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Abstract. This paper proposes a bio-inspired middleware for self-adaptive soft-
ware agents on distributed systems. It is unique to other existing approaches for
software adaptation because it introduces the notions of differentiation, dediffer-
entiation, and cellular division in cellular slime molds, e.g., dictyostelium dis-
coideum, into real distributed systems. When an agent delegates a function to
another agent coordinating with it, if the former has the function, this function
becomes less-developed and the latter’s function becomes well-developed.

1 Introduction

Self-adaptiveness is useful in distributed systems, because their scale and complexity
are beyond the ability of traditional management approaches, e.g., centralized and top-
down ones. Distributed systems should adapt themselves to changes in their system
structures, including network topology, and the requirements of their applications. This
paper presents a bio-inspired self-tuning approach for adapting software components
that a distributed application consists of without any centralized and top-down manage-
ment systems. It is characterized in introducing cellular differentiation into distributed
systems. It is the mechanism by which cells in a multicellular organism become spe-
cialized to perform specific functions in a variety of tissues and organs. It is impossible
for us to expect what functions software components should have and how computa-
tional resources should be assigned to software components. This is because distributed
systems are dynamic and may partially have malfunctioned, e.g., network partition-
ing. Our middleware system aims at building and operating distributed applications
consisting of self-adapting/tuning software components, called agents, to differentiate
their functions according to their roles in whole applications and resource availability,
as just like cells. It involves treating the undertaking/delegation of functions in agents
from/to other agents as their differentiation factors. When an agent delegates a function
to another agent, if the former has the function, its function becomes less-developed in
the sense that it has less computational resources, e.g., active threads, and the latter’s
function becomes well-developed in the sense that it has more computational resources.

2 Related Work

This section discusses several related studies on software adaptation in distributed sys-
tems. One of the most typical self-organization approaches to distributed systems is
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swarm intelligence [2,3]. Although there is no centralized control structure dictating
how individual agents should behave, interactions between simple agents with static
rules often lead to the emergence of intelligent global behavior. There have been many
attempts to apply self-organization into distributed systems, e.g., a myconet model for
peer-to-peer network [10], and a cost-sensitive graph structure for coordinated replica
placement [4]. Most existing approaches only focus on their target problems or applica-
tions but are not general purpose, whereas distributed systems have a general-purpose
infrastructure. Our software adaptation approach should be independent of applications.
Furthermore, most existing self-organization approaches explicitly or implicitly assume
a large population of agents or boids. However, since the size and structure of real dis-
tributed systems have been designed and optimized to the needs of their applications,
the systems have no room to execute such large numbers of agents.

The aim of resource management strategy is to maximize the profits of both cus-
tomer agents and resource agents in large datacenters by balancing demand and sup-
ply in the market. Several researchers have addressed resource allocation for clouds by
using an auction mechanism. For example, Lin et al [5] proposed a mechanism based on
a sealed-bid auction. The cloud service provider collected all the users’ bids and deter-
mined the price. Zhang et al. [12] introduced the notion of spot markets and proposed
market analysis to forecast the demand for each spot market.

Suda et al. proposed bio-inspired middleware, called Bio-Networking, for dissemi-
nating network services in dynamic and large-scale networks where there were a large
number of decentralized data and services [8, 11]. Although they introduced the notion
of energy into distributed systems and enabled agents to be replicated, moved, and
deleted according to the number of service requests, they had no mechanism to adapt
agents’ behavior unlike ours. As most of their parameters, e.g., energy, tended to depend
on a particular distributed system. so that they may not have been available in other sys-
tems.! Our approach should be independent of the capabilities of distributed systems as
much as possible.

The Anthill project [1] by the University of Bologna developed a bio-inspired mid-
dleware for peer-to-peer systems, which is composed of a collection of interconnected
nests. Autonomous agents, called ants can travel across the network trying to satisfy
user requests. The project provided bio-inspired frameworks, called Messor [6] and
Bison [7]. Messor is a load-balancing application of Anthill and Bison is a conceptual
bio-inspired framework based on Anthill.

3 Basic Approach

This paper introduces the notion of (de)differentiation into a distributed system as a
mechanism for adapting software components, which may be running on different com-
puters connected through a network.

Differentiation: 'When dictyostelium discoideum cells aggregate, they can be differ-
entiated into two types: prespore cells and prestalk cells. Each cell tries to become a

! For example, they implicitly assumed a quantitative relation between the costs of agent pro-
cessing and migration, but such a relation depends on individual distributed systems.
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prespore cell and periodically secretes cAMP to other cells. If a cell can receive more
than a specified amount of cAMP from other cells, it can become a prespore cell. There
are three rules. 1) cAMP chemotaxically leads other cells to prestalk cells. 2) A cell that
is becoming a prespore cell can secrete a large amount of cAMP to other cells. 3) When
a cell receives more cAMP from other cells, it can secrete less cAMP to other cells.

Each agent has one or more functions with weights, where each weight corresponds
to the amount of cAMP and indicates the superiority of its function. Each agent initially
intends to progress all its functions and periodically multicasts restraining messages
to other agents federated with it. Restraining messages lead other agents to degenerate
their functions specified in the messages and to decrease the superiority of the functions.
As a result, agents complement other agents in the sense that each agent can provide
some functions to other agents and delegate other functions to other agents that can
provide the functions.

Dedifferentiation:  Agents may lose their functions due to differentiation as well as
be busy or failed. The approach also offers a mechanism to recover from such prob-
lems based on dedifferentiation, which a mechanism for regressing specialized cells to
simpler, more embryonic, unspecialized forms. As in the dedifferentiation process, if
there are no other agents that are sending restraining messages to an agent, the agent
can perform its dedifferentiation process and strengthen their less-developed or inactive
functions again.

4 Design and Implementation

Our approach is maintained through two parts: runtime systems and agents. The former
is a middleware system for running on computers and the latter is a self-contained and
autonomous software entity. It has three protocols for (de)differentiation and delegation.

4.1 Agent

Each agent consists of one or more functions, called the behavior parts, and its state,
called the body part, with information for (de)differentiation, called the attribute part.

— The body part maintains program variables shared by its behaviors parts like
instance variables in object orientation. When it receives a request message from
an external system or other agents, it dispatches the message to the behavior part
that can handle the message.

— The behavior part defines more than one application-specific behavior. It corre-
sponds to a method in object orientation. As in behavior invocation, when a mes-
sage is received from the body part, the behavior is executed and returns the result
is returned via the body part.

— The attribute part maintains descriptive information with regard to the agent, includ-
ing its own identifier. The attributes contains a database for maintaining the weights
of its own behaviors and for recording information on the behaviors that other
agents can provide.
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The agent has behaviors b%, ..., b% and w! is the weight of behavior b¥. Each agent (k-
th) assigns its own maximum to the total of the weights of all its behaviors. The Wik is
the maximum of the weight of behavior bf-‘. The maximum total of the weights of its
behaviors in the k-th agent must be less than WK, (Wk > St wf.‘), where w]j‘. —1is0

if w’§ is 0. The WX may depend on agents. In fact, W* corresponds to the upper limit
of the ability of each agent and may depend on the performance of the underlying sys-
tem, including the processor. Note that we never expect that the latter will be complete,
since agents periodically exchange their information with neighboring agents. Further-
more, when agents receive no retraining messages from others for longer than a certain
duration, they remove information about them.

4.2 Removing Redundant Functions

Behaviors in an agent, which are delegated from other agents more times, are well
developed, whereas other behaviors, which are delegated from other agents fewer times,
in a cell are less developed. Finally, the agent only provides the former behaviors and
delegates the latter behaviors to other agents.

1: When an agent (k-th agent) receives a request message from another agent, it selects
the behavior (bf) that can handle the message from its behavior part and dispatches
the message to the selected behavior (Figure 2 (a)).

: It executes the behavior (bﬁ-‘) and returns the result.

: It increases the weight of the behavior, wf-‘.

4: It multicasts a restraining message with the signature of the behavior, its identifier

(k), and the behavior’s weight (w¥) to other agents (Figure 2 (b)). >

W N

The key idea behind this approach is to distinguish between internal and external requests.
When behaviors are invoked by their agents, their weights are not increased. If the total
weights of the agent’s behaviors, wa, is equal to their maximal total weight W¥, it

decreases one of the minimal (and positive) weights (w’; is replaced by w]; — 1 where

wlj‘- = min(wll‘, ...,wk) and wlj‘- > 0). The above phase corresponds to the degeneration of

agents.

1: When an agent (k-th agent) receives a restraining message with regard to b{ from
another agent (j-th) , it looks for the behaviors (bfn, .. .b;‘) that can satisfy the sig-
nature specified in the receiving message.

2: If it has such behaviors, it decreases their weights (wﬁl,...wé‘) and updates the
weight (w)) (Figure 2 (c)).

3: If the weights (w’;n, el 7wé‘) are under a specified value, e.g., 0, the behaviors (b’,‘,,7 .
bf‘) are inactivated.

2 Restraining messages correspond to cAMP in differentiation.
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4.3 Invocation of Functions

When an agent wants to execute a behavior, even if it has the behavior, it needs to select
one of the behaviors, which may be provided by itself or others, according to the values
of their weights.

1: When an agent (k-th agent) wants to execute a behavior, b; , it looks up the weight
(wé‘) of the same or compatible behavior and the weights (w{ yoo,wih) of such
behaviors (b!,...,b").

2: If multiple agents, including itself, can provide the wanted behavior, it selects
one of the agents according to selection function ¢*, which maps from w{? and
wl,...,witobl, where [ is kor j,...,m.

3: It delegates the selected agent to execute the behavior and waits for the result from
the agent.

The approach permits agents to use their own evaluation functions, ¢, because the
selection of behaviors often depends on their applications. Although there is no univer-
sal selection function for mapping from behaviors’ weights to at most one appropriate
behavior like a variety of creatures, we can provide several functions.

4.4 Releasing Resources for Redundant Functions

Each agent (j-th) periodically multicasts messages, called heartbeat messages, for a
behavior (b{ ), which is still activated with its identifier (j) via the runtime system. When
an agent (k-th) does not receive any heartbeat messages with regard to a behavior (b{ )
from another agent (j-th) for a specified time, it automatically decreases the weight
(w{ ) of the behavior (b{ ), and resets the weight (wff) of the behavior (bﬁ-‘) to be the initial
value or increases the weight (wi-‘) (Figure 2 (d)). The weights of behaviors provided
by other agents are automatically decreased without any heartbeat messages from the
agents. Therefore, when an agent terminates or fails, other agents decrease the weights
of the behaviors provided by the agent and if they then have the same or compatible
behaviors, they can activate the behaviors, which may be inactivated.

4.5 Increasing Resources for Busy Functions

The approach also provides a mechanism for duplicating agents, including their states,
e.g., instance variables, as well as their program codes and deploying a clone at a dif-
ferent VM in IaaS or a runtime system in PaaS. It permits each agent (k-th agent) to
create a copy of itself when the total weights (3, wf) of functions (b’l‘, . ,bﬁ) pro-
vided in itself is the same or more than a specified value. The sum of the total weights
of the mother agent and those of the daughter agent is equal to the total weights of the
mother agent before the agent is duplicated. The current implementation supports two
conditions. The first permits each agent (k-th) to create a clone of it when the total of its
weights (3, wf?) is more than its maximal total weight W and the second condition
is twice that of the total initial weights of the functions. When a busy agent running as
a user program in PaaS has no access resources, it allocates resources to the daughter
agent via the external control system.
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5 Experiment

To evaluate our proposed approach, we constructed it as a middleware system with Java
(Figure 3), which can directly runs on Java-based PaaS runtime systems or Java VM
running on VMs in laaS, e.g., Amazon EC2. It is responsible for executing duplicating,
and deploying agents based on several technologies for mobile agent platforms [9]. It is
also responsible for executing agents and for exchanging messages in runtime systems
on other IaaS VMs or PaaS runtime systems through TCP and UDP protocols. Each
runtime system multicasts heartbeat messages to other runtime systems to advertise
itself, including its network address through UDP multicasts.

Adaptation messages, i.e., restraining and heartbeat messages, are transmitted as
multicast UDP packets, which are unreliable. When the runtime system multicasts
information about the signature of a behavior in restraining messages, the signature is
encoded into a hash code by using Java’s serial versioning mechanism and is transmit-
ted as code. Restraining messages for behaviors that do not arrive at agents are seriously
affected, because other agents automatically treat the behaviors provided by the senders
to be inactive when they do not receive such messages for certain durations. Since our
mechanism does not assume that each agent has complete information about all agents,
it is even available when some heartbeat messages are lost.
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Application-specific messages, i.e., request and reply, are implemented through
TCP sessions as reliable communications. When typical network problems occur, e.g.,
network partitioning and node failure during communication, the TCP session itself can
detect such problems and it notifies runtime systems on both sides to execute the excep-
tion handling defined in runtime systems or agents. The current implementation sup-
ports a multiplexing mechanism to minimize communication channels between agents
running on two computers on at most a TCP session. To avoid conflicts between UDP
packets, it can explicitly change the periods of heartbeat messages issued by agents.

Each agent is an autonomous programmable entity. The body part maintains a key-
value store database, which is implemented as a hashtable, shared by its behaviors. We
can define each agent as a single JavaBean, where each method in JavaBean needs to
access the database maintained in the body parts. Each method in such a JavaBean-
based agent is transformed into a Java class, which is called by another method via the
body part, by using a bytecode-level modification technique before the agent is exe-
cuted. Each body part is invoked from agents running on different computers via our
original remote method invocation (RMI) mechanism, which can be automatically han-
dled in network disconnections unlike Java’s RMI library. The mechanism is managed
by runtime systems and provided to agents to support additional interactions, e.g., one-
way message transmission, publish-subscription events, and stream communications.

Since each agent records the time the behaviors are invoked and the results are
received, it selects behaviors provided in other agents according to the average or worst
response time in the previous processing. When a result is received from another agent,
the approach permits the former to modify the value of the behavior of the latter under
its own control. For example, agents that want to execute a behavior quickly may
increase the weight of the behavior by an extra amount, when the behavior returns
the result too soon.

6 Evaluation

Although the current implementation was not constructed for performance, we evalu-
ated that of several basic operations in a distributed system where eight computers (Intel
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Core 2 Duo 1.83 GHz with MacOS X 10.6 and J2SE version 6) were connected through
a giga-ethernet. The cost of transmitting a heartbeat or restraining message through
UDP multicasting was 11 ms. The cost of transmitting a request message between two
computers was 22 ms through TCP. These costs were estimated from the measurements
of round-trip times between computers. We assumed in the following experiments that
each agent issued heartbeat messages to other agents every 100 ms through UDP mul-
ticasting.
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Fig. 4. Degree of progress in differentiation-based adaptation

The first experiment was carried out to evaluate the basic ability of agents to dif-
ferentiate themselves through interactions in a reliable network. Each agent had three
behaviors, called A, B, and C. The A behavior periodically issued messages to invoke
its B and C behaviors or those of other agents every 200 ms and the B and C behaviors
were null behaviors. Each agent that wanted to execute a behavior, i.e., B or C, selected
a behavior whose weight had the highest value if its database recognized one or more
agents that provided the same or compatible behavior, including itself. When it invokes
behavior B or C and the weights of its and others behaviors were the same, it randomly
selected one of the behaviors. We assumed in this experiment that the weights of the B
and C behaviors of each agent would initially be five and the maximum of the weight
of each behavior and the total maximum W* of weights would be ten.

Figure 4 presents the results we obtained from the experiment. Both diagrams have
a timeline in minutes on the x-axis and the weights of behavior B in each agent on
the y-axis. Differentiation started after 200 ms, because each agent knows the presence
of other agents by receiving heartbeat messages from them. Figure 4 (a) details the
results obtained from our differentiation between two agents. Their weights were not
initially varied and then they forked into progression and regression sides. Figure 4
(b) shows the detailed results of our differentiation between four agents and Figure
4 (c) shows those of that between eight agents. The results in (b) and (c) fluctuated
more and then converged faster than those in (a), because the weights of behaviors in
four are increased or decreased more than those in two agents. Although the time of
differentiation depended on the period of invoking behaviors, it was independent of the
number of agents. This is important to prove that this approach is scalable.
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Our parameters for (de)differentiation were basically independent of the perfor-
mance and capabilities of the underlying systems. For example, the weights of behav-
iors are used for relatively specifying the progression/repression of these behaviors.

The second experiment was carried out to evaluate the ability of the agents to adapt
to two types of failures in a distributed system (5). The first corresponded to the ter-
mination of an agent and the second to the partition of a network. We assumed in
the following experiment that three differentiated agents would be running on differ-
ent computers and each agent had four behaviors, called A, B, C, and D, where the A
behavior invokes other behaviors every 200 ms. The maximum of each behavior was
ten and the agents’ total maximum of weights was twenty. The initial weights of their
behaviors (Wi, wi-, wh)) in i-th agent were (10,0,0) in the first, (0, 10,0) in the second,
and (0,0, 10) in the third.
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7 Conclusion

This paper proposed a framework for adapting software agents on distributed sys-
tems. It is unique to other existing software adaptations in introducing the notions of
(de)differentiation and cellular division in cellular slime molds, e.g., dictyostelium dis-
coideum, into software agents. When an agent delegates a function to another agent, if
the former has the function, its function becomes less-developed and the latter’s func-
tion becomes well-developed. When agents have many requests from other agents, they
create their daughter agents. The framework was constructed as a middleware system on
real distributed systems instead of any simulation-based systems. Agents can be com-
posed from Java objects. We are still interesting in reducing the number of messages
for adaptation like quorum sensing in cells.
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