PCH): PCH IXP directory (2014). http://prefix.pch.net/

images/applications/ixpdir/ip asn mapping.txt
24. CAIDA: AS Relationships. http://www.caida.org/data/as-relationships
25. PeeringDB. http://www.peeringdb.com/private/exchange list.php

http://www.caida.org/projects/ark
http://www-iepm.slac.stanford.edu/pinger/
https://fourier.networks.imdea.org/external/techrep_amc/
https://fourier.networks.imdea.org/external/techrep_amc/
ftp://ftp.afrinic.net/
http://arxiv.org/abs/0903.3218
https://labs.ripe.net/Members/emileaben/infrastructure-geolocation-plan-of-action
https://labs.ripe.net/Members/emileaben/infrastructure-geolocation-plan-of-action
http://www.maxmind.com/en/geolocation_landing
https://www.team-cymru.com/
http://routeviews.org
http://prefix.pch.net/images/applications/ixpdir/ip_asn_mapping.txt
http://prefix.pch.net/images/applications/ixpdir/ip_asn_mapping.txt
http://www.caida.org/data/as-relationships
http://www.peeringdb.com/private/exchange_list.php

Mobile and Cellular

AppPrint: Automatic Fingerprinting of Mobile
Applications in Network Traffic

Stanislav Miskovic1(B), Gene Moo Lee3, Yong Liao2, and Mario Baldi2

1 Symantec Corporation, Sunnyvale, CA 94086, USA
Stanislav Miskovic@symantec.com, stanislav.miskovic@gmail.com

2 Narus, Inc., Sunnyvale, CA 94086, USA
3 University of Texas at Austin, Austin, TX 78712, USA

Abstract. Increased adoption of mobile devices introduces a new spin
to Internet: mobile apps are becoming a key source of user traffic. Sur-
prisingly, service providers and enterprises are largely unprepared for
this change as they increasingly lose understanding of their traffic and
fail to persistently identify individual apps. App traffic simply appears
no different than any other HTTP data exchange. This raises a number
of concerns for security and network management. In this paper, we pro-
pose AppPrint, a system that learns fingerprints of mobile apps via com-
prehensive traffic observations. We show that these fingerprints identify
apps even in small traffic samples where app identity cannot be explicitly
revealed in any individual traffic flows. This unique AppPrint feature is
crucial because explicit app identifiers are extremely scarce, leading to
a very limited characterization coverage of the existing approaches. In
fact, our experiments on a nation-wide dataset from a major cellular
provider show that AppPrint significantly outperforms any existing app
identification. Moreover, the proposed system is robust to the lack of
key app-identification sources, i.e., the traffic related to ads and ana-
lytic services commonly leveraged by the state-of-the-art identification
methods.

1 Introduction

Mobile apps are expected to dominatex Internet in the post-PC era [9]. Run-
ning on ubiquitously adopted smartphones and tablets, mobile apps support
users in numerous daily activities. This attracts both individuals and enterprise
users, opening a number of new opportunities. However, managing this relatively
young ecosystem is still in its infancy. Even basic identification of hundreds of
thousands of apps existing in Internet traffic is a challenge. This has dramatic
implications on security and network management because it entails that enter-
prises and network operators cannot impose any meaningful policies on mobile
users. Similarly, being unable to distinguish the traffic of individual apps makes
isolation of malicious or infected apps difficult, if at all possible.

The key challenge we address is that mobile apps cannot be presently distin-
guished at many levels. First, the apps predominantly communicate with their

Done under the Narus Fellow Research Program with equal author contributions.

c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 57–69, 2015.
DOI: 10.1007/978-3-319-15509-8 5

58 S. Miskovic et al.

host services via HTTP [14], which makes protocol- or port-based identifica-
tion [10] ineffective. Even deep packet inspection largely fails because app traffic
may not contain any explicit app identifiers, such as app names. In fact, we
measured that these identifiers exist only in 1% of mobile traffic, while the rest
is completely unknown to any characterization. Also, a widespread use of cloud
and CDN (content delivery network) services invalidates any identification based
on service-host IP addresses or domain names.

In this paper, we present AppPrint, a system capable of identifying the apps
at a granularity of arbitrarily small traffic samples. This means that app identifi-
cation becomes much more frequent and its traffic coverage increases. In contrast
to the state-of-the-art approaches that solely rely on temporally sparse occur-
rences of explicit app identifiers [2,3,6,8,11,14], AppPrint can identify the most
likely apps even when such identifiers are not present. For example, an operator
of the AppPrint system could slot traffic in intervals as small as 10 s and identify
the most likely apps for each slot and for all users in it with a high confidence.
This is achievable due to two key AppPrint novelties: (i) learning elaborate app
fingerprints from a priori limited app-identification data, and (ii) creating app
fingerprints from features that may span multiple different traffic flows.

Specifically, we create app fingerprints as collections of tokens, e.g., any
generic key-value pairs in URLs or any substrings of HTTP header fields, such
as User-Agents or Cookies. Our intuition is that such tokens would be represen-
tative of their apps either individually or in groups; either by parameter names
(keys) or parameter values. For example, an app can be designed in a specific
development framework which makes the names of app parameters unique (i.e.,
app-identifying). Similarly, if several apps are developed on the same framework,
their parameter values as well as the occurrences of specific parameters across
flows could be sufficiently unique to identify each app. Leveraging this intuition
enables AppPrint to characterize the traffic even when no explicit app identi-
fiers are present. We achieve this by measuring the highest token-set similarity
between an observed set of flows and readily learned app fingerprints.

One of the key contributions of AppPrint is its continual learning and refine-
ment of app fingerprints. While the system does require some seeding with
explicit app identifiers, it can expand this knowledge towards discovering many
new fingerprints in the previously uncharacterised flows. Specifically, AppPrint
can be bootstrapped by a single app identifier present in some particular flows
(e.g., embedded advertisement flows), and expand that knowledge to fingerprint-
ing many other types of flows (such as social networking flows, audio stream-
ing flows, etc.). We achieve this by effectively measuring collocation persistence
between the seeding tokens (e.g., explicit app identifiers) and other tokens in the
neighboring flows.

Another key feature of AppPrint is independence of its fingerprint learning
and app identification processes. This is crucial for achieving a broad character-
ization coverage. Specifically, while the learning requires some seeding, the iden-
tification process has no such constraints. It can apply any fingerprints learned
at any time (even offline) towards revealing the most likely apps “hidden” in the
traffic. We developed an algorithm that facilitates this separation and named it
MAP-SCORE.

AppPrint: Automatic Fingerprinting of Mobile Applications 59

We evaluate AppPrint on a week-long nationwide traffic trace from a major
cellular provider in the United States. In this real environment, AppPrint offers
an order of magnitude improvement over the state-of-the-art solutions in terms
of app identification coverage.

The rest of the paper is organized as follows. Section 2 overviews the related
work. Section 3 introduces AppPrint, while Sect. 4 evaluates the proposed meth-
ods on the lab traffic that contains app-identification ground truth, as well as
on the real ISP traffic. Section 5 summarizes this work.

2 Related Work

A number of papers have identified that network administrators increasingly
lose visibility in their traffic due to mobile apps being indistinguishable from
generic HTTP communications [4,5,13]. Hence, identifying apps via common
approaches of protocol identification or port numbers is no longer effective. This
situation calls for a new paradigm.

The most straightforward way to identify apps is to look for app names in
HTTP User-Agent fields [14]. However, this has serious limitations on the widely
accepted Android platform where app developers do not follow any conventions
in creating their user agents [3], i.e., the user agents may not contain app names.
Another approach is to look for app identifiers in auxiliary services embedded
in the apps, such as ads or analytics (A&A) [2,3,11]. The embedding of such
services is common, especially in free apps [7,11,13]. However, the flow coverage
of such identification is very low, because A&A flows are present in only a small
fraction of traffic - especially for paid apps.

Dai et al. [3] improved app identification capabilities by developing a system
that automatically runs Android apps and devises app fingerprints from the
generated traffic. This approach can be effective, but it would be difficult to
scale it to the size of current app markets with hundreds of thousands of apps. It
would be even more difficult to obtain fingerprints that are representative of true
human app usage, given that intelligent tools for interaction with diverse app UIs
are still lacking. Thus, the obtained fingerprints may not be comprehensive or
representative. For example, it would be very difficult for this system to produce
representative signatures for apps that require user registration or logins, e.g.,
the popular Android Facebook app.

Choi et al. [2] proposed installing a monitoring agent in mobile devices. The
agent helps in building ground truth knowledge for app identification. With
the data collected in a campus network, the authors generated classifiers based
on HTTP user-agent fields, HTTP hostname fields, and IP subnets. However,
installing such agents on user devices may be challenging due to privacy concerns.
Besides, deploying the agent at a large scale has many other practical challenges.

AppPrint shares only the initial sources of app-identification knowledge (e.g.,
User-Agent fields or A&A services) with the existing approaches. These sources
are only seeds that help AppPrint to learn and apply its fingerprints towards
characterization of a much wider span of traffic flows.

60 S. Miskovic et al.

3 Methodology

In this section, we introduce AppPrint by first providing some basic intuition
behind its design. We then describe its two core algorithms: (i) MAP, a method
for discovery and learning of new app fingerprints, and (ii) SCORE, a method for
identification of apps in the observed traffic (based on MAP’s app fingerprints).

3.1 AppPrint Overview

We are motivated by the fact that existing app identification approaches
[2,3,6,8,11,14] characterize only a small fraction of mobile traffic. AppPrint
tries to increase the characterization coverage by learning a priori inconclusive
features that may exist in the traffic and prove to have app identifying properties.

We focus on two types of features: (i) tokens that can be specific strings, or
parameter names, or parameter values in HTTP headers, and (ii) traffic flow
groups that can jointly point to an app identity. While it is a priori unknown
whether useful instances of these features exist in the traffic, there is a number
of reasons for them to be present. For example, app developers commonly col-
lect statistics about their apps. Thus, there must be a way to for the apps to
report back to their developers via some specific formatting of data. As an illus-
tration, many apps use Apsalar library [1] that employs “i=” URL parameter
to report executable filenames of active apps. This is an app-identifying token.
Similarly, apps may require exchange of very specific parameter names to ensure
proper execution. For example, Angry Birds app uses a unique “u audio=” URL
parameter to configure sound volume.

Flow grouping is another key source of AppPrint’s intelligence. The grouping
is invaluable when individual traffic flows do not reveal any app-specific tokens.
We learned that mobile apps do exchange such generic traffic, e.g., in order to
transfer generic web objects such as pictures and audio. In such cases, AppPrint
tries to propagate app identification from the identifiable flows to the ones that
cannot be characterized. Moreover, even when none of the grouped flows contains
explicit app identifiers, the tokens dispersed over several flows may jointly reveal
app identity.

3.2 Initial App Identification Knowledge

Initial seeding knowledge for AppPrint can be obtained by many means. While
such bootstrapping is neither the focus nor the contribution of this paper, we
describe some aspects of it for completeness.

The values of explicit app identifiers are publicly available in app markets
and can be easily collected for the system’s bootstrap. We focus on two most
popular mobile app markets: Google Play (Android) and Apple’s iTunes App
Store (iOS). To this end, we developed crawlers that gather the identifiers for all
apps existing in these markets. For Android apps, we collect app names (such
as TuneIn Radio) and app package denominators (such as tunein.player); for
iOS apps, we crawled app names and unique 9-digit app IDs (such as 319295332).

AppPrint: Automatic Fingerprinting of Mobile Applications 61

Fig. 1. App identifier “TuneIn Radio” included in the HTTP User-Agent field.

We verified that such tokens do appear in some URL parameters, User-Agent
fields, substrings of HTTP referer fields, etc. Also, the tokens are employed by
various services embedded in mobile apps, such as advertisements and analytics
(A&A). An example of an app name included in the User-Agent field is illustrated
in Fig. 1.

3.3 MAP: Auto Fingerprint Generation

The MAP algorithm collects statistics about tokens, thus effectively serving as a
knowledge repository of AppPrint. It continually self-learns and refines app fin-
gerprints discovered in the traffic by means of flow grouping. An app fingerprint
is a set of one or more tokens that strongly identify an app. MAP keeps a tally
of all individual tokens observed in the traffic, as well as the apps to which each
token may be attributed. Subsequently, if a token proves to be predominantly
associated to an app, it becomes a fingerprint component of that app. Based on
this principle, we next develop the MAP algorithm.

Flow grouping: Flow grouping is our technique to address the issue of incon-
clusive data, i.e., the majority of traffic that does not contain any explicit or
readily known app identifiers. The idea is to first group the flows that are tem-
porally close to each other. We perform the grouping around the instances of
flows which contain known or readily learned strong app identifiers. Then, we
let the flow whose app identity can be determined suggest or propagate that
identity to all other tokens in its flow group - even the tokens in the neighbor-
ing (unidentifiable) flows. Consequently, in different instances of flow grouping,
a token may be suggestively associated to different apps. To identify the most
likely app, we consider all tokens and their association in the observed flows and
let the SCORE algorithm decide.

The key challenge of flow grouping is that individual instances of flow groups
may not be sufficient to learn true token-to-app associations. Scenarios like app
multitasking and device tethering may cause flows of many apps to appear close
in time, thus inducing noise in the grouping process. To eliminate such noise,
one could train AppPrint in a controlled environment and ensure grouping of
flows that belong to individual apps. We adopt a different strategy that is easier
to scale, especially in larger networks such as cellular provider networks, uni-
versity campuses or enterprise environments. We thus focus on observations of
numerous flow groups generated by large user populations during AppPrint’s
activity. Then, given that users use different apps and run them at different
times, the noise should disperse and become easily identifiable: The tokens that

62 S. Miskovic et al.

TG TG

fx
1

TG

fx
2

g(fx
1) g(fx

2)

TG

Fig. 2. MAP flow grouping.

persistently collocate with specific apps become fingerprint tokens, while other
tokens that associate equally likely with many apps get disregarded. We will
verify this approach experimentally in Sect. 4.

An illustration of flow grouping is given in Fig. 2: Flow group g(f i
x) is formed

around an identifiable anchor flow f i
x, which contains an explicit or strong app

identifier. Here, parameter i designates i-th flow grouping for a given mobile user.
The grouping is based on two criteria: (i) the flows must originate from the same
source (source IP address), and (ii) the flows that cannot be characterized must
be less than TG seconds away from the anchoring flow f i

x. TG is a configurable
parameter addressed in Sect. 4. This ensures strong time and source locality
of app identification. In the illustrated example, flow f i

x would suggest its app
identity to all tokens in the group, i.e., its own tokens and the tokens of other
flows in g(f i

x).

MAP repository: The MAP repository is a knowledge base that reveals tokens
suitable for fingerprints of each app. The repository is formed as a matrix in
which each row corresponds to a token t, and each column corresponds to a
suggested app x. The matrix element t, x, denoted as MAPt,x, stores the number
of instances in which token t was suggestively associated with app x.

Table 1 shows a snapshot of the MAP repository. Note the additional col-
umn in the repository which contains the total count of each token’s suggested
associations to any apps (denoted as column ∗ in Table 1). In the illustrated
example, the repository indicates that tokens angrybirds and rovio are by far
most frequently associated to Angry Birds app, which qualifies them for Angry
Birds fingerprints. On the other hand, tokens such as google and mobile have
dispersed associations across numerous apps, thus not being suitable for any app
fingerprints.

3.4 SCORE: Probabilistic App Identification

SCORE algorithm determines the most likely app identities in the observed traf-
fic. The algorithm measures similarity between the tokens found in the traffic
and all token-to-app associations suggested by the MAP repository, thus identi-
fying the most likely corresponding app. The decisions span flow sets and each
decision is referred to as app identification instance.

SCORE flow sets: Flow sets are the units of SCORE’s decision making. They
are formed by bundling traffic in a different manner than MAP’s flow grouping.

AppPrint: Automatic Fingerprinting of Mobile Applications 63

Table 1. MAP repository example.

tokens/apps * Angry Birds Piggies Google Maps ...

angrybirds 500 450 0 0 ...

rovio 700 600 50 0 ...

mobile 3000 50 30 100 ...

google 2000 60 40 200 ...

...

flow set flow set flow set

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

Ts Ts Ts

Fig. 3. SCORE grouping of flow sets.

This enables MAP and SCORE to operate independently and if needed simulta-
neously. The difference stems from the fact that SCORE does not need any flows
with explicit app identifiers, because app identity can be readily suggested by
the MAP repository. This is one of the key advantages of AppPrint: The system
is capable of identifying apps even when none of the flows (in a flow set) can be
a priori characterized individually.

For flow sets, a simple time slotting mechanism suffices: Flows that originate
from the same source (i.e., source IP address) and have starting times that fit
the same time slot constitute a flow set instance. The duration of each time slot
TS is a configurable parameter. A flow set example is illustrated in Fig. 3.

SCORE and eccentricity metrics: To identify the most likely app for a
given flow set, we develop a pair of metrics that leverage indications of the MAP
repository. Let ST be a set of tokens in a flow set F and SA be the set of all
apps in MAP repository. The similarity between the flow set F and an app x is
evaluated as:

SCORE(x) =
∑

t∈ST

MAPt,x

MAPt,∗∑
a∈SA

δ(t, a)
, (1)

where MAPt,x is the value of the t, x element in the MAP repository, MAPt,∗
is the total number of token t’s suggested associations to any apps, δ(t, a) is an
indicator of t being associated to an app a in the repository, i.e., δ(t, a) = 1 if
MAPt,a �= 0.

The intuition behind the SCORE metric is the following: If tokens in the
flow set ST mostly associate with an app x, the app should score high as pro-
vided by the ratio of MAPt,x and MAPt,∗. Moreover, the token set should
not have many other suggested app associations, as accounted by

∑
a∈SA

δ(t, a).

64 S. Miskovic et al.

The combination of these two criteria results in a high confidence that a decision
about app identity for a flow set can be made unambiguously.

Once the SCORE metric for the flow set F is calculated against all candi-
date apps in the MAP repository, AppPrint decides whether the flow set can be
attributed to the highest scoring app. This decision is based on the eccentricity
metric. The metric requires that the score of the highest ranking app is signif-
icantly different from any other potential apps. Given the top ranked app x1st

and the second-best app x2nd, the eccentricity φ is a relative difference in their
scores:

φSCORE =
SCORE(x1st) − SCORE(x2nd)

SCORE(x1st)
(2)

The final result positively associates app x1st to the flow set if and only
if the SCORE and eccentricity metrics are higher than Θ and Φ thresholds,
respectively.

4 Evaluation

In this section, we evaluate the proposed MAP-SCORE algorithm (MS) against
two state-of-the-art approaches for discovery of app identities: (i) one based on
the content of HTTP User-Agent fields (UA), and (ii) another based on explicit
app identifiers found in any HTTP header fields (HH). Both of these reference
approaches rely solely on explicit app identifiers, which makes them perfectly
accurate (although on a limited set of flows).

In preparation, we conducted exhaustive sensitivity testing of the three key
MAP-SCORE parameters: (1) flow (set) grouping interval T , (2) threshold Θ of
the SCORE metric, (3) threshold Φ of the SCORE eccentricity. We found that
app classification is largely consistent over various parameter settings whenever
T is around 10 s, Θ is between 0.1 and 0.2 and Φ is around 0.3. The parameters
set for our experiments are T = 10s, Θ = 0.1 and Φ = 0.3.

4.1 Datasets

Lab Trace: To evaluate AppPrint, we partly use lab traffic generated by running
individual apps in order to establish a ground truth. To this end, we downloaded
40K Android apps from Google’s Play Store and collected their traffic. Each
app was run on multiple versions of Android emulators provided by the Android
SDK. We use the Android monkey tool [12] to emulate user interaction with the
apps. Similarly, we collected 7K popular apps from Apple’s iTunes App Store.
Given that Apple does not provide any emulators for iOS devices, we developed
one and enabled it to automatically install and execute apps, as well as collect
app traffic.

Real Trace: We also evaluate AppPrint on a large anonymized dataset from a
major US cellular provider. The dataset contains 7 days of traffic from about
200K anonymous and mostly Android users. This dataset faithfully represents

AppPrint: Automatic Fingerprinting of Mobile Applications 65

100
101
102
103
104
105
106

HH UA MS
100
101
102
103
104
105
106

of

 a
pp

 in
st

an
ce

s

of

 a
pp

 in
st

an
ce

s

Fig. 4. Number of identified app instances.

actual human usage of mobile apps. However, it does not provide any a priori
information of apps behind the traffic, except for a small portion of flows (less
than 1%) whose apps can be determined via User-Agent (UA) or header data
(HH) approaches.

4.2 App Identification

We first evaluate the traffic coverage characterized by MAP-SCORE (MS) in
the real trace. Due to the lack of comprehensive ground truth in this trace, it
is impossible to fully evaluate correctness of MAP-SCORE’s results. Thus, we
later conduct precision analysis on the lab trace in order to provide a holistic
view in AppPrint’s capabilities.

Our experiments use the first 6 days of the real trace to provide training
for the MAP repository. Our evaluation is based on running SCORE against the
flow sets in the 7th day of data. The same evaluation methodology is used for the
other two approaches, user agents (UA) and header data (HH), i.e., we evaluate
their characterization capabilities only on the 7th day of data.

Coverage of the real traffic: The number of identified app instances is used as
a coverage comparison metric. For MAP-SCORE, an app-instance identification
corresponds to SCORE positively associating an app fingerprint to a flow set.
By design, there can be at most one such app identification per flow set. For HH
and UA, we count the total number of distinct app identifications in each flow
set - i.e., depending on the number of different explicit app identifiers found in
the flow set, there may be more than one app identified per flow set.

As plotted in Fig. 4, MAP-SCORE (MS) identifies 1, 729K app instances,
while UA identifies close to 13K app instances and HH about 86K app instances.
Coverage-wise, MAP-SCORE performs an order of magnitude better. We also
note that UA is not as effective as described in [14]. This is due to the fact
that “our” cellular provider mainly supports Android, the platform that doesn’t
force developers to code explicit app identifies in User-Agents. In contrast, the
trace studied in [14] included a significant portion of the traffic from iOS devices,
whose apps predominantly include app-identifying information in User-Agents.

Among 1, 729K positive fingerprint matches of MAP-SCORE, we found that
84K are consistent with the indications of UA or HH approaches. This can be

66 S. Miskovic et al.

used as a hint of MAP-SCORE’s accuracy. Further accuracy analysis could not
be conducted on the real trace because it does not contain the ground truth for
the remaining 1645K = 1729K − 84K MAP-SCORE app identifications.

Precision evaluation: In order to further assess accuracy of MAP-SCORE
results, we use the lab trace which does contain the ground truth of flow-to-
app associations. We built the trace by combining lab-generated traffic of 1000+
apps which appeared in the MAP repository (i.e., the repository trained on the
first 6 days of the real trace). Then, SCORE was run against such traffic. To
evaluate app-identification precision and coverage, we use the standard ratios
of true positive and false positive detections. Our results indicate that MAP-
SCORE achieves 81% flow-set coverage with 93.7% precision. This supports
our claim that AppPrint can identify the most likely apps with a wide flow-set
coverage and with a high confidence.

Further, this result supports our assumption about the noise canceling prop-
erties of MAP-SCORE fingerprints (stated in Sect. 3.3). Specifically, even though
MAP was trained on the noisy real traffic, fingerprint indications were still highly
precise when applied on the ground truth of the lab traffic. Thus, the app fin-
gerprinting noise largely dispersed over time and large user population as we
expected.

4.3 Effectiveness of Grouping Flows

Next, we evaluate the importance of flow grouping, i.e., the importance of using
tokens from multiple flows towards building app fingerprints. We take an extreme

100101102103104105106107

HH UA MS
100101102103104105106107

of

 f
lo

w
s

of

 f
lo

w
s

TP FP NV

Fig. 5. Number of identified app instances without flow grouping.

 0
 20
 40
 60
 80

 100

HH UA MS
 0
 20
 40
 60
 80
 100

Pr
ec

is
io

n
(%

)

C
ov

er
ag

e
(%

)

precision coverage

Fig. 6. Precision and coverage of app-instance identifications in the lab trace without
flow grouping.

AppPrint: Automatic Fingerprinting of Mobile Applications 67

approach by preventing any grouping, i.e., we apply AppPrint on the flow sets
containing only single flows. The settings for these experiments are similar to
the ones described in Sect. 4.2.

Real traffic: We first evaluate the number of identified app instances on the
7th day of the real traffic. The results for header data (HH) and user agent
(UA) approaches do not change significantly; a slight increase in identification
is due to counting distinct app identifications per each flow vs. counting them
once per flow set. Next, this setting enables us to better qualify MAP-SCORE
(MS) results. Specifically, using per-flow indications of deterministic HH and
UA approaches, we can classify MS results as (i) true positives (TP) when MS
agrees with HH or UA, (ii) false positives (FP) when there is a disagreement, and
(iii) non-verifiable characterizations (NV) when HH or UA cannot characterize
a flow, but MS can.

The results in Fig. 5 indicate that although MS identifies one order of mag-
nitude more app instances than with flow grouping enabled (compare Figs. 4
and 5), the number of true positives decreases from 85K to 26K. This clearly
demonstrates a positive effect of flow grouping on AppPrint’s accuracy.

Lab traffic: We use the lab trace to assess the impact of single-flow flow sets
on precision (see Fig. 6). Our results indicate that MAP-SCORE (MS) achieves
much higher coverage than HH and UA, but its precision drops to 82.3% (about
10% less than with flow grouping enabled, see Sect. 4.2). In summary, not lever-
aging tokens from multiple flows has notable negative effects on both coverage
and precision of AppPrint.

4.4 Identifying Apps Without A&A Traffic

To evaluate AppPrint’s capabilities on paid apps (without incurring high mon-
etary costs of purchasing the apps), we leverage the key difference between free
and paid apps: Paid apps mostly do not exchange ads and analytic (A&A) traf-
fic [7,13], while the rest of their communications are largely similar to free apps.
Thus, we can still employ our lab- and real-traffic traces by removing all A&A
flows. Also note that our MAP repository still remains representative because
most paid apps have their free counterparts developed on the same code base,
thus using similar traffic tokens (readily captured by our MAP repository). Our
experimental settings are otherwise similar to the ones described in Sect. 4.2.

Figure 7 shows the number of app instances identified by the three techniques
on the real trace. In this experiment header data (HH) approach identifies only
3.7K app instances, user agent (UA) approach identifies 13K (remaining unaf-
fected), and MAP-SCORE (MS) identifies 1, 508K. In comparison with A&A
flows included (see Fig. 4), MAP-SCORE identifies only about 11% less app
instances.

For the lab trace, precision and coverage are plotted in Fig. 8. Note that
the coverage of HH gets very low because this technique largely relies on A&A
traffic for explicit app identifiers. UA still has a low coverage, but it is largely

68 S. Miskovic et al.

100
101
102
103
104
105
106

HH UA MS
100
101
102
103
104
105
106

of

 a
pp

 in
st

an
ce

s

of

 a
pp

 in
st

an
ce

s

Fig. 7. Number of app instances identified in the real trace without A&A flows.

 0
 20
 40
 60
 80

 100

HH UA MS
10-1

100

101

102

Pr
ec

is
io

n
(%

)

C
ov

er
ag

e
(%

)

precision coverage

Fig. 8. Precision and coverage of app-instance identifications on the lab trace without
A&A flows.

unaffected by the lack of A&A flows. Finally, MAP-SCORE associates apps to
about 50% of flow sets, but its precision drops to around 70%.

5 Conclusion

The paper proposes AppPrint, a system for automatic identification of mobile
apps in arbitrarily small samples of Internet traffic. AppPrint enables network
administrators to regain fine grained visibility into their traffic, thus benefiting
network management and security. The system achieves this by its unique capa-
bility to learn app fingerprints dispersed over multiple and often individually
inconclusive traffic flows. We evaluated AppPrint on a trace of a large cellu-
lar provider in the United States and on our comprehensive lab trace spanning
thousands of apps. The results show that AppPrint outperforms state-of-the-art
approaches by identifying over one order of magnitude more instances of apps
in the real traffic, while achieving up to 93.7% precision.

References

1. Apsalar: Data-Powered Mobile Advertising. http://apsalar.com/
2. Choi, Y., Chung, J.Y., Park, B., Hong, J.W.K.: Automated classifier generation

for application-level mobile traffic identification. In: Proceedings of Network Oper-
ations and Management Symposium (NOMS) (2012)

3. Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D.: NetworkProfiler: towards
automatic fingerprinting of Android apps. In: INFOCOM. Turin, Italy, April 2013

http://apsalar.com/

AppPrint: Automatic Fingerprinting of Mobile Applications 69

4. Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S., Estrin, D.: A first look
at traffic on smartphones. In: Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, IMC 2010, pp. 281–287. ACM, New York (2010)

5. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.:
Diversity in smartphone usage. In: Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, MobiSys 2010, pp. 179–194. ACM,
New York (2010)

6. Gember, A., Anand, A., Akella, A.: A comparative study of handheld and non-
handheld traffic in campus Wi-Fi networks. In: Spring, N., Riley, G.F. (eds.) PAM
2011. LNCS, vol. 6579, pp. 173–183. Springer, Heidelberg (2011)

7. Leontiadis, I., Efstratiou, C., Picone, M., Mascolo, C.: Don’t kill my ads!: Bal-
ancing privacy in an ad-supported mobile application market. In: Proceedings of
the Twelfth Workshop on Mobile Computing Systems & Applications, HotMobile
2012, pp. 2:1–2:6. ACM, New York (2012)

8. Maier, G., Schneider, F., Feldmann, A.: A first look at mobile hand-held device
traffic. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032, pp.
161–170. Springer, Heidelberg (2010)

9. Mobile App Usage Further Dominates Web. http://www.flurry.com/bid/80241/
Mobile-App-Usage-Further-Dominates-Web-Spurred-by-Facebook#.VAZhp9-c3PE

10. Moore, D., Keys, K., Koga, R., Lagache, E., Claffy, K.C.: The coralreef software
suite as a tool for system and network administrators. In: Proceedings of the 15th
USENIX Conference on System Administration, LISA 2001, pp. 133–144. USENIX
Association, Berkeley (2001)

11. Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: automatic security analysis of
smartphone applications. In: Proceedings of the Third ACM Conference on Data
and Application Security and Privacy, CODASPY 2013, pp. 209–220 (2013)

12. UI/Application Exerciser Monkey. http://developer.android.com/tools/help/
monkey.html

13. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: ProfileDroid: multi-layer profiling
of android applications. In: Proceedings of the 18th Annual International Confer-
ence on Mobile Computing and Networking, Mobicom 2012, pp. 137–148. ACM,
New York (2012)

14. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identi-
fying diverse usage behaviors of smartphone apps. In: Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference, IMC 2011,
pp. 329–344. ACM, New York (2011)

http://www.flurry.com/bid/80241/Mobile-App-Usage-Further-Dominates-Web-Spurred-by-Facebook#.VAZhp9-c3PE
http://www.flurry.com/bid/80241/Mobile-App-Usage-Further-Dominates-Web-Spurred-by-Facebook#.VAZhp9-c3PE
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

Uncovering the Footprints of Malicious Traffic
in Cellular Data Networks

Arun Raghuramu1(B), Hui Zang2, and Chen-Nee Chuah3

1 Department of Computer Science, University of California, Davis, USA
araghuramu@ucdavis.edu

2 Guavus Inc., San Mateo, CA, USA
hui.zang@guavus.com

3 Department of Electrical and Computer Engineering,
University of California, Davis, USA

chuah@ucdavis.edu

Abstract. In this paper, we present a comprehensive characterization of
malicious traffic generated by mobile devices using Deep Packet Inspec-
tion (DPI) records and security event logs from a large US based cellu-
lar provider network. Our analysis reveals that 0.17 % of mobile devices
in the cellular network are affected by security threats. This propor-
tion, while small, is orders of magnitude higher than the last reported
(in 2013) infection rate of 0.0009 %. We also perform a detailed compari-
son of infection rates of various mobile platforms and show that platforms
deemed to be more secure by common opinion such as BlackBerry and
iOS are not as safe as we think. However, Android still remains the most
affected platform with an infection rate of 0.39 %. We present a detailed
discussion of the top threat families targeting mobile devices observed in
our dataset. Lastly, we characterize the aggregate network footprint of
malicious and benign traffic in the cellular network and show that sta-
tistical network features can be used to distinguish between these traffic
classes.

1 Introduction

The pervasive use of mobile devices such as smartphones to access an array of
personal and financial information makes them rich targets for malware writ-
ers and attackers. Studies have revealed threats and attacks unique to mobile
platforms, such as SMS and phone call interception malware [1]. The claims
about prevalence of mobile malware were recently disputed when Lever et. al [2]
showed that mobile malware appears only in a tiny fraction (0.0009 %) of devices
in their dataset, indicating that mobile application markets are providing ade-
quate security for mobile device users. However, the work in [2] failed to provide
a comprehensive view of malicious network traffic since the analysis was limited
to threats which issue DNS requests to known malicious domains. Also, [2] did
not quantify the prevalence of specific types of threats affecting the network in
their characterization study.
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 70–82, 2015.
DOI: 10.1007/978-3-319-15509-8 6

Uncovering the Footprints of Malicious Traffic in Cellular Data Networks 71

In this paper, we performed a detailed characterization of malicious traffic gen-
erated by mobile devices using deep-packet flow records and security event logs
from a major US-based cellular network. Our analysis revealed that 0.17 % of over
2 million devices in the cellular network triggered security alerts. This fraction,
while still small, is orders of magnitude higher than the previous infection rate
reported in [2] and is in agreement with recent direct infection rate measurements
focusing on the Android platform [3]. This alarming infection rate calls for a more
careful and thorough study of malicious traffic in the mobile ecosystems.

A second area of our focus deals with the problem of ‘detecting’ malicious
hosts/URLs. Previous studies such as [4,5] treat this as a supervised learning
problem where a classifier learns on a combination of DNS, WHOIS, lexical, and
other features associated with a given host to decide whether it is malicious or
benign with high accuracy. Other studies such as [6,7] exclusively utilize lexical
features to achieve similar goals. A different approach, Nazca [8], was proposed
recently to detect malware distribution networks by tracking web requests asso-
ciated with malware downloads and installations.

Instead of focusing on features associated with the malware or hosts (e.g.,
URL content, WHOIS, etc.), we examined the network-level statistical features of
traffic associated with malicious domains. We observed that there are distinctive
network access patterns that can be leveraged to distinguish between benign and
malicious sites. To the best of our knowledge, this is the first study that applies
such network-level features to the malicious host identification problem.

The contributions of our work are two-fold:

(a) We provide a large-scale characterization of malicious traffic by analyzing
DPI records and security alerts of over 2 million devices. Apart from revealing
higher infection rate, we show that four classes of threats: privacy-leakage,
adware, SIP attacks and trojans - are most prevalent in mobile devices. Also,
we find that 0.39 % of Android devices are infected, while the infection rates
of BlackBerry and iOS devices which are commonly considered more secure
are observed to be comparatively high (0.32 % and 0.22 % respectively).

(b) We analyze the aggregate network-level features of user traffic for both
malicious and benign domains, and demonstrate that they are sufficiently
distinct. This allows us to build a machine learning classifier that identi-
fies malicious domains utilizing statistical properties of network traffic. We
believe that this opens up an interesting direction for detection of unknown
malicious domains.

The remainder of the paper is organized as follows: Sect. 2 provides an overview
of our datasets and methodology. In Sect. 3 we present the findings of our charac-
terization study of mobile threats. Section 4 describes the nature of network foot-
prints of malicious traffic. Section 5 concludes the paper.

2 Data Summary and Methodology

Our dataset, collected at a distribution site operated by a US cellular service
provider, is multiple terabytes in size and logs HTTP activities of over two million

72 A. Raghuramu et al.

Table 1. Security data sources and their alert triggering mechanism

Data source Alert triggering event(s)

IDS-1 DNS requests seen to known malicious domains

IDS-2 (a) The HTTP request header contains a known malicious
user agent string or URI

(b) Leakage of IMEI, IMSI, phone number or location
information through a HTTP header or URI

(c) Attempts to connect to a known C&C server

(d) DNS request to a known malicious domain (Utilizes a
different set of malicious domains from IDS-1)

(e) Known malicious behavior. Eg. Attempt to trigger a
DDoS, replay attack, etc.

AV-1 Known malware detected on a device through a signature

subscribers for a week-long period in summer 2013. What makes the dataset more
interesting is the associated security alert logs generated by commercial systems
deployed in the network.

Specifically, the following traces are contained in our dataset:

– Deep Packet Inspection (DPI) Records: These records log HTTP activity of
subscribers in the network and contain flow level information associated with
each HTTP request, such as, the timestamp, duration, bytes transmitted in
each direction, source IP address, URL, and User Agent of the flow.

– Intrusion Detection System (IDS) and Anti-Virus (AV) Alert Logs: These logs
contain threatname (usually vendor specific), subscriber IP address, timestamp,
destination HTTP domain, and destination port of the alerted activity.

– IP Assignment Records: These records map dynamically assigned IP addresses
to anonymized subscriber device IDs.

– VirusTotal, McAfee scan results: We performed additional scans on certain
domains and IP’s in the IDS and AV logs to obtain additional information
about the threats and number of malware detection engines flagging it as
positive (malicious).

We perform two processing tasks to help characterize malicious events in the
carrier’s network. We describe each of these tasks in greater detail below.

(a) Building Ground Truth for Malicious Traffic: As mentioned earlier, the car-
rier deploys two separate commercial IDS’s in its premises. Each IDS pas-
sively monitors different characteristics of traffic and flags security events
without initiating any ‘block’ actions. We utilize logs produced by these
appliances in our characterization study. We also use records logged at AV
scanners deployed at select end-client devices as an additional auxiliary
source of security evidence. Table 1 describes the alert triggering mecha-
nism of these IDS and AV systems. We collect IP’s and URL’s associated

Uncovering the Footprints of Malicious Traffic in Cellular Data Networks 73

(a) Threat Alerting Behavior (b) Timeseries of Privacy Leakage and
Botnet Communication Alerts

Fig. 1. Macroscopic characterization of alert data

with the alert events and submit them to commercial URL scanners such
as VirusTotal [9] to eliminate false positives and to gather detailed informa-
tion about the threats associated with these alerts. In addition, we manually
group the most prominent threats in the network into four general cate-
gories or “Threat classes”as: Trojans, Privacy leakage threats, Potentially
Unwanted Applications(PUA) and SIP threats based on the common char-
acteristics and infecting behavior of the threats.

(b) Identifying Devices and Platforms: The events in our malicious traffic ground
truth database could have been triggered by either mobile devices such as
smartphones and tablets or laptops and desktops that connect to the cellu-
lar network via hotspots/modem devices. We were provided with the regis-
tered make, model and operating system information for about half of the
anonymized subscribers in the trace. For the other subscribers, we infer the
device type, make, and OS type using the User-Agent fields from their DPI
records with the help of an in-house tool1. The devices in our alert datasets
are then classified manually as one of the four general categories: phones,
tablets, hotspots/modems and other devices.

3 Characterizing Mobile Threats

3.1 Prevalence of Malicious Traffic

As described earlier, we do not limit our characterization to web traffic gener-
ating DNS requests to malicious domains. Instead, we include non-HTTP mali-
cious traffic such as VoIP security events occurring on ports 5060 and 5061 and
a number of security events on non-standard ports such as 8080/8090 in our
study. Thus, we capture a more complete view of malicious traffic in the cellular
network.
1 This utility analyzes every User-Agent string in the DPI trace associated with the

unknown device to make an estimate of its make, model and platform.

74 A. Raghuramu et al.

(a) Cross-Device Threats (b) Mobile Only Threats

Fig. 2. Infection Effectiveness of Threats

In the dataset, 0.23 % of devices were observed to trigger security alerts
and 73.2 % of these events originated from mobile devices such as smartphones
and tablets while the rest are triggered by devices behind wireless hotspots or
modems, and hence cannot be uniquely identified as being mobile or non-mobile.
This puts the lower bound of the overall infection rate of mobile devices at 0.17 %,
which is orders of magnitude higher than those reported in the most recent
work by Lever et al. [2]. Also, our observed infection rate is in agreement with
the reported rate in a recent study focusing on direct measurement of Android
malware infection rates [3]. We note that our notion of ‘infection’ is similar
to that of [2]. We mark a device as infected when we observe a security alert
originating from it. This is reasonable since (a) The IDS systems in the network
are passively monitoring threats and do not engage in ‘blocking’ malicious traffic,
(b) We only use alerts which are known true positives and (c) This allows us to
do a one-to-one comparison of infection rates with previous work.

Further, we rank the individual infected devices based on the total number
of security alerts generated by them over the course of the week, and found that
the top 20 % of the devices account for more than 80 % of the security alerts.
Interestingly, the top 20 % of the infected devices primarily consisted of Android
and iOS based phones/tablets.

Based on the methodology described in Sect. 2, we extracted detailed infor-
mation about the threat associated with each security event by leveraging com-
mercial virus-scanning tools, and through manual inspections. We found 327
unique threats in our malicious traffic groundtruth dataset that spans over the
course of one week. After performing device classification, we further categorized
these 327 threats into three classes with 75 % confidence intervals as follows:
(a) mobile-only threats that infect mobile devices (b) non-mobile threats that
infect non-mobile devices, and (c) cross-device threats that infect both types of
devices. Figure 1a characterizes the macroscopic alerting behavior of the three
classes of threats in the network. The x-axis in this graph represents the top n %
of threats in terms of the total number of alerts generated. In general, a small
fraction of threats (5–15 %) are responsible for a major proportion (over 80 %) of
the observed alert traffic. However, we note that mobile threats in general tend
to generate less number of alerts than their non-mobile counterparts. This might

Uncovering the Footprints of Malicious Traffic in Cellular Data Networks 75

Table 2. Top categories of prevalent mobile malware

Threat class Threat description Unique # # # Asso-

threats Mobile Non- Associ- ciated

mobile ated ports

and un- IPs

known

Trojans Malware which utilizes techniques

of social engineering, drive-by

download and advanced

rootkits to affect user devices

8 1669 470 159 53

Privacy

leakage

Leakage of sensitive information

such as IMEI number and user

location

2 1277 418 77 8080,

80

Adware and

PUA

HTTP Requests to known adware

domains and requests with

known malicious UA strings

3 1179 368 45 80

SIP threats Illegal session information

modification and replay

attacks on SIP protocol

2 161 98 21 5060,

5061

indicate that attackers have adapted mobile malware to be stealthier and harder
to detect on the network. Moreover, some mobile-specific threats (e.g., privacy
leakage) generate less network footprints and hence trigger less number of alerts.

Exploring this further, we see that the number of alerts observed to be gen-
erated per threat is a function of the threat family (e.g. botnet, data leakage,
etc.) and the number of devices affected by the threat. Privacy leakage threats
such as threats responsible for leaking IMEI or location information from a
device generally do not generate as many alerts as devices affected by a botnet
threat (as shown in Fig. 1b). A ‘zombie’ bot device makes regular call-backs to
command and control servers for downloading instructions, data exfiltration and
so on, hence generating a much larger footprint in the security alert logs. This
implies that mining alert logs generated by network access activities could be
effective in early detection and prevention of botnet-like threats. However, sim-
ilar methodology will be ineffective for other threats, such as data leakage, that
leave very little footprints.

3.2 Top Mobile Threats

Next, we examine the threats that infected the most number of mobile devices.
Malware writers often aim to infect as many devices as possible in order to
maximize their financial or other gains. Therefore we use the number of devices
affected by a threat to quantify its success in the cellular network.

Figure 2 plots the infection effectiveness of two categories of threats: cross-
device threats and mobile-only threats, respectively. The x-axis plots threat id in
decreasing order of rank based on the total number of devices affected (i.e., the
first threat id affects the most number of devices). Notice from this graph that
only a few threats are able to successfully affect a large number of devices (either

76 A. Raghuramu et al.

Table 3. Types of Privacy Leakage

Type of data Affected devices

IMEI number 757

Device location 603

Phone number 14

Call logs 5

SMS logs 1

non-mobile or mobile). To better analyze the nature of these prominent threats,
we further classify the top 15 threats (either mobile-only or cross-device threats)
affecting the most number of mobile devices in the network into four different
classes based on unique characteristics exhibited by each threat as shown in
Table 2. We now describe the characteristics of each of these malware categories
and how they affect end users:

Trojan Threats: These programs deliberately cause harm to a user device while
posing to be a benign application such as a free anti-virus solution. The harm
can be either in terms of allowing unauthorized remote access to the device,
hijacking device resources, turning the device into a bot/proxy, stealing user
information etc. This class of malware is observed to be the most effective form
of threat currently affecting mobile devices. Interestingly, through the course of
our analysis, we detected instances of the Zeus trojan affecting 82 distinct iOS
based mobile devices in the network. Although mobile variants of this threat
affecting other platforms such as Windows Mobile and Android have been seen
in the wild, to the best of our knowledge, this is the first time a variant of this
threat was identified affecting iOS devices [10]. Unfortunately, we were not able
to explore characteristics of this malware variant further due to limitations in
the dataset.

Privacy Leakage Threats: Threats which maliciously leak IMEI (Interna-
tional Mobile Equipment Identity) number or device location information in the
HTTP headers or URI affect over 1200 unique mobile devices, making this one
of the most prevailing attacks targeting mobile devices in our dataset. Although
traditional desktop malware which leak sensitive user data exist, this problem
is more pronounced in the mobile ecosystem. This may be due to the sensitive
nature of data stored on mobile devices which attackers deem valuable, issues of
application over-privilege in some mobile platforms, and the availability of third
party app stores which facilitates deploying such malicious applications. Table 3
categorizes the types of privacy leakage issues revealed in our ground truth data.
Clearly, information such as those presented above would potentially allow an
attacker to uniquely observe a targeted user and his activities, making this a
serious violation user privacy.

Adware and Potentially Unwanted Applications (PUA): This class of
applications sneak into a device deceptively and get installed in such a way that

Uncovering the Footprints of Malicious Traffic in Cellular Data Networks 77

Table 4. Affected mobile platforms

Device platform % Total devices % Infection rate % Mobile alerts

iOS 40.57 % 0.22 % 53.12 %

Android 20.09 % 0.39 % 45.74 %

Windows 0.2 % 0.12 % 0.76 %

RIM OS 0.08 % 0.32 % 0.15 %

Custom Feature Phone OS
and Others

39.06 % 0.0009 % 0.21 %

it can be difficult to detect and remove. The primary motive of these programs
is to display unwanted advertisements to users, often in the form of pop-up ads.
While some of these apps may just be a minor irritant to the user, they may,
in some cases, also act as dangerous spyware that monitor user behavior and
collect data without consent.

SIP Threats: Session Initiation Protocol (SIP) is widely used for controlling
multimedia communication sessions such as VoIP calls over the internet. Our
results indicate that vulnerabilities in this protocol is seen to be a popular tar-
get for attackers seeking to exploit mobile devices. These are alarming trends
since such vulnerabilities can potentially give attackers the ability to listen-in on
confidential voice communications or launch denial of service attacks as reported
in previous studies [11,12].

3.3 Infection Rates of Popular Mobile Platforms

The question of which mobile platforms are most vulnerable to security threats
has been a hot topic of debate for several years. We attempt to answer this
question by utilizing ground truth data obtained from the operational cellu-
lar network. Table 4 presents the following data points: (a) The proportion of
devices belonging to each identifiable mobile platform in our dataset; (b) The
proportion of devices of a given platform that are infected, or the infection rate;
and, (c) The proportion of alerts observed in the ground truth originating from
a given platform.

We observe from the second column of the table that Android is the most
vulnerable platform with a 0.39 % infection rate. This infection rate is slightly
higher than those claimed by the most recent independent study of malware
infection rates in Android by Truong et al. [3] who measure it to be in the
range of 0.26–0.28 % and three times the rate reported by Google [13]. Android
is followed closely by Blackberry with an infection rate of 0.32 % and iOS with
0.22 %. These figures show that the walled garden approach/security through
obscurity as employed by these platforms are failing to ensure against mal-
ware spread. Blackberry devices are often used for business purposes due to
their security capabilities. However, the nature of data stored on these devices
may induce attackers specifically target this platform which can explain its high

78 A. Raghuramu et al.

infection rate. Attackers are however failing to affect a large proportion of users
with devices running Windows based mobile platforms as noted by recent indus-
try reports [14].

4 Network Footprints of Cellular Threats

In this section, we investigate if network access patterns associated with mali-
cious domains/hosts contacted by infected user devices exhibit distinct statistical
features when compared to accesses to their benign counterparts. There are many
existing studies that target accurate detection of malicious domains/URL’s by
using different methodologies. Some of these studies utilize a combination of
DNS and WHOIS features, host based features, content of the webpage, etc.
in order to achieve their goals [4,5] while some other studies such as [6] and
[7] exclusively use lexical features. The motivation of our study however is to
investigate if any of the statistical network features can complement the exist-
ing detection rules. This can be helpful in situations where other data such as
DNS, WHOIS, etc. which are useful for the malicious domain classification task
is infeasible to obtain or is otherwise unavailable.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Network Footprint of Malicious Domains

4.1 Feature Extraction and Selection

In order to perform our classification experiment, we first build a set of known
malicious domains using information from the ground truth alert database.

Uncovering the Footprints of Malicious Traffic in Cellular Data Networks 79

Table 5. Comparing ROC Areas

Data set ROC area-α ROC area-β ROC area-γ

600 malicious 600 benign 0.843 0.744 0.9

540 malicious 600 benign 0.83 0.737 0.897

480 malicious 600 benign 0.838 0.732 0.895

420 malicious 600 benign 0.84 0.73 0.891

360 malicious 600 benign 0.852 0.746 0.897

300 malicious 300 benign 0.84 0.703 0.885

240 malicious 600 benign 0.813 0.703 0.885

180 malicious 600 benign 0.796 0.771 0.857

120 malicious 600 benign 0.824 0.76 0.869

60 malicious 600 benign 0.763 0.728 0.876

We then create a set of benign domains by randomly choosing domains visited by
subscriber devices which are otherwise not listed in the ground truth database.
We further verify they are benign by running the domains through commercial
URL scanners. For these set of known malicious and benign domains, we extract
lexical and statistical network features as follows:

(a) Lexical features: Each target domain/host name is broken into multiple ‘tags’
or ‘tokens’ based on the ‘.’ delimiter. We identify 6,729 such unique lexical
tags through this process over a set of 1200 benign and malicious domains.
We then utilize the frequency of occurrence of each tag in a given domain
name as the lexical features of the target. This approach to represent lexical
information is commonly referred to as the bag-of-words model. Variants of
this model have been used to generate lexical features for use in detecting
malicious URL’s in previous studies such as [4,7].

(b) Statistical Network Features: Using the DPI records from the cellular carrier
we extract the following 12 heuristic features for each target domain: Uplink
data transfer volume (or uplink tonnage), downlink data transfer volume (or
downlink tonnage), ratio of uplink/downlink tonnage, total tonnage, pro-
portion of failed connections, average URL length, number of connections,
number of unique source IP’s connecting to the domain, number of failed
connections, entropy of destination IP addresses, downlink tonnage entropy
and the number of unique tonnage values.

We start our analysis by identifying specific network and lexical features that
contribute towards distinguishing between malicious and benign hosts. In order
to select such features, we utilize the raw set of attributes described above and
apply the Chi-squared statistic evaluation [15]. The Chi-squared score essentially
measures the difference between the conditional distributions of a network fea-
ture associated with the two classes: malicious vs. benign domains/hosts. On
the basis of the results of this exercise, we narrow down our feature set to 53

80 A. Raghuramu et al.

distinct attributes associated with each malicious/benign domain after remov-
ing attributes which have a score of zero. This reduced feature set includes 10
statistical network features and 43 distinct lexical features. Figure 3 shows the
cumulative distribution function (CDF) of six selected network features associ-
ated with malicious and the benign hosts that exhibited the highest chi-squared
scores. It is visually apparent that there is significant difference between the con-
ditional distribution for malicious vs. benign domains/hosts for these network
features. Other network features which were selected but not shown include the
connection entropy, the destination IP entropy, the downlink tonnage and the
number of unique tonnage values.

4.2 Classification of Malicious/Benign Domains

Many of the statistical network features have complex non-linear relationships.
This makes the task of classification of domains/hosts into malicious and benign
categories non-trivial. To tackle this problem, we use a machine learning app-
roach which can handle such dependent features efficiently. In particular we use
the “Random Forest” ensemble learner [16] to create a model with the individual
features. This classification method operates by constructing multiple decision
trees at a time (15 in our case) and predicts a class by aggregating the predic-
tions of the ensemble. In addition, we use the n-fold cross validation technique
to evaluate the accuracy of our model (n=10).

We run our classification experiments on varying proportions of malicious
and non-malicious hosts employing (a) Statistical network features alone (α),
(b) Lexical Features alone (β) and (c) Statistical network features in addition
to lexical features (γ). Figure 4a and b present the receiver operating character-
istic(ROC) for two of our cross-validation experiments. The ideal ROC would
lie close to the upper-left corner with false positive rate close to 0 % and true
positive rate close to 100 %. Note that with the addition of statistical network
features to simple lexical features, we obtain a better true positive rate at lower
false positive rates for most combinations of malicious and benign hosts.

(a) Only Lexical features (b) Lexical & Network Features

Fig. 4. Cross-Validation Results

Uncovering the Footprints of Malicious Traffic in Cellular Data Networks 81

We observe from Table 5 that the ROC area is higher in the case where we
utilize statistical network features along with lexical features (column 3) to per-
form classification as compared to using the lexical features alone (column 2) or
statistical network features alone (column 1) for all proportions of malicious and
benign domains. These preliminary results show that statistical network features
are complementary to lexical features and hold promise to add to capabilities of
existing detection rules to help solve the malicious domain detection problem.
A deeper analysis of this result is warranted and we leave it as an important
area of exploration for our future work.

5 Conclusions

In this paper, we present a study of malicious mobile traffic by using data
obtained from a major US based cellular carrier spanning a one week period
that contains over two million subscribers. Our investigation reveals that 0.17 %
of mobile devices are affected by security threats. This infection rate while still
small, is orders of magnitude higher than the last reported infection rate of
0.0009 % making this a worrisome problem. We combine multiple disparate data
sets to uncover details about the threats affecting mobile devices in the cellular
network and their unique characteristics. We also perform a detailed analysis
of infection rates in various popular mobile platforms. Our results show that
platforms deemed to be more secure by common opinion as iOS and BlackBerry
are not as secure as we think. However, Android still remains the most affected
platform with an infection rate of 0.39 %. Lastly, we characterized the aggregate
network footprint of malicious and benign domains associated with the threats
observed in our dataset and showed how statistical network features can be used
to potentially aid detection of malicious domains/hosts when used in conjunc-
tion with other lexical feature sets. Our preliminary results in this direction are
promising and we leave more detailed analysis to future work.

Acknowledgement. We would like to thank Parth H. Pathak for his insightful com-
ments on this work. We are grateful to Theo Pan and Josh Vaughen for their help with
obtaining VirusTotal data. This work was supported in part by the the Intel Science
and Technology Center for Secure Computing.

References

1. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Malicious android applications in
the enterprise: What do they do and how do we fix it? In: Proceedings of 28th
IEEE International Conference on Data Engineering Workshops (ICDEW) (2012)

2. Lever, C., Antonakakis, M., Reaves, B., Traynor, P., Lee, W.: The core of the
matter: analyzing malicious traffic in cellular carriers. In: Proceedings of NDSS
2013 (2013)

3. Truong, H.T.T., Lagerspetz, E., et al.: The company you keep: mobile malware
infection rates and inexpensive risk indicators. In: Proceedings of 23rd International
Conference on World Wide Web, pp. 39–50 (2014)

82 A. Raghuramu et al.

4. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Identifying suspicious URLs: an
application of large-scale online learning. In: Proceedings of 26th ACM Annual
International Conference on Machine Learning, pp. 681–688 (2009)

5. Choi, H., Zhu, B.B., Lee, H.: Detecting malicious web links and identifying their
attack types. In: Proceedings of 2nd USENIX Conference on Web Application
Development (2011)

6. Blum, A., Wardman, B., Solorio, T., Warner, G.: Lexical feature based phishing
URL detection using online learning. In: Proceedings of 3rd ACM Workshop on
Artificial Intelligence and Security, pp. 54–60 (2010)

7. Le, A., Markopoulou, A., Faloutsos, M.: Phishdef: URL names say it all. In: Pro-
ceedings of IEEE INFOCOM, pp. 191–195 (2011)

8. Invernizzi, L., Miskovic, S., et al.: Nazca: detecting malware distribution in large-
scale networks. In: Proceedings of NDSS 2014 (2014)

9. The virustotal online scanner. http://www.virustotal.com/en/about
10. Maslennikov, D.: Zeus in the mobile - facts and theories (2011). http://www.

securelist.com/en/analysis/204792194
11. El Sawda, S., Urien, P.: SIP security attacks and solutions: a state-of-the-art

review. In: IEEE Information and Communication Technologies, ICTTA 2006,
vol. 2, pp. 3187–3191 (2006)

12. Geneiatakis, D., Dagiuklas, T., et al.: Survey of security vulnerabilities in session
initiation protocol. IEEE Commun. Surv. Tutor. 8(1–4), 68–81 (2006)

13. Patterson, S.M.: Contrary to what you’ve heard, Android is almost impene-
trable to malware (2013). http://qz.com/131436/contrary-to-what-youve-heard-
android-is-almost-impenetrable-to-malware

14. Cisco 2014 annual security report. http://www.cisco.com/web/offers/lp/2014-
annual-security-report/index.html

15. Liu, H., Setiono, R.: Chi2: feature selection and discretization of numeric attributes.
In: IEEE 7th International Conference on Tools with Artificial Intelligence, pp.
388–391 (1995)

16. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

http://www.virustotal.com/en/about
http://www.securelist.com/en/analysis/204792194
http://www.securelist.com/en/analysis/204792194
http://qz.com/131436/contrary-to-what-youve-heard-android-is-almost-impenetrable-to-malware
http://qz.com/131436/contrary-to-what-youve-heard-android-is-almost-impenetrable-to-malware
http://www.cisco.com/web/offers/lp/2014-annual-security-report/index.html
http://www.cisco.com/web/offers/lp/2014-annual-security-report/index.html

Characterizing Instant Messaging
Apps on Smartphones

Li Zhang(B), Chao Xu, Parth H. Pathak, and Prasant Mohapatra

University of California, Davis, CA 95616, USA
{jxzhang,chaoxu,phpathak,pmohapatra}@ucdavis.edu

Abstract. Proliferation of smart devices has fueled the popularity of
using mobile instant messaging (IM) apps at a rapid pace. While the
IM apps on smartphones have become increasingly popular, there has
only been a little research on understanding the characteristics of these
apps. Because most of the IM apps use proprietary protocols, it is chal-
lenging to analyze their internal operations. In this work, we present
a comprehensive characterization of mobile IM apps using experiments
on LTE cellular network. We decompose the operations of an IM app
into multiple independent states which allows us to systematically study
them. We characterize the energy and bandwidth efficiency of each of the
states and provide numerous insights. Our analysis reveals that typing
notification feature of the IM apps is a major contributor to the energy
consumption. We also find that the bandwidth efficiency of current IM
apps are alarmingly poor compared to other applications such as email
and web surfing. These, along with other findings, provided in this work
can help improve the energy and network performance of IM apps.

1 Introduction

Recent years have witnessed a fast growing trend of using the new generation
of mobile instant message (IM) applications such as WhatsApp, WeChat and
Line on the smartphones. WhatsApp, for example, is ranked as the third all-
time-popular Android apps in Google’s Android app store [1] with a total of 590
million users in 193 different countries [5]. According to [2], the mobile IM apps
have overtaken the Short Message Service (SMS) operated by cellular network
carriers, with 19 billion messages sent per day compared with 17.6 billion SMS
messages.

While the adoption of mobile IM apps are rapidly increasing, very little
research has been done in characterizing them. This is because there are numer-
ous challenges in characterizing the IM apps. First, compared to other types of
mobile apps studied in [6,10,15,17], the IM apps involves much more user inter-
action such as typing, reading and user notifications. This makes the automated
characterization extremely difficult. The new set of features (e.g. typing and read
notifications) offered by the IM apps are much more complex compared to the
traditional SMS services. Also, there is a lack of transparency in the application
layer protocols used by the popular IM apps. Most of the current IM apps either
implement their own protocol or modify existing standard such as XMPP to
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 83–95, 2015.
DOI: 10.1007/978-3-319-15509-8 7

84 L. Zhang et al.

customize them. This makes it even more difficult to understand the underlying
operations of the apps.

In this work, we present a comprehensive characterization of the popular IM
apps for smartphones using experiments on LTE cellular network. We address
the challenges listed above by dissecting the operations of IM apps into many
different states and then evaluate the energy and the network efficiency of each
of them. Some of the main insights provided by our study are as follows:

– We find that sending and receiving typing notifications are major contributors
to the total energy consumption when the IM app is running in the foreground.
Many IM apps use frequent periodic typing notification messages which result
in very poor energy efficiency.

– Today’s IM apps have extremely low bandwidth efficiency (average amount
of traffic per one character of user message). This is true even when the app
is running in the foreground and has minimal requirement of maintaining
the “online presence”. This shows that while XMPP-like IM protocols offer
efficient ways of maintaining “online presence”, the current IM apps show
poor network efficiency when running in the foreground.

– Because users spend significant amount of time on IM apps compared to
other types of apps, simply switching to darker graphical interface can yield
surprising energy benefits.

– When the IM apps are running in background, the method used to no-
tify the user about incoming message has a significant impact on the energy
consumption.

The rest of paper is organized as follows. We describe the experimental setup
and the data collection in Sect. 2. The foreground and the background charac-
terization results are presented in Sects. 3 and 4 respectively. Then we discuss
the related works in Sect. 5. Section 6 concludes the paper.

2 Data Collection and Methodology

In this section, we first provide the details of data collection for different IM apps.
We represent the operations of an IM app using a state transition diagram. For
each of the states, we will test 5 most popular IM apps, and profile the energy
consumption and the network traffic generated.

2.1 State Transitions in IM App Usage

As shown in Fig. 1, the operations of an IM app can be divided into 6 distinct
states. When the users are in a conversation, the IM app runs in the foreground,
occupying the entire screen. When the users are using another app or when
the screen is turned off, the IM app runs in the background but still keeps
maintaining connections with its remote servers.

Foreground: When the IM app is in the foreground, the user is considered to
be “in conversation”. There are two “in conversation” states.

Characterizing Instant Messaging Apps on Smartphones 85

- In Conversation Sending (ICS): The ICS state is defined as the period
from when the user starts her typing of the message to the time when the read
notification is received. In this state, there are 4 functions: type, send typing
notification, send message and receive read notification.

- In Conversation Reading (ICR): The ICR state is from receiving the
typing notification to sending the read notification. This state has 3 functions:
receive typing notification, receive and display message, send read notification.

Background: There are four background states.

- Background Idle with Screen On (BION): BION is a state that the IM
app is running in the background while neither occupying the screen nor getting
any incoming message. This state has only 1 function: keep maintaining the
on-line presence with the server.

- Background Receive with Screen On (BRON): The BRON state is from
the time when message starts to arrive to the time when its notice is displayed
to the user. This state has 2 functions: receive message and display notice. This
state ends before the user takes any action for the received message, therefore
the IM app will not send out a read notification.

- Background Idle with Screen Off (BIOFF): The BIOFF state is the
period when the IM app is idly listening in the background and the screen is
off. Similar to BION state, the BIOFF state also has only 1 function: keep
maintaining the on-line presence.

- Background Receive with Screen Off (BROFF): This state starts when
the message arrives and the screen is off. This state ends once the user is notified
by some form of notification either using sound, vibration or screen turn-on.

Fig. 1. The state transition diagram of an IM app usage

86 L. Zhang et al.

Table 1. List of selected IM apps; Number of users data from [5]

Apps Mobile Users Covered Countries Originated From Icon

WeChat 600 million ∼ 200 China

WhatsApp 590 million ∼ 100 USA
Facebook
Messenger 300 million Unknown USA

Line 300 million 193 Japan

Viber 200 million 193 Israel

2.2 Experiment Settings

We select the top 5 mobile IM apps in terms of the number of users by the end
of 2013. The names and the statistics of the selected apps are listed in Table 1.
Our experimental setup consists of a Samsung Nexus S smartphone (running
Android 4.1.2), a Macbook Air, a Dell Latitude E5430 laptop and a Monsoon
Power Monitor. We install tcpdump on the phone to capture the network traffic.
The Macbook Air is used as the phone’s SSH console. The Monsoon Power
Monitor is employed to measure the power consumption of the smartphone, and
the Dell laptop serves as the power monitor console. The sampling frequency of
the power monitor is set to 5 KHz.

We conducted all the experiments on AT&T’s cellular network data con-
nection. We also turn off the WiFi and Bluetooth radios and fix the volume,
brightness, vibration and keystroke feedback settings to avoid any unintended
impact on measured energy. To turn off any additional background services on
Android, we limit the number of background processes to one and use “Advanced
Task Killer Pro” app to kill any additional running processes.

2.3 Methodology and Metrics

To get a comprehensive view of the characteristics of the selected IM apps, we
test all the 6 states of the apps, by using a set of the most commonly used
IM messaging literacy among college students [7]. In [7], the authors listed the
taxonomy of the IM conversation topics. For example, the 5 most popular conver-
sation topics are: emotional support, fictional people, video games, computers
and shared interests. We picked one conversation in each kind of the popular
topics from the typical examples concluded in [7] and created a database of
70 messages. The length of the messages varies from 4 characters to as many
as 125 characters, where the characters may include letters, punctuation marks
and metadiscursive markers. To reduce the effect of randomness, the typing of
each message in each run of the experiments is repeated 20 times to calculate
an average value. We repeat the experiments for two different users to eliminate
any user-specific typing characteristics.

The performance of the IM apps in the state with sending/receiving activities
are mainly evaluated by two metrics: (i) Energy efficiency: energy consumption

Characterizing Instant Messaging Apps on Smartphones 87

per character sent/received (Joule/character) and (ii) Bandwidth efficiency: the
amount of network traffic generated per character sent/received (byte/character).
In the idle listening states, since there are no user intended messages, we will use
the average energy consumption per hour (J) and the average network traffic per
hour (KByte) as the evaluation metrics.

3 In Conversation Sending/Receiving (ICS/ICR)

We conducted a total of 12,600 runs of experiments by manually typing, and
collected 2.4 GB of energy and network traffic traces. From the network traces,
we observed that all the 5 selected IM apps are built on the client/server
architecture, where the message sender and the message receiver communicate
indirectly through a certain number of servers. Although following the same
architecture, the application layer protocols used by each app are quite differ-
ent. By linking the server port number with the registry of Internet Assigned
Numbers Authority (IANA) [8], we found that WeChat, WhatsApp, FB Mes-
senger, Line and Viber use commplex-main, XMPP, HTTPS, SSL and Virtual
Reality Modeling Language (VRML) [14] respectively.

As shown in Fig. 2, the ICS state can be divided into two phases: (1) typing
the message & sending typing notification, and (2) sending the message & receiv-
ing the read notification. Correspondingly, the ICR state is also consisted of two
phases: (1) receiving the typing notification, and (2) receiving the message &
sending the read notification. Since the typing of a long message needs consid-
erable amount of time, we can observe a time gap between the first and the
second phase of the ICR state. During the time gap, the radio will be tuned to
the paging channel (PCH) state to save energy.

Fig. 2. Examples of energy traces of in conversation states (WhatsApp)

3.1 Energy Characterization

The energy consumption of “in conversation” states can be attributed to two
factors: (1) the Graphical User Interface (GUI) and (2) user operations such as
typing or sending messages etc.

88 L. Zhang et al.

GUI. The average values of the energy consumption of the GUIs of the IM
apps are shown in Fig. 3(a). It is observed that the GUIs of the ICR states
always consume more energy than the GUIs of the ICS states (36.3% more
on an average). This is because the conversation windows of the IM apps are
usually in brighter colors, while the default keyboard background of Android is
in darker color. In the ICR state, the conversation window usually occupies the
entire screen; while in the ICS state, the dark keyboard will occupy about half
of the screen which reduces the overall energy consumption. Therefore the GUIs
of ICR state will consume more energy than the GUIs of ICS state.

Since the energy consumption of the display is highly dependent on the hard-
ware, there is only a little that can be done from the app development perspec-
tive. We observe that Line and Viber (refer Fig. 3(a)) consumes much less energy
in ICR and ICS states simply due to the fact that their GUIs use darker colors.
Because users spend a large amount of time on the IM apps (very high user res-
idence time [17]), it is advisable to incorporate such modifications. We observe
that the GUI consumption of each app in each state is more or less constant
(coefficients of variance laying in the range of (0.0053, 0.0228)), hence we deduct
the GUI energy from the energy measurements shown in the rest of this paper.

Fig. 3. The factors of energy consumption

ICS and ICR User Operations. The characteristics of the energy consump-
tion related to user operations are shown in Fig. 3(b) and (c). In the ICS state, we
can see the typing message and sending typing notification time phase consumes
much (308 % on average) more energy than the energy consumed by sending the
message and receiving the read notification. However, on the receiving side, the
difference of the energy consumed by the user operations in the two time phases
is relatively small (40 % on average).

Energy for Typing: We first turn off the radio and simply measure the energy of
typing. We observe that over 60.2 % of the energy cost is attributed to typing in
the ICS state.

Energy for Typing Notifications: We observe that sending the typing notifica-
tion in ICS state consumes as much energy as sending the actual message and
receiving the read notifications combined. In the ICR state, receiving typing
notification consumes as much as 37 % (average for all 5 apps) of state’s total

Characterizing Instant Messaging Apps on Smartphones 89

energy consumption. The high energy consumption is due to the fact that how-
ever small the typing notification message is, it requires the radio interface to be
turned on. This shows that sending and receiving typing notifications is a major
factor of energy consumption (often comparable to sending and/or receiving the
actual message). This means significant amount of energy can be saved by sim-
ply turning off the typing notifications. This also calls for a more energy efficient
solution for enabling typing notifications.

Energy for Read Notifications: Because the sending and receiving read notifica-
tion is submerged in receiving and sending message respectively, it is difficult to
isolate the energy consumption of the read notification. However, we expect the
energy consumption of the read notification to be much lesser than that of typ-
ing notification. This is because the read notification is only sent once while the
typing notification involves many messages (continuously based on when user
starts and stops typing until the message send button is pressed). Also, because
sending/receiving read notification is mostly submerged with receiving/sending
the message, no separate radio wake up is necessary, further reducing its energy
overhead.

Energy Efficiency. We now present the results about per character energy
consumption as defined in Sect. 2.3. To understand this, we compare the energy
consumption for many short messages to fewer long messages. The size of the
complete message is chosen to 120 characters which is divided into substrings,
each of which is sent individually. As shown in Fig. 4, we consider 1 to 6 as
possible number of substrings. When number of substrings is 1, it means that
the entire 120 character message is sent at once. On the other hand, when the
number of substrings is 6, a total of 6 messages are sent separately each of
which is of 20 characters. Figure 4 shows energy consumption per character when
different number of substrings are sent.

As shown in Fig. 4(a), the energy spent on sending each character increases
as the length of the substrings decreases. This is mainly caused by the overhead
of sending typing notifications because an IM app needs to tune its radio to ded-
icated channel (DCH) state and also suffers the tail energy overhead in the For-
ward Access Channel (FACH) state. We can also observe the energy efficiency of

Table 2. ICS: the average traffic statistics of 30 character messages

Apps Number of Number of Average packet Duration (s)

TCP connections packets size (byte)

WeChat 1 38 61.4 33.54

WhatsApp 1 14 110.9 21.35

FB messenger 1 28 166.4 22.42

Line 1 12 87 20.74

Viber 1 26 108.5 22.39

90 L. Zhang et al.

Fig. 4. Energy consumption per character

WeChat is much lower compared to other apps. This is because WeChat aggres-
sively sends typing notifications every 2 seconds. Since typing many shorter mes-
sages takes much more time combined than typing one long message, number of
typing notifications increase sharply for WeChat, resulting in sharp increase
in energy consumption. To further validate this, we present network traffic
statistics in Table 2. It shows that WeChat sends more smaller packets for typing
notifications. On the other hand, WhatsApp and Line send fewer packets due
to fewer typing notifications which also reflects in their per character energy
efficiency in Fig. 4(a).

In the ICR state, the energy consumption also follows the same trend that
many shorter messages consume more energy as shown in Fig. 4(b). However, we
observe some anomaly in case of FB Messenger and Viber where many shorter
messages (no. of substrings = 6) are more energy efficient compared to fewer
medium sized messages (no. of substrings = 5). This is because both these apps
delay sending the typing notifications. This allows the typing notification to be
received almost at the same time (compared to Fig. 2) with the actual message,
which eliminates additional radio wake up and saves energy. This shows that
if the typing notification can be delayed towards sending the actual message,
it is possible to reduce the energy overhead of sending/receiving the typing
notifications, especially for small length messages.

Findings: (1) Sending and receiving typing notification is a major contributor to
the total energy consumption of ICR and ICS states. IM apps which periodically
send the typing notifications suffer from very high energy consumption. Because
most of the IM messages are small in length, delaying the sending of typing noti-
fication can save significant energy. Also, an adaptive scheme should be designed
that can control when to send the typing notification depending on the length of
user’s input message. Such a scheme can achieve the correct balance between use-
fulness of typing notifications and their energy consumption. (2) Because user’s
residence time on IM apps are much longer compared to other types of apps,
simply switching to darker GUI can yield surprising energy benefit.

Characterizing Instant Messaging Apps on Smartphones 91

Table 3. ICR: the average traffic statistics of 30 character messages

Apps Number of Number of Average packet Duration (s)

TCP connections packets size (byte)

WeChat 1 20 280 10.3

WhatsApp 1 12 78.7 11.5

FB messenger 2 26 235.3 16.4

Line 1 8 187.5 12.4

Viber 1 14 122.4 22.6

3.2 Bandwidth Efficiency

We now analyze the bandwidth efficiency (amount of traffic generated per char-
acter sent/received) of the IM apps and present the results in Fig. 5(a) and (b).
This helps us to understand how much traffic the IM apps generate compared
to the amount of useful information (instant message) exchanged. It is observed
that network traffic per character is different when receiving or sending the same
message. This is expected given that all the apps use client-server architecture
and the sent message is first processed at the server before it is delivered to the
receiver. It is also observed that network traffic per character is much higher on
the receiving side compared to the sending side.

We observe that FB Messenger has the worst bandwidth efficiency for both
sending and receiving sides in most cases. On the other hand, WhatsApp and
Line achieve very high bandwidth efficiency compared to other apps. Due to the
unavailability of their internal design, application layer protocol customization
etc., it remains inconclusive why certain apps achieve high or low bandwidth
efficiency.

Comparison with Other Types of Applications. We now compare the
bandwidth efficiency of IM apps to other kind of applications. We first construct
a set of emails and plain HTML pages with the same set of messages tested on the
IM apps. For email, we measure the amount of traffic generated by Google Mail
and the size of the actual emails. For HTML, we set up a web-server which holds
a plain HTML page (without any images) and connect it via a client to measure
the traffic and the size of HTML page. The bandwidth efficiency of Email and
HTML are compared with IM apps in Fig. 5(c). As we can observe, IM apps
have extremely poor bandwidth efficiency which shows that even the modern
protocols such as XMPP (used by WhatsApp) are not bandwidth efficient.

Traffic Due to Typing and Read Notifications. It was observed in Sect. 3.1
that typing notifications are a major contributor to energy consumption. We
now evaluate how much network traffic is generated due to the typing and read
notifications. Figure 5(d) shows the ratio of traffic due to notifications to the total
traffic. We observe that the ratio is small for most of the applications. This way,
the actual traffic due to notifications is low, however, because the notifications

92 L. Zhang et al.

Fig. 5. The bandwidth consumption statistics of in conversation states

are sent/received using many small packets (Table 3), it causes frequent radio
wake up and results in poor energy efficiency.

Findings: (1) The IM apps have extremely poor bandwidth efficiency compared to
other applications such as email and web-surfing. Modern IM protocols such as
XMPP which are optimized to reduce traffic in background states demonstrate the
same poor level of bandwidth efficiency in the foreground states. Further improve-
ments are necessary to improve the network performance of instant messaging
apps and protocols. (2) Typing notification which is a major contributor in energy
consumption does not introduce proportionally high network traffic.

4 The Background States

The performance of the IM apps running in the background is now characterized.
We show the corresponding results in Figs. 6, 7 and 8. Similar to the ICR state, we
can also observe the energy efficiency of the background receiving decreases if the
length of the messages decreases, as shown in Fig. 6. However, the reasons behind
the phenomenons are quite different. In the background receiving states, we did
not observe any typing notification nor read notification from the network traces.
The main cause of the energy efficiency reduction is the overhead of notifying the
users through certain methods, e.g. banner size notification, pop-up window and
icon label. In the BRON state, Viber uses pop-up window, while in the BROFF
state, both Line and Viber use pop-up window. The pop-up window results in
significant increase of energy consumption for these two apps as seen in Fig. 6.

Characterizing Instant Messaging Apps on Smartphones 93

0

100

200

300

400

500

600

700

1 2 3 4 5 6E
ne

rg
y

C
on

su
m

pt
io

n
P

er
 C

ha
ra

ct
er

(m

j)

The Number of Substrings

WeChat

WhatsApp

FBMessenger

Line

Viber

(a) BRON Energy Consumption Per
Character

0

100

200

300

400

500

600

1 2 3 4 5 6E
ne

rg
y

C
on

su
m

pt
io

n
P

er
 C

ha
ra

ct
er

(m
J)

The Number of Substrings

WeChat

WhatsApp

FBMessenger

Line

Viber

(b) BROFF Energy Consumption Per
Character

Fig. 6. The energy efficiency of background receiving

0

40

80

120

160

200

240

280

1 2 3 4 5 6

N
et

w
or

k
Tr

affi
c

Pe
r C

ha
ra

ct
er

(B
yt

e)

The Number of Substrings

WeChat

WhatsApp

FBMessenger

Line

Viber

(a) BRON Bandwidth Consumption
Per Character

0

50

100

150

200

250

300

1 2 3 4 5 6

N
et

w
or

k
Tr

affi
c

Pe
r C

ha
ra

ct
er

(B

yt
e)

The Number of Substrings

WeChat

WhatsApp

FBMessenger

Line

Viber

(b) BROFF Bandwidth Consumption
Per Character

Fig. 7. The bandwidth consumption of background receiving

0

40

80

120

160

E
n

er
g

y
C

o
n

su
m

ed

P
er

 H
o

u
r

(J
)

Screen On

Screen Off

(a) Energy Consumption of Idle States

0

10

20

30

40

B
an

d
w

id
th

 C
o

n
su

m
p

ti
o

n
P

er
 H

o
u

r
(K

B
yt

e)

Screen On

Screen Off

(b) Bandwidth Consumption of Idle
States

Fig. 8. The statistics of idle states

Comparing Figs. 4(b) and 7, we can observe that the bandwidth consumption
of the background receiving follows the same trend but is slightly lower than the
bandwidth consumption of the ICR state, since there are no typing notifications
and read notifications. On average, the BRON and the BROFF states consume
9.6 % and 8.5 % more bandwidth than the ICR state.

The statistics of the idle listening states are shown in Fig. 8. The main
function of the idle listening states is to communicate periodically with the

94 L. Zhang et al.

server to maintain the online presence. Therefore the number and the frequency
of exchanging “keep online” packets are the main factor affecting the energy
consumption. From the results, we can observe the implementation of the “keep
online” function is comparatively more energy efficient. For example, considering
the 1,500 mAh battery of Nexus S, the FB Messenger in BION state can have
172 h of standby time.

Findings: (1) Energy efficiency of different IM apps in background receiving
states depends mostly on how the app notifies the user about incoming message.
Apps that use pop-up window notification consume drastically more energy than
the apps using banner notification or icon label. This sheds light on the potential
to improve energy efficiency by simplifying the user notification process. (2) With
improved methods of maintaining “online presence” in today’s IM protocols such
as XMPP, the energy and bandwidth efficiency of idle states are comparatively
better than other states.

5 Related Work

Traditional Messaging Services: There is a limited amount of prior work on
characterizing the performance of IM apps on smartphones. PC-based IM apps
(AIM and MSN) were characterized in [16] where authors studied network traffic
related characteristics. Similarly, [9] characterized the users’ conversation styles
of IM apps in workplace, by analyzing the SMS messages exchanged through
AT&T’s cellular network. Note that different from both these efforts, we have
attempted to characterize smartphone IM apps which have revolutionized the
way people connect in today’s era.

App Profiling: There has been multiple research works on developing methods
to profile smartphone apps in general. This includes multi-layer profiling tool
ProfileDroid [15], Application Resource Optimizer (ARO) [12], energy measure-
ment tool eprof presented in [11] and third-party API resource usage measure-
ment tool API Extractor (APIX) presented in [18]. Different from these generic
profiling tools, our focus in this work is to understand the network and energy
characteristics specific to the IM apps.

Mobile IM Apps: Considering the research specific to mobile IM apps, [3,4]
modeled user’s residence time on IM apps and typical message arrival rate. Based
on these models, they derived energy consumption models of IM apps. The pro-
vided model, however, only provides a high-level coarse-grained behavioral analy-
sis which is independent of the operation of the underlying IM app. In this paper,
our focus is on the operations of different IM apps. In other related work [13],
the authors showed the energy consumption of IM apps can be reduced by mes-
sage bundling. To evaluate their bundling algorithms, the authors implemented
a customized IM app and developed a software tool Energy Box to estimate
the energy consumption of sending/receiving instant messages by analyzing the
tcpdump traces. Note that such techniques to improve energy efficiency of IM
apps are in line with our effort to quantify the energy consumption of popular
IM apps.

Characterizing Instant Messaging Apps on Smartphones 95

6 Conclusions

By decomposing the operations of IM apps into 6 states, we characterized the
energy and the bandwidth efficiency of IM apps. We also analyzed various opera-
tions of the IM apps, e.g. typing notification, read notification, sending/receiving
messages. Our analysis revealed there is still plenty of improvements necessary in
the IM apps especially in the “in conversation” and the “background receiving”
states to improve their energy and bandwidth efficiency. However, we observe
that the background idle states already have comparatively high energy and
bandwidth efficiency.

References

1. AppBrain. http://www.appbrain.com/stats/
2. BBC. http://www.bbc.com/news/business-22334338
3. Chung, Y.W.: Investigation of energy consumption of mobile station for instant

messaging services. In: ISADS 2011, pp. 343–346 (2011)
4. Chung, Y.W.: An improved energy saving scheme for instant messaging services.

In: WiAd 2011, pp. 278–282 (2011)
5. Clifford, C.: Top 10 apps for instant messaging, Entrepreneur, 11 December 2013
6. Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S., Estrin, D.: A first look

at traffic on smartphones. In: IMC 2010, pp. 281–287 (2010)
7. Haas, C., Takayoshi, P.: Young people’s everyday literacies: the language features

of instant messaging. Res. Teach. Engl. 45(4), 378–404 (2011)
8. I. A. N. A. (IANA). https://www.iana.org/assignments/
9. Isaacs, E., Walendowski, A., Whittaker, S., Schiano, D.J., Kamm, C.: The charac-

ter, functions, and styles of instant messaging in the workplace. In: CSCW 2002,
pp. 11–20 (2002)

10. Lee, S.-W., Park, J.-S., Lee, H.-S., Kim, M.-S.: A study on smart-phone traffic
analysis. In: APNOMS 2011, pp. 1–7 (2011)

11. Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app? Fine
grained energy accounting on smartphones with Eprof. In: EuroSys 2012, pp. 29–42
(2012)

12. Qian, F., Wang, Z., Gerber, A., Mao, Z., Sen, S., Spatscheck, O.: Profiling
resource usage for mobile applications: a cross-layer approach. In: MobiSys 2011,
pp. 321–334. ACM (2011)

13. Vergara, E.J., Andersson, S., Nadjm-Tehrani, S.: When mice consume like ele-
phants: instant messaging applications. In: e-Energy 2014, pp. 97–107 (2014)

14. VRMLSite. http://www.vrmlsite.com
15. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Profiledroid: multi-layer profiling

of android applications. In: Mobicom 2012 (2012)
16. Xiao, Z., Guo, L., Tracey, J.: Understanding instant messaging traffic characteris-

tics. In: ICDCS 2007, pp. 51–51 (2007)
17. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying

diverse usage behaviors of smartphone apps. In: IMC 2011, pp. 329–344 (2011)
18. Zhang, L., Stover, C., Lins, A., Buckley, C., Mohapatra, P.: Characterizing mobile

open apis in smartphone apps. In: IFIP Networking Conference 2014, pp. 1–9
(2014)

http://www.appbrain.com/stats/
http://www.bbc.com/news/business-22334338
https://www.iana.org/assignments/
http://www.vrmlsite.com

Do Mobile Data Plans Affect Usage? Results
from a Pricing Trial with ISP Customers

Carlee Joe-Wong1(B), Sangtae Ha2, Soumya Sen3, and Mung Chiang1

1 Princeton University, Princeton, USA
{cjoe,chiangm}@princeton.edu

2 University of Colorado-Boulder, Boulder, USA
sangtae.ha@colorado.edu

3 University of Minnesota, Minneapolis, USA
ssen@umn.edu

Abstract. The growing amount of traffic in mobile data networks is
causing concern for Internet service providers (ISPs), especially smaller
ISPs that need to lease expensive links to Tier 1 networks. Large amounts
of traffic in “peak” hours are of especial concern, since network capacity
must be provisioned to accommodate these peaks. In response, many
ISPs have begun trying to influence user behavior with pricing. Time-
dependent pricing (TDP) can help reduce peaks, since it allows ISPs to
charge higher prices during peak periods. We present results from the first
TDP trial with a commercial ISP. In addition to analyzing application-
specific mobile and WiFi traffic, we compare changes in user behavior due
to monthly data caps and time-dependent prices. We find that monthly
data caps tend to reduce usage, while TDP can increase usage as users
consume more data during discounted times. Moreover, unlike data caps,
TDP reduces the network’s peak-to-average usage ratio, lessening the
need for network over-provisioning and increasing ISP profit.

1 Introduction

Mobile data usage is growing at unprecedented rates, with Cisco estimating
that global mobile data traffic grew 81 % in 2013 and projecting a compound
annual growth rate of 61 % over the next five years [1]. This trend has signif-
icantly increased ISPs’ capital expenses, as they must provision their network
to accommodate peak usage during the day [3,16]. Smaller ISPs are particu-
larly affected, as their network capacity is limited by middle mile links to Tier
1 operators, which are leased at rates based on peak usage [20]. Many ISPs are
therefore trying to reduce their peak mobile data traffic [18,22]. In this paper, we
focus on the use of pricing as an incentive for users to reduce their peak usage.

Most U.S. ISPs charge fixed fees for limited monthly data caps. Yet data caps
may not effectively limit usage peaks, as users can remain under their caps by
using less data at off-peak times and not changing their peak-time usage. Time-
dependent pricing (TDP) allows the ISP to effectively target network peaks
by offering higher prices at those times, incentivizing users to consume data
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 96–108, 2015.
DOI: 10.1007/978-3-319-15509-8 8

Do Mobile Data Plans Affect Usage? Results from a Pricing Trial 97

at other times. Yet TDP’s effectiveness depends on users’ willingness to shift
their data usage in exchange for reduced prices, which can vary for different
users and applications: business users, for instance, might not wait to download
email attachments, but teenagers might wait to download video purchases [8].
To the best of our knowledge, there are no systematic studies of these price-delay
tolerances, and no works on TDP have yet accounted for the effect of displaying
usage statistics to users: showing users these statistics would make them more
aware of their usage and might affect their usage behavior. Previous trials have
only focused on university populations [2,8].

In this paper, we present results from the first TDP trial with a commercial
ISP. We recruited 27 customers of a local U.S. ISP, dividing users into time-
independent pricing (TIP) and TDP groups. The TIP users used a data usage
monitoring application with their regular pricing plan. We show that this mon-
itoring induced them to reduce their usage below their monthly data caps, but
that they still had very high peak usage. The TDP users both monitored their
data usage and received time-dependent prices; we show that the prices induced
TDP users to increase their usage at discounted times. Thus, simple data caps do
not effectively reduce ISPs’ peak network usage, but TDP does. Our work makes
the following contributions:

– An analysis of the results of the first TDP trial with a commercial ISP, includ-
ing:

– A study of temporal and per-app WiFi and cellular usage data.
– An analysis of the impact of data usage monitoring apps on cellular and WiFi

usage behavior.
– An evaluation of real customers’ price sensitivity and delay tolerance for dif-

ferent applications.
– An examination of TDP’s cost benefits with empirical price sensitivity and

delay tolerance estimates.

In the next section, we give an overview of related work. We then describe
the trial structure and our analysis methodology in Sect. 3. We analyze users’
pre-trial data usage in Sect. 4 before presenting the trial results in Sect. 5.
We conclude in Sect. 6.

2 Related Work

Previous trials in a university setting demonstrated TDP’s effectiveness in chang-
ing mobile data usage patterns [8]. Others have suggested that data usage and
user responses to incentives depend on psychological [2] or socioeconomic [14]
factors. Another work on price elasticities for wireline broadband speeds consid-
ers a wider population [7]. These trials, however, do not analyze TDP’s effects
on different apps or account for the effect of simply displaying usage statistics to
users. We find that displaying usage statistics generally decreases usage volume,
but when combined with TDP can result in increased usage at low-price times.

98 C. Joe-Wong et al.

Many studies have found a significant time-of-day pattern in cellular net-
work traffic [11]. Others have analyzed LTE network performance [9] and com-
pared the performance of different network interfaces (e.g., LTE and WiFi) [19].
Papers focusing on individual users’ data consumption show a large diversity
in the amount of data used by different users and different apps on mobile and
WiFi networks [5,6,13,21]. These lead to distinct temporal usage patterns, which
[12] showed can be leveraged to improve users’ experience with intelligent WiFi
offloading. Similarly, [10] shows that delaying mobile off-screen traffic, which is
assumed to be delay-tolerant, can improve energy usage. Another work on Super
Bowl traffic shows that short-term delays can be leveraged to eliminate conges-
tion [4]. Our work provides a more nuanced estimation of delay tolerances and
examines their monetary value to users by offering price incentives.

3 Methodology

We designed the trial to determine the effects of data usage monitoring and a
combination of TDP with usage monitoring. We first outline the trial structure
and then describe the data collected and apps distributed to trial participants.
We finally present a model for users’ price-delay tolerances that allows us to
evaluate TDP’s benefits for ISPs.

3.1 Trial Participants and Structure

We recruited 27 active trial participants from an ISP’s customer base. While our
sample size is small, the number of participants was limited by the fact that we
changed some of their mobile data plans to TDP, broadening the trial’s financial
implications beyond those of simply measuring usage. All participants used their
own Android devices. They did not use data monitoring apps before the trial,
but did have monthly data caps.

All active participants downloaded custom-built apps for the trial, which
we describe in more detail in the next section. These participants were divided
into two groups: time-independent pricing (TIP) and TDP users. The TIP users
installed data monitoring apps, allowing us to estimate the effect of usage mon-
itoring with data caps. The TDP users’ app both monitored data and offered
time-dependent prices. Thus, their behavior is affected by both data monitoring
and TDP. We additionally collected passive network data on more than 5000
“control” users, who did not install any apps. Table 1 summarizes the three
groups of users.

The control and TIP users’ data caps, which are not shared among devices,
ranged from 1 to 10 GB and were the same as before the trial. TDP users were
charged hourly time-dependent prices, e.g., $10/GB from 12 to 1am and $15/GB
from 1 to 2 am. The prices offered ranged from $10/GB to $20/GB, and were
chosen to be no higher than the ISP’s most popular data plan: a monthly 1 GB
cap for $19.99. Prices were randomly determined and shown to the TDP users
24 hours in advance, allowing them to plan their usage over the next day.

Do Mobile Data Plans Affect Usage? Results from a Pricing Trial 99

Table 1. Three groups of trial participants.

Recruitment Data collection Data plan

Control Random RADIUS logs Unchanged

TIP Volunteer Trial app & RADIUS Unchanged

TDP Volunteer Trial app & RADIUS TDP rates

(a) TIP app home. (b) Usage graphs. (c) Per-app usage. (d) TDP app home.

Fig. 1. Screenshots of the TIP and TDP apps. The TIP app’s small pie chart indicator
on the upper left of the screen indicator bar (1a) shows the approximate portion of a
user’s monthly data cap used so far. The TDP app’s colored price indicator on this bar
(1d) indicates the current price range.

3.2 Data Collection

Our dataset consists of two separate types of data: one 21.5 GB set of RADIUS
network data, and one 10.5 GB set of application usage data. The RADIUS data
was collected from March 2012 to June 2013 for all TIP, TDP, and control group
users and contains 140 million session records, including input and output byte
counts and start and end timestamps.

The second dataset was collected by TIP and TDP trial participants’ apps
during the June 2013 trial. This data consists of uplink and downlink cellular and
WiFi byte counts for every application, collected every ten minutes, as well as
the hourly prices offered to TDP participants.1 We developed separate TDP and
TIP apps for the trial, which collect usage information and display it to users.

The TIP app is a usage monitoring application with screens shown in Fig. 1a,
b and c. Users could view their monthly, weekly, and daily usage as a fraction
of their data cap (Fig. 1a and b), as well as their per-app usage (Fig. 1c). Daily
and weekly data caps were calculated based on the monthly cap and number of

1 We did not collect more detailed data, e.g., packet traces, to maintain users’ privacy.
Participants fully consented to the data collection, but complete anonymity was not
possible as we had to calculate how much to charge the TDP users.

100 C. Joe-Wong et al.

days left in the month. Users could quickly see the remaining fraction of their
monthly cap by looking at the pie chart icon on the bar at the top of the screen.

The TDP app allows users to monitor their spending on data and see the
future prices. As with the TIP app, users can see their per-app usage (Fig. 1c).
However, the main screen has been modified (Fig. 1d) to show the future prices
and the amount the user has spent during the month. On the top left of the home
screen bar, we show a color-coded price indicator that is visible both inside and
outside our app; the indicator lets users easily see the current price, making it
easier for them to decide whether or not to consume data at a given time [15].
It is colored red, orange, yellow, or green for high, medium, low, and very low
prices respectively.

3.3 Estimating Price-Delay Tolerances and Optimizing Prices

We quantify users’ price-delay tolerances by fitting their observed usage with TDP
to a model of users’ expected usage volume given the prices offered and their price-
delay tolerances. We then calculate the ISP’s expected profit and users’ expected
traffic patterns with these user parameters. We use the following process:

Establish baseline usage: We establish the average amount of data used in
each hour of the day by extrapolating from TDP users’ pre-trial RADIUS data.
We divide the usage into different apps using the fraction of data used by each
app in each hour by TIP users.2

Model users’ price-delay tolerances: We use a model adapted from our
previous work [8,17]. We define “waiting functions” wβ(d, t) that give the prob-
ability that a user will wait for time t, given a savings d on the usage price. The
waiting functions have the form wβ(d, t) = C(β)max(d, 0)(t+1)−β , where C(β)
is a normalization constant and the β parameter controls the user’s “willingness-
to-wait:” wβ decreases faster with t for larger β, making users less likely to wait
for longer amounts of time. The value of β differs for different applications, e.g.,
a user is more likely to delay a software update than checking email. We can
compare apps’ delay tolerances by comparing their β parameters.

Estimate the model parameters: We choose the model parameters that
provide the best fit between observed TDP trial usage and the usage predicted
by our model, given the prices offered during the trial.

To predict TDP usage, we identify two types of changes in usage relative to
the baseline: first, users may shift some usage from higher- to lower-priced times.
We use the waiting functions above to calculate the expected amounts shifted for
each app. Second, price discounts can induce users to increase their overall usage
[15,17]. Since the amount of the increase depends on the app and time of the day
(e.g., users are unlikely to increase their usage while sleeping), we parameterize
the usage increase with αa(t), which depends on the app a and hour t. We use
2 We use per-app data for the TIP users since TDP can skew the app distribution [8],

and we have no pre-trial per-app data. RADIUS logs do not have per-app data, and
distributing apps before the trial would have skewed users’ behavior.

Do Mobile Data Plans Affect Usage? Results from a Pricing Trial 101

10−8 10−6 10−4 10−2 100 102 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Daily Usage (MB)

C
D

F

TIP
TDP
Control

Fig. 2. Average daily usage (March 2012–June 2013).

the form Va(t)
(
(1 + d(t))αa(t) − 1

)
, where Va(t) is the pre-trial (baseline) usage

for app a and d(t) the discount offered (i.e., the maximum price, normalized to 1,
minus the offered price) in hour t. In accordance with the economic principle of
diminishing marginal utility, we constrain αa(t) ∈ [0, 1]. Note that if αa(t) = 0,
the usage does not increase with d(t). We add this term to the amount of traffic
shifted to find the total traffic for each app in each hour as a function of the
discounts offered and model parameters β and αa(t).

Calculate profit-maximizing prices: Given the parameter estimates, we can
optimize the prices offered over the day so as to maximize ISPs’ profit with TDP,
i.e., revenue minus cost. The revenue is simply the sum of the time-dependent
prices multiplied by the expected usage under TDP. We model the cost as a
piecewise-linear function, with zero marginal cost below a fixed capacity C and
a constant marginal cost γ for usage above this capacity. Thus, ISPs will choose
time-dependent prices so as to maximize their profit

T∑

t=1

(1 − d(t)) X(t) − γ max (X(t) − C, 0) , (1)

where X(t) is the expected usage at time t after TDP. By continually
re-estimating the price-delay tolerances and re-optimizing the prices offered
accordingly, the ISP can adapt its prices to changes in user behavior.

4 Traffic Characteristics

In this section, we first construct baseline usage information for TIP, TDP, and
control users from our pre-trial RADIUS dataset. We then characterize the major
apps used by TIP and TDP users. In all figures, hours given are in local time.

4.1 How Much Data Do Users Consume?

Figure 2 shows the cumulative distribution function (CDF) of all users’ average
daily usage. We see that the TIP and TDP users use similar amounts of data,
ranging from 2 to 100MB, i.e., a few hundred MB to 3 GB per month. While a

102 C. Joe-Wong et al.

10

15

20

25

30

35

A
ve

ra
g

e
D

ai
ly

 U
sa

g
e

(M
B

)

3/
20

12
4/

20
12

5/
20

12
6/

20
12

7/
20

12
8/

20
12

9/
20

12
10

/2
01

2
11

/2
01

2
12

/2
01

2
1/

20
13

2/
20

13
3/

20
13

4/
20

13
05

/2
01

3
06

/2
01

3

TIP

5

10

15

20

25

30

35

A
ve

ra
g

e
D

ai
ly

 U
sa

g
e

(M
B

)

3/
20

12
4/

20
12

5/
20

12
6/

20
12

7/
20

12
8/

20
12

9/
20

12
10

/2
01

2
11

/2
01

2
12

/2
01

2
1/

20
13

2/
20

13
3/

20
13

4/
20

13
05

/2
01

3
06

/2
01

3

TDP

5

10

15

20

25

30

35

A
ve

ra
g

e
D

ai
ly

 U
sa

g
e

(M
B

)

3/
20

12
4/

20
12

5/
20

12
6/

20
12

7/
20

12
8/

20
12

9/
20

12
10

/2
01

2
11

/2
01

2
12

/2
01

2
1/

20
13

2/
20

13
3/

20
13

4/
20

13
05

/2
01

3
06

/2
01

3

Control

Actual
Actual with Trial
Trend (without trial data)
Trend (with trial data)

Fig. 3. Average monthly usage for the TIP, TDP, and control users.

Table 2. Usage fraction of the top 10 apps, comprising 63.1 and 78.0 % of total mobile
and WiFi usage respectively.

Rank App (Mobile) % App (WiFi) %

1 com.facebook.katana 15.24 com.facebook.katana 18.93

2 android.process.media 11.39 android.process.media 17.83

3 com.pandora.android 9.05 com.android.browser 11.64

4 com.android.browser 8.71 com.android.email 7.37

5 com.android.email 7.26 mobi.ifunny 6.75

6 mobi.ifunny 3.19 com.android.chrome 4.20

7 com.motorola.motoemail 2.27 com.pandora.android 3.64

8 com.datawiz.tip 2.01 com.rhythmnewmedia.android.e 3.00

9 com.motorola.blur.service. 1.99 com.alphonso.pulse 2.51

main

10 com.motorola.contacts 1.99 com.datawiz.tip 2.11

substantial minority (34.1 %) of control users use less than 1MB per day, none
of these users volunteered for our TIP or TDP trial groups.

Users’ average daily usage changes over time. Figure 3 shows the average daily
usage in each month over one year (March 2012–February 2013), fitted with a
linear trendline. We see that usage generally increases for TIP and control users,
as is consistent with the growing amounts of mobile data traffic, but remains
anomalously flat for TDP users. Usage observed during the June 2013 trial period
fits this trend for the control group. However, the TIP users see a large decrease
and the TDP users a slight increase in usage compared to that predicted by
the trendlines. Thus, TIP users decrease their usage and TDP users increase
their usage during the trial. We examine these findings and their psychological
causes in Sect. 5.

4.2 How Is Usage Distributed Among Apps?

Table 2 shows the fraction of mobile (cellular) and WiFi usage corresponding
to the top 10 apps. Many of the same apps appear for mobile and WiFi, with

Do Mobile Data Plans Affect Usage? Results from a Pricing Trial 103

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Hour of the Day

F
ra

ct
io

n
 o

f
A

p
p

 U
sa

g
e

Mobile

com.facebook.katana
android.process.media
com.pandora.android
com.android.browser

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Hour of the Day

F
ra

ct
io

n
 o

f
A

p
p

 U
sa

g
e

WiFi

com.facebook.katana
android.process.media
com.android.browser
com.android.email

Fig. 4. Mean hourly usage for the top 4 apps.

Facebook and Android’s media process the number 1 and number 2 apps for both
interfaces. Pandora, web browsing, email, and iFunny also appear in the top 7
apps for both WiFi and mobile usage.3 Mobile usage is more evenly distributed
among apps than is WiFi usage, with the top 10 apps comprising 63.1 % of
mobile and 78.0 % of WiFi usage. Apps outside the top 10 each accounted for
less than 2 % of usage.

Figure 4 shows the hourly usage of the top four apps for mobile and WiFi. We
see that WiFi is generally used more in the evenings, likely because people are
at home then and have WiFi connectivity there. While most apps have generally
similar usage patterns, there are some differences: Pandora, for instance, is only
used between 5am and 3pm on mobile and peaks around 10am. Android’s media
process, which is used by other apps to stream videos, shows high peaks for
mobile and WiFi usage, likely due to its high bandwidth requirements.

5 Pricing Effects

In this section, we present the trial results. Throughout the discussion, we use the
peak-to-average ratio (PAR) of hourly usage over a day to measure the degree
to which ISPs must over-provision their network. A higher PAR indicates that
the ISP’s network has more idle capacity, as it is provisioned for higher peak
capacity than is needed on average. Before the trial, TIP and TDP users had an
average PAR of 1.88, indicating that the peak hourly traffic was almost twice
the mean.

We first show that TIP users decrease their total usage to remain below their
data caps, but increase their mobile usage’s PAR and may increase their over-
all WiFi usage. TDP users increase their usage in response to price discounts,
allowing ISPs to reduce their PAR by up to 31.4 % with profit-maximizing
prices.

3 Larger sample sizes with a broader population may yield different top apps.

104 C. Joe-Wong et al.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Data Cap Used during the Trial (%)

D
at

a
C

ap
 U

se
d

 b
ef

o
re

 t
h

e
T

ri
al

 (
%

)

(a) Mean TIP monthly usage.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

Hour of the Day

A
ve

ra
g

e
U

sa
g

e
(M

B
)

TIP (Mobile)
TDP (Mobile)
TIP (WiFi)
TDP (WiFi)

(b) Mean hourly mobile and WiFi usage.

Fig. 5. Monthly and hourly usage volumes.

5.1 Do TIP Users Decrease Their Usage?

Most TIP users decrease their usage in order to remain below their data caps.
However, their PAR increases to 2.67 from 1.88 before the trial.

Figure 5a shows TIP usage as a fraction of users’ data caps before and during
the trial. Each circle represents a user, and the circle size is proportional to the
user’s data cap. The dashed line represents equal usage fractions before and
during the trial. In general, users’ usage amounts are closer to their data cap
during the trial. A few users’ data points lie above the dashed line, indicating
that they used less of their data caps during the trial. These users, all with
relatively small 1GB caps, exceeded their data caps before the trial, but no
users did so during the trial. Other users’ data points lie below the dashed line,
indicating that they used more of their data caps during the trial than before.
The data monitoring app ensured that they did not have to worry about hitting
their data caps.

We conjecture that users reduce their monthly data usage by shifting some of
their usage to WiFi. While we do not have pre-trial WiFi statistics (WiFi data
was not collected by the network), 65.42 % of TIP users’ data was consumed
over WiFi, versus 55.39 % of TDP users’. Figure 5b shows the hourly mobile and
WiFi usage patterns for TIP and TDP users. WiFi is used more than mobile in
the evening, and spikes at these times for TIP users. This spike may indicate
unusually large WiFi usage due to users’ not using mobile data.

5.2 Do TDP Users Respond to Price Discounts?

TDP users increase their usage more in discounted hours. ISPs’ profit-maximizing
prices can decrease their peak-to-average hourly traffic ratio by up to 31.4%.

Price-delay tolerances: We offered four different prices during the trial:
$10 (green price indicator), $15 (yellow), $18 (orange), and $20 (red) per GB.
Figure 6 shows the % change in usage in different hours for each price, compared
to usage in the same hour (e.g., 12 to 1am) for the same user before the trial.
While the TIP usage changes are similar for all prices, TDP users have more
positive changes for $10/GB versus $20/GB, in both the bottom 90th (Fig. 6a)

Do Mobile Data Plans Affect Usage? Results from a Pricing Trial 105

−100 0 100 200 300 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Change in Usage (%)

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n
TDP

−100 0 100 200 300 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Change in Usage (%)
C

u
m

u
la

ti
ve

 D
is

tr
ib

u
ti

o
n

 F
u

n
ct

io
n

TIP

$10/GB
$15/GB
$18/GB
$20/GB

(a) Bottom 90th percentile.

2 3 4 5 6
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Log(Change in Usage (%))

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n

TDP

2 3 4 5 6
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Log(Change in Usage (%))

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n

TIP

$10/GB
$15/GB
$18/GB
$20/GB

(b) Top 10th percentile.

Fig. 6. Change in hourly usage relative to pre-trial usage for the same user in the same
hour of the day.

Table 3. Price-delay tolerance for the top 5 mobile apps.

App Estimated β Mean α

com.facebook.katana 2.326 0.503

android.process.media 1.341 0.234

com.pandora.android 0.479 0.141

com.android.browser 0 0.212

com.android.email 3.000 0.979

and top 10th (Fig. 6b) percentiles of usage changes. The difference is less pro-
nounced for the intermediate $15/GB and $18/GB prices, but is still apparent,
especially around the 80th percentile. TDP users thus distinguished between
very low, moderate, and high prices, perhaps using the colored price indicators.
For all prices, TDP users had more positive usage changes than TIP users, likely
because they were saving money on some of their usage and felt they could
use more data overall. TDP changes above the 97th percentile are less price-
dependent, but these are likely outliers occurring when usage increases during
hours of very small pre-trial usage.

As explained in Sect. 3.3, we compare the delay tolerances for different apps
by fitting our waiting function model to the trial usage. Table 3 shows the result-
ing β parameters and average α parameters over time for the top five mobile
apps (Table 2). We see that while Pandora has a lower value of β, corresponding
to higher delay tolerance, email has the lowest delay tolerance (highest value
of β). Web browsing, however, has the highest delay tolerance, perhaps reflect-
ing users’ use of the web for looking up non-urgent information. Surprisingly,
email has the highest α value (i.e., increase at low-price times independent of
shifting), likely because users downloaded more email attachments and images
when the price was low.

Maximizing ISP profit: Finally, we use the parameters in Table 3 and app
usage fractions in Table 2 to calculate the optimal time-dependent prices offered
by the ISP, which maximize (1) for different marginal costs of exceeding capac-
ity (γ). To measure TDP’s effect on usage peaks, we calculate the PAR with

106 C. Joe-Wong et al.

0 5 10 15 20 25 30 35 40

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Marginal Cost of Exceeding Capacity ($/GB)

P
ea

k−
to

−A
ve

ra
g

e
T

ra
ff

ic
 R

at
io

With TDP
Before the trial

Fig. 7. Peak-to-average hourly traffic ratio with TDP.

these optimized prices. Figure 7 shows the achieved PAR for a range of γ val-
ues, compared to that before the trial. Even when γ = 0, the PAR improves
due to discounts in less congested hours, which induce an increase in usage and
revenue. Thus, TDP can more effectively increase ISP profit and reduce the
network’s PAR than can simple data caps.

6 Discussion and Conclusion

Pricing is a unique way of controlling network usage in that it explicitly relies on
user attitudes and responses to incentives. Thus, to supplement our measurement
results, we conducted three opinion surveys with the TIP and TDP participants
before, during, and after the trial.4 As part of the survey, users were asked their
opinions on TDP’s viability. Most users–especially TDP users in the mid-trial
survey–expressed some concern over TDP’s possible complexity. However, nearly
all users preferred TDP to forced usage throttling in the mid- and post-trial
surveys. Combined with our measurement results, we see that TDP can be more
effective than capping or throttling usage, but must be implemented carefully
to avoid undue complexity. One possible strategy is to use binary prices, e.g.,
charging either $10/GB or $20/GB in any given hour.

Our work shows that users do change their behavior in response to changes
in their pricing plans; in particular, TIP users reduce their usage in response to
data caps, possibly increasing their WiFi usage. However, data caps are not suf-
ficient to prevent ISPs’ need to over-provision networks according to their peak
usage. Time-dependent pricing allows ISPs to reduce their peak-to-average traf-
fic ratio, yet requires more sophisticated understanding from users than monthly
data caps. While customers are willing to shift their usage in response to time-
dependent prices, a full implementation and deployment of TDP will require
more experimentation with a wider range of users.

4 Pre-trial TIP and TDP, mid-trial TIP, mid-trial TDP, post-trial TIP, post-trial
TDP surveys: https://www.surveymonkey.com/s/{LPYDGWG, 63PVQCW, ZLLLQ86,

CPPBH92, CPZP57Q}.

Do Mobile Data Plans Affect Usage? Results from a Pricing Trial 107

Acknowledgments. We gratefully acknowledge the assistance of our colleagues at
the Matanuska Telephone Association. Part of the work was supported by NSF CNS-
1117126.

References

1. Cisco Visual Networking Index: Global mobile data traffic forecast update,
2013–2018 (2014). http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white paper c11-520862.pdf

2. Dyaberi, J.M., Parsons, B., Pai, V.S., Kannan, K., Chen, Y., Jana, R., Stern,
D., Varshavsky, A., Wei, B.: Managing cellular congestion using incentives. IEEE
Commun. Mag. 50(11), 100–107 (2012)

3. El-Sayed, M., Mukhopadhyay, A., Urrutia-Valdés, C., Zhao, Z.J.: Mobile data
explosion: monetizing the opportunity through dynamic policies and QoS pipes.
Bell Labs Tech. J. 16(2), 79–100 (2011)

4. Erman, J., Ramakrishnan, K.K.: Understanding the super-sized traffic of the Super
Bowl. In: Proceedings of ACM IMC, pp. 353–360. ACM (2013)

5. Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S., Estrin, D.: A first look
at traffic on smartphones. In: Proceedings of ACM IMC, pp. 281–287. ACM (2010)

6. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin,
D.: Diversity in smartphone usage. In: Proceedings of ACM MobiSys, pp. 179–194.
ACM (2010)

7. Glass, V., Stefanova, S., Dibelka, R.: Customer price sensitivity to broadband
service speed: what are the implications for public policy? In: Sen, S., Joe-Wong,
C., Ha, S., Chiang, M. (eds.) Smart Data Pricing. Wiley, New York (2014)

8. Ha, S., Sen, S., Joe-Wong, C., Im, Y., Chiang, M.: TUBE: time-dependent pricing
for mobile data. In: Proceedings of ACM SIGCOMM, vol. 42, issue 4, pp. 247–258
(2012)

9. Huang, J., Qian, F., Guo, Y., Zhou, Y., Xu, Q., Mao, Z.M., Sen, S., Spatscheck,
O.: An in-depth study of LTE: effect of network protocol and application behavior
on performance. In: Proceedings of ACM SIGCOMM, pp. 363–374. ACM (2013)

10. Huang, J., Qian, F., Mao, Z.M., Sen, S., Spatscheck, O.: Screen-off traffic charac-
terization and optimization in 3G/4G networks. In: Proceedings of ACM IMC, pp.
357–364. ACM (2012)

11. Huang, J., Xu, Q., Tiwana, B., Mao, Z.M., Zhang, M., Bahl, P.: Anatomizing appli-
cation performance differences on smartphones. In: Proceedings of ACM MobiSys,
pp. 165–178. ACM (2010)

12. Im, Y., Joe-Wong, C., Ha, S., Sen, S., Kwon, T.T., Chiang, M.: AMUSE: empower-
ing users for cost-aware offloading with throughput-delay tradeoffs. In: Proceedings
of IEEE INFOCOM, pp. 435–439. IEEE (2013)

13. Maier, G., Schneider, F., Feldmann, A.: A first look at mobile hand-held device
traffic. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032, pp.
161–170. Springer, Heidelberg (2010)

14. Rahmati, A., Tossell, C., Shepard, C., Kortum, P., Zhong, L.: Exploring iPhone
usage: the influence of socioeconomic differences on smartphone adoption, usage
and usability. In: Proceedings of MobileHCI, pp. 11–20. ACM (2012)

15. Sen, S., Joe-Wong, C., Ha, S., Bawa, J., Chiang, M.: When the price is right:
enabling time-dependent pricing of broadband data. In: Proceedings of SIGCHI,
pp. 2477–2486. ACM (2013)

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf

108 C. Joe-Wong et al.

16. Sen, S., Joe-Wong, C., Ha, S., Chiang, M.: Incentivizing time-shifting of data: a
survey of time-dependent pricing for internet access. IEEE Commun. Mag. 50(11),
91–99 (2012)

17. Sen, S., Joe-Wong, C., Ha, S., Chiang, M.: Smart data pricing (SDP): economic
solutions to network congestion. In: Haddadi, H., Bonaventure, O. (eds.) Recent
Advances in Networking, ACM SIGCOMM, pp. 221–274 (2013)

18. Sen, S., Joe-Wong, C., Ha, S., Chiang, M.: A survey of smart data pricing: past
proposals, current plans, and future trends. ACM Comput. Surv. 46(2), 15 (2013)

19. Sommers, J., Barford, P.: Cell vs. WiFi: on the performance of metro area mobile
connections. In: Proceedings of ACM IMC, pp. 301–314. ACM (2012)

20. Tipmongkolsilp, O., Zaghloul, S., Jukan, A.: The evolution of cellular backhaul
technologies: current issues and future trends. IEEE Commun. Surv. Tutor. 13(1),
97–113 (2011)

21. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying
diverse usage behaviors of smartphone apps. In: Proceedings of ACM IMC, pp.
329–344. ACM (2011)

22. Zander, J., Mähönen, P.: Riding the data tsunami in the cloud: myths and chal-
lenges in future wireless access. IEEE Commun. Mag. 51(3), 145–151 (2013)

IPv6

IPv6 AS Relationships, Cliques, and Congruence

Vasileios Giotsas, Matthew Luckie(B), Bradley Huffaker, and Kc Claffy

CAIDA, UC San Diego, La Jolla, USA
{vgiotsas,mjl,bradley,kc}@caida.org

Abstract. There is increasing evidence that IPv6 deployment is matur-
ing as a response to the exhaustion of unallocated IPv4 address blocks,
leading to gradual convergence of the IPv4 and IPv6 topologies in terms
of structure and routing paths. However, the lack of a fully-connected
transit-free clique in IPv6, as well as a different economic evolution than
IPv4, implies that existing IPv4 AS relationship algorithms will not accu-
rately infer relationships between autonomous systems in IPv6, encum-
bering our ability to model and understand IPv6 AS topology evolution.
We modify CAIDA’s IPv4 relationship inference algorithm to accurately
infer IPv6 relationships using publicly available BGP data. We validate
24.9 % of our 41,589 c2p and p2p inferences for July 2014 to have a
99.3 % and 94.5 % PPV, respectively. Using these inferred relationships,
we analyze the BGP-observed IPv4 and IPv6 AS topologies, and find
that ASes are converging toward the same relationship types in IPv4
and IPv6, but disparities remain due to differences in the transit-free
clique and the influence of Hurricane Electric in IPv6.

1 Introduction

Depletion of the unallocated IPv4 address pool increases the pressure for wide-
spread adoption of IPv6. IPv6 deployment has long been characterized as largely
experimental, dominated by research and education networks [7,16]. However,
recent studies suggest that the IPv6 network is maturing, reflected in increas-
ing similarity of the IPv6 and IPv4 networks in terms of topological structure,
routing dynamics and AS path congruity [9]. Czyz et al. also found the IPv6
traffic mix (set of applications using IPv6) in 2013 much more similar to the
IPv4 traffic mix than in the past [8].

Despite these signals of convergence, noticeable differences remain between
IPv4 and IPv6 routing relationships. In August 2010, Giotsas et al. found dis-
parity in IPv4 and IPv6 AS relationships as inferred from BGP communities
and local preference values [13]. Dhamdhere et al. showed that while 40–50% of
dual-stacked paths observed in public BGP data were identical in 2012, if the
ASes followed the same routing policies in IPv4 and IPv6, then 60–70% of paths
could have been congruent [9]. They also found significant deviation between
the most prominent ASes (those that appeared most frequently in AS paths) in
IPv4 and IPv6, with the most prominent AS in the IPv6 topology (Hurricane
Electric) appearing in a much larger fraction of IPv6 AS paths than the most
prominent AS in the IPv4 topology (Level 3) appeared in IPv4 AS paths.
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 111–122, 2015.
DOI: 10.1007/978-3-319-15509-8 9

112 V. Giotsas et al.

Because IPv6 deployment did not build on the existing IPv4 network, the IPv6
topology evolved in parallel, and not all assumptions relied upon by IPv4 AS rela-
tionship inference algorithms hold in IPv6. Inferring AS relationships is more chal-
lenging in IPv6 than in IPv4 for two reasons. First, given its still low deployment
and different economics compared to IPv4 [9], IPv6 business policies are less rigor-
ously enforced, leading to more policy violations [14] which impede the accuracy
of relationship inference heuristics. Second, the IPv6 graph is not fully connected
due to peering disputes between large transit-free providers [17,23]. These chal-
lenges have discouraged both research [21] and commercial [22] efforts from infer-
ring IPv6 AS relationships.

We make the following contributions. First, we adapt our IPv4 AS rela-
tionship algorithm [18] to accurately infer IPv6 AS relationships by accounting
for IPv6-specific realities: in particular, the IPv6 AS topology is still not fully
connected due to peering disputes [17]. We use our algorithm to infer AS rela-
tionships for January 2004 to July 2014 and publicly release our inferences. Sec-
ond, we evaluate our algorithm’s accuracy by validating 10,357 (24.9 %) of our
41,589 inferences using three sources of validation data, and find our provider-
customer and peer-peer inferences have a 99.3 % and 94.5 % positive predictive
value (PPV), respectively, in July 2014. We publicly release our validation data,
which we derive quarterly between 2004 and 2014. Finally, we use our inferences
to understand the growing congruity between IPv4 and IPv6 AS topologies. We
show that despite growing congruity between the graphs, IPv6 AS relationships
have evolved differently from those in IPv4. Disparate dual stack relationships
are decreasing, from 15 % in January 2006 to 5 % in 2014, consistent with previ-
ous findings of growing similarity between IPv4 and IPv6 [8,9]. However, Hur-
ricane Electric (HE) is the main contributor of disparate relationships, and over
50 % of their dual stack relationships differed between IPv4 and IPv6 in July
2014.

2 Background on Inferring as Relationships

AS relationships are often abstracted into three conventional classes [10]. In
a provider-customer (p2c) relationship, a customer AS buys transit from a
better connected AS to expand its reachability. In a peer-peer (p2p) relation-
ship, two ASes provide access to their own and their customers’ networks. In a
sibling-sibling (s2s) relationship, two ASes under common ownership may pro-
vide mutual transit to each other. ASes that can reach every network in the
routing system without purchasing transit are known as Tier-1 ASes. Tier-1
ASes maintain p2p links between each other to ensure their global reachability,
forming a clique that serves as the backbone of inter-domain routing. AS rela-
tionships translate into BGP routing policies that determine the economics of
traffic exchange [11]. Accurate knowledge of AS relationships is thus essential to
understanding not only inter-domain routing but also Internet economics [18].
Unfortunately, AS relationships are often treated as proprietary by ISPs and
controlled by non-disclosure agreements, leading researchers to build algorithms

IPv6 AS Relationships, Cliques, and Congruence 113

(a) Communities data compared to visible
IPv6 topology. The inset graph shows the
fraction of links in common.

(b) The composition of the communities
data by relationship type. The inset graph
shows the fraction of p2c relationships.

Fig. 1. Summary of the communities validation dataset over time. For July 2014 the
dataset includes 7,514 relationships that cover 18.1 % of the visible topology, 64 % of
which are p2c relationships and the rest p2p.

that heuristically infer AS relationships using publicly available BGP routing
data. We recently developed an algorithm for inferring IPv4 AS relationships;
we validated 34.6 % of 126,082 p2c and p2p inferences for April 2012 to have
a 99.6 % and 98.7 % PPV, respectively [18]. Our approach began by inferring
a Tier-1 clique, applied heuristics to infer p2c links based primarily on how
neighbors were observed to export routes, and inferred the remainder to be p2p.
Section 4 describes how we modified this algorithm to infer AS relationships in
the IPv6 topology graph.

Our IPv6 AS relationship algorithm infers conventional p2c and p2p relation-
ships and does not infer complex AS relationships by design. We have developed
and validated an algorithm to infer hybrid and partial transit relationships in
IPv4 [12]. That algorithm uses conventional AS relationship inferences as input,
and it is possible to apply the same heuristics to the output of our conventional
IPv6 algorithm to infer complex IPv6 AS relationships.

3 Data

3.1 BGP Paths

We extracted AS paths from every vantage point providing BGP data to Route
Views (RV) [4] and RIPE RIS [3] by downloading one RIB file per day between
the 1st and 5th of every month between January 2004 and August 2014 and
extracting AS paths that announced reachability to IPv6 prefixes.

3.2 Validation Data

For validation, we used three sources of IPv6 AS relationship data: BGP commu-
nities, RPSLng, and local preference (LocPref). We had access to BGP commu-
nity data every month, quarterly RPSLng dumps, and three LocPref collections.

114 V. Giotsas et al.

BGP communities are an optional transitive attribute that operators use
to annotate routes [6]. The meaning of communities values are not standard-
ized and each operator defines their own community values and meanings. We
compiled a dictionary of community values and corresponding meanings that
encode relationship types by mining WHOIS records and websites where oper-
ators document their specific use of community values; we also used historical
documentation of communities values in archived WHOIS records and the Way-
back web archive service [15] to obtain a dictionary for each April from 2004 to
2014. We assembled monthly validation datasets by applying the dictionary to
corresponding public BGP data; the composition of this set of validation data
over time is summarized in Fig. 1. For April 2014, our dictionary included 1,560
communities values defined by 284 ASes, and we used the dictionary to obtain
validation data for 7,514 IPv6 links for the July 2014 IPv6 AS topology.

RPSLng is the Routing Policy Specification Language next generation [5],
which network operators can use to store routing policies in public databases.
The largest source of such data is RIPE’s WHOIS database; many European
IXPs require operators to register routing policies with RIPE NCC. An import
rule specifies which route announcements to accept from neighbors, and an
export rule specifies what routes to advertise to neighbors. The special rule
ANY is used to import/export all routes from/to a neighbor, and indicates a
customer/provider relationship. Using RIPE’s WHOIS database from July 2014,
we extracted 739 c2p relationships with the following method: if X has a rule
that imports ANY from Y, and Y has a rule that exports ANY to X, we infer X
is a customer of Y. Because RIPE NCC no longer provides the changed dates in
their WHOIS dumps, we were unable to filter by freshness and used all records.

Despite the many links in our communities and RPSLng datasets, they
include less than 2 % of the IPv6 links observed in public BGP data for Hur-
ricane Electric (HE), the most prominent AS in the IPv6 graph [9]. To extend
our validation dataset to include HE’s relationships we use the local preference
(LocPref) attribute, which does not directly encode relationship information
but often reflects it [11]. LocPref is a number that expresses the level of pref-
erence an AS gives a route if multiple routes are available for the same prefix.
LocPref values are also non-standardized, but many ASes assign the highest
value to their customers and the lowest to their providers, which maximizes
transit revenue. We collected LocPref values for HE’s neighbors by querying
its public route server in July 2014, and we used two older datasets from [13].
Figure 2 summarizes the collected LocPref values for HE’s IPv6 neighbors; with
few exceptions (22/2325 neighbors, marked with red crosses) HE assigns a sin-
gle LocPref value to all prefixes received by each neighbor. Where HE assigned
multiple values for different prefixes received from the same neighbor, we chose
the value assigned to the most prefixes, since altering LocPref values is not
typical behavior. When comparing HE’s LocPref values in IPv4 to inferred IPv4
relationships, we found a consistent mapping between LocPref 140 and HE’s cus-
tomers (2591/2593) and LocPref 100 and HE’s peers (601/603). This mapping
is HE-specific and not valid for every AS.

IPv6 AS Relationships, Cliques, and Congruence 115

Fig. 2. Summary of HE’s LocPref vali-
dation dataset. In all three snapshots
the LocPref values are concentrated
around 100 and 140.

Fig. 3. Summary of agreement across
validation data sources (first number
inside intersections is number of over-
lapping relationships that agree). Com-
munities and RPSLng data have the
largest agreement, over 98%.

Algorithm 1. is a summary of our IMC 2013 IPv4 AS relationship inference
algorithm. The bold lines were updated to accommodate IPv6.
Require: AS paths, Allocated ASNs, IXP ASes
1: Discard or sanitize paths with artifacts
2: Sort ASes in decreasing order of computed transit degree, then node degree
3: Infer clique at top of AS topology (updated)
4: Discard poisoned paths
5: Infer c2p relationships top-down using above ranking
6: Infer c2p relationships from VPs inferred not to be announcing provider routes
7: Infer c2p relationships for ASes where customer transit degree exceeds provider’s
8: Infer customers for ASes with no providers
9: Infer c2p relationships between stub and clique ASes (removed)

10: Infer c2p relationships where adjacent links have no relationship inferred
11: Infer remaining links represent p2p relationships

Figure 3 shows the overlap between the BGP communities, RPSLng, and
LocPref validation data sources for July 2014. The BGP communities and
RPSLng data had the largest overlap, and were consistent 98 % of the time.

4 Inference Methodology

4.1 Overview of Existing IPv4 Algorithm

Our IPv6 AS relationship algorithm is based on our IPv4 algorithm [18], with
adjustments to account for differences in the routing ecosystems [9,13]. In par-
ticular, the IPv6 AS topology lacks a fully connected clique that serves as the
transit backbone because of a long-standing peering dispute between Cogent and
Hurricane Electric [17].

Algorithm 1 summarizes our IPv4 AS relationship inference algorithm (details
in [18]), highlighting the two steps we changed to accurately infer IPv6 relation-
ships. First, we sanitize the input data by removing paths with artifacts, i.e., loops,

116 V. Giotsas et al.

reserved ASes, and IXPs (step 1). We use the resulting AS paths to compute the
node and transit degree (the number of unique neighbors that appear on either
side of an AS in adjacent BGP links) of each AS, and produce an initial rank order
(step 2). We then infer the clique of ASes at the top of the hierarchy (step 3). After
filtering out some poisoned paths (step 4), we apply heuristics to identify c2p links
(steps 5–10). In step 5, we infer c2p relationships top-down using the ranking from
step 2, inferring an AS X is a customer of Y if Y exports routes received from X
to peers or providers; this step infers 90 % of all the c2p relationships we infer. In
step 6, we infer c2p relationships from VPs we find announcing no provider routes,
which we define as VPs that provide paths to fewer than 2.5 % of the ASes. In
step 7, we infer c2p relationships for ASes where the customer has a larger tran-
sit degree than its provider, to infer c2p relationships for links skipped in step 5.
In step 8, we infer customers for provider-less non-clique ASes, which were also
skipped in steps 5 and 7 because those steps require a non-clique AS to have a
provider in order to infer customers relationships. In step 9, we infer that stub
ASes are customers of clique ASes even if we do not observe the clique AS export-
ing the customer’s route to other peers; in IPv4 stub networks are unlikely to meet
the peering requirements of clique members, and are most likely customers. In step
10, we resolve relationships where we observe triplets with adjacent unclassified
links. Finally, we classify all remaining unclassified links as p2p.

4.2 Inferring the IPv6 Clique

Our inference algorithm follows a top-down approach starting from the clique
members, to avoid relationship cycles and errors caused by stub ASes with high
peering visibility. Inferring the IPv4 clique is relatively straightforward, given
the maturity of the IPv4 network. In contrast, the IPv6 transit market is still
in its early stages, making it more difficult to determine clique ASes. Because
the accuracy of the inferred clique impacts the overall accuracy of the inferred
relationships, we first focus on challenges of inferring the IPv6 clique.

To infer the IPv4 clique, our algorithm from [18] first sorted ASes by decreas-
ing transit degree and then applied the Bron/Kerbosch algorithm to find the
clique involving the first ten ASes that has the largest transit degree sum. We
label these first ten ASes as the seed ASes because inferences for other ASes
descend from this initial set. For each remaining AS, we added the AS to the
clique if we observed a link with every other clique AS, and the AS did not
appear to receive transit from one clique member to reach a second clique mem-
ber. This approach works well for inferring the IPv4 clique because the largest
transit degree ASes have restrictive peering policies, maintaining a peering clique
with only selected transit-free ASes. For April 2014, the largest IPv4 transit
degree AS was Level3 which maintains a restrictive peering policy. In contrast,
the largest IPv6 transit degree AS is HE, which has an open peering policy, and
is part of large peering meshes with ASes that are not transit-free; calculating
the clique starting from the ASes with the largest transit degrees returns incor-
rect cliques in IPv6. Furthermore, because the IPv6 network is still early in its
evolution, the IPv6 network is more dynamic than the IPv4 network, making

IPv6 AS Relationships, Cliques, and Congruence 117

2006 2008 2010 2012 20142004
0
5

10
15

0

5

10
15
0

5

10
15

number of ASes gained number of ASes kept
IPv6: IPv4-focused algorithm

IPv6: IPv6-focused algorithm

IPv4: IPv4-focused algorithm

Fig. 4. By improving the way in which we infer the IPv6 transit-free clique, we reduce
the average number of ASes that are added or removed between temporally adjacent
cliques from 3.4 to 1.8, bringing the IPv6 clique’s stability closer to the average of 1.5
seen in IPv4.

transit degree alone an unreliable metric. Figure 4 illustrates the highly dynamic
clique membership that results when applying our IPv4-focused algorithm to
the BGP-observed IPv6 AS topology over the last decade; on average, 3.4 ASes
changed between temporally adjacent cliques. We found that at least 11 of the
20 ASes most frequently inferred to be in IPv6 cliques had at least one tran-
sit provider in our validation data, contradicting the notion of the transit-free
clique.

We therefore modified step 3 of Algorithm1 to consider an AS’s peering
policy and reachability in addition to the AS’s transit degree. An AS with an
open peering policy will peer with other ASes, with few or no conditions; a selec-
tive policy requires conditions on traffic volume and symmetry; and a restrictive
policy limits peering to as few networks as necessary. The peering policy of an
AS expresses an important and relatively stable property of the AS, but is not
easily inferred from the topology alone because most peering links are invisible
in public BGP data [20]. We used the self-reported peering policy data in Peer-
ingDB [2]; for networks with PeeringDB entries but without a registered peering
policy, we assumed a restrictive policy, which operators tend not to disclose [19].
We required the seed ASes to follow a restrictive or selective policy; we did not
select ASes with open peering policies as seed ASes even if they had the largest
transit degree. In addition, we reduced the initial seed set to three ASes for years
before 2007, and to five ASes for 2007 and onwards, based on the accuracy of
inferences derived from these seed values. As with the IPv4 method, after we find
a clique involving the seed ASes, we add other ASes to the clique whose addition

118 V. Giotsas et al.

1239
6461
6830
3320
174

1273
6939
2828
5511
209

7018
6762
1299
6453

12702
3257
6175
3356
3549
2914

Jan ’05 Jan ’06 Jan ’07 Jan ’08 Jan ’09 Jan ’10 Jan ’11 Jan ’12 Jan ’13 Jan ’14

Fig. 5. The top 20 ASes most frequently inferred to be part of the IPv6 clique according
to the improved inference algorithm that uses three metrics: peering policy, reachability
degree and transit degree. We exclude another 18 ASes inferred less often to be in the
clique. The improved algorithm yields a more stable inferred clique, which only include
transit-free ASes for most snapshots.

does not result in triplets of consecutive clique members in the BGP-observed
paths, implying one of the ASes in the triplet is receiving transit.

The use of a reachability metric is required because some transit-free ASes
are partitioned from each other due to peering disputes [17,23]. The use of a
partitioned AS as a seed can yield an incomplete clique. To minimize the chance
of using a partitioned AS, we required that seed ASes provide direct BGP feeds
to RV or RIS and announce routes to at least 90 % of the BGP-visible IPv6
address space. Additionally, if an AS misses just one link from being part of
the clique, we considered it a clique member to account for the reality of the
currently partitioned IPv6 Internet [17,23], provided that the AS does not receive
transit from one clique member to reach a second clique member, i.e. could not
be transit-free. As with the IPv4 algorithm, if there are multiple cliques we select
the clique with the largest transit degree sum. Note that some ASes previously
used different AS numbers in IPv4 and IPv6, most notably Sprint (IPv4 AS1239,
IPv6 AS6175) and Verizon (IPv4 AS701, IPv6 AS12702). Both ASes eventually
used a single ASN for both IPv4 and IPv6, but when they were transitioning to
a single ASN (i.e., the IPv4 ASN) they used both ASNs in the IPv6 AS topology.
During the period when they used both ASNs, we merged the IPv6 AS links for
both ASNs for these two organizations to capture their full connectivity during
the period they were shifting all of their neighbors to their primary ASN.

Figure 5 shows the IPv6 clique inferred using the improved clique inference
method. The improved method infers more stable IPv6 cliques that are composed
of transit-free ASes with the number of ASes entering or leaving the clique
reducing from an average 3.4 ASes with the IPv4-focused method to 1.8 with
our IPv6-focused method. This improvement brings the edit distance between
temporally adjacent cliques much closer to IPv4’s average of 1.5 ASes.

IPv6 AS Relationships, Cliques, and Congruence 119

4.3 Inferring Clique-Stub Relationships

After we infer the clique, we apply the rest of the steps in Algorithm1 without
modification until step 9, which infers stub ASes to be customers of clique ASes
irrespective of whether we observed a clique AS exporting a stub AS as a cus-
tomer. In IPv4, this step avoids misinferring backup transit links as p2p, and
relies on the fact that no clique members have an open peering policy. Establish-
ing backup transit links is a popular strategy for IPv4 ASes that need to ensure
reliable connectivity in the face of failures, but backup transit links appear to
be less critical in IPv6 given the low levels of traffic [8] and small size of the
topology. Therefore, we skip step 9 of the algorithm.

4.4 Validation

0.5

0.6

0.7

0.8

0.9

1

2004 2006 2008 2010 2012 2014

Fig. 6. Validation of our inferences over
time using the three validation datasets
described in Sect. 3.2. Validation results
involving the BGP communities and local
preference datasets are in strong agree-
ment despite involving different ASes.

We evaluated the positive predictive
value (PPV) of our improved algo-
rithm, defined as the proportion of
inferences of a particular type that
were correct. Figure 6 shows the PPV
over time according to our validation
datasets described in Sect. 3.2. Our
algorithm achieves high PPV through-
out the period of inferences (January
2004–July 2014), with PPV for both
p2c and p2p inferences consistently
above 96 % after spring 2009 for the
communities and after fall 2012 for
the RPSLng data. The PPV for infer-
ences validated using the LocPref data
is over 96 % for the three points in time
where we have LocPref data. The diversity of validation data sources and high
PPV values strengthens our confidence in the suitability of our algorithm and the
accuracy of our inferences. Figure 6 shows that both p2c and p2p relationships
are inferred with high PPV, except for before 2006 when p2c inferences have a
PPV of less than 80 % for many BGP snapshots. However, our validation dataset
(and the IPv6 AS topology) is considerably smaller (Fig. 1) prior to 2006.

5 Analysis

We compare IPv6 and IPv4 routing relationships starting from 2006 to avoid
artifacts from inference errors on very small early topologies. Congruent rela-
tionships refer to dual-stack AS links with the same relationship type in IPv4
and IPv6; disparate relationships are dual-stack links where the relationship dif-
fers from IPv4 to IPv6. The fraction of disparate relationships decreases linearly
over time (Fig. 7a), from 15 % in 2006 to 5 % in 2014, because congruent rela-
tionships increase in number faster than disparate ones, suggesting convergence.

120 V. Giotsas et al.

(a) Fraction of disparate relationships for
dual-stack AS links. Inset graph plots
number of disparate relationships.

(b) The fraction of disparate relationships
by type (colored areas), and the contribu-
tion of AS 6939 (HE, dashed line).

Fig. 7. The fraction of disparate relationships decreases over time to about 5% in
July 2014, showing convergence between the IPv4 and IPv6 topologies. Most disparate
relationships after 2010 are due to HE’s free IPv6 transit service.

Figure 7b shows the fraction of disparate relationships by relationship type.
Most inferred disparate relationships are p2c in IPv6 and p2p in IPv4, and
the remaining disparate relationships are p2p in IPv6 and p2c in IPv4. HE
(AS6939) contributes over 50 % of the disparate IPv6p2c/IPv4p2p relationships
after 2010, peaking in July 2014 when it contributed 87 % of observed disparate
relationships. These observations are consistent with the behavior of the IPv6
tunnel broker service provided by HE, which allows free transit, so that IPv4
peers can be IPv6 customers without cost [1]. This strategy allows HE to acquire
many IPv6 (free-transit) customers compared to IPv4, illustrated by comparing
HE’s IPv4 and IPv6 customer cones. The customer cone is defined as the ASes
that an AS can reach by following a customer link (the AS’s customers, customers
of those customers, and so on) and is a metric of influence of an AS in the transit
market. Figure 8 compares the relative size of the customer cones between IPv4
and IPv6 over the last 9 years for the 9 largest providers as of July 2014. HE is
the only AS with a significantly larger customer cone in IPv6 than in IPv4 (over

Fig. 8. The fraction of ASes in the customer cones of the largest 9 providers. The left
plot compares the customer cones between IPv6 and IPv4 for July 2014. The right plot
shows their growth over time. HE (AS6939) has a larger customer cone in IPv6 than
in IPv4; most other ASes have smaller, but still growing customer cones (except for
AS3549, Global Crossing, which merged with Level3 in 2012).

IPv6 AS Relationships, Cliques, and Congruence 121

50 % of IPv6 ASes). However, the relative sizes of customer cones of the largest
providers have an increasing trend, in contrast with the trend observed in the
IPv4 topology [18]. The only exception is Global Crossing (AS3549), which was
acquired by Level3 (AS3356) in 2012.

6 Conclusion

The low level of IPv6 deployment has hindered efforts to accurately infer IPv6
AS relationships. We tackled this challenge by modifying CAIDA’s IPv4 rela-
tionship inference algorithm, which required a focus on the correct inference of
the IPv6 clique. The clique is a crucial component of AS topology, but with
fundamental disparities between IPv4 and IPv6, including the extreme peering
openness of some IPv6 ASes, and long-lived peering disputes among transit-free
IPv6 networks. To overcome these obstacles, we used two new metrics to help
filter out topological inconsistencies in IPv6: peering policy and BGP-observed
reachability.

We validated ten years of our algorithm’s inferences against three data sources:
BGP communities, RPSLng, and local preference values, which covered 25 % of
the BGP-observed topology for July 2014. Our inferences achieved an overall Pos-
itive Predictive Value of at least 96 % for each dataset since 2009, with increasing
accuracy over time. We found that dual-stack relationships are increasingly con-
gruent, as disparate relationships decreased from 15 % in 2006 to 5 % in 2014, while
the number of nodes and links increased by a factor of 14.5 times and 22 times,
respectively. Notably, disparate relationships are now dominated by a single AS,
Hurricane Electric, whose long-standing offer of free IPv6 transit has enabled it
to become the dominant transit-free provider in IPv6, with the largest customer
cone in the IPv6 topology, despite not even being a transit-free network in IPv4.

Our validation and inference data is available at http://www.caida.org/
publications/papers/2015/asrank6/

Acknowledgements. The work was supported by U.S. NSF grant CNS-1111449,
DHS S&T Cyber Security Division (DHS S&T/CSD) BAA 11-02 and SPAWAR Sys-
tems Center Pacific via contract number N66001-12-C-0130, and by DRDC pursuant to
an Agreement between the U.S. and Canadian governments for Cooperation in Science
and Technology for Critical Infrastructure Protection and Border Security. The work
represents the position of the authors and not of NSF, DHS, or DRDC.

References

1. Hurricane electric IPv6 tunnel broker. https://tunnelbroker.net/
2. PeeringDB. http://www.peeringdb.com
3. RIPE Routing Information Service (RIS). http://www.ripe.net/ris
4. Route Views. http://www.routeviews.org/
5. Blunk, Y., Damas, J., Parent, F., Robachevsky, A.: Routing policy specification

language next generation (RPSLng). RFC 4012, March 2005

http://www.caida.org/publications/papers/2015/asrank6/
http://www.caida.org/publications/papers/2015/asrank6/
https://tunnelbroker.net/
http://www.peeringdb.com
http://www.ripe.net/ris
http://www.routeviews.org/

122 V. Giotsas et al.

6. Chandra, R., Traina, P., Li, T.: BGP communities attribute. RFC 1997. August
1996

7. Colitti, L., Gunderson, S.H., Kline, E., Refice, T.: Evaluating IPv6 adoption in the
internet. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032,
pp. 141–150. Springer, Heidelberg (2010)

8. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-
suring IPv6 adoption. In: SIGCOMM, pp. 87–98 (2014)

9. Dhamdhere, A., Luckie, M., Huffaker, B., claffy, k., Elmokashfi, A., Aben, E.:
Measuring the deployment of IPv6: topology, routing and performance. In: IMC,
pp. 537–550 (2012)

10. Gao, L.: On inferring autonomous system relationships in the Internet. IEEE/ACM
Trans. Netw. 9(6), 733–745 (2001)

11. Gill, P., Schapira, M., Goldberg, S.: A survey of interdomain routing policies. CCR
44(1), 28–34 (2013)

12. Giotsas, V., Luckie, M., Huffaker, B., claffy, k.: Inferring complex AS relationships.
In: IMC, November 2014

13. Giotsas, V., Zhou, S.: Detecting and assessing the hybrid IPv4/IPv6 AS relation-
ships. In: SIGCOMM Poster, pp. 424–425 (2011)

14. Giotsas, V., Zhou, S.: Valley-free violation in Internet routing - analysis based on
BGP community data. In: IEEE ICC 2012 CQRM, pp. 1208–1212, June 2012

15. Internet Archive: Wayback Machine. http://archive.org/web/
16. Karpilovsky, E., Gerber, A., Pei, D., Rexford, J., Shaikh, A.: Quantifying the extent

of IPv6 deployment. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS,
vol. 5448, pp. 13–22. Springer, Heidelberg (2009)

17. Leber, M.: IPv6 internet broken, cogent/telia/hurricane not peering, NANOG.
http://mailman.nanog.org/pipermail/nanog/2009-October/014017.html

18. Luckie, M., Huffaker, B., claffy, K., Dhamdhere, A., Giotsas, V.: AS relationships,
customer cones, and validation. In: IMC 2013, pp. 243–256 (2013)

19. Norton, W.: Restrictive peering policy. DrPeering International. http://drpeering.
net/FAQ/What-is-a-restrictive-peer.html

20. Oliveira, R., Pei, D., Willinger, W., Zhang, B., Zhang, L.: The (in)completeness of
the observed Internet AS-level structure. IEEE/ACM Trans. Netw. 18(1), 109–122
(2010)

21. UCLA: Internet AS-level topology archive. http://irl.cs.ucla.edu/topology
22. Zmijewski, E.: A Bakers Dozen, 2013 Edition. Renesys Blog. http://www.renesys.

com/2014/01/bakers-dozen-2013-edition/
23. Zmijewski, E.: World IPv6 Day. Renesys Blog. http://www.renesys.com/2011/06/

world-ipv6-day/

http://archive.org/web/
http://mailman.nanog.org/pipermail/nanog/2009-October/014017.html
http://drpeering.net/FAQ/What-is-a-restrictive-peer.html
http://drpeering.net/FAQ/What-is-a-restrictive-peer.html
http://irl.cs.ucla.edu/topology
http://www.renesys.com/2014/01/bakers-dozen-2013-edition/
http://www.renesys.com/2014/01/bakers-dozen-2013-edition/
http://www.renesys.com/2011/06/world-ipv6-day/
http://www.renesys.com/2011/06/world-ipv6-day/

Measuring and Characterizing IPv6
Router Availability

Robert Beverly1(B), Matthew Luckie2, Lorenza Mosley1, and Kc Claffy2

1 Naval Postgraduate School, Monterey, CA, USA
rbeverly@nps.edu, ldmosley@cmand.org

2 CAIDA, UC, San Diego, CA, USA
{mjl,kc}@caida.org

Abstract. We consider the problem of inferring IPv6 router uninter-
rupted system availability, or uptime, from a remote vantage point with-
out privileged access. Uptime inference is important to broader efforts
to measure and characterize the availability of critical infrastructure,
provides insight into network operations, and has subtle security impli-
cations. Our approach utilizes active probes to periodically elicit IPv6
fragment identifiers from IPv6 router interfaces, and analyzes the result-
ing identifier time series for reboots. We demonstrate the approach’s
potential by characterizing 21,539 distinct IPv6 router interfaces over a
five-month period. We find evidence of clustered reboot events, popular
maintenance windows, and correlation with globally visible control plane
data. Our results, validated by five ASes, provide initial insight into the
current state of IPv6 router availability.

1 Introduction

Significant recent work examines IPv6 adoption [6], usage [23], and performance
[8]. Less well-studied is the reliability of IPv6 infrastructure. This paper focuses
on measuring and characterizing the reliability of one of the most critical compo-
nents of IPv6 infrastructure: IPv6 routers. Understanding IPv6 router reliability
provides insights into not only the current maturity of production IPv6, but also
operational properties of IPv6 networks, including vulnerability information.

We develop, analyze, and validate a technique to remotely estimate, with-
out privileged access, the uninterrupted system availability, or uptime, of IPv6
devices. Our technique relies on inducing IPv6 fragments from remote endpoints
and analyzing the sequence of IPv6 fragment identifiers returned as a result
of periodic probing. Importantly, our active probing consists of ICMP6 echo
requests and therefore is conducive to characterizing devices that do not permit
TCP connections, e.g. routers. As a proof-of-concept, we apply our technique
over a five-month period to a collection of 66,471 IPv6 router interfaces on the
Internet; our technique made uptime inferences on 21,539 (32 %) of these inter-
faces (�47 % of the interfaces were unresponsive, while 21 % did not permit
uptime inference). We validate our technique against five providers that posi-
tively confirm our reboot inferences. We find that while 68 % of interfaces and
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 123–135, 2015.
DOI: 10.1007/978-3-319-15509-8 10

124 R. Beverly et al.

78 % of core routers experience no restarts during our measurement period, a
few devices experience many restarts. We further discover evidence of correla-
tion between restarts and global BGP events observed in public route collectors.
Finally, we show that router restarts occur most frequently on Tuesday and
Wednesdays, and least often on weekends. Our contributions include:

1. An active probing method that permits remote IPv6 router uptime inference
without privileged access.

2. Real-world deployment and validation of the technique.
3. Insights into how different devices send IPv6 fragments over time, including

a previously unstudied cyclic behavior exhibited by Linux-based devices.
4. A five-month study of reboots among 21,539 IPv6 router interfaces where we

find that core routers tend to have longer uptimes than border routers.

2 Technique and Data for Inferring IPv6 Router Uptime

We assume that a router’s uptime can be estimated by inferring the last time
the router rebooted, i.e. a reboot event. To infer a router reboot event, we rely
on the fact that many routers maintain externally observable state that resets
when rebooted. Specifically, the control plane IPv6 stack implementation on
many routers maintains monotonically increasing IPv6 fragment identification
(ID) counters that are initialized to zero or a random number [2]. By periodically
probing routers to obtain and increment their ID field, and segmenting the time-
series of IDs into monotonically increasing subsequences, we can infer that reboot
events occur in the periods between subsequences.

In this section, we first explain the IPv6 ID field and our technique to obtain
the ID time series. We then describe our experimental methodology and data
(Sect. 2.2) and our algorithm (Sect. 2.3). We detail how we handle an important
subset of interfaces (those that return cyclic ID sequences) in Sect. 2.4, and
describe our procedure to identify routers and annotate them with their role and
their timezone (Sect. 2.5). We discuss limitations of our technique in Sect. 2.6.

2.1 Obtaining and Using the IPv6 ID Field

Unlike the IPv4 header, the IPv6 header lacks an IP ID field used for fragmen-
tation and reassembly. IPv6 routers perform no in-network packet fragmenta-
tion; the IPv6 protocol shifts this burden of fragmentation to the sender. If a
sender must fragment a packet, it adds an IPv6 extension header on each packet
fragment that includes a 32-bit ID field to facilitate reassembly. While routers
primarily perform data-plane forwarding, they also run an IPv6 stack as part
of their control plane. Building on our technique in [2], now implemented in
speedtrap [16] and integrated into the scamper packet prober [15], we elicit IPv6
IDs by sending ICMP6 packets to a router’s control plane via one or more of its
interfaces. Specifically, we induce a router’s IPv6 stack to originate IPv6 frag-
ment IDs by sending an ICMP packet too big message (PTB) with an MTU

Measuring and Characterizing IPv6 Router Availability 125

value smaller than the size of the packets subsequently solicited from it. We use
scamper to first send 1300-byte ICMP echo request packets; when we receive
1300-byte echo replies, we send the router a PTB message with an MTU of
1280 bytes. If the router follows the IPv6 protocol [7], it will subsequently send
fragmented echo replies containing fragment IDs in response to our probes.

Note that except for responses to our probes, a router does not typically send
fragmented IPv6 traffic, and hence the IPv6 counter has no natural background
rate of change (velocity). In contrast, control plane IPv4 packets sent by a router
increment the fragment ID counter because every IPv4 packet contains a frag-
ment identification field. In addition, the IPv4 fragment identifier field is 16 bits,
but 32 bits in IPv6. Our prior work used IPID-based inferences to infer IPv6
router aliases [16]; in this work we extend this method to enable new inferences,
leveraging the monotonicity of IPv6 IDs to infer router uptime.

2.2 Obtaining IPv6 Router Interface Addresses

We assemble a set of candidate IPv6 router interfaces from traceroutes conducted
in January and February 2014 by CAIDA’s macroscopic IPv6 topology discovery
infrastructure [12]. The union of all interfaces discovered in this period across
32 geographically distributed vantage points (VPs) includes 66,471 unique IPv6
router interfaces. Although these interfaces are a subset of the complete IPv6
Internet, the set is sufficiently large and diverse to demonstrate our uptime
inference technique, and reveal preliminary insights into IPv6 router availability.

We probed these interfaces every 6 h between March 5th and July 31st 2014
from a single host on the Virginia Tech campus (an educational network on the
U.S. east coast with native IPv6). The set of interfaces were randomly permuted
before each probing round. For each interface, we sent four ICMP6 echo requests
(per Sect. 2.1); probing this set of addresses at 20 packets per second required
approximately 2.5 h per run. Our probing host had two multi-day outages: March
18–25 and July 2–9, 2014.

2.3 Uptime Algorithm

For each IPv6 interface k, our periodic probing produces a time series of n IPv6
fragment ID (fi) and timestamp (ti) pairs: Fk = (f1, t1), (f2, t2), . . . , (fn, tn)
where ti < ti+1. Some interfaces were unreachable while ICMP6 blocking pre-
vents the PTB from reaching others; in such cases F is the empty set1. 31,170
interfaces (46.9 %) either were unresponsive (e.g. due to ICMP6 filtering, address
changes, network changes) or did not return fragment IDs (e.g. due to PTB or
fragment filtering).

For the remaining 35,301 interfaces that returned IDs, we observed a vari-
ety of router implementation-specific behavior. In total, 20.1 % of the interfaces
returned random IDs; our prior work [16] found that random IDs were attribut-
able to BSD-based devices, including Juniper routers. Because random IDs are
1 A small fraction of the interfaces return only a small number of IDs over the exper-

iment duration; we exclude those where n < 20.

126 R. Beverly et al.

Table 1. Classification of IP-ID behavior. We can infer reboot events for interfaces we
classify as monotonic or cyclic, and some events for interfaces we classify as odd.

Classification Interfaces

Monotonic 20,429 30.7 %

Cyclic 1,110 1.7 %

Odd 432 0.6 %

Random 13,330 20.1 %

Unresponsive 31,170 46.9 %

Total 66,471 100.0 %

by definition non-monotonically increasing, we cannot form uptime inferences
over this set. Thus, before performing uptime inference, we segment the inter-
faces in our dataset into classes as summarized in Table 1.

The classification logic divides a time series Fk into sequentially increasing
subsequences such that fi + 1 = fi+1. This step breaks random ID series into
singleton subsequences, while preserving groups of monotonic runs. We infer
interfaces with all singleton sequences to be random, and classify each non-
random subsequence as monotonic or cyclic. If all labels agree, we classify the
interface with that label.

Several factors complicated this classification. When the labels for subse-
quences did not all agree, we classified the interface as odd. For instance, some
interfaces changed behavior during the course of our experiment, suggesting a
hardware or software change. Other interfaces returned deterministic IDs, e.g.
always zero, or returned multiple replies for each probe. In total, 0.6 % of the
interfaces exhibited odd or inconsistent behavior, and we excluded them from
our analysis. Another complicating factor is interfaces that return cyclic IDs
with large offsets. We identify cyclic interfaces as those with IDs greater than
10,000 that appear in multiple subsequences. In Sect. 2.4 we discuss root causes
of cyclic IDs and how we accommodate them.

Finally, we infer uptimes for the set of interfaces we classify as monotonic.
First, we filter noise in the time series. For example, we obtained an f sequence:
..., 405, 406, 407, 850815256, 408, 409, At present, we cannot
positively identify the cause of these infrequent, but clearly erroneous IDs.
We therefore remove element i if and only if fi−1 + 1 = fi+1, i.e. we remove
an outlier in the midst of an otherwise exact sequence. We then form monoton-
ically increasing subsequences such that if fi+1 < fi, we know that a reboot
event occurred between ti and ti+1. Because ti+1 − ti is bounded by the fre-
quency at which we probe, as much as six hours in our experiment, there is
inherent error. The difference between the last and first sample in a subsequence
therefore provides a conservative uptime estimate.

2.4 Cyclic Interfaces

We classified 1.7 % of the interfaces in our set as cyclic because they exhibited an
incrementing but cyclic pattern of IP-IDvalues, e.g. (N, N+1, N+2, N, N+1, N+2).

Measuring and Characterizing IPv6 Router Availability 127

This interface IP-ID behavior is consistent with some versions of the Linux
kernel. The last version of the Linux kernel that used a single central counter was
3.0, released Jul 21, 2011. For Linux kernel versions 3.1 (released Oct 24, 2011)
through 3.9 (released Jun 30, 2013) the kernel uses a counter per destination
IP address, with the initial value computed as a function of (1) the destina-
tion IP address and (2) a randomly generated secret obtained when the system
booted. The kernel creates an inet peer structure per IP address, where it stores
information including the next IP-ID value to use when sending a packet. These
inet peer structures are discarded when the route times out or is garbage col-
lected (the kernel is limited to 65,664 inet peer structures). When the structure
is later recreated for the same destination IP address (for instance during our
next probing round) it will use the same initial IP-ID value if neither the secret
value (initialized on system boot) nor the destination address value (which we
control) changed. As a real world example, a particular interface in our dataset
returned the same sequence f = 0x28c2c283, 0x28c2c284, 0x28c2c285 on
each probing cycle until it rebooted and then returned a different sequence with
the same period: f = 0x415bd0cc, 0x415bd0cd, 0x415bd0ce.

For these cyclic interfaces, we detect a reboot event as an abrupt change in
IP-ID value, which indicates the secret has changed. We empirically define an
abrupt change as either an IP-ID value that is lower than the range of previous
values or at least 2000 higher.

2.5 Inferring Routers, Their Roles, and Their Location

We used speedtrap [16] to resolve aliases (i.e. map multiple IP addresses to the
same physical router) for the set of 66,471 monitored interfaces. The speedtrap
resolution was performed between Sept 19th 16:00 UTC and Sept 20th 07:00.
Speedtrap also exploits IPv6 fragmentation identifiers: two interfaces are aliases
for the same router if they produce a sequence of non-overlapping IPID samples
whose IPID values strictly increase, suggesting the IPID samples are derived
from the same counter. Because we ran speedtrap from a different vantage
point than from where the uptime IPID samples were collected, and after our
data collection completed, our inferred aliases do not perfectly overlap with the
interfaces probed. Our speedtrap alias resolution run observed 19,103 interfaces
that assign ID values from a monotonically increasing counter. Using speedtrap
to find aliases, these interfaces correspond to 12,866 routers. For 9,035 inter-
faces (70.2 %), speedtrap inferred no aliases, and we treat these as routers with
a single interface. 20.1 % of the remaining routers had two interfaces, leaving
approximately 10 % of the routers with three or more aliases. For the remaining
monotonic and cyclic interfaces that were unresponsive to speedtrap probes, we
did not infer aliases and treat each as a router with a single interface.

A well-known limitation of mapping IP addresses to ASes is that an interface
may be mapped to a different AS than the AS that owns and operates the router.
For example, network service providers frequently allocate one of their own IP
addresses to an interface on a customer router. This ambiguity affects our uptime
analysis because the reboot of an interface with an address of provider A may
actually be a reboot event within customer B’s network.

128 R. Beverly et al.

We therefore classify some routers as being core AS routers if we believe they
represent a router within an AS (intra-AS) as opposed to a border router con-
necting to other ASes (inter-AS). We examined the AS origin of each IPv6 hop
in the corresponding Ark traceroute data for Jan and Feb 2014. We classified a
router with interface B2 as a core router for AS B if we observed a traceroute
IPv6 address sequence A1B1B2B3C1 where AS B originates BGP prefixes for
B1, B2, and B3. In contrast, neither B1 nor B3 would be classified as a core
AS router with this path because they are preceded and succeeded by interface
hops belonging to different ASes. This conservative definition of a core AS router
allows us to better characterize the origin of reboot events for some large net-
works with many customers. We inferred 20,093 interfaces as belonging to core
routers in their respective ASes.

Finally, we annotated each router with an inferred local timezone, based on its
offset from GMT reported by Digital Envoy’s NetAcuity commercial geolocation
database [9]. This database reported GMT offsets for 65,451 of 66,471 (98.5 %)
of the interfaces probed. For routers with more than one observed address, we
mapped all interfaces to the same timezone, i.e. we discovered no disagreement
among timezones of the interfaces belonging to routers. The quality of IPv6
geolocation databases for individual router interfaces is unknown, and we only
probed interfaces every six hours, so we were wary of inferring fine-grained tem-
poral patterns of rebooting. However, we use timezones to estimate the aggregate
distribution of reboots across days of the week (Sect. 3.4).

2.6 Limitations

Our uptime technique has several limitations. First, inferences are only possible
for those interfaces that return IPv6 fragments, and only for the subset of those
with non-random IDs. In addition, because of potential security vulnerabilities
introduced by fragmentation, future IETF guidance may deprecate IPv6 frag-
mentation [4], thereby invalidating our technique. However, in practice we are
able to elicit fragments from a large fraction of production routers and do not
expect this ability to change in the near-term.

Second, our technique depends on periodic probing. The granularity of our
uptime inferences is governed by the rate of probing the remote interface; obtain-
ing high-fidelity uptime inferences may induce unwanted traffic load, especially
as the IPv6 Internet grows. Further, we cannot detect multiple reboots of an
interface that occur between probing samples. Third, we cannot discern the root
cause of a reboot, e.g. a power failure, natural disaster, human error, software
fault, or intentional maintenance upgrade.

We currently focus our effort on IPv6 routers. While similar IP-ID behavior
is found in IPv4 routers, there are three important differences. First, the IPID
counter behavior in IPv4 is much more erratic because routers increment the ID
counter every time they create a packet, causing the counter’s velocity to be large
for routers with chatty routing protocols or SNMP reporting [1,13]. Second, the
counter itself only has a range of 65536 values, requiring more frequent probing
than in IPv6 to prevent a counter wrap from being interpreted as a reboot.

Measuring and Characterizing IPv6 Router Availability 129

Routers (core)

 0.2

 0.4

 0.6

 0.8

 1

Mar Apr May Jun Jul Aug

C
D

F
of

 R
eb

oo
ts

Interfaces
Interfaces (core)

Routers

 0

(a) Reboot events over time

10

−5
10

10
−4

−3

C
C

D
F

of
 if

ac
es

 /
ro

ut
er

s

 0.1

 1

 1 10 100 1K
Observed Reboots

Interfaces
Interfaces (core)

Routers
Routers (core)

 0.01

(b) Reboot events per device

Fig. 1. Distribution of reboots in time and frequency for interfaces and routers mea-
sured over five-months. Core interfaces and routers refer to intra-AS devices.

Finally, there are many more router interfaces in the IPv4 topology than in the
IPv6 topology; even conducting Internet-scale IPv4 alias resolution on >2M IP
addresses is challenging due to the volume of probes required. Sampling router
interfaces to infer reboot events would require even more frequent probing than
Internet-scale alias resolution. We leave IPv4 uptime inference to future work.

3 Results

We used our uptime inference algorithm to characterize the availability of IPv6
interfaces and routers. Figure 1(a) shows the cumulative distribution of reboot
events for the duration of our experiment. The overall rate of interface reboots
is relatively uniform – indicating a constant background rate of IPv6 interface
reboots without the presence of individual events affecting many interfaces. In
contrast, the set of core routers exhibits more variation, suggesting correlated
reboot events among routers within a provider or organization.

Figure 1(b) depicts the complementary cumulative distribution of interface
and router reboots. The distribution is heavy-tailed: most routers and interfaces
experienced no reboots while a few experienced many reboots. Overall, 68 %
of the interfaces we monitored experienced no reboots over the measurement
period, while ∼22 % of interfaces had a single reboot. 99 % of interfaces had 10
or fewer reboots, but three interfaces reboot more than 100 times. Core interfaces
and routers were more stable than the broader set. 78 % of core routers did not
reboot during our experiment, but 98 % rebooted two or fewer times.

Figure 2 shows the distribution of uptimes, inclusive of only those devices
that experienced a reboot. Only 15 % of observed uptimes were less than a day;
the median interface uptime was approximately 23 days. Reboots among core
interfaces and routers are again relatively more stable, with a median uptime
of approximately 50 days, while 10 % had an uptime of 125 days or more.

130 R. Beverly et al.

Fig. 2. Distribution of observed uptimes across all observed reboot events (excluding
routers and interfaces with no restarts).

The largest uptime, approximately 150 days, corresponds to our full measure-
ment period and represents an interface that rebooted at the beginning of our
probing.

3.1 Linux Router Behavior

As described in Sect. 2.4, Linux kernels between 3.1 and 3.9 use a separate
counter per source IP address, and the counter appears to wrap to the same
initial ID value when the state associated with the source IP address is removed.
We detect reboots when we observe an abrupt change in IP-ID value that implies
the randomly generated secret used to set the initial ID value has changed. In
total, we detected 2,312 reboot events involving the 1,110 cyclic-ID interfaces.
The events were evenly distributed throughout the five months of our probing.

3.2 Validation

We solicited validation data from operators of 12 ASes who had previously pro-
vided feedback on our AS relationship inferences [17]. Five replied with evidence
that supported our inferences of reboot events for 15 routers, either direct val-
idation from system logs, or implicit validation by correlating the event with
a BGP session closing. Operators could not confirm all reboots we asked them
about, since some routers were using the operator’s address space but belonged
to customers, so the operator could not verify uptime. Through operator feed-
back we also learned that the two reboot events we detected for one router on
May 18 and June 1 2014 were because the router ran out of TCAM to store the
routing table; these reboots occurred before the publicity in August 2014 where
individual provider tables reached 512K [5].

3.3 Reboot Event Correlations with BGP

We manually searched public BGP data for BGP prefix withdrawal events that
correlated with our inferences of a reboot event. To rule out confounding factors

Measuring and Characterizing IPv6 Router Availability 131

Time (UTC)

544, 545, 546
22:32

4:46
W

4:49
A

5:36
1, 2, 3

22:35
10, 11, 12

1:57
W

2:01
A

2:12
W

2:13
A

5:05
1, 2, 3

Apr 29th Apr 30th May 1st

(a) (b)

2405:7100::/33

2001:388:1:700d::2IPID

BGP

Fig. 3. Timeline of IPID events for 2001:388:1:700d::2 (assigned to a router owned
by AS36474) and BGP events for the 2405:7100::/33 prefix announced by AS38474.
The time of each event is represented by a dot with inferred uptime events above
observed BGP events. The reboot events labeled (a) and (b) correlate in time with the
withdrawal (W) and announcement (A) of the prefix as observed at routeviews. No
other BGP events involving this AS occurred during this time.

involving events from upstream networks, we searched BGP data provided by the
AS where we observed an event involving a customer router, as labeled in DNS.
Figure 3 illustrates an example involving two detected reboot events in two days
between April 29 and May 1 UTC. The interface 2001:388:1:700d::2 has a
DNS PTR record of gw1.er1.aad.cpe.aarnet.net.au, i.e. a customer premises
equipment (cpe) router at the Australian Antarctic Division (aad) which is a
customer of AARNet, AS7575. AAD is AS38474 in BGP, and announced two
IPv6 prefixes: 2405:7100::/33 and 2405:7100:8000::/33. We downloaded all
update messages archived from AS7575 by Routeviews’ Sydney collector between
April 29 and May 1 UTC, and then searched for BGP events involving these two
prefixes. The reboot events labeled (a) and (b) in Fig. 3 that occurred between
our probing correlate with prefix withdrawal and announcement events, and no
other BGP events for AS38474 occurred during this time window. We saw the
same behavior involving other customers of other networks in BGP. An open
question is the degree to which reboot events in core AS routers result in a BGP
event; we hypothesize that neighbors of a network where a core AS router reboots
are much less likely to propagate a BGP event than the case in Fig. 3 where a
provider propagates a BGP event caused by a customer-edge router reboot.
Previous work on pinpointing the cause of a routing change [25] suggested a
coordinated approach, where ASes maintain a view of routing changes within
their own network, which can be queried when an event occurs. Our results
demonstrate the potential to correlate customer edge router reboot events with
BGP routing events.

3.4 When Do Routers Reboot?

Table 2 reports the day of the week, in the router’s local time zone, when we
detect a reboot event. In our data, router reboots were more than twice as
prevalent on Tuesday and Wednesday than on Saturday, Sunday, and Monday,
regardless of the router classification we made. We found the reduction in reboots

132 R. Beverly et al.

Table 2. Router reboots by day-of-week and router type (Sect. 2.5). Router reboot
events were twice as common on Tuesday and Wednesday as on Saturday, Sunday, or
Monday.

Core All

Monday 110 9.7 % 925 11.2 %

Tuesday 226 20.0 % 1684 20.4 %

Wednesday 227 20.0 % 1553 18.8 %

Thursday 197 17.4 % 1313 15.9 %

Friday 157 13.9 % 1120 13.5 %

Saturday 115 10.2 % 864 10.4 %

Sunday 101 8.9 % 813 9.8 %

1133 8272

over the weekend relative to the rest of the week surprising. We hypothesized
that reboots due to maintenance would occur on the weekend when the network
demand and thus potential impact of any disruption is lower. Instead, our data
suggests that maintenance occurs during the middle of the week, perhaps due to
the difficulty and expense of having a network team available during the week-
end. We restrict ourselves to day-of-week granularity because of the relatively
coarse (6 h) probing we used to collect the data. In the future, we would like to
optimize our probing algorithm to obtain a finer granularity that would allow us
to pinpoint reboot events to within one hour. For example, maintenance events
might occur in early morning during weekdays, to minimize disruptive impact.

4 Applications and Implications

Despite the Internet’s critical importance, relatively little quantitative data exists
on its service availability or reliability. A precise definition of Internet infrastruc-
ture reliability has yet to solidify [14], although the U.S. FCC has supported efforts
to measure reliability from a consumer’s perspective [3,24]. At the provider-level,
the FCC mandates reporting of significant outages for voice networks, including
VoIP networks [10], but there are no outage reporting requirements for broadband
network services.

While anyone with management access to a router (e.g. SNMP, ssh) can deter-
mine its uptime, our technique uses ICMP6 and requires no privileged access to
infer the uptime of a remote router, enabling Internet-wide study of IPv6 router
availability and reliability. Prior work has sought to infer reliability indirectly.
For instance, Paxson introduced metrics of routing reliability such as route preva-
lence and persistence [20,22], while Feamster et al. analyzed operational mailing
lists to characterize the frequency of faults [11]. More recently, Quan et al. used
active probes to infer edge network availability [21]. In contrast, we restrict our
attention to the availability of IPv6 routers, but obtain uptime data directly
from the routers via active measurement.

Measuring and Characterizing IPv6 Router Availability 133

Closely related to our technique are uptime inferences using TCP timestamps.
For example, nmap [18] gathers remote TCP timestamps to determine the rate
at which timestamps increase, and extrapolates to estimate uptime assuming
the timestamp resets to zero upon boot. Netcraft uses this technique to infer the
uptime of Internet web servers, but notes that uptimes cannot be determined
for hosts running modern operating systems due to their use of high-frequency
clocks [19]. More importantly, routers rarely listen on any TCP port, rendering
active-open TCP-based uptime methods infeasible.

Inferring device reboots also has important security implications. An attacker
able to observe when a remote device last rebooted can infer whether that device
has installed certain security patches; devices that have not rebooted since a
vulnerability announcement are more likely vulnerable. Attackers can also gain
knowledge of the likely maintenance windows for different networks, as well as
when an attack designed to crash a router is successful.

5 Conclusions

To our knowledge, we have developed, validated, and demonstrated the first
remote uptime inference technique applicable to routers. While our method is
currently limited to routers supporting IPv6, and only works for 61 % of the
responsive routers in our study, it is a first step toward broader insights into
Internet infrastructure reliability and operational practices.

While we have demonstrated evidence of correlation between our inferred
reboots and BGP events visible in the global routing table, in future work we
hope to systematically investigate the relationship between reboots and both
IPv4 and IPv6 routing system events. We observed instances of correlated
reboots among IPv6 interfaces that are not aliases, implying that multiple routers
rebooted within the same time window. Careful analysis of such correlations
can reveal hidden relationships among not only routers, but also providers, and
potentially reveal hidden correlations such as co-located routers rebooting due
to a common power failure.

We focused on IPv6 routers, but our technique applies to any IPv6 device that
responds with monotonic fragment IDs, including Linux and Windows machines
serving as infrastructure, e.g. web servers, DNS resolvers, etc. A more ambitious
longitudinal study, using a higher probing rate, would enable unprecedented
macroscopic characterization of the availability of critical IPv6 infrastructure.

Acknowledgments. We thank Stefan Savage for the uptime idea, and to the net-
works that validated our inferences. This work supported by NSF grants CNS-1111445
and CNS-1111449 and Department of Homeland Security (DHS) contracts N66001-
2250-58231 and N66001-12-C-0130. Views and conclusions are those of the authors
and should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. government.

134 R. Beverly et al.

References

1. Bender, A., Sherwood, R., Spring, N.: Fixing Ally’s growing pains with velocity
modeling. In: ACM SIGCOMM IMC, pp. 337–342, Oct 2008

2. Beverly, R., Brinkmeyer, W., Luckie, M., Rohrer, J.P.: IPv6 alias resolution via
induced fragmentation. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol.
7799, pp. 155–165. Springer, Heidelberg (2013)

3. Bischof, Z.S., Bustamante, F.E.: A time for reliability: the growing importance of
being always on. In: Proceedings of ACM SIGCOMM, pp. 131–132 (2014)

4. Bonica, R., Kumari, W., Bush, R., Pfeifer, H.: IPv6 Fragment Header Deprecated.
Internet Draft, Jul 2013

5. Cowie, J.: Internet touches half million routes: Outages possible next week, Aug
2014. http://research.dyn.com/2014/08/internet-512k-global-routes/

6. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-
suring IPv6 adoption. In: Proceedings of ACM SIGCOMM, pp. 87–98 (2014)

7. Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification. RFC
2460, Dec 1998

8. Dhamdhere, A., Luckie, M., Huffaker, B., claffy, k., Elmokashfi, A., Aben, E.:
Measuring the deployment of IPv6: topology, routing and performance. In: ACM
SIGCOMM IMC, pp. 537–559, Nov 2012

9. Digital Element: NetAcuity Edge. http://www.digitalelement.com/solutions/
10. FCC: Outage reporting to interconnected voice over internet protocol service

providers (2012). https://apps.fcc.gov/edocs public/attachmatch/FCC-12-22A1.
pdf

11. Feamster, N., Balakrishnan, H.: Detecting BGP configuration faults with static
analysis. In: Proceedings of NSDI, pp. 43–56 (2005)

12. Hyun, Y., claffy, k.: Archipelago measurement infrastructure (2014). http://www.
caida.org/projects/ark/

13. Keys, K., Hyun, Y., Luckie, M., claffy, k.: Internet-scale IPv4 alias resolution with
MIDAR. IEEE/ACM Trans. Netw. 21, 383–399 (2013)

14. Lehr, W., Bauer, S., Heikkinen, M., Clark, D.: Assessing broadband reliability:
measurement and policy challenges. In: Research Conference on Communications,
Information and Internet Policy (2011)

15. Luckie, M.: Scamper: a scalable and extensible packet prober for active measure-
ment of the internet. In: ACM SIGCOMM IMC, pp. 239–245 (2010)

16. Luckie, M., Beverly, R., Brinkmeyer, W., claffy, k.: Speedtrap: internet-scale IPv6
alias resolution. In: ACM SIGCOMM IMC, pp. 119–126, Oct 2013

17. Luckie, M., Huffaker, B., Dhamdhere, A., Giotsas, V., claffy, k.: AS relationships,
customer cones, and validation. In: ACM SIGCOMM IMC, pp. 243–256, Oct 2013

18. Lyon, G.F.: Nmap Network Scanning: The Official Nmap Project Guide to Network
Discovery and Security Scanning. Insecure (2009)

19. Netcraft: Which operating systems provide uptime information? June 2014. http://
uptime.netcraft.com/accuracy.html#uptime

20. Paxson, V.: End-to-end routing behavior in the internet. IEEE/ACM Trans. Netw.
5(5), 601–615 (1997)

21. Quan, L., Heidemann, J., Pradkin, Y.: Trinocular: understanding internet reliabil-
ity through adaptive probing. In: Proceedings of ACM SIGCOMM (2013)

22. Rexford, J., Wang, J., Xiao, Z., Zhang, Y.: Bgp routing stability of popular desti-
nations. In: Proceedings of the 2nd ACM SIGCOMM IMW, pp. 197–202 (2002)

http://research.dyn.com/2014/08/internet-512k-global-routes/
http://www.digitalelement.com/solutions/
https://apps.fcc.gov/edocs_public/attachmatch/FCC-12-22A1.pdf
https://apps.fcc.gov/edocs_public/attachmatch/FCC-12-22A1.pdf
http://www.caida.org/projects/ark/
http://www.caida.org/projects/ark/
http://uptime.netcraft.com/accuracy.html#uptime
http://uptime.netcraft.com/accuracy.html#uptime

Measuring and Characterizing IPv6 Router Availability 135

23. Sarrar, N., Maier, G., Ager, B., Sommer, R., Uhlig, S.: Investigating IPv6 traffic.
In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp. 11–20. Springer,
Heidelberg (2012)

24. Sundaresan, S., De Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè,
A.: Broadband internet performance: a view from the gateway. ACM SIGCOMM
Comput. Commun. Rev. 41, 134–145 (2011)

25. Teixeira, R., Rexford, J.: A measurement framework for pin-pointing routing
changes. In: ACM SIGCOMM NetTs Workshop, Aug 2004

UAv6: Alias Resolution in IPv6
Using Unused Addresses

Ramakrishna Padmanabhan(B), Zhihao Li, Dave Levin, and Neil Spring

University of Maryland, College Park, MD, USA
{ramapad,zhihaoli,dml,nspring}@cs.umd.edu

As the IPv6 Internet grows, alias resolution in IPv6 becomes more important.
Traditional IPv4 alias resolution techniques such as Ally do not work for IPv6
because of protocol differences. Recent techniques adopted specifically for IPv6
have shown promise, but utilize source routing, which has since been deprecated,
or rely upon sequential fragment identifiers supported on only a third of router
interfaces. As a result, IPv6 alias resolution remains an open problem.

This paper introduces UAv6, a new alias resolution technique for IPv6. UAv6
finds aliases in two phases. The first “harvest” phase gathers potential alias pairs,
and is based on our empirical observation that addresses adjacent to router inter-
face addresses are often unused. UAv6 probes these unused addresses, eliciting
ICMPv6 Address Unreachable responses. The central assumption of this work
is that the source address of such a response belongs to a router directly con-
nected to the prefix containing the unused and router interface addresses. The
second “disambiguation” phase determines which interface address is an alias of
the Address Unreachable’s source address. UAv6 uses both new and established
techniques to construct proofs or disproofs that two addresses are aliases.

We confirm the accuracy of UAv6 by running the Too-Big Trick test upon
the aliases we find, and by comparing them with limited ground truth. We also
show that the classic address-based technique to resolve aliases in IPv4 works
for IPv6 as well, and show that the address-based technique, UAv6, and the
Too-Big Trick are complementary techniques in resolving IPv6 aliases.

1 Introduction

With the impending exhaustion of IPv4 addresses, IPv6 adoption has seen steady
growth [8], and particularly robust growth in the last two years [7]. As IPv6
deployment increases, knowledge of its topology becomes valuable to researchers
and commercial providers. Traceroutes are the traditional tool for inferring net-
work topology [5,18], but using traceroutes alone for topology-mapping does not
suffice. Traceroutes discover multiple interfaces of a router, but do not reveal
which interfaces belong to the same router. Alias resolution is the process of
grouping interfaces onto their corresponding routers, thereby rendering a more
accurate picture of the actual network topology.

Numerous alias resolution techniques exist for IPv4 [2,17,18], but proto-
col differences prevent their straightforward application to IPv6. Researchers

The first two authors contributed equally to this work.

c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 136–148, 2015.
DOI: 10.1007/978-3-319-15509-8 11

UAv6: Alias Resolution in IPv6 Using Unused Addresses 137

have come up with several IPv6-specific techniques over the last decade. Early
techniques used the source routing feature in IPv6 to resolve aliases [14,15,19],
but source routing in IPv6 has since been deprecated [1]. Another successful app-
roach to resolve aliases is the shared counter method: Ally [18] and Radargun [2]
use this technique in IPv4, and recently, the Too-Big Trick (TBT) applied this
approach to find aliases in IPv6 [3,12]. However, Speedtrap [12] reports that 68 %
of router interfaces do not respond to the Too-Big Trick. Thus, alias resolution
in IPv6 remains an open problem.

In this paper, we describe a new alias resolution technique, UAv6, which
operates in two phases. The first phase, called the harvest phase, collects candi-
date aliases by probing unused addresses in IPv6 router interface prefixes. The
IPv6 address space is large enough that addresses for point-to point links are not
typically assigned out of 127-bit prefixes which have only two addresses; rather,
point-to-point links typically use only two of the four addresses in a /126 prefix.
By sending a packet to an address that is within a prefix but not assigned to an
interface, we solicit an ICMPv6 Address Unreachable (AU) error. Only a router
directly connected to the prefix is likely to respond with an AU. Therefore, the
source address of the AU is an alias for one of the used addresses within the
prefix. This results in two possible alias pairs, but the harvest phase does not
determine which of them is the true alias.

UAv6’s second phase, called the disambiguation phase determines which of
the harvest’s candidate aliases are true aliases. Because one of the two candidate
aliases produced by the harvest phase must be a true alias, we can either prove
one of them to be true, or we can disprove one and conclude the other must be
true by process of elimination. We provide tests of both types and show that
they are complementary. The first test uses traceroutes to disprove one of the
candidate aliases: If one of the addresses in the pair appears on the path to the
other, they are unlikely to be aliases of one another. The second test uses shared
Path MTU (PMTU) caches in some router implementations to prove one of the
alias pairs true: If an address pair shares PMTU caches, it is a true alias pair,
as only aliases share PMTU caches.

The contributions of this work are:

– We observe the presence of unused addresses in router interface address pre-
fixes. We present UAv6, a two-phase alias resolution technique in IPv6 that
uses these partially used prefixes.

– We verify UAv6’s accuracy by running the TBT test [3] where possible. TBT
could be applied to 23.2 % of the alias pairs we found and it confirmed 99.86 %
of them. We also compare the aliases we find against limited ground truth from
the Internet2 dataset and verify all the Internet2 aliases we discover.

– We demonstrate that a classic IPv4 alias resolution technique, the address-
based technique [9,13,18], works in IPv6, in spite of recommendations in RFC
4443 [6]. We show, however, that UAv6 finds almost twice as many aliases as
the address-based technique within router interface addresses derived from
traceroutes sent by the Ark project [4].

138 R. Padmanabhan et al.

2 Related Work

Alias resolution schemes can be broadly classified into the following categories:

Address-based: In IPv4, some routers are configured to use the outgoing inter-
face’s address as the source address for certain ICMP response types. Pansiot
and Grad [13] harness this to obtain aliases by checking when the source address
in a response is different from the destination probed. Some researchers [12,19]
have been discouraged from applying a similar approach in IPv6, because the
ICMPv6 specification [6] states that IPv6 routers must use the address to which
the packet was sent as the source address in ICMPv6 responses, if the address
belongs to the router. We demonstrate in Sect. 5 that, contrary to the specifica-
tion, the address-based approach finds aliases in IPv6.

Source routing-based: In the early 2000s, only 8 % of IPv4 routers supported
source routing [9], but the IPv6 Internet supported the feature in most routers
[19]. Early IPv6 alias resolution techniques used source routing-based methods
to find aliases [14,15,19]. However, source routing in IPv6 has been deprecated
because of security concerns [1] and support is likely to decline further.

Shared counter-based: In IPv4, Rocketfuel [18] introduced Ally, an alias res-
olution scheme that determines aliases by checking if the “IP-ID” fields on two
interfaces are generated from a shared counter. IPv6 dispensed with the IP-
ID field because routers do not fragment packets in IPv6 when forwarding.
Instead, if an interface obtains a too-large packet, it sends an ICMP Packet
Too Big (PTB) message to the source. The source then sends subsequent too-
large packets as fragments and inserts a common Fragment ID into fragments for
reassembly.

The “Too-Big Trick” (TBT) technique introduced by Beverly et al. [3] found
that many IPv6 routers use a counter that is shared among all of its interfaces,
from which these fragment IDs are obtained. To solicit fragmented packets, TBT
sends a large Echo Request packet (1300 bytes) to both addresses in a candidate
alias pair, followed by a PTB message to each of them. Next, it sends large Echo
Requests alternately to each address. If the returned fragments have sequential
fragment IDs, then TBT declares the pair to be aliases.

Given a set of router interface addresses obtained from traceroutes, TBT
requires a number of probes proportional to the number of pairs of addresses,
since TBT is a pairwise test. Speedtrap [12] obtains the same aliases that TBT
would have obtained, but does so more efficiently. It probes interface addresses
in parallel and groups together candidate alias pairs into smaller sets before
performing TBT’s pairwise test upon members of the set. However, only 32 % of
router interfaces in the IPv6 Internet provide fragments from a shared sequential
counter [12].

Prefix-based: UAv6 does not depend upon shared sequential counters, support
for source routing, or on ICMPv6 responses from different source addresses.
Instead, it relies upon the presence of prefixes that contain unused addresses
adjacent to router interface addresses. The next section shows that such partially
used prefixes are common in IPv6.

UAv6: Alias Resolution in IPv6 Using Unused Addresses 139

3 Unused Addresses in IPv6 Prefixes

Since the IPv6 address space is immense, we expect that IPv6 router interface
addresses on point-to-point links are assigned out of /126 prefixes, or larger,
leaving some addresses unused. This is similar to the existing practice of using
/30s in IPv4 [17]. However, two conflicting RFCs for IP address assignment in
IPv6 create uncertainty. RFC 3627 [16], published in 2003, finds that /127 prefix
lengths in IPv6 are harmful and recommends the use of /64 prefixes instead for
point-to-point links. RFC 6164 [11], published in 2011, recommends the use of
/127s for point-to-point links.

We investigate if IPv6 router interface addresses are allocated from /126 or
larger prefixes by studying the distribution of their last digits. We extracted
68,474 router interface addresses from traceroutes sent by the Ark project in
July 2014 [4]. Figure 1(a) shows the distribution of router interface addresses
across the last hex digits for these addresses. Most (59 %) addresses end in hex
digits “1” or “2”. Further, 82 % end in the binary digits “01” or “10”.

0 1 2 3 4 5 6 7 8 9 a b c d e f
IPv6 address last digit

0

10000

20000

30000

N
um

be
r

of
 in

te
rf

ac
es

(a) Addresses from CAIDA traceroutes

0 1 2 3 4 5 6 7 8 9 a b c d e f
IPv6 address last digit

0

10000

20000

30000

N
um

be
r

of
 in

te
rf

ac
es

(b) Addresses that responded to probes

Fig. 1. Distribution of the final hex digit of router interfaces’ IPv6 addresses.

We believe that this distribution is a result of ISPs assigning addresses out
of /126s, or larger, to point-to-point links. In such networks, one end of the
point-to-point link is assigned an address ending with the binary suffix “01”
and the other end is assigned an address with the binary suffix “10”. The other
addresses in the /126 prefix, with suffixes “00” and “11”, are unused, or assigned
as broadcast addresses.

CAIDA’s traceroutes may have recovered addresses in only one direction of
a path, if the path had not been probed in the reverse direction. To address this
potential bias, we send ICMPv6 Echo Request probes to the rest of the addresses
in each address’ enclosing /126. In total, we sent probes to 227,212 addresses
and received ICMPv6 Echo Replies from 89,756 (39.5 %) of them. We plot the
frequency of the last hex digit for these responsive addresses in Fig. 1(b). Unlike
Fig. 1(a), we find that the peak for addresses ending in “1” is higher than “2”
and the peak for “0” is higher than the other last digits. We speculate that this
may be due to some ISPs using hexadecimal“1”s and “0”s on opposite ends of
a link.

140 R. Padmanabhan et al.

The peaks for {“5”, “6”}, {“9”, “a”} and {“d”, “e”} are of comparable
heights, suggesting that these addresses are used for end-points of a link. Overall,
we find that 80.3 % of addresses that responded to our probes with ICMPv6 Echo
Replies end in binary suffixes “01” or “10”. This supports our belief that IPv6
point-to-point link prefixes are /126s or larger. Only the two addresses assigned
to opposite ends of a link are in use and the remaining addresses in the prefix
are unused.

4 UAv6 Design

In this section, we describe how UAv6 resolves aliases by using unused addresses.
UAv6 consists of two phases, the harvest phase and the disambiguation phase.
In the harvest phase, we obtain Address Unreachable responses from unused
addresses and obtain potential alias pairs. In the disambiguation phase, we use
established and new methods to prove which potential pairs are truly aliases.

4.1 The Harvest Phase

In the harvest phase, we probe /126 prefixes and obtain potential aliases from
the responses. Given a /126 prefix, the harvest phase first determines if we can
collect candidate alias pairs from this prefix by sending ICMPv6 Echo Requests
to each of the addresses and inspecting the responses. If all addresses in the
prefix are used, then all ICMPv6 Echo Replies we receive are, according to the
specification [6], supposed to originate from the address we probed, thereby pro-
viding no information about aliases. Likewise, we learn no new aliases if none of
the addresses in the prefix are used, as we will receive either ICMPv6 Address
Unreachable (AU) responses or no responses at all. However, if some addresses
in the prefix are used and some are not, then we receive ICMPv6 Echo Replies
from the used addresses and AU responses from potential aliases of the used
addresses. The harvest phase uses this combination of responses to obtain can-
didate alias pairs.

Figure 2 shows an example of how the harvest phase works. In this example,
there are two routers connected by a point-to-point link; one of the end-points
has address X11 and the other has X2. The harvest phase sends probes to each
address in the /126 prefix “X” viz. X0, X1, X2 and X3. Because X1 and X2 are in
use, they will respond with ICMPv6 Echo Replies. As for the unused addresses
X0 and X3, we assume that the AU response is sent by an interface (Y) that
belongs to one of the routers that is directly connected to the X prefix. We make
this assumption because in general, only the routers directly connected to prefix
X know that X0 and X3 are unused. Since X1 and X2 are the addresses from this
prefix that responded with ICMPv6 Echo Replies, we infer that Y is an alias of
X1 or X2. We define (Y, X1) and (Y, X2) to be the two members of a candidate
alias pair set, exactly one of which is a true alias pair. For each /126 or larger
prefix with used and unused addresses, we obtain one candidate alias pair set at
the end of the harvest phase.
1 We use XN as notational shortcut for X::N.

UAv6: Alias Resolution in IPv6 Using Unused Addresses 141

Fig. 2. In its harvest phase, UAv6 sends probes to each address in a given /126 begin-
ning with the prefix “X”. A probe for X3, which is likely unused, will probably elicit
an ICMPv6 Address Unreachable (AU) message—we assume that this message will be
sent from a router that has an interface from the X prefix. In this example, interface Y
responded to our probe for X3 with an AU message, so we can deduce that Y is likely
an alias for X1 or X2, but not both. The disambiguation phase determines which is the
true alias.

4.2 The Disambiguation Phase

In the disambiguation phase, we find the correct alias pair in a candidate alias
pair set provided by the harvest phase. We apply two tests which either prove
that an alias pair is correct, or prove that one is not and thus the other must
be. While some candidate alias pair sets can be disambiguated by either test, we
show in Sect. 5 that these two tests are complementary, as they rely on different
router behaviors.

4.2.1 Traceroute Test

We use traceroutes to obtain disproofs about candidate alias pairs by checking
if one of the addresses lies on the route to the other. We expect that a typical
IPv6 router first checks if the destination address in the packet belongs to it
before decrementing the Hop Limit. An alias of a traceroute destination should
thus never send an ICMPv6 Hop Limit Exceeded message, which implies that it
should never appear on the route to the destination. We send ICMPv6 tracer-
outes to X1 and X2, and if Y appears on the route to one of them, we use that
as proof that Y is not an alias of that address.

The Traceroute test cannot disambiguate all candidate alias pair sets. For
instance, traceroute probes may be blocked by some ISPs. Alternately, tracer-
outes to X1 and X2 may both not find Y on the route if the traceroutes traverse
different paths. Therefore, we introduce a complementary technique, which we
call the SPMTU test.

4.2.2 Shared PMTU Cache (SPMTU) Test

In the SPMTU test, we use the presence of fragmentation to provide proofs
about which of (Y, X1) and (Y, X2) is the true alias pair. By default, IPv6
routers do not fragment packets. However, an IPv6 router can be induced to

142 R. Padmanabhan et al.

fragment packets it originates if a host sends a Packet Too Big (PTB) message
to the router claiming that the response from the router is too big for its link to
handle [3]. The PTB sent by the host contains the claimed MTU, M , of the host’s
link. The router then makes an entry in its Path MTU (PMTU) cache, indicating
that packets sent to the host need to be fragmented if their size exceeds M .

PMTU caches are commonly shared across all interfaces of a router, including
routers manufactured by Huawei, Vyatta, HP, and Mikrotik [12]. When a router
with a shared PMTU cache receives a PTB message from host h with stated
MTU M , it inserts an entry (h,M) into its shared cache. As a result, all interfaces
on the router will fragment subsequent packets that exceed M to that host. We
use evidence of shared PMTU caches as proof that a candidate alias pair is
correct.

We determine which address pair in the candidate alias pair set shares PMTU
caches by using the following procedure:

1. Initialize: The prober sends an ICMPv6 Echo Request of size S to each of
Y, X1, and X2, and verifies that all of them respond with an unfragmented
Echo Reply. This step is necessary to ensure that none of the addresses has
the prober’s address in its PMTU cache.

2. Populate cache: If all addresses responded with an unfragmented Echo
Reply in Step 1, the prober sends a PTB message with MTU M < S to Y
alone. If Y shares its PMTU cache with its aliases, all of them will fragment
a packet of size S sent to the prober.

3. Resolve: The prober sends an ICMPv6 Echo Request of size S to each of
Y, X1, and X2 again. If Y and X1 respond with a fragmented Echo Reply,
and X2 responds with an unfragmented Echo Reply, we infer that Y and X1
share a PMTU cache, and must therefore be aliases. Conversely, if Y and X2
fragment and X1 does not, we infer that Y and X2 are aliases.

The SPMTU test is generic and can be applied to any arbitrary pair of IPv6
addresses to determine if they are aliases. However, it uses state in routers’ caches
and hence cannot be repeated with the same prober address until the PMTU
cache entry for that prober address expires. We repeat tests using different prober
addresses and rely on routers utilizing per-destination PMTU caches; thus a
response from the router to a different prober address will not be fragmented.
We own a /64 prefix, and use different addresses from the prefix for each test.

Although the SPMTU test can in theory be used as an all-pairs test, we are
careful to use it only on candidate alias pairs from the harvest phase, as varying
prober addresses may fill routers’ caches with addresses from our tests. Since
we send one PTB message per candidate alias pair set, the number of prober
addresses in the PMTU cache will be at most the number of interfaces on the
router.

5 Evaluation

In this section, we evaluate the accuracy of UAv6 against existing IPv6 alias reso-
lution techniques and against limited ground truth from the Internet2 dataset [10].

UAv6: Alias Resolution in IPv6 Using Unused Addresses 143

We also show that a classic IPv4 alias resolution technique, the address-based
technique (Sect. 2), works in IPv6, in spite of recommendations in RFC 4443 [6].
Finally, we combine the alias pairs found by UAv6 and the address-based tech-
nique and resolve 5,555 aliases in the Ark dataset [4].

5.1 Data Collection

We extracted 68,474 router interface addresses from traceroutes sent by CAIDA’s
IPv6 Ark project in July 2014 [4]. We found 56,803 /126 prefixes in total, and
fed them into the harvest phase.

Recall that the harvest phase discards prefixes wherein the used addresses do
not respond to our probes with ICMPv6 Echo Replies or the unused addresses
do not elicit AU responses. Sometimes, AU responses do not arrive for the first
ICMPv6 Echo Request; we therefore retransmit requests up to 3 times and each
request has a timeout of 3 s. Of the 56,803 prefixes, we did not receive ICMPv6
Echo Replies from X1 or X2 for 27,014 (47.6 %) prefixes. For 7935 (14.0 %)
prefixes, we did not get AU responses from probes sent to X0 or to X3.

The remaining 21,854 (38.5 %) prefixes are UAv6-applicable. We applied the
harvest and disambiguation phases to them and found 15,260 alias pairs.

5.2 The Address-Based Technique in IPv6

We discover that the address-based technique, a classic method of resolving
aliases in IPv4 [9,13,18], works in IPv6, too. The address-based technique finds
aliases in IPv4 by testing if UDP responses to high-numbered ports contain a
different source address from the destination probed. The ICMPv6 specification
states that if a message is sent to an address that belongs to a router, the source
address of the ICMPv6 response must be that address [6]. If the specification is
followed, the address-based technique would not work for IPv6.

However, we find that there exist routers that do not follow the specification:
while running UAv6’s harvest phase, we observed that some of the ICMPv6
Echo Replies to our probes had a different source address from the probed desti-
nation. This implies that the address-based technique also works in IPv6, so we
investigated how often it applies. We sent UDP probes with high port numbers
to all the addresses we probed in the harvest phase. UDP probes to 227,212
addresses provided 72,457 responses with ICMPv6 Port Unreachable responses.
Among them, 8729 (12 %) of the responses had a different source address from
the destination of the UDP probes. Of the 89,756 ICMPv6 Echo Replies we
received, 1450 (1.6 %) had a different source address. In 1030 cases, both UDP
and ICMP probes had a different source address in their response. In total, we
discovered 9,143 alias pairs using the address-based technique.

Although it is encouraging that the address-based technique works in IPv6,
it has two drawbacks: first, it can only be applied to a small portion of the
addresses, and second, it may not work in the future since it does not comply
with the ICMPv6 specification. This serves as motivation for complementary
techniques like UAv6.

144 R. Padmanabhan et al.

5.3 Accuracy of UAv6

Alias resolution demands very high accuracy, as an incorrectly inferred alias
may group two independent routers together, significantly altering the inferred
topology. We next turn to evaluate UAv6’s accuracy. For alias pairs to which
the Too-Big Trick (TBT) is applicable, we use it for cross-validation. We also
run UAv6 on the addresses from the Internet2 dataset [10] and verify the aliases
it finds against ground truth.

5.3.1 Comparison with TBT

We first evaluate the accuracy of the SPMTU test and the Traceroute test against
TBT. We can apply TBT to an address pair if both addresses’ routers draw their
fragment IDs from sequential counters. For aliases found by the Traceroute and
SPMTU tests, we find TBT-applicable pairs and run TBT on them. Table 1
compares the accuracy of our tests against TBT.

Table 1. Comparison of UAv6’s accuracy against TBT for alias pairs where both
addresses draw fragment IDs from sequential counters.

Aliases discovered TBT-applicable TBT verified

Traceroute 11,128 2,810 (25.3 %) 2,806 (99.86 %)

SPMTU 8,422 1,264 (15.0 %) 1,263 (99.92 %)

Union 15,260 3,539 (23.19 %) 3,534 (99.86 %)

Traceroute test: Using the Traceroute test, we find 11,128 alias pairs from
21,854 UAv6-applicable prefixes. Of them, 2810 pairs (25.3 %) are TBT-
applicable. All but 4 of these pairs (0.14 %) are verified by TBT. We manu-
ally inspected these pairs and found that, although TBT indicates they have
non-sequential fragment IDs, all 4 pairs are verified by the address-based tech-
nique. In future work, we plan to examine in greater depth why these established
techniques contradict each other in some cases.

Recall that our central assumption is that if Y is the source of an AU response
to a packet for X0 or X3, then Y is directly connected to the prefix containing
X1 and X2. The Traceroute test provides us with some instances where this
assumption is violated. For example, in 527 cases (2.41 %), Y appears on the
paths to both X1 and X2. In 55 other cases (0.25 %), Y is more than one hop
away from X1 or X2, which indicates that Y is not directly connected to the
prefix. We detect these cases and discard them.

SPMTU test: The SPMTU test finds 8422 alias pairs. For the 1263 (15.0 %)
alias pairs where TBT could be applied, TBT verified all the alias pairs found by
SPMTU except one. We manually inspected this case and found that SPMTU no
longer identified the pair as aliases. We recovered the fragment IDs that we had

UAv6: Alias Resolution in IPv6 Using Unused Addresses 145

obtained when we first ran SPMTU upon them, and found that the fragment
IDs for both addresses in that run had been sequential. We believe that one of
the addresses from the pair was reassigned to another router in the sub-24 h gap
between our SPMTU run and our TBT run, causing the results to conflict.

Comparison between disambiguation tests: We now compare the aliases
found by our disambiguation tests against each other. The union of alias pairs
found by the SPMTU and Traceroute tests contains 15,260 pairs, and the inter-
section has 4289 pairs. There is one alias pair where the two tests conflict.
The alias pair chosen by the traceroute test was confirmed by the address-based
method, whereas the pair chosen by SPMTU was confirmed by TBT. We believe
that this behavior is caused by a misconfigured router responding to probes not
addressed to it.

UAv6 is complementary to TBT: We observe that 11,721 (76.8 %) alias
pairs found by UAv6 are not TBT-applicable, demonstrating that UAv6 is a
complementary technique to TBT. For aliases found by the Traceroute test, we
find that 74.7 % are not TBT-applicable. 54 % of these alias pairs do not respond
with fragments after a PTB message and 46 % respond with random fragments.

Like TBT, the SPMTU test also relies upon fragments received from the
addresses. Yet SPMTU differs from TBT in that it relies upon shared PMTU
caches in routers while TBT relies upon shared sequential counters from which
the fragment ID is drawn. The majority of aliases found by the SPMTU test
(85.0 %) are not TBT-applicable. This implies that at least one of the addresses
in the pair returned fragments not derived from a sequential counter. How-
ever, Speedtrap [12] had found in their tests that all routers which implemented
shared PMTU caches also used sequential counters. We believe that at least
one main router manufacturer is now implementing shared PMTU caches and
non-sequential counters on its routers.

5.3.2 Comparison with Ground Truth

We next study UAv6’s accuracy using ground truth data from the Internet2
network [10]. We obtained ground truth aliases from Internet2 routers’ config-
uration files. We believe these aliases to be correct, although we omitted some
interfaces that are not physical interfaces. The Internet2 topology consists of
579 interface addresses on 11 routers. We obtain the /126 prefix of each inter-
face address and run the harvest phase upon the prefix. Of the 500 /126 prefixes
from the Internet2 dataset, we find 62 (12.4 %) candidate alias pair sets. The
number is small since many prefixes in Internet2 did not respond in the harvest
phase.

For each candidate alias pair set, we apply the disambiguation phase and
show the results in Table 2. Not all aliases found by the tests could be verified:
some aliases are aliases of routers connected to Internet2 routers, but not of the
Internet2 routers themselves. For these aliases, we do not have ground truth,
and thus cannot verify them. The Traceroute test found 31 such aliases and the
SPMTU test found 22 of them. The Traceroute test found 6 alias pairs that

146 R. Padmanabhan et al.

belonged to Internet2 routers, and the SPMTU test found 15 such pairs. All of
these aliases were verified by ground truth, demonstrating UAv6’s accuracy.

Table 2. Comparison of UAv6’s accuracy against Internet2.

Aliases discovered Aliases verifiable Alias verified Accuracy

SPMTU 37 15 15 100.00 %

Traceroute 37 6 6 100.00 %

5.4 Alias Resolution with UAv6 and the Address-Based Method

We close this section by investigating how many aliases each technique finds
within the 68,474 router interface addresses extracted from the Ark project in
July 2014 [4]. For this comparison, we use the number of aliases that each tech-
nique finds instead of comparing the number of alias pairs, because a router
with n interfaces has

(
n
2

)
alias pairs, but only n− 1 aliases. We believe this is an

unbiased way of measuring the completeness of an alias resolution technique.
We combine the alias pairs we found using UAv6 and the address-based

technique and show the results in Table 3. Though UAv6 found only 67 % more
alias pairs than the address-based technique, it found nearly double the aliases
within the addresses already discovered by Ark. Of course, both UAv6 and
address-based methods may discover new addresses that were not present in
a traceroute measurement. Resolving aliases of interfaces already discovered by
traceroute contributes accuracy to an inferred router-level map, while discover-
ing new addresses yields additional detail. However, there were 1407 aliases that
the address-based technique alone resolved. Combining the approaches yielded
34 % more aliases than the use of UAv6 alone.

Table 3. Number of aliases found by the UAv6 and Address-Based techniques.

Discovered Routers Resolved Discovered

alias pairs with aliases Ark aliases aliases

UAv6 15,259 5,711 4,148 14,760

Address-based 9,143 5,477 2,091 9,118

Combined 22,080 9,307 5,555 21,415

6 Conclusions

IPv6 deployment is on the rise and alias resolution techniques are vital in map-
ping its topology. In this work, we augmented existing alias resolution methods
with UAv6: a new technique that uses partially used IPv6 prefixes to find aliases.
We found potential alias pairs by probing /126 prefixes and introduced two tests

UAv6: Alias Resolution in IPv6 Using Unused Addresses 147

to disambiguate potential alias pairs. Existing alias resolution techniques and
ground truth from the Internet2 topology confirmed UAv6’s accuracy. UAv6 is
complementary to the address-based technique and to TBT, finding alias pairs
that other techniques do not.

The disambiguation tests we employ in this work helped UAv6 recover aliases
from 70 % of applicable prefixes, and we believe this can be increased further.
For instance, one area of future work is to employ other disambiguation tests,
such as the Hop Limit on received packets, to find more aliases. Additionally,
we believe that, through the use of multiple vantage points, UAv6 can harvest
more applicable prefixes.

Acknowledgments. We thank Matt Lentz and our anonymous reviewers for their
comments and suggestions. This work was partially supported by NRL Grant
N00173131G001.

References

1. Abley, J., Savola, P., Neville-Neil, G.: Deprecation of type 0 routing headers in
IPv6. RFC 5095 (2007)

2. Bender, A., Sherwood, R., Spring, N.: Fixing Ally’s growing pains with velocity
modeling. In: ACM IMC (2008)

3. Beverly, R., Brinkmeyer, W., Luckie, M., Rohrer, J.P.: IPv6 alias resolution via
induced fragmentation. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol.
7799, pp. 155–165. Springer, Heidelberg (2013)

4. CAIDA’s IPv6 Ark Topology Data. http://www.caida.org/data/active/ipv6
allpref topology dataset.xml

5. Claffy, K., Monk, T.E., McRobb, D.: Internet tomography. Nature 7, 11 (1999)
6. Conta, A., Gupta, M.: Internet Control Message Protocol (ICMPv6) for the Inter-

net Protocol Version 6 (IPv6) Specification. RFC 4443 (2006)
7. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-

suring IPv6 adoption. In: ACM SIGCOMM (2014)
8. Dhamdhere, A., Luckie, M., Huffaker, B., Elmokashfi, A., Aben, E., et al.: Mea-

suring the deployment of IPv6 Topology, routing and performance. In: ACM IMC
(2012)

9. Govindan, R., Tangmunarunkit, H.: Heuristics for Internet map discovery. In:
INFOCOM (2000)

10. Internet2 Topology. http://noc.net.internet2.edu/i2network/live-network-status/
visible-network.html

11. Kohno, M., Nitzan, B., Bush, R., Matsuzaki, Y., Colitti, L., Narten, T.: Using
127-Bit IPv6 Prefixes on Inter-Router Links. RFC 6164 (2011)

12. Luckie, M., Beverly, R., Brinkmeyer, W., et al.: Speedtrap: internet-scale IPv6
alias resolution. In: ACM IMC (2013)

13. Pansiot, J.-J., Grad, D.: On routes and multicast trees in the Internet. ACM SIG-
COMM CCR 28(1), 41–50 (1998)

14. Qian, S., Wang, Y., Xu, K.: Utilizing destination options header to resolve IPv6
alias resolution. In: GLOBECOM (2010)

15. Qian, S., Xu, M., Qiao, Z., Xu, K.: Route positional method for IPv6 alias resolu-
tion. In: ICCCN (2010)

http://www.caida.org/data/active/ipv6_allpref_topology_dataset.xml
http://www.caida.org/data/active/ipv6_allpref_topology_dataset.xml
http://noc.net.internet2.edu/i2network/live-network-status/visible-network.html
http://noc.net.internet2.edu/i2network/live-network-status/visible-network.html

148 R. Padmanabhan et al.

16. Savola, P.: Use of/127 Prefix Length Between Routers Considered Harmful. RFC
3627 (2003)

17. Sherwood, R., Bender, A., Spring, N.: Discarte: a disjunctive internet cartographer.
In: ACM SIGCOMM (2008)

18. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocketfuel.
In: ACM SIGCOMM (2002)

19. Waddington, D.G., Chang, F., Viswanathan, R., Yao, B.: Topology discovery for
public IPv6 networks. ACM SIGCOMM CCR 33(3), 59–68 (2003)

Server Siblings: Identifying Shared IPv4/IPv6
Infrastructure Via Active Fingerprinting

Robert Beverly1(B) and Arthur Berger2

1 Naval Postgraduate School, Monterey, CA, USA
rbeverly@nps.edu

2 MIT CSAIL/Akamai, Cambridge, MA, USA
awberger@csail.mit.edu

Abstract. We present, validate, and apply an active measurement tech-
nique that ascertains whether candidate IPv4 and IPv6 server addresses
are “siblings,” i.e., assigned to the same physical machine. In contrast
to prior efforts limited to passive monitoring, opportunistic measure-
ments, or end-client populations, we propose an active methodology that
generalizes to all TCP-reachable devices, including servers. Our method
extends prior device fingerprinting techniques to improve their feasibil-
ity in modern environments, and uses them to support measurement-
based detection of sibling interfaces. We validate our technique against
a diverse set of 61 web servers with known sibling addresses and find it
to be over 97 % accurate with 99% precision. Finally, we apply the tech-
nique to characterize the top ∼6,400 Alexa IPv6-capable web domains,
and discover that a DNS name in common does not imply that the cor-
responding IPv4 and IPv6 addresses are on the same machine, network,
or even autonomous system. Understanding sibling and non-sibling rela-
tionships gives insight not only into IPv6 deployment and evolution, but
also helps characterize the potential for correlated failures and suscepti-
bility to certain attacks.

1 Introduction

While significant prior research has characterized the evolution, routing, and
performance of IPv6 [5,6,15], less attention has been given to understanding
whether IPv6 infrastructure is being deployed using separate hardware or by
adding IPv6 to existing machines. I.e., are providers using separate IPv4 and
IPv6 servers to host the same web content, or using single “dual-stacked” servers?

Given an IPv4 and IPv6 address, we seek to infer whether they belong to
interfaces on the same physical machine. We term such cross-protocol associated
addresses server “siblings.” To accurately determine sibling and non-sibling rela-
tionships, we leverage prior work on device fingerprinting to perform active mea-
surements of TCP option signatures (coarse-grained) [10] and TCP timestamp
clock skew (fine-grained) [9].

The prevalence of shared IPv6 infrastructure has important policy and Inter-
net evolution implications [3]. Moreover, for network operators and researchers,
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 149–161, 2015.
DOI: 10.1007/978-3-319-15509-8 12

150 R. Beverly and A. Berger

the way in which IPv6 is deployed has particular impact on measurement and
security. A potential, future application for the methods herein is for IPv6 geolo-
cation, where prior knowledge of the corresponding IPv4 sibling can be leveraged.
Note that making such inferences based on a common Domain Name System
(DNS) name can be dubious. As shown in Sect. 4, a DNS name in common does
not imply that the IPv4 and IPv6 addresses are on the same interface, machine,
or even autonomous system (AS).

A second area of interest is IPv6 security, as the deployment and maintenance
of firewalls, filtering, and intrusion detection systems on IPv6 lags, while tunnels
and transition mechanisms facilitate alternate data paths for application-layer
attacks. Furthermore, not only are many old IPv4 network-layer attacks feasi-
ble in IPv6, IPv6 introduces new attack vectors [7]. The extent to which IPv4
infrastructure depends on IPv6, and vice-versa, therefore has unknown security
implications. Whether an attack against the IPv6 address of an Internet web or
DNS server impacts an organization’s corresponding service for IPv4 depends
on whether it is dual-stacked. Further, dual-stacked servers imply the potential
for correlated failures that impact survivability.

Toward identifying shared IPv4/IPv6 infrastructure, our contributions are:

1. A reappraisal of the current feasibility of Kohno’s 2005 physical device fin-
gerprinting [9] method using TCP clock skew.

2. Integration to, and enhancement of, various fingerprinting methods to actively,
rather than passively, associate IPv4 and IPv6 server addresses.

3. Evaluation on ground-truth data, with >97% accuracy and 99 % precision.
4. Real-world measurements of siblings and non-siblings among the Alexa top

websites, characterizing a portion of Internet IPv6 infrastructure.

2 Background

Inferring IPv4 and IPv6 host associations has largely been confined to client pop-
ulations using passive, opportunistic measurements. For instance prior projects
have used web-bugs, javascript, or flash object to determine the prevalence of
IPv6 connectivity and associate IPv4 and IPv6 addresses of connecting clients
[14,17]. In contrast our technique is active and we study servers.

Our prior work also examines IPv4/IPv6 associations, but is limited to DNS
resolvers [2]; the techniques herein are more general and can be performed
actively, on-demand. By operating at the transport layer we can actively probe
any listening TCP service to test whether a candidate IPv4 and IPv6 address
belong to the same device.

At its heart, our work relies on the rich history of prior research in net-
work fingerprinting. Network fingerprinting is a common technique that relies
on implementation and configuration-specific characteristics to uniquely identify
devices. We leverage the fact that any application or transport-layer fingerprint
will be common to the lower level network protocol, whether IPv4 or IPv6.
We use coarse-grained active operating system (OS) fingerprinting, e.g. [10], to

Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure 151

eliminate clearly unrelated IPv4 and IPv6 addresses. However, OS fingerprinting
alone does not provide sufficient granularity to accurately classify true siblings
as the set of possible OSes is small relative to the set of possible addresses.

We therefore leverage previous work on physical device fingerprinting [9].
Kohno’s technique measures a machine’s clock drift by obtaining TCP-layer
timestamps from the remote machine. While this technique has been used in the
past, we apply it in a new context and reappraise its feasibility 10 years later.
More importantly, skew-based fingerprinting has been primarily used on network
clients, rather than servers. We find several interesting server-specific behaviors,
e.g. load-balancing, that we take into account. Second, we enhance and combine
the technique with other fingerprinting methods. We then evaluate the accuracy
of our technique on a distributed set of ground-truth web servers. Last, we apply
the method to the new problem of actively interrogating remote IPv4 and IPv6
endpoints over TCP to determine if they are server siblings.

3 Methodology

Our methodology uses active fingerprinting at the TCP layer, as a host’s TCP
stack is common to both the underlying IPv4 and IPv6 stack. We combine several
of such fingerprinting techniques to achieve the best accuracy. Our resulting
active method can be run on-demand to provide a server sibling test.

A networked server may have one or more interfaces, each with one or mul-
tiple addresses. An interface’s addresses can be IPv4, IPv6, or a combination.
Our TCP fingerprinting techniques attempt to determine whether a given IPv4
and IPv6 address share a common TCP stack. If the determination is “yes,”
then we are confident (see Sect. 4 on ground truth) that the two address are on
the same server (and in practice likely the same interface), and we classify the
address pair as siblings. If the determination is “no,” then we are confident that
the addresses are on separate interfaces, and most likely separate machines, and
we classify the address pair as non-siblings.

3.1 Datasets

This work considers four datasets shown in Table 1. First, a ground-truth dataset
(1) where the IPv4 and IPv6 addresses are known to be co-located on the same

Table 1. Properties of the four datasets probed

Dataset Hosts # v4 AS # v6 AS Countries # Option Signatures

(1) Ground Truth 61 34 34 19 13

(2) Alexa embedded 1050 85 80 31 30

(3) Alexa non-CDN 1533 629 575 69 73

(4) Alexa CDN 230 59 55 18 29

152 R. Beverly and A. Berger

dual-stacked host. Then, for the subset of the Alexa [1] top 100,000 sites with
both A and AAAA records in the DNS, we partition into set (2) sites where the
IPv4 address is embedded in the corresponding IPv6 address. And for sites not in
(2), partition into datasets: (3) those not part of a Content Distribution Network
(CDN), and (4) those part of a CDN.

To develop and refine our association inference algorithm, we utilize ground-
truth data consisting of 61 hosts with known IPv4/IPv6 association. While this
set is relatively small, it spans 34 ASes and 19 countries. Importantly, it allows us
to test not only our algorithm’s recall (ability to identify true siblings), but also
its precision (ability to identify ∼1,800 possible combinations of non-siblings).

We query the DNS for the A and AAAA records of the Alexa hosts as retrieved
in April, 2014. If the query returns multiple DNS records, we retain only the
first. We perform the DNS resolution only once in order to obtain the IPv4 and
IPv6 addresses. The remainder of our experimentation involves directly probing
IPv4 and IPv6 addresses; the DNS is not subsequently consulted as to avoid
dynamics due to DNS or DNS load-balancing.

A total of 6,387 sites in the Alexa top 100,000 have both IPv4 and IPv6
addresses. We remove 22 sites that return non-global IPv6 addresses, e.g. “::.”
Because multiple sites can be hosted on one server, we reduce this set to 3,986
unique IPv4/IPv6 address pairs. Further, since the Alexa list is comprised of
popular web sites, these sites are frequently part of a CDN. We observe that many
sites use anycast, as inferred by collecting RTTs from geographically dispersed
vantage points and finding those sites with RTTs that are not physically possible
without anycast. We remove these sites from our analysis as to not conflate the
effects of anycast with our inferences, leaving 2,813 unique address pairs.

When part of a CDN, the same website is often hosted on multiple machines
distributed across sites or geographic regions. We therefore separate the Alexa
hosts into those that are part of a CDN versus those that are not. To distinguish
CDN site, we query the DNS for the site from five geographically dispersed
vantage points. If we obtain different A or AAAA records from multiple vantage
points, we label the site as belonging to a CDN. In addition, if the site’s DNS
CNAME corresponds to a well-known CDN, we place it in the CDN dataset.

Last, we create the “embedded” dataset. In practice, IPv4 addresses are
frequently embedded in IPv6 addresses in different ways. We include instances
where the IPv4 address is embedded as four bytes, e.g. 162.159.243.37 and
2400:cb00:2048:1::a29f:f325, or where the IPv4 base-10 representation is
used as a base-16 sequence, e.g. 142.8.72.175 and 2a01:f1:d0:dc0:142:8:
72:175.

Table 1 characterizes the distribution of hosts in each dataset, including the
number of IPv4 and IPv6 ASes they represent as inferred from the routeviews
global BGP table [12] from the same day as our Alexa site list (April 14, 2014),
as well as the geographic distribution as determined by maxmind [11].

Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure 153

3.2 TCP Option Signature

Modern TCP stacks make common use of TCP options, especially options in
[8]. While options are standardized, the order and packing of those options is
implementation dependent, thereby providing a well-known operating system-
granularity fingerprint [10]. For example, FreeBSD in our dataset returns:
<mss 1460, nop, wscale 3, sackOK, TS> whereas a Linux machine returns:
<mss 1460, sackOK, TS, nop, wscale 4>.

To form the signature, we preserve the option order, and strip the integer
value of the MSS and timestamp options. While the IPv6 MSS is frequently
20 bytes less than the IPv4 MSS (to accommodate the extra 20 bytes of IPv6
header), this is a loose rule in our ground-truth. Some hosts connect via tunnels,
with a lower IPv6 MSS, while some hosts support jumbo-grams only for IPv4.

While coarse-grained, the variability of the TCP options signature provides
a good first-order filter. Table 1 reports the number of unique TCP option sig-
natures observed for each of the datasets.

3.3 TCP Timestamp Skew

Define a candidate pair as (I4, I6). We periodically connect to a running TCP
service on I4 and I6 and negotiate the TCP timestamp option [8]. We receive a
sequence of time-stamped packets along with their arrival time relative to our
prober. Let t4i be the time at which the prober observes the i’th IPv4 packet
from I4 and t6i be the observed time of the i’th IPv6 packet from I6. Similarly,
let T 4

i and T 6
i be the timestamp contained in the TCP options of the i’th packet

from I4 and I6 respectively. Following the technique in [9], for each IPv4 packet
we compute the observed offset or skew : s4i ≡ (T 4

i − T 4
0) − (t4i − t40) and likewise

for each IPv6 packet, s6i ≡ (T 6
i − T 6

0) − (t6i − t60).
Given a sequence of skews, we compute drift via the linear programming

solution in [13] to determine a line that is constrained to be under the data
points, but minimizes the distance to the data points. We obtain:

y4 = α4x + β4 and y6 = α6x + β6

I.e., two lines, one corresponding to the interrogation of I4 and one to I6 that
lower-bounds the set of offset points observed. The angle θ between them is:

θ(α4, α6) = tan−1

∣∣∣∣
α4 − α6

1 + α4α6

∣∣∣∣

If θ < τ , then I4 and I6 are inferred to be siblings, where τ is a threshold.
Empirically, we find that τ = 1.0 degree is sufficiently discriminating.

Figure 1(a) and (b) illustrate the approach using two hosts for which we
know their ground-truth interface addresses. Figure 1(a) displays the observed
drift from interrogating Host A’s IPv6 interface as compared to Host B’s IPv4
interface. We observe not only different drift, but see that the clocks on the

154 R. Beverly and A. Berger

-70

-60

-50

-40

40

-30

30

-20

20

-10

10

0

α=0.029938 β=-3.519
α=-0.058276 β=-1.139

(a) Non-Siblings (Different Hosts)

-70

-60

-50

-40

-30

-20

-10

10

0

α=-0.058253 β=-1.178
α=-0.058276 β=-1.139

(b) Siblings (Same Host)

Fig. 1. Timestamp drift of candidate siblings.

respective host are drifting in opposite directions and have different resolutions.
Hence, we infer that the IPv4 and IPv6 interfaces are non-siblings (θ ≥ τ).

In contrast, Fig. 1(b) displays a sibling relationship. In this experiment, we
probe the same host (A) via its IPv4 and IPv6 interfaces. We observe nearly
identical inferred skew (the linear programming solution determined as α4 =
−0.058253, β4 = −1.178 and α6 = −0.058276, β6 = −1.139; θ = 1.3 × 10−3).

3.4 TCP Timestamp Point Distance

In our ground-truth testing of the TCP timestamp skew, we make three gen-
eral observations: (i) some machines now have clocks with negligible drift (e.g.
Fig. 2(a)); (ii) some clocks we observe exhibit non-linearity in their skews (e.g.
Fig. 2(b)); and (iii) the observed skew of two distinct machines, but with the
same OS and located in the same rack, can be very similar (e.g. Fig. 2(c)).

These complicating factors, which Kohno did not observe in 2005, motivate
a second test on the TCP timestamps: pair-wise point distance. For each IPv4
packet, with arrival time t4i , we find the IPv6 packet whose arrival time is closest
(either before or after), say it is packet j, with arrival time t6j . We define the
absolute value of difference in skews of these two packets to be the pair-wise
point difference for IPv4 packet i: diff(i) = |s4i − s6j |.

After some experimentation, we find that the median of the diff(i)’s to
be most useful. Figure 2(c) illustrates the merit of the point distance method.
The plotted IPv4 and IPv6 skews are from two different, but identical, physical
machines in the same data center. The timestamp drifts appear very similar and
yield θ = 0.358 degrees, which is less than the τ threshold. Thus, with the skew
inference alone, these two addresses would erroneously be inferred to be siblings.
However, the point distance correctly rejects them: the median difference is above
a chosen threshold of 100 msec.

3.5 Full Algorithm

Algorithm 1 presents pseudocode for the logic to infer whether I4 and I6 are
siblings. First, we probe I4 and I6 over time to obtain the TCP option signatures

Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure 155

-6

-4

-2

(a) Negligible Drift (b) Siblings

(c) Non-Siblings

IPv4

IPv6

(d) FreeBSD random offset makes times-
tampsnon-monotonicacrossflows

IPv4

IPv6

(e) www.caida.org timestamps. IPv4
timestamps are monotonic, but ran-
dom for IPv6 due to a proxy.

-10

IPv4

IPv6

(f) Non-siblings: Inferred clock drift to
www.socialsecurity.gov via IPv4
and IPv6

Fig. 2. Examples of insufficient drift angle, necessitating point distance (Sect. 3.4) (a–c)
and complicated association inferences (d–f).

Signature4,6 and vectors of skew measurements s4,6. The first condition (line 3)
is to test whether the option signatures differ (Sect. 3.2), in which case we infer
that the addresses are non-siblings and terminate.

We observe that the options returned by various TCP stacks can be divided
into five cases: (1) no options returned; (2) timestamp not present in options;
(3) timestamps non-monotonic between connections; (4) timestamps are random;

156 R. Beverly and A. Berger

(5) timestamps are monotonic. Lines (4–8) tests for these cases. Non-monotonic
timestamps can occur when I4 or I6 are addresses of a front-end load balancer
and the clocks of the machines behind the load balancing are not precisely syn-
chronized. In this case, the timestamps of a single flow are monotonic, but can
be non-monotonic across connections. In addition, we also observe TCP stacks
where the timestamp always starts at 1 for each connection.

Next are random timestamps. Some TCPs, notably BSD-based [16], random-
ize the initial TCP timestamp values on a per-flow basis. As shown in Fig. 2(d),
the timestamps increase linearly from some random offset for each connection
and are not monotonic across flows. When one addresses presents randomized
values and the other does not, we infer a non-sibling relationship.

These cases present both a difficulty and an opportunity. When the timestamps
from both the IPv4 and IPv6 address are non-monotonic, missing, or random, we
cannot infer a definitive relation and classify their association as “unknown.” How-
ever, if one protocol matches one of the cases and the other protocol does not, we
conclude that the addresses are not related.

As a real-world example, consider the raw timestamps from the IPv4 and
IPv6 addresses of www.caida.org in Fig. 2(e). While the IPv4 timestamps increase
monotonically with a constant skew, the IPv6 timestamps are random. In addi-
tion, the TCP option signatures were different. Correspondence with the system
administrators revealed that the IPv6 address was a separate machine that acted
as a proxy for the IPv4 web server.

Note that application layer fingerprints, for instance the HTTP headers in our
experiment, are not a reliable sibling detection mechanism. Figure 2(f) presents
one example in our dataset to highlight our use of granular fingerprints. We
probe the site and receive identical HTTP headers via either IPv4 or IPv6 in
response. However, the drift-based inference clearly shows these as non-siblings.

Lastly, we perform the skew-based inference (Sect. 3.3), lines 9–12. When
testing Algorithm 1 against ground truth, we find corner cases where either the
algorithm could not make a determination, or was incorrect. With some experi-
mentation, we determine some additional, simple logic that improved the results.

Algorithm 1. Siblings(I4, I6)
1: (s4, Signature4) ⇐ probe(I4)
2: (s6, Signature6) ⇐ probe(I6)
3: if Signature4 �= Signature6 then return false
4: for case in ‘missing’, ‘non-mono’, ‘rand’ do
5: if case(s4) = True and case(s6) = True then
6: return unknown
7: if case(s4) = True or case(s6) = True then
8: return false
9: (α4, α6) = slopes(s4, s6)

10: θ = angle(α4, α6)
11: if θ < τ then return true
12: else return false

www.caida.org

Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure 157

However, this logic relies on some rather arbitrary parameter values. We include
it here as an optional enhancement, Algorithm 2. We believe that further refine-
ment is possible.

Algorithm 2. Optional, enhancement to Algorithm 1
10: median ⇐ point distances diff(i)’s
11: range ⇐ max minus min of observed skews
12: if range < 100 then return unknown
13: if (|α4| ≤ 0.0001) or (|α6| ≤ 0.0001) then
14: if median ≤ range/10 then return true
15: else return false
16: if median > 100 then return false
17: return to Algorithm 1 at step 10.

The core reason the drift inference works is that, in the common-case, the
remote server’s TCP timestamp clock is less accurate than the prober host’s
packet capture clock. However, in contrast to prior work, we find that for a
subset of the machines we probe, the TCP timestamps are set by a clock that is
as stable as that of the probing machine, such that the only source of skew comes
from probing latency variation (e.g. Fig. 2(a)). As an alternative, we compute
the median of the point distances (Sect. 3.4) in line 10 of Algorithm2, and the
dynamic range of the skews, defined as: the largest skew observed over time, for
either IPv4 or IPv6, minus the smallest skew, line 11. (In the plots of skew, the
range is the largest y-coordinate minus the smallest.) If the dynamic range is
below a threshold, we cannot obtain a reliable skew fingerprint, as in Fig. 2(a),
and classify the relationship as unknown, line 12. Similarly, if either the IPv4 or
IPv6 slope (α4 or α6) is below a threshold minslope = 0.0001, we consider the
skew-based inference unreliable, line 13. In this case, if the median point distance
is an order of magnitude less than the dynamic range we associate the IPs (lines
14–15). Last, if the median point distance is >100 ms, we infer non-siblings.

A limitation of our technique is that we require the ability to negotiate a TCP
connection with the remote device, i.e. the remote machine must be listening on
a publicly accessible TCP port. As applied to common server infrastructure, e.g.
remote web or DNS servers, this does not present a practical limitation.

4 Results

This section analyzes results from deploying the aforementioned technique on
our datasets, including ground-truth and the larger IPv4 and IPv6 Internet.

4.1 Ground Truth Validation

To validate the accuracy of our technique, we examine the ground truth dataset
described in Sect. 3.1. We perform multiple rounds of testing. While the data

158 R. Beverly and A. Berger

provides us with true associations, for evaluation purposes, we also test false
associations in each round. These known non-siblings are formed by randomly
associating a non-associated IPv6 site with each IPv4 site. In this fashion, we
test both type I and type II errors.

Table 2. Relative Ground Truth Performance of Sibling Classifiers

Algorithm Accuracy Precision Recall Specificity Unknown

TCP Opts 82.2 % 74.1 % 98.2 % 66.8 % 0.0 %

Kohno 90.6 % 82.3 % 97.0 % 86.4 % 27.8 %

Alg 1 94.2 % 93.6 % 91.4 % 96.0 % 22.4 %

Alg 1&2 97.4 % 99.6 % 93.1 % 99.8 % 29.4 %

We wish to understand discriminative power of both the original Kohno
timestamp skew algorithm, as well as our enhancements, in distinguishing sib-
lings from non-siblings. First, we look at using TCP options as a classifier alone.
As shown in Table 2, TCP options yield an accuracy of 82.2 % with 74.1 % pre-
cision, 98 % recall, and 67 % specificity. (Where precision is the fraction of iden-
tified siblings that are truly siblings, recall is the fraction of all ground-truth
siblings classified as siblings, and specificity measures the ability to identify
non-siblings). Thus, while the option signature alone does not provide sufficient
granularity, it eliminates non-siblings with minimal overhead (just a single TCP
ACK packet from the IPv4 and IPv6 target).

We next examine Kohno’s original timestamp skew algorithm alone, without
consideration of TCP options. Over ten rounds, we obtain an accuracy of 90.6 %
with 82.3 % precision, 97.0 % recall and 86.4 % specificity. We then examine
Algorithm 1 and the combined Algorithms 1 and 2 as detailed in Sect. 3.5. We
see that each provides increasingly accurate sibling classification, with the full
algorithm yielding an accuracy of 97.4 %, with 99.6 % precision, 93.1 % recall,
and 99.8 % specificity over the ten rounds of testing. However, some of this
accuracy comes at the expense of our full algorithm labeling 29.4 % of the hosts
as “unknown” as it cannot make a definitive determination.

4.2 Web Server Machine Siblings

As an initial application of our sibling detection technique, we characterize sib-
ling relationships among a subset of important Internet infrastructure, Alexa [1]
top 100,000 websites as gathered, resolved, and probed in April, 2014 (details
of dataset in Sect. 3.1). We perform our probing from a host with high-speed,
native IPv6 connectivity. To remain inconspicuous, we probe at a low rate. We
fetch the root HTML page from each site’s IPv4 and IPv6 interfaces once every
∼3.5 h over ∼17 days.

We then apply our inference Algorithm1 and 2 to the datasets in Table 1.
As described in Sect. 3, there are a variety of potential outcomes. For each of

Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure 159

Table 3. Alexa Machine-Sibling Inferences

Dataset (Table 1)

Inference non-CDN CDN Embedded

Siblings

- v4/v6 drift match 816 (53.2 %) 55 (23.9 %) 978 (93.1 %)

Non-Siblings

- v4 and v6 opt sig differ 229 (14.9 %) 14 (6.1 %) 22 (2.1 %)

- v4 or v6 missing 70 (4.6 %) 11 (4.8 %) 7 (0.7 %)

- v4 or v6 random 23 (1.5 %) 13 (5.7 %) 1 (0.1 %)

- v4 or v6 non-monotonic 52 (3.4 %) 47 (20.4 %) 1 (0.1 %)

- v4/v6 drift mismatch 35 (2.3 %) 13 (5.7 %) 0 (0.0 %)

Unknown

- v4 and v6 missing 196 (12.8 %) 6 (2.6 %) 26 (2.5 %)

- v4 and v6 random 32 (2.1 %) 25 (10.9 %) 6 (0.6 %)

- v4 and v6 non-monotonic 78 (5.1 %) 45 (19.6 %) 9 (0.9 %)

- v4 or v6 unresponsive 2 (0.1 %) 1 (0.4 %) 0 (0.0 %)

Total 1533 (100 %) 230 (100 %) 1050 (100 %)

the three Alexa datasets, we divide the inferences into three major categories in
Table 3: siblings, non-siblings, and unknown.

In aggregate, we find 53.2 % of the IPv4/IPv6 addresses of non-CDN, 23.9 %
of CDN, and 93.1 % of embedded are siblings via the full Algorithm1 and 2.
Fully 42.6 % of the CDN, and 26.7 % of the non-CDN have addresses we infer to
be non-siblings. While we expect a high proportion of siblings among sites with
embedded addresses, 3.0 % are non-sibling underscoring the fact that addresses
alone do not imply the same machine. And we cannot definitively determine
20 % of the non-CDN, 33.5 % of the CDN, and 3.9 % of the embedded sites.

The largest contributing subset of non-monotonic timestamps are CDN sites –
as we might expect due to the various forms of load balancing inherent in CDN
architectures. A non-trivial fraction of non-CDN and CDN sites have missing
timestamps. We learned via personal communication with an operator that miss-
ing timestamps in one case were due to a front-end load balancing device; similar
middlebox issues [4] likely cause the missing timestamps observed here.

Among the sibling and non-sibling populations, we examine the origin AS
of the prefixes to which the addresses belong from the routeviews [12] BGP
table. The origin AS of the corresponding IPv4 and IPv6 addresses of a website
allow us to determine whether non-siblings are within the same network, if not
the same host. As shown in Table 4, 21.8 % of the non-siblings in our non-CDN
dataset are in different ASes, as compared to 10 % of the siblings. Siblings may
be in different ASes when an organization uses IPv6 tunnels or a different AS for
IPv6. By contrast, 97.3 % of the inferred siblings among the embedded sites are

160 R. Beverly and A. Berger

Table 4. Alexa Machine-Sibling AS Agreement

Fraction of matching (I4, I6) ASNs

Inference non-CDN CDN Embedded

Siblings 90.0 % 83.6 % 97.3 %

Non-Siblings 78.2 % 51.0 % 87.1 %

Unknown 91.6 % 62.3 % 78.0 %

within the same AS. Only 51 % of the non-siblings among the CDN sites reside
within the same AS. Manual investigation of some of the siblings in different
ASes reveals that the ASes belong to the same organization.

5 Conclusions and Future Work

We developed, validated, and applied a method for using TCP-layer fingerprint-
ing techniques to identify IPv4 and IPv6 addresses that belong to the same
machine. By combining coarse and fine-grained TCP-layer fingerprinting, we
identify server “siblings.” We can imagine several other applications of sibling
interface identification: predicting correlated failures or similar behaviors under
attack (and whether the IPv4 and IPv6 interfaces share fate); IPv6 geolocation
that leverages knowledge of the corresponding IPv4 address; and comparing IPv4
and IPv6 path performance, by providing certainty as to whether a measurement
end-point is common; and more generally, understanding how IPv6 and IPv4 net-
work infrastructures are co-evolving at a macroscopic level. Although we applied
our technique to web servers, it generalizes to any device with a listening TCP
service, including DNS, email, and peer-to-peer services.

Although our technique validated surprisingly well for our diverse set of
ground truth, we see at least three areas for improvement. First, the optional
enhancement algorithm (Algorithm 2) we used to classify problematic cases con-
tains parameters and thresholds that may overfit our data. A larger ground-truth
dataset would support further refinement and higher confidence in our inferences.
Second, although we detect certain instances of TCP load-balancing by observ-
ing multiple monotonic sequences with different initial offsets, it would be better
to use reverse-proxy detection techniques to discern cases where a TCP-splitting
proxy sits in front of the interrogated web server.

Last, our preliminary sensitivity results show that our inferences are stable
even with fewer data points and over shorter time frames. Our technique can
make some sibling inferences quickly, with only a few TCP observations, whereas
others require samples across longer time periods. We leave a complete temporal
sensitivity analysis to future work.

Acknowledgments. Thanks to kc claffy, Justin Rohrer, Nick Weaver, and Geoffrey
Xie for invaluable feedback. This work supported by in part by NSF grant CNS-1111445

Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure 161

and Department of Homeland Security (DHS) S&T contract N66001-2250-58231. Views
and conclusions are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. government.

References

1. Alexa: Top 1,000,000 sites (2014). http://www.alexa.com/topsites
2. Berger, A., Weaver, N., Beverly, R., Campbell, L.: Internet nameserver IPv4 and

IPv6 address relationships. In: Proceedings of the ACM Internet Measurement
Conference. pp. 91–104 (2013)

3. Claffy, K.: Tracking IPv6 evolution: data we have and data we need. SIGCOMM
Comput. Commun. Rev. 41(3), 43–48 (2011)

4. Craven, R., Beverly, R., Allman, M.: A middlebox-cooperative TCP for a non
end-to-end internet. In: Proceedings of ACM SIGCOMM, pp. 151–162 (2014)

5. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-
suring IPv6 adoption. In: Proceedings of ACM SIGCOMM, pp. 87–98 (2014)

6. Dhamdhere, A., Luckie, M., Huffaker, B., Elmokashfi, A., Aben, E., et al.: Measur-
ing the deployment of IPv6: topology, routing and performance. In: Proceedings
of the ACM Internet Measurement Conference, pp. 537–550 (2012)

7. Heuse, M.: Recent advances in IPv6 insecurities. In: Chaos Communications
Congress (2010)

8. Jacobson, V., Braden, R., Borman, D.: TCP Extensions for High Performance.
RFC 1323 (May 1992)

9. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. In:
Proceedings of IEEE Security and Privacy, pp. 211–225 (2005)

10. Lyon, G.F.: Nmap Network Scanning: The Official Nmap Project Guide to Network
Discovery and Security Scanning (2009)

11. Maxmind: IP Geolocation (2014). http://www.maxmind.com
12. Meyer, D.: University of Oregon RouteViews (2014). http://www.routeviews.org
13. Moon, S., Skelly, P., Towsley, D.: Estimation and removal of clock skew from

network delay measurements. In: Proceedings of INFOCOM, vol. 1 (Mar 1999)
14. Ripe, NCC: World IPv6 day measurements (2011). http://v6day.ripe.net
15. Sarrar, N., Maier, G., Ager, B., Sommer, R., Uhlig, S.: Investigating IPv6 Traffic.

In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp. 11–20. Springer,
Heidelberg (2012)

16. Silbersack, M.J.: Improving TCP/IP security through randomization without sac-
rificing interoperability. In: Proceedings of BSDCan (2006)

17. Zander, S., Andrew, L.L., Armitage, G., Huston, G., Michaelson, G.: Mitigating
sampling error when measuring internet client IPv6 capabilities. In: Proceedings
of the ACM Internet Measurement Conference, pp. 87–100 (2012)

http://www.alexa.com/topsites
http://www.maxmind.com
http://www.routeviews.org
http://v6day.ripe.net

Internet-Wide

On the Power and Limitations of Detecting
Network Filtering via Passive Observation

Matthew Sargent1(B), Jakub Czyz2, Mark Allman3, and Michael Bailey4

1 Case Western Reserve University, Cleveland, OH, USA
matthew.sargent@case.edu

2 University of Michigan, Ann Arbor, MI, USA
3 Intl. Computer Science Institute, Berkeley, CA, USA

4 University of Illinois at Urbana-Champaign, Champaign, IL, USA

Abstract. Network operators often apply policy-based traffic filtering
at the egress of edge networks. These policies can be detected by per-
forming active measurements; however, doing so involves instrumenting
every network one wishes to study. We investigate a methodology for
detecting policy-based service-level traffic filtering from passive observa-
tion of traffic markers within darknets. Such markers represent traffic we
expect to arrive and, therefore, whose absence is suggestive of network
filtering. We study the approach with data from five large darknets over
the course of one week. While we show the approach has utility to expose
filtering in some cases, there are also limits to the methodology.

1 Introduction

In this paper we develop a methodology for broadly understanding policy-based
network filtering across the Internet. We begin with three observations from
previous work:

Policy-based Filtering Happens: We understand from experience and anec-
dote that network operators apply policy-based filters to traffic leaving their
networks. These filters are used for myriad reasons, including (i) because par-
ticular traffic types are not meant to traverse wide-area networks (e.g., internal
file sharing), (ii) to prevent services from being leveraged by external devices
(e.g., using an internal mail server as an open relay), (iii) to funnel all user traffic
through some proxy (e.g., to implement capacity-saving caching or content-based
filtering) and (iv) to prevent propagation of malware. The community has previ-
ously taken modest steps to empirically understand such filtering. For instance,
the Netalyzr [12] tool determines whether 25 popular services are blocked or not
via active probing from within the network under study.

Missing Traffic Illuminates Network Behavior: Previous research shows
that we can detect broad network outages by monitoring dark address space for
the curious absence of traffic. In other words, when a large darknet suddenly
receives no background radiation from a previously active network, we can con-
clude there is a change in policy. This has been studied in the context of both
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 165–178, 2015.
DOI: 10.1007/978-3-319-15509-8 13

166 M. Sargent et al.

political events [10] which cause authorities to sever ties with the Internet, as
well as natural disasters [3] which have the same impact on network traffic, even
if these do not share the goal of policies that thwart communication of political
adversaries.

Malware is Ubiquitous: A wealth of compromised devices on edge networks
try to indiscriminately propagate using a set of vulnerabilities that span services
[1,18].

We believe the above suggests we can leverage the ubiquity of background
radiation to form an expectation that specific marker traffic should arrive from
a given origin network. When the expectation fails to hold, we are left with the
strong suggestion of a policy-based filter hindering the specific kind of traffic in
a given origin network. As a concrete exemplar, we study this technique in the
context of over 96 billion Conficker packets that arrive at our darknet to form
a broad understanding of TCP port 445 filtering in origin networks across the
Internet.

By studying one week of traffic arriving at five /8 darknets—roughly 2.25 %
of the IPv4 address space—we find evidence that both supports and refutes our
hypothesis. We find that in the case of Conficker—a large malware outbreak—
detecting silence from a given origin network for a given kind of traffic does in
fact allow us to understand the policy filters in place across the Internet. On
the other hand, while we observe much malware in our datasets, we find each
specific kind of traffic rarely spans enough of the origin networks to broadly
develop an expectation that the given traffic should be present and thus develop
conclusions based on the absence of such traffic. Therefore, we also learn that
searching for silence in darknet traffic is limited to only significant events—i.e.,
full outages or large malware outbreaks. However, even with the limitations, we
will show that the general approach does increase our broad understanding of
policy-based traffic filtering.

2 Related Work

We leverage a number of technologies and techniques that have been developed
by the community, including observing background radiation (e.g., [14,18]), and
using darknets as an observatory (e.g., [2]). None of this previous work addresses
the topic of inferring service-level network policy via passive observation, which
we tackle in this paper.

Meanwhile, studying policy-based network filtering of various kinds has pre-
viously been conducted via active measurements from the edge network under
study (e.g., [4,5,8,12]). The policies the previous work addresses are myriad—
from the impact of bogon filtering to the ability to spoof packets to service-level
policies. The wealth of work illustrates the interest in this topic. Our goals are
similar to some of this previous work; however, our approach is to leverage
passive measurements to understand the Internet broadly without the need to
instrument every edge network, which is at best a large logistical undertaking.

On the Power and Limitations of Detecting Network Filtering 167

The closest work to ours is in using the lack of background radiation from
a given network to detect large scale outages that stem from natural disasters
[3] or political events [10]. Our work shares their general notion that a lack of
background radiation destined to a darknet can illuminate events within the
network. We take this notion a step further and detect service-level policies
applied to network traffic.

3 Data Collection

We use two primary sources of data for this study. The first dataset is a list
of known Conficker infected hosts obtained via the Conficker domain sinkhole
[13]. The Conficker worm [15] has been plaguing the Internet since 2008 and,
six years later, continues to be the top globally-detected worm in the first half
of 2014 [11]. It propagates via several vulnerabilities in Microsoft Windows, as
well as via dictionary attacks on passwords. Propagation via the network vector
involves scanning random IPs on TCP port 445 [6]. A flaw in the random num-
ber generator results in Conficker only targeting IP addresses with both second
and fourth octets less than 128, which effectively excludes more than three-
quarters of addresses from ever being scanned [16]. One of the main ways that
Conficker has been disabled by researchers is to pre-emptively determine and reg-
ister botnet-related domain names—which are generated algorithmically—that
the malware uses for command and control. Subsequently, by observing com-
munication to these domains, we are able to discover IP addresses of Conficker-
infected hosts [13]. The list of infected IP addresses we use in this study was
collected at the same time as our darknet data (described below) and contains
17.5M Conficker infected hosts from 1.6M/24 networks.

The second dataset is a set of packet traces of traffic arriving at five unallocated
IPv4 darknets: 23.0.0.0/8, 37.0.0.0/8, 45.0.0.0/8, 100.0.0.0/8, and 105.0.0.0/8. We
obtained permission from the Regional Internet Registrars (RIRs) to simultane-
ously announce these network blocks for one week, January 14–20, 2011. We val-
idated that our routes for these prefixes were globally visible to the majority of
Route Views’ [17] 121 peers during the week of our data collection. In aggregate,
our darknet observes traffic to nearly 84M IPv4 addresses or roughly 2.25 % of
the usable IPv4 address space. While using darknets is a well-known technique
(e.g., [18]), to our knowledge, this is the largest simultaneous IPv4 darknet collec-
tion to date.

In total, our darknet data comprises roughly 96.1B packets from 4.1M/24
address blocks in the Internet. Table 1 gives a broad characterization of our
darknet data. Due to the lack of two-way traffic, we are unable to directly esti-
mate how much measurement-based packet loss impacts our dataset. However,
we have previously used the monitor to capture traffic at 1 Gbps without signifi-
cant loss and the average rate of the darknet data is less than 98 Mbps. Therefore,
we do not believe the amount of traffic our monitor failed to collect rises to the
point of impacting our high-order conclusions.

Next, we classify the darknet data into five categories: (i) Conficker traf-
fic represents TCP SYNs to port 445 from a known Conficker-infected host;

168 M. Sargent et al.

Table 1. Darknet data characterization.

Address Packets Bytes Rate Rate Source/24s

Block (billions) (trillions) (Mbps) (Kpps) (millions)

100/8 22.1 1.7 22.5 36.7 3.1

105/8 17.1 1.1 15.0 28.2 2.1

23/8 16.9 1.8 23.4 28.0 2.6

37/8 21.7 1.5 20.3 35.9 2.4

45/8 18.2 1.3 16.6 30.1 2.3

All 96.1 7.4 97.8 159 4.1

(ii) Likely Conficker traffic includes TCP SYNs to port 445 from hosts not on
the Conficker-infected host list but to an IP address that Conficker is known to
target; (iii) Scanning traffic represents TCP SYNs that could not be produced
by Conficker processes; (iv) Backscatter traffic represents SYN+ACK packets
that are likely the result of SYNs spoofed to be from our darknet; and (v) Other
traffic, which includes all traffic not falling into one of the other categories.
Figure 1 shows the breakdown of the traffic captured to each /8 we monitor.
We note that the amount of Conficker traffic is relatively uniform across the /8
blocks we monitor.

0

5000

10000

15000

20000

25000

30000

35000

105/8 100/8 45/8 37/8 23/8

M
ill

io
ns

 o
f

Pa
ck

et
s

Darknet

Conficker
Likely Conficker
Scanning
Backscatter
Other

Fig. 1. Traffic volume by category for each darknet.

A final caveat is that we cannot verify the source addresses in packets arriving
at our monitor. We know spoofing is both possible and likely present—e.g.,
see the amount of backscatter in Fig. 1 as an indication of the prevalence of
spoofing. Therefore, in the remainder of the paper we take care to include this
ambiguousness in our interpretation of the results.

On the Power and Limitations of Detecting Network Filtering 169

4 Preliminaries

As we discuss in Sect. 1, our hypothesis is that we can use the background
radiation from malware to infer filtering policies across the Internet. In this
section we offer several comments on the efficacy of this approach in general and
also for specifically detecting policy-based TCP port 445 filtering.

General Coverage: A natural first question is whether we in fact observe traffic
in our darknet from a broad spectrum of Internet endpoints. To quantify the
fraction of the Internet that transmits traffic to our darknet we use routing tables
from Route Views at the beginning of our darknet collection (January 13, 2011)
to determine that 2.43B addresses are routed. The set of /24 networks we receive
traffic from corresponds to 2.40B IP addresses when taking into account routed
prefix size—or, 98.8 % of the routed IP addresses. Some of this traffic is no doubt
spoofed, so we compute the number of addresses belonging to /24s that send
at least five scanning or backscatter packets1. We find 1.85B such addresses—
or, 76.1 % of the routed IP addresses. This analysis leads us to conclude that
background radiation—and the lack thereof—arrives at our darknet from a broad
spectrum of the Internet and therefore is a potential source of information about
policy-based filtering in the Internet.

Conficker Coverage: While the amount and breadth of background radiation
offers hope that we can broadly detect filtering policy, Conficker is an imperfect
marker. As we note above, Conficker-infected endpoints are known to inhabit
1.6M of 4.1M/24 address blocks we observe sending traffic to our darknet. This
partially stems from the error in Conficker that prevents it from scanning three-
quarters of the network. While the footprint of the marker scopes the amount of
the network we can assess, we are unaware of any other technique that achieves
this level of coverage. While not ideal, we believe even an imperfect marker can
provide a better understanding than we have today.

Conficker Behavior: Another preliminary question we must tackle pertains to
the behavior of Conficker. Before we can infer that we are missing some marker
traffic, we must have an expectation about how much such traffic we should
observe. In order to remain undetected, Conficker infectees only scan after five
minutes of keyboard inactivity on a given host [7]. Further, Conficker has four
scanning modes—a number of them localized in scope. Finally, an infected host
obviously cannot scan when the host is powered off. Given these constraints, we
cannot simply compute an expectation based on a model of each host scanning
continually and uniformly.

We can determine a rough idea of whether we should expect to observe traf-
fic from each infectee, as follows. We know that, when scanning, each infected
machine pauses between 100 ms and 2 s between probes [7]. Given that we
observe nearly 84M IP addresses, we would expect to observe one out of every
52 probes—or, one probe every 104 s if we assume the slowest scanning rate.
1 Five is a somewhat arbitrary choice that weeds out /24 address blocks that send

exceedingly little traffic for illustrative purposes.

170 M. Sargent et al.

Or, if we are to observe 10 probes from a given infected machine on each /8 we
monitor, the host would have to scan for 86 min over the course of the week—
or less than 1 % of the week. Therefore, our first order assumption—which we
revisit in Sect. 5—is that we should observe Conficker activity from all infected
hosts.

5 Validation

While the cursory analysis in Sect. 4 suggests inferring policy-based filtering
of TCP port 445 should be possible given both the proliferation of Conficker
and our broad vantage point, this section tests our assumptions and frames the
confidence we can gain from the results. We note that given the breadth with
which we aim to develop understanding, we have no ground truth. Therefore, we
cannot absolutely prove our inferences correct, but aim to illustrate that they
are likely to be so.

An Anecdote: Comcast provides a list of ports that are subject to policy filter-
ing for its residential customers—including TCP/445 [9]. In our darknet data we
find nearly 3M packets from Comcast’s 76.102.0.0/15 address block. As expected,
we find no TCP/445 traffic even though our list indicates 81 Conficker-infected
hosts within the given address block. While this is an obviously anecdotal case,
it is illustrative of our goal to detect policy from the absence of specific traffic
from given address blocks.

Conficker Sending Behavior: The preliminary analysis in Sect. 4 suggests our
darknet is big enough to observe all Conficker-infected hosts scanning with high
probability based on what we know about Conficker’s behavior. To check this we
consider all Conficker infectees from /24 address blocks where we observe some
traffic to TCP port 445. In this case, we do not believe there is a general policy
against TCP/445 traffic at the /24 level. However, we find TCP/445 traffic from
only 51 % of the infected hosts across these cases. Our data does not shed light on
why we do not observe 49 % of the Conficker hosts. The reasons could be many,
including policy at finer granularity than a /24 (even to the host granularity),
reactive filtering in response to scanning and removal of Conficker from the
machine. We combat this situation by requiring multiple Conficker infectees per
address block to overcome the seeming failure of some Conficker hosts to send
scanning traffic.

Active Measurement: As part of its suite of active measurements, Netalyzr
[12] attempts to establish a TCP/445 connection to a known server. We have
obtained the Netalyzr test results starting one month before and ending one
month after our darknet data collection. We find 1,555 hosts in the Netalyzr data
that are also infected with Conficker. We therefore can evaluate our technique
using the Netalyzr results as ground truth. First, we find 176 hosts (11 %) where
Netalyzr is run multiple times and shows inconsistent results. This shows that
filtering policy and end-host behavior are not consistent across two months and
therefore that the Netalyzr data is at best an approximation of ground truth

On the Power and Limitations of Detecting Network Filtering 171

with respect to the darknet data. For another 647 hosts, Netalyzr concludes a
port-based filter is in place. The darknet data agrees with this assessment in
97 % of the cases. In the 3 % of the cases where Netalyzr concludes port filtering,
we find a minimum of 17 TCP/445 packets from each host, with a median of
1,369 TCP/445 packets—and therefore we conclude that no filter is in place.
We believe the likely cause for this is a policy change. Finally, Netalyzr finds
732 hosts to be unfiltered. However, we only observe 279 (38 %) send traffic to
our darknet, seemingly leaving our method with a large error. However, we note
that the analysis in the last paragraph shows that we can only expect traffic
from roughly half the infected Conficker hosts. Applying that expectation, the
accuracy of the inference from the darknet data increases to 76 %. As we note
previously, the error can come from myriad places. Further, we show below that
using multiple infected hosts can increase our confidence in our inferences.

Broad Comparison: Finally, we again compare our darknet observations with
Netalyzr’s results, but instead of using single IP addresses we will now aggre-
gate results across /24 address block, routed block (determined from Route
Views) and autonomous system. This allows us to bring multiple infected hosts
to bear on our inference, but at the expense of possibly observing multiple policy
domains.

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

A
cc

ur
ac

y

Number of infected hosts

/24
Routed Prefix

AS

Fig. 2. Accuracy of the three methods when varying the number of infected hosts
required before making comparisons with Netalyzr.

Figure 2 shows the accuracy of our inference with respect to the Netalyzr
results as a function of the number of Conficker infected hosts for the given
aggregate block.2 This plot first illustrates that regardless of level of aggregation
the accuracy roughly levels off once a handful of Conficker infectees are present
within the block. Second, the tighter we scope the block the better the accuracy,
with /24 blocks showing the best accuracy, followed by routed blocks and then
2 There are more Conficker infected hosts in some of the routed blocks and ASes,

however, we truncate the plot at 255 for comparison with /24 blocks.

172 M. Sargent et al.

autonomous systems. We believe this is because as we increase the aggregation
the instances of multiple policy domains also increases. Therefore, trying to treat
the entire block the same leads to incorrect inferences.

We find that approximately half the hosts that contact the Conficker com-
mand and control structure ultimately show up in our darknet data. We see
this manifests in the accuracy rate in Fig. 2. Requiring five infected hosts per
/24 should mean one of the Conficker infectees sends traffic with a 96 % likeli-
hood. When applying this threshold and comparing with the Netalyzr results we
find an accuracy of 80 %. In approximately 6 % of the cases Netalyzr determines
the network is filtering traffic while we observe Conficker from the given /24 in
our darknet data. Finally, in 14 % of the cases Netalyzr is able to establish a
TCP/445 connection while we find no Conficker in our darknet collection and
hence infer the given /24 is filtering TCP/445. While the reason for this discrep-
ancy is not clear, we note that it will cause an over-estimate of the amount of
filtering in the network.

Summary: As we show in this section, looking for the curious absence of traffic
to understand fine-grain network filtering policy is not a clean process. We clearly
need to understand the signal we expect to find. However, our conclusion is that,
while this process is not perfect, we can use it to gain an approximate under-
standing of policy filtering in the network. Finally, while active measurements
may be more precise, they are much more difficult to obtain on a large scale basis
and therefore we are trading absolute precision for breadth of understanding.

6 Data Analysis

After establishing the promise of our methodology in Sects. 4 and 5, we now
return to our high-level goal from Sect. 1 to understand network filtering of
TCP port 445 traffic using Conficker as a marker.

6.1 /24-Based Policy

As we develop above, we believe Conficker is a marker that will illuminate net-
work filtering policy for the broad regions of the network where it is known to
exist—even if the marker is less than ideal in some situations. As a starting
point, we aggregate and label traffic based on the source /24 address block, our
expectations of Conficker, and the traffic that arrives in our darknet.

First, as we sketch in Sect. 4, we do not expect Conficker from roughly 60 %
of the /24 blocks observed at our darknet monitors. For roughly 0.2 % of the
/24 blocks from which we do not expect Conficker traffic we do in fact observe
Likely Conficker at our darknet. This shows that the list of Conficker-infected
hosts is comprehensive and not missing a significant portion of hosts infected
with the malware. We do not further consider address blocks where we do not
expect Conficker as we can infer nothing from its absence in these cases.

This leaves us with Conficker infectees in roughly 40 % of the /24 address
blocks in our darknet data. We now need a process to label each /24 address

On the Power and Limitations of Detecting Network Filtering 173

block by its filtering policy. Given our validation work in Sect. 5, we proceed in
two steps. First, when we observe Conficker traffic from a /24 block we determine
there is no general TCP/445 filtering. Second, we know we cannot expect Con-
ficker from all infectees, and so the absence of the marker does not necessarily
indicate a network filter. Rather, we determine a /24 block is filtering TCP/445
when (i) we find no TCP/445 traffic in our darknet data and (ii) the /24 block
has at least five infectees. As we develop in Sect. 5 the second criteria gives us
at least 96 % confidence that Conficker should arrive and therefore when it does
not we infer a policy-based filter.

We find 434K (27 %) of the 1.6M/24 blocks with Conficker infectees are not
imposing TCP/445 filtering on their traffic. Meanwhile, we infer that 448K/24
blocks (28 %) filter TCP/445 traffic. That is, we are able to confidently char-
acterize the filtering policy of 882K /24 networks—or 9.3 % of all the routed
address space. This is, by far, a larger portion than previous methodologies can
claim—e.g., Netalyzr runs from the month surrounding our data collection cover
23K/24 networks. Our analysis leaves 747K/24 blocks (45 %) from which we do
not observe TCP/445 traffic but which do not contain five infectees. These are
cases where we have an indication of possible filtering, but cannot develop high
confidence in this determination.

6.2 Routed Prefix-Based Policy

We next turn to a larger aggregation of address blocks to better understand
filtering policy at a coarser granularity. We leverage routed prefixes as found in
Route Views at the time of our darknet data collection for this analysis. Our
general method to infer whether filtering happens for an entire prefix is to look
for consistent behavior from the /24 blocks within the prefix. Since we tackle
/24 address blocks above, in this section we only study the 140 K routed prefixes
that are at least a /23 (out of 254 K total routed prefixes).

Of the 140 K prefixes we consider, we find no Conficker infectees and no
TCP/445 traffic for 61 K of the prefixes. We cannot further study these pre-
fixes as we have no expectation of TCP/445 traffic and therefore the absence of
such traffic does not inform our assessment of filtering. This leaves roughly 79 K
prefixes on which we have some expectation of observing TCP/445 traffic. We
summarize our results in Table 2.

First, when each /24 block containing at least one Conficker infectee within
the routed prefix produces TCP/445 traffic we conclude the network applies
no general TCP/445 filtering. Table 2 shows 13 % of the prefixes do not filter
TCP/445. Similarly, when we observe no TCP/445 traffic for each /24 block
containing at least one infectee across a prefix with at least five total infectees
we conclude filtering is in place for the entire prefix. We find prefix-wide filtering
in 35 % of the prefixes. We also find cases where no TCP/445 traffic arrives
at our darknet, but the routed prefix contains fewer than five infectees. We
cannot confidently determine that these prefixes filter TCP/445—even if the
data suggests this may be the case. We denote these cases “low signal” in the
table and find 28 % of the prefixes fall into this category.

174 M. Sargent et al.

Table 2. Labels assigned to routed prefixes /23 or larger based on their component
/24s.

Classification Amount Percentage

No Filtering 10,084 13 %

Filtering 27,351 35 %

Multiple Policies 14,536 18 %

Low Signal 22,075 28 %

Muddled/No Filtering 5,178 7 %

Finally, we are left with prefixes that have indications of both no filtering—
i.e., we observe TCP/445 traffic—and filtering—i.e., the infectee list suggests we
should observe more TCP/445 traffic than we do. For cases where we observe
traffic from at least five infectees we conclude that the prefix has multiple policies.
In other words, we are confident in our determination that filtering is occurring
within the prefix and yet we still observe TCP/445 traffic from the prefix. We
find this happens in 18 % of the cases. As the size of the address blocks we
consider increases this is a natural finding that follows our intuition—i.e., that
the block would be split up into multiple policy domains. Finally, we have cases
where we observe TCP/445 traffic and there are also indications we should see
additional traffic, but from less than five infectees. In this case, we know filtering
is not in use across the entire prefix and, even though we have some indication
that filtering may be happening, we cannot conclude it is with confidence. We
find 7 % of the prefixes in this “muddled” state.

We next consider the fraction of each prefix we use to determine its filter-
ing policy. For each routed prefix, we calculate the fraction of the constituent
/24 blocks (i) with a known Conficker infectee and (ii) where we conclusively
determine that filtering is or is not present. Figure 3 shows the distribution of
prefixes according to these fractions. The “all” distribution in the plot shows the
expected prefix coverage based on the Conficker infectee list, whereas the “clas-
sified” distribution shows the fraction of /24 blocks we actually use in concrete
prefix classifications. Comparing the distributions shows that, when making a
classification, we generally use more of the prefix (i.e., more /24s) than the
expectation predicts, which adds to our confidence in the classifications.

Next, we examine the size of the routed prefixes we are able to concretely
classify. The distribution of the size of all routed prefixes we consider, as well
as the distributions of the routed prefix sizes for each concrete classification we
make are given in Fig. 4. The figure shows that the distribution of network size
for networks we can concretely detect filtering policy is similar to the distribution
of the size of all origin networks. In other words, neither our detection nor results
are biased by prefix size. Further, we find that networks that filter TCP/445 are
slightly larger than networks that do not filter TCP/445. This perhaps indicates
that operators of larger networks are more diligent about security policy than

On the Power and Limitations of Detecting Network Filtering 175

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Fraction of /24s on routed prefix with known Conficker

All
Classified

Fig. 3. CDF of the fraction of /24s on
a routed prefix with known Conficker.

0

0.2

0.4

0.6

0.8

1

81012141618202224

C
D

F

Routed prefix size (/x network)

All
No Filtering

Filtering
Multiple Policies

Fig. 4. CDF of the routed prefix sizes
on which we make judgements.

those of smaller networks. Finally, we find that networks with multiple policies
are larger than networks with a single policy. As we note above, this is natural
because as network sizes increase the tendency to have multiple administrative
and policy domains to cope with a variety of situations arises.

Finally, we note that we are able to confidently determine a single filtering
policy in roughly half of the /23 and larger routed prefixes. This corresponds
to 699M IP addresses or 28 % of the routable addresses during the week of our
darknet data collection.

7 Limitations

From previous research we understand that full network outages—whether caused
by policy decisions or natural disasters—can be detected by the absence of traffic
arriving at darknets. Further, in the previous sections we illustrate that we can use
similar strategies to infer finer-grained policy such as port blocking. As developed
thus far, both the course- and fine-grained policy discovery requires big events—
i.e., a broad swatch of the Internet becoming unreachable or malware that is both
prevalent and energetically propagating.

A natural next question is whether the aggregate background radiation that
appears at darknet monitors provides enough information to form further general
understanding of policies across the Internet. To address this question we first
determine the top TCP ports arriving at our darknet.3 We then calculate the
number of origin /24 networks that source each kind of traffic and compare this
to the total number of origin /24s we observe. Table 3 shows the results. In the
best case—port 80—we find SYNs from only 18 % of origin /24s we observe.
This either means 82 % of the /24s either (i) are subject to policy blocking or
(ii) do not source radiation to port 80. We believe the latter is far more likely

3 We included UDP in our analysis, but elide it from this discussion due to space
constraints and its similarity with the TCP results.

176 M. Sargent et al.

Table 3. Percentage of /24s observed sending TCP SYNs to other prevalent destination
ports in the measured darknets.

Darknet # /24s Receiving % /24s w/SYN for

SYNs TCP/80 TCP/139 TCP/1433 TCP/22

100/8 2.0M 14.2 % 1.5 % <1 % <1 %

105/8 1.5M 4.0 % 1.1 % <1 % <1 %

23/8 1.7M 6.2 % 1.0 % <1 % <1 %

37/8 1.6M 21.6 % 1.0 % <1 % <1 %

45/8 1.6M 5.6 % 1.1 % <1 % <1 %

All 3.1M 18.2 % 1.3 % <1 % <1 %

than the former. That is, background radiation does not in general energetically
target our darknet enough to develop a solid expectation that the traffic should
be there and hence draw conclusions about its absence. Further, for the other
top ports the prevalence is even smaller than for port 80 and, hence, makes any
conclusions about policy even more tenuous.

Therefore, our conclusion is that while the general technique of searching for
the absence of traffic can be useful, it has its limits.

8 Conclusions

This paper makes several high-order contributions:

Methodology: We develop a novel methodology for detecting service-level net-
work filtering based on passive observation of traffic markers. While this aspect
of the Internet has been previously studied, our passive observation-based tech-
nique allows for developing an understanding at a breadth previously unattain-
able. Using Conficker as our exemplar, we are able to conclusively determine
the network filtering policy of 699M IP addresses or roughly 28 % of the routed
IPv4 address space. Although this is a modest fraction of the Internet, it is
much larger than previous attempts. For instance, the original Netalyzr study
[12] reports results from 100 K test runs. Even if each Netalyzr run represents a
/24 network our results cover 27 times as much of the Internet.

State of TCP/445: Of the address space we can conclusively assess, we find
filtering of outgoing TCP/445 traffic occurs in two-thirds of the cases. We also
note that as the size of the routed prefix under study increases the chance of
finding multiple service-level filtering policies within the prefix also increases.
While we believe it is a natural and expected result that larger networks would
encompass more than one administrative and policy domain, we believe this
offers a cautionary note in that aggregating too much of the network can dilute
any understanding we derive.

On the Power and Limitations of Detecting Network Filtering 177

Methodological Limitations: Finally, we illustrate that there are limits to
the methodology of using the absence of background radiation to infer policy. In
particular, we can leverage large events to infer policy, but more run-of-the-mill
instances of background radiation are not energetic and wide-spread enough to
allow us to form the expectation of traffic and hence draw conclusions when the
expectation fails.

Acknowledgments. We would like to thank Christian Kreibich for the Netalyzr data,
Phillip Porras for the Conficker sinkhole data, and Vern Paxson for comments on an
earlier draft. This work is sponsored by NSF grants CNS-1213157, CNS-1237265, CNS-
1505790 and CNS-1111699.

References

1. Allman, M., Paxson, V., Terrell, J.: A brief history of scanning. In: Proceedings of
the ACM SIGCOMM Conference on Internet Measurement, IMC’07 (2007)

2. Bailey, M., Cooke, E., Jahanian, F., Nazario, J., Watson, D.: The internet motion
sensor: a distributed blackhole monitoring system. In: Proceedings of Network and
Distributed System Security Symposium, NDSS’05, pp. 167–179 (2005)

3. Benson, K., Dainotti, A., claffy, k., Aben, E.: Gaining insight into AS-level out-
ages through analysis of internet background radiation. In: Traffic Monitoring and
Analysis Workshop, TMA’13 (2013)

4. Beverly, R., Berger, A., Hyun, Y., claffy, k.: Understanding the efficacy of deployed
internet source address validation filtering. In: Proceedings of the ACM SIGCOMM
conference on Internet Measurement, IMC’09 (2009)

5. Bush, R., Hiebert, J., Maennel, O., Roughan, M., Uhlig, S.: Testing the reachability
of (new) address space. In: Proceedings of the SIGCOMM workshop on Internet
Network Management, INM’07, pp. 236–241. ACM, New York (2007)

6. CAIDA: Conficker/Conflicker/Downadup as seen from the UCSD Network Tele-
scope. http://www.caida.org/research/security/ms08-067/conficker.xml (2013)

7. Chien, E.: Downadup: attempts at smart network scanning. http://www.symantec.
com/connect/blogs/downadup-attempts-smart-network-scanning (2009)

8. Choffnes, D.R., Bustamante, F.E., Ge, Z.: Crowdsourcing service-level network
event monitoring. In: Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM’10 (2010)

9. Comcast: Blocked ports list. https://customer.comcast.com/help-and-support/
internet/list-of-blocked-ports/

10. Dainotti, A., Squarcella, C., Aben, E., Claffy, K.C., Chiesa, M., Russo, M., Pescapé,
A.: Analysis of country-wide internet outages caused by censorship. In: IMC ’11
(2011)

11. F-Secure: Threat Report H1 2014. http://www.f-secure.com/documents/996508/
1030743/Threat Report H1 2014.pdf (2014)

12. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: illuminating the edge
network. In: Proceedings of the ACM SIGCOMM Conference on Internet Mea-
surement, IMC’10 (2010)

13. Kristoff, J.: Experiences with conficker c sinkhole operation and analysis. In: Pro-
ceedings of Australian Computer Emergency Response Team Conference (2009)

http://www.caida.org/research/security/ms08-067/conficker.xml
http://www.symantec.com/connect/blogs/downadup-attempts-smart-network-scanning
http://www.symantec.com/connect/blogs/downadup-attempts-smart-network-scanning
https://customer.comcast.com/help-and-support/internet/list-of-blocked-ports/
https://customer.comcast.com/help-and-support/internet/list-of-blocked-ports/
http://www.f-secure.com/documents/996508/1030743/Threat_Report_H1_2014.pdf
http://www.f-secure.com/documents/996508/1030743/Threat_Report_H1_2014.pdf

178 M. Sargent et al.

14. Pang, R., Yegneswaran, V., Barford, P., Paxson, V., Peterson, L.: Characteristics of
internet background radiation. In: Proceedings of the ACM SIGCOMM conference
on Internet Measurement, IMC’04 (2004)

15. Porras, P., Saidi, H., Yegneswaran, V.: An analysis of conficker’s logic and ren-
dezvous points. Technical report, SRI International (2009)

16. Richard, M., Ligh, M.: Making fun of your malware. In: Defcon 17 (2009)
17. University of Oregon: Route Views project. http://www.routeviews.org/
18. Wustrow, E., Karir, M., Bailey, M., Jahanian, F., Houston, G.: Internet background

radiation revisited. In: Proceedings of the ACM SIGCOMM Conference on Internet
Measurement, IMC’10 (2010)

http://www.routeviews.org/

Distilling the Internet’s Application Mix
from Packet-Sampled Traffic

Philipp Richter1(B), Nikolaos Chatzis1, Georgios Smaragdakis1,2,
Anja Feldmann1, and Walter Willinger3

1 TU Berlin, Berlin, Germany
prichter@inet.tu-berlin.de

2 MIT, Cambridge, USA
3 NIKSUN, Inc., Princeton, USA

Abstract. As the Internet continues to grow both in size and in terms
of the volume of traffic it carries, more and more networks in the dif-
ferent parts of the world are relying on an increasing number of distinct
ways to exchange traffic with one another. As a result, simple ques-
tions such as “What is the application mix in today’s Internet?” may
produce non-informative simple answers unless they are refined by spec-
ifying the vantage point where the traffic is observed, the networks that
are involved, or even the type of interconnection used.

In this paper, we revisit the question of the application mix in today’s
Internet and make two main contributions. First, we develop a methodol-
ogy for classifying the application mix in packet-sampled traces collected
at one of the largest IXPs in Europe and worldwide. We show that our
method can classify close to 95 % of the traffic by relying on a state-
ful classification approach that uses payload signatures, communication
patterns, and port-based classification only as a fallback. Second, our
results show that when viewed from this vantage point and aggregated
over all the IXP’s public peering links, the Internet’s application mix is
very similar to that reported in other recent studies that relied on differ-
ent vantage points, peering links or classification methods. However, the
observed aggregate application mix is by no means representative of the
application mix seen on individual peering links. In fact, we show that
the business type of the ASes that are responsible for much of the IXP’s
total traffic has a strong influence on the application mix of their overall
traffic and of the traffic seen on their major peering links.

1 Introduction

Knowing the Internet’s application mix is important for tasks such as identifying
the emergence of new trends in Internet usage, optimizing application perfor-
mance, and provisioning network resources. As a result, there exists a growing
body of literature on inferring the Internet’s application mix, with the different
papers typically relying on different data sources and deploying different traffic
classification techniques (e.g., see [13,25,29] and references therein).

c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 179–192, 2015.
DOI: 10.1007/978-3-319-15509-8 14

180 P. Richter et al.

However, due to the heterogeneity of the Internet and its complex topology
and global scope, there are no simple answers to questions like “What are the
most popular applications in today’s Internet?” or “What is the application mix
in today’s Internet?” In fact, as more and more networks consider factors such
as cost, performance, security, ease-of-use, and flexibility when deciding about
which kind of traffic to send over which type of peering links, the application
mix can be expected to differ from link to link.

In this paper, we are primarily interested in how representative commonly-
reported aggregate statistics concerning the Internet’s application mix are in
view of the network’s enormous heterogeneity. To this end, we first develop
a new methodology to classify traffic from packet-sampled traffic traces. Packet
sampling is a widely employed technique when monitoring high-bandwidth
infrastructures and is commonly used by large ISPs and IXPs. We then rely
on traffic traces collected at such a large IXP and apply our traffic classifica-
tion methodology to infer the application mix on tens of thousands of public
peering links at this IXP.1 Our results show that the heterogeneity of the Inter-
net extends directly to the application mix of its traffic, and we illustrate the
observed heterogeneity by providing insight into how and why the application
mix can differ from interconnection to interconnection and among different types
of networks.

Our contributions can be summarized as follows:

– We develop a traffic characterization methodology that is able to classify up to
95 % of the traffic in our dataset (i.e., peering traffic exchanged at a large
IXP, see Sect. 2). The novelty of our methodology is that it uses a stateful
classification technique (i.e., it keeps track of classified connection endpoints)
that is by and large able to overcome the challenges posed by random packet
sampling (see Sect. 3).

– We apply our new methodology to a set of traffic traces collected at a large
European IXP over a period of 2.5 years and provide details about the aggre-
gate application mix seen at this IXP, including pronounced diurnal cycles as
well as trends that become visible when monitoring the application mix over
time (see Sect. 4).

– We compare the aggregate application mix observed at our IXP to that
reported in other recent studies, which use different techniques and vantage
points. We find that when aggregated over all of the IXP’s peering links, the
observed application mix is comparable to the application mix reported in
these studies. However, we also show that the aggregate application mix is by
no means representative of the application mix seen on an individual peering
link and that the business type of the networks on either side of these peering
links has a strong influence on the application mix of the traffic that traverses
those links (see Sect. 5).

1 Traffic traversing the IXP’s private peering links is not collected and not considered
here.

Distilling the Internet’s Application Mix from Packet-Sampled Traffic 181

2 Dataset Characteristics

In this paper, we rely on packet-sampled traffic traces captured from the public
switching fabric of a large European IXP. We use five snapshots (selected from
a period that spans 2.5 years), each covering a full week (168 consecutive hours).
Table 1 lists the pertinent properties of these traces. Unless mentioned otherwise,
we use the most recent snapshot (i.e., 09-2013) as default dataset.

During the most recently monitored period in September 2013, the IXP had
close to 500 members and a peak traffic rate close to 2.5 Tbps. Our traces con-
sist of sFlow [28] records, captured using a random packet sampling rate of 1-
out-of-16K (214) packets. For more details on the sampling process and the IXP’s
peering link characteristics, see [7,27]. sFlow captures the first 128 bytes for each
Ethernet frame. Thus, each packet includes the full link layer (Ethernet), net-
work layer (IP), and transport layer (TCP/UDP) protocol headers, as well as
a limited number of payload bytes. In the most common case, where the IPv4
and TCP protocols are used, this leaves 74 bytes worth of payload information (if
TCP option fields are set, the available payload is further reduced by a few bytes).

Table 1. Overview of dataset characteristics. The number of packets/bytes refer to
the number of packets collected i.e., after sampling.

Name Timerange Sampling Packets Bytes IPv4/IPv6 TCP/UDP

09-2013 2013-09-02 to 2013-09-08 1/16K 9.3B 5.9TB 99.36/0.63 83.7/16.3

12-2012 2012-12-01 to 2012-12-07 1/16K 8.5B 5.5TB 99.64/0.36 83.1/16.9

06-2012 2012-06-04 to 2012-06-10 1/16K 7.3B 4.6TB 99.80/0.20 80.7/19.3

11-2011 2011-11-28 to 2011-12-04 1/16K 6.4B 4.2TB 99.93/0.07 79.8/20.2

04-2011 2011-04-25 to 2011-05-01 1/16K 5.3B 3.5TB 99.94/0.06 79.2/20.3

packets sampled per flow

%
 o

f s
am

pl
ed

 fl
ow

s

1 100 10K 1M

10
−6

10
−4

10
−2

10
0

86 UDP
TCP

(a) Samples per flow (1200s timeout).

1 10 100 1000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

packets sampled per flow

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 b

yt
es

TCP
UDP

(b) Fraction of total bytes related to number
of packets sampled per flow.

Fig. 1. IXP data sampling characteristics relevant for traffic classification.

182 P. Richter et al.

In the following, we consider only IPv4 traffic, as the fraction of IPv6 is still below
1 % in all our snapshots.

The sampled nature of our datasets poses significant challenges when trying
to apply traditional traffic-classification approaches (see Sect. 3 for details). To
assess the impact of sampling on the visibility of “full” flows, we aggregate the
packets sampled at our IXP using the typical 5-tuple aggregation consisting of
source and destination IP addresses, source and destination port numbers, and
the transport protocol. Figure 1(a) shows the number of packets that are sampled
for each flow, using a 1200 s timeout. It shows that we see only a single packet
for some 86 % of the sampled TCP flows (76 % for sampled UDP flows). We also
observe flows for which we sample several hundreds of thousands of packets over
the course of one week. Surprisingly, UDP flows dominate the heavy-hitter flows
and closer inspection reveals that most of the large UDP flows are related to
recursive DNS interactions between name servers. Accordingly, Fig. 1(b) shows
the cumulative total number of bytes related to flows for which we sample less or
equal than x packets. It shows that in case of TCP, more than 45 % of the bytes
are sampled from flows for which we sample only a single packet (27.5 % for
UDP). Since we only observe packets, we cannot rely on any per-flow properties
nor can we expect to sample packets at any specific position of a flow e.g.,
the first packet(s). Moreover, we cannot expect to have any visibility into the
bidirectional nature of any of the flows–all that sampling gives us is a “random
set of packets.”

3 Classification Approach

3.1 Related Work

Application classification has attracted the attention of researchers for many
years and has resulted in a large number of different methods and studies. How-
ever, the characteristics of our datasets (i.e., sampling, no bidirectional visibility)
pose new challenges for application classification. In particular, since most of the
existing classification approaches require information that is not available in our
datasets(e.g., unsampled packet traces, flow statistics), these methods are not
directly applicable in our context.

Before presenting our new application characterization method, we first pro-
vide a condensed taxonomy of existing classification approaches. To this end,
we follow closely the description presented in [20] and focus on those aspects of
the different approaches that prevent them from being directly applicable to the
types of datasets we are considering. For a more detailed discussion of the var-
ious existing application classification approaches, we refer to extensive surveys
such as [10,13,20,25,29].

Port-based approach: Many applications typically run on fixed port numbers
which can be leveraged to classify packets to their corresponding applications.
The drawbacks of port-based classification are that (i) applications can rely on

Distilling the Internet’s Application Mix from Packet-Sampled Traffic 183

random port numbers (e.g., as Peer-to-Peer (P2P) applications) and (ii) appli-
cations might use well-known port numbers to obfuscate traffic (e.g., see [24]).
On the positive side, port-based classification has been shown to be still effective
[23], is robust to sampling and can be applied to our dataset in a straight-forward
manner. Note that port-based classification was already performed for the sFlow
data captured at this IXP in [7].

Payload-based approach: Also referred to as Deep Packet Inspection (DPI),
payload-based classification produces very accurate results by relying on applica-
tion-specific signatures (i.e., known byte patterns of known protocols). Applica-
tion signatures are typically based on protocol handshakes and can often be
assembled using only the first few payload-carrying packets that are exchanged
between the communicating hosts (i.e., an HTTP GET request followed by an
HTTP/1.{0,1} reply). The payload-based approach is often used to establish
ground truth for the application mix of traffic traces (see e.g., [11] for a com-
parative study). While we have access to the initial bytes of the payload of
each sampled packet, we do not necessarily sample the first packet(s) of flows
that contain application signatures. In addition, we cannot inspect bidirectional
payload patterns of flows using our datasets.

Flow features-based approach: By utilizing flow properties (e.g., the total
number of packets, average packet size), several approaches focus on classifying
flows as belonging to specific applications without inspecting the payload of
packets. Since we do not have per-flow information, these approaches are not
applicable to our datasets.

Host behavior-based approach: This class of approaches classifies traffic by
profiling the detailed network interaction of hosts (e.g., which destinations are
contacted on which ports [19] or the network-wide interactions of hosts [17]). The
various approaches in this class have been shown the be particularly effective for
characterizing P2P applications [18]. While we are not able to perform fine-
grained profiling of hosts due to the sampled nature of our data, we do make
use of properties inferred from the social behavior of hosts to uncover parts of
Peer-to-Peer traffic.

3.2 Building Blocks

The foundation of our classification approach outlined below is the ability to
attribute some of the sampled packets to their respective applications by mainly
using payload signatures and partly relying on port numbers. In particular, we
rely on signatures which we derived from the L7-filter [3] and the libprotoident
library [8] for well-known protocols such as HTTP, SMTP, POP3, IMAP, NNTP
and SSH. We also make use of application signatures derived from protocol spec-
ifications [1,6] for BitTorrent. We also used available signatures to detect other
P2P protocols (e.g., eDonkey) but their contributions in terms of classifying
packets were insignificant. We verified all application signatures using manually
generated traffic traces. For SSL-based protocols (we focus on HTTPS, NNTPS,

184 P. Richter et al.

POP3S, and IMAPS), we use signatures indicating an SSL handshake and con-
sider SSL handshake packets on the well-known port number of the respective
application (e.g., 443 for HTTPS) as belonging to that application.

To ensure the accuracy of our application signatures (i.e., keeping the false
positives low by limiting the number of signatures), we restrict our set of applica-
tion signatures and port numbers and only consider applications that (i) gener-
ate significant traffic and (ii) are reliably detectable using application signatures
and, if needed, port numbers. For example, we do not try to classify Skype
traffic because its detection remains unreliable unless specialized approaches are
used [9].

3.3 Classification Method

Figure 2 illustrates our classification pipeline. In particular, our classification
approach requires that the given traffic trace be processed twice, first in a pre-
classification phase and then in a classification phase. The purpose of the first
phase is to derive state, which will then be leveraged in the classification phase
to attribute packets to their respective endpoints, revealing the corresponding
application.

I. Pre-classification phase
The goal of the pre-classification step is to extract server endpoints and IP
addresses of clients, which will be used as state in the subsequent classifica-
tion phase. In this phase, we rely solely on payload-based classification using
our validated signatures (as well as SSL signatures on well-known ports). For
each packet that belongs to a client-server application, we save the server end-
point, i.e., its (IP, port) tuple. To identify the server-side of a packet, we rely on
directed signatures (e.g., HTTP request vs. HTTP reply). For packets matching
a BitTorrent signature, we save the SRC and DST IPs but not the port num-
bers. Since most BitTorrent traffic that matches our signatures is UDP-based
which, due to its connectionless nature, is more susceptible to spoofing as well
as other phenomena such as BitTorrent DHT poisoning for control traffic (e.g.,
[30]), we only count an IP address as BitTorrent speaker if we sample at least 2
packets that originate from/are sent to that IP address matching our signatures.
Additionally, we save IP addresses of HTTP clients. In this pre-classification, we
identify more than 2.7 M HTTP server endpoints (1.43 M unique IP addresses),
and 210 K HTTPS endpoints. On the client side, we identify 37.7 M HTTP client
IPs, as well as 38.9 M BitTorrent speakers, where the overlap between HTTP
client IPs and BitTorrent speakers is 12.4 M IP addresses.

II. Classification phase
We next process that same trace again and ensure that each packet proceeds
through the classification pipeline shown in Fig. 2. Once a packet can be attribu-
ted to an application, no further processing will be done for that packet.

Step 1: Payload signature matching. We match our previously extracted
application signatures on each packet. Just by matching application signatures,

Distilling the Internet’s Application Mix from Packet-Sampled Traffic 185

Fig. 2. Classification pipeline.

we are able to classify 11.7 % of the bytes exchanged at our IXP. This unexpected
high number (recall that application signatures typically occur only in the first
packets of a flow) is mainly the result of a proliferation of UDP-based BitTorrent
data transfers, i.e., µTP [6]. µTP is a transport protocol based on UDP and
includes its own header in every single packet. Thus, its classification is robust
to sampling – in stark contrast to TCP traffic. The proliferation of µTP has
also been reported in earlier studies [14,22], as well as the rise of UDP-based
applications using own headers in every packet [15]. In total, 11.3 % of the packets
matched a signature, of which 84.5 % matched the BitTorrent UDP signature,
another 11.7 % matched an HTTP signature, 2.4 % an SSL handshake on port
443, 0.94 % a BitTorrent TCP signature, and 0.46 % other signatures.

Step 2: Server endpoint matching. If a packet does not contain a valid
application signature, we then check if the source or the destination (IP, port)
tuple of the respective packet is a known server endpoint, as identified in our
pre-classification step. If so, we classify the packet as belonging to the specific
application. In this step, we classify 66.5 % of bytes! This result highlights the
efficiency of using a stateful application characterization approach. While we
cannot sample application signatures on a per-flow basis, aggregating the infor-
mation on a per (IP, port) endpoint basis largely overcomes the challenge posed
by packet sampling. At the same time, we achieve a high confidence by rely-
ing on strong payload-based classification. This method works particularly well
for popular client-server based applications, most prominently HTTP, where a
large number of connections is destined to a comparably small number of server
endpoints. To assess the impact of possibly stale endpoints (e.g., hosts that do
not run the classified application on their server endpoint after some time), we
repeated the classification by only using server endpoints that were identified
within a time frame of 24 (12) h, which reduced our completeness by only 1 %
(2 %) of the bytes.

Step 3: Port-based classification. We next use a short list of 15 known port
numbers (mapping to 13 applications) to classify respective packets as belonging
to the corresponding application. In this step, we classify another 4.5 % of all bytes.

186 P. Richter et al.

The largest contributor to this third step is RTMP (1.7 %), for which no reliable
signature is available. Interestingly, a significant fraction of traffic on port 1935
(RTMP) is HTTP traffic (and was thus already classified in the previous step),
likely RTMP-inside-HTTP. Generally, we note that port-based classification can
still be used reliably (but is not necessarily complete) when used in a conservative
fashion, confirming prior studies [23]. For example, we observe that only less than
0.3 % of the TCP traffic on port 80 did not match an endpoint which was detected
using HTTP signatures (in the pre-classification). However, we find that more
than 10 % of the total HTTP traffic is not seen on port 80, and the most popular
encountered non-standard ports are 8080 (3.8 % of HTTP traffic), 1935 (2.9 %
of HTTP traffic) and 8000 (0.6 % of HTTP traffic).

Step 4: Packet exchanged between BitTorrent speakers. In this step,
we consider packets that were not classified in a prior step and classify them
as “BT/P2P likely” if they are exchanged between two previously identified
BitTorrent speakers. This step enables us to classify an additional 10.2 % of the
IXP’s traffic. Depending on the individual client’s configuration and capabilities,
BitTorrent relies on TCP and UDP as transport protocol for data exchange
as well as for exchanging control messages (e.g., DHT queries). While we are
able to classify the bulk of BitTorrent UDP traffic (recall that we classified
more than 11 % of the traffic just using signatures), we are not able to classify
the bulk of TCP traffic exchanged between BitTorrent speakers. In this step
we account for this portion of the traffic. To provide further empirical support
for this approach, we inspected partly sampled TCP messages of the peer-wire
protocol [1] which corresponds to the transfer of chunks. By extrapolating the
number of piece messages of the BitTorrent peer-wire protocol and multiplying
it with the observed chunk size (16 K in 99 % of all cases), we can estimate that
the pure content volume (excluding headers and control traffic) exchanged via
BitTorrent TCP peer-wire connections is around 8 %. Thus, we are convinced
that the majority of the traffic classified in this step is indeed BitTorrent traffic.
To acknowledge the lowered confidence and the possibility of other protocols
contributing to this class, we classify these packets as “BT/P2P likely”.

Step 5: Packet exchanged between Web clients or BitTorrent speakers.
As a tie-breaking criteria, we classify all packets that are exchanged between
either Web clients or BT speakers as “P2P likely”. We only classify another 1.3 %
of the IXP’s total traffic by using this heuristic. This small number suggests that
most P2P likely traffic is indeed exchanged between BitTorrent speakers and was
already classified in the previous step.

Using this classification approach, we are able to attribute 82.7 % of the IXP’s
overall traffic directly to its corresponding application (Steps 1–3). More than
78 % of the traffic can be classified either directly using payload signatures or by
matching the packet to server endpoints identified using payload signatures – we
only fall back to port-based classification for 4.5 % of the traffic. Another 11.5 %
of the traffic is classified as “BT/P2P likely” using our heuristics based on the
social behavior of hosts.

Distilling the Internet’s Application Mix from Packet-Sampled Traffic 187

4 The Internet’s Application Mix Seen at an IXP

In this section, we discuss properties of the observed application mix. Figure 3
shows the result of our classification method when applied to the IXP’s traf-
fic, both in terms of packets and bytes (flow statistics are not obtainable from
our packet-sampled traces). We observe that HTTP(S) clearly dominates the
application mix with a share of more than 65 % of the bytes. While the increas-
ing dominance of HTTP for a multitude of applications has been reported in
prior studies (e.g., [26]), the other significant share of traffic is composed of
the BitTorrent UDP and BT/P2P likely class, accounting for some 20 % of the
exchanged bytes. Other protocols such as email, newsgroups, RTMP etc. account
for roughly 6 % of the bytes exchanged at the IXP.

Figure 4(a) shows a timeseries of the contributions of the various applications
for the 09-2013 trace. While we see that HTTP(S) always dominates (its share
never drops below 55 %), we observe a typical diurnal pattern indicating more
pronounced HTTP(S) usage in the busy hour in the late afternoon. The share of
BitTorrent/P2P peaks in the off-hours. Interestingly, we observe a second peak
of BT/P2P activity each day, which is likely due to BitTorrent users in various
time zones. Also the protocols in the “other known” category dominate in the
off-hours. NNTP(S) is the largest contributor to this category and is reportedly
used for file-sharing [23].

Next, we use five snapshots to infer the application mix as observed at this
IXP during the last 2.5 years. The results for the exchanged bytes are shown in
Fig. 4(b). We observe that while the IXP’s aggregate application mix is relatively
stable, there is a significant increase of HTTPS traffic during these 2.5 years, from
1.9 % in April 2011 to 11.1 % in September 2013. Note that while in the snapshots
from November 2011 to December 2012, both the share of HTTPS and HTTP
traffic increased, there is a simultaneous decrease in HTTP and steep increase
in HTTPS in 2013, suggesting a widespread switchover from HTTP to HTTPS
in 2013.

fraction of bytes

H
T

T
P

H
T

T
P

S

B
T

 U
D

P

B
T

/P
2P

 li
ke

ly

U
N

C
LA

S
S

IF
IE

D

0.0 0.2 0.4 0.6 0.8 1.0

fraction of packets

H
T

T
P

H
T

T
P

S

B
T

 U
D

P

B
T

/P
2P

 li
ke

ly

U
N

C
LA

S
S

IF
IE

D

0.0 0.2 0.4 0.6 0.8 1.0

Protocol % bytes % pkts

HTTP 57.39 47.52
HTTPS 9.53 11.08
RTMP 1.72 1.48
NNTP 1.41 0.87
NNTPS 0.63 0.38
SMTP 0.53 0.91
DNS 0.45 0.87
SSH 0.42 0.61

other known 0.68 0.74
BT UDP 10.00 9.57

BT/P2P likely 10.14 12.31
P2P likely 1.32 2.10
unclassified 5.78 11.56

Fig. 3. Application mix (September 2013) for packets and bytes.

188 P. Richter et al.

Fig. 4. Application mix over time.

Table 2. Reported application mix in other studies (fixed, IPv4).

Study Network type Method Bytes

Year HTTP(S) Other known BT/P2P Unclassified

[21] 5 large ISPs Payload-based 2009 52.1% 24% 18.3% 5.5%

[21] 110 Networks Port-based 2009 52% 10% 1% 37%

[23] Large ISP Payload-based 2009 57.6% 23.5% 13.5% 10.6%

[16] Large ISP Payload-based 2010 60% 28% 12% N/A

[12] 260 Networks Port-based 2013 69.2% 4% <7% 20%

[4] Various Payload-based [5] 2014 ≈70% N/A 6% N/A

[4] Various Payload-based [5] 2014 ≈65% N/A 15% N/A

[4] Various Payload-based [5] 2014 ≈60% N/A 30% N/A

[4] Various Payload-based [5] 2014 ≈65% N/A 9.4% N/A

5 The Application Mix: A Moving Target

5.1 The Aggregate View

The Internet’s application mix has been the topic of numerous past studies by
networking researchers and commercial companies alike. In the following, we
report how the observed application mix at our IXP compares to other recent
studies that not only relied on traffic data from different vantage points (and
hence different types of peering links) but also used different application classi-
fication methods. Recall that in this study, we are only considering traffic that
traverses the IXPs public peering links and have no visibility into the traffic
that is sent over the private peering links established a this IXP. Table 2 lists
some of the pertinent prior studies and provides information about the reported
application mix, the type of traffic data used, and (where available) the classifi-
cation method used.2 A cursory comparison of the results of these studies with
our findings suggests that the application mix of the Internet is rather homo-
geneous. That is, HTTP(S) dominates with a share of roughly 60 %, no matter
2 Note that the applications belonging to the “other known” traffic class vary across

studies.

Distilling the Internet’s Application Mix from Packet-Sampled Traffic 189

where in the network and with what methodology the application mix was mea-
sured. Other protocols such as BitTorrent or P2P seem to vary by region from
around 10 % to 30 %, but these variations could also be in part due to varying
classification approaches.

5.2 Beyond the Aggregate Application Mix

Next, we take a closer look at the apparent homogeneous nature of the Internet’s
application mix and examine in detail the application mix of the traffic that
traverses the peering links of specific networks.

Figure 5 shows the application mix for each of the top-15 traffic-contributing
member ASes of our IXP and top-3 traffic-contributing transit providers that
are also IXP members. The type of the top-15 traffic-contributing IXP mem-
bers is either Content/CDN, Hoster/IaaS or Eyeball/Access, and together they
are responsible for 59 % of the all the traffic (in bytes) seen at this IXP. We
see that for all networks of type Content/CDN HTTP(S) traffic clearly domi-
nates, with shares close to 100 %. While most of these networks still rely mainly
on HTTP, we notice one prominent network (third bar from the left) that has
almost a 50/50 ratio of HTTP and HTTPS traffic. This example suggests that
the earlier reported growth in HTTPS is mainly driven by some big content
providers switching over to HTTPS. Overall, for networks of type Content/CDN
we observe little or no application-mix heterogeneity on their individual links.
Networks of the type Hoster/IaaS show a more diverse profile when it comes
to their application mix. While HTTP still dominates, we see surprisingly no
significant amount of HTTPS traffic. At the same time, these networks also see
other types of traffic of various protocols as well as significant shares of Bit-
Torrent traffic and unclassified traffic. Note that BitTorrent is also increasingly
used to deliver video content or software [2]. In short, the diverse application
mix contributed by Web hosters reflects the fact that they offer infrastructure
services to a wide variety of companies and individuals, which in turn make
different use of the provided resources. The results for Eyeball/Access networks
show that the application mix of networks connecting end-users to the IXP also

fr
ac

tio
n

of
 m

em
be

rs
' t

ra
ffi

c

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

unclassified
BT + BT/P2P likely
other known
HTTPS
HTTP

Content/CDN Hoster/IaaS Eyeball/Access Transit

Fig. 5. Application mix of the top-15 traffic-contributing non-transit member ASes
(grouped by business type) and the top-3 traffic-contributing member ASes that are
transit providers.

190 P. Richter et al.

Fig. 6. Application mix of the top-25 traffic-carrying links.

varies significantly. While for some of them, HTTP(S) (along with small frac-
tions of other traffic such as email, RTMP, news) clearly dominates, we also see
eyeball networks with more than 50 % of BitTorrent traffic — the two networks
with significant BitTorrent contributions are serving eastern European countries,
while the other three networks are serving users in central Europe. This obser-
vation suggests that the differences in BitTorrent usage also reflect geographic
properties (i.e., varying application popularity). The application mix seen for
Transit networks is in general quite diverse as they typically carry traffic from
a wide range of different networks.

The picture of the Internet’s application mix sharpens even more when we
look at the application mix seen on individual peering links. Figure 6 shows the
application mix for the top-25 traffic-carrying bidirectional links at our IXP.
The figure also includes the business types of the networks on either side of
these peerings. Based on this set of links which see significant traffic, we observe
a variety of different application mixes. While all Content-to-Eyeball links carry
exclusively HTTP(S) and few other known applications, BitTorrent is the clear
winner on two links between Eyeball networks. Thus, when taking into account
the business types of two networks associated with a peering link, we notice a
strong dependency on the resulting applications mix. The few links that show
a more heterogeneous application mix are usually transit links or, interestingly,
links involving Hosters and IaaS providers. When looking at the top-25 unidirec-
tional links (not shown), we see a similar pattern, where for Content-to-Eyeball
links the resulting application homogeneity (i.e., HTTP) is even more dominant.

6 Conclusion

In this paper we developed a traffic classification methodology that is by and
large able to overcome the challenges posed by packet-sampled traffic through the
use of a stateful classification approach based on endpoint-aggregation. Using our
new methodology we can attribute more than 78 % of the bytes exchanged over
the public switching infrastructure of a large IXP to their respective application
by relying on strong payload-based classification. We attribute another 11.5 %

Distilling the Internet’s Application Mix from Packet-Sampled Traffic 191

when including a heuristic based on communication patterns and classify an
additional 4.5 % using port-based classification. In the process, we observe that
the aggregate application mix as seen at our IXP is largely consistent with
that reported in other recent studies. However, when dissecting the traffic and
examining the application mix of Internet traffic that traverses individual public
peering links, we show that the application mix becomes heterogeneous but is
strongly influenced by the business type of the networks on either side of a
peering link.

Acknowledgements. We want to express our gratitude towards the IXP operators
for their generous support and feedback. We thank the anonymous reviewers for their
helpful feedback. Georgios Smaragdakis was supported by the EU Marie Curie IOF
“CDN-H” (PEOPLE-628441).

References

1. BitTorrent Protocol Specification v 1.0. https://wiki.theory.org/BitTorrent
Specification

2. Digital Trends article, 12 October 2013. http://www.digitaltrends.com/opinion/
bittorrents-image-problem/

3. L7-filter. http://l7-filter.sourceforge.net/
4. Sandvine Global Internet Phenomena, 1H 2014. https://www.sandvine.com/

downloads/general/global-internet-phenomena/
5. Sandvine Traffic Classification. https://www.sandvine.com/technology/traffic-

classification.html
6. uTorrent Transport Protocol Specification. http://www.bittorrent.org/beps/bep

0029.html
7. Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy

of a large European IXP. In: ACM SIGCOMM (2012)
8. Alcock, S., Nelson, R.: Libprotoident: Traffic classification using lightweight packet

inspection. University of Waikato, Technical report (2012)
9. Bonfiglio, D., Mellia, M., Meo, M., Ritacca, N., Rossi, D.: Tracking down skype

traffic. In: IEEE INFOCOM (2008)
10. Callado, A., Kamienski, C., Szabo, G., Gero, B., Kelner, J., Fernandes, S., Sadok,

D.: A survey on internet traffic identification. IEEE Commun. Surv. Tutor. 11(3),
37–52 (2009)

11. Carela-Español, V., Bujlow, T., Barlet-Ros, P.: Is our ground-truth for traffic clas-
sification reliable? In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol.
8362, pp. 98–108. Springer, Heidelberg (2014)

12. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-
suring IPv6 adoption. In: ACM SIGCOMM (2014)

13. Dainotti, A., Pescape, A., Claffy, K.: Issues and future directions in traffic classi-
fication. IEEE Netw. Mag. 26(1), 35–40 (2012)

14. Finamore, A., Mellia, M., Meo, M., Munafo, M., Rossi, D.: Experiences of Internet
traffic monitoring with Tstat. IEEE Netw. 25(3), 8–14 (2011)

15. Finamore, A., Mellia, M., Meo, M., Rossi, D.: KISS: Stochastic packet inspection
classifier for UDP traffic. IEEE/ACM Trans. Netw. 18(5), 1505–1515 (2010)

16. Gerber, A., Doverspike, R.: Traffic types and growth in backbone networks. In:
OFC/NFOEC (2011)

https://wiki.theory.org/BitTorrentSpecification
https://wiki.theory.org/BitTorrentSpecification
http://www.digitaltrends.com/opinion/bittorrents-image-problem/
http://www.digitaltrends.com/opinion/bittorrents-image-problem/
http://l7-filter.sourceforge.net/
https://www.sandvine.com/downloads/general/global-internet-phenomena/
https://www.sandvine.com/downloads/general/global-internet-phenomena/
https://www.sandvine.com/technology/traffic-classification.html
https://www.sandvine.com/technology/traffic-classification.html
http://www.bittorrent.org/beps/bep_0029.html
http://www.bittorrent.org/beps/bep_0029.html

192 P. Richter et al.

17. Iliofotou, M., Gallagher, B., Eliassi-Rad, T., Xie, G., Faloutsos, M.: Profiling-by-
association: A resilient traffic profiling solution for the internet backbone. In: ACM
CoNEXT (2010)

18. Karagiannis, T., Broido, A., Faloutsos, M., claffy, Kc.: Transport layer identifica-
tion of P2P traffic. In: ACM IMC (2004)

19. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic clas-
sification in the dark. In: ACM SIGCOMM (2005)

20. Kim, H., Claffy, K., Fomenkov, M., Barman, D., Faloutsos, M., Lee, K.-Y.: Internet
traffic classification demystified: Myths, caveats, and the best practices. In: ACM
CoNEXT (2008)

21. Labovitz, C., Lekel-Johnson, S., McPherson, D., Oberheide, J., Jahanian, F.: Inter-
net inter-domain traffic. In: ACM SIGCOMM (2010)

22. Lee, C., Lee, D.K., Moon, S.: Unmasking the growing UDP traffic in a campus
network. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp. 1–10.
Springer, Heidelberg (2012)

23. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On dominant characteristics of
residential broadband internet traffic. In: ACM IMC (2009)

24. Moore, A.W., Papagiannaki, K.: Toward the accurate identification of network
applications. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 41–54.
Springer, Heidelberg (2005)

25. Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classifi-
cation using machine learning. IEEE Commun. Surv. Tutor. 10(4), 56–76 (2008)

26. Popa, L., Ghodsi, A., Stoica, I.: HTTP as the narrow waist of the future Internet.
In: ACM HotNets (2010)

27. Richter, P., Smaragdakis, G., Feldmann, A., Chatzis, N., Boettger, J., Willinger,
W.: Peering at peerings: On the role of IXP route servers. In: ACM IMC (2014)

28. InMon–sFlow. http://sflow.org/
29. Valenti, D., Rossi, D., Dainotti, A., Pescapè, A., Finamore, A., Mellia, M.: Review-

ing traffic classification. In: TMA (2013)
30. Wang, L., Kangasharju, J.: Real-world sybil attacks in BitTorrent mainline DHT.

In: IEEE GLOBECOM (2012)

http://sflow.org/

Enabling Internet-Wide Deployment
of Explicit Congestion Notification

Brian Trammell1(B), Mirja Kühlewind1, Damiano Boppart1,
Iain Learmonth2, Gorry Fairhurst2, and Richard Scheffenegger3

1 Communication Systems Group, ETH Zurich, Zurich, Switzerland
trammell@tik.ee.ethz.ch

2 University of Aberdeen, Aberdeen, Scotland, UK
3 NetApp, Inc., Vienna, Austria

Abstract. Explicit Congestion Notification (ECN) is an TCP/IP exten-
sion to signal network congestion without packet loss, which has barely
seen deployment though it was standardized and implemented more than
a decade ago. On-going activities in research and standardization aim to
make the usage of ECN more beneficial. This measurement study pro-
vides an update on deployment status and newly assesses the marginal
risk of enabling ECN negotiation by default on client end-systems. Addi-
tionally, we dig deeper into causes of connectivity and negotiation issues
linked to ECN. We find that about five websites per thousand suffer
additional connection setup latency when fallback per RFC 3168 is cor-
rectly implemented; we provide a patch for Linux to properly perform
this fallback. Moreover, we detect and explore a number of cases in which
ECN brokenness is clearly path-dependent, i.e. on middleboxes beyond
the access or content provider network. Further analysis of these cases
can guide their elimination, further reducing the risk of enabling ECN
by default.

1 Introduction

Explicit Congestion Notification (ECN) [1] is a TCP/IP extension that allows
congestion signaling without packet loss. Even though ECN was standardized in
2001, and it is widely implemented in end-systems, it is barely deployed. This
is due to a history of problems with severely broken middleboxes shortly after
standardization, which led to connectivity failure and guidance to leave ECN
disabled. The authors revisited this question in [2], finding an increase in the
number of servers which successfully negotiate and use ECN, but with nearly no
use of ECN within a national-scale access network.

In this paper we show that server-side support for ECN negotiation has
further increased. Unfortunately, server-side support is only the first step. Since
TCP clients initiate ECN negotiation, it is client-side support and negotiation by
default that is necessary to complete deployment on end-systems. While ECN
must also be enabled on routers together with an Active Queue Management
(AQM) scheme in order to be useful, the lack of deployment on end-systems
reduces the incentive to deploy on routers and vice-versa. In the past two years,
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 193–205, 2015.
DOI: 10.1007/978-3-319-15509-8 15

194 B. Trammell et al.

there has been increasing deployment of AQM [3] in the Internet; we expect this
trend to continue and to drive router support for ECN. We therefore choose to
focus on end-system deployment to break this loop, in the context of supporting
on-going research in this area [4] to define more beneficial signaling. Specifically,
this work aims to answer the following questions:

– What is the marginal risk of enabling ECN by default at the client-side?
– How can we detect and localize connectivity/signaling issues related to ECN?

To do so, we performed the following active measurements on nearly 600,000
popular web servers1 taken from the Alexa top million list:

– Connectivity dependency: can ECN negotiation cause connectivity issues?
– ECN readiness: how many webservers will negotiate ECN if asked?
– ECN signaling anomalies: is ECN signaling viable to use end-to-end?

Specifically, the key focus of this work is on connectivity issues caused by
ECN, in order to provide operational guidance and an answer to our most impor-
tant question: is it now safe to use ECN-by-default on the client side to drive
ECN deployment in the Internet? On this point we conclude that enabling ECN
by default on client devices carries with it a low marginal risk of increased
connection latency when fallback as recommended in RFC 3168 [1] is properly
implemented; more measurement is necessary to localize the rare devices within
the Internet that may lead to path-dependent failure of ECN-enabled connec-
tions. We provide a patch for Linux at http://ecn.ethz.ch/ecn-fallback; work to
incorporate fallback into the Linux kernel mainline is ongoing.

All tools used in this study are available as open-source software, as are
the raw data and intermediate results listing servers by ECN support status,
from http://ecn.ethz.ch. We intend this work to introduce an ongoing ECN and
middlebox impairment observatory which will support an effort to deploy ECN
on an Internet-wide scale.

1.1 Overview of Explicit Congestion Notification (ECN)

ECN uses two bits in the IP header to mark traffic as ECN-capable or as having
experienced congestion along the path, and when used with TCP it uses two
flags, ece and cwr, to negotiate the use of ECN in the TCP handshake and
subsequently to echo congestion marking back to the sender during the connec-
tion. To review, a client sends an initial syn ece cwr to the server to negotiate
ECN; to confirm negotiation, the server responds syn ack ece, or to deny,
simply syn ack. Section 6.1.1.1 of RFC 3168 [1] recommends falling back to
non-ECN support if the initial syn ack ece connection attempt fails.

After successful negotiation, data packets from each side can be marked
using one of the ECN-Capable Transport codepoints (ect(0)/ect(1)) in the

1 We examine HTTP in this study for comparison with related work, and because
large-scale probing of HTTP is less likely to be regarded as abuse than other services.

http://ecn.ethz.ch/ecn-fallback
http://ecn.ethz.ch

Enabling Internet-Wide Deployment of Explicit Congestion Notification 195

IP header, which is replaced with the ce codepoint if a router’s AQM along
the path determines the link is congested. This congestion signal is echoed back
to the sender marking all acknowledgments with the ece flag until the sender
acknowledges the receipt of the congestion signal with the cwr flag.

This describes the case where everything goes well. The negotiation and
signaling in ECN can however go badly for various reasons. First, the two bits
in the IPv4 and IPv6 header used for ECN were previously part of the Type of
Service (ToS) byte, and there are still middleboxes and firewalls deployed in the
Internet that use the old definition of these bits, interfering with ECN signaling.
Second, firewalls may be configured to strip the ECN bits in the IP or TCP
header, leading to negotiation and signaling errors; or to drop syn ack ece,
specifically to disable ECN, leading to connection failure. Third, end hosts and
TCP proxies may have design or implementation faults in their handling of the
semantics of the ECN bits.

1.2 Related Work

This work follows directly our previous work [2] and from [5], which sought to
measure the state of ECN deployment as of August 2014 and September 2011,
respectively. Our numbers for ECN capability and non-capability of webservers,
being taken from the Alexa top million and using a comparable methodology, are
therefore directly comparable to those in [2,5]. We show that ECN support in
webservers continues to increase, and reached the majority of the top million
by the middle of 2014. Methodologies for packet mangling and marking are also
comparable to those in [5]. More generally, this work follows from the continuing
history of measurements of the Internet to estimate the ability to deploy new
featues at the endpoints (e.g. Honda et al [6], Medina et al [7]), and contributes
a data point to the continuing effort to improve the situation (e.g. the IAB Stack
Evolution program2 [8], or middlebox cooperation schemes such as [9]).

2 Methodology

2.1 Measurement Setup and Data Set

All measurements in this paper were performed from vantage-points running
Ubuntu 14.04 (kernel 3.13.0 without syn retry fallback as in RFC3168 [1]),
run by commercial hosting provider Digital Ocean, in London, New York, and
Singapore. Initial investigation showed that all ECN signaling works properly
on this provider’s networks, and all sites have native dual-stack connectivity.
We ran trials on three seperate occasions, on 27 August, 4 September, and 9
September 2014.

As with previous work on testing ECN readiness of webservers [2,5], we select
our targets from Alexa’s publicly available top million websites list. We then
resolve these to at most one IPv4 and one IPv6 address per site. Duplicate IP
2 http://www.iab.org/activities/programs/ip-stack-evolution-program.

http://www.iab.org/activities/programs/ip-stack-evolution-program

196 B. Trammell et al.

addresses are eliminated, taking the highest-ranked website for each address.
Name resolution was performed on 27 August 2014 from the London vantage
point using Google’s public DNS server (8.8.8.8), resulting in 581,737 unique
IPv4 addresses and 17,029 unique IPv6 addresses.

2.2 ECN-Spider and QoF

We built an active measurement tool atop the operating system’s ECN imple-
mentation, to test ECN negotiation and negotiation-linked connectivity. This
tool, called ECN Spider, is implemented in Python 3. ECN Spider takes as input
a list of IP addresses along with the associated domain name and a number as
a label to be used in later analysis; in this work, we use the Alexa rank. For
each unique address, the tool then simultaneously opens one connection without
attempting to negotiate ECN and one connection attempting to negotiate ECN,
and reports the connection status for each, along with timing and HTTP status
information.

ECN Spider’s design is based on utilizing Linux’s system-level configuration
of ECN negotiation using the sysctl facility, using the implemented TCP stack
instead of packet injection. For each site, we must therefore:

1. disable ECN using sysctl
2. open a socket to the target (attempts a syn 3whs)
3. enable ECN using sysctl
4. open a socket to the target (attempts a syn ece cwr 3whs)
5. perform HTTP requests via both sockets.

To make it possible to test a half million websites in a reasonable amount
of time, the sysctl calls are performed in their own thread, which synchro-
nizes with several hundred worker threads, amortizing the cost (about 10ms) of
changing the system-wide setting. Each connection attempt is given 4 seconds
to succeed, which can lead to transient connection failures on slower websites,
but is necessary to keep slow and disconnected sites from delaying testing.

ECN Spider always tests connectivity without ECN first, in order to eliminate
the possibility that sending an ECN negotiation packet down a path changes the
result of the non-ECN syn. When performing HTTP requests, ECN Spider does
not follow redirects or otherwise crawl resources on the retrieved page.

While ECN Spider can detect whether or not a connection failed in the
presence or absence of ECN negotiation, it cannot detect whether or not ECN
was actually negotiated or observe negotiation anomalies, since this information
is not available in userland. Therefore, we simultaneously observe the traffic
with the QoF [10] flow meter to evaluate the traffic generated by ECN Spider
providing TCP flags and ECN signaling information on a per-flow basis.

2.3 IPtables Packet Mangling

We also combined ECN Spider with the Linux iptables connection tracking and
packet-mangling facilities in order to test the three following cases:

Enabling Internet-Wide Deployment of Explicit Congestion Notification 197

1. ece response: mark all outgoing packets with ce to verify that we see ece
2. cwr response: mark all incoming packets with ce to verify that we see cwr in

response to ece-marked ACKs
3. ce and ect blackhole testing: mark syn with ce/ect(0)/ect(1) to verify

that marked packets are not dropped on path.

In all cases the TCP MSS was set to 300 bytes, in order to split HTTP
requests into multiple packets. For the ece and cwr response testing, we used
QoF for data analysis; for the ce and ect blackhole testing, we analyzed ECN
Spider’s connectivity logs assuming that a path that drops marked syns would
also drop other marked packets.

3 The Marginal Risk of Enabling ECN by Default

In our previous work [2], we found a multiple order-of-magnitude difference
between the proportion of webservers supporting ECN negotiation and marking,
and passively-measured flows on a university network actually negotiating and
using ECN. Since webserver support is largely driven by the default configu-
ration of the server operating system, the question naturally arises of whether
client-side support could be driven by the same mechanism.

This is not a viable strategy if there still exist many paths through the Inter-
net where attempting to negotiate ECN causes connectivity issues. Note that
even with RFC3168 fallback, ECN-dependent connectivity can lead to addi-
tional connection setup latency, which depends on the client operating system.
So we turn our attention to the question of marginal risk: how many additional
connectivity issues can we expect if we turn ECN on by default?

3.1 Connectivity Dependency and Anomalies

Table 1 shows that for the vast majority of sites we probed, connectivity is clearly
independent of whether ECN is requested or not. 578,433 (99.43 %) of IPv4 and
16945 (99.50 %) of IPv63 exhibit no ECN-dependent connectivity.

In 2443 cases for IPv4 and 16 cases for IPv6, connectivity apparently depends
on ECN not being requested.The vast majority of these (2193 IPv4 and 13 IPv6
hosts) exhibit stable connectivity dependency at or near the host itself: every
attempt to connect to the host with ECN failed, and every attempt to connect
without succeeded.

This leaves us with the anomalous cases. We observe stable ECN dependency
on the path in 15 cases for IPv4. Here, every connection attempt requesting
ECN fails from one vantage point but succeeds from another. 6 of these sites
are within a single AS (26496, GoDaddy.com LLC), and occur on servers used
to park domain names. The remaining 9 may be more problematic, as they
could represent ECN-disabling devices on path. A further 34 IPv4 and 3 IPv6
3 Note that the relatively high prevalence of permanent IPv6 connection failure (nearly

10%) indicates continued limited operational experience with IPv6.

198 B. Trammell et al.

Table 1. Connectivity statistics, of 581,737 IPv4 hosts and 17,029 IPv6 hosts, all
vantage points, 27 Aug – 9 Sep 2014

IPv4 IPv6 Description

Hosts pct Hosts pct

553805 95.20 % 14889 87.43 % Always connected from all vantage points

3998 0.69 % 1594 9.36 % Never connected from any vantage point

8631 1.48 % 138 0.81 % Single transient connection failure

11999 2.06 % 324 1.90 % Non-ECN-related transient connectivity

578433 99.43% 16945 99.50% Total ECN-independent connectivity

2193 0.38 % 13 0.08 % Stable ECN dependency near host

15 0.00 % 0 0.00 % Stable ECN dependency on path

34 0.01 % 3 0.02 % Potential ECN dependency on path

201 0.03 % 0 0.00 % Temporal ECN dependency

2443 0.42% 16 0.09% Total ECN-dependent connectivity

862 0.15 % 69 0.41 % Inconclusive transient connectivity

Fig. 1. TTL spectrum of ECN-dependent and -independent connectivity cases

Fig. 2. Proportion of sites failing to connect when ECN negotiation is requested

hosts exhibit potential ECN dependency: no connection attempt requesting ECN
succeeds from one vantage point, and at least one connection attempt with
ECN from another vantage point succeeds, though we cannot rule out transient
connectivity effects here. We also observed time-dependent anomalies: 201 cases
for IPv4 where connectivity was ECN-independent from all vantage points during
one trial, but ECN-dependent during another. This probably represents changes
in network or host configuration during the time we ran our trials.

A further 862 cases for IPv4 and 69 for IPv6 cannot be definitively classified
as either ECN-dependent or transient, leading us to estimate an upper-bound
“blackhole” rate of 0.57 % for IPv4 and 0.50 % for IPv6. This is comparable

Enabling Internet-Wide Deployment of Explicit Congestion Notification 199

to [5], suggesting that boxes that break connectivity when ECN is requested are
not being replaced quickly.

Connectivity dependency can be linked to the operating system of the web-
server by estimating the initial TTL. As shown in Fig. 1, sites with initial TTL 64
(Linux) and 128 (Windows) are roughly equally represented among hosts exhibit-
ing ECN-dependent connectivity, while Linux servers are far more common
among the majority where connectivity is ECN-independent. ECN-dependent
connectivity failure also depends slightly on website rank as shown in Fig. 2: as
many as 2 % of websites with an Alexa rank between 50,000 and 55,000 fail to
connect when ECN is requested, compared to a background rate of about 0.5 %.
The distribution of these sites by rank is shown in Fig. 2.

3.2 RFC 3168 Fallback Testing

Based on our RFC3168 ECN fallback Linux patch applied to single Ubuntu 14.04
machine at ETH Zurich running the 3.13 kernel we reran ECN Spider against
the hosts which showed some evidence of connectivity depending on ECN and, as
expected, we found that this patch eliminated connection failures attributable to
ECN negotiation, at the cost of increased connection setup latency4. Therefore
the implementation of ECN fallback as the default behavior in all operating sys-
tems will restore connectivity and is an important step for wide-scale deployment
of ECN.

3.3 Conclusions

Our analysis therefore indicates that enabling ECN by default would lead to con-
nections to about five websites per thousand to suffer additional setup latency
with RFC 3168 fallback. This represents an order of magnitude fewer than the
about forty per thousand which experience transient or permanent connection
failure due to other operational issues. Comparison with [5] indicates this situ-
ation is likely unchanged in its magnitude since 2011.

As not all websites are equally popular, failures on five per thousand websites
does not by any means imply that five per thousand connection attempts will fail.
While estimation of connection attempt rate by rank is out of scope of this work,
we note that the highest ranked website exhibiting stable connection failure has
rank 596, and only 13 such sites appear in the top 5000.

4 An Analysis of ECN Signaling

We then analyzed the traces taken from our three ECN Spider runs using QoF
to determine the extent of server-side support for ECN, and to investigate the
prevalence of the different ways in which the ECN mechanism can fail today in
the Internet.
4 Fallback latency is a function of client implementation. We note anecdotally that

additional latency is on the order of seconds on Windows 7, and barely noticeable
on Mac OS X Mavericks.

200 B. Trammell et al.

Table 2. ECN negotiation statistics, of 581,711 IPv4 hosts and 17,028 IPv6 hosts, all
vantage points, 27 Aug – 9 Sep 2014, compared to previous measurements.

IPv4 IPv6 2011 2012 Description

Hosts pct Hosts pct pct[5] pct[2]

326743 56.17% 11138 65.41% 11.2 % 29.48 % Capable of negotiating
ECN

324607 55.80 % 11121 65.31 % – – ...and always negotiate

2136 0.37 % 17 0.11 % – – ...sometimes negotiate, of
which...

107 0.02 % 1 0.01 % – – negotiation depends on path

27 0.02 % 0 0.00 % – – sometimes reflect syn
ack flags

248791 43.23 % 3961 26.23 % 82.8 % 70.52 % Not capable of negotiating
ECN

2013 0.35 % 83 0.48 % – – ...and reflect syn ack flags

6177 1.06 % 1929 11.33 % – – Never connect with ECN (see
Sect. 3.1)

4.1 ECN Negotiation

As seen in Table 2, the majority of the top million web servers (56.17 % of those
connecting for IPv4, 65.41 % for IPv6) are now capable of negotiating ECN, con-
tinuing a more or less linear trend since 2008. We attribute this to the decision to
negotiate ECN if requested by the client by default in common server operating
systems. Indeed, there continue to be large differences in ECN support per oper-
ating system, as shown in Fig. 3: note here that almost no initial-TTL 128 (i.e.
Windows) or 255 (Solaris; also Google) hosts negotiate ECN. Considering only
initial-TTL 64 (Linux) hosts, 326,720 of 468,555 or 69.73 % are ECN capable.

As with connectivity, the proportion of hosts negotiating ECN depends
slightly on the rank of the site, as shown in Fig. 4. The highest ranked website
that will negotiate ECN has rank 6 (www.wikipedia.org). We note that websites
of higher rank generally use custom networking software, and are therefore not
affected by ECN negotiation by default. The top 100,000 sites are less likely to
support ECN negotiation than the remaining 900,000.

Troubling are the 107 IPv4 hosts and one single IPv6 host for which ECN
negotiation appears to be dependent on the vantage point. This indicates a device
on path which mangles the ECN TCP flags. There are also 2029 IPv4 and 16 IPv6
hosts which sometimes negotatiate and sometimes do not, indicating either path
or temporal instability in ECN signaling. Further, there are 2047 IPv4 hosts and
83 IPv6 hosts which reflect the ECN TCP flags on the syn ack (i.e., answering
syn ece cwr with syn ack ece cwr), indicating poorly implemented end-
host stacks or TCP proxies. Of these, 693 IPv4 hosts and one IPv6 host go on

www.wikipedia.org

Enabling Internet-Wide Deployment of Explicit Congestion Notification 201

Fig. 3. Comparison of TTL spectrum between ECN-capable and -incapable hosts

Fig. 4. Proportion of sites negotiating ECN by rank

to send ect(0) marked packets, indicating that the end host may believe it has
negotiated ECN correctly.

4.2 IP Signaling Anomalies

Assessing middlebox mangling of IP ECN signaling, we see in Table 3 that
315,605 (97.2 %) of the IPv4 hosts and 8998 (80.9 %) of IPv6 hosts that always
negotiate ECN mark all subsequent packets ect(0) which is the expected sig-
naling; we would expect ECN to work in these cases. On the other hand, there
are 6939 (2.1 %) IPv4 and 2013 (18.1 %) IPv6 hosts which always negotiate ECN
but never send an ect marked packet in any trial from any vantage point. While
it is acceptable for hosts which have negotiated ECN not to mark every data
packet, this could also indicate a middlebox along the path that does not inter-
fere with the ECN TCP signaling but does with ECP IP signaling. We note that
this anomaly is less common for IPv4 than reported in [5], but it is not clear to
what to attribute this change.

We can observe various interesting anomalies here which indicate possible
mangling. 1995 IPv4 hosts do not appear to negotiate ECN but send ect(0)
marked packets anyway. 46 of these set ect(0) on the syn ack which indicates
a middlebox overwriting the former ToS field. The other 1849 cases indicate
either a broken TCP stack, or ECN TCP flag mangling on the downstream
path wherein the server believes ECN has been negotiated, but the client does
not, i.e. the ece bit is cleared from the syn ack ece sent by the server. We
note that the magnitude of this anomaly is comparable with that reported in [5],
indicating little if any improvement in middlebox mangling of ECN on this point.
Conversely, Table 4 gives insignt on hosts and paths using the ECN IP bits for
non-ECN purposes, showing statistics for ECN marking by servers on connection
attempts without ECN negotiation.

202 B. Trammell et al.

Table 3. Relationship between ECN IP and TCP flags (expected cases in italics)

Marking IPv4 (N =581711) IPv6 (N=17028)

ECN Reflect No ECN ECN Reflect No ECN

Only ect(0) 315605 693 1995 8998 1 46

ect(0)+ ect(1) 0 0 0 4 1 7

ect(0)on syn ack 7780 0 46 89 0 82

Only ect(1) 3 1 17 0 10 12

ect(1)on syn ack 4 0 16 7 0 31

Only ce 11 1 7 0 0 48

ce+ ect 5 2 0 23 66 39

ce on syn ack 11 0 5 22 0 87

none 6939 1343 243150 2013 5 3694

Table 4. Marking on flows without ECN negotiation attempt

Codepoint IPv4 (N=581711) IPv6 (N =17028)

Once Always syn ack Once Always syn ack

ect(0) 4592 104 68 179 2 101

ect(1) 21 18 18 116 76 39

ce 21 17 17 162 12 94

There are a few additional anecdotes to take from this analysis. The inci-
dence of IPv6 negotiation anomalies (15.20 %) is an order of magnitude higher
than in IPv4 (1.93 %), indicating that, although negotiation is supported by a
higher proportion of IPv6 than IPv4 servers, ECN support in IPv6 in hosts and
middleboxes is less mature. Many of these can be traced to specific providers: a
single ISP in the Netherlands, for instance, is responsible for all 22 of the hosts
that mark ce on the syn ack for IPv6 when negotiating ECN. Of five IPv4 hosts
which send both ce and ect marked packets, indicating the potential presence
of a ce-marking router, there is only one (www.grandlyon.com, 213.162.51.7,
as seen from London on 4 September and Singapore on 9 September 2014) for
which we cannot rule out this hypothesis. In neither trial was the connection
long enough to observe a cwr acknowledging the resulting ece.

4.3 IP ECN Connectivity and ECN Echo Tests

To further verify correct ECN signaling end-to-end, we ran ce and ect blackhole
experiments on 24 September, and ece and cwr response tests on 23 September
2014, both from the London vantage point.

In the blackhole experiment, 4791 (0.82 %) IPv4 hosts and 104 (0.61 %) IPv6
hosts fail to connect when at least one ECN codepoint is set on the syn. Of these,

www.grandlyon.com

Enabling Internet-Wide Deployment of Explicit Congestion Notification 203

2006 IPv4 and 12 IPv6 hosts are among those which also failed to connect from
all vantage points when ECN was requested (see Sect. 3.1). 287 IPv4 and 17 IPv6
hosts fail to connect regardless of the ECN codepoint set. In this experiment,
the magnitude of transient failure is comparable to that in Sect. 3.

The ece response test succeeded for IPv4 in 94.8 % (309,842 hosts) of all
ECN-enabled cases in Table 2. In contrast, the cwr response test succeeded
only in 44.3 % (144,290 hosts) of the cases. Further, we found 690 IPv4 hosts
responding with ece and 351 hosts responding with cwr even though ECN was
not successfully negotiated. There also appears to be significant impairment or
implementation error in ECN signaling for IPv6, with only 7 hosts responding
ece and 9 cwr.

Reasons for ece response test failures include clearing of the ce codepoint
along the forward path or clearing of the ece flag along the reverse path. Reasons
for cwr test failures include clearing of the ece flag along the forward path,
clearing of the cwr flag along the reverse path, or termination of the flow before
cwr could be sent by the sender. As the median size of responses from hosts
that did set cwr in the test was 3168 bytes, while the median size from those
that did not was only 864 bytes (i.e., smaller than MSS), we do not consider our
cwr results as a reliable indication of impairment on path.

Therefore, while the ECN IP-related connectivity risk is proportional to that
related to ECN TCP signaling, the correct handling of ece and cwr signaling
after negotiation seem to be more impaired. Even worse, signaling is significantly
more impaired on IPv6 than on IPv4.

5 Conclusions, Outlook, and Future Work

We have shown that while webservers support for ECN continues to increase,
there does not appear to have been any appreciable reduction in the proportion
of potential connectivity failure linked to ECN since 2011. The vast majority of
connectivity problems we found with ECN negotiation were close to the server,
i.e., cases in which routing changes during a connection would not lead to connec-
tion failure in the middle of an ECN-enabled flow. The fallback behavior defined
in RFC 3168 eliminates connectivity risk for these cases, such that enabling ECN
by default would lead only to increased connection latency when attempting to
connect to about five of every thousand websites.

Verifying and localizing ECN path dependency in the remaining cases proves
to be quite difficult. Bauer et al [5] used a tomography-based approach (as in
e.g. Tracebox [11]) for localizing ect mark clearing to an Autonomous System
(AS); an approach that is unfortunately not applicable to our case. The ICMP
Time Exceeded message contains no TCP flag information, making it impossible
to verify path-dependent negotiation failures. Traceroute artifacts and on-path
blocking of traceroute make it similarly impossible to differentiate connectiv-
ity issues from traceroute issues. Correlation of data-plane and control-plane
routing information (e.g. from http://stat.ripe.net/) is a promising approach,
but in none of our path-dependent connectivity cases did it yield a most-likely

http://stat.ripe.net/

204 B. Trammell et al.

AS for the connectivity failure. We therefore leave further investigation of path
dependency to future work, potentially leveraging existing wide-area distributed
measurement platforms such as RIPE Atlas5 to probe the set of paths through
the Internet more comprehensively, using the volume of data to make up for the
drawbacks of the traceroute-based tomography methods.

Our study shows that while it is safe for operating system vendors to activate
ECN on the client-side by default presuming they implement RFC 3168 fallback,
we cannot yet unreservedly recommend doing so. For a tiny minority of sites
(15 of 598,766, or about 1 in 40,000) we cannot rule out path-dependent con-
nectivity issues. A similar proportion of sites exhibit indiscriminate ce marking,
which would cause throughput degradation with use of ECN. These numbers
are small enough that targeted collaboration with the operations community
based on additional measurement is a viable way forward. We encourage other
researchers to use the tools and dataset made available at http://ecn.ethz.ch
to continue these investigations, and to guide the eventual elimination of ECN-
unfriendly middleboxes, in order to move toward full deployment of ECN.

Acknowledgments. This work was materially supported by the European Commis-
sion though the Seventh Framework Grant Agreements mPlane (FP7-318627) and
Reducing Internet Transport Latency (RITE) (FP7-317700); no endorsement of the
work by the Commission is implied. Thanks to Stephan Neuhaus for his guidance
during the development of ECN Spider, to Daniel Borkmann and Florian Westphal
for discussions on Linux kernel modifications for RFC 3168 Fallback, and to Stuart
Cheshire for his feedback.

References

1. Ramakrishnan, K., Floyd, S., Black, D.: The Addition of Explicit Congestion Noti-
fication (ECN) to IP. RFC 3168, IETF (2001)

2. Kühlewind, M., Neuner, S., Trammell, B.: On the state of ECN and TCP options
in the internet. In: Proceedings of the Passive and Active Measurement 2013, Hong
Kong SAR, China (2013)

3. Baker, F., Fairhurst, G.: IETF Recommendations Regarding Active Queue Man-
agement: draft-ietf-aqm-recommendation-08. Internet-draft, IETF (2014) (Work in
Progress)

4. Kühlewind, M., Wagner, D.P., Espinosa, J.M.R., Briscoe, B.: Using data center
TCP (DCTCP) in the internet. In: Proceedings of the third IEEE Globecom Work-
shop on Telecommunication Standards: From Research to Standards (2014)

5. Bauer, S., Beverly, R., Berger, A.: Measuring the state of ECN readiness in servers,
clients, and routers. In: Proceedings of the Internet Measurement Conference, pp.
171–177 (2011)

6. Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., Tokuda, H.:
Is it still possible to extend TCP? In: Proceedings of the Internet Measurement
Conference, pp. 181–194 (2011)

7. Medina, A., Allman, M., Floyd, S.: Measuring the evolution of transport protocols
in the Internet. SIGCOMM Comput. Commun. Rev. 35(2), 37–52 (2005)

5 https://atlas.ripe.net/.

http://ecn.ethz.ch
https://atlas.ripe.net/

Enabling Internet-Wide Deployment of Explicit Congestion Notification 205

8. Trammell, B., Hildebrand, J.: Evolving transport in the internet. IEEE Internet
Comput. 18(5), 60–64 (2014)

9. Craven, R., Beverly, R., Allman, M.: Middlebox-cooperative TCP for a non end-
to-end Internet. In: Proceedings of ACM SIGCOMM 2014 Conference, Chicago,
IL, USA (2014)

10. Trammell, B., Gugelmann, D., Brownlee, N.: Inline data integrity signals for passive
measurement. In: Proceedings of the Sixth International Wksp on Traffic Measure-
ment and Analysis, London, England (2014)

11. Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., Donnet, B.: Revealing
middlebox interference with Tracebox. In: Proceedings of the 2013 Internet Mea-
surement Conference IMC ’13, pp. 1–8, Barcelona, Spain (2013)

Internet Outages, the Eyewitness Accounts:
Analysis of the Outages Mailing List

Ritwik Banerjee1, Abbas Razaghpanah1(B), Luis Chiang1, Akassh Mishra1,
Vyas Sekar2, Yejin Choi3, and Phillipa Gill1

1 Stony Brook University, New York, USA
arazaghpanah@cs.stonybrook.edu

2 Carnegie Mellon University, Pittsburgh, USA
3 University of Washington, Seattle, USA

Abstract. Understanding network reliability and outages is critical to
the “health” of the Internet infrastructure. Unfortunately, our ability
to analyze Internet outages has been hampered by the lack of access
to public information from key players. In this paper, we leverage a
somewhat unconventional dataset to analyze Internet reliability—the
outages mailing list. The mailing list is an avenue for network opera-
tors to share information and insights about widespread outages. Using
this unique dataset, we perform a first-of-its-kind longitudinal analysis
of Internet outages from 2006 to 2013 using text mining and natural lan-
guage processing techniques. We observe several interesting aspects of
Internet outages: a large number of application and mobility issues that
impact users, a rise in content, mobile issues, and discussion of large-scale
DDoS attacks in recent years.

1 Introduction

As an increasing number of critical services rely on the Internet, network outages
can cause significant societal and economic impact [10,18]. Indeed, this impor-
tance can be seen when network failures such as cloud computing outages [9],
BGP interceptions [14], and large scale DDoS attacks (e.g., [1,3]) make headlines
in the popular press. By some estimates, data center network outages can lead
to losses of more than $500,000 per incident on average [34], while costs of WAN
failures are more challenging to quantify [8]. Thus, there are a large number of
past and ongoing efforts to detect and mitigate network outages, including work
on novel root cause analysis techniques [24,27], and better network debugging
tools [5,11,20,30,41].

While there are several efforts, as mentioned above, to minimize the impact
of network outages, there is unfortunately a critical dearth of studies that sys-
tematically understand network outages. In part, our understanding of outages
and network reliability is hampered by the reluctance on the part of network
operators to release data due to policy requirements; e.g., even though the FCC
maintains a network outage reports system and mandates that network opera-
tors provide true estimates, the data is confidential given its sensitive nature [2].
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 206–219, 2015.
DOI: 10.1007/978-3-319-15509-8 16

Internet Outages, the Eyewitness Accounts 207

Furthermore, providers have natural economic concerns that such studies may
reflect poorly on them and thus impact revenues. As such, the few studies that
obtain data from networks are only able to offer insights from a single vantage
point such as an academic WAN [43], data center [22] or backbone ISP [32].

Our work is an attempt to bridge this critical gap in our understanding of
network reliability. For instance, we would like to understand if specific Internet
service providers (e.g., access vs. tier-1), protocols (e.g., DNS vs. BGP), network
locations (e.g., specific PoPs or co-location points), or content providers (e.g.,
web hosting services) are more likely to be involved in network outages. Such an
understanding can help network operators and architects focus their resources
on making Internet services more robust. For example, providers who know that
specific hosting services or protocols are prone to outages can proactively work
around these known hotspots.

Toward this goal, we leverage an underutilized dataset: the outages mailing
list [38] to answer the above types questions. The mailing list serves as a venue
for operators to announce and debug network failures. The outages list tends to
have some bias towards North American network operators self-reporting outages
perceived as ‘high impact’. Despite this bias, the dataset also has attributes that
are lacking, or only met in isolation in other data sets which can help illuminate
different facets of network failures:

Semantic context. Posts contain rich semantic information about what
happened during the outage, in contrast to technical data which often requires
starting from low-level measurements and inferring whether an event incurred
real-world impact.

Interdomain coverage. The mailing list provides an overview of network fail-
ures that transcend network boundaries rather than focusing on the point-of-view
and failures experienced by a single network.

Longitudinal view. The outages list has been maintained since 2006 offering
an unprecedented view of Internet reliability issues discussed by operators over
time.

The rich semantic and natural language information contained in the list also
presents a challenge in terms of analyzing the outages mailing list. To address
this challenge, we turn to natural language processing (NLP), text mining, and
machine learning (ML) techniques in order to automatically categorize the posts
and threads in the mailing list. However, naively applying these techniques “out
of the box” does a poor job of identifying useful semantic information (e.g.,
Level 3 would naively be considered two words). Thus, we use a careful synthesis
of domain knowledge and NLP/ML techniques to extract meaningful keywords
to build a classification algorithm to categorize content along two dimensions:
(1) type of outage (e.g., attack vs. congestion vs. fiber cut) and (2) the type of
entity involved (e.g., cloud provider vs. ISP).

Our analysis reveals the following insights:

User issues dominate. The list is dominated by issues with user-facing com-
ponents such as misconfigurations and issues with application servers and mobile

208 R. Banerjee et al.

networks. In terms of entities, networks providing service to users such as access
and mobile networks are also prevalent.

Content and mobile issues are on the rise. Starting in 2009, we see a large
fraction of threads related to application server problems and content provider
networks. These issues tend to relate to common service providers such as Google,
Facebook, Netflix. Mobile-centric issues have also increased by 15 % over the past
7 years.

Attacks and censorship are relatively rare. There is less discussion of secu-
rity issues and censorship in the dataset. However, notable incidents like censor-
ship in Syria and large DNS-amplification-based DDoS attacks (e.g., [35]) did
get the attention of the community with a significant increase in posts containing
the keyword DNS spiking in 2012–2013.1

Contributions and Roadmap: This paper makes the following contributions:
(1) Performing an initial analysis of the outages mailing list to understand Inter-
net outages (Sect. 2); (2) A careful application of text mining, NLP, and machine
learning techniques to extract useful semantic information from this dataset
(Sects. 3, 4); (3) Shedding light on the types of outages and the key entities
involved in these outages over time (Sect. 5). Finally, we discuss related work in
Sect. 6 and conclude in Sect. 7.

2 Dataset

In this section, we provide background about the mailing list and our dataset
(Sect. 2.1), and limitations of using the mailing list to analyze network failures
(Sect. 2.2).

2.1 About the Outages Mailing List

The outages mailing list reports outages related to failures of major commu-
nications infrastructure components. It intends to share information so that
network operators and end users can assess and respond to major outages. The
list contains outage reports as well as post-mortem analysis and discussions on
troubleshooting.

We analyze a snapshot of the outages mailing list taken on December 31,
2013 containing threads since its inception in 2006. Our dataset is summarized in
Table 1. It contains over seven years of discussion on the mailing list. This discus-
sion is organized into 2,054 threads, with a total of 6,566 individual posts. Note
that the number of posts is higher than the number of threads and replies com-
bined since it also includes emails that are not part of a thread (e.g.“unsubscribe”
emails). A total of 1,194 individuals (identified by e-mail addresses) contributed
to the discussions.

1 DNS was used to amplify botnet attacks over this period.

Internet Outages, the Eyewitness Accounts 209

Table 1. Summary of the Outages Mail-
ing List Dataset

First email Sep 29, 2006

Last email (in dataset) Dec 31, 2013

Number of posts 6,566

Number of threads 2,054

Number of replies 4,163

Number of contributors 1,194

0

100

200

300

400

500

600

Ac
tiv

ity

2007 2009 2011 2013
Time

Posts
Threads

Fig. 1. Outages Mailing List Activity per
Quarter.

Activity on the mailing list shows an upwards trend since it was started in
2006. Figure 1 shows quarterly activity on the list in terms of the number of
threads and posts. The amount of activity on the list shows a periodic trends
with less activity in Q4 which includes the holiday season. We also observe a
spike in posts towards the end of 2012 which can be attributed to discussions
arising from Hurricane Sandy.

2.2 Limitations

While the mailing list provides a unique view of failures which had observ-
able impact over the past seven years, it also has some limitations. The data
is biased towards North American operators and Internet providers since many
of the users are US-based system administrators and the forum itself is hosted
in North America. Moreover, we are biased towards incidents which transcend
network boundaries as incidents which remain internal to a network are unlikely
to be posted. Further, the list does not contain technical information about the
underlying root cause, and indeed some posts lack a clear root cause. Finally,
while the list contains failures that impacted users, there is some selection bias
in terms of failures that users report to the list (e.g., the aforementioned North
American bias, and bias towards networks upstream of networks whose opera-
tors are more active in the list). Despite these limitations, the data contained in
the mailing list is valuable because it presents a longitudinal and cross-provider
view of failures that had real world impact on the Internet.

3 Keyword Analysis

In this section, we discuss how we extract keywords from the e-mail postings
(Sect. 3.1) and present preliminary analysis of topics over time (Sect. 3.2).

3.1 Data Preprocessing

The fact that e-mail postings are comprised of natural language text means
that they are rich with semantic information underlying the failure, but also

210 R. Banerjee et al.

presents a challenge in terms of automatically parsing and processing the data.
To address this challenge we employ techniques from text mining and natural
language processing (NLP).
Step 1: Collate threads. In general, we consider the dataset at the level of
threads. Each thread consists of the set of e-mail messages (posts) in the thread.
For each thread we extract relevant terms and phrases after removing quoted
text (text from previous emails in the thread included in each email) from its
posts.
Step 2: Remove spurious data and stop-words. We first discard spurious
data contained in the posts. This included identifying e-mail signatures used by
posters which contributed to terms and phrases unrelated to the content of the
thread. We also extract traceroute measurements which are often contained in
posts at this point. While traceroutes are useful for debugging, it is difficult to
identify the root cause of an incident via automated analysis of the traceroutes,
since the list contains posts on a variety of topics. Thus, we focus on the natural
language content of the messages in this paper. We leverage a list of 572 stop
words (e.g., articles, prepositions and pronouns) obtained from the SMART
information retrieval system [37]. Punctuations are also removed.

The remaining words are lemmatized (the process of grouping together the
different inflected forms of a word) using the Stanford CoreNLP toolkit [4] so
they can be analyzed as a single item. For example, determining that “walk”,
“walked” and “walking” are all forms of the same verb: “to walk”. Note that the
simple stemming (i.e., walking → walk) does not suffice as it cannot differentiate
the parts of speech based on context: e.g., when the term “meeting” acts as a
verb: “we are meeting tomorrow” vs. a noun “let’s go to the meeting”. Lemmati-
zation, on the other hand, can identify these contextual differences. Additionally,
we filter out words with term-frequency inverse document frequency (tf-idf) val-
ues less than 0.122. Low tf-idf indicates that the word is very common throughout
the dataset [36]. The threshold was chosen such that it filtered out the bottom
25% of terms in terms of tf-idf value.
Step 3: Extract nouns and named entities. Toobtain additional information
about terms contained in the e-mail messages, we use the Stanford part-of-speech
tagger [42] and named-entity recognizer [21]. These tools allow us to identify nouns
as well as named entities (e.g., identifying “Los Angeles” as a single entity). This
process, however, is incomplete for domain-specific entities found in networking-
related e-mails. This problem is particularly acute for organization names (e.g.,
“Level 3”). Instead of retraining the named entity recognition system – a process
that would have required extensive human annotation – we leverage Wikipedia
to improve named entity recognition for networking entities. We use the simple
heuristic that if a term is a capitalized noun, we search for this term or phrase in
Wikipedia. If we identify a page which contains this term as the title, we check that
the page is a subcategory of the “Telecommunications companies” category. If the
page is in this category, we determine that the term is likely the name of a relevant
organization. For multi-word entities such as “Time Warner Cable”, we consider
noun sequences instead of a single term to search for Wikipedia titles.

Internet Outages, the Eyewitness Accounts 211

Fig. 2. Keyword trends over the years in the outages mailing list.

3.2 Keyword Trends

As a first step, we consider keyword trends to understand failures discussed in
the list (Fig. 2). We focus on keywords in four categories: content providers, ISPs,
protocols, and security. For each category we select 5–6 potentially interesting
keywords. Among content providers, Google being the most popular, is more
heavily discussed than others. In terms of ISPs, AT&T, Verizon and Level-3 are
the most frequently discussed, with an upward trend in ISP-related discussion
over time. In terms of protocols, BGP and DNS dominate, with DNS experi-
encing a sharp uptick in discussions in 2012–2013. Our analysis based on binary
classifiers (explained in Sect. 4) shows that this is due to a more than twofold
increase of DNS-related issues among access (from 3.3 % in 2011 to 7.0 % in
2012) and content providers (0.9 % in 2011 to 2.2 % in 2012). Finally, we observe
DDoS as the most prevalent term related to security. It comprises nearly 8 % of
posts in 2006 (note that we only have two months of data in 2006) and surges
again to 5.5 % in 2012 as a result of large DDoS attacks which occurred that
year (e.g., [35]).

4 Classification Methodology

The terms and phrases extracted in our initial processing give a high-level view
of the discussions on the mailing list. In this section, we discuss a classification
methodology to help us systematically categorize the outages over time.

Conceptually, we can categorize a network outage along two orthogonal
dimensions: (1) type of the outage (e.g., fiber cut), and (2) entities involved in the
outage (e.g., access ISPs). Table 2 summarizes the specific categories of types and
entities of interest.2 Thus, our goal is to automatically characterize each outage
e-mail thread into categories along these dimensions. Next, we describe how we
designed such a classifier.
Labeling: As a first step toward automatic classification, we created a simple
website to enable us and our collaborators to manually label a small random

2 We do not claim that this list is exhaustive; it represents a pragmatic set we chose
based on a combination of domain knowledge and manually inspecting a sample of
the dataset.

212 R. Banerjee et al.

Table 2. Summary of categories

sample of the posts along the above two dimensions. We had 5 volunteers, each
labeling around 30 threads. To validate that our manual annotations were con-
sistent, we use the Fleiss’ κ metric [29]; the κ value was 0.75 for entities and 0.5
for the outage types. To put this in perspective, 0.748 is considered very good
and 0.48 is considered a “moderate agreement” [29]. Given this confidence, we
use these manual labels to bootstrap our learning process described below.
Choice of algorithm: Our initial intuition was to formulate this as a semi-
supervised clustering problem [6,17,46]. That is, we use the labeled data to
bootstrap the clustering process, learn features of the identified clusters, and
then iteratively refine the clusters. However, we found that the training error
was quite high (i.e., low F-score on the labeled set). The primary reason for
this is the well-known class imbalance problem — most real-world datasets are
skewed with a small number of classes contributing the most “probability mass”.
The small number of training samples meant this problem was especially serious
in our context.

Given this insight, we reformulated the semi-supervised clustering as a classi-
fication problem. While classification by itself is not immune to class imbalances,
it can be made robust using two well-known ideas: (1) learning multiple binary
classifiers and (2) suitable resampling [23,28,44]. For (1), instead of partitioning
the dataset into N categories, we learn a “concept” for each category indepen-
dently; i.e., a binary classifier trying to determine whether a thread belongs in
a particular category or not. For (2), we setup the training with undersampling
the majority class and/or oversampling the minority class to make the training
data more balanced.

We chose a linear-kernel SVM for classification using the LibLINEAR toolkit
[19] which performed well in terms of both accuracy and speed. We evaluate the
goodness of the learning step using a standard leave-one-out cross-validation
and compute the F-score, which is the harmonic mean of precision and recall
values [31]. Next, we describe the features provided to the machine learning
algorithm.
Feature selection and refinement: The näıve way to set up a NLP classifi-
cation is to use a standard “bag-of-words” approach—extract words appearing
in the entire dataset and create a binary feature vector for each thread indi-
cating whether a specific keyword appears in it. This approach, however, yields
very poor results on two fronts. First, while natural language text contains some
terms relevant to the outage, it mostly contains English words which are not rel-

Internet Outages, the Eyewitness Accounts 213

evant to the topic and simple filtering steps such as removing stop words (e.g.,
“the”) do not alleviate this problem. Second, this näıve set of features produces
a high-dimensional feature space creating more noise.

Thus, we had to take further care in selecting the feature set using a com-
bination of domain knowledge and manual inspection as described below. First,
since most terms associated with our labels are likely to be nouns, we used a
part-of-speech tagger [42] to filter out verbs and adjectives. Second, based on
manual inspection, we found that terms in the title of the thread, or near the
end of the thread were more informative and thus we experimented with weigh-
ing these terms higher. The reason is that the issues are mostly resolved towards
the end of the discussion and the terms used are more pertinent to the issue.
Third, to identify the entities involved, we further prune the features using a
named-entity recognition system [21]. While this step retains good features (i.e.,
words or phrases recognized as entities), it does not provide any semantic infor-
mation about them. To this end, we used Wikipedia category information to
glean such semantic associations. We collected 20,105 Wikipedia pages under
the category “Computer Networking”, and weighted the features according to
whether they occur in pages under relevant subcategories (e.g., “Akamai” under
“Content Delivery Network”). We thus designed feature vectors with relevant
entities, and weighted them according to their type. (Note that these three steps
are in addition to the preprocessing in Sect. 3 that was less analysis-specific).

Table 3. Summary of feature sets used to improve the performance of the classifiers

Root cause of outage Entities involved

1. Unigrams 1. Unigrams + bigrams (nouns)

2. Unigrams + bigrams 2. Unigrams + bigrams (nouns) +
positional weights

3. Nouns 3. Nouns + named entities

4. Unigrams + bigrams (nouns) 4. Named entities

5. Unigrams + bigrams (nouns) +
positional weights

5. Named entities + Wikipedia category
information

Table 3 summarizes the different sets of terms we used and Fig. 3 shows how
the F-score improves as we add better features. The final features selected dif-
fer between the type and entity classifiers; i.e., nouns weighed by their position
in the thread performing best for root cause and a combination of named enti-
ties+Wikipedia category information for the entities involved. With these fea-
tures the mean F-score of the classifiers was 78.8% for root cause and 82.9% for
entities involved. For multi-class classification tasks for which human annotation
κ scores are in the range of 0.5 – 0.78, these results can be considered as reason-
ably high. Given the relatively small training data set and the succinct nature
of the mailing list posts, the resulting performance is very promising, especially

214 R. Banerjee et al.

1 2 3 4 5

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Feature Sets

F−
Sc

or
e

(a) Type of outage

1 2 3 4 5
Feature Sets
(b) Entity

Fig. 3. F-score of classification results using different feature sets. A higher F-score
implies better accuracy and the result shows the effect of our iterative feature refine-
ment process. Table 3 summarizes the feature sets.

for domains for which a large number of user contributed posts are available for
analysis.

Finally, one concern with our binary classification approach is the risk that
a given thread falls in multiple classes. Fortunately, we found that the majority
(>80 %) of threads had at most 1 label (not shown).3

5 Characterizing the Causes of Failures

Next, we use the classification methodology from the previous section to analyze
common causes and types of outages discussed in the mailing list. Figure 4 shows
the fraction of threads classified based on their outage and entity types.
Outage types are dominated by user-observed issues. We find that the
majority of threads are placed in categories that indicate user impact. For outage
type, mobile data network issues, application server, and application configura-
tion issues dominate, comprising 28 %, 20 %, and 23 % of the data respectively.
Upon closer inspection we find common terms in the application clusters related

0

10

20

Application
C

onfiguration

Application
Server

Attack

C
ensorship

C
ongestion

D
evice

Failure

D
N

S
R

esolution

Fiber
C

ut

M
obile

D
ata N

etw
ork

N
atural

D
isaster

Packet
Loss

Pow
er

O
utage

R
outing

%
 o

f T
hr

ea
ds

(a) Type of outage

0

20

40

60

Access

C
D

N

C
loud

Provider

C
ontent

Em
ail

ISP

M
obile

%
 o

f T
hr

ea
ds

(b) Entity

Fig. 4. Percentage of threads classified into each class

3 The few threads with multiple labels were often related; e.g., congestion and packet
loss or mobile + ISP.

Internet Outages, the Eyewitness Accounts 215

to load balancing, server errors, and browsers (along with common applications
like Facebook). For mobile, we found mobile network operators like AT&T,
Sprint, and Verizon were common keywords. After issues faced by users, top-
ics tend to be related to more operational issues such as congestion, packet loss,
and routing. Issues related to attacks, censorship, natural disasters, and power
outages are less common.
Dominant entities are access, ISP and mobile networks. Figure 4 high-
lights the prevalence of ISPs, access networks and mobile networks as entities
involved in the outages. Overall, errors in application-specific entities like CDNs,
e-mail, cloud and content providers were less prevalent in the mailing list dis-
cussions. Keywords in the access category tended to include access network
providers like Verizon, Comcast, and Time Warner as well as issues like latency,
time outs, and fiber cuts.
Content and mobile issues are on the rise. Figure 5 shows the breakdown
of topics by year for outage and entity types, respectively. Starting in 2009 we see
the emergence of Content providers as an entity that is commonly discussed in
the mailing list. That same year we begin to see more posts related to application
misconfigurations. We also observe a corresponding increase in issues related to
mobile data.
Correlating keywords and associated outage types. We revisit some of
the keywords observed in Fig. 2 and consider the top outage types for threads
containing these keywords in Table 4. We consider keywords related to specific
entities in three broad classes: ISP (Level 3), content provider (Facebook), and
mobile ISP (AT&T). We find that threads containing Level 3 (and other ISPs we
consider), tend to relate to operational issues for the network such as congestion,
packet loss and routing incidents. In contrast, Facebook and AT&T tend to be
discussed in relation to application server/misconfiguration issues and mobile
data network issues. Interestingly, we also observe Facebook in threads related
to mobile data network issues, possibly related to mobile users having trouble
reaching the site. Similarly, AT&T is mentioned in threads related to application

0.1

0.2

2006 2008 2010 2012
Year

Fr
ac

tio
n

of
 T

hr
ea

ds

Application
Misconfiguration

Application
Server
Down

Dns
Resolution

Packet
Loss

(a) Types of outages

0.0

0.1

0.2

0.3

2006 2008 2010 2012
Year

Fr
ac

tio
n

of
 T

hr
ea

ds

Access Content Email ISP Mobile

(b) Entities

Fig. 5. Distribution of topics over time for topics that change by at least 10 %

216 R. Banerjee et al.

misconfigurations e.g., application specific CDN configurations that may impact
users on a specific ISP.
High impact events. Finally, we investigate two incidents which explain spikes
in posting in 2012. Among threads with the longest duration and most replies, are
those related to a series of large-scale DNS amplification DDoS attacks in Sep-
tember 2012 [1,3]. Threads related to the issue reported performance problems in
DNS servers that, as a result of misconfiguration, were acting as open resolvers.
These servers were inadvertently flooding targets with large DNS responses,
which in turn degraded performance for legitimate DNS queries [40].

Another spike in activity is related to a widespread outage in late October
2012, experienced by users of Windstream, a large ISP in the United States.
Users in multiple areas (mainly in the north and northeastern US) experienced
outages due to a fiber-cut caused by Hurricane Sandy [45]. Many outages around
that time–related to Hurricane Sandy–also contributed to the increase in mailing
list activity during fall 2012 [15]. We manually verified that these high-impact
events were correctly classified by the machine learning method in terms of both
the type of outage and the entities involved.

Table 4. Correlation between entity keywords, and cause of outage

ISP: level 3 Content: facebook Mobile: AT&T

Class label (% of threads) Class label (% of threads) Class label (% of threads)

Congestion (15.1) App. server (14.5) Mobile data networks (26.0)

Packet loss (14.7) Mobile data netw. (12.9) App. misconfiguration (12.0)

Routing (14.2) App. misconfiguration (12.1) Packet loss (9.6)

6 Related Work

Intradomain reliability. Network reliability has been considered in a variety
of networks ranging from an academic WAN [43] and ISPs [32,47] to data cen-
ters [22,39] using a variety of data sources. Some monitor properties of intrado-
main routing protocol such as OSPF Link State Advertisements (LSAs), which
can indicate instability or unavailability of network links, or IS-IS messages which
require specialized infrastructure for monitoring. More recently, there has been
interest in using syslog–which is ubiquitous in many networks–to infer and study
network failures. Because these studies rely on protocol and logging messages to
infer the state of the network, they have a hard time inferring real user impact.
Further, in many cases the network is an important part of the business which
makes revealing failures unattractive.
Interdomain reliability. A variety of techniques have been employed to under-
stand reliability at the interdomain level, including ongoing probing and mon-
itoring efforts [26] and crowdsourcing measurements from a large population
of P2P users [13]. However, characterization of the Internet’s reliability at this

Internet Outages, the Eyewitness Accounts 217

level has been hindered by the limited view of the system provided by publicly
available datasets (e.g., BGP feeds).
Application layer and user-reported reliability. Network level failures do
not always imply application layer or user-observed impact. There have been
some studies that specifically try to address this using different techniques. Web
application reliability was measured by monitoring Web client connections [33]
to determine if failures were primarily client or server-related. Netmedic [25]
analyzes correlations between application servers that fail in an enterprise net-
work to understand root cause. In the context of cloud computing, Benson et al.
attempt to mine threads from customer forums of an IaaS cloud provider [7] to
identify problems users face when using cloud computing. This work is similar
to our own in that it attempts to gather data from naturally arising user discus-
sions, however, their work takes a more focused view considering only failures of
a specific cloud provider.

Concurrently to our study, Dimitropoulos and Djatmiko also recognized the
potential of mailing lists as a dataset [16]. However, their analysis is orthogonal
to ours, which focuses more on how to apply NLP to exploit the semantics of
these datasets and understand them at-scale.

7 Conclusions

In this paper, we explore an operator-run mailing list to understand reliability
issues spanning multiple networks over a period of 7 years. Our main observations
are that the list is primarily used for discussing issues raised by users (e.g.,
application and mobile data issues) and that content services are on the rise in
terms of discussion threads.

The mailing list data presents only one of many natural language resources
that can be used to understand network reliability and the methodology applied
in this paper will hopefully inspire further analysis of natural language network
datasets (e.g., forums [7] and trouble shooting tickets [12]) and mailing lists
such as NANOG. Text-based analysis may also be combined with empirical
troubleshooting approaches (e.g., Hubble [26], LIFEGUARD [27]) to provide a
more complete view of network reliability when directly measured data is scarce,
incomplete, or unavailable.

References

1. Deep inside a DNS amplification DDoS Attack. http://blog.cloudflare.com/
deep-inside-a-dns-amplification-ddos-attack

2. FCC network outage reporting system (NORS). http://transition.fcc.gov/pshs/
services/cip/nors/nors.html

3. Spamhaus DDoS grows to internet-threatening size. http://arstechnica.com/
security/2013/03/spamhaus-ddos-grows-to-internet-threatening-size/

4. Stanford corenlp. http://nlp.stanford.edu/software/corenlp.shtml

http://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack
http://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack
http://transition.fcc.gov/pshs/services/cip/nors/nors.html
http://transition.fcc.gov/pshs/services/cip/nors/nors.html
http://arstechnica.com/security/2013/03/spamhaus-ddos-grows-to-internet-threatening-size/
http://arstechnica.com/security/2013/03/spamhaus-ddos-grows-to-internet-threatening-size/
http://nlp.stanford.edu/software/corenlp.shtml

218 R. Banerjee et al.

5. Alimi, R., Wang, Y., Yang, Y.R.: Shadow configuration as a network management
primitive. In: SIGCOMM (2008)

6. Basu, S., Banerjee, A., Mooney, R.J.: Semi-supervised clustering by seeding. Int.
Conf. Mach. Learn. 2, 27–34 (2002)

7. Benson, T., Sahu, S., Akella, A., Shaikh, A.: A first look at problems in the cloud.
In: HotCloud (2010)

8. Brandenburg, M.: Determining the impact of wide area network outages. http://
searchenterprisewan.techtarget.com/feature/Determining-the-impact-of-wide-area-
network-outages

9. Brodkin, J.: Amazon ec2 outage calls ‘availability zones’ into question. http://
www.networkworld.com/news/2011/042111-amazon-ec2-zones.html (2011)

10. Growing business dependence on the internet: new risks require CEO action.
http://businessroundtable.org/sites/default/files/200709 Growing Business
Dependence on the Internet.pdf (2007)

11. Chen, X., Mao, Y., Mao, Z.M., van de Merwe, K: Declarative configuration man-
agement for complex and dynamic networks. In: CoNEXT (2010)

12. Cheng, Y.-C., Bellardo, J., Benko, P., Snoeren, A., Voelker, G., Savage, S.: Jigsaw:
solving the puzzle of enterprise 802.11 analysis. In: SIGCOMM (2006)

13. Choffnes, D., Bustamante, F., Ge. Z.: Crowdsourcing service-level network event
detection. In: SIGCOMM (2010)

14. Cowie, J.: Renesys blog: China’s 18-minute mystery. http://www.renesys.com/
blog/2010/11/chinas-18-minute-mystery.shtml

15. Darrow, B.: Superstorm Sandy wreaks havoc on internet infrastructure. https://
gigaom.com/2012/10/30/superstorm-sandy-wreaks-havoc-on-internet-infrastruc-
ture/ (2012)

16. Dimitropoulos, X., Djatmiko, M.: Analysis of outage posts in the nanog and outages
mailing lists. https://tnc2013.terena.org/core/presentation/146 (2013)

17. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-
factorizations for clustering. In: Proceedings of KDD (2006)

18. Dynes, S., Andrijcic, E., Johnson, M.E.: Costs to the US economy of information
infrastructure failures: estimates from field studies and economic data. In: WEIS
(2006)

19. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: a library
for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

20. Feamster, N., Balakrishnan, H.: Detecting BGP configuration faults with static
analysis. In: Sigcomm (2005)

21. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Proceedings of ACL (2005)

22. Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers:
measurement, analysis, and implications. In: SIGCOMM (2011)

23. Japkowicz, N.: The class imbalance problem: significance and strategies. In: Pro-
ceedings of the International Conference on Artificial Intelligence, Citeseer (2000)

24. Javed, U., Cunha, I., Choffnes, D.R., Katz-Bassett, E., Anderson, T.,
Krishnamurthy, A.: PoiRoot: investigating the root cause of interdomain path
changes. In: SIGCOMM (2013)

25. Kandula, S., Mahajan, R., Verkaik, P., Agarwal, S., Padhye, J., Bahl, P.: Detailed
diagnosis in enterprise networks. In: SIGCOMM (2010)

26. Katz-Bassett, E., Madhyastha, H., John, J., Krishnamurthy, A., Wetherall, D.,
Anderson, T.: Studying black holes in the internet with hubble. In: NSDI (2008)

http://searchenterprisewan.techtarget.com/feature/Determining-the-impact-of-wide-area-network-outages
http://searchenterprisewan.techtarget.com/feature/Determining-the-impact-of-wide-area-network-outages
http://searchenterprisewan.techtarget.com/feature/Determining-the-impact-of-wide-area-network-outages
http://www.networkworld.com/news/2011/042111-amazon-ec2-zones.html
http://www.networkworld.com/news/2011/042111-amazon-ec2-zones.html
http://businessroundtable.org/sites/default/files/200709_Growing_Business_Dependence_on_the_Internet.pdf
http://businessroundtable.org/sites/default/files/200709_Growing_Business_Dependence_on_the_Internet.pdf
http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml
http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml
https://gigaom.com/2012/10/30/superstorm-sandy-wreaks-havoc-on-internet-infrastructure/
https://gigaom.com/2012/10/30/superstorm-sandy-wreaks-havoc-on-internet-infrastructure/
https://gigaom.com/2012/10/30/superstorm-sandy-wreaks-havoc-on-internet-infrastructure/
https://tnc2013.terena.org/core/presentation/146

Internet Outages, the Eyewitness Accounts 219

27. Katz-Bassett, E., Scott, C., Choffnes, D.R., Cunha, I., Valancius, V., Feamster,
N., Madhyastha, H.V., Anderson, T., Krishnamurthy, A.: LIFEGUARD: Practical
repair of persistent route failures. In: SIGCOMM (2012)

28. Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets:
one-sided selection. Int. Conf. Mach. Learn. 97, 179–186 (1997)

29. Landis, J.R., Koch, G.G., et al.: The measurement of observer agreement for cat-
egorical data. Biometrics 33(1), 159–174 (1977)

30. Mahimkar, A., Song, H.H., Ge, Z., Shaikh, A., Wang, J., Yates, J., Zhang, Y.,
Emmons, J.: Detecting the performance impact of upgrades in large operational
networks. In: Sigcomm (2010)

31. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval,
vol. 1. Cambridge University Press, Cambridge (2008)

32. Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C.-N., Ganjali, Y.,
Diot, C.: Characterization of failures in an operational IP backbone network.
IEEE/ACM ToN 16(4), 749–762 (2008)

33. Padmanabhan, V., Ramabhadran, S., Agarwal, S., Padhye, J.: A study of end-to-
end web access failures. In: CoNEXT (2006)

34. cost of data center outages. http://www.emersonnetworkpower.com/documentat-
ion/en-us/brands/liebert/documents/white%20papers/2013 emerson data center
cost downtime sl-24680.pdf (2013)

35. Prince, M.: How to launch a 65Gbps DDoS, and how to stop one. http://blog.
cloudflare.com/65gbps-ddos-no-problem (2012)

36. Ramos, J.: Using TF-IDF to determine word relevance in document queries. In:
Proceedings of the International Conference on Machine Learning (ICML) (2003)

37. Rocchio, J.J.: Relevance feedback in information retrieval. http://jmlr.org/papers/
volume5/lewis04a/a11-smart-stop-list/english.stop (1971)

38. Rode, V.: Outages - outages (planned & unplanned) reporting. https://puck.
nether.net/mailman/listinfo/outages

39. Shaikh, A., Isett, C., Greenberg, A., Roughan, M., Gottlieb, J.: A case study of
OSPF behavior in a large enterprise network. In: ACM IMW (2002)

40. Sophos user bulletin board. https://www.astaro.org/gateway-products/general-
discussion/44500-ddos-attack-via-dns.html

41. Tariq, M.B., Zeitoun, A., Valancius, V., Feamster, N., Ammar, M.: Answering
“what-if” deployment and configuration questions with WISE. In: Sigcomm (2008)

42. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech
tagging with a cyclic dependency network. In: Proceedings of NAACL (2003)

43. Turner, D., Levchenko, K., Snoeren, A.C., Savage, S.: California fault lines: under-
standing the causes and impact of network failures. In: SIGCOMM (2010)

44. Veropoulos, K., Campbell, C., Cristianini, N., et al.: Controlling the sensitivity of
support vector machines. In: Proceedings of the International Joint Conference on
Artificial Intelligence, vol. 1999, pp. 55–60. Citeseer (1999)

45. Vielmetti, E.: http://goo.gl/ODnq5q (2012)
46. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.: Constrained k-means clus-

tering with background knowledge. Int. Conf. Mach. Learn. 1, 577–584 (2001)
47. Watson, D., Jahanian, F., Labovitz, C.: Experiences with monitoring OSPF on a

regional service provider network. In: ICDCS (2003)

http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/white%20papers/2013_emerson_data_center_cost_downtime_sl-24680.pdf
http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/white%20papers/2013_emerson_data_center_
http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/white%20papers/2013_emerson_data_center_cost_downtime_sl-24680.pdf
http://blog.cloudflare.com/65gbps-ddos-no-problem
http://blog.cloudflare.com/65gbps-ddos-no-problem
http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
https://puck.nether.net/mailman/listinfo/outages
https://puck.nether.net/mailman/listinfo/outages
https://www.astaro.org/gateway-products/general-discussion/44500-ddos-attack-via-dns.html
https://www.astaro.org/gateway-products/general-discussion/44500-ddos-attack-via-dns.html
http://goo.gl/ODnq5q

Transparent Estimation of Internet Penetration
from Network Observations

Suso Benitez-Baleato1,2(B), Nils B. Weidmann1, Petros Gigis3,
Xenofontas Dimitropoulos3, Eduard Glatz4, and Brian Trammell4

1 Department of Politics and Public Administration,
University of Konstanz, Konstanz, Germany
jesus.benitez-baleato@uni-konstanz.de

2 University of Santiago de Compostela, Santiago de Compostela, Spain
3 Foundation of Research and Technology Hellas (FORTH), Heraklion, Greece

4 Computer Engineering and Networks Laboratory (TIK),
ETH Zurich, Zurich, Switzerland

Abstract. The International Telecommunications Union (ITU) and the
Organization for Economic Cooperation and Development (OECD) pro-
vide Internet penetration statistics, which are collected from official
national sources worldwide, and they are widely used to inform policy-
makers and researchers about the expansion of digital technologies. Nev-
ertheless, these statistics are derived with methodologies, which are often
opaque and inconsistent across countries. Even more, regimes may have
incentives to misreport such statistics. In this work, we make a first
attempt to evaluate the consistency of the ITU/OECD Internet pene-
tration statistics with an alternative indicator of Internet penetration,
which can be measured with a consistent methodology across countries
and relies on public data. We compare, in particular, the ITU and OECD
statistics with measurements of the used IPv4 address space across coun-
tries and find very high correlations ranging between 0.898 and 0.978 for
all years between 2006 and 2010. We also observe that the level of consis-
tency drops for less developed or less democratic countries. Besides, we
show that measurements of the used IPv4 address space can serve as a
more timely Internet penetration indicator with sub-national granularity,
using two large developing countries as case studies.

1 Introduction

How has the usage of the Internet technologies increased in different countries?
How has that growth affected economic and societal changes? A main source
of empirical evidence to address these questions are the Internet penetration
statistics provided by the ITU and the OECD. Those statistics are influential
in debates about global technological development, Internet governance and its
societal effects. Moreover, social scientists rely on these datasets to understand

Baleato and Weidmann gratefully acknowledge funding from the Alexander von
Humboldt Foundation.

c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 220–231, 2015.
DOI: 10.1007/978-3-319-15509-8 17

Transparent Estimation of Internet Penetration from Network Observations 221

the impact of technology on social and political systems [22]: Is the Internet
really a catalyst of popular protest that can topple dictators? Or does it rather
play into the hands of autocrats, increasing opportunities for surveillance and
censoring?

While important both for policy-making and scientific research, these statis-
tics exhibit some key shortcomings. The ITU and the OECD do not measure
Internet penetration directly, but they rather collect and standardize informa-
tion provided by different governments and their regulatory agencies. Each of
these agencies has its own protocol for collecting these numbers at the national
level. Thus, the final statistics that are ultimately included in the main datasets
may be subject to error due to poor data collection standards, or even system-
atic inflation due to some countries’ incentives to exaggerate economic progress
because of aid conditionality. Similarly, differences in data collection across coun-
tries may significantly limit comparability and thus impede the main purpose
of the data. Also, these statistics become available with significant delay (often-
times a year or more). Last, only national-level statistics are provided, which
makes analysis of variation in Internet penetration within countries impossible.

In this work, we make a first attempt to use Internet measurement tech-
niques to independently verify and supplement existing penetration statistics.
We introduce a reproducible methodology that uses publicly available data and
circumvents the limitations of transparency, comparability availability and reso-
lution. We derive Internet penetration estimates from geolocated network mea-
surements of the globally used IPv4 address space using two different approaches,
and then compare our estimates with the official ITU/OECD statistics between
2006 and 2010. We find that our estimates exhibit very high correlation (rang-
ing between 0.898 and 0.978) with the official data for all studied years, which
however drops for less developed or democratic countries. In addition, we show
that our estimates are consistent with official statistics at the subnational level
for two large developing countries. These observations are encouraging, because
they suggest that readily available data (e.g. from RouteViews [29]) can be used
to cross-check official statistics and derive Internet penetration estimates more
timely and with finer geographical resolution than the ITU/OECD statistics.

Our paper is structured as follows. First, we discuss the importance of the
Internet penetration statistics for debates on technological development, Inter-
net governance and its societal effects. Then we describe the methods and the
datasets that we use to map and geo-localize the used IPv4 address space. After
that, we compare them with the official statistics both at the country and the
regional level. Finally, we discuss the results, the limitations, and the potential
uses of our estimates.

2 Data and Research on Internet Penetration

The ITU is the United Nations telecommunications agency in charge of the
global radio spectrum and satellite orbits allocation, the development of techni-
cal standards and the fostering of ICT deployment in developing countries [9].

222 S. Benitez-Baleato et al.

As part of its role in technological development, the ITU collects, verifies and
harmonizes ICT statistics. The outcome of this work is disseminated through
the World Telecommunications/ICT Indicators Database (WTID), a chronolog-
ical time series for over 200 countries regularly updated from 1960 on [12]. The
WTID is made of more than 150 indicators describing aspects like coverage,
traffic, price or quality of several communication technologies, including access
and use of the Internet. The Internet penetration indicators are available for
192 countries, starting in 1990. The ITU retrieves this data from questionnaires
submitted to the official country contacts. There are two types of national con-
tact points in charge of providing the information to the ITU. The first one is
the national telecommunication ministries and regulatory authorities, which pro-
vide Internet penetration estimates based on data from fixed and mobile Internet
providers. The second source is the national statistical offices, which typically
obtain data on access and use of the Internet through surveys. The collected
data is then harmonized by the statistical division of the ITU, consistently with
a set of guidelines intended to ensure the comparability of the data measurement
and collection efforts performed by the respective countries [10,11].

Other organisations providing Internet penetration statistics, such as the
Organisation for the Economic Cooperation and Development (OECD), follow
a similar procedure. The OECD indicators also rely on data provided by the
administrative bodies of the member states and from the EU Community Survey
on household use of ICT. They are available for 34 countries starting in 2006
[20]. However, despite the similar data collection method, this does not mean
that the values correspond to those in the ITU dataset; the correlation between
the two is only 0.705 during our period of analysis (2006–2010). Thus, we will
treat the OECD estimates as separate datasets in the analysis below.

2.1 Existing Work

In the following paragraphs, we discuss existing work that relies primarily on the
ITU WTID database. Due to the fact that it is the only global cross-national
database on ICT penetration, the WTID has been widely used in policy and
research. The WTID is the main reference for many other UN agencies, including
the Department of Economic and Social Affairs (DESA) and the World Intellec-
tual Property Organisation (WIPO), who use it for their e-Government survey
and the Global Innovation Index [27,32]. Also, the ITU data is used to measure
the progress of the Millenium Development Goals, a road map adopted by 189
countries to make available the benefits of the ICT for developing countries [26].
Moreover, the WTID is extensively used in the Global Internet Report by the
Internet Society (ISOC) [14] and the Global Information Technology Report by
the World Economic Forum (WEF) [30], which describe the state of the Internet.

ITU statistics have also been used in research. Economists, for example,
have used the WTID to analyze the effect of ICT investment on economic
growth [23,24]. In political science, one strand of research has focused on the
role of political institutions and economic development for technology adoption
[19,21]. Here, again, the methodological approach is cross-national statistical

Transparent Estimation of Internet Penetration from Network Observations 223

comparison using ITU indicators. Another question political scientists have
focused on is the impact of ICT on democratization. Earlier work using ITU data
concludes that the Internet fosters democracy through less restrictive channels of
communication [2,6]. However, more recent results provide a more cautious view,
as they show that closed autocratic regimes are keen adopters of this technology
and are no more likely to democratize as a result of ICT introduction [22].

2.2 Limitations of Existing Databases

As the previous section has shown, the ITU indicators are a useful resource both
for policy-makers and researchers alike. However, these valuable datasets suffer
from a number of shortcomings.

Transparency. The lack of a standardized methodology across countries makes it
difficult to understand and verify how the data are generated. For example, many
countries will not have systematic data collection routines in place, requiring
rough “approximations”. Hence, it is not inconceivable that data provided to
the ITU is subject to errors and biases in reporting. This may not be a problem
affecting ICT statistics alone, but has been shown to be a more general issue
with statistics from less developed countries [13].

Comparability. Because of the different quality and accuracy of numbers across
countries, comparability in cross-national analyses may be severely hampered.
The reason is that differences in Internet penetration across countries as picked
up by the WTID can be partly the result of different data collection methodolo-
gies. With little information about the procedures employed by each country, it
is difficult to even assess the severity of the problem, rather than correct it.

Availability. While the ITU offers semestral updates of their database, these
updates are applied only to a selected number of indicators. The final revised
edition of the full indicators is only available with one year delay, and is subject
of retrospective revision caused by changes either in external datasets (like the
population statistics) or by amendments submitted by national agencies. Those
delivery times do also affect the other datasets considered; for example, some of
the OECD indicators are only delivered with the publication of the Communi-
cations Outlook, once every two years [20].

Resolution. The WTID and OECD databases provide national level data only.
However Internet penetration does not need to be uniform in a given country;
regions of high coverage can exist next to those with low coverage. For many
research projects, it would be useful to have indicators at the subnational level
(for example, provinces or districts), to study how Internet coverage is provided
sub-nationally, and what effects it has. The available statistics are of no use
for this.

224 S. Benitez-Baleato et al.

3 Data Sources and Methodology

In this section we describe the datasets and the processing methodology. First
we describe how we use routing data from Border Gateway Protocol (BGP)
collectors, namely from RouteViews [29], to estimate Internet penetration. Since
not all routed addresses are actually used, we use in addition passive traffic
measurements based on NetFlow from an academic Internet Service Provider
(ISP) in Switzerland (SWITCH [25]) to estimate the globally active IPv4 address
space based on the methodology of [3]. We collapse IPv4 address blocks to /24s
which is the longest unfiltered IPv4 prefix; and then geolocalize /24 prefixes in
national or large subnational administrative units.

Globally Routed IPv4 Addresses. We first extract routed IPv4 addresses from
publicly available BGP tables. In particular, we used a daily routing table snap-
shot from route-views2.oregon-ix.net for the first 16 days of each February and
August between 2004 and 2012. We selected these days to align with the times-
pan of the NetFlow data that were available to us. We collapsed all prefixes to
unique /24s per day. To mitigate the effect of misconfigurations and route leaks,
which could pollute our data, we filtered out reserved IPv4 addresses and prefixes
larger than /8. In addition, for each 16-day interval we kept the /24 prefixes that
were observed in all 16 days. In Fig. 1 we show the number of unique /24 prefixes
in each 16-day interval over time with and without our filtering. We observe two
large spikes, which were the result of route leaks, which our filtering effectively
mitigated. Apart from these two spikes, the effect of filtering is negligible. From
2004 to 2012 the number of routed /24 prefixes doubled.

Fig. 1. Routed and active /24 IPv4 address blocks over time.

Active IPv4 Addresses. We also infer active /24 IPv4 address blocks using pri-
vate network traffic data from an ISP. We use the inferred active addresses
as a sanity check on the methodology based on the publicly available routed
addresses. Specifically, we used unsampled NetFlow records collected from the
border routers of SWITCH the first 16 days of each February and August
between 2004 and 2010. For the years 2011 and 2012 we do not use any
further the August and February samples due to anomalous or missing data.

http://route-views2.oregon-ix.net

Transparent Estimation of Internet Penetration from Network Observations 225

We then extracted two-way TCP flows (to eliminate the effect of spoofing) and
/24 blocks seen from SWITCH based on the methodology of [3]. Our previous
work showed that this approach provides rich visibility (although not complete)
into the globally used IPv4 address space [3]. In this paper, we extend our
analysis to span a period of 9 years, for which we processed 218 billion flows
(corresponding to 8.05 petabytes of traffic) in total. In Fig. 1 we compare how
the active address space compares with the routed address space. We observe
that on average 27.7 % of the routed address space is seen in the collected netflow
data.

Geolocation. We then geo-reference each /24 block using the Maxmind GeoIP2
City database [18] and assign it to a country. The GeoIP2 City database is the
most accurate geo-database provided by Maxmind, which claims 99.8 % accu-
racy at the country level and also high levels of accuracy within several different
countries worldwide (for more details see [17]). We note though that geolocaliza-
tion at finer granularity (e.g. the city level) or in cellular networks is still an open
research problem and can be inaccurate, which is an issue that may affect our
subnational results (cf. Sect. 4.4). We assign the /24 blocks to countries based on
their spatial coordinates after removing 13,431 blocks georeferenced to ’EU’ with
coordinates in Switzerland, which account for approximately 0.05 % of the total
active prefixes. We assign coordinates to countries using the CShapes dataset, a
Geographical Information Systems (GIS) dataset on international borders that
also incorporates border changes over time [31]. Our final indicator of Internet
penetration is the number of routed or active /24 blocks in each country.

4 Correlation Analysis of Internet Penetration Estimates

In order to evaluate the consistency between our estimates of Internet penetra-
tion and those provided by the ITU and the OECD, we first conduct a bivariate
analysis of the correlation of both estimates and how it changes over time. In
particular, we correlate the number of routed or active /24 blocks with the num-
ber of Internet users according to the ITU or OECD data. For both estimates,
we use the logarithm, since the numbers span several scales. We also analyze
the agreement between the ITU numbers and our estimates when distinguishing
between countries with different levels of economic development and democracy.
Lastly, we take our analysis to the subnational level, evaluating the agreement of
official and estimated Internet penetration estimates within two large developing
countries: India and Turkey. Although we have verified that our findings hold
for the entire duration of the studied datasets, we present results primarily for
the period between 2006 and 2010 which is covered by all datasets.

4.1 ITU/OECD Statistics vs. Internet Measurements
at the Country Level

The scatter plots in Fig. 2 illustrate and quantify the correlation between the
proposed and the official Internet penetration indicators for a single time slice

226 S. Benitez-Baleato et al.

Fig. 2. Scatterplots of the proposed and the ITU/OECD country-level Internet pen-
etration estimates for February 2010. For each scatterplot, we mark the correlation
coefficient.

(February 2010). Both for routed and active prefixes, the correlation with the
ITU data is very high, i.e. 0.889 or higher, as shown in the first two panels of
Fig. 2. This suggests that both the number of routed or active prefixes can serve
as good alternative indicators of Internet penetration. This picture improves for
OECD statistics, which include more developed countries, as shown in the last
two panels of Fig. 2.

The high correlation is also stable over time. The average correlation with
ITU across all semi-annual samples between 2006 and 2010 is 0.898 and 0.911
for routed and active prefixes, respectively, and 0.944 (routed) and 0.978 (active)
when comparing with the OECD data. Figure 3 shows the evolution over time,
both for different validation datasets (ITU/OECD) and different measurement
approaches (routed/active).

Fig. 3. Correlation over time between official statistics (ITU and OECD) and the
number of routed/active prefixes.

4.2 Internet Penetration by Level of Economic Development
and Democracy

We have seen that Internet penetration estimates based on network measure-
ments achieve high correlation with the official Internet penetration statistics
provided by the ITU and the OECD. However, so far we have treated all coun-
tries equally. In order to evaluate how our methods fares in different contexts,

Transparent Estimation of Internet Penetration from Network Observations 227

we analyze correlations in different types of countries. We conduct this analysis
on a global level using the ITU data only. As discussed above, the statistics pro-
vided by the ITU may be particularly problematic (i) in less developed countries
with poor bureaucracies and (ii) in non-democratic countries where governments
are not required or not willing to collect and share data. For these reasons, our
analysis aims to establish how the agreement between ITU Internet penetration
statistics and our network-based ones varies across different levels of development
and different regime types (non-democratic to democratic ones).

Economic development is typically measured using GDP per capita values,
which we obtain from [5]. The political regime type is measured using the Polity
IV dataset [16]. Polity IV is the most frequently used quantitative database on
political regimes, and encodes regime type using a numeric indicator ranging
from −10 to 10. Low values correspond to strongly autocratic countries such
as North Korea, and high values to established democracies such as the US.
We bin the countries in our sample into low-, medium- and high GDP countries
(Fig. 4a) and those with low-, medium- and high democracy scores (Fig. 4b). The
split is done such that each category includes exactly a third of the countries in
our sample. In each category, we compute the correlation between our network-
based Internet penetration estimates and the ones from the ITU.

GDP (Routed) GDP (Active) Democracy (Routed) Democracy (Active)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Low Medium High Low Medium High Low Medium High Low Medium High

C
or

re
la

tio
n

(a) by level of development (b) by level of democracy

Fig. 4. Correlation between the ITU Internet penetration statistics and the number of
routed/active IPv4 /24 prefixes of 192 countries grouped by their GDP and democracy
index (Polity IV) into three equal-size groups.

The results show small but distinct trends in the correlations. Figure 4a
reveals that the agreement between our estimates and the ITU figures increases
for more developed countries, regardless of whether we use estimates based on
routed prefixes or active networks. A similar trend can be identified in Fig. 4b for
more democratic countries. These trends could have different causes: First, they
could be due to limitations of data collection and biases in reporting that affect
primarily less developed or less democratic countries. Second, it is possible that
our method suffers from a lower accuracy of geo-localization in these countries,
which could render it less precise in these contexts. However, due to fairly high
accuracy of geo-localization at the country level (see below), we believe that the

228 S. Benitez-Baleato et al.

second reason is probably less influential. This would mean that the trends in
the correlations could indeed be due to differences in the quality of the ITU
estimates across the different groups of countries.

4.3 Internet Penetration within Countries

Our analysis above compared country-level Internet penetration statistics to
those inferred from network observations. In principle, however, the proposed
approach can also be applied to the subnational level, by estimating penetration
in sub-national units (such as provinces or districts) from the number of routed
or active /24 blocks in that unit. Although not the main contribution of this
paper, we provide a first analysis here. We focus on two countries for which
subnational Internet penetration statistics are publicly available and which have
an interesting political profile (India and Turkey). For both countries, the num-
ber of routed/active /24 blocks was computed using the geo-localized prefixes
as described above, which were assigned to first-tier subnational units (states
in India, and provinces in Turkey). The boundaries of these units were taken
from the Global Administrative Areas database, a spatial dataset of internal
administrative units [28].

India. For India, we used data from 2006 to 2010 for 29 states collected from
the official statistics of Internet and Broadband Subscribers released by the
Lower House of the Parliament [4]. As above, we reported correlations between
the (logged) number of Internet users according to the official sources, and
the (logged) number of prefixes in the respective state and time period. We
match the statistics from India to the closest in time measurements from the
February/August snapshot of the respective year. Figure 5 shows the results,
where the official statistics show an average correlation coefficient of 0.956 with
active and 0.942 with routed prefixes.

Fig. 5. Correlation over time between official Internet penetration statistics and the
number of active/routed prefixes for 29 states within India.

Turkey. In the case of Turkey, we use the statistics of Internet usage for 2010
released for the 81 provinces by the largest ISP (TTNET) and the Information
and Communication Technologies Authority [8]. After removing missing cases

Transparent Estimation of Internet Penetration from Network Observations 229

and matching the administrative units, our final sample includes 65 provinces.
Again, we find high correlations. The number of routed /24 blocks correlates
with the official number of Internet subscribers at 0.89, which is slightly higher
for active networks (0.907).

Thus, our method works well also at the subnational level. A key issue here,
however, is the resolution and quality of IP geo-localization. The subnational
units we use in this analysis are still fairly large; once we increase resolution
down to the level of municipalities or even cities, low geo-localization accuracy
becomes a key limitation as discussed next.

4.4 Discussion and Shortcomings

Address Space Over-/Underpopulation. One complication in comparing Internet
penetration based on used address space is that an IP address may be used by a
different number of subscribers in different regions of the world. Network address
translation (NAT) has long broken any assumption of an 1:1 mapping between
addresses and users. Further, the causes are not only political and economic,
but related to Internet governance as well. IP addresses are allocated by five
Regional Internet Registries (RIRs): ARIN for North America, LACNIC for
Latin America and the Caribbean, RIPE for Europe and West Asia, APNIC for
Asia and the Pacific, and AFRINIC for Africa. Each of these RIRs has a member
base made up of Internet service providers and enterprises, a mission to allocate
IP address space based on need, and its own framework for deciding policies for
allocation of addresses to the members. As global IPv4 space has been exhausted,
the different approaches within the different regions [15] have led to regionally
linked amounts of pressure to conserve addresses by sharing them more broadly.
A complete analysis of this phenomenon is outside the scope of this work, but
this should be kept in mind when comparing Internet penetration numbers based
on address counting across different RIR regions. Despite these differences, our
analysis shows very high correlation coefficients across regions.

IP Address Geolocation. The accuracy of the MaxMind GeoIP database we use
for geolocation, and of IP geolocation databases in general, is difficult to evalu-
ate, and generally lacking in good sources of ground truth. Nonetheless, previous
research has evaluated the accuracy of a set of these databases, including Max-
Mind GeoIP, in 2011 [7]. For national-level data, the MaxMind GeoIP database
we use agreed with the majority of other databases 99.1 % of the time, which
was the best agreement ratio of any of the evaluated geolocation databases. For
subnational data, the authors found that 78 % of the geolocated IP addresses
globally were within 40 km of the centroid of the region most probably containing
the IP address, with a great deal of regional variation: 75th percentile distances
range from about 10 km in the ARIN region, to about 40 km in the APNIC
region (containing India), to about 400 km in the LACNIC region. Any analysis
of subnational-level IP geolocation data must therefore take the probable error
into account, as well as the size of the regions in question. Given the comparison

230 S. Benitez-Baleato et al.

to other databases, however, we have confidence in our selection of MaxMind
GeoIP, and in our broad conclusions at both the national and subnational levels.

5 Conclusions

Official statistics about Internet penetration in different countries provided by
the ITU and the OECD are widely-used in research studies and policy debates.
However, due to the reliance on governments as the source of information, these
statistics are derived from opaque methodologies, which may not be comparable.
In addition, they are provided with significant delay and only at the national
level. In this work, we propose an alternative Internet penetration indicator based
on readily available measurements of the routed IP address space per country
and show that this approach provides largely consistent results with the official
ITU/OECD statistics. This helps both to increase confidence in the ITU/OECD
data and to provide an alternative methodology with better data transparency,
comparability, resolution, and availability. Furthermore, we showed that the high
level of consistency drops for less developed or democratic countries. Finally, we
also found that our approach is able to pick up variation in Internet penetration
within two large developing countries.

To support our analysis and make our data more broadly accessible to the
community, we provide visualisations of the growth of the Internet between 2004
and 2012, measured in terms of globally routed IPv4 addresses, versus the Gross
Domestic Product (GDP), the income per capita, the population, and the polity
index of 92 large countries in [1].

References

1. Internet growth versus economic and political indicators, October 2014. http://
www.ics.forth.gr/tnl/ipen/index.html

2. Best, M.L., Wade, K.W.: The internet and democracy: Global catalyst or demo-
cratic dud? Bull. Sci. Technol. Soc. 29(4), 255–271 (2009)

3. Dainotti, A., Benson, K., King, A., Claffy, K., Kallitsis, M., Glatz, E.,
Dimitropoulos, X.: Estimating Internet address space usage through passive mea-
surements. ACM SIGCOMM Comput. Commun. Rev. (CCR) 44(1), 42–49 (2014)

4. Datanet India Pvt. Ltd.: Indiastat.com (2014). http://www.indiastat.com/
5. Gleditsch, K.S.: Expanded trade and GDP data. J. Confl. Resolut. 46, 712–724

(2002)
6. Groshek, J.: The democratic effects of the Internet, 1994–2003. Int. Commun. Gaz.

71(3), 115–136 (2009)
7. Huffaker, B., Fomenkov, M., Claffy, K.: Geocompare: A comparison of public and

commercial geolocation databases. CAIDA Technical report, May 2011. http://
www.caida.org/publications/papers/2011/geocompare-tr/geocompare-tr.pdf

8. ICAT: Turkish electronic communications sector quarterly market reports (2013).
http://www.btk.gov.tr/kutuphane ve veribankasi/yil istatistikleri/ehsyib.pdf

9. ITU: Telecommunications development sector. http://www.itu.int/en/ITU-D/

http://www.ics.forth.gr/tnl/ipen/index.html
http://www.ics.forth.gr/tnl/ipen/index.html
http://www.indiastat.com/
http://www.caida.org/publications/papers/2011/geocompare-tr/geocompare-tr.pdf
http://www.caida.org/publications/papers/2011/geocompare-tr/geocompare-tr.pdf
http://www.btk.gov.tr/kutuphane_ve_veribankasi/yil_istatistikleri/ehsyib.pdf
http://www.itu.int/en/ITU-D/

Transparent Estimation of Internet Penetration from Network Observations 231

10. ITU: Handbook for the collection of administrative data on telecommunications/
ICT, 2011 (2011). http://www.itu.int/en/ITU-D/Statistics/Pages/publications/
handbook.aspx

11. ITU: Manual for measuring ICT access and use by households and individuals
(2011). http://www.itu.int/en/ITU-D/Statistics/Pages/publications/manual2014.
aspx

12. ITU: World telecommunication/ICT indicators database (2013). http://www.itu.
int/en/ITU-D/Statistics/Pages/publications/wtid.aspx

13. Jerven, M.: Poor numbers: How We Are misled by African Development Statistics
and What to Do About It. Cornell University Press, Ithaca (2013)

14. Kende, M.: Global Internet report. Internet Society (2014)
15. Lehr, M., Lear, E., Vest, T.: Running on empty: The challenge of managing Internet

addresses. In: Proceedings of the 36th Annual Telecommunications Policy Research
Conference (TPRC), Arlington, VA, USA, September 2008

16. Marshall, M.G., Jaggers, K.: Polity IV project: Political regime characteristics and
transitions, 1800–2012 (2013). http://www.systemicpeace.org/polity/polity4.htm

17. Maxmind GeoIP2 City Accuracy. https://www.maxmind.com/en/geoip2-city-
accuracy

18. Maxmind: GeoIP2 Databases. http://www.maxmind.com/en/geoip2-databases
19. Milner, H.V.: The digital divide: The role of political institutions in technology

diffusion. Comp. Polit. Stud. 39(2), 176–199 (2006)
20. OECD: Key ICT indicators (2013). http://www.oecd.org/internet/broadband/

oecdkeyictindicators.htm
21. Oyelaran-Oyeyinka, B., Lal, K.: Internet diffusion in Sub-Saharan Africa: A cross-

country analysis. Telecommun. Policy 29(7), 507–527 (2005)
22. Rød, E.G., Weidmann, N.B.: Empowering activists or autocrats? The Internet in

authoritarian regimes. J. Peace Res. 52(3), (2015, forthcoming)
23. Roeller, L.H., Waverman, L.: Telecommunications infrastructure and economic

development: A simultaneous approach. Am. Econ. Rev. 91(4), 909–923 (2001).
http://www.jstor.org/stable/2677818

24. Sridhar, K.S., Sridhar, V.: Telecommunications and growth: Causal model, quan-
titative and qualitative evidence. Econ. Polit. Wkly. 41(25), 2611–2619 (2006).
http://www.jstor.org/stable/4418381

25. SWITCH: Swiss National Research and Education Network (NREN). http://www.
switch.ch/

26. United Nations: Millenium development goals (2014). http://www.un.org/
millenniumgoals/

27. United Nations Department of Economic & Social Affairs: United Nations
e-government survey (2014). http://www.un.org/en/development/desa/publica
tions/e-government-survey-2014.html

28. University of California, Berkeley Museum of Vertebrate Zoology and the Inter-
national Rice Research Institute: Global Administrative Areas Dataset (2012).
http://www.gadm.org/

29. University of Oregon: Route Views Project. http://www.routeviews.org/
30. WEF: Global information technology report (2014). http://www.weforum.org/

issues/global-information-technology
31. Weidmann, N.B., Kuse, D., Gleditsch, K.S.: The geography of the inter-

national system: the cshapes dataset. Int. Interact. 36(1), 86–106 (2010).
http://dx.doi.org/10.1080/03050620903554614

32. World Intellectual Property Organization: Global Innovation Index (2014). http://
www.wipo.int/econ stat/en/economics/gii/

http://www.itu.int/en/ITU-D/Statistics/Pages/publications/handbook.aspx
http://www.itu.int/en/ITU-D/Statistics/Pages/publications/handbook.aspx
http://www.itu.int/en/ITU-D/Statistics/Pages/publications/manual2014.aspx
http://www.itu.int/en/ITU-D/Statistics/Pages/publications/manual2014.aspx
http://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx
http://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx
http://www.systemicpeace.org/polity/polity4.htm
https://www.maxmind.com/en/geoip2-city-accuracy
https://www.maxmind.com/en/geoip2-city-accuracy
http://www.maxmind.com/en/geoip2-databases
http://www.oecd.org/internet/broadband/oecdkeyictindicators.htm
http://www.oecd.org/internet/broadband/oecdkeyictindicators.htm
http://www.jstor.org/stable/2677818
http://www.jstor.org/stable/4418381
http://www.switch.ch/
http://www.switch.ch/
http://www.un.org/millenniumgoals/
http://www.un.org/millenniumgoals/
http://www.un.org/en/development/desa/publications/e-government-survey-2014.html
http://www.un.org/en/development/desa/publications/e-government-survey-2014.html
http://www.gadm.org/
http://www.routeviews.org/
http://www.weforum.org/issues/global-information-technology
http://www.weforum.org/issues/global-information-technology
http://dx.doi.org/10.1080/03050620903554614
http://www.wipo.int/econ_stat/en/economics/gii/
http://www.wipo.int/econ_stat/en/economics/gii/

Web and Peer-to-Peer

A Quantitative Study of Video Duplicate
Levels in YouTube

Yao Liu1(B), Sam Blasiak2, Weijun Xiao3, Zhenhua Li4, and Songqing Chen2

1 SUNY Binghamton, Binghamton, USA
yaoliu@cs.binghamton.edu

2 George Mason University, Fairfax, USA
{sblasiak,sqchen}@cs.gmu.edu

3 Virginia Commonwealth University, Richmond, USA
wxiao@vcu.edu

4 Tsinghua University, Beijing, China
lizhenhua1983@tsinghua.edu.cn

Abstract. The popularity of video sharing services has increased expo-
nentially in recent years, but this popularity is accompanied by challenges
associated with the tremendous scale of user bases and massive amounts
of video data. A known inefficiency of video sharing services with user-
uploaded content is widespread video duplication. These duplicate videos
are often of different aspect ratios, can contain overlays or additional
borders, or can be excerpted from a longer, original video, and thus can
be difficult to detect. The proliferation of duplicate videos can have an
impact at many levels, and accurate assessment of duplicate levels is a
critical step toward mitigating their effects on both video sharing ser-
vices and network infrastructure.

In this work, we combine video sampling methods, automated video
comparison techniques, and manual validation to estimate duplicate lev-
els within large collections of videos. The combined strategies yield a
31.7 % estimated video duplicate ratio across all YouTube videos, with
24.0 % storage occupied by duplicates. These high duplicate ratios moti-
vate the need for further examination of the systems-level tradeoffs asso-
ciated with video deduplication versus storing large number of duplicates.

1 Introduction

User generated video content has exponentially increased in the recent years.
For example, YouTube, Dailymotion, and Vimeo are among the most popular
websites for uploading and sharing user generated content (UGC). YouTube
alone has gained massive popularity: it attracts more than 1 billion users every
month, more than 100 h of uploaded video each minute, and more than 1 million
creators make money from videos that they have uploaded [3]. We estimate
that there are more than 849 million videos on YouTube (Sect. 5.2). According
to Sandvine, YouTube generates 13.19 % of all downstream fixed access traffic
(e.g., cable network) and 17.61 % of all downstream mobile data traffic in North
America during peak hours [2].
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 235–248, 2015.
DOI: 10.1007/978-3-319-15509-8 18

236 Y. Liu et al.

Unlike video on-demand service providers such as Netflix, which contracts
with a limited number video providers, UGC websites attract large numbers of
video uploaders. This high diversity of uploaders poses a unique challenge for
these UGC video sharing websites: Videos can be uploaded in different incarna-
tions by different users, leading to duplicates in the video database. While dupli-
cates that occur at the exact byte-level can be captured by the video sharing
service using cryptographic hashes, user-generated (near-)duplicate videos are
often uploaded in different encodings, have different aspect ratios, can contain
overlays or additional borders, or could be excerpted from a longer, original
video. As a result, they are assigned their own unique IDs in the video database.
Note that duplicates should not be confused with multiple transcoded versions
generated by a video sharing service to support streaming at different band-
widths and to different devices. These transcoded versions are associated with a
same video ID in the video database.

The proliferation of duplicate videos could impact many aspects of datacen-
ter and network operations and, as a result, have negative effects on the user
experience. From the video server’s perspective, duplicate videos could increase
data storage, power, and therefore overall costs of data center operations. Fur-
ther, duplicate videos have the potential to harm caching systems, degrading
cache efficiency by taking up space that could be used for unique content and
increasing the amount of data that must be sent over the network to in-network
caching systems. These inefficiencies could be passed on to the user in the form of
duplicated search results, longer startup delays, and interrupted streaming [17].

Although it is well known that duplication occurs in today’s UGC video
sharing websites, little is known about its precise level. Work to more-accurately
determine duplicate levels is necessary because, although deduplication proce-
dures can improve the overall efficiency of a video sharing system, deduplication
itself could also be costly. Quantifying the level of duplication is therefore critical
for determining whether effort to deduplicate, or otherwise mitigate the effect of
duplicates, would be worthwhile.

As YouTube is the largest UGC video system today, we choose it as repre-
sentative of similar services, and measure its level of duplication. In the process
of conducting these measurements, we make the following contributions:

– We employ a novel combination of video sampling methods, automated video
comparison techniques, and manual validation to estimate duplication levels
in large-scale video sharing services.

– Using these methods, we estimate that the duplicate ratio of YouTube videos
is 31.7% and that 24.0% of YouTube’s total video storage space is occupied
by duplicates.

The remainder of the paper is organized as follows. Sections 2 and 3 discuss
the motivation of this study and related work, respectively. Section 4 describes
our duplicate estimation technique. We report our results in Sect. 5. Finally,
Sect. 6 concludes this work.

A Quantitative Study of Video Duplicate Levels in YouTube 237

2 Motivation

Anyone who has watched videos on YouTube, or any other video sharing service,
has certainly noticed that near-duplicates of the same video often appear in the
search results or are recommended as related videos. These impressions, however,
are not useful toward making recommendations for taking action to mitigate any
potential efficiency loss resulting from unnecessary duplication.

In preliminary work, we performed a small-scale assessment of 50 queries for
the titles of 50 popular YouTube videos from a randomly selected set (Sect. 4.1).
Manual assessment of these videos produced a rough estimate of a 42% dupli-
cate ratio.

Viewing a small number of individual search results, however, is unlikely to
yield good estimates of the prevalence of duplicates across a video sharing ser-
vice’s entire database. The huge number of videos stored within services such as
YouTube also indicates that manually comparing videos to estimate duplicate
ratio is infeasible. This intractability motivates the need for a larger scale assess-
ment, assist in determining the necessity of and formulating further systems to
conduct video deduplication.

3 Related Work

Data deduplication. Data duplication is common in storage systems. Dedupli-
cation operates by detecting duplicates and storing only a single copy of a given
chunk of data. It is typically conducted on exact byte-level duplicates [4,6,10,
18,23]. Detecting exact duplicates is often performed using cryptographic-hash
based approaches (e.g., SHA1) to create an index for fast lookups. These cryp-
tographic hash-based approaches, however, are inappropriate for detecting near-
duplicate videos (i.e., videos that appear the same or very similar to a human
viewer). This unsuitability is due to the fact that video files almost always con-
tain significant differences at the byte-level even though the visual content of a
video may be replicated (due to changes in encoding, altered resolutions, image-
level editing, or temporal editing).

Near-duplicate video detection. The computer vision community has pro-
posed a variety of strategies for detecting near-duplicate videos [5,9,19]. Two
main types of tools have been developed. The first is the local image descrip-
tor [13,14,21], which describes small sections within an image/keyframe. The
second is the global descriptor [7,16,20,22], which can be used to summarize
the entire contents of an image or video. An approach for video duplicate detec-
tion that can employ either local or global descriptors is called Dynamic Time
Warping (DTW) [15]. DTW is a technique used to measure distance between
two sequences where a distance can be defined between sequence elements. DTW
operates by aligning elements from a pair of sequences, A and B. Specifically,
DTW aligns each element from sequence A to a similar element in sequence B
with the constraint that no changes in ordering can occur (see Fig. 1).

238 Y. Liu et al.

Video deduplication. The rapid growth of video content on the Internet and
its corresponding storage cost have recently drawn much attention to the task
of video deduplication. For example, Kathpal et al. found that multiple copies
(versions) of the same video in different encodings and formats frequently exist.
The authors proposed to save space by conducting on-the-fly transcoding to only
retain the copy with the highest quality [11]. Shen and Akella proposed a video-
centric proxy cache, iProxy. iProxy stores the frequency domain information of
the video’s key frames in an Information-Bound Reference (IBR) table. iProxy
improves the cache hit rate by mapping videos with the same IBR to a single
cache entry and dynamically transcodes the video during playback [17]. How-
ever, both works [11,17] only deal with duplicates introduced by a limited set of
transformations, e.g., quantization, resizing, and different formats and encodings.
Other forms of transformation, such as excerption, concatenation, and splicing,
would not be detected or deduplicated. Katiyar and Weissman proposed ViD-
eDup, which uses clustering-based “similarity detection” and performs dedupli-
cation by storing the centroid-videos with the highest perceptual-quality [12].
However, since only the centroid of a set of “similar” videos are stored, restored
video may no longer represent the original visual content.

Long Video

Sh
or

t V
id

eo

Fig. 1. The standard Dynamic Time
Warping algorithm aligns all frames
of both videos. Red squares represent
aligned video frames.

Match

Skip
Long Video

Sh
or

t V
id

eo

Fig. 2. The modified version of DTW
used in this study aligns all elements
from the shorter video and can skip
frames from the longer video.

4 Methodology

Our set of techniques for video duplicate assessment are applied in the following
steps:

Step 1: We use random prefix sampling [8] to sample YouTube videos uniformly
and at random. We refer to this set of sampled videos as sampled videos.

Step 2: We then search for the title of each sampled video using the text-based
search engine of YouTube, which returns a list of relevant videos. We refer to
these relevant videos as searched videos. These searched videos are used as
a candidate set of duplicates.

A Quantitative Study of Video Duplicate Levels in YouTube 239

Step 3: For each (sampled video, searched video) pair, we calculate a simi-
larity score which accounts for temporally shifted frames. This score is used to
determine whether the searched video is a duplicate of the sampled video.

Step 4: For each pair of duplicates whose score is below a threshold, we conduct
a manual comparison step to eliminate false positives.

In the rest of this section, we explain each step of our technique in detail for
assessing duplicate levels in YouTube.

4.1 Random Sampling of Videos

In order to uniformly sample YouTube videos, we use the random prefix sampling
method proposed by Zhou et al. [8]. Random prefix sampling involves querying
the YouTube search engine with a randomly selected video ID (VID) prefix. The
returned query results are existing videos whose VIDs match this random prefix.
According to Zhou et al., with a prefix length of five (“-” being the last/fifth
symbol in the prefix), all existing VIDs that match the prefix can be returned in
one query. Therefore, during the sampling procedure, we randomly generate a
fixed number, Nprefix, 5-character long prefixes. (In this work, we set Nprefix to
1,000.) In the remainder of the paper, we refer to the videos selected by random
prefix sampling as sampled videos. We make the important assumption that
the set of sampled videos contains no duplicates. We validate this assumption
through both theoretical and experimental analysis in Sect. 5.2.

4.2 Selection of Candidate Duplicate Pairs

The next step involves pruning the number of video pairs that must be assessed
with a computationally intensive duplicate detection method. We perform this
pruning step by leveraging the metadata-based search engines provided by many
video sharing services. In UGC sites, metadata can be an especially good source
for retrieving duplicates because uploaders of these duplicates are incentivised
to label their videos with metadata to indicate similarity to original popular
content, thereby attracting a larger number of views.

We extract each sampled video’s title and use it to query the YouTube
search engine. This query returns a collection of videos with metadata related to
the sampled video’s title. Because this set of videos may still be too large to
effectively process with DTW, we rely on the ranking capability of YouTube’s
metadata-based search engine to further filter videos. In particular, we record
the top 100 results from each query. Some queries only return fewer than 100
results, and on average, we collected 82 searched videos for each sampled
video. We refer to this set of videos returned from this search procedure as
searched videos. Pairs of sampled videos and searched videos are sent to
our DTW-based algorithm for duplicate assessment.

240 Y. Liu et al.

4.3 Comparing Sampled and Searched Video Pairs

For comparison, we download both the sampled video and searched video
files from YouTube. YouTube usually encodes videos into multiple versions using
different codecs, resolutions, and quantization levels to support streaming at dif-
ferent bandwidths and to different devices. We retrieve only the H.264
Baseline/AAC/MP4/360p version as we find this version is most often available.

After retrieving a set of searched videos associated with every sampled
video, we use FFmpeg [1] to extract images/frames from the video at one sec-
ond intervals. Note that we cannot use keyframes (i.e., I-frames) for compar-
ison, as in related work [20], because the interval between keyframes can vary
between videos. To detect pairs of duplicates, we employ a method based on
Dynamic Time Warping (DTW) [15]. Like DTW, our duplicate matching system
attempts to align frames from pairs of videos. However, we expect shorter videos
to align to sub-portions of a longer video. We therefore modified the basic DTW
algorithm so that every element of the shorter video must be matched while
some elements of the longer video are allowed to remain unmatched (see Fig. 2).

Our variation of DTW operates on pairs of image sequences

A = a0, a1, · · · , ai, · · · , aI−1

B = b0, b1, · · · , bj , · · · , bJ−1

(1)

where I and J indicate the number of images in sequence A and B, correspond-
ingly, and we enforce I >= J by swapping videos if necessary.

Figure 3 shows the pseudocode of our adapted DTW algorithm. We use the
output of the function result to indicate the DTW score between A and B. The
smaller the DTW score, the more likely that videos A and B are duplicates.

A key component in the DTW algorithm is the image distance function
d(ax, by). Choosing a good image distance function is vital to the accuracy of
our duplicate detection method. We used a distance function between image
histograms, denoted by dh(ax, by).

Histogram Distance refers to a distance measurement between images based
on the relative frequency of different colors [7,20]. For each image, x, we cal-
culate its color histogram Hx = (h1

x, h
2
x, · · · , hM

x). (The color histogram is a
global image descriptor.) We consider images in HSV (Hue, Saturation, and
Value) color space because the HSV is more perceptually relevant to human
eyes than the RGB representation. The color histogram contains 5 bins for Hue,
8 bins for Saturation, and 16 bins for Value. The total number of bins, M , is
therefore M = 29. The Value section of the histogram contains a greater num-
ber of histogram bins, reflecting the fact that human eyes are more sensitive to
light/dark contrast than to color information. As black borders/banners may be
introduced during video transcoding and affect our histogram distance metric,
we ignore pixels whose V alue = 0 (black) when calculating histograms.

A Quantitative Study of Video Duplicate Levels in YouTube 241

The Histogram Distance between two images x and y is calculated as the
squared Euclidean distance between Hx and Hy:

dh(x, y) =
M∑

k=1

(hk
x − hk

y)
2

This distance metric can be used to determine if a pair of videos are visually
similar. We consider a pair of videos duplicates if their Histogram Distance
is less than 0.013. This threshold was chosen by calibrating against a precision-
recall graph to give a perfect recall (zero false-negative rate) on a set of 100 pairs
of videos.

4.4 Manual Validation of Duplicate Pairs

In the pairwise comparison step described above, we deliberately selected a high
DTW score threshold to achieve a high recall rate. This high threshold, however,
can produce a correspondingly high false discovery rate.

To alleviate this potential problem, we augmented our automated procedure
with a manual duplicate verification step that has false positive rate near
zero. In the manual verification step, for each duplicate pair, a human observer
manually viewed both the corresponding sampled video and searched video
to determine if the pair was a true duplicate. Specifically, the human observer
considered the searched video to be a duplicate of the sampled video under
any of the following cases:

1: A,B, I, J are defined in Equation 1.
2: (ax, by) denotes distance between image ax from sequence A and image

by from sequence B.
3: function DTW(A, B)
4: assert I >= J
5: dtw0,0 = d(a0, b0)
6: for (i = 1; i < I; i + +) do
7: dtwi,0 = d(ai, b0)
8: for (j = 1; j < J ; j + +) do
9: dtwj,j = dtwj−1,j−1 + d(aj , bj)
10: for (i = 1; i < I; i + +) do
11: for (j = 1; j < min(i, J); j + +) do
12: dtwi,j = dtwi−1,j

13: dist = d(ai, bj)
14: if (dtwi−1,j−1 + dist < dtwi,j) then
15: dtwi,j = dtwi−1,j−1 + dist

16: return result = dtwI−1,J−1/J

Fig. 3. The DTW algorithm between two image sequences (i.e., videos) A and B.

242 Y. Liu et al.

1. the searched video has the same video content as the sampled video.
2. the searched video is part of the sampled video.
3. the sampled video is part of the searched video.

5 Quantifying Video Duplicate Levels in YouTube

To estimate the number of duplicates in YouTube, we first randomly generated
1,000 prefixes. Using these 1,000 prefixes, we collected 6, 365 sampled videos
and 512, 314 associated searched videos. For each searched video returned
by the YouTube search engine, we ran the variation of the DTW algorithm
discussed in Sect. 4 to produce a similarity score. We set the threshold for dupli-
cate determination high (as discussed in Sect. 4.3) to produce a low rate of false
negatives (high recall), then conducted a manual curation step to validate that
each candidate pair returned by the DTW algorithm constituted a true pair of
duplicates.

Although the manual validation is time and resource intensive, this step was
feasible because only the relatively small number of pairs of videos marked as
duplicates by the DTW step were manually assessed.

5.1 Results

Fig. 4. # of duplicates found for
each sampled video with one or
more duplicates.

We present numeric results in Table 1. Out
of the 6, 365 sampled videos, our assess-
ment shows that 631 (10 %) have duplicates
within YouTube. Assuming that the 6, 365
sampled videos were drawn independently
and the counts of videos with duplicates
and videos with non-duplicates were drawn
from a binomial distribution, we can com-
pute a confidence interval around the proba-
bility that a sampled video has a duplicate
using the Beta quantile function. The 95 %
confidence interval around this probability is
(0.0912, 0.1065). On average, for each sampled video associated with one or
more duplicates, 4.69 duplicates were discovered. Figure 4 shows the distribution
of the number of duplicates for each sampled video with one or more duplicates.
Out of 631 videos that have duplicates, 304 have only one duplicate found and
63 have more than 10 duplicates found, indicating the high variance of dupli-
cate levels within YouTube. In total, our manually augmented evaluation found
2, 960 duplicates of the 6, 365 sampled videos. Assuming that the number of
duplicates associated with each video is drawn from a normal distribution with
a standard deviation of 3.38 (the empirical standard deviation), we compute a
95 % confidence interval of (0.382, 0.548) around the average number of dupli-
cates for each video. These measurements indicate that roughly 1/3 of videos on
YouTube are duplicates. Of the 2, 960 duplicate videos found, only 327 (11 %)

A Quantitative Study of Video Duplicate Levels in YouTube 243

Table 1. Manually augmented assessment of YouTube duplicate levels.

Category # of Sampled # of dups Avg. # of dups Duplicate

sampled videos that found per found for sampled ratio (%)

videos have dups category videos that have

% duplicates

Video Category

Pets & Animals 155 7 4.5% 15 2.14 8.8%

Autos & Vehicles 232 27 11.6% 147 5.44 38.8%

Comedy 462 33 7.1% 169 5.12 26.8%

Education 183 25 13.7% 53 2.12 22.5%

Entertainment 851 59 6.9% 240 4.07 22.0%

Film & Animation 244 29 11.9% 76 2.62 23.8%

Gaming 588 33 5.6% 196 5.94 25.0%

Howto & Style 119 11 9.2% 29 2.64 19.6%

Music 1068 146 13.7% 642 4.40 37.5%

News & Politics 220 42 19.1% 203 4.83 48.0%

Nonprofit & 84 13 15.5% 143 11.00 63.0%

Activism

People & Blogs 1477 156 10.6% 767 4.92 34.2%

Shows 7 0 0% 0 0.00 0.0%

Sports 392 32 8.2% 179 5.59 31.3%

Science & Tech 113 9 8.0% 92 10.22 44.9%

Travel & Events 170 9 5.3% 9 1.00 5.0%

Video Duration

Short [0,240) 4490 418 9.3% 2310 5.53 34.0%

Medium [240,1200] 1743 190 10.9% 596 3.14 25.5%

Long (1200,∞) 132 23 17.4% 54 2.35 29.0%

Video Popularity

Unpopular (<1000) 5529 513 9.3% 2537 4.95 31.5%

Popular (≥1000) 836 118 14.1% 423 3.58 33.6%

Total

Total 6365 631 10.0% 2960 4.69 31.7%

have the same byte-level content as the sampled video, indicating traditional
cryptographic hash-based duplicate detection has only a limited ability to detect
duplicate videos.

Table 1 also shows a breakdown of sampled videos according to three
attributes along the rows: video category, video length, and popularity. The
columns of Table 1 give different duplicate statistics. Here “duplicate ratio” is
defined as:

244 Y. Liu et al.

Fig. 5. View count distribution Fig. 6.
Duration(sampled video)

Duration(duplicate) Fig. 7.
ViewCount(sampled video)

ViewCount(duplicate)

duplicate ratio =
of duplicates found

of sampled videos + # of duplicates found
(2)

Figure 5 shows the view count (i.e., popularity) of 6, 365 sampled videos.
5, 529 (87 %) videos are viewed fewer than 1,000 times (unpopular). This sta-
tistic is consistent with the findings in Zhou et al. [8] that only 14 % of videos
in a randomly sampled YouTube dataset have a total view count of more than
1,000.

Figure 6 shows the ratio between the duration of the sampled video and the
duration of the detected duplicate video. As shown in the figure, most duplicates
have the same duration as the sampled video. For Short, Medium, and Long
videos respectively, 1, 743 out of 2, 310 (75%), 375 out of 596 (63%), and 19 out
of 54 (35%) have the same durations as the sampled video. For Long videos,
more than 40 % of their duplicates are shorter than the sampled video. These
shorter duplicates are excerpts from longer videos, extracted by users to meet
the video duration limits imposed by YouTube. Overall, among all the duplicates
found, 72% have the same duration as the sampled video, indicating that
excerption occurs less frequently than operations that preserve the length of the
video.

We are also interested in determining if sets of duplicates have similar popu-
larities. Figure 7 shows the view count ratios of sampled videos versus those of
searched videos. Approximately 55% of the searched video duplicates are
watched more frequently than the sampled video. These differing frequencies
indicate that even if duplicates represent the same or similar visual content, the
popularities of individual copies of the same video can vary.

5.2 Uniqueness of Sampled Videos

Given that our duplicate assessment found that approximately one-third of the
videos in the YouTube database are duplicates, it seems counter-intuitive that
our original assumption holds that each of our 6, 365 sampled videos is unique.
A relatively short analysis, however, shows that this is a reasonable assumption.
This analysis is a specialization of the well-known Birthday paradox. Our setting
differs from the standard Birthday paradox, where we would assume a uniform
distribution over birthdays. In our setting, a large number of people have a
unique birthday (i.e., a large number of videos have no duplicates and will be

A Quantitative Study of Video Duplicate Levels in YouTube 245

unique in our sample of 6, 365). The probability that two or more people in a
sample share a birthday, given this highly unbalanced distribution of birthdays,
can be computed using a recurrence which we describe below:

R(N,T) =

⎧
⎪⎨

⎪⎩

(1 − q(T)) × (
(1 − p) × R(N − 1, T)

+ p × R(N − 1, T + 1)
)

if N > 0
1 if N = 0

(3)

where R(N,T) indicates the probability that a sample of N videos does not
contain any duplicates, given that we have already drawn T videos that are
associated with copies in the YouTube database (or any video database), where
each of these T videos is distinct. The recurrence captures the idea that, if
we do not wish to include duplicates in our sample of original videos, we must
first draw a non-duplicate given the set of T previously drawn videos associated
with a duplicate in the video database with probability 1 − q(T). This video
must then be selected either from the set of videos with no associated duplicates
with probability 1 − p or from the set of videos that has at least one duplicate
with probability p.

The base case is R(0, T) = 1, where have already drawn T videos that are
associated with duplicates in the YouTube database, and we have no further
videos that need to be selected.

To evaluate this recurrence, we first need to estimate the total number of
videos in YouTube. During the random sampling phase, we retrieved 6, 365
unique video IDs using 1000 randomly generated prefixes. Using the method
proposed by Zhou et al. [8], we estimated the total number of videos on YouTube
as 384 ×64× 6365

1000 ≈ 849 million, indicating there were approximately 849 million
videos on YouTube at the time we collected the data (July 2013).

Our measurement results indicate that approximately 10% of the original
videos on YouTube have duplicates, meaning that we should set p = 0.1 in the
computation above. Given our result from the previous section, that each video
having one or more duplicates has on average, approximately 4.69 duplicates
associated with it, we can estimate the probability of drawing a duplicate for
given video as 4.69

849×106 ≈ 1
181×106 .

Evaluating the above recurrence using a dynamic programming method for
q(T) = T

181×106 and p = 0.1 yields R(6365, 0) = 0.989. This result means that
if we resampled the set of 6, 365 videos over 100 separate trials, then we would
expect this set of 6, 365 sampled videos to contain duplicates in fewer than two
of these trials.

Further, we examined the set of sampled videos by first querying the set of
searched video VIDs to determine if any match a sampled video VID. For the
small set of VIDs that matched, we ran a further DTW comparison. This DTW
phase produced much larger DTW distances than the duplicate threshold for all
pairs of videos examined, indicating that none of the 6, 365 sampled videos were
duplicates. We also performed a manual confirmation step, providing further
evidence that the 6, 365 sampled videos are unique.

246 Y. Liu et al.

5.3 Extra Storage Space Occupied by Duplicate Videos

A direct negative impact of video duplication is the extra storage space consumed
by duplicate videos. To estimate the percentage of additional space needed by
YouTube to store duplicate videos, we grouped each sampled video and its
corresponding duplicates into a duplicate set, denoted by D. If no duplicates were
associated with a sampled video, v, then we constructed the duplicate set, D,
to contain only v, i.e., D = {v}. For each duplicate set, we selected the video with
the largest file size to be the representative video. We denote the set of all
duplicate sets by D and the representative video of set D by Dr. Note that
for all videos, we only retrieved the H.264 Baseline/AAC/MP4/360p version,
thus encoding rates for all videos in our dataset should be similar. Short videos
in D will likely be sub-videos of longer videos in D. Therefore selecting the video
with the largest file size as the representative video means that the other,
shorter, videos in the set are subvideos of the representative video. Given
these duplicate sets and corresponding representative videos, we computed
the space used to store duplicates as a percentage of the total storage space as
follows:

1 −
∑

D∈D size(Dr)∑
D∈D

∑
d∈D size(d)

(4)

Our results show that the total size of representative videos is 91.9 GB, and
the total size of all videos in all duplicate sets is 121.0 GB. These space require-
ments indicate that roughly 24.0% YouTube storage is occupied by duplicates.

6 Conclusion

Duplicate videos within large-scale video sharing services have wide ranging
potential impacts on data center and network level storage, caching, and energy
consumption. A critical first step in determining the true cost of video duplica-
tion involves accurate measurement of duplicate levels.

In this work, we proposed a set of techniques for assessing duplicate lev-
els within large-scale video sharing services. These techniques combined video
sampling, video search, computing pairwise video similarity through a variation
of dynamic time warping, and a manual validation step. Applying these tech-
niques on YouTube produces a duplicate ratio estimate of 31.7%. Furthermore,
we calculate that these duplicates occupy 24.0% of YouTube’s video data stor-
age. These relatively high levels of duplication indicate that further work should
be conducted to evaluate specific system-level tradeoffs associated with datacen-
ter costs, as well as network-related concerns such as performance of in-network
caching under assessed duplicate levels.

To allow duplicate assessment on ever-increasing video databases, we plan
to extend our video duplicate assessment techniques so they can scale to much
larger video samples. A potentially necessary step toward scaling this assessment
would involve developing a system to index videos by semantic content. This
type of indexing system would be essential for reducing the number of video

A Quantitative Study of Video Duplicate Levels in YouTube 247

pairs that would need to be evaluated by a computationally-expensive pairwise
video comparison technique.

Acknowledgements. We appreciate constructive comments from anonymous referees
and our shepherd Dongsu Han. The work is partially supported by High-Tech Research
and Development Program of China (“863 China Cloud” Major Program) under grant
SQ2015AAJY1595, by China NSF under grant 61471217, by China Postdoctoral Sci-
ence Fund under grant 2014M550735, and by NSF under grants CNS-0746649 and
CNS-1117300.

References

1. FFmpeg. http://www.ffmpeg.org/
2. Sandvine Global Internet Phenomena Report 1H 2014. https://www.sandvine.

com/downloads/general/global-internet-phenomena/2014/1h-2014-global-internet-
phenomena-report.pdf.

3. YouTube Statistics. http://www.youtube.com/yt/press/statistics.html
4. Bolosky, W.J., Corbin, S., Goebel, D., Douceur, J.R.: Single instance storage in

windows 2000. In: Proceedings of USENIX WSS (2000)
5. Douze, M., Gaidon, A., Jegou, H., Marsza�lek, M., Schmid, C., et al.: Inria-lears

video copy detection system. In: TREC Video Retrieval Evaluation (TRECVID
Workshop) (2008)

6. Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzelczak, P.,
Szczepkowski, J., Ungureanu, C., Welnicki, M.: HYDRAstor: a scalable secondary
storage. In: Proceedings of USENIX FAST (2009)

7. Hampapur, A., Hyun, K., Bolle, R.M.: Comparison of sequence matching tech-
niques for video copy detection. In: Electronic Imaging 2002, pp. 194–201. Inter-
national Society for Optics and Photonics (2001)

8. Zhou, J., Li, Y., Adhikari, V.K., Zhang, Z.-L.: Counting YouTube videos via ran-
dom prefix sampling. In: Proceedings of ACM IMC (2011)

9. Jégou, H., Douze, M., Gravier, G., Schmid, C., Gros, P., et al.: Inria lear-texmex:
video copy detection task. In: Proceedings of the TRECVid 2010 Workshop (2010)

10. Jin, K., Miller, E.L.: The effectiveness of deduplication on virtual machine disk
images. In: Proceedings of ACM SYSTOR (2009)

11. Kathpal, A., Kulkarni, M., Bakre, A.: Analyzing compute vs. storage tradeoff for
video-aware storage efficiency. In: Proceedings of USENIX HotStorage (2012)

12. Katiyar, A., Weissman, J.: ViDeDup: an application-aware framework for video
de-duplication. In: Proceedings of USENIX HotStorage (2011)

13. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings
of IEEE ICCV, vol. 2, pp. 1150–1157 (1999)

14. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

15. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Sign. Proces. 26(1), 43–49 (1978)

16. Shen, H.T., Zhou, X., Huang, Z., Shao, J., Zhou, X.: UQLIPS: a real-time near-
duplicate video clip detection system. In: Proceedings of ACM VLDB (2007)

17. Shen, S.-H., Akella, A.: An information-aware QoE-centric mobile video cache. In:
Proceedings of ACM MobiCom (2013)

http://www.ffmpeg.org/
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/1h-2014-global-internet-phenomena-report.pdf.
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/1h-2014-global-internet-phenomena-report.pdf.
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/1h-2014-global-internet-phenomena-report.pdf.
http://www.youtube.com/yt/press/statistics.html

248 Y. Liu et al.

18. Ungureanu, C., Atkin, B., Aranya, A., Gokhale, S., Rago, S., Cakowski, G.,
Dubnicki, C., Bohra, A.: HydraFS: a high-throughput file system for the HYDRAs-
tor content-addressable storage system. In: Proceedings of USENIX FAST (2010)

19. Wu, X., Ngo, C.-W., Hauptmann, A.G., Tan, H.-K.: Real-time near-duplicate elim-
ination for web video search with content and context. IEEE Trans. Multimed.
11(2), 196–207 (2009)

20. Wu, X., Hauptmann, A.G., Ngo, C.-W.: Practical elimination of near-duplicates
from web video search. In: Proceedings of ACM Multimedia (2007)

21. Yang, J., Jiang, Y.-G., Hauptmann, A.G., Ngo, C.-W.: Evaluating bag-of-visual-
words representations in scene classification. In: Proceedings of ACM MIR (2007)

22. Zauner, C.: Implementation and benchmarking of perceptual image hash functions.
Master’s thesis, Upper Austria University of Applied Sciences, Hagenberg Campus,
43 (2010)

23. Zhu, B., Li, K.: Avoiding the disk bottleneck in the data domain deduplication file
system. In: Proceedings of USENIX FAST (2008)

Measuring YouTube from Dual-Stacked Hosts

Saba Ahsan1(B), Vaibhav Bajpai2, Jörg Ott1, and Jürgen Schönwälder2

1 School of Electrical Engineering, Aalto University, Espoo, Finland
{saba.ahsan,jorg.ott}@aalto.fi

2 Computer Science, Jacobs University Bremen, Bremen, Germany
{v.bajpai,j.schoenwaelder}@jacobs-university.de

Abstract. There is rapid growth in the number of IPv6 users and IPv6
compliant services on the Internet. However, few measurement studies
exist about the quality of user experience on IPv6 in comparison to IPv4
for dual-stacked hosts. We present results from a measurement trial con-
sisting of 21 active measurement probes deployed across Europe and
Japan connected behind dual-stacked networks, representing 19 differ-
ent Autonomous System (AS)s. The trial ran for 20 days in September,
2014 and conducted two types of measurements: (a) YouTube perfor-
mance tests and (b) Speed tests to nearest dual-stacked Measurement
Lab (M-Lab) server, both over IPv4 and IPv6. Our results show that a
disparity exists in the achievable throughput as indicated by speed tests.
We also witness disparity in content delivery servers used for YouTube
media for some networks, resulting in degradation of experience over a
specific address family.

1 Introduction

The World IPv6 Launch1 that began in June, 2012 marked its second anniversary
this year, reporting an increase in IPv6 usage by 500 % in the past two years.
Google reports that as of 2014, over 4 % of their users access Google services over
IPv6 in contrast to less than 0.5 % in 20112. With more and more ISPs offering
native IPv6 to their customers, there is a need for more measurement studies
that can quantify the Internet performance aspects for early adopters of this
technology. According to Sandvine Global Internet Phenomena report of 2014,
audio and video streaming is the largest traffic category on fixed and mobile
networks with YouTube as the largest single source of video streaming around
the world3. Hence performance of Internet video in general, and YouTube in
particular can impact Internet user experience to a great extent.

This paper presents a measurement study carried out in September 2014
that shows a comparison of YouTube performance over IPv4 and IPv6 actively
measured over 21 probes distributed over Europe and Japan. To the best of our
knowledge, this is the first study to compare YouTube performance over IPv4
and IPv6 from different dual-stacked networks. The probes receive native IPv6
1 http://www.worldipv6launch.org.
2 http://www.google.com/intl/en/ipv6/statistics.html.
3 http://www.sandvine.com/trends/global-internet-phenomena.

c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 249–261, 2015.
DOI: 10.1007/978-3-319-15509-8 19

http://www.worldipv6launch.org
http://www.google.com/intl/en/ipv6/statistics.html
http://www.sandvine.com/trends/global-internet-phenomena

250 S. Ahsan et al.

connectivity and belong to different ISPs, covering 19 different IPv4 and IPv6
ASes. They run two kinds of measurements; speed tests and YouTube tests.
Each test is run over IPv4 and then IPv6, giving us a comparison of perfor-
mance over each. In this paper we make three contributions: (1) We find that
there is disparity in the availability of YouTube content caches over IPv4 and
IPv6, whereby the content-caches over IPv6 are largely absent, which can affect
YouTube performance, (2) The measured YouTube throughput over IPv4 and
IPv6 shows significant difference for some probes, resulting in support for better
bit rates and thus higher resolution videos over one address family and not the
other and (3) We find that Transmission Control Protocol (TCP) connect times
over IPv6 are just not high enough for the happy eyeballs algorithm [13] to prefer
a connection over IPv4, potentially choosing an IPv6 connection over IPv4, even
when the observed throughput over IPv6 is lower. We release4 the entire dataset
to the measurement community.

The paper is organized as follows. We present related work in Sect. 2. Our
metric, measurement test, and the methodology describing the measurement
setup, trials and decision process is presented in Sect. 3. Insights derived from
data analysis are presented in Sect. 4 with conclusions in Sect. 5.

2 Related Work

A number of early studies have focussed on characterization of YouTube videos.
For instance, Phillipa Gill et al. in [6] (2007) study YouTube workload patterns
by measuring local traffic in a campus setting and observing trends of popular
videos. Features such as access patterns, file properties, video popularity, ref-
erence behaviors, and transfer characteristics are compared against traditional
web workloads. Meeyoung Cha et al. in [3] (2007) show how YouTube content
popularity is driven by truncated power-law distributions. They also study the
prevalence and impact of content duplication and illegal uploads on system char-
acteristics. They show how peer-assisted content delivery and caching schemes
can offload server-side traffic by as much as 50 %.

These studies have been followed by a number of passive measurement efforts.
Vijay Kumar Adhikari et al. in [1] (2010) study YouTube traffic dynamics from
the perspective of a large tier-1 ISP. Using flow-level data collected at multiple
Point of Presence (PoP)s, they show how the employed load-balancing strat-
egy is location-agnostic. They also compare load-balancing strategies employed
by YouTube against routing policies used by the ISP and study relationships
between them. Alessandro Finamore et al. in [5] (2011) compare YouTube expe-
rience from mobile and PC-based devices. Using a week-long passively monitored
dataset collected from 5 vantage points, they show how user access patterns are
device and location agnostic. They also show how YouTube is heavily optimized
for PC-based devices and leverages excessive buffering policies. This often leads
to more data being fetched than is used for playback. Georgios Dimopoulos
et al. in [4] (2013) study user-experience from YouTube video sessions. Using a
4 http://www.netlab.tkk.fi/tutkimus/rtc/PAM2015/.

http://www.netlab.tkk.fi/tutkimus/rtc/PAM2015/

Measuring YouTube from Dual-Stacked Hosts 251

week-long passively collected dataset from within a campus network, they show
how redirections to the destination media server is the primary contributor to
initial delays. They show how statistical information sent back by the client can
be used to identify stall events. They also measured the impact of advertisements
on playback abandonment rates.

In recent years, we have witnessed a shift towards actively measuring the play-
back quality of a YouTube video. For instance, Parikshit Juluri et al. in [7] (2011)
introduce the python based Pytomo, a tool that models a YouTube client to mea-
sure download statistics and estimate playback interruptions. Our YouTube test
is inspired but improves upon this tool in three ways: (a) It is written in C,
which has allowed us to deploy it on Customer Premises Equipment (CPE)-like
devices such as SamKnows, (b) It supports multiple container formats such as
MP4, WebM and FLV (unlike Pytomo which supports FLV only), and (c) Our
test is more aware of available bit rates and resolutions. Vijay Kumar Adhikari
et al. in [2] (2012) use PlanetLab vantage points to crawl a finite subset of
YouTube videos. They use this dataset to show how: (a) the video ID space is
flat, (b) multiple (anycasted) DNS namespaces are used to logically organize
media servers and (c) a 3-tier physical cache hierarchy is used to deliver con-
tent. Parikshit Juluri et al. in [8] (2013) go further and use Pytomo to measure
YouTube experience from within three ISP networks. They witnessed notice-
able difference in experienced quality across ISPs. They reason that latency is
not the primary factor when choosing a video server, but the selection mecha-
nism is largely based on delivery policies and individual agreements with ISPs.
Hyunwoo Nam, et al. in [9] (2014) introduce YouSlow, a browser-based plugin
that can detect and report live buffer stalling events when watching YouTube
videos that are delivered using Adaptive Bitrate Streaming (ABR) technology.

3 Methodology

We utilize two metrics in this study. A Youtube test that measures perfor-
mance against dual-stacked YouTube media servers, and a SamKnows speed test
that measures line rates against dual-stacked Google M-Lab servers. A detailed
description of the implementation is given below:

3.1 Metrics

YouTube Performance Test: We have designed a test that can download and
mimic playout of YouTube videos. It measures TCP connection establishment
times, achievable throughput, and number of stall events as indicators of per-
formance when streaming a YouTube video. The measures are taken over both
audio and video streams separately. The test takes a YouTube URL as input, and
scrapes the fetched HTML page to extract the list of container formats, avail-
able resolutions and URL locations of media servers hosting the streams. The
test then locally resolves Domain Name System (DNS) names and establishes
two concurrent HTTP sessions to fetch audio and video streams in the desired

252 S. Ahsan et al.

Fig. 1. A measurement setup on top of the SamKnows platform. A dual-stacked probe
in addition to the standard SamKnows tests, executes the YouTube test. The YouTube
test runs every hour and measures a set of performance indicators to endpoints delivering
YouTube audio and video both over IPv4 and IPv6. The locally collected measurement
results are pushed every hour to the SamKnows data collection server using HTTP.

format and resolution. The client ensures temporal synchronization between the
streams, which means that playout only occurs if both audio and video frames
have arrived.

In this process, the test records the time it takes for the connect(...) system
call to complete as a measure of TCP connect times to both audio and video
streams. The DNS resolution time is not taken into account in this measure.
The test then measures throughput over the single TCP connection separately
(and combined) over both audio and video streams. During playback, a stall
event is declared when a frame is not received before its playout time. We use
a 2-second prebuffering time, which means that 2 s of audio and video content
is downloaded before starting the playout timer. In case a stall occurs, 1 s of
media rebuffering is done before resuming the playout timer. The test does not
at any time render content, but it only reads the format container to extract
frame timestamps. The payload is eventually discarded.

Speed Test: The measurement test is part of the SamKnows’ test suite [11] and
is used to measure achievable throughput over the line. It uses three simultaneous
TCP connections that fetch a portion of a 1 GB, non-zero, randomly generated
binary file. Each TCP connection initiates a HTTP GET request to the nearest
M-Lab5 server and the recorded result is an aggregate of the observed values
during the measurement. The test was modified to enable throughput measure-
ments over IPv6. We use results from the SamKnows speed test as a baseline to
compare the throughput measured from the YouTube test.

3.2 Measurement Setup

We cross-compiled the YouTube test for the OpenWrt platform and deployed
it on SamKnows probes. The probes in addition to the YouTube test also run
5 http://www.measurementlab.net.

http://www.measurementlab.net

Measuring YouTube from Dual-Stacked Hosts 253

standard SamKnows tests (which also includes the modified speed test). The
YouTube test runs twice, once for IPv4 and subsequently for IPv6 and repeats
every hour. For the speed test, each probe selects its nearest dual-stacked M-Lab
server based on latency results. The same dual-stacked server is used to measure
line rates both over IPv4 and IPv6. The test runs hourly during peak evening
hours, and once every six hours after midnight. The data collected is stored on
the SamKnows backend as shown in Fig. 1.

Selection of YouTube Videos: We use the YouTube v3 API6 to generate
a list of globally popular videos. We make use of globally popular charts to
ensure our measurements become comparable across geographically located van-
tage points. We also prune out videos from the list that meet any of the three
criteria: (a) Video duration is less than 60 s, (b) Video has regional restrictions,
or (c) Video is unavailable in Full HD format. The list is generated on the Sam-
Knows backend and is refreshed every 12 h. Each probe pulls this list on a daily
basis. This allows us to measure against the same video for the entire day, which
enables temporal analysis. On the other hand, cycling videos on a daily basis
allows larger coverage of videos with different characteristics.

Fig. 2. Deployment status of our measurement trial as of August 2014. Each vantage
point is a SamKnows probe which is part of a larger SamKnows measurement platform.
Most of these probes are deployed behind residential networks and receive native IPv6
connectivity from their ISP. A part of these probes are also connected within NREN.

6 https://developers.google.com/youtube/v3/docs/videos/list.

https://developers.google.com/youtube/v3/docs/videos/list

254 S. Ahsan et al.

Selection of Video Bitrate: YouTube servers provides a list of available reso-
lutions and required bit rates for the requested video. The YouTube test currently
does not support Dynamic Adaptive Streaming over HTTP (DASH) [10] during
playout, however, it has two modes of operation for dealing with throughput
constraints: (a) A non-adaptive mode where the test downloads the same video
resolution despite video stalls and (b) A step-down mode where we step down
to a lower resolution if a stall occurs. The test then chooses the next highest bit
rate and begins the download from the beginning. The non-adaptive mode does
not portray the behavior of most YouTube players but is useful in comparing
characteristics between IPv4 and IPv6 while keeping conditions identical. The
step-down mode on the other hand, shows a more user-oriented result in the form
of the highest resolution that the client can playout without disruptions over a
particular connection. To avoid unnecessary stalling we use results from speed
tests to limit the maximum bit rate that the client will attempt to download.

3.3 Measurement Trials

The trial was conducted for 20 days (05th–25th September, 2014) using 21 Sam-
Knows probes deployed behind 19 different ASes across Europe and Japan. These
probes are also deployed inside different flavors of networks such as residential,
NREN, business, and ISP test labs. Figure 2 provides a list of all probes along
with their location, IPv4 and IPv6 AS, ISPs and network types.

4 Data Analysis

A summary of all results is given in Fig. 3. A number of YouTube tests failed
over IPv6 due to the unavailability of dual-stacked media servers or connectivity
issues. Probe #08 was behind a Google blacklisted resolver7, and consistently
reported 100 % failure for YouTube IPv6 tests. The table shows the Success
Rate of YouTube tests indicating the number of tests that successfully connected
to media servers to download a YouTube video. The throughput graph shows
disparity between IPv4 and IPv6 throughput. A detailed analysis, exploring the
other aspects shown in the table follows.

4.1 Google Global Caches

YouTube videos are served to users through the Google’s content delivery plat-
form. Operators with a qualifying level of traffic can deploy servers as content
caches within their networks in order to serve content closer to the users. These
caches form Google Global Caches (GGC) and help increase performance and
minimize transit bandwidth. Google estimates that 70–90% of their cacheable
traffic is served from GGC8.
7 http://cnds.eecs.jacobs-university.de/users/vbajpai/googleipv6.
8 https://peering.google.com/about/ggc.html.

http://cnds.eecs.jacobs-university.de/users/vbajpai/googleipv6
https://peering.google.com/about/ggc.html

Measuring YouTube from Dual-Stacked Hosts 255

Fig. 3. A summary of all test results. Box plots of the throughputs observed during
YouTube tests (left) during the trial. Note that the graph is only used as a show of
disparity and not the cause; throughput depends on the selected video, the selected
resolution and throttling due to the limited length of the playout buffer, in addition to
connection failure and connection bandwidth constraints. The table (right) shows for
each probe (i) Success rate, a percentage of YouTube tests that successfully resolved and
connected to media servers, (ii) Stall rate, percentage of successful YouTube tests that
experienced one or more stall events, (iii) Speedtest (Mbps), the average throughput
observed during the entire duration of the trial, (iv) GGC, the availability of GGC over
an address family. The table represents results for the data collected in September 2014.

In our analysis, we identified GGC by looking up the Autonomous System
Number (ASN) information for the contacted media servers. As expected, many
of the GGC served content only over IPv4 and the probes used Google centralized
content servers for IPv6. Among residential networks, 6 (out of 8) probes used
GGC when using IPv4, but all used central content servers over IPv6. Within lab
networks 2 probes used GGC, of which only 1 (#15) also used a GGC over IPv6.
NREN and business probes were different in respect that all their IPv4 media
servers belonged to a single ASN and this was the same for IPv6 media servers.
Subsequently, we observed a degree of stability exhibited in the TCP connection
establishment times of these two categories (see Sect. 4.2). Table 1 gives a list of
the ASes we observed during our tests along with their categorization and the
number of probes they served while the availability of GGC over each address
family is shown under GGC in Fig. 3.

256 S. Ahsan et al.

Table 1. Categorization of YouTube content (audio and video) delivery by AS as
observed over all probes both over IPv4 and IPv6. It can be seen how content-caches
and delivery from YouTube CDN is largely absent over IPv6.

CATEGORY IPV4 n(PROBES) IPV6 n(PROBES)

CONTENT CACHES COMHEM (AS39651) 01 - -

ASAHI (AS4685) 01 - -

JAZZNET (AS12715) 01 - -

EDPNET (AS9031) 01 - -

DTAG (AS3320) 02 DTAG (AS3320) 02

BIGLOBE (AS2518) 01 - -

ROEDUNET (AS2614) 01 ROEDUNET (AS2614) 01

NORDUNET (AS2603) 01 NORDUNET (AS2603) 01

BSKYB (AS5607) 01 BSKYB (AS5607) 01

SEABONE (AS6762) 01 - -

QSC (AS20676) 01 QSC (AS20676) 01

NG (AS48161) 01 - -

CDN GOOGLE (AS15169) 20 GOOGLE (AS15169) 19

YOUTUBE (AS43515) 03 - -

YOUTUBE (AS36040) 02 - -

LEVEL3 (AS3356) 01 - -

IXP - - INTERLAN (AS39107) 01

4.2 TCP Connect Times and Happy Eyeballs

Figure 4 shows the distribution of raw TCP connection establishment times to
YouTube media servers both over IPv4 and IPv6 as seen from each probe. These
are the TCP connections that are later used to fetch YouTube video and audio
streams separately. It can be seen how TCP connect times tend to show more
variation for residential (#01–08) and lab (#15–18) probes. Probes deployed
behind NREN networks (#09–14) and business lines (#20–21), on the contrary
appear to be more stable.

TCP connect times are largely comparable over both address families. This
is important to measure because applications (on top of TCP) running on dual-
stacked hosts will prefer connections made over IPv6. This is mandated by the
destination address selection policy [12]. As such, getaddrinfo(...) tends to
resolve DNS names in an order that prefers an IPv6 upgrade path. However,
the happy eyeballs algorithm [13] allows these applications to switch to IPv4 in
situations where IPv6 connectivity is bad. The connectivity is considered bad
when connections made over IPv4 can tolerate the 300 ms advantage imparted to
IPv6 and still complete the TCP connection establishment in less time. Figure 5
shows the distribution of TCP connect times across all probes and the values

Measuring YouTube from Dual-Stacked Hosts 257

for IPv6 are generally lower than 300 ms. As such, the happy eyeballs algorithm
would prefer connections over IPv6.

4.3 Stall Events

Stall events occur due to throughput constraints, which are caused by a bot-
tleneck at any point on the path between the media server and the probe. We
observed stall events on 9 probes, 3 of which belonged to lab networks, 1 was in
IXP while the remaining were all residential. Some of these cases are discussed
below.

In 3 probes #02, #07 and #16, stalling events occurred only during peak
hours, however, speed tests showed sufficient throughput values with no degra-
dation during these hours. All 3 probes reported media servers in more than one
AS, and the stalling events were specific to a particular AS only. In probe #02,
the stall events are specific to servers in AS43515, which is only seen over IPv4
during peak hours and the stalls are also limited to IPv4 only. In case of probe
#16, the stall events are seen for servers in AS15169 and the AS appears for
both address families, causing stalling events in both cases as well. Figure 6 show
hourly trend of YouTube and speed tests for probe #02 and 16. Stall events for
probe #07 all occurred for the same video that was downloaded in Ultra HD,
with a bit rate of 13 Mbps, which is 4 times the bit rate required during other
tests that ran on the probe. While the ASs of media servers used for the video
download varied for different hours during the day, all stall events were observed
for servers in AS15169. Graphs for probe #07 were not included due to space
limitations.

In case of 6 probes (#04–06,17,18,19) the measured throughputs during speed
tests indicated insufficient bandwidth and YouTube tests also exhibited stall

Fig. 4. Boxplots of TCP connection establishment times (in log-scale) to YouTube
audio (above) and video (below) streams from each vantage point both over IPv4
(left) and IPv6 (right). The raw TCP connect times to YouTube media servers are
comparable over both address family.

258 S. Ahsan et al.

Fig. 5. Distribution of TCP connection establishment times (in log-scale) to YouTube
video (left) and audio (right) streams both over IPv4 and IPv6 combined over all
probes.

Fig. 6. Hourly trend of stall events, YouTube throughput and speed tests as observed
on probe #16 (top) and #02 (bottom) during Trial Phase 1. For both probes, stall
events are specific to media servers in a particular AS. We note that the disparity
in media servers for each address family leads to stalling only in IPv4 in the bottom
graph, while in the top graph it results in more stall events in IPv6 than IPv4. Speed
tests, which are run only for specific hours during the day are shown on the right.

Measuring YouTube from Dual-Stacked Hosts 259

events. Figure 7, shows the speed test results for all residential probes, and also
the lab probes that exhibit stalling. Note that all 6 of these probes contain
some very low throughput measurements. In case of probes #05, #16 and #17,
sometimes the competing audio stream consumed too much bandwidth resulting
in an insufficient share for the heavier video stream. We identified this as a flaw
in our test and noted that pacing audio traffic can help avoid stalls in some cases
where the required and available throughput are very close.

4.4 Summary

Among our trial probes, 16 were deployed in home, office or university/research
networks and represented real end users with dual-stacked hosts. Disparity in
throughput measurements over IPv4 and IPv6 was observed in 10 of them. From
the remaining 6, 4 probes showed inconsistent results for YouTube in terms of
content delivery, IPv6 connectivity to media servers and/or TCP connect times.

Speed tests revealed a range of achievable throughput for residential net-
works. 5 out of the 8 residential probes showed disparity in measured through-
puts over IPv6 and IPv4, all of them having lower values over IPv6. All these
probes used centralized servers for fetching media over IPv6, whereas 6 of them
used content caches over IPv4. Half of the probes suffered from connectivity
issues to YouTube media servers over IPv6.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Throughput (Mbps)

C
D

F

MA01

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
Throughput (Mbps)

C
D

F

MA02

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Throughput (Mbps)

C
D

F

MA03

0.00

0.25

0.50

0.75

1.00

0 5 10 15
Throughput (Mbps)

C
D

F

MA04

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5
Throughput (Mbps)

C
D

F

MA05

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Throughput (Mbps)

C
D

F

MA06

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Throughput (Mbps)

C
D

F

MA07

0.00

0.25

0.50

0.75

1.00

0 5 10 15
Throughput (Mbps)

C
D

F

MA08

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
Throughput (Mbps)

C
D

F

MA16

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
Throughput (Mbps)

C
D

F

MA17

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Throughput (Mbps)

C
D

F

MA18

0.00

0.25

0.50

0.75

1.00

0 25 50 75
Throughput (Mbps)

C
D

F

MA19

version

IPv4

IPv6

Fig. 7. Distribution of line rates observed by probes wired in behind a residential
gateway (boxed) and operator’s lab network (unboxed). Line rates are measured using
speed test against dual-stacked M-Lab servers.

260 S. Ahsan et al.

Office, research and NREN used in the trial were all high-speed networks with
even the slowest one reporting an average throughput of over 25 Mbps. YouTube
HD content has a typical range of 3–5 Mbps and about 4 times that for 4 K
UltraHD, and hence from a required throughput perspective, these networks
can easily support YouTube. This was exhibited in the form of 100 % stall-free
YouTube tests for these networks. However, networks are typically used by more
than one user and even single users run simultaneous tasks. The speed test
results in some of these networks show lower throughput values in case of IPv6,
which can result in performance degradation for users.

The trial included 4 probes that were deployed in testbeds for ISPs that have
not launched IPv6 to customers yet, in order to ascertain network performance
before actual IPv6 rollouts. We found erratic results or performance issues on 3
of them, while one showed smooth performance that was consistent over IPv4
and IPv6.

5 Conclusion

We measured YouTube performance from 21 dual-stacked probes deployed in
Europe and some parts of Japan and observed two causes of degraded YouTube
performance over IPv6 in comparison to IPv4 or vice versa: (i) a disparity in
available bandwidth leading to insufficient throughput for a particular address
family and (ii) different media content servers for each address family, of which,
servers from a certain prefix exhibited lower throughput connections with the
probe.

Overall, we observed that network performance over IPv4 and IPv6 is dis-
similar in a majority of the networks we studied. From a set of 16 probes
deployed in residential, official/educational networks, we observed only 3 probes
(MA#11,14,20) with similar network conditions and performance for both IPv6
and IPv4 in terms of speed tests and YouTube delivery. This extent of dispar-
ity shows the significance of performance measurements at end points to better
understand and improve the quality of services.

Acknowledgements. This work was supported by the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) grant no. 317647 (Leone). We would
like to thank all the volunteers who hosted a SamKnows probe for us. We would also
like to thank Sam Crawford, Jamie Mason and Cristian Morales Vega (SamKnows)
for providing us technical support on the SamKnows infrastructure. We also would
like to thank Steffie Jacob Eravuchira (Jacobs University Bremen) for reviewing the
manuscripts.

References

1. Adhikari, V.K., Jain, S., Zhang, Z.L.: Youtube traffic dynamics and its interplay
with a tier-1 ISP: an ISP perspective. In: Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC ’10. ACM, New York (2010)

Measuring YouTube from Dual-Stacked Hosts 261

2. Adhikari, V., Jain, S., Chen, Y., Zhang, Z.L.: Vivisecting youtube: an active mea-
surement study. In: 2012 Proceedings IEEE, INFOCOM (March 2012)

3. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.Y., Moon, S.: I tube, you tube, every-
body tubes: analyzing the world’s largest user generated content video system. In:
Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement,
IMC ’07, pp. 1–14. ACM, New York (2007)

4. Dimopoulos, G., Barlet-Ros, P., Sanjuas-Cuxart, J.: Analysis of youtube user expe-
rience from passive measurements. In: 2013 9th International Conference on Net-
work and Service Management (CNSM), pp. 260–267 (October 2013)

5. Finamore, A., Mellia, M., Munafò, M.M., Torres, R., Rao, S.G.: Youtube every-
where: impact of device and infrastructure synergies on user experience. In:
Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement
Conference, IMC ’11, pp. 345–360. ACM, New York (2011)

6. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: Youtube traffic characterization: a view
from the edge. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, IMC ’07, pp. 15–28. ACM, New York (2007)

7. Juluri, P., Plissonneau, L., Medhi, D.: Pytomo: A tool for analyzing playback
quality of youtube videos. In: 2011 Teletraffic Congress (ITC) (September 2011)

8. Juluri, P., Plissonneau, L., Zeng, Y., Medhi, D.: Viewing youtube from a metropol-
itan area: what do users accessing from residential isps experience? In: IFIP/IEEE
International Symposium on Integrated Network Management (IM) (May 2013)

9. Nam, H., Kim, K.H., Calin, D., Schulzrinne, H.: Youslow: a performance analy-
sis tool for adaptive bitrate video streaming. In: Proceedings of the 2014 ACM
conference on SIGCOMM, pp. 111–112. ACM (2014)

10. Stockhammer, T.: Dynamic adaptive streaming over http: – standards and design
principles. In: Proceedings of the Second Annual ACM Conference on Multimedia
Systems, MMSys ’11, pp. 133–144. ACM, New York (2011)

11. Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè,
A.: Broadband internet performance: a view from the gateway. In: SIGCOMM ’11.
ACM (2011)

12. Thaler, D., Draves, R., Matsumoto, A., Chown, T.: Default address selection for
internet protocol version 6 (IPv6). RFC 6724 (Proposed Standard), Internet Engi-
neering Task Force (September 2012)

13. Wing, D., Yourtchenko, A.: Happy eyeballs: success with dual-stack hosts. RFC
6555 (Proposed Standard), Internet Engineering Task Force (April 2012)

Investigating Transparent Web Proxies
in Cellular Networks

Xing Xu1(B), Yurong Jiang1, Tobias Flach1, Ethan Katz-Bassett1,
David Choffnes2, and Ramesh Govindan1

1 USC, Los Angeles, USA
{xingx,yurongji,flach,ethan.kb,ramesh}@usc.edu

2 Northeastern University, Boston, USA
choffnes@ccs.neu.edu

Abstract. People increasingly use mobile devices as their primary
means to access the Internet. While it is well known that cellular net-
work operators employ middleboxes, the details of their behavior and
their impact on Web performance are poorly understood. This paper
presents an analysis of proxy behavior and how transparent Web proxies
interact with HTTP traffic in four major US cell carriers. We find that
all four carriers use these proxies to interpose on HTTP traffic, but they
vary in terms of whether they perform object caching, traffic redirection,
image compression, and connection reuse. For example, some transparent
proxies unilaterally lower the quality of images, which improves object
fetch time but may hurt user satisfaction. We also find that these prox-
ies do not necessarily enhance performance for mobile Web workloads in
terms of object fetch times; namely, we observe noticeable benefits only
when flow sizes are large and the path between the server and proxy
exhibits large latency and/or loss.

1 Introduction

Internet service providers commonly deploy middleboxes inside their networks for
security, traffic management, and performance optimization [23]. In the mobile
environment, in which resources such as spectrum are scarce, operators have sig-
nificant incentives to interpose on Internet traffic. Unfortunately, operators are
rarely transparent about middlebox policies, and their impact on mobile work-
loads is poorly understood. Previous work identified that middleboxes exist in cel-
lular networks and characterized several middlebox behaviors [8,11,13,21,24,26].
For example, these studies show that carriers proxy traffic to servers by transpar-
ently splitting client TCP connections into two connections: the proxy terminates
the client’s TCP connection by spoofing as the server, and the proxy establishes
a separate connection to the server by spoofing as the client. With split connec-
tions, the proxy can configure each segment individually and respond to latency
and loss independently, potentially improving performance.

It is widely believed that splitting TCP connections should improve – or at
least not worsen – performance for devices in cellular networks, where latencies
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 262–276, 2015.
DOI: 10.1007/978-3-319-15509-8 20

Investigating Transparent Web Proxies in Cellular Networks 263

and loss can be much larger than in fixed-line paths [9,11,13,21,24]. However,
previous studies do not characterize the performance impact for modern cellular
networks and workloads.

In this paper, we are the first to conduct a detailed study of transparent
proxies in four major US cellular providers (AT&T, Sprint, T-Mobile, and Ver-
izon) across four US metro areas (Boston, Chicago, Los Angeles, and Seattle)
and determine their impact on performance. Our measurements indicate that
all four carriers use transparent proxies for Web traffic (TCP port 80) which
represents a large portion of today’s Internet flows. Thus, we focus in particular
on transparent Web proxies.

We designed controlled experiments to investigate features of transparent
Web proxy implementations including caching, content modification, traffic redi-
rection to preferred servers, and connection persistence. Specifically, we tightly
control and monitor the traffic generated by devices, DNS servers, and Web
servers to characterize proxy behavior and its impact under varying network
conditions and workloads, including representative workloads using a mobile
Web browser. We also develop techniques that allow us to infer proxy behav-
ior for communication with servers that we do not control and evaluate proxy
impact on popular Web sites. Note that, we conjecture, but do not focus on why
do carriers deploy these features.

Key Results. First, each carrier implements proxying policies differently, and
they can lead to a different user experience in terms of the speed and quality of
downloaded content. For example, image compression can reduce download time
by a factor of five, but caching content has little impact on performance in our
experiments. Second, we observe that split connections improve performance for
larger flows (up to 45 %), but have negligible impact on small ones (≤100 KB).
We show that proxied connections can provide benefits in lossy and high-latency
environments, particularly where the cellular segment is not the dominating
factor determining end-to-end performance. We use a mobile Web browser to
download replicated Web content from servers we control while approximat-
ing the same communication patterns. Under normal network conditions, these
proxies do not measurably improve performance, but page load times are 30 %
faster when we induce loss on the wired segment. Last, we verify that proxy-
ing occurs of all of the most popular 100 Web site front pages, but discover
that YouTube video servers bypass T-Mobile’s proxy, possibly due to special
arrangements between the providers [20]. Our results indicate proxies may not
necessarily improve performance for mobile users, motivating the need for larger-
scale and more in-depth analysis of the performance benefits across networks,
devices, locations, and workloads.

2 Background and Related Work

Few studies systematically reveal proxy policies in mobile networks and assess
their impact. Early work in this area has focused on understanding, modeling
and improving split-TCP designs for proxies in wireless and cellular networks.

264 X. Xu et al.

An early survey [8] qualitatively characterizes the behavior and role of perfor-
mance-enhancing proxies for wireless networks in general. Ehsan et al. [11] study
the benefits of proxies for satellite networks and describe the benefits of split-
TCP connections. Necker et al. [24] explore, through simulation, the impact
of proxies on bulk downloads and Web traffic on UMTS networks. Ivanovich
et al. [21] discuss advanced ACKing strategies to buffer data at the proxy for
increased wireless link utilization. Finally, Gomez et al. [16] show that proxies
can improve Web browsing performance, Rodriguez et al. [25] discuss the archi-
tecture of a proxy (together with associated TCP optimizations) for a GPRS
network, and Baccelli et al. [7] model the performance of split-TCP to under-
stand its asymptotic behavior. In contrast, our work characterizes the behavior
and performance impact of deployed proxies on modern cellular networks, across
four major US carriers.

More recently, several pieces of work have explored other aspects of proxy
behavior in modern cellular networks. Botta et al. [9] explore how middleboxes
can impact measurements, and propose a careful methodology for cellular mea-
surements, some of which we adopt and extend. Farkas et al. [13] use numerical
simulations to quantify the performance improvement of proxies in LTE net-
works, while our work directly measures this improvement. Ehsan et al. [12]
study tradeoffs of caching through real user traces. Closest to our work are three
measurement studies that have attempted to reveal complementary aspects of
proxy behavior. Wang et al. [26] show how cellular middlebox settings can impact
mobile device energy usage and how middleboxes can be used to attack or deny
service to mobile devices. Michio et al. [19] developed a method for measuring
middlebox behavior related to TCP extensions and showed that some proxies
remove TCP options and proxy connections, which is supplementary to our
works.

Weaver et al. [27] study the prevalence of HTTP proxying using a large
dataset of clients and taxonomize the types of HTTP proxying seen in the wild,
ranging from transcoding proxies to censoring and anti-virus proxies. Unlike our
work, that study does not attempt to enumerate the detailed TCP-level behav-
ior of cellular proxies for various network conditions and Web workloads. Jiang
et al. [22] analyze bufferbloat in cellular networks and propose a dynamic window
adjustment algorithm to alleviate this. Our work explores proxy behavior, which
includes buffers among many other features that impact performance. Finally,
Hui et al. [20] confirm our observation that proxies can actually hurt perfor-
mance instead of improving it. Their proxy bypass experiments with T-Mobile
revealed that direct server-client connections have lower retransmission rates,
higher throughput, and smaller amounts of bufferbloat.

3 Experimental Testbed

Our testbed design is motivated by three goals. First, we want to conduct con-
trolled experiments to determine how a proxy responds to different Web flow
characteristics. Second, for transparently proxied connections, we want to use

Investigating Transparent Web Proxies in Cellular Networks 265

microbenchmarks to identify under which circumstances the proxy behavior
helps or hurts performance in terms of download time. Last, we want to under-
stand how proxy behavior impacts the performance under realistic workloads.
We focus on the delivery time of Web sites that include multiple resources from
different servers.

With these goals in mind, we set up the following testbed. We use multiple
rooted mobile devices (HTC One phones with Android 4.3) and different phone-
specific cellular carrier data plans to explore proxy behavior for each of the four
major US carriers (comprising 99 % of US subscribers [4]). We control a Web
server and a DNS subdomain that resolves to it, allowing us to monitor both
endpoints of a connection when we access a URL via one of our mobile devices.
Our measurement were conducted in more than 2 months. For each experiment
day, we conduct experiments over a wide range of times, including on and off-
peak to avoid bias from time-of-day effects. Finally, we run tcpdump on the device
and on the server to capture detailed network information, including TCP/IP
headers and timestamps (after synchronizing endpoints using NTP).

With full control over the server and client devices, we can explore proxy
properties through different experiment configurations, varying parameters such
as the content that is fetched, socket properties (e.g. server IP/port), HTTP
configuration (including modified headers), and even adjust network conditions.
For each given configuration we mention in this paper, we conduct at least
250 trials. When comparing performance results between two configurations,
we interleave trials of the two configurations to minimize the probability of
signal strength and congestion variation impacting our results. In addition, we
monitor signal strength readings to filter out biased results due to poor signal
strength.

Fig. 1. Fetch times for cached and
uncached objects.

Fig. 2. Impact of Sprint’s image com-
pression (original vs. compressed file
size).

For all four carriers, we conducted experiments in the metro areas of Boston,
Chicago, Los Angeles, and Seattle. In addition, we have measurements for AT&T
and T-Mobile in the metro areas of Philadelphia and Washington, DC.

266 X. Xu et al.

Fig. 3. Fetch times for compressed
(left), and original images (right), on
Sprint.

Fig. 4. Server-side handshake latency
for split (top) and non-split connec-
tions, on T-Mobile.

4 Proxy Features

We test a list of well-known proxy features and identify five used in prac-
tice: caching, redirection, content rewriting, connection persistence, and delayed
server-side handshakes. We observe different feature sets for each carrier
(Table 1), but within each carrier the identified features are consistent across
all metro areas we covered.

To observe proxy features, we conduct experiments between the mobile
phones and our server. Since we control both endpoints, we can correlate client-
and server-side packet traces, and extract features that indicate Web proxy inter-
ference. We first establish the presence of a Web proxy by inspecting various
connection properties, including the TCP window scaling parameter, receiver
window, and sequence and acknowledge numbers. In all four carriers we studied,
at least one of these properties was inconsistent between the client and server,
suggesting interference by a proxy. In addition, we observe that a client receives
the initial TCP SYN-ACK before the server receives a SYN packet, and con-
versely a server receives acknowledgements for transmitted data packets before
the client sees the same data. Thus, we conclude that these proxies split connec-
tions between the two original endpoints.

We observe that proxies only intercept traffic on some ports (including
port 80). Thus, we can compare data for proxied and unproxied traffic by varying

Table 1. Proxy implementations observed in our study.

AT&T T-Mobile Verizon Sprint

Caching � �
Redirection �
Content rewriting �
Connection persistence � � �
Delayed handshaking � � � �

Investigating Transparent Web Proxies in Cellular Networks 267

the server port number. We use port 80 to elicit proxy behavior and port 7777
to bypass the proxy.

To characterize proxy behavior, we parameterize our experiments along mul-
tiple dimensions. We vary the server port, to control proxy interference. We
analyze traffic observed when accessing different destinations, using both static
IPs and DNS names resolvable by our controlled DNS server. We also experi-
ment with multiple content types, flow sizes, packet delay and loss through traffic
shaping, and investigate the effect of different HTTP header configurations.

4.1 Caching

Behavior. If a client receives an HTTP response without the request reaching
the server, we conclude that the carrier caches content. We use unique resources
hosted only on our server to ensure that content can only be delivered by our
server or a cache. We observe content caching for T-Mobile and Sprint. They
cache most Web objects (e.g., CSS, JavaScript, JPEG, PNG, GIF, and TXT)
but they do not cache HTML files. Both carriers cache at per-device and per-
session granularity. That is, the cache is not shared between users and gets
purged whenever the device releases its IP address. We conjecture the reason
of doing this is to not cache private or dynamic contents. We observe objects
remaining cached for a consistent period of time (≈5 min for Sprint, ≈30 min for
T-Mobile) across different times of day.

Impact. Object fetch time can decrease since the content is closer to the client.
Figure 1 shows the measured fetch time for cached and non-cached objects, and
the impact of network latency. From top to bottom, the boxes describe 90th,
75th, 50th, 25th and 10th percentiles (same for subsequent figures). If the cellular
link dominates end-to-end latency we observe no noticeable performance gain
when accessing cached resources. However, in environments with larger wired
latencies (we demonstrate this by introducing delays for outgoing packets on
the server side), we see fetch time improvements for small files (10 KB). For
larger files (500 KB), TCP throughput is bottlenecked by the carrier capacity,
preventing caching benefits. In addition to faster serving time, caching can reduce
a carrier’s inbound traffic, especially if the carrier segments are lossy.

4.2 Redirection

Behavior. Some proxies redirect traffic based on an independent DNS resolution
of the Host header field of an HTTP request, ignoring the destination IP in the
packet sent by the client. To test for this, we send an HTTP request to our
Web server IP (i.e., no client-side DNS resolution required) but provide a third-
party domain name in the Host field, which triggers an error if handled by our
server. If the proxy uses redirection, the request does not reach our server, yet the
referenced website renders at the client side. Only T-Mobile elicits this behavior.
We confirm it for all of the Alexa top 100 websites.

268 X. Xu et al.

Impact. We cannot be certain, but this feature could be for traffic engineering
considerations, e.g., the carrier can control the destination for HTTP traffic at
the proxy instead of relying on devices. In doing so, any server IP mapping based
on client-selected DNS servers is silently and transparently overridden by this
feature.

4.3 Object Rewriting

Behavior. In this case a proxy modifies file contents, for example to improve
performance through mechanisms like whitespace trimming, or image transcod-
ing to reduce the load on the cellular segment. For a variety of Web file types and
content patterns, we compared the payloads transmitted by the server with the
contents received by the mobile devices to detect this feature. We only observe
compression of image files, and only with Sprint up to an original file size of
500 KB (see Fig. 2). We conjecture that the reason of not transcoding large
images is to avoid this receiving latency as well as transcoding latency. For
text files, we did not observe any trimming of whitespace or comments.

Impact. Compressed files can be fetched faster, as shown in Fig. 3. But, aggres-
sive compression can distort images in ways that are unacceptable to the content
provider or user [6]. Further, the proxy must fetch the whole image and transcode
it before beginning to forward to the client.

4.4 Connection Persistence

Behavior. Proxies can persist connections to both endpoints. For the server-
side segment, some proxies remove a client’s connection: close directive in
the HTTP header (used to inform the server to close the connection upon query
response), or add a connection: keep-alive entry. To persist the client-proxy
connection, some proxies drop the server’s TCP FIN packet. We find that AT&T
and Sprint proxies keep the connection to the HTTP server alive after each
request completes. The keepalive time is ∼10 s for AT&T, and ∼30 s for Sprint.
AT&T, Sprint and T-Mobile drop the TCP FIN from the server to persist the
client-proxy connection.

Impact. The advantages of this strategy are that persistent connections avoid
the delays that new per-object connections would incur from TCP handshakes
and slow start. Reusing a connection can also minimize overhead on NAT table
mappings at the edge of the carrier network.

4.5 Delayed Handshaking

Observation. Finally, we confirm that proxies in each carrier delay the initial
handshake between themselves and a server until receiving the HTTP request.
Proxies wait for HTTP request because information from HTTP request helps
caching feature determine whether there is cached version of the request; it also

Investigating Transparent Web Proxies in Cellular Networks 269

helps redirecting feature to figure out the IP destination. Figure 4 illustrates
this behavior. We artificially delay the query which proportionally increases the
server-side reception delay for the handshake packet.

Impact. Deferred handshakes can delay end-to-end communication, especially
for modern browsers that open a connection early in anticipation of a later query,
to avoid incurring the handshake overhead when the query occurs.

5 Split Connection Performance

Intuitively, split TCP connections should offer better client-perceived perfor-
mance (i.e., faster downloads) than direct connections if the proxy is on the
same path. First, splitting the connection reduces the RTTs between connected
endpoints, which allows TCP to grow its congestion window faster. Second, it
isolates the throughput impact of loss events to an individual segment, and it
speeds loss detection and recovery [13,21,25].

In practice, splitting TCP connections offers benefits that depend on the size
of the flow and the relative performance of the split path segments. For short
flows, it is unclear if split connections always result in better client-perceived
performance. Likewise, for cases where the cellular segment is substantially worse
than the wired segment, reducing RTT and loss have little impact on the fetch
time for Web objects.

This section uses controlled experiments to understand the performance
impact of split connections for a Web server we host, for alternative network con-
ditions between the server and proxy, and for realistic Web browser workloads.
We find that the performance impact varies across carriers, network conditions,
or Web sites.

While our experiments cannot be used to compare performance across carri-
ers (since we cannot create identical conditions across them), we can get valuable
insights into the conditions under which split-connections do and do not work
well, and understand how these insights generalize across carriers. Results from
T-Mobile are qualitatively similar to AT&T, and Sprint results are similar to
Verizon, so we omit AT&T and Verizon. For full results, see our tech report [28].

(a) T-Mobile (b) Sprint

Fig. 5. Fetching times for different file sizes.

270 X. Xu et al.

Baseline Performance. For each carrier, we fetch objects with different sizes
using split and non-split connections. Figure 5(b) shows there is no significant
performance difference for Sprint for any file size. In contrast, Fig. 5(a) shows
that for T-Mobile, proxied downloads of larger objects finish much earlier (in the
1 MB case, 30 % faster in the median). T-Mobile has much better performance
than Sprint, because Sprint has much worse link quality where we conducted
our experiments. When we make performance statements about a carrier, say
Sprint, that is shorthand for “the performance seen by the mobile device in our
testbed connected to the Sprint network”, not a blanket statement about the
carrier’s overall performance.

To understand the reasons for different performance benefits, we analyze
the network properties of the cellular and wired path segments. First, we use
traces from the server to find that the wired segments (server to proxy) for
all four carriers have similar characteristics in terms of latency and bandwidth.
For Sprint and Verizon, the limited bandwidth of their cellular segments is the
main performance bottleneck, thus limiting the efficacy of split connections.
In contrast, AT&T and T-Mobile offer more bandwidth, so transfers benefit
from split connections, since shorter latencies enable faster ramp-up of TCP’s
congestion window.

Interestingly, the TCP congestion window on the server side ramps up slowly
in AT&T and T-Mobile due to TCP’s Hybrid Start feature used by default in
the Linux CUBIC congestion control mechanism [17,18]. The RTT and ACK
patterns influenced by the cellular segment result in an early transition to the
congestion avoidance phase to prevent heavy losses. Since the connection is
sender-limited and never reaches the channel capacity, splitting connections can
help to tune features like this for the two path segments independently.

(a) T-Mobile (b) Sprint

Fig. 6. Fetching times for different file sizes, with varying amounts of delay added.

Impact of Varying Network Conditions. We repeat the experiments above,
but emulate high latency wired path segments by having our server introduce
50–200 ms delay on each packet it sends. Figure 6 plots the impact on fetch
times for various file sizes, comparing proxied and unproxied traffic. Split con-
nections improve performance in AT&T’s and T-Mobile’s case for larger files

Investigating Transparent Web Proxies in Cellular Networks 271

and delays (e.g., 1 MB and 200 ms delay); we do not observe statistically signifi-
cant changes with Sprint and Verizon. Performance improvements are similar for
AT&T, Sprint, and Verizon when introducing correlated loss on the wired seg-
ment. Interestingly, T-Mobile’s performance for proxied traffic is independent of
loss rate in our experiments, because the proxy maintains a large-enough buffer
to compensate for the reduced throughput during loss.

Overall, these experiments show that split connections are most impactful in
environments where the cellular segment is not the dominant factor with respect
to end-to-end performance. Thus, carriers with better cellular links benefit most.

Web Browsing. We now move from characterizing performance for isolated
object fetches to realistic workloads generated by a browser accessing popu-
lar Web sites. Since we cannot bypass the proxy when accessing Web servers,
we resort to hosting Web site replicas on our server. For this, we fetch the
original URLs including all embedded resources, even if they are delivered by
third parties. We use a different IP alias for each Web host. We then mea-
sure the round-trip time to each real Web host and induce per-alias delay at
our server to approximate the communication patterns between the phone and
the real hosts. We host three qualitatively different types of sites: a news site
(18 objects), a search engine (14 objects), and an image-bound site (8 objects
with 2 large images). We introduce 3 % packet loss on the server side to investi-
gate the impact of congestion. Also, we simulate follow-up visits, by fetching the
news site, waiting 10 s, then fetching a link on the page. Thus, proxies that per-
sist connections and cache static content can potentially improve performance
compared to bypassed traffic.

(a) T-Mobile (b) Sprint

Fig. 7. Fetching times for three Web site types (in loss-free and lossy environments).

Figure 7 shows the Web browsing results. With introduced loss, split con-
nections generally outperform their unproxied counterparts, with up to 30 %
lower completion times in the median. The proxy absorbs losses, thus keep-
ing performance comparable to a loss-free environment. The proxy buffer ben-
efits for T-Mobile mentioned earlier are evident in this experiment as well.
Caching does not provide significant gains on T-Mobile or Sprint in our tests.
In contrast, Sprint’s image compression drastically reduces fetch times on the

272 X. Xu et al.

image-bound site. Finally, we find that T-Mobile and AT&T’s persistent con-
nections can improve performance by ∼10 % for follow-up visits (not shown).

6 On the Prevalence of Proxying

The experiments above tell us how a cellular proxy interacts with flows to our
Web site, but do not necessarily inform how the proxies interact with other,
popular sites. For example, a carrier and content provider may have a special
agreement to bypass proxies for certain content, or the content provider’s servers
may be off-path from the proxy. The methodology in the previous sections does
not help here because it requires access to the mobile device and server; for
popular sites we have access to the former only.

To understand proxying prevalence for commonly accessed servers, we study
how many of the 100 most popular websites [1] are proxied. We have no visibility
at the server end, so we use a fingerprint analysis technique to identify split TCP
connections and determine if the carriers proxy all, some, or none of the sites.

Fingerprinting. The key observation driving our fingerprint-based proxy detec-
tion is that proxies use predictable patterns when setting bits in the TCP/IP
header, which are different from the ones used by the Web servers. We use the
following rules to identify proxying for arbitrary Web sites.

For each Web site, we collect packet traces for four connections with different
properties. We fetch content via the cellular (c) and wired connections (w), using
HTTP (h), and HTTPS (s). From the traces, we derive connection fingerprints,
denoted by Fc,h, Fw,h, Fc,s and Fw,s. The fingerprint for each packet trace is
composed of the receiver window, the window scaling option value, advertised
maximum segment size, and the IP/ID pattern, all extracted from the handshake
response packet. In Sect. 4, we observed these fields as being most frequently
manipulated by proxies.

In the wired network environment, traffic cannot pass through the cellular
proxy. Therefore, the fingerprints Fw,h and Fw,s are from the Web server (pos-
sibly a server-side middlebox). To obtain the Web server’s fingerprint in the
cellular environment, we need to bypass the potential proxy. In the previous
sections, we used a non-standard port (7777) since we controlled the server. But
in general, Web sites do not listen on this port, so we use port 443 (HTTPS),
which we verified to be un-proxied and which is supported by many Web sites.

In addition, we use a common fingerprint obtained by fetching content from
our server, denoted by Fp. We demonstrated earlier that this is the cellular
proxy’s fingerprint, seen by the client when establishing a connection to our
server. Based on these five fingerprints per site, we conclude that the phone
communicates with an HTTP proxy to access web resources if the following
conditions apply:

Fc,h = Fp (1)
Fc,h �= Fw,h (2)

Fc,h �= Fc,s ⇒ Fc,s = Fw,s (3)

Investigating Transparent Web Proxies in Cellular Networks 273

First, we check if the phone observes the proxy’s fingerprint when establishing
a connection to a web server using the cellular network (rule 1). Then, we ensure
that the web server is not using the same fingerprint when responding to a client,
by accessing the server through a wired connection (rule 2). Finally, we ensure
that servers do not simply use different fingerprints depending on the network
access type. For this, we check whether the HTTP and HTTPS fingerprints in the
cellular environment do not match, indicating that HTTPS traffic bypasses the
proxy. If so, we expect that the HTTPS fingerprints should be consistent across
network access types (rule 3). Additionally we conclude that the phone always
communicates with the same proxy infrastructure for sites wi if the following
additional condition holds:

∀w1, w2 : Fc,h(w1) = Fc,h(w2) (4)

For each of the 100 most popular websites [1], we first obtain the mobile-
specific version of the site (if one exists). To control for the fact that fixed-line and
cellular networks may resolve DNS names and perform redirection differently,
we generate the Fw,∗ fingerprints by connecting to the same IP address found
in the cellular network.

Among these 100 websites, ∼20 websites do not support HTTPS. For these
websites we cannot check rule 3. For the ∼10 websites that always redirect HTTP
requests to HTTPS, we use the redirection response as the fingerprint for the
HTTP response.

Results. Rule 1 holds for each of the tested websites, and rule 4 holds for all pairs
of websites, suggesting that the same proxy handles all of a carrier’s Web traffic.
Rules 2 and 3 do not hold for a few destinations. In particular, the fingerprints
for three websites connecting over the wired network match the fingerprint of
the Sprint proxy. For another three websites we observe non-matching HTTPS
fingerprints.

Table 2. TCP-based traceroutes show that T-Mobile selectively proxies connections
on port 80.

Hop Test server Test server YouTube

(port 80) (port 443) (port 80)

1 192.168.42.129 192.168.42.129 192.168.42.129

2 10.170.224.192 10.170.224.192 10.170.224.192

3 10.170.224.138 10.170.224.138 10.170.224.138

4 10.165.54.12 10.165.54.12 10.165.54.12

5 128.125.121.204 10.165.54.1 10.165.54.1

6 10.170.213.11 10.170.213.11
...

...

Last 128.125.121.204 208.54.39.44

274 X. Xu et al.

The results above indicate that contents for index pages are proxied, but they
do not indicate whether the same is true for all site content. In particular, we
suspect that content such as streaming video, which is often heavily optimized
based on client performance, could bypass the proxy to avoid interference with
these optimizations. To test this hypothesis, we use a similar strategy as above
for the video streaming URLs from three popular video streaming websites.
For Hulu, we verify that the traffic is proxied for all four carriers. Verizon uses
IPv6 for YouTube and NetFlix which we omit from this study. YouTube traffic
is proxied for AT&T and Sprint. However, T-Mobile traffic to some YouTube
servers bypasses the proxy. We compare paths to YouTube and other hosts with
tcptraceroute. Table 2 presents our results, indicating that the IP-level path
to YouTube servers differs from those passing through the proxy (hop 5), and
shares IP hops with paths to our Web server over unproxied connections (hop 6).
This observation was subsequently verified when Google and T-Mobile revealed
that video bypassed the proxy to improve performance [20].

7 Discussion and Future Work

Limitations. This paper focuses on methodologies and experiments for iden-
tifying and characterizing proxies in four US cellular networks using a small
number of devices. We measured the impact of proxies for a variety of network
configurations, but future work will use a broader set of locations and carriers
to generalize our results. Our study characterizes proxies only in IPv4 networks.
Only one carrier, Verizon, supported native IPv6 connectivity (in addition to
IPv4). Verizon proxies v4 Web traffic but does not proxy it when using IPv6, a
topic of future work. This study focused on behavior for the 100 most-popular
Web sites and one testbed Web site; we found that proxying was consistent for
all but YouTube on T-Mobile. We believe that such exceptions to proxying are
rare, but we would like to evaluate this on more Web sites.

Selective proxying. We were interested to discover that proxies interpose on
connections to almost all major Web sites, but Google’s YouTube traffic bypasses
T-Mobile proxies. Subsequent to our discovery, Google and T-Mobile revealed
that they worked together to enable the bypass [20]. YouTube accounts for signif-
icant portions of Internet traffic, and Google has actively developed approaches
to improve delivery [3,5,10,14,15]. This suggests that Google sees benefit in
maintaining an end-to-end connection to clients, and T-Mobile appears willing
to work with (at least some) providers to enable bypassing of the proxy. HTTPS
provides another means to bypass the proxy, and providers are increasingly using
it to serve Web content. It will be interesting to observe trends over time, to see
if the role of proxies diminishes as content moves to HTTPS and, perhaps, as
more Web providers negotiate arrangements like YouTube has.

Proxy evolution. Despite evidence of selective proxying and unclear perfor-
mance benefits from existing proxies, we believe that future proxies can serve an
important role in cellular networks. Cellular carriers control the whole transport

Investigating Transparent Web Proxies in Cellular Networks 275

segment between the client device and the proxy. As such it is possible to fine
tune connections. For example, connections between the phone and the proxy
can use advanced protocol features which cannot be easily deployed in a pub-
lic network due to potential third-party interference [14]. With explicit proxies
(e.g., SPDY/compression proxies [2]) a client can use a single connection to the
proxy, which connects to requested sites.

References

1. Alexa Top 100 Websites. http://www.alexa.com/topsites
2. Data Compression Proxy. https://developer.chrome.com/multidevice/data-compre

ssion
3. Experimenting with QUIC. http://blog.chromium.org/2013/06/experimenting-

with-quic.html
4. Grading the Top U.S. Wireless Carriers, 8 August 2014. http://www.fiercewireless.

com/special-reports/grading-top-us-wireless-carriers-second-quarter-2014
5. SPDY Whitepaper. http://www.chromium.org/spdy/spdy-whitepaper
6. Sprint Community. https://community.sprint.com/baw/thread/144305
7. Baccelli, F., Carofiglio, G., Foss, S.: Proxy caching in split TCP: dynamics, stability

and tail asymptotics. In: Proceedings of INFOCOM (2008)
8. Border, J., Kojo, M., Griner, J., Montenegro, G., Shelby, Z.: Performance enhanc-

ing proxies intended to mitigate link-related degradations. Technical report, RFC
3135 (2001)

9. Botta, A., Pescapé, A.: Monitoring and measuring wireless network performance
in the presence of middleboxes. In: Proceedings of WONS (2011)

10. Dukkipati, N., Refice, T., Cheng, Y., Chu, J., Herbert, T., Agarwal, A., Jain,
A., Sutin, N.: An argument for increasing TCP’s initial congestion window. In:
Proceedings of SIGCOMM CCR (2010)

11. Ehsan, N., Liu, M., Ragland, R.J.: Evaluation of performance enhancing proxies
in internet over satellite. IJCS 16, 513–534 (2003)

12. Erman, J., Gerber, A., Hajiaghayi, M.T., Pei, D., Sen, S., Spatscheck, O.: To cache
or not to cache: the 3G case. IEEE Internet Comput. 15, 27–34 (2011)

13. Farkas, V., Héder, B., Nováczki, S.: A split connection TCP proxy in LTE networks.
In: Szabó, R., Vidács, A. (eds.) EUNICE 2012. LNCS, vol. 7479, pp. 263–274.
Springer, Heidelberg (2012)

14. Flach, T., Dukkipati, N., Terzis, A., Raghavan, B., Cardwell, N., Cheng, Y., Jain,
A., Hao, S., Katz-Bassett, E., Govindan, R.: Reducing web latency: the virtue of
gentle aggression. In: Proceedings of SIGCOMM (2013)

15. Ghobadi, M., Cheng, Y., Jain, A., Mathis, M.: Trickle: rate limiting youtube video
streaming. In: Proceedings of USENIX ATC (2012)

16. Gomez, C., Catalan, M., Viamonte, D., Paradells, J., Calveras, A.: Web browsing
optimization over 2.5G and 3G: end-to-end mechanisms vs. usage of performance
enhancing proxies. Wirel. Commun. Mob. Comput. 8, 213–230 (2008)

17. Ha, S., Rhee, I.: Hybrid slow start for high-bandwidth and long-distance networks.
In: Proceedings of PFLDnet (2008)

18. Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant.
ACM SIGOPS Op. Syst. Rev. 42, 64–74 (2008)

19. Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., Tokuda, H.: Is
it still possible to extend TCP? In: Proceedings of IMC (2011)

http://www.alexa.com/topsites
https://developer.chrome.com/multidevice/data-compression
https://developer.chrome.com/multidevice/data-compression
http://blog.chromium.org/2013/06/experimenting-with-quic.html
http://blog.chromium.org/2013/06/experimenting-with-quic.html
http://www.fiercewireless.com/special-reports/grading-top-us-wireless-carriers-second-quarter-2014
http://www.fiercewireless.com/special-reports/grading-top-us-wireless-carriers-second-quarter-2014
http://www.chromium.org/spdy/spdy-whitepaper
https://community.sprint.com/baw/thread/144305

276 X. Xu et al.

20. Hui, J., Lau, K., Jain, A., Terzis, A., Smith, J.: How youtube performance is
improved in T-mobile network. In: Proceedings of Velocity (2014)

21. Ivanovich, M., Bickerdike, P., Li, J.: On TCP performance enhancing proxies in a
wireless environment. IEEE Commun. Mag. 46, 76–83 (2008)

22. Jiang, H., Wang, Y., Lee, K., Rhee, I.: Tackling bufferbloat in 3G/4G networks.
In:Proceedings of IMC (2012)

23. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: illuminating the edge
network. In: Proceedings of IMC (2010)

24. Necker, M.C., Scharf, M., Weber, A.: Performance of different proxy concepts in
UMTS networks. In: Kotsis, G., Spaniol, O. (eds.) Euro-NGI 2004. LNCS, vol.
3427, pp. 36–51. Springer, Heidelberg (2005)

25. Rodriguez, P., Fridman, V.: Performance of PEPs in cellular wireless networks.
In: Douglis, F., Davison, B.D. (eds.) Web Content Caching and Distribution, pp.
19–38. Springer, Dordrecht (2004)

26. Wang, Z., Qian, Z., Xu, Q., Mao, Z., Zhang, M.: An untold story of middleboxes
in cellular networks. In: Proceedings of SIGCOMM (2011)

27. Weaver, N., Kreibich, C., Dam, M., Paxson, V.: Here be web proxies. In: Faloutsos,
M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 183–192. Springer,
Heidelberg (2014)

28. Xu, X., Jiang, Y., Flach, T., Katz-Bassett, E., Choffnes, D., Govindan, R.: Inves-
tigating transparent web proxies in cellular networks. Technical report 14-944,
University of Southern California (2014)

TrackAdvisor: Taking Back Browsing Privacy
from Third-Party Trackers

Tai-Ching Li1(B), Huy Hang1, Michalis Faloutsos2,
and Petros Efstathopoulos3

1 University of California, Riverside, USA
{tli010,hangh}@cs.ucr.edu

2 University of New Mexico, Albuquerque, USA
michalis@cs.unm.edu

3 Symantec Research Lab, Culver, USA
petros efstathopoulos@symantec.com

Abstract. Even though most web users assume that only the websites
that they visit directly become aware of the visit, this belief is incorrect.
Many website display contents hosted externally by third-party websites,
which can track users and become aware of their web-surfing behavior.
This phenomenon is called third-party tracking, and although such activ-
ities violate no law, they raise privacy concerns because the tracking is
carried out without users’ knowledge or explicit approval. Our work pro-
vides a systematic study of the third-party tracking phenomenon. First,
we develop TrackAdvisor, arguably the first method that utilizes Machine
Learning to identify the HTTP requests carrying sensitive information
to third-party trackers with very high accuracy (100 % Recall and 99.4
Precision). Microsoft’s Tracking Protection Lists, which is a widely-used
third-party tracking blacklist achieves only a Recall of 72.2 %. Second,
we quantify the pervasiveness of the third-party tracking phenomenon:
46 % of the home pages of the websites in Alexa Global Top 10,000 have
at least one third-party tracker, and Google, using third-party tracking,
monitors 25 % of these popular websites. Our overarching goal is to mea-
sure accurately how widespread third-party tracking is and hopefully
would raise the public awareness to its potential privacy risks.

1 Introduction

Would you feel that your privacy is violated if someone knew which websites
you visited last night? Most people would feel uneasy and want to ensure their
personal browsing information is not revealed to anyone else but the opposite is
exactly what has been happening thanks to a phenomenon called third-party
tracking. As a user visits a website of interest, third-party websites linked to
that website become aware of the user’s browsing activities and due to the ubiqui-
tous use of cookies, these third-parties can uniquely identify the user1. Although
1 In general, it is more accurate to say that third party tracking can track and identify

web-browsers and not end users. In the rest of this document, we will use the term
“tracking a user” to imply tracking the browser that is being used.

c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 277–289, 2015.
DOI: 10.1007/978-3-319-15509-8 21

278 T.-C. Li et al.

this can be appalling for privacy-sensitive users, there is no violation of laws.
The third-party tracker is legitimately contacted by the user’s browser, because
it hosts resources required by the website that the user wants to visit.

It is natural to ask why the third-party tracking phenomenon is occurring and
how. The answer to the “why” question is money, marketing, and advertising.
It is easy to see that knowing how many users watch golf scores and search for
luxury cars can help one place ads more effectively. With third-party tracking,
ads on a website can be customized based on the user’s visits to other websites.
If you searched for yachts on one site, you could be shown yacht insurance ads
on another site. The answer to the “how” question is the widespread use of:
(a) embedded links on a webpage (think Facebook “Like” or Google+ “+1” but-
ton) or content being pulled from another site, and (b) cookies. Cookies turn
any browser into a silent accomplice as the browser voluntarily provides cook-
ies to the third-party websites. These cookies could have been obtained from a
tracking website at an earlier time (e.g. when we logged in to Facebook). The
obvious solution would not work: not sending cookies at all will often degrade
the user experience or even “break” the interaction with websites.

In our work, we want to answer two main questions: (a) How can we identify
cookie-based third-party tracking accurately? and (b) How widespread is the phe-
nomenon of third-party tracking? To address both questions, we need a method
that, when given a website and the HTTP interactions between users and that
website, can identify third-party trackers. The challenge lies in identifying fea-
tures of cookies and of the user interaction in general that can accurately identify
third-party trackers. This is non-trivial and there exists no such method in the
literature, as we discuss below. For the remainder of this paper, we use the term
privacy to refer to the right of a web-browsing user to not have a third-party
website become aware of websites that the user visits. We focus on cookie-based
tracking, because it is still the most prevalent form of tracking, as we discuss in
Sect. 7.

There has been very little attention on measuring the pervasiveness of third-
party tracking activities, which is our focus here. To the best of our knowledge,
the most widely-used approaches to combat the third-party tracking problem
rely on black lists of third-party trackers, which are maintained by corpora-
tions or communities. Microsoft’s Tracking Protection Lists (TPL) [7] is
one such prominent black list, which aggregates many others. As we show later,
these efforts are far from perfect, as they are geared towards blocking the more
well-known third-party trackers. We discuss related and complementary research
efforts in Sect. 7.

The contribution of this paper is a systematic study of the third-party track-
ing phenomenon and its extent. We also briefly discuss practical countermeasures
to enable users to protect their web-browsing privacy. First, we propose TrackAd-
visor, an effective method to detect third-party trackers that surpasses existing
third-party tracking lists in terms of both accuracy and detection. Second, we
use TrackAdvisor to study the prevalence of third-party tracking among Alexa’s
Global Top 10 K websites. We outline our key contributions and results below.

TrackAdvisor: Taking Back Browsing Privacy from Third-Party Trackers 279

a. We develop TrackAdvisor, a supervised learning approach that
identifies third-party trackers with high accuracy. A key novelty of our
approach is that it does not rely on a blacklist of websites; TrackAdvisor focuses
on the collective statistics of all cookies inside an outgoing third-party HTTP
request to infer whether the third-party website that receives those cookies is
tracking the user. Using Machine Learning techniques and carefully selected fea-
tures, our method exhibits a Precision of 99.4 and a Recall of 100 %.

b. We evaluate the accuracy and completeness of TPL and show
it yields a relatively low Recall of 72.2%. Microsoft’s Tracking Protec-
tion Lists (TPL), which combines many existing blacklists, achieves a Recall of
72.2 % although with a high Precision of 96.3 %. TPL is incorporated in Inter-
net Explorer and can therefore be thought of as the protection that is readily
available to users. As a result, its low Recall is somewhat disconcerting.

c. We show that third-party tracking is prevalent: 46% of Alexa’s
Global top 10K sites being tracked. We find that close to 46 % of the home
pages of the websites in Alexa’s Top 10,000 websites have at least one third-
party tracker and on average, one out of every three HTTP requests sent to
third-party websites is sent to a third-party tracker. More worrisomely, Google
is monitoring 25 % of the Alexa sites as a third party tracker through its ad and
analytics services. As expected, Facebook and Twitter are also prominent third-
party tracking, as Facebook “Like” and Twitter’s “Tweet” widgets have become
very common, especially on blogs and news-related websites. Interestingly, two
lesser known companies, Scorecard Research and QuantServe, are among the top
five third-party trackers in our dataset.

2 Background

A. Cookies. In the context of the HTTP protocol and web browsing, a cookie
is a small, local file (about 4KB in size) that helps a website identify a user and
their preferences and it is intended to quickly provide the remote website with
information such as language (for rendering the content in the correct language)
or geographic location (maybe for nearest store location). Cookies are created by
the website and stored on the device by the browser the first time the user visits
the website. During every subsequent visit, the browser volunteers the saved
information to the website.

There are two main components to the structure of a cookie.

1. A Name and Value pair, which is explicitly set by the website. The pair can
be used to save a user’s language preference or geographic location. In the
case of a third-party tracker, the value portion will be assigned a string that
represents a user’s unique ID.

2. Attributes, which tell the browser how to handle the cookies. The most com-
mon attributes of the cookies are: (a) the domain that instructs the browser
which cookies to send to which websites upon visit and (b) the expiration,
which is a timestamp specifying to the browser when to a cookie is to be
discarded.

280 T.-C. Li et al.

B. Third-party tracking. There are three parties involved in a user’s visiting
a website: the target website w (the first party) the user wants to visit, the user
u (the second party), and the entities (the third party) hosting content external
to the website w. Third parties, in this case, are generally transparent to the
users and not all of them are third-party trackers.

As the browser needs to download third-party content, it must send an HTTP
request to each of the third parties. We call the ones that collect information
about the user at this stage third-party trackers.

Tracking mechanism: Although HTTP cookies are not the only means with
which third-party trackers keep track of users, they are the most popular. There
are three reasons to this. Firstly, all browsers can accept and send cookies. Sec-
ondly, other non-HTTP cookies exist and can be used for tracking, but they are
inefficient or will create legal issues for the entities who utilize them. Finally,
even though third-party websites can track a user by their browser fingerprint
[13], this method incurs a much higher overhead, thus is unlikely to adopted
widely. We will discuss browser fingerprinting and other tracking mechanisms in
more details in Sect. 7.

3 Methodology

In this section we will: (1) discuss characteristics of HTTP requests going to
trackers and (2) provide an overview of our solution for the problem of detecting
third-party trackers.

A. HTTP Requests going to third-party trackers. The key question to
ask is whether there are characteristics that differentiate between: (1) HTTP
requests carrying information to third-party trackers that can uniquely identify
the user, and (2) HTTP requests that carry no such information.

We answer this question positively. The requests going to trackers contain
tracker cookies, which we define as a cookie that contains a name-value pair
that can uniquely identify a user. One such cookie, for instance, may have the
name-value pair: UID=163fkcs65bz where the value is simply a unique identifier
given to the browser by the website. In contrast, there are non-tracker cookies,
which are used capture user preferences (e.g. display language, timezone), and
the browser provides to them to the website in each visit. Because tracker cookies
are meant to identify a user, they bear the following characteristics:

1. Their Lifetimes tends to be much longer than non-tracker cookies. A cookie’s
Lifetime is the time between its creation time and its expiration time.

2. The value part of the name-value pair inside each cookie (recall that each
cookie contains only one such pair) must have sufficient length to be able to
distinguish one user from many others.

In Fig. 1(a), we show the difference in the lifetime values between tracker
cookies and non-tracker cookies that we collected and manually labeled (see
Sect. 4 for more details on data collection). We can see that while less than 10 %

TrackAdvisor: Taking Back Browsing Privacy from Third-Party Trackers 281

(a) Expiration time (b) Length of value

Fig. 1. Difference between tracker and non-tracker cookies

of tracker cookies have a lifetime of a single day or less, at least 80 % of non-
tracker cookies have such short lifetime. Furthermore, Fig. 1(b) shows that the
length of the value is at least 35 characters for 80 % of the tracker cookies, while
80 % of the non-tracker cookies have values that are shorter than 35 characters.

The next important question to answer is, then, how we can exploit these
characteristics in an effort to correctly classify HTTP requests as either going to
third-party trackers and carrying user-identifiable information or harmless and
carrying no sensitive information.

B. TrackAdvisor: Identifying trackers, one HTTP request at a time.
We present TrackAdvisor, our solution for the problem of identifying third-party
trackers. TrackAdvisor looks at all of the cookies carried by each outgoing HTTP
request, extract collective statistics, and performs classification to determine
whether it is heading for a tracker.

TrackAdvisor is a supervised Machine Learning-based application that we
envision to reside inside the browser, where it can inspect each outgoing HTTP
request and inform the user if the HTTP request carries information that may
be able to uniquely identify the user. TrackAdvisor takes as input the cook-
ies exchanged between the browser and the remote websites and identifies the
websites that are third-party trackers.

Feature selection: First, we define CookieJar(A,B) as the group of all third-
party cookies exchanged between the host A and the remote website B. Note
that we exclude the Session cookies because Session cookies are created during
a browsing session and are destroyed once the browser is closed. Because of
their short-lived nature, Session cookies are unlikely to be used as a tracking
mechanism.

Instead of looking at the cookies in CookieJar(A,B) individually, TrackAd-
visor looks at CookieJar(A,B) in its entirety, extracts relevant statistics, and
performs classification.

We started with considering a large number of features, including maximum
Lifetime, minimum ValueLength, mean ValueLength, maximum ValueLength, as
well as others. This set of features is then reduced to only three by the Recursive
Feature Elimination (RFE) functionality of WEKA [19] which, at a high level,
recommends a subset of features that achieves the best accuracy. In our case,
the final three features are:

282 T.-C. Li et al.

(a) Minimum lifetime: Lmin
A,B = minc [Lifetime(c)]. This feature is selected because

trackers, as discussed earlier, tracker cookies tend to have longer lifetime than
non-tracker cookies.

(b) Number of third-party cookies in CookieJar(A,B): NA,B . This feature is
selected because of the trackers’ tendency to utilize more cookies than benign
third-parties in order to record as much information about the user as pos-
sible.

(c) Augmented Lifetime: Laug
A,B =

∑
c [ValueLength(c) × Lifetime(c)]. The Aug-

mented Lifetime captures at once captures two important characteristics
of tracker cookies: long Lifetime and long ValueLength, and it is also cru-
cial to future-proofing TrackAdvisor’s performance against two possible
evasive tactics from third-party trackers: cookie chunking and lifetime
reduction. We will discuss the two techniques, as well as how robust Track-
Advisor is against them at the end of Sect. 4.

The steps that TrackAdvisor executes are:

1. Retain only third-party HTTP requests from the browser. A third-party
HTTP request is one that is sent toward an URL that does not share the same
hostname as the website the user intentionally visits. TrackAdvisor achieves
this by looking at the referrer of the request and ignoring requests where the
hostnames in the referrer and URL fields are the same.

2. For each CookieJar(A,B) representing an HTTP request sent by host A to
website B, TrackAdvisor calculates three features of CookieJar(A,B), that
we described above: (a) Lmin

A,B , (b) NA,B , and (c) Laug
A,B .

3. Use a binary classifier to classify the tuple 〈Laug
A,B , Lmin

A,B , NA,B〉.
A positive output from the classifier means that the tuple belongs in an inter-
action with a third-party tracker and a negative otherwise. We will discuss
how to create the classifier from training data in Sect. 4.

4. If the module returns a positive value, we label B as a third-party tracker
and add it to a list that will be presented to the user later.

4 Experiments and Evaluation

In this section we will (a) describe our data collection and preliminary labeling
processes and (b) compare the performance of Microsoft’s Tracking Protection
Lists against that of TrackAdvisor.

A. Data Collection. Our dataset is created by visiting the landing pages
Alexa’s Top 10K Global list [2] during the month of July of 2012. We collected
our data using FourthParty [4], a Firefox extension that collects data in the
background as the user browses the Web. The data that we collected are: (a)
the header of each HTTP request, (b) the header of each HTTP response, and
(c) the cookie log associated with each request and response. We used the
automation framework Selenium [9] with FourthParty installed to collect 563,031
HTTP requests and 99,397 cookies. Of all 563,031 requests, 202,556 were sent to

TrackAdvisor: Taking Back Browsing Privacy from Third-Party Trackers 283

third-party websites and 78,213 contain cookies. Out of 99,397 cookies, 22,270
cookies were sent to third-party websites.

B. Creating training and testing data sets. From the set of all HTTP
requests to third-party websites, we created a training and a testing data-set as
follows:

– Dtrain: includes 500 randomly chosen requests such that roughly half of them
were dispatched to third-party trackers and half were meant to retrieve third-
party content and containing no tracking information.

– Dtest: includes 500 HTTP requests that were randomly chosen in a similar
fashion to the ones in Dtrain.

Dtrain and Dtest are mutually exclusive. The former is used to train Track-
Advisor and the latter will be used for testing both TrackAdvisor and Tracking
Protection Lists.

To establish the ground truth, we label the websites in Dtrain and Dtest

(1,000 in total) as either third-party trackers or benign third-party websites using
extensive and careful manual evaluation. In our evaluation, we label a website
as a third-party tracker by combining the information gained from the three
following processes: (a) a manual inspection the website, (b) a consultation with
multiple black lists specifically created for third-party tracker, and (c) a careful
inspection of cookie properties. To label something as athird-party tracker, we
require significant supporting evidence to that effect. We argue that this method
is essentially the same used by the contributors to third-party tracking lists.
For transparency, we will make our two labelled sets available to the research
community.

C. Reference: Microsoft’s Tracking Protection List. We compare our
approach against Tracking Protection Lists, which is a black list-based compo-
nent that is used in Microsoft’s Internet Explorer. We selected Tracking Protec-
tion Lists because: (a) it uses the same popular black lists (FanBoy, EasyList,
EasyPrivacy, etc.) that empower AdBlock Plus and (b) it has been shown that
the a combination of the popular black lists achieved comparable performance
to Ghostery’s [15].

D. Creating a classifier for TrackAdvisor from Dtrain. Recall from the
beginning of this section that we have constructed a training dataset and a
testing dataset called Dtrain and Dtest. Also recall that each request in Dtrain

is represented by a tuple 〈Laug
A,B , Lmin

A,B , NA,B〉. Since each tuple is labeled, we
are able to use the WEKA Machine Learning suite [19] to build classifiers. The
algorithm that we picked from the suite is Support Vector Machine because it
offers the best performance in terms of Precision and Recall, where Pr = TP /
(TP + FP) and Re = TP / (TP + FN). TP is the number of True Positives, FP
the number of False Positives, and FN the number of False Negatives.

284 T.-C. Li et al.

Before we start the testing, we examine the sensitivity of our approach to the
training input by performing a ten-fold cross-validation on Dtrain. The assess-
ment yields a combined Precision of 0.998 and Recall of 0.998 (one FN and one
FP). We conclude that our approach is robust to the training data.

(a) (b)

Fig. 2. Classification results for HTTP requests (a) and domains (b)

E. Evaluation of classification on Dtest. First, we check the URLs of Dtest

against Tracking Protection Lists. As shown in Fig. 2(a), TPL achieves a Pre-
cision and Recall of 96.3 % and 72.2 % respectively (13 FPs and 134 FNs).
In contrast, TrackAdvisor achieves perfect Recall and nearly perfect Precision
(0 FPs and 2 FNs).

One possible reason why TPL has so many False Negatives could be that
TPL is better tuned to recognize the trackers more relatively well-known to the
community, as it relies significantly on user reports to populate the list.

F. Possible evasive tactics from third-party trackers: An inquisitive
reader may ask why we simply did not use only ValueLength and Lifetime as
features for the classifier even though as we have shown in Fig. 1 that the Value-
Lengths and Lifetimes of non-tracker cookies are different from those of tracker
cookies. The reason is that a classifier built from only ValueLength and Lifetime
is ineffective against two possible evasive tactics from third-party trackers:

T1. Cookie Chunking: Instead of using a single cookie that contains an iden-
tifier, third-party trackers can chop it into multiple cookies with different
names that will be combined later when the HTTP requests are processed
at the server. This way, they can reduce the lengths of the cookies and help
them avoid detection.

T2. Lifetime Reduction: Instead of setting a large value for the expiration of
the cookies, trackers can use smaller values depending on their own popu-
larity. For example, a very popular website like Google can set their cookie
lifetime to a month or even a week instead of a year because Google knows
people visit the site frequently.

We have conducted extensive experiments on the robustness of TrackAdvisor
against T1 and T2 where we (a) identify every tracker cookie in each HTTP

TrackAdvisor: Taking Back Browsing Privacy from Third-Party Trackers 285

request (in both Dtrain and Dtest) that we manually label as going to third-
party trackers, (b) either split them up according to T1 or reduce their lifetimes
according to T2, and (c) re-train our classifier on Dtrain and re-test on Dtest.
We cannot describe the experiments in details due to space limitation but we
find that TrackAdvisor’s performance is unchanged even when we execute T1
and T2.

5 The Pervasiveness of Third-Party Trackers

In this section, we quantify the extent of third-party tracking by analyzing the
Alexa Top 10 K websites. Overall, we find a significant presence of third-party
tracking that would be disconcerting to privacy advocates.

(A) 46% of the Alexa Top 10K websites have at least one third-party
tracker on them. By applying TrackAdvisor on our entire dataset, we found
that 46 % of the Alexa Top 10 K websites had at least one third-party tracker on
them. We use the term “target website” to refer to the Alexa website that was
explicitly visited by the user in each request as we explained earlier. We plot the
cumulative coverage in terms of unique target sites as a function of the number
third-party trackers in the order of decreasing activity in Fig. 3(a). In more detail,
for each third-party tracker t, let St be the set of websites in our dataset that are
tracked by t. On the x-axis, we order the trackers in decreasing order in terms
of the number of sites on which they appear: |Sti |. The y-axis is the cumulative
coverage (Cti) of the first i trackers in that order. Cti = | ∪i

k=1 Stk |/N where
N = 10, 000 is the total number of target websites.

We can see from Fig. 3(a) that:

– 46 % of the Alexa Top 10,000 websites have at least one tracker on them.
– The top 5 most common trackers cover 30 % of the top 10,000 sites.
– Google alone (doubleclick.com and google.com) covers 25 % of the sites. The

doubleclick.com domain is responsible for advertisements and google.com is
where other websites download widgets and libraries.

(a) (b)

Fig. 3. (a) Cumulative coverage of top 10K Alexa sites as a function of third-party
trackers in the order of decreasing tracking presence in our dataset. (b) The distribution
of the number of trackers on the Alexa top 10K sites.

http://doubleclick.com
http://google.com
http://doubleclick.com
http://google.com

286 T.-C. Li et al.

B. The majority of tracked sites are tracked by more than one tracker.
Equally interesting is the fact that a website that has third-party tracking is
likely to contain multiple trackers. In Fig. 3(b), we plot the CDF of the distribu-
tion of third-party trackers on the Alexa websites that have at least one tracker.
For example, we see in the plot that 28 % of websites have one tracker, which
means that there are at least two trackers present on each of the remaining
websites (72 %).

We also find that 29 % of the websites that are tracked by at least five third-
party trackers. For a visitor that means that five different entities become aware
of her web-surfing preferences. It is equally worrisome to see that some popular
websites such as latimes.com and washing-tonpost.com have upwards of 10 third-
party trackers.

The well-known Google Analytics is not on the list in Fig. 3(b), because
by contract, Google Analytics provides statistics only to the first-party websites
and the cookies set by Google Analytics are always associated with the domains
of the first-party websites and therefore are not third-party cookies. Furthermore,
the same user who visits different websites monitored by Google Analytics will
likely receive different IDs, which makes tracking him or her non-trivial.

C. Third-party interactions: 37% tracking versus 63% benign. Recall
from Sect. 4 that our dataset contains a total of 202,556 third-party HTTP
requests, which includes both third-party tracking and benign third-party inter-
actions. Using our approach, we identify 75,849 (37 %) of them as third-party
tracking interactions. This is of interest in considering counter-measures to third-
party tracking, since there is a large number of interactions with benign third-
party websites, as we discuss in the next section.

6 Possible Solutions Against Third-Party Trackers

Here, we discuss some potential solutions that can be implemented in a browser
fairly easily to block third-party trackers from collecting user information.

A. Blocking all third-party cookies. One can consider labeling as trackers
all third-party websites that exchange cookies with the user’s computer. On the
one hand, this type would allow a user to block 100 % of the trackers with a
false positive rate of 12.6 %. On the other hand, that comes at the expense of
the degraded browsing experience. There are websites that refuse to display their
content unless the user’s browser accepts third-party cookies. More specifically,
with third-party cookies disabled, iFrames, widely used in third-party games and
apps on social networks, cannot read their own cookies [10] and cannot work.
As we saw in Sect. 5, the majority (63 %) of requests to third-party websites is
benign. A complete blocking solution would have unnecessarily blocked them.

B. Removing/Anonymizing the referrer fields in HTTP requests. Apart
from the cookies that can uniquely identify users, the values of the referrer fields
of the HTTP requests are important to the third-party websites’ ability to par-
tially construct a user’s browsing history. Therefore, using TrackAdvisor to iden-
tify HTTP requests carrying identifying information and then either removing

http://latimes.com
http://washing-tonpost.com

TrackAdvisor: Taking Back Browsing Privacy from Third-Party Trackers 287

the referrer information or replacing it with bogus values is one way to protect
the user’s privacy. To the best of our knowledge, third-party websites have tried
to withhold content from the users only in the case where the browsers would
not accept the cookies and no efforts at all have been invested in validating the
referrers as a condition to provide content.

Here we only provide suggestions for possible defense methods against third-
party trackers. The full evaluation of the two methods is, however, beyond the
scope of this paper and may be tackled in a future work.

7 Related Work

Although much attention has been devoted to studying the phenomenon of third-
party trackers using cookies to track users [14,16,18], there exists no practical
solution that leverages cookies as a means to detect third-party tracking. To the
best of our knowledge, all existing practical solutions such as AdBlock Plus [1],
Microsoft’s Tracking Protection Lists [7], Collusion [3], and Ghostery [5] rely on
corporate- and community-maintained black lists (sometimes called block lists)
to block HTTP requests to well-known third-party trackers. AdBlock Plus is
an improvement to the original AdBlock that also blocks third-party trackers
in addition to advertisements. Ghostery and TPL focus on blocking trackers
instead.

All other related work have been focused on uncovering other types of cookies
(aside from the standard HTTP ones) that could be used to track users but did
not propose countermeasures like we did. In [12,17], the authors documented
the use of Flash cookies, which are Locally Shared Objects similar to cookies.
Advertisers can create a pair of cookies, an HTTP one and a Flash one, with
identical content, where the latter can “re-spawn” the former even after the
former has been deleted. Fortunately, the practice of using Flash cookies have
been on the decline because there have been lawsuits against the advertisers,
who essentially re-spawned the HTTP cookies against the users’ will.

There is a form of cookie-less tracking, which is cache-based and utilizes
ETags [6,12]. An ETag, assigned by the website and unique for each user, is
associated with an object on a web page (like an image) that can tell the server
if the object in the browser cache is the same as the one on the server. An
advertiser then can have exactly the same objects on many websites and track
the users just like they would with cookies. This method is not popular, as users
can just clear the browser caches frequently.

Most modern browsers offer a “Do Not Track” option which is nothing more
than a request and the websites can ignore it if they choose to. The most recent
high-profile website that decided to not honor “Do Not Track” is Yahoo [11]. The
Electronic Frontier Foundation then responded by releasing Privacy Badger [8],
a browser add-on that detects third-party trackers. It keeps tracks of all cookies
as the user visits websites and blocks cookies that are previously seen. This is
a promising development, but, given that this was released only in May 2014,
there are no reports yet as to how well Privacy Badger works, if it degrades user

288 T.-C. Li et al.

experience, and how much overhead it may add in terms of memory due to the
large number of cookies that need to be tracked.

Finally, there exists a form of tracking using the fingerprint [13] of the
browsers. This form of tracking relies on the information that the browser sends
to the remote website (such as IP address, User-Agent, System fonts, screen res-
olution etc.). The remote website then can use all of this information to uniquely
identify the browser that the request comes from. However, because the over-
head that incurs is very high for browser fingerprinting, we would make the
argument that third-party trackers are unlikely to adopt it as a means to track
the browsing behaviors of users.

8 Conclusion

We present TrackAdvisor, a Machine Learning-based method designed to detect
third-party trackers and become the basis for protecting the users’ privacy
from third-party trackers. TrackAdvisor’s novelty is its focus on the interac-
tions between the browsers and the remote websites to detect when the user’s
browsing privacy is being leaked instead of relying on black lists. TrackAdvi-
sor exhibits high Precision (99.4) and Recall (100 %) in contrast with a Recall
of 72.2 % by Microsoft’s Tracking Protection Lists, which is a black list-based
component in the widely used Internet Explorer.

Towards protecting user privacy, we evaluate two potential countermeasures:
(a) removing user identity in tracker cookies and (b) removing the referrer infor-
mation from the HTTP requests sent to third-party trackers. We find that the
second method achieves the goal of protecting user privacy while not “breaking”
the functionalities of the web pages.

Finally, we present a study on the pervasiveness of third-party trackers. Our
study shows that 46 % of the websites on Alexa’s Global Top 10,000 list contain
at least one tracker each and 25 % of the 10,000 are tracked by a single entity:
Google, as its doubleclick ad service is very popular and many websites use the
code libraries provided by Google itself to add functionalities.

References

1. AdBlock Plus. https://adblockplus.org
2. Alexa, the Web Information Company. http://www.alexa.com
3. Collusion, browser extension. https://chrome.google.com/webstore/detail/

collusion-for-chrome/ganlifbpkcplnldliibcbegplfmcfigp
4. FourthParty Firefox Extension. http://fourthparty.info
5. Ghostery. https://www.ghostery.com/
6. HTTP ETags. http://en.wikipedia.org/wiki/HTTP ETag
7. Microsoft’s Tracking Protection Lists. http://ie.microsoft.com/testdrive/Browser/

p3p/Default.html
8. Privacy Badger. http://www.theregister.co.uk/2014/05/02/eff privacy badger/
9. Selenium, Web Browser Automation. http://docs.seleniumhq.org/

http://doubleclick.com
https://adblockplus.org
http://www.alexa.com
https://chrome.google.com/webstore/detail/collusion-for-chrome/ganlifbpkcplnldliibcbegplfmcfigp
https://chrome.google.com/webstore/detail/collusion-for-chrome/ganlifbpkcplnldliibcbegplfmcfigp
http://fourthparty.info
https://www.ghostery.com/
http://en.wikipedia.org/wiki/HTTP_ETag
http://ie.microsoft.com/testdrive/Browser/p3p/Default.html
http://ie.microsoft.com/testdrive/Browser/p3p/Default.html
http://www.theregister.co.uk/2014/05/02/eff_privacy_badger/
http://docs.seleniumhq.org/

TrackAdvisor: Taking Back Browsing Privacy from Third-Party Trackers 289

10. Third-party iFrames can no longer read their own cookies when “Block third-party
cookies and site data” is enabled. urlhttps://code.google.com/p/chromium/issues/
detail?id=113401

11. Yahoo declines to honor “Do not track”. http://yahoopolicy.tumblr.com/post/
84363620568/yahoos-default-a-personalized-experience

12. Ayenson, M., Wambach, D., Soltani, A., Good, N., Hoofnagle, C.: Flash cookies
and privacy II: now with HTML5 and etag respawning. Social Science Research
Networks (2011)

13. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010)

14. Leon, P., Ur, B., Shay, R., Wang, Y., Balebako, R., Cranor, L.: Why Johnny can’t
opt out: a usability evaluation of tools to limit online behavioral advertising. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 589–598. ACM (2012)

15. Mayer, J.: Tracking the Trackers: Self-help tools. http://cyberlaw.stanford.edu/
node/6730

16. Mayer, J.R., Mitchell, J.C.: Third-party web tracking: policy and technology. In:
2012 IEEE Symposium on Security and Privacy (SP), pp. 413–427. IEEE (2012)

17. McDonald, A.M., Cranor, L.F.: A survey of the use of adobe flash local shared
objects to respawn http cookies. J. Law Policy Inf. Soc. 7, 639–721 (2012)

18. Weinberg, Z., Chen, E.Y., Jayaraman, P.R., Jackson, C.: I still know what you
visited last summer: leaking browsing history via user interaction and side channel
attacks. In: 2011 IEEE Symposium on Security and Privacy (SP), pp. 147–161.
IEEE (2011)

19. Witten, I.H., Frank, E., Trigg, L.E., Hall, M.A., Holmes, G., Cunningham, S.J.:
WEKA: practical machine learning tools and techniques with Java implementations

https://code.google.com/p/chromium/issues/detail?id=113401
https://code.google.com/p/chromium/issues/detail?id=113401
http://yahoopolicy.tumblr.com/post/84363620568/yahoos-default-a-personalized-experience
http://yahoopolicy.tumblr.com/post/84363620568/yahoos-default-a-personalized-experience
http://cyberlaw.stanford.edu/node/6730
http://cyberlaw.stanford.edu/node/6730

Exploring Miner Evolution in Bitcoin Network

Luqin Wang1(B) and Yong Liu2

1 Department of Computer Science and Engineering,
NYU Polytechnic School of Engineering, New York, USA

lukelwang@gmail.com
2 Department of Electrical and Computer Engineering,

NYU Polytechnic School of Engineering, New York, USA

Abstract. In recent years, Bitcoin, a peer-to-peer network based crypto
digital currency, has attracted a lot of attentions from the media, the
academia, and the general public. A user in Bitcoin network can create
Bitcoins by packing and verifying new transactions in the network using
their computation power. Driven by the price surge of Bitcoin, users
are increasingly investing on expensive specialized hardware for Bitcoin
mining. To obtain steady payouts, users also pool their computation
resources to conduct pool mining. In this paper, we study the evolution
of Bitcoin miners by analyzing the complete transaction blockchain. We
characterize how the productivity, computation power and transaction
activity of miners evolve over time. We also conduct an in-depth study on
the largest mining pool F2Pool. We show how it grows over time and how
computation power is distributed among its miners. Finally, we build a
simple economic model to explain the evolution of Bitcoin miners.

Keywords: Bitcoin · Measurement · Network analysis

1 Introduction

Bitcoin [1] is known as the first decentralized digital currency in the world [2].
Unlike any traditional currency issued and regulated by a sovereign bank, Bit-
coin is not controlled by any institution or country. It circulates globally without
boundary and is free from financial regulation systems due to its decentralized
P2P accounting and transaction design. Debuted in 2009 and after five years’
development, Bitcoin exchange price has risen from nothing to over $100 per
coin through mid 2013, surged to its peak at $1, 242 on Nov. 29, and is wob-
bling between $350 and $600 in today’s market. Till September 2014, the market
capitalization of Bitcoin has increased to around 6 billion US dollars; and the Bit-
coin network runs over 60, 000 transactions daily. Along with Bitcoin network’s
capitalization and volume, a variety number of derivative services have been
developed and legalized. Exchange markets, i.e., Coinbase [3] and Bitstamp [4],
allow users to buy and sell Bitcoins using regular currencies globally. Online
merchants, e.g., Dell and Overstock, are now accepting Bitcoin as a payment
method. Governments of several countries, such as Canada and Thailand, have
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 290–302, 2015.
DOI: 10.1007/978-3-319-15509-8 22

Exploring Miner Evolution in Bitcoin Network 291

approved fully-legal Bitcoin exchange and issued tax guidance on Bitcoin trans-
actions. Different from a regular currency, there is no central bank or authority
who decides how many Bitcoins to be issued and distributed. According to the
Bitcoin protocol, there are only a finite amount of Bitcoins. In addition to buying
Bitcoins from others, the only way for a user to acquire Bitcoins is to contribute
her computation resources to pack and verify new transactions. We call this
process Bitcoin mining and users who participate in mining as Bitcoin miners.
The Bitcoin protocol is designed so that new Bitcoins are mined at a steady
rate until all Bitcoins are mined. The surge of Bitcoin price motivates Bitcoin
miners to invest on more and more powerful hardware for faster mining. Due to
the dramatic growth in both the number of Bitcoin miners and the computation
power of their hardware, it has become increasingly difficult to mine Bitcoins.
For an individual miner, even with powerful hardware, it now takes a very long
time for her to get Bitcoins if she does mining by herself, the so-called solo min-
ing. Similar to pooling money to buy lottery, majority of the miners choose to
pool their computation resources to mine Bitcoins together, the so-called pool
mining. Pool mining gives individual miners steadier payouts than solo mining.

Bitcoin network is a P2P system that peers can obtain direct financial incen-
tives by contributing their computation resources. While the Bitcoin price is con-
stantly driven by various economic, politic and legal factors, we are interested
in finding out how Bitcoin price evolution drives the miners’ mining behav-
iors. Towards this goal, we conduct a measurement study on the evolution of
Bitcoin miners by analyzing the complete transaction blockchain of the Bitcoin
network from its very first transaction in 2009 to March 2014. We first character-
ize how the productivity, computation power and transaction activity of miners
evolve over time. We then conduct an in-depth study on the largest mining pool
F2Pool [5]. We characterize how it grows and how the computation power is dis-
tributed among its heterogeneous members. Finally, we build a simple economic
model which explains the evolution of miners by considering the Bitcoin price
and the computation race between miners.

The rest of the paper is organized as follows. We review the related work in
Sect. 2. A short survey of Bitcoin network and the mining process is presented in
Sect. 3. We present our methodology of analysis and the characterization results
in Sects. 4 and 5, respectively. The paper is concluded in Sect. 6.

2 Related Work

Although Bitcoin network has a short history, as a P2P based digital cur-
rency system, it has drawn lots of attentions of researchers from different fields.
Babaioff et al. [6] studies the incentive for Bitcoin users to disseminate transac-
tions. Decker and Wattenhofer [7] measured and modeled how transactions are
propagated in Bitcoin network. Ron and Shamir [8] examined the entire trans-
action graph of Bitcoin network to study its statistical properties. Meiklejohn
et al. [9] measured and clustered Bitcoin accounts owned by the same user by
grouping input addresses from the same transaction. Freid and Harrigan [10]

292 L. Wang and Y. Liu

explored the limits of user anonymity. Eyal and Sirer [11] and Kroll et al. [12]
discussed the vulnerabilities of Bitcoin network on how powerful adversaries
can potentially manipulate mining mechanism. Huang et al. [13] studied how
malwares steal users’ computation power to mine Bitcoin. Becker et al. [14] esti-
mated the typical cost structures in Bitcoin network and discussed the general
viability of proof-of-work approach.

3 Survey of Bitcoin Network

3.1 Account and Transaction

Bitcoin network is a peer-to-peer network without central authority. A Bitcoin
account is simply a pair of public/private keys. An account ID is derived from
its public key. The private key is used to generate digital signature for authen-
tication. There is no cost to create a Bitcoin account. So each Bitcoin user can
create as many accounts as she wishes. Transaction is the mechanism for users
to transfer Bitcoins to each other. A transaction consists of a set of senders
and a set of receivers (denoted by their account IDs), the amount from each
sender, and the amount to each receiver. For example, if Alice wants to send
3 Bitcoins (BTCs) to Bob. She might send from two of her accounts: one account
A1 has 1 BTC and the other account A2 has 2 BTCs. Suppose Bob has only one
account B1, thus this transaction is simply: 1 BTC from A1, 2 BTCs from A2,
and 3 BTCs to B1. Finally, all senders will sign the transaction with their pri-
vate keys, and the signed transaction is broadcast to the entire Bitcoin network.
Any user who receives this transaction will first verify whether the senders have
the amount of BTCs indicated in the transaction. Different from the traditional
banking systems, there is no central database to maintain the Bitcoin balance
of each account. Instead, the whole Bitcoin network stores and verifies all the
transactions using a shared blockchain. Any user can check the balance of any
account by backtracking the blockchain to retrieve all transactions associated
the account. Invalid transactions will be discarded, and valid ones will be stored
in memory to be packed and appended to the blockchain.

3.2 Block and Blockchain

The blockchain is a public ledger shared in the whole Bitcoin network. As the
name suggests, the blockchain contains a chain of chronologically ordered blocks,
each of which contains transactions within a time window of ten minutes and
a generation transaction indicating which account packed this block. Each user
downloads and synchronizes a copy of the blockchain in her local machine to
verify incoming transactions. All newly confirmed transactions are packed into
a new block, which will be broadcast to the whole network. Whenever a user
receives a block, she will validate all the transactions in this block using the
current blockchain. If any transaction is invalid, she will discard the block. Oth-
erwise, this block will be confirmed and appended to the current blockchain.

Exploring Miner Evolution in Bitcoin Network 293

3.3 Bitcoin Mining

Bitcoin network depends on the computation resources on users to maintain
the integrity of the blockchain. Each user can volunteer to verify and pack new
transactions to blocks. While a lot of users are doing the verification and packing
work simultaneously, only the newest valid block will be confirmed by all users
and appended to the current blockchain. The user (miner) who created this
block will get rewarded with some BTCs (the current reward is 25 BTCs/block).
To achieve this, a proof-of-work mechanism is introduced. When packing new
transactions to a block, a miner first generates a special transaction indicating
that the network sends her the mining reward. Along with all other transactions,
she repeatedly generates a random number nonce, put them together and runs
a hash function. If the hash value is below a target value, the user claims she
created the block and broadcasts the block and the nonce. Other users can easily
perform the same hash function with the published nonce to verify the block.

According to Nakamoto’s protocol [1], the total number of BTCs that can be
mined is 21 million and the last BTC to be mined is in block #6, 929, 999 near
year 2140. By default, a new block is created approximately every ten minutes,
no matter how much aggregate computation power is in the network. To control
the new block creation speed, a difficulty value is introduced. The target value
for block hash calculation is inversely proportional to the difficulty value. As a
result, the higher the difficulty value, the more hash calculations each miner has
to conduct to find a hash value below the target. As detailed in [15], at a given
difficulty value D, for a miner with computation power of H hashes per second,
the expected time for the miner to generate a new valid block is:

E[T] =
D × 232

H
s. (1)

The difficulty value is updated every 2, 016 blocks based on the speed at which
the past 2, 016 blocks were generated. The difficulty value is stored in each block.
Knowing how many BTCs are generated in the whole network in one day, given
the difficulty value, we can also calculate the total hash rate of the system.

Solo and Pool Mining. In the early days of Bitcoin, miners mined blocks
individually. We call this approach solo mining. The advantage of solo mining is
whenever a block is created by the miner, she gets all the rewards. However, as
more and more computation resources are injected to the Bitcoin network, the
difficulty value has to be increased significantly to control the new block creation
speed. Now it takes a powerful miner years to create a block. Pool mining is a
way for miners to pool their resources together to obtain steady payouts. A pool
assigns a lower difficulty value to each of its members. It becomes easier for each
miner in the pool to solve the hash problem and prove their work. Each pool
miner submits her own hash values under the pool target value (called shares)
to the pool for verification. If a share is under the network target value, a block
is claimed by the pool and pool operator will distribute the reward to every

294 L. Wang and Y. Liu

pool miners. The most popular payout approach for pool mining is pay-per-
share, in which miners are rewarded proportionally to the number of shares they
submitted to the pool. With pool mining, the expected payout for a minor is the
same as solo mining, but the variance of payout is largely reduced.

4 Methodology

4.1 Data Collection

As described in Sect. 3, all transactions in Bitcoin network are stored in the
blockchain. When a user wants to make a transfer, she must first connect to
the Bitcoin network and synchronize with the current blockchain. We ran the
Bitcoin client in our local machine to get the latest blockchain. After collecting
the blockchain, we parsed it to blocks and transactions. Each block has its hash
value, height (block ID), hash value of the previous block, generation time (in
UTC timestamp), the amount of new BTCs created, target difficulty, nonce, and
all transactions in the block. For each transaction, inputs include the previous
transaction hashes of the senders and the associated signature scripts; outputs
include the receiver account IDs and their corresponding amounts. We use the
previous transaction hash to retrieve the transaction history and the balance
of each sender by iteratively backtracking the blockchain. We synchronized the
complete blockchain in March 2014 and parsed the data. The raw data includes
all blocks and transactions from 2009/01/03 (the very first Bitcoin block cre-
ated) to 2014/03/11. We retrieved 290,089 blocks and 34,646,076 transactions.
We then parsed all blocks and transactions field-by-field and stored all the parsed
information into a MYSQL database.

4.2 Solo Miner Analysis

Pool mining only started on 16th December 2010 [16]. All previous miners were
solo miners. After the introduction of pool mining, each pool also uses one unique
ID to mine Bitcoins. We first treat each unique Bitcoin ID who successfully
created a block as a solo miner. As a result, we treat pools as solo miners for
now. Using block timestamps, we count the number of BTCs mined by miners
each month in the network. Also, using Bitcoin exchange market data [3] we
calculate the monthly USD (we assume BTCs were exchanged to USD at market
price immediately after they were mined) generated in the network. Moreover,
we also obtain the distribution of how many BTCs each miner mined over time.

Besides the earnings, we can also estimate the aggregate computation power
of all miners. With a given difficulty value of D, if N blocks were mined in a
day, based on (1), the aggregate daily hash rate of the entire Bitcoin network
can be estimated as:

Htotal =
N × D × 232

86, 400
(2)

Similarly, we can estimate a miner’s daily hash rate by replacing N with the
number of blocks the miner mined in a day.

Exploring Miner Evolution in Bitcoin Network 295

We are also interested in whether the miners cashed out their mined BTCs
after mining. However, it is hard to collect IDs of all Bitcoin exchange markets
so as to track all transactions between the miners and the exchange markets.
Instead, we track for each miner the interval between the time when she mined
some new BTCs and the time when her next transaction was issued. This time
interval serves as a lower bound for her cash out lag.

4.3 Pool Miner Analysis

To study how Bitcoin mining pool evolves, we collect pool data from our data-
base. We choose miner IDs with top hash rates in the network and manually
classify them. Most of these IDs belong to well-known mining pools according
to Blockchain.info, an online Bitcoin statistics website. To analyze pool mining
behaviors, we choose F2Pool, a China-based mining pool whose payout rule is
clear and the payout transactions are easy to obtain. In our data up to March
2014, F2Pool ranked 7th in terms of the total computation power in the network.
According to the newest statistics in [17], in September 2014, F2Pool grows to
the largest mining pool, having over 25 % of the overall computation power.

We query transactions having F2Pool’s account ID and classify them as input
or output. For transactions having F2Pool ID as the only receiver, we identify
whether they are block generation transactions. For a transaction having it as
the only sender, we validate whether the transaction is used to distribute payouts
to pool miners. Pools have different approaches to send payouts to pool miners.
The simplest way is that the pool sends out payouts to all pool miners in one
transaction immediately after each block is created. However, none of the ten
pools we checked use this approach. Some pools use a binary tree like iterative
payout approach which pays one pool miner and transfer the remaining balance
to a new ID at each iteration. And some pools randomly choose a number of
miners to pay in one transaction and transfer the remaining balance to a new
ID, and then distribute the remaining balance in subsequent transactions. When
F2Pool mines a block, it will send out the payouts in the next day. It used to
send out payouts to all members using a single transaction, but changed to two
transactions recently. Knowing the payout mechanism, we can calcualte how
many BTCs each pool miner earns each day using pool payout transactions.

4.4 Simple Economic Model for Miners

To become a miner, a user first needs to invest on hardware, ranging from regular
computers in early days, to graphics card, GPUs, and specially designed ASIC
chips, and incur the capital cost. After she joins the network for mining, she needs
to pay the bill for electricity, air conditioning, housing and maintenance etc., and
incur the operational cost. Since miners are driven by profits derived from the
mined Bitcoins, the economic question is whether and how soon their revenues
can cover their capital and operational costs? We build a simple economic model.
For a hardware with hash rate H, based on (1), assume the hardware works 24 h

296 L. Wang and Y. Liu

per day, the expected number of BTCs it can mine daily is:

N(t,H) =
H × 86, 400
D(t) × 232

R, (3)

where D(t) is the difficulty value in day t, R is the number of BTCs rewarded
for each block. If the hardware’s power consumption is P kw, and the electricity
price is η(t) per kwh, the daily electricity bill is 24Pη. Given the Bitcoin exchange
price of ρ(t) in day t, if we only consider electricity operational cost, the daily
profit rate r(t) for the hardware with hash rate H and power consumption P is:

r(t,H, P) = N(t,H)ρ(t) − 24Pη(t). (4)

Obviously, a miner prefers places with low electricity price η(t), and will shut
down her hardware whenever the profit rate becomes negative. Based on (3) and
(4), to maintain a positive profit rate, the hardware’s computation-over-power
efficiency should satisfy:

H

P
> K

η(t)D(t)
Rρ(t)

, (5)

where K is a constant. As D(t) increases, hardware with low computation-over-
power efficiency will be quickly kicked out of the mining game.

To obtain high profit rate, minors should go for specialized mining hard-
ware with high computation-over-power efficiency. Those hardware come at high
prices, though. If the miner purchased a piece of expensive hardware at day t0
with price C, the time τ it takes her to recover the capital cost should satisfy:

∫ t0+τ

t0

r(t,H, P) × I[r(t,H, P)]dt = C, (6)

where I[x] is the indicator function which equals to 1 if x > 0, and 0 otherwise.

4.5 Limit of Computation Race

According to (4), miners are highly incentivized to increase their computation
power to obtain higher profit margin. The Bitcoin network has witnessed expo-
nential computation power growth in the past few years. But at the same time,
the number of Bitcoins that can be mined each day is deliberately set to a fix
value. If the Bitcoin price is kept flat, the total mining profit that miners can
obtain from the network is a constant. All miners are essentially playing a zero-
sum computation race game: each miner increases her computation power, then
the total computation power in the network increases; consequently the system
increases the difficulty value D(t) to maintain a steady Bitcoin creation speed,
which in turn reduces the Bitcoin mining rate of individual miners, according
to (3). This is a unfortunate and unavoidable tragedy-of-common phenomena
that has been observed in the Bitcoin network. Such a race will automatically
end when the profit margin hits zero. We can predict the equilibrium point by

Exploring Miner Evolution in Bitcoin Network 297

0

50000

100000

150000

200000

250000

300000

350000

400000

Jul2008

Jan2009

Jul2009

Jan2010

Jul2010

Jan2011

Jul2011

Jan2012

Jul2012

Jan2013

Jul2013

Jan2014

Jul2014

B
T

C

Date

(a)

0

20000000

40000000

60000000

80000000

100000000

120000000

Jul2008

Jan2009

Jul2009

Jan2010

Jul2010

Jan2011

Jul2011

Jan2012

Jul2012

Jan2013

Jul2013

Jan2014

Jul2014

U
S

D

Date

(b)

Fig. 1. (a) Monthly BTCs generated, (b) Monthly USD generated

extrapolating on our simple economic model in the previous section. Namely,
let ξ0 be the highest computation-over-power efficiency (in unit of hash-per-
second/kilowatt) that the future computation technology can achieve, η0 be the
lowest electricity price in the world, and ρ0 be the steady state exchange price
of Bitcoin, then we can immediately calculate the maximum sustainable compu-
tation power H in the whole Bitcoin network as:

H
ξ0

η0 = 6Rρ0, ⇒ H =
6Rξ0ρ0

η0
, (7)

where the left-hand side of the first equation is the minimum electricity charge
for one-hour mining with the most efficient mining hardware, and the right-
hand side of the first equation is the expected hourly total payout in the whole
network at the target mining rate of one block every ten minutes. If the total
computation power goes above H, the expected profit margins of all miners
become negative, some of them will start to drop out the mining race, which
in turn brings back the profit margin to positive. So far we ignored the capital
cost and other operational costs. Therefore (7) gives us an upper bound on the
maximum sustainable computation power at any fixed Bitcoin price ρ0, given
the highest feasible computation efficiency ξ0 and the lowest electricity price η0.

5 Characterization Results

Figure 1a plots the total Bitcoins generated each month. In 2009, the numbers
are not stable because the Bitcoin client was newly released and the size of
the network was relatively small. In December 2012, the reward R for each
block was reduced from 50 BTCs to 25 BTCs, resulting in the number of BTCs
was reduced by half in the latter months. Figure 1b shows how much USD are
generated monthly according to the daily Bitcoin to USD exchange price.

298 L. Wang and Y. Liu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1000000

P
ro

ba
bi

lit
y

USD

2010
2011
2012
2013

Fig. 2. CDF of miners’ annually
earning

1e-06

0.0001

0.01

1

100

10000

1e+06

1e+08

Jan2009

Jul2009

Jan2010

Jul2010

Jan2011

Jul2011

Jan2012

Jul2012

Jan2013

Jul2013

Jan2014

Jul2014

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

H
as

h
R

at
e

G
H

as
h/

s

D
iff

ic
ul

ty

Date

Difficulty
Mean

Max
Min

Fig. 3. Bitcoin network hash rate

Table 1. Fraction of frozen miners and
average transfer lag of active miners

Frozen miners Active transfer lag

2009 66.36 % 138 Days

2010 20.13 % 102 Days

2011 1.89 % 19 Days

2012 0.49 % 7 Days

2013 0.96 % 1.5 Days
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

ba
bi

lit
y

Days

2009
2010
2011
2012
2013

Fig. 4. Transfer lag distribution

5.1 Solo Miners

Figure 2 illustrates the distribution of solo miners’ annually earnings. Before
August 2010, there is no market data and the estimation of BTC value is $0.
The earnings in latter years are tremendously greater than in the earlier years
due to the exchange price went up rapidly. In addition, top miners became more
and more powerful and were responsible for the most blocks created. Similar to
(3), we estimate the hash rate of each solo miner based on the number of blocks
she created. Figure 3 shows the minimum, maximum and mean hash rate of solo
miners together with the system regulated difficulty value in logarithm scale. It
shows that the computation power are evenly distributed among miners at the
early stage, then become highly skewed with a small number of very powerful
miners as the Bitcoin network evolves. As will be studied next, those top miners
are indeed mining pools.

We now examine how fast miners transfer out mined Bitcoins. We measure
the time lag between a miner claimed a block and her next transaction. If a
miner has no subsequent transaction in our trace, we tag the minor as frozen. For
active miners, we calculate the average and distribution of their transfer lags.
As shown in Table 1, a large fraction of early miners were frozen and never

Exploring Miner Evolution in Bitcoin Network 299

 0

 1000

 2000

 3000

 4000

 5000

 6000

M
ay2013

Jun2013

Jul2013

Aug2013

Sep2013

Oct2013

Nov2013

Dec2013

Jan2014

Feb2014

M
ar2014

Apr2014

N
um

be
r

of
 M

in
er

s

Date

(a)

 0

 0.05

 0.1

 0.15

 0.2

M
ay2013

Jun2013

Jul2013

Aug2013

Sep2013

Oct2013

Nov2013

Dec2013

Jan2014

Feb2014

M
ar2014

Apr2014

P
er

ce
nt

ag
e

Date

(b)

Fig. 5. (a) F2Pool miner growth, (b) F2Pool computation share

touched their mined Bitcoins, even after the Bitcoin price surge in 2013. Our
conjecture is that those early miners were casual early adopters of Bitcoin as
a fun technology, and they were not motivated by the potential financial value
of Bitcoin. When Bitcoin became valuable, they might have, unfortunately, lost
their account IDs, so that couldn’t cash out. This suggests that lots of Bitcoins
mined in the first two years might have been lost permanently! Things changed
completely in 2011, not surprisingly, this is in sync with the value increase of
Bitcoin. Not only almost all miners are active, the lag for transfer gets shorter
and shorter. The slight increase in frozen ratio from 2012 to 2013 is due to
the artifact that our trace ends in March 2014. Figure 4 further illustrates the
decrease trend of transfer lags as time evolves. This suggests that later miners
were explicitly driven by profits and diligently transferred out mined Bitcoins.

5.2 Pool Mining

Figure 5a shows the evolution of the number of miners in F2Pool. We can see that
from May to October 2013, the number of pool miners is relatively stable. This
is due to the stable Bitcoin price around $120 in that period. Figure 5b plots
the ratio between F2Pool’s computation power over that of the whole network.
The ratio is also relatively stable from May to October 2013. Starting from
November 2013, motivated by the price surge of Bitcoin, the number of miners
increased more than ten times till March 2014. As illustrated in Fig. 5b, F2Pool’s
computation share also increases dramatically. This indicates that more miners
chose to join pool mining in the face of increasingly tense competition between
minors. In Fig. 6, we estimate the mean and median hash rate of F2Pool miners,
and how much computation power is controlled by the top 10 % powerful pool
miners. The mean is larger than the median and the top 10 % miners dominate
the computation power of the pool. This is because the hash rates of the top
pool miners are significantly larger than the low-end miners. Since the earning
of a minor in a pool is proportional to her hash rate, the earning distribution

300 L. Wang and Y. Liu

Table 2. Sustainable computation power under current Bitcoin price

Country Italy UK Belgium US Sweden

Average electricity price 20.56 13.61 11.77 9.33 8.25

in 2013 (cent per kwh)

Computation power bound 473,325 715,031 826,812 1,043,041 1,179,584

(THash/s)

among miners in a mining pool conforms to the power law wealth distribution
in the real world.

5.3 Economic Considerations

0

0

1

10

100

1000

10000

100000

1000000

10000000

M
ay2013

Jun2013

Jul2013

Aug2013

Sep2013

Oct2013

Nov2013

Dec2013

Jan2014

Feb2014

M
ar2014

Apr2014

H
as

h
R

at
e

G
H

as
h/

s

Date

F2Pool
Top 10% Miners

Median Miner
Average Miner

Fig. 6. F2Pool miner hash rate vs. pool
hash rate

Curious in knowing whether min-
ers can get their investment back,
we choose two mining hardwares
released in 2011 and 2013 respec-
tively. The first one is MSI Radeon
HD 6990 graphics card with
750 MHash/s and 410 W. The price
for this card at release was $699.
From 2010, mainstream miners
started to use graphics cards to do
mining instead of CPUs. We set a
starting date on 07/01/2011. We cal-
culate the card’s profit rate according
to (4) using the real Bitcoin price and

electricity prices in US and Italy respectively. As shown in Fig. 7a, this card gen-
erates positive profits in US, breaks even (earns $699 back) on 2013/04/30, and
continues to make money till September 2013. Then the daily profit becomes
negative even though the Bitcoin price kept increasing. This is because as more
minors joined the system, the difficulty value increased at a faster pace than the
Bitcoin price. According to (5), the card’s computation-over-power efficiency can
no longer sustain a positive profit rate. Meanwhile, due to higher electricity price
(see Table 2), mining in Italy seldom gets positive profit. There is no way for the
miner to recover her capital cost. In late 2012 and early 2013, powerful ASIC
mining hardware started to occupy the mining market. We estimate BFL SC
5 G/s mining cube, a 5, 000 MHash/s and 30 W advertised ASIC chip for just
$274. We find that if it were purchased on 2013/07/01, no matter in US or Italy,
it would have broken even with less than one month. The major reason is that
the computation-over-power efficiency of this new card is about one hundred
times higher than MSI Radeon HD 6990 graphics card.

Finally, we estimate the computation power upper bound of Bitcoin network
according to (7). We use the current Bitcoin price and the average electricity

Exploring Miner Evolution in Bitcoin Network 301

-2

 0

 2

 4

 6

 8

 10

 12

Jul2011

Oct2011

Jan2012

Apr2012

Jul2012

Oct2012

Jan2013

Apr2013

Jul2013

Oct2013

Jan2014

Apr2014

 0

 200

 400

 600

 800

 1000

 1200

P
ro

fit

B
T

C
 E

xc
ha

ng
e

P
ric

e
(U

S
D

)

Date

BTC Exchange Price
MSI Radeon HD 6990 in U.S.
MSI Radeon HD 6990 in Italy

(a) Graphics Card in 2011

 0

 20

 40

 60

 80

 100

 120

 140

Jun2013

Jul2013

Aug2013

Sep2013

Oct2013

Nov2013

Dec2013

Jan2014

Feb2014

M
ar2014

Apr2014

0

200

400

600

800

1000

1200

P
ro

fit

B
T

C
 E

xc
ha

ng
e

P
ric

e
(U

S
D

)

Date

BTC Exchange Price
BFL SC 5G/s in U.S.
BFL SC 5G/s in Italy

(b) ASIC Card in 2013

Fig. 7. Daily mining profit rate and break-even time.

prices in different countries [18] to estimate mining cost. We choose the current
best hardware SP35 YUKON ASIC chip, which has 6 THash/s and 3, 500 W.
Table 2 shows as the electricity price varies, the network computation power
upper bound can differ by a factor of 2.5. The current Bitcoin network has a
computation power of 248, 116 THash/s. There is still room for growth. Since in
average the network computation power doubles every two months, our conjec-
ture is that the network will saturate in about half year, given that the Bitcoin
price and mining hardware efficiency stay still.

6 Conclusion

In this paper we characterized the evolution of Bitcoin miners’ productivity,
computation power and transaction activity by analyzing the full blockchain in
Bitcoin network. We showed how the largest mining pool in Bitcoin grows over
time and how computation power is distributed among its miners. We also built
a simple economic model that explains the evolution of mining hardware and
predicts the limit of the computation race game between miners.

References

1. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). http://www.
bitcoin.org/bitcoin.pdf

2. bitcoin.org: Frequently asked questions. https://bitcoin.org/en/faq. Accessed 10
September 2014

3. Coinbase.com. https://www.coinbase.com. Accessed 10 September 2014
4. Bitstamp.com. https://www.bitstamp.net. Accessed 10 September 2014
5. F2Pool.com. https://www.f2pool.com. Accessed 10 September 2014
6. Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On Bitcoin and red balloons.

In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 56–73.
ACM (2012)

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://bitcoin.org/en/faq
https://www.coinbase.com
https://www.bitstamp.net
https://www.f2pool.com

302 L. Wang and Y. Liu

7. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:
2013 IEEE Thirteenth International Conference on Peer-to-Peer Computing (P2P),
pp. 1–10. IEEE (2013)

8. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013)

9. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of Bitcoins: characterizing payments among men with
no names. In: Proceedings of the 2013 Conference on Internet Measurement Con-
ference, pp. 127–140. ACM (2013)

10. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In:
Altshuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A. (eds.) Security
and Privacy in Social Networks, pp. 197–223. Springer, New York (2013)

11. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable (2013).
arXiv preprint arXiv:1311.0243.

12. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin
in the presence of adversaries. In: Proceedings of WEIS, vol. 2013 (2013)

13. Huang, D.Y., Dharmdasani, H., Meiklejohn, S., Dave, V., Grier, C., McCoy, D.,
Savage, S., Weaver, N., Snoeren, A.C., Levchenko, K.: Botcoin: monetizing stolen
cycles. In: Proceedings of the Network and Distributed System Security Symposium
(NDSS) (2014)

14. Becker, J., Breuker, D., Heide, T., Holler, J., Rauer, H.P., Böhme, R.: Can we
afford integrity by proof-of-work? Scenarios inspired by the Bitcoin currency. In:
Böhme, R. (ed.) The Economics of Information Security and Privacy, pp. 135–156.
Springer, Heidelberg (2013)

15. Bitcoinwiki: Bitcoin difficulty. https://en.bitcoin.it/wiki/Difficulty. Accessed 10
September 2014

16. bitcoin.cz: World’s first mining pool celebrates 3rd year with 0% fee. https://
mining.bitcoin.cz/news/2013-12-16-pool-celebrates-3rd-anniversary. Accessed 10
September 2014

17. blockchain.info: an estimation of hashrate distribution amongst the largest mining
pools. https://blockchain.info/pools/. Accessed 10 September 2014

18. statista.com: Felectricity prices in selected countries in 2013 (in u.s. dollar
cents per kilowatt hour). http://www.statista.com/statistics/263492/electricity-
prices-in-selected-countries/. Accessed 10 September 2014

http://arxiv.org/abs/1311.0243
https://en.bitcoin.it/wiki/Difficulty
https://mining.bitcoin.cz/news/2013-12-16-pool-celebrates-3rd-anniversary
https://mining.bitcoin.cz/news/2013-12-16-pool-celebrates-3rd-anniversary
https://blockchain.info/pools/
http://www.statista.com/statistics/263492/electricity-prices-in-selected-countries/
http://www.statista.com/statistics/263492/electricity-prices-in-selected-countries/

Wireless and Embedded

Measuring the Performance of User Traffic
in Home Wireless Networks

Srikanth Sundaresan1(B), Nick Feamster2, and Renata Teixeira3

1 ICSI, Berkeley, USA
srikanth@icsi.berkeley.edu

2 Princeton University, Princeton, USA
feamster@cs.princeton.edu

3 Inria, Paris, France
renata@inria.fr

Abstract. This paper studies how home wireless performance charac-
teristics affect the performance of user traffic in real homes. Previous
studies have focused either on wireless metrics exclusively, without con-
nection to the performance of user traffic; or on the performance of
the home network at higher layers. In contrast, we deploy a passive
measurement tool on commodity access points to correlate wireless per-
formance metrics with TCP performance of user traffic. We implement
our measurement tool, deploy it on commodity routers in 66 homes for
one month, and study the relationship between wireless metrics and TCP
performance of user traffic. We find that, most of the time, TCP flows
from devices in the home achieve only a small fraction of available access
link throughput; as the throughput of user traffic approaches the access
link throughput, the characteristics of the home wireless network more
directly affect performance. We also find that the 5GHz band offers users
better performance better than the 2.4 GHz band, and although the per-
formance of devices varies within the same home, many homes do not
have multiple devices sending high traffic volumes, implying that certain
types of wireless contention may be uncommon in practice.

1 Introduction

Many home networks use 802.11 wireless as a predominant mode of communi-
cation; in fact, many consumer devices in home networks connect exclusively
over a wireless connection. Despite increasingly widespread deployment of home
wireless networks, there is little information about their performance in real
homes, particularly as it relates to that of real user traffic and end-to-end perfor-
mance. Understanding how wireless performance affects end-to-end user perfor-
mance will become increasingly important as the throughput of residential access
links continues to increase and the home wireless network becomes more likely a
bottleneck.

There is an extensive set of previous work studying wireless network per-
formance in many settings, including conferences, enterprise networks, and even
apartment complexes [1,3,6,9,10,12]. These studies have measured either layer-2
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 305–317, 2015.
DOI: 10.1007/978-3-319-15509-8 23

306 S. Sundaresan et al.

performance metrics (such as wireless bitrates and retransmissions) or layer-3
performance such as TCP throughput over the wireless link. Yet, wireless net-
work performance is extremely variable, even on short timescales, and mapping
layer-2 performance to higher-level performance metrics such as throughput or
latency is challenging. Additionally, active measurements can only capture the
wireless network performance at one point in time; these measurements may
not correspond to the performance that users see in practice for their actual
application traffic.

In this paper, we explore the relationship between wireless performance met-
rics and TCP performance of user traffic. To do so, we passively measure wireless
performance metrics on user traffic as it passes through the home wireless access
point and correlate these metrics with the TCP performance of user traffic. We
implement a measurement tool that runs on a commodity home wireless access
point, which permits a widespread deployment and the ability to differentiate
wireless versus wide-area performance. The routers that we use for our study
have both 2.4 and 5 GHz radios, which allows us to compare the performance of
these two bands. The deployment on commodity hardware poses strict design
constraints: (1) the devices are resource-constrained, which limits the amount of
collection and processing we can do; (2) each home has only a single measurement
vantage point; and (3) we aim to use unmodified drivers to avoid interfering with
the very environment that we are trying to measure. We measured the perfor-
mance of wireless networks in 66 home networks around the world; we passively
measure user traffic to extract both the performance of active TCP connections
and wireless statistics such as frame bitrate and retransmissions. Our study both
confirms results from previous studies and reveals new phenomena. Specifically,
we find:

• As access link capacity increases, wireless performance plays a greater role in
the TCP throughput that users observe.

• Latency inside the home is a significant contributor to end-to-end latency.
• The 5 GHz channel performs better than the 2.4 GHz (in particular, latency

over the wireless is larger for 2.4 GHz); we also find that bitrates are generally
low and retransmission rates high on 2.4 GHz.

• Within the same home, different devices experience different wireless perfor-
mance.

• It is rare for devices in a home to send significant traffic volumes simultane-
ously.

As content providers continue to place content closer to users and governments
and companies continue to invest in increasing access link throughput, under-
standing how users’ home wireless networks relate to the performance that their
traffic experiences will become critical for improving user experience. Our find-
ings are a first step towards understanding the relationship between wireless
performance metrics and TCP performance of user traffic. The results from
this paper may ultimately be useful for designing a system to detect and isolate
performance problems in home wireless networks.

Measuring the Performance of User Traffic in Home Wireless Networks 307

2 Method

We describe the passive measurement tool that we developed for home access
points, and the TCP and wireless performance metrics we used.

2.1 Measurements

We perform passive measurements of user traffic from commodity home wireless
access points and correlate those measurements with the wireless metrics for the
corresponding traffic. In contrast to active measurements, passive measurements
more accurately reflect the actual performance that users experience. Further,
passive measurements do not introduce contention or other artifacts that could
affect the conditions that we seek to characterize. A measurement tool that
operates on commodity access points facilitates both a widespread deployment,
which can take advantage of an installed base of access points, and the ability
to differentiate wireless versus wide-area performance. Ultimately, such a tool
could operate in practice for a large user population. On the other hand, both the
resource limitations of commodity access points and the bandwidth constraints
in real home networks introduce design constraints that preclude using existing
network diagnostic tools.

We collect packet traces of connections from the WAN interface and both
wireless interfaces on the access point using pcap. Packet traces from the WAN
interface provide information about wide-area TCP connections and IP packets
that traverse the access point. We configure the wireless interfaces in monitor
mode to capture radiotap headers [11]. For each frame, the radiotap headers
provide the source and destination MAC addresses, the received signal strength
(RSSI), and the frame control bits (the bitrate used, and whether the frame was
retransmitted).

Deployment: We deploy our measurements on BISmark [2,17], which uses Net-
gear’s WNDR 3700/3800 access point. This device has an Atheros chipset with
a 450 MHz processor, one 802.11gn radio and one 802.11an radio. The 3800 has
128 MB of RAM, and the 3700 has 64 MB of RAM. The devices run OpenWrt
with the ath9k wireless driver that uses the Minstrel rate adaptation algorithm
with the default setting to a maximum bitrate of 130 Mbps. To respect user pri-
vacy, we do not collect payloads, and we anonymize all IP addresses and MAC
addresses using SHA-256 and a per-access point secret salt as the data is col-
lected on the router. Figure 1 summarizes our IRB-approved deployment and the
characteristics of the home networks in this deployment; we collected data from
66 homes in 15 countries for one month in 2013.

Limitations: Our collection methods limit the types of wireless performance
problems that we can study. First, continuous data collection from multiple inter-
faces on a commodity access point imposes significant CPU and data require-
ments. Thus, the router collect data only every five minutes on average for
15 seconds per iteration. The router exports only flow summaries, to reduce
upload bandwidth requirements. This level of sampling precludes analyzing

308 S. Sundaresan et al.

fine-grained characteristics (e.g., transient faults, other conditions that fre-
quently vary) or characteristics that derive from complete TCP flows. Second,
because we anonymize device MACs and IP addresses, finer-grained analysis
of the impact of certain types of application flows on certain devices (video in
mobile devices, for example) is not possible. It is also not possible to account for
device-specific issues, such as buffering in mobile devices. Third, we only have a
single vantage point from which to collect our measurements, because typically
homes only have a single access point. In contrast, other studies collect and cor-
relate data from multiple radios [10] or multiple vantage points [3,6,12]. Finally,
due to a driver limitation in the deployed devices, we could not scan for nearby
access points. Scanning caused persistent disconnections for a small number of
users; since this had a direct impact on users (BISmark devices are intended to
be used as the primary access point), we did not scan the medium.

2.2 Metrics

We use the passive traffic traces to extract both TCP-level performance metrics
and wireless performance metrics.

TCP Performance Metrics. The access point runs tcptrace, which processes
the pcap traces to provide TCP statistics. We study the average download TCP
throughput achieved during the captured lifetime of the flow. We use this met-
ric to compute the aggregate throughput at every one-second interval by sum-
ming the average throughput of all active flows downloading traffic through a
given access point during that interval. For reference, we compare the aggregate
throughput with the access link capacity, which we measure using BISmark’s
active measurements. BISmark performs a multi-threaded TCP throughput test
approximately every two hours [16,17]. We define the access link capacity as the
95th percentile of the multi-threaded throughput test measurements. We also
study the round-trip time (RTT) of TCP connections, which tcptrace com-
putes as the difference between the time of the data and SYN packets and its
corresponding acknowledgments (tcptrace’s analysis algorithm already handles
many corner cases, such as delayed acknowledgments). Running tcptrace at the
access point allows us to measure both the RTT between the access point and
the home devices (the LAN RTT) and the RTT between the access point and
destinations in the wide-area (the WAN RTT).

Wireless Performance Metrics. We use the bitrate, retransmission rate, and
received signal strength indication (RSSI) as our indicators of wireless perfor-
mance problems because we can obtain these metrics easily from packet head-
ers. IEEE 802.11 bitrate adaptation techniques adjust the transmission bitrate
as wireless channel conditions change. Although these techniques usually adapt
rates even under benign conditions to determine the channel quality, rate adapta-
tion is typically more frequent when the channel quality is poor, because wireless
senders typically reduce the bitrate in response to bit errors [8]. Thus, we also
use the normalized bitrate, which is the average wireless bitrate computed over
one second intervals, normalized by the maximum bitrate supported by that

Measuring the Performance of User Traffic in Home Wireless Networks 309

channel, as an indicator of a poor wireless channel. Normalized bitrate tends to
be low when the wireless channel quality is poor. When bitrate adaptation does
not adjust the bitrate (e.g., due to varying channel conditions or contention),
the normalized bitrate might not indicate channel quality, but in these cases
retransmission rates are still high. We also compute the retransmission rate
as the fraction of frames with the retransmit bit set in any given one-second
interval.

3 Results

We present the results from our measurement study. We first measure the
throughput and RTTs of user traffic in home networks and how these per-
formance metrics relate to wireless performance metrics. We then explore the
wireless performance characteristics of user traffic in more detail.

Fig. 1. Data collected for this study. Fig. 2. The fraction of time that the collec-
tion of active flows receive a particular ratio
of flow throughput to access link through-
put.

3.1 Correlating TCP and Wireless Performance

We explore the achieved throughput of user traffic and the contributions of the
home wireless network to this performance. Then, we study RTTs of user traffic
and how the poor wireless network performance can result in higher LAN RTTs.
This finding is relevant in light of the many recent efforts by service providers
to reduce latency to end-to-end services with myriad optimizations and careful
placement of content.

User Traffic Rarely Achieves the Full Access-Link Throughput. Figure 2
shows the fraction of time that the sum of TCP throughput for all flows in a
home (the “aggregate throughput” as defined in Sect. 2.2) achieves a particular
value relative to the access link throughput, as measured with BISmark’s active
throughput test (the normalized aggregate throughput). The results show that
the user traffic rarely saturates the available access link throughput. Of course,

310 S. Sundaresan et al.

the TCP traffic might not saturate the access link throughput for many reasons:
for example, user traffic demand may be insufficient (in fact, previous studies
have shown this phenomena is often the case [15]), or flows may be short enough
that they fail to saturate the access link, which could happen if many short
Web transfers are the dominant traffic type. Unfortunately, we have only the
flow statistics exported by tcptrace, so we cannot run a tool like T-RAT [18]
to identify with certainty when the application, as opposed to the network, was
limiting TCP throughput. Nevertheless, it is remarkable that the access link is
so underutilized so often. We suspect that one reason for lower utilization of the
access link (when there is sufficient demand to saturate it) may be the presence
of wireless bottlenecks in the home network. The rest of this section explores
this possibility.

Achieved Throughput Often Correlates with Wireless Performance
Metrics. To explore the relationship between the TCP throughput of user traf-
fic in homes and access-link throughput, we measure how the aggregate through-
put correlates with the bitrate and the retransmission rate. We normalize the
aggregate throughput by the access link capacity (normalized throughput) and
correlate this value with each of the wireless performance metrics. When we
consider all traffic flows, TCP throughput does not correlate with any of the
wireless performance metrics: the correlation coefficient between retransmission
rate and normalized throughput is −0.01; for bitrate, the correlation coefficient
is −0.02; and for RSSI, the correlation is 0.06.

However, when we explore the correlation for the subset of flows whose nor-
malized throughput is greater than 0.1 (i.e., for which we determine there is
sufficient user demand), correlation between wireless metrics and access link
throughput is stronger. This correlation increases with the access link through-
put. In Fig. 3a we show how the correlation coefficient between aggregate
throughput and retransmission rate varies as we only consider users with access
link throughput above a certain value; we see as this value increases, the cor-
relation becomes stronger. Figure 3b shows a similar trend when we correlate

Fig. 3. Correlation of wireless metrics to normalized throughput at different access link
throughput levels.

Measuring the Performance of User Traffic in Home Wireless Networks 311

Fig. 4. Round-trip latency of flows.

RSSI with normalized throughput (though, obviously, the opposite trend holds;
normalized throughput is positively correlated with RSSI). This result makes
sense: wireless is more likely to introduce a bottleneck as access link throughput
increases. The coefficient for bitrate follows a similar trend, but correlation is
weaker for access links whose speeds exceed 60 Mbps, where the wireless network
may be operating closer to its capacity. (The default setting of the access points
supports a maximum bitrate of 130 Mbps, which translates to a TCP through-
put of about 85 Mbps under excellent conditions; actual throughput will likely
be less.) Patro et al. [10] also show in a more limited setting (dense deployments
in two apartment complexes) that achieved throughput is highly correlated with
the above wireless metrics.

The Latency Inside a Home Network is Often a Significant Contrib-
utor to Overall Round-Trip Time. The TCP round-trip time between the
wireless access point and a wireless client should be on the order of one millisec-
ond. As this RTT increases, it not only signifies that the wireless link is bot-
tlenecked due to buffering or medium access delays, but it can have an adverse
impact on performance, especially for applications that are latency sensitive.
Figure 4a plots the distribution of the median LAN RTT (as defined in Sect. 2.2)
across all devices in our study. The median device on the local wireless network
sees a median wireless latency of about 8 ms, but nearly 30 % of the devices
experience local TCP round-trip latencies greater than 15 ms. Buffering affects
latency, particularly for mobile devices that sleep more frequently. While we
cannot distinguish mobile devices in our dataset (because we anonymize MAC
addresses and do not look into the payload), we try to minimize this issue by
considering the mean of the RTTs, and only for flows with at least 25 packets
in the downstream direction.

We also analyze the performance of the home network relative to the wide-area
network performance; we compare the round-trip times between the devices and
the access point to the round-trip times from the access point to the wide-area
destination for each flow. We define the median latency ratio for a device as the

312 S. Sundaresan et al.

median ratio of the LAN RTT to the WAN RTT (Sect. 2.2) across all flows for
that device. Figure 4b shows the distribution of the median latency ratio across all
devices. The result shows that 30 % of devices have a median latency ratio greater
than 0.2, meaning that for those devices, at least half of the flows have end-to-
end latencies where the home wireless network contributes more than 20 % of the
overall end-to-end latency.

3.2 Wireless Performance of User Traffic

We now characterize wireless performance in our deployment. Our preliminary
findings include: (1) the 5 GHz wireless band consistently achieves better perfor-
mance than the 2.4 GHz band; (2) the performance of a home wireless network
varies across individual wireless devices within the same home; and (3) multiple
devices in the same home network rarely send high traffic volumes at the same
time.

The 5GHz Band Performs Better than the 2.4 GHz Band. We analyze
the performance that devices in home wireless networks achieve and how per-
formance varies depending on whether devices are on the 2.4 GHz band or the
5 GHz band. Our hypothesis was that devices on the 5 GHz band would perform
better because there are generally fewer devices (and surrounding access points)
in the 5 GHz band, and that the 5 GHz band also has less non-WiFi interfer-
ence (e.g., microwaves, baby monitors). As shown in previous studies, devices
on 2.4 GHz experience both WiFi and non-WiFi interference [10].

Figure 5a shows the impact of spectrum on flow throughput for flows that
have throughput greater than 1 Mbps. We present the normalized flow through-
put to eliminate any bias related to the access link capacity. Flows to devices on
the 5 GHz spectrum have higher normalized throughput than those on 2.4 GHz.
Similarly, we see in Fig. 5b that the LAN RTT for flows in 2.4 GHz are much
higher than for flows in 5 GHz. The distribution of normalized flow throughput
in each spectrum is similar between the 2.4 GHz and 5 GHz when we consider

Fig. 5. Characteristics of flows in the 5 GHz vs. the 2.4 GHz spectrum.

Measuring the Performance of User Traffic in Home Wireless Networks 313

Fig. 6. Distribution of wireless bitrates
for devices in both the 2.4 GHz and
5GHz spectrums, for all devices in the
deployment. Devices in the 2.4 GHz
spectrum see lower bitrates.

Fig. 7. Distribution of median normalized
bitrates, for devices in both the 2.4 GHz and
5 GHz spectrums. Devices do not achieve
maximum bitrate, especially in the 2.4 GHz
range.

flows whose normalized throughput is less than 0.1. We are investigating this
phenomenon, but these could include cases where we suspect that there is not
enough application demand. Even in those cases, however, the LAN RTTs are
smaller for devices connected over 5 GHz.

Figure 6 plots the CDF of the median bitrate for all devices in all homes,
for both the 2.4 GHz band and the 5 GHz bands. Only 30 % of 2.4 GHz devices
see median bitrates above 65 Mbps; in contrast, more than 50 % of devices in
the 5 GHz spectrum see bitrates greater than 100 Mbps. It is worth noting that
the wireless bitrates do not correspond to the actual throughput. Even under
perfect conditions, a wireless bitrate of 130 Mbps corresponds to an actual TCP
throughput of about 80 Mbps. The bitrate values thus reflect a loose upper bound
on the achievable end-to-end throughput.

Figure 7 shows the median bitrate per device for each home network, normal-
ized by the maximum supported bitrate of the corresponding wireless protocol
(between 65 Mbps and 300 Mbps for 802.11n, and 54 Mbps for 802.11a/g). Many
devices, especially those in the 2.4 GHz range, often operate close to the maxi-
mum bitrate supported by the protocol, more so than 5 GHz devices. However
we also see that the maximum bitrates of 5 GHz devices are higher. This dis-
crepancy can be explained by the fact that many devices in the 2.4 GHz channel
could be small mobile devices with single antennas that restrict their maximum
bitrates to 65 Mbps. Also, attenuation is higher on 5 GHz, which could lead to
more active bitrate adaptation.

Figure 8 shows the retransmission rates for all devices across all homes; the
result shows similar trends with respect to the 2.4 GHz and 5 GHz ranges:
retransmissions are more common in the 2.4 GHz band, with about 20 % of
devices having retransmission rates above 10 %.

Within a Single Home Network, Individual Devices Can Experience
Very Different Wireless Performance. We also studied the performance of
individual devices in a home network and the extent to which wireless perfor-
mance varies across devices in the same home network. We found many cases
where the median wireless retransmission rates for a device was high. For the

314 S. Sundaresan et al.

Fig. 8. Median retransmission rates,
for devices in both the 2.4 GHz and
5 GHz spectrums. Retransmissions are
higher in the 2.4 GHz spectrum, where
nearly 30 % of devices see a median
retransmission rate greater than 10%.

Fig. 9. The retransmission rates between
the access point and clients in a single home
network. In this home retransmission rates
are high. Interestingly, one device has a sig-
nificantly higher retransmission rate.

devices in the home shown in Fig. 9, nearly all of the devices have median retrans-
mission rates greater than 10 %. Interestingly, one device experiences a high
retransmission rates nearly all of the time, suggesting a persistent problem that
may result from device placement, interactions between the access point and
that device’s driver, or some other cause.

To study how wireless performance varies across devices in a single home, we
measure the K-S distance of the distributions of raw wireless bitrates between
each pair of devices in each home. Figure 10a plots the median and the maximum
pairwise K-S distance in each home. We find that more than 80 % of homes have
at least one pair of devices with a K-S distance of more than 0.6, indicating
that most homes have at least one poorly performing device (due to either poor
placement, poor hardware, or poor drivers). We investigate the variance of RSSI
across different devices and we see similar differences (Fig. 10b). Future work
could involve investigating the disparate performance across devices further and
determining whether the variability in device performance is caused by any single
factor.

Simultaneous Communication is Infrequent. Most of the homes in our
deployment had more than one active device during our study. Interestingly, how-
ever, these devices often were not highly active at the same time. We measured
one-second intervals and observed the number of times that multiple devices
were sending at least 25 packets within the one-second interval. To our surprise,
simultaneous communication was rare: for 85 % of the one-second intervals on
the 2.4 GHz band and 93 % of the intervals on the 5 GHz band, we observed at
most one device sending at least 25 packets in the interval. This observation
relates to wireless contention and may imply that certain types of wireless con-
tention are infrequent. This finding contrasts with previous work that shows that
contention is a factor in wireless performance [10]. This discrepancy may result
from differences in either deployment locations or in measurement method and
warrants further exploration.

Measuring the Performance of User Traffic in Home Wireless Networks 315

Fig. 10. The pairwise K-S distance between devices within a home network, across all
homes.

4 Related Work

We focus our survey of related work on studies of wireless performance in real
deployments and on attempts to detect and characterize common wireless per-
formance problems.

The WiSe project is most similar to our efforts [10]; WiSe is a deployment of
multiple wireless monitors in a diverse set of home environments that are con-
figured with custom measurement and monitoring software. In this deployment,
each access point is a custom OpenWrt-based embedded device with two network
interface cards: one that forwards traffic and another that monitors the quality
of the wireless channel. Because each WiSe access point has two interfaces, the
deployment sees a much more complete picture of the wireless spectrum. The
deployment is also concentrated in two dense residential complexes; our deploy-
ment is larger and more diverse, but it does not use custom hardware with
multiple network interfaces, which limits our ability to collect certain types of
measurements. The work also designs an estimator for TCP performance based
on wireless performance metrics; validating this model in our own testbed is
part of our ongoing work. Other efforts have deployed dense monitors to study
wireless in conferences, and university buildings [3,5,6]; these studies explore
similar characteristics but do not focus on home network settings, which are
generally lightly managed (or unmanaged) and hence potentially more chaotic.
Papagiannaki et al. [9] deploy and measure wireless performance characteristics
in three homes.

Other work has characterized wireless performance problems using custom
hardware or active measurements. Rayanchu et al. [13] detected non-wireless
interference using custom hardware. Kanuparthy et al. [4] developed a tool to
detect wireless performance problems (e.g., low signal-to-noise ratio, congestion,
hidden terminals) using both active probes and an additional passive monitor
deployed within the network. Other techniques have also studied different types
of wireless performance problems. Manweiler et al. build a tool to detect hidden
interference in homes and adjust channel selection to minimize interference [7];

316 S. Sundaresan et al.

the tool requires a custom kernel and does not run on a commodity access point.
Shrivastava et al. develop a tool for estimating interference in enterprise wireless
LANs [14]; the tool requires collection and analysis of packet traces at multiple
access points within an enterprise to perform diagnosis.

5 Conclusion

In this paper, we characterized the performance of user traffic in home wireless
networks from 66 homes in 15 countries using passive network measurements.
We analyzed passively collected traces in both the 2.4 GHz and the 5 GHz spec-
trum. One of the more significant challenges in executing this study involved
designing a measurement tool that could operate within the tight constraints
of a commodity home router and draw reasonable inferences from a single van-
tage point without a second monitor radio. Our study of this real user traffic
in home networks revealed that most TCP flows in home networks achieve only
a small fraction of the available access link throughput, that wireless charac-
teristics have a greater effect on the performance of user traffic as access link
throughput increases, that the 5 GHz channel exhibits better performance than
the 2.4 GHz band, and that distinct devices within the same home can see very
different wireless performance. We plan to build on these insights to create a
diagnostic tool that can identify both the location of the network bottleneck
link and the underlying causes of the bottleneck, should it lie in the wireless
network. Finally, although wireless performance often suffers as a result of tran-
sient factors, such as microwaves, passing humans, or even minute changes in
orientation of devices, many wireless performance problems are persistent. Our
ability to monitor wireless performance over longer time periods in many homes
may shed light on the persistent performance problems, which could offer a more
holistic picture of wireless network performance problems.

References

1. Adya, A., Bahl, P., Chandra, R., Qiu, L.: Architecture and techniques for diagnos-
ing faults in IEEE 802.11 infrastructure networks. In: MobiCom 2004, pp. 30–44.
ACM, New York (2004). http://doi.acm.org/10.1145/1023720.1023724

2. BISMark: Broadband Internet Service Benchmark. http://projectbismark.net/
3. Cheng, Y.C., Afanasyev, M., Verkaik, P., Benkö, P., Chiang, J., Snoeren, A.C.,

Savage, S., Voelker, G.M.: Automating cross-layer diagnosis of enterprise wireless
networks. SIGCOMM Comput. Commun. Rev. 37(4), 25–36 (2007)

4. Kanuparthy, P., Dovrolis, C., Papagiannaki, K., Seshan, S., Steenkiste, P.: Can
user-level probing detect and diagnose common home-WLAN pathologies. SIG-
COMM Comput. Commun. Rev. 42(1), 7–15 (2012)

5. Kotz, D., Essien, K.: Analysis of a campus-wide wireless network. Wirel. Netw.
11(1–2), 115–133 (2005)

6. Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Analyzing the MAC-level
behavior of wireless networks in the wild. In: SIGCOMM 2006, pp. 75–86 (2006)

http://doi.acm.org/10.1145/1023720.1023724
http://projectbismark.net/

Measuring the Performance of User Traffic in Home Wireless Networks 317

7. Manweiler, J., Franklin, P., Choudhury, R.: RxIP: monitoring the health of home
wireless networks. In: INFOCOM, 2012 Proceedings IEEE, pp. 558–566, Mar 2012

8. Minstrel rate adaptation algorithm. http://goo.gl/5xPSC
9. Papagiannaki, K., Yarvis, M., Conner, W.S.: Experimental characterization of

home wireless networks and design implications. In: Proceedings of the IEEE
INFOCOM, Barcelona, Spain, Mar 2006

10. Patro, A., Govindan, S., Banerjee, S.: Observing home wireless experience through
WiFi APS. In: MobiCom 2013, pp. 339–350. ACM, New York (2013)

11. Radiotap. http://radiotap.org
12. Rayanchu, S., Mishra, A., Agrawal, D., Saha, S., Banerjee, S.: Diagnosing wireless

packet losses in 802.11: separating collision from weak signal. In: INFOCOM 2008,
pp. 735–743, Apr 2008

13. Rayanchu, S., Patro, A., Banerjee, S.: Airshark: detecting non-WiFi RF devices
using commodity WiFi hardware. In: IMC 2011, pp. 137–154. ACM, New York
(2011)

14. Shrivastava, V., Rayanchu, S., Banerjee, S., Papagiannaki, K.: PIE in the sky:
online passive interference estimation for enterprise WLANs. In: NSDI 2011, p. 25.
USENIX Association, Berkeley (2011)

15. Siekkinen, M., Collange, D., Urvoy-Keller, G., Biersack, E.W.: Performance limi-
tations of ADSL users: a case study. In: Uhlig, S., Papagiannaki, K., Bonaventure,
O. (eds.) PAM 2007. LNCS, vol. 4427, pp. 145–154. Springer, Heidelberg (2007)

16. Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè,
A.: Broadband internet performance: a view from the gateway. In: Proceedings of
the ACM SIGCOMM, Toronto, ON, Canada, Aug 2011

17. Sundaresan, S., Burnett, S., de Donato, W., Feamster, N.: BISmark: a testbed
for deploying measurements and applications in broadband access networks. In:
Proceedings of the USENIX Annual Technical Conference, Philadelphia, CA, June
2014

18. Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and origins
of internet flow rates. In: Proceedings of the ACM SIGCOMM, Pittsburgh, PA,
Aug 2002

http://goo.gl/5xPSC
http://radiotap.org

Enabling Wireless LAN Troubleshooting

Ilias Syrigos1(B), Stratos Keranidis1, Thanasis Korakis2,
and Constantine Dovrolis3

1 University of Thessaly, Volos, Greece
{ilsirigo,efkerani}@uth.gr

2 NYU Polytechnic School of Engineering, New York, USA
korakis@uth.gr

3 Georgia Institute of Technology, Atlanta, USA
constantine@gatech.edu

Abstract. Particular WLAN pathologies experienced in realistic sce-
narios are hard to detect, due to the complex nature of the wireless
medium. Prior work has employed sophisticated equipment, driver mod-
ifications, or even application-layer techniques, towards diagnosing such
pathologies. The key novelty of our approach lies in the identification
of metrics able to characterize the root causes of individual pathologies,
while also being directly extractable from MAC-layer statistics available
in today’s wireless equipment. Through the development of the proposed
framework as application-layer software on top of commercial hardware
and its experimental evaluation, we validate the efficiency and applica-
bility of our approach.

1 Introduction

With home WLANs becoming increasingly popular and the plethora of wireless
devices operating in the limited unlicensed spectrum, the performance degra-
dation experienced by end-users is almost inevitable. Common home WLAN
pathologies are related with low-quality channel conditions. However, even high
quality links may suffer from anomalies that are inherent to the operation of
the 802.11 standard, such as contention for medium access. In addition, the
well-known 802.11 impairments of “Hidden-Terminal” [1] and “Capture-effect”
[2], which are identified in dense topologies, frequently appear in closely spaced
WLAN environments.

As administrators/users of home WLANs are not aware of such patholo-
gies, performance issues are usually interpreted incorrectly and the blame is
attributed to ISPs. Troubleshooting WLAN performance is hard, due to the
complex and dynamic nature of the wireless medium and requires collection of
low-level information hardly interpreted even by experts.

Prior work in diagnosing wireless networks performance has considered a
variety of approaches, ranging from in-depth studies [3–5] of specific patholo-
gies through sophisticated equipment, to solutions [6] relying on vendor-specific
drivers or modifications and application-layer frameworks [7] that are directly

c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 318–331, 2015.
DOI: 10.1007/978-3-319-15509-8 24

Enabling Wireless LAN Troubleshooting 319

applicable to commercial WLAN devices. Considering the different categories of
approaches, a tradeoff exists between the achievable detection accuracy and the
applicability in common home WLAN setups. Towards bridging this gap, novel
frameworks need to be developed that combine the advantages of both worlds.

In this work, we develop user-level detection mechanisms, which exploit low-
level information that can be revealed by commercial Access Point (AP) devices.
MAC-layer statistics are collected and updated as part of the Physical layer
(PHY) rate adaptation mechanism. These statistics include, but are not lim-
ited to, the number of transmission attempts as well as the number of which
were successful. The key novelty of our approach lies in the identification of
metrics based on the aforementioned statistics that are able to characterize the
root causes of WLAN pathologies. Through extensive experimentation, we con-
cluded in the identification of unique trends that performance experiences, in
terms of the proposed metrics, when 802.11 links are affected by different WLAN
pathologies. Our detailed findings have been incorporated in a combined detec-
tion methodology that has been implemented on commercial APs from different
vendors. The main outcome of our research is an application-layer framework
that is automatically activated upon the detection of degraded performance to
accurately determine the underlying pathology and report it to the end user.
Our work intends to highlight the importance of having MAC-layer statistics
accessible from the application-layer through a standardized way and encourage
all manufacturers of 802.11 equipment to adopt this approach.

2 Related Work

A great variety of research approaches has proposed mechanisms towards diag-
nosing common WLAN pathologies. Several works have focused on the detection
of specific pathologies, such as distinguishing between frame losses resulting due
to low signal or collisions in [3], or the identification of device types generating
cross-technology interference in [4,5,8,9]. Another class of approaches [10,11]
has proposed advanced anomaly detection frameworks that provide increased
accuracy by combining measurements obtained from several nodes. In addi-
tion, [9,12,13] are based on the elaboration of multiple monitoring devices and
require the application of synchronization protocols [9,13], hence rendering them
applicable only to centrally managed WLAN deployments. On the other hand,
[6,14] are based solely on observations derived from a single node, thus being
applicable in independently owned home WLANs.

The various aforementioned approaches also differ on the specified implemen-
tation requirements. More specifically, in [4,5] the use of sophisticated equipment
is necessitated, while the approaches presented in [3,6,12,14] require vendor-
specific drivers or modifications. The main drawback of the aforementioned
approaches is that they are not hardware agnostic. In [7], the first user-
level approach able to infer the MAC-layer effects of common home WLAN
anomalies is proposed. In our work, we take a step further by developing a sys-
tematic approach able to detect the root causes of an extended list of pathologies,
by taking advantage of the detailed information offered by MAC layer statistics,
while still being accessible by the application layer.

320 I. Syrigos et al.

3 MAC-Layer Statistics

Commercial 802.11 devices that are developed by major vendors of wireless
products, such as Atheros and Intel can be controlled through well-known Open-
Source drivers (ath9k, iwlwifi, Mad-WiFi and ath10k [15]). Such drivers con-
stantly collect detailed MAC-layer statistics that are updated as part of the
PHY rate adaptation procedure, including among others, information related to
the total number of attempted frame transmissions and retransmissions.

In this work, based on this information we define and utilize two metrics.
Firstly, the Normalized Channel Accesses : NCA = CA/MCA where CA and
MCA denote the attempted Channel Accesses and Model-Based Channel
Accesses per second respectively, for a specific PHY rate and a specific frame
length. MCA is calculated according to the 802.11 a/g performance model pre-
sented in [16]. We validated these values with experiments on various types
of wireless chipsets under idle channel conditions at the fixed frame length of
1500 bytes. The NCA metric characterizes the access (uninterrupted or not) to
the wireless medium by a station willing to transmit data frames. Secondly, we
define the Frame Delivery Ratio : FDR = ST/CA where ST denotes the num-
ber of Successful Transmissions per second. The FDR metric is an indicator of
the link quality which is responsible for the successful or not delivery of a frame.

In the following Sections, we present how these metrics can be exploited
towards characterizing the impact of commonly identified pathologies on WLAN
performance.

4 IEEE 802.11 Related Pathologies

Performance of 802.11 stations first depends on the availability of channel access
opportunities and second on the efficiency of frame delivery, whenever medium
access is granted. We build our pathology identification mechanism on top of
this initial observation and categorize pathologies into two classes. The first
one considers pathologies occurring in cases that the transmitter identifies the
medium as busy and thus defers from transmitting (Medium Contention). In
the second category, we group pathologies occurring in cases that the medium
is detected as idle, thus enabling the transceiver to proceed with frame trans-
missions that fail to be delivered at the receiver (Frame Loss). We present the
taxonomy of the considered pathologies in Fig. 1.

4.1 Medium Contention

Contention-based pathologies frequently occur in dense WLAN deployments,
where multiple 802.11 devices concurrently attempt to access the medium. How-
ever, as the unlicensed spectrum is also exploited by other wireless protocols
(e.g. Bluetooth, Zigbee) and a large range of RF devices (e.g. cordless phones,
security cameras), the medium is further congested due to non-802.11 emissions.

Enabling Wireless LAN Troubleshooting 321

Fig. 1. Taxonomy of IEEE 802.11 pathologies

The resulting decrease in available channel access opportunities is directly depen-
dent both on the channel airtime captured by 802.11 transmissions, as well as
the transmission Duty Cycle (DC) of non-802.11 RF devices.

The crucial impact of medium contention is clearly highlighted in cases of
contending stations that utilize diverse PHY rate configurations, which leads to
performance anomaly [17]. The high bitrate stations observe a higher throughput
degradation in comparison with the lower rate nodes. This degradation is a result
of the low number of CA attempts due to the high channel airtime utilization by
the low bitrate stations. Consequently, we expect the NCA metric to decrease
across increasing PHY rate configurations of the concerned station. However,
regarding the FDR metric, higher bitrates should result in higher number of
collisions, due to simultaneously expiring back-off timers, and thus to a decrease
in FDR, but not in that extent of considering it as a significant trend.

In case of non-802.11 contention, devices with fixed transmission DC, such as
microwave ovens, can be interpreted as low bitrate stations which do not comply
with the 802.11 standard and hence do not perform a “Backoff” procedure. As
a result we expect a decrease in NCA metric across increasing PHY rates, as
it happens in 802.11 contention. Another consequence of the absence of backoff
mechanism in non-802.11 devices is that collisions can occur in the middle of a
frame transmission and so higher PHY rates will result in lower probability of
collisions. Taking that into consideration, we expect an increasing trend in the
FDR metric.

4.2 Frame Loss

In this category, we group pathologies generated in scenarios that the 802.11
“Channel Sensing” mechanism constantly identifies the medium to be idle and
grants uninterrupted medium access. However, conditions experienced at the
receiver side may lead in reduced probability of successful Frame Delivery and
subsequent doubling of the Contention Window (CW) parameter. As the reduced
MAC-layer Frame Delivery Ratio (FDR) is the root cause of this phenomenon,
we identify it as the key metric for characterizing the impact of Frame Loss
related pathologies.

322 I. Syrigos et al.

Fundamental causes of receiver side underperformance are usually related
with the low-SNR conditions experienced as a consequence of the low Received
Signal strength, resulting from channel fading and shadowing or due to high-
Power non-802.11 emissions that result in Noise level increase. Considering that
complex modulation schemes require higher link SNR to ensure reliable commu-
nication, in comparison with basic schemes, we expect the FDR performance to
significantly decrease across increasing PHY rates, under low-SNR conditions.
Furthermore, the decrease in FDR would also lead in an decrease in the NCA
metric, as the doubling of the CW results in fewer CAs.

In addition, significant frame delivery inefficiencies may also be attributed
to 802.11 impairments, phenomena appearing in cases that concurrent channel
access and subsequent frame collisions cannot be avoided through the 802.11
Channel Sensing mechanism. More specifically, the “Hidden-Terminal” anom-
aly occurs in cases that the receiver node lies within the transmission range of
two active 802.11 nodes that are mutually hidden and cannot sense each other
resulting in frame collisions. In cases that no remarkable difference is observed
in the received signal strength of colliding frames at the intermediate node, the
“Hidden-Terminal” phenomenon appears symmetrically for both flows. How-
ever, the most frequently observed case is the “Capture-effect” phenomenon, in
which case a considerable difference in RSSI values is observed, resulting in a
higher probability of successful decoding for the high-power frames. As a result,
the link “capturing” the medium experiences lower collision probability access-
ing the medium more frequently and resulting in higher performance penalty for
the affected links.

Longer duration transmissions experiencing higher probability of collision,
so we expect to see an FDR increase across increasing PHY rate values of
the affected link. However, hidden nodes suggest longer distances from the AP
and consequently an underlying low-SNR pathology, so we also expect an FDR
decrease in high PHY bitrates. In overall, we should identify a highly varying
FDR metric across PHY rates and additionally more notable variations under
“Capture-effect” scenarios where the impact is more severe. As regards the NCA
metric, although the underlying low-SNR conditions should impose a decreasing
trend, the impact of FDR variation, which as mentioned before is higher under
“Capture-effect” scenarios, would enforce NCA to not display a clear trend.

5 Detection Methodology

Having defined the key metrics of NCA and FDR, we next focus on developing
a detection methodology able to identify unique trends on the way each indi-
vidual pathology affects performance of both metrics. Before that, we need to
decide upon the existence or not of a pathology. This is accomplished by a sim-
ple throughput test of fixed length frames at the maximum PHY rate, the result
of which is compared to the analytical value calculated by the aforementioned
model in [16]. In case that achieved throughput is lower than the 80 % of the
theoretical one, we initiate our proposed framework presented below. By taking

Enabling Wireless LAN Troubleshooting 323

advantage of the relation between the PHY rate of the affected link and the pro-
posed metrics, we design an active probing mechanism that probes the WLAN
channel with multiple packet trains, where each train consists of several packets
that are transmitted at varying PHY rates. We call the proposed test as Varying
Bitrate Probing and each train is transmitted in each one of the 802.11a/g com-
patible PHY rates, selected from the vector R = (6, 9, 12, 18, 24, 36, 48, 54) Mbps.
Each train provides a unique sample - we need multiple samples to make any
statistical inference. In parallel with the probing procedure, the NCA and FDR
metrics are calculated per each configured PHY rate.

Next, we apply the non-parametric Theil-Sen Slope estimator on the collected
samples to identify trends in the relation between the two metrics and the PHY
rate of the affected link. The output of the Theil-Sen Slope estimator consists of
the slope estimation with 95 % confidence interval, plus the p-value, where both
aid in determining the existence of a trend and its characterization as increasing
or decreasing. P-values are interpreted as follows: p< 0.01 indicates very high
significance and p< 0.05 is considered significant and the null hypothesis (of the
slope being equal to zero) is rejected in both cases. P values greater than 0.05
indicate failure to reject the null hypothesis and thus no trend is detected.

In such occasions, we have to distinguish between two further cases, where in
the first case, data points present highly varying values and partially present both
significantly increasing and decreasing trends, while in the second the considered
input data is roughly constant and result in approximately zero estimated slope.
Although in the first case, no specific trend can be reliably detected, several
scenarios might present high start-to-end variation, a trend that we also need to
identify. To this aim, we enhance our test, by employing the Pairwise Difference
Test metric SPDT = FDR8−FDR1

∑8
k=2 |FDRk−FDRk−1| , where k ∈ {1, 2, ..., 8} denotes the

configured PHY rate. It is obvious that −1 ≤ SPDT ≤ 1. If there is a strong
trend, either increasing or decreasing, SPDT approaches 1 or −1. Identification
of the second case is based on the evaluation of statistical dispersion through the
measure of standard deviation. We consider specific standard deviation thresh-
olds, as derived from our experimentation and described in the following section.

6 Experimentation with Proposed Metrics

The experimental setup that is used as the basis of our experimentation con-
sists of a single communicating pair of nodes that we refer to as System under
Test (SUT). Both nodes feature the Intel 5300 chipset, implement the 802.11a/g
protocol and operate in infrastructure mode, through the iwlwifi driver. In the
following experiments, we reproduce each considered pathology and investigate
how the performance of the SUT link is affected in terms of the NCA and FDR
metrics, while it performs the Varying Bitrate Probing test. The devices par-
ticipating in the following experiments are closely located within a double floor
indoor office environment at the University of Thessaly premises, as depicted in
Fig. 2. A representative subset of the various executed experiments that replicate
each individual pathology is detailed in the following Sections.

324 I. Syrigos et al.

Fig. 2. Testbed topology

6.1 Contention with 802.11 Terminals

Through this first experiment, we aim at investigating the impact of medium
contention with 802.11 compatible devices, and for this purpose we establish
3 contending links in close proximity and on the same channel with the SUT
link. More specifically, we use Ch. 44 of the 5 GHz band that is totally free of
transmissions in the testbed premises.

In the first 2 Scenarios, we activate only the CON1 link to transmit 5 Mbps
of traffic load, at the PHY rates of 6 Mbps and 54 Mbps accordingly. Figure 3(a)
depicts the NCA performance and shows a significant decreasing trend across
increasing PHY rates in Sc.1. due to the “802.11 performance anomaly”, while
in Sc. 2 only minimal variation is detected across increasing PHY rates, as a
result of the high PHY rate. In Sc. 3, we still activate only the CON1 link to
transmit at the PHY rate of 24 Mbps with 20 Mbps of traffic load. We observe
that in Sc. 3, the NCA values per PHY rate have decreased in comparison with

6 9 12 18 24 36 48 54
0

10
20
30
40
50
60
70
80
90

100

PHY−layer bitrate of SUT (Mbps)

N
C

A
 (

%
)

1 STA−TR 5−PHY 6
1 STA−TR 5−PHY 54
1 STA−TR 20−PHY 24
2 STAs−TR 5−PHY 24
3 STAs−TR 5−PHY 24

(a) 802.11 Contention NCA

6 9 12 18 24 36 48 54
0

10
20
30
40
50
60
70
80
90

100

PHY−layer bitrate of SUT (Mbps)

F
D

R
 (

%
)

1 STA−TR 5−PHY 6
1 STA−TR 5−PHY 54
1 STA−TR 20−PHY 24
2 STAs−TR 5−PHY 24
3 STAs−TR 5−PHY 24

(b) 802.11 Contention FDR

6 9 12 18 24 36 48 54
0

10
20
30
40
50
60
70
80
90

100

PHY−layer bitrate of SUT (Mbps)

N
C

A
 (

%
)

MW Oven 1
MW Oven 2
Surv. Camera 1
Surv. Camera 2

(c) non-802.11 Contention NCA

6 9 12 18 24 36 48 54
0

10
20
30
40
50
60
70
80
90

100

PHY−layer bitrate of SUT (Mbps)

F
D

R
 (

%
)

MW Oven 1
MW Oven 2
Surv. Camera 1
Surv. Camera 2

(d) non-802.11 Contention FDR

Fig. 3. NCA and FDR performance of medium contention related pathologies

Enabling Wireless LAN Troubleshooting 325

Sc. 2, while a significant decreasing trend is clearly identified. Finally, in Sc. 4,
we simultaneously activate links CON1 and CON2 to transmit 5 Mbps of traffic
load, at the PHY rate of 24 Mbps, while in Sc. 5 we replicate the configurations of
Sc. 4, but simultaneously activate the 3 links CON1, CON2 and CON3. In both
cases, significant decreasing trends are identified by the Theil-Sen estimator.
Summarizing the above scenarios, a significant decreasing trend is detected with
a p-value of 0.01 except for the Sc. 2 where the p-value of 0.4 is derived and thus
no trend is detected. Figure 3(b) plots the resulting FDR performance across
all the considered Scenarios and presents only minimal variation across different
PHY rates (standard deviation of 0.95). We notice that the increasing number
of contending stations results in decreased FDR, as also observed in [18], a fact
related with the increased probability of collisions when the back-off timers of
multiple terminals simultaneously expire.

6.2 Contention with Non-802.11 Devices

In this second experiment, we aim at characterising the impact of different types
of non-802.11 devices. More specifically, we consider a Microwave Oven (MW)
that typically emits high RF energy in 2.44–2.47 GHz frequencies with DC of
0.5 and a Surveillance Camera that constantly (DC = 1) transmits with 10 dBm
power, occupying 18 MHz of bandwidth on various frequencies of the 2.4 GHz
band. The two devices are located at positions MW1 and CM1 of the 3rd floor
accordingly. We set the SUT link to operate on the commonly configured Ch. 6
(2437 MHz) and the camera on 2432 MHz.

In Fig. 3(c), we clearly observe that the continuously emitting Surv. Camera
results in NCA values that are close to zero across PHY rates, as the SUT link
constantly detects the medium to be busy. On the other hand, the MW that
is activated with the DC of 0.5, provides a fixed amount of time available for
medium utilization per period. This phenomenon affects performance in terms
of the NCA metric, in a way similar to the “802.11 performance anomaly”, thus
leading the NCA values to decrease across increasing PHY rates. The resulting
FDR performance is depicted in Fig. 3(d), where in the case of the MW, an
increasing trend is observed with the p-value of 0.01. Considering the FDR eval-
uation of the Surv. Camera, no specific trend is identified, as the FDR highly
fluctuates due to the extremely low number of attempted transmissions.

6.3 Low SNR

In this experiment, we jointly investigate the impact of low-SNR conditions
resulting either in Low Signal or High Noise scenarios. Considering the Low
Signal case, we generate varying low-SNR topologies, by establishing a remote
802.11 link (SUT2) on the 4th floor and properly tuning the transmitter’s Power,
to result in links of 15 dB, 10 dB and 5 dB SNR. In Fig. 4(a) and (b), we observe
that performance regarding NCA and FDR is unaffected as long as the SNR
provides for robust communication at the given PHY rate. However, in cases
when the SNR requirement of the configured bitrate exceeds the SUT’s link

326 I. Syrigos et al.

6 9 12 18 24 36 48 54
0

10
20
30
40
50
60
70
80
90

100

PHY−layer bitrate of SUT (Mbps)

N
C

A
 (

%
)

SNR 15 dB
SNR 10 dB
SNR 5 dB
Surv. Camera
MW Oven
Bluetooth

(a) Low-SNR NCA

6 9 12 18 24 36 48 54
0

10
20
30
40
50
60
70
80
90

100

PHY−layer bitrate of SUT (Mbps)

F
D

R
 (

%
)

SNR 15 dB
SNR 10 dB
SNR 5 dB
Surv. Camera
MW Oven
Bluetooth

(b) Low-SNR FDR

6 9 12 18 24 36 48 54
0

10
20
30
40
50
60
70
80
90

100

PHY−layer bitrate of SUT (Mbps)

N
C

A
 (

%
)

TR 1 − PHY 24
TR 5 − PHY 12
TR 5 − PHY 36
TR 5 − PHY 48
TR 10 − PHY 36

(c) Hidden Terminal NCA

6 9 12 18 24 36 48 54
0

10
20
30
40
50
60
70
80
90

100

PHY−layer bitrate of SUT (Mbps)
F

D
R

 (
%

)

TR 1 − PHY 24
TR 5 − PHY 12
TR 5 − PHY 36
TR 5 − PHY 48
TR 10 − PHY 36

(d) Hidden Terminal FDR

6 9 12 18 24 36 48 54
0

10
20
30
40
50
60
70
80
90

100

PHY−layer bitrate of SUT (Mbps)

N
C

A
 (

%
)

TR 1−PHY 24
TR 5−PHY 12
TR 5−PHY 36
TR 5−PHY 48
TR 10−PHY 36

(e) Capture Effect NCA

6 9 12 18 24 36 48 54
0

10
20
30
40
50
60
70
80
90

100

PHY−layer bitrate of SUT (Mbps)

F
D

R
 (

%
) TR 1 − PHY 24

TR 5 − PHY 12
TR 5 − PHY 36
TR 5 − PHY 48
TR 10 − PHY 36

(f) Capture Effect FDR

Fig. 4. NCA and FDR performance of frame loss related pathologies

SNR, a remarkable drop in NCA and FDR is noticed resulting in a decreasing
trend (p-value 0.01) for both metrics. Towards experimenting under High Noise
conditions, we use the SUT link of the 3rd floor and activate the MW at position
MW2 of the 4th floor, along with the Surv. Camera at position CM2 of the 3rd
floor. In both scenarios, the high power emissions of the remotely located inter-
fering devices are not detected to exceed the high Energy Detection threshold at
the location of the SUT link. However, due to their high DC, the Noise level is
constantly increased, hence generating low-SNR conditions and approximating
the performance obtained in Low Signal scenarios, in terms of both metrics.

6.4 Hidden Terminal

Towards experimenting with “Hidden-Terminal” scenarios, we establish a hidden
to the SUT2 link, by activating the transmitter at position HID of the third floor
and resulting in equally received signal strength at both link receivers. In the first
scenario we measure the impact of 1 Mbps traffic load, transmitted at the PHY
rate of 24 Mbps. As shown in Fig. 4(c), the NCA metric presents a decreasing
trend, across increasing PHY rates, while no specific trend is identified for the
FDR metric, as depicted in Fig. 4(d). More specifically, a small increase across

Enabling Wireless LAN Troubleshooting 327

the first PHY rates is followed by a sharp decrease due to the underlying low-SNR
pathology. In the next three scenarios, we fix the traffic load at 5 Mbps and vary
the PHY rate of the hidden link, between 12, 24 and 48 Mbps respectively. Across
all the tested scenarios, identical trends as in Sc. 1 are detected. In Sc. 5, we fix
the PHY rate of 36 Mbps and transmit at the traffic load of 10 Mbps, noticing
similar performance as in previous scenarios. In all scenarios a decreasing trend is
detected regarding the NCA metric with p-value of 0.01, while the null hypothesis
regarding FDR is rejected (p-value > 0.05).

6.5 Capture Effect

In this last set of experiments, we examine the performance fluctuations under
various scenarios experiencing the “Capture-effect” phenomenon. For this pur-
pose, we use the node located at position CAP of the 4th floor, as the interferer
of the SUT2 link. In Sc.1, we start by injecting the light traffic load of 1 Mbps
in the wireless medium, while configuring the interfering link at the PHY rate
of 24 Mbps. As presented in Fig. 4(e) and (f), similar trends are observed as
in the considered “Hidden-Terminal” scenarios. In Scenarios 2, 3 and 4, we
increase the traffic load of the interfering link to 5 Mbps and vary the PHY rate
among 12 Mbps, 36 Mbps and 48 Mbps, while in Sc. 5 the traffic load is further
increased to 10 Mbps and the PHY rate is fixed at 36 Mbps. Across all the con-
sidered scenarios, the NCA metric presents no significant trend, as the calculated
p-values lie above 0.05. As regards to FDR, no trend is detected in all Scenarios
(p-values above 0.23), although the high performance penalty in comparison to
“Hidden-Terminal” is depicted with close to zero FDR values. Regarding the
performance obtained in Sc. 1, we remark that as both 802.11 impairments pose
similar impact on both metrics under low traffic load conditions, discrimination
between the two phenomena will be challenging under such cases.

6.6 Framework Enhancement and Result Summary

In many cases of frame loss pathologies, Theil-Sen estimator falsely concludes
that the existing pathology is the hidden terminal one. For that reason, the
introduction of the aforementioned PDT metric enhances our test with further
refinement of the identification of trends. More specifically, in cases where the
Theil-Sen estimator detects decreasing trend in NCA attempts and no trend in
FDR metric, we apply the PDT metric in FDR statistics. Through extensive
experimentation, we concluded that SPDT < −0.8 denotes low-SNR pathology,
−0.8 ≤ SPDT ≤ −0.32 denotes hidden terminal pathology and SPDT > −0.32
denotes capture effect pathology. The outcome of our study is presented in
Table 1, which lists the specific trends that can be detected through the pro-
posed methodology. Not every combination of metrics’ trends is mapped to a
specific pathology and that cases may correspond to the existence of multi-
ple simultaneous pathologies, which we do not consider in our current work.
The derived findings have been incorporated in an application-layer framework

328 I. Syrigos et al.

Table 1. Identified trends per considered pathology

that is automatically activated upon the detection of degraded performance to
uniquely determine the underlying pathology.

7 Framework Evaluation

In this section, we extensively evaluate the detection performance of the devel-
oped framework, under two specifically designed sets of experiments. In each set,
we replicate a specific anomaly under various scenarios and by measuring the
number of true positives we quantify the perceived detection accuracy. In the first
set, we generate scenarios of contention with 802.11 devices, while in the second
we experiment with low-SNR scenarios and 802.11 impairments. For the sake of
completeness we also examine cases, where our throughput test does not consider
as pathologies.

7.1 Contention with 802.11 Terminals

We start by configuring 3 different topologies, consisting of 1, 2 and 3 contend-
ing stations that coexist within the 3rd floor of the testbed. We replicate 36
different scenarios in each different topology (108 in total), by varying both the
configured PHY rate and traffic load parameters to generate diverse medium uti-
lization conditions. Through an extra wireless node, we monitor the percentage
of Airtime that is captured by the contending links in each topology, towards
highlighting the impact of Airtime Utilization on the resulting detection accu-
racy. In Fig. 5, we clearly observe that the detection performance improves across
increasing medium utilization conditions as the impact of contention is becoming
more evident. More specifically, as medium utilization increases above 25 % the
mechanism successfully detects the 802.11 contention pathology, across all the
corresponding scenarios in the 3 different topologies. Low medium utilization
conditions (below 15 %), however, are always detected as no pathology by the
initial throughput test and thus are not considered as detection failures.

7.2 Frame Loss

In this set of experiments we evaluate the detection performance under low-
SNR scenarios, by placing the transmitter of the SUT link at the 3rd floor

Enabling Wireless LAN Troubleshooting 329

5 15 25 35 45 55 65 75 85 95
0

20

40

60

80

100

Airtime Utilization (%)

D
et

ec
ti

o
n

 A
cc

u
ra

cy
 (

%
)

3 STAs
2 STAs
1 STA

Fig. 5. Detection performance across different 802.11 contention scenarios.

5 10 15 20
0

20

40

60

80

100

D
et

ec
ti

o
n

 A
cc

u
ra

cy
 (

%
)

Link SNR

(a) Low-SNR

10 20 30 40 50
0

20

40

60

80

100
D

et
ec

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Airtime Utilization (%)

(b) Hidden Terminal

10 20 30 40 50
0

20

40

60

80

100

D
et

ec
ti

o
n

 A
cc

u
ra

cy
 (

%
)

Airtime Utilization (%)

(c) Capture Effect

Fig. 6. Detection performance across frame loss related pathologies.

and the receiver across 20 different locations at the 4th floor. We also vary the
transmission Power of the SUT transmitter to further vary the SNR levels in
each link and result in 80 different topologies. For each different topology, the
SUT link executes our detection mechanism, in order to investigate whether
the low-SNR conditions are detected. The resulting scenarios are grouped in
5 different SNR classes. We observe in Fig. 6(a) that the detection accuracy is
100 % for all SNR classes, except for the 25 dB case, which poses no significant
impact and is not detected as pathology from the initial throughput test.

Towards replicating the Hidden-Terminal and Capture Effect phenomena, we
activate an interfering link at a fixed position in the 4th floor which is hidden
to the transmitter of the SUT. By observing the RSSI values of the transmitted
frames, we notice that 4 of the topologies lead to nearly equal (approximately
0–3 dB of difference) values between SUT’s transmitter and interfering link’s
transmitter and consequently are vulnerable to the hidden terminal pathology.
Furthermore, 9 links present a notable (>15 dB) difference in RSSI values and
hence are vulnerable to the capture effect phenomenon. We evaluate our algo-
rithm in the corresponding topologies that potentially suffer from 802.11 impair-
ments, while inducing traffic of varying load and PHY bitrate at the interfering
link and consider 36 different scenarios for each topology. In Fig. 6(b), we observe
that the Hidden Terminal pathology is successfully detected across the various
tested scenarios that are presented in order of airtime utilized by the Interfering
link. In the case of the capture effect pathology, we notice in Fig. 6(c) that the
obtained accuracy presents low performance for low airtime utilization, due to
the pathology causing similar impact upon the suffering nodes as the “Hidden-
Terminal” one does.

330 I. Syrigos et al.

8 Conclusions and Future Work

The proposed detection framework of WLAN pathologies causing performance
degradation showed encouraging results by accurately detecting all the consid-
ered pathologies. Our approach of utilizing the MAC-layer statistics offered from
some wireless devices’ vendors pointed out the importance of making these acces-
sible, as they are already implemented, to user-level. As we demonstrated this
will be of great advantage to WLANs administrators in their effort of trou-
bleshooting low performance. As future work, we seek to integrate our framework
with access points of volunteers, in order to further evaluate the existence of var-
ious pathologies in realistic environments. Finally, we aim at the improvement
of our framework in terms of detecting all simultaneously existing pathologies,
contrary to the current work, which reports just the prevailing one.

Acknowledgment. This work was funded by a Google Faculty Research Award.

References

1. Feilu, L., Jian, L., Zhifeng, T., Korakis, T., Erkip, E., Panwar, S.: The hidden cost
of hidden terminals. In: Proceedings of ICC (2010)

2. Lee, J., Kim, W., Lee, S., Jo, D., Ryu, J., Kwon, T., Choi, Y.: An experimental
study on the capture effect in 802.11a networks. In: Proceedings of WinTECH
(2007)

3. Rayanchu, S., Mishra, A., Agrawal, D., Saha, S., Banerjee, S.: Diagnosing wireless
packet losses in 802.11: separating collision from weak signal. In: Proceedings of
INFOCOM (2008)

4. Gollakota, S., Adib, F., Katabi, D., Seshan, S.: Clearing the RF smog: making
802.11N robust to cross-technology interference. In: Proceedings of SIGCOMM
(2011)

5. Lakshminarayanan, K., Sapra, S., Seshan, S., Steenkiste, P.: RFDump: an archi-
tecture for monitoring the wireless ether. In: Proceedings of CoNEXT (2009)

6. Lakshminarayanan, K., Seshan, S., Steenkiste, P.: Understanding 802.11 perfor-
mance in heterogeneous environments. In: Proceedings of HomeNets (2011)

7. Kanuparthy, P., Dovrolis, C., Papagiannaki, K., Seshan, S., Steenkiste, P.: Can
user-level probing detect and diagnose common home-WLAN pathologies. SIG-
COMM CCR 42(1), 7–15 (2012)

8. Rayanchu, S., Patro, A., Banerjee, S.: Airshark: detecting non-WiFi RF devices
using commodity WiFi hardware. In: Proceedings of IMC (2011)

9. Rayanchu, S., Patro, A., Banerjee, S.: Catching whales and minnows using
WiFiNet: deconstructing non-WiFi interference using WiFi hardware. In: Proceed-
ings of NSDI (2012)

10. Cheng, Y., Bellardo, J., Benkö, P., Snoeren, A., Voelker, G., Savage, S.: Jigsaw:
solving the puzzle of enterprise 802.11 analysis. In: Proceedings of SIGCOMM
(2006)

11. Chandra, R., Padmanabhan, V., Zhang, M.: WiFiProfiler: cooperative diagnosis
in wireless LANs. In: Proceedings of MobiSys (2006)

Enabling Wireless LAN Troubleshooting 331

12. Sheth, A., Doerr, C., Grunwald, D., Han, R., Sicker, D.: MOJO: A distributed
physical layer anomaly detection system for 802.11 WLANs. In: Proceedings of
MobiSys (2006)

13. Shrivastava, V., Rayanchu, S., Banerjee, S., Papagiannaki, K.: PIE in the sky:
online passive interference estimation for enterprise WLANs. In: Proceedings of
NSDI (2011)

14. Giustiniano, D., Malone, D., Leith, D., Papagiannaki, K.: Measuring transmission
opportunities in 802.11 links. IEEE/ACM Trans. Netw. 18(5), 1516–1529 (2010)

15. Wireless Chipsets Drivers. http://wireless.kernel.org/en/users/Drivers
16. Jangeun, J., Peddabachagari, P., Sichitiu, M.: Theoretical maximum throughput

of IEEE 802.11 and its applications. In: Proceedings of NCA (2003)
17. Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A.: Performance anomaly of

802.11b. In: Proceedings of INFOCOM (2003)
18. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination

function. IEEE JSAC 18(3), 535–547 (2000)

http://wireless.kernel.org/en/users/Drivers

Improving the Packet Send-Time Accuracy
in Embedded Devices

Ricky K.P. Mok(B), Weichao Li, and Rocky K.C. Chang

Department of Computing, The Hong Kong Polytechnic University,
Hong Kong, China

{cskpmok,csweicli,csrchang}@comp.polyu.edu.hk

Abstract. A number of projects deploy Linux-based embedded systems
to carry out large-scale active network measurement and network exper-
iments. Due to resource constrains and the increase of network speed,
obtaining sound measurement results from these low-end devices is very
challenging. In this paper, we present a novel network primitive, OMware,
to improve the packet send-time accuracy by enabling the measurement
application to pre-dispatch the packet content and its schedule into the
kernel. By this pre-dispatch approach, OMware can also reduce the over-
heads in timestamp retrievals and sleeping, and the interference from
other application processes.

Our evaluation shows that OMware can achieve a microsecond-level
accuracy (rather than millisecond-level in a user-space tool) in the inter-
departure time of packet trains, even under heavy cross traffic. OMware
also offers optimized call for sending back-to-back packet pairs, which
can reduce the minimum inter-packet gap by 2 to 10 times. Further-
more, OMware can help reduce the error of replaying archived traffic from
40 % to at almost 19 %.

1 Introduction

Linux-based embedded devices are ubiquitous. For example, many homes use
home routers or WiFi APs for sharing the residential broadband access. Some of
them run OpenWrt [27], a popular Linux distribution for networked embedded
devices, which allows developers to re-use the software tools implemented for
the PCs via cross compilation. Due to their low cost, several projects, such as
BISMark [1], SamKnows [8], and RIPE Atlas [6], employ them as vantage points
to measure the Internet performance or gauge the network service quality of
residential broadband. ARM-based single-board computers, such as Raspberry
Pi [5], are also used in sensor network and embedded cloud research.

Obtaining sound measurement results from these resource-constrained devices
is however very challenging. A fundamental requirement is to send out (probe
or archived) packets onto the wire according to their pre-determined schedules.
Inaccurate packet send times will distort the scheduled probe patterns (e.g., Pois-
son, periodic, and Gamma renewal) in active measurement which may result in
non-optimal probing [9]. Inaccurate packet send times can also directly affect the
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 332–344, 2015.
DOI: 10.1007/978-3-319-15509-8 25

Improving the Packet Send-Time Accuracy in Embedded Devices 333

measurement results for timing-sensitive measurement, notably packet-pair
capacity [12,20] and available bandwidth [19].

A major source of send-time inaccuracy is the high overhead for these devices
to move packets between user and kernel space and in executing the sleep and
timestamping function calls. These overheads will widen the gap between the
scheduled send time and the actual time of delivering the packet to the wire.
Another problem is to contend resources with other running processes (E.g.,
firewall, NAT, and DNS request forwarding in a residential broadband router).
Due to the CPU context switching, the measurement tool will experience highly
fluctuated overheads which cannot be calibrated easily. A traffic generator may
even fail to send the expected pattern when the CPU consumption is high [10].

In this paper, we propose OMware, a new network primitive to improve the
send-time accuracy. Its main novelty is on utilizing the sleep period typically
required for a packet sending process to copy packets from user space to ker-
nel and construct the sk buff structure [24] for the network card driver. As a
result, the first pre-dispatching phase “absorbs” these operations’ overheads. In
addition, OMware offers optimized function calls for sending back-to-back packet
pairs, which can improve the accuracy of capacity and available bandwidth mea-
surement [11,12,20,21].

We evaluate OMware with two OpenWrt routers (NETGEAR WNDR 3800
and TP-LINK WR1043ND) and perform a set of experiments under different
levels of cross traffic to investigate the improvement in network measurement.
The results show that OMware can achieve a microsecond-level accuracy (rather
than millisecond-level in a user-space tool) in the inter-departure time (IDT) of
packet trains even under heavy cross traffic. Besides, the packet sending delay
can be significantly reduced by 0.2 ms. Furthermore, OMware can reduce the IDT
in a back-to-back packet pair by 2 to 10 times, therefore enabling the embedded
device to measure a much higher capacity.

2 Related Works

There are generally two approaches to increase the packet I/O performance—
hardware and kernel. The hardware approach adopted by SoNIC [23], NetFPGA
[4], and [14] uses programmable network interface cards to improve the precision
of packet sending time and receiving timestamp. However, these cards are usually
expensive, thus prohibiting them from being used in embedded devices, such as
residential broadband routers. Intel recently proposes the DPDK library [18] to
boost packet processing performance. However, this library is only supported by
their Xeon series CPU which is not available in many embedded systems.

The kernel approach runs on commercial PCs and optimizes the operating
system’s kernel to increase the performance. Examples include PF RING [15]
for improving packet capturing performance, and nCap [16], netmap [29], and
kTRxer [30] for improving both sending and receiving speed. Epoll in Linux and
kqueue in FreeBSD are mainly for improving the event notification mechanism,
which can enhance the performance of packets reception. On the other hand,

334 R.K.P. Mok et al.

pktgen [26] aims at a high-speed packet sending. However, they do not consider
the accuracy of packet send time. Using real-time Linux (RTLinux [7]) is a possi-
ble solution to increase the packet send-time accuracy. For example, Kiszka et al.
propose RTnet [22] for hard real-time networking. However, running RTLinux on
residential broadband router may significantly affect the performance of running
other network services.

In wireless sensor network community, Österlind and Dunkels [28] proposed
to pre-copy packet to improve the packet forwarding throughput in 802.15.4
networks, but the application cannot send packets at any dedicated time.

3 Background

Linux-based embedded devices, such as home routers and private NASes (Net-
work Access Storage), can be found in many homes today and of low cost. Some
of them support OpenWrt, which is one of the popular and active Linux distri-
butions specifically for embedded devices. Furthermore, the packages of several
network measurement tools, including D-ITG, httping, and hping, are readily
available on public repositories. Developers can also run their own tools via cross
compilation. However, the computational power of these devices are far lower
than commodity PCs. Table 1 shows the detailed configurations of three testing
devices, including NETGEAR WNDR 3800, which has the same configurations
as a BISMark-enabled router, and a reference PC.

Table 1. The configurations of the testing devices.

Device Model CPU/Chipset (Clock Freq.) RAM

Raspberry Pi BCM2835 (700 MHz) 512 MB

TP-LINK WR1043ND AR9132 (400 MHz) 32 MB

NETGEAR WNDR3800 AR7161 (680 MHz) 128 MB

Reference PC Intel Core2Duo (1.86 GHz) 2 GB

Note: All embedded devices are running OpenWrt 12.09.1.
All devices expect Raspberry Pi support 1 Gbps Ethernet.

Due to resource limitations, the performance and accuracy of these devices
are not satisfactory, especially in today’s high speed network. We have identified
three basic operations—timestamp retrieval, sleep, and packet transmission—
could cause performance degradation. These operations are commonly used in
network tools. In the following, due to page limitation, we can only show the per-
formance issues in packet transmission, which cause the most significant impact.

3.1 Packet Sending Performance

We define the packet sending performance by the time period between the calling
of sendto() and the packet is put on wire, because some tools may regard the

Improving the Packet Send-Time Accuracy in Embedded Devices 335

40 200 500 1000 1500
10

−6

10
−5

10
−4

IP packet size /bytes
A

vg
. P

ac
ke

t I
D

T
 /s

Reference PC
TP−link
Netgear
Raspberry Pi

Fig. 1. The average packet IDT against packet size on all devices.

calling of sendto() as the packet sending time. Previously, Rizzo showed that
the time period 950 ns in his high-end FreeBSD host (Intel i7-870 with 10 Gbit
NIC) [29]. However, we found that tens of microseconds are required in the
embedded devices.

Instead of forcing the functions to return early [29], our benchmark pro-
gram repeatedly flushes out 100,000 identical TCP packets using the raw socket
(i.e., sendto()). Besides, the packet’s TCP/IP header and checksums are pre-
computed to mitigate any overhead from these operations. We repeat the exper-
iment with five packet sizes, which are {40, 200, 500, 1000, and 1500} bytes.
All the packets are captured by an endace DAG card directly connected to the
device. We then analyze the IDTs between packets to estimate the overall send-
ing performance.

Figure 1 shows the average packet IDTs against the packet sizes. We can see
that the performance of the three embedded devices is about one order of mag-
nitude slower than a commodity PC. For example, the average packet IDT for
40-byte packets is 2.64 µs, while the NETGEAR router is 41.7 µs. The Rasp-
berry Pi performs the worst among the embedded device, because the Rasp-
berry Pi’s ethernet interface connects to CPU via the USB interface and results
in poor performance. Unlike the reference PC, the performance is fairly stable
across the packet sizes in all three embedded devices. The average packet IDTs
for TP-LINK and NETGEAR only respectively increase by 5 % and 8 % as the
packet size increases from 40 bytes to 1500 bytes.

4 Pre-dispatch Programming Model

We survey several network tools listed in Table 2. We find that these tools are
often implemented with similar kind of function calls in packet I/O, sleep and
timestamp retrieval. We further investigate their source code and programming
flows. These tools often adopt a sequential programming model to schedule the
sending of packets. Figure 2(a) and (b) illustrate a timeline comparison between
the sequential model and our proposed pre-dispatch model, respectively. The
application in the figures refers to a network tool running on the user space.
For both model, at time t0, we assume the application has prepared the packet
content to be sent at a future time, ts. The packet appears on the wire at

336 R.K.P. Mok et al.

Table 2. Examples of function calls used in network tools.

Tools Packet I/O Sleep Timestamp Retrieval

D-ITG [13] POSIX Socket select() and polling gettimeofday()

httping [2] POSIX Socket usleep() gettimeofday()

Iperf [3] POSIX Socket nanosleep() gettimeofday()

Fig. 2. Timeline comparison between the sequential and pre-dispatch approaches.

{tw, t′w} in {sequential, pre-dispatch} model. Therefore, the sending time errors
are (ts − t0) or (t′s − t0) for sequential or pre-dispatch model, respectively.

We first consider the sequential model in Fig. 2(a). The applications using
this model are usually implemented using POSIX socket for packet I/O and a
family of sleep() functions for spacing out packets. We summarize this model
into three major steps.

(1) The application prepares the packet content, computes the sleep period (i.e.,
ts − t0, for ts > t0) and goes into sleep mode.

(2) After the sleep period is over, the packet content is copied to the kernel using
socket.

(3) The packet headers are filled by the TCP/IP stack and finally sent to the
network card.

On the other hand, our pre-dispatch model, as shown in Fig. 2(b), divides
the packet sending process into two major phases. The tool first prepares and
copies the packet to the OMware before the scheduled sending time, ts. Then, the
OMware sends the packet when ts arrives. We can describe the details with five
steps:

(i) Once the packet is ready and the sending time is determined, the application
can immediately invoke the packet sending call in the OMware API, which
takes the pointer of packet and the sending time as the input.

(ii) The OMware processes the packet, which includes adding ethernet header
and constructing sk buff structure.

Improving the Packet Send-Time Accuracy in Embedded Devices 337

(iii) If the packet sending time does not arrive (i.e., current time < ts), OMware
will add the packet sending operation as a kernel task triggered by a high
resolution timer. Otherwise, the packet should be sent immediately.

(iv) When the scheduled send time ts arrives, an interrupt will be generated to
trigger the callback routine of sending the processed packet.

(v) As the packet has been processed, it can be put onto the wire quickly. The
OMware API then acknowledges the application on whether the process is
successful.

The major difference between the two models is when the program starts to
wait (i.e., (1) and (iii)) for the scheduled time. The pre-dispatch model utilizes
part of the sleep time to handle time consuming operations, such as (i) and (ii).
Therefore, the system can take a shorter critical path in sending packets and
improve the throughput.

5 Evaluation

In this section we evaluate the packet send-time accuracy, pre-dispatching period,
packet-pair accuracy, and packet send timestamp accuracy on a testbed. To sup-
port the pre-dispatch model, we have implemented OMware, which is a loadable
kernel module for Linux. OMware provides a set of APIs for network tools. We
cross-compile OMware, so that our experiments can run on two home routers,
NETGEAR WND3800 and TP-LINK WR1043ND, both of which are installed
with OpenWrt 12.09.1.

5.1 Testbed and Test Suite

We setup a testbed, as shown in Fig. 3, to emulates a network environment with
cross traffic. The WAN port of the OpenWrt router, D0, is directly connected
to an endace DAG Card 4.5G2 [17] with 1 Gbps Ethernet for capturing the
traffic sending from D0. The server installed with the DAG card, S0, runs the
dagfwddemo program, so it can forward the traffic from D0 to a Linux host, S1,
and the cross traffic. X0 and X1 are two Linux hosts for generating cross traffic
using D-ITG, where X0 is behind the NAT provided by D0. The cross traffic is
unidirectional UDP flows generated by D-ITG [13]. Each flow is configured with
Pareto distributed packet inter-arrival times and uniform distribution of packet

Fig. 3. Testbed for the performance tests.

338 R.K.P. Mok et al.

Table 3. The test suite for evaluating OMware.

Methods Packet pattern Library Model Description

OIR Packet train OMware OMware (initial
pre-
dispatching)

The tool prepares all the
probe packets and their
sending timestamps in
advance and sends them
to OMware for pre-
dispatching the sending of
the packets

OFR Packet train OMware OMware (on-the-
fly pre-
dispatching)

The tool uses
clock nanosleep() with
absolute timestamp to
sleep until φ μs before the
scheduled send time.
Then, it prepares the
probe packets and sends
them to OMware for
pre-dispatching the
sending of the packets

OSM Packet train OMware Sequential This method is a special case
of OFR method where φ
is zero

RSM Packet train POSIX Sequential This method uses raw socket
for sending packets.
Similar to OSM,
clock nanosleep() with
absolute timestamp is
used for spacing the probe
packets

TOM Packet pairs OMware OMware This method employs the
packet pair sending
function in OMware to send
a sequence of packet pairs
with initial
pre-dispatching

TRW Packet pairs POSIX Sequential This method uses raw socket
to send a sequence of
packet pairs

size over {40, 1500} bytes. The bitrate for each flow is about 2200 kbps, and the
packet sending rate is about 352 packets/s.

We have implemented a simple network measurement tool running with
OMware and different programming models for comparing the performance and
timing accuracy between our approach and raw socket. Table 3 lists the details
of a test suite. The packet train tests send a train of evenly spaced TCP data

Improving the Packet Send-Time Accuracy in Embedded Devices 339

packets to the WAN port. According to their memory capacities, the train has
100 packets for the NETGEAR router and 50 packets for the TP-LINK router.
The packet pair tests send 50 and 25 pairs of back-to-back packets to the WAN
port. Both tests use different packet sizes, inter-departure times between packets
or packet pairs, and degree/ direction of cross traffic. The parameters used are
listed in Table 4. The packet send time is recorded by both the measurement
tool using OMware and the DAG card.

Table 4. The parameters used in evaluating packet sending performance.

Parameters Values

No. of cross traffic flows, ρ 0, 1, 5, 10, 20, 30

Direction of cross traffic, ρ WAN→LAN, WAN←LAN

IP packet size, λ (bytes) 40, 200, 500, 1000, 1500

Expected inter-departure time, α (μs) 0, 10, 100, 1000, 10000, 100000

Pre-dispatching period for the OFR method, φ (μs) 0, 100, 500, 1000

5.2 Packet Send-Time Accuracy

We use the timestamps from the packet capture to compute the actual packet
IDT sent from the router by IDT = tsn+1 − tsn, where tsn represents the
timestamp of the nth packet in the packet train. Figure 4 shows a log-log plot of
average packet IDT against the expected IDT, α, in the idle NETGEAR router.
The error bars plot the 95 % confidence interval of data. We can see that the OIR
method outperforms the other three, especially in very small packet IDT (10 and
100 µs). But the variation for 10 µs case is quite large, as this IDT is close to the
limit of the system. The OFR method becomes more accurate when the expected
IDT increases to 100 µs as the pre-dispatching can take place after sending the
first fesw packets. The OSM and RSM methods improve their accuracy when
the IDT is larger than 1 ms.

10
−4

10
−2

10
−3

10
−5

10
−1

10
−4

10
−2

10
−3

10
−5

10
−1

Assigned Packet IDT /s

A
ve

ra
ge

 P
ac

ke
t I

D
T

 /s

Ideal
OIR
OFR
OSM
RSM

Fig. 4. The log-log plot of measured average packet IDT against assigned one for OIR,
OFR (φ = 1000 µs), OSM, and RSM (ρ = 0, λ = 40 bytes, α ≥ 10µs, NETGEAR).

340 R.K.P. Mok et al.

9.6

9.8

10

10.2

x 10
−4

O
IR

−
0−

40

O
IR

−
0−

50
0

O
IR

−
0−

15
00

O
IR

−
LW

10
−

0

O
IR

−
LW

10
−

50
0

O
IR

−
LW

10
−

15
00

O
IR

−
LW

30
−

40

O
IR

−
LW

30
−

50
0

O
IR

−
LW

30
−

15
00

O
IR

−
W

L1
0−

40

O
IR

−
W

L1
0−

50
0

O
IR

−
W

L1
0−

15
00

O
IR

−
W

L3
0−

40

O
IR

−
W

L3
0−

50
0

O
IR

−
W

L3
0−

15
00

P
ac

ke
t I

D
T

 /s

(a) OIR.

0.5

1

1.5

2

x 10
−3

O
F

R
−

0−
40

O
F

R
−

0−
50

0

O
F

R
−

0−
15

00

O
F

R
−

LW
10

−
0

O
F

R
−

LW
10

−
50

0

O
F

R
−

LW
10

−
15

00

O
F

R
−

LW
30

−
40

O
F

R
−

LW
30

−
50

0

O
F

R
−

LW
30

−
15

00

O
F

R
−

W
L1

0−
40

O
F

R
−

W
L1

0−
50

0

O
F

R
−

W
L1

0−
15

00

O
F

R
−

W
L3

0−
40

O
F

R
−

W
L3

0−
50

0

O
F

R
−

W
L3

0−
15

00

P
ac

ke
t I

D
T

 /s

(b) OFR (φ=1000 μs).

0

5

10

15

20
x 10

−4

O
S

M
−

0−
40

O
S

M
−

0−
50

0

O
S

M
−

0−
15

00

O
S

M
−

LW
10

−
0

O
S

M
−

LW
10

−
50

0

O
S

M
−

LW
10

−
15

00

O
S

M
−

LW
30

−
40

O
S

M
−

LW
30

−
50

0

O
S

M
−

LW
30

−
15

00

O
S

M
−

W
L1

0−
40

O
S

M
−

W
L1

0−
50

0

O
S

M
−

W
L1

0−
15

00

O
S

M
−

W
L3

0−
40

O
S

M
−

W
L3

0−
50

0

O
S

M
−

W
L3

0−
15

00

P
ac

ke
t I

D
T

 /s

(c) OSM.

1.2

1.4

1.6

1.8

2

2.2

x 10
−3

R
S

M
−

0−
40

R
S

M
−

0−
50

0

R
S

M
−

0−
15

00

R
S

M
−

LW
10

−
0

R
S

M
−

LW
10

−
50

0

R
S

M
−

LW
10

−
15

00

R
S

M
−

LW
30

−
40

R
S

M
−

LW
30

−
50

0

R
S

M
−

LW
30

−
15

00

R
S

M
−

W
L1

0−
40

R
S

M
−

W
L1

0−
50

0

R
S

M
−

W
L1

0−
15

00

R
S

M
−

W
L3

0−
40

R
S

M
−

W
L3

0−
50

0

R
S

M
−

W
L3

0−
15

00

P
ac

ke
t I

D
T

 /s

(d) RSM.

Fig. 5. The box-and-whisker plots of packet IDTs using different methods (α = 1 ms,
NETGEAR router).

Figures 5(a) to (d) are four box-and-whisker plots respectively showing the
summary of data of the OIR, OFR, OSM, and RSM methods where the expected
packet IDT is set to 1 ms. In each box-and-whisker plot, the top/bottom of the
box are given by the 75th/25th percentile, and the mark inside is the median. The
upper/lower whiskers are the maximum/minimum, respectively, after excluding
the outliers. The outliers above the upper whiskers are those exceeding 1.5 of
the upper quartile, and those below the minimum are less than 1.5 of the lower
quartile. Each figure shows 15 test cases with different degrees/directions of
cross traffic and packet sizes. For example, OIR-0-500 on the x-axis in Fig. 5(a)
represents the results obtained from OIR method under ‘0’ cross traffic (idle)
and sending 500-byte IP packets; WLXX or LWXX represents the experiment
runs with XX flows of cross traffic in WAN→LAN or WAN←LAN direction,
respectively.

We can see that the OIR method is the most stable against the cross-
traffic. Most of the IDTs fall within ±20 µs of the true value. The OFR method

Improving the Packet Send-Time Accuracy in Embedded Devices 341

also shows an accurate median value. But the cross traffic slightly affects this
method’s accuracy. The inter-quartile range increases with the number of cross
traffic flows. Without adopting the pre-dispatching technique, the OSM method
shows even larger inter-quartile range (about 1 ms) for all cases, which is caused
by the inaccuracy of sleep function. Finally, the RSM method shows the worst
result. All the IDTs suffer from at least 0.2 ms inflation. Besides, this method is
also susceptible to cross traffic interference. When the WAN←LAN cross traf-
fic is heavy (e.g., LW30), the inter-quartile range shows a six-fold increase. To
summarize, traditional method (RSM) experiences larger delay and variance in
sending packets than OMware-based methods.

5.3 Pre-dispatching Period

Another important issue is the length of pre-dispatching period in the OFR
method. Some stateful measurement tools, such as OneProbe [25], requires the
information from the previous probe packets to generate a new one. Preparing
all probes packets at the beginning of the measurement becomes infeasible. As
shown in the previous section, OMware cannot pre-dispatch probes if the packet
send time is too close to the current time. Therefore, we test four different pre-
dispatching periods and examine their effects on the packet send-time accuracy.

Figures 6(a) and (b) show the CDFs of the packet IDTs with different pre-
dispatching periods using an expected packet IDT of 10 µs and 1000 µs, respec-
tively. When the expected packet IDT is very small (e.g., α = 10 µs), the
pre-dispatching period cannot improve the accuracy. It is because the requested
IDT is insufficient for OMware to finish the pre-dispatching phase before the sched-
uled send time. However, when the expected packet IDT increases to 1 ms, the fluc-
tuation of the packet IDTs can be significantly decreased when the pre-dispatching
period increases to 500 µs (as shown in Fig. 6(b)). We also found similar pattern
in other cases. Therefore, we conclude that the pre-dispatching period of 500 µs is
sufficient for completing the first part of packet dispatchment in this router.

0 0.5 1 1.5

x 10
−3

0

0.2

0.4

0.6

0.8

1

Packet Inter−departure time /s

C
D

F

0 us
100 us
500 us
1000 us

(a) α = 10μs.

0 0.5 1 1.5

x 10
−3

0

0.2

0.4

0.6

0.8

1

Packet Inter−departure time /s

C
D

F

0 us
100 us
500 us
1000 us

(b) α = 1000μs.

Fig. 6. The CDFs of packet inter-departure time of the OFR method with different
pre-dispatching period (ρ = 0, λ = 1500 bytes, NETGEAR router).

342 R.K.P. Mok et al.

10
−4

10
−5

10
−30

0.2

0.4

0.6

0.8

1

Inter−departure time /s

C
D

F

TRW − idle
TOM − idle
TRW L−>W load
TOM L−>W load
TRW W−>L load
TOM W−>L load

(a) NETGEAR.

10
−4

10
−3

10
−50

0.2

0.4

0.6

0.8

1

Inter−departure time /s

C
D

F

TRW − idle
TOM − idle
TRW L−>W load
TOM L−>W load
TRW W−>L load
TOM W−>L load

(b) TP-LINK.

Fig. 7. The CDFs of back-to-back packet pairs’ inter-departure time. (α = 1 ms and
λ = 40 bytes).

−4 −2 0 2 4
x 10

−5

0

0.2

0.4

0.6

0.8

1

Δ tm /s

C
D

F

0 us
10 us
100 us
1000 us
10000 us
100000 us

(a) NETGEAR.

−4 −2 0 2 4
x 10

−5

0

0.2

0.4

0.6

0.8

1

Δ tm /s

C
D

F

0 us
10 us
100 us
1000 us
10000 us
100000 us

(b) TP-LINK.

Fig. 8. The CDF of the difference between packet IDTs computed by the DAG card
capture and send timestamps reported by OMware (ρ = 0 and λ = 40 bytes).

5.4 Packet-Pair Accuracy

OMware provides a dedicated API for sending back-to-back packet pairs. A smaller
gap between the two packets can enable us to measure a higher capacity using
packet pair based methods (e.g., [11,20]). Figures 7(a) and (b) plot the CDFs of
the back-to-back packet pairs’ IDTs under different degrees of cross traffic in the
NETGEAR and TP-LINK router, respectively. We set a 1 ms gap between each
pair to mitigate the influence from the previous pair. We can see that the NET-
GEAR router can achieve a minimum IDT of 6.44 µs, while the TP-LINK one
only can reach 13.6 µs. They can achieve 2 to 10 times improvement against the
raw socket version under the same condition.

5.5 Packet Send Timestamp Accuracy

In most cases, the measurement tools cannot rely on external timestamping
device, such as DAG card, to provide precise packet send timestamp. The tools
have to rely on the send timestamp reported by OMware. To appraise the accuracy

Improving the Packet Send-Time Accuracy in Embedded Devices 343

of the timestamps, we subtract the packet IDTs computed by two time sources,
Δtm = IDTOMware−IDTDAG, where IDTOMware and IDTDAG are the packet
IDTs of the same pair of packets, but computed using the timestamps reported
by the OMware and those captured by the DAG card, respectively. Figures 8(a)
and (b) show the CDFs of Δtm for the NETGEAR and TP-LINK routers.
We can see that the packet IDT difference computed by the two time sources
are very close. OMware’s timestamp accuracy can generally reach micro-second
level. Therefore, the measurement tools can use OMware’s timestamp to compute
accurate results.

6 Conclusions

This paper proposed a novel network primitive to improve the packet send-time
accuracy. The model employs a two-phase approach to allow pre-dispatch of
packets to reduce the impact from the low packet sending performance. Our
implementation, OMware, allows the tools to buffer probe packets and their send
times in the kernel before their actual send time. Hence, the packet send-time
accuracy and sending rate can be significantly improved.

Our testbed evaluation results showed that using OMware to pre-dispatch pack-
ets can provide accurate packet send times. Comparing to raw socket, OMware
can reduce the minimum packet inter-departure time by ten times and reduce
the variation by 6 times under heavy load cross traffic. In the future, we will com-
pare the performance of OMware in more embedded devices and investigate the
performance impact to other applications.

Acknowledgements. We thank three anonymous reviewers for their valuable com-
ments. We also thank Lei Xue, McKeith Kwok, and Jack Chan for their help in pro-
gramming the prototype of OMware and carrying out experiments. This work is partially
supported by an ITSP Tier-2 project grant (ref. no. GHP/027/11) from the Innovation
Technology Fund in Hong Kong.

References

1. Bismark. http://www.projectbismark.net
2. httping. http://www.vanheusden.com/httping/
3. Iperf - The TCP/UDP Bandwidth Measurement Tool. http://iperf.fr/
4. NetFPGA. http://netfpga.org/
5. Raspberry Pi. http://www.raspberrypi.org/
6. RIPE Atlas. https://atlas.ripe.net/
7. RTLinux. https://rt.wiki.kernel.org/
8. Samknows. http://www.samknows.com
9. Baccelli, F., Machiraju, S., Veitch, D., Bolot, J.C.: On optimal probing for delay

and loss measurement. In: Proceedings of ACM IMC (2007)
10. Botta, A., Dainotti, A., Pescapé, A.: Do you trust your software-based traffic gen-

erator? IEEE Commun. Mag. 48(9), 158–165 (2010)

http://www.projectbismark.net
http://www.vanheusden.com/httping/
http://iperf.fr/
http://netfpga.org/
http://www.raspberrypi.org/
https://atlas.ripe.net/
https://rt.wiki.kernel.org/
http://www.samknows.com

344 R.K.P. Mok et al.

11. Chan, E., Chen, A., Luo, X., Mok, R., Li, W., Chang, R.: TRIO: measuring asym-
metric capacity with three minimum round-trip times. In: Proceedings of ACM
CoNEXT (2011)

12. Chan, E., Luo, X., Chang, R.: A minimum-delay-difference method for mitigating
cross-traffic impact on capacity measurement. In: Proceedings of ACM CoNEXT
(2009)

13. Dainotti, A., Botta, A., Pescapè, A.: A tool for the generation of realistic network
workload for emerging networking scenarios. Comput. Netw. 56(15), 3531–3547
(2012)

14. Degioanni, L., Varenni, G.: Introducing scalability in network measurement: toward
10 Gbps with commodity hardware. In: Proceedings of ACM IMC (2004)

15. Deri, L.: Improving passive packet capture: beyond device polling. In: Proceedings
of SANE (2004)

16. Deri, L.: nCap: wire-speed packet capture and transmission. In: Proceedings of
IEEE E2EMON (2005)

17. Endace. DAG packet capture cards. http://www.endace.com
18. Intel. Packet processing on intel architecture. http://www.intel.com/content/

www/us/en/intelligent-systems/intel-technology/packet-processing-is-enhanced-
with-software-from-intel-dpdk.html

19. Jain, M., Dovrolis, C.: End-to-end available bandwidth: measurement methodol-
ogy, dynamics, and relation with TCP throughput. IEEE/ACM Trans. Netw. 11,
537–549 (2003)

20. Kapoor, R., Chen, L.-J., Lao, L., Gerla, M., Sanadidi, M.Y.: CapProbe: a simple
and accurate capacity estimation technique. In: Proceedings of ACM SIGCOMM
(2004)

21. Kim, J.C., Lee, Y.: An end-to-end measurement and monitoring technique for the
bottleneck link capacity and its available bandwidth. Comput. Netw. 58, 158–179
(2014)

22. Kiszka, J., Wagner, B., Zhang, Y., Broenink, J.: RTnet - A flexible hard real-time
networking framework. In: Proceedings of IEEE ETFA (2005)

23. Lee, K.S., Wang, H., Weatherspoon, H.: SoNIC: precise realtime software access
and control of wired networks. In: Proceedings of USENIX NSDI (2013)

24. Linux Foundation. sk buff. http://www.linuxfoundation.org/collaborate/work-
groups/networking/skbuff

25. Luo, X., Chan, E., Chang, R.: Design and implementation of TCP data probes
for reliable and metric-rich network path monitoring. In: Proceedings of USENIX
ATC (2009)

26. Olsson, R.: pktgen the Linux packet generator. In: Proceedings of Linux Sympo-
sium (2005)

27. OpenWrt. https://openwrt.org/
28. Österlind, F., Dunkels, A.: Approaching the maximum 802.15.4 multi-hop through-

put. In: Proceedings ACM HotEmNets (2008)
29. Rizzo, L.: Netmap: a novel framework for fast packet I/O. In: Proceedings of

USENIX ATC (2012)
30. Xue, L., Luo, X., Shao, Y.: kTRxer: A portable toolkit for reliable internet probing.

In: Proceedings of IEEE IWQoS (2014)

http://www.endace.com
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/packet-processing-is-enhanced-with-software-from-intel-dpdk.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/packet-processing-is-enhanced-with-software-from-intel-dpdk.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/packet-processing-is-enhanced-with-software-from-intel-dpdk.html
http://www.linuxfoundation.org/collaborate/workgroups/networking/skbuff
http://www.linuxfoundation.org/collaborate/workgroups/networking/skbuff
https://openwrt.org/

Software Defined Networking

What You Need to Know About SDN
Flow Tables

Maciej Kuźniar1(B), Peter Pereš́ıni1, and Dejan Kostić2

1 EPFL, Lausanne, Switzerland
maciej.kuzniar@epfl.ch

2 KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. SDN deployments rely on switches that come from various
vendors and differ in terms of performance and available features. Under-
standing these differences and performance characteristics is essential for
ensuring successful deployments. In this paper we measure, report, and
explain the performance characteristics of flow table updates in three
hardware OpenFlow switches. Our results can help controller develop-
ers to make their programs efficient. Further, we also highlight differ-
ences between the OpenFlow specification and its implementations, that
if ignored, pose a serious threat to network security and correctness.

1 Introduction

Background. In OpenFlow-based Software Defined Networking (SDN) deploy-
ments [2,5], SDN developers and network administrators (developers for short)
write network programs at a logically centralized controller to control the net-
work. The control plane involves the controller communicating with the switches’
OpenFlow agents to instruct them how to configure the data plane by sending
flow modification commands that place rules in the forwarding tables. Open-
Flow’s transition from research to production means that the new frameworks
are taking reliability and performance [6,12–15] to new levels that are neces-
sary in the production environment. All of these assume quick rule installation
latency, and rely on the switches to confirm successful rule installations.

Measuring switch performance is a challenging task. The biggest issue is
that each switch under test has many “quirks” which result in unexplained per-
formance changes. Therefore, the thorough evaluation and explanation of these
phenomena takes a substantial effort and cannot be easily automated. For exam-
ple, a switch may have vastly different performance characteristics for similar
experiment setups and finding the responsible parameter and its value requires
many tests. Same applies to trying out combinations of rule modifications.

Our goal. In this paper, we set out to advance the general understanding
of OpenFlow switch performance. Specifically, our focus is on analyzing con-
trol plane processing times and flow table update rate in hardware OpenFlow
switches that support version 1.0 of this protocol. This paper is not about data

c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 347–359, 2015.
DOI: 10.1007/978-3-319-15509-8 26

348 M. Kuźniar et al.

plane forwarding performance. Our contributions are as follows: (i) we go a step
further in measuring OpenFlow switch control plane performance and its inter-
action with the data plane (for example, we dissect rule installation latency in
a number of scenarios that bring the switch to the limit), (ii) we devise a more
systematic way of switch testing, i.e., along many different dimensions, than the
existing work, and (iii) we believe we are the first ones to report several new
types of anomalous behavior in OpenFlow switches.

Related work. Curtis et al. [3] identify and explain the reasons for relatively
slow rule installation rate on an HP switch. OFLOPS [16] observed that some
OpenFlow agents did not support the barrier command. OFLOPS also reported
some delay between the control plane’s rule installation and the data plane’s
ability to forward packets according to the new rule. Huang et al. [4] perform
switch measurements while trying to build High-Fidelity Switch models, and
report slow flow setup rates. Relative to these works, we dissect switch perfor-
mance at a finer grain, over a longer period of time, and more systematically
in terms of rule combinations, initial parameters, etc. In addition, we identify
the thresholds that reveal previously unreported anomalous behavior. Jive [11]
proposes to build a proactive OpenFlow switch probing engine, and store switch
behavior in a database. We show that the switch performance depends on so
many factors that such a database would be difficult to create. NOSIX [17]
optimizes commands for a particular switch based on its capabilities and perfor-
mance. However, the authors do not analyze dynamic switch properties as we
do; our work would be useful in improving the NOSIX optimization process.

Key findings and impact. Our key findings are as follows: (i) control plane
performance is widely variable, and it depends on flow table size, priorities,
batching of commands and even rule update patterns; (ii) switches might peri-
odically or randomly stop processing control plane commands for up to 400 ms;
(iii) data plane state might not reflect control plane—it might fall behind by
up to 400 ms and it might also manifest rule installations in a different order;
(iv) seemingly atomic data plane updates might not be atomic at all.

The impact of our findings is multifold and profound. The non-atomicity
of seemingly atomic data plane updates means that there are periods when the
network configuration is incorrect despite looking correct from the control plane
perspective. The existing tools that check the control plane configuration [7–9]
are unable to detect these problems. Moreover, the data plane can fall behind and
unfortunately barriers cannot be trusted. Thus, the approaches for performing
consistent updates need to devise a different way of defining when a rule is
installed; otherwise they are not providing any firm guarantees. Our results
show that interoperability between switches and controllers cannot be taken for
granted. We hope that SDN controller and framework developers will find our
findings useful in trying to ensure consistent performance and reliability from the
variety of switches they may encounter. Also, efforts that are modeling switch
behavior [4] should consult our study.

What You Need to Know About SDN Flow Tables 349

2 Measurement Methodology

Tools and experimental setup. The main requirements for our tool are
(i) portability, (ii) flexibility, and (iii) sufficient precision. First, since the swit-
ches we test are often in locations with limited physical access, the measuring
tool cannot use customized hardware (e.g., FPGAs). Our previous experience
suggests that switches behave unexpectedly, and thus we need to tailor the exper-
iments to locate and dissect problems. Finally, as the tested switches can modify
at most a couple thousands of rules per second, we assume that a millisec-
ond measurement precision is sufficient. To achieve the aforementioned goals we
built a tool that consists of three major components that correspond to the three
benchmarking phases: input generation, measurement and data analysis (Fig. 1).

Tested switchMeasurement
host

Control
plane

Data plane

Input
Generator
(Python)

Analysis
(Python)

NOX

tcpreplay,
tcpdump

physical
links

Fig. 1. Overview of our measure-
ment tools and testbed setup.

First, an input generator creates control
plane rule modification lists as well as data
plane packet traces and saves them to text and
pcap files. Unless otherwise specified, the rules
match packets based on IP src/dst and forward
to a single port. Because we noticed that some
switches optimize updates for the same rule, we
use consecutive IPs for matches (to make sure
we modify different rules), but we also cross-
check our results using random matches and
update patterns.

We refer to the control plane measurement engine as the controller as it
emulates the behavior of an OpenFlow controller. We implement it as a module
in the NOX controller platform that can issue rule updates at a much higher
rate than what the hardware switches can handle.1 The engine records time of
interactions with the switch (e.g., flow modification sent, barrier reply received).

Our experiments require injecting and recording data plane packets to pre-
cisely measure when the flow table is updated. We rely on tcpreplay and tcpdump
tools to send packets based on a pcap file and record them. To avoid time syn-
chronization issues, the switch is connected to a single host. The host handles
the control plane and generates and receives data plane traffic.2 Network RTT
between the host and the switches is between 0.1 and 0.5ms. Finally, an analysis
tool reads the outputs and computes the metrics of interest. Modularity lets us
easily analyze different aspects of the captured data.

Switches under test. We benchmark three switches with OpenFlow 1.0 sup-
port: HP ProCurve 5406zl with K.15.10.0009 firmware, Pica8 P-3290 with PicOS
2.0.4, and Dell PowerConnect 8132 F with beta3 OpenFlow support (both P-
3290 and 8132F belong to the newest generation of OpenFlow switches). They
use ProVision, Broadcom Firebolt and Broadcom Trident+ ASICs respectively.
1 Our benchmark with software OpenVSwitch handles ∼42000 rule updates/s.
2 Note that we do not need to fully saturate the switch data plane, and thus a con-

ventional host is capable of handling all of these tasks at the same time.
3 The software is going to be optimized and productized in a near future.

350 M. Kuźniar et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

U
pd

at
e

co
nf

irm
at

io
n

tim
e

[s
]

Flow ID

Dataplane
Controlplane

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300

U
pd

at
e

co
nf

irm
at

io
n

tim
e

[s
]

Flow ID

Dataplane
Controlplane

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100

U
pd

at
e

co
nf

irm
at

io
n

tim
e

[s
]

Flow ID

Dataplane
Controlplane

(a) P-3290 (b) 8132F (c) 5406zl

Fig. 2. Control plane confirmations and data plane probes. Data plane updates may
fall behind the control plane acknowledgments and may be even reordered.

Such switches have two types of forwarding tables: software and hardware. While
hardware table sizes (about 1500, 2000, and 750 rules, respectively) and levels
of OpenFlow support vary, we make sure that all test rules ultimately end up
in hardware tables. The point of this study is not to advertise or discredit any
switch but to present interesting characteristics and to highlight potential issues.

General experiment setup. In most experiments in this paper we use the
following generic setup and modify only particular parameters. At the beginning
of each experiment we prepopulate the switch flow table with R default priority,
non overlapping rules forwarding packets matching flows number 1 − R to 0 to
port A. After the switch applies this update in the hardware flow table, the
measured run starts. We send B batches of rule updates, each batch consisting
of: BD rule deletions, BM rule modifications and BA rule insertions followed by a
barrier request. In the default setup BD = BA = 1 and BM = 0. Batch i deletes
the rule matching flow number i−R and installs a rule that matches flow i and
forwards packets to port A. Note that the total number of rules in the table is
stable during the experiment (in contrast to previous work that measures only
the time needed to fill an empty table). If the experiment requires injecting and
capturing data plane traffic, we send packets that belong to flows Fstart to Fend

at a rate of about 1000 packets/s. For clarity, when describing an experiment
we change only one parameter. In reality we vary different parameters as well to
confirm the observations. Finally, unless an experiment shows variance greater
than 5 % across runs, we repeat it three times and report the average.

3 Data Plane

While the only view the controller has of the switch is through the control
plane, the traffic forwarding happens in the data plane. In this section we present
experiments where we monitor rule updates in the control plane and at the same
time send traffic to exercise the updated rules.4

4 While experimenting and digging deep to understand the root causes of various
behaviors we made other, less critical observations described in a tech report [10].

What You Need to Know About SDN Flow Tables 351

3.1 Synchronicity of Control and Data Planes

Many solutions essential for correct and reliable OpenFlow deployments (e.g.,
[12,15]) rely on knowing when the switch applied a given command in the data
plane, and they resort to using the barrier message for the task.5 However, as
authors of [16] already hinted, the state of the data plane may be different than
the one advertised by the control plane. Thus we set out to measure how do
these two views correspond to each other at a fine granularity.

We use the default setup extended with one match-all low priority rule that
drops all packets6 and we inject data plane flows number Fstart to Fend. For each
update batch i we measure the time when the controller receives a barrier reply
for this batch and when the first packet of flow i reaches the destination. To
work around the limited rate at which the testing machine can send and capture
packets (100000 packets/s), we send traffic in 100-flow parts. Since the results
for 5406zl and P-3290 are similar for each part we show plots for only one range.
For 8132F we merge the results for three ranges to show the change in behavior.

Results for R = 300, B = 500, Fstart = 1 with Fend = 100 (5406zl and
P-3290) and Fend = 300 (8132F) are in Fig. 2. Each switch behaves differently.

5406zl: The data plane configuration of 5406zl is slowly falling behind the con-
trol plane acknowledgments – packets start reaching the destination long after
the switch confirms the rule installation with a barrier reply. After about 100
rule updates (we observed that adding or deleting a rule counts as one update,
and modifying an existing rule as two), the switch stops responding with barrier
replies for 300ms, which allows the flow tables to catch up. After this time the
process of diverging starts again. The divergence increases linearly and, in this
experiment, reaches up to 82 ms, but can be as high as 250ms depending on
the number of rules in the flow table. The 300 ms inactivity time is constant
across all experiments we run, but happens three times more often (every 33
updates) if there are over 760 rules in the flow table. Moreover, the frequency
and the duration of this period do not depend on the rate at which the controller
sends updates, as long as there is at least one update every 300 ms. The final
observation is that 5406zl installs rules in the order of their control plane arrival.

P-3290: Similarly to 5406zl, P-3290 stops responding to barriers in regular
intervals. However, unlike 5406zl, it is either processing control plane (handling
update commands, responding to barriers), or installing rules in TCAM and
never does both at the same time. Moreover, despite the barriers, the rules are
not installed in hardware in the order of arrival. The delay between data and
control plane reaches up to 400ms in this experiment. When all remaining rules
get pushed into hardware, the switch starts accepting control plane commands
again. We confirmed with a vendor that because the synchronization between
5 As specified, after receiving a barrier request, the switch has to finish processing all

previously-received messages before executing any messages after the barrier request.
When the processing is complete, the switch must send a barrier reply message [1].

6 We need to use such a rule to prevent flooding the control channel with the PacketIn
messages caused by data plane probes or flooding the probes to all ports.

352 M. Kuźniar et al.

the software and hardware table is expensive, it is performed in batches and the
order of updates in a batch is not guaranteed. When the switch pushes updates
to hardware, its CPU is busy and it stops dealing with the control plane.7

8132F: Finally, 8132F makes sure that no control plane confirmation is issued
before a rule becomes active in hardware. There are also no periods of idleness
as the switch pushes rules to hardware all the time and waits for completion if
necessary.8 Interestingly, the switch starts updating rules quickly, but suddenly
slows down after 210 new rules installed and maintains this slower speed (verified
up to 2000 batches). However, even after the slowdown, the control plane reliably
reflects the state of the data plane configuration.

Summary: To reduce the cost of placing rules in a hardware flow table, ven-
dors allow for different types (e.g., falling behind or reordering) and amounts
(e.g., up to 400ms) of temporary divergence between the hardware and software
flow tables. Therefore, the barrier command does not guarantee flow installation.
Ignoring this problem leads to an incorrect network state that may
drop packets, or even worse, send them to an undesired destination!

3.2 Rule Modifications Are not Atomic

Previously, we observed unexpected delays for rule insertions and deletions.
A natural next step is to see if modifying existing rules exhibits a similar
behavior.

A gap during a FlowMod: As before, we prepopulate the flow table with one
low priority match-all rule dropping all packets and R = 300 flow specific rules
forwarding to port A. Then, we modify these 300 rules to forward to port B. At
the same time, we send data plane packets matching rules 101–200 at a rate of
1000 packets/s per flow. For each flow, we record a gap between when the last
packet arrives at the interface connected to port A and when the first packet
reaches an interface connected to B. Expected time difference is 1ms because
of our measurement precision, however, we observe gaps lasting up to 7.7, 12.4
and 190ms on P-3290, 8132F and 5406zl respectively. At 5406zl the longest gaps
correspond to the switch inactivity times described earlier (flow 150, 200).

Drops and unexpected actions: To investigate the forwarding gap issue
further we add a unique identifier to each packet to detect if they are being
lost or reordered. Moreover, to get higher precision, we probe only a single rule
(number 151 – a rule with an average gap, and number 150 – a rule with a long
gap on 5406zl) and increase our probing rate to 5000 packets/s.

We observe that P-3290 does not drop any packets. A continuous range of
packets arrive at port A and the remaining packets at B. On the other hand, both
7 The vendor claims that this limitation occurs only in firmware prior to PicOS 2.2.
8 We observe periods when the switch does not install rules or respond to the con-

troller, but these periods are rare, non reproducible and seem unrelated to the exper-
iments. We think they are caused by periodic background processing at the switch.

What You Need to Know About SDN Flow Tables 353

Table 1. Priority handling of overlapping rules. Only 8132F behaves as defined in the
OpenFlow specification.

Switch Observed/inferred behavior

P-3290 May temporarily reorder for overlapping matches (depending on wildcards).
OK for the same match.

8132F OK (Note: May temporarily reorder if not separated by a barrier)

5406zl Ignores priority, last updated rule permanently wins

8132F and 5406zl drop packets at the transition period for rule 151 (3 and 17
packets respectively). For rule number 150, 5406zl drops an unacceptable number
of 782 packets. When we replace the drop-all rule with a rule that forwards all
traffic to port C, identifiers of packets captured on port C for both 5406zl and
8132F fit exactly between the series at ports A and B. This suggests that the
update is not atomic—a rule modification deactivates the old version and inserts
the new one, with none of them forwarding packets during the transition.

To further investigate this behavior, we repeat the experiment with no low
priority rule at all. Both switches flood packets to all ports during the transition.
While it follows the no match behavior of 8132F, it is surprising for 5406zl, since
by default non-matching packets cause PacketIn messages. The only imperfection
of P-3290 is that if the output port of the same rule gets updated between ports
A and B frequently, some packets arrive at the destination out of order.

Summary: Two out of three tested switches have a transition period during a
rule modification when the network configuration is neither in the initial nor
the final state. The observed action of forwarding packets to undesired
ports is a security concern . Non-atomic flow modification contradicts the
assumption usually made by controller developers and network update solutions.
Our results suggest that either switches should be redesigned or the assumptions
made by the controllers have to be revisited to guarantee network correctness.

3.3 Priorities and Overlapping Rules

The OpenFlow specification clarifies that, if rules overlap (i.e., two rules match
the same packet), packets should always be processed only by the highest priority
matching rule. Since our default setup with IP src/dst matches prevents rule
overlapping, we run an additional experiment to verify the behavior of switches
when rules overlap. We install rules that can match the same packet: Rhi that
has a higher priority and forwards to port A, and Rlo that forwards to B. Rhi is
always installed before and removed after Rlo to prevent packets from matching
Rlo. Initially, there is one low priority drop-all rule and 150 pairs of Rhi and
Rlo. Then we send 500 update batches, each removing and adding one rule:
(−Rlo,1,+Rhi,151), (−Rhi,1,+Rlo,151), (−Rlo,2,+Rhi,152), . . . We send data plane
traffic for 100 flows. If a switch works correctly, no packets should reach port B.

354 M. Kuźniar et al.

Table 2. Dimensions of experimental parameters we report in this section. Note that
we also run experiments for other combinations to verify the conclusions.

Experiment In-flight batches Batch size (del+add) Initial rules R

In-flight batches 1–20 1+1 300

Flow table size 2 1+1 50 to max for switch

Priorities as in Flow table size + a single low priority rule in the flow table

Access patterns 2 1+1 50 to max for switch + priorities

Working set as in Flow table size, vary # of rules that are not updated during the experiment

Batch size 2 1+1 to 20+20 300

Table 1 summarizes the results. First, as we already noted, 8132F does not
reorder updates between batches and therefore, there are no packets captured at
port B. The only way to allow some packets on port B is to increase the batch
size – the switch freely reorders updates inside a batch (which is allowed by the
specification) and seems to push them to hardware in order of priorities. On the
other hand, P-3290 applies updates in the correct order only if the high priority
rule has the IP source specified. Otherwise, for a short period of time—210 ms on
average, 410 ms maximum in the described experiment—packets follow the low
priority rule. Our hypothesis is that the software flow table data structure sorts
the rules such that when they are moved to hardware the ones with IP source
specified are pushed first. Finally, in 5406zl, only the first few packets of each
flow (for 80 ms on average, 103 ms max in this experiment) are forwarded to A
and all the rest to B. We conclude that the switch ignores priorities in hardware
(as documented for the older firmware version) and treats rules installed later
as more important. We confirm this hypothesis with additional experiments not
reported here. Further, because the priorities are trimmed in hardware, installing
rules with the same match but different priorities and actions causes an error.

Summary: Results (Table 1) suggest that switches may permanently or tem-
porarily forward according to incorrect, low priority rules.

4 Flow Table Update Speed

The goal of the next set of experiments is to pinpoint the most important aspects
that affect rule update speed. From the previous section we know that although
the control plane information is imprecise, in a long run the error becomes neg-
ligible (all switches synchronize the data and control plane views regularly). We
first identify various performance-related parameters: the number of in-flight
commands, current flow table size, size of request batches, used priorities, rule
access patterns. Then we sample the whole space of these parameters and try
to identify the ones that cause some variation. Based on the results, we select a
few experimental configurations which highlight most of our findings in Table 2.

What You Need to Know About SDN Flow Tables 355

 0

 200

 400

 600

 800

 1000

1 2 3 4 5 10 20

U
pd

at
e

ra
te

 [r
ul

es
/s

ec
]

In-flight requests

Switch performance with multiple in-flight requests

P-3290
8132F
5406zl

Fig. 3. Update rate improvement for
over 2 in-flight requests is negligible.

 0

 0.05

 0.1

 0.15

 0.2

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
ac

kn
ow

le
dg

ed
 [s

]

Batch ID

5406zl - Batching of barrier responses

50 in-fl.
10 in-fl.

5 in-fl.
1 in-fl.

Fig. 4. 5406zl barrier reply arrivals. It
holds replies for up to 29 requests.

4.1 Two In-Flight Batches Keep the Switch Busy

The number of commands a controller should send to the switch before receiv-
ing any acknowledgments is an important design decision [14]. Underutilizing
or overloading the switch with commands is undesired. Here, we quantify the
tradeoff between rule update rate and the servicing delay (time between sending
a command and the switch applying it) to find a performance sweet spot.

We use the default setup with R = 300 and B = 2000 batches of rule updates.
The controller sends batch i + k only when it receives a barrier reply for batch
number i. We vary k and report the average update rate, which we compute as
(1 + 1) ∗B (because each batch contains one add and one delete) divided by the
time between sending the first batch and receiving a barrier reply for the last.

Figure 3 shows the average rate across eight runs. The rule update rate with
one outstanding batch is low as the switch is idle for at least a network RTT.
However, even two in-flight batches are sufficient to saturate all tested switches
given our network latencies. Thus, we use 2 in-flight batches in all experiments.

Looking deeper into the results, we notice that with a changing number of
in-flight batches 5406zl responds in an unexpected way. In Fig. 4 we plot the
barrier reply arrival times normalized to the time when the first batch was sent
for R = 300, B = 50 and a number of in-flight batches varying between 1 and 50.
We show the results for only 4 values to improve readability. If there are requests
in the queue, the switch batches the responses and sends them together in bigger
groups. If a continuous stream of requests is shorter than 30, the switch waits
to process all, otherwise, the first response comes after 29 requests.

Summary: We demonstrated that with LAN latencies two in-flight batches suf-
fice to achieve full switch performance. Since, many in-flight requests increase
the service time, controllers should send only a handful of requests at a time.

4.2 Current Flow Table Size Matters

The number of rules stored in a flow table is a very important parameter of a
switch. Bigger tables allow for a fine grained traffic control. However, there is a

356 M. Kuźniar et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 250 500 750 1000 1250 1500 1750 2000

U
pd

at
e

ra
te

 [r
ul

es
/s

ec
]

Flow table size [rules]

Switch rule update rate

P-3290
8132F
5406zl

Fig. 5. Update rate decreases when the
number of rules in the flow table grows.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 250 500 750 1000 1250 1500 1750 2000

U
pd

at
e

ra
te

 [r
ul

es
/s

ec
]

Flow table size [rules]

Switch rule update rate

P-3290
8132F
5406zl

Fig. 6. Priorities cripple performance.
One low-priority rule significantly
decreases update rate.

well known tradeoff—TCAM space is expensive, so tables that allow for complex
matches usually have limited size. We discover another, hidden cost of full flow
tables. We use the default setup fixing B = 2000 and changing the value of R.

In Fig. 5 we report the average rule update rate. There are two distinct
patterns. Both P-3290 and 8132F express similar behavior—the rule update rate
is high with a small number of entries in the flow table but quickly deteriorates
as this number increases. As we confirmed with one of the vendors and deduced
based on statistics of the other switch, there are two reasons why the performance
drops. First, even if a switch installs rules in hardware, it keeps a software flow
table copy as well. The flows are first updated in the software data structure
which takes more time when the structure is bigger. Second, the rules need to
be pushed into hardware (the switch ASIC), which may require rearranging the
existing entries. On the other hand, 5406zl maintains a lower, but stable rate
following a step function with a breaking point around 760 rules in the flow
table. This stability is caused by periods of inactivity explained in Sect. 3.

Summary: The performance of all tested switches drops with a number of
installed rules, but the absolute values and the slope of this drop vary. There-
fore, controller developers should not only take into account the total flow table
size, but also what is the performance cost of filling the table with additional
rules.

4.3 Priorities Decrease the Update Rate

Next, we conduct an experiment that mimics a situation where a lowest pri-
ority all-matching rule drops all packets that do not match any other rule.
The experiment setup is exactly the same as the one described in Sect. 4.2 with
one additional lowest priority drop-all rule installed before all flow-specific rules.

Figure 6 shows that for a low flow table occupancy, all switches perform
comparably as without the low priority rule. However, P-3290 and 8132F suffer
from a significant drop in performance at about 130 and 255 installed rules
respectively. After this massive drop, the rate gradually decreases until it reaches
12 updates/s for 2000 rules in the flow table for P-3290 and 30 updates/s for 750
rules in the flow table for 8132F where both switches have their tables almost full.

What You Need to Know About SDN Flow Tables 357

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 250 500 750 1000 1250 1500 1750 2000

U
pd

at
e

ra
te

 [r
ul

es
/s

]

Flow table size [rules]

Single low prio.
Increasing prio.
Decreasing prio.

(a) P-3290

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800

U
pd

at
e

ra
te

 [r
ul

es
/s

]

Flow table size [rules]

Single low prio.
Increasing prio.
Decreasing prio.

(b) 8132F

Fig. 7. Switch rule update performance for different rule access patterns.

Interestingly, 5406zl’s update rate does not decrease so much, possibly because
it ignores the priorities. We confirm that the results are not affected by the fully
wildcarded match or the drop action in the low priority rule by replacing it with
a specific IP src/dst match and a forwarding action.

Finally, we rerun the experiments from Sect. 4.1 with a low priority rule. The
absolute rates are lower, but the characteristics and the conclusions hold.

More priorities: Now, we check what is the effect of using different priorities
for each rule. We modify the default set-up such that each rule has a different
priority assigned and install them in an increasing or decreasing order.

Switches react differently: P-3290’s and 8132F’s performance follows a similar
curve as in the previous experiment, but there is no breaking point (Fig. 7). In
both cases the rate is higher with one different priority rule until the breaking
point, after which they equalize. Moreover, P-3290 updates rules quicker in the
increasing priority order (consistent with [11], but the difference is smaller as
for each addition we also delete a rule). 5406zl is unaffected by the priorities,
but our data plane study shows a serious divergence between the control plane
reports and the reality for this switch in this experiment (see Trivia in [10]).

Working set size: Finally, we check what happens if only a small subset of
rules in the table (later referred as “working set”) is frequently updated. We
modify the default setup such that batch i deletes the rule matching flow i−W
and installs a rule matching flow i. We vary the value of W . In other words, the
first R − W rules never change and we update only the last W rules.

The results show that 5406zl’s performance remains the same as presented
in Figs. 5 and 6. Further, for both P-3290 and 8132F a small update working
set makes no difference if there is no low priority rule. For a given R (1000 for
P-3290 and 500 for 8132F in Fig. 8), the performance is constant regardless of
W . However, with the low priority rule installed, the update rate characteristic
changes (Fig. 8). For both switches, as long as the update working set is smaller
than their breaking point revealed in Sect. 4.2, the performance stays as if there
was no drop rule. After the breaking point, it degrades and is marginally worse
compared to the results in Sect. 4.2 for table size W .

358 M. Kuźniar et al.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

U
pd

at
e

ra
te

 [r
ul

es
/s

]

Working set size [rules]

No priorities With low prio.

(a) P-3290

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450 500

U
pd

at
e

ra
te

 [r
ul

es
/s

]

Working set size [rules]

No priorities With low prio.

(b) 8132F

Fig. 8. Size of the rule working set affects the performance. For both P-3290 and
8132F with low priority rule, the performance depends mostly on the number of rules
constantly updated and not on the total number of installed rules.

Summary: The switch performance is difficult to predict—a single rule can
degrade the update rate of a switch by an order of magnitude. Controller develop-
ers should be aware of such behavior and avoid potential sources of inefficiencies.

4.4 Rule Modifications Are Slower than Additions and Deletions

We run the same experiments as described in previous subsections, but modifying
existing rules instead. Because the results are very similar, we do not report them
here in detail. All plots follow the same curves, but in general the update rate
is between 0.5x and 0.75x of the rate for additions and deletions for P-3290 and
8132F. For 5406zl the difference is much smaller and stays within 12 %.

5 Conclusions and Future Work

In this paper we try to shed light on the state of OpenFlow switches – an
essential component of relatively new, but quickly developing Software Defined
Networks. The main takeaway is that despite a common interface, the switches
are more diverse than one would expect, and this diversity has to be taken into
account when building controllers. Because of the limited resources, we obtained
sufficiently long access only to three switches. In the future, we plan to keep
extending this study with additional devices to obtain the full picture.

Acknowledgments. We thank Marco Canini, Dan Levin and Miguel Peón for help-
ing us get access to the tested switches. We also thank Pica8 and Dell representatives
for quick responses and explanations. We thank the reviewers, who provided excellent
feedback. The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP7/2007–2013) / ERC grant agreement 259110.

What You Need to Know About SDN Flow Tables 359

References

1. OpenFlow Switch Specification. http://www.openflow.org/documents/openflow-
spec-v1.0.0.pdf

2. Ethernet Switch Market: Who’s Winning? (2014). http://www.networkcomputing.
com/networking/d/d-id/1234913

3. Curtis, A., Mogul, J., Tourrilhes, J., Yalagandula, P.: DevoFlow: scaling flow man-
agement for high-performance networks. In: SIGCOMM (2011)

4. Huang, D.Y., Yocum, K., Snoeren, A.C.: High-fidelity switch models for software-
defined network emulation. In: HotSDN (2013)

5. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4:
Experience with a globally-deployed software defined WAN. In: SIGCOMM (2013)

6. Katta, N.P., Rexford, J., Walker, D.: Incremental consistent updates. In: HotSDN
(2013)

7. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real
time network policy checking using header space analysis. In: NSDI (2013)

8. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: static checking
for networks. In: NSDI (2012)

9. Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: VeriFlow: verifying
network-wide invariants in real time. In: NSDI (2013)

10. Kuźniar, M., Pereš́ıni, P., Kostić, D.: What you need to know about SDN control
and data planes. Technical report EPFL-REPORT-199497, EPFL (2014)

11. Lazaris, A., Tahara, D., Huang, X., Li, L.E., Voellmy, A., Yang, Y.R., Yu, M.: Jive:
performance driven abstraction and optimization for SDN. In: ONS (2014)

12. Liu, H.H., Wu, X., Zhang, M., Yuan, L., Wattenhofer, R., Maltz, D.A.: zUpdate:
updating data center networks with zero loss. In: SIGCOMM (2013)

13. Mahajan, R., Wattenhofer, R.: On consistent updates in software defined networks.
In: HotNets (2013)

14. Pereš́ıni, P., Kuźniar, M., Canini, M., Kostić, D.: ESPRES: transparent SDN
update scheduling. In: HotSDN (2014)

15. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for
network update. In: SIGCOMM (2012)

16. Rotsos, C., Sarrar, N., Uhlig, S., Sherwood, R., Moore, A.W.: OFLOPS: an open
framework for openflow switch evaluation. In: Taft, N., Ricciato, F. (eds.) PAM
2012. LNCS, vol. 7192, pp. 85–95. Springer, Heidelberg (2012)

17. Yu, M., Wundsam, A., Raju, M.: NOSIX: a lightweight portability layer for the
SDN OS. ACM SIGCOMM Comput. Commun. Rev. 44(2), 28–35 (2014)

http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.networkcomputing.com/networking/d/d-id/1234913
http://www.networkcomputing.com/networking/d/d-id/1234913

Software-Defined Latency Monitoring
in Data Center Networks

Curtis Yu1(B), Cristian Lumezanu2, Abhishek Sharma2,
Qiang Xu2, Guofei Jiang2, and Harsha V. Madhyastha3

1 University of California, Riverside, USA
cyu@cs.ucr.edu

2 NEC Labs America, Princeton, NJ, USA
3 University of Michigan, Ann Arbor, USA

Abstract. Data center network operators have to continually monitor
path latency to quickly detect and re-route traffic away from high-delay
path segments. Existing latency monitoring techniques in data centers
rely on either (1) actively sending probes from end-hosts, which is
restricted in some cases and can only measure end-to-end latencies, or
(2) passively capturing and aggregating traffic on network devices, which
requires hardware modifications.

In this work, we explore another opportunity for network path latency
monitoring, enabled by software-defined networking. We propose SLAM,
a latency monitoring framework that dynamically sends specific probe
packets to trigger control messages from the first and last switches of a
path to a centralized controller. SLAM then estimates the latency dis-
tribution along a path based on the arrival timestamps of the control
messages at the controller. Our experiments show that the latency dis-
tributions estimated by SLAM are sufficiently accurate to enable the
detection of latency spikes and the selection of low-latency paths in a
data center.

1 Introduction

Many data center applications such as search, e-commerce, and banking are
latency-sensitive [3,7]. These applications often have several distributed com-
ponents (e.g., front-end, application server, storage) that need to communicate
across low-latency network paths to reduce application response times. To effec-
tively manage data center networks and provide fast paths, operators must con-
tinually monitor the latency on all paths that the traffic of an application could
traverse and quickly route packets away from high-delay segments [1,5].

Operators can monitor path latency from the edge by sending probes (e.g.,
ICMP requests) between servers and measuring response times. However, three
factors complicate this approach. First, some data centers (e.g., collocation cen-
ters [14]) restrict access to customer servers. Second, end-to-end probes cannot
monitor the latency on path segments between arbitrary network devices, which
is helpful in identifying sources of high delay. Finally, operators are reluctant
c© Springer International Publishing Switzerland 2015
J. Mirkovic and Y. Liu (Eds.): PAM 2015, LNCS 8995, pp. 360–372, 2015.
DOI: 10.1007/978-3-319-15509-8 27

Software-Defined Latency Monitoring in Data Center Networks 361

to repeatedly run expensive measurements from the edge and prefer to allocate
server resources to customer VMs [12].

The alternative is to monitor latencies from inside the network by capturing
information about paths directly from network devices. Trajectory sampling [6]
and l2ping are examples of this approach. Such solutions incur the overhead of
performing real-time local coordination and aggregating measurements captured
at many devices. Recent work proposes to instrument switches with a hash-
based primitive that records packet timestamps and measures network latency
with microsecond-level accuracy [10,11]. However, these methods need hardware
modifications that may not be available in regular switches anytime soon.

In this paper, we explore another opportunity to monitor path latency in
data center networks, enabled by software-defined networks (SDNs). We develop
SLAM, a framework for Software-defined LAtency Monitoring between any two
network switches, that does not require specialized hardware or access to end-
hosts. SLAM uses the SDN control plane to manage and customize probe packets
and trigger notifications upon their arrival at switches. It measures latency based
on the notifications’ arrival times at the control plane.

SLAM is deployed on the network controller and computes latency estimates
on a path in three steps. (setup) It installs specific monitoring rules on all
switches on the path; these rules instruct every switch to forward the matched
packets to the next switch on the path; the first and last switches also generate
notifications (e.g., PacketIn) to the controller. (probe) SLAM sends probes that
are constructed to match only the monitoring rules and that traverse only the
monitored path. (estimate) It estimates the path’s latency based on the times
at which the notification messages (triggered by the same probe) from the first
and last switches of the path are received at the controller.

SLAM offers several advantages over existing latency monitoring techniques.
First, by exploiting control packets inherent to SDN, SLAM requires neither
switch hardware modifications nor access to endhosts. Second, SLAM enables the
measurement of latency between arbitrary OpenFlow-enabled switches. Finally,
by computing latency estimates at the controller, SLAM leverages the visibil-
ity offered by SDNs without needing complex scheduling of measurements on
switches or end-hosts. Moreover, SLAM’s concentration of monitoring logic at
the controller is well-suited to the centralized computation of low latency routes
that is typical to SDNs. Compared to OpenNetMon [15], a similar approach,
SLAM detects and adjusts for real-world deployment issues.

We address three key issues in our design of SLAM. First, latencies on data
center network paths are small—on the order of milli- or even micro-seconds—
and vary continually, due predominantly to changing queue sizes. As a result,
any single latency estimate may become invalid between when it is measured
by SLAM and when it is used to make rerouting decisions. Therefore, instead
of a single latency estimate for a path, we design SLAM to infer the latency
distribution over an interval. A latency distribution that shows high latencies
for a sustained period of time can be more instrumental in inferring high-delay
segments in the network.

362 C. Yu et al.

Second, since SLAM’s latency estimation is based on the timings of
PacketIn’s received at the controller, the accuracy of latency estimates depends
on both end switches on the path taking the same amount of time to process
notification messages and send them to the controller. However, in reality, the
delay incurred in a switch’s processing of the action field of a matched rule and its
subsequent generation of a notification (i.e., PacketIn) depends on the utilization
of the switch CPU, which varies continually. Moreover, switches are generally not
equidistant from the controller. To account for these factors, for every switch,
SLAM continually monitors the switch’s internal control path latency and its
latency to the controller (via EchoRequest messages) and adjusts its estimation
of the latency distribution.

Lastly, despite SLAM’s benefits, its probing overhead is the same as that
associated with probes issued from end-hosts. To alleviate this cost, we also
explore the feasibility of SLAM in a reactive OpenFlow deployment, where new
flows always trigger PacketIn messages from every switch. The key idea is for
SLAM to use the existing OpenFlow control traffic without requiring monitoring
probes to trigger additional PacketIn messages. We use a real enterprise network
trace to show that SLAM would be able to capture latency samples from most
switch-to-switch links every two seconds by relying solely on PacketIn’s triggered
by normal data traffic.

We deploy and evaluate a preliminary version of SLAM on an OpenFlow-
based SDN testbed and find that it can accurately detect latency inflations of
tens of milliseconds. SLAM works even in the presence of increase control traffic,
showing a median latency variation of a few milliseconds when the switch has
to process up to 150 control messages per second. Although not suitable to
detect very fine variations in latency, SLAM is quick and accurate in identifying
high-delay paths from a centralized location and with little overhead.

2 Background

We first describe the operation of a typical OpenFlow network and discuss the
factors that contribute to the latency experienced by a packet that traverses it.

2.1 OpenFlow

We consider a network of OpenFlow-enabled switches, connected with a logically
centralized controller using a secure, lossless TCP connection. The controller
enforces network policies by translating them into low-level configurations and
inserting them into the switch flow tables using the OpenFlow protocol.

The network configuration consists of the forwarding rules installed on
switches. Every rule consists of a bit string (with 0, 1, and ∗ as characters)
that specifies which packets match the rule, one or more actions to be per-
formed by the switch on matched packets, and a set of counters which collect
statistics about matched traffic. Possible actions include “forward to physical
port”, “forward to controller”, “drop”, etc.

Software-Defined Latency Monitoring in Data Center Networks 363

The controller installs rules either proactively, i.e., at the request of the appli-
cation or the operator, or reactively, i.e., triggered by a PacketIn message from
a switch as follows. When the first packet of a new flow arrives, the switch looks
for a matching rule in the flow table and performs the associated action. If there
is no matching entry, the switch buffers the packet and notifies the controller by
sending a PacketIn control message containing the packet header. The controller
responds with a FlowMod message that installs a new rule matching the flow
into the switch’s flow table. The controller may also forward the packet without
installing a rule using a PacketOut message.

2.2 Data Center Path Latency

A packet traversing a network path experiences propagation delay and switching
delay. Propagation delay is the time the packet spends on the medium between
switches and depends on the physical properties of the medium. The propagation
speed is considered to be about two thirds of the speed of light in vacuum [16].
The switching delay is the time the packet spends within a switch and depends
on the various functions applied to the packet. In general, the switching delay
in an OpenFlow switch has three components: lookup, forwarding, and control.
We describe them below and use Fig. 1 to illustrate.

Fig. 1. Latency computation using control message timestamps. Consider a packet
traversing a path comprising switches S1, S2, and S3. The packet arrives at these
switches at t1, t4, and t6 and leaves at t2, t5, and t7. The true latency between S1 and
S3 is t7 − t2. The matching rule at switches S1 and S3 has the additional action “send
to controller” to generate PacketIn’s (the red dotted lines). t3 and t8 are the times
when the PacketIn’s leave S1 and S3, and they arrive at the controller at t′3 and t′8. d1
and d3 are the propagation delays from switches S1 and S3 to the controller. We use
(t′8 − d3) − (t′3 − d1) to estimate the latency between S1 and S3, after accounting for
the processing times in each switch (see Sect. 3) (Color figure online).

364 C. Yu et al.

Lookup. When a switch receives a packet on one of its input ports, the switch
looks for a match in its forwarding table to determine where to forward the
packet. This function is usually performed by a dedicated ASIC on parts of the
packet header.

Forwarding. A matched packet is transferred through the internal switching
system from the input port to an output port. If the output link is transmit-
ting another packet, the new packet is placed in the output queue. The time
a packet spends in the queue depends on what other traffic traverses the same
output port and the priority of that traffic. In general, forwarding delays dom-
inate lookup delays [16]. The intervals [t1, t2], [t4, t5], and [t6, t7] represent the
combined lookup and forwarding delays at switches S1, S2, and S3 in Fig. 1.

Control. If there is no match for the packet in the flow table or if the match
action is “send to controller”, the switch CPU encapsulates part or all of the
packet in a PacketIn control message and sends it to the controller. The control
delay is the time it takes the PacketIn to reach the controller ([t2, t′3] and [t7, t′8]
in Fig. 1).

3 Latency Monitoring with SLAM

SLAM computes the latency distribution for any switch-to-switch path by gath-
ering latency samples over a specified period of time. We define the latency
between two switches as the time it takes a packet to travel from the output
interface of the first switch to the output interface of the second switch, e.g., the
latency of the path (S1, S3) in Fig. 1 is t7 − t2. Our definition of latency does not
include the internal processing of the first switch, t2 − t1, on the path due to the
way we use OpenFlow control messages as measurement checkpoints. However,
since we continually monitor internal processing delays (see later in the section),
we can account for any effects they may have on the overall latency estimation.

Directly measuring the time at which a switch transmits a packet is either
expensive [6] or requires modifications to the switch hardware [10]. Instead,
we propose that switches send a PacketIn message to the controller whenever a
specific type of data packet traverses them. We estimate the latency between two
switches as the difference between the arrival times at the controller of PacketIn’s
corresponding to the same data packet, after accounting for the differences in
internal processing of the two switches and propagation delays to the controller.
In Fig. 1, the estimated latency is (t′8 − d3) − (t′3 − d1).

We incorporate these ideas into the design of SLAM, an OpenFlow controller
module that estimates the latency distribution between any two OpenFlow
switches in a network. Next, we discuss how to generate and send probes that
trigger PacketIn messages and how to calibrate our latency distribution to the
differences in control processing latency between switches. We then describe the
design of SLAM.

Software-Defined Latency Monitoring in Data Center Networks 365

3.1 Latency Monitoring

To estimate latency on a path, SLAM generates probe packets that traverse the
path and trigger PacketIn messages at the first and last switches on the path. To
guide a probe along an arbitrary path, we pre-install forwarding rules at switches
along the path, whose action field instructs the switch to send matched packets
to the next-hop switch. In addition, to generate PacketIn’s, the rules at the first
and last switch on the path contain “send to controller” as part of their action
set. SLAM sends monitoring probes using PacketOut messages to the first switch
on the path. Our method is similar to the one proposed by OpenNetMon [15],
but we explore the implications of using such a system, including its issues, and
quantify this effect on the final result.

An important requirement is that the monitoring rules we install to guide
the probes do not interfere with normal traffic, i.e., only our probes match
against them. For this, we make the rules very specific by not using wildcards
and specifying exact values for as many match fields as possible (e.g., VLAN
tag, TCP or UDP port numbers, etc.). To save space on switches, we also set
the rules to expire once the monitoring is finished by setting their hard timeout.

3.2 Control Processing

We define the control processing time of a switch as the time it takes a switch to
process the action included in the rule that matches a packet, generate a PacketIn,
and send it to the controller. In Fig. 1, t′3−t2 and t′8−t7 are the control processing
times for S1 and S3. Control processing times determine when PacketIn messages
arrive at the controller. If processing times vary across the first and last switch,
the latency estimation on the path is skewed.

Control processing consists of slow path delay and control channel delay. The
slow path delay is the time it takes the switch to transfer the packet along its
internal circuits from the ASIC where the match is performed to the switch
CPU that generates the PacketIn. As shown in prior work [4], the slow path
delay depends on what other operations (e.g., flow installations, stat queries)
are performed simultaneously on the switch. The control channel delay is the
propagation delay from the switch to the controller.

We adapt to the variations in control processing across switches by constantly
monitoring both the slow path and control channel delays. To monitor the slow
path delay of a switch, we send packet probes to the switch using PacketOut,
use a carefully placed rule to trigger a PacketIn, and then drop the probe with-
out forwarding it to other switches. This resembles our path latency estimation
method described above, with the modification that the path to be monitored
consists of one switch. We discard latency samples obtained during periods when
the slow path delays of the first and last switches on a path vary. Predicting how
each variation affects our latency estimate is subject of future work.

To monitor the control channel delay on a switch, we send EchoRequest Open-
Flow control messages to the switch and measure the delay in its replies. We find
that the control channel delay from the controller to switch is more predictable.

366 C. Yu et al.

Thus, if we discover that switches are not equidistant to the controller, we simply
adjust the estimated latency by the difference in their control channel delays, as
hinted earlier in the section.

3.3 Monitoring Design

We have developed SLAM, a framework for latency monitoring in SDNs, based
on the methods enumerated above. SLAM combines four components—rule gen-
erator, traffic generator, traffic listener, and latency estimator—that run on the
network controller (Fig. 2).

Given a path to monitor, SLAM identifies the first and last switches on
the path. It then installs a specific rule on each switch on the path to guide
measurement probes, as explained above. The traffic generator then sends a
stream of packet probes along the monitored path using OpenFlow PacketOut
messages. These packets match the specific rules installed in the previous step.
Normal traffic is processed by the original rules on the switches and is not affected
by our monitoring rules. In addition, the measurement module generates probes
to monitor the slow path and control channel delays of the first and last switches
on a monitored path.

The traffic listener captures control packets received from switches and
records their arrival timestamps. To obtain a latency sample, it then corre-
lates PacketIn messages associated with the same probe packet and triggered by
different switches. By aggregating the latency samples obtained from multiple
probes sent on a path, SLAM computes a latency distribution for the path.

Fig. 2. SLAM design. SLAM generates probe packets along the path to be monitored.
The probes are guided by carefully specified rules and trigger PacketIn messages at the
first and last switches on the path. SLAM analyzes PacketIn arrival times and estimates
path latency.

Software-Defined Latency Monitoring in Data Center Networks 367

4 Evaluation

We implemented SLAM as a module for the POX OpenFlow controller and
deployed it on our 12-switch network testbed. We evaluate SLAM from three
aspects: (1) the accuracy of its latency estimates, (2) its utility in selecting
paths based on latency, and (3) its adaptiveness to network conditions.

Ground truth estimation. To evaluate the quality of SLAM’s path latency
estimates, we must first measure the real path latency (i.e., the ground truth).
As we cannot directly time packet arrival and departure on switches, we use
the following setup to measure ground truth, similar to that used for OpenFlow
testing by Rotsos et al. [13] and by Huang et al. [8]. We create another physical
connection between the first and last switches on a path and the controller in
addition to the already existing control channel and put the controller on the
data plane.

We use the controller to send probe packets along the path to be monitored.
When a probe arrives at the first switch, the action of the matching rule sends
the packet both to the next switch on the path and to the controller on the data
plane. Similarly, at the last switch, the matching rule sends probe packets back to
the controller. We obtain the ground truth latency by subtracting the two arrival
times of the same probe at the controller. This method is similar to that used
by SLAM, with the difference that no packet ever crosses into the control plane.
Although the computed latency may not perfectly reflect the ground truth, it
does not contain the effects of control processing, and hence, can be used as a
reasonable estimate to compare against SLAM’s estimated latency distribution.

Experiments. To evaluate SLAM’s performance under different network con-
ditions, we perform three sets of experiments: low latency (Exp L), medium
latency (Exp M), and high latency (Exp H). We estimate latency between the
same pair of switches in our testbed, but each of the three experiments takes
place on a different path between the switches. There is no background traf-
fic for the low latency experiment. For medium and high latency experiments,
we introduce additional traffic using iperf and simulate congestion by shaping
traffic at an intermediate switch on the path. We use 200 Mbps iperf traffic with
100 Mbps traffic shaping in Exp M, and 20 Mbps iperf traffic with 10 Mbps traffic
shaping in Exp H. In each experiment, we run both SLAM and the ground truth
estimator concurrently for 10 min with a rate of one probe per second.

4.1 Accuracy

First, we seek to understand how similar to ground truth is the latency distri-
bution computed by SLAM. To compare two latency distributions (of different
paths or of the same path under different conditions), we use the Kolmogorov-
Smirnov (KS) test [9]. The KS test computes a statistic that captures the dis-
tance between the empirical cumulative distribution functions (CDFs) of the two
sets of latencies. The null hypothesis is that the two sets of latencies are drawn
from the same distribution. If we can reject the null hypothesis based on the test

368 C. Yu et al.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100

C
D

F
 o

f m
ea

su
re

m
en

ts

Latency (ms)

Exp L (SLAM)
Exp L (GT)

Exp M (SLAM)
Exp M (GT)

Exp H (SLAM)
Exp H (GT)

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

La
te

nc
y

(m
s)

Time (sec)

SLAM
Ground Truth

(b)(a)

Fig. 3. (a) SLAM vs. Ground truth latency empirical CDFs. (b) SLAM with bursty
traffic. As path latency increases, SLAM is able to correctly detect the increase.

4 5 6 7 8 9 10 11
4

5

6

7

8

9

10

11

12

13

Ground truth quantiles

S
LA

M
 q

ua
nt

ile
s

40 50 60 70 80 90 100
40

50

60

70

80

90

100

110

Ground truth quantiles

S
LA

M
 q

ua
nt

ile
s

(b)(a)

Fig. 4. Quantile-Quantile plots for SLAM vs. ground truth in (b) Exp M, and (c) Exp
H. The quantiles for SLAM’s estimates are close to the quantiles for ground truth esti-
mates, indicating that SLAM is able to detect millisecond-level path latency variations.

statistic, then this implies that the two distributions are not equal. Further, we
can compare the quantiles of the two distributions (e.g., median) to determine
if one path has lower latencies than the other. Figure 3(a) shows that, although
SLAM overestimates the ground truth for under-millisecond latencies, it is able
to match the ground truth latency distribution as the path latency increases.
Indeed, the KS test does not reject the null hypothesis for Exp M and Exp H.

Figures 4(a) and (b) show the Quantile-Quantile (Q-Q) plots for Exp M and
Exp H, respectively. We remove outliers by discarding the bottom and top 10%
(5%) of SLAM’s latency estimates for Exp M (Exp H). Except for a small number
of very low and high quantiles, the quantiles for SLAM’s estimates are equal or
close to the quantiles for ground truth estimates; most of the points in the Q-Q
plot lie on the y = x line.

4.2 Filtering Out High Latency Paths

SLAM can help network operators identify low-latency paths. For a collection
of paths, we can use the pairwise KS test to first select a subset of paths whose
distribution are different from each other, and then filter out paths with high
latency quantiles. Similarly, when monitoring a path, an operator can first use
the KS test to determine if its latency distribution has changed (e.g., due to

Software-Defined Latency Monitoring in Data Center Networks 369

Table 1. Comparison of the 50th, 75th, 90th, and 95th percentile values for Exp M
and Exp H.

Exp # 50th %tile 75th %tile 90th %tile 95th %tile

Exp M 7.47 ms 8.66 ms 11.6 ms 19.2 ms

Exp H 60.0 ms 71.9 ms 76.8 ms 78.0 ms

change in traffic) and then use the latency quantile values to decide whether to
continue using it or switch to a different path. For instance, in our experiments,
when we compare samples from Exp M and Exp H, the KS test rejects the null
hypothesis, i.e., the latency distribution on the monitored path has changed
due to change in traffic. Table 1 shows that four quantiles for the two samples
differ significantly. This is confirmed by Fig. 3(a), where empirical CDFs of the
measurements collected by SLAM for Exp M and Exp H are clearly different.
SLAM’s use of KS test, in combination with latency quantiles, is more robust
because an operator can be confident that the difference in latency quantiles
across paths or on the same path over time is statistically significant.

4.3 Sensitivity to Network Conditions

Next, we study SLAM’s accuracy in the presence of bursty data traffic and
increased control channel traffic.

Data traffic. To see if variable traffic affects SLAM’s latency estimates, we
repeat Exp H, but instead of running iperf continuously, we run it in bursts of
variable size. Figure 3(b) shows how latency varies over time as we introduce and
remove traffic from the network. SLAM’s estimates adapt well to changes in the
ground truth latency triggered by introducing congestion in the network. Like
the results shown in Fig. 3(a), SLAM over-estimates latency when path latency is
low but accurately captures latency spikes. These results further confirm SLAM’s
effectiveness in enabling data center networks to route traffic away from segments
on which latency increases by tens of milliseconds.

Control traffic. We monitor the slow path delay of switches in our network
while we introduce two types of control traffic: FlowMod, by repeatedly inserting
forwarding rules, and PacketIn, by increasing the number of probes that match
a rule whose action is “send to controller”. We varied the control packet rate
from 1 to 20 per second and observed a median increase of 1.28 ms. Varying the
amount of concurrent rule installations from 0 to 150 rules per second resulted
in a median increase of 2.13 ms. Thus, the amount of unrelated control traffic
in the network does not influence SLAM’s effectiveness in detecting high-delay
paths.

370 C. Yu et al.

5 Reactive OpenFlow Deployments

So far, we considered a proactive OpenFlow deployment for SLAM, where nor-
mal data packets always have a matching rule and do not trigger PacketIn mes-
sages. Another option is to use a reactive deployment, in which switches notify
the controller of incoming packets without a matching rule by sending a Pack-
etIn control message. Because too many such control messages could overload
the controller and make the network unusable [2], reactive deployments are lim-
ited to smaller enterprises and data centers with tens of switches or when the
network must react to traffic changes automatically.

Reactive networks provide a significant advantage for SLAM: it can use exist-
ing PacketIn messages to compute path latency distributions. This eliminates
the need to insert expensive probes to trigger PacketIn’s and reduces the cost of
monitoring by using already existing control traffic [17]. However, there are two
disadvantages, which we discuss at large next.

5.1 Variations in Control Processing

Using reactive PacketIn’s at both ends of a path to capture its latency means that
normal data packets are delayed at the first switch until the controller tells the
switch what to do with them. This introduces an additional delay in the path of
a packet described in Fig. 1: the time it takes the controller to process the packet
and reply to the switch (either with FlowMod or PacketOut) and the time it takes
the switch to forward the packet to the out port once it learns what to do with it.
SLAM can estimate the controller processing time and the controller-to-switch
delay as described in Sect. 3.2. However, the switch forwarding time depends on
the load on the switch CPU and what other traffic is traversing the switch; this
is more difficult to estimate accurately. In practice, SLAM can use the approach
in Sect. 3.2 to infer variations in switch processing and discard measurements
performed during times when variations are high.

5.2 Frequency of Control Traffic

The accuracy of SLAM’s estimated latency distribution depends on the fre-
quency of PacketIn’s from switches at both ends of the measured path. This is
affected by the overall distribution of traffic in the network and by the structure
of rules used to guide the traffic. For example, because switches on a backup link
see little data traffic, they trigger little control traffic for SLAM to use. Simi-
larly, forwarding rules with long timeouts or with wildcards limit the number of
PacketIn messages.

To evaluate the frequency of PacketIn measurements, we simulate SLAM
on a real-world enterprise trace. We use the EDU1 trace collected by Benson
et al. [2], capturing all traffic traversing a switch in a campus network for a
period of three hours. We identify all network flows in the trace, along with
their start time. The collectors of the trace report that the flow arrival rate at
the switch is on the order of a few milliseconds [2].

Software-Defined Latency Monitoring in Data Center Networks 371

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000 100000 1e+06

C
D

F
 o

f p
or

ts

Number of PacketIn msgs seen

Average interval
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

C
D

F
 o

f p
or

ts

Time between PacketIn messages (sec)

Average interval
Median interval

(a) (b)

Fig. 5. (a) No. of PacketIn’s each link in a 24 port switch sees in three hours.
(b) Average and median time between PacketIn’s per link on a 24 port switch.

Since only PacketIn’s associated with traffic that traverses the same path are
useful, we need to evaluate the flow arrival rate for each input port of the switch.
Our traffic trace does not contain input port information, therefore we simulate
a 24-port switch using the following heuristic. We first associate every distinct
/p prefix (where p is, in turn, 32, 30, 28, 20, or 24) of source IP addresses in
the trace with a port and then assign each individual flow to the link (or input
port) associated with its source IP /p prefix. We group flows by prefix because
routing in the Internet is typically prefix-based. Below, we present results for
p = 28; results for other prefix lengths are qualitatively similar.

We compute both the number and the frequency of PacketIn messages that
each link receives during the measurement period. Figure 5(a) shows that most
links see more than 10,000 PacketIn’s during the three hour span, which is equiv-
alent to a rate of around one PacketIn per second. Figure 5(b) presents the aver-
age and median time between consecutive PacketIn’s for each link of the switch.
SLAM would capture samples from most links every two seconds and 80 % of all
links would be measured less than every 10 seconds.

To summarize, our analysis on a real-world enterprise trace shows that, in a
reactive SDN deployment, SLAM would be able to capture latency measurements
once every two seconds on average without requiring any additional generation
of probes. We are currently investigating the design of an adaptable SLAM that
would rely on existing PacketIn’s when control traffic volume is high and generate
probes that trigger artificial PacketIn’s when control traffic is scarce.

6 Conclusion

We presented SLAM, a path latency monitoring framework for software-defined
data centers. SLAM uses timestamps of carefully triggered control messages
to monitor network latency between any two arbitrary switches and identify
high-delay paths. SLAM’s measurements are accurate enough to detect latency
inflations of tens of milliseconds and enable applications to route traffic away
from high-delay path segments.

372 C. Yu et al.

References

1. Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A.: Hedera:
dynamic flow scheduling for data center networks. In: USENIX NSDI (2010)

2. Benson, T., Akella, A., Maltz, D.: Network traffic characteristics of data centers
in the wild. In: ACM IMC (2010)

3. Chen, Y., Mahajan, R., Sridharan, B., Zhang, Z.-L.: A provider-side view of web
search response time. In: Proceedings of ACM SIGCOMM (2013)

4. Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee,
S.: DevoFlow: scaling flow management for high-performance networks. In: Pro-
ceedings of ACM SIGCOMM (2011)

5. Das, A., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., Yu, C.: Transparent and
efficient network management for big data processing in the cloud. In: HotCloud
(2013)

6. Duffield, N., Grossglauser, M.: Trajectory sampling for direct traffic observation.
In: Proceedings of ACM SIGCOMM (2000)

7. Flach, T., Dukkipati, N., Terzis, A., Raghavan, B., Cardwell, N., Cheong, Y., Jain,
A., Hao, S., Katz-Bassett, E., Govindan, R.: Reducing web latency: the virtue of
gentle aggression. In: Proceedings of ACM SIGCOMM (2013)

8. Huang, D.Y., Yocum, K., Snoeren, A.C.: High-fidelity switch models for software-
defined network emulation. In: Proceedings of HotSDN (2013)

9. Kolmogorov, A.N.: Sulla determinazione empirica di una legge di distribuzione.
Giornale dellIstituto Italiano degli Attuari 4(1), 83–91 (1933)

10. Kompella, R.R., Levchenko, K., Snoeren, A.C., Varghese, G.: Every microsecond
counts: tracking fine-grain latencies with a lossy difference aggregator. In: Proceed-
ings of ACM SIGCOMM (2009)

11. Lee, M., Duffield, N., Kompella, R.R.: Not all microseconds are equal: fine-grained
per-flow measurements with reference latency interpolation. In: Proceedings of
ACM SIGCOMM (2010)

12. Moshref, M., Yu, M., Sharma, A., Govindan, R.: Scalable rule management for
data centers. In: Proceedings of USENIX NSDI (2013)

13. Rotsos, C., Sarrar, N., Uhlig, S., Sherwood, R., Moore, A.W.: OFLOPS: an open
framework for OpenFlow switch evaluation. In: Taft, N., Ricciato, F. (eds.) PAM
2012. LNCS, vol. 7192, pp. 85–95. Springer, Heidelberg (2012)

14. RagingWire. http://www.ragingwire.com
15. van Adrichem, N.L.M., Doerr, C., Kuipers, F.A.: OpenNetMon: network monitor-

ing in OpenFlow software-defined networks. In: IEEE NOMS (2014)
16. Varghese, G.: Network Algorithmics. Elsevier/Morgan Kaufmann, Amsterdam

(2005)
17. Yu, C., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., Madhyastha, H.V.:

FlowSense: monitoring network utilization with zero measurement cost. In:
Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 31–41. Springer,
Heidelberg (2013)

http://www.ragingwire.com

Author Index

Aben, Emile 41
Ahsan, Saba 249
Allman, Mark 165

Bailey, Michael 165
Bajpai, Vaibhav 249
Baldi, Mario 57
Banerjee, Ritwik 206
Benitez-Baleato, Suso 220
Berger, Arthur 149
Beverly, Robert 123, 149
Blasiak, Sam 235
Boppart, Damiano 193
Bush, Randy 28

Chang, Rocky K.C. 332
Chatzis, Nikolaos 179
Chen, Songqing 235
Chiang, Luis 206
Chiang, Mung 96
Choffnes, David 262
Choi, Yejin 206
Chuah, Chen-Nee 70
Claffy, Kc 111, 123
Czyz, Jakub 165

Dimitropoulos, Xenofontas 220
Dovrolis, Constantine 318

Efstathopoulos, Petros 277

Fairhurst, Gorry 193
Faloutsos, Michalis 277
Fanou, Rodérick 41
Feamster, Nick 305
Feldmann, Anja 179
Flach, Tobias 262
Francois, Pierre 41

Gigis, Petros 220
Gill, Phillipa 206
Giotsas, Vasileios 111
Glatz, Eduard 220

Govindan, Ramesh 262
Gupta, Minaxi 3

Ha, Sangtae 96
Hang, Huy 277
Huffaker, Bradley 111

Iamartino, Daniele 28

Jiang, Guofei 360
Jiang, Yurong 262
Joe-Wong, Carlee 96

Kaizer, Andrew J. 3
Kalafut, Andrew J. 15
Katz-Bassett, Ethan 262
Keranidis, Stratos 318
Korakis, Thanasis 318
Kostić, Dejan 347
Kühlewind, Mirja 193
Kuźniar, Maciej 347

Learmonth, Iain 193
Lee, Gene Moo 57
Levin, Dave 136
Li, Tai-Ching 277
Li, Weichao 332
Li, Zhenhua 235
Li, Zhihao 136
Liao, Yong 57
Liu, Yao 235
Liu, Yong 290
Luckie, Matthew 111, 123
Lumezanu, Cristian 360

MacFarland, Douglas C. 15
Madhyastha, Harsha V. 360
Mishra, Akassh 206
Miskovic, Stanislav 57
Mohapatra, Prasant 83
Mok, Ricky K.P. 332
Mosley, Lorenza 123

Ott, Jörg 249

Padmanabhan, Ramakrishna 136
Pathak, Parth H. 83
Pelsser, Cristel 28
Perešíni, Peter 347

Raghuramu, Arun 70
Razaghpanah, Abbas 206
Richter, Philipp 179

Sargent, Matthew 165
Scheffenegger, Richard 193
Schönwälder, Jürgen 249
Sekar, Vyas 206
Sen, Soumya 96
Sharma, Abhishek 360
Shue, Craig A. 15
Smaragdakis, Georgios 179
Spring, Neil 136

Sundaresan, Srikanth 305
Syrigos, Ilias 318

Teixeira, Renata 305
Trammell, Brian 193, 220

Wang, Luqin 290
Weidmann, Nils B. 220
Willinger, Walter 179

Xiao, Weijun 235
Xu, Chao 83
Xu, Qiang 360
Xu, Xing 262

Yu, Curtis 360

Zang, Hui 70
Zhang, Li 83

374 Author Index

	Preface
	Organization
	Contents
	DNS and Routing
	Open Resolvers: Understanding the Origins of Anomalous Open DNS Resolvers
	1 Introduction
	2 Overview of Methodology
	3 Phase I: Identifying AORs
	3.1 Phase I Results

	4 Phase II: Identifying AOR Behavior
	4.1 Fingerprinting Methodology
	4.2 Protocols for Effective Fingerprinting of AORs
	4.3 Fingerprinting Results
	4.4 Determining Root Cause of Anomalous Behavior
	4.5 Anomalous Behavior Results
	4.6 NAT Rule to Explain AOR Behavior

	5 Discussion
	5.1 Exploitation Potential of AORs
	5.2 Issues in Correcting AORs
	5.3 Fingerprinting Tradeoffs

	6 Related Work
	7 Conclusion
	References

	Characterizing Optimal DNS Amplification Attacks and Effective Mitigation
	1 Introduction
	2 Background and Related Work
	3 DNS Amplification Potential
	3.1 Data Collection
	3.2 Analysis of Servers and DNS Responses
	3.3 Impact of Record Type on Response Size

	4 Measuring the Adoption of DNS Rate Limiting
	5 Countermeasure: Tunnel to Remote Resolver
	6 Conclusion
	References

	Measuring BGP Route Origin Registration and Validation
	1 Introduction
	2 Methodology
	2.1 Validation Process
	2.2 Datasets

	3 Results
	3.1 RPKI Deployment
	3.2 Validity Status of Prefix Announcements Over Time
	3.3 Taking Coverage into Account
	3.4 The Effect of Monitors
	3.5 The Causes Behind Invalids
	3.6 Effect on Traffic in a Real Network

	4 Related Work
	5 Conclusion
	References

	On the Diversity of Interdomain Routing in Africa
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Collection
	3.2 Data Analysis

	4 Results
	4.1 Dataset Limitations and Public BGP Data
	4.2 Path Dynamics
	4.3 As Path Length Distribution
	4.4 Trends in African Interdomain Routing
	4.5 Impact of Transit Localization on End-to-end Delay
	4.6 Emergence of New IXPs

	5 Conclusions and Future Work
	References

	Mobile and Cellular
	AppPrint: Automatic Fingerprinting of Mobile Applications in Network Traffic
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 AppPrint Overview
	3.2 Initial App Identification Knowledge
	3.3 MAP: Auto Fingerprint Generation
	3.4 SCORE: Probabilistic App Identification

	4 Evaluation
	4.1 Datasets
	4.2 App Identification
	4.3 Effectiveness of Grouping Flows
	4.4 Identifying Apps Without A&A Traffic

	5 Conclusion
	References

	Uncovering the Footprints of Malicious Traffic in Cellular Data Networks
	1 Introduction
	2 Data Summary and Methodology
	3 Characterizing Mobile Threats
	3.1 Prevalence of Malicious Traffic
	3.2 Top Mobile Threats
	3.3 Infection Rates of Popular Mobile Platforms

	4 Network Footprints of Cellular Threats
	4.1 Feature Extraction and Selection
	4.2 Classification of Malicious/Benign Domains

	5 Conclusions
	References

	Characterizing Instant Messaging Apps on Smartphones
	1 Introduction
	2 Data Collection and Methodology
	2.1 State Transitions in IM App Usage
	2.2 Experiment Settings
	2.3 Methodology and Metrics

	3 In Conversation Sending/Receiving (ICS/ICR)
	3.1 Energy Characterization
	3.2 Bandwidth Efficiency

	4 The Background States
	5 Related Work
	6 Conclusions
	References

	Do Mobile Data Plans Affect Usage? Results from a Pricing Trial with ISP Customers
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Trial Participants and Structure
	3.2 Data Collection
	3.3 Estimating Price-Delay Tolerances and Optimizing Prices

	4 Traffic Characteristics
	4.1 How Much Data Do Users Consume?
	4.2 How Is Usage Distributed Among Apps?

	5 Pricing Effects
	5.1 Do TIP Users Decrease Their Usage?
	5.2 Do TDP Users Respond to Price Discounts?

	6 Discussion and Conclusion
	References

	IPv6
	IPv6 AS Relationships, Cliques, and Congruence
	1 Introduction
	2 Background on Inferring as Relationships
	3 Data
	3.1 BGP Paths
	3.2 Validation Data

	4 Inference Methodology
	4.1 Overview of Existing IPv4 Algorithm
	4.2 Inferring the IPv6 Clique
	4.3 Inferring Clique-Stub Relationships
	4.4 Validation

	5 Analysis
	6 Conclusion
	References

	Measuring and Characterizing IPv6 Router Availability
	1 Introduction
	2 Technique and Data for Inferring IPv6 Router Uptime
	2.1 Obtaining and Using the IPv6 ID Field
	2.2 Obtaining IPv6 Router Interface Addresses
	2.3 Uptime Algorithm
	2.4 Cyclic Interfaces
	2.5 Inferring Routers, Their Roles, and Their Location
	2.6 Limitations

	3 Results
	3.1 Linux Router Behavior
	3.2 Validation
	3.3 Reboot Event Correlations with BGP
	3.4 When Do Routers Reboot?

	4 Applications and Implications
	5 Conclusions
	References

	UAv6: Alias Resolution in IPv6 Using Unused Addresses
	1 Introduction
	2 Related Work
	3 Unused Addresses in IPv6 Prefixes
	4 UAv6 Design
	4.1 The Harvest Phase
	4.2 The Disambiguation Phase

	5 Evaluation
	5.1 Data Collection
	5.2 The Address-Based Technique in IPv6
	5.3 Accuracy of UAv6
	5.4 Alias Resolution with UAv6 and the Address-Based Method

	6 Conclusions
	References

	Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure Via Active Fingerprinting
	1 Introduction
	2 Background
	3 Methodology
	3.1 Datasets
	3.2 TCP Option Signature
	3.3 TCP Timestamp Skew
	3.4 TCP Timestamp Point Distance
	3.5 Full Algorithm

	4 Results
	4.1 Ground Truth Validation
	4.2 Web Server Machine Siblings

	5 Conclusions and Future Work
	References

	Internet-Wide
	On the Power and Limitations of Detecting Network Filtering via Passive Observation
	1 Introduction
	2 Related Work
	3 Data Collection
	4 Preliminaries
	5 Validation
	6 Data Analysis
	6.1 /24-Based Policy
	6.2 Routed Prefix-Based Policy

	7 Limitations
	8 Conclusions
	References

	Distilling the Internet's Application Mix from Packet-Sampled Traffic
	1 Introduction
	2 Dataset Characteristics
	3 Classification Approach
	3.1 Related Work
	3.2 Building Blocks
	3.3 Classification Method

	4 The Internet's Application Mix Seen at an IXP
	5 The Application Mix: A Moving Target
	5.1 The Aggregate View
	5.2 Beyond the Aggregate Application Mix

	6 Conclusion
	References

	Enabling Internet-Wide Deployment of Explicit Congestion Notification
	1 Introduction
	1.1 Overview of Explicit Congestion Notification (ECN)
	1.2 Related Work

	2 Methodology
	2.1 Measurement Setup and Data Set
	2.2 ECN-Spider and QoF
	2.3 IPtables Packet Mangling

	3 The Marginal Risk of Enabling ECN by Default
	3.1 Connectivity Dependency and Anomalies
	3.2 RFC 3168 Fallback Testing
	3.3 Conclusions

	4 An Analysis of ECN Signaling
	4.1 ECN Negotiation
	4.2 IP Signaling Anomalies
	4.3 IP ECN Connectivity and ECN Echo Tests

	5 Conclusions, Outlook, and Future Work
	References

	Internet Outages, the Eyewitness Accounts: Analysis of the Outages Mailing List
	1 Introduction
	2 Dataset
	2.1 About the Outages Mailing List
	2.2 Limitations

	3 Keyword Analysis
	3.1 Data Preprocessing
	3.2 Keyword Trends

	4 Classification Methodology
	5 Characterizing the Causes of Failures
	6 Related Work
	7 Conclusions
	References

	Transparent Estimation of Internet Penetration from Network Observations
	1 Introduction
	2 Data and Research on Internet Penetration
	2.1 Existing Work
	2.2 Limitations of Existing Databases

	3 Data Sources and Methodology
	4 Correlation Analysis of Internet Penetration Estimates
	4.1 ITU/OECD Statistics vs. Internet Measurements at the Country Level
	4.2 Internet Penetration by Level of Economic Development and Democracy
	4.3 Internet Penetration within Countries
	4.4 Discussion and Shortcomings

	5 Conclusions
	References

	Web and Peer-to-Peer
	A Quantitative Study of Video Duplicate Levels in YouTube
	1 Introduction
	2 Motivation
	3 Related Work
	4 Methodology
	4.1 Random Sampling of Videos
	4.2 Selection of Candidate Duplicate Pairs
	4.3 Comparing Sampled and Searched Video Pairs
	4.4 Manual Validation of Duplicate Pairs

	5 Quantifying Video Duplicate Levels in YouTube
	5.1 Results
	5.2 Uniqueness of Sampled Videos
	5.3 Extra Storage Space Occupied by Duplicate Videos

	6 Conclusion
	References

	Measuring YouTube from Dual-Stacked Hosts
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Metrics
	3.2 Measurement Setup
	3.3 Measurement Trials

	4 Data Analysis
	4.1 Google Global Caches
	4.2 TCP Connect Times and Happy Eyeballs
	4.3 Stall Events
	4.4 Summary

	5 Conclusion
	References

	Investigating Transparent Web Proxies in Cellular Networks
	1 Introduction
	2 Background and Related Work
	3 Experimental Testbed
	4 Proxy Features
	4.1 Caching
	4.2 Redirection
	4.3 Object Rewriting
	4.4 Connection Persistence
	4.5 Delayed Handshaking

	5 Split Connection Performance
	6 On the Prevalence of Proxying
	7 Discussion and Future Work
	References

	TrackAdvisor: Taking Back Browsing Privacy from Third-Party Trackers
	1 Introduction
	2 Background
	3 Methodology
	4 Experiments and Evaluation
	5 The Pervasiveness of Third-Party Trackers
	6 Possible Solutions Against Third-Party Trackers
	7 Related Work
	8 Conclusion
	References

	Exploring Miner Evolution in Bitcoin Network
	1 Introduction
	2 Related Work
	3 Survey of Bitcoin Network
	3.1 Account and Transaction
	3.2 Block and Blockchain
	3.3 Bitcoin Mining

	4 Methodology
	4.1 Data Collection
	4.2 Solo Miner Analysis
	4.3 Pool Miner Analysis
	4.4 Simple Economic Model for Miners
	4.5 Limit of Computation Race

	5 Characterization Results
	5.1 Solo Miners
	5.2 Pool Mining
	5.3 Economic Considerations

	6 Conclusion
	References

	Wireless and Embedded
	Measuring the Performance of User Traffic in Home Wireless Networks
	1 Introduction
	2 Method
	2.1 Measurements
	2.2 Metrics

	3 Results
	3.1 Correlating TCP and Wireless Performance
	3.2 Wireless Performance of User Traffic

	4 Related Work
	5 Conclusion
	References

	Enabling Wireless LAN Troubleshooting
	1 Introduction
	2 Related Work
	3 MAC-Layer Statistics
	4 IEEE 802.11 Related Pathologies
	4.1 Medium Contention
	4.2 Frame Loss

	5 Detection Methodology
	6 Experimentation with Proposed Metrics
	6.1 Contention with 802.11 Terminals
	6.2 Contention with Non-802.11 Devices
	6.3 Low SNR
	6.4 Hidden Terminal
	6.5 Capture Effect
	6.6 Framework Enhancement and Result Summary

	7 Framework Evaluation
	7.1 Contention with 802.11 Terminals
	7.2 Frame Loss

	8 Conclusions and Future Work
	References

	Improving the Packet Send-Time Accuracy in Embedded Devices
	1 Introduction
	2 Related Works
	3 Background
	3.1 Packet Sending Performance

	4 Pre-dispatch Programming Model
	5 Evaluation
	5.1 Testbed and Test Suite
	5.2 Packet Send-Time Accuracy
	5.3 Pre-dispatching Period
	5.4 Packet-Pair Accuracy
	5.5 Packet Send Timestamp Accuracy

	6 Conclusions
	References

	Software Defined Networking
	What You Need to Know About SDN Flow Tables
	1 Introduction
	2 Measurement Methodology
	3 Data Plane
	3.1 Synchronicity of Control and Data Planes
	3.2 Rule Modifications Are not Atomic
	3.3 Priorities and Overlapping Rules

	4 Flow Table Update Speed
	4.1 Two In-Flight Batches Keep the Switch Busy
	4.2 Current Flow Table Size Matters
	4.3 Priorities Decrease the Update Rate
	4.4 Rule Modifications Are Slower than Additions and Deletions

	5 Conclusions and Future Work
	References

	Software-Defined Latency Monitoring in Data Center Networks
	1 Introduction
	2 Background
	2.1 OpenFlow
	2.2 Data Center Path Latency

	3 Latency Monitoring with SLAM
	3.1 Latency Monitoring
	3.2 Control Processing
	3.3 Monitoring Design

	4 Evaluation
	4.1 Accuracy
	4.2 Filtering Out High Latency Paths
	4.3 Sensitivity to Network Conditions

	5 Reactive OpenFlow Deployments
	5.1 Variations in Control Processing
	5.2 Frequency of Control Traffic

	6 Conclusion
	References

	Author Index

