
Chapter 1
10 Computational Challenges in Finance

Sascha Desmettre and Ralf Korn

Abstract With the growing use of both highly developed mathematical models
and complicated derivative products at financial markets, the demand for high
computational power and its efficient use via fast algorithms and sophisticated hard-
and software concepts became a hot topic in mathematics and computer science.
The combination of the necessity to use numerical methods such as Monte Carlo
simulation, of the demand for a high accuracy of the resulting prices and risk
measures, of online availability of prices, and the need for repeatedly performing
those calculations for different input parameters as a kind of sensitivity analysis
emphasizes this even more.

In this survey, we describe the mathematical background of some of the most
challenging computational tasks in financial mathematics. Among the examples are
the pricing of exotic options by Monte Carlo methods, the calibration problem
to obtain the input parameters for financial market models, and various risk
management and measurement tasks.

1.1 Financial Markets and Models as Sources
for Computationally Challenging Problems

With the growing use of both highly developed mathematical models and compli-
cated derivative products at financial markets, the demand for high computational
power and its efficient use via fast algorithms and sophisticated hard- and software
concepts became a hot topic in mathematics and computer science. The combination
of the necessity to use numerical methods such as Monte Carlo (MC) simulations, of
the demand for a high accuracy of the resulting prices and risk measures, of online
availability of prices, and the need for repeatedly performing those calculations for
different input parameters as a kind of sensitivity analysis emphasizes this even
more.
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In this survey, we describe the mathematical background of some of the most
challenging computational tasks in financial mathematics. Among the examples are
the pricing of exotic options by MC methods, the calibration problem to obtain the
input parameters for financial market models, and various risk management and
measurement tasks.

We will start by introducing the basic building blocks of stochastic processes
such as the Brownian motion and stochastic differential equations, present some
popular stock price models, and give a short survey on options and their pricing.
This will then be followed by a survey on option pricing via the MC method and a
detailed description of different aspects of risk management.

1.2 Modeling Stock Prices and Further Stochastic
Processes in Finance

Stock price movements in time as reported in price charts always show a very
irregular, non-smooth behavior. The irregular fluctuation seems to dominate a clear
tendency of the evolution of the stock price over time. The appropriate mathematical
setting is that of diffusion processes, especially that of the Brownian Motion (BM).

A one-dimensional BM W (t) is defined as a stochastic process with continu-
ous path (i.e. it admits continuous realizations as a function of time) and

• W (0) = 0 almost surely,
• Stationary increments with W (t)−W (s)∼N (0, t − s) , t > s ≥ 0,
• Independent increments, i.e. W (t)−W (s) is independent of W (u)−W (r)

for t > s ≥ u > r ≥ 0.

A d-dimensional BM consists of a vector W (t) = (W1 (t) , . . . ,Wd (t)) of
independent one-dimensional BMs Wi (t). A correlated d-dimensional BM is
again a vector of one-dimensional BMs Zi (t), but with

Corr (Zi (t) ,Z j (t)) = ρi j

for a given correlation matrix ρρρ .

A simulated path of a one-dimensional BM, i.e. a realization of the BM W (t) , t ∈
[0,1] is given in Fig. 1.1. It exhibits the main characteristics of the BM, in particular
its non-differentiability as a function of time.

In this survey, we will consider a general diffusion type model for the evolution
of stock prices, interest rates or additional processes that influence those prices. The
corresponding modeling tool that we are using are Stochastic Differential Equations
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Fig. 1.1 A path of a Brownian motion

(SDEs) (see [11] for a standard reference on SDEs). In particular, we assume that
the price process S (t) of d stocks and an additional, m-dimensional state process
Y (t) are given by the SDE

dS (t) = μ (t,S (t) ,Y (t))dt +σ (t,S (t) ,Y (t))dW (t) , S (0) = s,

dY (t) = κ (t,Y (t))dt +ν (t,Y (t))dW (t) , Y (0) = y.

Here, we assume that the coefficient functions μ ,σ ,κ ,ν satisfy appropriate condi-
tions for existence and uniqueness of a solution of the SDE. Such conditions can be
found in [11]. Sufficient (but not necessary) conditions are e.g. the affine linearity of
the coefficient functions or suitable Lipschitz and growth conditions. Further, W (t)
is a k-dimensional BM.

The most popular special case of those models is the Black-Scholes (BS) model
where the stock price does not depend on the state process Y (t) (or where formally
the state process Y is a constant). We assume that we have d = k = 1 and that the
stock price satisfies the SDE

dS (t) = S (t)(μdt +σdW (t)) , S (0) = s (1.1)

for given constants μ ,σ and a positive initial price of s. By the variation of constants
formula (see e.g. [13], Theorem 2.54) there exists a unique (strong) solution to the
SDE (1.1) given by the geometric BM

S (t) = sexp

((
μ − 1

2
σ2

)
t +σW (t)

)
.

As the logarithm of S (t) is normally distributed, we speak of a log-normal model.
In this case, we further have

E(S (t)) = sexp(μt) .
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Multi-dimensional generalizations of this example are available for linear coefficient
functions μ(.),σ(.) without dependence on the state process Y (t).

A popular example for a stock price model with dependence on an underlying
state process is the Stochastic Volatility (SV) model of Heston (for short: Heston
model, see [10]). There, we have one stock price and an additional state process
ν (t) that is called the volatility. They are given by

dS (t) = S (t)
(

μdt +
√

ν (t)dW S (t)
)
, S (0) = s,

dν (t) = κ (θ −ν (t))dt +σ
√

ν (t)dW ν (t) ,ν (0) = s

with arbitrary constants μ ,σ and positive constants κ ,θ . Further, we assume

corr
(
W S (t) ,W ν (t)

)
= ρ

for a given constant ρ ∈ [−1,1] for the two one-dimensional Brownian motions W S

and W ν . A particular aspect of the volatility process ν (t) is that it is non-negative,
but can attain the value zero if we have

2θκ ≤ σ2.

The Heston model is one of the benchmark models in the finance industry that will
also appear in further contributions to this book. One of its particular challenges is
that the corresponding SDE does not admit an explicit solution. Thus, it can only
be handled by simulation and discretization methods, a fact that is responsible for
many computational issues raised in this book.

1.3 Principles of Option Pricing

Options are derivative securities as their future payments depend on the performance
of one or more underlying stock prices. They come in many ways, plain and simple,
and complicated, with many strange features when it comes to determine the actual
final payment that their owner receives. As they are a characteristic product of
modern investment banking, calculating their prices in an efficient and accurate way
is a key task in financial mathematics.

The most popular example of an option is the European call option on a stock.
It gives its owner the right (but not the obligation!) to buy one unit of the stock at a
predefined future time T (the maturity) for an already agreed price of K (the strike).
As the owner will only buy it when the price of the underlying at maturity S (T ) is
above the strike, the European call option is identified with the random payment of

H = (S (T )−K)+

at time T .
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One of the reasons for the popularity of the European call option is that it admits
an explicit pricing formula in the BS model, the BS formula

c(t,S (t)) = S (t)Φ

⎛
⎝ ln

(
S(t)
K

)
+
(
r+ 1

2 σ2
)
(T − t)

σ
√

T − t

⎞
⎠

−Ke−r(T−t)Φ

⎛
⎝ ln

(
S(t)
K

)
+
(
r− 1

2 σ2
)
(T − t)

σ
√

T − t

⎞
⎠

where Φ (.) denotes the cumulative distribution function of the standard normal
distribution. This formula which goes back to [2] is one of the cornerstones of
modern financial mathematics. Its importance in both theory and application is also
emphasized by the fact that Myron Scholes and Robert C. Merton were awarded the
Nobel Prize in Economics in 1997 for their work related to the BS formula.

The most striking fact of the BS formula is that the stock price drift μ , i.e. the
parameter that determines the expected value of S (t), does not enter the valuation
formula of the European call option. This is no coincidence, but a consequence
of a deep theoretical result. To formulate it, we introduce a riskless investment
opportunity, the so-called money market account with price evolution M (t) given by

M (t) = ert ,

i.e. the evolution of the value of one unit of money invested at time t = 0 that
continuously earns interest payments at rate r.

The financial market made up of this money market account and the stock price
of the BS model is called the BS market. There, we have the following result:

Theorem 1 (Option price in the BS model). The price XH of an option
given by a final payment H with E

(
Hb

)
< ∞ for some b ≥ 1 is uniquely

determined by

XH = Ẽ
(
e−rT H

)
,

where the expectation is taken with respect to the unique probability measure
Q under which the discounted stock S̃ (t) = S (t)/M (t) is a martingale.
In particular, for the purpose of option pricing, we can assume that we have

μ = r.
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The reason for this very nice result is the completeness of the BS market, i.e.
the fact that every (sufficiently integrable) final payoff H of an option can be
created in a synthetic way by following an appropriate trading strategy in the money
market account and the stock (see [13] for the full argumentation and the concept of
completeness and replication).

In market models where the state process Y (t) has a non-vanishing stochastic
component that is not contained in the ones of the stock price, one does not have
such a nice result as in the BS setting. However, even there, we can assume that for
the purpose of option pricing we can model the stock prices in such a way that their
discounted components S̃i (t) = Si (t)/M (t) are martingales. In particular, now and
in the following we directly assume that we only consider probability measures P
such that we have

Si (0) = E(Si (t)/M (t)) , i = 1, . . . ,d.

Thus, all trade-able assets are assumed to have the same expected value for
their relative increase in this artificial market. We therefore speak of risk-neutral
valuation.

As we have now seen, calculating an option price boils down to calculating an
expected value of a function or a functional of an underlying stochastic process. For
simplicity, we thus assume that the underlying (possibly multi-dimensional) stock
price process is given as the unique solution of the SDE

dS (t) = μ (t,S (t))dt +σ (t,S (t))dW (t) , S (0) = s

with W (t) a d-dimensional BM, s=(s1, . . . ,sn)
′, and μ ,σ being functions satisfying

appropriate conditions such that the above SDE possesses a unique (strong) solution.
Further, for the moment, we consider a function

f : Rm → R

which is non-negative (or polynomially bounded). Then, we can define the
(conditional) expectation

V(t,s) = E
(t,s)

(
e−r(T−t) f (S (T ))

)

for a given starting time t ∈ [0,T ] at which we have S (t) = s. Of course, we can
also replace the function f in the two preceding equations by a functional F that
can depend on the whole path of the stock price. However, then the conditional
expectation at time t above is in general not determined by only starting in (t,x).
Depending on the functional’s form one needs more information of the stock
price performance before time t to completely describe the current value of the
corresponding option via an appropriate expectation.
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However, in any case, to compute this expectation is indeed our main task. There
are various methods for computing it. Examples are:

• Direct calculation of the integral

E
(0,s) (e−rT f (S (T ))

)
= e−rT

∫
Rm

f (x)h(x)dx

if the density h(.) of S (T ) (conditioned on S (0) = s) is explicitly known.
• Approximation of the price process S (t) , t ∈ [0,T ], by simpler processes – such

as binomial trees – S(n) (t) , t ∈ [0,T ], and then calculating the corresponding
expectation

E
(0,s(n))
n

(
f
(

S(n) (T )
))

in the simpler model as an approximation for the original one (see [15] for a
survey on binomial tree methods applied to option pricing).

• Solution of the partial differential equation for the conditional expectation V(t,s)
that corresponds to the stock price dynamics. For notational simplicity, we only
state it in the one-dimensional case as

Vt (t,s)+
1
2

σ (t,s)2Vss (t,s)+μ (t,s)Vs (t,s)− r (t,s)V(t,s) = 0,

V(T,s) = f (T,s)

For more complicated option prices depending on the state process Y (t), we also
obtain derivatives with respect to y and mixed derivatives with respect to t,s,y.

• Calculating the expectation via MC simulation, i.e. simulating the final payoff H
of an option N times and then estimating the option price via

E
(
e−rT H

)≈ e−rT 1
N

N

∑
i=1

H(i)

where the H(i) are independent copies of H.

We will in the following restrict ourselves to the last method, the MC method.
The main reason for this decision is that it is the most flexible of all the methods
presented, and it suffers the most from heavy computations, as the number N of
simulation runs usually has to be very large.

Before doing so, we will present options with more complicated payoffs than
a European call option, so called exotic options. Unfortunately, only under very
special and restrictive assumptions, there exist explicit formulae for the prices of
such exotic options. Typically, one needs numerical methods to price them. Some
popular examples are:
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• Options with payoffs depending on multiple stocks such as basket options with a
payoff given by

Hbasket =

(
1
d

d

∑
j=1

S j (T )−K

)+

• Options with payoffs depending on either a finite number of stock prices at
different times t j ∈ [0,T ] such as discrete Asian options given by e.g.

Hdisc. Asian call =

(
1
d

d

∑
j=1

S (t j)−K

)+

or a continuous average of stock prices such as continuous Asian options given by

Hcont. Asian call =

(
1
T

∫ T

0
S (t)dt −K

)+

• Barrier options that coincide with plain European put or call options as long as
certain barrier conditions are either satisfied on [0,T ] or are violated such as e.g.
a knock-out-double-barrier call option with a payoff given by

Hdbkoc = (S (T )−K)+ 1{B1<S(t)<B2}

for constants 0 ≤ B1 < B2 ≤ ∞
• Options with local and global bounds on payoffs such as locally and globally

capped and floored cliquet options given by

Hcliquet = max

{
F,min

{
C,

d

∑
j=1

max

{
Fj,min

{
Cj,

S (t j)−S
(
t j−1

)
S
(
t j−1

)
}}}}

for different time instants 0≤ t0 < t1 < .. . < td ≤ T and constants F <C, Fj <Cj

All of those exotic options are tailored to the needs of special customers or
markets. As an example, cliquet options are an essential ingredient of modern
pension insurance products.

At the end of this section, we will formulate our first computational challenge:

Computational challenge 1: Find a universal framework/method for an
efficient calculation of prices of exotic options.
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An obvious candidate is the Monte Carlo (MC) method which we are going to
present in the next section.

1.4 Monte Carlo Methods for Pricing Exotic Options

MC methods are amongst the simplest methods to compute expectations (and thus
also option prices) and are on the other hand a standard example of a method that
causes a big computing load when applied in a naive way. Even more, we will show
by an example of a simple barrier option that a naive application of the MC method
will lead to a completely wrong result that even pretends to be of a high accuracy.

Given that we can generate random numbers which are distributed as the
considered real-valued, integrable random variable H, the standard MC method to
calculate the expectation E(H) consists of two steps:

1. Generate N independent, identically distributed copies Hi of H.
2. Estimate μ � E(H) by

μ̂N =
1
N

N

∑
i=1

Hi.

Due to the linearity of the expectation the MC estimator μ̂N is unbiased. Further,
the convergence of the standard MC method is ensured by the strong law of large
numbers. One obtains an approximate confidence interval of level 1−α for μ as
(see e.g. [14], Chapter 3)

[
1
N

N

∑
i=1

Hi − z1−α/2
σ√
N
,

1
N

N

∑
i=1

Hi + z1−α/2
σ√
N

]
.

Here, z1−α/2 is the (1−α/2)-quantile of the standard normal distribution and σ is
defined via

σ2 �Var (H) .

If σ2 is unknown (which is the typical situation) then it will be estimated by

σ̂2
N =

1
N −1

N

∑
i=1

(Hi − μ̂N)
2.

σ is then replaced by σ̂N in the MC estimator of the confidence interval for μ . In
both cases, the message is that – measured in terms of the length of the confidence
interval – the accuracy of the unbiased MC method is of the order O

(
1/
√

N
)
.
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This in particular means that we need to increase the number of simulations of Hi

by a factor 100 if we want to increase the accuracy of the MC estimator for μ by
one order. Thus, we have in fact a very slow rate of convergence.

Looking at the ingredients in the MC method we already see the first challenge
of an efficient and robust implementation:

Computational challenge 2: Find an appropriate Random Number Generator
(RNG) to simulate the final payments H of an exotic option.

Here, the decision problem is crucial with respect to both performance and accu-
racy. Of course, the (typically deterministic) RNG should mimic the distribution
underlying H as good as possible. Further, as the biggest computational advantage
of the MC method is the possibility for parallelization, the RNG should allow a
simple way of parallel simulation of independent random numbers.

The standard method here is to choose a suitable RNG that produces good
random numbers that are uniformly distributed on (0,1) and to use the inverse
transformation method for getting the right distribution. I.e. let Ui be the ith random
number which is uniformly distributed on (0,1), let F be the desired distribution
function of H. Then

Hi � F−1 (Ui)

has the desired distribution. This method mostly works, in particular in our diffusion
process setting which is mainly dominated by the use of the normal distribution.
Thus, for the normal distribution one only has to decide between the use of the
classical Box-Muller transform or an approximate inverse transformation (see [14],
Chapter 2). While the approximate inverse transformation method preserves a good
grid structure of the original uniformly distributed random numbers, the Box-Muller
transform ensures that even extreme values outside the interval [−8,8] can occur
which is not the case for the approximate inverse method. Having made the decision
about the appropriate transformation method, it still remains to find a good generator
for the uniformly distributed random numbers Ui. Here, there is an enormous choice.
As parallelization is one of the major advantages, the suitability for parallelization
is a major issue for deciding on the RNG. Thus, the Mersenne Twister is a favorable
choice (see [14], Chapter 2 and [16]).

For a simple standard option with a final payment of H = f (S (T )) (such as
a European call option) in the Black-Scholes setting, we only have to simulate
independent standard normally distributed random variables Zi, i = 1, . . . ,N, to
obtain

H(i) = f
(

se(r− 1
2 σ2)T+σ

√
T Zi

)
.



1 10 Computational Challenges in Finance 11

However, things become more involved when one either cannot generate the price
process S (t) exactly or when one can only simulate a suitably discretized version of
the payoff functional.

For the first case, one has to use a discretization scheme for the simulation of the
stock price (see [12] for a standard reference on the numerical solution of SDE).
The most basic such scheme is the Euler-Maruyama scheme (EMS). To illustrate it,
we apply it to a one dimensional SDE

dS (t) = μ (S (t))dt +σ (S (t))dW (t) ,S (0) = s0.

Then, for a step size of Δ = T/n > 0, the discretized process S(Δ) (t) generated by
the EMS is defined by

S(Δ) (0) � s0,

S(Δ) (kΔ) � S(Δ) ((k−1)Δ)+μ
(

S(Δ) ((k−1)Δ)
)

Δ

+ σ
(

S(Δ) ((k−1)Δ)
)

ΔWk, k = 1, . . . ,n.

Here, ΔWk,k = 1, . . . ,n, is a sequence of independent, N (0,Δ)-distributed random
variables. Between two consecutive discretization points, we obtain the values of
S(Δ) (t) by linear interpolation. The EMS can easily be generalized to a multi-
dimensional setting.

If we now replace the original process S (t) by S(Δ) (t) in the standard MC
approach, then we obtain

μ̂N,Δ � 1
N

N

∑
i=1

f
(

S(Δ)
i (T )

)
a.s.−→ E

(
f
(

S(Δ) (T )
))

for N → ∞

In particular, this application of the MC that uses the discretized process leads to a
biased result. The accuracy of the MC method can then no longer be measured by
the variance of the estimator. We have to consider the Mean Squared Error (MSE)
to judge the accuracy instead, i.e.

MSE(μ̂N,Δ ) � E

[(
μ̂N,Δ −E( f (S (T )))

)2
]

= Var
(
μ̂N,Δ

)
+
(
E( f (S (T )))−E

(
f
(

S(Δ) (T )
)))2

Thus, the MSE consists of two parts, the MC variance and the so-called
discretization bias. We consider this bias a bit more detailed by looking at the
convergence behavior of the EMS: Given suitable assumptions on the coefficient
functions μ ,σ , we have weak convergence of the MSE of order 1 (see e.g. [12]).
More precisely, for μ ,σ being four times continuously differentiable we have

∣∣∣E( f (S (T )))−E

(
f
(

S(Δ) (T )
))∣∣∣≤Cf Δ
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for four times differentiable and polynomially bounded functions f and a suitable
constant Cf not depending on Δ .

With regard to the MSE it is optimal to choose the discretization step size Δ =
T/n and the number of MC simulations N in such a way that both components of
the MSE are of the same order. So, given that we have weak convergence of order 1
for the EMS then an MSE of order ε2 = 1/n2 can be obtained by the choices of

Δ = O(1/n) , N = n2

which lead to an order of O
(
n3
)

measured in the random numbers simulated in total.
As this leads to a high computational effort for pricing an option by the standard MC
method, we can formulate another computational challenge:

Computational challenge 3: Find a modification of the standard MC method
that has an effort of less than O(n3) for pricing an option including path
simulation.

There are some methods now available that can overcome this challenge. Among
them are weak extrapolation, the statistical Romberg method and in particular
the multi-level MC method which will also play a prominent role in further
contributions to this book (see e.g. [14] for a survey on the three mentioned
methods).

However, unfortunately, the assumptions on f are typically not satisfied for
option type payoffs (simply consider all the examples given in the last section).
Further, the assumptions on the coefficients of the price process are not satisfied for
e.g. the Heston model.

Thus, in typical situations, although we know the order of the MC variance, we
cannot say a lot about the actual accuracy of the MC estimator. This problem will be
illustrated by the second case mentioned above where we have to consider the MSE
as a measure for accuracy of the MC method, the case where the payoff functional
can only be simulated approximately. Let therefore f (S) be a functional of the path
of the stock price S (t) , t ∈ [0,T ] and μ̂N,Δ be a MC estimator based on N simulated
stock price paths with a discretization step size for the payoff functional of Δ . Then,
we obtain a similar decomposition of the MSE

MSE(μ̂N,Δ ) = E
(
μ̂N,Δ −E( f (S))

)2

= E

((
μ̂N,Δ −E( f (S;Δ))

)2
)
+E

(
(E( f (S))−E( f (S;Δ)))2

)

= Var
(
μ̂N,Δ

)
+bias(Δ)

where now the bias is caused by the discretization of the payoff functional.
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To illustrate the dependence of the accuracy of the MC method on the bias, we
look at the problem of computing the price of a one-sided down-and-out barrier call
option with a payoff functional given by

f (S (t) ; t ∈ [0,T ]) = (S (T )−K)+ 1S(t)>B ∀t∈[0,T ].

As the one-sided down-and-out barrier call option possesses an explicit valuation
formula in the BS model (see e.g. [13], Chapter 4), it serves well to illustrate the
effects of different choices of the discretization parameter Δ = 1/m and the number
of MC replications N.

As input parameters we consider the choice of

T = 1, r = 0, σ = 0.1, S (0) = K = 100, B = 95.

We first fix the number of discretization steps m to 10, i.e. we have Δ = 0.1. As we
then only check the knock-out condition at 10 time points, the corresponding MC
estimator (at least asymptotically for large N) overestimates the true value of the
barrier option. This is underlined in Fig. 1.2 where the 95%-confidence intervals do
not contain the true value of the barrier option. This, however is not surprising as
in this case the sequence of MC estimators converges to the price of the discrete
down-and-out call given by the final payoff

f (S;N,Δ) = (S (T )−K)+ 1S(iΔT/N)>B ∀i=1,...,m.

As a contrast, we now fix the number N = 100,000 of simulated stock price paths
and consider a varying number of discretization points m in Fig. 1.3. As can be
seen from the nearly identical length of the confidence intervals for varying m, the
variance of the MC estimator is estimated consistently. Considering the differences

Fig. 1.2 MC estimators with 95%-confidence intervals for the price of a barrier option with fixed
time discretization 0,1 and varying number N of simulated stock price paths
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Fig. 1.3 MC estimators with 95%-confidence intervals for the price of a barrier option with
varying time discretization 1/m for 100,000 stock price paths

of the bias of the different MC estimators from the true value, one can conjecture
that the bias behaves as O(1/

√
m), and thus converges at the same speed as the

unbiased MC estimator. This example highlights that the order of the convergence
of the bias is the critical aspect for the MC method in such a situation. Fortunately, in
the case of the barrier options, there are theoretical results by Gobet (see e.g. [9]) that
prove the above conjecture of a discretization bias of order 0.5. There are also good
modifications of the crude MC method above that produce an unbiased estimator
(such as the Brownian bridge method (see e.g. Chapter 5 of [14])), but the effects
demonstrated above are similar for other types of exotic options. And moreover,
there are not too many results on the bias of the MC estimator for calculating the
price of an exotic option.

Thus, in calculating the prices of exotic options by MC methods, we face another
computational challenge:

Computational challenge 4: Develop an efficient algorithm to estimate the
order of the discretization bias when calculating the price of an exotic option
with path dependence by the MC method.

A possibly simple first suggestion is to perform an iterative search in the
following way:

1. Start with a rough discretization (i.e. a small number m) and increase the number
N of MC simulation runs until the resulting (estimated) variance is below the
order of the desired size of the MSE.
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2. Increase the number of discretization points by a factor 10 and repeat calculating
the corresponding MC estimation with the final N from Step 1 10 times. Take the
average over the 10 calculations as an estimator for the option price.

3. Repeat Step 2 until the estimator for the option price is no longer significantly
changing between two consecutive steps.

Of course, this is only a kind of simple cooking recipe that leaves a lot of space for
improvement. One can also try to estimate the order of the discretization bias from
looking at its behavior as a function of the varying step size 1/(10km).

In any case, not knowing the discretization bias increases the computational
effort enormously, if one wants to obtain a trustable option price by the MC method.
So, any strategy, may it be more based on algorithmic improvements or on an
efficient hardware/software concept, will be a great step forward.

1.5 Risk Measurement and Management

The notion of risk is ubiquitous in finance, a fact that is also underlined by the
intensive use of such terms as market risk, liquidity risk, credit risk, operational risk,
model risk, just to mention the most popular names. As measuring and managing
risk is one of the central tasks in finance, we will also highlight some corresponding
computational challenges in different areas of risk.

1.5.1 Loss Distributions and Risk Measures

While we have concentrated on the pricing of single derivative contracts in the
preceding sections, we will now consider a whole bunch of financial instruments,
a so-called portfolio of financial positions. This can be the whole book of a bank
or of one of its departments, a collection of stocks or of risky loans. Further, we
will not price the portfolio (this would just be the sum of the single prices), but will
instead consider the sum of the risks that are inherent in the different single positions
simultaneously. What interests us is the potential change, particularly the losses, of
the total value of the portfolio over a future time period.

The appropriate concepts for measuring the risk of such a portfolio of financial
assets are those of the loss function and of risk measures. In our presentation, we
will be quite brief and refer the reader for more details to the corresponding sections
in [17] and [14].

We denote the value at time s of the portfolio under consideration by V (s)
and assume that the random variable V (s) is observable at time s. Further, we
assume that the composition of the portfolio does not change over the period we
are looking at.
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For a time horizon of Δ the portfolio loss over the period [s,s+Δ ] is given by

L[s,s+Δ ] �−(V (s+Δ)−V (s)) .

Note that we have changed the sign for considering the differences of the
future and the current portfolio value. This is because we are concerned with the
possibilities of big losses only. Gains do not play a big role in risk measurement,
although they are the main aim of performing the business of a company in general.

Typical time horizons that occur in practice are 1 or 10 days or even a year.
As L[s,s+Δ ] is not known at time s it is considered to be a random variable.
Its distribution is called the (portfolio) loss distribution. We do not distinguish
between the conditional loss and unconditional loss in the following as our objective
are computational challenges. We always assume that we perform our computations
based on the maximum information available at the time of computation.

As in [17] we will work in units of the fixed time horizon Δ , introduce the
notation Vt �V (tΔ), and rewrite the loss function as

Lt+1 � L[tΔ ,(t+1)Δ ] =−(Vt+1 −Vt) . (1.2)

Fixing the time t, the distribution of the loss function L� Lt+1 for �∈R (conditional
on time t) is introduced using a simplified notation as

FL(�)� P(L ≤ �).

With the distribution of the loss function, we are ready to introduce so-called risk
measures. Their main purpose is stated by Föllmer and Schied in [7] as:

. . .a risk measure is viewed as a capital requirement: We are looking for the minimal amount
of capital which, if added to the position and invested in a risk-free manner, makes the
position acceptable.

For completeness, we state:

A risk measure ρ is a real-valued mapping defined on the space of random
variables (risks).

To bring this somewhat meaningless, mathematical definition closer to the above
intention, there exists a huge discussion in the literature on reasonable additional
requirements that a good risk measure should satisfy (see e.g. [7, 14, 17]).
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As this discussion is beyond the scope of this survey, we restrict ourselves to the
introduction of two popular examples of risk measures: The one which is mainly
used in banks and has become an industry standard is the value-at-risk.

The value-at-risk of level α (VaRα ) is the α-quantile of the loss distribution
of the portfolio:

VaRα(L)� inf{� ∈ R|P(L > �)≤ 1−α}= inf{� ∈ R|FL(�)≥ α} ,

where α is a high percentage such as 95 %, 99 % or 99.5 %.

By its nature as a quantile, values of VaRα have an understandable meaning,
a fact that makes it very popular in a wide range of applications, mainly for the
measurement of market risks, but also in the areas of credit risk and operational
risk management. VaRα is not necessarily sub-additive, i.e. the VaRα(X +Y ) >
VaRα(X)+VaRα(Y ) for two different risks X ,Y is possible. This feature is the basis
for most of the criticism of using value-at-risk as a risk measure. Furthermore, as a
quantile, VaRα does not say anything about the actual losses above it.

A risk measure that does not suffer from these two drawbacks (compare e.g. [1]),
and, which is therefore also popular in applications, is the conditional value-at-risk:

The conditional value-at-risk (or average value-at-risk) is defined as

CVaRα(L)�
1

1−α

∫ 1

α
VaRγ(L)dγ .

If the probability distribution of L has no atoms, then the CVaRα has the
interpretation as the expected losses above the value-at-risk, i.e. it then coincides
with the expected shortfall or tail conditional expectation defined by

TCEα(L)� E(L|L ≤VaRα(L)) .

As the conditional value-at-risk is the value at risk integrated w.r.t. the confidence
level, both notions do not differ remarkably from the computational point of view.
Thus, we will focus on the value-at-risk below.

However, as typically the portfolio value V and thus by (1.2) the loss function
L depend on a d-dimensional vector of market prices for a very large dimension d,
the loss function will depend on the market prices of maybe thousands of different
derivative securities. This directly leads us to the first obvious computational
challenge of risk management:
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Computational challenge 5: Find an efficient way to evaluate the loss
function of large portfolios to allow for a fast computation of the value-at-
risk.

1.5.2 Standard Methods for Market Risk Quantification

The importance of the quantification of market risks is e.g. underlined by the popular
JPMorgan’s Risk Metrics document (see [18]) from the practitioners site or by the
reports of the Commission for the Supervision of the Financial Sector (CSSF) (see
[19]) from the regulatory point of view. This has the particular consequence that
every bank and insurance company have to calculate risk measures, of course for
different horizons. While for a bank, risk measures are calculated typically for a
horizon of 1–10 days, insurance companies typically look at the horizon of a year.

To make a huge portfolio numerically tractable, one introduces so-called risk
factors that can explain (most of) the variations of the loss function and ideally
reduce the dimension of the problem by a huge amount. They can be log-returns
of stocks, indices or economic indicators or a combination of them. A classical
method for performing such a model reduction and to find risk factors is a principal
component analysis of the returns of the underlying positions.

We do not go further here, but simply assume that the portfolio value is
modeled by a so-called risk mapping, i.e. for a d-dimensional random vector
Zt � (Zt,1, . . . ,Zt,d)

′ of risk factors we have the representation

Vt = f (t,Zt) (1.3)

for some measurable function f : R+×R
d → R. Of course, this representation is

only useful if the risk factors Zt are observable at time t, which we assume from now
on. By introducing the risk factor changes (Xt)t∈N by Xt � Zt −Zt−1 the portfolio
loss can be written as

Lt+1 (Xt+1) = −( f (t +1,Zt +Xt+1)− f (t,Zt)) (1.4)

highlighting that the loss is completely determined by the risk factor changes.
In what follows we will discuss some standard methods used in the financial

industry for estimating the value-at-risk.
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1.5.2.1 The Variance-Covariance Method

The variance-covariance method is some crude, first-order approximation. Its basis
is the assumption that risk factor changes Xt+1 follow a multivariate normal
distribution, i.e.

Xt+1 ∼Nd(μ,Σ)

where μ is the mean vector and Σ the covariance matrix of the distribution.
The second fundamental assumption is that f is differentiable, so that we can

consider a first-order approximation Llin
t+1 of the loss in (1.4) of the form

Llin
t+1 (Xt+1)�−

(
f (t,Zt)+

d

∑
i=1

fzi(t,Zt)Xt+1,i

)
. (1.5)

As the portfolio value f (t,Zt) and the relevant partial derivatives fzi(t,Zt) are
known at time t, the linearized loss function has the form of

Llin
t+1 (Xt+1) =−(ct +b′

tXt+1) (1.6)

for some constant ct and a constant vector bt which are known to us at time t. The
main advantage of the above two assumptions is that the linear function (1.6) of
Xt+1 preserves the normal distribution and we obtain

Llin
t+1 (Xt+1)∼N

(−ct −b′
t μ,b′

tΣbt
)
.

This yields the following explicit formula:

The value-at-risk of the linearized loss corresponding to the confidence level
α is given by

VaRα(L
lin
t+1) =−ct −b′

t μ +
√

b′
tΣbt Φ−1(α) , (1.7)

where Φ denotes the standard normal distribution function and Φ−1(α) is the
α-quantile of Φ .

To apply the value-at-risk of the linearized loss to market data, we still need to
estimate the mean vector μ and the covariance matrix Σ based on the historical risk
factor changes Xt−n+1, . . . ,Xt which can be accomplished using standard estimation
procedures (compare Section 3.1.2 in [17]).
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Remark 1. The formulation of the variance-covariance method based on the first-
order approximation Llin

t+1 in (1.5) of the loss is often referred to as the Delta-
approximation in analogy to the naming of the first partial derivative with respect to
underlying prices in option trading.

Remark 2. Another popular version of the variance-covariance method is the Delta-
Gamma-approximation which is based on a second-order approximation of the loss
function in order to capture the non-linear structure of portfolios that contain a high
percentage of options. However, the general advantages and weaknesses of these
methods are similar. We therefore do not repeat our analysis for the Delta-Gamma-
approximation here.

Merits and Weaknesses of the Method

The main advantage of the variance-covariance method is that it yields an explicit
formula for the value-at-risk of the linearized losses as given by (1.7). However, this
closed-form solution is only obtained using two crucial simplifications:

1. Linearization (in case of the Delta-approximation) or even a second order
approximation (in case of the Delta-Gamma-approximation) is in the fewest
cases a good approximation of the risk mapping as given in (1.3), in particular
when the portfolio contains many complex derivatives.

2. Empirical examinations suggest that the distribution of financial risk factor
returns is leptokurtic and fat-tailed compared to the Gaussian distribution. Thus
the assumption of normally distributed risk factor changes is questionable and
the value-at-risk of the linearized losses (1.7) is likely to underestimate the true
losses.

1.5.2.2 Historical Simulation

Historical simulation is also a very popular method in the financial industry. It is
based on the simple idea that instead of making a model assumption for the risk
factor changes, one simply relies on the empirical distribution of the already
observed past data Xt−n+1, . . . ,Xt . We then evaluate our portfolio loss function
for each of those data points and obtain a set of synthetic losses that would have
occurred if we hold our portfolio on the past days t −1, t −2, . . . , t −n:

{
L̃s(Xs) : s = t −n+1, . . . , t

}
. (1.8)

Based on these historically simulated loss data, one now estimates the value-at-
risk by the corresponding empirical quantile, i.e. the quantile of the just obtained
historical empirical loss distribution:
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Let L̃n,n ≤ . . . ≤ L̃1,n be the ordered sequence of the values of the historical
losses in (1.8). Then, the estimator for the value-at-risk obtained by
historical simulation is given by

VaRα(L̃s)� L̃[n(1−α)],n ,

where [n(1−α)] denotes the largest integer not exceeding n(1−α).

Merits and Weaknesses of the Method

Besides being a very easy method, a convincing argument of historical simulation is
its independence on distributional assumptions. We only use data that have already
appeared, no speculative ones.

From the theoretical point of view, however, we have to assume stationarity of
the risk factor changes over time which is also quite a restrictive assumption. And
even more, we can be almost sure that we have not yet seen the worst case of losses
in the past. The dependence of the method on reliable data is another aspect that can
cause problems and can lead to a weak estimator for the value-at-risk.

1.5.2.3 The Monte Carlo Method

A method that overcomes the need for linearization and the normal assumption in
the variance-covariance method and that does not rely on historical data is the Monte
Carlo (MC) method. Of course, we still need an assumption for the distribution of
the future risk factor changes.

Given that we have made our choice of this distribution, the MC method only
differs to the historical simulation by the fact that we now simulate our data, i.e.
we simulate independent identically distributed random future risk factor changes

X̃
(1)
t+1, . . . , X̃

(M)
t+1, and then compute the corresponding portfolio losses

{
L̃t+1(X̃

(i)
t+1) : i = 1, . . . ,M

}
. (1.9)

As in the case of the historical simulation, by taking the relevant quantile of the
empirical distribution of the simulated losses we can estimate the value-at risk:

The MC estimator for the value-at-risk is given by

VaRα(L̃t+1)� inf
{
� ∈ R|F̃t+1(�)≥ α

}
,

(continued)
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(continued)

where the empirical distribution function F̃t+1(�) is given by

F̃t+1(�)� 1
M

M

∑
i=1

I{L̃t+1(X̃
(i)
t+1)≤�}.

Remark 3 (Some aspects of the MC method).

(i) Of course, the crucial modeling aspect is the choice of the distribution for the
risk factor changes and the calibration of this distribution to historical risk factor
change data Xt−n+1, . . . ,Xt . This can be a computational challenging problem
itself (compare also Sect. 1.6.1 and the chapter by Sayer and Wenzel in this
book).

(ii) The above simulation to generate the risk factor changes is often named the
outer simulation. Depending on the complexity of the derivatives included
in the portfolio, we will need an inner simulation in order to evaluate the
loss function of the risk factor changes. This means, we have to perform MC
simulations to calculate the future values of options in each run of the outer
simulation. As this is also an aspect of the historical simulation, we postpone
this for the moment and assume that the simulated realizations of the loss
distribution given by (1.9) are available.

Merits and Weaknesses of the Method

Of course, the quality of the MC method depends heavily on the choice of an
appropriate distribution for the risk factor changes. On the up side, we are not
limited to normal distributions anymore. A further good aspect is the possibility
to generate as many loss values as one wants by simply choosing a huge value M of
simulation runs. This is a clear advantage over the historical simulation where data
are limited.

As there is no simplification to evaluate the portfolio, each simulation run will
possibly need a huge computational effort, in particular if complicated options are
held. On the other hand, this evaluation is then exact given the risk factor changes,
which is a clear advantage compared to the variance-covariance method.

1.5.2.4 Challenges When Determining Market Risks

The Choice of a Suitable Risk Mapping

The above three methods have the main problem in common that it is not clear at all
how to determine the appropriate risk factors yielding an accurate approximation of
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the actual loss. On top of that, their dimension can still be remarkably high. This is
a modeling issue and is closely connected to the choice of the function f in (1.3).
As already indicated, performing a principal component analysis (compare e.g. [3])
can lead to a smaller number of risk factors which explain the major parts of the
market risks. However, the question if the postulated risk factors approximate the
actual loss well enough then remains still an issue and translates into the problem of
the appropriate choice of the input for the principal component analysis.

The different approaches we explained above each have their own advantages
and drawbacks. While the Delta-approximation is usually not accurate enough if the
portfolio contains non-linear securities/derivatives, the Delta-Gamma-approxima-
tion already performs much better than the Delta-approximation. However, the
resulting approximation of the loss function only has a known distribution if we
stick to normally distributed risk factors. The most accurate results can be achieved
by the MC method but at the cost of a high computational complexity compared
to the other methods. The trade-off therein consists of balancing out accuracy and
computability. Further, we sometimes have to choose between accuracy and a fast
computation which can be achieved via a smart approximation of the loss function
(especially with regard to the values of the derivatives in the portfolio). And in the
end, the applicability of all methods highly depends on the structure of the portfolio
at hand. Also, the availability of computing power can play an important role on the
decision for the method to use. Thus, a (computational) challenge when determining
market risks is the choice of the appropriate value-at-risk computation method.

(Computational) challenge 6: Given the structure of the portfolio and of
the computing framework, find an appropriate algorithm to decide on the
adequate method for the computation of the value-at-risk.

Nested Simulation

As already pointed out, in both the historical simulation and in the MC method we
have to evaluate the portfolio in its full complexity. This computational challenge
carries to extremes, when the portfolio contains a lot of complex derivatives, for
which no closed-form price representation is available. In such a case, we will need
an inner MC simulation in addition to the outer one to compute the realized losses.

To formalize this, assume for notational convenience that the time horizon Δ is
fixed, that time t +1 corresponds to time t +Δ , and that the risk mapping f : R+×
R

d → R corresponds to a portfolio of derivatives with payoff functions H1, . . . ,HK

with maturities T1, . . . ,TK . From our main result Theorem 1.3 we know that the fair
time-t price of a derivative is given by the discounted conditional expectation of its
payoff function under the risk neutral measure Q (we here assume that our market
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satisfies the assumptions of Theorem 1.3). Thus, the risk mapping f at time t +Δ is
given by

f (t +Δ ,Zt + X̃
(i)
t+Δ ) =

K

∑
k=1

Ẽ

[
e−r(Tk−(t+Δ)) Hk|X̃(i)

t+Δ

]
, (1.10)

where Ẽ(.) denotes the expectation under the risk neutral measure Q. For standard
derivatives like European calls or puts the conditional expectations in (1.10) can be
computed in closed-form (compare again Theorem 1.3). For complex derivatives,
however, they have to be determined via MC simulation. This then causes an inner
simulation as follows that has to be performed for each (!!!) realization of the outer
simulation:

Inner MC simulation for complex derivatives in the portfolio:

1. Generate N independent realizations H(1)
k , . . . ,H(N)

k of the k = 1, . . . ,K

(complex) payoffs given X̃
(i)
t+Δ .

2. Estimate the discounted conditional expectation of the payoff functions by

Ẽ

[
e−r(Tk−(t+Δ)) Hk|X̃(i)

t+Δ

]
≈ 1

N
e−r(Tk−(t+Δ))

N

∑
j=1

H( j)
k

for k = 1, . . . ,K.

Remark 4 (Important!).

(i) The amount of simulation work in the presence of the need for an inner
simulation is enormous as the inner simulations have to be redone for each run
of the outer simulation. A possible challenge is to find a framework for reusing
the simulations in the inner loop for each new outer simulation. A possibility
could be to perform the inner simulations only a certain times and then setting
up something as an interpolation polynomial for the price of the derivatives as
a function of the risk factors.

(ii) Note further, that for notational simplicity, we have assumed that each deriva-
tive in the inner simulation requires the same number N of simulation paths
to achieve a desired accuracy for the MC price calculation. This, however,
heavily depends on the similarity of the derivatives and the volatility of the
underlyings. If the variety of option types in the portfolio is large, substantial
savings can be obtained by having a good concept to choose the appropriate
number of inner simulation runs per option type.
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(iii) As a minor issue, note that the input for the option pricing typically has to be
the price of the underlying(s) at time t +Δ or even more, the paths of the price
of the underlying(s) up to time t +Δ . This input has to be reconstructed from
the risk factor changes.

(iv) Finally, the biggest issue is the load balance between inner and outer sim-
ulation. Given only a limited computing time and capacity, one needs a well-
balanced strategy. Highly accurate derivative prices in the inner simulation lead
to an accurate evaluation of the loss function (of course, conditioned on the
correctness of the chosen model for the distribution of the risk factor changes).
On the other hand, they cause a big computational effort which then results in
the possibility of performing only a few outer simulation runs. This then leads
to a poor estimate of the value-at-risk. A high number of outer simulation runs
however only allows for a very rough estimation of the derivative prices on the
inner run, again a non-desirable effect.

The foregoing remark points in the direction of the probably most important
computational challenge of risk management:

Computational challenge 7: Find an appropriate concept for balancing the
workload between the inner and outer MC simulation for the determination
of the value-at-risk of complex portfolios and design an efficient algorithm
that ensures sufficient precision of both the derivative prices in the inner
simulation and the MC estimator for the value-at-risk on the outer simulation.

1.5.3 Liquidity Risk

Besides the measurement of market risks, another important strand of risk manage-
ment is the measurement of liquidity risk. We understand thereby liquidity risk as
the risk not to be able to obtain needed means of payment or to obtain them only at
increased costs. In this article we will put emphasis on liquidity risks which arise in
the fund management sector. Fund management focuses in particular on calling risk
(liquidity risk on the liabilities side) which is the risk of unexpectedly high claims
or claims ahead of schedule as for instance the redemption of shares in a fund.
Liquidity risk in fund management has gained importance in recent times which
manifests itself in European Union guidelines that require appropriate liquidity
risk management processes for UCITS (=Undertakings for Collective Investment
in Transferable Securities) and AIFMs (=Alternative Investment Funds Managers);
compare therefore [20] and [21].

One approach which covers these liquidity risk regulations is to calculate the
peaks over threshold (POT) quantile of the redemptions of mutual funds. It is
well-known (compare e.g. [6]) that the excess distribution can be approximated by
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the generalized Pareto distribution (GPD) from a certain threshold u. This fact is
due to the famous theorem of Pickands, Balkema and de Haan, on which we will
give a short mathematical excursion: Define the excess distribution of a real-valued
random variable X with a distribution function F as

Fu(y)� P(X −u ≤ y|X > u) , where 0 ≤ y < xF −u ,

for a fixed right endpoint xF

xF � sup{x ∈ R : F(x)< 1} ≤ ∞ , where u < xF .

Then we have the following:

Theorem 2 (Pickands, Balkema, de Haan). There exists an appropriate function
β (u) such that

lim
u↑xF

sup
0<x<xF−u

∣∣Fu(x)−Gξ ,β (u)(x)
∣∣= 0 ,

where

Gξ ,β (x) =

⎧⎪⎨
⎪⎩

1−
(

1+
ξ x
β

)−1/ξ
ξ �= 0 ,

1− e−x/β ξ = 0 ,

, x ∈ D(ξ ,β ) =

{
[0,∞) ξ ≥ 0 ,

[0,−β/ξ ] ξ < 0,

is the generalized Pareto distribution (GPD) with shape parameter ξ ∈R and scale
parameter β > 0.

As a consequence, the excess distribution can be approximated in a similar way
by a suitable generalized Pareto distribution as the distribution of a sum can be
approximated by the normal distribution. The quantile of the excess distribution
then gives a liquidity reserve which is not exceeded by a certain probability p and
is called POT quantile. The POT quantile is also referred to as liquidity-at-risk and
was applied by [22] for the banking sector. Desmettre and Deege [5] then adapted it
to the mutual funds sector and provided a thorough backtesting analysis.

The p-quantile of the excess distribution, i.e. the liquidity-at-risk, is given as

LaRp � u+
β̂
ξ̂

((
n

Nu
(1− p)

)−ξ̂
−1

)
, (1.11)

where Nu is the number of exceedances over the threshold u, n is the sample
size, ξ̂ is an estimator for the shape parameter and β̂ is an estimator for the
scale parameter of the generalized Pareto distribution.
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Thus in order to calculate the liquidity-at-risk, it is necessary to estimate the
threshold parameter u, the shape parameter ξ and the scale parameter β of the
GPD. The estimation of shape and scale parameter can be achieved using standard
maximum likelihood estimators; a procedure for the estimation of the threshold
parameter u and also its detailed derivation is also given in [5] and is the time-
consuming part when computing the liquidity-at-risk as given by (1.11). In what
follows we sketch the calibration method and explain how it leads to a computational
challenge.

Using well-known properties of the generalized Pareto distribution Gξ ,β , we can

conclude that the estimator ξ̂ of the scale parameter ξ of the excess distribution
(which is approximated by a suitable GPD) is approximately invariant under shifts
in the threshold parameter u. Thus a procedure for the determination of the threshold
parameter u is given by

Choose the first threshold parameter u > 0 such that the estimator ξ̂ of the
shape parameter ξ of the corresponding GPD is approximately invariant under
shifts in the threshold parameter u > 0.

The implementation of this method can be sketched as follows (see also [5]):

1. Sort the available data by ascending order and keep a certain percentage of the
data.

2. Start with u being the lowest possible threshold and increase it up to the value for
which at least k percent of the original data are left. With increasing threshold u
truncate the data at the threshold u.

3. Estimate the unknown parameters ξ and β of the GPD by their maximum
likelihood estimators for every u from 2.

4. For each u, calculate a suitable deviation measure of the corresponding maximum
likelihood estimators ξ̂ (i)i=1,...,K within a sliding interval.

5. The appropriate threshold u is determined as the threshold which lies in the
middle of the interval with the lowest deviation measure. Take the number of
exceedances Nu corresponding to this u and the sample size n.

6. The estimates ξ̂ and β̂ are the maximum likelihood estimates which correspond
to the threshold u.

The computational challenge now arises when we look at typical data sets.
Often, fund redemption data is available over a quite long time horizon such that
a time series of a single share class can contain thousands of data points. Moreover,
management companies will typically face a large portfolio of share classes which
can have a dimension of several hundreds. Combining these two facts we see that
a fund manager will have to determine a large amount of estimates for the shape
and scale parameter of the Generalized Pareto distribution in order to calibrate
the threshold parameter u (compare steps 1–4 of the above algorithm) for a daily
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liquidity risk management process of her portfolio. Therefore it is important to have
a grip on a fast calibration of the threshold and our next computational challenge
can be formulated as

Computational challenge 8: Speed up the calibration of the threshold
parameter u for a fast computation of the liquidity-at-risk.

1.5.4 Intraday Simulation and Calculation

Up to now we considered daily or yearly time horizons Δ . Nowadays in practice, the
demand for so called intraday calculations and calibrations is growing, i.e. we face
time horizons Δ 
 1day and in the extreme the time horizon can have the dimension
of a few hours or even 15 and 30 min which represents the time horizon of intraday
returns. Especially within times of crises it may be of use to be able to recalibrate
all corresponding risk measures of portfolios in order to have as much information
as possible. This will allow fund managers to take well-founded decisions. For a
concise overview of intraday market risk we refer to [8].

The recalibration and recalculation of the risk measures typically involves a
reevaluation of the actual portfolio value as we have for instance seen within
the nested simulations of the MC value-at-risk method. Therefore the intraday
evaluation of large portfolios is also of importance. Summarizing our considerations
above we face the computational challenge

Computational challenge 9: Speed up the calculation and calibration of the
risk management process of financial firms such that intraday calculations
become feasible.

1.6 Further Aspects of Computationally Challenging
Problems in Financial Markets

Besides the optimization of MC methods and of risk management calculations, there
are various other computational issues in financial mathematics. We will mention
only three more, two of them are very important from a practical point of view, the
other has big consequences for designing an efficient hardware/software concept:
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1.6.1 Calibration: How to Get the Parameters?

Every financial market model needs input parameters as otherwise we cannot
calculate any option price or, more general, cannot perform any type of calculation.
To highlight the main approach at the derivatives markets to obtain the necessary
parameters we consider the BS model. There, the riskless interest rate r can (in
principle) be observed at the market. The volatility σ however has to be determined
in a suitable way. There are in principle two ways,

• A classical maximum likelihood estimation (or any other conventional estimation
technique) based on past stock prices using the fact that the logarithmic differ-
ences (i.e. ln(S (ti)/S (ti−1)) , ln(S (ti−1)/S (ti−2)) , . . .) are independent,

• A calibration approach, i.e. the determination of the parameter σimp which
minimizes the squared differences between model and market prices of traded
options.

As the second approach is the one chosen at the derivatives markets, we describe it a
little bit more detailed. Let us for simplicity assume that at a derivatives market we
are currently observing only the prices cKi,Ti of n call options that are characterized
by their strikes Ki and their (times to) maturities Ti. The calibration task now consists
of solving

min
σ>0

n

∑
i=1

(cKi,Ti − c(0,S (0) ;σ ,Ki,Ti))
2

where c(0,S (0) ;K,T ) denotes the BS formula with volatility σ > 0, strike K and
maturity T . Of course, one can also use a weighted sum as the performance measure
to care for the fact that some of these options are more liquidly traded than others.

Note that calibration typically is a highly non-linear optimization problem that
even gets more involved if more parameters have to be calibrated. We also recognize
the importance of having closed pricing formulae in calibration. If the theoretical
prices have to be calculated by a numerical method (say the MC method) then the
computational effort per iteration step in solving the calibration problem increases
dramatically.

For a much more complicated calibration problem we refer to the work by Sayer
and Wenzel in this book.

1.6.2 Money Counts: How Accurate Do We Want Our Prices?

The financial markets are known for their requirement of extremely accurate price
calculations. However, especially in the MC framework, a huge requirement for
accurate prices increases the computational effort dramatically. It is therefore worth
to point out that high accuracy is worthless if the parameter uncertainty (i.e. the
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error in the input parameters), the algorithmic error (such as the order of (weak)
convergence of the MC method) or the model error (i.e. the error caused by using
an idealized model for simulation that will certainly not exactly mimic the real
world price dynamics) are of a higher order than the accuracy of the performed
computations.

On the other hand, by using a sparse number format, one can speed up the com-
putations and reduce storage capacity by quite a factor. It is therefore challenging to
find a good concept for a variable treatment of precision requirements.

For an innovative suggestion of a mixed precision multi-level MC framework we
refer to the work by Omland, Hefter and Ritter in this book.

1.6.3 Data Maintenance and Access

All mentioned computational methods in this article have in common that they can
only be efficiently executed once the data is available and ready to use. A good
many times, the data access takes as much time as the computations themselves.
In general, the corresponding data like market parameters or information about the
composition of derivatives and portfolios are stored in large data bases whose main-
tenance can be time-consuming; for an overview on the design and maintenance of
database systems we refer to the textbook of Connolly and Begg [4].

In that regard it is also very useful to thoroughly review the computations that
have to be done and to do them in a clever way; for instance a smart approximation
of the loss function where feasible may already tremendously accelerate the value-
at-risk computations. We thus conclude with the computational challenge

Computational challenge 10: Maintain an efficient data storage and provide
an efficient data access.
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