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Preface from the Editor

1 The Need for Reconfigurable Computing Systems
in Finance

The finance sector is one of most prominent users of High Performance Computing
(HPC) facilities. It is not only due to the aftermath of the financial crisis in
2008 that the computational demands have surged over the last years but due to
increasing regulations (e.g., Basel III and Solvency II) and reporting requirements.
Institutes are forced to deliver valuation and risk simulation results to internal risk
management departments and external regulatory authorities frequently [2, 16, 17].

One important bottleneck in many investment and risk management calculations
is the pricing of exotic derivatives in appropriate market models [2]. However, in
many of these cases, no (semi)closed-form pricing formulas exist, and the evaluation
is carried out by applying numerical approximations. In most cases, calculating
those numbers for a complete portfolio can be very compute intensive and can last
hours to days on state-of-the-art compute clusters with thousands of cores [17].
The increasing complexity of the underlying market models and financial products
makes this situation even worse [2, 5, 6, 8]. In addition, the progress in online
applications like news aggregation and analysis [9] and the competition in the field
of low-latency and High-Frequency Trading (HFT) require new technologies to keep
track with the operational and market demands.

Data centers and HPC in general are currently facing a massive energy problem
[2, 3]. In particular, this also holds for financial applications: The energy needed for
portfolio pricing is immense and lies in the range of several megawatts for a single
average-sized institute today [17]. Already in 2008 the available power for Canary
Wharf, the financial district of London, had to be limited to ensure a reliable supply
for the Olympic Games in 2012 [15]. In addition, energy costs also force financial
institutes to look into alternative ways of obtaining sufficient computational power
at lower operating costs [16].

Two fundamental design principles for high-performance and energy-efficient
computing appliances are the shifts to high data locality with minimum data
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vi Preface from the Editor

movements and to heterogeneous computing platforms that integrate dedicated
and specialized hardware accelerators. The performance of battery-driven mobile
devices we experience today is grounded in these concepts. Nowadays, the need
for heterogeneity is widely acknowledged in the HPC domain as well [2, 3].
Nevertheless, the vast majority of current data centers and in-house computing
systems is still based on general-purpose Central Processing Units (CPUs), Graphics
Processor Units (GPUs), or Intel Xeon Phi processors. The reason is that those
architectures are tailored to providing a high flexibility on application level, but
at the cost of low energy efficiency.

Dedicated Application Specific Integrated Circuit (ASIC) accelerator chips
achieve the optimal performance and energy efficiency. However, ASICs come
with some significant drawbacks regarding their use in supercomputing systems in
general:

1. The Non-recurring Engineering (NRE) and fixed manufacturing costs for custom
ASICs are in the range of several 100 million USD for state-of-the-art 28 nm
processes [10]. This means that the cost per unit is enormous for low volume
production and therefore economically unfeasible.

2. Manufactured ASICs are unalterably wired circuits and can therefore only
provide the flexibility that has been incorporated into their architecture at design
time. Changing their functionality or adding additional features beyond those
capabilities would require a replacement of the hardware with updated versions.

3. The design effort and therefore also the Time to Market (TTM) is in the range
of months to years for ASIC development. However, in particular in the finance
domain, it can be necessary to implement new products or algorithms very fast.
Designing a new ASIC for this is probably not viable.

In contrast to ASICs, reconfigurable devices like Field Programmable Gate
Arrays (FPGAs) can be reprogrammed without limit and can change their func-
tionality even while the system is running. Therefore, they are a very promising
technology for integrating dedicated hardware accelerators in existing CPU- and
GPU-based computing systems, resulting in so-called High Performance Reconfig-
urable Computing (HPRC) architectures [14].

FPGAs have already shown to outperform CPU- and GPU-only architectures
with respect to speed and energy efficiency by far for financial applications [1, 2, 12].
First attempts to use reconfigurable technology in practice are made, for example,
by J.P. Morgan [4] or Deutsche Bank [11].

However, the use of FPGAs still comes with a lot of challenges. For example,
no standard design and integration flows exist up to now that make this technology
available to software and algorithmic engineers right away. First approaches such
as the Maxeler systems,1 the MathWorks HDL Coder [13], the Altera OpenCL
flow [7], or the Xilinx SDAccel approach [18] are moving into the right direction,
but still require fundamental know-how about hardware design in order to end up

1http://www.maxeler.com

http://www.maxeler.com
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with powerful accelerator solutions. Hybrid devices like the recent Xilinx Zynq
All Programmable system on chips (SoCs) combine standard CPU cores with a
reconfigurable FPGA part and thus enable completely new system architectures also
in the HPRC domain. This book summarizes the main ideas and concepts required
for successfully integrating FPGAs into financial computing systems.

2 Intended Audience and Purpose of This Book

When I started my work as a researcher in the field of accelerating financial
applications with FPGAs in 2010 at the University of Kaiserslautern, I found
myself in a place where interdisciplinary collaboration between engineers and
mathematicians was not only a buzzword, but had a long and lived tradition. It was
not only established through informal cooperation projects between the departments
and research groups within the university itself, but also materialized, for example,
in the Center for Mathematical and Computational Modelling ((CM)2). (CM)2 is
a research center funded by the German state Rhineland-Palatinate with the aim
of showing that mathematics and computer science represent a technology that is
essential to engineers and natural scientists and that will help advance progress in
relevant areas.2 I have carried out my first works as a member of the Microelectronic
Systems Design Research Group headed by Prof. Norbert Wehn in the context
of the very successful (CM)2 project “Hardware assisted Acceleration for Monte
Carlo Simulations in Financial Mathematics with a particular Emphasis on Option
Pricing (HOPP).” As one outcome of (CM)2, the Deutsche Forschungsgemeinschaft
(DFG) has decided to implement a new research training group (RTG) 1932 titled
“Stochastic Models for Innovations in the Engineering Sciences” at the University
of Kaiserslautern for the period April 2014–September 2018 (see Preface from Prof.
Ralf Korn, speaker of the RTG 1932).

In addition to the successful networking within the university, Kaiserslautern
is a famous location for fruitful cooperations between companies and institutes
in the fields of engineering and mathematics in general. Particularly active in the
field of financial mathematics is the Fraunhofer Institute for Industrial Mathematics
(ITWM),3 a well-reputed application-oriented research institution with the mission
of applying the latest mathematical findings from research to overcome practical
challenges from industry. It is located only a short distance from the university
campus.

Despite the beneficial circumstances, one of my first discoveries was that
it was quite hard to get an overview about what is already going on in the
field “accelerating financial applications with FPGAs.” The reason is that we
are entering a strongly interdisciplinary environment comprising hardware design,

2http://cmcm.uni-kl.de/en
3http://www.itwm.fraunhofer.de/en/departments/financial-mathematics.html

http://cmcm.uni-kl.de/en
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financial mathematics, computational stochastics, benchmarking, HPC, and soft-
ware engineering. Although many particular topics had already been investigated
in detail, their impact in the context of “accelerating financial applications with
reconfigurable architectures” was not always obvious. In addition, up to now there
is no accessible textbook available that covers all important aspects of using FPGAs
for financial applications.

My main motivation to come up with this book is exactly to close this gap and
to make it easier for readers to see the global picture required to identify the critical
points from all cross-disciplinary viewpoints. The book summarizes the current
challenges in finance and therefore justifies the needs for new computing concepts
including FPGA-based accelerators, both for readers from finance business and
research. It covers the most promising strategies for accelerating various financial
applications known today and illustrates that real interdisciplinary approaches are
crucial to come up with powerful and efficient computing systems for those in the
end.

For people new to or particularly interested in this topic, the book summarizes
the state-of-the-art work and therefore should act as a guide through all the various
approaches and ideas. It helps readers from the academic domain to get an overview
about possible research fields and points out those areas where further investigations
are needed to make FPGAs accessible for people from practice. For practitioners,
the book highlights the most important concepts and the latest findings from
research and illustrates how those can help to identify and overcome bottlenecks
in current systems. Quants and algorithmic developers will get insights into the
technological effects that may limit their implementations in the end and how to
overcome those. For managers and administrators in the Information Technology
(IT) domain, the book gives answers about how to integrate FPGAs into existing
systems and how to ensure flexibility and maintainability over time.

3 Outline and Organization of the Book

A big obstacle for researchers is the fact that it is generally very hard to get
access to the real technological challenges that financial institutes are facing in
daily business. My experience is that this information can only be obtained in
face-to-face discussions with practitioners and will vastly differ from company to
company. Chapter 1 by Desmettre and Korn therefore highlights the 10 biggest
challenges in the finance business from a viewpoint of financial mathematics and
risk management.

One particular computationally challenging task in finance is calibrating the
market models against the market. Chapter 2 by Sayer and Wenzel outlines the
calibration process and distills the most critical points in this process. Furthermore,
it shows which steps in the calibration process are the main limiting factors and how
they can be tackled to speed up the calibration process in general.
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In Chap. 3, Delivorias motivates the use of FPGAs for pricing tasks by giving
throughput numbers for CPU, GPU, and FPGA systems. He considers price paths
generated in the Heston market model and compares the run time over all platforms.

Fairly comparing various platforms on application level is a nontrivial task,
in particular when different algorithms are used. Chapter 4 by De Schryver and
Noguiera introduces a generic benchmark approach together with appropriate
metrics that can be used to characterize the performance and energy efficiency
of (heterogeneous) systems independent of the underlying technology and imple-
mented algorithm.

High-Level Synthesis (HLS) is currently moving into productive hardware
designs and seems to be one of the most promising approaches to make FPGAs
accessible to algorithm and software developers. In Chap. 5, Inggs, Fleming,
Thomas, and Luk demonstrate the current performance of HLS for financial
applications with an option pricing case study.

In addition to the design of the hardware accelerator architecture itself, its
integration into existing computing system is a crucial point that needs to be solved.
Chapter 6 by Sadri, De Schryver, and Wehn introduces the basics of Peripheral
Component Interconnect Express (PCIe) and Advanced eXtensible Interface (AXI),
two of the most advanced interfaces currently used in HPC and System on Chip
(SoC) architectures. For the hybrid Xilinx Zynq device that comes with a CPU and
an FPGA part it points out possible pitfalls and how they can be overcome whenever
FPGAs need to be attached to existing host systems over PCIe.

Path-dependent options are particularly challenging for acceleration with ded-
icated architectures. The reason is that the payoff of those products needs to be
evaluated at every considered point in time until the maturity. For American options,
Varela, Brugger, Tang, Wehn, and Korn illustrate in Chap. 7 how a pricing system
for path-dependent options can be efficiently implemented on a hybrid CPU/FPGA
system.

One major benefit of FPGAs is their reconfigurability and therefore the flexibility
they can provide once integrated into HPC computing systems. However, currently
there is no standard methodology on how to exploit this reconfigurability efficiently
at runtime. In Chap. 8, Brugger, De Schryver, and Wehn propose HyPER, a
framework for efficient option pricer implementations on generic hybrid systems
consisting of CPU and FPGA parts. They describe their approach in detail and
show that HyPER is 3.4× faster and 36× more power efficient than a highly tuned
software reference on an Intel Core i5 CPU.

While on CPUs and GPUs the hardware and therefore the available data types
are fixed, FPGAs give complete freedom to the user about which precision and bit
widths should be used in each stage of the architecture. This opens up a completely
new degree of freedom and also heavily influences the costs of available algorithms
whenever implemented on FPGAs. Chapter 9 by Omland, Hefter, Ritter, Brugger,
De Schryver, Wehn, and Kostiuk outlines this issue and shows how so-called
mixed-precision systems can be designed without losing any accuracy of the final
computation results.
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As introduced in Chap. 2, calibration is one of the compute intensive tasks in
finance. Chapter 10 by Liu, Brugger, De Schryver, and Wehn introduces design
concepts for accelerating this problem for the Heston model with an efficient
accelerator for pricing vanilla options in hardware. It shows the complete algo-
rithmic design space and exemplarily illustrates how to obtain efficient accelerator
implementations from the actual problem level.

Fast methodologies and tools are mandatory for achieving high productivity
whenever working with hardware accelerators in business. In Chap. 11, Becker,
Mencer, Weston, and Gaydadjiev present the Maxeler data-flow approach and show
how it can be applied to value-at-risk and low-latency trading in finance.

Kaiserslautern, Germany Christian De Schryver
15 Feb 2015
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Computing in Finance

Where Models and Applications Link Mathematics and Hardware Design

The table of contents of this book clearly indicates that the book is an interdis-
ciplinary effort between engineers with a specialization in hardware design and
mathematicians working in the area of financial mathematics.

Such a cooperation between engineers and mathematicians is a trademark for
research done at the University of Kaiserslautern, the place related to most of the
authors who contribute to this book. Many interdisciplinary research activities in
recent years have benefitted from this approach, the most prominent one of them
is the Research Training Group 1932 Stochastic Models for Innovations in the
Engineering Sciences financed by the DFG, the German Research Foundation.
The RTG considers four areas of application: production processes in fluids and
non-wovens, multi-phase metals, high-performance concrete, and finally hardware
design with applications in finance.

Mathematical modeling (and in particular stochastic modeling) is seen as the
basis for innovations in engineering sciences. To ensure that this approach results in
successful research, we have taken various innovative measures on the PhD level in
the RTG 1932. Among them are:

• PhD students attend all relevant lectures together: This ensures that math-
ematics students can assist their counterparts from the engineering sciences to
understand mathematics and vice versa when it comes to engineering talks.

• Solid education in basics and advanced aspects: Lecture series specially
designed for the PhD students such as Principles of Engineering or Principles
of stochastic modeling lift them quickly on the necessary theoretical level.

• Joint language: Via frequent meetings in the joint project, we urge the students
to learn the scientific language of the partners. This is a key feature for true
interdisciplinary research.

For this book, mainly the cooperation between financial mathematics, computa-
tional stochastics, and hardware design is essential. The corresponding contributions
will highlight some advantages of these cooperations:

xiii
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• Efficient use of modern hardware by mathematical algorithms that are imple-
mented in adaptive ways

• Dealing with computational problems that do not only challenge the hardware,
but that are truly relevant from the theoretical and the practical aspects of finance

• A mixed-precision approach that cares for the necessary accuracy required by
theoretical numerics and at the same time considers the possible speedup

In total, this book is a proof that interdisciplinary research can yield break-
throughs that are possible as researchers have widened their scopes.

Kaiserslautern, Germany Ralf Korn
10 Dec 2014
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Chapter 1
10 Computational Challenges in Finance

Sascha Desmettre and Ralf Korn

Abstract With the growing use of both highly developed mathematical models
and complicated derivative products at financial markets, the demand for high
computational power and its efficient use via fast algorithms and sophisticated hard-
and software concepts became a hot topic in mathematics and computer science.
The combination of the necessity to use numerical methods such as Monte Carlo
simulation, of the demand for a high accuracy of the resulting prices and risk
measures, of online availability of prices, and the need for repeatedly performing
those calculations for different input parameters as a kind of sensitivity analysis
emphasizes this even more.

In this survey, we describe the mathematical background of some of the most
challenging computational tasks in financial mathematics. Among the examples are
the pricing of exotic options by Monte Carlo methods, the calibration problem
to obtain the input parameters for financial market models, and various risk
management and measurement tasks.

1.1 Financial Markets and Models as Sources
for Computationally Challenging Problems

With the growing use of both highly developed mathematical models and compli-
cated derivative products at financial markets, the demand for high computational
power and its efficient use via fast algorithms and sophisticated hard- and software
concepts became a hot topic in mathematics and computer science. The combination
of the necessity to use numerical methods such as Monte Carlo (MC) simulations, of
the demand for a high accuracy of the resulting prices and risk measures, of online
availability of prices, and the need for repeatedly performing those calculations for
different input parameters as a kind of sensitivity analysis emphasizes this even
more.

S. Desmettre (�) • R. Korn
Department of Mathematics, TU Kaiserslautern, 67663 Kaiserslautern, Germany
e-mail: desmettre@mathematik.uni-kl.de; korn@mathematik.uni-kl.de
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2 S. Desmettre and R. Korn

In this survey, we describe the mathematical background of some of the most
challenging computational tasks in financial mathematics. Among the examples are
the pricing of exotic options by MC methods, the calibration problem to obtain the
input parameters for financial market models, and various risk management and
measurement tasks.

We will start by introducing the basic building blocks of stochastic processes
such as the Brownian motion and stochastic differential equations, present some
popular stock price models, and give a short survey on options and their pricing.
This will then be followed by a survey on option pricing via the MC method and a
detailed description of different aspects of risk management.

1.2 Modeling Stock Prices and Further Stochastic
Processes in Finance

Stock price movements in time as reported in price charts always show a very
irregular, non-smooth behavior. The irregular fluctuation seems to dominate a clear
tendency of the evolution of the stock price over time. The appropriate mathematical
setting is that of diffusion processes, especially that of the Brownian Motion (BM).

A one-dimensional BM W (t) is defined as a stochastic process with continu-
ous path (i.e. it admits continuous realizations as a function of time) and

• W (0) = 0 almost surely,
• Stationary increments with W (t)−W (s)∼N (0, t − s) , t > s ≥ 0,
• Independent increments, i.e. W (t)−W (s) is independent of W (u)−W (r)

for t > s ≥ u > r ≥ 0.

A d-dimensional BM consists of a vector W (t) = (W1 (t) , . . . ,Wd (t)) of
independent one-dimensional BMs Wi (t). A correlated d-dimensional BM is
again a vector of one-dimensional BMs Zi (t), but with

Corr (Zi (t) ,Zj (t)) = ρi j

for a given correlation matrix ρρρ .

A simulated path of a one-dimensional BM, i.e. a realization of the BM W (t) , t ∈
[0,1] is given in Fig. 1.1. It exhibits the main characteristics of the BM, in particular
its non-differentiability as a function of time.

In this survey, we will consider a general diffusion type model for the evolution
of stock prices, interest rates or additional processes that influence those prices. The
corresponding modeling tool that we are using are Stochastic Differential Equations
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Fig. 1.1 A path of a Brownian motion

(SDEs) (see [11] for a standard reference on SDEs). In particular, we assume that
the price process S (t) of d stocks and an additional, m-dimensional state process
Y (t) are given by the SDE

dS (t) = μ (t,S (t) ,Y (t))dt +σ (t,S (t) ,Y (t))dW (t) , S (0) = s,

dY (t) = κ (t,Y (t))dt +ν (t,Y (t))dW (t) , Y (0) = y.

Here, we assume that the coefficient functions μ ,σ ,κ ,ν satisfy appropriate condi-
tions for existence and uniqueness of a solution of the SDE. Such conditions can be
found in [11]. Sufficient (but not necessary) conditions are e.g. the affine linearity of
the coefficient functions or suitable Lipschitz and growth conditions. Further, W (t)
is a k-dimensional BM.

The most popular special case of those models is the Black-Scholes (BS) model
where the stock price does not depend on the state process Y (t) (or where formally
the state process Y is a constant). We assume that we have d = k = 1 and that the
stock price satisfies the SDE

dS (t) = S (t)(μdt +σdW (t)) , S (0) = s (1.1)

for given constants μ ,σ and a positive initial price of s. By the variation of constants
formula (see e.g. [13], Theorem 2.54) there exists a unique (strong) solution to the
SDE (1.1) given by the geometric BM

S (t) = sexp

((
μ − 1

2
σ2

)
t +σW (t)

)
.

As the logarithm of S (t) is normally distributed, we speak of a log-normal model.
In this case, we further have

E(S (t)) = sexp(μt) .
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Multi-dimensional generalizations of this example are available for linear coefficient
functions μ(.),σ(.) without dependence on the state process Y (t).

A popular example for a stock price model with dependence on an underlying
state process is the Stochastic Volatility (SV) model of Heston (for short: Heston
model, see [10]). There, we have one stock price and an additional state process
ν (t) that is called the volatility. They are given by

dS (t) = S (t)
(

μdt +
√

ν (t)dW S (t)
)
, S (0) = s,

dν (t) = κ (θ −ν (t))dt +σ
√

ν (t)dW ν (t) ,ν (0) = s

with arbitrary constants μ ,σ and positive constants κ ,θ . Further, we assume

corr
(
W S (t) ,W ν (t)

)
= ρ

for a given constant ρ ∈ [−1,1] for the two one-dimensional Brownian motions W S

and W ν . A particular aspect of the volatility process ν (t) is that it is non-negative,
but can attain the value zero if we have

2θκ ≤ σ2.

The Heston model is one of the benchmark models in the finance industry that will
also appear in further contributions to this book. One of its particular challenges is
that the corresponding SDE does not admit an explicit solution. Thus, it can only
be handled by simulation and discretization methods, a fact that is responsible for
many computational issues raised in this book.

1.3 Principles of Option Pricing

Options are derivative securities as their future payments depend on the performance
of one or more underlying stock prices. They come in many ways, plain and simple,
and complicated, with many strange features when it comes to determine the actual
final payment that their owner receives. As they are a characteristic product of
modern investment banking, calculating their prices in an efficient and accurate way
is a key task in financial mathematics.

The most popular example of an option is the European call option on a stock.
It gives its owner the right (but not the obligation!) to buy one unit of the stock at a
predefined future time T (the maturity) for an already agreed price of K (the strike).
As the owner will only buy it when the price of the underlying at maturity S (T ) is
above the strike, the European call option is identified with the random payment of

H = (S (T )−K)+

at time T .
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One of the reasons for the popularity of the European call option is that it admits
an explicit pricing formula in the BS model, the BS formula

c(t,S (t)) = S (t)Φ

⎛
⎝ ln

(
S(t)
K

)
+
(
r+ 1

2 σ2
)
(T − t)

σ
√

T − t

⎞
⎠

−Ke−r(T−t)Φ

⎛
⎝ ln

(
S(t)
K

)
+
(
r− 1

2 σ2
)
(T − t)

σ
√

T − t

⎞
⎠

where Φ (.) denotes the cumulative distribution function of the standard normal
distribution. This formula which goes back to [2] is one of the cornerstones of
modern financial mathematics. Its importance in both theory and application is also
emphasized by the fact that Myron Scholes and Robert C. Merton were awarded the
Nobel Prize in Economics in 1997 for their work related to the BS formula.

The most striking fact of the BS formula is that the stock price drift μ , i.e. the
parameter that determines the expected value of S (t), does not enter the valuation
formula of the European call option. This is no coincidence, but a consequence
of a deep theoretical result. To formulate it, we introduce a riskless investment
opportunity, the so-called money market account with price evolution M (t) given by

M (t) = ert ,

i.e. the evolution of the value of one unit of money invested at time t = 0 that
continuously earns interest payments at rate r.

The financial market made up of this money market account and the stock price
of the BS model is called the BS market. There, we have the following result:

Theorem 1 (Option price in the BS model). The price XH of an option
given by a final payment H with E

(
Hb

)
< ∞ for some b ≥ 1 is uniquely

determined by

XH = Ẽ
(
e−rT H

)
,

where the expectation is taken with respect to the unique probability measure
Q under which the discounted stock S̃(t) = S (t)/M (t) is a martingale.
In particular, for the purpose of option pricing, we can assume that we have

μ = r.
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The reason for this very nice result is the completeness of the BS market, i.e.
the fact that every (sufficiently integrable) final payoff H of an option can be
created in a synthetic way by following an appropriate trading strategy in the money
market account and the stock (see [13] for the full argumentation and the concept of
completeness and replication).

In market models where the state process Y (t) has a non-vanishing stochastic
component that is not contained in the ones of the stock price, one does not have
such a nice result as in the BS setting. However, even there, we can assume that for
the purpose of option pricing we can model the stock prices in such a way that their
discounted components S̃i (t) = Si (t)/M (t) are martingales. In particular, now and
in the following we directly assume that we only consider probability measures P
such that we have

Si (0) = E(Si (t)/M (t)) , i = 1, . . . ,d.

Thus, all trade-able assets are assumed to have the same expected value for
their relative increase in this artificial market. We therefore speak of risk-neutral
valuation.

As we have now seen, calculating an option price boils down to calculating an
expected value of a function or a functional of an underlying stochastic process. For
simplicity, we thus assume that the underlying (possibly multi-dimensional) stock
price process is given as the unique solution of the SDE

dS (t) = μ (t,S (t))dt +σ (t,S (t))dW (t) , S (0) = s

with W (t) a d-dimensional BM, s=(s1, . . . ,sn)
′, and μ ,σ being functions satisfying

appropriate conditions such that the above SDE possesses a unique (strong) solution.
Further, for the moment, we consider a function

f : Rm → R

which is non-negative (or polynomially bounded). Then, we can define the
(conditional) expectation

V(t,s) = E
(t,s)

(
e−r(T−t) f (S (T ))

)

for a given starting time t ∈ [0,T ] at which we have S (t) = s. Of course, we can
also replace the function f in the two preceding equations by a functional F that
can depend on the whole path of the stock price. However, then the conditional
expectation at time t above is in general not determined by only starting in (t,x).
Depending on the functional’s form one needs more information of the stock
price performance before time t to completely describe the current value of the
corresponding option via an appropriate expectation.
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However, in any case, to compute this expectation is indeed our main task. There
are various methods for computing it. Examples are:

• Direct calculation of the integral

E
(0,s) (e−rT f (S (T ))

)
= e−rT

∫
Rm

f (x)h(x)dx

if the density h(.) of S (T ) (conditioned on S (0) = s) is explicitly known.
• Approximation of the price process S (t) , t ∈ [0,T ], by simpler processes – such

as binomial trees – S(n) (t) , t ∈ [0,T ], and then calculating the corresponding
expectation

E
(0,s(n))
n

(
f
(

S(n) (T )
))

in the simpler model as an approximation for the original one (see [15] for a
survey on binomial tree methods applied to option pricing).

• Solution of the partial differential equation for the conditional expectation V(t,s)
that corresponds to the stock price dynamics. For notational simplicity, we only
state it in the one-dimensional case as

Vt (t,s)+
1
2

σ (t,s)2
Vss (t,s)+ μ (t,s)Vs (t,s)− r (t,s)V(t,s) = 0,

V(T,s) = f (T,s)

For more complicated option prices depending on the state process Y (t), we also
obtain derivatives with respect to y and mixed derivatives with respect to t,s,y.

• Calculating the expectation via MC simulation, i.e. simulating the final payoff H
of an option N times and then estimating the option price via

E
(
e−rT H

)
≈ e−rT 1

N

N

∑
i=1

H(i)

where the H(i) are independent copies of H.

We will in the following restrict ourselves to the last method, the MC method.
The main reason for this decision is that it is the most flexible of all the methods
presented, and it suffers the most from heavy computations, as the number N of
simulation runs usually has to be very large.

Before doing so, we will present options with more complicated payoffs than
a European call option, so called exotic options. Unfortunately, only under very
special and restrictive assumptions, there exist explicit formulae for the prices of
such exotic options. Typically, one needs numerical methods to price them. Some
popular examples are:
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• Options with payoffs depending on multiple stocks such as basket options with a
payoff given by

Hbasket =

(
1
d

d

∑
j=1

S j (T )−K

)+

• Options with payoffs depending on either a finite number of stock prices at
different times t j ∈ [0,T ] such as discrete Asian options given by e.g.

Hdisc. Asian call =

(
1
d

d

∑
j=1

S (t j)−K

)+

or a continuous average of stock prices such as continuous Asian options given by

Hcont. Asian call =

(
1
T

∫ T

0
S (t)dt −K

)+

• Barrier options that coincide with plain European put or call options as long as
certain barrier conditions are either satisfied on [0,T ] or are violated such as e.g.
a knock-out-double-barrier call option with a payoff given by

Hdbkoc = (S (T )−K)+ 1{B1<S(t)<B2}

for constants 0 ≤ B1 < B2 ≤ ∞
• Options with local and global bounds on payoffs such as locally and globally

capped and floored cliquet options given by

Hcliquet = max

{
F,min

{
C,

d

∑
j=1

max

{
Fj,min

{
Cj,

S (t j)− S
(
t j−1

)
S
(
t j−1

)
}}}}

for different time instants 0≤ t0 < t1 < .. . < td ≤ T and constants F <C, Fj <Cj

All of those exotic options are tailored to the needs of special customers or
markets. As an example, cliquet options are an essential ingredient of modern
pension insurance products.

At the end of this section, we will formulate our first computational challenge:

Computational challenge 1: Find a universal framework/method for an
efficient calculation of prices of exotic options.
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An obvious candidate is the Monte Carlo (MC) method which we are going to
present in the next section.

1.4 Monte Carlo Methods for Pricing Exotic Options

MC methods are amongst the simplest methods to compute expectations (and thus
also option prices) and are on the other hand a standard example of a method that
causes a big computing load when applied in a naive way. Even more, we will show
by an example of a simple barrier option that a naive application of the MC method
will lead to a completely wrong result that even pretends to be of a high accuracy.

Given that we can generate random numbers which are distributed as the
considered real-valued, integrable random variable H, the standard MC method to
calculate the expectation E(H) consists of two steps:

1. Generate N independent, identically distributed copies Hi of H.
2. Estimate μ � E(H) by

μ̂N =
1
N

N

∑
i=1

Hi.

Due to the linearity of the expectation the MC estimator μ̂N is unbiased. Further,
the convergence of the standard MC method is ensured by the strong law of large
numbers. One obtains an approximate confidence interval of level 1−α for μ as
(see e.g. [14], Chapter 3)

[
1
N

N

∑
i=1

Hi − z1−α/2
σ√
N
,

1
N

N

∑
i=1

Hi + z1−α/2
σ√
N

]
.

Here, z1−α/2 is the (1−α/2)-quantile of the standard normal distribution and σ is
defined via

σ2 �Var (H) .

If σ2 is unknown (which is the typical situation) then it will be estimated by

σ̂2
N =

1
N − 1

N

∑
i=1

(Hi − μ̂N)
2.

σ is then replaced by σ̂N in the MC estimator of the confidence interval for μ . In
both cases, the message is that – measured in terms of the length of the confidence
interval – the accuracy of the unbiased MC method is of the order O

(
1/

√
N
)
.
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This in particular means that we need to increase the number of simulations of Hi

by a factor 100 if we want to increase the accuracy of the MC estimator for μ by
one order. Thus, we have in fact a very slow rate of convergence.

Looking at the ingredients in the MC method we already see the first challenge
of an efficient and robust implementation:

Computational challenge 2: Find an appropriate Random Number Generator
(RNG) to simulate the final payments H of an exotic option.

Here, the decision problem is crucial with respect to both performance and accu-
racy. Of course, the (typically deterministic) RNG should mimic the distribution
underlying H as good as possible. Further, as the biggest computational advantage
of the MC method is the possibility for parallelization, the RNG should allow a
simple way of parallel simulation of independent random numbers.

The standard method here is to choose a suitable RNG that produces good
random numbers that are uniformly distributed on (0,1) and to use the inverse
transformation method for getting the right distribution. I.e. let Ui be the ith random
number which is uniformly distributed on (0,1), let F be the desired distribution
function of H. Then

Hi � F−1 (Ui)

has the desired distribution. This method mostly works, in particular in our diffusion
process setting which is mainly dominated by the use of the normal distribution.
Thus, for the normal distribution one only has to decide between the use of the
classical Box-Muller transform or an approximate inverse transformation (see [14],
Chapter 2). While the approximate inverse transformation method preserves a good
grid structure of the original uniformly distributed random numbers, the Box-Muller
transform ensures that even extreme values outside the interval [−8,8] can occur
which is not the case for the approximate inverse method. Having made the decision
about the appropriate transformation method, it still remains to find a good generator
for the uniformly distributed random numbersUi. Here, there is an enormous choice.
As parallelization is one of the major advantages, the suitability for parallelization
is a major issue for deciding on the RNG. Thus, the Mersenne Twister is a favorable
choice (see [14], Chapter 2 and [16]).

For a simple standard option with a final payment of H = f (S (T )) (such as
a European call option) in the Black-Scholes setting, we only have to simulate
independent standard normally distributed random variables Zi, i = 1, . . . ,N, to
obtain

H(i) = f
(

se(r− 1
2 σ 2)T+σ

√
T Zi

)
.
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However, things become more involved when one either cannot generate the price
process S (t) exactly or when one can only simulate a suitably discretized version of
the payoff functional.

For the first case, one has to use a discretization scheme for the simulation of the
stock price (see [12] for a standard reference on the numerical solution of SDE).
The most basic such scheme is the Euler-Maruyama scheme (EMS). To illustrate it,
we apply it to a one dimensional SDE

dS (t) = μ (S (t))dt +σ (S (t))dW (t) ,S (0) = s0.

Then, for a step size of Δ = T/n > 0, the discretized process S(Δ ) (t) generated by
the EMS is defined by

S(Δ ) (0) � s0,

S(Δ ) (kΔ) � S(Δ ) ((k− 1)Δ)+ μ
(

S(Δ ) ((k− 1)Δ)
)

Δ

+ σ
(

S(Δ ) ((k− 1)Δ)
)

ΔWk, k = 1, . . . ,n.

Here, ΔWk,k = 1, . . . ,n, is a sequence of independent, N (0,Δ)-distributed random
variables. Between two consecutive discretization points, we obtain the values of
S(Δ ) (t) by linear interpolation. The EMS can easily be generalized to a multi-
dimensional setting.

If we now replace the original process S (t) by S(Δ ) (t) in the standard MC
approach, then we obtain

μ̂N,Δ � 1
N

N

∑
i=1

f
(

S(Δ )
i (T )

)
a.s.−→ E

(
f
(

S(Δ ) (T )
))

for N → ∞

In particular, this application of the MC that uses the discretized process leads to a
biased result. The accuracy of the MC method can then no longer be measured by
the variance of the estimator. We have to consider the Mean Squared Error (MSE)
to judge the accuracy instead, i.e.

MSE(μ̂N,Δ ) � E

[(
μ̂N,Δ −E( f (S (T )))

)2
]

= Var
(
μ̂N,Δ

)
+
(
E( f (S (T )))−E

(
f
(

S(Δ ) (T )
)))2

Thus, the MSE consists of two parts, the MC variance and the so-called
discretization bias. We consider this bias a bit more detailed by looking at the
convergence behavior of the EMS: Given suitable assumptions on the coefficient
functions μ ,σ , we have weak convergence of the MSE of order 1 (see e.g. [12]).
More precisely, for μ ,σ being four times continuously differentiable we have

∣∣∣E( f (S (T )))−E

(
f
(

S(Δ ) (T )
))∣∣∣≤Cf Δ
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for four times differentiable and polynomially bounded functions f and a suitable
constant Cf not depending on Δ .

With regard to the MSE it is optimal to choose the discretization step size Δ =
T/n and the number of MC simulations N in such a way that both components of
the MSE are of the same order. So, given that we have weak convergence of order 1
for the EMS then an MSE of order ε2 = 1/n2 can be obtained by the choices of

Δ = O(1/n) , N = n2

which lead to an order of O
(
n3
)

measured in the random numbers simulated in total.
As this leads to a high computational effort for pricing an option by the standard MC
method, we can formulate another computational challenge:

Computational challenge 3: Find a modification of the standard MC method
that has an effort of less than O(n3) for pricing an option including path
simulation.

There are some methods now available that can overcome this challenge. Among
them are weak extrapolation, the statistical Romberg method and in particular
the multi-level MC method which will also play a prominent role in further
contributions to this book (see e.g. [14] for a survey on the three mentioned
methods).

However, unfortunately, the assumptions on f are typically not satisfied for
option type payoffs (simply consider all the examples given in the last section).
Further, the assumptions on the coefficients of the price process are not satisfied for
e.g. the Heston model.

Thus, in typical situations, although we know the order of the MC variance, we
cannot say a lot about the actual accuracy of the MC estimator. This problem will be
illustrated by the second case mentioned above where we have to consider the MSE
as a measure for accuracy of the MC method, the case where the payoff functional
can only be simulated approximately. Let therefore f (S) be a functional of the path
of the stock price S (t) , t ∈ [0,T ] and μ̂N,Δ be a MC estimator based on N simulated
stock price paths with a discretization step size for the payoff functional of Δ . Then,
we obtain a similar decomposition of the MSE

MSE(μ̂N,Δ ) = E
(
μ̂N,Δ −E( f (S))

)2

= E

((
μ̂N,Δ −E( f (S;Δ))

)2
)
+E

(
(E( f (S))−E( f (S;Δ)))2

)

= Var
(
μ̂N,Δ

)
+ bias(Δ)

where now the bias is caused by the discretization of the payoff functional.
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To illustrate the dependence of the accuracy of the MC method on the bias, we
look at the problem of computing the price of a one-sided down-and-out barrier call
option with a payoff functional given by

f (S (t) ;t ∈ [0,T ]) = (S (T )−K)+ 1S(t)>B ∀t∈[0,T ].

As the one-sided down-and-out barrier call option possesses an explicit valuation
formula in the BS model (see e.g. [13], Chapter 4), it serves well to illustrate the
effects of different choices of the discretization parameter Δ = 1/m and the number
of MC replications N.

As input parameters we consider the choice of

T = 1, r = 0, σ = 0.1, S (0) = K = 100, B = 95.

We first fix the number of discretization steps m to 10, i.e. we have Δ = 0.1. As we
then only check the knock-out condition at 10 time points, the corresponding MC
estimator (at least asymptotically for large N) overestimates the true value of the
barrier option. This is underlined in Fig. 1.2 where the 95%-confidence intervals do
not contain the true value of the barrier option. This, however is not surprising as
in this case the sequence of MC estimators converges to the price of the discrete
down-and-out call given by the final payoff

f (S;N,Δ) = (S (T )−K)+ 1S(iΔT/N)>B ∀i=1,...,m.

As a contrast, we now fix the number N = 100,000 of simulated stock price paths
and consider a varying number of discretization points m in Fig. 1.3. As can be
seen from the nearly identical length of the confidence intervals for varying m, the
variance of the MC estimator is estimated consistently. Considering the differences

Fig. 1.2 MC estimators with 95%-confidence intervals for the price of a barrier option with fixed
time discretization 0,1 and varying number N of simulated stock price paths
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Fig. 1.3 MC estimators with 95%-confidence intervals for the price of a barrier option with
varying time discretization 1/m for 100,000 stock price paths

of the bias of the different MC estimators from the true value, one can conjecture
that the bias behaves as O(1/

√
m), and thus converges at the same speed as the

unbiased MC estimator. This example highlights that the order of the convergence
of the bias is the critical aspect for the MC method in such a situation. Fortunately, in
the case of the barrier options, there are theoretical results by Gobet (see e.g. [9]) that
prove the above conjecture of a discretization bias of order 0.5. There are also good
modifications of the crude MC method above that produce an unbiased estimator
(such as the Brownian bridge method (see e.g. Chapter 5 of [14])), but the effects
demonstrated above are similar for other types of exotic options. And moreover,
there are not too many results on the bias of the MC estimator for calculating the
price of an exotic option.

Thus, in calculating the prices of exotic options by MC methods, we face another
computational challenge:

Computational challenge 4: Develop an efficient algorithm to estimate the
order of the discretization bias when calculating the price of an exotic option
with path dependence by the MC method.

A possibly simple first suggestion is to perform an iterative search in the
following way:

1. Start with a rough discretization (i.e. a small number m) and increase the number
N of MC simulation runs until the resulting (estimated) variance is below the
order of the desired size of the MSE.
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2. Increase the number of discretization points by a factor 10 and repeat calculating
the corresponding MC estimation with the final N from Step 1 10 times. Take the
average over the 10 calculations as an estimator for the option price.

3. Repeat Step 2 until the estimator for the option price is no longer significantly
changing between two consecutive steps.

Of course, this is only a kind of simple cooking recipe that leaves a lot of space for
improvement. One can also try to estimate the order of the discretization bias from
looking at its behavior as a function of the varying step size 1/(10km).

In any case, not knowing the discretization bias increases the computational
effort enormously, if one wants to obtain a trustable option price by the MC method.
So, any strategy, may it be more based on algorithmic improvements or on an
efficient hardware/software concept, will be a great step forward.

1.5 Risk Measurement and Management

The notion of risk is ubiquitous in finance, a fact that is also underlined by the
intensive use of such terms as market risk, liquidity risk, credit risk, operational risk,
model risk, just to mention the most popular names. As measuring and managing
risk is one of the central tasks in finance, we will also highlight some corresponding
computational challenges in different areas of risk.

1.5.1 Loss Distributions and Risk Measures

While we have concentrated on the pricing of single derivative contracts in the
preceding sections, we will now consider a whole bunch of financial instruments,
a so-called portfolio of financial positions. This can be the whole book of a bank
or of one of its departments, a collection of stocks or of risky loans. Further, we
will not price the portfolio (this would just be the sum of the single prices), but will
instead consider the sum of the risks that are inherent in the different single positions
simultaneously. What interests us is the potential change, particularly the losses, of
the total value of the portfolio over a future time period.

The appropriate concepts for measuring the risk of such a portfolio of financial
assets are those of the loss function and of risk measures. In our presentation, we
will be quite brief and refer the reader for more details to the corresponding sections
in [17] and [14].

We denote the value at time s of the portfolio under consideration by V (s)
and assume that the random variable V (s) is observable at time s. Further, we
assume that the composition of the portfolio does not change over the period we
are looking at.
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For a time horizon of Δ the portfolio loss over the period [s,s+Δ ] is given by

L[s,s+Δ ] �−(V (s+Δ)−V(s)) .

Note that we have changed the sign for considering the differences of the
future and the current portfolio value. This is because we are concerned with the
possibilities of big losses only. Gains do not play a big role in risk measurement,
although they are the main aim of performing the business of a company in general.

Typical time horizons that occur in practice are 1 or 10 days or even a year.
As L[s,s+Δ ] is not known at time s it is considered to be a random variable.
Its distribution is called the (portfolio) loss distribution. We do not distinguish
between the conditional loss and unconditional loss in the following as our objective
are computational challenges. We always assume that we perform our computations
based on the maximum information available at the time of computation.

As in [17] we will work in units of the fixed time horizon Δ , introduce the
notation Vt �V (tΔ), and rewrite the loss function as

Lt+1 � L[tΔ ,(t+1)Δ ] =−(Vt+1 −Vt) . (1.2)

Fixing the time t, the distribution of the loss function L � Lt+1 for �∈R (conditional
on time t) is introduced using a simplified notation as

FL(�)� P(L ≤ �).

With the distribution of the loss function, we are ready to introduce so-called risk
measures. Their main purpose is stated by Föllmer and Schied in [7] as:

. . .a risk measure is viewed as a capital requirement: We are looking for the minimal amount
of capital which, if added to the position and invested in a risk-free manner, makes the
position acceptable.

For completeness, we state:

A risk measure ρ is a real-valued mapping defined on the space of random
variables (risks).

To bring this somewhat meaningless, mathematical definition closer to the above
intention, there exists a huge discussion in the literature on reasonable additional
requirements that a good risk measure should satisfy (see e.g. [7, 14, 17]).
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As this discussion is beyond the scope of this survey, we restrict ourselves to the
introduction of two popular examples of risk measures: The one which is mainly
used in banks and has become an industry standard is the value-at-risk.

The value-at-risk of level α (VaRα) is the α-quantile of the loss distribution
of the portfolio:

VaRα(L)� inf{� ∈ R|P(L > �)≤ 1−α}= inf{� ∈ R|FL(�)≥ α} ,

where α is a high percentage such as 95 %, 99 % or 99.5 %.

By its nature as a quantile, values of VaRα have an understandable meaning,
a fact that makes it very popular in a wide range of applications, mainly for the
measurement of market risks, but also in the areas of credit risk and operational
risk management. VaRα is not necessarily sub-additive, i.e. the VaRα(X +Y ) >
VaRα(X)+VaRα(Y ) for two different risks X ,Y is possible. This feature is the basis
for most of the criticism of using value-at-risk as a risk measure. Furthermore, as a
quantile, VaRα does not say anything about the actual losses above it.

A risk measure that does not suffer from these two drawbacks (compare e.g. [1]),
and, which is therefore also popular in applications, is the conditional value-at-risk:

The conditional value-at-risk (or average value-at-risk) is defined as

CVaRα(L)�
1

1−α

∫ 1

α
VaRγ(L)dγ.

If the probability distribution of L has no atoms, then the CVaRα has the
interpretation as the expected losses above the value-at-risk, i.e. it then coincides
with the expected shortfall or tail conditional expectation defined by

TCEα(L)� E(L|L ≤VaRα(L)) .

As the conditional value-at-risk is the value at risk integrated w.r.t. the confidence
level, both notions do not differ remarkably from the computational point of view.
Thus, we will focus on the value-at-risk below.

However, as typically the portfolio value V and thus by (1.2) the loss function
L depend on a d-dimensional vector of market prices for a very large dimension d,
the loss function will depend on the market prices of maybe thousands of different
derivative securities. This directly leads us to the first obvious computational
challenge of risk management:
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Computational challenge 5: Find an efficient way to evaluate the loss
function of large portfolios to allow for a fast computation of the value-at-
risk.

1.5.2 Standard Methods for Market Risk Quantification

The importance of the quantification of market risks is e.g. underlined by the popular
JPMorgan’s Risk Metrics document (see [18]) from the practitioners site or by the
reports of the Commission for the Supervision of the Financial Sector (CSSF) (see
[19]) from the regulatory point of view. This has the particular consequence that
every bank and insurance company have to calculate risk measures, of course for
different horizons. While for a bank, risk measures are calculated typically for a
horizon of 1–10 days, insurance companies typically look at the horizon of a year.

To make a huge portfolio numerically tractable, one introduces so-called risk
factors that can explain (most of) the variations of the loss function and ideally
reduce the dimension of the problem by a huge amount. They can be log-returns
of stocks, indices or economic indicators or a combination of them. A classical
method for performing such a model reduction and to find risk factors is a principal
component analysis of the returns of the underlying positions.

We do not go further here, but simply assume that the portfolio value is
modeled by a so-called risk mapping, i.e. for a d-dimensional random vector
Zt � (Zt,1, . . . ,Zt,d)

′ of risk factors we have the representation

Vt = f (t,Zt) (1.3)

for some measurable function f : R+×R
d → R. Of course, this representation is

only useful if the risk factors Zt are observable at time t, which we assume from now
on. By introducing the risk factor changes (Xt)t∈N by Xt � Zt −Zt−1 the portfolio
loss can be written as

Lt+1 (Xt+1) = −( f (t + 1,Zt +Xt+1)− f (t,Zt)) (1.4)

highlighting that the loss is completely determined by the risk factor changes.
In what follows we will discuss some standard methods used in the financial

industry for estimating the value-at-risk.
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1.5.2.1 The Variance-Covariance Method

The variance-covariance method is some crude, first-order approximation. Its basis
is the assumption that risk factor changes Xt+1 follow a multivariate normal
distribution, i.e.

Xt+1 ∼Nd(μ ,Σ)

where μ is the mean vector and Σ the covariance matrix of the distribution.
The second fundamental assumption is that f is differentiable, so that we can

consider a first-order approximation Llin
t+1 of the loss in (1.4) of the form

Llin
t+1 (Xt+1)�−

(
f (t,Zt)+

d

∑
i=1

fzi(t,Zt)Xt+1,i

)
. (1.5)

As the portfolio value f (t,Zt) and the relevant partial derivatives fzi(t,Zt) are
known at time t, the linearized loss function has the form of

Llin
t+1 (Xt+1) =−(ct +b′

tXt+1) (1.6)

for some constant ct and a constant vector bt which are known to us at time t. The
main advantage of the above two assumptions is that the linear function (1.6) of
Xt+1 preserves the normal distribution and we obtain

Llin
t+1 (Xt+1)∼N

(
−ct −b′

t μ ,b
′
tΣbt

)
.

This yields the following explicit formula:

The value-at-risk of the linearized loss corresponding to the confidence level
α is given by

VaRα(L
lin
t+1) =−ct −b′

t μ +
√

b′
tΣbt Φ−1(α) , (1.7)

where Φ denotes the standard normal distribution function and Φ−1(α) is the
α-quantile of Φ .

To apply the value-at-risk of the linearized loss to market data, we still need to
estimate the mean vector μ and the covariance matrix Σ based on the historical risk
factor changes Xt−n+1, . . . ,Xt which can be accomplished using standard estimation
procedures (compare Section 3.1.2 in [17]).
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Remark 1. The formulation of the variance-covariance method based on the first-
order approximation Llin

t+1 in (1.5) of the loss is often referred to as the Delta-
approximation in analogy to the naming of the first partial derivative with respect to
underlying prices in option trading.

Remark 2. Another popular version of the variance-covariance method is the Delta-
Gamma-approximation which is based on a second-order approximation of the loss
function in order to capture the non-linear structure of portfolios that contain a high
percentage of options. However, the general advantages and weaknesses of these
methods are similar. We therefore do not repeat our analysis for the Delta-Gamma-
approximation here.

Merits and Weaknesses of the Method

The main advantage of the variance-covariance method is that it yields an explicit
formula for the value-at-risk of the linearized losses as given by (1.7). However, this
closed-form solution is only obtained using two crucial simplifications:

1. Linearization (in case of the Delta-approximation) or even a second order
approximation (in case of the Delta-Gamma-approximation) is in the fewest
cases a good approximation of the risk mapping as given in (1.3), in particular
when the portfolio contains many complex derivatives.

2. Empirical examinations suggest that the distribution of financial risk factor
returns is leptokurtic and fat-tailed compared to the Gaussian distribution. Thus
the assumption of normally distributed risk factor changes is questionable and
the value-at-risk of the linearized losses (1.7) is likely to underestimate the true
losses.

1.5.2.2 Historical Simulation

Historical simulation is also a very popular method in the financial industry. It is
based on the simple idea that instead of making a model assumption for the risk
factor changes, one simply relies on the empirical distribution of the already
observed past data Xt−n+1, . . . ,Xt . We then evaluate our portfolio loss function
for each of those data points and obtain a set of synthetic losses that would have
occurred if we hold our portfolio on the past days t − 1, t − 2, . . . , t − n:

{
L̃s(Xs) : s = t − n+ 1, . . . , t

}
. (1.8)

Based on these historically simulated loss data, one now estimates the value-at-
risk by the corresponding empirical quantile, i.e. the quantile of the just obtained
historical empirical loss distribution:
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Let L̃n,n ≤ . . . ≤ L̃1,n be the ordered sequence of the values of the historical
losses in (1.8). Then, the estimator for the value-at-risk obtained by
historical simulation is given by

VaRα(L̃s)� L̃[n(1−α)],n ,

where [n(1−α)] denotes the largest integer not exceeding n(1−α).

Merits and Weaknesses of the Method

Besides being a very easy method, a convincing argument of historical simulation is
its independence on distributional assumptions. We only use data that have already
appeared, no speculative ones.

From the theoretical point of view, however, we have to assume stationarity of
the risk factor changes over time which is also quite a restrictive assumption. And
even more, we can be almost sure that we have not yet seen the worst case of losses
in the past. The dependence of the method on reliable data is another aspect that can
cause problems and can lead to a weak estimator for the value-at-risk.

1.5.2.3 The Monte Carlo Method

A method that overcomes the need for linearization and the normal assumption in
the variance-covariance method and that does not rely on historical data is the Monte
Carlo (MC) method. Of course, we still need an assumption for the distribution of
the future risk factor changes.

Given that we have made our choice of this distribution, the MC method only
differs to the historical simulation by the fact that we now simulate our data, i.e.
we simulate independent identically distributed random future risk factor changes

X̃
(1)
t+1, . . . , X̃

(M)
t+1 , and then compute the corresponding portfolio losses

{
L̃t+1(X̃

(i)
t+1) : i = 1, . . . ,M

}
. (1.9)

As in the case of the historical simulation, by taking the relevant quantile of the
empirical distribution of the simulated losses we can estimate the value-at risk:

The MC estimator for the value-at-risk is given by

VaRα(L̃t+1)� inf
{
� ∈ R|F̃t+1(�)≥ α

}
,

(continued)
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(continued)

where the empirical distribution function F̃t+1(�) is given by

F̃t+1(�)� 1
M

M

∑
i=1

I{L̃t+1(X̃
(i)
t+1)≤�}.

Remark 3 (Some aspects of the MC method).

(i) Of course, the crucial modeling aspect is the choice of the distribution for the
risk factor changes and the calibration of this distribution to historical risk factor
change data Xt−n+1, . . . ,Xt . This can be a computational challenging problem
itself (compare also Sect. 1.6.1 and the chapter by Sayer and Wenzel in this
book).

(ii) The above simulation to generate the risk factor changes is often named the
outer simulation. Depending on the complexity of the derivatives included
in the portfolio, we will need an inner simulation in order to evaluate the
loss function of the risk factor changes. This means, we have to perform MC
simulations to calculate the future values of options in each run of the outer
simulation. As this is also an aspect of the historical simulation, we postpone
this for the moment and assume that the simulated realizations of the loss
distribution given by (1.9) are available.

Merits and Weaknesses of the Method

Of course, the quality of the MC method depends heavily on the choice of an
appropriate distribution for the risk factor changes. On the up side, we are not
limited to normal distributions anymore. A further good aspect is the possibility
to generate as many loss values as one wants by simply choosing a huge value M of
simulation runs. This is a clear advantage over the historical simulation where data
are limited.

As there is no simplification to evaluate the portfolio, each simulation run will
possibly need a huge computational effort, in particular if complicated options are
held. On the other hand, this evaluation is then exact given the risk factor changes,
which is a clear advantage compared to the variance-covariance method.

1.5.2.4 Challenges When Determining Market Risks

The Choice of a Suitable Risk Mapping

The above three methods have the main problem in common that it is not clear at all
how to determine the appropriate risk factors yielding an accurate approximation of
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the actual loss. On top of that, their dimension can still be remarkably high. This is
a modeling issue and is closely connected to the choice of the function f in (1.3).
As already indicated, performing a principal component analysis (compare e.g. [3])
can lead to a smaller number of risk factors which explain the major parts of the
market risks. However, the question if the postulated risk factors approximate the
actual loss well enough then remains still an issue and translates into the problem of
the appropriate choice of the input for the principal component analysis.

The different approaches we explained above each have their own advantages
and drawbacks. While the Delta-approximation is usually not accurate enough if the
portfolio contains non-linear securities/derivatives, the Delta-Gamma-approxima-
tion already performs much better than the Delta-approximation. However, the
resulting approximation of the loss function only has a known distribution if we
stick to normally distributed risk factors. The most accurate results can be achieved
by the MC method but at the cost of a high computational complexity compared
to the other methods. The trade-off therein consists of balancing out accuracy and
computability. Further, we sometimes have to choose between accuracy and a fast
computation which can be achieved via a smart approximation of the loss function
(especially with regard to the values of the derivatives in the portfolio). And in the
end, the applicability of all methods highly depends on the structure of the portfolio
at hand. Also, the availability of computing power can play an important role on the
decision for the method to use. Thus, a (computational) challenge when determining
market risks is the choice of the appropriate value-at-risk computation method.

(Computational) challenge 6: Given the structure of the portfolio and of
the computing framework, find an appropriate algorithm to decide on the
adequate method for the computation of the value-at-risk.

Nested Simulation

As already pointed out, in both the historical simulation and in the MC method we
have to evaluate the portfolio in its full complexity. This computational challenge
carries to extremes, when the portfolio contains a lot of complex derivatives, for
which no closed-form price representation is available. In such a case, we will need
an inner MC simulation in addition to the outer one to compute the realized losses.

To formalize this, assume for notational convenience that the time horizon Δ is
fixed, that time t + 1 corresponds to time t +Δ , and that the risk mapping f : R+×
R

d → R corresponds to a portfolio of derivatives with payoff functions H1, . . . ,HK

with maturities T1, . . . ,TK . From our main result Theorem 1.3 we know that the fair
time-t price of a derivative is given by the discounted conditional expectation of its
payoff function under the risk neutral measure Q (we here assume that our market
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satisfies the assumptions of Theorem 1.3). Thus, the risk mapping f at time t +Δ is
given by

f (t +Δ ,Zt + X̃
(i)
t+Δ ) =

K

∑
k=1

Ẽ

[
e−r(Tk−(t+Δ )) Hk|X̃

(i)
t+Δ

]
, (1.10)

where Ẽ(.) denotes the expectation under the risk neutral measure Q. For standard
derivatives like European calls or puts the conditional expectations in (1.10) can be
computed in closed-form (compare again Theorem 1.3). For complex derivatives,
however, they have to be determined via MC simulation. This then causes an inner
simulation as follows that has to be performed for each (!!!) realization of the outer
simulation:

Inner MC simulation for complex derivatives in the portfolio:

1. Generate N independent realizations H(1)
k , . . . ,H(N)

k of the k = 1, . . . ,K

(complex) payoffs given X̃
(i)
t+Δ .

2. Estimate the discounted conditional expectation of the payoff functions by

Ẽ

[
e−r(Tk−(t+Δ )) Hk|X̃

(i)
t+Δ

]
≈ 1

N
e−r(Tk−(t+Δ ))

N

∑
j=1

H( j)
k

for k = 1, . . . ,K.

Remark 4 (Important!).

(i) The amount of simulation work in the presence of the need for an inner
simulation is enormous as the inner simulations have to be redone for each run
of the outer simulation. A possible challenge is to find a framework for reusing
the simulations in the inner loop for each new outer simulation. A possibility
could be to perform the inner simulations only a certain times and then setting
up something as an interpolation polynomial for the price of the derivatives as
a function of the risk factors.

(ii) Note further, that for notational simplicity, we have assumed that each deriva-
tive in the inner simulation requires the same number N of simulation paths
to achieve a desired accuracy for the MC price calculation. This, however,
heavily depends on the similarity of the derivatives and the volatility of the
underlyings. If the variety of option types in the portfolio is large, substantial
savings can be obtained by having a good concept to choose the appropriate
number of inner simulation runs per option type.
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(iii) As a minor issue, note that the input for the option pricing typically has to be
the price of the underlying(s) at time t +Δ or even more, the paths of the price
of the underlying(s) up to time t +Δ . This input has to be reconstructed from
the risk factor changes.

(iv) Finally, the biggest issue is the load balance between inner and outer sim-
ulation. Given only a limited computing time and capacity, one needs a well-
balanced strategy. Highly accurate derivative prices in the inner simulation lead
to an accurate evaluation of the loss function (of course, conditioned on the
correctness of the chosen model for the distribution of the risk factor changes).
On the other hand, they cause a big computational effort which then results in
the possibility of performing only a few outer simulation runs. This then leads
to a poor estimate of the value-at-risk. A high number of outer simulation runs
however only allows for a very rough estimation of the derivative prices on the
inner run, again a non-desirable effect.

The foregoing remark points in the direction of the probably most important
computational challenge of risk management:

Computational challenge 7: Find an appropriate concept for balancing the
workload between the inner and outer MC simulation for the determination
of the value-at-risk of complex portfolios and design an efficient algorithm
that ensures sufficient precision of both the derivative prices in the inner
simulation and the MC estimator for the value-at-risk on the outer simulation.

1.5.3 Liquidity Risk

Besides the measurement of market risks, another important strand of risk manage-
ment is the measurement of liquidity risk. We understand thereby liquidity risk as
the risk not to be able to obtain needed means of payment or to obtain them only at
increased costs. In this article we will put emphasis on liquidity risks which arise in
the fund management sector. Fund management focuses in particular on calling risk
(liquidity risk on the liabilities side) which is the risk of unexpectedly high claims
or claims ahead of schedule as for instance the redemption of shares in a fund.
Liquidity risk in fund management has gained importance in recent times which
manifests itself in European Union guidelines that require appropriate liquidity
risk management processes for UCITS (=Undertakings for Collective Investment
in Transferable Securities) and AIFMs (=Alternative Investment Funds Managers);
compare therefore [20] and [21].

One approach which covers these liquidity risk regulations is to calculate the
peaks over threshold (POT) quantile of the redemptions of mutual funds. It is
well-known (compare e.g. [6]) that the excess distribution can be approximated by
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the generalized Pareto distribution (GPD) from a certain threshold u. This fact is
due to the famous theorem of Pickands, Balkema and de Haan, on which we will
give a short mathematical excursion: Define the excess distribution of a real-valued
random variable X with a distribution function F as

Fu(y)� P(X − u ≤ y|X > u) , where 0 ≤ y < xF − u ,

for a fixed right endpoint xF

xF � sup{x ∈ R : F(x)< 1} ≤ ∞ , where u < xF .

Then we have the following:

Theorem 2 (Pickands, Balkema, de Haan). There exists an appropriate function
β (u) such that

lim
u↑xF

sup
0<x<xF−u

∣∣Fu(x)−Gξ ,β (u)(x)
∣∣= 0 ,

where

Gξ ,β (x) =

⎧⎪⎨
⎪⎩

1−
(

1+
ξ x
β

)−1/ξ
ξ �= 0 ,

1− e−x/β ξ = 0 ,

, x ∈ D(ξ ,β ) =

{
[0,∞) ξ ≥ 0 ,

[0,−β/ξ ] ξ < 0,

is the generalized Pareto distribution (GPD) with shape parameter ξ ∈R and scale
parameter β > 0.

As a consequence, the excess distribution can be approximated in a similar way
by a suitable generalized Pareto distribution as the distribution of a sum can be
approximated by the normal distribution. The quantile of the excess distribution
then gives a liquidity reserve which is not exceeded by a certain probability p and
is called POT quantile. The POT quantile is also referred to as liquidity-at-risk and
was applied by [22] for the banking sector. Desmettre and Deege [5] then adapted it
to the mutual funds sector and provided a thorough backtesting analysis.

The p-quantile of the excess distribution, i.e. the liquidity-at-risk, is given as

LaRp � u+
β̂
ξ̂

((
n

Nu
(1− p)

)−ξ̂
− 1

)
, (1.11)

where Nu is the number of exceedances over the threshold u, n is the sample
size, ξ̂ is an estimator for the shape parameter and β̂ is an estimator for the
scale parameter of the generalized Pareto distribution.
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Thus in order to calculate the liquidity-at-risk, it is necessary to estimate the
threshold parameter u, the shape parameter ξ and the scale parameter β of the
GPD. The estimation of shape and scale parameter can be achieved using standard
maximum likelihood estimators; a procedure for the estimation of the threshold
parameter u and also its detailed derivation is also given in [5] and is the time-
consuming part when computing the liquidity-at-risk as given by (1.11). In what
follows we sketch the calibration method and explain how it leads to a computational
challenge.

Using well-known properties of the generalized Pareto distribution Gξ ,β , we can

conclude that the estimator ξ̂ of the scale parameter ξ of the excess distribution
(which is approximated by a suitable GPD) is approximately invariant under shifts
in the threshold parameter u. Thus a procedure for the determination of the threshold
parameter u is given by

Choose the first threshold parameter u > 0 such that the estimator ξ̂ of the
shape parameter ξ of the corresponding GPD is approximately invariant under
shifts in the threshold parameter u > 0.

The implementation of this method can be sketched as follows (see also [5]):

1. Sort the available data by ascending order and keep a certain percentage of the
data.

2. Start with u being the lowest possible threshold and increase it up to the value for
which at least k percent of the original data are left. With increasing threshold u
truncate the data at the threshold u.

3. Estimate the unknown parameters ξ and β of the GPD by their maximum
likelihood estimators for every u from 2.

4. For each u, calculate a suitable deviation measure of the corresponding maximum
likelihood estimators ξ̂ (i)i=1,...,K within a sliding interval.

5. The appropriate threshold u is determined as the threshold which lies in the
middle of the interval with the lowest deviation measure. Take the number of
exceedances Nu corresponding to this u and the sample size n.

6. The estimates ξ̂ and β̂ are the maximum likelihood estimates which correspond
to the threshold u.

The computational challenge now arises when we look at typical data sets.
Often, fund redemption data is available over a quite long time horizon such that
a time series of a single share class can contain thousands of data points. Moreover,
management companies will typically face a large portfolio of share classes which
can have a dimension of several hundreds. Combining these two facts we see that
a fund manager will have to determine a large amount of estimates for the shape
and scale parameter of the Generalized Pareto distribution in order to calibrate
the threshold parameter u (compare steps 1–4 of the above algorithm) for a daily
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liquidity risk management process of her portfolio. Therefore it is important to have
a grip on a fast calibration of the threshold and our next computational challenge
can be formulated as

Computational challenge 8: Speed up the calibration of the threshold
parameter u for a fast computation of the liquidity-at-risk.

1.5.4 Intraday Simulation and Calculation

Up to now we considered daily or yearly time horizons Δ . Nowadays in practice, the
demand for so called intraday calculations and calibrations is growing, i.e. we face
time horizons Δ 
 1day and in the extreme the time horizon can have the dimension
of a few hours or even 15 and 30 min which represents the time horizon of intraday
returns. Especially within times of crises it may be of use to be able to recalibrate
all corresponding risk measures of portfolios in order to have as much information
as possible. This will allow fund managers to take well-founded decisions. For a
concise overview of intraday market risk we refer to [8].

The recalibration and recalculation of the risk measures typically involves a
reevaluation of the actual portfolio value as we have for instance seen within
the nested simulations of the MC value-at-risk method. Therefore the intraday
evaluation of large portfolios is also of importance. Summarizing our considerations
above we face the computational challenge

Computational challenge 9: Speed up the calculation and calibration of the
risk management process of financial firms such that intraday calculations
become feasible.

1.6 Further Aspects of Computationally Challenging
Problems in Financial Markets

Besides the optimization of MC methods and of risk management calculations, there
are various other computational issues in financial mathematics. We will mention
only three more, two of them are very important from a practical point of view, the
other has big consequences for designing an efficient hardware/software concept:
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1.6.1 Calibration: How to Get the Parameters?

Every financial market model needs input parameters as otherwise we cannot
calculate any option price or, more general, cannot perform any type of calculation.
To highlight the main approach at the derivatives markets to obtain the necessary
parameters we consider the BS model. There, the riskless interest rate r can (in
principle) be observed at the market. The volatility σ however has to be determined
in a suitable way. There are in principle two ways,

• A classical maximum likelihood estimation (or any other conventional estimation
technique) based on past stock prices using the fact that the logarithmic differ-
ences (i.e. ln(S (ti)/S (ti−1)) , ln(S (ti−1)/S (ti−2)) , . . .) are independent,

• A calibration approach, i.e. the determination of the parameter σimp which
minimizes the squared differences between model and market prices of traded
options.

As the second approach is the one chosen at the derivatives markets, we describe it a
little bit more detailed. Let us for simplicity assume that at a derivatives market we
are currently observing only the prices cKi,Ti of n call options that are characterized
by their strikes Ki and their (times to) maturities Ti. The calibration task now consists
of solving

min
σ>0

n

∑
i=1

(cKi ,Ti − c(0,S (0) ;σ ,Ki,Ti))
2

where c(0,S (0) ;K,T ) denotes the BS formula with volatility σ > 0, strike K and
maturity T . Of course, one can also use a weighted sum as the performance measure
to care for the fact that some of these options are more liquidly traded than others.

Note that calibration typically is a highly non-linear optimization problem that
even gets more involved if more parameters have to be calibrated. We also recognize
the importance of having closed pricing formulae in calibration. If the theoretical
prices have to be calculated by a numerical method (say the MC method) then the
computational effort per iteration step in solving the calibration problem increases
dramatically.

For a much more complicated calibration problem we refer to the work by Sayer
and Wenzel in this book.

1.6.2 Money Counts: How Accurate Do We Want Our Prices?

The financial markets are known for their requirement of extremely accurate price
calculations. However, especially in the MC framework, a huge requirement for
accurate prices increases the computational effort dramatically. It is therefore worth
to point out that high accuracy is worthless if the parameter uncertainty (i.e. the
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error in the input parameters), the algorithmic error (such as the order of (weak)
convergence of the MC method) or the model error (i.e. the error caused by using
an idealized model for simulation that will certainly not exactly mimic the real
world price dynamics) are of a higher order than the accuracy of the performed
computations.

On the other hand, by using a sparse number format, one can speed up the com-
putations and reduce storage capacity by quite a factor. It is therefore challenging to
find a good concept for a variable treatment of precision requirements.

For an innovative suggestion of a mixed precision multi-level MC framework we
refer to the work by Omland, Hefter and Ritter in this book.

1.6.3 Data Maintenance and Access

All mentioned computational methods in this article have in common that they can
only be efficiently executed once the data is available and ready to use. A good
many times, the data access takes as much time as the computations themselves.
In general, the corresponding data like market parameters or information about the
composition of derivatives and portfolios are stored in large data bases whose main-
tenance can be time-consuming; for an overview on the design and maintenance of
database systems we refer to the textbook of Connolly and Begg [4].

In that regard it is also very useful to thoroughly review the computations that
have to be done and to do them in a clever way; for instance a smart approximation
of the loss function where feasible may already tremendously accelerate the value-
at-risk computations. We thus conclude with the computational challenge

Computational challenge 10: Maintain an efficient data storage and provide
an efficient data access.
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Chapter 2
From Model to Application: Calibration
to Market Data

Tilman Sayer and Jörg Wenzel

Abstract We present the procedure of model calibration within the scope of
financial applications. We discuss several models that are used to describe the
movement of financial underlyings and state closed or semi-closed pricing formulas
for basic financial instruments. Furthermore, we explain how these are used in
a general calibration procedure with the purpose to determine sensible model
parameters. Finally, we gather typical numerical issues that often arise in the context
of calibration and that have to be handled with care.

2.1 Introduction

This contribution focuses on one of the most time consuming areas of financial
mathematics, namely the calibration of a financial model to observed market data.
In fact, calibration ensures the applicability of complex models and is a necessary
requirement for accurate pricing and a thorough risk management as demanded by
regulatory agencies.

In Sect. 2.2, we will abstractly explain the concepts behind model calibration,
present different objective functions and focus on relevant instruments and optimiza-
tion algorithms. Section 2.3 presents several financial equity and interest rate models
often employed in applications, where we focus on model prices of instruments that
are used for calibration. We conclude the contribution in Sect. 2.4 by amassing the
most challenging numerical parts for calibration purposes.
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2.2 Model Calibration: A General View

When valuing financial derivatives, like options for example, certain assumptions on
the development of the underlying financial instruments, like for instance the stock
price or some interest rates, have to be made. Usually, these assumptions give rise
to a mathematical model, which in our case typically is a stochastic differential
equation, describing the future random movement of the underlying. Then, the
model can be used to derive pricing formulas for financial derivatives, or to simulate
possible future evolutions of the financial market.

In most cases, the model will depend on a set of model parameters that are not
directly observable from the market. We denote this set by M. The set of parameters
directly observable from the market, i.e. the market parameters, such as spot prices
or interest rates, is denoted by O. Finally, there is a third parameter set P , entering
a pricing formula, which contains parameters of the financial product, also referred
to as product parameters. For instance, for a European call on a stock we have
P = {K,T}, where K is the strike and T the maturity of the call. For t = 0, we have
O = {S0,r} with today’s price of the underlying S0 and interest rate r.

While the meaning of market and product parameters generally is quite clear,
the model parameters might not even have a financial meaning at all. Still, in order
to use the model, sensible parameter values have to be found such that the model
mirrors market reality. We will call this process model calibration.

Let f denote the type of a financial instrument, for example f = call for
calls. Combined with a particular choice of market and product parameters, this
completely defines the specific product of type f . Throughout this contribution, the
corresponding market price of this product is denoted by

Xmarket
f (O,P) .

This price can generally be obtained as market quote from recent trades on an
exchange. In fact, we assume to observe N such prices, that result for different
product parameters Pi, and we will refer to them as

Xmarket
f (O,Pi) , i = 1, . . . ,N .

Accordingly, let

Xf (M,O,P)

be the model price of a particular product of type f . Hence, for given model and
market parameters,

Xf (M,O,Pi)

refers to the model price, calculated for the product parameter set Pi.
Since O can be observed and Pi is stipulated in the contract of the product, the

purpose of calibration is to determine M such that the resulting model prices are as
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close as possible to the observable market prices, hence

Xf (M,O,Pi) = Xmarket
f (O,Pi)

simultaneously for all i. If the model reflects reality, model and market prices
coincide. However, since a model always is only an approximation of reality,
equality cannot be expected in general and the fit might not be perfect.

Therefore, we can only expect the distance

dist
((

Xf (M,O,Pi)
)

i=1,...,N ,
(
Xmarket

f (O,Pi)
)

i=1,...,N

)
(2.1)

to be small, where dist(·, ·) is a suitable distance or objective function on R
N , which

will be discussed in more detail later on. Finally, we are left with the optimization
problem to find a particular set M such that the given distance is small.

The remainder of this section deals with possible choices of an objective
function, focuses on financial instruments that can be used for calibration and briefly
discusses types of optimization algorithms.

2.2.1 Objective Function

Obviously, the primary objective of calibration is to find an optimal fit between
market and model prices. However, optimality cannot be guaranteed and the choice
of a particular distance function is quite arbitrary.

In the following, we state the most common objective functions detailing
Eq. (2.1).

Mean squared error: A first obvious choice to specify the distance function is
to use the “smoothest” norm on R

N which is the L2-norm. The minimization
problem then corresponds to the common least-squares problem and reads as

min
M

N

∑
i=1

(
Xf (M,O,Pi)−Xmarket

f (O,Pi)
)2

.

Instead of the L2-norm any other Lp-norm with 1 ≤ p < ∞ can also be used.
Larger values of p put more emphasis on larger deviations.

Relative errors: This type of objective function emphasizes out-of-the-money
products. It is given by

min
M

N

∑
i=1

(
Xf (M,O,Pi)−Xmarket

f (O,Pi)

Xmarket
f (O,Pi)

)2

.

Logarithmic errors: Similar to relative errors, logarithmic errors sometimes are
advantageous, compare for example [14]. Here, the objective function is given as
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min
M

N

∑
i=1

(
log

(
Xf (M,O,Pi)

)
− log

(
Xmarket

f (O,Pi)
))2

.

It is important to note, that depending on the particular objective function, the
resulting model parameters may vary, see for example [14]. So, in applications,
one can incorporate further desirable properties. Mostly these features deal with the
stability of the calibration, as detailed in the following list.

• If market conditions change, market prices change. Ideally, the model is designed
in such a way that it can reflect these changes. However at certain times a re-
calibration of the model parameters has to be performed in order to capture new
market beliefs. If the change in the market prices is rather small, we expect
the change in the parameters to be relatively small as well, i.e. we want the
calibration to be continuous and smooth in the market prices.

• If market conditions remain constant, still, as time goes by, prices of financial
derivatives change due to the decreasing time to maturity. Calibrating on the pro-
gressed prices, however, should then not distort the resulting model parameters.
This is what we call time homogeneity. The model as well as the calibration is
required to price derivatives consistently with respect to time.

Prices of illiquid products with a wide bid-ask spread are less reliable and often
might change even randomly. These prices imply different calibration results. This
opposes the stability conditions above.

The consequential disparity of information is often incorporated into the calibra-
tion by assigning different weights ωi, i = 1, . . . ,N and ∑N

i=1 ωi = 1 to the influence
of the market prices depending on their importance, i.e. the influence of the prices
might be stressed or damped. In applications, the weights are often set in such a
way that they correspond to the liquidity of the product. Since frequently traded
instruments are more liquid, hence contain more reliable information, they might be
of higher importance.

For example, in the case of equity options, setting the weights to the Vega of
the product, i.e. to the derivative of the option price with respect to volatility,
emphasizes at-the-money products.

Even using weights, calibration problems typically are ill-posed in the sense
of Hadamard, see for instance [11]. Usually, the surface of the objective function
is very rugged. It is not convex and does not feature any regular shapes. Often
there exist several local minima, separated by relatively high ridges, what makes
the calibration process even more difficult. Further, small changes in market prices
typically lead to quite different model parameters.

In general, a stabilizing functional that incorporates prior knowledge will smooth
the minimization problem to some extent. In our case, the prior knowledge, or
penalty term, can be seen as the expectation of the market participants, who usually
assume that the model parameters remain relatively constant over time. In terms
of the common least-squares formulation, for M= {p1, . . . , pM}, the minimization
problem changes to
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min
M

N

∑
i=1

ωi
(
Xf (M,O,Pi)−Xmarket

f (O,Pi)
)2

+α
M

∑
j=1

(p j − p̄ j)
2 , (2.2)

where p̄ j are previously calibrated model parameters, if such parameters are
available.

In (2.2), the multiplier α has to be chosen with care. If too small, the problem
is still unstable, if too large, the dependence on prior data is too intense and we are
in a situation of a self-fulfilling prophecy. For a broader view on ill-posed problems
and possible regularization methods, we refer to [11] or [21].

Although model prices rarely match observed market prices exactly, they should
at least lie within the corresponding bid-ask spread. In some cases, this relaxation is
very reasonable because, not only due to noisy data, accuracy in the context of model
calibration quickly might be spurious. In [17] Kalman filters are used to incorporate
bid and ask prices into the calibration.

A further possibility to smooth calibration is to consider functionals of the
product prices. These can for example be the time value of an equity option or
the implied volatility, which we will discuss in Sect. 2.3.1.1.

2.2.2 Relevant Instruments

The selection of financial instruments for calibration is an important task and has to
be done carefully.

First of all, the chosen instruments must allow to determine model prices fast
and accurately for different model parameter sets. Note that, even though the time
needed for calculating a single model price might be almost negligible, calculating
the prices for a whole set of instruments and for several sets of model parameters
is very time consuming. Moreover, especially when valuing derivatives for trading,
calibration is done on demand for each trade rather than only occasionally, compare
for instance [14].

For equity and foreign exchange markets this requirement leads to considering
plain vanilla European exercise feature options almost exclusively. In interest rate
markets the corresponding instruments are options on the forward rate, so called
caps and floors. Although slightly more complicated, options on the swap rate,
so called swaptions, are also computable in closed-form, and hence are used for
calibration too.

In general, more complicated products can be relevant as well. In particular, for
multi-asset models correlation parameters must be calibrated. In this case, basket
options can be used.

However, the pricing of more complex products often requires advanced numer-
ical schemes like flexible Monte Carlo methods or finite difference schemes. But
due to the slow convergence of Monte Carlo simulations and the strong dependence
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between grid size and pricing accuracy of finite difference schemes, products that
require advanced numerical methods are generally not usable for calibration.

In a nutshell: “Therefore, closed pricing formulae are the basis of a convenient
model calibration.”, see [16, Remark 5.30].

2.2.3 Optimization: Local Versus Global

Obviously, minimizing the objective function is a non-linear problem. Due to
the rugged shape of the objective function, both local and global optimization
algorithms should be applied.

Local or deterministic algorithms like the downhill simplex algorithm are sim-
ple and fast. Usually, in each step these algorithms determine the direction
in which the objective function has its steepest descend. However, they will
terminate in a local minimum and should be restarted with different initial
parameters again.
These algorithms are most useful if a strong expectation about the model
parameters is available, such as if previously calibrated parameters exist. In
this case it makes sense to also use these parameters as starting values for the
optimization.

Global or stochastic algorithms like adaptive simulated annealing do not
depend on the initial parameter set, since they randomly sweep the search
space. Obviously, these algorithms are able to continuously improve the value of
the objective function, but this comes with a high computational cost.
This type of algorithms should in particular be used for an initial calibration or
when the market situation changed drastically.

Further, it is important to note that for many practical applications a perfect fit
is not really necessary. Rather, stable, more reliable values are usually preferred.
Inaccuracies in pricing financial derivatives come from many sources and calibration
of model parameters is just one of them. Others include the appropriateness of the
model and the use of approximation formulas.

2.3 Modeling Financial Markets

So far, we have introduced market prices of financial instruments, possible objective
functions and optimization algorithms. As the final ingredient used for calibration,
we now focus on financial equity and interest rate models and present closed and
semi-closed pricing formulas for relevant products.
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2.3.1 Equity Models

We first introduce the popular Black-Scholes, highlight two of its weaknesses and
give a flexible generalization of it.

2.3.1.1 The Black-Scholes Model

Without doubt, the most famous equity model is the Black-Scholes, see [4], where
the stock price St is modeled as a geometric Brownian motion. For the sake of
simplicity, we will introduce the model directly under the risk-neutral measure
and refer to Chap. 1 by Desmettre and Korn for a brief discussion on risk-neutral
valuation and to [15] for a detailed explanation. Thus, the model reads as

dSt = rSt dt +σSt dWt , S0 = s ≥ 0 ,

with interest rate r, constant volatility σ and Brownian motion Wt . In this model, the
price of a European exercise feature call with strike K and maturity T at time t = 0
can be calculated as

Xcall = S0Φ (d+)−K exp(−rT )Φ (d−) ,

where Φ(·) denotes the cumulative distribution function of the standard normal
distribution and

d± =
log(S0)− log(K)+

(
r±σ2/2

)
T

σ
√

T
.

Note that, for convenience, we suppress the dependence on M, O, and P here and
in the following when it is clear from the context.

Due to the simple form of the model and since all parameters except the volatility
are observable from market data, this model is the fundamental model for various
financial applications.

However, empirical findings suggest that the Black-Scholes does not explain
reality in a satisfactory way. A detailed view on these findings, which are also
called stylized facts, is beyond the scope of this contribution. Instead we only briefly
discuss the most important ones.

Volatility clustering refers to an effect, frequently observed in historical price
data. Figure 2.1 presents historical daily logarithmic returns of the German stock
index DAX from January 2008 to December 2012. One can observe phases
with relatively high or low volatility. If, as the Black-Scholes assumes, data was
distributed normally, these clusters would not occur.

Skew and kurtosis both are measures of a probability distribution and character-
ize the shape of a distribution. For normal data, the skew equals zero and the
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Fig. 2.1 Historical daily logarithmic returns of the DAX between January 2008 and December
2012

kurtosis equals three. Yet, in real applications, the empirical skew of logarithmic
returns typically is negative, meaning that the left tail of the empirical density
function is fatter than the right one. Additionally, the empirical kurtosis of the
corresponding data is larger than three, which means that we face distributions
with higher peaks and fatter tails, compared to the normal distribution.
Figure 2.2 shows the empirical distribution of logarithmic returns of the DAX
index for daily observations between January 2008 and December 2012. Here,
the solid line corresponds to the density function of the fitted normal distribution.
As can be seen, in comparison with the normal distribution, we obtain a higher
peak as well as fatter tails.

While these phenomena are directly inferred from asset prices, there is a further
inconsistency between the Black-Scholes and the market regarding option prices.
The usage of a constant volatility in the Black-Scholes model market implies that
the price of each traded European exercise feature call on the same stock, should
result from applying the same value of σ . In general, this assumption is heavily
violated throughout many financial markets.

Looking at this issue the other way round implies that we can find a particular
volatility value for each observed call. In fact, since the call price is monotone in σ ,
this value is unique and is called implied volatility.

Figure 2.3 shows the implied volatility surface obtained from European exercise
feature calls on the stock of Allianz SE for different maturities and strikes quoted
on December 14th, 2011. On that date, the closing stock price was e 71.53.
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Fig. 2.2 Empirical distribution of daily logarithmic returns of the DAX from January 2008 to
December 2012
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Fig. 2.3 Implied volatility surface on December 14th, 2011 from calls on Allianz
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The shape of the surface is very common in equity markets and is not at all flat,
as the Black-Scholes would imply. In fact, for fixed maturity, the graph is typically
U-shaped, reminiscent of a smile, hence practitioners often call it the volatility smile
or smirk.

All in all, there is a variety of empirical findings that cannot be matched by the
Black-Scholes. To overcome these drawbacks, we introduce a more complex model,
which is detailed in [1] and forms a superset of many renowned equity models.

2.3.1.2 A Generalization

Here, we present a quite substantial generalization of the Black-Scholes, which
offers more stochastic processes and free parameters and is thus able to capture
more market effects. Under the risk-neutral measure it reads as

dSt = (r−λ ξ )St dt +
√

νt St dWt + JtSt dNt , S0 = s ≥ 0 ,

dνt = κ (θ −νt) dt +σ
√

νt dW̃t , ν0 = ν ≥ 0 ,

where the variance process νt is modeled as stochastic process, a so called Cox-
Ingersoll-Ross or CIR process. In fact, νt is a mean-reverting stochastic process
with long-term mean θ ≥ 0 and speed of mean-reversion κ ≥ 0 while σ ≥ 0 is its
volatility.

The variance process cannot be written in an explicit form but its distribution, the
non-central chi-squared distribution, is known. Further, the process is almost surely
non-negative and finite. If additionally the Feller condition

2κθ ≥ σ2

is satisfied, the process is strictly positive, i.e. the probability that νt is greater than
zero equals one.

As before, r is the risk-free interest rate. Further, the Brownian motions Wt and
W̃t are correlated with ρ , hence ρ ∈ [−1,1]. In fact, typically ρ is close to −1 for
equity data.

The process Nt is an independent Poisson process with jump intensity λ ≥ 0.
The jump sizes Jt are identically and independently distributed according to the
log-normal distribution, i.e.

log(1+ Jt)∼N
(

log(1+ ξ )− ψ2

2
,ψ2

)

for constant ξ and ψ . In this model, today’s price of a European exercise feature
call can be determined as

Xcall = S0Q1 −K exp(−rT )Q2 (2.3)
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with

Q1 =
1
2
+

1
π

exp(−rT )
S0

∫ ∞

0
Re

(
ϕ (u− i)

iuexp(iu log(K))

)
du ,

Q2 =
1
2
+

1
π

∫ ∞

0
Re

(
ϕ (u)

iuexp(iu log(K))

)
du .

Here, Re(·) and ϕ(·) respectively denote the real part of a complex number and the
characteristic function of the logarithmic stock price, which is given as

ϕ (u) = exp [iu(log(S0)+ (r−λ ξ )T )]

× exp

[
κθ
σ2

(
(κ − iuρσ − d)T + 2log

(
1− gexp(−dT )

1− g

))]

× exp

[
νt (κ − iuρσ − d)(1− exp(−dT ))

σ2 (1− gexp(−dT ))

]

× exp

[
λ T

(
(1+ ξ )iu exp

(
−ψ2u(i+ u)

2

)
− 1

)]
,

with

d =

√
(iuρσ −κ)2 +σ2 (u2 + iu) and g =

κ − iuρσ − d
κ − iuρσ + d

,

compare for instance [1] or [20].
For European puts, a slightly different formula can be derived as well. In this

contribution, however, we will solely focus on calls.
As already indicated, the model forms a superset of several famous equity mod-

els, which we will present shortly especially in respect of their model parameters.

The model of Bakshi, Cao and Chen, see [1] has eight free parameters, that is
M = {κ ,θ ,σ ,ν,ρ ,λ ,ξ ,ψ}, and it is also called Bates, see [2]. Due to its
complexity, it obviously can describe many effects seen in reality and might
fit the implied volatility surface quite well. However, due to the number of
parameters, the search space is very large and the calibration might take too long.
Besides, overfitting might occur, i.e. the model inadvertently ascribes too much
importance to random noise or noisy data.

The model of Heston, see [13] is obtained for λ = 0, i.e. in the case of no
jumps. Here we obtain M = {κ ,θ ,σ ,ν,ρ}. The resulting model is one of the
most popular ones and it is widely applied among practitioners. Because of its
popularity, there also exist several extensions. These include for example time-
dependent parameters or versions for more than one stock, see for instance [19]
or [9].
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One of the disadvantages of the Heston is that typically prices of short maturity
out-of-the-money options cannot be matched properly. This is due to the fact that
the processes involved in the model are continuous and cannot move so steeply.

The model of Merton, see [18] results for constant variance νt = ν and free
parameters M = {ν,λ ,ξ ,ψ}. Due to the jumps, the model is able to capture
extreme implied volatilities for options that are out-of-the-money.

The model of Black and Scholes, see [4] only has one free parameter, namely
the constant variance and is not able to capture realistic market effects.

Having the model chosen according to the requirements of the application, model
prices of European exercise feature calls can be determined via Eq. (2.3) and applied
for model calibration.

2.3.2 Interest Rate Models

The main difference of interest rate models compared to equity models is the
additional time scale. While for equity or foreign exchange models the underlying
assets have a potentially unbounded life time, in interest rate models the underlyings
are interest rates or bonds that mature. Therefore, we have to model functions of
time that change over time.

This makes the modeling of interest rates and the respective model calibration
a much more cumbersome task. In particular, the correlation between interest rates
with different maturities has a high effect on pricing and thus has to be considered
as well.

Since we only briefly discuss the main concepts needed in our context here, we
refer to [5] for further information on interest rate instruments and relevant models
in interest rate markets. Note that for simplicity, we neglect basis spreads and do not
focus on overnight indexed swaps and their use for discounting.

2.3.2.1 Relevant Products

The most basic building blocks of the interest rate market are zero bonds. These
guarantee a payment of the nominal, which we here consider to be e 1 at maturity T .
We denote today’s market price of a zero bond by

Xmarket
zero bond (T ) .

The bond prices translate one-to-one to zero rates rz(T ) for a given maturity T via

Xmarket
zero bond (T ) = exp(−rz (T )T ) .

Coupon bearing bonds can be seen as a suitable sum of zero bonds with different
nominals and maturities.
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Forward rate agreements fix an interest rate for a zero bond starting at a future
time T with maturity S > T . The price of such an instrument determines the forward
rate r f (T,S). The forward rates can in fact be calculated using observable zero rates
as

r f (T,S) =
rz (S)S− rz (T )T

S−T
.

A call (put) on a forward rate is called a caplet (floorlet). These instruments
correspond to calls and puts in the equity market where here the underlying is the
forward rate. Series of caplets or floorlets with different maturities and equal strike
are traded as caps or floors. Their prices are the sum of the individual caplet or
floorlet prices.

A swap exchanges a series of cash flows determined by the forward rates against
a series of cash flows determined by a fixed coupon rate c. The fixed coupon rate
making the swap a fair trade, i.e. a zero price trade at time T , is called the swap
rate rs(T ). This rate is a non-linear deterministic function of the zero rates for the
different payment times of the cash flows.

An option on the swap rate is called a swaption. As well as caps and floors,
swaptions are also frequently traded. Contrary to the prices of caplets or floorlets,
swaption prices carry information about the correlation of forward rates, since a
swaption is an option on a portfolio of forward rates.

The instantaneous forward rate

r f (T ) =−
∂ ln

(
Xmarket

zero bond (T )
)

∂T

is an artificial instrument and represents the interest rate paid for an infinitesimal
small time step at time T . Employing this rate, the zero as well as the forward rates
can be determined via

rz (T ) =
1
T

∫ T

0
r f (u) du ,

r f (T,S) =
1

S−T

∫ S

T
r f (u) du .

The collection of all observable zero rates can be completed to a function on [0,∞)
using suitable inter- and extrapolation methods. The resulting function rz(·) is called
the term structure of interest rates. By construction, nearly all used interest rate
models automatically calibrate to the current term structure of interest rates. In fact,
this means that the zero bond prices for all traded maturities are fitted by the model
by default.

The calibration procedure uses caps, floors, and swaption data. Since caps and
floors depend on maturity and strike, here we fit a price surface, as already discussed
for the equity markets. However, swaptions are characterized by maturity and strike
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of the corresponding option as well as by the maturity of the underlying swap.
Therefore, instead of a surface, we are facing a whole cube of price data.

For the sake of simplicity, we call

D(T ) = Xmarket
zero bond (T )

the discount factor for maturity T . Furthermore we focus on caps and swaptions
rather than on floors.

2.3.2.2 Black ’76 Model

The model of Black, see [3], which is usually called Black ’76, is less an interest
rate model, but a market convention when quoting prices of caps and swaptions. It
assumes the underlying forward rate of a contract, i.e. the forward rate for caplets or
the swap rate for swaptions, to follow a geometric Brownian motion with volatility
parameter σ . Thus, the option price of the respective instrument can be derived via
the Black-Scholes formula.

In this sense, today’s price of a caplet on the forward rate from T to S > T with
strike c is given by

Xcaplet = (S−T)D(S)
(
r f (T,S)Φ (d+)− cΦ (d−)

)
,

where

d± =
log

(
r f (T,S)

)
− log(c)±σ2T/2

σ
√

T
.

Similarly, the price of an option with maturity T on a swap paying a fixed coupon
c at times Si for i = 1, . . . ,N and T < S1 < S2 < · · ·< Sn = S is given by

Xswaption =
n

∑
i=1

(Si − Si−1)D(Si) (rs (T )Φ (d+)− cΦ (d−)) ,

where

d± =
log(rs (T ))− log(c)±σ2T/2

σ
√

T
.

Note, that here the forward rate r f (T,S) is simply replaced by the swap rate rs(T ).
Since, as in the Black-Scholes case, there is just one model parameter, namely

the volatility σ , the model is very appealing. However, it can be shown that in any
interest rate model that models the whole interest rate curve, not both, forward and
swap rates, can be log-normally distributed. Therefore the formulas given above are
inconsistent for any reasonable interest rate model.
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Fig. 2.4 EUR swaption volatility surface on October 30th, 2014

Despite this fact, they have become standard in practice, as prices of caps and
swaptions are usually quoted in terms of their implied Black ’76 volatility. This
means, the corresponding formula is inverted to find the implied volatility. For
swaptions, the resulting volatility data is called the implied volatility cube. Usually
quotes are given only for at-the-money swaptions, i.e. swaptions whose strikes equal
the current swap rate. Additionally, for each maturity of the option and each maturity
of the swap, a volatility smile is quoted, listing the difference to the at-the-money
swaption volatility for several deviations of the strike from the current swap rate.
An at-the-money swaption volatility surface is shown in Fig. 2.4.

Caps and floors are quoted by a single implied Black ’76 volatility, which,
when entered in each individual caplet formula, yields the correct cap price as
sum of the caplet prices. Note that when constructing a consistent caplet volatility
surface the same caplets can enter several caps. Therefore the caplet surface must
be bootstrapped from short maturities to long maturities in such a way that caplets
entering different caps use the same implied volatility in all caps.

2.3.2.3 Models of Hull and White

The most simple interest rate models describe the short rate as a single stochastic
differential equation. All other rates can be directly derived from it. However, this
implies full correlation between rates with different maturities. Here we consider
the one-factor Hull-White short rate model, which is given by

drt = (θ (t)−κrt) dt +σ dWt , r0 = r f (0) ,
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with constant mean reversion κ and volatility σ . The time-dependent parameter θ (·)
is determined by the initial term structure of zero rates rz(·) as well as by the model
parameters M= {κ ,σ}.

In this model, today’s price of a caplet on the forward rate from T to S > T with
strike c is given by

Xcaplet =−(1+ c(S−T ))D(S)Φ (−d+)+D(T )Φ (−d−) , (2.4)

where

d± =
log(D(S))+ log((1+ c(S−T )))+

(
rz (T )±Σ (T,S)2 /2

)
T

Σ (T,S)
√

T
, (2.5)

Σ (T,S) = σ (S−T)B(S−T,κ)
√

B(T,2κ) , (2.6)

B(T,κ) =
1− exp(−κT )

κT
. (2.7)

We now determine the price of a swaption on the swap rate paying a fixed coupon
c at times T < S1 < S2 < · · ·< Sn = S, where T is the maturity of the option. Let ci

be the fixed cash flow paid at time Si, that is ci = c(Si−Si−1) for i = 1, . . . ,n−1 and
cn = 1+ c(Sn− Sn−1). The swaption price in the one-factor Hull-White is given by

Xswaption =
n

∑
i=1

ci (D(ti)Φ (−d+,i)+Xi (r
∗)D(t)Φ (−d−,i)) ,

with

d±,i =
log(D(Si))− log(Xi (r∗))+

(
rz (T )±Σ (T,Si)

2 /2
)
T

Σ (T,Si)
√

T
,

A(T,S) =
D(S)
D(T )

exp
(
r f (T ) (S−T)B(S−T,κ)−Σ (T,S)2 /2T

)
,

Xi (r) = A(T,Si)exp(−(Si −T )B(T,κ)r) ,

and Σ(·, ·) and B(·, ·) given in Eqs. (2.6) and (2.7). Moreover, r∗ is chosen such that

n

∑
i=1

ciXi (r
∗) = 1 . (2.8)

As in the case of caplets, we recover a formula that is quite similar to the Black-
Scholes formula. In fact, the option on the swap rate can be written as sum of options
with strike Xi(r∗). Thus, calibrating the model to swaption prices adds no additional
complexity but solving Eq. (2.8). Fortunately, it can be shown, that the left-hand-side
of Eq. (2.8) is monotone in r∗ and its solution is unique. Therefore a plain bisection
search can be used to obtain the root.
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The derivation of the formula above exhibits the most severe shortcoming of one-
factor models. Since, regardless of the random state of the economy at time T , either
all expected D(Si) are larger than the strike Xi(r∗) or none, the option on the sum
of the cash flows ci can be written as a sum of options on the individual ci. This is
very unrealistic and is due to the fact that short and long term interest rates move in
common.

Therefore, multi-factor interest rate models are preferred to one-factor ones.
These models can decorrelate long and short term interest rates as well as alter
the curvature of the interest rate curve.

A two-factor Hull-White is given by the equations

r (t) = x1 (t)+ x2 (t)+θ (t) ,

dxi (t) =−κixi (t) dt +σi dW i (t) , xi (0) = 0 ,

with the constant mean reversion parameters κi and volatilities σi for i = 1,2.
Moreover the Brownian motions W1(·) and W2(·) are correlated with correlation
parameter ρ . Again, the time dependent parameter θ (·) is determined by the initial
term structure of the zero rates, hence M = {κ1,κ2,σ1,σ2,ρ}.

Compared to the one-factor model, the price of a caplet solely changes in the
volatility function Σ(·, ·). Hence, the price can be determined using Eq. (2.4), where
d± is given in Eq. (2.5),

Σ (T,S) =

√
C11 (T,S)+ 2C12 (T,S)+C22 (T,S)

S−T
,

Cii (T,S) = σ2
i B(S−T,κi)

2 B(T,2κi) ,

C12 (T,S) = ρσ1σ2B(S−T,κ1)B(S−T,κ2)B(T,κ1 +κ2)

and B(·, ·) is given in Eq. (2.7).
The price of a swaption becomes a little more involved. Again, let ci be the

cash flow paid at time Si, that is ci = c(Si − Si−1) for i = 1, . . . ,n− 1 and cn =
1+ c(Sn− Sn−1). Then,

Xswaption =
D(T )√

2π

∫ +∞

−∞
exp

(
−x2

1

2

)
I (x1) dx1 , (2.9)

where

I (x1) = Φ (−h0 (x1,x
∗
2))

−
n

∑
i=1

ciλ (Si)exp(x1g1 (Si))Φ (−h0 (x1,x
∗
2)+ h1 (Si)) .

Moreover, for fixed x1, x∗2 is the solution of
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n

∑
i=1

ciλ (Si)exp(x1g2 (Si)+ x∗2g3 (Si)) = 1 . (2.10)

As before, for fixed x1, it can be shown that the left hand side of Eq. (2.10) is
monotone in x∗2 and the solution can be found easily. Further, h0(·, ·) is linear in its
arguments and the remaining functions λ (·), h1(·), g1(·), g2(·), g3(·) only depend
on model parameters.

The main problem in the calculation of the swaption price remains the calculation
of the integral, since Eq. (2.10) has to be solved for each x1 where the integrand
is evaluated. Figure 2.5 shows the integrand for an at-the-money swaption with
maturity T = 1 on a swap with S = 3 calculated using several model parameters,
which are given in Table 2.1.
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Fig. 2.5 Differently scaled integrands arising when computing the price of a swaption in the
two-factor Hull-White model

Table 2.1 Model parameters
corresponding to Fig. 2.5

M σ1 σ2 κ1 κ2 ρ
Set A 4.0 2.0 0.05 0.01 −0.75

Set B 4.0 2.0 0.05 0.01 0.75

Set C 1.0 0.5 0.50 0.75 −0.75

Set D 1.0 0.5 0.50 0.75 0.75
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2.3.2.4 SABR Model

As in the Black-Scholes for equities, the single most advantage of the Black ’76
is the dependence on only observable parameters as well as on a single volatility.
However, it turned out that this is grossly inadequate due to the smile effect observed
in the interest rate market.

Intuitively, introducing a deterministic volatility parameter that depends on the
strike and the maturity might solve this issue. But the resulting model as well as its
calibration is very unstable.

Another model with far better properties, which can be used to determine a single
volatility to plug into the Black ’76 formula, is the SABR, where the initial letters
stand for Stochastic Alpha, Beta and Rho. It was introduced in [12] and models
an interest rate F , i.e. a forward or swap rate for a given maturity, jointly with its
corresponding stochastic volatility as

dFt = αtF
β

t dWt , F0 = f ,

dαt = ναt dW̃t , α0 = α ,

where the Brownian motions Wt and W̃t are correlated with ρ , f is the currently
observed forward or swap rate, α is the initial volatility, and β determines the
distribution of the rate process.

For a given strike and maturity, there exist approximations that directly translate
the calibrated parameters into the corresponding Black ’76 volatility.

The calibration of the model differs from the previous models since β typically is
either fixed in advance or is determined approximatively for a fixed maturity T from
the at-the-money Black ’76 volatilities. After fixing β the remaining parameters are
calibrated for a fixed maturity time slice to incorporate the smile effect.

2.4 Numerical Challenges

So far, we have seen several different models and their closed pricing formulas for
the most important products used for calibration. In this section we want to extract
numerical problems and bottlenecks that deserve most attention.

When calibrating a model to market data, the objective function has to be
called for each particular set of model parameters. This subsequently results in the
calculation of the model prices for all relevant products. Here a set of roughly about
200 products is not uncommon in financial applications. So, in total, it is quite
obvious that most of the computation time is spent when computing the product
prices. However, it is far from being simple to accelerate the computation.
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The remaining time, typically not more than 2–5 %, results due to

• Aggregating these prices as specified in the objective function and
• Let the optimization algorithm choose a new set of model parameters.

Still, depending on the quality of the optimization method, more or less product
prices have to be calculated. For example there exist various modifications of the
downhill simplex algorithm, where some of these use first order derivatives to detect
the direction of the steepest descent. This results in additional function evaluations.
Also the adaptive simulated annealing algorithm can be combined with a local
optimizer. Though this might lead to more function evaluations in the first place,
a satisfying local minimum might be found faster. However, it is a priori not clear
which effect prevails.

Recommendation: Use a fast optimization algorithm.

In most of the models we considered, the cumulative distribution function of
the standard normal distribution Φ(·) arises. Here, there exist several fast rational
approximation algorithms, such as the one given in [8]. Note that it is very
important, to have precise values also for small and large arguments, which in
general corresponds to the use of deep in-the-money or out-of-the-money options.

Recommendation: Use a fast approximation of the cumulative distribution
function.

It is also most useful when speeding up calibration to pre-calculate terms that
only depend on the observable market parameters such as exp(−rT ). Further, when
evaluating the objective function, terms solely depending on market and model
parameters can be pre-calculated, since product parameters are only changed here.

Recommendation: Use pre-calculated terms whenever possible.

The calculation of the swaption price in the Hull-White models requires a root
finding algorithm, see Eqs. (2.8) and (2.10). At least in our examples, the functions
involved are smooth and monotone in the variable, so that a simple bisection search
usually gives satisfying results. Since in this case the derivative can be obtained
analytically, the more advanced Newton-Raphson method can also be profitably
used. However, it should be combined with a simple bisection algorithm to capture
cases of very steep functions.
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Recommendation: Use a fast root finding algorithm.

For calculating Eq. (2.3), the evaluation of the cumulative distribution function is
replaced by the integral of a characteristic function. Here, the integrand contains a
singularity at the lower bound while the upper bound is infinity and it is a priori not
clear where to truncate the integration domain. In fact, the integrand is smooth and
the integral can be determined by using a suitable quadrature algorithm, for example
Gauss-Legendre integration.

There are as well other methods to get the improper integral. For example,
adaptive methods could be used, or in [7] a fast Fourier transform method is applied.

The integration problem is also inherent in the pricing formula for the swaption
in the two factor Hull-White model, see Eq. (2.9).

Recommendation: Use a suitable integration method.

In order to determine the price of a European exercise feature call in the general
model, see Eq. (2.3), the logarithm of a complex number has to be calculated.
As distinct from real arguments, this number is not unique. Thus, evaluating the
complex logarithm might result in discontinuities, which distort the result, see for
instance [10].

Recommendation: Use complex logarithm carefully.

As we already pointed out, it is often worthwhile to sacrifice accuracy for speed.
For example, in many situations it is not necessary to stick to double precision. The
same principle holds of course in all the numerical approximation steps discussed
so far.

Recommendation: Use only as much accuracy as needed.

Finally, we note that ideally a calibration implementation takes into account
all of the above points, but still allows the user to be flexible enough to decide
which algorithm, accuracy, method, etc. is used in the particular application. Such a
methodology is given in [6] for the Heston case.
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Chapter 3
Comparative Study of Acceleration Platforms
for Heston’s Stochastic Volatility Model

Christos Delivorias

Abstract We present a comparative insight of the performance of implementations
of the Heston stochastic volatility model on different acceleration platforms. Our
implementation of this model uses Quasi-random variates, using the Numerical
Algorithms Group (NAG) random number library to reduce the simulation variance,
as well as Leif Andersen’s Quadratic Exponential discretisation scheme. The
implementation of the model was in Matlab, which was then ported for Graphics
Processor Units (GPUs), and then Techila platforms. The Field Programmable
Gate Array (FPGA) code was based on C++. The model was tested against a
2.3 GHz Intel Core i5 Central Processing Unit (CPU), a Techila grid server hosted
on Microsoft’s Azure cloud, a GPU node hosted by Boston Ltd, and an FPGA node
hosted by Maxeler Technologies Ltd. Temporal data was collected and compared
against the CPU baseline, to provide quantifiable acceleration benefits for all the
platforms.

3.1 Introduction

The computational complexity requirements of calculating financial derivatives’
prices and risk values have increased dramatically following the most recent
financial crisis in 2008. The requirements of counterparty risk assessment have
also introduced taxing calculations that impose an additional levy in computational
time. There is a two-fold need for this rapid calculation; first the ability to price the
option value on a given underlying is essential in a fast-paced market environment
that relies on dynamic hedging for portfolio immunisation on large books. The
second use is in a relatively new sector of the financial market that deals with High-
Frequency Trading (HFT). This sector relies on extremely fast computations in order
to make algorithmic decisions based on the current market information. This chapter
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will focus on the pricing of options rather than the aspects of HFT. The informed
reader could care to look into some of the negative aspects of HFT as explained
by [3].

This work was a joint project between the University of Edinburgh and Scottish
Widows Investment Partnership (SWIP)1 and aimed at exploring the possibilities in
accelerating financial engineering models, with real life applications in the markets.
The goal was to evaluate the same model on different platforms, and assess the
benefits of acceleration that each platform provided.

This chapter is organised as follows. Section 3.2 introduces the model used in
order to evaluate the computational performance of a well known model of the
evolutions of equities prices. This model has a known analytical solution which
can serve as a cross-check of correctness. This kind of model can have a numerical
solution simulated via Markov Chain Monte Carlo (MCMC) simulation, which is
explained in Sect. 3.3. The variance reduction using quasi-random numbers, as well
as the discretisation scheme are also expanded in this section. Section 3.4 goes into
more details on the acceleration platforms of FPGA, GPU, and the Techila Cloud.
Section 3.5 details the efficiency and the accuracy of the implementation of the
Heston model in Matlab, and finally Sect. 3.6 presents the experimental results and
the conclusion.

3.2 Heston’s Stochastic Volatility Model

The Heston model extends the Black-Scholes (BS) model by taking into account
a stochastic volatility that is mean-reverting and is also correlated with the asset
price. It assumes that both the asset price and its volatility are determined by a joint
stochastic process.

Definition 3.2.1. The Heston model that defines the price of the underlying St and
its stochastic volatility vt at time t is given by

dSt = μStdt +
√

νt StdW S
t ,

dνt = κ(θ −νt)dt +σ
√

vtdW v
t ,

Cov〈dW S
t ,dW ν

t 〉= ρdt,

(3.1)

where the two standard Brownian Motion (BM)(W S,W ν) are correlated by a
coefficient ρ , κ is the rate of reversion of the volatility to θ – the long-term
variance –, σ is the volatility of volatility, and μ is the expected rate of return of
the asset.

1now Aberdeen Asset Management.
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The Heston model extends the BS model by providing a model that has a
dynamic stochastic volatility, as described in Eq. (3.1). This model has a semi-
analytic formula that can be exploited to derive an integral solution. Additionally
if the [5] condition is upheld, this process will produce strictly positive volatility
with probability 1; this is described in Lemma 3.2.1.

Lemma 3.2.1. If the parameters of the Heston model obey the condition

2κθ ≥ σ2,

then the stochastic process vt will produce volatility such that Pr(vt > 0) = 1, since
the upward drift is large enough to strongly reflect away from the origin.

The stochastic nature of this model provides two advantages for evaluating it
with a Monte Carlo simulation. The first is that in its original form, it possesses a
closed-form analytical solution, that can be used to evaluate the bias of the numerical
solution. The second benefit is that its path-dependent nature can accommodate
more complex path behaviors, e.g. barrier options, and Affine Jump Diffusion
(AJD).

3.3 Quasi-Monte Carlo Simulation

The reference to Monte Carlo (MC), is due to the homonym city’s affiliation with
games of chance. The premise of chance is utilised within the simulation in order to
provide a random sample from the overall probability space. If the random sample
is as truly random as possible, then the random sample is taken as an estimate
across the entire probability space. The law of large numbers guarantees [8] that
this estimation will converge to the true likelihood as the number of random draws
tends to +∞. Given a certain number of random draws, the likely magnitude of the
error can be derived by the central limit theorem.

The Feynman-Kač theorem is the connective tissue between the Partial Differ-
ential Equation (PDE) form of the stochastic model, and its approximation by a
Monte Carlo simulation. By this theorem it is possible to approximate a certain form
Stochastic Differential Equation (SDE), by simulating random paths and deriving
the expectation of them as the solution of the original PDE.

As an example we can return to the BS model, where the price of the option
depends on the expected value of the payoff. In order to calculate the expected value
of f it is possible to run a MC simulation with N paths,2 in order to approximate the
actual price of the call option c with the simulated price ĉN ,

2A path in this context is a discrete time-series of prices for the option, one for each discrete
quantum of time.
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ĉN =
e−rT

N

N

∑
ı=1

(
S0e

(r− 1
2 σ 2)T+σ

√
T Nı

(0,1) −K

)+

, (3.2)

where r is the risk-free interest rate, T is the time to maturity of the option, σ is the
volatility, K is the strike price at maturity date T , S0 is the spot price at t = 0, and
Ni
(0,1) are Gaussian Random Variables (RVs). By the strong law of large numbers

we have,

Pr(ĉN → c) = 1, as N → ∞. (3.3)

3.3.1 Variance Reduction with Quasi-Random Numbers

There are two major avenues to take in order to reduce variance in a MC simulation,
one is to take advantage of specific features of the problem domain to adjust or
correct simulation outputs, the other by directly reducing the variability of the
simulation inputs. In this section we’ll introduce the variance reduction process of
quasi-random numbers. This is a procedure to reduce the variance of the simulation
by sampling from variates of lower variance. Such numbers can be sampled from
the so called “low discrepancy” sequences. A sequence’s discrepancy is a measure
of its uniformity and is defined by Definition 3.3.1 (see [6]).

Definition 3.3.1. Given a set of points x1,x2, · · · ,xN ∈ IS s-dimensional unit cube
and a subset G < IS, define the counting function SN(G) as the number of points
xi ∈ G. For each x = (x1,x2, · · · ,xS) ∈ IS, let Gx be the rectangular s-dimensional
region,

Gx = [0,x1)× [0,x2)×·· ·× [0,xS),

with volume x1x2 · · ·xN . Then the discrepancy of the points x1,x2, · · · ,xN is given
by,

D∗
N(x

1,x2, · · · ,xN) = sup
x∈IS

|SN(Gx)−N · (x1 · x2 · · ·xS)|.

The discrepancy value of the distribution compares the sample points found in
the volume of a multi-dimensional space, against the points that should be in that
volume provided it was a uniform distribution.

There are a few sequences that are used to generate quasi-random variates. The
NAG libraries provide three sequence generators. The [7, 9], and [4] sequences are
implemented in MATLAB with the NAG functions g05yl and g05ym (Fig. 3.1).
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Fig. 3.1 The Niedereitter quasi-random uniform variates on the left, versus the pseudo-random
unifrom variates on the right. The NAG library was used for the quasi-random variates

3.3.2 Descritisation Scheme

In 2005 [1] proposed a new scheme to discretise the stochastic volatility and the
price of an underlying asset. This scheme takes advantage of the fact that a non-
central χ2 sampled variate can be approximated by a related distribution, that’s
moment-matched to the conditional first and second moments of the non-central
χ2 distribution.

As Andersen points out, the cubic transformation of the Normal RV although a
more accurate representation of the distribution closer to 0, it introduces negative
values of variance. Thus the quadratic representation is adopted as a special case for
when we have low values of V (t). Therefore when V (t) is sufficiently large, we get,

V̂ (t +Δ t) = a(b+ZV)
2, (3.4)

where ZV is an N(0,1) Gaussian RV, and a, b scalars that will be determined by
moment-matching. Now for the complementary low values of V (t) the distribution
can – asymptotically – be approximated by,

P(V̂ (t +Δ t) ∈ [x,x+Δ t])≈ (pδ (0)+β (1− p)e−β x)dx, x ≥ 0, (3.5)

where δ is the, Dirac delta-function, strongly reflective at 0, and p and β are positive
scalars to be calculated. The scalars a,b, p,β depend on the parameters of the Heston
model and the time granulation Δ t, and will be calculated by moment-matching the
exact distribution.
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To sample from these distributions there are two distributions to take into
account:

• Sample from the normal N(0,1) Gaussian RV and calculate V̂ (t + Δ t) from
Eq. (3.4).

• To sample for the small values of V the inverse of Eq. (3.5) will be used. The
inverse of the distribution function is,

Ψ−1(u) = Ψ−1(u; p,β ) =

⎧⎨
⎩

0 if 0 ≤ u ≤ p,

β−1 ln
(

1−p
1−u

)
if p ≤ u ≤ 1.

(3.6)

The value of V can then be sampled from

V̂ (t +Δ t) = Ψ−1(UV ; p,β ), (3.7)

where UV is a uniform RV. The rule on deciding which discretisation of V to use
depends on the non-centrality of the distribution, and can be triaged based on the
value of Ψ. The value of Ψ is,

Ψ :=
s2

m2 =
V̂ (t)ξ 2e−κΔt

κ (1− e−κΔ t)+ θξ 2

2κ (1− e−κΔ t)2

(θ +(V̂(t)−θ )e−κΔ t)2
, (3.8)

where m,s2 are the conditional mean and variance of the exact distribution we are
matching. What Andersen showed was that the quadratic scheme of Eq. 3.4 can only
be moment-matched for Ψ≤ 2 and similarly the exponential scheme of Eq. 3.7 can
only be moment-matched for Ψ≥ 1. It follows then, that there is an overlap interval
for Ψ ∈ [1,2] where the two schemes overlap. Appropriately Andersen chooses the
midpoint of this interval as the cut-off point between the schemes; thus the cut-off
Ψc = 1.5.

Since we’ve defined the discretisation process for the Quadratic Exponential
(QE) scheme, with Eqs. 3.4 and 3.7, and the cut-off discriminator, what is left is
to calculate the remaining parameters a,b, p,β for each case. The algorithm for this
process is detailed in Algorithm 1.

3.4 Implementations of the Algorithm on Different Platforms

3.4.1 CPU Baseline Model in Matlab

The algorithm described in Algorithm 1 is implemented in MATLAB, and is used
for numerical comparisons of acceleration. It will be used hencforth as the baseline
calculation cost. All the implementations that are explained below will be compared
against this implementation.
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Algorithm 1 QE variance reduction
Input: The present value for the variance, V̂ (t)
Output: The value for the variance in the subsequent time-step, V̂ (t +Δt)

1: Compute m ← θ +(V̂ (t)−θ )e−κΔ t

2: Compute s2 ← V̂ (t)ξ 2e−κΔ t

κ (1− e−κΔ t)+ θξ 2

2κ (1− e−κΔ t)2

3: Compute Ψ← m2

s2

4: if Ψ≤ Ψc then
5: Compute a ← m

1+b2

6: Compute b ← 2Ψ−1 −1+
√

2Ψ−1
√

2Ψ−1 −1
7: Generate Normal random variate ZV

8: return V̂ (t +Δt)← a(b+ZV )
2

9: else
10: Compute p ← Ψ−1

Ψ+1 ∈ [0,1)

11: Compute β ← 1−p
m

12: Generate Uniform random variate UV

13: if 0 ≤UV ≤ p then
14: return V̂ (t +Δt)← 0
15: else
16: return V̂ (t +Δt)← β−1 ln

(
1−p

1−UV

)
17: end if
18: end if

3.4.2 Dataflow Programming on FPGAs

This approach to accelerate code, takes advantage of the fact that most of the time
the CPU is busy figuring out the scheduling of the instructions and the branch
prediction of the program. The purpose of an FPGA is to provide a customisable
“field-programmable” chip that can be optimised to perform calculation for a
specific problem domain. This is achieved by allowing the logic blocks on the chip
to be re-wirable. This way, even after a board has been purchased, it can still be
re-wired and re-purposed.

This re-wiring is achieved via a Hardware Description Language (HDL). This
language offers the ability to interconnect the logic blocks into different combi-
nations, cater for complex combinatorial functions, and also manage the on-chip
memory.3

3.4.2.1 FPGA Versus Intel Multi-core

Thus far, CPU developments have adhered to Moore’s law.4 This assertion has been
adhered to up to this point, however limitations of the scale that transistors can

3This is mostly in the form of either flip-flops, or more structured blocks of memory.
4Moore postulated in 1965 that the transistor density of Intel’s semiconductor chips should double
roughly every 18 months.
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Fig. 3.2 The FPGA architecture as implemented by Maxeler Technologies. The MaxCompiler
constructs the DataFlow tree which defines the circuit architecture on the FPGA chip. From then
on data from memory gets piped into the different DataFlow cores until it exits the calculation pipe
and is committed to memory (Photo used by permission of Maxeler Technologies)

achieve coupled with the issue of power consumption increasing the more transistors
are fitted in a chip, casts doubt into its future accuracy. However, what might actually
happen instead is that the transistors will double their count every 18 months, mainly
because the number of cores in each chip will double. What this means is that the
Operating System (OS) will be able to take advantage of multiple cores within a
CPU and via efficient scheduling maximise performance while minimising power
consumption.

The benefits of the Intel multi-core approach is that the current programming
paradigm can abide, and most existing code could be relatively easily – compared
to more exotic implementation on GPU and FPGA – ported to the many-core
architecture.

The FPGA can leverage two advantages over the CPU approach. First it has more
silicon dedicated to calculations compared to the CPU. And second it relies on the
DataFlow architecture to do away with the taxing aspects of instruction scheduling
and branch-predictions. This way the calculations pipeline is always full and a result
is calculated every clock cycle (see Fig. 3.2 for more details). On the other hand the
CPU, as shown in Fig. 3.3, needs to handle concurrent threads vying for their turn
on the Arithmetic Logic Unit (ALU) in order to progress their calculation status.
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Fig. 3.3 The process architecture on a CPU where the ALU is referred as the Function Unit. Data
has to be moved into the Funtion Unit form memory and then moved back into memory for storage
(Photo used by permission of Maxeler Technologies)

3.4.2.2 Application to the Heston Model

The implementation of Heston’s stochastic volatility model has two parts. First
the code that is run on the host, and second the code that defines the circuit
architecture of the FPGA and performs the necessary calculations (Fig. 3.4). Since
only repetitive calculations can benefit from the DataFlow architecture there are
certain elements that need to run on the host and others on the FPGA card. Maxeler
Technologies use the nomenclature of a kernel and a manager. The kernel comprises
of a set of calculations that produce a distinct result, e.g. a 3-value moving average.
The manager’s responsibility is to instantiate and administer the life cycle and
functions of each kernel that is assigned to it. For this implementation the manager
creates numerous pipes within a given MaxCard5 to handle different operations.
The more pipes that can be filled into the available silicon the better the overall
performance of the FPGA. The manager is responsible to create and to populate
the pipes with kernels to generate random variates from the Gamma distribution,
and also kernels that calculate the next values for the variance and the price of the
underlying. Once all the prices of the underlying have been generated for every
timestep, the results are aggregated back on the host’s CPU.

5Latest models of Maxeler’s FPGA cards provide an ever increasing number of resources on-board
the chip.
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Fig. 3.4 This figure illustrates how code interacts between the host CPU and the FPGA kernels
(Photo used by permission of Maxeler Technologies)

3.4.3 Implementation on GPGPUs

The GPU is a highly specialised parallel processor for accelerating graphical
computations. The first GPU card that consolidated the entire graphics processing
pipeline off-chip for 3D and 2D acceleration was the NVIDIA GeForce256, which
was released in 1999 by NVIDIA. The main function of the card was to render a
graphical image on the GPU chip to turn a model into an image. The strength of this
chip was its specialised computational capacity for floating-point arithmetic.

3.4.3.1 MATLAB Implementation of the Heston Model for the General
Purpose Graphics Processor Unit (GPGPU)

Using the existing Heston model, as implemented in Matlab, it is possible to
augment and differentiate this model to be able to take advantage of Matlab’s
Parallel Computing Toolbox to deploy the existing model on multiple GPU. To do
this there are several ways to take advantage of a single GPU card, multiple cards
per node, and finally multiple nodes in a grid.

The easiest form of access to the GPU is via the overriden functions within the
toolboxes acted on a specific class of the gpuArray. This method will effectively
transfer data over the Peripheral Component Interconnect Express (PCIe) card
onto the GPU memory. Methods of transformation, e.g. addition, subtraction,
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multiplication, etc., would then be applied on the GPU and not on the CPU.
The calculated data is then aggregated from the GPU into the CPU memory via
the gather method. This high-level implementation is useful when quick matrix
calculation without significant need for minute control is required. However when
the problem dimensionality increases, fine-grained control is required in order to
increase the performance of the acceleration. Specifically the problem needs to be
properly structured in order to saturate the GPU pipes.

For this reason it is important to distinguish between independent calculations
in the model and take advantage of multiple GPU cards in order to accelerate the
calculations. The Monte Carlo simulation lends itself quite fittingly to this, because
the individual path calculations are independent of each other, hence can be executed
on multiple GPU cores and nodes. This process is achieved by executing a parfor
loop, whose constituent loops are distributed on multiple GPU and even across
multiple nodes.

In order to access multiple GPU cards it is necessary to bind them to specific
Matlab workers. This is achieved via the spmd. . . end structure. The following
Listing 3.1 shows this in more detail.

1 N=1000;
A = gpuArray ( magic (N) ) ;

3

spmd
5 gpuDevice ( l a b i n d e x ) ;

end
7

p a r f o r i x =1:N % D i s t r i b u t e f o r l oop t o w orker s
9 % Do t h e GPU c a l c

X = myGPUFunction ( ix ,A) ;
11 % Gather da t a

X t o t a l ( ix , : ) = g a t h e r (X) ;
13 end

Listing 3.1 Example of multiple GPU assignment to distribute a Matlab function to multiple
workers

3.4.4 Implementation on the Techila Cloud

Techila is based Finland and deals in the domain of distributed computational
problems. The latter are characterised by two kinds of problems. The first are
traditional parallel problems where the individual distributed processes are run on
different hosts, but require some information to be passed between them. Problems
like fluid dynamics or finite element models are examples of parallel problems
(Fig. 3.5).

On the other hand are the embarrassingly parallel problems. These kinds of
problems do not require communication between the distributed calculations, since



66 C. Delivorias

Fig. 3.5 Parallel problem.
Each computational job
accepts input data and uses
this input data to compute
results. Communication
between jobs is required in
order for the individual jobs
to be completed (Photo used
by permission of Techila)

Fig. 3.6 Embarrassingly
parallel problem. Each
process accepts input data
and uses this input data to
compute results.
Communication is limited to
receiving input data and
transferring output data; no
inter-process communication
takes place (Photo used by
permission of Techila)

each calculation is independent from all others. Monte Carlo simulations, computer
graphics rendering, genetic algorithms, brute force methods in cryptography, Basic
Local Alignment Search Tool (BLAST) searches in bioinformatics, and Machine
Learning analytics [2], are some examples of these kinds of problems (Fig. 3.6).

Techila has produced a computational platform that deals with heterogeneous
distributed computing of embarrassingly parallel problems. The benefit of such an
approach is the ability to utilise multiple hardware and operating systems in order
to leverage all available computing power for problem solving. The computational
resources could be a plethora of instances, from laptops, to unused machines in close
proximity, to local servers, and even on-demand instances from cloud providers. In
other words Techila ports and manages the code on a hybrid set of computational
resources.

Each computational resource is assigned a worker instance that performs the
independent computation. All the workers are administered by a central manager
which interacts with the end user to collect the problem state. As shown in
Fig. 3.7 the End User communicates solely with the server, whose job in turn is to
segment the problem in its distributed parts and transfer them to the heterogeneous
constituency of computational resources.
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Fig. 3.7 Techila system three-tiered structure. The End-User interacts with the Techila Server,
which distributes computations to the Workers. All network communication in the Techila
environment are be secured by using SSL (Secure Socket Layer), meaning all transferred data
will be encrypted (Photo used by permission of Techila)

3.4.4.1 Description of Platform Implementation

For the present case of the Heston model the cloud implementation was achieved by
modification of the existing MATLAB code in order to take account of the Techila
parallelisation layer. The computing resources used was an Extra Large instance of
a server in the Microsoft Azure cloud. Each instance provides 8 cores @ 1.6 GHz
and 14 GB of memory. A total of 354 cores were used for this simulation.

The relative ease with which code can be altered, in order to run on a parallel
environment, is one of the platforms greatest strengths. As shown in Listing 3.3 the
main difference in the code is to change the for command into Techila’s cloudfor to
distribute the for loop to the computational resources.

1 % Main Monte Carlo l oop
2 for p t h = 1 : p a t h s
3 i f (NAG==1 | | NAG==2)
4 . . .
5 C( p t h ) = S ( pth , end ) − K;
6 end

Listing 3.2 Monte Carlo on the local node

1 % P a r a l l e l Monte Carlo l oop
2 c l o u d f o r p t h = 1 : p a t h s
3 i f (NAG==1 | | NAG==2)
4 . . .
5 C( p t h ) = S ( pth , end ) − K;
6 c l oudend

Listing 3.3 Monte Carlo on the grid nodes
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3.5 Efficiency and Accuracy

One could argue that since we have a closed-form analytical solution for these
models, why would we opt to evaluate them with a Monte Carlo simulation instead.
The main reason we opt to use a Monte Carlo instead of a deterministic analytical
solution is twofold. First is the curse of dimensionality6 of the analytical method.
Suppose that we wanted to calculate an integral over ten variables; an integration
in 10-dimensional space. By approximating the integral with 20 points in each
dimension would yield a total number of integration points of 2010 � 1013. The
Monte Carlo simulation can approximate with high accuracy using far fewer points,
e.g. 106. The second reason is the convenience of assessing path-dependent payoffs
for more exotic options, e.g. Asian, lookback, and barrier ones.

The Heston model was implemented as a function in Matlab, and a test harness
was also developed to create plots and metrics. The test harness performed 21
perturbations of the initial value for the underlying asset and performed the Monte
Carlo simulation with certain parameters. Figure 3.8 shows the behaviour and
results that the Monte Carlo simulation produced. The upper left figure shows 5,000
paths generated over 1,250 timesteps, for a vanilla European call option price with
5 years maturity (the black lines overlayed on the plot indicate the 99 % and 95 %
Confidence Interval (CI)). The upper right figure shows the corresponding variance
for each path and is being used to calculate the next price. The bottom left figure
shows the prices for all the purturbations of the underlying’s price, and finally the
bottom right figure shows the standard error for all the prices of the underlying.

3.5.1 Accuracy of Simulation

The very very fact that we can’t have an infinite number of paths in the Monte Carlo
simulation pre-arranges that there will be issues of accuracy of the calculations.
Since the discounted stock price process is Martingale, this effectively implies a
zero drift on the MCMC process.7 If we could use a bullseye analogy, then the
arrows shot at the target is the initial value of the stochastic process, and the center
of the bullseye is the value at maturity, e.g. when the arrow, whichever route it takes,
arrives at its target. In this imaginary scenario the bias of the calculation is how far
off the target the arrows fall, and the variance shows just how densely concentrated
the arrows’ spatial distribution is.

6In numerical analysis the curse of dimensionality refers to various phenomena that arise
when analyzing and organizing high-dimensional spaces (often with hundreds or thousands of
dimensions) that do not occur in low-dimensional settings such as the physical space commonly
modeled with just three dimensions.
7A process where the transition probabilities from one timestep to the other are irrelevant from all
the previous states, i.e. the process is memoryless.



3 Comparative Study of Acceleration Platforms for Heston’s Stochastic. . . 69

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−50

0

50

100

150

200

250

300

C
al

l O
pt

io
n 

P
ric

e 
($

)

Time

Underlying prices in a Monte Carlo simulation with 5000 paths.
 Showing 99% and 95% CI in black lines

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

V
ar

ia
nc

e

Time

Variance for individual paths of the Monte Carlo Simulation

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

C
al

l P
ric

e

Underlying price S ($)

Call Option prices for the Heston models and 5year(s) 
maturity and scattered NAG quasi random variates

 

 
Monte Carlo Heston
NAG analytical Heston

20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
ta

nd
ar

d 
er

ro
r

Underlying price S ($)

Standard error for each purturbation of the underlying initial price

Fig. 3.8 Matlab figures for the Monte Carlo simulation of the Heston model. The parameters
for this simulation are: S0 = 100,ν0 = 0.04,K = 100,ρ = −0.2,σ = 0.2,θ = 0.04,κ = 1.5,T =
5.0,NoSteps = T ∗250,NoPaths = 1,000,λ = 0, r = 0.0,and q = 0.0. For the bottom two plots the
S price is perturbed in the prices S0 = [20 30 · · · 100 · · · 170 180]

Figure 3.9 plots together different models to calculate the price of a European
vanilla call option. The Heston – NAG model uses the NAG libraries to calculate
the price based on the heston model, as is the Black Scholes – NAG model using
the same libraries. The Black Scholes – Analytical has the analytical solution for
what the according BS model would produce. The Heston – Quasi-MC with QE,
is the present implementation using the NAG libraries to generate Quasi-random
variates, and uses the Quadratic Exponential discretisation. Finally the MaxMC
model shows the calculations on the FPGA using 106 paths. There are two sets
of plots in Fig. 3.9. One that corresponds to the BS model and another to the Heston
stochastic volatility model. Since volatility is constant in the BS model, the call
option prices are different near At the Money (ATM) prices for the underlying,
between the two models. What is important in this figure is that there is no variation
between the different implementation of each respective model.

3.5.2 Bias and Variance of Results

Given the Monte Carlo simulation, as was defined in Eq. 3.2, then since ĉN is a
random variable, its bias, equilibrium bias, and variance are defined as follows:

BiasD = E [ĉN ]− cN ,
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Fig. 3.9 The prices of a call option using different calculation methods, in order to assure the
accuracy and the validity of the results

Biaseq = lim
n→inf

BiasD,

VarD = E [ĉN −E [ĉN ]]
2 ,

(3.9)

where E denotes the expectation with respect to the distribution of ĉN , and cN is the
analytical exact solution of the integral.

However the quality of the estimation of a Monte Carlo simulation is not
measured by the bias but an average square estimation error; the standard error.

3.5.3 Standard Error

The central limit states that the bias of the Monte Carlo simulation is normally
distributed,

BiasD = E [ĉN ]− cN ∼ σDZ, (3.10)
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Fig. 3.10 The standard error of the Monte Carlo simulation as it decreases with an increasing
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where σn is the standard deviation of the distribution of ĈN , and Z ∼N(0,1). A simple
calculation derives that,

σD =
1√
N

√
σ2, (3.11)

where σ2 =Varn from Eq. 3.9. It is then possible to estimate σ2 with,

σ̂2
N =

1
N

N

∑
ı=1

(cN − ĉN)
2 , (3.12)

Thus Eq. 3.12 can be used to calculate

σ̂D =
1√
N

√
σ̂2. (3.13)

Typically the representation of the result of a Monte Carlo simulation is of
the form, c = ĉN ± σ̂n. For the purposes of the simulation the standard error was
measured as a way to test the convergence of the simulation. Figure 3.10 plots
the standard error of the simulation from 1,000 up to 128,000 paths. The error is
reducing steadily as the number of paths increase.
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3.6 Results

In this section we present the data collected from running the Heston model on all
available platforms. The CPU∗ that was used was an Intel core i5 at 2.3 GHz clock
speed and 4 GB of DDR3 RAM on a MacBook Pro. The GPU server was provided
by Boston Limited8 and contained 2 T M2090 GPUs. The FPGA nodes were located
on Maxeler’s MaxCloud9 servers and contained four vectis dataflow engines. Each
dataflow engine has up to 24 GB of RAM, giving a total of up to 96 GB of DFE
RAM per node. Finally the Techila installation was hosted on Microsoft’s Azure
cloud on a large server with 4 cores at 1.6 GHz each.

3.6.1 Acceleration Results

Data was collected from running the same model on all of the available platforms.
A baseline time measurement was sampled from the CPU in order to compare
against the times accrued on the acceleration platforms. The acceleration fold, that
is how much faster the Heston model ran under different platforms, is shown in
Table 3.1. The same data are plotted against each other in a graphical form in
Fig. 3.11.

As shown in Table 3.1 the best results are obtained the closer we get the machine
level language. For instance the acceleration of the FPGA, which is coded in C++
and JAVA, severely outperforms the Matlab implementations for a small number of
simulation paths.

What is apparent is that the closer we are to the machine level the better
the acceleration benefits that can be achieved. The FPGA implementation clearly

Table 3.1 This is a synopsis of the acceleration leverage achieved
using FPGA, Matlab’s Parallel Computing Toolbox (PCT) for GPU,
and Techila Grid platforms

NoPaths CPU (s)∗ GPU Techila FPGA Std. error

1,000 14.45 × 5.56 × 0.37 × 247.23 1.91

2,000 36.48 × 13.51 × 5.00 × 231.33 1.36

4,000 78.62 × 29.12 × 6.75 × 369.09 0.96

8,000 177.94 × 61.36 × 9.61 × 690.96 0.67

16,000 386.62 × 128.87 × 15.23 × 770.01 0.47

32,000 952.25 × 238.06 × 30.65 × 879.10 0.33

64,000 2009.74 × 401.95 × 45.14 × 975.82 0.23

128,000 3956.29 × 565.18 × 58.23 × 987.35 0.16

8www.boston.co.uk
9http://www.maxeler.com/products/maxcloud/

www.boston.co.uk
http://www.maxeler.com/products/maxcloud/
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Fig. 3.11 This figure shows the amount faster each platform performed against the CPU
implementation

outperforms the others. However the caveat for the GPU implementation is that the
model was coded in Matlab using the PCT which could be affecting the performance
of the GPU.

3.7 Conclusion

We presented
This chapter describes a novel comparison of different acceleration platform

based on the same embarrassingly parallel problem. We have implemented and
compared an MCMC simulation of the Heston model, on an FPGA server, a
GPGPU server, and a distributed node cluster on Azure. The performance gain
was significant on all platforms, making them worthwile options. The lowest cost
amongst the platform would be the GPGPU server, who’s amortising cost, coupled
with a locality factor make it the optimal choice. However, if locality of data is not
an option, e.g. when confidentiality is not important and data transfers are small,
the Azure cluster would provide a more easily scalable solution. Finally if real-time
calculations with complete saturation of the available pipes were required, e.g. in
HFT platforms, then the FPGA platform would provide the necessary computational
latency.

Future research will include the mapping of qualitative characteristics into
a composite metric comprising the Capital Expenses (CAPEX) and Operating
Expenses (OPEX) of each platform. The sum of these would provide us with the
Total Cost of Ownership (TCO) metric. We should use this metric in order to re-
base all performance gains.
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Chapter 4
Towards Automated Benchmarking and
Evaluation of Heterogeneous Systems in Finance

Christian De Schryver and Carolina Pereira Nogueira

Abstract Benchmarking and fair evaluation of computing systems is a challenge
for High Performance Computing (HPC) in general, and for financial systems in
particular. The reason is that there is no optimal solution for a specific problem in
most cases, but the most appropriate models, algorithms, and their implementations
depend on the desired accuracy of the result or the input parameters, for instance. In
addition, flexibility and development effort of those systems are important metrics
for purchasers from the finance domain and thus need to be well-quantified.

In this section we introduce a precise terminology for separating the problem,
the employed model, and a solution that consists of a selected algorithm and its
implementation. We show how the design space (the space of all possible solutions
to a problem) can be systematically structured and explored. In order to evaluate
and characterize systems independent of their underlying execution platforms, we
illustrate the concept of application-level benchmarks and summarize the state-of-
the-art for financial applications.

In particular for heterogeneous and Field Programmable Gate Array (FPGA)-
accelerated systems, we present a framework structure for automatically executing
and evaluating such benchmarks. We describe the framework structure in detail and
show how this generic concept can be integrated with existing computing systems.
A generic implementation of this framework is freely available for download.

4.1 Introduction

The increasing complexity of market models and financial products has led to
the lack of closed-form pricing formulas for many products. In general, we have
to use numerical approximations to compute product prices with specific market
models for many cases. However, not only various algorithms exist for calculating
such approximate prices (for example Monte Carlo (MC), finite difference, or tree
methods), but all of them come with various flavors and parameters that need to
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be carefully set to achieve meaningful results in the end. Another issue is that not
all algorithms are suitable for all execution platforms: For example, trees can be
very efficient and fast on a Central Processing Unit (CPU), but on reconfigurable
architectures such as FPGA MC methods can benefit from the highly available
spatial parallelism. In addition, thinking about custom data types or mixed-precision
implementations, flexibility, maintainability, or system costs, the design space1 of
available solutions for one particular product-model constellation explodes.

A crucial challenge for quants and practitioners in general is to select the most
appropriate implementation under given side constraints. Although this holds for
nearly all problems we see in computational finance, we focus on pricing tasks
in this chapter. Those constraints can for example be expertise or knowledge
in a particular algorithmic domain, required flexibility of the implementation,
throughput or latency requirements, or simply what is already available in the
company. However, in particular tuning the algorithmic parameters to match a
specific purpose is a non-trivial tasks in general. For instance, considering a classic
MC pricer based on Euler discretization, we already need to specify the step width h
of the grid and the number of paths N. Assuming that we compute this on a CPU or
Graphics Processor Unit (GPU), we need to select either single- or double-precision
floating point arithmetics. In contrast, we can arbitrarily select the precision in each
stage of the accelerator data path when implementing on FPGAs. In addition, we
need to consider algorithmic flavors that may be available for a particular market
model. For example, Marxen et al. have shown that log price simulation with full
truncation and continuity correction performs well for European barrier options
in the Heston model, but this also depends on the specific market and option
parameters [20].

Figure 4.1 illustrates the large design space for constructing an option pricing
system. For reasons of lucidity, only a few layers are shown and sub-branches for
other algorithms besides MC have not been included. It is obvious that already on
application level a very precise selection of the supported products is mandatory
to allow a sensible selection of suitable algorithms and execution platforms on the
lower levels. A final solution corresponds to one single point in the design space and
is specified by a vector of settings for all available parameters.

The question is now: what is the “most appropriate” solution we are looking for in
the design space? The answer is in general very difficult to give right away: Is it the
fastest or the most energy efficient solution? And how much flexibility is required?
And which accuracy of the result do we require under which circumstances? Usually
performance and efficiency stand in clear contrast to flexibility, since inflexible
solutions can get rid of any overhead not required to solve the specific job they

1The design space is the space that depicts all possible solutions to a particular problem.
Each adjustable parameter is reflected as one dimension of the design space. One specific
implementation (a solution for the problem) is exactly one point in the total design space [6].
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Fig. 4.1 The (cut) design space for constructing an option pricing system. For reasons of clarity
only the branch for MC algorithms is depicted in detail

are constructed for. We already see that usually there will be no general answer to
this question and that we need to carefully balance between our requirements and
the solutions we can construct.

Due to the various different sections of the global design space (such as
algorithmic tuning, precision in the data path, flexibility, . . .) trying to determine
the optimal solution in an analytical way is not feasible. In addition, not for all
characteristics there will be formal hard metrics that allow us to use an optimizer for
this task. Furthermore, in some cases such as pricing with stochastic MC methods
it is not even clear what the correct price should be, and of course every solution
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might for example use different Random Numbers (RNs) and therefore provide
different results. And how can we compare systems that do not even use the same
technology, for example a tree-based American option pricer on a CPU with a MC
pricer on a hybrid CPU/FPGA device? The resolution is to employ problem-specific
application-level benchmarks that only rely on settings and metrics based on the
problem, but not on algorithms or implementations of those.

4.2 Problem, Model, Solution: A Precise Terminology

The target job of a system should always be: Solve a specific problem – it does
not matter which algorithm or implementation is used, as long as the result is
calculated correctly and the final implementation fulfills all throughput and energy
(and further) given constraints. Therefore we should clearly distinguish between the
following three terms [6, 8]:

• The problem that is tackled (what to solve),
• The employed model (an abstract representation of the problem), and
• The final solution (an implementation that solves the problem).

Figure 4.2 illustrates how problem, model, and solution depend on each other.
A model can be seen as an abstract representation of the actual problem that is used
to mathematically represent the problem in accessible dimension. The first challenge
is therefore to select an appropriate model for the problem in focus. Usually
this task is carried out by application experts such as financial mathematicians
or quants for an option pricing example. By (implicitly) navigating through the
design space, the application expert in many cases already selects an algorithm
that shows a good performance for his or her settings. It is very common that this
person uses available high-level implementations for instance in Matlab or Python
to explore first performance results of various algorithms in this setting. However,
since this exploration is performed on CPU based architectures, it is in general not
easy to already estimate the benefits and drawbacks of a specific algorithm for a

Fig. 4.2 The
problem/model/solution
layers and their
interdependencies in general
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high performance implementation later without detailed knowledge about computer
architectures and hardware design.

Let us illustrate this categorization with the example problem “calculate the price
of a European option with two knock-out barriers with a given strike price K and
maturity T on a specific market”. European knock-out barrier options pay a certain
amount of money at a fixed maturity time depending on the value of the underlying
asset, in this case only if none of the barriers is hit during the lifetime of the option.

It is obvious that the problem description itself does not yet give any suggestions
to its solution. Since the price of an option is tightly coupled to the price of a certain
stock at the market, we need a model that reflects the underlying stock price behavior
of the time. For the selected example, suitable models are for example the Black-
Scholes model or the Heston model. The model therefore gives a formal and abstract
view of (a certain aspect of) the problem.

The solution finally is a dedicated approach for solving a (modeled) problem and
producing a result. It is characterized by a specific algorithm and its implementation.
For evaluating the Heston model, e.g. finite difference methods or stochastic MC
simulations can be used. Those may be implemented for instance on standard
Personal Computer (PC) clusters, GPU, or on FPGA-based platforms. The selected
solution therefore evaluates the model, and the results of the model need to be
interpreted and applied to the actual problem.

When looking at literature from the financial mathematics community we
observe that many authors focus on the development of algorithms for solving
specific financial problems, but do not consider their implementation on a particular
platform. In contrast, hardware engineers in many cases take algorithms for granted
and come up with tailored and optimized architectures for them without questioning
if the algorithm is suitable for hardware implementation at all. This illustrates how
important it is to always keep the problem, model, and solution domains mentally
isolated and to start with the problem in focus at the beginning.

4.2.1 Cross-Domain Parameter Dependencies

In order to achieve an optimal solution in the end it is crucial to understand
existing dependencies between different parameters. For instance, the selection of
the underlying market model fixes the available algorithms that can be used to
price a specific option in this model. Another example is the correlation between
the available computation units and suitable number representations, since standard
CPU and GPU only support a specific set of number types.

Besides parameters characterizing the application and model domain, the algo-
rithm, and the implementation platform, side conditions may exist that influence
large parts of the final solution. Such side conditions are for example the desired
flexibility and maintainability of the system, throughput and energy requirements,
or the Total Cost of Ownership (TCO). The most flexible execution platform is
by sure a general-purpose CPU that can never provide the throughput and energy
efficiency of a dedicated pricing hardware tailored to one specific product.
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4.3 Problem-Specific Application Level Benchmarks

The large design space as illustrated in Fig. 4.1 shows many degrees of freedom to
construct one specific option pricing solutions. The high number of possible imple-
mentations poses not only the challenge to select beneficial parameter constellations
during the design process, but also shows that completely different solutions may
exist that solve the same problem in the end. For example, a CPU implementation
based on finite difference methods may be able to evaluate European double barrier
options in the Heston model, but the same task could be performed by a dedicated
MC engine implemented in an FPGA.

Evaluating and comparing technical systems has been (and still is) a hot topic for
many years, in particular in the HPC domain [1, 3, 26]. In general, benchmarking
can be defined as a methodology to reveal the performance of a system (or process,
for example in business) using various metrics. The metrics strongly depend on the
goal and the application of the benchmark. In the HPC domain, mainly Floating-
Point Operations per Second (FLOPS) or derived scores are used, focussing on the
computational power of a system.

In 2009, van der Steen has identified three main reasons for benchmark-
ing [26]:

• Benchmarking for selling systems,
• Benchmarking for buying systems, and
• Benchmarking for knowledge (for example to understand architectural influences

on specific applications).

Those areas not necessarily exclude each other. Depending on the purpose for
benchmarking, several characteristics are more important than others. For example,
benchmarks can focus on evaluating

• The pure computational power of a system,
• The overall performance for computing one particular application, or
• The costs (in USD or Joule) for solving one or more problems on this machine.

Standard HPC benchmarks like Linpack, STREAM, or matrix transposes are
used to evaluate the computational performance of supercomputers, and aim at
scoring a system for general purpose use mainly. They are mainly constructed
synthetically and try to stress various parts of the systems as much as possible.
A commonly employed bundle in this field is the HPC Challenge benchmark
that incorporates seven standard benchmarks for HPC [25]. Those benchmarks
are mainly used to evaluate systems for selling and categorization purposes with
standard metrics like FLOPS or scores.

Application-level benchmarks seem to be more interesting for acquisitive buyers
of a system since they show the actual performance for one dedicated purpose. Their
importance has already been highlighted by Berry et al. in 1989 [3]. In general, those
benchmarks use different metrics, for example “How many problems can be solved
within one time unit?” or “How does the throughput scale with increasing problem



4 Automated Benchmarking and Evaluation 81

dimensions?”. Armstrong et al. have reinforced the importance of application-level
benchmarks by stating that “realistic benchmarks cannot be abstracted from real
applications” in 2006 [1].

However, in their work Berry et al. also comment on possible pitfalls one
might experience by applying application-level benchmarking. One important point
that should be noted is that the results of application-level benchmarks are much
less generic and applicable to other applications compared to computation-centric
benchmarks [3]. This even holds for only slight modifications of the applications
that might result in a different problem structure, for example with completely dif-
ferent memory accesses and communication requirements. Furthermore, Armstrong
et al. claim that today’s application may not necessarily be tomorrow’s application,
pointing at the sustainability of purchasing or developing an application-tailored
system [1].

Application-level benchmarks are established in many fields, for example with
standard reference streams for Moving Picture Experts Group (MPEG) decoding,
the famous Lenna picture for image processing, or the standardized block- or bit-
error curves in communication technology. For the latter domain, Kienle et al.
have illustrated the complexity of comparing various implementations of channel
decoders on application level in 2011 [17]. All in all, we are convinced that
application-level benchmarks are the only way to fairly compare implementations
(solutions of a particular problem) over architectural and algorithmic borders.

4.4 Benchmarks for Option Pricing Systems

When looking at the available literature describing option pricing implementations,
we see that there are high variations with respect to:

• The covered product range,
• Employed market models and algorithms,
• Underlying execution platforms, and
• Metrics used for evaluation and comparison with other works.

A very common way of characterizing a novel implementation is to compare its
speedup to a reference software model. We think that this is a feasible approach, but
only if all details of there reference implementation (the source code, all compiler
specifications and settings, and the execution platform) are carefully specified
as well. In general, at least some of those pieces of information are missing in
literature, and therefore do not allow to fairly evaluate the proposed solutions.

In this section we present an application-level benchmark set for European
(double) barrier option pricing in the Heston model and show how it is used to
fairly compare different solutions of the covered problem-model double. We have
introduced this benchmark in 2011 [7, 19], it is freely available for download.2

2http://www.uni-kl.de/benchmarking

http://www.uni-kl.de/benchmarking
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4.4.1 Related Work

Morris and Aubury have already commented on this fuzzy situation and have
claimed the need for standard benchmarks in option pricing in 2007 [21].

In parallel to our work Jin et al. have come up with an evaluation methodology
for hardware option pricers in 2011 [16]. It is based on speed (derived from the
required number of clock cycles) and accuracy of the solution (measured with
the Root Mean Squared Error (RMSE) compared to a golden reference solver
with a high precision). While their approach is promising for comparing the
performance of solvers based on different algorithms, it can only be used for
hardware implementations and for example not for software or hybrid architectures.
Furthermore, they do not consider energy consumption in any way.

The commercial STAC-A2 benchmark [24] was first presented at the SC12
conference in 2012 [18]. It incorporates a broad range of tasks mandatory for
financial institutes, is architecture-independent, and scalable over large clusters.
The metrics are speed, efficiency (power and space consumption), quality, and
programming difficulty. However, access to the STAC-A2 benchmark is not for free
right now.

Implementations of the STAC-A2 benchmark on Intel Xeon E5 and Xeon Phi
and their performance have been presented at the WHCPF 2013 by Nikolaev et al.
[22] and on WHCPF 2014 by Fiksman and Salahuddin [12].

4.4.2 The Benchmark Settings

Our proposed benchmark set consists of three main components:

• The parameter sets defining the current market situation like the current volatility
or the correlation between price and volatility,

• The option parameters such as the type of option and the strike price, and
• The correct reference price or a good approximation thereof, together with a

reference precision.

The metrics we suggest for comparing different implementations are:

• The consumed energy for pricing one option in Joule/option,
• The number of priced options per real time options/second,
• The numerical accuracy that is achieved by the proposed design compared to the

presented benchmark results (e.g. the RMSE of the difference), and
• The consumed area on chip for hardware architectures (slices, LUTs or mm2 on

silicon).

Our proposed benchmark is based on the Heston equations as introduced e.g. in
Chap. 3 by Delivorias. The starting conditions are S(0)= S0 and ν(0) = ν0. For ease
of computation we always set S0 = 100 without loss of generality.
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Table 4.1 The market
parameter settings for the
proposed benchmark

κ θ σ r ν0 ρ T

I 2.75 0.035 0.425 0 0.0384 −0.4644 1

II 2 0.09 1 0.05 0.09 −0.3 5

III 0.5 0.04 1 0 0.04 0 1

IV 1 0.09 1 0 0.09 −0.3 5

V 0.5 0.04 1 0.08 0.04 −0.9 10

VI 2.75 0.35 0.425 0 0.384 −0.4644 1

Table 4.2 The 12 options used in the proposed benchmark

Option Parameter set
number from Table 4.1 Detailed description

1 II ATM European call

2 II ATM single barrier call with barrier 120

3 IV ATM single barrier call with barrier 120

4 III ATM double barrier call with barrier 90 and 110

5 I ITM double barrier call with barrier 80 and 120, strike 90

6 IV ATM double barrier call with barrier 66 and 150

7 V ITM double barrier call with barrier 66 and 150, strike 90

8 VI ATM double barrier call with barrier 66 and 150

9 I ATM double barrier put with barrier 80 and 120

10 VI OTM double barrier call with barrier 66 and 150 and strike 120

11 I ATM single barrier kick-in call option with barrier 120

12 IV ATM double barrier digital call with barrier 66 and 150

Table 4.1 shows the six market parameter selections we have chosen for the
benchmark (one exception is T that belongs to the option itself). They are taken
from literature and describe both standard and corner settings relevant for real
business [7, 19]. Derived from the settings in Table 4.1, we have constructed a set
of 12 options that makes up our proposed benchmark. It focuses on At the Money
(ATM) options since they are most interesting for precise pricing [14, 19], but also
includes some In the Money (ITM) and Out of the Money (OTM) constellations.
The selected options and their respective payoff functions are given in Table 4.2.

Another important purpose of the benchmark is to validate the functional
correctness of an implementation and to check if it computes the right results
in the end. Therefore it is important to state that the benchmark contains an
executable GNU’s Not Unix (GNU) Octave implementation of a standard MC solver
that can be run to re-generate the reference results. We have used this model to
generate the reference prices that come with the benchmark with their specified
reference accuracy (in this case the estimated RMSE). They are given in Table 4.3.
Some of the results have also been evaluated with the finite difference method or the
(semi-)closed formula for European vanilla options in the Heston model.

We have employed the proposed benchmark to evaluate the performance of
different algorithmic tunings in a Multilevel Monte Carlo (MLMC) simulations
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Table 4.3 The computed reference results for the benchmark

Number 1 2 3 4

Price 34.9998 0.10280 0.31606 0.74870

Obtained by Closed form MC MC Closed form

Precision 0.0001 0.0001 0.0003 0.00001

Number 5 6 7 8

Price 5.7576 3.0421 0.017117 0.82286

Obtained by Finite difference MC MC Finite difference

Precision 0.001 0.005 0.0002 0.001

Number 9 10 11 12

Price 1.5294 0.17167 4.9783 0.16805

Obtained by MC MC MC MC

Precision 0.0005 0.0005 0.0005 0.0001

[20]. Furthermore, have used the benchmark to validate and characterize our FPGA
architectures for European barrier option pricing in the Heston model [6, 9].
Inggs et al. have used our benchmark to evaluate their heterogeneous computing
framework for computational finance in 2013 [15].

In the next section we introduce a framework for automated evaluation of various
implementation with application-level benchmarks.

4.5 A Framework for Automatic Benchmark Execution
on Heterogeneous Platforms

In the previous sections we have highlighted how difficult it is to find an optimal
solution for a particular problem. To decide which solution is better under given
conditions, is necessary to compare the candidates in a standardized way. As we
said, a widely spread approach for evaluating implementations are application-level
benchmark batteries, i.e. a representative task set that ideally should cover all the
main and corner cases in a good real-world balance.

Nevertheless, any modification in either the algorithm or the implementation
leads to a new solution that requires to be benchmarked again with the complete
battery. This can be a very time consuming process. It is obvious that for a large
number of solutions an automated benchmark execution and evaluation system
is desirable. Especially if a set of solution candidates shall be compared for a
specific task battery, we would like to automatically dispatch those tasks to the
implementations, collecting the results to further visualize them in an intuitive way.
Ideally should be available an integrated benchmark tool that interconnects and
support all those different solutions in order to compare the performance results
automatically.

However, besides the hard numbers that can be measured (e.g. runtime in seconds
or energy per task in Joule), there are soft characteristics of implementations like
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flexibility, maintainability and extensibility, or portability to other platforms. Those
aspects need a careful special treatment in order to reflect the overall attributes of
the solutions in focus. To analyze the different algorithm implementations, we have
used, as comparative base, the hard facts only.

In this section we present a universal approach for integrating a number of
available solutions for easy benchmarking with centralized evaluation of all results
for further analysis. The main requirements for the design have been: to be as
flexible as possible, allowing to integrate different hardware and algorithms with
less effort as possible, and easy deployment, resulting in low effort when being
integrated into pre-existing infrastructures. Since the soft characteristics are not been
measured on the implemented algorithms, our proposed integration tool focus in the
soft characteristics. In this sense, the implemented algorithms just have to receive
the data to perform the simulations, and the benchmark tool takes care to manipulate
the data to be understandable by the implementation. To achieve our goals, we have
used web services3 as a software architecture and standard protocols to interconnect
and communicate through the infrastructure. In the following section we describe
our software architecture in detail as a blueprint for all readers interested in setting
up such a framework for themselves.

4.5.1 Software Architecture

The decision of the right software architecture plays a big role during the develop-
ment of a system and it is the first step after defining the software requirements,
representing the earliest design decisions. It is the software architecture which
defines how the system elements are going to interact to each other, specifying some
general characteristics as how they are interconnected, how resources are allocated
and which protocols are used, for example. Keeping this high importance in our
minds, we have investigated some options and analysed the benefits, comparing
advantages and disadvantages of each approach [23]. We have used as comparative
parameters the soft characteristics, since the hard numbers are generated by the
algorithms implemented on the working nodes.

During our research, we have checked that web service provides an abstraction
layer which allows to interconnect different devices in an homogeneous way.
Since the algorithms we are interconnecting are developed aiming different kind
of hardware, makes sense to chose this software architecture as base of our
implementation. However, usually web services have a big trade off due to this
abstraction layer. It means that the data must be processed and formatted in a
understandable way for both sender and receiver. Then the ideal solution should
have less processing overhead as possible, even with the abstraction layer that is

3“Web service is a software system designed to support interoperable machine-to-machine
interaction over a network.” [13]
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really important for easy integration. There are different types of web-services, some
of them uses eXtensible Markup Language (XML)-based protocol to exchange
information (as SOAP and WSDL, for example). We decided not use them because
we wanted to use a standard communication protocol, and XML-based protocols
usually are application specific.

Since the elements of a web service by definition communicate to each other over
a network, to encapsulate the information that we want to exchange into the network
protocol seems to be reasonable. With this idea in our minds, we searched for
solutions that use this idea to implement web services. Hypertext Transfer Protocol
(HTTP) is the standard application protocol for general propose networks, as the
World Wide Web (WWW), for example. It means that every node which belongs
to this kind of software architecture is capable to generate and parse HTTP. WWW
has another important advantage from our point of view: it has higher degree of
flexibility, since at any point of time there are new websites been connected and
many other been disconnected to the infrastructure. It is possible due to the stateless
nature of its software architecture, where one node must not depend on the other
nodes to successfully process a request. The result of this characteristic is a loosely
coupled infrastructure. Thus there are many similarities between the WWW model
and what we are expecting from our integrate benchmark tool.

An abstraction for the WWW architecture is the Representional State Transfer
(ReST) architectural style [11]. This architectural style defines several architectural
constrains. It means that to be considered ReST, the system should behave
accordantly to those constrains. There are some optional constraints as well, but
here we are going to focus in the main ones, explaining how can we make use of
them in our software to achieve our goals.

First of all, the software should be client-server. In other words, there is a well-
defined separation of concerns: the user interface concern is detached from the
data storage concerns. This separation improves the portability of the user interface
across multiple platforms, as well as improves scalability4 by simplifying server
components. Both improvements are highly valuable for our needs, since they
increase overall flexibility.

Besides to be client-server, the interaction between components must be stateless.
Stateless in a sense that all the client requests must contain all the information
necessary for the server understand it, without taking advantage of any context
stored on the server, keeping the communication and data control much easier. On
the other hand, the client must keep the session state. This constraint carries along
many improvements, but the most important in our context is that the server can
quickly free resources, since it do not have to store any context, simplifying its
implementation and reducing load processing. It also permits that the infrastructure
adds or removes nodes with less impact since the other nodes do not need to be
aware of environmental changes all the time. The stateless constrain trade-off is that
it may decrease the network performance, by sending repetitive data. Once most

4Scalability is the ability of a system to accommodate an increasing number of elements or objects,
to process growing volumes of work gracefully, and/or to be susceptible to enlargement [4].
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of our server requests are relatively small and are by nature somehow stateless
(perform new simulation, get a simulation result), the advantages of a stateless
approach are still greater than the disadvantages.

A constraint added to reduce the number of redundant data passing through the
network is to allow data to be cacheable. The response of a request must be labelled,
implicitly or explicitly, as cacheable. This gives the right to the client decide
whether it wants to keep this information for reuse it in equivalent requests. As a
consequence, some interactions can be partially or completely removed, improving
the efficiency and the user perceived response time.

In addition to those constraints, there is another requirement: the uniform
interface. All the system components must communicate one to another using a
uniform interface, decoupling the implementation from the provided service. Each
component can evolve without the need to worry about compatibility, since the
interface is uniform and the way to exchange data never changes. The cost for
having such a flexible and independent interfaces is a efficiency degradation, since
the information is transferred in a standardized way and not in a application specific
method. As we stated at the beginning, we were aiming the use of standard protocols
even with this trade-off.

The last but not less important constraint is that the system should be layered. In
a sense that each system layer is agnostic to the overall interactions. The layer can
only see its own direct interactions, but not beyond them. This restrict knowledge
to a single layer promotes extract independence, given the possibility to change
layers without have to worry about how it will impact to the others. A great example
to see the advantages is the idea that the user interface does not know whether it
is direct connected to a unique final server, or to an intermediate server, or to a
cache, etc. The main advantage is to improve scalability, allowing to implement
load balance mechanisms, for example. However, the layers add an overhead and
latency to process the data [5], due to this abstraction, but this can be overcomed by
the use of intermediate shared caches.

In our unified benchmark platform, we have integrated different option pricers
solvers to compare their performance as study case, but it is not restrict to only
this kind of solver, since it has flexibility as main requirement. This was possible
because we have been using ReSTful Application Programming Interfaces (APIs).
Taking in account the ReST main constraints, we can check that it provides a loosely
coupled approach to client-server model. So, all the components of the infrastructure
have none or little knowledge about the definitions of other separated system’s
components. Thus when a component is changed, it provides a lower overall
impact. This proposal aims to maximize the independence and scalability of the
architecture components, and also to minimize latency and network communication.
The communication between all the components is done over the standard network
protocol HTTP to interconnect the available resources. Each resource [2] has its
own identification on the system, called Uniform Resource Identifier (URI), which
allows its use and access. All interactions of a resource are done by URIs and no
other way is allowed, ensuring the uniform access.

Each transaction of our unified benchmark tool contains all data necessary to
complete all needed requests, keeping the communication and data control much
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easier. It also permits that the infrastructure adds or removes nodes with less impact
since the other nodes do not need to be aware of environmental changes all the time.
For a better understanding of how it impacts, it is important to take a look on the
infrastructure and how the elements are related.

4.5.2 Infrastructure

The proposed infrastructure is composed by four distinct elements as illustrated in
Fig. 4.3:

1. Front End: is the part of the system from where the user is able to access the
framework in order to, for example, check results, compare them and execute
simulations;

2. Back End: is responsible for receive data from the front end, process them,
communicate with the database and dispatch the simulations to the working
nodes;

3. Database: all important informations of the framework are stored on the database,
as simulation result, for example;

4. Working Node: is the node (FPGA, CPU, GPU, etc.) which simulates an
implementation of an algorithm with hardware acceleration and generate results
for further analysis.

The elements are interconnected by HTTP and all the information that a node
need to complete a request is encapsulate inside the payload of the protocol’s
header. Using this technique instead of an XML file, for example, we have less
communication overhead, sending only relevant data. In addition, there are less

Fig. 4.3 Proposed Infrastructure



4 Automated Benchmarking and Evaluation 89

processing overhead on the nodes, since it does not have to create and parse a file to
extract the data from its content.

Not only the communication protocol and the way that elements exchange data
is standard, also the operations allowed over each resource are pre-defined. Since
our framework uses HTTP as base to transfer data, the available operations to
interact with an resource are the same as the most frequent used ones available
for this protocol: POST, GET, PUT and DELETE. These methods correspond to
Create, Read, Update and Delete (CRUD) operations, respectively, and it is enough
to perform all the needed system actions.

Whenever the back end receives an request, it parses the header to check which
CRUD operation is being requested. It is necessary to be authenticated to access any
resource, for security reasons. GET operations have pre-defined patterns, avoiding
to expose unnecessary information. Those patterns include regular expressions and
permit to execute simple requests, for example returning a register of a table, as well
as complex request, as returning only certain fields from a join operation of many
tables with some constraints. If it is an UPDATE or PUT request, the back end stores
all the relevant information on the database, so it will be available for all the nodes
belonging to the current infrastructure.

As we previously said, all relevant data is stored on the database. The database
model is flexible, since each job is composed by many simulation associated
to market parameters, option parameters and the user name of the person who
started it. Market and option parameters are independent from platform and they
must be the same if we want to compare different implementations and does not
make sense to compare the results of an FPGA and a cluster with different input
parameters, because it can cause biased results. For this reason, a benchmark set
is the combination between those two parameters. Each simulation has its own
particularity, so it is associate to a job, an algorithm parameter entry, a result and a
working node. The result is empty until the simulation finishes to execute. Working
node is the place where the simulation was performed. Based on the results of
a simulation, we can numerically and graphically compare the implementations,
using energy consumption, runtime, the price and precision as parameter. When all
simulations of a job is finished, an e-mail is sent to the user with the id of the result.
There are background tasks periodically pooling to check if a result is available.

To develop this framework, we have used web2py [10] which has a ReST API
and a simple task scheduler. For a new working node join the infrastructure and start
to perform simulations, it is necessary to register on a group and start a scheduler
worker. A task will be on the ready queue whenever the user start a new job, after all
the simulations have been added to the database. Each task is assigned to a working
group, which can have one or more working nodes. The scheduler defines a working
node to perform a certain task associated with its working group. If a working node
receives a task to perform, we say that the task was assigned and when it starts to
execute, we say that the task is running. The result of a task is stored on the database,
so it is possible to check why does a task failed to run, or either if everything run
according the expected. It means that, at the end of a job execution, we have not
only the results, but also the complete run log of all related tasks for debug purpose.
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Fig. 4.4 Infrastructure with many front ends

4.5.3 Deployment Scenarios and Requirements

In order to deploy the framework, there are no big changes required on an already
defined infrastructure. This is the main advantage of this tool, since it can be
deployed with less effort and less impact on the pre-existing infrastructure. No
specific database is required, since we use Database Abstraction Layer (DAL) to
access the database and it supports most of the current used ones. There exist a
string connection where explicitly says which database is going to be used, but this
is the only place where it really matters. After this connection, all transactions and
operations are performed through the DAL. Despite this, the only requirement are
the ones related to specific benchmark performing and the working nodes.

The simplest deployment scenario is the one presented on Fig. 4.3. What is
important to notice is that, since our front end is a web interface, we represent as
only one front end, but it allows multiple client connections, so many users can use
the system at the same time.

Another possibility from the front end point of view is to develop a different front
end, that can or cannot be web based, which access the back end to perform the
simulation. Since the communication is standardized and the execution is stateless,
there is no need to implement different concurrence control from the ones natively
implemented on database. The operations performed by one front end, does not
directly affect the other one. Both are going to access the back end through URI and
the shared resource in this case will be the database. Figure 4.4 shows how does it
looks like.

The database is really important since it keeps all the relevant data and, as it is
presented until now, is a single point of failure. To avoid data lost, we strongly
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Fig. 4.5 Infrastructure with multiple databases

Fig. 4.6 Infrastructure with multiple working groups

recommend to have a multiple databases (Fig. 4.5), achieving data redundancy.
Also, it permits to implement load balance and distribute the workload among the
available database servers in a master-slave configuration. We have mentioned the
working group which contains one or many working nodes along this chapter. In
our prototype, each group represent a different implementation of a MC algorithm
with hardware acceleration. This means that we can have many different working
groups connected to our dispatcher, centralizing the information, becoming easier
to either start a simulation or to compare their results. The working nodes which
belong to the same group do not have to be physically on the same location, giving
more freedom to the network topology. Figure 4.6 shows how those working groups
are located in the infrastructure.

Due to the high modularity of the benchmark tool, it is possible to add new
elements to improve the perceived performance, for example caches. Caches can be
included between the front end and the back end, storing static data and reducing
the number of requests to the back end. The stateless constraint of ReST is not
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Fig. 4.7 Infrastructure with cache

violated since the requests state is still not responsibility of the receiver (back end in
this case) and all requests contain all the needed information to complete. Adding a
cache (Fig. 4.7) on the system also reduces the load of requests on the server, since
static data could be directly retrieve from the cache.

Combining one or more of the presented scenarios together is also possible,
which leads to a wider range of possibilities, and thereby system can be adapted to
the needs of different deployment sites with a lower effort, since it has been designed
with flexibility as the main goal. In case the number of performed benchmarks
increase, or either different kinds of benchmarks have to be available from a
certain period of time, the loosely coupled infrastructure provides the scalability
capability, allowing infrastructure changes with low or none impact for all the other
components within the system.

4.5.4 Improvements Aggregated for Current State
of Benchmarking

Nowadays in order to compare different implementations and algorithms for market
simulation, application-level benchmark batteries are been used. Integrating those
benchmark batteries and the implementations in a unified platform reduces the time
to compare the obtained results. Thus, our proposed unified approach aims to fill
this gap on the comparative process, making the comparing process easier and
less time demanding. In addition, the way this software has been developed allows
cooperation between different institutes to work together, without be in the same
physical location. Those advantages permit the research to focus on developing
better and more efficient algorithms and implementations.
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4.6 Summary

Application-level benchmarks are the only feasible way to characterize, evaluate,
and compare computing systems used to solve a specific problem independent of
their underlying technology. In particular, FPGA-accelerated systems that can be
reconfigured depending on the currently active task prohibit executable standard
benchmarks written in programming languages for CPUs and GPUs.

Upcoming commercial approaches like the STAC-A2 benchmark show that this
topic becomes more and more important in the finance business at the moment.
In this section we illustrate for the example of European barrier option pricing
how such benchmarks can look like and how they can be designed platform- and
algorithm-independent. One remaining challenge is that soft metrics like flexibility
or the effort to adapt of enhance such systems during their lifetime cannot be
quantified easily in numbers. For those characteristics we could for example apply
batteries of tasks covering a broad range of applications and assign penalty points
for non-supported features.

Finally, executing application-level benchmarks for a large number of solutions
with the goal of comparing their performance is a time-consuming task, especially
if the result accuracy is pre-given and various algorithms and their implementations
are candidates and need to be investigated. For this task we introduce a framework
for automatically evaluation an arbitrary number of implementations, independent
of the underlying technology or internal structure. The framework is based on
standard protocols, can integrate any kind of compute units, and communicate with
any kind of sources or result collection/visualization tools. A core implementation
that implements all the basic features is freely available for download.
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Chapter 5
Is High Level Synthesis Ready for Business?
An Option Pricing Case Study

Gordon Inggs, Shane Fleming, David B. Thomas, and Wayne Luk

Abstract High-Level Synthesis (HLS) tools for Field Programmable Gate Arrays
(FPGAs) have made considerable progress in recent years, and are now ready
for deployment in an industrial setting. This claim is supported by a case study
of the pricing of a benchmark of Black-Scholes (BS) and Heston model-based
options using a Monte Carlo Simulations approach. Using a high-level synthesis
(HLS) tool such as Xilinx’s Vivado HLS, Altera’s OpenCL SDK or Maxeler’s
MaxCompiler, a functionally correct FPGA implementation can be developed from
a high level description based upon the MapReduce programming model in a
short time. This direct source code implementation is however unlikely to meet
performance expectations, and so a series of optimisations can be applied to use the
target FPGA’s resource more efficiently. When a combination of task and pipeline
parallelism as well as C-slowing optimisations are considered for the problem in
this case study, the Vivado HLS implementation is 9.5 times faster than a sequential
CPU implementation, the Altera OpenCL 221 times faster and Maxeler 204 times,
the sort of acceleration expected of custom architectures. Compared to the 31 times
improvement shown by an optimised Multicore CPU implementation, the 60 times
improvement by a GPU and 207 times by a Xeon Phi, these results suggest that
HLS is indeed ready for business.

5.1 Introduction

In the last few years HLS has made great strides, with the consensus being that
FPGA designs can be created from a high level of abstraction. By abstracting onto
commonly used programming languages such as C, custom hardware design and
use by non-FPGA specialists is now a real possibility in industrial settings.
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In this chapter, our aim is to convince financial engineers that HLS is a viable
means to use FPGAs in a production environment. To make our argument, we
provide an introduction to the use of HLS in computational financial applications.
This introduction is illustrated using a case study of an option contract pricing
application using a Monte Carlo Simulations-based algorithm.

In our case study, we describe how the Monte Carlo Simulations option pricing
can be implemented in three leading HLS tools from Altera, Xilinx and Maxeler. To
demonstrate the versatility of HLS, we apply this approach to a benchmark of 13
exotic option pricing tasks that are based upon both the BS and Heston asset price
evolution models.

Furthermore, we describe three common optimisations in a form accepted by
the HLS tools. These optimisations increase the task, data and pipeline parallelism
of the designs created, and so improve the throughput of the resulting designs
considerably.

We characterise the development and resulting performance of our Monte Carlo
Simulations case study using the three HLS tools both qualitative and quantita-
tively. We also compare the performance of the HLS implementations to other
FPGA implementations created by hardware experts using a Hardware Description
Language (HDL) as well as competing acceleration technologies, namely Central
Processing Unit (CPU), Graphics Processor Unit (GPU) and hybrid architectures
such as Intel’s Xeon Phi.

With the evaluation of our case study, as illustrated in Fig. 5.1, we show that HLS
is indeed ready for business, providing FPGA implementations for computational
finance that are comparable to competing technologies both in terms of performance
and development effort. This recommendation is not without caveats however, as
care needs to be taken to ensure that the programming paradigm of HLS tool used
is aligned with the algorithm being implemented.
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Altera OpenCL SDK on Nallatech P385-A7

GCC on 64 Threads of 4 x AMD Opteron 6272 CPUs

AMD OpenCL on AMD Firepro W5000 GPU

Intel OpenCL on Intel Xeon Phi 3120P

GCC on 1 Thread of Intel Core-i7 2600 CPU

Maxeler MaxCompiler on Maxeler Max 3424A

Xilinx Vivado HLS on Xilinx ZC706

Fig. 5.1 Performance of option pricing benchmark implementations
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A limitation of our study is that we have sought to cover the width of the current
state of the art and so the three HLS tools surveyed target three FPGAs with different
architectures and transistor technologies. As a result, the performance reported does
not just reflect the capability of the particular HLS tools, but are also influenced by
the devices used.

Our focus is on FPGA-based accelerators created with HLS as a whole, and not
on comparing between implementations achieved using different HLS tools. Hence,
we have not normalised the results across different FPGA devices; we do however
try to explain differences in results in the relevant sections.

In this chapter, we will:

• Use a case study of forward looking option problems to demonstrate how HLS
tools may be used in a computational finance context.

• Describe task, data and pipeline parallelism optimisations for FPGAs and how
these may be expressed within HLS.

• Evaluate three leading HLS tools both quantitatively and qualitatively. This
evaluation includes a comparison to FPGA expert implementations as well as
competing accelerator technologies.

In the following section, we provide the background to the Monte Carlo
Simulations approach as well as the option types, BS and Heston models that we use
in our case study. The computational implementation of this approach is discussed,
particularly its rendering as a programming pattern, as well as previous work on
FPGAs.

We then describe HLS implementations using our case study as an example. First
we comment on an initial, direct source code entry into HLS tools, and then how
optimisations that extend the task, pipeline and data parallelism of a design can be
introduced.

In the Case Study Setup section, we detail the HLS tools and the experimental
setup utilised in our study. This setup includes the software framework utilised as
well as the platforms, both FPGA and competing accelerator technologies.

We then report and discuss the results of the Case Study Evaluation of the HLS
tools, including a comparison with competing accelerator platforms. Finally, we
present our conclusions on the maturity of the HLS tools surveyed.

5.2 Case Study Background

5.2.1 Option Pricing

For our case study, we have considered forwards looking option contracts. These
are agreements where a holder pays a premium to the contract writer in order to
obtain rights with regards to an underlying asset, such as 100 shares of a stock. This
right either allows the holder to buy or sell the underlying asset at a defined strike
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price (K) at a defined exercise time (T ). The holder has bought the right to exercise
the option contract if they so choose, and is in no way obligated. Hence, in option
pricing, the value of the option (c in the case of a call option, p for put options), is
the difference between the strike price and spot price of the asset at exercises (ST ),
or zero, whichever is higher [5].

5.2.2 Monte Carlo Simulations Option Pricing

5.2.2.1 The Monte Carlo Pricing Algorithm

The popular Monte Carlo Simulations approach for option pricing uses random
numbers to create potential scenarios or paths for the underlying asset based upon a
model of its spot price (S) evolution. The average outcome of these scenarios is then
used to approximate the most probable option value [5], i.e.

c = e−r(T−t)
∫

W
c(W )dP(W )≈ e−r(T−t) 1

N

N

∑
i

ci

Where e−r(T−t) is the time discount factor and P(W ) is the probability space defined
by the underlying asset. Although computational expensive, this approach is robust,
and capable of tolerating asset models with many more variables than competing
methods [5, 11].

5.2.2.2 Computational Implementation

Another advantage of the Monte Carlo Simulations approach is that it is extremely
amenable to parallel execution. It is an “Embarrassingly Parallel” algorithm [1]
that can easily be expressed as the MapReduce programming pattern [3]. Each
underlying asset’s price evolution and its interaction with the derivative product
comprises the map operation, while the reduction is the average of the payoffs. We
have described this algorithm in the MapReduce pattern in C code in Listings 5.1
and 5.2.

void monte_carlo_map(int seed,float *value){
2 state_t state;

for(i=0;i<N;++i){
4 state = path_init(seed+i);

for(j=0;j<D;++j) state = path(state);
6 value[i] = payoff(state);
}

Listing 5.1 Map behaviour of Monte Carlo option pricing as MapReduce
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1 float monte_carlo_reduce(float *value){
float value = 0.0;

3 for(i=0;i<N;++i) result += value[i]/N;
return value;

5 }

Listing 5.2 Reduce behaviour of Monte Carlo option pricing as MapReduce

The map function is the more computationally intensive of the two. The map
function body is comprised of two loops: an outer loop with no dependencies
between iterations, that is bound by the N variable as per Listing 5.1. Each outer
loop iteration contains the simulation initiation, an inner simulation lifetime loop
and the product payoff behaviour at the simulation termination. The inner lifetime
loop, which is bound by D, evolves the underlying price and any accompanying
option product behaviour over the time period specified, and so is data-dependent.

5.2.3 Monte Carlo Simulations upon FPGAs

Imperial College London has published work on the FPGA acceleration of the pric-
ing of Exotic Options using the BS model [12]. The BS model is computationally
complex with its price evolution given by [5]

Ŝt = S0eγt

γt =
t

∑
i=1

[(μ − σ2

2
)h+σX1

i

√
h]

We have captured the BS model in code in Listing 5.3. The Imperial College work
has shown that through the use of FPGAs, both the latency and energy utilisation of
option pricing computations can be minimised.

1 void path(state_t *state){
float con = (RFIR-pow(SIGMA,2)/2)*H;

3 float x = gaussian_rng()
float vol = SIGMA*x*sqrt(H);

5

state->gamma += con + vol;
7 state->time += H;
}

Listing 5.3 BS model path description
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Table 5.1 Overview of option pricing problems

Option type Path Payoff

European None cE = max(K − ŜT ,0)

Barrier Check barrier If knock-in and barrier crossed, or
knock-out and not crossed,
cB = cE , else cB = 0

Double barrier Check both upper and
lower barrier

Same as barrier

Double digital barrier Same as double barrier If cB > 0.0, cDDB = 1.0, else
cDDB = 0

Asian Ŝsum,t = Ŝsum,t−1+ Ŝt cA = max(K − Ŝsum,T
D ,0)

The University of Kaiserslautern has published a benchmark of forward looking
option pricing problems1 based upon the Heston model [4] for use in evaluating the
performance of accelerators of option pricing problem. Along with the benchmark,
they have published work on the FPGA acceleration of these problems, also
demonstrating latency and energy optimisations [9].

The Heston model used in the Kaiserslautern work is even more computational
complex than the BS model, as the volatility, ν , varies stochastically as well as the
asset price. Hence,

ν̂k =
k

∑
i=1

[κ(θ −σk)h+
√

σX2
i ]

Where X2
i correlates with the asset’s X1

i with factor ρ .
A summary of the option product behaviours which interact with the underlying

simulations covered in both papers is provided in Table 5.1. Both of these bodies of
work refer to HDL implementations, where the computational advantages of FPGAs
are only realised through the specialist experience and knowledge of the researchers
undertaking these implementations.

5.3 HLS Implementation Approach

5.3.1 Initial HLS Implementation

A reasonable first HLS implementation would be to identify the computationally
intensive component of an application and then implement it in the FPGA using
the HLS tool. For the Monte Carlo Simulations approach this would be the map

1http://www.uni-kl.de/en/benchmarking/option-pricing/

http://www.uni-kl.de/en/benchmarking/option-pricing/
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function as described in Listing 5.1, with the reduce behaviour in Listing 5.2 being
performed upon a CPU that interfaces with the map function implemented upon the
FPGA.

5.3.2 Optimisating the HLS Implementation

While the implementation outlined above for Monte Carlo Simulations approach
would achieve functionally correct designs, its unlikely that much of the FPGA
resources would be utilised, or that those resources utilised would be put to the
most effective use. This is not dissimilar to how a software compiler that would not
automatically achieve a highly optimal, parallel implementation.

Below we outline three optimisations that we illustrate using the Monte Carlo
Simulations example that allow for the target FPGA’s resources to be utilised more
efficiently.

5.3.2.1 Task Parallelism

void monte_carlo_map_tp(int seed,float *value){
2 for(p=0;p<P;++p){

for(i=0;i<N;i+=P){
4 state_t state = path_init(seed+i+p);

for(j=0;j<D;++j) state = path(state);
6 value[i+p] = payoff(state);

}
8 }
}

Listing 5.4 Making the potential task parallelism explicit

The first optimisation we describe, Task Parallelism, will be familiar to most
programmers, thanks to the popularity of software libraries such as OpenMP,
Pthreads and Threaded Building Blocks.

In a similar manner to how additional, identical software worker threads may
be spawned, multiple instances of the design can be implemented alongside one
another in the FPGA fabric, with additional control and communication logic. We
have illustrated task parallelism for our case in Listing 5.4 by introducing a third
parallel loop bound by P.
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5.3.2.2 Pipeline Parallelism

1 void monte_carlo_map_pp(int seed,float *value){
for(i=0;i<N;++i){

3 state_t state = path_init(seed+i), state2;
for(j=0;j<D;j+=2){

5 state2 = path(state);
state = path(state2);

7 }
value[i] = payoff(state);

9 }
}

Listing 5.5 Doubling the potential pipeline parallelism

Computationally intensive FPGA designs, such as our use case, take the form
of pipelines of operations that are performed by discrete units of logic. As these
discrete logic units can operate simultaneously, by filling the target design’s pipeline
each cycle, a high calculation throughput can be achieved.

Our second optimisation is to ‘unroll’ the data dependent inner loop of our code
so as to extend the length of the operation pipeline, and further exploit pipeline
parallelism as demonstrated in Listing 5.5.

5.3.2.3 C-slowing

void monte_carlo_map_cs(int seed,float *value){
2 state_t state[C];

for(k=0;k<N;k+=C){
4 for(i=0;i<C;++i)state[i]=path_init(seed+k+i);

for(j=0;j<D;++j)
6 for(i=0;i<C;++i)state[i]=path(state[i]);

for(i=0;i<C;++i)value[k+i]=payoff(state[i]);
8 }
}

Listing 5.6 C-slow transformation

The final optimisation that we consider, C-slowing, is reconfigurable computing-
centric. This technique uses memory resources to ‘hide’ the latency of operations
in the design pipeline. Ordinarily a pipeline is constrained by the slowest operation,
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however by inserting a memory array between each operational unit, each opera-
tional unit can operate on all of the values in the array before requiring outputs from
the previous unit in the pipeline.

In our Monte Carlo Simulations case this is achieved by adding a new outer
loop which chunks the set of simulations by factor C, which is the degree of
C-slowing. The simulation initiation, lifetime and payoffs behaviour are then all
performed within independent loops bound by C. An appropriate memory structure
must also be added to maintain the loop state. We have illustrated this optimisation
in Listing 5.6.

5.4 Case Study Setup

5.4.1 Tasks

For our case study, we consider both the BS model-based Asian Option from the
Imperial College work as well as the 12 Heston model-based Barrier options from
the Kaiserslautern benchmark, as discussed in Sect. 5.2.

By implementing all of these heterogeneous problems, we demonstrate the
versatility and flexibility enabled by HLS tools.

5.4.2 HLS Tools Surveyed

For our case study, we utilised the three tools detailed below. Two are from well-
known FPGA vendors, Xilinx and Altera while the third is from Maxeler, which
targets FPGA devices from both of vendors.

Xilinx’s Vivado HLS – Designs are inputted using a subset of the C pro-
graming language, with user-added “directives” that can influence how the design
is implemented within the FPGA architecture. Vivado HLS prioritises functional
equivalence with the inputted source code, and relies upon the hardware developer
to transform their code in order to enhance the efficiency of their designs. The large
number of diverse directives allow for this to be done effectively [13].

Altera OpenCL SDK – The SDK is the first offering from a FPGA manufacturer
to support the OpenCL standard [10] which is supported by many CPU and
GPU manufacturers. Similar to Vivado HLS a reasonably large subset of C is
supported. In addition to source code pragmas, there are compiler options which
influence how the design is mapped into hardware. The SDK is only supported by
a set of compatible boards from preferred Altera partners such as Nallatech. The
programming paradigm of the Altera OpenCL SDK is to map the task parallelism
made explicit in the OpenCL model into pipeline parallelism within the FPGA.

Maxeler’s Tools – this is a third party vendor that makes use of both Xilinx and
Altera’s FPGAs to provide both the hardware platform and the accompanying soft-
ware tools for high performance, reconfigurable computing. Designs or “dataflow
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engines” are described using a purpose-built Java library in a dataflow paradigm,
allowing for both behavioural and architectural features to be described by the
developer. Similar to the Altera OpenCL SDK, the dataflow paradigm ensures that
the designer makes the degree to which pipeline parallelism can be exploited in the
design as explicit as possible.

5.4.3 Supporting Software Framework

For our case study we extended the Forward Financial Framework(F3), an open
source, Domain Specific application framework for computational finance that
targets heterogeneous computing platforms [6, 7].

We performed our evaluation within an exiting framework as we believe this
reflects a similar development process to what would be undertaken in an industrial
setting. Once suitably extended, F3 provides the ability to generate, compile and
execute computational finance problems from a single description upon a variety of
platforms including CPUs, GPUs and FPGAs.

5.4.4 Competing Accelerator Technologies

In our case study we have compared the optimised HLS implementations of Monte
Carlo Simulations option pricing problems against other classes of computing
platforms popular in financial engineering including CPUs, GPUs and hybrid
accelerators.

The Monte Carlo Simulations pricing algorithm is well suited to parallel
architectures, with our expectation being that the latency of each platform (Lp)
relative to the sequential processor (Ls) would be given by the degree of floating
point computational parallelism of each platform (Pp) and ratio of the clock rate
( Cs

Cp
), as per Amdahl’s Law i.e.

Lp ≈
LsCs

PpCp

5.4.5 Metrics

5.4.5.1 Development Metrics

We consider four development metrics in our case study. We captured the average
code length for the computational kernel for each HLS implementation, the
development time that we spent on the applications in question, the time spent
integrating the implementations into F3 and finally the compile time range that we
observed for that particular HLS tool.
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5.4.5.2 Performance Metrics

Latency, the primary performance metric used in our case study, is measured using
the wall time from when the requisite execution on the host system is first executed
until it returns the price result to the user. Thus, the latency metric captures all of
the communication time between the host and the FPGA, the overhead incurred in
initialising the computation, as well as the computation itself.

5.4.6 Experimental Platforms

5.4.6.1 Host Systems

We utilised three comparable reconfigurable computing platforms to evaluate the
HLS implementations as detailed in Table 5.2. The Nallatech P387-A7 and Maxeler
Max3425A are standalone Peripheral Component Interconnect Express (PCIe)
cards hosted within commodity computing platforms. In the case of the Maxeler
tools, the host system is a modified desktop grade system, with a Intel Core-i7 CPU
running CentOS Linux. The Nallatech board was hosted in a server grade system
with an Intel Xeon CPU also running CentOS Linux. The Xilinx ZC706 Zynq
development board is more self-contained with both the host CPU and FPGA fabric
contained within a single integrated circuit with an Advanced eXtensible Interface
(AXI) bus between the two. The host CPU is an ARM dualcore CPU, which is
running Ubuntu Linux.

5.4.6.2 Experimental FPGAs

The resources of the FPGAs used are detailed in Table 5.3. The Stratix V has the
most logic resources, however the least dedicated Digital Signal Processor (DSP)
units; the Xilinx Virtex 6 FPGA targeted by the Maxeler tools has the most DSP

Table 5.2 Experimental platforms

Vendor Name FPGA
Communication
Technology HLS tool

Xilinx ZC706 1.1 Xilinx Zynq 7Z045 AXI Xilinx Vivado
HLS 2013.4

Nallatech P385-A7 Altera Stratix V GXA7 PCIe Altera
OpenCL
SDK 13.0

Maxeler Max 3424A Xilinx Virtex 6 XC6VSX475T PCIe Maxeler
MaxCompiler
13.2.2
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Table 5.3 Comparison of experimental FPGA resources

FPGA
CMOS
size (nm)

Targeted
clockrate
(MHz)

Lookup
Table
(LUT)s
(k)

Flip-
Flop
(FF)s
(k)

Block
RAM
(BRAM)s

Digital
Signal
Processor
(DSP)s

Xilinx Zynq
7Z045

28 100 218.6 437.2 545 900

Altera Stratix
V GXA7

28 250 622 939 2,304 768

Xilinx Virtex 6
XC6VSX475T

40 200 297.6 595.2 1,064 2,016

Table 5.4 Comparison of reference platforms

CMOS
Platforms size (nm) Clockrate (GHz) Memory (GBs) Threads Tool

Intel Core
i7-2600S

32 2.8 16 1 GCC 4.8

AMD
Opteron
6272

32 2.1 128 32 GCC 4.8

AMD
Firepro
W5000

28 0.825 2 768 AMD OpenCL
SDK 2.9

Intel Xeon
Phi 3120P

22 1.1 6 256 Intel OpenCL
SDK 2014

units, however is a larger process technology; the Zynq platform has the least
resources of the three however is the most integrated, with the reconfigurable logic
and host CPU sharing the same silicon. When measuring resource utilisation, we
used a percentage of the most constrained resource: DSP units in the case of ZC706
and P385-A7 platforms and Lookup Table (LUT)s in the case of the Max 3424A.

5.4.6.3 Competing Accelerator Technology Platforms

The competing accelerator technology platforms are detailed in Table 5.4. The
CPU comparisons include highly optimised sequential and multicore C code
implementations compiled with GNU’s Not Unix (GNU)’s Cross Compiler targeted
at an Intel Core-i7 and at AMD Opteron CPU respectively. For the GPU and Xeon
Phi implementations the same OpenCL code for the Altera OpenCL SDK was used,
however the code was optimised to the platforms, an AMD Firepro W5000 GPU and
an Intel Xeon Phi 3120P Co-processor. Finally, we also compared our HLS efforts
against the HDL implementations reported in the studies described in Sect. 5.2.3.
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5.4.7 Case Study HLS Implementations

5.4.7.1 Initial Implementations

Across all implementations we used the Combined-Tausworthe random number
generator with the Box-Muller transformation to produce the Gaussian random
numbers required [2, 8]. We seeded the random number generator for each path
using random numbers generated on the host CPU. As suggested in the previous
section, the reduction operation to calculate the average option value was also done
upon the host CPU, and was performed in parallel with the map operation upon the
FPGA.

In all cases arithmetic was done using single precision floating point operations,
which is common practise in this application domain. All results were verified by
ensuring that there was significant overlap between the price distributions across the
platforms surveyed.

5.4.7.2 HLS Optimisations

All three HLS tools allow for task parallelism to be expressed explicitly by the
programmer. Source code pragmas were used in the Altera OpenCL SDK and
an architectural loop description in the Maxeler tools. In Vivado HLS, multiple
function instantiations in the source code were required to achieve task parallelism.

Pipeline parallelism was introduced using source code pragmas in the Altera
OpenCL SDK and a combination of directives and source code transformation in
Vivado HLS. There is no provided technique in the Maxeler tools, so the source
code generation capabilities of F3 were utilised to create longer operation pipelines.

In the Maxeler tools C-Slowing is implemented using the dataflow stream
addressing functionality while inverting the loops, while in the Vivado HLS and
Altera OpenCL SDK this was implemented by also inverting the loops while
explicitly creating the memory resource for storing the loop state in the source code.

5.4.7.3 Competing Accelerators Implementations’ Optimisation

For both the sequential and multithreaded CPU C code implementations we used
algorithmic optimisations, such as exiting simulations early if a barrier event occurs,
as well as compiler optimisations, such as relaxed mathematical operations.

For the GPU and hybrid accelerator implementations the main optimisation was
the agglomeration of multiple simulation paths within a single OpenCL work item
so as to reduce the communication overhead. Furthermore we used platform-specific
mathematical functions.
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5.5 Case Study Evaluation

5.5.1 Development

Table 5.5 provides the developmental results for the three HLS tools considered in
our Monte Carlo Simulations case study.

Generally, the development metrics reported support the claim that the HLS
tools are ready for industrial deployment, with a relatively short design time. We
recognise the relatively long compile times will be of concern to developers new
to FPGAs, and hence highlight the need for the use of effective debugging tools
throughout the design process.

A notable exception is however the Xilinx Vivado HLS implementation. We
found Vivado provides the most faithful transformation of the naive source code
into resource efficient hardware implementations – the Vivado HLS code was the
closest to Listing 5.1. However, we often found this fidelity of transformation results
in under-use of the resources available, and as a result, poor throughput. It is left up
to the hardware developer to identify and exploit optimisations through the use of
source code transformation and directives.

5.5.2 Performance

Figure 5.2a,b provide the performance results for the case study’s Maxeler Max-
Compiler results according to the optimisations implemented. Figure 5.3a, b provide
the performance results for the Altera OpenCL SDK as implemented upon the
Nallatech P385-A7 board. Finally, Fig. 5.4a, b provide the same for the Xilinx
Vivado HLS implementations upon the ZC706.

For the Monte Carlo Simulations case study, we found a combination of task
parallelism and C-slowing provided the best performance for the Maxeler and
Xilinx HLS tools and platforms, while loop unrolling and C-slowing provided the

Table 5.5 Development metrics of Monte Carlo Simulations case study

HLS tool

Code
length
(LoC)

Development
time (weeks)

Integration
time (weeks)

Compile time
range (h)

Xilinx Vivado
HLS

63 ≈ 12 ≈ 1 [2;6]

Altera
OpenCL SDK

72 ≈ 1 ≈ 0.5 [2;8]

Maxeler
MaxCompiler

130 ≈ 4 ≈ 2 [2;48]
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Fig. 5.2 Maxeler MaxCompiler results. (a) Latency of MaxCompiler implementations.
(b) Resource utilisation of MaxCompiler implementations

best performance for the Altera tool and platform. The increased task or pipeline
parallelism allows for FPGA resources to be traded for better throughput, while
C-slowing improves the efficiency of the resources that are utilised.

In the Maxeler case, as the Virtex 6 FPGA we used is significantly older than the
other platforms utilised, hence the logic resources proved to be the limiting factor.

We found that the Xilinx tool and platform performed poorly, which we attribute
to a mismatch between the algorithm and the direct translation programming
paradigm of Vivado HLS. A further contributing factor to this platform’s relative
under-performance was the inability to implement a design with a clock rate higher
than 100 MHz. This was due to the nature of the AXI communications infrastructure
we were utilising.

5.5.3 Comparing HLS to Competing Accelerators

The absolute latency performance results reported in Table 5.6 suggest that the HLS
implementations generally provide superior or competitive performance results to
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Fig. 5.3 Altera OpenCL results. (a) Latency of Altera OpenCL SDK implementations.
(b) Resource utilisation of Altera OpenCL SDK implementations

other platforms. The relative latency results in Table 5.7 provide further insight into
how the HLS tools compare to other implementations as part of the same software
framework.

We found the acceleration relationship of the multicore CPU to the sequential
is close to what is predicted by the equation we developed in Sect. 5.4.4 as it uses
the identical implementation albeit multithreaded. The GPU implementation under-
performs by a factor of approximately 3, while the Xeon Phi performs better by
approximately 2 times, suggesting the extra distributed control structures in the
latter are a key architectural feature in performance.

The HLS implementations of Altera, Maxeler and even Xilinx similarly show
acceleration beyond that which is explained by the clock rate and degree of
task parallelism. We attribute this performance to both the customisation of the
architecture to the problem under consideration, as well as the exploitation of
fine-grained parallelism within the algorithm which is being captured by the tools
utilised.
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Fig. 5.4 Xilinx Vivado HLS
results. (a) Latency of Xilinx
Vivado HLS
implementations. (b)
Resource utilisation of Xilinx
Vivado HLS implementations
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Table 5.6 Absolute latency performance of HLS implementations, competing accelerator
technologies and references (S)

Target
platform

Heston
European

Heston
barrier

Heston
double
barrier

Heston
double
digital
barrier

Black-
Scholes
Asian

Max
3424A 38.41 38.62 38.37 38.36 19.21

HLS P385-A7 32.49 29.70 32.67 30.50 29.50

ZC706 753.53 958.94 959.23 959.70 588.33

Competing
accelerator
technologies

Sequential
CPU 11,560.68 6,763.17 5,957.36 6,111.69 5,308.41

Multicore
CPU 316.81 203.56 176.16 185.73 234.26

GPU 123.54 129.99 131.23 131.19 67.09

Xeon Phi 18.08 47.94 57.09 58.55 13.63

Expert
FPGA
Reference Variousa 287.00 287.00 287.00 287.00 31.68

aPlease see [9, 12]
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Table 5.7 Relative latency of experimental implementations

Sequential
CPU

Max
3424A

P385-
A7 ZC706

Multicore
CPU GPU

Xeon
Phi

Sequential
CPU

– 0.005 0.005 0.121 0.032 0.017 0.005

Max
3424A

204.81 – 0.925 24.775 6.521 3.382 0.988

P385-A7 221.46 1.081 – 26.789 7.051 3.657 1.068

ZC706 8.27 0.040 0.037 – 0.263 0.137 0.040

Multicore
CPU

31.41 0.153 0.142 3.799 – 0.519 0.152

GPU 60.561 0.296 0.273 7.326 1.928 – 0.292

Xeon Phi 207.292 1.012 0.936 25.075 6.600 3.423 –

5.6 Conclusion

In this chapter we have introduced the use of HLS tools for FPGAs in a financial
engineering industrial setting. Our argument for doing so rested upon a case study
of a benchmark of option pricing problems using the Monte Carlo Simulations
approach upon a variety of HLS tools and competing accelerator technologies.

Unsurprisingly we found that naively entering source code into the surveyed
tools generally results in inefficient designs. However, through a combination of
the exploitation of task and pipeline parallelism, as well as the use of C-slowing,
we could make better use of the FPGA’s available resources. We also found
that the resulting optimised HLS implementations could compete with alternative
accelerator technologies.

A further insight is that the interaction between the programming paradigm of
the HLS tool and the algorithm being implemented disproportionally impacts the
development effort required to realise optimal performance. We found the tools
offered by Maxeler and Altera are well-suited to accelerating parallel-friendly
algorithms such as the Monte Carlo Simulations pricing algorithm. Xilinx’s offering
is however currently better suited to small, functional unit prototyping.
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Chapter 6
High-Bandwidth Low-Latency Interfacing
with FPGA Accelerators Using PCI Express

Mohammadsadegh Sadri, Christian De Schryver, and Norbert Wehn

Abstract The need for high performance computing dictates constraints on the
acceptable bandwidth of data transfer between processing units and the memory.
Consequently it is crucial to build high performance, scalable, and energy efficient
architectures capable of completing data transfer requests at satisfactory rates.
Thanks to increased transfer rates obtained by exploiting high-speed serial data
transfer links instead of traditional parallel ones, PCI Express provides a promising
solution to the problem of connectivity for todays complex heterogeneous architec-
tures. In this chapter, we first cover the principals of interfacing using PCI Express.
To illustrate a practical situation, we select the Xilinx Zynq device and develop
an example architecture which allows the x86 CPU cores of the host system, the
ARM cores of the Zynq device, and the hardware accelerators directly realized on
the FPGA fabric of the Zynq to share the available DRAM memory for efficient
data sharing. We provide estimates on possible data transfer bandwidths in our
architecture.

6.1 Introduction

As the energy efficiency requirements (e.g. GOPS/W) of silicon chips are growing
exponentially, computer architects are seeking solutions to continue application
performance scaling. One emerging solution is to use specialized functional units
(accelerators) at different levels of a heterogeneous architecture. These specialized
units cannot be used as general-purpose compute engines. However, they provide
enhanced execution speed and power efficiency for their specific computational
workloads [3]. There exist numerous applications for accelerators in both of the
embedded and high performance computing markets. However, to make them
accessible, a fast and flexible interconnect mechanism to the host system is crucial.

Efficient sharing of data in a heterogeneous architecture which contains different
types of integrated elements is a challenging task. A versatile method should

M. Sadri (�) • C. De Schryver • N. Wehn
Microelectronic Systems Design Research Group, University of Kaiserslautern,
Kaiserslautern, Germany
e-mail: sadri@eit.uni-kl.de; schryver@eit.uni-kl.de; wehn@eit.uni-kl.de

© Springer International Publishing Switzerland 2015
C. De Schryver (ed.), FPGA Based Accelerators for Financial Applications,
DOI 10.1007/978-3-319-15407-7_6

117

mailto:sadri@eit.uni-kl.de
mailto:schryver@eit.uni-kl.de
mailto:wehn@eit.uni-kl.de


118 M. Sadri et al.

be devised to act as the interconnect between different components in such a
system. The method should provide enough data transfer bandwidth meeting the
requirements for high performance Central Processing Unit (CPU) cores and
hardware accelerators. It should be scalable, allowing addition of new components
to the system easily and without degrading overall performance. Furthermore, it is
required to guarantee certain levels of robustness and reliability in data transfers.
When private caches of CPU cores and dedicated memory of accelerators are used
to store local copies of data, it is crucial to ensure that every processing element has
a consistent view of the shared memory space. Consequently, the communication
method should provide suitable means of ensuring data consistency among different
components of the system.

When the components residing in a single chip should communicate with
each other, considering the short distances between them and vast on-die routing
resources, wide parallel data buses clocked at high frequencies can be used.
Examples of such communication schema are Intellectual Property (IP) cores inter-
facing based on the Advanced eXtensible Interface (AXI) specification developed
by ARM.

For inter-chip communications in which the signals should travel long distances,
wide parallel data buses are not a suitable choice since the clock frequency of data
transfer will be confined to few hundred MHz to ensure correct capturing of all data
bits at the receiver side. When transferring data bits over a single link in a continuous
serial stream however, the aforementioned problem does no more exist and the clock
frequency of data transmission can be increased to multiple GHz. In this case it is
crucial to ensure that the receiver can recover each single bit of transmitted data at
a suitable time thus it is required to embed the information related to clock signal
into the data stream itself. This is usually the source of an additional overhead in
transmission of data e.g. in front of each 8 data bits which should be transmitted,
practically 10 bits will be sent to ensure correct recovery of data at the receiver.
In spite of this, the increase in bandwidth by serial methods is still far beyond
parallel methods. Peripheral Component Interconnect Express (PCIe) or shortly PCI
Express is currently the leading choice for connecting different hardware units in
computational platforms.

6.1.1 History: From ISA to PCI Express

From the early days of appearance of IBM PC computers, different standards were
introduced to allow extension cards and peripherals to be added to a computing
platform and to communicate to its main CPU through an I/O bus. Examples of such
buses include Industry Standard Architecture (ISA), Extended Industry Standard
Architecture (EISA), and Micro-Channel. These interfaces had at most a data bus
width of 32 bits and were running at frequencies below 10 MHz.

With the appearance of Peripheral Component Interconnect (PCI) the clock
frequency of data transfers increased to 33 MHz and above. For applications with
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higher demand on bandwidth, 64 bits wide versions of PCI were also introduced.
The PCI based graphics card soon replaced the old ISA cards. However, in a short
duration the bandwidth provided by these cards was also not enough for high
definition 3D graphics, as a result a superset of conventional PCI called Accelerated
Graphics Port (AGP) replaced PCI graphics cards. A performance improved version
of PCI called Peripheral Component Interconnect Extended (PCI-X) dedicated to
servers has a data bus width of 64 bits and operates at frequencies up to 533 MHz.
This results in a total bandwidth of 4.26 GB/s over the bus. This is the highest
bandwidth achievable by the PCI standard.

PCIe first introduced in 2004 is practically a replacement for all of the previous
standards. It uses point-to-point high speed serial data links instead of a shared
parallel bus. PCIe uses lower number of pins and smaller physical footprint in
comparison to PCI while providing higher level of bandwidth. Thanks to the point-
to-point connection topology, it provides better performance scaling as well as
improved error detection and reporting mechanisms.

The glsPCIe connection between two nodes in the system can contain from 1
to 32 lanes. Each lane contains a separate high-speed serial link for receiving and
another link for transmitting the data. Each high-speed serial link consists of two
wires that transfer the data using differential signaling. As of the first version of
PCIe (which was called PCIe Gen1) each link was capable of transferring 250 MB/s
of data in each direction. The latest publicly available version (PCIe Gen3) increased
the per-lane per-direction rate to 985 MB/s. For example a Gen3 PCIe card with 16
lanes (a 16X PCIe card) is cable of transferring up to 15.75 GB/s in each of the read
and write directions at the same time.

6.2 Essential Basics of PCI Express

PCIe uses Transaction Layer Packets (TLPs) to transfer data between two nodes in
the system. Each read or write transaction involves a series of one or more packet
transmissions. These packets are responsible for transferring data, configuration
parameters, messages, and event information between a PCIe device and the host.
This also includes the interrupts generated by the PCIe device which should be
delivered to the main CPU. Each TLP contains a header of around 16 bytes and
payload of up to 4,096 bytes. The header contains information related to the type
of the packet, its length, the ID of requester, its destination address, and so on. Two
types of TLPs exits:

1. Request TLPs, which contain a request for an operation to a PCIe node in the
system and

2. Completion TLPs that are generated by the completer and contain the response
to the request.

For example, when a PCIe device decides to write to a specific I/O address, it
generates a write request TLP which contains the destination address in its header
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Fig. 6.1 Example architecture of a PCI express based platform

and the write data in its payload. The PCIe sub-system routes the TLP to its
destination by looking up the address value in the header. On conclusion of write
operation at the I/O device, it returns a completion TLP as the response to the
requester to confirm the successful data transfer.

Figure 6.1 shows an example structure of a PCIe sub-system. The basic building
elements of a PCIe system are in detail:

1. The PCIe Root Complex is usually responsible for connecting the processor and
memory sub-system to the PCIe switches. The root complex generates PCIe
transactions on behalf of the processor. It usually contain more than one PCIe
Express ports.

2. Switches are responsible for routing incoming PCIe TLPs towards their suitable
destination. The destination will be defined either by the address in the header
of the TLP, by the ID of the destination peripheral, or based on the type of the
packet (e.g. broadcasts from the Root Complex).

3. End-Points are practically the peripherals, boards, and devices installed on the
hardware platform.

4. Bridges are used to allow hardware components not implementing PCIe directly
to be added to the system. The bridge is responsible for performing translation
between the other protocol and the PCIe.

PCIe devices are not available only as hardware boards which should be installed
on a main board with PCIe backplane. A PCIe peripheral can also be a separate
hardware unit in its own box and get connected to another platform through PCIe
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Fig. 6.2 One MaxExpansion
Gen3 X16 PCIe expansion kit
containing one PCIe external
cable and its adapter boards

external cables. Figure 6.2 shows a Gen3 X16 PCIe expansion kit which contains
2 adapter boards and a 3 m long PCIe external cable. This setup is capable of
transferring data at rates near to 15.75 GB/s. It should be noted that both ends of the
cable do not necessarily need to end up an adapter card. For example, it is possible
to have one end of the cable connected to the adapter installed in the server machine
and the other end directly enter a chip containing an integrated PCIe interface.

With the aid of PCIe fiber optic cables it is possible to extend the physical range
of PCIe peripherals for one single platform up to 100 m easily. As an example,
the hardware accelerator blocks for a high-end server can be located in another
building while they are present to the rest of the system as Gen3 X16 capable PCIe
peripherals.

6.2.1 Address Spaces and Base Address Registers

Every hardware component in a computing platform occupies a range of the
available physical addresses in the system. Access to that hardware component is
done through its base address and according to its address range. For example, each
of the Dynamic Random-Access Memory (DRAM) memory, storage devices, and
PCIe peripherals have their own specific base address and address range. The Basic
Input/Output System (BIOS) is responsible for assigning addresses to the present
hardware components at boot time or – for hot-plugging – when the hardware
component is plugged into the system. For PCIe, recognition of available PCIe
devices, identifying the capabilities and properties of each one, and assigning one
or a set of addresses to the device is done through a process called enumeration.

Todays computing platforms running operating systems such as Windows or
Linux use virtual addresses to manage system memory. Indeed, every process
running on the system is given a range of virtual addresses by the Operating
System (OS) that it uses for its execution tasks. For every process, accesses to the



122 M. Sadri et al.

memory or any of the hardware components in the system will be done by accessing
specific locations in the process virtual address range. The OS is then responsible for
converting the virtual address to the real physical one and initiating the transaction
to the target. To perform the address translation fast and efficiently the OS uses a
hardware unit called Memory Management Unit (MMU).

The advantages of using virtual addresses are numerous, for example:

• Memory protection mechanisms can be implemented by the OS to disallow
accesses to memory regions of other processes.

• Libraries that contain widely used routines by all processes can be loaded only
once and easily be shared among all processes.

• Access to hardware components being used by several processes at the same time
can be better governed by the OS.

However, this at the same time makes the task of software development for
communicating to the PCIe hardware more challenging. At the first step, the driver
which is responsible for talking to the PCIe component obtains the physical address
of the device and its address range. These values are calculated at boot time by
the OS. It then requests the OS for a region in the virtual address space to use
for communicating with the device. Then the driver remaps the physical address
of the device to the obtained virtual address. This way, by performing read and
write transactions to virtual address locations, the driver can practically access the
physical address locations of the PCIe peripheral. We further describe the basic
architecture of a PCIe peripheral Linux Kernel driver in Sect. 6.7.

Now consider the fact that a PCIe peripheral has usually integrated CPU cores
that are running an operating system themselves. They also have their own MMU.
Moreover, each hardware component within the PCIe peripheral has its own internal
physical address. Similar to the main system, the MMU is responsible for converting
the virtual addresses generated by processes running on CPUs to equivalent physical
ones. However, the difference is that this time every thing is happening within the
PCIe peripheral.

Consider a simplified architecture like the one shown in Fig. 6.3. Suppose that
the host CPU of the system wants to share an array of data with CPU cores within a
PCIe peripheral. In order to do that, the host CPU can copy the data to the memory
located inside the PCIe peripheral. Several address translation steps are required to
accomplish this task:

1. The virtual address of the memory location which holds the array on the host
system should be converted into its equivalent physical address.

2. The virtual address through which the driver running on the host system talks to
the PCIe peripheral should be converted into its physical equivalent as well. At
this stage a transaction can be initiated to transfer the data from the memory to
the PCIe peripheral. This transaction can be initiated by a Direct Memory Access
(DMA) engine which we describe later in more detail.
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Fig. 6.3 A simplified block diagram of a host system and a PCIe peripheral which contains a set
of computing elements inside

3. When the transaction passes the integrated PCIe interface module, its address
should be substituted with the correct physical address within the PCIe peripheral
hardware subsystem. This physical address usually resides some where in the
range of memory address.

4. Finally, for the CPU cores within the PCIe peripheral to access the shared
data, a conversion between the virtual address of the shared data array and its
corresponding physical address should be done. This will happen using the MMU
within the PCIe peripheral.

As we see the address translation can be a tedious task. As a result it is crucial to
make sure that it is happening only when it is required and then it is performed in
an efficient manner.

The PCIe Base Address Registers (BARs) have a special meaning: they are
the base address values assigned to the PCIe peripheral by the host at boot time.
However, our example integrated PCIe interface module from Fig. 6.3 has two sets
of base address registers: One set representing the physical address of the peripheral
for the host system and another set representing its base address as it appears to
the local CPU cores within the card. When performing data transactions initiated
by the host and targeting the PCIe peripheral or vice versa, it is crucial to have fast
translation between these address domains. To improve the performance, the address
translation task is usually directly implemented in the hardware of integrated PCIe
module. There exist configuration registers within the module where the required
translations between two address domains can be defined.

6.3 Interfacing to PCI Express Using FPGAs

With parallel I/O data transfer schemes reaching their bandwidth limits for chip-
to-chip communications, high-speed serial interfaces are replacing them wherever
possible. A high-speed serial interface transmits the data over differential signal
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lines in self-synchronous mode. This means the information related to the clock
signal of the transmitter is integrated into the data stream itself. At the receiver side
the clock signal will be extracted from the data stream using a Clock Data Recovery
(CDR) circuit, which mainly contains a Phase Lock Loop (PLL). The principal
component used in high-speed serial links is a Serializer/Deserializer (SerDes). A
SerDes is a hardware unit responsible for converting the received parallel data into
serial, adding clock information and putting it on the transmission line, and on the
other hand, receiving the serial data from outside, extracting the clock information
and converting the data into parallel.

Field Programmable Gate Array (FPGA) devices that are widely used by
engineers in numerous products should also provide the possibility of talking to
outside world through high-speed serial links. The shift from parallel data transfer
to high-speed serial interfaces, however, does not come without challenges. In
fact, designing a high-speed serial interface from scratch can be so complicated
and time consuming that the engineers may prefer to continue using traditional
parallel transfer solutions. This made FPGA manufacturers to integrate the rapid
serial I/O interfaces as ready-to-use hard-core IP blocks into their products. Thus,
all the designers need to do is to configure the IP core according to their serial data
transfer specifications and implement suitable hardware modules on the FPGA for
interacting with the rapid serial I/O block.

For example, Xilinx has integrated high-speed serial interfaces into its FPGAs
from the early Virtex-II devices [2]. Primarily they were called Rocket-I/Os. This
name was later mostly replaced by Multi-Gigabit Transceiver (MGT). Table 6.1
shows available MGTs in Series-7 and UltraScale Xilinx products [8]. The MGTs
are the basis for realization of all of the famous high-speed communication protocols
using Xilinx FPGAs. Examples include PCIe, Serial AT Attachment (ATA), 10 Gb
Ethernet, Infiniband, and so on.

Table 6.1 Multi-gigabit transceivers available in UltraScale and Series-7 devices. For each
family only the highest speed MGT is shown

Transceiver Max Max Total
Device type performance (Gbits/s) transceivers bandwidth (TBits/s)

Kintex UltraScale GTH 16.3 64 2

Virtex UltraScale GTY 32.75 120 5.8

ZYNQ 7000 GTX 12.5 16 0.4

Artix-7 GTP 6.6 16 0.21

Kintex-7 GTX 12.5 32 0.8

Virtex-7 GTZ 28.05 96 2.8
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6.3.1 Integrated Block for PCI Express

To have a fully operational PCIe end-point or root complex, in addition to MGTs,
several other blocks are required as well. These additional modules are responsible
for realization of transaction and data-link layers of thePCIe protocol. This includes
tasks like configuration management, generation and processing of TLPs, flow-
control, power management, data protection, error checking, and status tracking.
One possibility is that the developer implement all of these additional functionality
in Register-Transfer Level (RTL) and therefore using FPGA resources. But also
ready-to-use soft-IP cores [10] can be used. However, this results in valuable
FPGA resources being consumed by the core, limiting the freedom of designer to
implement his own custom logic. Therefore, in some FPGA devices the PCIe block
is available as a hard-IP core, meaning that the required logic is already integrated
into the silicon and is ready to be used.

Regardless of being a hard- or soft-IP core, the interfaces to the PCIe block are
always the same. This allows a developed design to be adapted to different FPGA
devices in a short time. Basically, the main interfaces of a PCIe block for transferring
data to other modules within the FPGA fabric are based on AXI stream protocol.
Figure 6.4 shows the symbolic representation of a Gen3 8X PCIe block for a Virtex-
7 device and its main connections to other modules on the FPGA and also to the

PCI X8 Connector Edge

PCIe Requester 
Interface

PCIe Completer 
Interface

Fig. 6.4 A simplified block diagram of a PCIe block and its main connections to other modules
on the FPGA and the outside world. The PCIe block symbol is taken from a Xilinx Vivado project
consisting a Gen3 X8 PCIe interface
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outside world. In this figure, the PCIe block is shown in blue and then rectangles in
green are the logic implemented by the user for talking to the PCIe block.

As described in previous sections, in every PCIe transaction one node in the
system is the requester which produces a read or write request and another node is
the completer which responds to the requester by performing the required action.
The PCIe block shown in Fig. 6.4 is capable of playing both roles. When the user
decides to act as the bus master and to initiate a transaction to another PCIe node in
the system, it does so through its PCIe Requester Interface unit by sending a suitable
request packet to the Requester reQuest (RQ) interface of PCIe block. The PCIe
block forwards the request to the PCIe backplane. When the PCIe block received the
response from the completer it sends the response over the Requester Completion
(RC) interface to the user’s Requester Interface module.

The PCIe block can also act as a completer. When another node in the system
decides to initiate a transaction to our PCIe peripheral it sends the request with the
physical address of our PCIe peripheral. Upon receiving the request TLP, the PCIe
block forwards the request to the user’s Completer Interface through its Completer
reQuest (CQ) port. The user developed block performs required actions indicated by
the request and sends back the response to the Completer Completion (CC) interface
of the PCIe block. For a Gen3 X8 PCIe block, each of the mentioned ports have
a data bus width of 256 bits and are running at 250 MHz. The sys_reset and
sys_clk signals are fundamental to the operation of the PCIe block. These signals
can be obtained from the PCIe backplane. There is also the possibility of generating
these signals locally on the PCIe peripheral if needed. The user_reset and
user_clk signals are generated by the core and can be used for the logic that
user develops on the FPGA fabric for communicating to the PCIe block.

6.4 Introduction to AXI

Looking at a typical System on Chip (SoC) design we see a large number of different
modules instantiated and connected together to deliver the required functionality of
the product. In order to realize those connections easily and fast with the goal of
building a new architecture it is crucial that all of the modules interface to outside
world based on a same language. This means that all of the modules should obey
a same set of rules and should use the same set of signals as their interface to the
rest of the logic. Having a library of different modules meeting this requirement
in hand, a designer can build new systems very easily by connecting the required
components together. This is the basic motivation behind creation of SoC buses like
WishBone [6], IBM CoreConnect [5], and ARM AXI [1].

A SoC bus is not necessarily a data transfer medium which is shared by several
modules. It can also be an architecture which provides point-to-point connection
between different units of the system, allowing them to initiate transactions
concurrently. This is the case for the AXI interconnect, for example.
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The basic elements of an AXI based architecture are as follows:

1. AXI Masters are units that initiate read or write transactions.
2. AXI Slaves are units that receive read or write transactions and produce the

suitable response to them.
3. AXI Interconnects play the role of switching elements between AXI Masters and

AXI Slaves. They are responsible for routing the transactions and data from an
AXI Master to the specified destination.

There exist two types of AXI interfaces:

1. AXI stream and
2. AXI memory mapped.

An AXI stream interface is suitable for modules which receive a stream of
data, perform some processing on it, and generate another stream of data as the
output. In AXI stream interfaces, the source from which the data is coming and
the destination to which the data is going are defined from the beginning. Thus the
transactions do not need to carry the address for the destination. This simplifies
the logic required for interfacing to AXI stream extensively. Figure 6.5 shows the
main signals between an AXI stream master and an AXI stream slave plug. In AXI
stream, the direction of data is always from the master to the slave.

The TVALID signal indicates to the slave unit that a new data is available.
TREADY is generated by the slave and indicates that the AXI stream slave is ready
to receive the data. The transmission of data happens when both of the signals are
active. TDATA is the actual data being transferred and TLAST indicates if the current
data which is being transferred is the last data of the packet. In such a configuration,
both modules work at the same clock domain. To transfer data between one AXI
stream master and one AXI stream slave where both are in different clock domains,
an AXI stream asynchronous First in, First Out (FIFO) can be used.

The simple AXI stream interface does not answer all of the connectivity needs
in a complex SoC. This is because in many situations the computational task is
more complicated than just performing a set of calculations on an incoming stream
of data. Indeed, the task usually involves performing read and write accesses to
different variables and array elements that are stored in a memory. Consequently,
the read and write transactions initiated by the module need to contain an address to
indicate to the target location in the memory for the read or write operation.

Furthermore, the simple case in which one module is always receiving its input
data from another fixed module is not always true. It happens that a module needs to
talk to a different module in the architecture each time. Again, this highlights then
need for an address in the initiated transaction for indicating the target module.

Fig. 6.5 Main signals
between an AXI stream
master and an AXI stream
slave module
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The AXI memory mapped interfaces solve these issues by adding the address
channels to the AXI interface. In contrast to an AXI stream interface that contains
only one channel for data transmission and in a fixed direction, an AXI memory
mapped interface consist of five channels. The AXI memory mapped interface
can perform either reads or writes and for each of these operations since it has a
separate read address and write address channels. To improve the performance of
data transfers, AXI interfaces support burst transfers of up to 256: For a read or
a write transaction, only one address is indicated over the corresponding address
channel and the rest of the addresses are automatically calculated at the slave side.

Figure 6.6 shows the five channels of an AXI memory mapped interface. Each
channel contains a similar set of signals as one AXI stream interface. In each
channel, there are additional signals to carry the information related to transactions
bursts, quality of service, memory protection, caching of data, and so on.

As we see in Fig. 6.6, the address channels are always outputs from the AXI
memory mapped master and inputs to the slave. The read data channel that carries
the data read of the specified address by the master is an input to the master. Also
the write response channel, which informs the master if the write transaction has
been successful or not, is an input to the master module.

A typical read or write transaction begins first by putting the address on the read
or write address channels. After the address is accepted by the slave, the actual data
transfer will be performed. For each of the read or write data transfers there are
signals which indicate if the transfer has been successful or not. To improve the
performance of data transfers it is possible to use all of the five channels in parallel.
For example, while an AXI master is receiving data of the previously initiated read
transaction, it initiates a write transaction over the write address channel.

Furthermore, there exist the possibility that an AXI slave responds to incoming
requests in a out-of-order fashion, i.e. that it receives a set of requests from different
masters and it generates the suitable responses to each request as soon as it had
the data ready for that specific request. To enable this functionality, a mechanism is
required to identifying each transaction. In fact when the slave produces a response
to the request of an AXI master, it should be able to indicate that the current response
belongs to which of the received requests. The AXI protocol provides an ID signal
over each channel. Basically each incoming request over either read or write address
channels to an AXI slave has its own specific ID. When the AXI slave produces the
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Fig. 6.7 An AXI interconnect operates as the switching element in an architecture consisting
modules with AXI memory mapped interfaces

response to the request over the read data channel or the write response channel, it
also reflects related ID value of that transaction over the response channel.

In an architecture consisting of modules with AXI memory mapped interfaces,
switching mechanisms are required to route transactions to suitable destination
based on the transaction address. AXI interconnects are responsible for this task.
Figure 6.7 shows an example design featuring 2 AXI masters and 3 AXI slaves.
Each slave in the architecture has a base address and an address range. The AXI
interconnect contains a decoding table which is basis for deciding to which of the
slaves an incoming transaction should be routed. The AXI masters can practically
initiate transaction to every location they want in the address space. Obviously, only
those transactions which fall in the address range of one of the AXI slaves will be
responded.

6.4.1 AXI PCIe Bridge

Consider an FPGA based PCIe card which acts as a hardware accelerator and its
main operation is to receive an incoming stream of data, to perform a defined set
of calculations on the data stream, and then to return back the results to the host.
For such an accelerator, the integrated block for PCIe described in Sect. 6.3.1 is a
suitable choice. In fact, many of the applications deal only with streams of data. For
example, they need to process a stream of data, or to transfer the incoming stream
of data to another location e.g. to a fiber optics channel. In these cases, being able
to randomly access data, or to keep a history of data in a memory and to retrieve it
later if needed, is not required.
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However, there exist also many applications in which memories and random
accesses to memory are heavily required. For example, imagine a PCIe card which
is responsible for accelerating data base operations. The card stores the tables in
its internal DRAM to which the FPGA has a very low-latency and high-bandwidth
access. Then it receives different query requests over the PCIe interface, performs
the required operations using the tables stored on its DRAM and sends back the
results. In such a scenario, the stream based architecture is no more efficient. Indeed
the logic for the hardware accelerator implemented on the FPGA will mostly be
based on memory mapped interfaces. As a result, the output of the integrated block
for PCIe should be connected to a unit which is responsible for receiving PCIe
packets over AXI stream, looking up their properties and destination address, and
converting them into equivalent AXI memory mapped transactions. For this case e.g.
Xilinx provides an integrated PCIe IP core with AXI memory mapped interfaces,
eliminating the need for using the AXI stream based blocks.

Figure 6.8 shows the symbolic representation of a PCIe AXI unit and also a
simplified example architecture representing how this block gets connected to the
rest of the system. This figure also contains a processing core and some modules
with AXI slave and master plugs which are implemented on the FPGA fabric.
In addition, there exist modules that may have more than one AXI plug. AXI
interconnects are responsible for connecting the AXI interfaces to each other.

AXI MM
Slave

PCIe Connector Edge

Processor
Core

Interconnect

AXI MM
Slave

AXI MM
Slave

AXI MM
Master

AXI MM
Master

AXI MM
Master

Interconnect

PCI Reference Clock

Output clock for
user logic

Fig. 6.8 Simplified block diagram showing how a PCIe AXI bridge gets connected to the other
modules on the FPGA fabric and also to the outside world
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In Fig. 6.8, the pcie_7x_mgt port is in fact the interface port of MGTs and
should go to the PCIe edge connector. M_AXI is an AXI memory mapped master
port which will initiate read and write transactions based on the received TLPs at
PCIe side. The AXI master port will go to an AXI interconnect from which it gets
connected to AXI slaves in the architecture. The S_AXI port of PCIe AXI bridge
is used when the modules on the FPGA decide to initiate transactions to different
address locations over the PCIe bus. For example, the processor core or one of the
AXI masters may perform a read or write operation to a specific location in the
host’s DRAM memory through the S_AXI port. In this case the PCIe card acts as a
bus master on the PCIe backplane.

Finally, the S_AXI_CTL port is an AXI slave port of PCIe AXI bridge which
is used for configuring the bridge. Usually this is a task performed by a processing
core. For example, as described in Sect. 6.2.1 the PCIe AXI bridge converts the
address of incoming transaction from the address space of the host computer to
the address space of the embedded architecture on the PCIe card. This address
translation can be configured through the S_AXI_CTL port using the processor
core. Furthermore, the AXI slave port can be used for reading the status and
configuration information of the bridge. If the local processing unit is running an
operating system like Linux, then a kernel level driver should also be developed to
allow the software to access the resources of PCIe AXI bridge.

6.5 Xilinx Zynq Architecture

This section introduces the basic features of the Xilinx Zynq All Programmable SoC
required to understand the PCIe example presented in Sect. 6.6.

The Xilinx Zynq All Programmable SoC is a hybrid device with a fast intercon-
nect [12]. It consists of two parts:

1. The Programmable Logic (PL) that is roughly a full-featured FPGA and
2. The Programmable Systems (PS), a complete sub-system with ARM CPU cores

and different peripherals.

The PS contains the following items:

• An ARM Cortex MPCore-A9 dual core processing engine which also contains
NEON Single Instruction Multiple Data (SIMD) units. Each ARM core has its
own L1 data and instruction caches. Each cache block has a size of 32 KB.

• One L2 cache with the size of 512 KB which is shared between two CPU cores.
The ARM PL310 cache controller is used for implementation of this unit.

• A Snoop Control Unit (SCU), which ensures coherency between the contents of
the caches.

• An On-Chip Memory (OCM), a multi-port memory block of 256 KB that can be
accessed by the CPU or other ports and units in the system.
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• A DMA controller that can be used for transferring data between peripheral and
DRAM memories.

• A multi-port memory controller, which is responsible for connecting to DRAM
memories and receiving read/write requests from different sections of the
hardware and passing them to DRAM.

• A large ensemble of different peripheral such as Universal Asynchronous
Receiver/Transmitter (UART), Gigabit ethernet, Universal Serial Bus (USB)
peripheral and host, Controller Area Network (CAN) bus, Inter-Integrated Circuit
(I2C) Bus, Secure Digital (SD) Card interface, General-Purpose Input/Output
(GPIO), and so on. . ., which can be configured and used by the ARM CPU cores
very easily.

• An interconnect based on ARM NIC-301 design that connects different blocks
of hardware inside PS together.

• A set of AXI interfaces (as shown in Fig. 6.9) are implemented to make the
communication between PS and the PL logic possible.

Basically, these AXI interfaces divide into two groups:

• AXI memory mapped master interfaces (GP), connect to AXI slaves residing on
the PL. The CPU is able to initiate read/write transactions over these AXI masters
to transfer data to PL modules. There are two 32 bits AXI master ports available
in the Zynq device: GP0 and GP1.

• AXI memory mapped slave interfaces (High Performance (HP), Accelerator
Coherency Port (ACP) and SGP), connect to the implemented AXI masters on the
PL. There exist four HP ports and one ACP. Each of these interfaces implements

Fig. 6.9 A block diagram representing important elements of the Xilinx Zynq device
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a full-duplex 64 bits connection, meaning that at every clock cycle, total 16 bytes
of data can be transferred on AXI read and AXI write channels concurrently. The
two SGP0 and SGP1 interfaces implement 32 bits connections.

There exists a defined memory map for the Zynq device [12] that indicates the
address range of each logic block. Every AXI slave unit implemented on the PL
will also occupy a part of this address range. It should be noted that except the CPU
cores and their L1 instruction caches the rest of the system is using physical address
values.

The ACP is connected to the ARM SCU. Thus, it provides the possibility of
initiating cache coherent accesses to the ARM sub-system. Careful use of the
ACP can improve overall system performance and energy efficiency. However,
inappropriate usage of this port can adversely affect execution speed of other
running applications because the accelerator can pollute precious cache area [7].

6.6 Example PCI Express Design Based on Zynq

We develop an example architecture on the Xilinx Zynq to allow the host system
and the Zynq ARM subsystem to share their DRAM memory spaces over PCIe.
When the data sharing between the host system and the processing elements on the
PCIe card is complete, additional hardware accelerator modules can be added to
the Zynq PL allowing for accelerating computational tasks. Our target hardware for
this project is the Xilinx ZC706 board that contains one Zynq 7045 device. The
card provides a PCIe Gen2 X4 interface over a PCIe connector. The developed
architecture tries to keep every thing as simple as possible while providing the
possibility of reaching acceptable bandwidth on the PCIe interface.

Figure 6.10 represents the developed architecture. This architecture consists of
three main elements:

1. The Zynq PS,
2. The PCIe AXI bridge, and
3. A DMA engine.

For configuring the PCIe AXI bridge and reading its status information through the
S_AXI_CTL port, we use the GP1 AXI master port of the Zynq PS. Through this
port, the ARM CPU cores can have access to configuration and control registers of
the PCIe AXI bridge. For this part of the circuit, axi_ctl_aclk_out generated
by the core is used as the clock signal. For the rest of the logic axi_aclk_out is
used as the clock.

Transactions initiated by other PCIe nodes in the system and received by our card
will arrive at M_AXI port of PCIe AXI bridge. From there these transactions will be
routed to the DRAM memory space through the HP0 AXI memory mapped slave
port. Obviously, suitable address translation should be done before the transaction
enters the AXI architecture. Practically for the incoming transaction address, the
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Fig. 6.10 A block diagram representing the architecture of our PCIe based hardware to share the
DRAM memory of the host system with the ARM CPU cores on the Zynq and to share the DRAM
memory connected to the Zynq PS with the host system. Squares are AXI master plugs and circles
are AXI slaves

base address of the PCIe device should get dropped and instead a suitable base
address according to address arrangements in the AXI architecture should be added.

The S_AXI port of the PCIe AXI bridge has basically two masters: The ARM
CPU cores and the DMA engine. The ARM cores can directly initiate read and
write transactions to the address space of the host through the GP0 port. Again, the
destination address for the transaction here will be the address assigned to S_AXI
port of PCIe AXI bridge, and the translation to the address space of the host will be
done within the bridge. Here, the kernel level driver of our PCIe peripheral which
is running on the host system, will allocate an amount of memory on the host’s
DRAM. It then obtains and passes the physical address of the allocated memory
to the ARM host on our PCIe peripheral. The ARM host configures the address
translation mechanism within the PCIe AXI bridge so that the generated transactions
by this block over the PCIe backplane end up the memory range allocated by our
driver on the host’s DRAM memory.
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A similar procedure as what we described holds true when the host CPU wants
to access the DRAM memory of the ARM host. This time the kernel level driver
running at the ARM side is responsible for memory allocation. Again based on the
obtained address values the address translation mechanism within the PCIe AXI
bridge will be configured.

When it is required to transfer a large amount of data with a high bandwidth,
using the CPU cores for handling data transfers is not efficient. This is true for both
CPU cores of the host as well as the ARM CPUs of the PCIe peripheral device.
Generating read or write transactions using the CPU core, even when it is done
without any interruption, does not eventually result in a satisfactory performance.
Consequently, there should exist a dedicated hardware responsible for performing
data transfers to and from the PCIe AXI bridge. The DMA engine instantiated in our
example architecture is responsible for initiating data transfers to the host without
disturbing the CPUs.

In our architecture, the ARM CPU cores are responsible to define the set of data
transfer tasks that the DMA engine should do. Each transfer task for the DMA is
defined in a structure called descriptor. Through GP0 port, the ARM CPU core
copies the descriptors to a dual-port block memory. The other port of the block
memory is practically connected to the DMA engine, which has a dedicated master
port to read the descriptors. Each descriptor contains a source address for the transfer
which should be done, a destination address, and the length of the transfer. The block
memory can keep a large number of descriptors written to it by the CPU. The DMA
engine can operate in a cyclic manner, meaning that by reading and executing the
transfer for the last descriptor in the block memory, it can jump back to the first
descriptor and continue its operation.

Our DMA engine has two AXI memory mapped master ports: One port is prac-
tically connected to the S_AXI port of the PCIe AXI bridge initiating transactions
over PCIe. Another port is connected to the HP1. For a read operation, the DMA
engine initiates the read transaction over PCIe and when it received the read data it
writes the incoming data to the DRAM memory through the HP1 port. For a write
operation the DMA engine reads the write data from the DRAM memory through
the HP1 port, then it initiates a write transaction over the PCIe bus by writing the
data to a suitable address location of the S_AXI port.

6.7 Linux Kernel Level Driver

As described in Sect. 6.4.1, our architecture consists of two sets of CPU cores: The
host CPU cores that are usually x86 and the PCIe device CPU cores, which in our
architecture are ARM v7 cores. We assume that the Linux OS is running on the
host CPU cores. For the PCIe device, in most common situations, Linux is also
running on the ARM CPUs. In order for user-level applications running on the Linux
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to be able to interact with the PCIe device, a Linux kernel level driver is needed.
As a result, for our architecture two Linux kernel level drivers should be developed
separately.

The driver running on the host system should be able to find the PCIe device,
allocate I/O and memory regions for it, register required interrupt lines and
their corresponding interrupt handlers, and to enable user level applications to
communicate with the device. For this purpose, the driver uses structures and
functions integrated into the Linux kernel that facilitate interacting with PCI based
peripherals. In fact, from the view point of the host driver, our hardware is a PCI
peripheral. However, from the view point of the driver running on the ARM host,
the PCIe AXI bridge is just an AXI peripheral similar to the other components in
the architecture.

For the driver running at the host side, it first announces to the Linux kernel
the vendor and device ID of the PCIe device it is seeking for. In addition to the
ID values, the driver also gives the Linux kernel pointers to two implemented
subroutines inside the driver. The first subroutine is executed when a PCIe device
is found in the system with the same ID values as the ones indicated by the driver
and the second subroutine is executed when this PCIe device gets removed from the
system. The ID values and pointers to subroutines is given to the Kernel through a
structure called pci_driver. Code Listing 6.1 shows an example definition of
this structure.

1 static struct pci_driver pci_drv_template =
{

3 .name = "pci_drv_template",
.id_table = pci_drv_ids,

5 .probe = device_probe,
.remove = device_deprobe,

7 };

Listing 6.1 Example code showing how pci_driver struct is defined.

During the device_probe subroutine, the driver obtains the physical address
at which the PCIe device is located. This is done throughpci_resource_start
Linux kernel call. The driver then asks the Kernel for permission to access the
physical address range of the PCIe device. If granted, a remapping of the physical
address of the PCIe device to virtual address space will be done by the driver. This
is done with the aid of ioremap Linux kernel call. Having the virtual addresses,
the driver is able to perform read and write transactions to the address space of the
PCIe device using writel and readl system calls. Code Listing 6.2 shows an
example implementation of the device_probe routine.
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1 static int device_probe
( struct pci_dev *dev, const struct pci_device_id *id )

3 {
// get the first i/o region

5 ioport = pci_resource_start( dev, 0 );
iolen = pci_resource_len( dev, 0 );

7

// request memory region
9 request_mem_region( ioport, iolen, "ZC706");

11 // map hardware memory space to virtual space
pci_bar_vir_addr = ioremap(ioport, iolen);

13

// the rest of the code
15 // ...

Listing 6.2 Example implementation of the device_probe subroutine.

Initial memory allocation can also be done within the device_probe routine.
For this purpose, the pci_alloc_consistent Kernel call can be used. The
physical address for the allocated memory can then be transferred to the ARM cores
in the PCIe device. The address will be used for configuring the address translation
logic within the PCIe AXI bridge.

Both of the drivers represent the device to their Linux system as a character
device which supports basic file operations. These file operations include open,
close, read, write, i/o control and mmap. In the simplest data transfer scenario, the
user level application opens the character device and performs reads and writes to
the device using usual file I/O operations. From the host side, the driver can redirect
the incoming read and write transactions toward pre-known address offsets in the
PCIe device. The same holds true for the driver running at the ARM side. The
driver receives the data from the user level application running on the ARM host
and transfers it to pre-known offset on the memory allocated by the host driver.

When it is required to transfer and process data at a high rate, the simple file
I/O operations can no more be efficient. In fact, during file I/O data transfers the
data always gets copied from the user space memory to the kernel memory and
from there it gets transferred to the hardware. However, it is possible to share the
memory which is obtained by the driver with the user level application directly,
eliminating the need for copying data from user space to kernel space and vice versa.
This is done through mmap file operation. Usage of mmap for sharing the memory
space with user level application is again similar for the drivers at both sides. Code
Listing 6.3 shows an example implementation of mmap routine for the host driver.
The io_remap_pfn_range function receives the user virtual address range and
also the physical address range of the device. It then maps the provided range of
physical addresses to the provided virtual address range by creating a new set of
page tables which essentially perform the address translation between these two
ranges. For further information regarding character devices and mmap please refer
to [4].
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1 static int chr_device_map
(struct file * filep, struct vm_area_struct * vma)

3 {
io_remap_pfn_range (vma,

5 vma->vm_start,
ioport >> PAGE_SHIFT,

7 vma->vm_end - vma->vm_start,
vma->vm_page_prot);

9 vma->vm_flags |= (VM_DONTEXPAND | VM_DONTDUMP);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);

11 return 0;
}

Listing 6.3 Example implementation of the mmap file operation routine (Linux kernel 3.7).

6.8 Experimental Results and Discussion

The performance of a PCIe hardware accelerator card is directly affected by the
bandwidth of data transfers between the card and the host system. Considering the
PCIe card, it is also crucial to know how fast this architecture can transfer data
between its own main memory and the integrated PCIe block. These parameters
directly affect the processing performance of the hardware accelerator.

Through a set of stress tests it is possible to obtain estimates on the performance
of PCIe interface. For the ZC706 board, which features a Gen2 X4 PCIe interface,
Table 6.2 shows obtained estimates on each of the read and write data paths [11]. In
this test the performance is measured while sweeping the size of the DMA packets
being transferred between the PCIe card and the host system from 512 bytes to
32 KB. Obtained values are representing the net data transfer rates after omitting all
of the overheads related to packet headers, acknowledge packets, flow control, and
other similar items.

As we see, the performance of the PCIe link changes significantly with the
packet size. In fact, the efficiency of data transfers to a hardware accelerator
using PCIe is heavily dependent on the size of data chunks being transferred.
If the acceleration task involves processing of big continuous blocks of data,
the PCIe link can be used with acceptable bandwidth efficiency. Instead, if the
acceleration task requires a large number of small data chunks being transferred
between the host system and the PCIe card, the efficiency of the link can be
degraded seriously. In these situations, increasing the PCIe link width (e.g. from X4

Table 6.2 Approximate read
and write bandwidth to the
host for ZC706 Gen2 X4
PCIe interface

Packet size (KB) 0.5 1 2 4 32

PCIe to host (MB/s) 250 612 762 937 975

Host to PCIe (MB/s) 250 525 750 930 970
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Table 6.3 Approximate read plus write bandwidth to the
DRAM memory residing on the ZYNQ PS from ZYNQ PL
through each of HP1 and ACP ports

Packet size (KB) 4 16 64 128 256

HP0 600 1,250 1,600 1,700 1,730

ACP 600 1,250 1,600 1,650 1,600

to X8), improving caching mechanisms, and exploiting several concurrent threads
for initiating required transactions can enhance overall performance.

In the second test, we stress the local DRAM memory available on the accelerator
card. We obtain estimates on how fast the data can be transferred between the PCIe
block and the local DRAM memory. This is important since in our architecture the
host system shares the data with the hardware accelerator on this DRAM memory.

Table 6.3 shows the obtained read plus write bandwidth values between the DMA
engine residing on the Zynq PL and the DRAM memory connected to the Zynq
PS [7]. Similar to the previous test, we sweep over the size of data chunks being
transferred between two nodes to report the bandwidth. We perform accesses to the
DRAM through each of the HP1 and ACP ports. As we see, with the increase in
the size of packets being transferred the bandwidth improves. However, the increase
in bandwidth gets saturated at around 1,700 MB/s. This total bandwidth is almost
evenly divided between read and writes.

For the ACP, accesses practically end up the caches of the CPU for smaller packet
sizes. However, as the packet size grows and more memory is needed, the extra
accesses to DRAM reduce the ACP performance. The real advantage of ACP over
HP1 can be seen in scenarios where the accelerators on the Zynq PL want to share
data with the ARM CPU cores of the Zynq PS. Considering the obtained estimations
we conclude that a careful design is needed to be done so that the Zynq PS and
DRAM memory subsystem sustain the traffic generated by the Gen2 X4 PCIe block
completely. This involves definition of descriptors for DMA transfers as well as
utilization of suitable ports on the Zynq PS to access the DRAM.

6.9 Conclusion

In this chapter, we summarize the basics of PCIe as one of the most popular
interfaces for communicating with accelerators in heterogeneous systems. One
reason is that – in contrast to other interfaces like Ethernet – relatively low latencies
can be achieved with PCIe. We introduce the basic architectural setup and protocol
features of a PCIe communication infrastructure. We describe that PCIe peripherals
do not necessarily need to be located in one single box together with the host CPU,
but can also be physically apart and be connected through PCIe cables. This is in
particular beneficial for external accelerator units that need to be attached to a host
device.
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We also introduce the fundamentals of using FPGAs for interfacing to PCIe.
We briefly look at the PCIe integrated block and the PCIe AXI bridge IP cores
provided by Xilinx that are available through the Xilinx Vivado design suite. We
briefly discuss how these components can be utilized to create a PCIe accelerator
card based on FPGAs. One important aspect for achieving good performance is the
use of DMA engines besides the CPU.

From the software point of view – both on the host and the accelerator device
part – we briefly describe the mechanisms for accessing the PCIe infrastructure
and highlight different sections of an appropriate Linux kernel level driver created
for talking to a PCIe peripheral. As a practical example, we have used a Xilinx
ZC706 for demonstrating how a PCIe design can be realized for the Xilinx Zynq
All Programmable SoC device on this board. We show estimated bandwidth values
for key parts of this architecture.

Significant improvements in the IP cores and software drivers created to ease
designing with PCIe have made building PCIe peripherals easier than ever before.
As an example, the Xilinx SDAccel [9] environment provides the designers with
a complete CPU/Graphics Processor Unit (GPU) like development experience
on FPGAs. If a financial hardware accelerator card comes with relaxed transfer
bandwidth and latency requirements, the entire design can be realized by hardware
or software engineers with a common level of design skills.

Nevertheless, for some applications it is required to push the transfer bandwidths
to their possible maximum. In these cases designing for PCIe is a challenging task.
It includes the electronics design of the board, design and implementation of the
hardware architecture, and also software aspects of the design. In these situations it
is usually a wise decision to leave the project in the hand of professionals who have
constant experience of designing PCIe peripherals.
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Chapter 7
Pricing High-Dimensional American Options
on Hybrid CPU/FPGA Systems

Javier Alejandro Varela, Christian Brugger, Songyin Tang, Norbert Wehn,
and Ralf Korn

Abstract In today’s markets, high-speed and energy-efficient computations are
mandatory in the financial and insurance industry. As American options are amongst
the most frequently traded products in the derivatives market, it becomes essential
to place the focus on their pricing process. Calculating the price of an American
option in particular is a challenging task due to the freedom the holder is given in
terms of exercise date and the involved trading strategy. A well known algorithm
that solves this task is the Longstaff-Schwartz (LS) algorithm, which applies least-
squares linear regression on simulated Monte Carlo (MC) paths. This work presents
a novel way to price high-dimensional American options, coined Reverse LS, using
techniques of the embedded community. The proposed architecture targets hybrid
Central Processing Unit (CPU)/Field Programmable Gate Array (FPGA) systems,
and it exploits the FPGA reconfiguration to deliver high-throughput. With a bit-true
algorithmic transformation based on recomputation, it is possible to eliminate the
memory bottleneck and access costs present in a straightforward implementation.
The result is a pricing system that is 16× faster and 268× more energy-efficient
than an optimized Intel CPU implementation.

7.1 Introduction

In the financial world, Over-the-Counter (OTC) derivatives markets trade an average
annual volume of approximately USD 700 trillion [12], which increases every
year. Increasing competition and stringent regulations lead to a steady growth
of computing requirements. Today, financial institutions operate huge clusters to
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satisfy these computing needs. Due to their high costs, the financial industry has a
high incentive to investigate efficient ways of performing the required computations,
both in terms of speed and power consumption.

Not surprisingly, it has become a particular field of research among the engi-
neering community in recent times, due to the challenges involved. In this regard,
one approach is to build specialized computing architectures. While more effort
is required to design them, they are able to perform computations much more
efficiently compared to general-purpose architectures. In this regard, FPGAs have
been demonstrated high performance and energy-efficiency when used to speed up
financial simulations [5, 15].

While many numeric algorithms map nicely to FPGAs, there often remain parts
that are best executed on CPUs. Hybrid devices combine CPUs and FPGA fabrics on
a single device, delivering the best of both worlds. One recent example is the Xilinx
Zynq All Programmable System on Chip (SoC) based on ARM cores. These devices
are able to host fully featured operating systems like Linux and allow programs to
reconfigure the FPGA fabric during runtime. A key challenge of such heterogeneous
computing systems is to carefully balance all aspects of the hardware, including
communication, reconfiguration times, memory bandwidth, FPGA area and CPU
loads.

Among the products that are currently offered in the derivatives markets, options
are particularly attractive to investors. In general terms, an option is a contract that
gives the right, but not the obligation, to buy or sell the underlying asset at a fixed
price and date. What makes it attractive is the potential gain associated with the
contract, while presenting a limited risk to the buyer, which is equivalent to the
premium paid at the moment of purchase. And it is precisely the computation of
this premium (the option price) what concerns financial institutions.

American options present the additional challenge that the holder is allowed to
exercise the option at any time from purchase until the expiry date, in contrast to the
European option style, which can only be exercised at a fixed date. This freedom
makes its pricing much more challenging, since now the estimation of an optimal
exercise strategy comes into play.

The LS algorithm, which is implemented in this work, has been designed to
address the problem of finding such a strategy and deriving from it the option price
[9]. This is accomplished by working backwards, from maturity to the initial day,
on simulated MC paths by means of the least-squares regression method. For multi-
dimensional options, which derive their price from multiple underlying assets, MC
is currently the only known method that can be efficiently used to price them.

The quality of the simulated paths also depends on the mathematical model
used to describe the evolution of an underlying asset in the market. For high-
dimensional options, the Black-Scholes (BS) model has been used extensively due
to its relatively light-weight computation (only one parameter cannot be observed:
volatility). Besides, its results are close enough to the observed market values, and
it can be easily extended to make the model flexible enough for practical cases.
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When it comes to implementation, several issues need to be addressed. At first
sight, the LS algorithm does not present a clear way to perform hardware-software
partitioning. It is also a computationally intensive algorithm. The choice of certain
basis functions that work on the simulated paths influences the final price, and has
to be matched to the option being priced. Besides, the method used to solve the
least-squares process has an impact on the overall runtime. The chosen number of
simulated MC paths, and the number of days in which the option can be exercised,
define the amount of generated data. Storing this data temporarily in an external
memory chip is a straightforward approach, but faces a certain bandwidth limitation
and a considerable power consumption.

This work investigates custom computing solutions for the above mentioned LS
method [9]. The proposed solution targets hybrid computing systems, like Xilinx
Zynq, and is able to perform high-precision and energy-efficient computations.
Besides the classical approach, a novel algorithmic improvement called Reverse
LS is presented. This new approach does not require the storage of all intermediate
steps for all paths, but recomputes them on the fly. Recomputation is a well known
technique in embedded system to avoid energy-costly memory accesses [6, 7]. This
allows us to reduce the energy consumption by trading-off memory bandwidth with
FPGA resources, effectively moving less data across the board.

7.2 Background

This section covers the theoretical background and related work specifically relevant
to the content of this chapter. For the general background of financial computations
refer to Chap. 1 by Desmettre and Korn.

7.2.1 American Options

In simple terms, a financial derivative is a type of contract which derives its value
from the performance of an underlying entity (e.g. an asset). There are many types
of derivatives, being one of them the so called options. An option contract gives the
buyer the right, but not the obligation, to buy or sell an underlying asset at a specified
strike price and a specified date. In this regards, there are several exercising styles,
being two of them:

• European options, which can only be exercised at the expiry date (also called
maturity)

• American options, which could be exercised at any time before or at the expiry
date
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Fig. 7.1 Simulated paths using BS model, with initial price 36 [ad], strike price 40 [ad], American
call option

The option gives the holder the right to either:

• Sell the underlying assets: put option
• Buy the underlying assets: call option

Consider the example presented in Fig. 7.1, where different simulated scenarios
are presented for a given American call option, strike price and maturity. The holder
of the option needs to decide at each time step on whether to exercise the option or
hold it until a future date.

With S(τ) the value of the underlying asset at time τ , and K the strike price, the
intrinsic value at the current time step τ is calculated as Eq. (7.1) for call options,
and Eq. (7.2) for put options:

payoff(τ) = max(S(τ)−K,0) call (7.1)

payoff(τ) = max(K − S(τ),0) put (7.2)

The option is then said to be In the Money (ITM) if:

• (S(τ)> K) for a call option
• (S(τ)< K) for a put option

Following Fig. 7.1, whenever the option is ITM the holder has the choice of
executing an early exercise of the option or holding it until further steps in an attempt
to maximize its profit.

This right (to sell or buy) given by the option comes at a price, a premium that
the buyer pays the seller at the moment of the purchase. The price of an American
call/put option is given by Eqs. (7.3) and (7.4) respectively:

P = sup
τ∈T {t1,...,tm}

E(e−rτ (S(τ)−K)+) call (7.3)

P = sup
τ∈T {t1,...,tm}

E(e−rτ (K − S(τ))+) put (7.4)
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where:

• (x)+ means max(x,0)
• K is the strike price
• T is the maturity of the option
• {t1, . . . , tm}= { T

m × 1, . . . , T
m ×m} are potential exercise dates of the option

• T {t1, . . . , tm} is the set of stopping times with values in {t1, . . . , tm}
• r is the risk-free interest rate
• S(τ) can be simulated with an appropriate mathematical model, for example

using BS, as it will be covered in later sections
• In the case of multi-dimensional options, their value is derived from several

underlying assets (therefore dimensions)

A note is made on the fact that when the time interval is discretized as in Eqs. (7.3)
and (7.4), the option is then called Bermudan options.

The main complexity associated to American options resides in their pricing. As
mentioned before, this style of options can be executed not only at maturity (expire
date), like in the case of the European style, but also at intermediate steps. This
freedom that the option holder is given makes the estimation more complex. The
seller of the option (normally a bank or financial institution) has to estimate its price
expecting the worst case scenario where the holder would follow a sound strategy
at each step that maximizes its return. And this is exactly where the LS algorithm
comes into play [9].

7.2.2 Black-Scholes Model

The BS model assumes, among other considerations, that the stock price follows a
random walk, which implies that the stock price at any future time has a log-normal
distribution (meaning its logarithm has a normal distribution) [4]. It describes the
stock price S(t) by means of the Stochastic Differential Equation (SDE):

dS(t) = S(t)(r− q)dt + S(t)σdW(t), (7.5)

where: r = risk-free interest rate, q = dividend yield, σ = constant volatility of
stock’s returns, and W (t) is the associated Brownian motion.

The BS model is based on certain assumptions [4]. In particular, it assumes
constant volatility, which might not be the case in the real market. However, it is
still used nowadays due to its simplicity, ease of extension, and because it is a good
approximation of how much profit the holder could expect.
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7.2.3 Monte Carlo (MC) Methods

Simulating the BS model in Eq. (7.5) requires the application of an appropriate
discretization scheme. In this work we have applied the Euler discretization.
Discretizing into m steps with equal step sizes Δ t = T

m leads to:

Ŝti+1 = Ŝti exp

((
(r− q)− σ2

2

)
Δ t +σ

√
Δ t ΔWi

)
, (7.6)

with ΔWi being independent standard normal random variables.
The classic MC algorithm estimates the price P as the sample mean of simulated

instances of the discounted payoff values g(Ŝ). The complexity of MC methods
depends only linearly on the number of dimensions, which makes them an excellent
candidate for high-dimensional problems or a method of last resort for options with
no other numerical scheme.

MC results depend heavily on the number of simulated paths, due to its slow
convergence. This is based on the fact that the standard deviation of the error
only decreases as the square root of the number of simulations [8]. Therefore, the
higher the number of paths, the more accurate the result it yields. As an example, a
showcase is designed to price an American maximum call option on two correlated
stocks (correlation parameter ρ �= 0) under the BS model Eq. (7.6) by means of the
LS algorithm. The optimal expected discounted payoff is given by:

P = sup
τ∈T

E
[
e−rτ(max{S1(τ),S2(τ)}−K)+

]
, (7.7)

with input parameters: S1(0) = S2(0) = 100, K = 100, r = 0.05, q1 = q2 = 0.10,
σ1 = σ2 = 0.2, ρ = 0.1, T = 1, m = 365, T = { T

m × 1, T
m × 2, . . . , T

m ×m}, N =
10,000.

The influence of the number of simulated paths N on the accuracy of the option
price for the given example is displayed in Fig. 7.2, where the benchmark option
value is found at 10.12 (unspecified currency) using the binomial tree method [4].
The boxplots show the distribution of the option values obtained for 100 runs of
the LS algorithm. A comparison to the benchmark value of 10.12 clearly suggests a
minimum number of paths at around 10K.

7.2.4 Paths Generation

The BS model requires a sequence of normally distributed random numbers to
generate the paths. Furthermore, because the underlying assets (dimensions of the
option) coexist in the same market, these random numbers need to be correlated to
each other. In this work the following processes are executed in the given order:
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Fig. 7.2 Boxplots with the distribution of the results obtained by running the LS algorithm 100
times per number of paths: 10, 100, 1,000 and 10,000

1. Mersenne Twister (MT): The MT is a widely-used pseudo-random number
generator, whose MT19937 version is the one implemented in this work. It
produces a sequence of 32-bit unsigned integer random numbers, and has a
period of 219937 − 1. The algorithm code is explicitly shown in [10], and could
be seen as split into two main parts [11]:

• A set of 624 internal states used to generate the random numbers. This internal
states are initialized through a seed that generates the initial values, and an
actualization process modifies the states every 624 output numbers

• A tempering function, a sequence of xor operations, that outputs the final
number

It is possible to pipeline this algorithm in order to achieve one output per clock
cycle. In fact, the work is done on the actualization process itself, so that each
state is actualized as soon as it has been used for the last time in the current cycle.

2. Inverse Cumulative Distribution Function (ICDF): The MT module presented
before generates uniformly distributed random numbers, whereas the BS model
requires normally distributed ones. Previous work on this field has provided with
an efficient implementation of the ICDF to obtain the desired standard normal
distribution [13]. Furthermore, the mentioned implementation generates single-
precision floating-point random numbers, which will match later with the setup
for this work. A note is made, however, on the fact that the method does not
precisely guarantee a valid output at every single clock cycle, but nevertheless
presents a good tradeoff between hardware utilization and performance, as
compared to more expensive approaches like the Box-Muller method [13].
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3. Antithetic Variates: As mentioned before, the MC method suffers from slow
convergence (high simulation runtime), which is overcome by attempting a
faster reduction of its variance. In this regard, the easiest one is the method of
antithetic variates, which works by introducing symmetry [8]. In this work, the
antithetic method is implemented after the ICDF module, meaning that it works
on normally-distributed random numbers. Under this condition, it can be proven
that for a single random number z, then −z is also a valid number, which reduces
the overall number of generations by half. Furthermore, when using models
based on Brownian motion to generate the paths, the payoffs of high-dimensional
options can be typically written as:

P = h(Z1, . . . ,Zk). (7.8)

Under the assumption that h is monotonic on each variable, then it is possible
to prove that Eqs. (7.9) and (7.10) are negatively correlated, which means that
it can be used as a variance reduction technique. A similar approach on uniform
random numbers is presented in [8].

P1 = h(Z1, . . . ,Zk) (7.9)

P2 = h(−Z1, . . . ,−Zk) (7.10)

4. Correlation: In the case of a two-dimensional option, the correlation process
mentioned before is obtained in practice through the correlation of two inde-
pendent random numbers, y ∼ N(0,1) and z ∼ N(0,1), and coefficient ρ , as
in Eq. (7.11), delivering two correlated random numbers z and w as outputs [8].

w = ρz+
√
(1−ρ2)y (correlation) (7.11)

The generated random number following the previous sequence are then fed into the
BS model Eq. (7.6) in order to obtain the required paths.

7.2.5 LS Algorithm to Price American Options

The LS algorithm approximates the value of an American option by means of
simulation [9]. The simulated MC paths represent the behaviour over time of the
underlying assets (e.g. stocks), which compose the option to be priced. These
paths could be obtained by different mathematical models with different degrees of
complexity, for example BS. Once the paths have been generated, the option price
is estimated by assessing which would be the best strategy the holder would follow
that maximizes its profit. This strategy becomes, in turn, the worst-case scenario for
the seller.
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At the expiry date (maturity) the holder has only one choice, and that is to
exercise the option only if it is ITM. However, at any other time, the holder can
decide between:

• Exercising the option immediately
• Holding the option (called continuation)

The option should be exercised if the payoff of immediate exercise is higher than
the continuation value. However, this continuation value is defined as the conditional
expected value of continuing the option, assuming that the option is not exercised
at or before the current time step. In general terms, the LS algorithm estimates this
conditional expectation based on all generated paths at the current step, in order to
derive the optimal excercise strategy.

In more detail, the LS algorithm uses least-squares linear regression to find the
optimal exercise boundary. The basic steps are:

1. Generate N independent paths per underlying (stock) at all possible exercise
dates, using a chosen Random Number Generator (RNG) and a chosen math-
ematical model (in our case with Eq. (7.6)). For multi-dimensional options, the
Random Numbers (RNs) need to be correlated.

2. Initialize the cash-flow with the discounted payoffs at maturity.
3. Moving backwards one step in time, proceed as follows:

• Linear regression: the goal is to find out whether to exercise the option or to
hold it. For this purpose, the current discounted payoff (when exercised) is
compared to the future expected return (for holding the option), approximated
by regression. As an example, Fig. 7.3 plots the future return (cash-flow) over
the current stock price for each path. Least-squares linear regression with user-
defined basis functions is applied to obtain the expected future value, as shown
in Fig. 7.3.

• Cash-Flow update: For every path at the current time step compare the
expected return in Fig. 7.3 with the current discounted payoff, take the larger
one and update the corresponding value of the cash-flow.

Repeat this process step by step until the initial day.
4. At the initial day, average all values in the cash-flow to obtain the option value.

The challenging part for LS is the choice of basis functions for regression. They
highly depend on the exact form of the option being priced and need to be matched
to the characteristics of the payoff function.

The flow described previously for the LS algorithm has been explained in simple
terms aimed at giving a quick background on the topic. For the study case discussed
in later sections pricing two-dimensional American maximum call options, a formal
algorithm is given in the Appendix.
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Fig. 7.3 Regression process example for a two-dimensional American max call option at time
step i = 200. For each path the cash flow (holding value) is drawn over the current stock values
(circles). The discounted payoff (exercising value) is shown, as well as the computed regression
curve based on the drawn circles (expected mean future holding value)

7.2.6 Related Work

The use of FPGAs for accelerating financial simulations has become attractive with
the first available devices. Many papers are available that propose efficient random
number generation methods and paths generations. Most of the research focuses on
the BS market model. For MC methods De Schryver et al. have shown that FPGAs
are 33× more energy-efficient in the Heston market model [14]. For the GARCH
model Thomas et al. could show speedups of 80× [16], for the Black Scholes model
they showed speedups of 313× [19]. Sridharan et al. have extended this work to
multi-asset options in the Black Scholes model [15], presenting speedups of up to
350× for one FPGA device. All four implementations are not able to price American
options.

At the time this work was being carried out, there was only one publication of an
architecture able to price American options by means of MC methods [18]. Their
work is based on the LS algorithm and it has presented speedups of 20× in FPGA
compared to CPU. It makes use of an efficient fully parallel architecture and an
external memory chip to store the simulated MC paths. Some of the ideas presented
in their work have been used as the basis of our new architecture. Nevertheless, their
design makes use of 26/32-bit fixed-point arithmetic with a target resolution of 10−4

[17, 18].
However, their design presents several opportunities for improvement:
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• Only 4K paths in MC simulations (compared to the minimum 10K paths
suggested in the preceding sections)

• The use of an external memory chip, with its related power consumption and
bandwidth limitation (imposed by technology)

The latter can be overcome by means of recomputation. A new approach, coined
Reverse LS [2, 20], is based on this technique and is the subject of the following
sections.

7.3 Reverse Longstaff-Schwartz

In the formulation of the LS algorithm in Sect. 7.2.5, first all paths are generated
in step 1 and then traversed in reverse order in step 3. That means the value of
each stock price at each time step for all paths has to be stored and communicated
between these steps. A total of d.m.N values are generated, d being the dimension
of our derivative, m the number of steps, and N the number of MC paths. We call
this standard approach the path storage solution.

For FPGAs, with only limited internal storage of a few MB, this poses a huge
design challenge and in general requires to use several external high-speed memory
devices, making the design much more complex. We will now present a novel idea
based on recomputation to avoid this massive storage of data.

Instead of storing the paths at each time step, we only store the final stock prices
at maturity Ŝtm and then recompute all the other alongside step 3 of the LS algorithm.
For that to work we need to find a way to compute the stock price Ŝti based on the
future price Ŝti+1:

Ŝtm → Ŝtm−1 . . .→ Ŝt1 → Ŝt0 .

The discretized BS equation in Eq. (7.6) is reversible provided we supply the same
RNs, such that:

Ŝti = Ŝti+1 exp

((
σ2

2
− r+ q

)
Δ t −σ

√
Δ t ΔWi

)
.

In this work, we are using the MT 19937 algorithm to generate a sequence of RNs.
Instead of storing the RNs the idea is to build a RNG that generates exactly the
opposite sequence, starting from the last one. Fortunately, the MT is a linear RNG,
meaning that its state transition function is reversible. In fact, while the tempering
function is kept unaltered, only the internal states are to be recomputed [3]. In
general this works for all linear RNGs. Based on this a reversed MT can be built. As
a result, the Reverse LS method only needs to store and communicate d.N values.
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7.4 Architecture

In this section an overview of the whole operation is given, beginning with the
paths generation, going through the LS algorithm and computing the final option
value. The two proposed solutions are described and compared: Paths Storage in an
external memory chip versus the novel approach coined Reverse LS. A more detail
description of the main blocks is covered in the subsequent sections, concluding
with notes on how the architecture achieves high-throughput operation.

7.4.1 General Architecture

In general terms, CPUs can be considered as a general purpose device with a fixed
hardware structure, which run a program based on a set of predefined hardwired
instructions. On the contrary, FPGAs provide with a flexible hardware that can
be configured according to the application, enabling dedicated blocks to run more
efficiently. There are, however, recent hybrid CPU/FPGA systems, like the Xilinx
Zynq, which combine both worlds and provide enough resources to attempt an
efficient hardware-software partitioning with low communication latency between
both parts. By pipelining the design and fully exploiting the available FPGA
resources through multiple parallel instances, the architecture is able to achieve high
throughput. The efficiency in terms of energy consumption is the result of carefully
implemented modules with minimum resources utilization.

As mentioned before, one particular characteristic of the LS algorithm is that it
can only start working (backwards from maturity towards the initial day) once all
MC paths have been generated. At this point, the modules in charge of generating
this data return to idle, unnecessarily consuming valuable resources on the FPGA.
This situation is overcome by exploiting a powerful feature available in Xilinx Zynq
devices: the FPGA can be dynamically reprogrammed, either totally or partially.

The preceding explanation leads to an architecture divided into three steps:

• STEP 1: Forward paths generation until maturity
• STEP 2: FPGA reprogramming
• STEP 3: LS operation

Reprogramming in step 2 implies that the preceding and succeeding steps have
access to the total amount of resources on FPGA. The time it takes to reprogram
the FPGA could be amortized depending on the setup, as it will be explained in
later chapters.

The general architecture is presented in Fig. 7.4. In step 1, multiple instances of
the forward paths generation block increase bandwidth. In step 3, after reprogram-
ming, the LS algorithm starts working in a pipelined fashion, in order to compute
one value per clock cycle. Again, multiple parallel instances are possible in order to
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increase bandwidth. Once the initial day is reached, the values from the cash-flow
are averaged, which yields the option price.

The architecture in Fig. 7.4 is suited for high-dimensional options, where each
instance of the path generation blocks (either forward of reversed) is capable of
generating paths for each of the underlying assets (dimensions) simultaneously.
Besides, the building blocks of the LS can also be adjusted accordingly.

7.4.2 Paths Storage vs Reverse LS

A straightforward approach is to store all generated paths in an external Dynamic
Random-Access Memory (DRAM), as depicted in Fig. 7.4. First, there is a full write
process to DRAM that takes place alongside the paths generation. Once the DRAM
has been populated and the FPGA reprogrammed, the LS requests all paths, step by
step, in a reverse sequence (from maturity towards the initial day). However, this
approach presents three disadvantages:

• Data size: a large number of paths, steps, or dimensions, might be enough to
exceed the available memory capacity

• Bandwidth: limited by technology based on the memory type (e.g. DDR3), data-
bus width, and clock frequency

• Dynamic power consumption: while writing and reading data

Alternatively, the proposed Reverse LS solution overcomes the mentioned disad-
vantages by recomputing the paths backwards, from maturity, in parallel to the LS
algorithm, as shown in Fig. 7.4. The forward paths generation process still computes
all MC paths, but only needs to store the paths at maturity. A partial reconfiguration
of the FPGA keeps this data on the FPGA, in order for the LS algorithm to start
operation immediately in step 3.

7.4.3 Paths Generation: Forward and Reversed

The summarized forward paths generation block from Fig. 7.4 is presented in its
full version in Fig. 7.5, and follows the same steps detailed in Sect. 7.2.4. Since
paths belonging to each underlying are independent of each other, multiple parallel
instances of the complete block are possible, as shown in Fig. 7.4 with dots. The
block shown in Fig. 7.5 is configured for two-dimensional options, where each of
the BS modules generates paths for one of the underlyings (dimensions). Therefore,
this block can be easily extended to higher dimensions by adjusting the number of
parallel internal modules, as shown in Fig. 7.4 with dots.

The reversed paths generation block is presented in Fig. 7.6, configured for
two-dimensional American options, and following the explanation in Sect. 7.3.
It is similar to its forward counterpart, with the exception that now the paths
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Fig. 7.5 Paths generation forward in detail, configured for two-dimensional American options

Fig. 7.6 Reversed paths generation in detail, configured for two-dimensional American options

are regenerated from maturity until the initial day (backwards), step by step. As
presented before, the BS module is easily reversible. The backward operation of the
MT module only needs to reverse the update process that modifies its internal states
(the tempering function is kept unaltered). To obtain the same sequence of random
numbers in reverse order, it only requires a copy of the last states and final index of
its forward counterpart.

7.4.4 LS Implementation

The blocks required to update the cash-flow are fairly straightforward to implement
following Sect. 7.2.5, and can be easily parallelized. However, the regression step
presents a higher complexity in terms of implementation.

The core of the regression process consists of finding the regression coefficients
required to generate the conditional expectation function at every step. These
coefficients b are obtained by solving the system of linear equations:

X b = y, (7.12)

where each row of X contains the values of the basis functions for every path that
is ITM, and y contains the corresponding value in the cash-flow. The number of
coefficients in b equals the number of basis functions.

Solving the regression process in hardware becomes either too expensive in terms
of resources (fully parallel implementation) or requires a large latency (serialized
version). It also becomes inflexible in terms of the method used and the number
of coefficients to be calculated. To lift these restrictions, an intelligent hardware-
software partitioning is introduced by calculating the coefficients on CPU. In order
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to reduce the communication overhead between FPGA and CPU, the size of the
matrices is reduced, following [18], by rewriting Eq. (7.12) as:

(XT X)b = (XT y), (7.13)

where for k basis functions, the size of (XT X) and (XT y) is k × k and k × 1
respectively. It has already been proven that this process can be pipelined by
means of accumulators [18]. For monomial-type basis functions x0, x1 and x2, these
accumulators become:

XT X =

⎛
⎜⎜⎜⎝

∑
n

x0
n ∑

n
x1

n ∑
n

x2
n

∑
n

x1
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n
x2

n ∑
n

x3
n

∑
n

x2
n ∑

n
x3

n ∑
n

x4
n

⎞
⎟⎟⎟⎠ ; XT y =

⎛
⎜⎜⎜⎝

∑
n

yn

∑
n

ynxn

∑
n

ynx2
n

⎞
⎟⎟⎟⎠ (7.14)

Different methods can be used to solve Eq. (7.13), such as Cholesky decompo-
sition, or the direct method via matrix inverse Eq. (7.15). Although the latter is the
one implemented in this work, the Cholesky decomposition is more efficient and
can be also easily implemented in the proposed architecture since these operations
are executed in software.

(XT X)−1 =
1

det(XT X)
(Ad joint(XT X)) (7.15)

7.4.5 High-Throughput Operation

It is possible to achieve high-throughput operation along the entire architecture
presented in Fig. 7.4. In fact, every module is designed in a pipelined fashion in
order to process one new value every clock cycle. Furthermore, several blocks work
in parallel, with minimum latency between each other:

• Paths Generation Forward and Direct Memory Access (DMA) (full write): data
is sent to DRAM as soon as it is available, with a minimum latency enough to
prepare the first DMA burst

• LS and Paths Generation Reversed / DMA (full read): regression coefficients are
computed in CPU and sent to the Update Cash-Flow module. As soon as the first
path in the cash-flow is updated, two extra events happen:

– This new value is available for the next Regression Data Collection
– The value of the stock (path) already used at the current step is no longer

required and is immediately updated by either the Paths Generation Reversed
module or the DMA (full RD), depending on the implemented solution. In
either case, at this point in time the new value of the path has been waiting
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to be delivered. It is then not only sent to the corresponding vector, but it is
also sent simultaneously to determine if it is ITM and to generate the basis
functions

By means of the previous explanations, high-throughput operation for the overall
architecture is possible.

7.5 Amortization of FPGA Reconfiguration

Reconfiguring the FPGA implies certain time and energy consumption which can
easily exceed the runtime and energy consumption required when pricing a single
option. However, when pricing a large set of options, the combination of the Paths
Storage approach and the novel Reverse LS allows for easy amortization of the
mentioned reconfiguration. In this case, all paths are generated for every option, but
only the ones at maturity are stored in an external memory chip. Once the process
is finished, the FPGA is reconfigured only once and the options are priced one by
one, initializing the paths from the external memory and recomputing the paths
backwards by means of the Reverse LS.

7.6 Setup

A comparison between the paths storage approach against their recomputation is
only possible in a common setup. In this regard, there is a key observation to
make: whereas DRAM chips have an upper limit on bandwidth (defined by the
memory type, the clock frequency and the width of its data bus), the bandwidth in an
FPGA is only dependent on the number of available resources (hence the number of
parallel instances). However, FPGA resources vary considerably among devices and
vendors. As a result, both implementations are set to run at the maximum DRAM
bandwidth and compared in terms of the energy consumption. Up to the mentioned
bandwidth, the lowest energy consumption determines the most profitable approach.
Above it, the DRAM itself will not suffice the required bandwidth.

The complete setup, as well as the hardware resources, are detailed in Table 7.1.
The FPGA clock is a submultiple of the one used in DRAM, and enough instances
of all blocks are used in order to achieve the target bandwidth of 4,266 MB/s.

Although the chosen setup targets two-dimensional options as a testcase, the
architecture proposed in Sect. 7.4.1 can be easily adapted for high-dimensional
American options.

Our implementation has also been cross-verified with a binomial tree implemen-
tation: Reverse LS: P = 9.92±0.24; Binomial Tree (Benchmark): P = 10.12; Setup:
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Table 7.1 Setup table Detail Description

Option style American

Option type Call

Option characteristics maximum

Dimensions 2

Basis functions type Monomial

Basis functions detail 1,max(S1 ,S2),max(S1 ,S2)
2

Paths per dimension 10K

Steps 365

Data type Single-precision floating point

Total data 27.85 MB

Platform ZC702 evaluation kit

Operating system Linux (Linaro)

DRAM type DDR3

DRAM data-bus 32 bits

DRAM clock 533.33 MHz

DRAM bandwidth 4266.64 MB/s

FPGA clock 133.33 MHz

FPGA bandwidth 4266.64 MB/s

S1,2(0) = 100, K = 100, r = 0.05, q1,2 = 0.10, σ1,2 = 0.2, ρ = 0.1. The chosen
basis functions generally deliver good results for general options, however not the
best result. This depends on the type and the number of basis functions, which need
to be tried and tested.

7.7 Tools and Estimation Methodology

The different modules have been implemented in Vivado High-Level Synthesis
(HLS) using C, and optimized for high-performance at a clock period of 7.5 ns
(133.33 MHz) with a minimum number of FPGA resources. The place-and-route
(P&R) report on resources utilization was then fed into the Xilinx Power Estima-
tor [21] in order to obtain power estimations of individual blocks. The estimated
values have been checked by means of testbenches on the Xilinx Zynq ZC702
Evaluation Kit. In a similar way, DRAM DDR3 power consumption is based on
measured values at different bandwidths on the same board. The testbench followed
the same access pattern used in the full architecture and achieved a maximum of
83% and 87% of the peak theoretical bandwidth for writing and reading respectively
[20]. Then these values were extrapolated to the maximum theoretical bandwidth
available (4,266 MB/s at 533.33 MHz and 32-bit data bus).

In terms of energy consumption, all values are derived from the obtained average
power consumption and the required runtime.
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7.8 Results

For the given setup, the resources utilization on the FPGA is detailed in Table 7.2,
grouped by major blocks. A note is made on the fact that the minimum Zynq device
on which the given configuration fits, with the required parallel instances, is the
Z-7030 device.

As mentioned before, every single building block in the proposed architecture
has been fully pipelined with an initiation interval of one clock cycle (II = 1). This
means that every block starts processing a new data value in every clock cycle.
At 4,266 MB/s, the total amount of data (27.85 MB) is processed in approximately
6.53 ms, as presented in Table 7.3. The total runtime in this case, including
the communication overhead between CPU and FPGA and excluding the FPGA
reconfiguration, adds up to 16.94 ms for one option pricing.

Table 7.2 FPGA resources breakdown

Step Block LUT FF DSP BRAM

1 Path generation forward 18,404 17,376 188 88
Paths @ Maturity 1,752 1,648 0 64

2 Reconfiguration – – – –

3 Longstaff-Schwartz 28,296 33,468 212 108
Path generation reversed 24,048 23,932 164 88

Table 7.3 Power, runtime and energy consumption breakdown

Dynamic Runtime Energy

Block power (mW) (ms) (mJ)

Path generation forward 1,239 6.53 8.09

Paths @ Maturity 334 0.02 0.01

Paths storage full WR 1,265 6.53 8.26

MT communication overhead 1/2 160 1.21 0.19

Reprogramming [1] 1,860 50.00 93.00

MT communication overhead 2/2 160 0.62 0.09

Paths storage full RD 1,526 6.53 9.97

Path generation reversed 1,392 6.53 9.09

Regression data collection 795 6.53 5.19

Regression coefficients (CPU) 160 2.03 0.32

Update cash-flow 374 6.53 2.44

Cash-flow 174 6.53 1.14

Paths @ Current-Step 334 6.53 2.18

Accumulation (Average) 103 0.02 0.00
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Fig. 7.7 Dynamic energy consumption breakdown

7.8.1 Dynamic Energy Consumption Breakdown

Based on the dynamic power and the runtime, it is possible to derive the dynamic
energy consumption of every building block shown in Fig. 7.4, as detailed in
Table 7.3.

Figure 7.7 presents the dynamic energy consumption breakdown of the whole
architecture when the novel Reverse LS approach is implemented. MT commu-
nication overhead refers to the energy consumed to initialize the internal states
of the forward MT modules, read the final states and index, and initializing the
reversed MT modules. The LS column in Fig. 7.7 includes the energy consumption
in FPGA (10.95 mJ) and in CPU (0.32 mJ). The latter includes the computation of
the regression coefficients, as well as the communication overhead when reading
the accumulated matrices and writing back the coefficients.

An optimized CPU implementation of the entire algorithm in Matlab on an
Intel i5-2450M (2.50GHz) core with, 6GB of RAM, requires, for the given setup,
270ms and an energy consumption of 12.70J. The latter has been obtained at the
power-plug with all unnecessary components in the computer disabled. In contrast,
our implementation in Zynq requires 16.94ms and consumes approximately 47mJ,
providing a speedup of 16× in runtime and 268× in energy consumption.

7.8.2 Reverse LS Versus Paths Storage

When comparing the regeneration of the paths in FPGA against the storage of all
paths in DRAM (both when writing and reading data), there is a reduction in the
energy consumption of 2×, as depicted in Fig. 7.8. All values shown are based on
the given setup and methodology. To make a fair comparison, only the additional
(dynamic) energy consumption is taken into account. This is due to the fact that in a
hybrid CPU/FPGA device, like the Xilinx Zynq running Linux on the ARM cores,
the DRAM is already being used by the operating system.
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Fig. 7.8 Dynamic energy consumption when regenerating all paths in FPGA and when storing the
paths in an external memory (DRAM)

7.8.3 Comparison to Related Work

The reference work [18] presented a dedicated FPGA implementation targeted for
one specific option and setting. It further uses a number format specialized for this
usecase based on 26/32-bit fixed-point operations. With our proposed architecture
we show how it is possible to target high-dimensional options. We further use single-
precision floating-point operations, so that the user does not have to take care of the
accuracy of the solution.

The main inconvenience in comparing our work to the reference resides in the
fact that both architectures target different devices at different technology nodes.
Under these circumstances, it was decided to run the comparison on the basis of
energy efficiency, by porting their work [18] to the same Xilinx Zynq device based
on their published resources utilization. Although this approach is just a coarse
estimation, it could still be considered a valid setup for a comparison purposes. For
their work, one option pricing consumes, according to XPE, 2.46mJ dynamic power
including one DRAM chip. Our downscaled architecture to one-dimension and the
same number of paths and steps only requires 1.85mJ dynamic power, being a 33%
improvement. This means that we achieve higher energy-efficiency while providing
higher accuracy. We make this possible with FPGA reconfiguration in combination
with an optimized scheduling, and our novel Reverse LS approach.

7.9 Conclusion

American option pricing is a computational challenge for financial institutions,
which operate huge clusters. In this work a high-throughput and energy-efficient
pricing system for American options has been presented, targeting hybrid
CPU/FPGA devices. Compared to the state-of-the-art, this is the first FPGA-based
implementation targeting the full range of high-dimensional American options.

Our main contribution is Reverse Longstaff-Schwartz, a bit-true algorithmic
transformation where recomputation is exploited. Paths storage is minimized by
means of recomputation, removing any bandwidth limitation and significantly
improving energy-efficiency. By additionally making use of runtime reconfiguration
and utilizing an optimized scheduling to amortize the reconfiguration times, we are
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able to deliver higher energy-efficiency. In this regard, the resulting architecture is
16× faster and 268× more energy-efficient than an optimized Intel i5 implementa-
tion in Matlab.
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Appendix

Algorithm 1 Longstaff Schwartz MC method to price American maximum call
option on two stocks
Input: discounted payoff g(S)
Output: option price VN

1: Generate N independent paths for two stocks at all possible exercise dates:
{Sn

1(t0),S
n
1(t1), . . . ,S

n
1(tm)} and {Sn

2(t0),S
n
2(t1), . . . ,S

n
2(tm)}, with n = 1, . . . ,N, ti =

T
m × i,

i = 1, . . .,m and Sn
1(t0)≡ S1(0), Sn

2(t0)≡ S2(0) as follows:

S1(ti) = S1(ti−1)e
((r−q1− 1

2 σ2
1 )Δ t+σ1

√
Δ tZ1)

S2(ti) = S2(ti−1)e
((r−q2− 1

2 σ2
2 )Δ t+σ2

√
Δ tZ2)

with Z1 = u1 and Z2 = ρu1 +
√

1−ρ2u2, where u1,u2 ∼ N(0,1).
2: At maturity tm = T , fix the discounted terminal values of the American option for each path

n = 1, . . . ,N:

V n(tm) = e−rT (max{Sn
1(tm),S

n
2(tm)}−K)+

3: Compute backward at each potential exercise date ti for i = m−1,m−2, . . .,1:

1. Choose k basis functions: {H1, . . . ,Hk}.
2. Consider the subset of paths ΘN̂ ⊂ {1, . . . ,N} for which the option is ITM, i.e.

max{Sn
1(tm),S

n
2(tm)}> K holds for n ∈ΘN̂ .

3. Solve the least-square linear regression problem:

min
al∈R

1

N̂

N̂

∑
n=1

(V n(ti)−
k

∑
l=1

alHl(S
n
1,2(ti)))

2

Sn
1,2(ti) := {Sn

1(ti),S
n
2(ti)} for simplicity

and obtain the optimal coefficient a∗:

a∗ := [a∗1, . . . ,a
∗
k ]
�

= (X�X)−1X�Y ∈R
k×1

(continued)
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Algorithm 1 (continued)

with Y := [V 1(ti), . . . ,V N̂(ti)]� ∈ R
N̂×1,

X :=

⎛
⎜⎜⎝

H1(S1
1,2(ti)) . . . Hk(S1

1,2(ti))
... . . .

...
H1(SN̂

1,2(ti)) . . . Hk(SN̂
1,2(ti))

⎞
⎟⎟⎠ ∈R

N̂×k

4. Calculate the approximation of the value for continuing the option Cn(ti) and the value for
exercising the option En(ti) for each path n ∈ΘN̂ :

Cn(ti) =
k

∑
l=1

a∗l Hl(S
n
1,2(ti))

En(ti) = e−rti (max{Sn
1(ti),S

n
2(ti)}−K)+

5. Compare the value of Cn(ti) and En(ti) to decide whether to exercise or to continue the
option:

V n(ti) =

{
En(ti), if n ∈ΘN̂ andEn(ti)≥Cn(ti)

V n(ti+1), otherwise

4: Compute VN =

(
1
N

N
∑

i=1
V n(t1)

)
as an approximation for the American option price
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Chapter 8
Bringing Flexibility to FPGA Based
Pricing Systems

Christian Brugger, Christian De Schryver, and Norbert Wehn

Abstract High-speed and energy-efficient computations are mandatory in the
financial and insurance industry to survive in competition and meet the federal
reporting requirements. While FPGA based systems have demonstrated to provide
huge speedups, they are perceived to be much harder to adapt to new products. In
this chapter we introduce HyPER, a novel methodology for designing Monte Carlo
based pricing engines for hybrid CPU/FPGA systems. Following this approach,
we derive a high-performance and flexible system for exotic option pricing in
the state-of-the-art Heston market model. Exemplarily, we show how to find an
efficient implementation for barrier option pricing on the Xilinx Zynq 7020 All
Programmable SoC with HyPER. The constructed system is nearly two orders of
magnitude faster than high-end Intel CPUs, while consuming the same power.

8.1 Introduction

The recent advance in financial market models and products with ever increasing
complexity, as well as the more stringent regulations on risk assessment from
federal agencies have led to a steady growth of computational power. Additionally,
increasing energy costs force finance and insurance institutes to consider new
technologies for executing their computations. Graphics Processor Units (GPUs)
have already demonstrated their benefit for speeding up financial simulations and
are state-of-the-art in finance business nowadays [2, 21].

However, Field Programmable Gate Arrays (FPGAs) have been shown to
outperform GPUs with respect to speed and energy efficiency by far for those
tasks [6, 15, 17]. They are currently starting to emerge in finance institutes such
as J.P. Morgan [1, 7] or Deutsche Bank [12]. Nevertheless, most problems cannot
be efficiently ported to pure data path architectures, since they contain algorithmic
steps that are executed best on a Central Processing Unit (CPU).
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FPGA CPU

Reconfigurable Hybrid System

=  best of both worlds
Interconnect

Fig. 8.1 In this work we target reconfigurable hybrid systems, i.e. heterogeneous FPGA/CPU
platforms. With this setup we can exploit the efficiency of reconfigurable logic and the flexibility
of a processor, having best of both worlds

Hybrid devices as shown in Fig. 8.1 combine standard CPU cores with a
reconfigurable FPGA area, connected over multiple high-bandwidth channels. They
allow running an Operating System (OS) that is able to (re-)configure the FPGA part
at runtime, e.g. for instantiating problem specific accelerators. A prominent example
is the recent Xilinx Zynq All Programmable System on Chip (SoC).

In addition to the technological improvements, there are advances in the algo-
rithmic domain as well. Although classical Monte Carlo (MC) methods are still
prevailing, for example Multilevel Monte Carlo (MLMC) methods are more and
more called into action [8, 10]. They can help to reduce the computational effort in
total, but require a higher complexity in the controlling and require a more flexible
execution platform.

In this chapter, we illustrate how we can combine the benefits of dedicated hard-
ware accelerators with high flexibility as required by many practical applications on
hybrid CPU/FPGA systems. For this purpose we have combined the current trends
both from technology and computational stochastics to an option pricing platform
for reconfigurable hybrid architectures. The proposed HyPER framework can handle
a wide range of option types, is based on the state-of-the-art Heston model, and
extensively uses dynamic runtime reconfiguration during the simulations. To derive
the architecture, we have applied a platform based design methodology including
Hardware/Software (HW/SW) split and dynamic reconfiguration.

In particular, we focus on the following points:

• We propose an energy-efficient and modular option pricing framework called
HyPER that is generically applicable to all kinds of hybrid CPU/FPGA platforms.

• We show how the special characteristics arising from reconfigurable hybrid
systems can be included in a platform based design methodology.

• We have implemented HyPER configuration setup on the Xilinx Zynq-7000 All
Programmable SoC relevant to practitioners. For this implementation we give
detailed area, performance, and energy numbers.

8.2 Background and Related Work

The use of FPGAs for accelerating financial simulations has become attractive with
the first available devices. Many papers are available that propose efficient random
number generation methods and path generations [5, 13, 14, 18–20, 22]. Although
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most are focused on the Black-Scholes market model, there are a few publications on
non-constant volatility models as well. Benkrid [20], Thomas, Tse, and Luk [18, 22]
have thoroughly investigated the potentials of FPGAs and heterogeneous platforms
for the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) set-
ting in particular. Thomas has come up with a Domain-Specific Language (DSL)
for reconfigurable path-based MC simulations in 2007 [18] that supports GARCH
as well. It allows to describe various path generation mechanisms and payoffs and
can generate software and hardware implementations. That way, Thomas’ DSL is
similar to our proposed framework. However, it does neither incorporate MLMC
simulations nor automatic HW/SW splitting.

For the Heston setting, Delivorias has demonstrated the enormous speedup
potential of FPGAs for classical MC simulations compared to CPUs and GPUs in
2012 [6]. The results are included in Chap. 3, but do neither include energy nor
synthesis numbers.

De Schryver et al. have shown in 2011 that Xilinx Virtex-5 FPGAs can save
around 60 % of energy compared to a Tesla C2050 GPU [15]. Sridharan et al. have
extended this work to multi-asset options in 2012 [17], showing speedups up to
350 for one FPGA device compared to an SSE reference model on a multi-core
CPU. De Schryver et al. have enhanced their architecture further to support modern
MLMC methods in 2013 [16]. Their architecture is the basis for our proposed
implementation in this paper.

Our HyPER platform was first presented in [3]. A hardware prototype was
exhibited at the ReConFig 2013 and the FPL 2014 conferences.

8.2.1 Heston Model

The Heston model is a mathematical model used to price products on the stock
market [9]. Nowadays, it is widely used in the financial industry. One main reason
is that the Heston model is complex enough to describe important market features,
especially volatility clustering [10]. At the same time, closed-form solutions for
simple products are available. This is crucial to enable calibrating the model against
the market in realistic time.

In the Heston model the price S and the volatility ν of an economic resource are
modeled as stochastic differential equations:

dSt = Strdt + St
√

νt dW S
t ,

dνt = κ (θ −νt)dt +σ
√

νt dW ν
t .

(8.1)

The price S can reflect any economic resource like assets or indices as the S&P 500
or the Dow Jones Industrial Average. S can also be the stock price of a company. The
volatility ν is a measure for the observable fluctuations of the price S. The fair price
of a derivative today can be calculated as P = E[g(St)], where g is a corresponding
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discounted payoff function. Although closed-form solutions for simple payoffs like
vanilla European call or put options exist, so-called exotic derivatives like barrier,
lookback, or Asian options must be priced with compute-intensive numerical
methods in the Heston model [10]. A very common and universal choice are Monte
Carlo (MC) methods that we consider in this chapter.

8.2.2 Monte Carlo Methods for the Heston Model

Simulating the Heston model in Eq. (8.1) requires the application of an appropriate
discretization scheme. In this work we have applied Euler discretization that has
been shown to work well with in the MLMC Heston setting [11]. Discretizing
Eq. (8.1) into k steps with equal step sizes Δ t = T

k leads to the discrete Heston
equations given by:

Ŝti+1 = Ŝti + rŜtiΔ t + Ŝti

√
ν̂ti

√
Δ t

(√
1−ρ2 ZS

i +ρ Zν
i

)
,

ν̂ti+1 = ν̂ti +κ(θ − ν̂ti)Δ t +σ
√

ν̂ti

√
Δ t Zν

i . (8.2)

While the initial asset price S0 = Ŝt0 and r can be observed directly at the market,
the five Heston Parameters κ , θ , σ , ρ , and ν0 = ν̂t0 are obtained through calibration,
compare Chaps. 2 and 10. ZS

i and Zν
i are two independent normal distributed random

variables with mean zero and variance one. With this method an approximated
solution Ŝt can be obtained by linearly interpolating Ŝt0 , . . . , Ŝtk .

The classic MC algorithm estimates the price P = E[g(St)] of a European
derivative with a final payoff function g(S) as the sample mean of simulated
instances of the discounted payoff values g(Ŝ), i.e.,

Astd =
1
N

N

∑
i=1

g(Ŝi),

where Ŝ1, . . . , ŜN are independent identically distributed copies of Ŝ.
For the implementation, we have used the same algorithmic refinements as in the

data path presented in [16] (antithetic variates, full truncation, log price simulation).

8.2.3 The Multilevel Monte Carlo Method

The MLMC method as proposed by Giles in 2008 uses different discretization
levels within one MC simulation [8]. It is based on an iterative result refinement
strategy, starting from low levels with coarse discretizations and adding corrections
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Fig. 8.2 MLMC approximates the real stockpath that has infinite information, with multiple levels
of discretization. In this case the path is approximated with four and eight discretization points

from simulations on higher levels with finer discretizations. Figure 8.2 illustrates a
continuous stock path with two different discretizations (4 and 8 steps). It is obvious
that the computational effort required to compute one path increases for higher
levels. For a predefined accuracy of the result, the MLMC method tries to balance
the computational effort on all levels, therefore much more paths are computed on
lower levels (with coarser discretizations). Since for finer discretizations the vari-
ances decrease, it is sufficient to simulate fewer paths on higher levels. In total, this
leads to an asymptotically lower computational effort for the complete simulation
[8]. For our investigated financial product “European barrier options”, MLMC has
explicitly shown to provide benefits also for practical constellations [11].

Let us formalize the idea. Without loss of generality one can assume that k =
ML−1 discretization points for a fixed M and some integer L are sufficient to obtain
the desired accuracy. We define Ŝ(l) for l = l0, . . . ,L as the approximated solution
of Eq. (8.1) with Ml−1 discretization points. Then, in contrast to the classic MC
estimate where the “single” approximation Ŝ(l) is used, one considers the sequence
of approximation Ŝ(l0), . . . , Ŝ(L). With the telescoping sum

P̂ = E

[
Ŝ(L)

]
= E

[
g
(

Ŝ(l0)
)

︸ ︷︷ ︸
D̂l0

]
+

L

∑
l=l0+1

E

[
g
(

Ŝ(l)
)
− g

(
Ŝ(l−1)

)
︸ ︷︷ ︸

D̂l

]
. (8.3)

the single expected value by expected values of differences. Each of the expectations
on the right are called levels. The MLMC algorithm approximates each of these
levels with independent classic MC algorithms. To get a convergent and efficient
MLMC algorithm, it is important that the variances of the levels

Vl = Var[Dl ]
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decay to zero fast enough. One way to achieve fast enough convergence of Vl is
choose a suitable discretization scheme and to let Ŝ(l) and Ŝ(l−1) depend on the
same Brownian path. At the end the MLMC algorithm aims at reducing the overall
computational cost by optimally distributing the workload over all levels [8].

In our setup it has been explicitly shown that Euler discretization is suffi-
cient [11]. Using the discretized Heston model, Eq. (8.2), the price P can be
calculated according to Eq. (8.3) with L individual MC algorithms. To reach the
target accuracy ε , Nl paths are evaluated on each level l, given by:

Nl =

⌈
ε−2

√
Vl

L

∑
k=l0

√
Vk

⌉
. (8.4)

The level variances are estimated with initial Nl = 104 samples. To let Ŝ(l) and Ŝ(l−1)

depend on the same Brownian path, the same random numbers of the fine path are
also used to approximate the coarse path, by adding up the M previous random
numbers of the fine path.

8.3 Methodology

The classical MC algorithm only uses one fixed discretization scheme and is very
regular. MLMC methods as introduced in the previous section are more complicated
and rely on an iterative scheme with high inherent dynamics. For both methods
dedicated FPGA architectures have been proposed [15, 16] (also see Sect. 8.2).
However, they are static architectures that use exactly one single generic FPGA
configuration throughout the entire computation and for all products.

In this work we systematically approach the inherent dynamics of the MLMC
algorithm and propose a pricing platform that incorporates them. The dynamics in
particular are:

• The huge variety of the financial products and their different structure on how to
calculate their price.

• The specialty of the first level, which calculates only one price path, while the
higher levels calculate two paths simultaneously.

• The different number of discretization steps used in the iterative refinement
strategy and the impact on the FPGA architecture.

Our goal is to design a pricing system that exploits the characteristics of the
underlying hybrid CPU/FPGA execution platform efficiently for each part of the
iterative algorithm and for all products traded on the market. A static design
can never cover the complete range of those dynamics. Therefore we introduce a
platform based design methodology that captures all the important characteristics
of the problem and hybrid systems in general, but leaves enough flexibility to price
arbitrary products and to target any specific hybrid device, see Fig. 8.3. It comes
with three key features that address the dynamics:
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Fig. 8.3 The HyPER platform makes use of a platform based design methodology in which both
the flexibility in the application and architectural space is captured by an automated approach.
Once the user specifies the exact financial product and the target platform, the HyPER platform
generates an optimal implementation for exactly this setup

• A modular pricing framework that is easily extensible, and consist of reusable
building blocks with standardized ports to minimize the effort for adding new
products.

• Extensive use of online reconfiguration of the FPGA to always have the best
architecture available at any time, while still keeping the overhead of reconfigu-
ration in mind.

• Use of static optimization to find the optimal configurations for a given financial
product and specific hybrid device. The goal of the optimizer is to exploit all
available degrees of freedom, including HW/SW splitting and the flexibility of
the modular architecture.

With this new methodology it is possible to design a novel pricing system
that is aware of the inherent dynamics of the problem. We introduce the resulting
framework as the HyPER pricing system in the next section.

8.4 The HyPER Pricing System

HyPER is a high-speed pricing system for option pricing in the Heston model. It
uses the advanced Multilevel Monte Carlo (MLMC) method and targets hybrid
CPU/FPGA systems. To be able to efficiently price the vast majority of exotic
options traded on the market it is based on reusable building blocks. To adapt the
FPGA architecture to the requirements of the multilevel simulation in each part of
the algorithm, it exploits online dynamic reconfiguration



174 C. Brugger et al.

8.4.1 Modular Pricing Architecture

For each level l the main steps of the MLMC algorithm are:

1. Simulate Nl MC paths Ŝ(l) and optionally Ŝ(l−1) with k = Ml time steps.
2. Calculate the coarse and fine payoff g

(
.
)

for each path.
3. Calculate the meanE[D̂l ] and variance Vl =Var[D̂l ] of the difference of all coarse

and fine payoffs, according to Eq. (8.3).

This is done for l= l0, . . . ,L. For practical problems the first level l0 is typically
equal to 1, the multilevel constant M equal to 4, and the maximum level L between
5 and 7. The number of MC steps N Ml is roughly the same on each level and in the
order of 1012 [8, 11].

Step 1 is the computationally most intensive part of the multilevel algorithm
since it requires solving Eq. (8.2). This involves Brownian increment generation
(Increment Generator) and calculating the next step of each path, step by step, path
by path (Path Generator). In HyPER we therefore implement it on the FPGA part of
the hybrid architecture. While for the first level l0 only one type of paths is calculated
(Single-Level Kernel), for higher levels fine and coarse paths are required with the
same Brownian increments. This makes the kernel more complicated and involves
more logic resources (Multilevel Kernel). This covers the frontend of the HyPER
architecture shown in Fig. 8.4.

The Brownian increments are generated with a uniform Random Number
Generator (RNG) and transformed to normally distributed random numbers. We
choose the Mersenne Twister MT19937 for the uniform RNG and an Inverse
Cumulative Distribution Function (ICDF) approach for the transformation. We
further use antithetic variates as a variance reduction technique [10].
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Fig. 8.4 The HyPER frontend is a modular pipeline in which each blocks are fully utilized in each
cycle. Payoff features are user defined and can be extended to generate path dependent features as
required for the financial product being prices. While often times only a small set of features are
required for a specific product, only the necessary blocks are mapped to the system
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8.4.1.1 Payoff Computation

Part 2 involves the payoff computation and is strongly dependent on the option being
priced. With the HyPER architecture we cover arbitrary European options, including
barrier options that depend on whether a barrier is hit or not, and Asian options for
which the payoff depends on the average of the stock price. For such path dependent
payoffs every price of the path has to be considered. This leads to the dilemma that
on the one hand a high-throughput payoff computation is needed, since the prices
are generated on the FPGA fabric with one value per clock cycle. On the other hand
the payoff computation may involve complex arithmetics that are not used in each
cycle. Considering the payoff procedure carefully in the HW/SW splitting process
is therefore crucial.

One of the key insights of the HyPER pricing system is to split the discounted
payoff function g

(
Ŝt
)

in two separate parts: A path dependent part Fi and a path
independent part h. The idea is to put the path dependent part Fi on the FPGA and
the independent part h on CPU. We express the payoff as:

g
(
Ŝt
)
= h

(
F1
(
Ŝt
)
, . . . ,Fn

(
Ŝt
))
.

We call the path dependent functions Fi features and choose them such that they
contain as little arithmetic operations as possible. h does not directly depend on Ŝt .
Let us look at an example: Asian Call options with strike K. Their payoff is given by:

gAsian(Ŝt
)
= e−rT max

(
1
k

k

∑
i=1

Ŝti −K,0

)
.

In this case the sum is path dependent and we can identify the result of this sum as
feature F :

F
(
Ŝt
)
=

k

∑
i=1

Ŝti , and gAsian(Ŝt
)
= h

(
F
(
Ŝt
))
,

⇒ h(x) = e−rT max
(
k−1x−K,0

)
.

For each MC path we now get one feature F instead of all prices from all the time
steps. This dramatically reduces the bandwidth requirements for the backend, for
example on level 5 from one value per cycle to one value every 1,024 cycles.

We have analyzed commonly traded European options1 and extracted five general
features with which it is possible to price all of them. They are given in Figs. 8.4

1Call and put options of type Vanilla, barrier (upper or lower, knock-in or knock-out, one barrier
or multiple, unconditioned or windowed), Asian (geometric or arithmetic), Digital, and Lookback
(fixed or floating strike) or any combinations of such types.
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Fig. 8.5 The HyPER backend processes path features generated from the frontend and calculates
statistics like the mean and variance of the payoff of the financial product being priced. Since
features are generated once per path, the backend can process data from multiple frontends. Due
to low demands on later blocks they can be mapped to the backend by the HyPER platform

and 8.5. Even highly exotic types like digital Asian barrier options are included.
If a feature should not be present for a very specific option type, it can be easily
identified and added to the list.

In general, only very few features are necessary to define the payoff g of an
option. This shows the general usefulness of this payoff split and suggest to consider
HW/SW partitions after all features have been generated. For the first part of the
architecture starting from RNG and continuing with path simulation, a HW/SW
split is normally not suggestive due to high bandwidth requirements inside. We call
this part of the architecture the HyPER frontend as depicted in Fig. 8.4.

8.4.1.2 HyPER Backend

Everything following is called the HyPER backend. The stock prices in the frontend
are calculated as log(Ŝt). While some of the features like min/max can even
be applied to them, for most of the features we have to go back to normal prices at
some point. So the backend includes exponential transformations for log-features,
the path independent parts of the payoff functions h (Payoff ), and a statistic block
that calculates Step 3 of the MLMC algorithm (see Fig. 8.5). The rest of the
algorithm is handled on the CPU. On higher levels where fine and coarse paths are
calculated, the statistic is evaluated for the differences. The rate of this differences is
half the price rate, and we can always use the statistic core with an Initiation Interval
(II) of 2, a core that takes one value every second clock cycles. For the first level
l0 we take the core with II = 1. Figure 8.6 shows the complete pricing system, the
HyPER architecture.
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Fig. 8.6 For a given financial product and hybrid system the HyPER platform generates well-
matched HyPER architectures for each level, including an optimal HW/SW partitioning. It is then
used by the multilevel control to compute the option price in multiple iterations. In each iteration
a different HyPER architecture might be used and is reconfigured as necessary by the system

8.4.2 Runtime Reconfiguration

The overall performance of the hybrid option pricing system obviously depends on
the actual configuration of the platform. It is important to note that for a given payoff
function g there are still some degrees of freedom in the architecture, for example:

• The number of HyPER instances on the FPGA part,
• For each HyPER instance the number of frontends and where to make the HW/

SW split in the backend, or
• The type of communication core for CPU/FPGA communication.

When running the MLMC algorithm, the backend processes the payoff features
Fi from the frontend, one feature set Fi per path. For level one, new features are
generated every 4th clock cycle, which suggests no HW/SW split inside or after
the backend. For level l = 5, features are generated only every 1,024th clock cycle,
which suggests an early HW/SW split right after the frontend.

To account for these changing requirements for different levels, we propose an
algorithmic extension in which we reconfigure the hybrid system for each level, see
Algorithm 1.

This leaves the question on how to find the optimal HyPER configuration Hl
∗ on

each level, especially for the middle levels l = 2, . . . ,4. This issue is addressed in
the next sections.
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Algorithm 1 Reconfigurable multilevel
Input: target accuracy ε , first level l0 and last level L
Output: Approximated price of the option P̂

load Hl0+1
∗, the optimal configuration for level l0 +1.

for l = l0, . . .,L do
Estimate the level variances Vl = Var

[
D̂l
]
, using an initial Nl = 104 samples.

end for
Calculate Nl0 , . . .,NL according to Eq. (8.4).
for all l in {l0, . . . ,L} do

load Hl
∗, the optimal configuration for level l.

Evaluate extra paths at each level up to Nl .
end for
Calculate the approximated price of the option P̂ according to Eq. (8.3).

8.4.3 Static Optimizer

Based on a given platform F and payoff function g the static optimizer finds the
set of optimal HyPER configurations used in the reconfigurable MLMC algorithm
(Algorithm 1). This set is used to reconfigure the FPGA several times during the
execution to boost the overall performance.

The optimizer maximizes the performance of HyPER by exploiting all degrees
of freedom in the architecture. These are in particular:

• The number of HyPER instances N,
• The communication core Ψ , and
• For each HyPER instance n ∈ {1, . . . ,N}:

– The number of frontends kn,
– The utilization factor of the frontend βn, and
– The HW/SW split Ωk.

We express this freedom as Hl(F ,g;N,k1, . . . ,kN ,β1, . . . ,βN ,Ω1, . . . ,ΩN ,Ψ ) and
from now on only write Hl(N,kn,βn,Ωn,Ψ ) for brevity. The best architectures are
therefore defined by:

maximize
N,kn,βn,Ωn,Ψ

Performance
(
Hl(N,kn,βn,Ωn,Ψ )

)
,

subject to Areaϕ(Hl(. . .)
)
≤ αϕ

Areaϕ(F)
∀ϕ ,

Load
(
Hl(. . .)

)
≤ 1,

Bandwidth
(
Hl(. . .)

)
≤ Bandwidth

(
Ψ
)
,
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F : target reconfigurable hybrid system
g : given payoff function
N ∈N : number of HyPER instances,
Ψ ∈ {available cores of F} : communication core,
kn ∈ N : number of frontends,
βn ∈ [0,1] : utilization factor of the frontends,
Ωn ∈ {Ser., Exp, Payoff,

ML-Diff, Stats} : HW/SW split,
ϕ ∈ {LUT, FF,

BRAM, DSP} : FGPA resource type,
αϕ synthesis weight,
∀n ∈ {1, . . . ,N} (for each HyPER instance).

This concludes the HyPER platform, the whole methodology is shown in Fig. 8.7.

Fig. 8.7 The HyPER platform generation methodology requires CPU and FPGA implementations
for each of the building blocks of the HyPER architecture (Fig. 8.6). Based on these designs that
might e.g. written in HLS and C++, architecture models are derived specifying area, CPU, and
bandwidth usage of each of the blocks for a specific target architecture (middle). The ILP optimizer
uses those models for determining the HyPER architecture with the highest speed for a specific
target options. In this process it generates different HyPER architecture (right) configurations for
each of the levels, which are used synthesized to bitstreams and that reconfigured during runtime
(right bottom)
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8.5 HyPER on Zynq

In this section we thoroughly investigate the HyPER architecture for the Xilinx Zynq
7020 platform. It is a SoC that integrates a dual-core ARM Cortex-A9 processor and
an FPGA into a tightly coupled hybrid system. For the financial product we choose
barrier call options as a practical example.

In order to solve the static optimization we need to know how big the building
blocks of the HyPER architecture from Fig. 8.6 are on our device F in Fig. 8.9. For
that, we have implemented all the building blocks for the FPGA with Xilinx Vivado
HLS for f = 100MHz and single precision floating-point arithmetic. To implement
the ICDF we followed [14]. We have run a complete place & route synthesis for
each core and extracted the resource usage numbers from Xilinx Vivado. As the
cores include the full AXI interfaces, these are accurate numbers and they do not
change much for composed designs. The obtained numbers are shown in Table 8.1.

Furthermore, we have to know how much CPU load the blocks generate when
they are mapped to the ARM processors. We estimated them by implemented the
blocks as C++ functions and measuring the time per input value.

Additionally, we need to determine the speed and area of all available communi-
cation cores. We have used simple continuous streaming cores and measured the raw
speed on the ARM cores. Finally, we have to specify how big our FPGA is and how
much resources we want to use, as fully mapped devices cause routing congestions.
The numbers of our complete analysis are given in Table 8.1.

We formulated the optimization problem, introduced in Sect. 8.4.3, as an Integer
Linear Programming (ILP) problem and solved it with an ILP solver. As a result we
got four unique architectures. The optimal parameters for each architecture Hl

∗ are
listed in Table 8.2. Their metrics area, load, bandwidth, and performance are given
in Table 8.3. Section 8.5 visualizes the found architectures.

Based on the configurations found by the ILP problem we can find the minimum
set of configurations that still reach the maximum performance. For each level we
estimate the performance for each configuration and keep the ones with maximum
performance. The result is Table 8.4. We see that configurations H1

∗, H2
∗, and H3

∗

are sufficient to reach maximum performance. Hl
∗ for l ≥ 4 looks similar to H3

∗,
just instead of a DMA it has a streaming First in, First Out (FIFO) for the interface
to the CPU. Therefore we save one reconfiguration (Fig. 8.8).

In the next section we evaluate these configurations in detail.

8.5.1 Results and Comparison

We have synthesized the optimal HyPER architectures Hl
∗ as defined in Table 8.2

and implemented the complete multilevel algorithm. As an example, the floorplan
of H3

∗ is shown in Fig. 8.9. On the ARM cores we boot a full Linaro Ubuntu. The
Zynq platform supports online dynamic reconfiguration from the OS level in about
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Table 8.1 Building blocks of HyPER on the Zynq-7000 series. Based on
their area, throughput, and CPU timing numbers the HyPER platform can
find the optimal HyPER architecture

CPU
Building blocks LUT FF BRAM DSP ns/val.

Increment generator:

Mersenne Twister 301 323 4 0 −
ICDF 451 592 4 1 −
Antithetic core 228 258 0 0 −

Path generators:

Single-level kernel 4,153 4,241 2 38 −
Multilevel kernel 5,607 5,326 6 43 −

Payoff features Fi:

Barrier 180 158 0 0 −
Payoff h:

Call/put 440 396 0 2 6

Backend:

Feature

Serializer k×1 30k+65 65k+45 0 0 −
Exponential 900 384 0 7 250

Multilevel difference 372 355 0 2 5

Statistics II=1 2,170 1,612 4 9 6

Statistics II=2 1,454 1,164 2 6 3

Com. interface Ψ Bandwidth
FPGA → CPU LUT FF BRAM in MB/s

Config-Bus 1×k 30k+50 2k+40 0 <1

Streaming-Fifo 654 611 4 20

DMA-Core 1,864 3,122 4 350

Hybrid chip F LUT FF BRAM DSP ARM

Xilinx Zynq 7020 53,200 106,400 280 220 2 cores

Synthesis weight α 0.8 0.5 1 1

50ms. The running system is visible in the picture in Fig. 8.7, with the ZC706 board
on the left, the generated paths in the middle, and the power measurements on the
right of the picture.

To quantify the quality of our implementation, we have implemented a sophis-
ticated CPU Heston pricer as a reference model. While Gaussian increment
generation is only a small part of the HyPER architecture on FPGAs, it takes a
significant time on CPUs (about 40 % of the overall runtime). We have compared
several advanced libraries and selected the fastest Mersenne Twister RNG from
the C++11 standard library and the Ziggurat method from the GNU Scientific
Library (GSL), which we adapted to use “single” precision floating-point. We
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Table 8.2 Optimal HyPER
architectures for barrier
option pricing on the Zynq
7020

Optimal HyPER Architectures Hl
∗

for F = Xilinx Zynq 7020, g = Barrier Call Option

H1
∗ =H1

(
N = 2, Ψ = DMA

k1 = 4, β1 = 1, Ω1 = Stats,

k2 = 1, β2 = 1, Ω2 = Exp
)

H2
∗ =H2

(
N = 1, Ψ = Config-Bus

k1 = 4, β1 = 1, Ω1 = Stats
)

H3
∗ =H3

(
N = 1, Ψ = DMA

k1 = 5, β1 = 0.966, Ω1 = Serializer
)

Hl
∗ =Hl

(
N = 1, Ψ = Streaming-Fifo

k1 = 5, β1 = 1, Ω1 = Serializer
)

∀ l ≥ 4

Table 8.3 Showing the area, CPU, and bandwidth requirements and their perfor-
mance of each of the optimal HyPER configurations Hl

∗ given in Table 8.2

Optim. Area in % CUP Bandw. (MB/s) Perform.
HyPER LUT FF BRAM DSP Load Used Available MC step/s

H1
∗ 63 32 13 99 0.19 95 350 500M

H2
∗ 58 27 15 87 0.00 0 <1 400M

H3
∗ 69 35 19 100 1.00 30 350 483M

H4
∗ 67 33 19 100 0.26 7 20 500M

H5
∗ 67 33 19 100 0.07 2 20 500M

Table 8.4 List of optimal
configurations for each levels,
used to find minimal set of
configurations

Configurations providing
Level maximum performance

1 H1
∗

2 H2
∗

3 H3
∗

≥4 H3
∗, H4

∗

have written the Monte Carlo step generation by hand and tuned its loop structure
to support Advanced Vector Extensions (AVX). Additionally, we parallelized the
whole program such that it uses all available cores. We have employed the Microsoft
Visual C++ (MSVC) 2012 compiler, which has excellent auto-vectorization support,
with compiler flags: “/O2 /arch:AVX /fp:fast /GL”. Profile-guided optimization gave
an additional 10 % speedup. The result is a high-speed reference implementation
that has received as much care as HyPER itself.

As an execution platform, we had several choices between servers, desktops,
and laptops. Among all of them, the laptop proved to be the most energy efficient
platform. It is a Dell Latitude E6430 with an Intel Core i5-3320M manufactured in
22nm and supporting the latest AVX instructions. The Zynq 7020 is fabricated with
a 28nm process. Both chips are the most recent generations available today.

For measuring the speed, we have calculated the price for barrier call options
for the Heston benchmark parameters [4] in Table 8.5 with a target precision of
ε = 0.005, start level l0 = 1, last level L= 5, and multilevel constant M = 4 (compare
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Fig. 8.8 Optimal HyPER architectures for barrier option pricing on the Xilinx Zynq 7020, as given
in Table 8.2. They are specific configurations of the architecture in Fig. 8.6 with abbreviations
(IG – Increment Generator, SL – Singlelevel Path Generator, B – Barrier, Ex – Exponential, C
– Call, St. – Statistics, ML CTRL – Multilevel Control, ML – Multilevel Path Generator, D –
Multilevel Difference). Note that configuration H1

∗ contains two HyPER instances with different
HW/SW partitioning

Fig. 8.9 Floorplan of the
optimal HyPER Architecture
H3

∗ for level 3, as defined in
Table 8.2, highlighting the
five frontends and the
interconnect Ψ

Chap. 4). We have validated that both implementations are correct and calculate the
same number of MC paths Nl on each level as given in Table 8.7. We have measured
the overall execution time and the power consumption. For the laptop we kept
the power consumption to a minimum by turning of the display and Wi-Fi and have
removed all USB devices. We have run the simulation in a loop and measured the
average power at the power plug.

To measure the power of the hybrid platform, we have used the Xilinx ZC702
evaluation board. It is possible to measure all power lanes on a 50ms basis. We have
run the simulation in a loop and added up the average power consumption of each
power lane, except the 3.3V lane with about 0.7W. The measured power includes
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Table 8.5 Benchmark Heston parameters [4]

S0 κ θ σ r ν0 ρ K T Barrier ε
100 3 0.16 0.4 0.02 0.1 −0.8 100 1 150 0.005

Table 8.6 Execution time
and energy consumption

Time (S) Power (W) Energy (J)

MC on CPUa 111 31.3 3,460
MC on Zynqb 26.1 2.77 72
MLMC on CPUa 29.9 30.6 916

Level 1 2.9 30.6 88

Level 2 4.2 30.6 130

Level 3 5.2 30.6 158

Level 4 7.0 30.6 214

Level 5 10.7 30.6 327

Reconf. − − −
HyPER on Zynqb 8.83 2.87 25.3

Level 1 0.58 3.05 1.77

Level 2 1.39 2.41 3.35

Level 3 1.52 3.38 5.14

Level 4 2.07 2.96 6.11

Level 5 3.03 2.80 8.48

Reconf. 0.25 1.86 0.47
aIntel Core i5-3320M
bZynq 7020

the Zynq 7020, Dynamic Random-Access Memory (DRAM), and oscillators, but
not the peripherals like LEDs, USB, or HDMI controllers that have not been in use
at all. To account for a power supply with 90 % efficiency, we have multiplied all
measurements by 1.11.

The measured numbers are presented in Table 8.6. The CPU takes 30s and 916J,
while HyPER takes 8.6s and 25J to price the product. This means the HyPER
architecture on the Zynq is 3.4× faster and 36× more power efficient than the
reference system. As option pricing is perfectly scalable over multiple instances,
HyPER is 36× faster than the CPU for a fixed power budget.

Without reconfiguration, the best architecture for all levels would be H2
∗. Pricing

the same benchmark on this static architecture would take 10.5s, which would be
19 % slower than the HyPER architecture with online reconfiguration.

8.5.2 Comparison with Related Work

In this section we compare HyPER on Zynq to related work [15] and [16],
introduced in Sect. 8.2. Although the architectures [15, 16] are limited to barrier
options while HyPER supports the whole spectrum of traded options, we evaluate
them in this specific setting.
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Table 8.7 Choosen MC path count Nl for each level when pricing our benchmark Barrier
call options with MLMC for the Heston parameters in Table 8.5

Level Time steps MC paths Fine MC steps Coarse MC steps
l k = Ml Nl [×106] N Ml [×108] N Ml−1 [×109]

\protect \newucase
{m}ultilevel Monte
Carlo (l0 = 1, L = 5,
M = 4):

1 4 72.5 0.29 −
2 16 27.8 0.44 1.11

3 64 9.2 0.59 1.47

4 256 3.2 0.83 2.07

5 1,024 1.18 1.21 3.03

Classical Monte Carlo:

− 1,024 15.3 15.62 −

Reference [15] is a classical MC implementation on a hybrid system containing
a Virtex 5 and a laptop. The HyPER architecture is superior on both the algorithmic
and implementation level:

1. On algorithmic level, HyPER uses the faster MLMC algorithm. In our setup
(Table 8.5) MLMC needs to evaluate 3.8× less steps than classical MC (see
Table 8.7). A more elaborate numerical comparison between both algorithms can
be found in [8], where Giles shows speedups from 3 to 100×, mainly depending
on the option types considered.

2. While [15] uses a Virtex 5 with a static configuration and a laptop, we present a
runtime reconfigurable architecture on a tightly coupled hybrid architecture.

Based on the numbers given in [15], it would take 110 s and 3,861 J to run the
benchmark. That means HyPER is 12.5× faster and 153×more power efficient than
[15] due to improvements on algorithmic and implementation level, see Table 8.8
for more details.

The MLMC architecture in [16] is a partial implementation only and no time or
energy numbers are given for a complete pricing system. Specifically only synthesis
results are given for parts of the architecture, mainly what we call HyPER frontend.
The payoff computation has not been implemented. That is why no complete
comparison can be made. Section IV of [16] suggests to do the payoff computations
on an embedded CPU. We have shown in Sect. 8.4.2 that such a HW/SW split leads
to high CPU speed and bandwidth requirement for small levels. The work of [16]
would therefore require a powerful CPU. With HyPER we have solved this issue
by dynamically changing the HW/SW partitioning during runtime. As a result, we
expect our architecture to be far superior in power efficiency compared to [16].

We can compare the synthesis results in [16] with our implementation of the
HyPER frontend, including increment generator, multilevel path generator, and
barrier checker (see Table 8.8). While the two devices have almost the same FPGA
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Table 8.8 Comparison HyPER on Zynq with related work for Heston MC Barrier option pricing

Architecture De Schryver et al. [15] De Schryver et al. [16]
HyPER on Zynq
(this work)

Algorithm Classical MC Multilevel MC Multilevel MC

Total MC steps (×109) 15.62 4.13 4.13

Time (s) 110 – 9

Energy (J) 3,861 – 25
Monte Carlo barrier
frontend:

LUT 5,480 10,300 6,770

FF 6,950 11,900 6,660

DSP 43 68 44

BRAM 10 128 22

Frequency (MHz) 102 120 100

Setup Virtex 5 + Laptop Virtex 6, synthesis only Zynq-7000

fabric and both implementations use single-precision floating-point as calculation
formats, we see that our implementation is significantly (>35%) smaller. This
difference might come from the way [16] models what we call path generator.
They have split this part of the architecture in more than 10 pieces, each modeled
individually with HLS and connected by Advanced eXtensible Interface (AXI)
Stream components. In contrast to this approach, we have modeled everything in one
HLS component with no internal buffers, making the design efficient and compact,
with just 145 lines of code.

8.5.3 Flexibility Performance Tradeoff

In the last two chapters we have clearly shown that HyPER is far superior in energy-
efficiency compared to CPU solutions and related work architectures. In this chapter
we will comment on flexibility, see Fig. 8.10.

We define flexibility as how easy it is to add new financial products to the
implementation. The MC CPU solution has the highest flexibility. While in general
it as easy to add new payoff functions to a MLMC implementation as it is for a
classical MC implementation, some payoffs need special treatments for MLMC
algorithms. That is why we have a slightly less flexibility for MLMC for CPUs.

The classic MC architecture [15] is basically equivalent to a HyPER config-
uration with six SL frontends on the Zynq 7020. Adding new products to this
architecture, requires the user to redesign new payoff blocks and change the whole
FPGA architecture, which is extremely difficult. That is why this solution has the
lowest flexibility.

With HyPER we get both another speedup and most off the flexibility back. The
systematic approach of splitting payoffs into features and payoff functions makes it
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Runtime in Minutes: pricing 1000 options with 120 Watt at same accuracy
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Fig. 8.10 Showing the runtime and flexibility of the presented architectures. HyPER is a clear
winner in both flexibility and efficiency, being 135× faster than the classic MC CPUs solutions

very easy to find a good FPGA implementation for new products. In addition, it is
completely clear where to put such new blocks, while reusing the same interfaces
and all other blocks. Furthermore, it is possible to create HLS templates where a user
just has to add the mathematical formulas in C++ syntax, so in general no FPGA
knowledge is necessary. Once the new blocks are written in HLS new models can
be derived automatically from them and fed into the static optimizer that will then
generate the most efficient architectures.

With HyPER, adding new products is both easy and efficient, giving us back most
of the flexibility a CPU solution has.

8.6 Block Modeling Extensions

In Sect. 8.4.3 we introduced a simple formalism to model the HyPER architecture.
However, the formalism can be further extended to incorporate even more flexibility
of the architecture.

1. While we synthesized all our building blocks for a fixed frequency, it might
be possible to have a different frequency for each building block, or at least
each FPGA configuration. For that we would synthesize each block for a set
of frequencies. Here, the expected tendency is that faster cores consume more
FPGA resources, and we might find a more balanced configuration this way.
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2. For more complex Payoff functions it is beneficial to consider all possible
pipeline IIs, what leads to smaller designs due to operator reuse.

3. In the HLS tool it is easy to trade off Digital Signal Processor (DSP) blocks
agains Lookup Table (LUT)/Flip-Flop (FF) usage. By compiling all the cores
for different DSP usage factors it should be possible to find more balanced chip
configurations with possibly even higher throughput.

8.7 Conclusions

The HyPER platform is a novel option pricing system for hybrid reconfigurable
platforms. It is based on state-of-the-art Multilevel Monte Carlo (MLMC) methods,
the Heston market model, and covers a wide range of option types. As a platform,
HyPER captures all essential aspects of the problem and implementation space in
a systematic way to generate efficient implementations. It provides a formalism
to describe options in a way that they can be optimally mapped to a hybrid
system. In this formalism payoff functions are systematically split in two parts,
one targeting the FPGA and the other one the CPU. Furthermore, it provides a
reconfigurable multilevel algorithm enabling the platform to adapt itself to the
changing requirements for different parts of the algorithm. With specific information
of the implementation platform including area, runtime, and bandwidth information
HyPER is able to yield the optimal implementation to price a financial product.

We have used the HyPER platform to find an efficient implementation for barrier
options on the Xilinx Zynq 7020 All Programmable SoC. The implementation is
3.4× faster and 36× more power-efficient than a highly tuned software reference on
an Intel Core i5 CPU.

As far as the authors know, HyPER is the first flexible FPGA based Heston pric-
ing system supporting a wide range of traded options, while clearly outperforming
previous specialized Heston Monte Carlo implementations at the same time.
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Chapter 9
Exploiting Mixed-Precision Arithmetics
in a Multilevel Monte Carlo Approach
on FPGAs

Steffen Omland, Mario Hefter, Klaus Ritter, Christian Brugger,
Christian De Schryver, Norbert Wehn, and Anton Kostiuk

Abstract Nowadays, high-speed computations are mandatory for financial and
insurance institutes to survive in competition and to fulfill the regulatory reporting
requirements that have just toughened over the last years. A majority of these
computations are carried out on huge computing clusters, which are an ever
increasing cost burden for the financial industry. There, state-of-the-art CPU and
GPU architectures execute arithmetic operations with predefined precisions only,
that may not meet the actual requirements for a specific application. Reconfigurable
architectures like Field Programmable Gate Arrays (FPGAs) have a huge potential
to accelerate financial simulations while consuming only very low energy by
exploiting dedicated precisions in optimal ways.

In this work we present a novel methodology to speed up Multilevel Monte Carlo
(MLMC) simulations on reconfigurable architectures. The idea is to aggressively
lower the precisions for different parts of the algorithm without loosing any accuracy
at the end. For this, we have developed a novel heuristic for selecting an appropriate
precision at each stage of the simulation that can be executed with low costs at
runtime. Further, we introduce a cost model for reconfigurable architectures and
minimize the cost of our algorithm without changing the overall error.
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We consider the showcase of pricing Asian options in the Heston model. For this
setup we improve one of the most advanced simulation methods by a factor of 3–9×
on the same platform.

9.1 Introduction

Realistic pricing of exotic derivatives requires complex market models like the Hes-
ton model with its stochastic volatility process. For those models, in general there
are no closed-form solutions for pricing various derivative classes, and compute-
intensive numerical methods have to be used. In addition, financial institutes are
forced to generate risk measures more frequently than in the past due to recent
regulatory requirements. As a third point, more precise and faster pricing routines
can increase the competitive advantage of financial companies when combined with
reliable calibration procedures for input parameters.

The computed derivatives prices shall be available with a specific accuracy. It
is important to strictly distinguish between the terms accuracy and precision, as
introduced by Higham [35]. Accuracy means the absolute or relative error of an
approximated quantity, in particular a result of a complete computation. Precision
is the accuracy of the atomic arithmetic operations (e.g. such as +, −, ·, /) used
in this computation. For example, accuracy and precision are the same if the final
goal is to compute z = x+ y, but the accuracy can be much worse than the actual
precision for complex tasks like solving a system of linear equations.

Common simulation architectures like Central Processing Units (CPUs) or
Graphics Processor Units (GPUs) only support very few standard number formats
with fixed precision. The usually available predefined precisions are 32 or 64
bit integers, “single”, and “double” precision floating point. Up to now, most
quantitative analysts and other developers of executable algorithm implementations
just rely on the available precisions of the target platforms. Custom precision
formats are normally not considered on CPUs and GPUs since they have to be costly
emulated on the available hardware. This leads to longer execution times and higher
energy demands in total. The common algorithm design paradigm is:

Use the available precisions of your computing hardware and tune your algo-
rithm to achieve the desired result accuracy as fast as possible.

While CPUs and GPUs work with predefined internal number formats with fixed
precision, reconfigurable architectures like FPGAs allow to use number formats
with any custom precisions. Energy, speed, and accuracy of the computation can
therefore be traded-off against each other effectively for the first time in real
business. It has already been shown that FPGAs can be 10 times faster compared to
state-of-the-art CPU or GPU clusters for the same energy budget and accuracy [16].
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Nevertheless, the integration of new hardware architectures in pricing systems
require considering platform-given restrictions already on the algorithm devel-
opment level to achieve optimal implementations in the end. This postulates
the coalescing of formerly distinct disciplines like quantitative finance, computer
science, and hardware engineering.

As an example, computational finance theory typically does not consider errors
introduced by limited precision computations. It is rather assumed, at least implic-
itly, that the algorithm is executed with infinite precision in the real number model,
see [49]. However, limited and mixed precision calculations have always been in
the focus of hardware engineers, especially in the power-limited embedded systems
domain. In this chapter, we make one step towards closing the gap between high-
level simulations in finance and the underlying finite precision execution platform.
The new design paradigm is now:

Carefully select the needed precisions in your computation for a defined result
accuracy.

Following this paradigm, we present a novel methodology to speed up Multilevel
Monte Carlo (MLMC) simulations on reconfigurable architectures. It is based
on exploiting custom number formats on FPGAs. By aggressively using reduced
precisions for most stages of the algorithm, we speed up the computations, while
maintaining the overall precision at the same time. We introduce a novel heuristic to
choose the precisions that can be executed with low costs at runtime. Furthermore,
to reflect the characteristics of reconfigurable hardware, we develop an analytical
cost model that is in line with the real runtimes. It is used to minimize the costs
of the algorithm without changing the overall error. We present the benefits of our
methodology by speeding up Asian option pricing in the Heston model. Assuming
a similar power consumption, reducing the execution time directly results in saving
energy for one computation.

Our novel contributions are:
• An extended version of the state-of-the-art MLMC algorithm that integrates

different precisions for different parts of the algorithm (Sect. 9.4.1).
• An analytic cost model for reconfigurable architectures like FPGAs (Sect. 9.4.4)

and a heuristic for determining appropriate precisions for different levels of the
MLMC simulation at runtime (Sect. 9.4.5).

• A comprehensive analysis that confirms that the heuristic is stable (Sect. 9.4.5)
and that our proposed methodology leads to significant (3–9×) speedups
(Sect. 9.5).

This chapter is an extended version of [10] presented at the CIFEr conference in
London.
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9.2 Background and Related Work

This section summarizes the necessary background from finance, computational
stochastics, and hardware engineering that is needed to follow this chapter. It also
includes the relevant state-of-the-art.

9.2.1 Pricing Under Heston’s Stochastic Volatility Model

Market simulations always rely on underlying models that incorporate the impor-
tant characteristics for specific markets. The Heston model has been introduced
by Steven L. Heston in 1993 [33]. It extends the popular Black-Scholes (BS)
model from 1973 [8] by a stochastic volatility process. Nowadays it is used as
a standard model in many productive environments in the finance and insurance
domain [41]. It is sophisticated enough to reflect important market characteristics
and (semi-)closed-form pricing formulas exist for plain vanilla options. This is
especially important to allow fast calibration, and therefore for the acceptance of
the model in real business [45].

Under the risk-neutral measure, the Heston model consists of two correlated
Stochastic Differential Equations (SDEs). Equation (9.1a) describes the asset price
process S that matches the Black-Scholes SDE, except for the non-constant volatility√

ν driven by its own SDE (9.1b).

dSt = Strdt + St
√

νt dW S
t , (9.1a)

dνt = κ (θ −νt)dt +σ
√

νt dW ν
t . (9.1b)

At time t = 0, the asset spot price is S0 and the volatility is given by
√

ν0. The two
driving Brownian motions W S and W ν are correlated with the correlation coefficient
ρ to reflect the observable volatility clustering effect of the market. All constants
are positive except the correlation coefficient for which |ρ | ≤ 1 holds. The variance
process ν is given by a so-called square root diffusion or Feller diffusion. This type
of process was also used by Cox, Ingersoll and Ross for a short rate model, see [14].
Thus, (9.1b) is sometimes called CIR-process.

The present price of an European derivative can be calculated as the expectation
a = E [H (S)] where H is the corresponding discounted payoff function. We will
consider two different kinds of payoff functions: Path-independent payoffs which
depend only on a fixed time of the asset price process S, like put and call options, and
path-dependent options which depend on the complete path of S. Options with these
type of payoffs are often called exotic. Since path-dependent payoffs are a special
case of path-independent payoffs, we will denote any discounted payoff function
with H whenever it is clear from the context which case is meant.
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For exotic derivatives like barrier, lookback, or Asian options, no closed-form
solutions exist in general, and numerical methods have to be used to price those
products in the Heston setting. In this chapter we focus on Monte Carlo (MC)
methods, one of the most common choices in this setting. MC methods are very
popular in a wide range of application domains due to their universalism. Especially
in finance, they are often the only suitable numerical approach for pricing complex
products [41].

9.2.2 The Classic Monte Carlo Method

Let us first consider the following problem: We aim at approximating the quantity

a = E[H(S)],

where

• S is a random variable taking values in R and
• H is a measurable mapping from R to R.

We assume that direct sampling from S is possible and that the second moment of
H(S) exists.

One famous method to approximate a is the classic MC method in which a is
approximated by

AMC =
1
N

N

∑
i=1

H(Si), (9.2)

where S1, . . . ,SN are independent copies of S. The MC method is based on random
experiments and therefore introduces an error, which can measured by the Mean
Squared Error (MSE) defined as

MSE
(
AMC)= E

[(
AMC − a

)2
]
. (9.3)

Since S1, . . . ,SN are independent and have the same distribution as S, the MSE can
be written as

MSE
(
AMC)= Var

(
AMC)= 1

N
Var(H(S)), (9.4)

i.e., the MSE of the classic MC is given by the variance of the estimator which is
the variance of the basic experiment H(S) divided by the number of replications N.
Since we have assumed that the second moment of H(S) exists, this error, sometimes
called statistical error, is decreasing with increasing N.



196 S. Omland et al.

As an example, consider S given by

S = S0e

(
r− σ2

2

)
T+σ

√
T Z

where Z has the standard normal distribution and H is given by

H(x) = e−rT max(x−K,0).

Then, a = E[H(S)] is the fair price of an European call option with strike K and
time to maturity T in the Black-Scholes model with spot price S0, risk-free interest
rate r and volatility σ . In this case, we have to sample N times from the standard
normal distribution to calculate the MC estimate (9.2) for a. Note, that this example
is only given as an illustration, since for the calculation of European call options in
the Black-Scholes model closed-form solutions are available.

For path-dependent options and more complex models, like the Heston model,
this is often not the case. Furthermore direct sampling is not possible or not feasible.
In the following sections we will describe how the MC method can be used in these
cases.

9.2.3 Monte Carlo Methods for SDEs

Models for pricing derivatives are often given as a multi-dimensional SDE driven
by a Brownian motion W

X0 = x0,

dXt = a(t,Xt)dt + b(t,Xt)dWt , 0 < t ≤ T,
(9.5)

with some specific drift function a, volatility function b and a (deterministic)
initial value x0. Here, the asset price process S is one of the components of the
multidimensional stochastic process X .

In the Heston model,

X =

(
X1

X2

)
=

(
S
ν

)

and

a(t,x) =

(
x1r

κ(θ − x2)

)
,

b(t,x) =

(
x1
√

x2 0
0 σ√

x2

)(
ρ
√

1−ρ2

1 0

)
,

with x = (x1,x2).
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For advanced models we often do not know an analytic solution of the SDE or
it is difficult to simulate from it. One way out is to approximate the solution of the
SDE using a discretization scheme which will be described in the next section.

Due to Broadie and Kaya [9] there exists a method to simulate the Heston
model exactly at finitely many discretization points. Since it is numerically very
challenging and computationally very expensive, discretization schemes are often
superior for path-dependent options (and options depending on many discrete
observation dates), see e.g. [43].

9.2.3.1 Discretization Schemes for SDEs

For notational convenience, we will in the following consider some one-dimensional
model for the asset prices process, i.e., X = S and x0 = s0 in (9.5).

Fix integers M ≥ 2 and l ≥ 1 and define Dl = Ml−1 and hl = T/Dl . Then, for
example, the Euler discretization scheme with Dl steps and discretization points

t(l)m = mhl for m = 0, . . . ,Dl is given by

Ŝ(l)0 = s0

and

Ŝ(l)m+1 = Ŝ(l)m + a
(

t(l)m , Ŝ(l)m

)
hl + b

(
t(l)m , Ŝ(l)m

)
ΔW (l)

m+1, (9.6)

where ΔW (l)
m+1 =W

(
t(l)m+1

)
−W

(
t(l)m

)
with m = 0, . . . ,Dl −1. An approximation Ŝ(l)

of the solution of SDE (9.5) is obtained by linear interpolation of Ŝ(l)0 , . . . , Ŝ(l)Dl
. For

more information on discretization schemes see, e.g., [40].
Abstractly speaking, a discretization scheme is a sequence of measurable

functions ϕ(l) which map the Brownian motion W to approximations Ŝ(l) = ϕ(l)(W )
of S.

Note that the Euler discretization does not depend on the whole path of the

Brownian motion, but only on finitely many increments ΔW (l)
1 , . . . ,ΔW (l)

Dl
which

are independently normally distributed. Hence, Eq. (9.6) can be easily simulated,
i.e. samples of Ŝ(l) = ϕ(l)(W ) can be generated on a computer with a pseudorandom
number generator. For the simulation of normally distributed random variables see,
e.g. [29].

As already mentioned, direct sampling of the Heston model is possible, but not
reasonable for path-dependent options. Besides Broadie and Kaya [9], approaches
for exact sampling have been shown in [24, 30] and [44].

Numerically discretization of the Heston model is a challenging topic since
the CIR-process used to model the volatility does not fulfill the standard textbook
assumptions (like globally Lipschitz diffusion coefficient, see [40]) due to the square
root in the diffusion coefficient. It is well known that the inequality

σ2 ≤ 2κθ ,
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known as the Feller condition, plays a crucial role for the quality of discretization
schemes [3, 19] for the volatility process ν . We comment on the impact of this
condition on the results of our numerical experiments in Sect. 9.5.

If the Feller condition is fulfilled, ν is strictly positive, otherwise ν might
reach zero, but does not spend time there. Discretization schemes with strong rates
(which is important for the multilevel method presented later) given the Feller
condition (or even stronger conditions) have been shown in [1, 3, 7, 19] and [39].
Recently, Hutzenthaler et al. [37] have proven a strong rate under the condition that
0.5σ2 < 2κθ . Weak rates have been shown in [2] and [47].

Unfortunately the Feller condition is rarely satisfied in practice if the CIR-
process is used as a volatility process as in the Heston model, see [4] and [13] and
the calibration results in [5, 25] and [22]. There are two different approaches for
discretization schemes which work for the full parameter space of the CIR-process:
The first approach is based on the technique of Brodie and Kaya [9], but instead
of sampling from the correct distribution of the CIR-process and its integral, one
samples of easier distributions which match the first two moments and/or discretize
the integrals. Methods of this kind with numerical results are presented in [4] and
[31]. The second approach of discretization schemes, which are defined if the Feller
condition is violated, is given by Euler-type discretizations with ad-hoc fixes for
negative volatilities, see [7, 17, 18, 36, 38] and [43] where additional to a new
scheme all the previous schemes have been compared. Alfonsi [2] combines a
discretization scheme and an idea similar to [4] to obtain a discretization scheme
that works whether the Feller condition holds or not.

9.2.3.2 The Classic Monte Carlo Method for SDEs

We aim at approximating the price a = E[H(S)] of a European derivative with path-
dependent payoff function H where S is given by a one-dimensional SDE as in
the previous section. Therefor, fix some integer L and consider an approximation
Ŝ(L) = ϕ(L)(W ) for some discretization scheme ϕ(L) with DL = ML−1 steps. If direct
sampling of H(S) is not possible,

E

[
H
(

Ŝ(L)
)]

(9.7)

may serve as an approximation to a. If the discretization Ŝ(L) is based on finitely
many Brownian increments (as it is the case for the Euler discretization), direct
sampling of Ŝ(L) is possible and we can apply the classic MC method to (9.7).

Overall, the classic MC algorithm for SDEs estimates a by the sample mean of

simulated instances of the discounted payoff values H
(

Ŝ(L)
)

, i.e.,

AMCSDE =
1
N

N

∑
i=1

H(Ŝ(L)i ), (9.8)



9 Exploiting Mixed-Precision Arithmetics in a Multilevel Monte Carlo. . . 199

where Ŝ(L)1 , . . . , Ŝ(L)N are independent copies of Ŝ(L). If Ŝ(L) is the Euler discretiza-
tion (9.6) then we need DL Independent and Identically Distributed (i.i.d.) normal
random variables for AMCSDE and thus (9.8) can be simulated easily.

Since the MC method (9.8) is based on random experiments, it has a statistical
error that is measured by the variance of the estimator. Moreover, the application
of a discretization scheme introduces a second type of error, the so-called bias. The
overall MSE of AMCSDE can be decomposed into

MSE
(
AMCSDE

)
= E

[(
AMCSDE − a

)2
]

= Var
[
AMCSDE

]
︸ ︷︷ ︸

stat. error

+

(
E

[
H
(

Ŝ(L)
)]

− a︸ ︷︷ ︸
=bL (bias)

)2

=
1
N
Var

[
H
(

Ŝ(L)
)]

+ b2
L. (9.9)

The last equality follows from the independence of Ŝ(L)1 , . . . , Ŝ(L)N .

Typically, the variance of H
(

Ŝ(L)
)

converges to Var(H(S)) > 0 and thus, the

statistical error can only be controlled by the increase of the simulated instances.
Additionally, under suitable assumptions, the bias decreases with finer discretization
steps. Hence, to obtain a MC estimate with sufficiently small MSE, one typically
chooses L (and hence DL) to be big enough to reach a certain bound for the bias
and adjusts N such that the estimator has the desired statistical error. Smaller
MSE induce higher cost: The computational costs of the classic MC algorithm are
increasing in DL and N. Optimal choices of DL and N to reach a given error depend
on the setting, see, e.g., [15].

9.2.3.3 The Multilevel Monte Carlo Method

The MLMC method was introduced by Heinrich in 1998 [32] and in the context
of SDEs by Giles in 2008 [26]. It is an optimal algorithm in the context of SDEs
under suitable assumptions [15]. A comprehensive introduction as well as pointers
to recent developments of multilevel algorithm is given in [28]. The approxima-
tion of a = E[H(S)] for a path-dependent payoff H is an infinite dimensional
integration problem. Problems of these kind have been studied in the framework
of integration on sequence spaces since 5 years in [34, 42, 48] and recently in
[6, 20, 21].

The subsequent presentation of the MLMC method will follow [46]. We assume
that DL = ML−1 discretization points for a fixed M and some integer L are sufficient
to obtain the desired bias accuracy. Denote by

Ŝ(l) = ϕ(l)(W )
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for l = 1, . . . ,L the approximated solution of (9.5) by some discretization scheme
ϕ(l) (e.g. the Euler scheme, see (9.6)) with Dl = Ml−1 equidistantly spaced
discretization points. Then, in contrast to the classic MC estimate where the
“single” approximation Ŝ(L) is used, one employs the sequence of approximations
Ŝ(1), . . . , Ŝ(L). Consider the telescoping sum

E

[
H
(

Ŝ(L)
)]

= E

[
H
(

Ŝ(1)
)]

+
L

∑
l=2

E

[
H
(

Ŝ(l)
)
−H

(
Ŝ(l−1)

)
︸ ︷︷ ︸

=δl

]
, (9.10)

where H
(

Ŝ(l)
)
= H

(
ϕ(l)(W )

)
and H

(
Ŝ(l−1)

)
= H

(
ϕ(l−1)(W )

)
are coupled via

the same Brownian motion. With Eq. (9.10), one represents the target expected value

of H
(

Ŝ(L)
)

by expected values of differences of finer and coarser approximations.

The expectations on the right hand side of Eq. (9.10) are called levels.
Note that typically the computational cost for generating independent samples of

δl is increasing, but the variance of δl is decreasing for increasing l. This leads to the
idea of multilevel algorithms, where each of the levels of (9.10) are approximated
with independent classic MC algorithms: Let N1, . . . ,NL ∈ N be given replication
numbers and consider independent copies

Wl,1, . . . ,Wl,Nl for l = 1, . . . ,L (9.11)

of W . Then, the MLMC algorithm is given by

A MLMC =A (1) +
L

∑
l=2

A (l), (9.12)

where

A (1) =
1

N1

N1

∑
n=1

H
(

ϕ(1)(W1,n)
)

and

A (l) =
1
Nl

Nl

∑
n=1

[
H
(

ϕ(l)(Wl,n
))

−H
(

ϕ(l−1)(Wl,n
))]

for l = 2, . . . ,L.

Using the independence in (9.11), the MSE of the MLMC algorithm can be
decomposed as

MSE
(
AMLMC)= L

∑
l=1

Vl

Nl
+ b2

L, (9.13)
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where

V1 = Var
[
H
(

Ŝ(1)
)]

and

Vl = Var
[
H
(

Ŝ(l)
)
−H

(
Ŝ(l−1)

)]
for l = 2, . . . ,L.

Under suitable conditions, the variances Vl and the bias bL are decreasing with
increasing l respectively L while the computational cost is increasing. This behavior
is exploited by the MLMC idea: Smaller variance makes less repetitions necessary to
reach the same error bound for the statistical error. To get a convergent and efficient
MLMC algorithm, it is important that the variances of the levels decay to zero fast
enough. At the end the MLMC algorithm aims at reducing the overall computational
costs by optimally distributing the workload over all levels [26].

Note that the error introduced by the bias is the same for the classic MC and the
MLMC algorithm if the number of discretization points used for the last level of
the multilevel algorithm agrees with the number of discretization points use in the
classic MC algorithm, cf. Eqs. (9.9) and (9.13).

In the following we will explain how samples of AMLMC can be generated and

especially how coupled paths
(

ϕ(l)(W ),ϕ(l−1)(W )
)

can be simulated in the case

of the Euler discretization. For each level, the main idea is to generate increments
of the Brownian motion for the fine discretization and reuse these increments in a
proper way for the coarse discretization.

Let Z(l)
m,n for l = 1, . . . ,L, m = 1, . . . ,Ml−1 and n = 1, . . . ,Nl be i.i.d. standard

normally distributed random variables. Set

Y (l), f
0,n = s0

and

Y (l), f
m+1,n = Y (l), f

m,n + a
(

t(l)m ,Y (l), f
m,n

)
hl + b

(
t(l)m ,Y (l), f

m,n

)√
hlZ

(l)
m+1,n,

for m = 0, . . . ,Ml−1 − 1. Here, the random variables Z(l)
1,n, . . . ,Z

(l)
Ml−1,n

are scaled and
use for the Brownian increments in the Euler scheme to obtain a fine approximation

Y (l), f
n . For l > 1 set

Y (l),c
0,n = s0

and

Y (l),c
m+1,n = Y (l),c

m,n + a
(

t(l−1)
m ,Y (l),c

m,n

)
hl−1 + b

(
t(l−1)
m ,Y (l),c

m,n

)√hl−1

M

M

∑
i=1

Z(l)
Mm+i,n
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for m = 0, . . . ,Ml−2 − 1. Note, that for the coarse approximation Y (l),c
n the same

random variables are used as for the fine approximation Y (l), f
n on the same level:

Z(l)
1,n, . . . ,Z

(l)
Ml−1,n

are summed up in groups of length M and scaled to obtain Brownian

increments for the coarse path. In this way, Y (l), f
n and Y (l),c

n are coupled. On the other

hand, Y (l), f
n and Y (l+1),c

n′ for n �= n′ are independent and distributed like Ŝ(l). The last
condition is needed for the telescope sum (9.15) to be true, whereas the coupling is
necessary for the variance reduction effect of the MLMC algorithm. See Fig. 9.1 for
a visualization of the coupling.

Finally set

AMLMC =
1

N1

N1

∑
n=1

H
(

Y (1), f
n

)
+

L

∑
l=2

1
Nl

Nl

∑
n=1

[
H
(

Y (l), f
n

)
−H

(
Y (l),c

n

)]
.

Then, AMLMC and AMLMC have the same distribution and AMLMC is an imple-
mentable version of the MLMC algorithm.

9.2.4 Mixed Precision Architectures

While the former sections have focused on financial mathematics and computational
stochastics background, this section is about mixed precision computing systems.

In contrast to standard CPU or GPU architectures where data formats are pre-
defined, reconfigurable architectures like FPGAs or dedicated Application Specific
Integrated Circuits (ASICs) are more flexible. They allow the customization of the
data formats and widths in all points of the data path. This means that for every
stage in the data path the necessary precision can be traded off against the size of
the circuit and the energy demand for a given overall accuracy.

To get the best of both worlds we consider hybrid CPU/FPGA architectures.
The high precision simulations and the precision selection procedure can be
performed on the CPU, while the low-precision computations are done on the FPGA
accelerator.

Although fixed point simulations would work as well with our methodology, we
have observed that the overhead to represent the necessary value ranges is too high
for our application. In this chapter, we therefore only consider floating point number
formats.

Floating point numbers in general consist of an exponent and a significand. The
represented number is defined as significand ×exp(exponent). In binary form the
significand and exponent are given in limited number of digits or bits. The number of
digits for the significand, p, determines the numerical precision, while the exponent
digits define the overall number range. For standard architectures the available
number formats are “single” (8 exponent and 23 significand bits) and “double”
(11 exponent and 52 significand bits). Later in this chapter we refer to “single” or
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Fig. 9.1 (a) Sample paths of coupled fine and coarse discretization of a Brownian motion on
a level with 16 respectively 4 discretization and (as an approximation to exact path) 1,024
discretization points. (b) Sample paths of coupled fine and coarse discretization of the asset
price process of the Heston model with parameters from Table 9.1 Case I with 16 respectively
4 discretization and (as an approximation to exact path) 1,024 discretization points

“double” precision as infinite or reference precision, written as p = ∞. In our mixed
precision designs we choose the exponent such that no overflow can occur. This is
already fulfilled for 6 exponent bits with a representable range of ±226−1 ≈±109.

In 2011, Chow et al. have investigated different implementation methodologies
for mixed precision architectures on reconfigurable architectures for numerical
function comparison [11]. Their approach aims at aggressively using low precisions
for performing most of the comparisons, and only re-compute with higher precision
if the result is ambiguous. In contrast to a pure high precision implementation,
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they could achieve a speedup of more than five times with their mixed precision
methodology on the same FPGA device.

9.3 Mixed-Precision Idea

We now introduce a novel mixed precision methodology for reconfigurable architec-
tures. First, we consider the same situation as in Sect. 9.2.2, i.e. the aim is compute
the quantity a = E[H(S)], where direct sampling of S is possible. Implementing the
necessary calculations on a FPGA (or any computing system) will lead to round-off
errors due to finite precision. The naive idea, and almost always used strategy, is to
do all calculations with a very high precision. For most practical applications this
leads to negligible round-off errors. Since CPU computing systems are optimized
for using predefined precision (single and double) this is a feasible approach. On
FPGA devices huge cost savings are possible if reduced precision is used.

In analogy to the multilevel idea for SDEs we introduce a hierarchy of different
levels now with respect to precision instead of time discretization.

In this case the multiple levels are given by

E

[
H
(

S(pL)
)]

= E

[
H
(

S(p1)
)]

+
L

∑
l=2

E

[
H
(

S(pl)
)
−H

(
S(pl−1)

)]
, (9.14)

where S(pl) uses the same operations as S, but with reduced precision pl . Chow et
al. have done this for two levels, i.e., L = 2 in [12]. For two levels the idea was also
presented in [27] using single and double precision.

In the following we will explain the idea of a multilevel algorithm with respect to
precision in more detail. If exact sampling of S is possible, then there exists d ∈ N

and a function

ϕ : [0,1)d →R

such that for a random variable U which is uniformly distributed on [0,1)d , the
distribution of ϕ(U) is the same as the distribution of S. We will, in an informal
way, assume that ϕ is implementable, meaning that ϕ is given as a sequence of
arithmetic operations, case distinctions and “elementary functions” like exp, log,
etc. Consider now approximations

ϕ(p) : [0,1)d →R



9 Exploiting Mixed-Precision Arithmetics in a Multilevel Monte Carlo. . . 205

of ϕ with

ϕ(p)(x) = ϕ(p)(2−p�2px�
)

for all x ∈ [0,1)d . This condition ensures that ϕ(p) depends only on the first p
fractional bits of the input. The approximation ϕ(p) could for example be given
as the elementary operations building ϕ executed with p fractional bits applied only
to the first p fractional bits of the input. Then, for a suitable sequence of precisions
p1, . . . , pL, S(pl) = ϕ(pl)(U) and S(pl−1) = ϕ(pl−1)(U) in (9.14) are coupled via U .

We need pl random bits to simulate the coupled random variables
(

S(pl),S(pl−1)
)

:

Consider B(l)
1,n, . . . ,B

(l)
pl ,n independent and uniformly distributed on {0,1} for l =

1, . . . ,L and n = 1, . . . ,Nl . Set

Y (pl), f
n = ϕ(pl)

(
pl

∑
i=1

2−iB(l)
i,n

)

and for l > 1

Y (pl),c
n = ϕ(pl−1)

(
pl−1

∑
i=1

2−iB(l)
i,n

)
.

Hence, Y (pl), f
n and Y (pl),c

n are coupled and Y (pl), f
n and Y

(pl+1),c
n′ for n �= n′ are

independent and distributed like Ŝ(pl). The multilevel algorithm with respect to
precision only is now given as

AMP =
1

N1

N1

∑
n=1

H
(

Y (p1), f
n

)

+
L

∑
l=2

1
Nl

Nl

∑
n=1

[
H
(

Y (pl), f
n

)
−H

(
Y (pl),c

n

)]
.

9.4 Mixed Precision Multilevel

In the following we present the idea of our mixed precision methodology when S
is given as a one-dimensional SDE and direct sampling of H(S) is not possible.
We develop an extension of the MLMC method that exploits the mixed precision
setting by applying a customized precision for each numerical discretization Ŝ(l).
The finest numerical discretization is computed in reference precision. Hence the
resulting error introduced through the bias stays the same. The coarser numerical
discretization are computed with aggressively reduced precision and therefore at
much lower cost. This typically will increase the variance of the corresponding
level. Our proposed methodology first chooses the precision for each numerical
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discretization such that the level variance in reduced precision is close to the level
variance in reference precision. We then select the number of MC runs on each
level such that the overall computational effort is minimized, while guaranteeing
the desired accuracy.

A similar idea has been presented in [12], where Chow et al. have shown that
mixed precision simulations can achieve the same overall accuracy as pure reference
simulations in a MC simulation, while providing a speedup of 8×. They use an
auxiliary sample function to determine the mixed precision error in their setting and
correct it afterwards. Our presented approach is related to the work of Chow et al.,
but addresses some more points:

• They only consider two different precision levels, while we consider the general
MLMC setting with an arbitrary number of levels.

• Our algorithm determines the appropriate precision at runtime with a heuristic
analysis, while Chow et al. precompute this before simulating in a time-
consuming static analysis.

• We are solving the SDE numerically, and cannot rely on exact sampling of
the random variable as in their simpler setting. This adds another dimension of
complexity to the problem, in particular another source of error.

9.4.1 Algorithm

Our novel mixed precision MLMC algorithm follows the classic MLMC line.
However, in addition to multiple discretization schemes Ŝ(l) with different number
of steps Dl = Ml−1 we introduce customized precisions pl to calculate the approxi-
mation Ŝ(l) for each scheme. We denote this as Ŝ(l,pl):

Ŝ(l,pl) = ϕ(l,pl)(W )

where ϕ(l,pl) is a discretization scheme as described in Sect. 9.2.3.1, but each
operation is performed only with pl fractional bits. The increments of W necessary
as input for ϕ(l,pl ) are generated in reference precision and then cut-down to pl

fractional bits. Recently, an approach that already uses reduced precision for the
generation of the increments was outlined in [28].

For the following fix a maximal level L and a sequence of precisions p1, . . . , pL.
A way to choose these precision will be explained in Sect. 9.4.5. Due to the
definition of Ŝ(l,pl) one can establish the telescopic sum

E

[
H
(

Ŝ(L,pL)
)]

= E

[
H
(

Ŝ(1,p1)
)]

+
L

∑
l=2

E

[
H
(

Ŝ(l,pl)
)
−H

(
Ŝ(l−1,pl−1)

)]
(9.15)
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where H
(

Ŝ(l,pl)
)
= H

(
ϕ(l,pl)(W )

)
and H

(
Ŝ(l−1,pl−1)

)
= H

(
ϕ(l−1,pl−1)(W )

)
are

coupled via the same Brownian motion. This gives a way to represent the target
expectation as a sum of expectations of finer and coarse approximations, but now
with two dimensions of discretization: A time discretization and a discretization due
to finite precision.

As in classic MLMC, we compute each expectation on the right hand side of
Eq. (9.15) with a classic MC estimate. This leads to the Mixed Precision Multilevel
(MPML) algorithm

AMPML =A(1,p1) +
L

∑
l=2

A(l,pl ) (9.16)

with

A(1,p1) =
1

N1

N1

∑
n=1

H
(

Ŝ(1,p1)
n

)
and

A(l,pl) =
1
Nl

Nl

∑
n=1

[
H
(

Ŝ(l,pl)
n

)
−H

(
Ŝ(l−1,pl−1)

n

)]
for l = 2, . . . ,L,

where Ŝ(l,pl)
n are independent copies of Ŝ(l,pl) and Nl denotes the number of MC

runs on each level. As for the classic MLMC algorithm, it is crucial that Ŝ(l,pl) and
Ŝ(l−1,pl−1) within one level depend on the same Brownian path.

Analogously as for the MLMC algorithm we obtain,

MSE
(
AMPMC)= L

∑
l=1

V p
l

Nl
+
(
bp

L

)2
, (9.17)

where bp
L = E

[
H
(

Ŝ(L,pL)
)]

− a and

V p
1 = Var

[
H
(

Ŝ(1,p1)
)]

and

V p
l = Var

[
H
(

Ŝ(l,pl)
)
−H

(
Ŝ(l−1,pl−1)

)]
for l = 2, . . . ,L.

The number of simulations Nl for each level has to be chosen in an optimal way,
meaning that the MPML estimate has to be calculated with the minimal possible
computational costs for a given statistical error ε2. In the following we show how
this optimization problem can be solved considering cost and accuracy depending
on Nl , cf. [26].
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With c1 and cl being the average runtimes for sampling one element on the start-

ing level H
(

Ŝ(1,p1)
)

and other levels
{

H
(

Ŝ(l,pl)
)
−H

(
Ŝ(l−1,pl−1)

)}
respectively,

the cost for computing the MPML estimate (9.16) is

cost
(
AMPML)= L

∑
l=1

Nl · cl . (9.18)

On the other hand, the statistical error of the estimate, measured by its variance,
can be written as

Var
[
AMPML]= L

∑
l=1

1
Nl

·V p
l , (9.19)

where V p
l are the variances of the particular levels l.

Treating N1, . . . ,NL as real numbers, cost
(
AMPML

)
can be minimized such that

Var
[
AMPML

]
≤ ε2 using the method of Lagrange multipliers. This leads to the

following choice of replication numbers

Nl =

⌈(
1
ε2

L

∑
k=1

√
V p

k ck

)
·
√

V p
l /cl

⌉
. (9.20)

This selection leads to

MSE
(
AMPMC)≤ ε2 +

(
bp

L

)2

and by setting the precision for the last level to reference precision, i.e., pL = ∞, we
obtain the same MSE as for the MLMC algorithm. Note, that the MLMC algorithm
is given as a special case of our MPML algorithm by setting p1 = · · ·= pL = ∞.

The above consideration results in the MPML Algorithm 1. The selection of
appropriate precision is given by Algorithm 2 together with the explanation in
Sect. 9.4.5.

Algorithm 1 Mixed precision multilevel
Input: ε and L
Output: AMPML

1: choose p1, . . . , pL using Algorithm 2
2: estimate V p

1 , . . . ,V
p
L using an initial Nl = 104 samples

3: define optimal Nl , l = 1, . . .,L using Eq. (9.20)
4: evaluate extra samples at each level as needed for new Nl
5: calculate AMPML according to Eq. (9.16)



9 Exploiting Mixed-Precision Arithmetics in a Multilevel Monte Carlo. . . 209

a b

Fig. 9.2 For the first level (a), the FPGA contains n1 accelerators with precision p1, while for
higher levels (b) the FPGA contains groups of accelerator with precision pl and pl−1 that exchange
their Brownian path. The control and final payoff computation is done on the CPU that receives
the accumulated paths

9.4.2 Reconfigurable Architecture

This section depicts the Hardware (HW) architecture template underlying the
MPML algorithm introduced in the previous section. We consider a hybrid system
that consists of a CPU and an FPGA that is used as a hardware accelerator as
illustrated in Fig. 9.2. This setup exploits the benefits of both architectures and
is currently considered as one key architecture for the next generation computing
systems [23]. The CPU handles the algorithmic control, the simulation in reference
precision, and the estimation of the level variances V p

l . Moreover Step 1 of
Algorithm 1, the precision selection with Algorithm 2, is executed on the CPU as
well. The FPGA implements the discretized price paths Ŝ(l,pl) in reduced precisions
pl and the payoff computation.

There are basically two models on how to schedule the work on the FPGA:
Firstly, all the levels could be calculated in parallel with one configuration contain-
ing all necessary accelerators, if the number of levels is fixed in advance. Secondly,
the levels could be calculated one by one on the whole FPGA serially, with the
FPGA being reconfigured between each level. In this chapter we consider the serial
model with reconfiguration, while finding optimal configurations for the parallel
model is ongoing research.

We have measured that the FPGA reconfiguration times are between 50 and
500ms for common Xilinx FPGA devices. For maximum levels L = 5, . . . ,7, the
overall reconfiguration overhead is between 0.5 and 7 s. Since we consider small
target precisions ε with overall runtimes of multiple minutes, the overhead by
reconfiguration is insignificant.

For the first level the FPGA is filled with accelerators with precision p1 until
the FPGA is full, see Fig. 9.2a. The accelerators calculate one path step in each
clock cycle. To estimate the terms for higher levels we have to calculate the value

H
(

Ŝ(l,pl)
)

of the fine path and H
(

Ŝ(l−1,pl−1)
)

of the coarse path. The fine path
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requires M times more steps, hence we build groups of M accelerators with precision
pl and one with pl−1 for optimal resource utilization. They communicate their
Brownian path and send both results to the CPU, see Fig. 9.2b.

9.4.3 Showcase Settings

We demonstrate the benefits of our proposed mixed precision methodology by
a showcase setting that we describe now. This setup remains fixed for the rest
of this chapter. Nevertheless, our approach is applicable to other products and
discretization schemes as well.

We use Asian call options in the Heston setting as a showcase because they are
practically relevant and no closed-form solutions for pricing are available in general.
Their discounted payoff is of the form

H (S) = e−rT max

(
1
T

∫ T

0
Stdt −K,0

)
, (9.21)

where T is the time to maturity and K is the strike price.
In the following we explain the discretization scheme we used for the Heston

model. Since cases with violated Feller condition are relevant for practice, we
decided to choose a discretization scheme which works for all choices of parameters.
As a first choice, we will present here the approach of [43] which we use because of
its good performance and simplicity. At the moment it is not immediately clear how
the coupling necessary for multilevel algorithms can be achieved with the methods
approximating the Broadie and Kaya approach. Also, the case distinctions required
in these approaches will be much more expensive for a FPGA implementation than
for a CPU-implementation. The advantage of these methods reported in [31] might
therefore vanish. The same might hold true for the scheme reported in [2]. But these
topics have to be investigated further.

Now, we will describe the configuration as proposed in [43] using the notation
from Sect. 9.2.3.1. Consider two independent Brownian motions W 1 and W 2 and set

W S = ρW1 +
√

1−ρ2W 2 and

W ν =W 1

to capture the correlation of the Brownian motions driving the asset prices respec-
tively the volatility process.

The Euler discretization scheme is used to approximate the stochastic volatility
process (9.1b) together with full truncation correction to avoid negative volatility
values. This gives

ν̂(l)
0 = ν̃(l)

0 = ν0
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and

ν̂(l)
tm+1

=
(

ν̃(l)
tm+1

)+
,

where x+ = max(x,0) and

ν̃(l)
m+1 = ν̃(l)

m +κ
(

θ −
(

ν̃(l)
m

)+
)

h(l) +σ
√(

ν̃(l)
m

)+
ΔW ν,(l)

m+1 .

Instead of discretizing the asset price process directly, we first consider the log-
transformation, i.e. SDE (9.1a) is transformed with Îto’s Lemma to

dS̄t =

(
r− 1

2
νt

)
dt +

√
νt dW S

t ,

where S̄ = log(S). Then, we apply the Euler scheme as well. This gives

S̄(l)0 = log(s0),

S̄(l)m+1 = S̄(l)m +

(
r− 1

2
ν̂(l)

m

)
h(l) +

√
ν̂(l)

m ΔW S,(l)
m+1 .

The integral in the payoff function H from Eq. (9.21) can be calculated exactly

for the approximations Ŝ(l) = exp
(

S̄(l)
)

by the trapezoidal rule. For the multilevel

methods we set the level refinement constant M = 4 as in [26].

9.4.4 Cost Model for the FPGA Architecture

This section shows how the cost-model defined in (9.18) emerges from the HW
architecture. To calculate the runtime, it is important to know how many accelerators
fit on the FPGA. We have therefore synthesized the accelerators for the Maxeler
MaxWorkstation system to obtain the HW resource usage data. It contains a Xilinx
Virtex 6 FPGA (XC6VSX475T-2) and an Intel i7 CPU connected via PCIe [50].

The critical resource on the FPGA is the number of Lookup Tables (LUTs).
Figure 9.3 shows the relative accelerator size λp on the FPGA for different
precisions p. Accelerators for “single” take 3.27%, for “double” 9.99%, of the
total amount of LUTs. Custom precision accelerators with p = 8 fractional bits take
0.92%. This means we can fit 10 times more accelerators on the FPGA with this
reduced precision instead of “double”.
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Fig. 9.3 Showing relative device usage λp of the MC accelerator on the MaxWorkstation. While
CPUs or GPUs only provide the “single” floating-point format, FPGAs can save huge amount of
area exploiting reduced precision formats

To avoid routing congestion we assume that we can use up to 80% of the FPGA
area without problems. For interconnect, we attribute an overhead of Θ = 0.2% =
600LUTs for each accelerator. The number of accelerators for the first level np1 and
higher levels npl ,pl−1 that fit on the FPGA are therefore:

np1 =

⌊
0.8

λp +Θ

⌋
, npl ,pl−1 = M

⌊
0.8

M λpl+λpl−1+(M+1)Θ

⌋
.

It is important to note that there is no actual dependence on the level l itself in
the definition above. The reason is that the accelerators calculate the next step of a
discretized solution of the SDE only. Computing on a finer path and therefore using
more discretization steps only changes the step size parameter and runtime, but not
the form of the increment procedure for each step.

We now calculate the runtime of the MPML algorithm. One accelerator running
at frequency f = 100MHz needs f−1 = 10ns to calculate one step. The whole
FPGA with n accelerators calculating Nl paths with Ml−1 discretization steps takes
Nl Ml−1/ f n in time. Each FPGA configuration can be run with a unique frequency
fp1 respectively fpl ,pl−1. Therefore the whole runtime for all levels is:

runtime =
N1

fp1np1

+
L

∑
l=2

NlMl−1

fpl ,pl−1npl ,pl−1

+ const. (9.22)

The work on the CPU takes less time and can mostly be interleaved with the work
on the FPGA. Therefore it does not increase the overall runtime. As the FPGA path
simulation part dominates the computing time, this is also the overall runtime of
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the algorithm. Assuming the constant in Eq. (9.22) is small compared to the overall
runtime we can define the constants cl from Eq. (9.18) as:

c1 = ( fp1np1)
−1 , cl =

Ml−1

fpl ,pl−1npl ,pl−1

.

All accelerators have been synthesized for f = 100MHz. Based on the numbers for
λp from Fig. 9.3 all the weights cl can be derived.

9.4.5 Heuristic for Precision Selection

As depicted in Sect. 9.4.1, the precision pl of each numerical approximation Ŝ(l,pl)

has to be set appropriately. In this section we present our proposed heuristic
for precision selection and show that it can be executed at runtime with a low
computational overhead.

Substituting the infinite precision simulations with the reduced ones leads to
increased level variances V p

l . The goal of our heuristic is to choose p such that
the variance V p

l is only slightly enlarged compared to Vl , as higher variances would
require more repetitions.

To test this we define the following marker fraction

ξl (p) =
Var

[
H
(

Ŝ(l+1,∞)
)
−H

(
Ŝ(l,p)

)]
Var

[
H
(
Ŝ(l+1,∞)

)
−H

(
Ŝ(l,∞)

)] , (9.23)

where the nominator

H
(

Ŝ(l+1,∞)
)
−H

(
Ŝ(l,p)

)
= H

(
ϕ(l+1,∞)(W )

)
−H

(
ϕ(l,p)(W )

)

and the denominator

H
(

Ŝ(l+1,∞)
)
−H

(
Ŝ(l,∞)

)
= H

(
ϕ(l,∞)(W )

)
−H

(
ϕ(l,∞)(W )

)

depend on the same Brownian motion.
For p approaching infinity, ξl (p) converges to 1. We choose pl such that

ξl(pl) < 1.1 which ensures that V p
l is close to Vl . In Fig. 9.4 the value of ξl (p) is

plotted over p. The threshold value 1.1 is reasonable in the sense that it can indicate
whether a sufficient precision has already been reached. The figure indicates that
there is a region where ξl (p) is significantly above the threshold and for high p
significantly below the threshold. In between there is a region of 2–3 bits where the
heuristic is ambiguous. We later empirically show that this has a minor impact on
the performance of the MPML algorithm.
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Fig. 9.4 Showing the value of the heuristic ξl(p) for different levels for benchmark I. The region
up to 1.2 is plotted linearly to highlight the behavior close to the acceptance threshold, while higher
values are plotted on a logarithmic scale. The error bars in the plot are the standard deviation of
ξl(p), when evaluated with 100 paths

Algorithm 2 Precision selection
Input: L
Output: p1, . . . , pL

p0 ← 3 {practically observed}
for l = 1 to L−1 do

pl ← pl−1
repeat

pl ← pl +1
simulate 100 paths
estimate ξl(pl ) according to Eq. (9.23)

until ξl(pl )< 1.1
end for
pL ← ∞ {i.e., 23 or 52}

Algorithm 2 shows our proposed heuristic, which iteratively selects the pre-
cisions. The variances are estimated with only 100 paths, thus the runtime is
negligible. The selection procedure has a stochastic nature, thus it might produce
different outcomes for independent runs. However, we show that the heuristic
works and is stable in Sect. 9.5. It is important to use the same Brownian paths
for the estimation of numerator and denominator of ξl , since we have observed that
otherwise the heuristic fails.

Note that we set the precision pL for the finest discretization to the reference
precision. This ensures that the bias error of the MPML estimate is the same as
for the classic MLMC method. One could also choose pL according to the general
procedure in Algorithm 2. This will in general yield a higher speedup. We think the
impact on the bias in this case is negligible for practical applications, but a thorough
analysis is ongoing research.
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9.5 Numerical Results

In this section we present the outcome of the numerical performance analysis we
have done on the proposed MPML method described in Algorithm 1. For all results
we have considered the option pricing problem for Asian call options with the
maturity T = 1 and the strike K = 100 in the Heston model with either benchmark
parameter set I or II from Table 9.1.

In particular, we have focused on two points:

• The stability of the heuristic precision selection Algorithm 2,
• and the speedup of our proposed MPML method compared to the classic MLMC

algorithm.

9.5.1 Heuristic Stability Analysis

This section shows that the proposed precision selection given by Algorithm 2 is
stable in our setting. Since the main aim of the MPML methodology is speeding
up the classic MLMC algorithm, stability in this context means the ability to be
consistently faster than classic MLMC. Note that our algorithm ensures that the
resulting error will always be the same as for the classic MLMC method. For
testing, we used parameter set I from Table 9.1 and independently run the MPML
Algorithm 1 for 50 times with fixed L = 6.

Figure 9.5 shows the speedup of our MPML pricer compared to reference
precision MLMC for the same number of levels L and statistical error ε2. It can
be seen that the precisions selected by the heuristic may vary within the range of
3 bits for independent runs. However, this small variability in the chosen precision
has only minor influence on the overall performance of our MPML algorithm. It is
obvious that the speedup does not differ much, and therefore we can conclude the
overall stability of the heuristic selection procedure.

9.5.2 Speedup Analysis over Classic MLMC

As a fair reference for the speedup analysis, we have implemented the classic
MLMC algorithm for a fixed number of levels L on the same architecture both in
“single” and “double” precision. The speedup depends of the specified number of
levels L. Note that the speedup is independent of the demanded statistical error ε2

because the cost of both algorithms depend linear on 1/ε2.

Table 9.1 Benchmark Heston parameters

S0 κ θ σ r ν0 ρ Feller condition

I 100 3 0.16 0.4 0.02 0.1 − 0.8 Fulfilled

II 100 1.5 0.16 0.9 0.02 0.1 − 0.8 Violated
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Fig. 9.5 Showing the speedup of MPML compared to MLMC for benchmark I. The target
precision is “single” and maximum level L = 6. The bottom shows 50 configurations of precision
p1, . . ., p6 generated by Algorithm 2. For each of the configuration the speedup is drawn compared
to MLMC. It is slightly different due to changes in FPGA resources (Fig. 9.3) and variance
differences for different bit selections pl (Fig. 9.6). Although the heuristic sometimes picks lower
or higher bits, the speedup is very consistent
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Fig. 9.6 Showing the level variance for Heston benchmark I from Table 9.1. The orange line
shows the “double” variances Vl of the MLMC algorithm. The blue crosses are the mixed precision
variance V p

l . They are based on the 50 configurations for p1, . . ., pL in Fig. 9.5 generated by
Algorithm 2. Since the mixed precision variances depend on both pl and pl−1, multiple blue
crosses are drawn with slightly different variances. The heuristic chooses the bits so that the mixed
precision variance is only slightly worse than the “double” variance

As explained in Sect. 9.4.5 the idea of our precision selection heuristic is to
choose the precision for each approximation such that V p

l is close to Vl . In Fig. 9.6
we see in orange Vl and in blue V p

l as occurred for independent realizations of our
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Fig. 9.7 Showing the speedup of MPML compared to MLMC for different maximum level L.
The speedup is shown for target precision “single” and “double” and benchmark set I and II. Each
point is the average speedup of 50 configurations p1, . . ., pL selected by Algorithm 2, like shown in
Fig. 9.5 for L = 6. The solid line represent speedups when the last precision pL is set to the target
precision, while the dashed lines are speedups when pL is chosen by the heuristic as well

heuristic. The variances in reduced precision are only slightly higher than those in
reference precision.

In Fig. 9.7 the solid lines show the observed speedups for benchmarks I and II
from Table 9.1 for the following setups:

• MPML pL = 23 vs. “single” precision MLMC
• MPML pL = 52 vs. “double” precision MLMC

One can clearly see that the MPML algorithm is about 1.5–2 times faster than
the “single” precision MLMC for both parameter sets from Table 9.1. For “double”
precision, the speedup is about 2 for small numbers of the levels and grows towards
4 when moving to higher levels. Moreover, the measured speedup values slightly
differ for different parameter sets. This is because of differences in the variance Vl

for low levels. Furthermore, it is worth noting that we obtain the results regardless of
the Feller condition violation at least for the violated case II. Further investigations
are ongoing research.

Additionally, the dashed lines in Fig. 9.7 show the observed speedups when pL is
also selected according to our heuristic. Again the comparison is made in respect to
“single” and “double” precision MLMC. We observe a speedup of up to 9× for this
setup.

Altogether, we observe a completely stable heuristic behavior, leading to speed-
ups up to more than three when using our MPML methodology over pure reference
precision architectures on the same platform.
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9.6 Conclusion and Outlook

In this chapter we have presented a novel methodology to exploit reduced precision
data format in one of the most advanced algorithms for option pricing. We have
formulated a Mixed Precision Multilevel (MPML) algorithm that is aware of the
characteristics of custom precision operations. By using reduced precision we lower
the overall runtime of the algorithm. Due to the multilevel strategy the final accuracy
is not changed.

We have implemented the algorithm on a hybrid CPU/FPGA architecture, which
perfectly fits into our mixed precision setting. A key aspect of the algorithm is the
choice of appropriate precisions. We have proposed a novel heuristic that selects the
precisions at runtime with negligible overhead and demonstrated its effectiveness.

We have showed numerically that our Mixed Precision Multilevel (MPML)
algorithm achieves speedups of 3–9× compared to classic Multilevel Monte Carlo
(MLMC) for pricing Asian options in the Heston model. The comparison is made
with respect to an already very elaborate algorithm on the same hybrid platform.
With our heuristic we are able to determine the precisions for the specific problem
under consideration.

In total, our approach is one step towards bridging the gap between financial
algorithm design and execution platform refinement. Our idea can also be applied
to any numerical method that improves an initial approximation step-by-step by
iterative refinements.

Future work includes investigations of the required precision for the finest
discretization and of the approach, presented in [28], which already uses reduced
precision in the generation of the Brownian increments and detailed studies of
energy saving in various setups, for example on the recent Xilinx Zynq-7000 APP
or other hybrid CPU/FPGA architectures.
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Chapter 10
Accelerating Closed-Form Heston Pricers
for Calibration

Gongda Liu, Christian Brugger, Christian De Schryver, and Norbert Wehn

Abstract Calibrating models against the markets is a crucial step to obtain
meaningful results in the subsequent pricing processes. In general, calibration can
be seen as a minimization problem that tries to fit modeled product prices to the
observed ones on the market (compare Chap. 2 by Sayer and Wenzel). This means
that during the calibration process the modeled prices need to be calculated many
times, and therefore the run time of the product pricers have the highest impact on
the overall calibration run time. Therefore, in general, only products are used for
calibration for which closed-form mathematical pricing formulas are known.

While for the Heston model (semi) closed-form solutions exist for simple
products, their evaluation involves complex functions and infinite integrals. So
far these integrals can only be solved with time-consuming numerical methods.
However, over the time, more and more theoretical and practical subtleties have
been revealed for doing this and today a large number of possible approaches
are known. Examples are different formulations of closed-formulas and various
integration algorithms like quadrature or Fourier methods. Nevertheless, all options
only work under specific conditions and depend on the Heston model parameters
and the input setting.

In this chapter we present a methodology how to determine the most appropriate
calibration method at run time. For a practical setup we study the available
popular closed-form solutions and integration algorithms from literature. In total we
compare 14 pricing methods, including adaptive quadrature and Fourier methods.
For a target accuracy of 10−3 we show that static Gauss-Legendre are best on Central
Processing Units (CPUs) for the unrestricted parameter set. Further we show that for
restricted Carr-Madan formulation the methods are 3.6× faster. We also show that
Fourier methods are even better when pricing at least 10 options with the same
maturity but different strikes.
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10.1 Introduction

Simulating the future market behavior is a basic need for many financial applications
such as product pricing, risk assessment and -management, or trading. It is
obvious that the meaning of simulated asset prices strongly depends on the correct
parameterization of the underlying models. Fitting the models against the market
observations is called model calibration. For details refer to Chap. 2 by Sayer and
Wenzel.

Calibrating their models against the market is one of the most compute-intensive
tasks for financial institutes and can occupy a big compute cluster for several hours
every night. The result is that the achieved accuracy is in general limited by the
available compute time, and the energy consumed for calibration in total is immense.
Especially sophisticated models with stochastic or local volatility processes, such as
Heston [10], incorporate a number of parameters that need to be adjusted carefully to
the current market observations. For those models, usually plain vanilla call and put
options for which (semi) closed-form solutions exist are employed in the calibration
process (see Sect. 10.3). Due to its popularity in business, we focus on the Heston
model in this work.

Because of the high computational effort, many institutes run overnight calibra-
tion jobs based on local optimization techniques and gauge their settings once a
week with a global optimizer run. However, most of the compute time is not spent
in the optimizer itself, but in the evaluation of the cost function (i.e. the vanilla
option prices, see Table 10.1). The reason is that although analytical formulas exist,
they come with a number of substantial difficulties in general [1]:

• All available formulas contain infinite complex integrals that can only be solved
numerically.

• The shapes of the characteristic functions strongly depend on the given parame-
ters, what makes it very hard to pick suitable integration methods a priori.

• The characteristic functions may show discontinuities like jumps or peaks that
need to be taken into account.

In addition to the different formulas, we can apply various approximation
methods for the quadrature itself (non-adaptive vs. adaptive/truncate vs. domain
transformation). However, not every method is optimal for every formula and an
appropriate choice even depends on the actual Heston setting. This results in a large
parameter space we need to navigate through in order to pick the best available setup
for a specific set of inputs.

Table 10.1 Calibration time
breakdown

Time (s) Percent (%)

Heston prices PHeston 72.1 99.5

Cost function overhead ∑i[. . .]
2 0.2 0.3

Optimizer overhead (Simplex) 0.1 0.2

Total 72.4 100.0
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A number of publications are available that investigate theoretical and practical
aspects of implementing the Heston pricing formula for calibration purposes, both
for classical quadrature and Fast Fourier Transform (FFT) methods. Unfortunately,
to the best of our knowledge, a systematic study for comparing different approaches
is not established and it is hard to determine which methods are most suitable under
specific market conditions, e.g. for finding the best method to price with a given
accuracy on a specific platform. Furthermore, directly comparing the results from
literature is not possible in most cases due to disparate settings and target accuracies.

This chapter summarizes our findings first presented at the 7th Workshop on
High Performance Computational Finance (WHPCF ’14) in November 2014 [5].
We show a comprehensive analysis of available solutions and their computational
complexity on CPUs. Fur this purpose, we introduce an objective methodology for
determining the fastest pricing method in a calibration process that meets a specific
predetermined accuracy. We apply this methodology to in total 14 pricing method
and provide throughput results for one well-defined setting with a given accuracy
of 10−3. In addition, we quantitatively study the benefits and drawbacks of FFT
methods for Heston calibration and compare them to classic quadrature methods.

10.2 Related Work

Pricing vanilla options in the Heston model is the subject matter of many publica-
tions. However, most contributions are from the financial mathematics community
and focus on theoretical considerations. These aspects are covered in Sect. 10.3. As a
result, only a few number of papers deal with numerical accuracies, implementation
aspects of executing Heston calibration tasks on CPU or General Purpose Graphics
Processor Unit (GPGPU) systems, or include runtimes. This section summarizes the
latter category.

In 1999, Carr and Madan have compared their novel FFT approach to classic
solutions and could show that it is up to 45 times faster on a standard CPU for one
specific setting [6]. They claim that the FFT method should be used whenever a
closed-form solution for the underlying characteristic function is available.

Aichinger et al. have presented a method that combines global and local
optimizer techniques for Heston calibration in 2011 [1]. They provide runtimes
for (multi-core) CPUs and Graphics Processor Units (GPUs). Bernemann et al.
have achieved a speedup of around 70 compared to an Intel Xeon E5620 CPU
by accelerating accelerating the Gauss-Laguerre integration method on an Nvidia
Tesla C1060 GPU [4]. Unfortunately, further descriptions of the employed setting
are missing, in particular which error measure has been used.

The most comprehensive study we have seen up to now has been made by
Schmelzle in 2010 [17]. He gives a very good overview about available analytical
formulas and integration methods. In his work, Schmelzle provides CPU runtimes
for FFT based approaches and adaptive quadrature methods, both for Root Mean
Squared Errors (RMSEs) down to 10−15 (however, we are not sure if this level
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of accuracy is relevant for practical applications). Nevertheless, he only examines
one very specific Heston parameter set that seems to come with a rather smooth
characteristic function. In this work he shows that the shape of this function
can become very challenging for quadrature methods for a number of parameter
constellations. Furthermore, Schmelzle only considers domain transformation for
dealing with the infinite integrals, while we investigate the performance of finite
upper integration borders.

10.3 Background

This section summarizes available formulas and integration methods from literature,
focusing on the Heston model. For a general introduction into calibration and its
challenges refer to Chap. 2 by Sayer and Wenzel in this book.

10.3.1 Heston Model

The Heston model is a mathematical model used to price products on the stock
market [10]. Nowadays, it is widely used in the financial industry [15]. One
main reason is that the Heston model is complex enough to describe important
market features, especially volatility clustering [12]. At the same time, closed-form
solutions for simple products are available. This is crucial to enable calibrating the
model against the market in realistic time.

Under the risk-neutral measure, the Heston model consists of two correlated
Stochastic Differential Equations (SDEs). Equation (10.1a) describes the asset price
process S that matches the Black-Scholes SDE, except for the non-constant volatility√

νt driven by its own SDE (10.1b).

dSt = Strdt + St
√

νt dW S
t , (10.1a)

dνt = κ (θ −νt)dt +σ
√

νt dW ν
t . (10.1b)

The two driving Brownian motions W S and W ν are correlated with the correlation
coefficient ρ to reflect the observable volatility clustering effect of the market.

Today’s price of a derivative can be calculated as P = Eg(S) where g is a
corresponding discounted payoff function. For some products closed form solutions
exist for P as we will see later.

The parameters of the Heston model are the initial variance ν0, the reversion
rate κ , the long-term average volatility θ , the volatility of the volatility σ , and the
correlation ρ . The initial asset price S0 and the riskless rate r are provided from
market data.



10 Accelerating Closed-Form Heston Pricers for Calibration 225

10.3.2 Calibration

While the initial asset price S0 and r can be observed directly at the market, all other
parameters need to be found with a so-called calibration process. For this, products
based on the the same underlying S can be used. Calibration is often restricted to the
vanilla put and call options that are currently traded, i.e. products for which closed-
form solutions exist. Call and put options e.g. give the buyer the right to buy (call) or
sell(put) the underlying asset for a predefined price K (strike) and date T (maturity).

Calibration in general is an optimization problem. For the given market situation
it tries to find the Heston parameters that describe the currently observed product
prices in the most optimal way: Assuming we observe N vanilla call options for
an underlying S with maturities Ti, Ki, and market prices CMarket

i , the calibration
problem can be stated as:

min
ν0,κ ,θ ,σ ,ρ

N

∑
i=1

[
CHeston (ν0,κ ,θ ,σ ,ρ ;Ki,Ti)−CMarket

i

]2
.

The result of the calibration process are the five Heston parameters: ν0,κ ,θ ,σ ,ρ .
When calibrating to market data it is very common to have several options for

the same maturity T (e.g. 1 year) with several strike values K. We will see later that
the FFT method can benefit from this.

Table 10.1 shows the runtime breakdown of one calibration process with a
downhill simplex optimizer on a dual socket Intel Xeon X5660 server. It is important
to state that most institutes are interested in calibrating complete books with
thousands of positions. We can see that 99.5% of the calibration time is spent in
evaluating the Heston prices itself. That means for a fast calibration an efficient
pricer implementation is crucial, while the optimizer itself can be neglected. In the
next section we discuss various closed-form solutions that are available to calculate
these option prices. The methods are outlined in Fig. 10.1.

10.3.3 Closed-Form Solutions for CHestonCHestonCHeston

Already with its introduction in 1993, the Heston model was known as one of the
few stochastic models that provide closed-form solutions. Heston himself presented
a closed-form solution for vanilla call and put options in his paper [10]. We call this
the Original Heston Formula.

10.3.3.1 Heston Trap Formula

Albrecher et al. have theoretically shown that the original formulation of the
characteristic function as given by Heston himself [10] comes with instabilities
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Heston Call Price
(closed-form)

Original
Heston Formula

Heston Trap
Formula

Quadrature
Methods Carr-Madan

Formulation

Quadrature
Methods

FFT
Methods

Fig. 10.1 Available closed-form approaches to determine the price of a call option in the Heston
model. While the original Heston formula showed instabilities, the Heston trap formula is free
of such limitations and can be integrated with quadrature methods. Under certain conditions, the
Carr-Madan formulation provides a faster approximation and allows the use of FFT methods

due to a branch cut of the complex logarithm [2]. They have proven that a second
version used by Schoutens-Simons-Tistaert [18] or by Gatheral [8] is stable for the
complete parameter space. It is a variation of the original Heston formula, which we
call Heston Trap Formula. The characteristic function in that case looks like:

φ(v, t) = exp(iv(logS0 + rt))

× exp

(
θκσ−2

(
(κ −ρσ iv− d)t − 2log

1− ge−dt

1− g

))

× exp

(
ν0

2σ−2(κ −ρσ iv− d)
1− e−dt

1− ge−dt

)
,

g = (κ −ρσ iv− d)/(κ −ρσ iv+ d),

d =

√
(ρσ iv−κ)2 +σ2(iv+ v2).

The Heston call price can be calculated by integrating the characteristic function
as following:

c(K,T ) =
1
2

(
S0 − e−rT K

)
+

1
π

∫ ∞

0
( f1(v)−K f0(v))dv,

fa(v) = Re

[
e−iv logKφ(v− ia;T)

iv

]
. (10.2)
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10.3.3.2 Carr-Madan Formulation

Carr and Madan have introduced a new method to calculate the Heston call price:
They Fourier-transform the option price. The huge benefit of this formulation is that
the integrated function h(v) does not depend on K. This makes the pricing of options
with different strike K but same maturity T very efficient. The expression for c is in
this case:

c(K,T ) =
e−α logK

π

∫ ∞

0
e−iv logKh(v)dv,

h(v) =
e−rT φ(v− (α + 1)i;T )

α2 +α − v2 + i(2α + 1)v
.

(10.3)

In order to make these integrals finite they have introduced the damping factor
α . α can be chosen with the following different strategies: Lord and Kahl presented
a methodology to find an optimal α for each specific setting [14]. This method of
searching has to be done before each pricing and for us took much longer than
the pricing itself, rendering this strategy useless. In the literature one can find two
popular choices for α: α = 1/4 α+ as suggested in [6] or a fixed α = 0.75 like in e.g.
[11, 18]. Ng has demonstrated that the first choice leads to bad results in many cases
and suggests to use α = 0.75 [16]. This is in line with our investigations, therefore
we fix α = 0.75 for all of our settings.

In addition, the Carr-Madan formulation requires that the characteristic function
is finite at the origin [6]. Lee has derived an upper and lower bounds for α for the
case ρ < κ/σ [13]. The case ρ ≥ κ/σ has also been studied in several papers, nicely
summarized in Gatheral and Jacquier [9]. They show that many problems may arise
in this second region. But due to lack of theoretical proofs it is not clear when the
Carr-Madan formulation can be safely applied here. Based on that we have decided
to use the Carr-Madan formula only in the first region:

ρ <
κ
σ

and α−<α <α+ ⇒ φ((α + 1)i;T )< ∞

α± =−σ − 2κρ ∓
√

σ2 − 4σκρ + 4κ2

2(ρ2 − 1)σ
− 1

(10.4)

While the main benefit of the Carr-Madan formulation is that the integral can be
solved with FFT methods, the integral in Eq. (10.3) can also be evaluated with
quadrature methods. We will therefore study both approaches in the following.

Both the Heston trap formula and the Carr-Madan formulation require the
numerical evaluation of infinite integrals. In the next section we discuss numerical
integration methods. Figure 10.1 summarizes the closed-form solution formulas and
available numerical methods to solve them.



228 G. Liu et al.

10.3.4 Integration Methods

A vast amount of integration methods exists for evaluating the integrals we see in
the closed-form Heston call price formulas. However, making one particular choice
has a high impact on the accuracy and runtime of the pricing methods. Furthermore,
it is hard to tell a priori which methods are suitable for the closed-form solutions
due to the complex behavior of the integrals. Issues that may arise are oscillations,
high peaks, and long tails as shown in Fig. 10.3. For that reason, we evaluate all
the standard approaches in this work, including fixed, adaptive quadrature, and FFT
methods as outlined in Fig. 10.2.

Integration 
Methods

Quadrature 
Methods FFT Methods

FFT Fractional 
FFT (FRFT)

Fixed 
Methods Adaptive 

Methods

Gauss 
Legendre Adaptive 

Simpson
Gauss 

Kronrod
Gauss 
Lobatto

Trape-
zodial Simpson

Fig. 10.2 Considered integration methods for the closed-form solutions of the Heston call price.
They include fixed and adaptive quadrature methods and FFT methods

Fig. 10.3 The integrand of the Heston trap pricing formula (10.2). In this case the function has a
specifically long tail. The parameters are: S0 = 138,K = 150,T = 0.62, r = 0.037,κ = 1.17,θ =
0.068,σ = 7.9,ρ =−0.45,ν0 = 0.0027
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10.3.4.1 Fixed Quadrature Methods

Quadrature methods are algorithms for calculating the numerical value of integrals
based on interpolating functions. Fixed quadrature methods evaluate the integration
domain at predefined points.

The most basic one is the trapezoidal approach. It evaluates the integrand on a
uniformly spaced grid and approximates the region under the graph as a trapezoid.

The Simpson method also operates on the a uniform grid, but uses three points
effectively approximating the area with polynomials of degree two. This so-called
quadratic integration may lead to a better approximation of the integrand and
furthermore provides and error estimate for each section which is required for
adaptive methods.

Gaussian quadrature methods provide the best numerical estimates by picking
optimal evaluation points. However, this results in unequally spaced points in
general. With this freedom it is possible to approximate polynomials of degrees up
to 2n− 1 with only n evaluations of the integrand. The standard Gauss quadrature
method uses Legendre polynomials. It is a widely used method for numerical
integration.

10.3.4.2 Adaptive Quadrature Methods

Adaptive quadrature methods approximate the integrand while adaptively refining
subintervals of the integration domain where needed.

In the first step they make an estimation over the full interval with a static
quadrature rule based on a few points only (e.g. five). Then they estimate the error
for each interval. If the estimated error is larger than the tolerance τ , the interval
is subdivided into two halves. For each half the procedure is repeated until the
tolerance is reached.

A requirement for adaptive methods is the availability of a good error estimate.
The adaptive Simpson method is the first approach we are considering here. It shows
two important beneficial characteristics: It provides an adequate error estimate and
subintervals that can reuse the evaluation points of the previous iteration.

Because of the irregular grid of standard Gauss methods it is not possible
to reuse points for subintervals in general. One approach for overcoming this
issue is the Gauss-Kronrod extension. It extends the Gauss-Legendre method by
evaluating additional points. With this solution a more accurate approximation can
be computed by re-using existing points. However, one side effect is that for the
same points the Gauss-Kronrod extension provides a second quadrature rule of
higher order. Nevertheless, the difference with the original one can be taken as a
good error estimate for the adaptive method.

The Gauss-Lobatto quadrature is an alternative to the original Gauss-Legendre
quadrature. In its formula it includes the points at the border of the integration
region. This method can be nested easily at the cost of sacrificing some accuracy.
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10.3.4.3 FFT Methods

The call price c in the Carr-Madan formulation in Eq. (10.3) is the Fourier integral
of h(v) with respect to k = logK. It lends itself the application of the FFT.

Applying the Simson quadrature rule to the integral in Eq. (10.3) we can rewrite
it as:

c(ku) =
e−kuα

π
Re [Xu], ku =

π
β

(
2u
N

− 1

)
, (10.5a)

Xu =
N−1

∑
n=0

xne−i2πu n
N , u ∈ {0, ..,N−1} , (10.5b)

xn = eiπn h(nβ ) β
3+(−1)n+1 − δn0

3
. (10.5c)

It is worth noting that Eq. (10.5b) can be efficiently solved by an FFT within
O(N logN) for all u when N is a power of two. Furthermore, once we have the
components Xu, prices for several options with different strike K but the same
maturity T can be calculated very efficiently through interpolation.

The integration grid is equally spaced out in logK and v. However, in order to
evaluate the price of a call option with a specific strike K it has to be interpolated
in the C(ku) vector. In literature linear and cubic spline interpolation schemes are
mentioned that we both consider here.

The FFT method effectively integrates the infinite integral in Eq. (10.3) up to
vmax = (N − 1)β . The spacing in the resulting strike price vector is given as Δk =
2π/(β N) = O

(
vmax

−1
)
. For a given vmax it is therefore not possible to decrease the

spacing by increasing N.
The Fractional Fourier Transform (FRFT) methods overcome this limitation by

choosing a different expression for ku [3, 7]. As the name suggests they only evaluate
a fraction of the whole logK space that is chosen by the user.

Due to numerical instabilities for the FFT methods we needed to introduce some
checks that the problem is not ill-conditioned. Although by condition (10.4) it is
guaranteed that the initial point is bounded, we check whether it lies in a reasonable
numeric range. When sampling φ it starts with a positive real component and then
oscillates around 0. When this oscillation happens too fast, the FFT method will
always fail. We therefore introduce the check:

Re [φ(nβ − (α + 1)i;T )]> 0 ∀ n ∈ {0, ..,5},β = 0.02

and φ((α + 1)i;T )< 1016.
(10.6)

These additional conditions filter out less than 1% of the parameters for our setup
we introduce later.
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10.4 Methodology

Calibration is a time consuming task. Although having closed-form solutions for
the model prices, we have seen that they are the bottleneck for calibration from
Table 10.1.

We have also seen that all closed-form solutions require the use of numerical
integration methods. They only approximate the result and are not exact. In
addition, they have parameters like the number of integration points N to increase
the accuracy with additional evaluations. Various methods exists with varying
complexity and accuracy, with a huge design space.

In this section we present a methodology for finding the fastest pricing method in
an automatic fashion. For a fair comparison it is crucial that we compare the runtime
of methods with the same accuracy. In our point of view it does e.g. not make sense
to compare an adaptive Gauss method that is able to reach ε = 10−8 with a FRFT
method that only achieves ε = 10−2. A big part of our methodology will be on
how to tune the parameters of our methods such that they fulfill the required target
accuracy without exceeding it.

Additionally, we think it is crucial to test the various methods for many different
pricing parameters, i.e. the Heston parameters r,S0,ν0,κ ,θ ,σ ,ρ and the option
parameters maturity T and moneyness M := S0/K. In Fig. 10.3 we have seen that
the parameters can have a huge impact on the shape of the curve. That means: If we
would tune our methods to one specific curve, they might perform vary badly for
different parameters. In order to make our method robust and objective we instead
sample our parameters from a distribution. This allows us to generate thousands of
pricing settings and to derive conclusions for the average case.

To make the result as meaningful as possible the distributions should be identical
to how likely they are picked by the optimizer during a real calibration processes.

We define our error ε to be the RMSE of the method under consideration ĉ
compared to the true prices c. Our methods for approximating the true prices ĉ are
no fixed, but parameterized. The fixed quadrature methods e.g. have two parameters
that influence the runtime and accuracy: The maximum integration bound vmax and
the number of discretization points N. To distinguish between all these estimators
we use ĉN

vmax
. We assume that for high N and vmax our estimators are unbiased,

meaning that we captured all errors:

ε2 = MSE = e
(
ĉN

vmax
− c

)2 N→∞−−−−−→
vmax→∞

0.

By splitting up the errors as following we can influence the error on the parameters
independently:
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e
(
ĉN

vmax
− c

)2
= e

(
ĉN

vmax
− ĉN=∞

vmax
+ ĉN=∞

vmax
− c

)2

= e
(
ĉN

vmax
− ĉN=∞

vmax

)2

︸ ︷︷ ︸
Discretization Error

+e
(
ĉN=∞

vmax
− c

)2

︸ ︷︷ ︸
Range Error

= (Δdiscr.)
2 +

(
Δrange

)2

While the discretization error Δdiscr. depends here on the step size h = vmax/N and
also in general on both N and vmax, the range error Δrange only depends on vmax.
This has two important consequences: First, we can find a proper choice for vmax

through Δdiscr. independently of N, and based on that estimate a proper choice for
N through Δrange. Second, as ĉN=∞

vmax
is independent of the integration scheme, it is

sufficient to estimate one vmax for all quadrature methods operating on the same
integrand.

Our adaptive quadrature methods have as parameters vmax and the tolerance τ
while our FFT methods depend on vmax, N, and the selected interpolation method.
For our adaptive methods the derivation is analog to the fixed method, and we call
the error due to the tolerance tolerance error. For the FFT methods we have an
additional interpolation error.

To find the fastest method that has a RMSE of ε under the considered setting we
therefore follow the following procedure:

1. Find the optimum v∗max such that Δrange = ε/
√

2 for each integral separately.
2. For this v∗max find optimum N∗ or τ∗ such that Δrange = ε/

√
2 for each method

and integral.
3. Measure the runtime of all methods with the found optimal parameters

v∗max,N
∗,τ∗ and pick the fastest.

In the next section we will apply this novel methodology to a well defined setting
for all of our 14 numerical methods.

10.5 Evaluation Setting

In our work we model the distribution of the parameters with nine marginal
distributions. We have extracted those distributions from our experience with market
data that we have seen over the time. The probability density functions of the
distributions are shown in Fig. 10.4. They have the following exact form:

r ∼ 0.05 Beta(α = 1,β = 3), ρ ∼ 2 Beta(2,5)− 1,

S0 ∼ unif(50,150), ν0 ∼ 9.999 Beta(1,3)+ 0.001,

κ ∼ 9.9 Beta(1,3)+ 0.1, θ ∼ 4.999 Beta(1,3)+ 0.001,

σ ∼ 9.9 Beta(1,3)+ 0.1, T ∼ 4.8 Beta(1,3)+ 0.2,

M/T ∼ unif(0.8,1.2).
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Fig. 10.4 Showing marginal x density functions of the parameter as defined in our setup. We
sample from these distributions to calculate RMSE errors and assure that our methods work for
many parameters

For example, we have researched the market data and observed that most
maturities are within 1 year. However, there exist still some long term maturities
T from 6 years up to 20 years. Since for practitioners the most interesting strike
prices lie within a range of 20 % difference from the current spot price, we have set
the moneyness M = S0/K = [0.8,1.2]. With the help of the calibration results, we
have derived a meaningful parameter range for the Heston model. Based on that we
have built appropriate Random Number Generators (RNGs) by using the suitable
beta distributions from Fig. 10.4.

We have set our target accuracy to ε = 10−3. Although this might sound very
coarse from a scientific point of view it is a sufficient choice for most practical
calibration settings (in many cases it doesn’t make any sense to calibrate more
accurate than 1 cent).

As a reference method c to obtain the correct prices we have integrated the
Heston Trap formula with an adaptive Gauss-Kronrod method. For that, we have
chosen a tolerance τ = 10−6 and upper integration bound vmax = 10,000. We have
ensured that the prices converge for this setting and do not change for higher τ or
vmax.

For our FRFT methods we have generated our target grid for K from 80 % to
120 % of the spot price S0, making it possible to interpolate in this regime. For the
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Fourier methods all the plots have been made with cubic interpolation, we will later
comment on linear interpolation.

We have implemented all of our methods in Matlab. For the quadrature formulas
and FFT we have use the efficient library functions of Matlab itself. We have
evaluated each RMSE based on 10,000 parameter samples from the distribution and
used the same parameters for all methods when selecting the optimal parameters of
the methods v∗max,N

∗,τ∗. However, for the final runtime and accuracy test we have
drawn a second independent set of parameters. We have run our test on an Intel Core
i5-460M CPU. The runtimes are for one CPU core only.

10.6 Results

In this section we present the results of applying our methodology for finding the
fastest integration method to our setting for the 14 pricing methods summarized in
Sect. 10.3.

10.6.1 Optimal Integration Bounds v∗maxv∗maxv∗max

The first step of our methodology is to estimate the optimal integration bound v∗max
for all of our integrals. In the introduction we have introduced the two pricing
formulas (10.2) and (10.3). For the method used to evaluate the range error ĈN=∞

vmax

we have employed the adaptive Gauss-Kronrod with a tolerance of τ = 10−6. We
have ensured that this method does not have any discretization error by checking
wether the prices change for higher tolerance τ . The results are shown in Fig. 10.5.

Fig. 10.5 Range error Δrange over the integration upper bound vmax for different integrals. The
points where the curves cross the target accuracy ε/

√
2 define the optimal integration range v∗max
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We can see that the Heston trap integral leads to higher errors and needs a higher
integration bound. The reason is that the Carr-Madan integral can only be applied
for some of the parameters, (approximately 80% for our setting). These parameters
fulfilling the conditions (10.4) seem to converge earlier than when pricing the
full set.

We have repeated this study for the FFT and FRFT method. As they are both
based on the Carr-Madan formula (10.3) we would expect that the curves are
identical to the above test. While this is true for the FRFT method with N = 32,768,
we see a higher error for the FFT method with the same N. The reason is that
although we can eliminate the discretization error Δdiscr. by choosing a big N we
have seen before that increasing N will not effect the spacing in the resulting result
vector. The effect is that we have a significant interpolation error in this cases and
for this reason the curve is higher.

10.6.2 Optimal Settings N∗N∗N∗ and τ∗τ∗τ∗

From Fig. 10.5 we can read of v∗max for the different integrals. With these intervals
we can tune the discretization error of our methods.

10.6.2.1 Heston Trap Formula

The results for the Heston trap formula (10.2) are shown in Fig. 10.6. We can see
that the static quadrature methods have significant difficulties to reach the target
accuracy. Comparing trapezoidal to Simpson we can see almost no difference.
Although the Simpson method should provide a better theoretical convergence, we
cannot observe this in our setting. Only the Gauss-Legendre method reaches the pre-
given accuracy. This is due to the shape of the curve and the large integration range
of vmax = 188. In Fig. 10.3 we see that the integrand has a peak at the beginning and
then quickly decays. The fixed methods are just not capable of capturing enough
details of this peak since their grid is spaced out evenly over the whole integration
range.

The adaptive quadrature methods can reach the accuracy with ease. It is
interesting to see that while Gauss-Kronrod methods reach our target already with
a tolerance of τ = 1, the adaptive Simpson rule requires a accuracy of τ = 10−5.
However, since both are using very different methods to estimate the error this is not
surprising. What we should take away from this is that although the name suggests it
the tolerance of the integration has little to do with the RMSE of the pricing method.
E.g. setting a τ to your target precision, as some paper do, is very risky and might
not lead to the desired results.
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10.6.2.2 Carr-Madan Formulation

The results of integrating the Carr-Madan formula (10.3) are shown in Fig. 10.7.
This time the static quadrature methods can reach the target accuracy easily. This is
mainly due to the drastically decreased integration interval of vmax = 73.

In addition, the adaptive methods are able to reach the target without a lot of
refinements. We can tell this from the almost flat decay for all the methods.

For the Fourier methods we can see that they also easily reach a very low
accuracy. At the beginning the FRFT method is clearly better. However, in order
to be able to apply the FFT, N needs to be restricted to 2m,m ∈ N. Although the
FRFT is almost reaching the target accuracy for N = 1,024 we have to take the next
higher N = 2,048 for our final method. We will later see that this might be one
reason why the FRFT methods are slower in our specific setup compared to FFT
methods.

a

b

Fig. 10.6 Heston trap formula (10.2) integrated with quadrature methods. The points where the
curves cross the target accuracy ε/

√
2 define the optimal setting N∗ or τ∗ for the specific integration

methods. (a) Static quadrature. (b) Adaptive quadrature
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a

b

c

Fig. 10.7 Carr-Madan formula (10.3) integrated with quadrature and FFT methods. The points
where the curves cross the target accuracy ε/

√
2 define the optimal setting N∗ or τ∗ for the specific

integration methods. (a) Static quadrature. (b) Adaptive quadrature. (c) FFT methods
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Table 10.2 Runtime and accuracy of pricing methods

Method Setting Time (ms) Accuracy (×10−3)

Heston Trap (vmax = 188):

Trapezodial Any Not able to reach

Simpson Any Target precision

Gauss-Legendre 1,024 1.2 2.9

ad. Gauss-Lobatto 10−4 8.5 2.9

ad. Simpson 10−5 2.7 2.9

ad. Gauss-Kronrod 10−3 5.1 2.9

Carr-Madan (vmax = 73):

Trapezodial 1,024 1.2 0.25

Simpson 2,048 2.4 0.25

Gauss-Legendre 128 0.28 1.00

ad. Gauss-Lobatto 10−4 8.5 0.25

ad. Simpson 10−5 2.7 0.30

ad. Gauss-Kronrod 10−3 5.1 1.00

FRFT - Grid 2,048 5.4

Interpolation Linear <0.01 –

Cubic <0.01 0.10

Carr-Madan (vmax = 132):

FFT - Grid 2,048 2.5

Interpolation Linear <0.01 –

Cubic < 0.01 1.00

10.6.3 Runtime Evaluation

Based on the optimal settings v∗max,N
∗,τ∗ we can now compare the 14 methods

regarding their CPU runtime. Table 10.2 shows the setup we have chosen and
the average time to price one option. We have also checked the accuracy of our
methods on a second sample of our parameters. We can see that all methods are
well within one order of magnitude of our target accuracy of ε = 10−3. This shows
the effectiveness of our methodology.

For the Heston trap formula, the static Gauss-Legendre formula is the fastest
method with 1.2 ms and is able to price the full parameter range.

For the restricted parameter range (10.4) of the Carr-Madan formulation the
situation is a bit more complex. For a single option, the fixed Gauss method takes
a clear lead with 0.28 ms, far in front of all the adaptive methods. While the fixed
methods had it quite hard for the Heston trap formula, they show their strength in
the Carr-Madan case of being simple and efficient.

For the Fourier methods we can split the overall runtime into two parts: One
to generate the price grid for all the strikes and a second for looking up prices in
this grid by interpolation. When doing calibration it is common that we have many
options with the same maturity T in many cases. However, for them we only have to
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generate the grid once and then only interpolate for each of the strikes K. From the
numbers we can see that FFT methods are faster than FRFT methods for our setting.
Linear interpolation showed no benefit in runtime, while being less accurate. That
is why we have chosen cubic interpolation for our final FFT setting. Furthermore,
we can conclude that the FFT method is the fastest method when pricing 10 or more
options for different strikes K but the same maturity T .

It is apparent that the Carr-Madan methods are at least 3.6× faster than the fastest
Heston trap method. This suggests to use a hybrid pricer that favors the Carr-Madan
method as far as possible and employs the Heston trap method as a backup when
needed. For our setup this would be the case in only 20% of all scenarios.

10.6.4 A Unified IP Block for Heston Calibration on FPGAs

Regarding an appropriate hardware architecture for acceleration the (semi) closed-
form call price formula, there’s no need to build three individual methods for solving
the Heston model. The reason is that the Heston trap formula and the Carr Mandan
formula share some common parts. By reusing the shared part, a unify Intellectual
Property (IP) block can be built for this case.

Let us take the integration function, for instance. The integration function units
can be divided into two parts: One is the exponential part, another one is the non-
exponential part. The exponential part contains the characteristic function part and
the strike information part. In the non-exponential part, the residuary equations are
located. In particular, the split is the following:

• Exponential part:

– FFT: φ(v, t),e−ibv,e−rT

– Carr Mandan: φ(v, t),e−ivlog(k),e−rT ,e−α log(k)

– Heston Trap Quadrature: φ(v, t),e−ivlog(k),e−rT

• Non-Exponential part:

– FFT: 1
α2+α−v2+i(2α+1)v

,β ·WFFT

– Carr Mandan: 1
α2+α−v2+i(2α+1)v

, WCarr

– Heston Trap Quadrature: 1
iv , WTrap

where the W means the weighting matrix of the selected integration method.
One advantage of this categorization is the shorter critical path and less resource
utilization. Another benefit is the that shared resource part and replaceable block
can be easily selected out. Based on shared resource methodology generates it the
following: Exponential part:

• Shared part above all: characterized function φ(v, t)
• Shared part of Carr Mandan and FFT : e−rT

• Shared part of Carr Mandan and Heston Trap Quadrature: e−ivlog(k)
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Individual exponential block

• FFT : e−ibv

• Carr Mandan: e−α log(k)

• Heston Trap Quadrature: none

Non-exponential part:

• Divisor part

– FFT and Carr Mandan: complex divisor part α2 +α − v2 + i(2α + 1)v
– Heston Trap Quadrature: simple divisor part 1

iv

• Weight Matrix block

– FFT : β ·WFFT

– Carr Mandan: WCarr

– Heston Trap Quadrature: WTrap

Figure 10.8 shows how each individual modules and shared blocks are placed
in the scheduling table. The number of each methods are shown above the block,
which means the block is shared with the corresponding methods. The exponential
and non-exponential paths are computed separately. In the end, this two paths are
multiplied and generate the integrate function unit ¯fa(v).

For example, if the system wants to execute the FFT method, corresponding
blocks will be activated and react to the corresponding inputs of the hybrid
pricer unit at certain locations. None common blocks and red blocks will remain
deactivated. Both the exponential part and non-exponential part can execute
simultaneously.

Exponent op.
non-exponential part

Integrated function unit

exponential
part

-rT -αlog(k) -ibvφ(v,t) DWWW

Weights Divisor

D-ivlog(k)

FFT
Carr Mandan

Heston Trap 
1
2 3

1 3 1 2 1 2 3 1 2 1 2 3 1 23

Fig. 10.8 Pricer unit scheduling
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10.7 Conclusion

Calibration is a very computationally demanding problem for financial institutions.
In this work we have shown that the actual challenge of calibration is not the
optimization but evaluation the closed-form Heston pricing formula itself.

We have seen that there are actually two closed-form formulas, the Heston trap
and the Carr-Madan formulation. Both formulations require numerical integration
methods. We have identified 14 standard methods as possible pricing candidates.

Our main contribution is a methodology to find the fastest pricing methods within
the Heston model that meets the desired target accuracy. With this novel approach
we tune the parameters of the pricing methods independently by guaranteeing a
given accuracy. The independent study of the errors makes the method robust and
efficient. With our methodology it is now possible to adjust methods close to a
specific accuracy. We have demonstrated this for fixed and adaptive quadrature and
FFT methods.

We have applied our methodology for a practical setup with a target accuracy of
ε = 10−3. For our setup we have shown that Carr-Madan methods are 3.6× faster
than using the Heston trap formulation, although they can only be applied in around
80% of the cases. We have figured out that fixed Gauss-Legendre methods are
best for both the Carr-Madan and Heston trap formulation. When pricing multiple
options simultaneously, FFT methods are best when pricing at least 10 options with
the same maturity, but different strikes.

By applying our methodology to their setup, practitioners can now speed up their
pricing systems by adjusting their systems to the accuracy they really need.
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Chapter 11
Maxeler Data-Flow in Computational Finance

Tobias Becker, Oskar Mencer, Stephen Weston, and Georgi Gaydadjiev

Abstract Computational finance is an area that includes many algorithms in trading
and analytics that are both computationally very complex and performance critical.
As financial institutions intend to perform a steadily increasing number of computa-
tions and obtain the results as quickly as possible, computer systems are expected to
satisfy these growing performance demands. However, recent years have brought the
end of “free” processors speed-ups, and single-thread performance is no longer the
driving force behind automatic performance gains enjoyed by the industry for many
decades. Nowadays, high-performance computing systems have to increasingly rely
on parallel programming models where the original application has to be modified to
exploit many parallel cores. This requires considerable redesign efforts and yet, the
desired performance improvements are not guaranteed. Some financial applications
may also reach practical physical limits imposed by the space and power provisions
available in the data centre. A solution to the above problems can be the use
of custom accelerators implemented in reconfigurable hardware. Reconfigurable
implementations can deliver both high computational throughput and low compute
latency in addition to superior energy efficiency. However, porting applications for
such devices requires a special skill set in hardware design, complicating their
practical adoption. Maxeler Technologies offers conveniently programmable, high-
performance computing systems and a software toolchain that exploit the sheer
computational power of reconfigurable devices while abstracting the programming
into a high-level data-flow model. Our vision is to empower domain experts
with the necessary means to create highly customised, efficient hardware/software
implementations for their specific applications. This approach enables vertical
optimisations across the different layers of abstraction that are typically not exposed
to an application designer. The final result is a productive application development
process that often delivers speed-ups by orders of magnitudes over traditional CPU
implementations.
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11.1 Introduction

Computer technology has become an essential driver for the financial industry in
almost all its areas. Advances in hardware and software technology, numerical
methods, financial models and algorithms have made computers a key technology
that is crucial to all financial institutions. High-performance computing systems
are used to price financial products, to calculate risk, or to carry out electronic
trades automatically by following sophisticated pre-programmed trading strategies.
Often, the available compute power determines the types of problems that can be
practically solved. Being able to solve a more complex problem or to obtain the
results faster than other institutions directly translates into a competitive advantage.

Conventional computer architectures used in many areas of everyday life includ-
ing mobile devices, desktop computers, and high-performance computer (HPC)
systems generally follow the basic concepts of general-purpose processing [6]. Such
processors perform calculations by executing a sequence of instructions that can
either carry out arithmetic, control or IO operations. This model of execution is
extremely flexible; however, it is also inherently sequential. Over many decades, the
performance of processors has been improved by increasing the clock rates, but also
by extending the basic processor architecture with complex structures to deal with
issues like control divergence, main memory access penalties and to recover low-
level binary instructions parallelism. Many micro-architectural innovations such as
caches, branch prediction, out-of-order execution, and Single Instruction Multiple
Data (SIMD) extensions were developed to alleviate the fundamental drawbacks of
the general-purpose processor paradigm. This has led to modern processor architec-
tures where only a tiny part of the chip area is used to perform useful calculations at
very high speeds while the rest of the device is used for auxiliary functions such as
caching of instructions and data. With the end of clock frequency improvements
offered by the CMOS technology scaling, additional performance can now be
only obtained through exploiting parallelism. Multi-threaded implementations on
multiple cores or SIMD extensions are just two examples. However, the individual
cores (or threads) still rely on a fundamentally sequential computing principle, i.e.
performing a sequence of instructions. In addition, legacy applications have to be
re-written, analysed and optimised in order to achieve satisfactory performance
levels. Attempting to compute larger and larger problems by simply scaling over
existing processor technology is no longer practical for many current and future
HPC applications [11]. Even if performance requirements can be met by using
a large number of machines, the cost, area and power requirements may exceed
practical limits.

These limitations have led to an increased interest in special-purpose computing
where an algorithm or parts of it are targeted onto a customised architecture, leading
to both increased performance and power efficiency. A special-purpose architecture
can be customised and tailored to the unique requirements of the application,
resulting in a combination of increased performance, reduced power, smaller
area and lower economical cost as compared to its general-purpose counterparts.
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Nowadays, special-purpose units are added to many processors to perform specific,
frequently used tasks such as encryption or video decoding. However, these special-
purpose units are available only for a limited set of common functionalities, and
they are fixed during the design of the processor. HPC can also benefit from special-
purpose processing, but due to the vast space of possible applications with different
characteristics, pre-fabricated (and hence fixed) accelerators are not practical.
Instead, a flexible computing substrate that can be customised on demand by
the designer according to the application requirements is required. Reconfigurable
devices, such as Field-Programmable Gate Arrays (FPGAs), offer such a substrate
technology, and significant speed-ups over both multi-core processors and GPUs
have been reported for a range of applications [2, 12]. However, the downside of
targeting an FPGA is often a complex, low-level programming model that requires
special knowledge in hardware design.

Maxeler Technologies is pioneering a novel approach of data-flow oriented
supercomputers. Maxeler computing systems are a type of special-purpose system
that can be customised to the unique requirements of an application. At the heart of a
Maxeler system are one or several Data-Flow Engines (DFEs) that combine a large
and powerful reconfigurable device with significant amounts of DRAM memory.
DFEs are programmed using a simple data-flow model that enables domain experts
to optimise both their algorithms and the underlying architecture simultaneously,
cutting through the typical layer approach of custom libraries, standard libraries,
operating systems, and hardware organisation. This approach has led to orders-of-
magnitude higher performance, lower power consumption and significantly lower
data-centre space as compared to traditional approaches. A wide range of appli-
cations ranging from 3D finite-difference partial differential equation solvers [9]
to Monte Carlo simulations have been successfully accelerated in commercial
products [13]. In addition, speed-ups can also enable completely new computational
models that were previously not feasible under hard timing constraints. For example,
computing a 24-h forecast is not practical if the computation takes 48 h to complete.
If, however, the same computation can be achieved in 2 h, then running 24-h
forecasts becomes a realistic scenario.

11.2 The Data-Flow Paradigm

Maxeler’s data-flow oriented computing paradigm fundamentally differs from
conventional processors which are control-flow centric. This approach is illus-
trated in Fig. 11.1 and it represents an evolution of data-flow and systolic array
concepts [3, 8]. A conventional processor operates by reading and decoding an
instruction, loading the required data, performing an operation on the data, and
returning the result to memory. This process is iterative in nature and requires com-
plex control mechanisms that manage the operation of the processor. The data-flow
execution model is greatly simplified in comparison. Data is streamed from memory
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Fig. 11.1 A conventional control-flow oriented processor (a) as compared to a Maxeler’s DFE (b)

into the chip where arithmetic operations are performed by chains of functional
units (data-flow cores) statically interconnected in a structure corresponding to the
implemented functionality. It should be noted that the data-flow structure preforms
computations entirely without instructions. Data flows from one functional unit
directly to the next without the need of complex control mechanisms. Data simply
arrives when it is needed and the final results are streamed back into memory. Each
data-flow core performs only a simple operation such as addition or multiplication
and hence, thousands of operations can fit into the given chip area.

Unlike the control-flow based processor where operations are computed on a
time-shared functional unit (“computing in time”), the complete data-flow compu-
tation is laid out in space over the entire chip (“computing in space”). Dependencies
in the data flow are resolved statically at compile time, and because there is no
data-dependent behaviour present at run time, the entire data-flow engine can be
deeply pipelined. Every stage of the pipeline computes in parallel with the data-flow
architecture maintaining overall throughput of one result per clock cycle. A simple
analogy of this approach is an assembly line in a car factory. The most efficient
way to realise large scale productions (computations) is a specialised assembly line
(pipeline) where parts (data) move from storage (memory) to a chain of dedicated
workstations (custom functional units) where there are assembled together (data is
processed) and moved forward in lock-step to produce complete cars (final results)
at the end. There are no instructions and hence, instruction decoding logic is not
required. Also, a static data-flow model does not require control-flow techniques
such as branch prediction and out-of-order execution for obvious reasons. General
purpose caches are equally not necessary and data is always kept on chip with the
minimum amount of buffering memory for intermediate results. By eliminating
these extraneous functions, all the chip’s resources can be dedicated to perform
useful computations instead of managing the execution.

Maxeler realises this data-flow oriented computing approach by mapping an
application described in its data-flow model onto a DFE. DFEs are highly efficient
for large scale computations with a static execution model due to the elimination of
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sequential execution and control, and the optimisation of memory access to a simple
feed-forward model. However, DFEs are inefficient for small-scale computations
with control-dominated dynamic behaviour. The key to effective data-flow comput-
ing systems is therefore the combination of DFEs with a conventional processor. The
DFE carries out the compute-intensive part of the application while host-processors
are tasked with control-intensive tasks and also with setting up and controlling
the computation on the DFE. Depending on the nature of the problem, one can
also adopt a combined processing approach where the processor computes the
less demanding part of the application while the DFE will target the performance-
critical part. This results in a co-design approach where we develop a conventional
processor application together with a customised DFE implementation. In the
following, we first cover Maxeler data-flow systems, followed by programming
principles and application optimisations.

11.3 Maxeler Data-Flow Systems

At the centre of Maxeler’s data-flow systems sits its proprietary DFE hardware.
In state-of-the-art MAX4 generation systems, DFEs are based on large Altera
Stratix-V FPGAs that provide the reconfigurable computing substrate for data-
flow cores. This device is surrounded by large amounts of DRAM memory
(currently between 48–96 GB), providing a very high memory capacity enabling
large computational problems. This is called Large Memory (LMem). In addition,
the FPGA itself also provides embedded on-chip memories which are spread
throughout the chip’s fabric and can be used to hold local values of the computation.
These embedded memories are called Fast Memory (FMem) as they can be accessed
with a total bandwidth of several terabytes/second. This is an important factor for the
efficiency of DFE computations because data can be kept locally were it is needed
and accessed with very high speeds. This is in contrast to CPU caches where data
is kept on a speculative basis, and replicated several times, with only the smallest
L1 cache providing very high speed to the computational unit.

As previously mentioned, DFEs are not intended to fully replace conventional
CPUs; instead, they are integrated into an HPC-system consisting of CPUs, DFEs,
storage, and networking. Various system architectures are possible and the overall
balance of components can be tailored to the requirements of the user application.
As a key feature, DFEs always contain large amounts of DRAM to facilitate the
previously described model of data-flow processing. Various configurations between
DFEs and CPU, as well as between multiple DFEs are possible. In the following, we
give a brief overview of the current Maxeler MPC-C, MPC-X and MPC-N series.

Maxeler MPC-C systems couple x86 server-grade CPUs with up to four DFE
cards (see Fig. 11.2). Each DFE card contains 48 GB of DRAM as LMem, and each
DFE card is connected to the CPUs via a PCI Express (PCIe) bus. DFE cards are
also directly connected to each other through a dedicated high-speed, low-latency
link called MaxRing. This provides fast communication between neighbouring
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Fig. 11.2 MPC-C series architecture. A single node contains both x86 CPUs and four data-flow
engines connected via PCIe and MaxRing

Fig. 11.3 MPC-X series architecture with eight data-flow engines inside a node. Multiple MPC-X
nodes and CPU nodes are connected through an Infiniband network, and the number of DFEs used
by each CPU can be varied dynamically

DFEs, enabling larger applications to scale across multiple DFEs without the
PCIe link becoming a communication bottleneck. The system also includes storage
and networking, and it is integrated into a dense 1U industry standard rack unit.
Such a system supports simple stand-alone deployment of DFE technology, tightly
coupled with high-end CPUs. The architecture is beneficial for high-performance
applications that run on a fixed number of CPU cores and continuously use one or
multiple DFEs.

The MPC-X series enable a more heterogeneous system architecture supporting
dynamic balancing of CPU and DFE resources. MPC-X series systems are pure DFE
nodes without any CPUs (see Fig. 11.3). An MPC-X system combines 8 DFE cards
in a 1U chassis directly connected through MaxRing. DFEs are also linked through
Infiniband to a cluster of CPU nodes. The system can allocate large numbers of
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Fig. 11.4 MPC-N series architecture with four data-flow engines inside a node. Each DFE card
also provides three 40G Ethernet connections directly to the DFE

DFEs dynamically, providing good scalability and flexibility for applications with
changing behaviour, e.g. when the computation has several stages that vary in their
characteristics. The ratio of CPU servers to MPC-X nodes can be tuned to user
application requirements.

Maxeler’s MPC-N series systems (see Fig. 11.4) are a network oriented platform
that provides Ethernet connections directly to the data-flow engines, supporting
ultra low-latency line-rate processing of multiple 10–40 Gbit data streams. A single
MPC-N node contains up to 4 DFE cards similar to the MPC-C series architec-
ture. However, each DFE card also supports up the 3 QSFP+ 40 Gbit Ethernet
connections where each 40 Gbit port can be split into 4× 10 Gbit ports. Providing
fast Ethernet connections directly to the DFE enables network processing with
minimal latency. The memory architecture in DFE also differs from the two previous
system architectures: in addition to 24 GB DRAM available as LMem, the DFE also
integrates 72 MB of QDR SRAM (QMem) supporting very low latency off-chip
data access. The system contains additional 10 Gbit connections to the CPU. MPC-
N series systems are well suited for a range of networking applications including
gateways, aggregators, or endpoints.

Maxeler systems are provided with a compilation and simulation environment
(called MaxCompiler) for application development, and the MaxelerOS system
management environment. MaxelerOS coordinates the use of DFE resources at
run time, and manages the scheduling and data movement within Maxeler systems.
MaxCompiler provides a high-level programming environment to express data-flow
structures, and produces the necessary binaries for CPU and DFE binaries.
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11.4 Data-Flow Programming Principles

In the following, we outline the data-flow oriented programming model that is used
in Maxeler systems. As described in the previous section, Maxeler data-flow systems
are based on a combination of DFEs and CPUs. The basic logical architecture of
such a system is illustrated in Fig. 11.5. The CPU is responsible for setting up
and controlling the computation on the DFE. The DFE contains one or multiple
data-flow kernels that perform the accelerated arithmetic and logical computations.
Each DFE also contains a manager that is responsible for the connections between
kernels, DFE memory, and the various interconnects such as PCIe, Infiniband and
MaxRing.

Separating computation and communication into kernels and managers is benefi-
cial because it allows the data-path inside the kernels to be deeply pipelined without
any synchronisation issues. When developing the kernel, a designer would simply
focus on achieving high degrees of pipelining and parallelism without worrying
about scheduling or synchronisation. The scheduling of operations inside the kernel
will be performed automatically by the compiler. The manager code describes
how kernels are connected to memory and other IO interfaces, and the necessary
synchronisation logic will also be generated by the compiler.

Developing an application for a DFE-based system therefore includes three
parts:

1. A CPU application typically written in C/C++, Matlab, Python or FORTRAN;
2. One or multiple data-flow kernels written in extended Java1;
3. A manager configuration, also written in extended Java.1

Fig. 11.5 Logical
architecture of a data-flow
computing system with one
CPU and one DFE
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1Maxeler provides extensions to the Java language, referred to as MaxJ.
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Fig. 11.6 Compiling a data-flow application with MaxCompiler

The compilation flow of a Maxeler data-flow design is illustrated in Fig. 11.6.
The design typically starts with a CPU application where a performance-critical
part needs to be accelerated. This part of the application will be targeted on a
DFE. Designing a DFE application involves describing one or multiple kernels
and a manager in MaxJ. MaxJ is Java-based meta-language that describes data-
flow. It is important to note that executing the MaxJ program will not perform the
computations described within the program. Instead, it will trigger the generation of
a configuration file for the DFE (the so-called .max file). The computation will later
be performed by loading the .max configuration file into the DFE and streaming the
data through it. Before we can do this, we need to modify the CPU application to
invoke the DFE. To simplify this process, MaxCompiler will generate the necessary
function prototypes and header files. The CPU code is then compiled as usual and is
linked with the .max file and Maxeler’s Simple Live CPU (SLiC) interface library.
The result of this is a single executable file that contains all the binary code to run
on both the conventional CPUs and the DFEs in a system.

Let us focus on the principles of data-flow programming in MaxJ. As mentioned
previously, MaxJ is a meta-language that describes data-flow computing structures;
it uses Java syntax but is in principle different from regular Java programming (or
other imperative programming paradigms that describe computations by changing
state). The most important principle in MaxJ is that we describe a fixed spatial data-
flow structure that can perform computations by simply streaming through data, and
not a sequence of instructions to be executed on a traditional processor.
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Fig. 11.7 C code of a simple computation inside a loop

Fig. 11.8 A data-flow
implementation for the
computation inside the loop
body

To illustrate these principles, we show how a simple loop computation can be
transformed into a data-flow description using MaxJ. Let us assume we want to
calculate y = x2 + 3x+ 17 over a data set. Even though there is nothing inherently
sequential in this computation, a conventional C program would require a for loop.
This is illustrated in Fig. 11.7. The calculation is repeated for the number of data
elements in a loop. Within the loop body, all operations also run sequentially.

In contrast, a data-flow implementation would focus on identifying the core part
of the computation and creating a data path for it. Figure 11.8 illustrates such a data-
flow implementation. The same computation that is described inside the loop body
can be performed by a fixed data path that contains two multipliers and two adders.
It is one of the key features of data-flow computing having several operators present
at the same time and running concurrently, instead of using a time-shared functional
unit inside a processor. A practical data-flow implementation can have thousands of
operators in a data path all running concurrently. Another important principle is the
absence of control and instructions. The data path is fixed and the computation is
performed by streaming data from memory directly into the data path.

Figure 11.9 depicts the MaxJ kernel description that can generate the data-
path shown in Fig. 11.8. The MaxJ descriptions begins by extending the kernel
class (line 1). The kernel class is part of the Maxeler Java extensions and the user
develops their own kernels by using inheritance. Next, we define a constructor for
SimpleCalc class (line 2). It is important to remember that this MaxJ program
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Fig. 11.9 An MaxJ description that generates the data-flow implementation shown in Fig. 11.8

Fig. 11.10 DFEVars handle run-time data, Java constants are evaluated only at compile time

will only run once to build the DFE configuration; the constructor will facilitate
building the data-flow implementation. To create the streaming inputs and outputs
for the kernel, the methods io.input (line 3) and io.output (line 5) are used.
Streaming inputs and outputs replace the for loop in the original C code that
iterates over data. The input method takes two arguments: the name on the input
that will be used by the manager to connect the kernel, and the data type of the
input. In this case, we use a standard single precision floating point format (8-bit
exponent and a 24-bit mantissa), but MaxJ also supports custom data types that can
be defined by the user. This is useful when optimising the numerical behaviour and
performance, which will be covered later. The output method uses three arguments:
the name of the output to be used by the manager, the variable to connect to the
output, and the data format. The computation itself is expressed in a very similar
way as in the original C code (line 4).

In MaxJ the DFEVar object is used to handle run-time data. Since MaxJ
describes a data-flow graph rather than a procedure, we have to distinguish between
run-time values and compile-time values. Regular Java variable such as int will
be evaluated and fixed at compile time. Such variables can be used as constants for
improved code readability, or to control the build of the data-flow graph. The values
of DFEVars are known only at run time when data is streamed through the kernel.
This means assigning a Java variable to a DFEVar will result in a constant. However,
it is not possible to read a DFEVar and assign it to a Java variable (Fig. 11.10). This
principle means that we can use Java variables and control constructs to shape the
structure of our data-flow graph. Let us consider an example of a nested loop as
shown in Fig. 11.11. We observe that the outer for loop performs an iteration over
data, while the inner for loop describes a computation with a cyclic dependency of
v from one loop iteration to another.

This example can be effectively transformed into a data-flow description as
illustrated in Fig. 11.12. Again, the outer loop is replaced by streaming inputs and
outputs. The inner loop is described with the same for for loop statement in Java,
but the compilation of this loop will result in an unrolled implementation of the
loop body in space, as depicted in Fig. 11.13. Unlike the original loop in C, the for
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Fig. 11.11 C code of a nested loop with dependency

Fig. 11.12 A MaxJ implementation of the inner loop will be statically evaluated resulting in
spatial replication

loop in MaxJ does not carry out four iterations at run time. Instead, the compiler
can resolve the dependency of v from one loop iteration to another and construct an
unrolled, acyclic data path where the calculation inside the loop body is replicated
four times, and each v is connected to the result from the previous iteration.

The previous example has shown how a Java for loop can be used to control the
replication of statements inside the loop body into an unrolled data path. Likewise,
it is possible to use Java conditionals such as if or case to control the construction
of the data-flow graph. The Java if condition is evaluated at compile time, and the
block of code inside the conditional statement will be added into the data-flow graph
only if the condition is evaluated as true.

However, we cannot use a Java conditional on DFEVars because their value will
be only known at run time. As previously mentioned, run-time dependent behaviour
is undesirable as it is against the principles of static data-flow computing. If a data-
dependent decision needs to be made then this can be expressed using the ternary
operator ? : (see Fig. 11.14). This example results in data-dependent control, but
in the data-path, both y1 and y2 will be computed concurrently. At the output we
simply select one of the two results, depending on the value of a. This switching will
be very fast and will not delay or stall the stream processing. However, it also means
the we require resources for both computations on the DFE chip even though only
one of the two outputs will be used at any time. This makes this type of control
effective for fast, small-scale switching. For switching between larger blocks of
computation, it might be more effective to implement separate DFE kernels and
handle the switching and control from the CPU host.

Figure 11.14 also illustrates that custom number formats other than conventional
single or double-precision floating point can be used. In this example, we use a
9-bit exponent and a 31-bit mantissa, which offers better scaling and precision than
single precision (8, 24 bit) but less than double precision (11, 53 bit). Likewise, it is
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Fig. 11.13 The result of the
MaxJ loop is an unrolled and
pipelined data path

possible to use any arbitrary fixed-point or integer format. The application developer
can use such custom number formats to tailor the implementation to the numerical
requirements of the application, and using such custom formats will yield better
resource utilisation and performance than relying on the next larger standard format.

All previous examples have considered operations where the output is a function
of inputs with the same array index within the stream, e.g.:

zi = 5xi + yi, zi+1 = 5xi+1 + yi+1, . . . (11.1)
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Fig. 11.14 Data-dependent control with the ternary operator, and use of a custom number format

Fig. 11.15 Using stream offsets to access values with relative offsets in the stream

However, in some cases we need to access values that are ahead or behind the
current element in the data stream. For example, in a moving average filter we need
to compute:

yi =
xi−1 + xi + xi+1

3
(11.2)

In data-flow computing, x is a stream rather than an indexed array, and we need
a way of accessing elements of the same stream with other indices than the current
one. This can be achieved with the stream.offset method that accesses values
with a relative offset from the current value in the stream. In the moving average
example, we need the previous value (−1) and the next value (+1) (Fig. 11.15).

Figure 11.16 illustrates how a DFE application interacts with the CPU host
application. On the right side, we see the moving average kernel MAVKernel from
our last example. As previously mentioned, we also create a manager to describe
the connectivity between the kernel and the available DFE interfaces. In Fig. 11.16,
the kernel is connected directly to the CPU, and all of the communication will be
facilitated via PCIe. The manager also makes visible to the CPU application all
the names of the kernel streaming inputs and outputs. Compiling the manager and
kernel will produce a .max file that can be included in the host application code.
In the host application, running the moving average calculation will be performed
with a simple function call to MAVKernel(). In this example, the host application
is written in C but MaxCompiler can also generate bindings for a variety of other
languages such as MATLAB or Python.

MaxelerOS and the SLiC library provide a software layer that facilitates the
execution and control of the DFE applications. The SLiC Application Program-
ming Interface (API) is used to invoke the DFE and process data on it. In the
example in Fig. 11.16 we use a simple SLiC interface and the simple function call
MAVKernel() will carry out all DFE control functions such as loading the binary
configuration file and streaming data in and out over PCIe. More advanced SLiC
interfaces are also available that provide the user with additional control over the
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Manager m = new Manager();
Kernel k = new MAVKernel();
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Fig. 11.16 Interaction between host code, manager and kernel in a data-flow application

DFE behaviour. For example, in many cases it is beneficial to transfer the data to
DFE memory (LMem) first and then start the computation. This is one of many
performance optimisations, which we will briefly cover in the next section.

11.5 Development Process and Design Optimisation

In the previous section we have introduced the principles of data-flow programming.
We now outline how to develop data-flow applications in practice, and how to
improve their performance. In traditional software design, a developer usually
targets a given platform and optimises the application based on available libraries
that reflect the capabilities and architectural characteristics of the targeted platform.
Developing a data-flow implementation fundamentally differs in that we codesign
the application and architecture. Instead of mapping a problem to pre-existing APIs
and data-types, we enable domain experts, e.g. physicists, mathematicians, and
engineers to create a solution all the way from the formulation of the computational
problem down to design of the best possible data-flow architecture. A developer
would therefore optimise the scientific algorithm to match the capabilities of the
data-flow architecture while at the same time optimising the data-flow structure
to match the requirements of the algorithm. Another key difference to traditional
software design is the implementation and optimisation cycle. In software design,
a developer would typically implement a design, go on to profile and evaluate the
performance of the current implementation, and then tweak the implementation.
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Fig. 11.17 Process for developing and optimising data-flow applications

In data-flow design, we adopt a different approach where the design is optimised
before it is implemented: The behaviour inside a DFE is very predictable and we can
therefore plan and precisely predict the performance of a possible solution without
even implementing it. This means the design will be analysed and optimised with
simple spreadsheet calculations before we create the final implementation.

This development process is illustrated in Fig. 11.17. The first step consists
of an application analysis phase. The purpose of this step it to establish an
understanding of the application, the data set, the algorithms used, and the potential
performance-critical parts. Since we will codesign an algorithm and its data-flow
architecture, this analysis should cover all parts of the computational problem, from
the mathematical formulation and algorithm to the architecture and implementation
details. Typical considerations are the type and regularity of the computation, the
ratio between computation and memory accesses, the ratio of computation to disk
IO or network communication, and the balance between recomputation and storage
of pre-computed results. All these aspects can have a significant impact on the
performance of the final implementation. If, for instance, an application is limited
by the speed at which data can be read from disk, then optimising the throughput of
the compute kernel beyond that limit will have no benefit.

The second step involves algorithmic transformations. A designer could attempt
to choose a different algorithm to solve the problem, or transform the code, data
access patterns or number representations. A typical example of an algorithmic
transformations is to change the number format: Choosing a smaller number
representation can support more IO bandwidth, and higher computational perfor-
mance, but the numerical effects of the algorithm have to be well understood. The
reconfigurable technology used inside the DFEs support far greater flexibility in the
available number formats than all conventional processors. Instead of choosing from
single or double precision floating point, a design can exploit a custom format with
arbitrary bit-widths of its exponent and mantissa. Another common optimisation
is the reordering of data-access patterns to support better data flow. The impact of
algorithmic transformations has to be evaluated through iterative analysis of the
design.

The third step is to partition the application between the CPU and the DFE. This
partitioning covers program code as well as data. For the program code, we can
chose whether the code should run on the CPU or the DFE. Large scale applications
typically involve multiple DFEs and this also involves partitioning DFE code
over multiple DFEs. Furthermore, it is often beneficial to follow a co-processing
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approach where the CPU and DFE work on different parts of the computation at
the same time. For instance, the CPU can perform lightweight pre-calculations or
more control-intensive parts of the application. For this purpose, the SLiC library
provides non-blocking functions to control the DFEs. Another consideration is the
partitioning of data. The example in Fig. 11.17 showed DFE data being streamed
from main CPU memory. For processing larger data sets, it is usually beneficial
to locate the data in the large DFE memory (LMem). Coefficients or frequently
accessed values can be kept inside the DFE reconfigurable substrate in fast memory
(FMem).

A high-level performance model is used to evaluate the design as it undergoes
various transformations, code and data partitionings. The process of analysis and
optimisation is repeated iteratively as additional possibilities are explored. Only
when the design is fully optimised, the designer will proceed to step four: the
implementation of the design.

11.6 Financial application examples

Maxeler data-flow technology has been deployed in a number of areas including
finance [7, 13], oil and gas exploration [4, 10], atmospheric modelling [5], and
DNA sequence alignment [1]. The range of applications includes Monte Carlo,
finite difference, and irregular tree-based partial differential equations, to name
a few. Maxeler provides a number of products and solutions in the financial
domain, including financial analytics and trading applications, particularly for low-
latency/high frequency electronic trading on organised exchanges.

11.6.1 Maxeler RiskAnalytics Platform

Maxeler FinancialAnalytics is a financial valuation and risk management platform
designed from the ground-up, where the core analytic algorithms are accelerated
on Maxeler data-flow systems. The purpose of the platform is to go beyond simply
providing highly efficient computational finance capabilities, but rather the aim is to
provide a complete, vertically-integrated application stack that provides a platform
containing all the necessary components for streamlined front-to-back portfolio risk
management, including:

• Front-end, pre-trade valuation and risk checking;
• Exchange-based, electronic trade execution, portfolio valuation and risk manage-

ment;
• Front-end trade booking, portfolio management, model and risk reporting and

analysis;
• Post-trade model and risk metric selection and verification;
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• Rapid and flexible transaction analysis and reporting;
• Application layer in software for quick and flexible functional reconfiguration;
• Large memory to enable rapid and flexible in-memory portfolio risk analysis;
• Regulatory reporting for Basel III, EMIR, Dodd-Frank, Volker-rule, Solvency II,

etc.;
• Adaptive load balancing;
• Database integration.

All core FinancialAnalytics components have been implemented in both software
and on Maxeler DFE-based systems, requiring integration of the DFE technol-
ogy with expertise of quantitative analysts with extensive investment banking
experience. The platform has been designed in a modular fashion to maximise
flexibility and performance. Each module realises a core analytics component,
such as curve bootstrapping or Monte Carlo path generation. To support flexible
hardware/software co-processing and to enable ease of integration with existing
systems, each module is available as both a CPU and DFE library component.
As outlined in Sect. 11.5, achieving an efficient implementation depends on the
overall system composition, architecture and application structure. Making use of
pre-existing CPU and DFE library components greatly simplifies this process. In the
following, we show the practical use of Maxeler’s RiskAnalytics library in several
commercial use cases.

First, let us consider interest rate swap pricing. An interest rate swap is a
financial derivative with high liquidity that is commonly used for hedging. Such
a swap involves exchanging interest rate cashflows based on a specified notional
amount from one interest rate to another, e.g. exchanging fixed interest-rate flows for
floating interest-rate flows. Figure 11.18 illustrates a typical module configuration
for pricing interest rate swaps, involving bootstrapping the Overnight Index Swap
(OIS) curve and the London Interbank Offered Rate (LIBOR) curve, followed by
generating swap cashflow schedules, valuing swaps and calculating swap portfolio
risk. Each stage is available as either a CPU or a DFE library component and can be
accessed via number of convenient APIs. The implementation provides construction
of and access to all intermediate and final objects.

Fig. 11.18 A typical swap
pricing pipeline
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Table 11.1 Possible configurations for swap pricing pipeline

Application characteristic OIS LIBOR Cashflow Pricing

Many curves, few swaps DFE DFE CPU CPU

Few curves, many swaps CPU CPU DFE DFE

Depending on the characteristics of the swap pricing application, DFE accel-
eration can be beneficial at one or more stages of the computation. Table 11.1
illustrates two possible module configurations where the performance-critical DFE
acceleration can be carried out at different stages of the pipeline. Modular design of
Maxeler’s FinancialAnalytics allows the user application to dynamically load bal-
ance between CPUs and DFEs, and to target heavy compute load to DFEs, leaving
CPUs to support application logic and lighter compute loads. DFE functionality can
be switched in real time by using MaxelerOS SLiC API functions. Fully pipelined,
a Maxeler DFE-equipped 1U MPC-X node can value a portfolio of 10-year interest
rate swaps at a rate of over 2 billion per second – including bootstrapping of the
underlying interest rate curves.

A second example of the application of DFE technology in finance is the
calculation of value-at-risk (VaR), a measure widely used to evaluate the risk of
loss on a portfolio over a given time period. VaR defines the loss amount that
a portfolio is not expected to exceed for a specified level of confidence over a
given time frame. VaR can be calculated in a number of ways (e.g. using fixed
historical scenarios, or using arbitrarily specified scenarios, a delta-based approach,
or using Monte Carlo generated scenarios). Irrespective of the method chosen, the
VaR computation involves evaluating many possible market scenarios, a technique
that is computationally very demanding. Regardless of the chosen approach, the
computation of VaR using conventional technology is frequently slow and often
inaccurate, as well as being unstable in the tail of the loss distribution, resulting
in uncertainty in risk attribution and difficulty in optimising against portfolio VaR
targets. This is illustrated in Fig. 11.19, where the tail of the loss distribution for
a mixed portfolio of interest rate swaps exhibits a step-wise profile, making it
extremely difficult to accurately manage portfolio VaR.

Mitigating these problems requires massively increased number of scenarios, in
order to provide higher resolution in the tail of the loss distribution, in order to
significantly improve stability for risk attribution and/or provide greater visibility
of the impact of market and portfolio changes. This is clearly illustrated when
comparing Figs. 11.19 and 11.20. In the second case, the number of Monte Carlo
scenarios is increased by a factor of 50, resulting in far greater granularity in the tail
of the loss distribution leading to improved accuracy of portfolio risk management.
Fully pipelined, a Maxeler DFE-equipped 1U MPC-X node can compute full
revaluation VaR on a portfolio of 250,000 10-year interest rate swaps (equivalent to a
rate of over 2 billion swaps per second) – including bootstrapping of the underlying
interest rate curves, as well as scenario construction.
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Fig. 11.19 Value-at-Risk
with 10,000 scenarios

Fig. 11.20 Value-at-Risk
with 500,000 scenarios

Increasing the number of Monte Carlo scenarios as suggested above obviously
increases the computational requirements, but with DFE-acceleration, the extra
scenarios can be easily and practically achieved. When the accuracy of computation
is increased, several new approaches to VaR can become feasible:

• Pre-horizon cashflow generation and dynamic portfolio hedging;
• Sensitivity metrics for enhanced risk explain and attribution;
• Stable and efficient portfolio optimisation.

A third application example is exotic interest rate pricing. A user might wish
to price an exotic product such as a Bermudan swaption, which is an option to
enter into an interest rate swap on any one of a number of predetermined dates.
One of the industry standard approaches to this pricing problem is to use the
LIBOR market model (LMM) which employs a high-dimensional Monte Carlo
model with complex dynamics and a large state space. Pricing involves a multi-
stage algorithm with forward and backward cross-sectional (Longstaff-Schwartz)
computations across the full path space. Here, the challenge is to manage large-path
data sets, typically several gigabytes, across multiple stages. Figure 11.21 illustrates
the FinancialAnalytics DFE implementation, including cashflow generation and
Longstaff-Schwartz backward regression. By closely coordinating between multiple
DFE stages and DRAM memory, 6,666 quarterly 30-year Bermudan swaptions
can be priced per second on a Maxeler 1U MPC-X node. This represents an
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Fig. 11.21 Bermudan
swaptions computation on a
DFE

Table 11.2 Comparison of CPU and DFE-node performance (instruments priced per second) for
various instruments

Instrument Conventional 1U CPU-Node Maxeler 1U MPC-X Node Comparison

European swaptions 848,000 35,544,000 42×
American options 38,400,000 720,000,000 19×
European options 32,000,000 7,080,000,000 221×
Bermudan swaptions 296 6,666 23×
CDS 432,000 13,904,000 32×
CDS bootstrap 14,000 872,000 62×

23× improvement over a 1U CPU node. Table 11.2 provides a comparison of
different instruments priced per second for a range of instrument types supported
in RiskAnalytics. As it can be seen, a single 1U MPC-X node can replace between
19 and 221 conventional CPU-based units. The power efficiency advantage due to
the data-flow nature of the implementation also ranges between one an two orders
of magnitude.
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11.6.2 Ultra Low-Latency Trading

In addition to high performance computational capabilities, Maxeler also provides
products for ultra low-latency trading, leveraging the benefits of data-flow tech-
nology through dedicate network oriented systems. The goal is to enable latency-
sensitive traders to deploy fast and deterministic trading technology and develop
more complex strategies under real-time constraints and execute them faster than
the competition. A key concern when deploying specialised technology is not only
to achieve lowest possible latencies but also to support rapid algorithm development.
A further important feature is the ability to make this technology accessible
to existing, front-office, strategy-development teams and keep the strategy and
algorithm knowledge in-house. Maxeler’s unique offering is that it provides the
capability to bring together in hardware low-latency execution, pre and post-trade
portfolio risk management, as well as providing the software for simple in-house
programming to deliver decision support at a speed that matches market needs.

Maxeler MPC-N series systems provide the basis for a low-latency trading
platform. An essential feature of these systems is direct connectivity of the DFE
card to 3 QSFP+ ports supporting 12 × 10 Gbit or 3 × 40 Gbit Ethernet links,
combined with a precision timing interface. A full TCP/IP stack in hardware is
also available, and industry-standard trading interfaces for CME, Eurex, NYSE and
NASDAQ are supported. This allows creating a programmable low-latency platform
entirely within the DFE. Figure 11.22 depicts a high-frequency top-of-order-book
application based on the low-latency platform. Top of the book refers to the highest
bid and the lowest ask in the order book, with the bid being lower than the ask
(otherwise this would quickly be resolved through a trade). These values indicate
the prevalent market and they can be exploited in user-defined algorithms. In the
case of the Chicago Mercantile Exchange, the Maxeler platform receives CME’s
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Fig. 11.22 Low-latency trading platform based on MPC-N for top-of-book application
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market data via UDP, then decodes the FAST market data messages at line rate,
before finally re-constructing the full Level 2 order book. As an example of how
this is used in practice, a user-defined trading kernel can be inserted into a DFE to
reconstruct the full order book, monitor trading strategies, compute pre-trade risk,
before finally issuing FIX-formatted orders for execution when a target variable such
as volatility reaches a certain pre-definable level. Efficient user development of such
trading kernels is supported by the high-level data-flow programming approach that
is described in Sect. 11.4. The output of the kernel is trade decisions, and individual
orders are transmitted through a FIX session over TCP/IP to the CME order entry
gateway. The application also receives order execution acknowledgements which
are passed to the CPU software for post-trade, position risk management. This
platform supports a highly deterministic wire-to-wire turnaround time between
market data arriving and the order being executed over TCP in under 2.0μs.

11.7 Conclusion

Cutting-edge applications in computational finance require powerful computational
systems, but scaling over current CPU technology is becoming increasingly prob-
lematic. Maxeler has pioneered a new vertically-integrated, data-flow oriented
approach that can deliver orders-of-magnitude improvement in performance, data-
centre space and power consumption for a wide range of applications. DFEs
realise a highly efficient computational model for the compute-intensive parts of
an algorithm. In addition, they can be balanced with other types of resources such
as CPUs and storage according to the requirements of the application. Maxeler
supports a high-level programming model that allows application experts to harness
the computational power of data-flow systems and optimise their application all the
way from the formulation of the algorithm down to the design of the best possible
data-flow architecture for its solution. This data-flow technology is key to many
finance applications where a more complex model, more frequent re-computation,
or lower latency often directly translate into monetisable, competitive advantage.
A number of DFE-based products for analytics and trading are available from
Maxeler, and we described several practical application scenarios that could not
be achieved with conventional CPU technology.
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List of Abbreviations

(CM)2 Center for Mathematical and Computational Modelling.

ACP Accelerator Coherency Port.
AGP Accelerated Graphics Port.
AJD Affine Jump Diffusion.
ALU Arithmetic Logic Unit.
API Application Programming Interface.
ASIC Application Specific Integrated Circuit.
ATA AT Attachment.
ATM At the Money.
AVX Advanced Vector Extensions.
AXI Advanced eXtensible Interface.

BAR Base Address Register.
BIOS Basic Input/Output System.
BLAST Basic Local Alignment Search Tool.
BM Brownian Motion.
BS Black-Scholes.

CAN Controller Area Network.
CAPEX Capital Expenses.
CDR Clock Data Recovery.
CI Confidence Interval.
CPU Central Processing Unit.
CRUD Create, Read, Update and Delete.

DAL Database Abstraction Layer.
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268 List of Abbreviations

DMA Direct Memory Access.
DRAM Dynamic Random-Access Memory.
DSL Domain-Specific Language.
DSP Digital Signal Processor.

EISA Extended Industry Standard Architecture.
EMS Euler-Maruyama scheme.

FF Flip-Flop.
FFT Fast Fourier Transform.
FIFO First in, First Out.
FLOPS Floating-Point Operations per Second.
FPGA Field Programmable Gate Array.
FRFT Fractional Fourier Transform.

GARCH Generalized Autoregressive Conditional Heteroskedasticity GBM
Geometric Brownian Motion.

GNU GNU’s Not Unix.
GPGPU General Purpose Graphics Processor Unit.
GPIO General-Purpose Input/Output.
GPU Graphics Processor Unit.
GSL GNU Scientific Library.

HDL Hardware Description Language.
HFT High-Frequency Trading.
HLS High-Level Synthesis.
HP High Performance.
HPC High Performance Computing.
HPRC High Performance Reconfigurable Computing.
HTTP Hypertext Transfer Protocol.
HW Hardware.
HW/SW Hardware/Software.

i.i.d. Independent and Identically Distributed.
I2C Inter-Integrated Circuit.
ICDF Inverse Cumulative Distribution Function.
II Initiation Interval.
ILP Integer Linear Programming.
IP Intellectual Property.
ISA Industry Standard Architecture.
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IT Information Technology.
ITM In the Money.

LS Longstaff-Schwartz.
LUT Lookup Table.

MC Monte Carlo.
MCMC Markov Chain Monte Carlo.
MGT Multi-Gigabit Transceiver.
MLMC Multilevel Monte Carlo.
MMU Memory Management Unit.
MPEG Moving Picture Experts Group.
MPML Mixed Precision Multilevel.
MSE Mean Squared Error.
MSVC Microsoft Visual C++.
MT Mersenne Twister.

NAG Numerical Algorithms Group.
NRE Non-recurring Engineering.

OCM On-Chip Memory.
OPEX Operating Expenses.
OS Operating System.
OTC Over-the-Counter.
OTM Out of the Money.

PC Personal Computer.
PCI Peripheral Component Interconnect.
PCI-X Peripheral Component Interconnect Extended.
PCIe Peripheral Component Interconnect Express.
PDE Partial Differential Equation.
PL Programmable Logic.
PLL Phase Lock Loop.
PS Programmable Systems.

QE Quadratic Exponential.

ReST Representional State Transfer.
RMSE Root Mean Squared Error.
RN Random Number.
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RNG Random Number Generator.
RTL Register-Transfer Level.
RV Random Variable.

SCU Snoop Control Unit.
SD Secure Digital.
SDE Stochastic Differential Equation.
SerDes Serializer/Deserializer.
SIMD Single Instruction Multiple Data.
SoC System on Chip.
SV Stochastic Volatility.
SWIP Scottish Widows Investment Partnership.

TCO Total Cost of Ownership.
TLP Transaction Layer Packet.
TTM Time to Market.

UART Universal Asynchronous Receiver/Transmitter.
URI Uniform Resource Identifier.
USB Universal Serial Bus.

WWW World Wide Web.

XML eXtensible Markup Language.



List of Symbols

Options and Markets
H payoff function.
K strike price of the option.
M moneyness of the option.
S0 current price of the asset (asset spot price).
S continuous time asset price process.
T time to maturity or time to expiration.
W S Wiener process for the asset price simulation process.
W ν Wiener process for the volatility simulation process.
W Wiener process resp. Brownian motion.
X price of a financial derivative.
Φ cumulative distribution function of the standard normal distribution.
α variance process in the SABR model.
β distribution parameter in the SABR model.
Ŝ discrete time asset price process.
ν̂ discrete time volatility process in the Heston model.
κ mean reversion rate in the Hull-White model.
κ mean reversion rate of the volatility in the Heston model.
Re real part of a complex number.
μ long term average price in the Black Scholes model.
ν0 current volatility.
ν volatility parameter in the SABR model.
ν continuous time volatility process in the Heston model.
ρ correlation between two Brownian motions in Hull-White model.
ρ correlation between two Brownian motions in the SABR model.
σ volatility of the asset price in the Black-Scholes model.
σ volatility in the Hull-White model.
σ volatility of the volatility in the Heston model.
θ long term average volatility in the Heston model.
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ϕ characteristic function of the logarithmic stock price.
ρ correlation between two Brownian motions in Heston model.
a fair price of a european (possibly path-dependent) option.
c fair price of a call option.
p fair price of a put option.
r risk-free interest rate.
American exercise feature exercisable at any time until maturity, cf. European
exercise feature.
at-the-money strike equals spot.
call option giving the buyer the right to buy an asset at maturity for the strike
price.
cap series of caplets.
caplet call on the forward interest rate.
European exercise feature exercisable only at maturity, cf. American exercise
feature.
floor series of floorlets.
floorlet put on the forward interest rate.
implied volatility value of the volatility parameter in a pricing formula equating
model and market price.
in-the-money intrinsic value is positive.
maturity expiration time of a derivative.
out-of-the-money intrinsic value is negative.
put option giving the buyer the right to sell an asset at maturity for the strike
price.
strike fixed price at which the owner of the option can trade the underlying asset
at maturity.
swaption option on the swap rate.
Vega sensitivity of a product price with respect to the volatility.

Monte Carlo Simulations
L total number of levels in a multilevel Monte Carlo simulation.
M the multilevel constant.
N number executed random experiments.
P physical probability measure.
Q equivalent (risk-neutral) probability measure.
X random variable.
A Monte Carlo estimator.
E expectation value.
μ true expectation value of a random variable X.
σ standard deviation.
l current level in a multilevel Monte Carlo simulation.
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Stochastic Processes and SDEs
D number of discretization steps in discretized process.
X stochastic process.
g functional applied to a stochastic process.
h step width of an equidistantly discretized process.
t time variable.

Calibration process
ω weight assigned to a particular market price in calibration.
calibration process of fitting model parameters to a set of market prices.
objective function the function to be minimized in an optimization problem.
penalty term stabilizing functional used in the calibration procedure.

Parameter sets
M model parameters.
O observable market parameters.
P product parameters.

Equity and interest models
Bates jump diffusion equity model of Bates.
Black-Scholes equity model of Black and Scholes.
Black ’76 interest rate model of Black.
Heston stochastic volatility equity model of Heston.
Hull-White interest rate model of Hull and White.
Merton jump diffusion equity model of Merton.
SABR stochastic volatility interest rate model.

Interest rates
discount factor price of a zero bond paying one unit of money at a future time.
forward rate expected interest rate to be paid between to future points in time.
instantaneous forward rate expected interest rate to be paid for an infinitesimal
small time step in the future.
zero rate interest rate to be paid from today until a future point in time.

Product prices
ask price lowest price the seller is willing to accept.
bid price highest price the buyer is willing to pay.
bid-ask spread difference between bid and ask price.
market price price at which a financial derivative is traded on the market.
model price price of a financial derivative as implied from its model, market and
product parameters.
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