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High-Bandwidth Low-Latency Interfacing
with FPGA Accelerators Using PCI Express

Mohammadsadegh Sadri, Christian De Schryver, and Norbert Wehn

Abstract The need for high performance computing dictates constraints on the
acceptable bandwidth of data transfer between processing units and the memory.
Consequently it is crucial to build high performance, scalable, and energy efficient
architectures capable of completing data transfer requests at satisfactory rates.
Thanks to increased transfer rates obtained by exploiting high-speed serial data
transfer links instead of traditional parallel ones, PCI Express provides a promising
solution to the problem of connectivity for todays complex heterogeneous architec-
tures. In this chapter, we first cover the principals of interfacing using PCI Express.
To illustrate a practical situation, we select the Xilinx Zynq device and develop
an example architecture which allows the x86 CPU cores of the host system, the
ARM cores of the Zynq device, and the hardware accelerators directly realized on
the FPGA fabric of the Zynq to share the available DRAM memory for efficient
data sharing. We provide estimates on possible data transfer bandwidths in our
architecture.

6.1 Introduction

As the energy efficiency requirements (e.g. GOPS/W) of silicon chips are growing
exponentially, computer architects are seeking solutions to continue application
performance scaling. One emerging solution is to use specialized functional units
(accelerators) at different levels of a heterogeneous architecture. These specialized
units cannot be used as general-purpose compute engines. However, they provide
enhanced execution speed and power efficiency for their specific computational
workloads [3]. There exist numerous applications for accelerators in both of the
embedded and high performance computing markets. However, to make them
accessible, a fast and flexible interconnect mechanism to the host system is crucial.

Efficient sharing of data in a heterogeneous architecture which contains different
types of integrated elements is a challenging task. A versatile method should
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be devised to act as the interconnect between different components in such a
system. The method should provide enough data transfer bandwidth meeting the
requirements for high performance Central Processing Unit (CPU) cores and
hardware accelerators. It should be scalable, allowing addition of new components
to the system easily and without degrading overall performance. Furthermore, it is
required to guarantee certain levels of robustness and reliability in data transfers.
When private caches of CPU cores and dedicated memory of accelerators are used
to store local copies of data, it is crucial to ensure that every processing element has
a consistent view of the shared memory space. Consequently, the communication
method should provide suitable means of ensuring data consistency among different
components of the system.

When the components residing in a single chip should communicate with
each other, considering the short distances between them and vast on-die routing
resources, wide parallel data buses clocked at high frequencies can be used.
Examples of such communication schema are Intellectual Property (IP) cores inter-
facing based on the Advanced eXtensible Interface (AXI) specification developed
by ARM.

For inter-chip communications in which the signals should travel long distances,
wide parallel data buses are not a suitable choice since the clock frequency of data
transfer will be confined to few hundred MHz to ensure correct capturing of all data
bits at the receiver side. When transferring data bits over a single link in a continuous
serial stream however, the aforementioned problem does no more exist and the clock
frequency of data transmission can be increased to multiple GHz. In this case it is
crucial to ensure that the receiver can recover each single bit of transmitted data at
a suitable time thus it is required to embed the information related to clock signal
into the data stream itself. This is usually the source of an additional overhead in
transmission of data e.g. in front of each 8 data bits which should be transmitted,
practically 10 bits will be sent to ensure correct recovery of data at the receiver.
In spite of this, the increase in bandwidth by serial methods is still far beyond
parallel methods. Peripheral Component Interconnect Express (PCIe) or shortly PCI
Express is currently the leading choice for connecting different hardware units in
computational platforms.

6.1.1 History: From ISA to PCI Express

From the early days of appearance of IBM PC computers, different standards were
introduced to allow extension cards and peripherals to be added to a computing
platform and to communicate to its main CPU through an I/O bus. Examples of such
buses include Industry Standard Architecture (ISA), Extended Industry Standard
Architecture (EISA), and Micro-Channel. These interfaces had at most a data bus
width of 32 bits and were running at frequencies below 10 MHz.

With the appearance of Peripheral Component Interconnect (PCI) the clock
frequency of data transfers increased to 33 MHz and above. For applications with
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higher demand on bandwidth, 64 bits wide versions of PCI were also introduced.
The PCI based graphics card soon replaced the old ISA cards. However, in a short
duration the bandwidth provided by these cards was also not enough for high
definition 3D graphics, as a result a superset of conventional PCI called Accelerated
Graphics Port (AGP) replaced PCI graphics cards. A performance improved version
of PCI called Peripheral Component Interconnect Extended (PCI-X) dedicated to
servers has a data bus width of 64 bits and operates at frequencies up to 533 MHz.
This results in a total bandwidth of 4.26 GB/s over the bus. This is the highest
bandwidth achievable by the PCI standard.

PCIe first introduced in 2004 is practically a replacement for all of the previous
standards. It uses point-to-point high speed serial data links instead of a shared
parallel bus. PCIe uses lower number of pins and smaller physical footprint in
comparison to PCI while providing higher level of bandwidth. Thanks to the point-
to-point connection topology, it provides better performance scaling as well as
improved error detection and reporting mechanisms.

The glsPCIe connection between two nodes in the system can contain from 1
to 32 lanes. Each lane contains a separate high-speed serial link for receiving and
another link for transmitting the data. Each high-speed serial link consists of two
wires that transfer the data using differential signaling. As of the first version of
PCIe (which was called PCIe Gen1) each link was capable of transferring 250 MB/s
of data in each direction. The latest publicly available version (PCIe Gen3) increased
the per-lane per-direction rate to 985 MB/s. For example a Gen3 PCIe card with 16
lanes (a 16X PCIe card) is cable of transferring up to 15.75 GB/s in each of the read
and write directions at the same time.

6.2 Essential Basics of PCI Express

PCIe uses Transaction Layer Packets (TLPs) to transfer data between two nodes in
the system. Each read or write transaction involves a series of one or more packet
transmissions. These packets are responsible for transferring data, configuration
parameters, messages, and event information between a PCIe device and the host.
This also includes the interrupts generated by the PCIe device which should be
delivered to the main CPU. Each TLP contains a header of around 16 bytes and
payload of up to 4,096 bytes. The header contains information related to the type
of the packet, its length, the ID of requester, its destination address, and so on. Two
types of TLPs exits:

1. Request TLPs, which contain a request for an operation to a PCIe node in the
system and

2. Completion TLPs that are generated by the completer and contain the response
to the request.

For example, when a PCIe device decides to write to a specific I/O address, it
generates a write request TLP which contains the destination address in its header
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Fig. 6.1 Example architecture of a PCI express based platform

and the write data in its payload. The PCIe sub-system routes the TLP to its
destination by looking up the address value in the header. On conclusion of write
operation at the I/O device, it returns a completion TLP as the response to the
requester to confirm the successful data transfer.

Figure 6.1 shows an example structure of a PCIe sub-system. The basic building
elements of a PCIe system are in detail:

1. The PCIe Root Complex is usually responsible for connecting the processor and
memory sub-system to the PCIe switches. The root complex generates PCIe
transactions on behalf of the processor. It usually contain more than one PCIe
Express ports.

2. Switches are responsible for routing incoming PCIe TLPs towards their suitable
destination. The destination will be defined either by the address in the header
of the TLP, by the ID of the destination peripheral, or based on the type of the
packet (e.g. broadcasts from the Root Complex).

3. End-Points are practically the peripherals, boards, and devices installed on the
hardware platform.

4. Bridges are used to allow hardware components not implementing PCIe directly
to be added to the system. The bridge is responsible for performing translation
between the other protocol and the PCIe.

PCIe devices are not available only as hardware boards which should be installed
on a main board with PCIe backplane. A PCIe peripheral can also be a separate
hardware unit in its own box and get connected to another platform through PCIe
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Fig. 6.2 One MaxExpansion
Gen3 X16 PCIe expansion kit
containing one PCIe external
cable and its adapter boards

external cables. Figure 6.2 shows a Gen3 X16 PCIe expansion kit which contains
2 adapter boards and a 3 m long PCIe external cable. This setup is capable of
transferring data at rates near to 15.75 GB/s. It should be noted that both ends of the
cable do not necessarily need to end up an adapter card. For example, it is possible
to have one end of the cable connected to the adapter installed in the server machine
and the other end directly enter a chip containing an integrated PCIe interface.

With the aid of PCIe fiber optic cables it is possible to extend the physical range
of PCIe peripherals for one single platform up to 100 m easily. As an example,
the hardware accelerator blocks for a high-end server can be located in another
building while they are present to the rest of the system as Gen3 X16 capable PCIe
peripherals.

6.2.1 Address Spaces and Base Address Registers

Every hardware component in a computing platform occupies a range of the
available physical addresses in the system. Access to that hardware component is
done through its base address and according to its address range. For example, each
of the Dynamic Random-Access Memory (DRAM) memory, storage devices, and
PCIe peripherals have their own specific base address and address range. The Basic
Input/Output System (BIOS) is responsible for assigning addresses to the present
hardware components at boot time or – for hot-plugging – when the hardware
component is plugged into the system. For PCIe, recognition of available PCIe
devices, identifying the capabilities and properties of each one, and assigning one
or a set of addresses to the device is done through a process called enumeration.

Todays computing platforms running operating systems such as Windows or
Linux use virtual addresses to manage system memory. Indeed, every process
running on the system is given a range of virtual addresses by the Operating
System (OS) that it uses for its execution tasks. For every process, accesses to the
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memory or any of the hardware components in the system will be done by accessing
specific locations in the process virtual address range. The OS is then responsible for
converting the virtual address to the real physical one and initiating the transaction
to the target. To perform the address translation fast and efficiently the OS uses a
hardware unit called Memory Management Unit (MMU).

The advantages of using virtual addresses are numerous, for example:

• Memory protection mechanisms can be implemented by the OS to disallow
accesses to memory regions of other processes.

• Libraries that contain widely used routines by all processes can be loaded only
once and easily be shared among all processes.

• Access to hardware components being used by several processes at the same time
can be better governed by the OS.

However, this at the same time makes the task of software development for
communicating to the PCIe hardware more challenging. At the first step, the driver
which is responsible for talking to the PCIe component obtains the physical address
of the device and its address range. These values are calculated at boot time by
the OS. It then requests the OS for a region in the virtual address space to use
for communicating with the device. Then the driver remaps the physical address
of the device to the obtained virtual address. This way, by performing read and
write transactions to virtual address locations, the driver can practically access the
physical address locations of the PCIe peripheral. We further describe the basic
architecture of a PCIe peripheral Linux Kernel driver in Sect. 6.7.

Now consider the fact that a PCIe peripheral has usually integrated CPU cores
that are running an operating system themselves. They also have their own MMU.
Moreover, each hardware component within the PCIe peripheral has its own internal
physical address. Similar to the main system, the MMU is responsible for converting
the virtual addresses generated by processes running on CPUs to equivalent physical
ones. However, the difference is that this time every thing is happening within the
PCIe peripheral.

Consider a simplified architecture like the one shown in Fig. 6.3. Suppose that
the host CPU of the system wants to share an array of data with CPU cores within a
PCIe peripheral. In order to do that, the host CPU can copy the data to the memory
located inside the PCIe peripheral. Several address translation steps are required to
accomplish this task:

1. The virtual address of the memory location which holds the array on the host
system should be converted into its equivalent physical address.

2. The virtual address through which the driver running on the host system talks to
the PCIe peripheral should be converted into its physical equivalent as well. At
this stage a transaction can be initiated to transfer the data from the memory to
the PCIe peripheral. This transaction can be initiated by a Direct Memory Access
(DMA) engine which we describe later in more detail.
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Fig. 6.3 A simplified block diagram of a host system and a PCIe peripheral which contains a set
of computing elements inside

3. When the transaction passes the integrated PCIe interface module, its address
should be substituted with the correct physical address within the PCIe peripheral
hardware subsystem. This physical address usually resides some where in the
range of memory address.

4. Finally, for the CPU cores within the PCIe peripheral to access the shared
data, a conversion between the virtual address of the shared data array and its
corresponding physical address should be done. This will happen using the MMU
within the PCIe peripheral.

As we see the address translation can be a tedious task. As a result it is crucial to
make sure that it is happening only when it is required and then it is performed in
an efficient manner.

The PCIe Base Address Registers (BARs) have a special meaning: they are
the base address values assigned to the PCIe peripheral by the host at boot time.
However, our example integrated PCIe interface module from Fig. 6.3 has two sets
of base address registers: One set representing the physical address of the peripheral
for the host system and another set representing its base address as it appears to
the local CPU cores within the card. When performing data transactions initiated
by the host and targeting the PCIe peripheral or vice versa, it is crucial to have fast
translation between these address domains. To improve the performance, the address
translation task is usually directly implemented in the hardware of integrated PCIe
module. There exist configuration registers within the module where the required
translations between two address domains can be defined.

6.3 Interfacing to PCI Express Using FPGAs

With parallel I/O data transfer schemes reaching their bandwidth limits for chip-
to-chip communications, high-speed serial interfaces are replacing them wherever
possible. A high-speed serial interface transmits the data over differential signal
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lines in self-synchronous mode. This means the information related to the clock
signal of the transmitter is integrated into the data stream itself. At the receiver side
the clock signal will be extracted from the data stream using a Clock Data Recovery
(CDR) circuit, which mainly contains a Phase Lock Loop (PLL). The principal
component used in high-speed serial links is a Serializer/Deserializer (SerDes). A
SerDes is a hardware unit responsible for converting the received parallel data into
serial, adding clock information and putting it on the transmission line, and on the
other hand, receiving the serial data from outside, extracting the clock information
and converting the data into parallel.

Field Programmable Gate Array (FPGA) devices that are widely used by
engineers in numerous products should also provide the possibility of talking to
outside world through high-speed serial links. The shift from parallel data transfer
to high-speed serial interfaces, however, does not come without challenges. In
fact, designing a high-speed serial interface from scratch can be so complicated
and time consuming that the engineers may prefer to continue using traditional
parallel transfer solutions. This made FPGA manufacturers to integrate the rapid
serial I/O interfaces as ready-to-use hard-core IP blocks into their products. Thus,
all the designers need to do is to configure the IP core according to their serial data
transfer specifications and implement suitable hardware modules on the FPGA for
interacting with the rapid serial I/O block.

For example, Xilinx has integrated high-speed serial interfaces into its FPGAs
from the early Virtex-II devices [2]. Primarily they were called Rocket-I/Os. This
name was later mostly replaced by Multi-Gigabit Transceiver (MGT). Table 6.1
shows available MGTs in Series-7 and UltraScale Xilinx products [8]. The MGTs
are the basis for realization of all of the famous high-speed communication protocols
using Xilinx FPGAs. Examples include PCIe, Serial AT Attachment (ATA), 10 Gb
Ethernet, Infiniband, and so on.

Table 6.1 Multi-gigabit transceivers available in UltraScale and Series-7 devices. For each
family only the highest speed MGT is shown

Transceiver Max Max Total
Device type performance (Gbits/s) transceivers bandwidth (TBits/s)

Kintex UltraScale GTH 16.3 64 2

Virtex UltraScale GTY 32.75 120 5.8

ZYNQ 7000 GTX 12.5 16 0.4

Artix-7 GTP 6.6 16 0.21

Kintex-7 GTX 12.5 32 0.8

Virtex-7 GTZ 28.05 96 2.8
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6.3.1 Integrated Block for PCI Express

To have a fully operational PCIe end-point or root complex, in addition to MGTs,
several other blocks are required as well. These additional modules are responsible
for realization of transaction and data-link layers of thePCIe protocol. This includes
tasks like configuration management, generation and processing of TLPs, flow-
control, power management, data protection, error checking, and status tracking.
One possibility is that the developer implement all of these additional functionality
in Register-Transfer Level (RTL) and therefore using FPGA resources. But also
ready-to-use soft-IP cores [10] can be used. However, this results in valuable
FPGA resources being consumed by the core, limiting the freedom of designer to
implement his own custom logic. Therefore, in some FPGA devices the PCIe block
is available as a hard-IP core, meaning that the required logic is already integrated
into the silicon and is ready to be used.

Regardless of being a hard- or soft-IP core, the interfaces to the PCIe block are
always the same. This allows a developed design to be adapted to different FPGA
devices in a short time. Basically, the main interfaces of a PCIe block for transferring
data to other modules within the FPGA fabric are based on AXI stream protocol.
Figure 6.4 shows the symbolic representation of a Gen3 8X PCIe block for a Virtex-
7 device and its main connections to other modules on the FPGA and also to the

PCI X8 Connector Edge

PCIe Requester 
Interface

PCIe Completer 
Interface

Fig. 6.4 A simplified block diagram of a PCIe block and its main connections to other modules
on the FPGA and the outside world. The PCIe block symbol is taken from a Xilinx Vivado project
consisting a Gen3 X8 PCIe interface
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outside world. In this figure, the PCIe block is shown in blue and then rectangles in
green are the logic implemented by the user for talking to the PCIe block.

As described in previous sections, in every PCIe transaction one node in the
system is the requester which produces a read or write request and another node is
the completer which responds to the requester by performing the required action.
The PCIe block shown in Fig. 6.4 is capable of playing both roles. When the user
decides to act as the bus master and to initiate a transaction to another PCIe node in
the system, it does so through its PCIe Requester Interface unit by sending a suitable
request packet to the Requester reQuest (RQ) interface of PCIe block. The PCIe
block forwards the request to the PCIe backplane. When the PCIe block received the
response from the completer it sends the response over the Requester Completion
(RC) interface to the user’s Requester Interface module.

The PCIe block can also act as a completer. When another node in the system
decides to initiate a transaction to our PCIe peripheral it sends the request with the
physical address of our PCIe peripheral. Upon receiving the request TLP, the PCIe
block forwards the request to the user’s Completer Interface through its Completer
reQuest (CQ) port. The user developed block performs required actions indicated by
the request and sends back the response to the Completer Completion (CC) interface
of the PCIe block. For a Gen3 X8 PCIe block, each of the mentioned ports have
a data bus width of 256 bits and are running at 250 MHz. The sys_reset and
sys_clk signals are fundamental to the operation of the PCIe block. These signals
can be obtained from the PCIe backplane. There is also the possibility of generating
these signals locally on the PCIe peripheral if needed. The user_reset and
user_clk signals are generated by the core and can be used for the logic that
user develops on the FPGA fabric for communicating to the PCIe block.

6.4 Introduction to AXI

Looking at a typical System on Chip (SoC) design we see a large number of different
modules instantiated and connected together to deliver the required functionality of
the product. In order to realize those connections easily and fast with the goal of
building a new architecture it is crucial that all of the modules interface to outside
world based on a same language. This means that all of the modules should obey
a same set of rules and should use the same set of signals as their interface to the
rest of the logic. Having a library of different modules meeting this requirement
in hand, a designer can build new systems very easily by connecting the required
components together. This is the basic motivation behind creation of SoC buses like
WishBone [6], IBM CoreConnect [5], and ARM AXI [1].

A SoC bus is not necessarily a data transfer medium which is shared by several
modules. It can also be an architecture which provides point-to-point connection
between different units of the system, allowing them to initiate transactions
concurrently. This is the case for the AXI interconnect, for example.
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The basic elements of an AXI based architecture are as follows:

1. AXI Masters are units that initiate read or write transactions.
2. AXI Slaves are units that receive read or write transactions and produce the

suitable response to them.
3. AXI Interconnects play the role of switching elements between AXI Masters and

AXI Slaves. They are responsible for routing the transactions and data from an
AXI Master to the specified destination.

There exist two types of AXI interfaces:

1. AXI stream and
2. AXI memory mapped.

An AXI stream interface is suitable for modules which receive a stream of
data, perform some processing on it, and generate another stream of data as the
output. In AXI stream interfaces, the source from which the data is coming and
the destination to which the data is going are defined from the beginning. Thus the
transactions do not need to carry the address for the destination. This simplifies
the logic required for interfacing to AXI stream extensively. Figure 6.5 shows the
main signals between an AXI stream master and an AXI stream slave plug. In AXI
stream, the direction of data is always from the master to the slave.

The TVALID signal indicates to the slave unit that a new data is available.
TREADY is generated by the slave and indicates that the AXI stream slave is ready
to receive the data. The transmission of data happens when both of the signals are
active. TDATA is the actual data being transferred and TLAST indicates if the current
data which is being transferred is the last data of the packet. In such a configuration,
both modules work at the same clock domain. To transfer data between one AXI
stream master and one AXI stream slave where both are in different clock domains,
an AXI stream asynchronous First in, First Out (FIFO) can be used.

The simple AXI stream interface does not answer all of the connectivity needs
in a complex SoC. This is because in many situations the computational task is
more complicated than just performing a set of calculations on an incoming stream
of data. Indeed, the task usually involves performing read and write accesses to
different variables and array elements that are stored in a memory. Consequently,
the read and write transactions initiated by the module need to contain an address to
indicate to the target location in the memory for the read or write operation.

Furthermore, the simple case in which one module is always receiving its input
data from another fixed module is not always true. It happens that a module needs to
talk to a different module in the architecture each time. Again, this highlights then
need for an address in the initiated transaction for indicating the target module.

Fig. 6.5 Main signals
between an AXI stream
master and an AXI stream
slave module

AXI
Master (S)

AXI
Slave

(S)

TVALID
TREADY

TDATA
TLAST
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Fig. 6.6 Main channels of an
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The AXI memory mapped interfaces solve these issues by adding the address
channels to the AXI interface. In contrast to an AXI stream interface that contains
only one channel for data transmission and in a fixed direction, an AXI memory
mapped interface consist of five channels. The AXI memory mapped interface
can perform either reads or writes and for each of these operations since it has a
separate read address and write address channels. To improve the performance of
data transfers, AXI interfaces support burst transfers of up to 256: For a read or
a write transaction, only one address is indicated over the corresponding address
channel and the rest of the addresses are automatically calculated at the slave side.

Figure 6.6 shows the five channels of an AXI memory mapped interface. Each
channel contains a similar set of signals as one AXI stream interface. In each
channel, there are additional signals to carry the information related to transactions
bursts, quality of service, memory protection, caching of data, and so on.

As we see in Fig. 6.6, the address channels are always outputs from the AXI
memory mapped master and inputs to the slave. The read data channel that carries
the data read of the specified address by the master is an input to the master. Also
the write response channel, which informs the master if the write transaction has
been successful or not, is an input to the master module.

A typical read or write transaction begins first by putting the address on the read
or write address channels. After the address is accepted by the slave, the actual data
transfer will be performed. For each of the read or write data transfers there are
signals which indicate if the transfer has been successful or not. To improve the
performance of data transfers it is possible to use all of the five channels in parallel.
For example, while an AXI master is receiving data of the previously initiated read
transaction, it initiates a write transaction over the write address channel.

Furthermore, there exist the possibility that an AXI slave responds to incoming
requests in a out-of-order fashion, i.e. that it receives a set of requests from different
masters and it generates the suitable responses to each request as soon as it had
the data ready for that specific request. To enable this functionality, a mechanism is
required to identifying each transaction. In fact when the slave produces a response
to the request of an AXI master, it should be able to indicate that the current response
belongs to which of the received requests. The AXI protocol provides an ID signal
over each channel. Basically each incoming request over either read or write address
channels to an AXI slave has its own specific ID. When the AXI slave produces the
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Fig. 6.7 An AXI interconnect operates as the switching element in an architecture consisting
modules with AXI memory mapped interfaces

response to the request over the read data channel or the write response channel, it
also reflects related ID value of that transaction over the response channel.

In an architecture consisting of modules with AXI memory mapped interfaces,
switching mechanisms are required to route transactions to suitable destination
based on the transaction address. AXI interconnects are responsible for this task.
Figure 6.7 shows an example design featuring 2 AXI masters and 3 AXI slaves.
Each slave in the architecture has a base address and an address range. The AXI
interconnect contains a decoding table which is basis for deciding to which of the
slaves an incoming transaction should be routed. The AXI masters can practically
initiate transaction to every location they want in the address space. Obviously, only
those transactions which fall in the address range of one of the AXI slaves will be
responded.

6.4.1 AXI PCIe Bridge

Consider an FPGA based PCIe card which acts as a hardware accelerator and its
main operation is to receive an incoming stream of data, to perform a defined set
of calculations on the data stream, and then to return back the results to the host.
For such an accelerator, the integrated block for PCIe described in Sect. 6.3.1 is a
suitable choice. In fact, many of the applications deal only with streams of data. For
example, they need to process a stream of data, or to transfer the incoming stream
of data to another location e.g. to a fiber optics channel. In these cases, being able
to randomly access data, or to keep a history of data in a memory and to retrieve it
later if needed, is not required.
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However, there exist also many applications in which memories and random
accesses to memory are heavily required. For example, imagine a PCIe card which
is responsible for accelerating data base operations. The card stores the tables in
its internal DRAM to which the FPGA has a very low-latency and high-bandwidth
access. Then it receives different query requests over the PCIe interface, performs
the required operations using the tables stored on its DRAM and sends back the
results. In such a scenario, the stream based architecture is no more efficient. Indeed
the logic for the hardware accelerator implemented on the FPGA will mostly be
based on memory mapped interfaces. As a result, the output of the integrated block
for PCIe should be connected to a unit which is responsible for receiving PCIe
packets over AXI stream, looking up their properties and destination address, and
converting them into equivalent AXI memory mapped transactions. For this case e.g.
Xilinx provides an integrated PCIe IP core with AXI memory mapped interfaces,
eliminating the need for using the AXI stream based blocks.

Figure 6.8 shows the symbolic representation of a PCIe AXI unit and also a
simplified example architecture representing how this block gets connected to the
rest of the system. This figure also contains a processing core and some modules
with AXI slave and master plugs which are implemented on the FPGA fabric.
In addition, there exist modules that may have more than one AXI plug. AXI
interconnects are responsible for connecting the AXI interfaces to each other.

AXI MM
Slave

PCIe Connector Edge

Processor
Core

Interconnect

AXI MM
Slave

AXI MM
Slave

AXI MM
Master

AXI MM
Master

AXI MM
Master

Interconnect

PCI Reference Clock

Output clock for
user logic

Fig. 6.8 Simplified block diagram showing how a PCIe AXI bridge gets connected to the other
modules on the FPGA fabric and also to the outside world
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In Fig. 6.8, the pcie_7x_mgt port is in fact the interface port of MGTs and
should go to the PCIe edge connector. M_AXI is an AXI memory mapped master
port which will initiate read and write transactions based on the received TLPs at
PCIe side. The AXI master port will go to an AXI interconnect from which it gets
connected to AXI slaves in the architecture. The S_AXI port of PCIe AXI bridge
is used when the modules on the FPGA decide to initiate transactions to different
address locations over the PCIe bus. For example, the processor core or one of the
AXI masters may perform a read or write operation to a specific location in the
host’s DRAM memory through the S_AXI port. In this case the PCIe card acts as a
bus master on the PCIe backplane.

Finally, the S_AXI_CTL port is an AXI slave port of PCIe AXI bridge which
is used for configuring the bridge. Usually this is a task performed by a processing
core. For example, as described in Sect. 6.2.1 the PCIe AXI bridge converts the
address of incoming transaction from the address space of the host computer to
the address space of the embedded architecture on the PCIe card. This address
translation can be configured through the S_AXI_CTL port using the processor
core. Furthermore, the AXI slave port can be used for reading the status and
configuration information of the bridge. If the local processing unit is running an
operating system like Linux, then a kernel level driver should also be developed to
allow the software to access the resources of PCIe AXI bridge.

6.5 Xilinx Zynq Architecture

This section introduces the basic features of the Xilinx Zynq All Programmable SoC
required to understand the PCIe example presented in Sect. 6.6.

The Xilinx Zynq All Programmable SoC is a hybrid device with a fast intercon-
nect [12]. It consists of two parts:

1. The Programmable Logic (PL) that is roughly a full-featured FPGA and
2. The Programmable Systems (PS), a complete sub-system with ARM CPU cores

and different peripherals.

The PS contains the following items:

• An ARM Cortex MPCore-A9 dual core processing engine which also contains
NEON Single Instruction Multiple Data (SIMD) units. Each ARM core has its
own L1 data and instruction caches. Each cache block has a size of 32 KB.

• One L2 cache with the size of 512 KB which is shared between two CPU cores.
The ARM PL310 cache controller is used for implementation of this unit.

• A Snoop Control Unit (SCU), which ensures coherency between the contents of
the caches.

• An On-Chip Memory (OCM), a multi-port memory block of 256 KB that can be
accessed by the CPU or other ports and units in the system.
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• A DMA controller that can be used for transferring data between peripheral and
DRAM memories.

• A multi-port memory controller, which is responsible for connecting to DRAM
memories and receiving read/write requests from different sections of the
hardware and passing them to DRAM.

• A large ensemble of different peripheral such as Universal Asynchronous
Receiver/Transmitter (UART), Gigabit ethernet, Universal Serial Bus (USB)
peripheral and host, Controller Area Network (CAN) bus, Inter-Integrated Circuit
(I2C) Bus, Secure Digital (SD) Card interface, General-Purpose Input/Output
(GPIO), and so on. . ., which can be configured and used by the ARM CPU cores
very easily.

• An interconnect based on ARM NIC-301 design that connects different blocks
of hardware inside PS together.

• A set of AXI interfaces (as shown in Fig. 6.9) are implemented to make the
communication between PS and the PL logic possible.

Basically, these AXI interfaces divide into two groups:

• AXI memory mapped master interfaces (GP), connect to AXI slaves residing on
the PL. The CPU is able to initiate read/write transactions over these AXI masters
to transfer data to PL modules. There are two 32 bits AXI master ports available
in the Zynq device: GP0 and GP1.

• AXI memory mapped slave interfaces (High Performance (HP), Accelerator
Coherency Port (ACP) and SGP), connect to the implemented AXI masters on the
PL. There exist four HP ports and one ACP. Each of these interfaces implements

Fig. 6.9 A block diagram representing important elements of the Xilinx Zynq device
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a full-duplex 64 bits connection, meaning that at every clock cycle, total 16 bytes
of data can be transferred on AXI read and AXI write channels concurrently. The
two SGP0 and SGP1 interfaces implement 32 bits connections.

There exists a defined memory map for the Zynq device [12] that indicates the
address range of each logic block. Every AXI slave unit implemented on the PL
will also occupy a part of this address range. It should be noted that except the CPU
cores and their L1 instruction caches the rest of the system is using physical address
values.

The ACP is connected to the ARM SCU. Thus, it provides the possibility of
initiating cache coherent accesses to the ARM sub-system. Careful use of the
ACP can improve overall system performance and energy efficiency. However,
inappropriate usage of this port can adversely affect execution speed of other
running applications because the accelerator can pollute precious cache area [7].

6.6 Example PCI Express Design Based on Zynq

We develop an example architecture on the Xilinx Zynq to allow the host system
and the Zynq ARM subsystem to share their DRAM memory spaces over PCIe.
When the data sharing between the host system and the processing elements on the
PCIe card is complete, additional hardware accelerator modules can be added to
the Zynq PL allowing for accelerating computational tasks. Our target hardware for
this project is the Xilinx ZC706 board that contains one Zynq 7045 device. The
card provides a PCIe Gen2 X4 interface over a PCIe connector. The developed
architecture tries to keep every thing as simple as possible while providing the
possibility of reaching acceptable bandwidth on the PCIe interface.

Figure 6.10 represents the developed architecture. This architecture consists of
three main elements:

1. The Zynq PS,
2. The PCIe AXI bridge, and
3. A DMA engine.

For configuring the PCIe AXI bridge and reading its status information through the
S_AXI_CTL port, we use the GP1 AXI master port of the Zynq PS. Through this
port, the ARM CPU cores can have access to configuration and control registers of
the PCIe AXI bridge. For this part of the circuit, axi_ctl_aclk_out generated
by the core is used as the clock signal. For the rest of the logic axi_aclk_out is
used as the clock.

Transactions initiated by other PCIe nodes in the system and received by our card
will arrive at M_AXI port of PCIe AXI bridge. From there these transactions will be
routed to the DRAM memory space through the HP0 AXI memory mapped slave
port. Obviously, suitable address translation should be done before the transaction
enters the AXI architecture. Practically for the incoming transaction address, the
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Fig. 6.10 A block diagram representing the architecture of our PCIe based hardware to share the
DRAM memory of the host system with the ARM CPU cores on the Zynq and to share the DRAM
memory connected to the Zynq PS with the host system. Squares are AXI master plugs and circles
are AXI slaves

base address of the PCIe device should get dropped and instead a suitable base
address according to address arrangements in the AXI architecture should be added.

The S_AXI port of the PCIe AXI bridge has basically two masters: The ARM
CPU cores and the DMA engine. The ARM cores can directly initiate read and
write transactions to the address space of the host through the GP0 port. Again, the
destination address for the transaction here will be the address assigned to S_AXI
port of PCIe AXI bridge, and the translation to the address space of the host will be
done within the bridge. Here, the kernel level driver of our PCIe peripheral which
is running on the host system, will allocate an amount of memory on the host’s
DRAM. It then obtains and passes the physical address of the allocated memory
to the ARM host on our PCIe peripheral. The ARM host configures the address
translation mechanism within the PCIe AXI bridge so that the generated transactions
by this block over the PCIe backplane end up the memory range allocated by our
driver on the host’s DRAM memory.
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A similar procedure as what we described holds true when the host CPU wants
to access the DRAM memory of the ARM host. This time the kernel level driver
running at the ARM side is responsible for memory allocation. Again based on the
obtained address values the address translation mechanism within the PCIe AXI
bridge will be configured.

When it is required to transfer a large amount of data with a high bandwidth,
using the CPU cores for handling data transfers is not efficient. This is true for both
CPU cores of the host as well as the ARM CPUs of the PCIe peripheral device.
Generating read or write transactions using the CPU core, even when it is done
without any interruption, does not eventually result in a satisfactory performance.
Consequently, there should exist a dedicated hardware responsible for performing
data transfers to and from the PCIe AXI bridge. The DMA engine instantiated in our
example architecture is responsible for initiating data transfers to the host without
disturbing the CPUs.

In our architecture, the ARM CPU cores are responsible to define the set of data
transfer tasks that the DMA engine should do. Each transfer task for the DMA is
defined in a structure called descriptor. Through GP0 port, the ARM CPU core
copies the descriptors to a dual-port block memory. The other port of the block
memory is practically connected to the DMA engine, which has a dedicated master
port to read the descriptors. Each descriptor contains a source address for the transfer
which should be done, a destination address, and the length of the transfer. The block
memory can keep a large number of descriptors written to it by the CPU. The DMA
engine can operate in a cyclic manner, meaning that by reading and executing the
transfer for the last descriptor in the block memory, it can jump back to the first
descriptor and continue its operation.

Our DMA engine has two AXI memory mapped master ports: One port is prac-
tically connected to the S_AXI port of the PCIe AXI bridge initiating transactions
over PCIe. Another port is connected to the HP1. For a read operation, the DMA
engine initiates the read transaction over PCIe and when it received the read data it
writes the incoming data to the DRAM memory through the HP1 port. For a write
operation the DMA engine reads the write data from the DRAM memory through
the HP1 port, then it initiates a write transaction over the PCIe bus by writing the
data to a suitable address location of the S_AXI port.

6.7 Linux Kernel Level Driver

As described in Sect. 6.4.1, our architecture consists of two sets of CPU cores: The
host CPU cores that are usually x86 and the PCIe device CPU cores, which in our
architecture are ARM v7 cores. We assume that the Linux OS is running on the
host CPU cores. For the PCIe device, in most common situations, Linux is also
running on the ARM CPUs. In order for user-level applications running on the Linux
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to be able to interact with the PCIe device, a Linux kernel level driver is needed.
As a result, for our architecture two Linux kernel level drivers should be developed
separately.

The driver running on the host system should be able to find the PCIe device,
allocate I/O and memory regions for it, register required interrupt lines and
their corresponding interrupt handlers, and to enable user level applications to
communicate with the device. For this purpose, the driver uses structures and
functions integrated into the Linux kernel that facilitate interacting with PCI based
peripherals. In fact, from the view point of the host driver, our hardware is a PCI
peripheral. However, from the view point of the driver running on the ARM host,
the PCIe AXI bridge is just an AXI peripheral similar to the other components in
the architecture.

For the driver running at the host side, it first announces to the Linux kernel
the vendor and device ID of the PCIe device it is seeking for. In addition to the
ID values, the driver also gives the Linux kernel pointers to two implemented
subroutines inside the driver. The first subroutine is executed when a PCIe device
is found in the system with the same ID values as the ones indicated by the driver
and the second subroutine is executed when this PCIe device gets removed from the
system. The ID values and pointers to subroutines is given to the Kernel through a
structure called pci_driver. Code Listing 6.1 shows an example definition of
this structure.

1 static struct pci_driver pci_drv_template =
{

3 .name = "pci_drv_template",
.id_table = pci_drv_ids,

5 .probe = device_probe,
.remove = device_deprobe,

7 };

Listing 6.1 Example code showing how pci_driver struct is defined.

During the device_probe subroutine, the driver obtains the physical address
at which the PCIe device is located. This is done through pci_resource_start
Linux kernel call. The driver then asks the Kernel for permission to access the
physical address range of the PCIe device. If granted, a remapping of the physical
address of the PCIe device to virtual address space will be done by the driver. This
is done with the aid of ioremap Linux kernel call. Having the virtual addresses,
the driver is able to perform read and write transactions to the address space of the
PCIe device using writel and readl system calls. Code Listing 6.2 shows an
example implementation of the device_probe routine.
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1 static int device_probe
( struct pci_dev *dev, const struct pci_device_id *id )

3 {
// get the first i/o region

5 ioport = pci_resource_start( dev, 0 );
iolen = pci_resource_len( dev, 0 );

7

// request memory region
9 request_mem_region( ioport, iolen, "ZC706");

11 // map hardware memory space to virtual space
pci_bar_vir_addr = ioremap(ioport, iolen);

13

// the rest of the code
15 // ...

Listing 6.2 Example implementation of the device_probe subroutine.

Initial memory allocation can also be done within the device_probe routine.
For this purpose, the pci_alloc_consistent Kernel call can be used. The
physical address for the allocated memory can then be transferred to the ARM cores
in the PCIe device. The address will be used for configuring the address translation
logic within the PCIe AXI bridge.

Both of the drivers represent the device to their Linux system as a character
device which supports basic file operations. These file operations include open,
close, read, write, i/o control and mmap. In the simplest data transfer scenario, the
user level application opens the character device and performs reads and writes to
the device using usual file I/O operations. From the host side, the driver can redirect
the incoming read and write transactions toward pre-known address offsets in the
PCIe device. The same holds true for the driver running at the ARM side. The
driver receives the data from the user level application running on the ARM host
and transfers it to pre-known offset on the memory allocated by the host driver.

When it is required to transfer and process data at a high rate, the simple file
I/O operations can no more be efficient. In fact, during file I/O data transfers the
data always gets copied from the user space memory to the kernel memory and
from there it gets transferred to the hardware. However, it is possible to share the
memory which is obtained by the driver with the user level application directly,
eliminating the need for copying data from user space to kernel space and vice versa.
This is done through mmap file operation. Usage of mmap for sharing the memory
space with user level application is again similar for the drivers at both sides. Code
Listing 6.3 shows an example implementation of mmap routine for the host driver.
The io_remap_pfn_range function receives the user virtual address range and
also the physical address range of the device. It then maps the provided range of
physical addresses to the provided virtual address range by creating a new set of
page tables which essentially perform the address translation between these two
ranges. For further information regarding character devices and mmap please refer
to [4].
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1 static int chr_device_map
(struct file * filep, struct vm_area_struct * vma)

3 {
io_remap_pfn_range (vma,

5 vma->vm_start,
ioport >> PAGE_SHIFT,

7 vma->vm_end - vma->vm_start,
vma->vm_page_prot);

9 vma->vm_flags |= (VM_DONTEXPAND | VM_DONTDUMP);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);

11 return 0;
}

Listing 6.3 Example implementation of the mmap file operation routine (Linux kernel 3.7).

6.8 Experimental Results and Discussion

The performance of a PCIe hardware accelerator card is directly affected by the
bandwidth of data transfers between the card and the host system. Considering the
PCIe card, it is also crucial to know how fast this architecture can transfer data
between its own main memory and the integrated PCIe block. These parameters
directly affect the processing performance of the hardware accelerator.

Through a set of stress tests it is possible to obtain estimates on the performance
of PCIe interface. For the ZC706 board, which features a Gen2 X4 PCIe interface,
Table 6.2 shows obtained estimates on each of the read and write data paths [11]. In
this test the performance is measured while sweeping the size of the DMA packets
being transferred between the PCIe card and the host system from 512 bytes to
32 KB. Obtained values are representing the net data transfer rates after omitting all
of the overheads related to packet headers, acknowledge packets, flow control, and
other similar items.

As we see, the performance of the PCIe link changes significantly with the
packet size. In fact, the efficiency of data transfers to a hardware accelerator
using PCIe is heavily dependent on the size of data chunks being transferred.
If the acceleration task involves processing of big continuous blocks of data,
the PCIe link can be used with acceptable bandwidth efficiency. Instead, if the
acceleration task requires a large number of small data chunks being transferred
between the host system and the PCIe card, the efficiency of the link can be
degraded seriously. In these situations, increasing the PCIe link width (e.g. from X4

Table 6.2 Approximate read
and write bandwidth to the
host for ZC706 Gen2 X4
PCIe interface

Packet size (KB) 0.5 1 2 4 32

PCIe to host (MB/s) 250 612 762 937 975

Host to PCIe (MB/s) 250 525 750 930 970
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Table 6.3 Approximate read plus write bandwidth to the
DRAM memory residing on the ZYNQ PS from ZYNQ PL
through each of HP1 and ACP ports

Packet size (KB) 4 16 64 128 256

HP0 600 1,250 1,600 1,700 1,730

ACP 600 1,250 1,600 1,650 1,600

to X8), improving caching mechanisms, and exploiting several concurrent threads
for initiating required transactions can enhance overall performance.

In the second test, we stress the local DRAM memory available on the accelerator
card. We obtain estimates on how fast the data can be transferred between the PCIe
block and the local DRAM memory. This is important since in our architecture the
host system shares the data with the hardware accelerator on this DRAM memory.

Table 6.3 shows the obtained read plus write bandwidth values between the DMA
engine residing on the Zynq PL and the DRAM memory connected to the Zynq
PS [7]. Similar to the previous test, we sweep over the size of data chunks being
transferred between two nodes to report the bandwidth. We perform accesses to the
DRAM through each of the HP1 and ACP ports. As we see, with the increase in
the size of packets being transferred the bandwidth improves. However, the increase
in bandwidth gets saturated at around 1,700 MB/s. This total bandwidth is almost
evenly divided between read and writes.

For the ACP, accesses practically end up the caches of the CPU for smaller packet
sizes. However, as the packet size grows and more memory is needed, the extra
accesses to DRAM reduce the ACP performance. The real advantage of ACP over
HP1 can be seen in scenarios where the accelerators on the Zynq PL want to share
data with the ARM CPU cores of the Zynq PS. Considering the obtained estimations
we conclude that a careful design is needed to be done so that the Zynq PS and
DRAM memory subsystem sustain the traffic generated by the Gen2 X4 PCIe block
completely. This involves definition of descriptors for DMA transfers as well as
utilization of suitable ports on the Zynq PS to access the DRAM.

6.9 Conclusion

In this chapter, we summarize the basics of PCIe as one of the most popular
interfaces for communicating with accelerators in heterogeneous systems. One
reason is that – in contrast to other interfaces like Ethernet – relatively low latencies
can be achieved with PCIe. We introduce the basic architectural setup and protocol
features of a PCIe communication infrastructure. We describe that PCIe peripherals
do not necessarily need to be located in one single box together with the host CPU,
but can also be physically apart and be connected through PCIe cables. This is in
particular beneficial for external accelerator units that need to be attached to a host
device.
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We also introduce the fundamentals of using FPGAs for interfacing to PCIe.
We briefly look at the PCIe integrated block and the PCIe AXI bridge IP cores
provided by Xilinx that are available through the Xilinx Vivado design suite. We
briefly discuss how these components can be utilized to create a PCIe accelerator
card based on FPGAs. One important aspect for achieving good performance is the
use of DMA engines besides the CPU.

From the software point of view – both on the host and the accelerator device
part – we briefly describe the mechanisms for accessing the PCIe infrastructure
and highlight different sections of an appropriate Linux kernel level driver created
for talking to a PCIe peripheral. As a practical example, we have used a Xilinx
ZC706 for demonstrating how a PCIe design can be realized for the Xilinx Zynq
All Programmable SoC device on this board. We show estimated bandwidth values
for key parts of this architecture.

Significant improvements in the IP cores and software drivers created to ease
designing with PCIe have made building PCIe peripherals easier than ever before.
As an example, the Xilinx SDAccel [9] environment provides the designers with
a complete CPU/Graphics Processor Unit (GPU) like development experience
on FPGAs. If a financial hardware accelerator card comes with relaxed transfer
bandwidth and latency requirements, the entire design can be realized by hardware
or software engineers with a common level of design skills.

Nevertheless, for some applications it is required to push the transfer bandwidths
to their possible maximum. In these cases designing for PCIe is a challenging task.
It includes the electronics design of the board, design and implementation of the
hardware architecture, and also software aspects of the design. In these situations it
is usually a wise decision to leave the project in the hand of professionals who have
constant experience of designing PCIe peripherals.
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