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    Chapter 11   
 Nanoarchitectonics Prepared by MAPLE 
for Biomedical Applications 

             Roxana     Cristina     Popescu     and     Alexandru     Mihai     Grumezescu    

    Abstract     Thin fi lm depositions by Matrix-Assisted Pulsed Laser Evaporation 
(MAPLE) technique have been intensively used in order to obtain nanoarchitecton-
ics with different biomedical applications, like drug delivery systems, tissue engi-
neering, implants with improved biocompatibility, improved adherent surfaces, 
antibacterial surfaces, etc. This chapter presents a description of the latest research 
regarding magnetite-based thin fi lms and hybrid organic–inorganic thin fi lms 
obtained by MAPLE. The most encountered preparation methods for magnetite- 
based thin fi lms and several hybrid organic–inorganic systems are presented. 
Regarding the biomedical applications, our attention is directed to the antibacterial 
properties of differently modifi ed surfaces for implants and medical devices.  

  Keywords     Nanoarchitectonics   •   Thin fi lm deposition   •   Matrix-assisted pulsed 
laser evaporation   •   Magnetite nanoparticles   •   Hybrid organic–inorganic  

11.1         Matrix-Assisted Pulsed Laser Evaporation 
Technique: General Approach 

 Thin fi lms are defi ned as layers of material with a thickness between nanometers to 
micrometers, while the thin fi lm deposition is a term which refers to the technique 
of applying a fi lm onto a substrate. The main techniques used for thin fi lm deposi-
tion are classifi ed as: (1) laser assisted deposition techniques and (2) non-laser 
assisted deposition techniques. Laser assisted techniques used for obtaining thin 
fi lm depositions on different substrates have multiple advantages compared to other 
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techniques given the following facts: (1) control of the monolayer thickness; 
(2) strong adhesion of the thin fi lm to the surface of the monolayer; (3) low substrate 
temperature; (4) ensuring the stoichiometry of precursors; (5) economical consump-
tion of precursors [ 1 ]. The main laser-assisted techniques used for the deposition of 
thin fi lms are: (1) pulsed laser deposition [ 2 ,  3 ]; (2) matrix-assisted pulsed laser 
evaporation technique [ 4 – 6 ]; (3) spin coating technique [ 7 ,  8 ]; (4) drop casting tech-
nique [ 9 ]. 

 The interest for laser deposition techniques is given by the fact that the resulted 
thin fi lms have a controlled topography, which can be manipulated at nanometric 
level [ 10 ]. These materials provide several important applications in the biological 
fi eld, such as: (1) drug delivery systems [ 11 – 13 ], (2) tissue engineering [ 14 ], 
(3) implants with improved biocompatibility [ 4 ,  12 ], (4) improved adherent surfaces 
[ 15 ,  16 ], (5) antibacterial surfaces [ 17 ,  18 ], (6) gas sensors [ 19 ,  20 ], etc. 

 Matrix-assisted pulsed laser evaporation (MAPLE) technique is derived from 
pulsed laser deposition (PLD) technique, where the target is represented by a frozen 
homogenous solution of the material of interest, which is diluted in a volatile sol-
vent (matrix solvent). The temperature at which the target solution is frozen is given 
by the liquid nitrogen temperature. The target is placed in a vacuum chamber and a 
high energy laser is directed trough it. The pulsed laser energy is absorbed by the 
solvent in the target and it is converted in thermal energy, which determines the 
evaporation of the solvent. The evaporating molecules of the solvent collide with 
the solute (material) molecules, which are transformed in a gas phase, because of 
the transferred kinetic energy. The advantages of MAPLE compared to PLD are 
given by the fact that this technique avoids the photochemical damage and the 
decomposition in PLD technique, which is determined by high energy of the laser 
pulses [ 10 ]    (Fig.  11.1 ).   

Target Laser pulse

Solvent 
molecules

Biomaterial Substrate

  Fig. 11.1    Schematic representation of the principle of matrix-assisted pulsed laser evaporation 
technique (MAPLE)       
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11.2     The MAPLE Deposition Apparatus 

 The MAPLE technique was developed as an improvement for the PLD technique, 
in order to be used for thin fi lm depositions of organic materials. It was imple-
mented for the fi rst time in the 1990s by the US Naval Research Laboratory to 
obtain functionalized polymer fi lms [ 21 ]. 

 The MAPLE apparatus, as shown in Fig.  11.2 , consists of a sealed chamber 
which presents a cryogenically cooled rotating target holder and a substrate holder, 
also having a rotation movement. The target holder is connected to a liquid nitrogen 
tank. The chamber has an input for a background gas and for vacuum. It also pres-
ents the laser beam focusing system, which directs pulsating laser beam at a 45° 
angle, on the target surface [ 21 ].  

 Usually the technique uses an excimer laser such as KrF, with λ = 248 nm, or ArF, 
with λ = 193 nm, and a pulse width between 10 and 30 ns, focused on the target in a 
1–10 mm 2  spot. The repetition rate is usually set between 1 and 20 Hz and the laser 
fl uence is between 0.01 and 1.0 J/cm 2 , being set according to the type of material 
(solute) and solvent used to make the target. The process can be held at different 
pressures, from vacuum, to 70 Pa, in the presence of an inert gas or a background 
gas [ 21 ].  

Background gas

Vacuum 

N2(lq) tank

Target rotation 
system

Target

Substrate

Substrate 
rotation system 

Laser beam 
focusing system 

Laser beam

  Fig. 11.2    Schematic representation of matrix-assisted pulsed laser evaporation (MAPLE) system; 
Important parameters in the technological process of MAPLE thin fi lm deposition are the follow-
ing: (1) the fl uency of the laser, (2) the repetition rate, (3) the number of pulses, (4) the target rota-
tion rate, (5) the angle at which the laser beam scans the target surface, (6) the background pressure, 
(7) the distance between substrate and target [ 22 ,  23 ]       
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11.3     Thin Films Based on Magnetite Nanostructures 

 Magnetite nanoparticles are intensively used in different biomedical applications 
especially due to their magnetic properties [ 24 ], biocompatibility [ 25 ], and easy 
obtaining methods [ 26 – 28 ]. Thus, Fe 3 O 4  nanoparticle-based materials are used as: 
(1) drug delivery systems [ 29 – 31 ]; (2) antimicrobial materials [ 32 – 34 ]; (3) hyper-
thermia applications for cancer treatment [ 35 ,  36 ]; (4) contrast substance for mag-
netic resonance imaging techniques [ 35 ,  37 ]; etc. 

11.3.1     Preparation 

 Magnetite can be found as a natural mineral, but it can also be artifi cially obtained 
using different chemical methods. Fe 3 O 4  nanoparticles were obtained for the fi rst 
time as a ferrofl uid in 1981, by Massart [ 38 ] using a co-precipitation method, based 
on the combination of ferric and ferrous salts in an alkaline medium (sodium 
hydroxide). 

 Regarding the composition of magnetite, it is an iron oxide consisting of Fe 3+  and 
Fe 2+  ions, with a characteristic molar ratio of Fe 3+ :Fe 2+  = 2:1 [ 39 ]. 

 The main preparation methods are presented in Table  11.1 , where the methods’ 
principle and the implied factors are briefl y summarized.

11.3.2        Functionalized Magnetite Nanostructures 

 The functionalization of nanomaterials consists in modifying the surface of nanopar-
ticles by means of attaching different type of molecules, in order to improve the 
properties of the inorganic structure: (1) the biocompatibility [ 50 ,  51 ], (2) stability 
[ 52 ,  53 ], (3) targeting properties [ 31 ,  35 ,  54 ,  55 ], (4) carrier properties [ 56 – 58 ] 
(Fig.  11.3 ).  

 Magnetite surface chemistry depends on the pH, acting like Lewis acids in aque-
ous systems: at low pH values the surface of Fe 3 O 4  is positively charged, while at 
high pH values the magnetite surface is negatively charged [ 59 – 61 ]. The main 
classes of magnetite functionalization methods are: (1) covalent bonding and 
(2) non-covalent bonding. The non-covalent bonding between the functionalizing 
molecules and the magnetite nanoparticle surface is commonly encountered by 
means of hydrogen bonding with HO −  groups in Fe 3 O 4 . 

 The functionalizing agents which can interact with Fe 3 O 4  nanoparticles are clas-
sifi ed as follows: (1) organic functionalizations and (2) inorganic functionalizations. 
In the fi rst class are included small molecules and surfactants (dehydroascorbic acid 
[ 37 ], silane compounds [ 62 ], folic acid [ 35 ], carboxyl [ 36 ]) generally applied to 
reduce the aggregation phenomena of magnetite nanoparticles in suspension; 
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 polymers (PEG [ 63 ], chitosan [ 64 ], PVA [ 65 ]), used to improve biocompatibility, 
stability, or to modify the character of the nanoparticle surface; enzymes (pullulanase 
[ 66 ], porphyrin [ 67 ], glucose oxidase [ 68 ]), with sensing properties; respectively, 
therapeutic molecules (docetaxel [ 31 ], usnic acid [ 32 ], danorubicin [ 69 ], umbellip-
renin [ 70 ], rotavirus capsid surface protein [ 57 ]), used to obtain drug delivery systems. 
Magnetite functionalization with inorganic coatings is generally applied for different 
reasons, like: (1) enhancing the magnetic properties of the nanoparticles [ 71 – 73 ]; (2) 
enhancing the antioxidant properties of magnetite [ 74 ]; (3) inducing antibacterial 
properties [ 75 ]; (4) improving the biocompatibility of the system [ 76 ,  77 ].  

11.3.3     Thin Films 

 Magnetite-based thin fi lms can be obtained by several techniques, as follows: 
(1) pulsed laser deposition technique [ 78 ], (2) matrix-assisted laser evaporation tech-
nique [ 79 ], (3) ultrasound-enhanced ferrite plating [ 80 ], (4) chemical vapor deposition 
[ 81 ], (5) DC reactive magnetron sputtering [ 82 ] and reactive sputtering [ 83 ]. 

 Previously obtained Fe 3 O 4  functionalized nanoparticles are prepared as a diluted 
suspension in the matrix solvent (chloroform 1 % wt./vol.) [ 84 ] and then put into a 
precooled target holder and frozen in liquid nitrogen. For example, Cristescu et al. 
[ 84 ] used the following experimental parameters for all of the Fe 3 O 4 @oleic acid@
antibiotic MAPLE deposited thin fi lm samples: a laser fl uence between 65 and 
300 mJ/cm 2 , a repetition rate of 10 Hz, 7,200–20,000 laser pulses, a target rotation 

Therapeutic 
molecule

Targeting 
molecule

Organic 
biocompatible 
molecule

Tissue Engineering

Drug Delivery

Diagnostics

Therapy

  Fig. 11.3    Applications of functionalized magnetite nanoparticles       
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rate of 0.4 Hz, an angle of 45° between the laser beam and the target surface, a dis-
tance of 4 cm between the substrate and target, and a background pressure of 
30–100 Pa [ 84 ].  

11.3.4     Biological Applications 

 Nosocomial infections, or hospital-acquired infections, are a current problem of 
the medical system, over 1.7 million hospital-associated infections contributing 
and causing over 99.000 deaths every year [ 85 ]. In Europe, gram-negative associ-
ated infections cause the most numerous untreatable infections [ 86 ], therefore 
combating the antibiotic resistance being an important subject of the latest scien-
tifi c studies in the biomedical fi eld. Biofi lms are microbial communities included 
in a polysaccharide matrix, attached to a substrate. These are commonly encoun-
tered in unsterile prosthetic devices, contributing to a large number of infectious 
cases. Thus, there are several studies conducted in order to obtain anti-biofi lm 
surface coatings for medical devices, and matrix-assisted pulsed laser evaporation 
technique offers great solutions; Table  11.2  gives a summary of the latest exam-
ples regarding this aspect.

   Table  11.2  presents several examples of MAPLE deposited thin fi lms based on 
modifi ed magnetite nanoparticles, which exhibit antibacterial properties, which can 
be used as a growth support for cells. The Fe 3 O 4 @oleic acid/antibiotic thin fi lms are 
excellent candidates which can be used as surface modifi cation methods for medical 
devices and implants, with anti-adherence and antimicrobial properties [ 17 ]. 
However, the anti-adherence property refers only to the microbial colonies, as it was 
proved that human epithelial carcinoma HeLa cell monolayers can grow on these 
modifi ed surfaces. The antimicrobial properties of the obtained samples were tested 
against both gram-negative ( Pseudomonas aeruginosa ,  Klebsiella pneumoniae , 
 Escherichia coli ) and gram-positive ( Staphylococcus aureus ,  Bacillus subtilis ) bac-
teria, using the antimicrobial activity assay (API 20E biochemical tests, VITEK I 
automatic system), to compare the substrate effect with several antibiotic substrates 
and the microbiological assay investigation procedure to measure the percent of 
viable bacterial cells attached to the substrates (compared to a control, represented 
by glass substrate). The in vitro biocompatibility of the obtained samples was evalu-
ated after the addition of the microbial suspensions over the HeLa cell monolayer 
cultivated on the MAPLE modifi ed substrates. The samples were prepared by 
Giemsa staining and evaluated using an inverted microscope to conclude over the 
degree of cell confl uency, the cytotoxic effect of nanoparticles, the number of adher-
ent bacteria, and the adherence pattern (localized adherence, where bacteria form 
microcolonies, diffuse adherence, where bacteria adhere to the whole cell surface 
and aggregative adherence, where aggregates of bacteria attach to the cells, forming 
an overlapped arrangement. The cell morphology was not affected by the presence 
of the nanoparticles, neither was the adherence pattern or the adherence index, 
compared to control samples. 
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 Our group obtained Fe 3 O 4 @eugenol nanoparticles by co-precipitation method, 
which were embedded in poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid)–
polyvinyl alcohol (P(3HB-3HV)–PVA) microspheres by oil-in-water microemul-
sion method; these resulted microspheres were used as modifying material for inert 
substrates [ 79 ]. The P(3HB-3HV)–PVA–Fe 3 O 4 @eugenol thin fi lms were obtained 
by MAPLE deposition from 1 % (w/v) microsphere suspension in DMSO using a 
KrF *  laser source (248 nm, 25 ns laser pulses, 300–500 mJ/cm 2  laser fl uence and a 
repetition rate of 15 Hz, with 45,000–160,000 laser pulses). The in vitro biocompat-
ibility was evaluated using human endothelial cells EAhy929; the proliferation and 
viability of the cells was tested using commercial kits, resulting in high viability of 

    Table 11.2    Matrix-assisted pulsed laser evaporation technique for anti-biofi lm surface coatings   

 No.  Description  Biological investigations  Reference 

 1  PLGA–PVA–Fe 3 O 4 @usnic acid thin 
fi lm depositions obtained by MAPLE 

  Staphylococcus aureus  anti- 
biofi lm adherence surfaces 

 [ 87 ] 

 2  magnetite/salicylic acid/silica shell/
antibiotics thin fi lm depositions 
obtained by MAPLE 

 Anti-adherence of  Staphylococcus 
aureus  and  Pseudomonas 
aeruginosa  biofi lms; 
biocompatibility proven for 
eukaryotic HEp-2 cells 

 [ 88 ] 

 3  Fe 3 O 4 @oleic acid@ceftriaxone/
cefepime thin fi lms deposited 
by MAPLE onto inert substrates 

 Microbial viability and microbial 
adherence tests using gram- 
negative and gram-positive 
bacteria proved the antibacterial 
activity of these fi lms; proved 
biocompatibility for HeLa cells 

 [ 84 ] 

 4  Fe 3 O 4 @ Cinnamomum verum  
MAPLE deposited thin fi lms 
on gastrostomy tubes 

 Normal development of endothelial 
cells on the surface of the modifi ed 
gastrostomy tubes; anti-adherent 
properties against gram-positive 
and gram-negative bacteria 

 [ 89 ] 

 5  PLA–CS–Fe 3 O 4 @eugenol thin fi lm 
depositions using MAPLE 

 The obtained substrates have 
bioactive properties for human 
endothelial cells and anti- 
adherence properties against 
 Staphylococcus aureus  and 
 Pseudomonas aeruginosa  bacteria 

 [ 90 ] 

 6  Poly(3-hydroxybutyric acid-co-3- 
hydroxyvaleric acid)–polyvinyl 
alcohol–PVA–Fe 3 O 4 @eugenol 
MAPLE deposited thin fi lms 

 Antibacterial and anti-biofi lm 
characteristics of the obtained thin 
fi lms proved by viable cell count 
method on  Staphylococcus aureus  
and  Pseudomonas aeruginosa  
cultures; biocompatibility proved 
by analyzing the thin fi lms 
interaction with EAhy926 human 
endothelial cells 

 [ 79 ] 
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the endothelial cells, the cells’ proliferation being increased at 24 h after incubation 
and being maintained at 48 and 72 h (compared to control). The obtained samples 
were also tested against biofi lm formation for  Staphylococcus aureus  and 
 Pseudomonas aeruginosa  bacteria using the microbial biofi lm assay, which demon-
strated the anti-biofi lm antibacterial growth effect of the resulted biomaterial. 

 The same experimental procedure was used by Holban et al. [ 90 ] to obtain poly-
lactic acid (PLA)–chitosan (CS)–Fe 3 O 4 @eugenol microsphere thin fi lms deposi-
tions. The in vitro biocompatibility was tested for human endothelial cells 
EAhy926, using a commercial cell proliferation assay and a fl uorescence long 
term-tracking method. The tests showed that the obtained thin fi lms offer biocom-
patible support for endothelial cells growth, their morphology and proliferation 
capability being normal [ 90 ]. For the anti-biofi lm evaluation,  Staphylococcus 
aureus  and  Pseudomonas aeruginosa  strains were cultured in Luria Broth medium 
and put in contact with the resulted biomaterials. The biofi lm formation is affected 
after 24 and 48 h of incubation compared to uncoated magnetite embedded in 
microspheres control. 

 Our research group also obtained polylactic-co-glycolic acid (PLGA)–polyvinyl 
alcohol (PVA)–Fe 3 O 4 @usnic acid thin fi lm depositions by MAPLE using a KrF* 
laser source (248 nm, 25 ns laser pulses, 200–400 mJ/cm 2  laser fl uence and a repeti-
tion rate of 10 Hz, with 10,000–20,000 laser pulses) [ 87 ]. The in vitro biocompati-
bility was evaluated for human mesenchymal stem cells from human bone marrow. 
The viability of the cultured cells was over 92 %, proving that the obtained thin 
fi lms can support the normal development of the cells. Also, the normal morphol-
ogy of the cells showed that the obtained materials have biocompatible properties. 
To evaluate the antibacterial effect, a minimal inhibitory assay and a microbial 
adherence and biofi lm assay were employed for  S. aureus  bacteria. The obtained 
thin fi lm inhibited the formation of bacterial strains for 3 days under static condi-
tions, diminishing  S. aureus  adherence and biofi lm formation. 

 Anghel et al. [ 89 ] obtained Fe 3 O 4 @ Cinnamomum verum  MAPLE thin fi lm depo-
sitions on gastrostomy tubes, having antibacterial activity against gram-positive 
( S. aureus ) and gram-negative ( E. coli ) bacteria [ 89 ].  Cinnamomum verum  is a natu-
ral oil with anti-infl ammatory, antiseptic, antifungal, and antiviral properties, which 
can stimulate the immune system and have antioxidant properties. The  functionalized 
magnetite nanoparticles were obtained by co-precipitation method and dispersed in 
DMSO (1.5 % w/v solution) and frozen in liquid nitrogen. The MAPLE deposition 
was held using a KrF*laser (248 nm, 25 ns laser pulses, 300–500 mJ/cm 2  laser fl u-
ence and a repetition rate of 0.4 Hz, with 30,000–60,000 laser pulses). Regarding 
the antibacterial effect of the modifi ed tubes, the most inhibitory effect was proved 
for  S. aureus  (compared to control). The in vitro biocompatibility effect, tested 
using the MTT assay on human endothelial cells, proved a normal development at 
24 and 48 h after incubation, and an improved proliferation at 72 h, compared to 
control. The fl uorescence microscopy images obtained at 5 days after incubation 
showed a normal growth and morphology of the cells.   
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11.4     Thin Films Based on Inorganic–Organic Hybrid 
Nanomaterials 

 Hybrid organic–inorganic nanomaterials have been intensively used in different 
biomedical applications due to the combination of properties from both organic and 
inorganic moieties [ 91 ]. Examples of such applications are: (1) tissue engineering 
[ 15 ], (2) antibacterial and anti-biofi lm effect [ 92 ], (3) drug delivery systems [ 93 ]. 

 There are several reasons for developing such materials, excelling in the improve-
ment of properties like: (1) increased biocompatibility of the designed nanomateri-
als, by applying several organic functionalizing agents; (2) antibacterial properties 
of the organic material; (3) increased stability; (4) modifying the surface character; 
(5) drug loading. 

11.4.1     Preparation 

 The preparation of hybrid nanomaterials can be done in several ways, which are 
grouped in two main classes, depending on the interactions that take place between 
the organic and inorganic phases: (1) methods where no covalent bond is formed 
between the two phases, (2) methods where covalent bonds are formed between the 
two phases. Table  11.3  [ 94 ] summarizes the main methods for obtaining organic–
inorganic hybrid nanomaterials (Fig.  11.4 ).

11.4.2         Thin Films 

 Birjega et al. [ 119 ] obtained layered double hydroxide (LDH)–polyethylene glycol 
(PEG)/ethylene glycol (EG) thin fi lms deposited by MAPLE technique [ 119 ]. The 
interest for LDH is given by the fact that it is an artifi cial clay, which consists of 
positively charged layers, arranged parallel one to another. It acts as a host material 
for anions located in the interlayer regions, which can be easily replaced by other 
negatively charged molecules of biological interest. The main application of these 
thin fi lm coatings consists in modifying the surface character and controls its sur-
face wetting. The Mg-Al LDH (Mg/Al = 3) was obtained using a co-precipitation 
method (at suprasaturation, pH = 10) from aqueous solutions of Mg and Al nitrates, 
sodium hydroxide and carbonate, resulting in a gel, which underwent a drying pro-
cess (85 °C, 24 h), followed by a calcination process (460 °C, 18 h, nitrogen atmo-
sphere). LDH-polymer (PEG/EG) composites were prepared by immersing Mg(Al)
O mixed oxides powders immersed in aqueous polymer solutions 
(200 amu/1,450 amu, where Mg(Al)O/PEG and Mg(Al)O/EG = 1.76/1), separated 
by vacuum fi ltration and dried (vacuum, 30 °C, 24 h) [ 119 ]. For MAPLE deposition 
of the thin fi lms, a Nd:YAG laser (266 nm, 5 ns pulses, with a repetition rate of 
10Hz, a laser fl uence of 1–2 J/cm 2 ) was used. Other important parameters are: (1) a 
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  Fig. 11.4    Schematic    representations of non-covalent bonding methods for obtaining hybrid 
nanomaterials       

45° angle between the laser and the target; (2) a laser spot size between 0.6 and 
0.8 mm 2 ; (3) 40,000–60,000 laser pulses. 

 Predoi et al. obtained γ-Fe 2 O 3 @dextran thin fi lms deposited by MAPLE tech-
nique using a UV KrF *  excimer laser (248 nm), with 25 ns pulses and a repetition 
rate of 10 Hz. 25 × 10 3  laser pulses were applied and a fl uence of 0.5 J/cm 2  was 
assured [ 120 ]. The target was prepared using a solution of 0–25 wt.% iron oxide 
nanoparticles obtained by co-precipitation method, 10 wt.% dextran (2,500 Da) and 
distillated, frozen in liquid nitrogen solution. The surface morphology of the 
obtained samples was investigated by scanning electron microscopy technique, 
which proved an aggregated aspect of the fi lms, consisting of micrometer sized 
grains. Also, by other investigations, the authors concluded that the resulted thin 
fi lms have a crystallinity, chemical composition, and molecular structure identical 
to the materials used for target preparation. 

 In the experiment described by Miroiu et al. [ 15 ], hydroxyapatite–silk fi broin 
thin fi lms were obtained by MAPLE deposition. The target was prepared using 
polymer solutions (2 wt.% and 4 wt.%, respectively) and adding hydroxyapatite 
(HA) in order to obtain a HA–fi broin weight ratio of about 3:2 and 3:4 respectively. 
The HA–fi broin solutions were mechanically stirred and several drops of NaOH or 
NaCl were added in order to adjust the pH to 7.4 (physiological value). Then, the 
solutions were frozen in liquid nitrogen to obtain the targets. For the deposition 
process, a KrF *  excimer laser (248 nm, with 25 ns pulses, a repetition rate of 
10–15 Hz and a laser fl uence of 0.4–0.5 J/cm 2 ) was used; 20,000–50,000 pulses 
were applied for each fi lm [ 15 ].  
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11.4.3     Biological Applications 

 Miroiu et al. obtained hydroxyapatite–silk fi broin thin fi lms deposited by MAPLE 
on the surface of metallic prosthesis. The aim of the study was given by the fact that 
the biomimetic modifi es surface display enhanced properties like bioaffi nity and 
osteoconductivity. The in vitro biocompatibility test using SaOs2 osteosarcoma 
cells cultured for 72 h on the surface of the modifi ed implants showed an improved 
viability and spreading of the cells. The elongated morphology of the cells proved 
that the resulted hydroxyapatite–silk fi broin coatings have good performances as 
bone implants, assuring an optimal interface between the living tissue and the metal-
lic surface of the prosthesis. The best results were given by the HA3-FIB4 sample 
(3 wt% hydroxyapatite–4 wt% fi broin) [ 15 ]. 

 The γ-Fe 2 O 3 @dextran thin fi lm depositions obtained using MAPLE technique 
by Predoi et al. [ 120 ] were investigated as biocompatible structures used for implant 
modifi cation coatings in locoregional cancer treatment by hyperthermia after a sur-
gical intervention. Thus, human hepatocarcinoma cells HepG2 were cultivated on 
the obtained thin fi lms, the viability investigated by MTT colorimetric assay, result-
ing in a good biocompatibility of the materials. Regarding the morphological aspect 
of the cells, the cells cultured on the 5 wt.% iron oxide samples grew into larger 
multicellular aggregates [ 120 ] (Table  11.4 ).

11.5         Conclusions and Perspectives 

 Matrix-assisted pulsed laser evaporation is the most frequently used method to 
obtain thin fi lm nanoarchitectonics for biomedical applications, because of its 
numerous advantages, like assuring control of the monolayer thickness, a strong 
adhesion of the thin fi lm to the surface of the monolayer, low substrate tempera-
ture, ensuring the stoichiometry of precursors, and economical consumption of 
precursors. This technique has been applied to obtain magnetite modifi ed sur-
faces with antibacterial properties, used for implants and medical devices, in 
order to prevent the nosocomial infections, frequently associated with improper 
sterilization or surgical procedures. However, these systems do not affect the 
adherence and biocompatibility of tissue cells. Hybrid organic–inorganic nano-
materials are preferred because they combine properties from both components, 
resulting in an increased biocompatibility of the designed nanomaterials, by 
applying several organic functionalizing agents, antibacterial properties of the 
organic material, increased stability, a modifi ed surface character, drug loading. 
Such thin fi lms have been applied for modifi ed surface prosthesis with antibacte-
rial properties and improved biocompatibility and cellular adherence. Some sys-
tems have been designed for delivery action, in order to improve some properties, 
or for therapeutic effects.    
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