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Preface

Perhaps the greatest challenge facing the computational engineering community
is to extend the success of computational mechanics to fields outside traditional
engineering, in particular, to biology, the biomedical sciences, and medicine.

The field of computational biomechanics continues to progress towards clinically
relevant simulations. Personalized medicine will play a major role in the future of
health care and personalized computational simulations have a clear part to play.
We, the computational biomechanics community, are making real advancements
towards this ultimate goal of comprehensive patient-specific modelling, but there is
of course much more work to do yet.

The Computational Biomechanics for Medicine book series began in 2009 with
the first edition. Since then, it has become an annual reference for the community
to read about the latest advancements in the field. The book series provides an
opportunity for specialists in computational sciences to describe their new research
and discuss the possibilities of applying their techniques to computer-integrated
medicine.

This sixth volume of the Computational Biomechanics for Medicine series
comprises 12 of the latest developments in new approaches and new applications,
from researchers in Australia, New Zealand, USA, Switzerland, and France. Some
of the exciting topics discussed are as follows:

• Tailored computational models
• Growth and remodeling
• Soft tissue mechanics
• Medical image analysis
• Clinically relevant simulations

The Computational Biomechanics for Medicine book series not only provides
the community with a snapshot of the latest state of the art, but importantly,
when computational biomechanics and patient-specific modeling is a mainstay of
personalized health care, it will serve as a key reminder of how the field has
developed over the years.

v



vi Preface

We would like to thank the authors for submitting high quality work and the
reviewers for helping with paper selection.

We hope you enjoy this year’s volume.

Perth, WA, Australia Barry Doyle
Perth, WA, Australia Karol Miller
Perth, WA, Australia Adam Wittek
Auckland, New Zealand Poul M.F. Nielsen
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Part I
New Approaches



Vademecums for Real-Time Computational
Surgery

D. Gonzalez, I. Alfaro, C. Quesada, E. Cueto, and F. Chinesta

1 Vademecums and Computational Vademecums

The usage of vademecums in medicine or engineering possesses a strong tradition.
In essence, known solutions to problems of interest were compiled in a volume
of easy consult, such as, the vademecum published by Bernoulli in the nineteenth
century [3]. There, solutions to parametric problems were compiled and graphically
represented for consult, as in Fig. 1, for instance.

In the field of computational surgery it is frequent to ask for real-time responses.
What we exactly mean by the term “real-time” strongly depends on the context
but, in essence, it means that we are asking a computer for a response that ranges
between 1 kHz for surgery training systems equipped with haptic peripherals to
some seconds or minutes in surgery planning applications. But in this last example
simulations tend to include long-term behavior of the surgery outcome.

These requirements are extremely astringent if one takes into account the
difficulty associated with surgery: highly non-linear soft living tissues, distributed
contact, fluid–solid interaction, multi-scale phenomena (that go from the centimeter
scale to the sub-cellular scale of gene regulatory systems [2]). Therefore, many
computational strategies have tried to pre-compute off-line as many things as
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4 D. Gonzalez et al.

Fig. 1 The vademecum for engineers developed by Bernoulli [3]

possible, and to store them in memory for fast and easy-to-access posterior usage,
just like traditional vademecums did. For instance, the so-called fast finite elements
for surgery simulation [4] employed static condensation of finite element matrices
for linear elastic materials intensively. These matrices could be stored in memory
and used when necessary. In essence, when computing u D K�1f, matrix K�1 could
be stored for the sake of speedup.

This can be seen as a sort of very simple computational vademecum, in the
sense that K�1 is pre-computed and consulted as often as necessary. However,
when dealing with truly non-linear soft living tissues this naive approach is no
longer possible, since a consistent tangent stiffness matrix updating should be
performed, and this is a very CPU-consuming task. The beam bending vademecum
of Fig. 1 could be updated if we consider the computational solution of a non-linear,
hyperelastic beam bending problem in which the displacement field u is computed
by taking the position of the applied load as a parameter, see Fig. 2, thus by

u D u.x; s/;

where s is the position of the acting load along the boundary of the beam.
This is, roughly speaking, the approach followed in our latest works to develop a

means to deal with highly non-linear problems (hyperelastic soft tissues, contact,
cutting, etc.) appearing in computational surgery: to make an intensive use of
computational vademecums as far as possible. In the subsequent sections we
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Fig. 2 An example of computational vademecum that updates the original one shown in Fig. 1

review the main theoretical aspects of this technique as well as some details of its
implementation. Other approaches, such as the employ of explicit finite elements,
[11, 12], are also equally possible and have given excellent results in recent years.

2 A Vademecum for a Hyperelastic Solid Under
Arbitrary Loads

The main drawback of the appealing method sketched in the previous section is
that the complexity of the problem (say, the number of degrees of freedom once
the problem is approximated by the finite element method, for instance) grows
exponentially with the number of parameters of the model, considered as extra-
coordinates. To avoid this burden, we have employed a model order reduction
technique coined as proper generalized decomposition (PGD). In essence, PGD
techniques avoid this exponential growth in the number of degrees of freedom by
assuming the solution as a finite sum of separable functions, i.e.,

u �
NX

i

Fi .x/ � Gi .s/:

In this approach there are two main aspects to be discussed: how to determine
the functions Fi and Gi and how to determine how many of these functions are
necessary (i.e., the precise value of N ).

Determining functions Fi and Gi is made by a greedy algorithm [5] that gives
rise to a non-linear problem for each sum (even if the original one is linear), whose
solution can be obtained by your favorite linearization technique. We have made an
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intensive use of fixed-point, alternating directions algorithms to this end, with very
satisfactory results [13, 14]. The number of terms, N , in turn, can be determined by
an appropriate error estimator [1].

As usual in the FE method, PGD considers the weak form of the equilibrium
equations (balance of linear momentum) without inertia terms. The (doubly-) weak
form of the problem, extended to the whole geometry of the organ, ˝, and the
portion of its boundary which is accessible to load during surgery, N� � �t , consists
in finding the displacement u 2 H 1 such that for all u� 2 H 1

0 :

Z

N�

Z

˝

r su� W �d˝d N� D
Z

N�

Z

�t2

u� � td� d N� ; (1)

where � D �u [ �t represents the boundary of the organ, divided into essential and
natural regions, and where �t D �t1 [ �t2, i.e., regions of homogeneous and non-
homogeneous, respectively, natural boundary conditions. Here, t D �ek � ı.x � s/,
where ı represents the Dirac-delta function and ek the unit vector along the
z-coordinate axis (we consider here, as mentioned before, and for the ease of
exposition, a unit load directed towards the negative z axis of reference).

The Dirac-delta term is then regularized, and approximated by a truncated series
of separable functions in the spirit of the PGD method, i.e.,

tj �
mX

iD1

f i
j .x/gi

j .s/;

where m represents the order of truncation and f i
j ; gi

j represent the j th component
of vectorial functions in space and boundary position, respectively.

The key aspect of the method here proposed is that PGD techniques efficiently
construct the computational vademecum u.x; s/ by constructing, in an iterative
way, an approximation to the solution in the form of a finite sum of separable
functions [6]. If we assume that the method has converged to a solution, at iteration
n of this procedure,

un
j .x; s/ D

nX

kD1

Xk
j .x/ � Y k

j .s/; (2)

where the term uj refers to the j th component of the displacement vector,
j D 1; 2; 3, and functions Xk.x/ and Yk.s/ represent the separated functions
used to approximate the unknown field, obtained in previous iterations of the PGD
algorithm. At this stage, the objective of PGD is to provide the solution with an
improvement given by the .n C 1/th term of the approximation,

unC1
j .x; s/ D un

j .x; s/ C Rj .x/ � Sj .s/; (3)
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where R.x/ and S.s/ are the sought functions that improve the approximation. In an
equivalent manner, admissible variations of this displacement field will be given by

u�
j .x; s/ D R�

j .x/ � Sj .s/ C Rj .x/ � S�
j .s/:

Of course, the price to pay during this procedure is that, even if the original
problem is linear, PGD needs for the solution of a non-linear problem, i.e., to
determine a product of functions, see Eq. (3). We describe now a practical way to
do this, although the reader can think of any linearization method available in the
literature.

For the computation of S.s/ assuming R.x/ is known, following standard
assumptions of variational calculus, we have

u�
j .x; s/ D Rj .x/ � S�

j .s/; (4)

or, equivalently, u�.x; s/ D R ı S�. The symbol “ı” stands here for the so-called
entry-wise, Hadamard or Schur multiplication for vectors. Once substituted into
Eq. (1) gives

Z

N�

Z

˝

r s.R ı S�/ W C W r s

 
nX

kD1

Xk ı Yk C R ı S

!
d˝d N�

D
Z

N�

Z

�t2

.R ı S�/ �
 

mX

kD1

fk ı gk

!
d� d N� ;

or, equivalently

Z

N�

Z

˝

r s.R ı S�/ W C W r s.R ı S/d˝d N�

D
Z

N�

Z

�t2

.R ı S�/ �
 

mX

kD1

fk ı gk

!
d� d N� �

Z

N�

Z

˝

r s

�
R ı S�� � Rnd˝d N� ;

where Rn represents:

Rn D C W r sun:

Since the symmetric gradient operates on spatial variables only, we have:

Z

N�

Z

˝

.r sR ı S�/ W C W .r sR ı S/d˝d N�

D
Z

N�

Z

�t2

.R ı S�/ �
 

mX

kD1

fk ı gk

!
d� d N� �

Z

N�

Z

˝

�r sR ı S�� � Rnd˝d N� ;
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where all the terms depending on x are known and hence all integrals over ˝ and
�t2 (support of the regularization of the initially punctual load) can be computed to
derive an equation to determine S.s/.

The computation of R.x/ once S.s/ is known follows equivalent guidelines and
will not be repeated here. The interested reader can consult [14] for more details.

If we consider, as is generally the case for soft living tissues, hyperelastic
constitutive laws, large strain tensors (usually the Green–Lagrange tensor E) must
be equally linearized. Again, different alternatives exist. In [13] an explicit approach
was developed that renders, in general, very good results without stability problems.
On the contrary, in [14] an approach was developed based on the combined use of
PGD and asymptotic numerical methods (ANM). In this last approach, the solution
u is expanded in terms of a power series of an arc-length parameter, providing a
sort of continuation method in which there is no need of updating tangent stiffness
matrices.

Implementation of this technique for the simulation of liver palpation during
cholecystectomy, for instance, provided haptic feedback rates on a simple laptop
(in our case a MacBook pro running MAC OSX 10.7.4, equipped with 4 Gb RAM
and an Intel core i7 processor at 2.66 GHz). Feedback rates in the order of 1 kHz are
obtained without problems for a Geomagic Touch haptic device [8], see Fig. 3.

Fig. 3 Implementation of liver palpation with haptic feedback on a HP ProBook 6470b laptop
equipped with a Geomagic Touch device
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2.1 Interactive Vademecums

Providing the surgery simulator with full interactivity needs to include dynamics in
the system. But pre-computing and storing in memory data relative to interactive
solid dynamics of non-linear solids is far from being trivial. In [9] we presented a
method based on the construction of a computational vademecum whose parameters
were precisely initial values (displacement and velocity) of the problem. In this way,
a sort of black-box integrator was made such that, once nodal displacement and
velocity values were known at time t , they could be considered as initial values for
the subsequent time step t C 4t .

Consider the weak form of the solid dynamics equations, i.e.: given f, g, h, u0,
and Pu0 find u.t/ 2 St D fuju.x; t / D g.x; t /; x 2 �u; u 2 H 1.˝/g, t 2 Œ0; T �,
such that for all w 2 V fuju.x; t / D 0; x 2 �u; u 2 H 1.˝/g,

.w; � Ru/ C a.w; u/ D .w; f/ C .w; h/�t (5a)

.w; �u.0// D .w; �u0/ (5b)

.w; � Pu.0// D .w; � Pu0/: (5c)

The main ingredient of the developed computational vademecum is to express the
displacement field as a parametric field such:

u W N̋ ��0; T � � I � J ! R
3;

where I D Œu�
0 ; uC

0 � and J D Œ Pu�
0 ; PuC

0 � represent the considered intervals of
variation of initial boundary conditions, u0 and Pu0. This makes it necessary to define
a new (triply-) weak form where:

a.w; u/ D
Z

I

Z

J

Z

˝

r sw W C W r su d˝d Pu0du0;

.w; f/ D
Z

I

Z

J

Z

˝

wf d˝d Pu0du0;

.w; h/� D
Z

I

Z

J

Z

�t

wh d� d Pu0du0:

In order to solve such a high-dimensional problem (a straightforward approach by
meshing the entire parametric space would not be possible due to the so-called curse
of dimensionality, arising to an enormous number of degrees of freedom), PGD
methods construct an approximation to the solution as a finite sum of separable
functions,
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vh.x; t; u0; Pu0/ D
"

NX

iD1

Fi .x/ ı Gi .u0/ ı Hi . Pu0/

#
ı d.t/; (6)

where the nodal coefficients d.t/ carry out all the time-dependency of the solution
and the symbol “ı” stands for the entry-wise Hadamard or Schur multiplication
of vectors. PGD computes these separable functions by first linearizing the non-
linear problem (since we seek for a product of functions) by employing your favorite
linearization technique (usually fixed-point algorithms, but also Newton or quasi-
Newton methods are equally possible). PGD computes one sum at a time, then one
product at a time, see [7], for instance.

The very last detail in the implementation is to search for an approximation not
for the whole time interval of the problem, �0; T �, but for �0; 4t �:

v W N̋ ��0; 4t � � I � J � Œh�; hC� ! R
3;

where 4t represents the necessary time to response prescribed by the particular
envisaged application. For instance, for haptic feedback it has been already men-
tioned that a physical sensation of touch needs for some 500 Hz to 1 kHz feedback
rate. This means that 4t D 0:001 s. This value 4t is not the necessary time step
to achieve stability in the time integration chosen (that can be smaller if needed),
although it can be coincident (and will be for all the examples shown hereafter).

But the space of initial conditions, if approximated by finite elements, needs for
a very large number of degrees of freedom (three velocity components and three
displacements per node of the model). Our approach includes the projection of this
subspace into another one, conveniently reduced by employing POD techniques.
The resulting technique is a sort of black-box integrator that, given the conditions at
time step t as initial conditions, provides the method with the resulting displacement
and velocity fields at time t C 4t .

Simulating again liver palpation, a ramp load of 5 N is applied at a particular point
of the liver surface during a period of 0:25 s, and then released during other 0:25 s.
The liver is then left vibrating free. Even if the liver tissue is well known to possess
some kind of viscoelastic properties, these have been neglected. The purpose of this
example is not to obtain an extremely realistic simulation from a physiological point
of view, but to show the performance of the technique. In particular, the influence
of the number of modes chosen to parametrize the space of initial conditions on
the long-term behaviour of the solution. To this end, a reference solution has been
computed by employing a HHT time integrator [10] and standard finite elements.
POD modes have been extracted from this reference solution to construct the basis
for the combined PGD–POD integrator.

It can be noticed that, in the idealized situation of absence of any type of
damping, after the load release, the liver continues vibrating indefinitely. A PGD–
POD solution has been computed by employing 1, 3, and 7 modes in the basis of the
space of initial conditions. It can be noticed from Fig. 4 that increasing the number
of modes, as expected, provides converging results towards the reference solution.
In fact, it can be noticed how the reduction in the number of degrees of freedom,
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Fig. 4 Response of the liver for a peak load. Reference (FE) results, and PGD results with basis
composed by 1, 3, and 7 modes

very much like in classical model order reduction, eliminates high frequencies from
the solution (those with the lowest content in energy) and therefore oscillations
around the reference solution can be observed. The richer the basis is, the smaller
the amplitude of these oscillations and the smaller their period.

3 Conclusions

In our recent research work a method for real-time simulation of computational
surgery has been developed that makes intensive use of computational vademecums.
These have proven how many aspects of on-line simulations can be pre-computed
off-line and employed very efficiently at extremely high feedback rates. In this
chapter we have reviewed some of our latest works in the field [7, 9], detailing how
this technique can be employed for non-linear constitutive equations (and strain
measures) and also for solid dynamics.
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Data-Guided Growth and Remodeling Model of
Abdominal Aortic Aneurysm Accounting for the
Bio-chemical Effects of Intraluminal Thrombus

Mehdi Farsad, Byron A. Zambrano, and Seungik Baek

1 Introduction

Most of the abdominal aortic aneurysms (AAA) include an intraluminal thrombus
layer (ILT). In general, the ILT thickens with increase in the AAA volume [33].
While researchers are not unanimous about the mechanical effects of the ILT on the
AAA expansion, the majority of them agree that ILT can bio-chemically weaken
the AAA wall by activating proteolytic activity on the AAA wall located beneath
the ILT [20, 29, 31]. To better understand the effect of the ILT on an expanding
AAA’s biomechanics, a growth and remodeling (G&R) computational framework
that brings into account and updates the bio-chemical effects of the ILT on the AAA
will be of great interest.

The AAA formation promotes favorable conditions for the deposition of the
activated platelets on the internal AAA wall. An evolving fibrin mesh is then formed
on the internal side of the AAA wall to hold the platelets, erythrocytes, leukocytes,
and some other proteins [32]. This fibrin mesh stabilizes itself by forming more
fibers and crosslinks on the ILT surface in direct contact with the blood [10].
Consequently, the internal regions of the ILT get denser while the voids between the
crosslinked fibrins increase by approaching the arterial wall [25]. As the ILT gets
thicker, three different layers are developed in the ILT, namely, luminal, medial, and
abluminal layers from aortic lumen towards the AAA wall [30, 32].
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Some studies have suggested that the presence of ILT would have an impact on
the AAA growth and consequently rupture [12, 16]. In fact, it has been observed
that the probability to accumulate ILT increases as the AAA diameter increases.
ILT accumulates eccentrically mostly at the anterior side of an AAA. However, it
has been reported that AAA rupture mostly occurs at the posterior side [8]. Recently,
Doyle et al. [4] used CFD and longitudinal CT data (from four time points) to show
ILT development and expansion in AAA. In addition, Zambrano et al. [33] reported
in a study from patients longitudinal CT studies that ILT accumulation rate would
relate in a linear manner with the AAA expansion rate. They calculated these rates
by measuring the changes in volume between two consecutive CT scans of ILT and
AAA, respectively.

The bio-chemical effect of ILT on the AAA wall is led by the proteolytic
activities accompanied by the active proteolytic enzymes found in the ILT. The
active proteolytic enzymes, such as MMP-2, MMP-8, MMP-9, MPO, uPA, and
LE, contribute to the weakness of the AAA walls covered by ILT [31]. These
enzymes degrade AAA wall elastin and collagen fibers as they change and reduce
the smooth muscle cells and the collagen fiber formation, respectively [7, 20].
These proteases are mainly released by inflammatory cells such as neutrophil and
polymorphonuclear leukocytes [6]. The inflammatory cells are trapped between the
fibrillar network of the luminal layer of the ILT during the ILT formation [7]. While
the medial and abluminal layers of the ILT have significant permeability due to
their connected large canaliculi [1], the inflammatory cells are found only up to a
depth of 1:0 cm in the luminal side of the ILT [2]. The inflammatory cells trapped in
the luminal layer release proteolytic enzymes gradually after the ILT is formed [7].
Since the luminal layer mainly contains active proteolytic enzymes, it is faced to
more probability of proteolytic activity that results in a weaker wall. This may be
the reason that the AAA ruptures have been reported around the areas with thin ILTs.

On the other hand, the oxygen delivered to the AAA wall through the ILT
decreases owing to the ILT’s limited diffusion [1, 27]. Hence, when the ILT becomes
thicker, it may cause hypoxia. In this case, the oxygen delivered from the lumen
through the ILT to the AAA wall decreases significantly resulting in the low oxygen
concentration. As a result, new vessels (neo-vessels) are formed in the ILT near the
AAA wall [28]. Neo-vessels are found as the main sources of inflammatory cells
which, by themselves, are the sources of proteolytic enzymes. In addition, mast
cells, which are found abundantly around the neo-vessels, activate the proteolytic
enzymes leading to inflammation, degradation, and finally weakness of the AAA
wall located beneath a thick ILT [15, 21]. As a result, the phenomenon of oxygen
loss in the AAA wall beneath a thick ILT (called hypoxia) leads to the AAA wall
weakness not by the proteolytic enzymes being delivered to the wall from the
luminal layer but because of the secondary effect of hypoxia explained above.

In this paper, a bio-chemomechanical model is developed for taking into account
the effect of proteolytic activity and hypoxia (caused by ILT) on a growing
AAA. The approach is, however, phenomenological in that the chemical effects of
proteolytic activities and hypoxia cause G&R of aneurysmal wall. The model then
uses the patients’ data including the AAA’s maximum diameter, expansion, and the
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rate of expansion so that the data guide for computational model to qualitatively
estimate the model parameters. Retrospective data of longitudinal CT scans were
taken from several patients, whereas most of the CT scans include ILT, and the
G&R model simulation is compared with the patients’ data.

2 Methods

To account for the bio-chemical effects of the ILT on the AAA progression, we
present a model by modifying an axisymmetric finite element G&R computational
framework originally developed by [35]. In this model, we capitalize on the bio-
chemical effects that ILT contributes on the AAA wall degradation and expansion.
Although many researchers have previously investigated the mechanical effects of
the ILT [3, 14, 17], the interstitial pressure of the ILT can be transferred to the
aneurysmal wall [5, 18, 22] since the thrombus is composed of a porous material.
The mechanical effect of ILT is not considered in this paper.

The AAA wall is assumed to consist of three incompressible solid constituents:
elastin (an isotropic solid), smooth muscle (oriented circumferentially), and four
collagen fiber families (oriented anisotropically in the AAA wall based on an
optimization method [34]). The AAA is initiated by loss of elastin in the aorta wall.
While the lost elastin cannot be generated again in an adult’s tissue, smooth muscle
and collagen fibers are continuously degraded and regenerated in a stress mediated
regime.

In an AAA without an ILT, the rate of smooth muscle or collagen fiber mass
production per unit reference area of the AAA wall is given by

mi
R.t/ D M i

R.t/

M i
R.0/

mi
b

�
Ki

�

�i .t/ � �i
h

�i
h

C 1:0

�
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where the superscript i D c; m denotes collagen fiber and smooth muscle,
respectively, Ki

� represents a scalar value that controls the sensitivity of the mass
production of constituent i to a scalar value of the membrane stress �i .t/, and mi

b

is the basal rate of mass production of constituent i . Also, M i
R.t/ and �i

h denote
mass density at time t and homeostatic membrane stress for the constituent i .

Indeed, the strain energy of constituent i at time t per unit reference area, W i .t/,
is given by:

W i .t/ D M i
R.0/Qi .t/� i .0/ C

Z t

0

mi
R.�/qi .�; t/� i .�/d�; (2)

where � i denote strain energy of constituent i per unit mass, Qi is the mass fraction
of constituent i generated at time zero and still exists at time t , and survival function
qi is the mass fraction of constituent i generated at time � and still survives at time t .
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The following equation is commonly used for survival function of constituent i in
absence of ILT:
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8
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:
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� R t
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i
t � � � ai

max

0 t � � > ai
max;

(3)

where ai
max represents the maximum time that constituent i may survive and �i .s/

is a function of mechanical contribution of the artery’s wall such as wall shear stress
(WSS), circumferential stress, or stretch accounting for the rate of degradation of
constituent i . The expression introduced in [26] is used such that:
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where 	i and 	i
h denote tension in constituent i and its homeostatic value, respec-

tively. In addition, �i
b and �i

	 represent the basal rate of degradation of constituent
i and the sensitivity of the rate of degradation to the stretch of constituent i ,
respectively.

Aforementioned in the introduction, the ILT may lead to increased degradation
and/or decreased production of smooth muscle cells and collagen fibers in the AAA
wall. This process is done by the proteolytic enzymes released by the inflammatory
cells. Here we divide this process into two categories: first, the inflammatory cells
trapped in the luminal layer of the ILT release proteolytic enzymes up to a depth of
about 1:0 cm in the luminal side of the ILT (we call it primary proteolytic activity),
and second, in case of forming a thick ILT, the oxygen content near the AAA
wall decreases significantly and, as a result, neo-vessels are formed near that area.
Neo-vessels are known as the sources of inflammatory cells which, by themselves,
release proteolytic enzymes. Indeed, mast cells, which are found in the vicinity of
the neo-vessels, activate the proteolytic enzymes (we account for this secondary
proteolytic activity happening because of hypoxia).

The significance of the primary proteolytic activity depends on the concentration
of active proteolytic enzymes in the AAA wall beneath the ILT (C p). Similarly,
the severity of proteolytic activity due to hypoxia depends on the oxygen amount
(C O2) delivered to the AAA wall from lumen through the ILT such that the more
loss in the oxygen content leads to the more proteolytic activity. Accordingly, the
concentration of active proteolytic enzymes in an AAA wall is given by C

p

h and
C

O2

h in absence of the ILT. Beneath the ILT, the oxygen concentration in the lumen,
the following equations give the modified versions of Eqs. (1) and (4) for the final
rate of production and degradation of constituent i accounting for the effect of both
primary and secondary proteolytic activity:
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Fig. 1 (a) Schematic view of an AAA including ILT. (b) The plot for the correlation between the
ILT accumulation rate and the rate of AAA expansion. These rates were defined as the changes of
volumes between two consecutive scans over that time interval. Each color refers to longitudinal
CT data of a different patient [33]. (c) The changes of active proteolytic enzymes in the ILT’s
depth. (d) The changes of oxygen concentration in the ILT’s depth
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where Ki
p and �i

p.s/ denote parameters representing the sensitivity of the production
and degradation of constituent i to the primary proteolytic activity, respectively;
where Ki

s and �i
s .s/ represent the sensitivity of the production and degradation of

constituent i to the secondary proteolytic activity (due to hypoxia), respectively.
Since the number of inflammatory cells reduces linearly with the ILT thickness

in the luminal side of the ILT [1], we assume that C p also is reduced linearly in
luminal layer such that it vanishes in depth of h2 (see Fig. 1). Furthermore, assume
that each ILT layer is made of a homogeneous material and C O2 in the ILT changes
linearly in the depth of ILT but the rate of change differs in each layer due to
different permeabilities of the ILT layers. We assume the same material properties
for the medial and abluminal layers. As a result, the changes of C O2 versus the ILT
depth takes the multi-line shape depicted in Fig. 1c regarding less permeability in
the luminal layer due to its dense cross linked fibrillar matrix [1, 11, 19, 24, 25].

Furthermore, the thickness of ILT at each point on the AAA wall is estimated
based on the recent clinical study performed by Zambrano et al. [33] on studying
the rate of ILT formation as a function of the AAA geometry from longitudinal CT
studies of patients. They showed by calculating the changes of ILT and AAA outer
volumes between two consecutive scans over time that there is a positive correlation
between the ILT accumulation rate and the AAA expansion rate with ˛ D 0:8949,
where ˛ is the slope of the trendline (see Fig. 1b). Accordingly, for an axisymmetric
model of AAA, the thickness of the ILT (h) at each point on the AAA wall located
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Table 1 The values, units, and references of the parameters used in Eqs. (5) and (6),
and Fig. 1c, d

C
p
1 C

p

h C
O2

1 C
O2

2 C
O2

3 C
O2

h h1 h2 h3 Ki
� �i

b �i
	

5.4 0.2 100 60 20 100 0.8 1.0 2.5 0.05 0.02 0

(ng/g) (ng/g) (%) (%) (%) (%) (cm) (cm) (cm) – (s�1) –

[6] [6] [28] [28] [28] [28] [6] [28] [28] [13] [13] –

For all other parameter values, please see [13]

in the radial distance r is estimated by h D ˛ � .r � r0/, where r0 is the initial radius
of the (healthy) aorta. The latter equation is easily obtained by assuming that the
stretch of the AAA wall in the axial direction is relatively negligible compared to
the changes of the AAA radius r .

The values of the parameters used in the G&R model along with the reference
they are taken from are summarized in Table 1.

3 Results

All the AAA G&R simulations in this section are initiated with a loss in the elastin
content concentrated at the middle of the aorta.

The sensitivity of an AAA expansion to the parameters �c
s D �m

s D �s , related
to the degradation of the AAA wall due to hypoxia, and �c

p D �m
p D �p , related to

the degradation of the AAA wall due to primary proteolytic activity, is illustrated
in Fig. 2. When the sensitivity of the model to any of the four parameters �i

p , �i
s ,

Ki
p , and Ki

s is studied, all the other three parameters are set to zero. Figure 2a–d
shows that by increasing both the parameters �s and �p the final AAA radius and
volume increase significantly as expected. By increasing �s , the rate of changes in
the AAA radius and volume increases over time (see Fig. 2c). On the other hand, the
rate of changes in the AAA radius and volume increases initially and then decreases
over time for all the �p values (Fig. 2f). The same trend as what shown in Fig. 2 is
followed when the sensitivity of the model to the parameters Ki

p and Ki
s is studied

(results are not provided because of similarity).
In the last set of simulations, a combination of the parameters (�i

p and �i
s ) is

estimated to mimic the same trend of the changes in the AAA volume extracted from
the clinical data (see Fig. 3a). The other two parameters (Ki

p and Ki
p) are set to zero.

Fig. 3a shows that a similar trend is observed for the changes of the volume of the
AAAs with ILT as a function of their maximum radius for the clinical data and the
numerical simulation after estimating the parameters. However, Fig. 3b illustrates
that although the rates of AAA expansion have at the similar range for the clinical
and numerical results, two plots have different trends.
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Fig. 2 The sensitivity of the AAA maximum radius, volume, and expansion rate to the parameters
(a–c) �s and (d–f) �p introduced in Eq. (6). The sub-figures in (a) and (d) show qualitative changes
of the modeled AAAs without and with ILT during 3,000 days expansion

Fig. 3 The changes of the AAA (a) volume. (The sub-figures show qualitative changes of the
modeled AAAs without and with ILT during 3,000 days expansion.) (b) Rate of expansion after
estimating the parameters �p and �s in Eq. (6) using the clinical data. The dotted lines show the
trend lines for the clinical data

4 Discussion

More than 70 % of the AAAs include a thrombus layer [9, 27]. Bio-chemical and/or
mechanical interaction between AAA wall and ILT may affect the AAA expansion
and thus increase the risk of rupture.

The ILT affects the AAA expansion by releasing proteases (proteolytic enzymes).
These proteolytic enzymes are then activated and lead to the degradation of the
elastin and collagen fibers content as well as decreasing the rate of re-synthesis of
the smooth muscle cells and collagen fibers. This process finally leads to weakening
of the AAA wall and its rupture. The bio-chemical effects of ILT on the AAA
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studied in this paper are categorized in two groups. First, the proteolytic activity
that happens in the active luminal layer (primary proteolytic activity) and, second,
the proteolytic activity that mainly occurs in the AAA wall located beneath a thick
ILT because of the secondary effect of hypoxia (secondary proteolytic activity).

The primary proteolytic activity is performed by the activated proteases released
by the inflammatory cells trapped in the luminal layer during the ILT formation.
Some of the proteases are activated because of being in close contact with the fresh
blood. As long as the ILT is thin and made of only the luminal layer, more regions
of the AAA wall are in direct contact with this active layer and, thus, are faced
to more severe proteolytic activity. When the ILT thickens more, and is layered,
only limited parts of the AAA wall (i.e., the AAA shoulders) are faced to severe
proteolytic activity that happens in the luminal layer only. This phenomenon may
lead to lowering the rate of the AAA expansion compared to the case when the
ILT was thin. Our model’s simulation results illustrated in Fig. 2d–f are in good
agreement with what discussed above. These figures show that (for all values of �p

and Kp) the AAA initially expands very fast with increasing rate of expansion, but
the expansion slows down after a while when the ILT thickens.

The AAA wall beneath a thick ILT is faced to proteolytic activity as the
secondary effect of hypoxia (lack of oxygen). The secondary proteolytic activity
becomes more severe by the AAA expansion and the ILT thickening due to more
significant loss of oxygen in the AAA wall. Figure 2a–c, while verifying what
discussed above, shows that the simulated AAAs expansion due to the secondary
proteolytic parameters (�s and Ks) initially increases with a mild slope (because of
low to moderate level of hypoxia) but, then, the rate of AAA expansion speeds up
with the ILT thickening and severe hypoxia.

In the last set of simulations, the proteolytic activity parameters affecting the
smooth muscle cells and collagen fibers degradation (�p and �s) are chosen to
be estimated such that the simulated AAA’s maximum diameter and volume is as
close as possible to the patients’ data illustrated in Fig. 3. Figure 3a shows that the
AAA’s volume varies between 55 and 200 cm3, where the AAA maximum radius
varies in the range of 1.5–3 cm. Both the ranges are the same as what observed in
the clinical data illustrated in Fig. 3. Nevertheless the trend of the changes are not
the same for the rate of AAA expansion (Fig. 3b). The reason can be that there is
not enough data in the clinical study specially for the AAA’s radius smaller than
1:5 cm, or due to the restrictions that have not been considered in our model, such
as the mechanical effects of the ILT on the AAA expansion. The mechanical effect
can lead to more resistance against the AAA expansion when the ILT thickens by
cushioning the AAA wall. However, the numerical simulation and the patients’ data
could be closer if a better method was used for parameter estimating (such as what
used by Seyedsalehi et al. [23]. They have estimated model parameters considering
penalty terms in a cost function).

The model presented in this paper shows the effect of primary and secondary
proteolytic activity, due to a growing ILT, on the AAA expansion. The parametric
study shows that AAA’s radius and volume increase significantly in existence of ILT
because of both hypoxia and proteolytic activity. However, the relation between the
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AAA volume and its maximum diameter slightly changes due to hypoxia while this
relation highly changes because of the proteolytic activity in the luminal layer of
the ILT. The simulation results presented in this paper however cannot be expected
to perfectly estimate a real AAA expansion over time due to our model’s limitations.
For example, the mechanical effect of the ILT, which is neglected in this paper, may
lead to a completely different trend of the AAA expansion. In addition, most of
the AAAs interact with their surrounding tissues such as the spinal column and the
vena cava, while these constraints have not been included in the model. Finally our
model is an axisymmetric model which may lead to increasing the level of error in
estimating an AAA expansion. Approaching the mentioned limitations can be the
subject of future research.
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A Computer Simulation for 3D
Vasculature-Based Oxygen
Distribution and Tumour Growth

Alice Chapuis and Harvey Ho

1 Introduction

Over the last several decades Cellular Automaton (CA) has become a powerful tool
in simulating cell growth (e.g., in [1]), cell–cell interaction and angiogenesis (e.g.,
in [2]). While the early CA models have been mainly developed for simulations in
a 2D domain (see [3] for a review), 3D simulations have also been reported owing
to improved computer performance [4, 5]. Amongst the 3D CA models, Düchting
and Vogelsaenger used the control theory to manage cell cycles [6]; Kansal et
al. modeled a self-organizing brain tumour (glioblastoma multiforme) where the
growth of the tumour complies with the Gompertz model [7]. Wise et al. developed
a diffuse interface model for avascular tumours and simulated surface tension of
cells in a adaptive 3D mesh [8].

In our previous study we used a hybrid CA and continuum model to simulate
cancer and normal cell competition in a 2D domain with a background of known
oxygen distribution [9]. That work was similar to the model proposed by Alarcon
et al. [1] in that at every time step the program simulates the evolution of the two
colonies (cancer and normal cells) with a steady oxygen supply. In this study we
develop the concepts and computational means in [9] in several aspects. Firstly, we
extend the hybrid model from a 2D domain to a 3D domain. Secondly, we consider
oxygen consumption (or uptake) by cells, and thirdly we use a different vascular
tree growing algorithm. The objective is to develop a computational framework for
cancer/normal cell competition and also take into account oxygen metabolism.
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2 Method

2.1 Micro-Vasculature Construction

We consider a domain of size 1 � 1 � 1 mm which is divided into a 100 � 100 � 100

grid. The size of each grid is therefore 
x D 1
100

mm D 10 �m which is
roughly the size of a cell. The domain contains blood vessels which are the
sources of oxygen and nutrients. In our previous work the 2D micro-vasculature
was generated using a diffusion CA model [9]. In this work we used a constrained
constructive optimization (CCO) algorithm to grow the vascular network. This
powerful algorithm has been used to simulate vascular network in 2D [10] and also
in 3D [11]. The full description of the CCO algorithm is not provided here, but an
interested reader can find more information from literature [10, 11].

In brief, the CCO algorithm grows trees in a manner that fulfils the principle of
minimum blood volume, i.e., only a minimum necessary amount of blood is required
to perfuse a tissue/organ. Practically an input mean flow rate and a global pressure
drop need to be defined for the tree. Figure 1 shows a 3D vasculature of 2,000
vessels, with the flow rate at the root vessel being 1:0 � 10�3 ml and the pressure
drop being 5 mmHg across the tree. This vasculature will be used in the 3D domain
for oxygen diffusion simulation.

2.2 Oxygen Distribution

The transient diffusion equation in 3D can be expressed as [12]:

@c.r; t/

@t
D D �

�
@2c.x; y; z; t /

@x2
C @2c.x; y; z; t /

@y2
C @2c.x; y; z; t /

@z2

�
� k.x; y; z/

(1)

Fig. 1 Micro-vasculature
generated using CCO
algorithm
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where D D 1:0 � 10�9 m2 s�1 is the diffusion coefficient [12], c.r; t / is the
magnitude of oxygen concentration in the whole domain at location r and time t .
With a finite difference method explicit in time .n/ and centered in space .i; j; k/

and without considering the oxygen consumption term k, Eq. (1) becomes:

C nC1
i;j;k D C n

i;j;k C D��t
�x2

�
n
C n

iC1;j;k C C n
i�1;j;k C C n

i;j C1;k C C n
i;j �1;k C C n

i;j;kC1 C C n
i;j;k�1 � 6 � C n

i;j;k

o

(2)
As the spatial step was fixed (10 �m), step time has to be chosen to obtain a stable

scheme for diffusion. Thus, stability conditions are given by the diffusion number
R D D��t

�x2 < 0:5, which gives us:

�t < 5:0 � 10�2 s

and therefore �t D 1 ms was chosen.
A significant difference between the 2D and 3D versions of oxygen diffusion was

that the computer memory for the matrix size needs to be considered, especially
when floating numbers (default as the data type 64-bit double) are used for the
representation of C values for the lattice. In order to reduce the computational
cost, the matrix vectorization was used where the concentration at each coordinate
C.i; j; k/ was identified with an index l and so:

C.i; j; k/ D C.l/ D i C .j � 1/ � p C .k � 1/ � p � p (3)

The internal computation will be made with index l but the result interpretation
will be made with indexes i; j; k. A new matrix A was created which will be the
basis of the computation and a standard line for A is:

A.l; W/ D ŒC.i; j; k/C.i � 1; j; k/C.i C 1; j; k/C.i; j � 1; k/

C.i; j C 1; k/C.i; j; k � 1/C.i; j; k C 1/�
(4)

This vectorization scheme resulted in significantly improved computation time.
For example, it took around 1 h to compute the first iteration in a conventional
matrix form in Matlab. With vectorization it computes much faster: about 60 s for
100 iterations, while saving all the data in a 4D-matrix (three coordinates for space
and the last one for time). Without saving the data the computation time for 1,000
iterations was about 450 s.

2.3 Cellular Automata Domain and Rules

To enable cancerous/normal cells to evolve in the 3D domain, we need to define CA
rules. The first rules were adapted from Alarcon et al. [1]. In brief, a cancerous cell
is similar to normal cells in that it may only proliferate if oxygen is present in that
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Fig. 2 Neumann
neighborhood in 3D: each
element has six neighbour
elements

element. However a cancerous cell can survive and also enter a quiescent state when
no oxygen is present in that element. Once a cancerous cell enters a quiescent state,
a clock is started and the cell’s functions are suspended, including proliferation. The
clock is incremented at each time step if no oxygen is present in that centre element.
The cell dies once the clock reaches a certain value. However, if oxygen enters the
cell at any time, it returns to proliferation state and the clock is reset to zero. The
CA model was run on a Neumann lattice, which in three dimensions results in six
nearest neighbours (Fig. 2).

Initial proportions of normal and cancer cells in the domain were arranged as
70–30, i.e. more normal cells than cancer cells to enable the development of a
normal cell colony. No difference of behaviour between cancer cells and normal
cells was considered except the competition rules, which were:

1. If a free element is surrounded by more normal cells than cancerous cells, it
would become a normal cell only if there is enough oxygen for the cell to spread
into the free element.

2. If a free element is surrounded by an equal number of normal and cancer cells, it
would become a cancerous cell, if there is enough oxygen for the cell to spread
into the free element.

The above simple rules, when coupled with the diffusion equation, enabled us to
simulate different cell growth patterns, as described in Sect. 3.

3 Results

3.1 Oxygen Diffusion in the 3D Domain

The oxygen diffusion based on Eq. (1) and the vasculature of Fig. 1 were solved with
the initial condition C D 0 kg-mol everywhere in the domain. Figure 3 shows the
oxygen distribution isosurfaces when the solution became steady. The concentration
gradient from the vasculature to the tissue can be seen from the four isosurfaces in
the figure.
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Fig. 3 Isosurfaces of different oxygen concentrations

With an oxygen distribution in the background, the cancer and normal cells may
survive and compete with each other. The different growth patterns presented below
include:

– the colony at the end of a simulation: cancer cells in red, normal cells in green
and vessels in blue

– the evolution of the number of cells during the simulation
– the parameters used in the simulation (diffusion coefficient D and uptake ratio k)

3.2 Cancer/Normal Cell Competition Under Hypoxia

Firstly we considered the scenario where there was an insufficient oxygen supply
due to a disrupted vascular network, or the uptake in tumour cells greatly exceeded
the supply of the host tissue. We simulated an acute case where a colony started
from a normal oxygen concentration distribution shown in Fig. 3, but the oxygen
concentration diminished with time due to consumptions from cells. Because
of the competition law and the difference of oxygen concentrations needed for
proliferation, cancer cells resisted hypoxia better than normal cells.

It can be seen in Fig. 4 that since there was no supply of oxygen from the
vessels, the colony decreased and once the oxygen was totally consumed, the cells
disappeared. However, under the same initial condition but with different oxygen
consumption rates between cancer and normal cell, the initialization enabled normal
cell to spread further than cancer cells. However, in the end there were still more
cancer cells than normal cells before the disappearance of the colony (Fig. 5).
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3.3 Cancer/Normal Cell Competition Under Steady Oxygen
Supply Conditions

We considered another scenario where the vasculature was effectively functioning
and the colony received constant oxygen supply. Since the difference remained only
in the consumption rates and the initialization was still favourable for normal cells,
the normal cells stayed more numerous than cancer cells until the colonies were
stable (Fig. 6).
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Lastly we ran another simulation where the cancer cell growth was strongly
favoured due to a much lower concentration needed to spread into adjacent cells, and
also a lower uptake rate (Fig. 7). However, the colony of normal cells displayed a
resistance to cancer cells in that it remained in the domain. Also note that the tumour
cells did not propagate across the whole domain due to low oxygen concentrations
in areas far from vessels. Indeed, Folkman observed that tumour cells at a distance
of more than 150 �m from capillaries were transformed into necrosis cells [13].



32 A. Chapuis and H. Ho

100
90

80
70

0

10

20

30

40

50

60

70

80

90

100

60
50

40
30

20
10

0 0 10
20

30 40 50 60
70 80

90 100

Evolution of cell number

Number of Normal cells
Number of Cancer cells

x104

4

3

2

0

1

0 50 100 150
t (time step)

200 250

Fig. 6 Oxygenated state simulation. Concentration needed to spread into cells: Cnormal D 0:02

kg m�3, Ccancer D 0:02 kg m�3. Oxygen consumption rate: knormal D 0:21 g cell�1 iteration�1,
kcancer D 0:1 g cell�1 iteration�1

4 Discussion

It is well known that a compact solid tumour will grow to a diffusion-limited size,
after which it will have to recruit existing vasculature, or acquire a new one through
angiogenesis in order to grow further [8, 13]. In the process of metastasis the role
of a vascular network is also crucial. In this project we adopted a highly complex
3D vasculature as the source for oxygen diffusion. The goal was to study the growth
pattern of a 3D colony of competing normal and cancerous cells by the means of
CA, with varying oxygen diffusion and uptake rates occurring at the background.
Through the implementation and adjusting of a set of CA rules, evolution of the
colony was visualized and compared.
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The assumptions of the simulations were rather idealistic. Firstly, angiogenesis
happened separately from metastasis and so the vasculature was created before the
computation; secondly, the initialization was from a random colony of 25 cells (70 %
of normal cells and 30 % of cancer cells), located in the centre of the vasculature;
Thirdly, the growth coefficient was empirically configured. Future works include
incorporation of a vasculature network that would evolve with, and due to, the
tissue would greatly increase validity. More specifically, vasculature that responds
to growth factors emitted by cancerous tissue would be included.
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The spatial scale (1 mm) of the current hybrid CA-continuum model provides
an excellent interface for multiscale modelling. Moreover, the current domain
configuration (�106 cells of �1 mm in each dimension) represents the size of some
fundamental units of biosystems, e.g., the liver lobule, which has a complex vessel
organization. Thus the current framework represents our first effort for ensuing
3D vasculature-based tumour growth models. For example, from a computational
perspective it is possible to incorporate more complex CA rules. One of such rules
is to allow a cancer cell to divide even when there is no free space around it—the
tumour cell mitosis scheme as introduced in [6].

5 Conclusion

In this paper we presented a hybrid CA-continuum method to simulate cancer and
normal cell competition in a 3D domain with a complex vasculature. The current
work established a flexible framework to incorporate more realistic CA rules and
diffusion/uptake parameters.

Acknowledgement We thank Mr. Alexandre Muller for his help in the tree growing CCO
algorithm.
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Numerical Algorithm for Simulation of Soft
Tissue Swelling and Shrinking in a Total
Lagrangian Explicit Dynamics Framework

Benjamin Zwick, Grand Roman Joldes, Adam Wittek, and Karol Miller

1 Introduction

Many soft tissue pathologies and their respective treatments are accompanied by
swelling or shrinking of the affected area. Examples of swelling include oedema
caused by the abnormal accumulation of fluid within the tissue and the mass-
effect of tumour growth. Shrinking of tissues can be observed in hydrocephalus
and treatments such as osmodiuretics for the reversal of oedema induced swelling.

The biomechanics of swelling and shrinking has been studied in significant
detail and models of varying complexity have been suggested. Early studies include
lumped parameter models [17] and finite element models with simplified 2D geom-
etry [16]. More recent developments include detailed 3D models based on linear
poroelasticity [10], mixture theory [9], models that account for finite deformations
[21] and nonlinear material behaviour of the solid phase [1, 2]. Although these
models have shown promising results, a significant challenge is presented by the
computational cost involved with solving the complex equilibrium equations that
arise from the multiphase mixture theory and the limitations of linear poroelastic
models. Within the constraints of the operating theatre results are required quickly
and need to be computed on commodity hardware. To enable simulations of entire
organs undergoing swelling or shrinking there is a need for computationally efficient
and robust solution algorithms.

In this paper, we present an efficient algorithm for modelling swelling and
shrinking of soft tissues based on the total Lagrangian (TL) formulation of
the finite element (FE) method. In the TL formulation the FE equations are
formulated with respect to the initial (undeformed) configuration. Swelling and
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shrinking behaviour is introduced by applying a multiplicative decomposition of
the deformation gradient to separate the total deformation into swelling/shrinking
and elastic components. The swelling/shrinking deformation is applied to the initial
reference configuration to obtain a (fictitious) intermediate stress-free configuration.
The elastic deformation is applied to the intermediate configuration to obtain the
final deformed configuration. A hyperelastic constitutive law is used to model the
elastic behaviour of the material. We do not consider the physiological cause of
the swelling. Instead, we impose the swelling stretch as a predefined function
of time. Clearly, this model cannot be used to make predictions of swelling or
shrinking, but it serves as a demonstration of the method used to enforce swelling
and shrinking behaviour in the finite element mesh. Physiological models can be
introduced at a later stage to define the amount of swelling/shrinking at each point
in the mesh.

The discretised equations are solved using explicit time integration. Adaptive
dynamic relaxation [8] ensures rapid convergence towards the steady state solution.
A computational advantage of the total Lagrangian over the updated Lagrangian
formulation is that all derivatives with respect to the spatial coordinates are
calculated with respect to the original configuration and can therefore be pre-
computed. The advantage of using explicit time integration with dynamic relaxation
for modelling the deformation of soft tissues is that very fast computations are
possible compared to similar implicit integration schemes. The stable time step
for the explicit method is directly related to the elastic modulus of the material.
Compared to structural materials such as steel, soft tissues have a low modulus of
elasticity, which allows relatively large time steps to be used making the method
especially attractive for modelling soft tissue deformations [15].

2 Methods

2.1 Total Lagrangian Formulation of Swelling and Shrinking

A motion or deformation of a continuum body B 2 R
3 is a one-to-one (bijective)

mapping [4, 12, 19]

't W B ! St 2 R
3; (1)

that maps particles X 2 B from the reference configuration B onto positions

x D 't .X/ D '.X ; t /; (2)

in the current configuration St � R
3 at time t 2 Œ0; T �. A fundamental measure of

deformation is the deformation gradient [19]

F .X ; t / D D'.X/ D @x=@X : (3)
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Fig. 1 Multiplicative decomposition of the deformation gradient F D F eF s for the motion of
two adjacent material points X 1; X 2 2 B to the spatial positions x1; x2 2 St

To ensure that the deformation between the spatial and material coordinates is
invertible and that the local condition of impenetrability of matter is not violated,
the Jacobian determinant must satisfy [19]

J.X/ D detŒF .X/� > 0: (4)

Deformation due to swelling or shrinking can be introduced by considering a
(fictitious) stress-free intermediate configuration NBst between the initial configura-
tion B and the deformed configuration St (Fig. 1). This concept was first developed
by Flory and Rehner [7] for swelling of polymers [5] and is similar to that used for
metal plasticity [19], thermal expansion [11] and biological growth [18]. The total
deformation F can be separated into elastic F e and swelling deformation F s by a
local multiplicative decomposition of the form [2, 11, 18]

F D F eF s: (5)

The deformation caused by swelling (J s > 1) and shrinking (J s < 1) is
mathematically equivalent; henceforth, the term swelling will be used exclusively
to refer to the volume change of the tissue.

It should be understood that F e and F s are not proper gradients and that
the intermediate configuration is incompatible in a global sense as indicated by
the overlapping neighbourhoods O�1

and O�2
of the points �1; �2 2 NBst (Fig. 1)

[13, 19]. Conceptually, the multiplicative decomposition can be thought of as the
disassembly of a finite element mesh (the initial undeformed configuration) and
the subsequent application of the local volumetric deformation due to swelling
on the individual elements. Unless the swelling deformation is homogeneous, this
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intermediate configuration will be incompatible at the boundaries between elements
and the elements will no longer “fit together” (more precisely, the intermediate
configuration is not a proper configuration because—except for the special case of
homogeneous swelling—a bijective mapping between the material particles and R

3

does not exist [6]). Compatibility of the final (deformed) configuration is enforced
by reassembling the mesh using the nodal connectivity of the elements. For a formal
exposition of the geometrical details, the reader is referred to [6, 12, 13].

For isotropic swelling the swelling deformation gradient can be written as

F s D sI ; (6)

where s is the isotropic swelling stretch and I is the identity tensor. The elastic
deformation gradient can then be expressed simply as

F e D F .F s/�1 D .s/
�1F : (7)

The total Lagrangian (TL) formulation of the finite element method uses
rotation invariant measures of strain (Green–Lagrange strain E ) and stress (second
Piola–Kirchhoff stress S ) that are calculated with respect to the initial (undeformed)
reference configuration B [3, 4]. The deformations F e and F s satisfy the invertibil-
ity and impenetrability of matter requirements so that the usual push-forward and
pull-back operations can be performed to obtain the stress measures with respect
to the configurations B, NBst and St [13]. For convenience, the (effective) elastic
second Piola–Kirchhoff stress S e is introduced by the push-forward of S onto the
relaxed intermediate configuration NBst scaled by the volume ratio J s . The (total)
second Piola–Kirchhoff stress with respect to the initial reference configuration B
can then be expressed as

S D J s.F s/�1S e.F s/�T : (8)

In practice, when using hyperelastic materials with the TL formulation of the FE
method, S e is computed using invariants of the elastic deformation gradient F e ,
whereas the nodal forces are usually computed using S and the total deformation
gradient F with respect to the initial reference configuration [3, 4]. This enables the
swelling behaviour to be included entirely within the material constitutive model.
Standard element formulations can then be used to calculate the element nodal
forces and displacements in the usual manner. The Cauchy stress can be obtained
using the inverse Piola transformation

� D J �1FSF T : (9)
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2.2 Constitutive Material Model

At low strain rates the mechanical behaviour of soft tissues can be characterised
using a hyperelastic constitutive law [22]. Viscoelastic effects are ignored due to the
relatively slow loading speed involved with soft tissue swelling (on the order of a
few hours).

Hyperelastic materials are characterised by the existence of a strain energy
function W e.C e/ that relates the deformation to the second Piola–Kirchhoff stress

S e D 2
@W e.C e/

@C e ; (10)

where C e D .F e/T F e is the elastic right Cauchy–Green deformation tensor [4].
For hyperelastic materials that are isotropic with respect to the initial, unstressed
configuration the strain energy density W e.I e

1 ; I e
2 ; I e

3 / can be expressed in terms of
the principal invariants I e

1 D trace C e , I e
2 D 1

2
f.trace C e/2 � trace .C e/2g and

I e
3 D det C e [4]. The classical (incompressible) neo-Hookean model with strain

energy density W e.I e
1 / D �.I e

1 �3/ is based on the assumption that the deformation
is isochoric (J e D 1). To account for (slight) compressibility of the material we use
the modified strain energy density [24]

NW e.I e
1 ; J e/ D 1

2
�
�
.J e/�2=3I e

1 � 3
�C 1

2
�.J e � 1/2; (11)

where J e D det F e is used in place of I e
3 D det C e D .J e/2, and � and � are the

material constants. The behaviour for infinitesimal strains is identical to a linear
isotropic elastic model with shear modulus � and bulk modulus �. The second
Piola–Kirchhoff stress is computed as

S e D �.J e/�2=3I C ��1=3�.J e/�2=3I e
1 C �J e.J e � 1/

�
.C e/�1; (12)

with respect to the relaxed intermediate configuration NBst . The strain energy density
defined above is equivalent to the neo-Hookean model available in the commercial
FE software Abaqus [20] that will be used to verify our algorithm.

The simple hyperelastic model described above serves to demonstrate the
effectiveness of the solution procedure. A more realistic model could be used, for
example, to account for pressure stiffening due to swelling by defining the stress as
a function of the swelling deformation F s or other solution variables such as the
pore pressure.

2.3 Numerical Algorithm for Swelling

Our aim is to determine the configuration of the tissue after swelling or shrinking
takes place; therefore, we are interested in the steady state solution. Our algorithm
is based on the total Lagrangian formulation of the finite element method and uses
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explicit time integration to find the steady state for an artificial dynamic structural
equation [3, 4, 15, 23] using adaptive dynamic relaxation [8].

We consider the nonlinear equilibrium equation of structural statics

f int.u/ D f ext; (13)

where u is the displacement vector, f int is the vector of internal nodal forces and
f ext is the vector of externally applied nodal forces. Additional artificial transients
are added to (13) to enable the use of the explicit integration procedure. After the
inclusion of mass-proportional damping, the equation of motion (13) becomes

M Ru C cM Pu C f int.u/ D f ext; (14)

where the mass matrix M and the mass damping coefficient c are chosen in such a
way that rapid convergence towards the steady state solution is achieved [8].

The internal nodal force associated with element Bm and corresponding to the
stress with respect to the initial configuration is given by [4, 19]

f int;m D
Z

Bm

F SB0 dV; (15)

where B0 is the matrix of shape function derivatives. The integration is performed
numerically using Gauss quadrature

f int;m D
nQX

QD1

F S B0J 0
� NwQ; (16)

where NwQ are the quadrature weights and J 0
� D det.@X=@�/ is the determinant of

the Jacobian between material and element coordinates [4]. For simplicity, we used
linear reduced integration tetrahedral elements with a single Gauss point. The nodal
forces for each element can therefore be computed as

f int;m D F S B0V0; (17)

where Vo is the initial volume of the element [23].
The nodal displacements at integration step nC1 are calculated using the central

difference formula

unC1 D un C ˇ .un � un�1/ C ˛M �1
�
f ext

n � f int
n .un/

�
; (18)

˛ D 2�t2=.2 C c�t/; ˇ D .2 � c�t/=.2 C c�t/;
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Initialisation:

Compute shape function derivative matrices B0 at each Gauss point �Q.
Choose maximum eigenvalue and scale element densities [8].
Compute the diagonal (constant) mass matrix M.
Choose initial minimum eigenvalue and compute iteration parameters [8].
Initialise nodal displacements u0 D 0, u1 D 0.

Time stepping: (n is the step number)
repeat

for all elements m do
Gather element nodal displacements.
Initialise element internal force vector f int;m

n D 0.
for all Gauss quadrature points �Q do

Compute total deformation gradient F n.�Q/ D I C B0un.
Compute elastic deformation measures F e

n.�Q/, C e
n.�Q/, I e

1 n and J e
n .

Compute second Piola–Kirchhoff stress S n.�Q/ using (8).
Compute internal nodal force contribution f int;m

n .�Q/ using (16) or (17) and accumulate
in f int;m

n .
end for
Scatter f int;m

n to global force vector f int
n .

end for
Obtain net nodal reaction forces f n D f ext

n � f int
n .

Compute nodal displacements unC1 D un C ˇ .un � un�1/ C ˛M �1f n.
Enforce Dirichlet (essential) boundary conditions.
if this is the relaxation stage then

Estimate minimum eigenvalue [8].
Check maximum eigenvalue of each element and reform M if needed [8].
Re-compute iteration parameters [8].

end if
until termination criteria [8] is satisfied.

Box 1: Algorithm for soft tissue swelling and shrinking

where �t is the integration time step. The damping coefficient c is calculated using
an adaptive procedure to obtain optimum convergence towards the steady state
solution [8].

We use a lumped (diagonal) mass matrix [3, 4] so that (14) can be decoupled and
the solution of a system of algebraic equations at each time step can be avoided.
The mass at node I is then given by the I th entry MII of the diagonal mass
matrix M . Hence, only the diagonal entries of the mass matrix are needed for the
calculation, reducing the storage requirements and making the inversion of M a
trivial operation.

The complete algorithm is shown in Box 1. It should be understood that an
accurate solution of the dynamic equations cannot be obtained with this method.
However, the solution rapidly converges toward the steady state by the use of adap-
tive mass proportional damping that removes all oscillations within the material.
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2.4 FE Model for Algorithm Verification

To verify the proposed algorithm we solved a simple model and compared the results
to those obtained using a thermal expansion analogy with the commercial FE code
Abaqus [20]. We used a cylinder with diameter and height of 10 cm meshed using
35,598 linear tetrahedral elements and 6,710 nodal points. The nodes on both end
surfaces of the cylinder were fully constrained. The swelling stretch was applied
using a smooth (3–4–5 polynomial) loading curve [15]

s.t/ D .10 � 15t C 6t2/t3; (19)

where t is the relative time (varying from 0 to 1). The material parameters of the
hyperelastic material model (Sect. 2.2) were chosen to match the behaviour of brain
tissue with a mass density of 1,000 kg/m3, Young’s modulus in the undeformed state
equal to 3,000 Pa and Poisson’s ratio of 0.49 [14].

Abaqus does not offer swelling behaviour of hyperelastic materials so we used
the following thermal expansion analogy. The stretch in each principal direction for
an unconstrained material undergoing isotropic thermal expansion is

� D .1 C ˛��/; (20)

where ˛ is the thermal expansion coefficient and �� is the temperature measured
with respect to the reference temperature. By setting ˛ D 1 the temperature change
is related to the isotropic swelling stretch used in our algorithm by

s 	 � D 1 C ��: (21)

The steady state solution was obtained using the algorithm described in Sect. 2.3
and compared to the Abaqus/Standard [20] static solution.

3 Results

Simulations of constrained swelling and shrinking were performed to verify the
proposed algorithm (Sect. 2.4). The results (Fig. 2) show excellent agreement
between the proposed algorithm and the Abaqus/Standard [20] static solution for
both the reaction forces and the displacements.

4 Conclusions

We developed an algorithm for modelling swelling and shrinking of soft tissues
based on the total Lagrangian formulation of the FE method with explicit time inte-
gration and adaptive dynamic relaxation used to compute the steady state solution.
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Fig. 2 Differences in displacements (left) and vertical nodal reaction forces along a line of
nodes on the bottom face (right) between our solution method and the equivalent thermal
expansion analysis in Abaqus/Standard. The lack of symmetry of the reaction forces is due to
the discretisation. (a) Swelling ( D 1:5); (b) shrinking ( D 0:8)

The algorithm can easily handle nonlinearities, and is very efficient because it allows
pre-computation of important solution parameters and does not require solution of
large systems of equations. The use of explicit integration with dynamic relaxation
allows the decoupling of the equilibrium equations, leading to an algorithm that
is well suited for parallel implementation on graphics processing units (GPUs) for
increased computational speed. The algorithm was successfully verified against an
established FE code.
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Spatially Weighted Objective Function
to Solve the Inverse Elasticity Problem
for the Elastic Modulus

Yue Mei and Sevan Goenezen

1 Introduction

Constitutive modeling of human tissues is highly challenging and much research
effort is put in this direction to improve current tissue models. The material
properties of tissues depend on the selected constitutive model. For example,
hyperelastic material models have one or more elastic properties, while viscoelastic
material models and poroelastic material models additionally take viscous material
properties and material properties characterizing material porosity into considera-
tion [1–3]. In general, the material property values depend not only on the tissue
type, e.g., breast tissue, liver tissue, skin, etc., but also on the individual’s age,
lifestyle, environmental factors, and the pathology of the tissue.

In recent decades, researchers were successful in determining the elastic material
properties of soft tissues in vivo and non-invasively which is widely termed as
elasticity imaging or elastography. It has shown great potential in detecting and
diagnosing breast tumors [4, 5], visualizing stiffness maps of atherosclerotic plaques
[6] and the brain. This requires the knowledge of subsurface (interior) displacement
fields in the region of interest, which can be measured using imaging modalities such
as ultrasound, magnetic resonance imaging (MRI), or computed tomography (CT
scan). This displacement field is utilized to solve an inverse problem in elasticity to
determine the elastic properties of that particular constitutive model. In its simplest
form, strain images (gradient of displacement component in compression direction)
were determined and interpreted as the reciprocal of the Young’s modulus, assuming
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that the stress is a constant in the entire region of interest. While this is a rough
approximation, it has the advantage of quasi-real time application and has clearly
shown promising results in clinical applications [7, 8].

Mathematical and computational complexity is involved when solving the
inverse problem from the partial differential equations, i.e., the equations of equilib-
rium, as the problem is highly ill-posed. In [9] the authors solve the inverse problem
directly from the equations of equilibrium. This has the disadvantage that derivatives
of noisy measured displacement fields are taken, leading to high amplification of
errors in the strains and constitutive models [10]. The iterative method utilized in
[11–16] minimizes the correlation between a measured displacement field and a
computed displacement field under the constrained of the equations of equilibrium.
The computed displacement fields satisfy the equations of equilibrium for the
current estimate of the elastic properties. While this strategy circumvents taking
derivatives of noisy measured displacement fields, it is computationally intensive.
The computational cost was reduced in [12, 16] by computing the gradient of the
objective function by the adjoint method. Additionally, Tikhonov regularization was
utilized to smooth the overall solution of the inverse problem. This method has been
extended to accommodate material incompressibility, built in pre-conditioners to
improve convergence, and a novel strain energy density function with two elastic
properties, which has the advantage of having a deviatoric stress component [12].

We recently observed that the iterative formulation of the inverse problem is
sensitive to varying Dirichlet boundary conditions, for example, the solution of the
inverse problem is a different one when utilizing uniform displacement boundary
conditions versus linearly changing boundary conditions. We realize that this is
primarily caused due to the fact that the displacement varies in a wide range
spatially, while the objective function minimizes absolute differences between
the measured and computed displacement fields. To this end, we provide a new
formulation for the objective function and test it on hypothetical data. For simplicity
we model the material to be linear and utilize the small strain theory.

2 Methods

We solve the inverse problem in elasticity iteratively by minimizing the correlation
between a measured and a computed displacement field under Tikhonov regulariza-
tion. We assume that the material response is linear and utilize small strain theory
in elasticity with time independent (static) deformations. The strong form is given
as follows: Find the displacement field u and the pressure p such that

div .¢/ D 0 in � (1)

u D g on �g (2)

¢ � n D h on �h (3)
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Additionally, we enforce incompressibility as most soft tissues are reported to be
nearly incompressible:

tr.©/ D 0 in � (4)

Equation (1) represents the equations of equilibrium with ˝ the region of inter-
est and ¢ the Cauchy stress tensor. Equations (2) and (3) define the Dirichlet
and Neumann boundary conditions, respectively, where g denotes the prescribed
displacement on the Dirichlet boundary � g and h is prescribed on the Neumann
boundary � h with n being the unit outward normal on that boundary. Additionally
it is essential that � h and � g satisfy the following conditions: �h [ �g define the
closed boundary of the region of interest ˝ and �h \ �g D ¿. Finally, Eq. (4)
enforces the trace of the strain tensor to be zero, i.e., all diagonal components of the
strain tensor add up to zero. Throughout this chapter, we will assume plane strain
conditions and a linear stress–strain relationship given by

¢ D 2�© C pI (5)

where � denotes the shear modulus, p the pressure variable or hydrostatic stress,
and I the 2 � 2 identity matrix.

It is now straightforward to derive the mixed finite element formulation from
Eqs. (1) to (5) which we will also refer to as the forward problem. This will be
omitted here and may be reviewed in [12]. Therein, we utilized a stabilized finite
element formulation [12, 17], which allows us to use equal order linear triangular
elements for the displacement and pressure interpolation, while circumventing the
Ladyzenskaya–Babuska–Brezzi conditions.

2.1 Absolute Minimization of Displacement Correlation

In this section we briefly review the inverse problem statement, this is: Find the
elastic property distribution �, such that the objective function

F D 1

2

nX

iD1

wi

��D
�
ui � ui

meas

���2

2
C˛

Z

�

q
jr�j2 C c2d� (6)

is minimized under the constraint of the forward elasticity problem. The first
term is referred to as the displacement correlation term, where we minimize the
discrepancy between a computed, ui, and measured, ui

meas, displacement field in
the L-2 norm. D denotes a diagonal matrix which may be defined such that certain
displacement components are weighted more than others. This is due to the fact
that measured displacement components perpendicular to the ultrasound transducer
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axis are much noisier than along the transducer beam. Thus one may choose
to weight the displacement component with the higher noise level less than the
other displacement component. Furthermore, we observe a summation in Eq. (6)
to accommodate n measured displacement fields in the minimization process. The
weighting factor, wi, ensures that displacement fields of different orders contribute
equally to the objective function. For all computations in this chapter, we will
discard the noisy displacement component and utilize only one displacement field
(n D 1) to solve the inverse problem in elasticity. The second term is the total
variation diminishing regularization term, which acts similar to a penalty term and
penalizes oscillations in the shear modulus reconstruction. The regularization factor
˛ weights the regularization term. In general, the regularization factor may be
chosen based on Morozov’s method or the L-curve method [18]. However, from
our experience a better regularization factor can be found, assuming that some
sub-region in the reconstruction is expected to be homogeneous and smooth. The
parameter c in the square root is chosen to be small to avoid singularities in the
gradient.

The inverse problem is solved utilizing a quasi-Newton method, in particular
the limited BFGS method. This requires the gradient of the objective function with
respect to the shear modulus unknowns and the functional value of the objective
function at every minimization iteration for the current shear modulus estimate. We
note that we discretize the shear modulus with the same linear triangular shape
functions utilized for the displacement and pressure in the forward problem. Thus
the number of unknown shear modulus values is equal to the number of mesh
nodes. The gradient is solved using the adjoint method, which requires only two
linear matrix vector computations of the size of the linear forward problem. The
computed displacement field in Eq. (6) satisfies the forward problem [Eqs. (1)–
(5)] at each minimization call for the current estimate of the shear modulus. We
omit the algorithms to solve the inverse problem iteratively as they were thoroughly
discussed in [12, 16].

In the following we create hypothetical “measured” displacement data. In doing
so, we define a square region of interest with unit length and a target shear modulus
distribution consisting of two horizontally positioned inclusions in a homogeneous
background (see Fig. 1). The shear modulus value in the inclusions is 5 and in
the background 1. We apply a linear displacement boundary compression on the
top edge, with the displacement varying from 0.002 to 0.008 from the left to right
corner, respectively. The bottom edge is fixed in vertical direction and the center
node on the bottom edge is fixed in all directions to prevent rigid body motion (see
Fig. 1). All remaining boundary conditions not specified are traction free. The finite
element mesh consists of 3,600 linear triangular elements and 3,721 mesh nodes.
We add 3 % white Gaussian noise in order to mimic measured displacement data,
which corresponds to about 70 % error in the strain field.
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Fig. 1 Target shear modulus
distribution of two inclusions
in a homogeneous
background. The bottom edge
is fixed in vertical direction,
represented by roller
supports, except for the center
node which is fixed in both
directions. We apply a
linearly varying compression
on the top edge

2.2 Spatially Weighted Objective Function

In this section we present an alternative formulation of the objective function
introduced in Sect. 2.1. We emphasize that the solution procedure of the inverse
problem remains the same as discussed in Sect. 2.1. In order to simplify notations,
we present the displacement correlation term in the objective function solely in
terms of the vertical displacement component. We recall that we discard the
horizontal displacement component entirely in the objective function. The modified
objective function is given by

F D 1

2
kW .u � umeas/k2

2 C ˛

Z

�

q
jr�j2 C c2d� (7)

where u is the computed vertical displacement component and umeas is the measured
vertical displacement component. W is a spatially weighted function defined as

W D
�

uave .uave C b/

.umeas C b/
C k .umeas � uave/

��1

(8)

where uave is the average measured displacement field of the entire region of interest,
and b, k are constants. In Fig. 2 we plot the reciprocal of W over umeas for different
choices of the parameter k. We note that for small measured displacements k does
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Fig. 2 Plot reciprocal of
weighting function over the
measured displacement field
for k D 1, 2.25, and 3
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W
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not change the curves significantly, while for increasing measured displacements
the curves become increasingly steep with increasing values of k. We choose k such
that the product of W(uave

meas)u
ave
meas is the same in both inclusions, where uave

meas is the
average measured displacement in each inclusion. We determine the parameter k D
2:25, the average measured displacement field in the entire region of interest uave D
0:003, and set the parameter b D 10�8. From our experience, the solution of the
inverse problem is not sensitive for a wide range of parameter choices for b. An
explicit form is given by k D uave

uave
meas;1

C uave
uave

meas;2
, where the index 1 and 2 refer to

inclusion 1 and inclusion 2. In deriving the expression for k, we have assumed that
b is much smaller than the averaged displacements, thus can be neglected.

3 Results

3.1 Reconstructions: Absolute Minimization
of Displacement Correlation

In this section we solve the inverse problem with the formulation reviewed in
Sect. 2.1. We utilize only one displacement field, thus n D 1 in Eq. (6) and the
weight can be set to w1 D 1. The regularization factor is chosen to be ˛ D
1:3 � 10�10 and the regularization constant is set to c D 0:01. In Fig. 3 we present
the shear modulus reconstruction and compare it with the target shear modulus
distribution. We observe that the left inclusion has a lower shear modulus value
than the right inclusion. This difference becomes more apparent in the horizontal
centerline plot shown in Fig. 3, where the bottom left plot represents the target shear
modulus values and the bottom right plot the reconstructed shear modulus values.
The shear modulus in the right inclusion is about 4, while the shear modulus in
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Fig. 3 Top left: target shear modulus distribution; top right: reconstructed shear modulus distribu-
tion; bottom left: horizontal centerline plot of the shear modulus through target inclusions; bottom
right: horizontal centerline plot of the shear modulus through reconstructed inclusions

the left inclusion is about 3. The shear modulus value in the left inclusion is about
25 % smaller than in the right inclusion and about 40 % smaller than the target shear
modulus value.

The change in the objective function is utilized as stopping criteria for the
reconstructions as shown in Fig. 4. While the reconstructions were obtained after
more than 4,000 iterations, we observe clearly that the objective function is already
converged after 1,000 iterations.

3.2 Reconstructions: Spatially Weighted Objective Function

In this section we test the new formulation of the objective function, i.e., the spatially
weighted displacement correlation term discussed in Sect. 2.2. The regularization
factor in Eq. (7) is chosen to be ˛ D 6:0 � 10�6 and the regularization constant
is set to c D 0:01. We compare the reconstructed shear modulus distribution
with the target shear modulus distribution in Fig. 5. Clearly, the shear modulus
contrast of the left inclusion has improved drastically, while the shear modulus in the
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Fig. 4 Objective function
value vs. iteration number
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background fluctuates strongly. Additionally, the horizontal centerline plot through
both inclusions reveals that the shear modulus value within the left inclusion area
is very smooth and is not affected by this method. The shear modulus in the left
inclusion is about 3.8 and in the right inclusion about 4. Thus, the shear modulus in
the left inclusion improves by about 27 %. The drop down in the objective function is
used as the stopping criteria. The convergence behavior is similar to Fig. 4 presented
in Sect. 3.1 and is not shown here. Also, the results are not sensitive for a wide range
of initial guesses. This also holds for the results obtained in Sect. 3.1.

4 Discussion

We briefly discussed the iterative solution of the inverse problem in elasticity,
minimizing an objective function under the constraint of the forward elasticity
problem. The objective function consists of a displacement correlation term and
a regularization term, more precisely, total variation diminishing regularization.
We have tested two different formulations for the objective function on hypothet-
ical “measured” displacement data. The formulation of the objective revisited in
Sect. 2.1 has been utilized in [11, 12, 15, 16]. Therein, the authors mainly utilized
uniform boundary compression. In this chapter, we have shown that this method
does not work well to recover the contrast of two inclusions in a homogeneous
background, if linearly changing Dirichlet boundary is prescribed. We have omitted
the solution of the inverse problem utilizing uniform Dirichlet boundary data, as this
has been presented in [12]. We note that the use of linearly changing Dirichlet data
leads to displacement fields that are much larger in the right inclusion than in the
left inclusion.
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Fig. 5 Top left: target shear modulus distribution; top right: reconstructed shear modulus distribu-
tion; bottom left: horizontal centerline plot of the shear modulus through target inclusions; bottom
right: horizontal centerline plot of the shear modulus through reconstructed inclusions

In fact, when utilizing the conventional formulation of the objective function,
the absolute functional drop in the displacement correlation term corresponding to
the right inclusion (larger displacement) will be greater than in the left inclusion
(smaller displacement), leading to a closer target shear modulus value in the
right inclusion. Thus in the new objective function, we weight the displacement
correlation term with a functional that ensures that the displacement correlation is
minimized equally within the two inclusions locally. It should be emphasized that
this issue will persist with Neumann boundary data as well, if displacement fields
within objects/inclusions are significantly different. We note that reciprocal of the
weighted function W �1 becomes very large for small measured displacement fields
(see Fig. 2). This is essential as small measured displacement fields are dominated
by high noise levels, thus we are controlling the correlation of displacement data
within regions of high noise levels.

We note that only Dirichlet boundary conditions (other than slip free conditions)
were utilized in the present study, as it is not possible to measure traction boundary
data with current ultrasound transducers. This implies that the recovered shear
modulus is relative, in other words the shear modulus is determined only up
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to a multiplicative factor. Thus the shear modulus ratio of tumor to background
tissue is only known and not their absolute values. However, this information is
sufficient to visualize the tumor based on this contrast. It is important to note that
the optimization method is able to find one solution out of an infinite number of
solutions due to the fact that the total variation diminishing regularization drives
the smallest shear modulus value to the lowest bound defined in the optimization
subroutine [19]. This has been mathematically proven for the one dimensional case
in [20] and generalized to the three dimensional case in [21].

In all the computations presented, we have added about 3 % white Gaussian
noise to the hypothetical data to mimic noisy experimental data. In fact, white
Gaussian noise has been reported to be inherent in displacement measurements
using ultrasound techniques [7]. The error in the strain is about 70 % which would be
unacceptable to be utilized in a constitutive model [10]. Posing the inverse problem
as a constrained and regularized minimization problem is the key to solve the inverse
problem robustly in the presence of high noise levels in the displacement data.

Overall, the spatially weighted objective function performs well and reduces the
sensitivity of the inverse problem to boundary conditions. A drawback, however,
comes from the high oscillations in the background, while the conventional method
appears to lead to a smoother shear modulus distribution in the background.
This issue may be addressed developing improvised spatially weighted objective
functions.

5 Conclusions

We presented a novel formulation of the objective function to solve the regularized
inverse problem iteratively. We have shown that this method addresses issues of
non-uniqueness observed with the conventional method. In particular, we created
hypothetical “measured” displacement data for a target shear modulus distribution
of two stiff inclusions in a homogeneous background under a linearly varying
compression. One inclusion experiences a larger deformation than the other one,
leading to a discrepancy in the minimization process using the conventional method.
This is observed to result in large deviations in the shear modulus contrast for
the inclusion with the smaller deformation. A novel spatially weighted objective
function addresses this issue. This method may have important applications in
determining the material properties of soft human tissues as well as detect and
diagnose diseased tissues based on changes in their material properties.
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Implementation of a Modified Moving Least
Squares Approximation for Predicting Soft
Tissue Deformation Using a Meshless Method

Habibullah Amin Chowdhury, Grand Roman Joldes, Adam Wittek,
Barry Doyle, Elena Pasternak, and Karol Miller

1 Introduction

In case of brain surgery simulation, our vision is to enable a surgeon to interact
with the computing facilities in the operating theatre and to visualize the results in
real-time with high accuracy. In this way, a surgeon, without requiring any expert
knowledge in numerical computation, would be able to evaluate the implications of
each stage of a surgical procedure and explore potential alternative solutions. For
this purpose, a robust and accurate method for solving the fundamental equations
describing the biomechanical behaviour of the subject is an essential requirement.
Conventionally, this kind of real-time computations in biomechanics was depended
on linear finite element algorithms which assumed infinitesimal deformations [1, 2].
However, modelling of the brain for applications such as neurosurgical simulation
and neuroimage registration for image-guided surgery is a non-linear problem of
continuum mechanics which involves large deformations and large strains with
geometric and material non-linearities. Therefore the infinitesimal assumption is
not satisfied where such large deformations occur. Furthermore, in such cases, finite
element method can fail due to element distortion. In this context, meshless methods
[3, 4] provide a better alternative. The complex finite element grid generation and
element distortion problems are avoided, as only a cloud of points are required for
discretizing the model [5, 6] in meshless methods; a predefined mesh is not neces-
sary. In this context, the meshless shape functions are important in approximating
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the unknown field functions to find the approximate solution to a problem governed
by PDEs and boundary conditions using these arbitrarily distributed field nodes [4].
The MLS shape functions have been preferred predominantly in meshless methods
[3, 7] due to the smoothness, continuity and consistency of the approximation field
they create.

The MLS method was first introduced by Shepard [8] to construct smooth
approximations for fitting a cloud of points [9]. In 1981, Lancaster and Salkauskas
[10] extended this method for general surface generation problems. In generating
meshless shape functions, higher order polynomial basis functions are useful in
approximating complex data distributions. They also have the potential to increase
the accuracy of the simulation results compared with linear basis function. However,
as the degree of polynomial basis is increased, more nodes need to be included
in the support domain to be able to compute the shape functions. Consequently,
the size of the support domain gets enlarged resulting in increased computational
cost. Furthermore, not all node distributions can be used in numerical computation
for a given size of the support domain. Nevertheless, in most cases, a valid or
“admissible” node distribution can be achieved by increasing the support domain
size, which is often controlled by a dilatation parameter [11]. In this context, Joldes
et al. [12] have recently presented a modified MLS approximation which allows
higher order polynomial basis functions to be used under the same conditions as
lower degree basis functions. Such an approximation can be used to create a more
accurate meshless method without the need to change the nodal distribution or
dilatation parameters used.

This paper focuses on the evaluation of a meshless method based on the MMLS
shape function developed by Joldes et al. [12] in two specific cases of biomechanics
simulations: extension of a soft tissue sample and simulation of a craniotomy
induced brain shift. A comparison between the MMLS and the classical MLS with
linear and quadratic basis in approximating a bivariate function is also presented.

2 The Modified Moving Least Squares Method

The procedure for constructing classical MLS shape function starts with the approx-
imation of a function u(x), denoted by uh(x), which is defined by a combination of
m monomials (also called basis functions) [4].

uh.x/ D
mX

iD1

pi .x/ai .x/ D pT .x/a .x/ (1)

where m is the number of terms in the basis p(x), and ai(x) are coefficients that
depend on the spatial co-ordinates x. These coefficients are computed by minimizing
an error functional defined based on the weighted least squares errors:
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J .x/ D
nX

j D1

h�
uh
�
xj

� � uj

�2
w
�k x � xj k�

i
(2)

where n is the number of nodes in the support domain of x. Rewriting in matrix form
yields:

J D .Pa � u/T W .Pa � u/ (3)

Minimization is done by setting the partial derivatives of the error functional J to
zero:

@J
@a

D PT WPa .x/ � PT Wu D 0 (4)

Finally, by solving the resulting system of equations, the MLS approximation is
obtained as

uh .x/ D
nX

j D1

¿j .x/ uj D ˆT .x/ u (5)

where

¿j .x/ D pT .x/
�
M .�1/ .x/ B .x/

�
(6)

M .x/ D
nX

j D1

w
�
x � xj

�
p
�
xj

�
pT

�
xj

�
(7)

B .x/ D ŒB .x1/ B .x2/ : : : B .xn/� (8)

B .x1/ D w .x � x1/ p .x1/ (9)

Here, u is the nodal vector parameters of all the nodal field variables in the local
support domain, ˆ(x) is the vector of MLS shape functions and M(x) is known
as the moment matrix. Generally, linear or quadratic basis functions and cubic or
quartic weight functions are used to create the approximation.

As can be seen from Eq. (6), the shape functions construction depends on the
non-singularity of the moment matrix defined by Eq. (7). The necessary conditions
for the moment matrix to be non-singular depend on the types of basis functions
used. For example, in a two-dimensional case, the moment matrix is non-singular
as long as there are at least three non-collinear nodes in the support domain for linear
basis functions, whereas for a quadratic basis, at least six nodes are needed in the
support domain. The support domain of a point x determines the number of nodes
used to compute the approximation value at x. However, some nodal distributions
can still lead to singular moment matrices even if enough nodes are included in
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the support domain. This type of scenario can occur, for example, if the nodes are
distributed on two parallel lines in 2D. To overcome this problem, the traditional
remedy is to enlarge the support domains in order to include more nodes. This,
however, leads to higher approximation error and increased computational cost.
Consequently, these limitations prevent the practical use of higher order polynomial
basis for randomly distributed nodes despite their potential capability for better
approximation of complex deformation fields and better convergence properties.

In this context, Joldes et al. [12] developed a modified MLS with second
order polynomial basis. The development of MMLS is based on the observation
that a singular moment matrix mainly means that Eq. (4) used to compute the
coefficients a(x) has multiple solutions, and therefore the functional (2) does not
include sufficient constraints to guarantee a unique solution for the given nodal
distribution. Based on this observation, for 2D, additional constraints are included
in the functional (2) as

J .x/ D
nX

j D1

h�
uh
�
xj

� � uj

�2
w
�k x � xj k�

i
C �x2a2

x2 C �xya2
xy C �y2a2

y2

(10)

where

� D 	
�x2 �xy �y2



(11)

is defined as vector of positive weights for the additional constraints. Using the same
minimization procedure, the modified approximant is obtained as:

uh .x/ D PT
�
PT WP C H

��1
PT Wu D

nX

j D1

¿j .x/ uj D ˆ
T

.x/ u (12)

With the new shape function defined as

ˆ .x/ D 	
ˆ1 .x/ : : : ˆn .x/


 D PT
�
PT WP C H

��1
PT W (13)

Here, H is a matrix with all elements zeros except the last three diagonal entries,
which are equal to �

H D
�

O33 O33

O33 diag .�/

�
(14)

and the modified moment matrix is computed as:

M D PT WP C H D M C H (15)
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The small alteration of the moment matrix presented in the above equation is
the only difference between the MMLS and the classic MLS with quadratic basis
functions. Nevertheless, it can be shown that the nodal distributions which are
admissible for the classical MLS with linear basis functions are also admissible
for the presented MMLS [12].

3 Numerical Examples

3.1 Approximation Capability in 2D

To assess the approximations capability of the modified MLS shape functions with
quadratic basis, it is compared with classical MLS shape function with linear and
quadratic basis. A quartic spline weight function with circular domain was used in
the definition of all shape functions:

w.s/ D


1 � 6s2 C 8s3 � 3s4; s � 1

0; s > 1
(16)

where s is the normalized distance

sj D k x � xj k
Rj

(17)

and Rj is the radius of the influence domain of node xj. In this example, the same
weights for all the additional constraints (�x

2 D �xy D �y
2 D �) and a constant

radius of influence for all nodes (Rj D R) were used. A 2D rectangular problem
domain was defined and the geometry was represented using both regular and
irregular node distributions consisting of 324 nodes, as shown in Fig. 1. The
irregular nodal distribution consisted of uniformly scattered nodes were obtained by
using the Matlab Halton sequence function [13]. The use of this function ensures a
uniform nodal density for the problem domain. The following function was used for
testing the approximation accuracy in 2D using MLS and the MMLS for different
values of � and R. The function was chosen to present a variety of behaviour in a
surface which consists of Gaussian peaks with sharp descent.

u .x; y/ D xe�x2�y2

(18)

The approximation accuracy was determined using the root mean square error
evaluated using a regular distribution of N D 81 � 81 points:

RMSE D

vuut
XN

iD1

�
u.x/ � uh.x/

�2

N
(19)
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Fig. 1 (a) Regular node distribution, (b) Irregular node distribution

Table 1 Root mean square error (RMSE) in approximating u .x; y/ D xe�x2
�y2

using 324
nodes with varying radius of nodal influence domain, R

Regular node distribution Irregular node distribution
Approximation method R D 2.0 R D 1.5 R D 0.8 R D 2.0 R D 1.5 R D 0.8

MLS, linear BF 0.0344 0.0272 0.0098 0.0361 0.0281 0.0118
MLS, quadratic BF 0.0081 0.0058 Singular M 0.0107 0.0080 Singular M
MMLS, � D 0:1 0.0109 0.0106 0.0092 0.0131 0.0125 0.0113
MMLS, � D 0:01 0.0083 0.0064 0.0064 0.0109 0.0085 0.0089
MMLS, � D 0:001 0.0081 0.0059 0.0035 0.0107 0.0080 0.0053
MMLS, � D 0:0001 0.0081 0.0058 0.0029 0.0107 0.0080 0.0046

The results are shown in Table 1.
From the results, it can be seen that as the nodal influence domain radius is

gradually decreased, the classic MLS with quadratic basis fails due to singular
moment matrix whereas the modified MLS with quadratic basis is stable. The
approximation accuracy of MMLS is found to be better than that of classical MLS
with linear basis function. Moreover, it is also evident that if the value of � is
decreased, the MMLS accuracy approaches the accuracy of classical MLS with
quadratic basis function.

3.2 Applications in Biomechanics

In brain biomechanics, for computing soft tissue deformation considering large
deformation and large strain, Miller et al. [14] have developed an efficient finite
element algorithm using total Lagrangian (TL) formulation and explicit time
integration scheme. The algorithm is capable of handling both geometric and
material non-linearities. The adoption of TL formulation allows pre-computation of
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Fig. 2 Approximated function by modified MLS (� D 0.1, R D 0.8) using a regular distribution
of 324 nodes

all derivatives with respect to spatial co-ordinates and the explicit time integration
based on the central difference method eliminates the necessity for iterations during
each time-step. These features resulted in significant reduction in the number of
mathematical operations and constituted the base for real-time simulations. Several
applications were developed in both surgical simulation and neuroimage registration
based on this total Lagrangian explicit dynamics framework [15–19]. Motivated by
the prospect of meshless method, Horton et al. [20] developed the Meshless Total
Lagrangian Explicit Dynamics (MTLED) algorithm based on the earlier work of
Miller et al. [14]. MTLED is based on the Galerkin weak form and uses a regular
background grid for integration.

The modified MLS shape functions were incorporated in the MTLED algorithm.
For easy imposition of the essential boundary conditions, a regularized weight
function [21] was used which possesses almost interpolating properties, as shown
in Fig. 3.

Next, two cases of biomechanics applications, an extension of a soft tissue
sample and craniotomy induced brain deformation are simulated using the meshless
method which incorporates the MMLS with regularized weight functions. The
results obtained by the meshless method are compared with those obtained using
the commercial finite element software ABAQUS.

3.2.1 Extension of Soft Tissue Sample

For the meshless computation of soft tissue extension, a 2D geometry
(10 cm � 4 cm) was created and the domain and boundary were discretized using
57 nodes. To ensure integration accuracy, a regular background grid was used
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Fig. 3 Classic MLS and Modified MLS (� D 0.01) with regularized weight function comparison,
12 nodes in 1-D, influence domain radius R D 3; (a) regular, (b) irregular nodal distributions

consisting of 1,000 integration cells with one integration point per cell. For each
node, the radius of the influence domain was constant (R D 1.4). Loading in terms
of displacement (3 cm) was applied to the nodes on the right-hand side boundary
and the left boundary nodes were fixed. Explicit integration was performed using
the central difference method, with mass proportional damping added (dynamic
relaxation) to control the oscillations in order to reach the steady state solution
[16, 22].

For simplicity, following [16, 17], the hyper-elastic Neo-Hookean material model
was chosen in this numerical experiment to capture the behaviour of soft tissues
undergoing large deformation. For the finite element analysis in ABAQUS, identical
constitutive material laws, loading and boundary conditions were used; the steady
state solution was obtained using the static solver with the default configuration.
The simulation results and numerical details are presented in Fig. 4 and Table 2.

For the given nodal influence domain radius, the classical MLS with quadratic
basis failed due to the singularity of moment matrix. The differences in computed
deformation fields over the whole problem domain are shown in Fig. 4. The results
in Table 2 show that the maximum and average difference in displacements between
MMLS and ABAQUS are lower compared to those between classic MLS with linear
basis and ABAQUS.
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Fig. 4 Differences of the computed deformation field over the whole problem domain, (a) between
classic MLS (linear basis) and ABAQUS; (b) between modified MLS and ABAQUS

Table 2 Numerical details of comparison for the cases presented in Fig. 4

Case Nodes
Elements
(ABAQUS)

Integration points
(Meshless)

Average
difference (mm)

Maximum
difference (mm)

a) Classical
MLS

57 84 1,000 0.14996 0.73014

b) MMLS
(� D 10�10)

57 84 1,000 0.10193 0.48192
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3.2.2 Simulation of Brain Deformation in 2D

In order to simulate brain deformation, based on experimental data [23] and previous
modelling experience [15, 24], the Young’s modulus for the brain parenchyma and
the tumour was set to 3,000 Pa and 6,000 Pa respectively. Because of the fact that
the brain tissue is almost incompressible [25], according to [24] a Poisson’s ratio of
0.49 was assigned for both parenchyma and tumour. The ventricles are modelled as a
cavity as the cerebrospinal fluid can freely move in and out of them. A variable load
in terms of displacement was enforced on the nodes of the brain surface exposed by
craniotomy. The interaction between skull and brain was modelled as finite sliding,
frictionless contact and the skull was assumed to be rigid as it is orders of magnitude
stiffer than the brain tissue. The brain model was discretized with 707 nodes, and
for the meshless method 4,988 integration points were created from a triangular
background grid with four integration points per cell. A constant influence domain
(R D 8) and same weights for the additional constraints (� D 10�7) were used in the
meshless computation. Higher order plain strain elements with hybrid formulation
were used in ABAQUS to handle the incompressibility of the soft tissues. The
constitutive material laws, loading and boundary conditions were identical in both
meshless and ABAQUS computations. The differences of the computed deformation
field between classical MLS and modified MLS in comparison with ABAQUS are
shown in Fig. 5. Numerical details of the comparison are presented in Table 3.

In this experiment, for the given support domain radius, the classic MLS with
quadratic basis also failed due to the singularity of moment matrix, whereas
the modified MLS with quadratic basis had no problem in computing the shape
functions. As shown in Table 3, the maximum and average differences between
MMLS and ABAQUS are found to be lower compared to those between classic
MLS with linear basis and ABAQUS.

4 Conclusions

In this paper we assessed the use of a modified MLS approximation with a meshless
method for predicting soft tissue deformation. The approximation capability of
the MMLS is evaluated against the classical MLS with linear and quadratic basis
functions for a bivariate function. The results show that the MMLS approximation
with a quadratic basis is stable with the same support domain size as the classical
MLS using linear basis functions. Moreover, when the value of the weight �,
associated with the additional constraints, is decreased, the accuracy of MMLS
approaches the accuracy of classical MLS with quadratic basis functions.

A meshless method using the MMLS shape functions was used for the simulation
of extension of a soft tissue sample and craniotomy induced brain deformation.
A regularized weight function was used in these examples to enforce the essential
boundary conditions. The results were compared with results obtained using the
commercial finite element software ABAQUS. In both cases, the results indicate
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Fig. 5 Differences of the
computed deformation field
in the brain (a) between
classic MLS (linear basis)
and ABAQUS; (b) between
modified MLS and ABAQUS
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Table 3 Numerical details of comparison for the cases presented in Fig. 5

Case Nodes
Elements
(ABAQUS)

Integration points
(Meshless)

Average
difference (mm)

Maximum
difference (mm)

a) Classical
MLS

707 1,247 4,988 0.14509 0.67531

b) MMLS
(� D 10�7)

707 1,247 4,988 0.12332 0.50729

that the MMLS shape functions, having a quadratic basis, provide better accuracy
with the same support domain size, compared to classical MLS with linear basis.
With the same support domain size, classical MLS with quadratic basis simply fails
due to singular moment matrices.
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Automatic Landmark Detection Using Statistical
Shape Modelling and Template Matching

Habib Y. Baluwala, Duane T.K. Malcolm, Jessica W.Y. Jor, Poul M.F. Nielsen,
and Martyn P. Nash

1 Introduction

Biomechanical modelling of the breast can provide a reliable way of co-locating
tissue locations across various images. Biomechanical models of the breast can be
used for guiding clinical biopsy procedures, track tumours for surgical assistance
and for both aiding the breast implant selection and predicting the outcome of breast
augmentation procedures [1]. However, to generate a patient specific model of the
breast, an alignment of the mean mesh on the new patient image volume is required.
This alignment can be achieved using landmark detection.

An important area in image understanding is the development of methods for
robust and accurate detection of landmarks. Landmarks can be used: as seed points
in image segmentation; for mesh generation for biomechanical models; and to define
rigid, affine, or thin plate transformations in image registration. Algorithms for
automated detection of landmarks are crucial for clinical applications since manual
selection of landmarks is time consuming and subjective. In our work, we focus
on automated detection of multiple landmarks for breast magnetic resonance (MR)
images to be used for torso skin surface mesh generation.

Landmarks can be defined as distinct anatomical points in the body or as edges
which can be used as feature points [2]. Landmark detection in medical imaging
is focused on three approaches: (a) machine learning algorithms [3, 4]; (b) image
intensity models [5]; and (c) invariant geometric measures such as curvatures and
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extreme points based on their shapes [6]. Hartkens et al. [7] proposed detection of
landmarks by analysing the image intensity up to third derivatives. Frantz et al. [8]
implemented a statistical approach for landmark detection which requires the user to
set an initial region of interest in the vicinity of the landmark. Most of these methods
are either semi-automatic or cannot accurately detect landmarks on the skin surface
from breast MRs due to the wide dynamic intensity range or variability of breast and
torso shapes across patients and populations. Some of these methods are sensitive
to noise and extract numerous false positives.

We address this problem of landmark detection by combining statistical shape
models (SSMs) and landmark image features into a single framework. This process
is divided into five steps: (a) build an SSM of the landmarks; (b) build a template
patch for each landmark; (c) match the template patch with an unseen image to
produce a correlation map; (d) search for the combination of shape components that
provides the best combined correlation map values; (e) search the local region of
the correlation map for each landmark and move the shape predicted landmark to
the local maximum of correlation map. Leave-one-out experiments were performed
on 2D breast MR slices from 30 volunteers to test the robustness and accuracy of
our method. The algorithm can be straightforwardly extended to 3D, and to detect
landmarks for other anatomical structures.

2 Methods

2.1 Statistical Shape Modelling

SSMs have been used extensively for segmentation, recognition, and classification
[9]. SSMs provide prior information to the image processing tools that helps to
improve accuracy, robustness, and computational speed. Given a number of training
shapes, an SSM consists of the average shape along with statistical information
about the shape variation.

To build the SSM, we require a training set of images with corresponding labels
for each landmark. Figure 1 shows two of our training examples, which consists
of thirty 2D MRI slices, each from a different volunteer, that have been manually
labelled by an expert. Each training image has been obtained from a different
patient. Each image is labelled with 30 landmarks: 24 landmarks are labelled on the
skin surface and 6 other landmarks that do not lie on the skin surface are the centres
of the sternum, spinal cord, aorta, vertebra, and nipples. The six landmarks outside
the skin surface were chosen as they have relatively fixed positions within the chest
and can be readily detected in any unseen image. The SSM is built for the training
set using the method of Cootes and Taylor [9] and provides a parameterisation, b,
of shapes similar to the training set

X D X C Pb (1)
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Fig. 1 Training examples for building statistical shape models of landmarks. 2D MR images from
two volunteers are overlaid with manually labelled landmarks (yellow dots)

Fig. 2 Template patches for four landmarks. (a) Vertebra centre. (b) Skin surface point near the
right arm. (c) Right nipple. (d) Skin surface point between the breasts

where X is mean shape, P is a set of orthogonal modes of variation, and b defines
a set of components of a deformable model. By varying the elements of b, we can
vary the shape X using Eq. (1).

2.2 Generation of Template Patches

The second part of our algorithm deals with matching template patches for each
landmark across an unseen image. The template patch for a particular landmark is
obtained by taking the average of the set of 60 mm � 60 mm patches that surrounded
the manually identified landmarks from the images in the training set, for which the
image intensities were normalised between 0 and 255 to compensate for variations
between training images. Figure 2 shows examples of template patches for four
different landmarks.
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Fig. 3 (a) and (b) are examples of template images of landmarks and (c) an unseen image (with
manually labelled landmarks for vertebra centre and skin surface for right arm). (d) and (e) are
the correlation maps obtained after matching templates (a) and (b), respectively, with the unseen
image. A higher value in the correlation map indicates a higher likelihood of the landmark being
present at that location

2.3 Template Matching to Obtain a Correlation Image

Template matching is the process of sliding a template patch across an unseen
image and comparing the overlapped patches using a similarity metric. We use
normalised sum of squared differences as a similarity metric. The output from this
step is a correlation map that can be used to infer the likelihood of the location of
that particular landmark in the image. The unseen image intensities are normalised
between 0 and 255 before applying template matching. Template matching was
performed for all 30 landmarks to obtain 30 correlation maps. Figure 3 shows
the correlation maps obtained for the vertebra centre and skin surface point of the
torso near arm. As shown in Fig. 3e, the correlation map shows a local maximum
for the landmarks in its actual location. It also shows a local maximum at other
positions (false positives) in the image. Thus template matching alone is not robust
for detecting individual landmarks since it can result in false positives.

2.4 Shape Component Optimisation

To combine the template matching information with shape modelling, we propose
the following algorithm:

1. Vary the mode weights for the first three shape components between ˙2.5
standard deviations from the mean value, leaving all other component values at
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Fig. 4 (a), (b), and (c) are correlation maps for right nipple, sternum centre, and vertebra centre,
respectively These correlation maps are translated to their position in the shape model (d), and then
multiplied. The result of this step is the combined correlation map (e)

zero. We chose to vary only the first three shape modes as they are able to capture
80 % of the variation in the shape space;

2. Calculate the new shape and position of the landmarks using Eq. (1);
3. Translate the correlation maps for the individual landmarks to the position in the

shape model;
4. Multiply the correlation map of the landmarks with each other to get a combined

correlation map. Figure 4 shows an example of the combined correlation map.
For optimal performance, the number and type of landmarks used for step 3 and
4 is explained in Sect. 3 below;

5. Select the combination of mode weights that provides the maximum combined
correlation value;

6. Set the landmark points based on the shape model defined by the optimal weights
determined in step 5. We refer to these as the “shape predicted landmarks”.

2.5 Search the Local Region of Each Landmark
for Maximum Correlation

The shape predicted landmarks provide a good initial estimate of the landmark
locations but, due to the constraints of the shape model, it is not able to place
all the landmarks to the point of maximum correlation. To improve accuracy, we
search the correlation map of each landmark for a maximum similarity metric in a
small 20 mm � 20 mm region around the shape predicted landmark location. The
location corresponding to the maximum correlation is taken as the final landmark
position. Figure 5 displays the improved accuracy provided by this additional step
in comparison with the shape predicted landmark locations.
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Fig. 5 Landmark matching results. In both (a) and (b), green dots and green lines represent the
manually labelled landmarks and the skin surface, respectively. In (a), pink dots represent the shape
predicted landmarks, which are not well aligned with the skin surface in the image. In (b), blue
dots illustrate the improvement in alignment following the local search procedure

3 Results and Discussion

The criteria for success of the algorithm is the distance of the points computed
using the automated methods compared to the manually labelled ground truth. For
the landmarks that do not lie on the skin surface (sternum, vertebra, aorta, spinal
cord, and nipples), the error was calculated as the Euclidean distance between the
automatically predicted landmarks and their manually determined positions. For the
skin surface landmarks, the error was calculated as the Euclidean distance between
automatically detected landmarks and the closest approach to the skin surface.

3.1 Optimisation of Number of Landmarks
for the Combined Correlation Map

To calculate the combined correlation map, it is not necessary to use the correlation
maps for all of the landmarks. Instead, prominent landmarks that influence the
overall shape can be selected to calculate the combined correlation map. This
step helps to reduce computational expense. To determine the optimal number
and type of landmarks, we compared the errors of the shape predicted landmarks
after incrementally adding landmarks for calculating the combined correlation map.
Figure 6 shows an example of how errors reduce and converge as additional
landmarks are used for the combined correlation map. For Fig. 6, the order the
landmarks were added is: (1) sternum; (2) spine; (3) right nipple; (4) left nipple; (5)
skin surface point near right arm; (6) skin surface point near left arm; (7) skin surface
point between the breasts; and (8) back skin surface point. Other combinations of
landmarks were used (data not shown) but it was found that combining the first five
above provided the best results.
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Fig. 6 Average error of the
shape predicted landmarks
over 30 images versus the
number of landmarks used for
calculating the combined
correlation map. The error
bars indicate the standard
deviation in the landmark
errors

Fig. 7 Errors over 30 images for sternum centre, vertebra centre, nipples (left and right) and
skin surface landmarks (24 landmarks). Skin surface point errors were calculated as the Euclidean
distance between automatically detected landmarks and the closest approach to the skin surface

3.2 Landmark Matching Results

To determine the robustness and accuracy of our algorithm, a series of leave-one-out
experiments was performed on thirty 2D breast MR images. The in-plane resolution
of the images varied between 1.05 and 1.07 mm per pixel. Our landmark detection
method succeeded in finding all 30 landmarks. The overall mean ˙ SD landmark
error for 30 landmarks over the 30 images was 3.41 ˙ 2.10 mm. The mean ˙ SD
error for the 24 skin surface landmarks was 3.3 ˙ 2.39 mm. The mean ˙ SD error
for the six landmarks that do not lie on the skin surface (sternum, vertebra, aorta,
spinal cord and nipples) was 4.1 ˙ 2.26 mm. Among these six landmarks, the
smallest error was for the vertebra centre (3.1 ˙ 2.91 mm), while the largest error
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was for the sternum centre (5.3 ˙ 3.5 mm). In Fig. 7, we compare the results
of our method with the shape predicted landmarks. This comparison shows the
improvement provided by the local maximum search in comparison with the shape
predicted landmarks.

4 Conclusion

We have presented a novel algorithm to automatically find landmarks on the skin
surface and other point landmarks for MR images. Our algorithm combines template
matching and statistical shape modelling in a single framework to provide robust
and accurate landmark detection for use to generate skin surface meshes. We plan
to extend this method to three dimensions. Furthermore, active appearance models
will be used to generate more precise correlation maps. We will determine whether
this will result in more accurate landmark positioning for both shape predicted
landmarks and, more importantly, the final landmark positions predicted by the local
maximum search.
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Mechanical Properties of Brain–Skull Interface
in Compression

Sudip Agrawal, Adam Wittek, Grand Joldes, Stuart Bunt, and Karol Miller

1 Introduction

Advancement in computing technology has accelerated interest in numerical
modelling of brain for application in various fields like surgery simulation,
computer-aided and image-guided surgery [1]. A typical example of modelling
and simulation of brain is to compute craniotomy-induced brain shift that results
in movement of tumour and healthy brain tissue. Such application involving
deformation requires material properties of various tissues and components
inside cranium, and loading and boundary condition for accurate results. In
brain modelling, the mechanical properties of brain–skull interface determine
the boundary condition. However, the existing quantitative data regarding the
mechanical properties of the brain–skull interface, the complex comprising the
meninges, skull and fluid-filled spaces in-between them, are very limited.

A number of studies have been conducted to determine the mechanical properties
of brain tissue. Those studies have established that brain tissue is a very soft, non-
linearly viscoelastic solid material, with very low linear viscoelastic strain limit
(of the order of 0.1–0.3 %) [1]. However, there is no consensus regarding material
properties of the brain–skull interface. Different research groups have implemented
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different ideas to address the issue in their model. Some assume the brain to be fixed
to the surface of the skull [2, 3], while some use a gap between the brain and skull
allowing motion of brain within the cranial cavity [4–9] and others use a frictionless
sliding contact model [10, 11].

Anatomically the brain–skull interface is comprised of rigid cranial inner surface
(also referred to as inner table), the meninges and the outer brain surface. The
meninges are comprised of dura mater, arachnoid mater and pia mater [12]. The
dura mater is attached to the skull. It consists of periosteal dura, meningeal dura and
dural border. The connection between arachnoid and meningeal dura is established
through the dural border and arachnoid border cells. From arachnoid mater’s inner
surface its fibres (arachnoid trabeculae) extend to the subarachnoid space (SAS) and
becomes continuous with the pia mater. The pia mater is a thin delicate membrane
which is attached to the brain outer surface. There is a fluid-filled space between the
dural surface of arachnoid matter and the pia mater because arachnoid mater doesn’t
follow the contours of the brain like the pia mater. However the exact anatomical
structure of this interface is still hotly debated [12]. A detailed representation of the
brain–skull interface is shown in Fig. 1.

In this study we have conducted ex vivo uniaxial compression tests on a sample
containing skull, meninges and brain and the simulations of the experiment to
establish mechanical behaviour and properties of brain–skull interface. All the
necessary ethical approvals were obtained prior to the experiment from Animal
Ethics Committee, University of Western Australia (UWA). The approach ensured
we could examine brain–skull interface in its closest natural state in a controlled
study.

Fig. 1 Brain–skull interface (a) lateral section through human head showing the brain and sur-
rounding tissue (taken from NAMIC registration case inventory brain) (b) detailed representation
of the meninges (modified from Haines et al. [12])
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2 Materials and Methods

2.1 Sample Preparation

Sheep heads were collected from Royal Perth Hospital (RPH), Perth. The specimens
were taken as by-product of anaesthesia training programme. They were sacrificed
using high dose of triple drip (a combination of xylazine, ketamine and guaifenesin,
all anaesthetics compound). They were transported to the testing facility in a sealed
container and stored at 4ı C before further processing and testing. Samples were
tested within 24 h from the time of death to reduce variability due to post-mortem
changes [13]. The specimens were not frozen at any time.

The heads were skinned and a rectangular cut of �30 � 30 mm was made on
the skull on top of the cranium (above cerebrum) using vibrating saw. Adjoining
cut of �30 � 10 mm was also made. Using a microtome blade (Feather s35) the
underlying brain was cut vertically in sagittal and coronal plane through the opening
in skull. The smaller of the skull was removed along with the underlying brain tissue
using forceps and scalpel to create an opening into cranium and the sample. From
the opening, a horizontal cut (in transverse plane) was made in the brain leaving
approximately 12 mm of tissue attached to skull using a bent razor blade. The free
specimen was lifted out from the skull with the blade to ensure minimal damage
to the meninges. The skull was set on epoxy putty (Selleys Knead It Multipurpose)
base to roughly level the four corners of skull. The putty set in 10 min. The top
surface of the brain was carefully levelled using microtome blade. �5 mm of brain
tissue from all edges was removed using microtome blade and scalpel to ensure we
discarded damaged meninges and tissues in the edges that may have been caused
by the vibrating saw. This formed our test sample (with brain–skull interface). The
process can be seen in Fig. 2a–g.

The resulting sample had brain tissue resting on skull with brain–skull interface
intact. The width of the faces of brain tissue, position of four corners in contact with
the skull and height at the corner of sample were measured. The widths of the faces
of the samples were taken midway between the base and the top surface of brain
tissue.

2.2 Experimental Set-Up

Uniaxial compressions of the samples were performed in set-up shown in Fig. 3. The
experiment was done in a testing device developed in-house [14]. The displacement
of impermeable loading plate was done by Haydon Kerk Linear actuator 43F4A-
3.22-099, a stepper motor screw drive actuator. It has a displacement control of
7.9 �m per step and allowed loading velocities of 0.001–5 mm/s. The displacement
was measured by MTS CS core sensor with analog output. The forces were
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Fig. 2 Sample preparation (a) head (b) skinned for extraction (c) skull cut using vibrating saw,
lower �30 � 30 mm and upper �10 � 30 (d, e) smaller free skull and brain removed (f) sample
extracted and mounted in epoxy resin (g) complete sample A

Fig. 3 Experimental set-up (a) sample before compression (b) sample after compression

measured by Burster 8523-20 0-20N loadcell with linear output in the required
range of 1 N with error less than 0.15 % [14]. The experiment was documented
using Pentax K5 camera with FA 50 mm f1:1.4 lens. The images were used to study
deformation of samples after the experiment.
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2.3 Experimental Protocol

The experimental protocol follows Miller and Chinzei [15]. The samples were
compressed between two impermeable platens in a semi-confined uniaxial set-up.
No preconditioning was done to the samples.

Tests were done at two different loading speeds 1 and 0.01 mm/s. The tests
were performed at room temperature as suggested by literature [13, 15, 16]. The
movement of the platen began about 0.5 mm above the sample and care was taken
that the sample didn’t touch the loading platen before compression started. The
samples were compressed about 3 mm corresponding to approximate strain of 0.3.
120 grid sand papers were glued to both the platens to ensure no relative movement
occurs between sample and loading plates, so no slip boundary condition could be
used in the analysis.

The linear stepper motor, screw drive actuator had very high acceleration and
hence the loading velocity was assumed to be achieved instantaneously.

2.4 Analysis

Dimensions of brain tissue in both the samples were measured. Geometry of
internal surface of skull was required to create a model for both samples. After
the experiment, the brain tissue and meninges were scraped from the skull and the
internal surface of the skull was scanned using MODELA MDX-20 Scanner. The
scanned surface of skull and the initial dimensions of the brain tissue were used to
create models of the samples. Side walls of brain were assumed to be orthogonal
and the top surface was assumed to be parallel to sample resting plane. Skull was
assumed to be rigid body as it was orders of magnitude stiffer than brain tissue.
Computational grid was created on the geometry. All the pre-processing of the
model including mesh generation was done using Altair HyperMesh. The brain
tissue was modelled using the Ogden-type [17]. Hyperelastic model as proposed
by Miller and Chinzei [16].

W D 2�

˛2

�
˛

1 C ˛
2 C ˛

3 � 3
�

(1)

where W is strain energy potential, i principal stretches, � relaxed shear modulus
and ˛ material coefficient. The experiment was simulated by applying fixed
boundary condition at the skull and prescribed displacement at top surface of brain
as shown in Fig. 4. The interface was simulated as friction less sliding contact.
Loading surface reaction force-time relation was obtained from simulation using
ABAQUS™ was matched close to data measured by the experiment to determine
coefficients � and ˛ following Morriss et al. [18]. This formed subject specific
material property of brain tissue for the sheep from which the sample was taken.
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Fig. 4 Rigid skull (white) constrained in all direction at reference point and brain tissue (tissue)
loading by displacement of nodes in z direction and constrained in x and y axes

The width of sample after the test was obtained from images of the experiment.
Any lens distortion was corrected using camera software (Camera’s JPEG engine)
distributed by manufacturer (Ricoh, Japan). The width of each pixel was estimated
using initial width measured and image before loading. It was compared with the
results from simulation.

3 Results

Comparison of force vs time relation from the experiments and modelling is
presented in Fig. 5 for both the samples. Corresponding material parameters and
loading speed for the samples are listed in Table 1.

For compression of up to 3 mm (�0.3 strain) the model can predict force
magnitude with error less than 5 %. Comparison of width of side monitored by
video with the modelling result along with initial width is presented in Table 2. The
interface was represented by friction less sliding contact. The data showed there has
good correlation between measured and predicted width for the two test samples.

4 Discussion

In this study, we presented results of compression experiment on samples containing
sheep’s skull, meninges and brain and evaluated behaviour of brain–skull interface
through use of non-linear finite element modelling. To obtain the properties and
behaviour of interface we performed uniaxial compression experiment on the tissue
sample under controlled condition. Base of skull and top of brain were fixed
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Fig. 5 Uniaxial compression of samples: comparison of modelling and experimental results
(a) loading speed 1 mm/s (b) loading speed 0.01 mm/s

to impermeable testing platens to implement non-slip boundary condition during
analysis. We measured initial width of faces brain tissue of sample and utilized
video and image of the experiment to obtain width of a face after the compression.
A model of sample was created where the skull, treated as rigid object, was
fixed on a reference point and the compression of sample was achieved by nodal
displacement of nodes on upper surface of brain. The brain–skull interface was
modelled as friction less contact interaction between brain and skull. The finite
element model accurately predicted the compressive forces (Fig. 5) and changes
in width of the face of sample (Table 2).
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Table 1 Odgen type hyperelastic material constants
for tissue samples by calibrating the model using
ABAQUS finite element solver

Sample Loading speed (mm/s) � (Pa) ˛

a 1 790 �6.3
b 0.01 600 �6.3

Table 2 Comparison of width of monitored side of brain tissue

Final width (mm)
Loading speed (mm/s) Initial width Experiment Simulation Difference (mm)

1 18.99 20.65 20.85 0.20
0.01 20.47 21.93 21.90 0.03

We hypothesize that the minor discrepancies between the modelling and experi-
mental result could be attributed to minor inaccuracies in determining the geometry
of brain and skull surface. The sample was manually prepared using by hand using
tools like scalpel blade and razor blade and contained unevenness reducing the
geometric and measured dimension accuracy to about 1 mm. This also affected
image processing to obtain final width of the face.

A limitation of our study is the number of experiments conducted. The prepa-
rations of samples were very challenging and delicate process and it resulted in a
lot of damaged samples during the testing. Another limitation is as the experiment
is ex vivo, we assume some of the cerebrospinal fluid (CSF) leaks from the
meninges. Hence this approach may not be sufficient to represent brain–skull
interface during very high speed impacts where fluids may have greater relevance.
We observed that deformation shape of sample was mainly dictated by the geometry
of skull. Depending on slope of skull surface in contact with brain, the deformation
tends to be more toward the inclination of the surface. For further validation and
improvement of the model more experiment needs to be conducted and feature or
deformation has to be tracked and compared in 3D to have better correlation with
simulation on a number of samples.

The study presents experimental results with quantitative assessment of brain–
skull interface compression to determine its properties. The result suggests that
frictionless contact can replicate brain–skull interaction of the samples in compres-
sion, when brain presses against the skull, at low loading speeds.
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Modelling the Deformation of the Human
Cornea Produced by a Focussed Air Pulse

Nouran Bahr, Noor Ali, Dipika Patel, Charles McGhee, Peter Hunter,
and Harvey Ho

1 Introduction

The cornea is a transparent, avascular structure that forms the anterior part of
the eye. The normal mean corneal diameter is 11.7 mm horizontally and the cornea
is thinnest centrally, gradually increasing in thickness towards the periphery, with
mean values of 0.52 mm and 0.67 mm, respectively, [1]. The cornea is subject to
a number of forces, including the internal eye pressure, termed intraocular pressure
(IOP), and external atmospheric pressure (Fig. 1a). The mechanical properties of the
cornea are predominantly defined by the corneal stroma, which contributes to 90 %
of the corneal thickness [2].

Accurate measurement of IOP is crucial in the diagnosis and management of
glaucoma, a common, potentially blinding eye disease [3]. The thickness and
biomechanical properties of the cornea are known to significantly influence IOP
measurement [3]. Many models for the cornea have been proposed (for reviews,
see [2, 4]), which recruit various constitutive equations to describe the nonlinear
anisotropic mechanical properties of the cornea (for a review, see [2]). Their results
are often compared and validated using tonometers (devices for measuring IOP in
clinical practice).

Recently a new, non-contact tonometer (Corvis ST, Oculus, Wetzlar, Germany)
(Fig. 1) has become commercially available. This device uses an ultra-high-speed
Scheimpflug camera (4,330 frames/s) to visualize and measure the corneal deforma-
tion response to an air pulse [5], which yields the mechanical properties of cornea
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Fig. 1 (a) Illustration of the cornea, the IOP and applanation length; (b) the Corvis device from
two different angles; (c) the cornea image it takes

implicitly. This new technique poses challenges to current finite element models
(FEMs) which provide alternative means to understand cornea properties, as both
the fluid and solid domains need to be solved, with the forces updated across their
moving boundaries. The aim of this study was to develop an initial FSI model and
to establish some basic parameters for future wide scale studies.

2 Methods

2.1 Medical Imaging

The Corvis ST device was used to measure the corneal deformation in an adult,
male volunteer. The fast motion of the cornea under the air puff (duration �25 ms)
was captured by an ultra-fast camera into a slow motion video. A series of images
were selected from the video for further analysis and comparison with our model.
The image with the highest concavity is shown in Fig. 1c. Note that the camera was
not vertically facing the cornea but placed at a 45ı angle towards the cornea [5].
Other relevant data collected included the corneal thickness, IOP, deformation
amplitude, applanation length, and corneal velocity.

2.2 Geometry Modelling

The Corvis system was simplified as a working domain consisting of a nozzle, a
cornea, and an air space. Their respective geometric modelling is described below.
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Fig. 2 The entities in the working domain: the open space, the nozzle, and the cornea

2.2.1 Air Space

The air field was designed as an open space consisting of a circular enclosure
(500 mm in diameter, 16 mm in height) where the nozzle and the cornea were placed
at the centre (Fig. 2). The space was designed to be much larger than the cornea to
avoid the influence of rebounding air flow from the wall.

2.2.2 Cornea

Taking the measurements made by the Corvis ST device into account, the cornea
was modelled as a dome-shaped elastic solid. We used a constant thickness of
0.52 mm, a horizontal diameter of 10 mm, and a vertical height of 2.6 mm to
approximate the cornea in this initial work (Fig. 2).

2.2.3 Air Nozzle

The nozzle was configured as a hollow pipe 3.08 mm in diameter placed 11 mm
from the cornea, as per the Corvis manual [5].

Using the grid generator within ANSYS, an adaptive mesh was generated for the
air space where the smallest element size was 1 mm. A fine mesh was created at a
region under the nozzle and the discharging area. The final fluid mesh contained
4,784,871 tetrahedron elements and 844,235 nodes, the cornea mesh contained
44,409 elements and 70,148 nodes (Fig. 3).
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Fig. 3 Computational grid for: (a) the cornea; (b) the enclosure space (adaptive mesh)

2.3 Biomechanics Modelling

2.3.1 Fluid Solver

With the aim of modelling air flow through a pipe and the resulting effect on
the cornea. The ANSYS CFX software was used for air flow simulation. A �-!
turbulence model was used for flow modelling. The flow was treated as transient
and the highest flow velocity from the outlet of the nozzle was set as 80 m/s.
Therefore the airflow had a brief and strong pressure impact on the cornea. The wall
was treated as outlet of the domain.

The air flow was treated as transient so that the airflow had a brief and strong
pressure impact on the cornea. The jet inflow from the nozzle was approximated by
a sinusoidal wave (Fig. 4). A �-! model was used for air turbulence modelling.

2.3.2 Solid Solver

With different fibre orientations in the corneal centre and periphery, the mechanical
properties of the cornea are very complex. In this work we employed a much simpler
Neo-Hookean strain energy function:

W D �

2
. NI1 � 3/ C 1

d
.J � 1/2; (1)

where � is the initial shear modulus, d is the incompressibility parameter, NI1 is
the invariant of the Cauchy–Green deformation tensor, J is the determinant of the
elastic deformation gradient. The shear modulus (D100 kPa) was computed using
the relationship:

� D E

2.1 C �/
; (2)

where a Young’s modulus E D 225;000 Pa and a Poisson’s ratio � D 0:49 were
assumed in all calculations (refer to [2] E D 0:3 MPa, � D 0:49). The ANSYS
interface requires the initial shear modulus and the incompressibility parameter to be
specified. The remainder are automatically computed and exploited by the software
to fit the model to the experimental data.
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2.3.3 FSI Framework

The FSI framework within ANSYS is built upon a multi-field analysis (MFX)
solver. In brief, within each time step there is a stagger loop whose number of
iterations is determined by the convergence of the load transfer between fields or
the maximum number of stagger iterations specified [6].

Since the movement of the cornea is insignificant compared with the enclosure
size, a one-way fluid–structure analysis was performed, i.e., the transient air force
working on the cornea was solved in CFX at first. The computed data are then passed
to the structure solver.

2.3.4 Boundary Conditions

The boundary conditions for the fluid and solid solvers are summarized as below:

– A transient outflow profile of 30 m/s was applied at the nozzle (as inflow to the
air space);

– The highest flow velocity from the nozzle was set as 80 m/s [5];
– The wall of the enclosure was treated as outlet of the domain;
– A fixed support was configured at the periphery, preventing rotation and transla-

tion of the cornea;
– A constant normal pressure of 1 kPa against the cornea wall was also applied to

mimic the effect of IOP (normal 1.5 kPa).

Note that the above boundary conditions were set as close to reality as possible.
However there were also some simplification treatments, e.g., the fixed periphery
condition, to ease the numeric simulations.

3 Results

3.1 Simulation of Air Jet Flow

The transient air flow dynamics was solved within 5.5 h on a desktop computer (Intel
Core Quad CPU @ 2.5 GHz) for a simulation of 30 ms. The computer solutions
were exported at 20 time steps. Figure 4a shows the jet flow velocity at t D 15 ms,
where the highest velocity (�80 m/s) occurred at the air flow centre just below
the nozzle (as the boundary condition). After hitting the cornea the air pulse was
discharged at a velocity of �40 m/s. Of particular interest were the pressure forces
acting on the cornea, which are shown in Fig. 4b. It can be seen that the highest
pressure force acting on the cornea was at its centre at �2.3 kPa, whereas the
pressure was negative at the corneal periphery, due to the IOP (1 kPa) acting from the
opposite direction. These raw load data were passed to the solid solver for structural
analysis, as described below.
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Fig. 4 (a) Air flow velocity along the flow streamlines; (b) the pressure force acting on the cornea.
Note that the pressure at the edge of the cornea (coloured in white) was negative due to IOP acting
from the opposite direction

3.2 Simulation of Corneal Deformation

Figure 5a provides the in vivo data for the applanation length and the maximum
concavity given by the Corvis ST device. In comparison, it can be seen from Fig. 5b
that the applanation length yielded from the model was �2.6 mm, which agreed with
that measured by the Corvis ST device (2.5 mm). The curve of the deformation of
apex (cornea centre) shows that the largest amplitude was 1.1 mm (t D 17 ms) from
the Corvis data, whilst our model result suggested a similar maximum amplitude of
0.9 mm (t D 15 ms).

A comparison was also made between the image sequence of cornea deflection
and that simulated from our model (Fig. 6). The similarity of the concavity of cross
section, the thickness of cornea and the applanation length were confirmed in the
comparison, yet our model was able to yield more “hidden” information such as the
stress and strain that the cornea was subjected to.

4 Discussion

Understanding the biomechanical behaviour of the cornea offers a wide variety of
applications including the diagnosis of glaucoma and the detection of eye diseases.
Previous works modelled deformation of the cornea subject to a uniformly dis-
tributed solid object load, with various material properties proposed. However, a
different approach is necessary to estimate the deformation induced by a focussed
air pulse. The purpose of this study was to apply an FSI analysis for this problem.
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Fig. 5 Comparison between the Corvis measurement and the model: (a) applanation length—
Corvis: 2.5 mm, model—2.6 mm; (b) the deformation amplitude of apex—Corvis: 1.1 mm, model:
0.9 mm

The model was validated against test data obtained in vivo, in particular against
the video captured by the device’s ultra-fast camera. To our knowledge, this study
represents the first FSI model for non-contact corneal deformation.

The complex microstructure of the cornea was simplified to an isotropic mate-
rial recruiting the nonlinear Neo-Hookean constitutive equation, as focus has
not been placed on testing sophisticated material laws at this stage, but rather
on establishing the FSI pipeline. Neither did we consider the time-dependent
strain for this basic model. Nevertheless the current work could be extended by
taking into account important variables, including: varying corneal thickness, non-
homogeneity, corneal-scleral connection, and scleral deformation as the cornea
deforms.

Further collaboration between ophthalmic clinician-scientists and bioengineers
will be beneficial in enhancing the current model. For example, corneal biome-
chanical properties are known to be significantly altered in keratoconus [7], a
non-inflammatory disease in which the cornea assumes a conical shape due to
thinning and protrusion resulting in the possibility of corneal transplantation. The
diagnosis of keratoconus is usually made on the basis of a combination of clinical
and computerized corneal tomographic signs. However, early cases are notoriously
difficult to detect. By assessing biomechanical properties in vivo coupled with
computer modelling, the Corvis ST is a potentially useful adjunctive tool in the
diagnosis of keratoconus.
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Fig. 6 (a) The cross section of the cornea at three time steps (5, 10, and 15 ms, respectively);
(b) the corresponding corneal deflection simulated from our model

5 Conclusion

This study reports a fluid–structure interaction (FSI) model to describe the defor-
mation of the human cornea under a focussed air pulse. The simulation results were
validated against in vivo data derived from the Corvis ST device. The model has a
range of potential applications in understanding corneal biomechanical properties
in health and disease, and in the diagnosis and management of corneal pathology.

References

1. Bron, A.J., Tripathi, R.C., Tripathi, B.J.: The cornea and sclera. In: Wolff’s Anatomy of the Eye
and Orbit, 8th edn. Chapman & Hall Medical, London (1997)

2. Pandolfi, A., Manganiello, F.: A model for the human cornea: constitutive formulation and
numerical analysis. Biomech. Model. Mechanobiol. 5(4), 237–246 (2006)

3. Browning, A.C., Bhan, A., Rotchford, A.P., Shah, S., Dua, H.S.: The effect of corneal thickness
on intraocular pressure measurement in patients with corneal pathology. Br. J. Ophthalmol.
88(11), 1395–1399 (2004)

4. Pinsky, P.M., Datye, D.V.: A microstructurally-based finite element model of the incised human
cornea. J Biomech. 24(10), 907–922 (1991)

5. OCULUS: Corvis ST instruction manual (2011)
6. ANSYS: ANSYS CFX-Solver, Release 10.0: Theory. ANSYS Europe Ltd. (2005)
7. Nash, I.S., Greene, P.R., Foster, C.: Comparison of mechanical properties of keratoconus and

normal corneas. Exp. Eye Res. 35(5), 413–424 (1982)



Biomechanical Modeling of the Respiratory
System: Human Diaphragm and Thorax

Hamid Ladjal, Joseph Azencot, Michael Beuve, Philippe Giraud,
Jean Michel Moreau, and Behzad Shariat

1 Introduction

One of the major difficulties in radiotherapy is the treatment of moving tumors.
Tumor motion during irradiation reduces the coverage target and increases dose
deposition to healthy tissues. The respiratory motion modifies both the shape and
position of internal organs. This is liable to degrade the quality of radiation treatment
of cancer. Moreover, in the case of a four-dimensional radiotherapy treatment plan
aiming to estimate the evolution of the dose distribution during the respiratory
cycle, not only the position of the organs but also the deformations of the tissues
throughout the respiratory cycle need to be estimated. Prediction of respiratory
motion has the potential to substantially improve cancer radiation therapy. As of
now, a full-four dimensional continuous imaging of the internal anatomy of the
patient during the treatment procedure is not yet feasible.
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Internal organ motion estimation methods may be divided into two groups:
image-based, and biomechanical models. The first methods consist of deformable
image registration (DIR) techniques that estimate motion vector fields by directly
extracting them from 4D image sequences. A detailed overview of DIR-based
methods may be found in [1]. Image-based methods calculate the displacement
fields without explicitly taking the information related to the breathing physiology
and physical properties of organs into account. In contrast, biomechanical models
attempt to describe respiratory-induced organ motion through a mathematical
formulation based on physics. More precisely, biomechanical models describe the
physiological process related to organ motion using continuum mechanics, which
explains why image-based models require biomechanical modeling.

Concerning lung cancer, respiratory tumor motion tracking is very challenging
in external beam radiation therapy of the lung, including 3D conformal radiotherapy
(3D-CRT) [2], Intensity Modulated Radio Therapy [3], stereotactic radiation ther-
apy (SRT) [4], and proton beam therapy (PBT) [5]. Current techniques based on
imaging, such as Cone-Beam or DIR, attempt to predict the position of lung tumors
[6]. Unfortunately, these methods assume a reproducible motion of the respiratory
system.

However, the respiratory motion is complex and its prediction is not a simple
task, especially since breathing is controlled by the independent action of two
muscles: the diaphragm and the intercostal muscles of the ribcage. The former is
composed of a peripheral part (muscular fiber) and a central part (tendon). The
latter are attached to the ribs, including the complete thorax with musculoskeletal
structure. Consequently, the respiratory motion is non-reproducible [6] and image-
based techniques are liable to give unsatisfactory results. The diaphragm is the main
muscle for respiration, and studying its shape and motion is also important to detect
respiratory diseases and to study the induced motion of other organs for radiotherapy
or laparoscopic surgery.

Various models have been proposed for diaphragm modeling by the computer
graphics community for real-time applications [7, 8]. The main drawback of these
models is the lack of precision due to the difficulty of the integration of the
biomechanical parameters into them. Other models have been implemented to
demonstrate the concept using the finite element method (FEM) [9–12]. The main
advantages of FEMs are accuracy and realism. Furthermore, the FEM model allows
the direct integration of experimentally obtained biomechanical tissue parameters.

Unfortunately, the behavior of the diaphragm using FEM models is not con-
fronted with clinical data, and the authors don’t include the influence of the thorax
and ribs kinematics on the diaphragm motion.

In this chapter, we propose a biomechanical model of the respiratory system and
study the impact of nonlinearities and the role of rib kinematics on the amplitude
of the diaphragm motion. This model includes the physiological information of
the diaphragm, including the tendon and muscles, and the complete thorax with
musculoskeletal structure (ribs, thoracic vertebra, costal cartilage margin, body of
sternum) extracted directly from 4D CT scan images coupled with the kinematics
modeling of the ribcage based on the finite helical axis method (FHAM). In order



Biomechanical Modeling of the Respiratory System: Human Diaphragm and Thorax 103

to study the appropriate biomechanic model of the diaphragm, we propose two
nonlinear hyperelastic models: Saint-Venant Kirchhoff (large displacement) and
Mooney–Rivlin (large displacement and large strain).

2 Materials and Methods

2.1 Anatomy and Physiology of the Respiratory System

Breathing is an active and complex process where the mechanics of the respiratory
motion is controlled by two muscle groups: the diaphragm and the intercostal
muscles attached to the ribs. The diaphragm is a dome-shaped musculofibrous
membrane which separates the thorax from the abdominal cavity. It presents the
shape of a dome concave toward the abdomen (Fig. 1). It is composed of a peripheral
part (muscular fiber) and a central part (tendon). The tendon is the upper part of the
diaphragm, in contact with the lungs and is closer to the front than to the back of the
thorax, so that the posterior muscular fibers are longer. The peripheral part, which
consists of muscles, is linked to the lower thoracic cavity perimeter and has three
major insertions: lumbar, sternum, and ribs.

The diaphragm moves down during the inhalation, creating negative pressure
around the thoracic cavity and decreasing pressure on abdominal organs. As it
moves up during exhalation, the pressure increases on the lungs and on abdominal
organs (Fig. 1). Lungs are linked to the diaphragm and to the ribs through the pleura.
The pleura consists of two sheets (visceral and parietal). The visceral pleura is
attached to the lungs and the parietal pleura is attached to the diaphragm and to
the chest wall. Between the two sheets, an incompressible fluid allows lungs to slide
while they follow diaphragm and ribs motion.

Fig. 1 Respiratory mechanics: the role of the diaphragm and thorax in breathing
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Fig. 2 Automatic and semi-automatic segmentation of the internal organs of the respiratory
system: ribs, human diaphragm, and lungs

2.2 3D Automatic and Semi-Automatic Segmentation

We have chosen CT scan data covering the whole thorax of a patient. The 4D CT
set is issued from a pre-treatment procedure of a lung cancer patient. From the 4D
set, we choose two 3D sets of images that correspond to the maximum and to the
minimum of the respiratory cycle. The diaphragm is a thin tissue, with thickness
between 2 and 5 mm. In Fig. 2, the diaphragm was segmented semi-automatically
using the snake evolution methodology available in the ITK-SNAP library. The
diaphragm muscles and tendon may not be identified separately on CT images.
According to [13], the mean central tendon surface area is 143 cm2. This area does
not vary to a large extent from one person to another.

An automatic segmentation algorithm of the thorax with all musculoskeletal
structure was developed in our team. We have applied a threshold value to the
images and used morphological operators in order to fill holes and link separated
regions that correspond to the same rib. Then, a surface mesh of the ribs and spine
was generated using the marching tetrahedron algorithm.

2.3 Patient-Specific Anatomical 3D Model

Figure 3 presents a global methodology pipeline in order to generate biomechanical
patient-specific anatomical 3D models of the respiratory system from medical
images. The main motivations of the proposed methodology pipeline based on
CAD-modeling come from the difficulties in applying the finite element (FE)
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Fig. 3 Global pipeline in order to generate patient-specific anatomical 3D models of the respira-
tory system from medical images (CT scan data) to finite element simulation

Fig. 4 Representation of the 3D diaphragm and thorax meshes

method in biomechanical analysis due to the complexity associated with creating
subject-specific anatomical models. For this reason we have adopted the following
computational procedure:

1. 4D CT scan images; acquisition and generation of the 4D CT images of the whole
respiratory system,

2. 3D automatic and semi-automatic segmentation, 3D reconstruction of the respi-
ratory system (different organs),

3. 3D CAD model reconstruction and then 3D mesh generation from CT images
(decimation, smoothing, etc.) in order to generate the appropriate mesh elements
adapted to finite element simulation, (Fig. 4)

4. Boundary conditions between the various organs of the respiratory system (lungs,
diaphragm, thorax, etc.) based on anatomical and physiological properties,

5. Finite element analysis of the respiratory system based on appropriate behavior
laws for each organ (linear elastic, nonlinear hyperplastic, homogenous or
heterogenous, etc.).
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Fig. 5 Different parts of the human diaphragm and thorax including: tendon and muscles tissues,
ribs, thoracic vertebra, costal cartilage margin, body of sternum

2.4 Generation of the Finite Element Mesh

Mesh generation is a critical and important step in the finite element analysis pro-
cess. The mesh affects the accuracy, convergence, and speed of the computational
process: a more precise and efficient finite element mesh will result in a more
accurate and faster solution. Suitable geometry simplification plays a major role in
obtaining a proper finite element model for a specific application. Simplifications
usually involve elimination of less important details that unnecessarily increase
the meshing complexity. In this order, it is necessary to obtain a high quality
3D geometrical representation of anatomical shapes and generate adapted FEM
meshes. For the geometries, we have used NURBS surface models, resulting in
non-intersecting and smooth organ representations (Fig. 5).

2.5 Respiratory Biomechanics

Finite element simulations are performed by using Abaqus.1 In this study, we chose
two simple hyperelastic models: Saint-Venant Kirchhoff and Mooney–Rivlin.

1The FE code Abaqus is developed by SIMULIA.
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For an isotropic elastic or hyperelastic material, the elastic energy, noted W , may
be written as:

W.E/ D 

2
.t r E/2 C � .tr E2/; (1)

where E is the Green–Lagrange strain tensor,  and � are the Lame coefficients.
As the strain energy function W is quadratic in terms of strain invariants, we obtain
a linear relation between the second Piola–Kirchhoff stress tensor and the Green–
Lagrange strain tensor given by:

S D  .t r E/ I C 2 � E: (2)

The strain energy of the second hyperelastic Mooney–Rivlin model may be
written as:

W.C/ D c1

� NI1.C/ � 3
�C c2

� NI2.C/ � 3
�C K

2

�
J.C/ � 1

�2
; (3)

where c1, c2 are material parameters and K is the Bulk modulus. The quantities
NI1 and NI2 are the isochoric invariants of the Cauchy-deformation tensor C :
NI1.C/ D J.C/�2=3 I1.C/, NI2.C/ D J.C/�4=3 I2.C/ where I1.C/ D t rC, I2.C/ D
1

2
..t rC/2 � t rC2/ and J is the Jacobian: J.C/ D det F.

2.6 Rib Cage and Intercostal Muscles: Rib Kinematics

The diaphragm biomechanics model is coupled with rib kinematics, with the aim to
establish a thoracic model that may be monitored by external parameters. We have
developed two different methods:

• a “direct” method allowing to compute the skin position from the ribs motion.
• an “inverse” method providing rib motion and consequently lung motion. It may

be computed from the outer surface motion.

In this chapter, we focus on the first approach. The direct model describes the motion
of the ribcage based on particular rigid transformations computed with the finite
helical axis (FHA) method applied to each rib, which describes movement as a
rotation and a translation along a single axis in the 3D space.

A state-of-the-art methodology to study human rib displacements using the
FHAM is presented in our work [14, 15]. Since ribs may be considered as
rigid bodies in comparison with other surrounding anatomical elements, each rib
transformation parameter is computed automatically between the initial and final
states of the respiratory motion (Fig. 6).
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Fig. 6 Rib kinematics based on the finite helical axis method (FHAM). Left figure: two thorax
sagittal—views gray mesh: thorax segmented on the CT scans at an intermediate state of breathing
black dots: computed rib cage position by inverse kinematics. Right figure: finite helical axis
method principle

Fig. 7 The boundary conditions applied to the mesh nodes of the respiratory system: human
diaphragm and thorax

2.7 Boundary Condition

The boundary conditions are inferred from the anatomy and identified by medical
experts (see Fig. 7). The peripheral part, which consists of muscles, is linked to the
lower thoracic cavity perimeter and has three major insertions: lumbar, sternum,
and ribs. The lumbar part is fixed to the lumbar vertebrae by means of the crura.
The sternal part is attached to the internal surface of the xyphoid process. The
costal part is attached to the internal surfaces of the lower six costal cartilages or
ribs. Dirichlet boundary conditions are applied in the lower part of the diaphragm.
Two parameters are set to monitor diaphragm motion: the amplitude of muscles
tension and ribs displacement. The pressure is applied on the muscular part of the
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Fig. 8 Iterative process to minimize the displacement errors between simulation Usim and initial
mesh Uexp

diaphragm. The surface tension models generate forces that only depend on their
amplitude applied to the surface. When applying the tension

�!
ts on the diaphragm

muscles, the resulting force may be written as:

�!
f D

Z

S

�!
ts dS D ˛

Z

S

�!
dirs dS (4)

with S , ˛ et
�!
dirs , respectively, the mesh surface, the force amplitude, and direction.

Figure 7 presents the radial direction of muscle forces, which corresponds anatomi-
cally to the direction of muscle fibers [12]. In order to determine the appropriate
values of ˛, we have used an iterative process to minimize the errors between
simulation and initial data (see Fig. 8).

2.8 Quantitative and Qualitative Analysis of Biomechanical
Simulations

In order to demonstrate the validity of our biomechanical and kinematic model,
a quantitative and qualitative analysis of simulations was conducted. We have
compared the results of a simulated motion with the experimental data provided
by the CT scan images, where the mechanical properties used in our finite element
simulations are given in Table 1. First, it is important to check that the presence of
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Table 1 Mechanical properties of the diaphragm and thorax, where E stands for the Young
modulus, and � for the Poisson coefficient

Young modulus Poisson

Tissues (MPa) coefficient References

Diaphragm muscle 5:32 0.33 Behr et al. (2006)

Diaphragm tendon 33 0.33 Behr et al. (2006)

Ribs 5;000 0.3 Yamada et al. [16]

Costal cartilage margin 49 0.4 [17, 18]

Body of sternum 11;500 0.3 Yamada et al. [16]

Thoracic vertebra 9;860 0.3 Yamada et al. [16]
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Fig. 9 Stabilization and internal energies: comparison between the energy dissipation due to
stabilization (ALLSD) and the internal energy of the structure (ALLIE)

contact stabilization does not significantly alter the physics of the problem. One way
to assess this requirement is to compare the energy dissipation due to stabilization
(ALLSD) against the internal energy of the structure (ALLIE). Ideally the amount
of stabilization energy should be a small fraction of the internal energy. The energies
involved in the process have been plotted with respect to time. Figure 9 shows the
variation of the stabilization and internal energies. It is clear that the dissipated
stabilization energy is, indeed, small. Figure 10 shows the stress distribution, the
total deformation, and the maximum displacement components of the thorax and
diaphragm during normal inspiration between the initial state (inspiration) and
the final state (expiration). The results show the maximum displacement of the
diaphragm inside the thorax on the right-posterior (RP) and left-posterior (LP) sides.
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Fig. 10 Finite element simulation of the human respiratory system: stress distribution and the total
deformation of the diaphragm including the thorax behavior

It is also possible to notice a slightly larger (RP) side motion than (LP) side motion,
in concordance with the physiological anatomy.

Then, we were interested in evaluating the impact of the nonlinear behavior
of the diaphragm. In this order, we have considered four cases: (1) S1, S2: The
diaphragm was considered as compressible, heterogenous with a linear elastic
behavior with large displacement (Saint-Venant Kirchhoff) considering or not the
effect of ribs kinematics, (2) S3, S4: The diaphragm was considered as compressible,
heterogenous with nonlinear hyperelastic behavior (Mooney–Rivlin) considering or
not the effect of ribs kinematics.

Figure 11 presents a 3D distance map and distance between cross sections
measured on the original mesh and the FEM simulation mesh of the diaphragm
at inspiration.

Table 2 shows the errors in the region of interest; diaphragm/lungs contact,
between the end inspiration (EI) and the end expiration (EE)—the average surface
errors are 2:0 ˙ 2:2 mm. The simulation shows that the developed finite element
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Fig. 11 3D distance map from the vertices of the diaphragm surface mesh at inspiration
(simulation) to the reference mesh at inspiration. St-Venant Kirchhoff versus Mooney–Rivlin
models. Showing the view from the cross sections, between the reference mesh at expiration
and finite element simulation. Area 1 presents the interest region (the large amplitude of the
deformation). Area 2 presents the peripheral contact between the diaphragm and ribcage (small
displacement)

Table 2 Average error measurement � and standard deviation (SD): applied to different
scenarios

Patients

St-Venant Kirchhoff Mooney–Rivlin

S1 (without RK) S2 (with RK) S3 (without RK) S4 (with RK)

Mean ˙ D (mm) 2:1 ˙ 2:3 2:0 ˙ 2:2 2:2 ˙ 2:3 1:9 ˙ 2:1

model is in a good agreement with the experimental data. However, these errors
depend mainly on the quality of the 3D segmentation.

3 Discussion and Conclusion

From a biomechanical point of view, Saint-Venant Kirchhoff (linear elastic behavior
with large displacement) gives as good results as Mooney–Rivlin (full nonlinear
hyperelastic behavior). The linear elasticity is often used for the modeling of
deformable materials, mainly because the equations remain quite simple and the
computation time may be optimized. The physical behavior of soft tissue may be
considered as linear elastic if its displacement and strain remain small (less than
10 % of the mesh size). To verify the hypothesis of small displacement and strain,
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Fig. 12 Strain estimation: the uniaxial strain deformation "1, the logarithmic strain "2, and the
Green-Lagrange strain "3

we compared the geometry of the diaphragm at the end of inspiration (EI) and at the
end of expiration (EE).

We have calculated the uniaxial strain deformation measured by: "1 D l�l0
l0

,
where the large deformations may be measured by the logarithmic strain (also

called natural strain) "2 D ln
�

l
l0

�
. The Green-Lagrange strain is defined as:

"3 D 1
2

�
l2�l2

0

l2
0

�
, where l0 is the original length of the undeformed mesh and l is

the length of the deformed mesh. All calculations have been tested on 12 patients.
Figure 12 shows the average errors �i and standard deviation (SD) of the clinical
data between EI and EF. These results confirm that the approach of small strains
(with the large displacement) may be globally maintained in the modeling of the
diaphragm (typically less than 10 % of the mesh size).

To conclude, we have investigated the challenging issues in biomechanical
modeling of the human diaphragm and ribs kinematic. The first results of our
simulations are quite realistic, compared to the experimental data. We can see
that the proposed physically based FEM model coupled with the rib kinematics is
capable of simulating correctly the respiratory system including the real boundary
conditions of the diaphragm and thorax.

Currently, we are working on integrating the developed model in an interactive
virtual physiological human model of the respiratory system based on GPU imple-
mentation, including the behavior of the lungs, pleura, heart, thorax, and soft tissues.
Furthermore, these simulations will be monitored and correlated with external
surrogates, using different imaging modalities. Also, the objective of this work is
to produce a novel 4D computational patient-specific phantom that could be used
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for diagnosis, beam therapy, dose distribution computation, or better registration of
online imaging systems.
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A Collective Approach for Reconstructing 3D
Fiber Arrangements in Virtual Musculoskeletal
Soft Tissue Models

Hon Fai Choi, Andra Chincisan, and Nadia Magnenat-Thalmann

1 Introduction

The mechanical properties of musculoskeletal soft tissue structures are often
altered in orthopedic interventions, either intentionally or inadvertently. Therefore,
evaluation of biomechanical consequences as part of the preoperative planning can
enhance the surgical outcome, but requires an adequate quantification of soft tissue
excursions. Medical imaging is not always favorable for this purpose because of
limitations in acquisition speed and field of view or the patient’s mobility. Virtual
simulations provide an alternative means to estimate the mechanical conditions in
soft tissue structures that are critical for the patient’s movement, which can be
quantified in three-dimensional (3D) anatomical models using the finite element
(FE) method [1, 2]. In the musculoskeletal system, soft tissues such as muscles,
tendons, ligaments, and menisci are characterized by a hierarchical organization
in fiber bundles or fascicles running between attachments. The orientations of
these bundles are important determinants of mechanical capacities and need to be
represented in the tissue model to simulate an adequate mechanical response.

Quantitative measurement of the complete internal fibrous architecture is cur-
rently still challenging. Cadaveric dissections are often performed, but require
specialized expertise and are work intensive. Consequently, cadaveric measure-
ments are often sparsely sampled, especially in large skeletal muscles, while
detailed dissection studies have been reported for only a few selected muscles [3].
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To obtain in vivo measurements, ultrasound imaging is an accessible modality with
a fast acquisition time, but has a limited scan depth and currently only allows
for the quantification of projected fiber angles in the 2D imaging plane which
is sensitive to the probe orientation [4]. Alternatively, diffusion tensor magnetic
resonance imaging (DT-MRI) can visualize fiber orientations in any anatomical
region of the body, but technical challenges such as low signal-to-noise ratio are
still limiting a wide application for musculoskeletal measurements [5]. As such,
DT-MRI data are generally noisy and require post-processing with user-defined
parameters and exclusion conditions to remove erroneous fiber tracts [6]. Currently,
most experimental characterizations of 3D fiber arrangements have been focused on
skeletal muscles [3, 6]. Fiber bundle architectures in tendon, ligaments, and menisci
have been predominantly investigated in cadaveric or ultrasound studies, with
average quantitative measurements reported in a few studies [7, 8]. Alternatively,
microstructural characterization of 3D fiber distributions from confocal microscopy
images has been demonstrated in the meniscus [9, 10], showing potential for non-
destructive in situ mechanical modeling in arthroscopy applications.

Because in vivo 3D volumetric measurements are not yet fully standardized,
computational approaches provide an alternative to construct computational rep-
resentations of musculoskeletal fiber arrangements in 3D anatomical models that
are physiologically plausible for biomechanical simulations. To this end, several
methods have been proposed aiming at different tissue types and with varying
levels of approximations. Uniform orientation along a single axis of the global
coordinate system has been proposed [11, 12], while other studies define fiber
orientations implicitly according to element directions in structured hexahedral
mesh models [13]. An approximation based on neuromuscular line-element models
has been described for anatomical muscle models [14], while a centerline method
combined with diffusion interpolation was suggested for knee ligament models [15].
To account for the diversity of muscle morphologies, other studies have proposed
spline-based interpolation based on data from cadaveric studies [16], volumetric
warping of fascicle map templates onto 3D anatomical models [1] or generation of
a Laplacian vector field representation based on the characteristic properties of the
fascicle arrangements [17].

The diversity of methods offers different possibilities to represent soft tissue
fiber arrangements in anatomical simulation models. However, several of these
approaches involve geometrical simplifications or assumptions or depend on a
structured mesh topology, which is difficult to generalize for the variability in
complexity of musculoskeletal anatomy. Application in computer assisted sys-
tems would therefore require differentiation between use cases to select methods,
resulting in an implementation that is impractical to manage. Because the typical
physical properties as displayed by the fascicle organization are similar among
the musculoskeletal soft tissues, the Laplacian approach can potentially serve as
a collective methodological basis. Therefore, the aim of this study is to investigate
the feasibility of the Laplacian method to define fiber bundle orientations in 3D
virtual models for the various types of musculoskeletal soft tissue structures.
Hereto, the utility for the common penniform muscle type is further explored by
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modifying the procedure as proposed in [17] to facilitate the model construction.
In addition, the implementation of the Laplacian method is tested in example models
of connective soft tissue structures that are important in orthopedic interventions,
i.e. ligaments and knee menisci. The application for concrete use cases is further
evaluated in biomechanical simulations.

2 Methods

The general workflow of the Laplacian approach to generate fiber arrangements in
3D anatomical models has been adopted from [17] and is illustrated in Fig. 1. The
theoretical foundation of the method has been outlined for skeletal muscles, but
can be translated to most other musculoskeletal fibrous tissues that share a similar
bundled organization. In summary, the conceived physical properties of the bundled
fiber arrangements are that the bundles are parallel aligned and run continuously
between the attachment areas. These properties can be mathematically represented
by a rotation and divergence free Laplacian vector field which is obtained by solving
the linear Laplace equation:


� D 0 (1)

To solve the differential Eq. (1), Neumann boundary conditions are applied on the
surfaces which describe the values of the potential gradient or flux, @�=@n.

Because termination only occurs at the attachment areas, a zero gradient is
defined on the bulk surface. A uniform flux can be applied at the attachment
surfaces such that the mass equation is respected, which allows for the generation
of physically plausible fiber directions as demonstrated in skeletal muscle models
in [17]. The Laplace equation can be solved using the finite element (FE) or finite
volume (FV) method, but the calculation of the flux values across element faces
in the FV method allows for a robust element-by-element tracing of the fascicle
trajectories between the attachments as described in [17].

Fig. 1 Overview of the workflow to generate a computational vector field representation of fiber
arrangements in 3D anatomical models using the Laplacian approach
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Fig. 2 Comparison of the internal tendon representation of the tibialis anterior muscle (lower
leg) using surface reconstruction (BND) and source term (SRC) approach: (a) MRI segmentation,
(b) 3D surface reconstruction, (c) clipped volumetric meshes to illustrate the localization of the
tendon. The proximal attachment is indicated in green

The workflow summarized in Fig. 1 provides a robust basis to computationally
generate musculoskeletal fiber arrangements. However, many skeletal muscles are
characterized by an architecture in which oblique fibers originate from narrow
internal aponeurosis tendons embedded in the muscle bulk volume as illustrated
in Fig. 2. Because the tendon inserts at a very shallow angle, an awkward geometry
is obtained, generating topological conditions that make it difficult to generate a 3D
volumetric mesh that is adequate for FE simulations of large deformations. As an
alternative, we propose to incorporate a source term s in Laplace’s equation:


� D s (2)

The tendon location is indicated by the source term, of which the distribution is
assigned to elements in the volumetric mesh of the bulk muscle (Fig. 2). We have
used algorithms from the VTK-library (www.vtk.org) to find the source elements as
those intersecting with the segmented image voxels of the internal tendon. This
approach allows to approximate the tendon location inside the muscle volume
without having to include it in the surface reconstruction as attachment area.

Some musculoskeletal soft tissues are characterized by multiple fiber families.
The collagen fibers in the knee menisci are mainly organized in circumferential bun-
dles, with sparse bundles in the radial directions [18]. Therefore, meniscus tissue is
often modeled as an orthotropic material [13], which requires the definition of three
perpendicular directions that reflects the multiple fiber anisotropy. The definition of

www.vtk.org
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the circumferential fc and radial fr fiber orientations can be obtained by applying
the Laplacian method with attachments at respectively the horns of the menisci
and at the internal and external surfaces as illustrated in Fig. 6. For the radial
fibers, a uniform value for the potential � is applied as boundary condition to better
reflect the radial orientations. Because the generated circumferential and radial fiber
directions are not necessarily perpendicular, a similar approach as in the OpenKnee
model [13] can be applied to define the local coordinate system ei for the orthotropic
material symmetry:

e1 D fc; e2 D e3 � e1; e3 D fc � fr

kfc � frk (3)

3 Case Studies

The Laplacian method was evaluated in several examples of different musculoskele-
tal soft tissue organs. Three-dimensional anatomical models were constructed
from segmentation of MRI images of which volumetric tetrahedral meshes were
generated. The numerical implementations as described in [17] were used to
construct the workflow, using Gmsh [19] as the mesh generator and the OpenFOAM
package (www.OpenFOAM.com) as the FV solver.

The modified approach incorporating the source term (SRC) was tested in a
model of the tibialis anterior muscle and contrasted against the original boundary
attachment approach (BND). This muscle was selected to allow for a comparison
with the results obtained in [17], which was shown to compare well with DT-MRI
data presented in [20]. The tibialis anterior muscle is characterized by a long distal
aponeurosis tendon that runs deep into the muscle, which divides the muscle into
a deep and superficial compartment (Fig. 2). Following [17], the fascicle trajectory
lengths of both compartments were analyzed, with trajectories traced from seed
points defined on the deep and superficial side of the distal tendon (Fig. 3). The mean
and standard deviation of the differences between both approaches expressed as
percentage of the BND fascicle lengths were calculated as a measure of comparison.
The overall agreement was further assessed by calculating the angle difference
between the fiber orientation vectors as the inverse cosine of the dot product in the
element centroids of the volume meshes generated in both approaches. To evaluate
the impact on FE simulations of deformation, a comparison was also made between
the fiber strains obtained for an isometric muscle contraction with 80 % muscle
activation which was simulated in the FEBio software [21] with the muscle material
model from [1] (Fig. 4).

To demonstrate the feasibility for other musculoskeletal soft tissues, anatomical
models of knee ligaments and menisci were considered. As a comparison between
methods, the Laplacian approach was applied to the OpenKnee models of these
structures (simtk.org/home/openknee) in which the fiber orientations are defined
implicitly by the directions in the hexahedral meshes. The OpenKnee models

www.OpenFOAM.com
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Fig. 3 Comparison of fascicle tract lengths between the BND and SRC approaches in a model of
the tibialis anterior muscle. Samples of 3D fascicle trajectories for the deep (red) and superficial
(yellow) compartments are shown in the left column (proximal and distal attachments shown in
green and blue respectively). The fascicle lengths distributions mapped on the surfaces of the
internal tendon for both compartments are shown on the right

Fig. 4 Comparison of fiber strain between the BND and SRC approaches in a simulation of
isometric contraction with 80 % activation level in the tibialis anterior muscle. The proximal
attachment area is indicated by the wireframe



A Collective Approach for Reconstructing 3D Fiber Arrangements in Virtual. . . 123

Fig. 5 Examples of Laplacian generated fiber traces (shown on the surface) in knee ligaments and
menisci. The locations of the different structures are indicated by the color in the anatomical knee
model shown in a posterior view in the top left corner. Generated circular (blue) and radial (red)
fiber arrangements are shown for the lateral meniscus example in the bottom row

of ligaments and menisci were remeshed with tetrahedral elements to calculate
the Laplacian fiber field. In each element center of the OpenKnee hexahedral
meshes, the Laplacian vector calculated in the tetrahedral element that contained the
hexahedral element center was compared with the hexahedral fiber direction. The
comparison of fiber vectors was performed with the same measure as in the tibialis
anterior muscle case. Additionally, the Laplacian method was further evaluated in
a second in-house developed anatomical knee model (Fig. 5). FE simulations of
anterior–posterior displacement were performed in FEBio for two cases: (1) with
ligament fibers and (2) without ligament fibers and using material parameters aver-
aged between the fiber and transverse directions. The force-displacement relation or
knee laxity was calculated and compared with experimental data (Fig. 6). Secondly,
a rotational flexion of 45ı around an axis fitted through the femur condyles [22] was
also simulated in FEBio. Length changes of fascicle trajectories in the ligaments
were calculated and compared with experimental studies presented in the literature
(Fig. 6). For these simulations, the transverse isotropic Mooney–Rivlin was used as
material model for the ligaments, following [13].

4 Results

The distributions of the calculated fascicle trajectory lengths for the deep and
superficial compartments in the tibialis anterior muscle are presented in Fig. 3.
The results obtained for both the boundary attachment (BND) and source term
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Fig. 6 Illustration of comparisons in knee ligament models. (a) Difference between Laplacian
(red) and hexahedral (blue) fiber vectors near the femoral attachment in the OpenKnee model of
the anterior cruciate ligament (ACL). (b) Comparison between simulated (FEM) and measured
(in vitro) force-displacement curves for an anterior–posterior knee laxity test. (c) and (d) show
the initial (blue) and deformed (red) configuration with Laplacian fascicle traces for the cruciate
ligaments in the simulation of 45ı knee flexion. The associated ranges of relative length changes
in the fascicle traces are shown in (e) and (f)

(SRC) approaches display similar distributions. The mean differences in fascicle
trajectory lengths are 2.85 ˙ 2.33 % and 8.60 ˙ 9.92 % for the deep and superficial
compartments respectively, which is within the intra-subject variability as obtained
in [20]. The mean angle difference between fiber orientation vectors as calculated
in the meshes generated in the SRC and BND approaches are 3.19 ˙ 4.82ı and
2.50 ˙ 3.34ı respectively. This shows that a high similarity is obtained for the
fiber orientation vectors, although the similarity in fascicle lengths is lower due to
the cumulative effect of the tracing procedure. The range in fascicle lengths was
between 40 and 240 mm, which is comparable with the range obtained in [17]
(25–255 mm). The distributions as shown in Fig. 2 also display the same general
characteristics as demonstrated in [17, 20], with fascicle lengths decreasing from
the distal towards the proximal end. Some differences in the local gradients of the
distributions can be observed, which can be explained by regional differences in the
tendon geometry, especially at the distal end. As shown in Fig. 4, the fiber strains
obtained in the FE simulation of isometric contraction show similar distributions
between the BND and SRC approaches. The largest differences occur in the region
around the proximal end of the internal distal tendon where the fiber strains are
lower for the SRC approach compared to the BND approach (about 10 %). The
simulation of isometric muscle contraction yielded a mean difference in fiber strain
of 0.011 ˙ 0.065 and �0.014 ˙ 0.067 in the SRC and BND meshes respectively.
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Table 1 Mean angle differences in degrees between
Laplacian and hexahedral mesh generated fiber orienta-
tions in the OpenKnee models of anterior (ACL) and pos-
terior (PCL) cruciate ligaments, lateral (LCL) and medial
(MCL) collateral ligaments and lateral (LM) and medial
(MM) menisci

ACL PCL LCL MCL

7.21 ˙ 8.50 3.89 ˙ 2.74 3.58 ˙ 4.11 4.62 ˙ 3.67
LM MM
e1 e2 e1 e2

3.70 ˙ 2.72 3.08 ˙ 2.70 2.49 ˙ 1.85 3.35 ˙ 2.63

The fascicle trajectories, for example, of ligaments and menisci in the in-house
developed 3D anatomical knee model are illustrated in Fig. 5. The angle differences
between the fiber orientation vectors obtained with the Laplacian method and with
the hexahedral mesh directions in the OpenKnee models are listed in Table 1.
A close agreement is found in all cases, except for the anterior cruciate ligament
(ACL). In this case, a larger difference was obtained in the region adjacent to the
femoral attachment, where the orientation vectors converged towards the attachment
in the Laplacian approach while they were aligned tangentially in the OpenKnee
model as shown in Fig. 6a.

The anterior–posterior knee laxity or force-displacement relations obtained in the
FE simulations with the in-house knee model are shown in Fig. 6b. The simulations
performed with and without fibers show a noticeable difference, whereby the
simulation with fibers displayed a good agreement with two experimental data sets.
The deformations of the anterior (ACL) and posterior (PCL) cruciate ligaments
obtained in the simulation of knee flexion are shown in Fig. 6c, d, illustrating
the robust flux tracing of the fascicle paths. This allows for the calculation of the
resulting length changes in the traced fascicle paths of which the ranges are shown
in Fig. 6e, f. Comparison for the ACL shows a similar range in fiber stretching as
reported in [8] (0.05), but the range in fiber slacking seems to be underestimated
(reported range of �0.2 in [8]). The range in fascicle length changes in the PCL
is comparable with those reported in [7] (�0.05 to 0.15). To further illustrate the
feasibility of the Laplacian method for other joint ligaments, examples of fascicle
trajectories in hip ligaments are shown in Fig. 7.

5 Discussion and Conclusion

The goal of this study was to investigate whether a Laplacian vector field repre-
sentation can provide a collective basis to reconstruct plausible 3D in vivo fiber
architecture in virtual models of the assorted musculoskeletal soft tissue structures.
To this end, the application in specific cases was evaluated. A modification of the
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Fig. 7 Examples of Laplacian generated fiber traces (shown on the surface) in anatomical
models of the iliofemoral (blue) and ischiofemoral (red) hip ligaments in anterolateral (left) and
posterolateral (right) views

original strategy as proposed in [17] was formulated to facilitate the modeling
procedure for difficult muscles with embedded tendons, which are prevalently
present in major muscle groups, such as the tibialis anterior and rectus femoris. The
results based on a model of the tibialis anterior muscle show a close similarity with
those presented in [17] and good agreement with DT-MRI measurements reported
in [20], while an FE simulation of a muscle contraction shows consistent results.
The modified approach thus further fosters the feasibility of the Laplacian method
for a wide range of muscle morphologies. The application in knee joint soft tissues
demonstrated that fiber orientations are comparable with those in the OpenKnee
models [13] that are based on a hexahedral mesh topology. However, the Laplacian
approach can generate highly oblique fiber orientations at the attachment areas such
as in the ACL (Fig. 6a) or in many skeletal muscles, while this is difficult to capture
with a hexahedral mesh.

The comparison between experimental data and FE simulations of knee displace-
ment and flexion further shows that physiological plausible mechanical behavior
of the ligaments is also obtained. The robust flux tracing enables a quantification
of fascicle length changes that are not typically reported in modeling studies of
the knee. The results suggest that the slack range in the ACL was underestimated
compared to reported experimental data, which is possibly related to the definition
of the knee kinematics.

An adequate representation of fiber bundle orientations in models of muscu-
loskeletal tissues is important to obtain simulations that are sufficiently realistic
to give useful feedback for surgical planning and training. This is of partic-
ular importance in procedures that aim at altering mechanical function, such
as tendon-transfer surgeries, or in complex arthroscopic interventions to recon-
struct or replace damaged tissues. Virtual simulations are considered as valuable
addition to traditional teaching methods, but require further developments to
increase the realism in the soft tissue behavior [9], which are often modeled
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as isotropic materials. The significant difference between ligament models with
and without fiber orientations as obtained in the knee displacement simulation
(Fig. 6b) illustrates the importance of incorporating fiber representations to model
the anisotropy. Although several modeling studies have included a definition of fiber
bundle orientations, this was done with a variety of methods with different levels of
approximations in different soft tissues, which hardens comparison of simulation
results and implementation for surgical applications. The results presented in this
study support the feasibility of the Laplacian based approach to provide a common
basis to model fiber bundle architecture in musculoskeletal virtual models. This
allows for a comprehensive implementation, which benefits from fast solving strate-
gies for the linear Laplace equation [23]. In addition, the same preprocessing steps
as implemented for FE simulations of mechanical deformation (mesh construction
and attachment indication) can be reused. Pathological regions can be defined
by giving random or altered fiber orientations in the included mesh elements. In
arthroscopic applications, a Laplacian modeling approach for the complete structure
can be combined with in situ measurements using confocal microscopy [9, 10].

In future steps, the method needs to be further tested in applications and validated
through comparison with detailed cadaveric or subject-specific measurements using
DT-MRI, ultrasound or confocal microscopy, allowing for optimizing the boundary
conditions at the attachment areas to match or smooth experimental data.
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Optimization of Acetabulum Reorientation
in a Periacetabular Osteotomy by Finite
Element Simulation: A Preliminary Study

L. Liu, T. Ecker, S. Schumann, K. Siebenrock, C. Chu, and G. Zheng

1 Introduction

Periacetabular osteotomy (PAO) is an effective approach for surgical treatment of
hip dysplasia in young patients [12]. The aim of PAO is to increase acetabular
coverage of the femoral head and to reduce contact pressures by realigning the
hip joint [8]. It was reported that PAO planning approach is mainly based on two
types of optimization strategies which are morphology-based and biomechanics-
based optimization, respectively. In clinical routine, diagnosis and pre-operative
planning of hip dysplasia is based on hip joint morphological parameters measured
from a plain radiograph. However, these radiographic parameters for diagnosing hip
dysplasia are unreliable. For instance, Clohisy et al. [7] evaluated the reliability of
six hip specialists identifying important radiographic features of the hip on plain
radiographs. They concluded that the standard radiographic parameters used to
diagnose dysplasia are not reproducible [7]. Additionally, the same group, Carlisle
et al. [6] further investigated the reliability of radiographic measurements of the hip
by various musculoskeletal physicians. They found that while the measurements
were reliable for a given observer, the measurements were less reliable across
observers and were limited in determining a consistent radiographic diagnosis. A
clear set of definitions and measurements need to be developed to enable more
reliable diagnosis of early hip disease [7].
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The other type of planning strategy is based on biomechanics optimization. Zhao
et al. [18] conducted a 3D finite element (FE) analysis of acetabular dysplasia. The
effects of dysplasia and PAO were both investigated by analyzing the change of Von
Mises stress in the cortical bone before and after surgery. They showed that the PAO
may be beneficial. One limitation of this method lies in that the acetabular dysplastic
models representing different levels of severity of dysplasia were generated by
deforming the acetabular rim of a normal hip. Thus, it ignores the effect of the
abnormal shape of the femoral head and acetabulum of the real dysplastic hip. In
contrast, the computer-assisted biomechanical guidance system (BGS) introduced
by Armand et al. [2] combines geometric and biomechanical feedback with intra-
operative tracking to guide the surgeon through the PAO procedure. During the
planning stage, the PAO planning computes contact pressures via discrete element
analysis (DEA) in order to suggest a reorientation of the acetabulum that minimizes
simultaneous peak contact pressure in sitting, standing, and walking positions [3].
Recently, Zou et al. [20] developed a 3D FE simulation of PAO and validated their
method on five models generated from CT scans of dysplastic hips. The acetabulum
of each model was rotated in 5ı increments in the coronal plane from original lateral
center edge (LCE) angle, and the relationship between contact area and pressure
and Von Mises stress in the femoral and pelvic cartilage were investigated until the
optimal position for the acetabulum following PAO was found.

Previously, we have developed a computer-assisted planning and navigation
system for PAO [10], which allows for not only quantifying the 3D hip mor-
phology with geometric parameters such as acetabular orientation (expressed as
inclination and anteversion angles), LCE angle, and femoral head coverage for
a computer-assisted diagnosis of hip dysplasia but also virtual PAO surgical
planning and simulation. In this paper, based on this previously developed PAO
planning and navigation system, we developed a patient-specific 3D FE model to
investigate the optimal acetabulum reorientation after PAO. Our aim was to find the
optimal orientation for the acetabulum after PAO.

2 Materials and Methods

2.1 Computer-Assisted Planning and Navigation System
for PAO

2.1.1 System Workflow

Here we would like to briefly summarize the workflow of our previously developed
computer-assisted planning and navigation system for PAO as shown in Fig. 1.
For detailed description, we refer to [9, 10].

Our system works in two stages: pre-operative planning stage and intra-operative
navigation stage. The input to the pre-operative planning stage is 3D surface
models of pelvis and femur generated from pre-operatively acquired CT data
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Fig. 1 Schematic view of our computer-assisted planning and navigation of PAO. (a) The input
surface models; (b) computer-assisted PAO planning; (c) the pre-operative planning output;
(d) intra-operative PAO navigation for implementing the planned PAO surgery

using a commercially available segmentation program (AMIRA, Visage Imaging,
San Diego, USA). The pelvic local coordinate systems is then established using
anatomical landmarks extracted from the CT data (see Fig. 1) which is defined on the
anterior pelvic plane (APP) using the bilateral anterior superior iliac spines (ASISs)
and the bilateral pubic tubercles [19]. After local coordinate system is established,
a fully automatic detection of the acetabular rim is conducted using an improved
algorithm [9] for the rim detection method of [16]. The detected acetabular rims
allow for quantifying the acetabular morphology with parameters such as version,
inclination, and acetabular coverage. After that, virtual reorientation procedure
for acetabulum fragment is performed until an optimal biomechanics situation is
obtained. The results from the planning stage are then passed to the intra-operative
navigation stage [10] where a visual feedback is provided during the acetabular
fragment reorientation procedure in order to achieve the planned situation.

2.1.2 Quantifying 3D Hip Joint Morphology

Accurate assessment of acetabular morphology and its relationship to the femoral
head is essential for PAO planning. As soon as acetabular rim points are extracted,
least-squares fitting is used to fit a plane to these points. The fitted plane then allows
for computing acetabular inclination and anteversion [13] (see Fig. 1c). Additional
hip morphological parameters such as the 3D LCE angle, the 3D femoral head
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extrusion index (EI), and the 3D acetabular coverage (AC) are computed as well (see
Fig. 1c). LCE is depicted as an angle formed by a line parallel to the longitudinal
pelvic axis and by the line connecting the center of the femoral head with the lateral
edge of the acetabulum according to Wiberg [17]. EI is defined as the percentage
of uncovered femoral head in comparison with the total horizontal head diameter
according to Murphy et al. [11]. AC is defined to be a ratio between the area of the
upper femoral head surface covered by the acetabulum and the area of the complete
upper femoral head surface.

2.1.3 Virtual PAO Surgical Procedure

A virtual PAO procedure is conducted with our system as follows. First, a sphere
is used to simulate osteotomy operation. The center of femoral head is taken as
the center of the sphere whose radius and position can be interactively adjusted
along lateral/medial, caudal/cranial, and dorsal/ventral directions, respectively, in
order to approximate actual osteotomy operation (see Fig. 2a). After that, the
virtual PAO procedure is conducted by interactively changing the inclination and
the anteversion of the acetabulum fragment (see Fig. 2b). During the acetabulum
fragment reorientation, 3D LCE angle, EI, and AC are computed in real time based
on the reoriented acetabulum fragment and showed at the bottom of the screen (see
Fig. 2b). Once a desired position is achieved, the realigned model is stored and
transferred to the biomechanical analysis module for an FE simulation as explained
in detail in the following section.

Fig. 2 Virtual PAO surgical procedure in our PAO planning system. (a) Virtual cutting operation
is done with a sphere, whose radius and position can be interactively adjusted; (b) virtual
reorientation operation is done by interactively adjusting anteversion and inclination angle of the
acetabulum fragment



Optimization of Acetabulum Reorientation in a Periacetabular Osteotomy by. . . 133

2.2 Patient-Specific Biomechanical Model

2.2.1 Mesh Generation

Bone surface models of the reoriented hip joints are imported into ScanIP software
(Simpleware Ltd., Exeter, UK). While patient-specific cartilage models are essential
in biomechanical simulation, it has been previously reported in [14] that the
predicted optimal alignment of the acetabulum was not significantly sensitive to
the choice of cartilage thickness distribution over the acetabulum. Therefore a 3D
dilation operation was performed on femoral head and acetabular surfaces to create
femoral and pelvic cartilage layers with a constant thickness as has been done in [1].
Reconstructed surfaces were smoothed with a recursive Gaussian filter to remove
segmentation artifacts (Fig. 3a, c).

Surfaces were discretized using tetrahedral elements (Fig. 3b, d). Since the
primary concern was focused on the joint contact, a finer mesh was employed for
the cartilage than for the bone. Refined tetrahedral meshes were constructed for the
cartilage layers using ScanFE module (Simpleware Ltd., Exeter, UK). Cortical bone
surfaces were discretized using coarse tetrahedral elements. Trabecular bone was
not included in the models, for it has little effect on predictions of contact stress as

Fig. 3 Biomechanical simulation of contact pressure on acetabular cartilage. (a) Surface models
for dysplastic hip; (b) volume meshes for dysplastic hip; (c) surface models for a planned situation
after acetabulum fragment reorientation; (d) volume meshes for the planned situation; (e) boundary
conditions and loading for biomechanical simulation; (f) coarse meshes for pelvic and femoral
models, and refined meshes for pelvic and femoral cartilages
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reported in [1]. Tied and sliding contact constraints were used in Abaqus/CAE 6.10
(Dassault Systmes Simulia Corp, Providence, RI) to define the cartilage-to-bone
and cartilage-to-cartilage interfaces, respectively. It has been reported in [5] that the
friction coefficient between articulating cartilage surfaces is very low, on the order
of 0.01–0.02 in the presence of synovial fluid. Therefore, it is reasonable to neglect
frictional shear stresses between contacting articular surfaces.

2.2.2 Material Property

Pelvic and femoral cartilages were modeled as homogeneous, isotropic, and linearly
elastic material with Young’s Modulus E D 15 MPa and Poissons ratio D 0:45.
Cortical bone of pelvis and femur were modeled as homogeneous, isotropic material
with elastic modulus E D 17 GPa and Poissons ratio D 0:3 as has been used in [20].

2.2.3 Loading and Boundary Conditions

The loading and boundary conditions used in this paper resemble those used by
Phillips et al. [15] (Fig. 3e). The top surface of pelvis and pubic areas were fixed, and
the distal end of the femur was constrained to prevent displacement in the body x and
y directions while being free in vertical z direction (Fig. 3e). The center of femoral
head derived from a least-square sphere fitting was selected to be the reference
node. The nodes of femoral head surface are constrained by the reference node
via kinematic coupling. The fixed boundary condition model was then subjected to
a loading condition as published in [4], representing a single leg stance situation
with the resultant hip joint contact force acting at the reference node. Although
CT scan was performed in the supine orientation and the loading condition of our
biomechanical simulation is based on one-leg stance situation [4], previous work
[14] has shown that there is no significant difference between the contact pressure in
the Bergmanns reference frame and those in the supine reference frame. In addition,
as pointed out by Armiger et al. [3], it is not an infrequent clinical practice to use the
supine frame as an estimate of the standing frame. Therefore we believe our model
makes good use of valuable, available data from Bergmanns work [4]. Following the
loading specification in [15], the components of joint contact force along three axes
are given as 195, 92, and 1,490 N, respectively, by assuming a constant body weight
of 650 N for all subjects to remove any scaling effect of body weight on the absolute
value of the contact pressure. The resultant force is applied based on anatomical co-
ordinate system described in Bergmann et al. [4], whose local coordinate is defined
with the x axis running between the centers of the femoral heads (positive running
from the left femoral head to the right femoral head), the y axis pointing directly
anteriorly, and the z axis pointing directly superiorly.
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2.3 Experiment Design and Results

A preliminary study was conducted to verify the efficacy of the developed FE model.
In this study, 3D models of hip joints are produced based on CT scans from two
subjects with hip dysplasia. For each subject, the acetabulum fragment was virtually
rotated in 4ı increment in the APP from the original acetabulum inclination angle,
thus their corresponding planned situation has different hip joint morphological
parameters (3D LCE and AC). The loading condition consists of static and dynamic
loading scenarios. In static loading scenario, constant components of resultant
force were applied to hip joint. However, in dynamic loading scenario, a time-
dependent force function with a duration of 11 s was applied to the center of
hip joint. This dynamic time-dependent force function was derived from the in
vivo measurement data published by Bergmann et al. [4]. The mesh models of
original dysplastic hip and a series of planned situations were imported into Abaqus
simulation environment for biomechanical simulation (see Fig. 3 for details). The
peak contact pressure and total contact area are directly extracted from the output of
Abaqus. We then compared quantitatively the peak contact pressure and contact area
on acetabulum cartilage in different acetabulum position and investigated optimal
planning strategy in static one-leg stance loading scenario.

Figure 4 shows how contact pressure distribution of the pelvic cartilage changed
for the 1st dysplastic hip when AC and 3D LCE angle were increased. The contact
area originally focused on the superior region and almost no contact area was in
the anterior and posterior regions. When the AC and 3D LCE angle were increased,
the contact area shifted from lateral region towards the medial region. Figure 5a, c

Fig. 4 Contact pressure distribution on acetabular cartilage for 1st dysplastic hip in static one-leg
stance situation



136 L. Liu et al.

Fig. 5 (a) Effect of AC on hip joint peak contact pressure. Circled points represent the lowest
pressures for each subject; (b) effect of AC on hip joint contact area. Circled points indicate the
largest contact areas for each subject; (c) effect of 3D LCE on hip joint peak contact pressure.
Circled points represent the lowest pressures for each subject; (d) effect of 3D LCE on hip joint
contact area. Circled points indicate the largest contact areas for each subject

present peak contact pressures at different AC and 3D LCE angles. Contact areas
are shown in Fig. 5b, d as well. The peak contact pressures and contact areas are
available for both pelvic and femoral cartilages, but in our study only contact
pressure pattern of the pelvic cartilage was investigated. An optimal acetabulum
fragment reposition with minimum peak contact pressure and maximum contact
area was achieved for both dysplastic hips. More importantly, for each hip, both
the minimal peak contact pressure and the maximum contact area were achieved
at the same acetabulum fragment reposition. A large rotation of acetabulum does
not guarantee low peak contact pressure and large contact area. For two dysplastic
hips, we found that the peak contact pressures on the optimal planned situations are
6.3 and 3.8 MPa, respectively, while their contact areas are quite different (833.9
and 1; 496:7 mm2, respectively). The reason is simply that these two patients have
different acetabulum. For example, the diameters of acetabulum rims from these two
patients are 43.6 and 52.6 mm, respectively.

When the optimized position of an acetabulum was found, we then compared the
peak contact pressure and the contact area between the original dysplastic hip and
the optimally reoriented hip in dynamic one-leg stance loading condition where a
time-dependent hip joint force function was applied [4]. The simulation process
lasted 11 s in total, and the time-dependent force curve was shown in Fig. 6a.
We compared the difference of corresponding peak contact pressure and contact



Optimization of Acetabulum Reorientation in a Periacetabular Osteotomy by. . . 137

Fig. 6 Contact pressure distribution on acetabular cartilages for dynamic one-leg stance loading
scenario. (a) Time-dependent dynamic loading input; (b) contact pressure distribution of the
original dysplastic hip over the 11 s simulation; (c) contact pressure distribution of the optimally
reoriented hip over the same 11 s simulation; (d) comparison of peak contact pressures between the
original dysplastic hip and the optimally reoriented hip over the 11 s simulation; (e) comparison
of contact areas between the original dysplastic hip and the optimally reoriented hip over the 11 s
simulation

area at each second (see Fig. 6b, c) between the original dysplastic hip and the
optimally reoriented hip. Our simulation results show that when the results of
the optimally reoriented hip were compared with those of the original dysplastic
hip, the peak pressures were reduced while the contact areas were increased (see
Fig. 6d, e).

3 Discussions and Conclusion

In this paper, we proposed and developed a patient-specific 3D FE model for
optimization of the acetabulum reorientation after PAO. A preliminary study
conducted on two dysplastic hips were used to verify the efficacy of the developed
FE model.
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It is known that the purpose of PAO is to increase acetabular coverage of the
femoral head and thereby decrease contact pressure over the cartilage surface [8],
so this has motivated the recent introduction of various computer-assisted planning
systems for PAO based on biomechanics optimization [2, 3, 20]. The BGS intro-
duced by Armand et al. [2] performed DEA to estimate the contact pressure on a
patient-specific model in short periods of time. Although DEA is a computationally
efficient method for modeling of cartilage stress, it is still an approximate method
to estimate the location and magnitude of the peak contact pressure compared to FE
methods, because the results of DEA that the stress distribution becomes smoother
and the peak pressures are underestimated as reported in [14]. Different from the
method of Armand et al. [2, 3], we developed a patient-specific 3D FE model for
biomechanical analysis derived from our computer-assisted planning system, which
is computationally expensive but more accurate. Compared to the results reported
by Zou et al. [20], who also developed a 3D FE simulation of PAO in order to find
optimal reorientation position by minimizing peak contact pressure and at the same
time maximizing contact area of the cartilage surfaces, our results are consistent
with theirs. Both studies have proved that 3D FE model is an efficient tool to predict
cartilage contact stress change before and after PAO reorientation planning [20].
However their virtual PAO procedure was roughly performed in Abaqus due to the
fact that Abaqus does not have a precise virtual reorientation planning tool and an
accurate approach for quantifying 3D hip joint morphology. In addition, their work
modeled only a static loading for biomechanics analysis.

It is worth to mention the limitations of the present method. The main limitation
is that a fixed body weight of 650 N derived from Bergmann et al. [4] was applied
all two dysplastic hips for 3D FE simulation, which is not real patient-specific in the
strict sense. The argument why we adopted such a strategy is that we are aiming to
compare the relative change of contact pressure before and after PAO reorientation
planning. Thus, it makes sense to use a constant loading, which was originally
proposed by Zou et al. [20]. The second limitation of our study is that the number
of dysplastic hips for 3D FE model is still too small. The efficacy of the developed
FE model needs to be further validated when more cases are available in the future.

In summary, we developed a 3D FE model to predict cartilage contact pressure
based on our previously developed computer-assisted planning system for PAO.
Our experimental results demonstrated that the developed 3D FE model could be
used to find the optimal reorientation of the acetabulum fragment after PAO by
minimizing peak contact pressure and at the same time maximizing contact area
of the cartilage surfaces. In conclusion, this study suggested that our computer-
assisted planning and navigation system with FE modeling can be a promising tool
to determine the optimal PAO planning strategy.
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