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Preface

These two volumes gather together the tributes of a distinguished group of colleagues and
friends in honor of Professor Jean-Yves Beziau on his 50th birthday.

The chapters in each of the two volumes (of which this is the second) fall, broadly
speaking, into four categories:

1. those concerned with universal logic;
2. those concerned with hexagonal and other geometrical diagrams of opposition;
3. those concerned with paraconsistency, and
4. current work not directly connected to the work of Jean-Yves Beziau.

With these contributed chapters, we want to express our gratitude for the intellectual
and organizational work of Jean-Yves in uncovering a golden tradition of logical thought,
and his constant encouragement to all of us to ensure that tradition will continue and
flourish. Many thanks, Jean-Yves. Our heartfelt thanks on your 50th birthday.

With the possible exception of the last category, there are three subdivisions of univer-
sal logic as conceived by Jean-Yves Beziau. In order to understand this project, we can
do no better than to recall the way in which universal logic was compactly described by
Beziau in the preface to what is probably the defining collection on the subject,1 and to
expand upon it, briefly:

(i) Beyond Particular Logical Systems “Universal logic is a general study of logical
structures. The idea is to go beyond particular logical systems to clarify fundamental
concepts of logic and to construct general proofs.” (p. v)

(ii) Comparison of Logics “Comparison of logics is a central feature of universal logic.”
(p. v)

(iii) Abstraction and the Central Notion of Consequence “But the abstraction rise is
not necessarily progressive, there are also some radical jumps into abstraction. In
logic, we find such jumps in the work of Paul Hertz on Satzsysteme (Part 1), and
of Alfred Tarski on the notion of a consequence operator (Part 3). What is primary
in these theories are not the notions of logical operators or logical constants (con-
nectives and quantifiers), but a more fundamental notion: a relation of consequence

1 Beziau [2].
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vi Preface

defined on undetermined abstract objects that can be propositions of any science, but
also data, acts, events.” (p. vi)

(iv) Beyond Syntax and Semantics “In universal logic, consequence is the central con-
cept. But this consequence relation is neither syntactical (proof-theoretical), nor se-
mantical (model-theoretical). We are beyond the dichotomy syntax/semantics (proof
theory/model theory.” (p. vi)

There are of course other themes that are characteristic of Universal Logic, but it seems
evident to us that the first observation – (i) Beyond particular Logical Systems – indi-
cates clearly that universal logic does not advocate a unique logical system that is the one
correct, most expressive, accurate, and useful logical structure. Universal logic includes
in its domain a host of logical structures in all their variety. But universal logic is not
simply a catalog of all advocated or imagined logical structures, all logical possibilities,
as it would have all the utility of a telephone book that is useful for certain problems, but
cognitively dumb.

It is the second observation – (ii)Comparison of Logics – which adds intellectual con-
tent to the project. Comparison is indeed central to universal logic, but not comparisons of
a valid kind. What is intended are comparisons that not only note the difference between
logical structures, but explanations of why there are those differences in a way that reveal
their different logical character. The second observation suggests that not only are com-
parisons offered, but there may be also many different ways of ordering those logics, and
one cannot take for granted that those orderings or comparisons are coherent when taken
together. This kind of issue is nicely illustrated when we think of a paper now commonly
referred to as “Beziau’s translation paradox”.2 Simply put, two logical systems K (classi-
cal propositional logic), and K=2 are described. Two orderings or relations are proved to
hold:K is an extension of K=2 and also that there is a faithful translation of K into K=2.
So there are two orderings. The first seems to indicate that K is clearly the stronger logic,
yet the second result seems to say otherwise (that there is withinK=2 a faithful translation
of classical propositional logic). Each of the two orderings seems to measure the strength
of one logic over another. According then to Beziau’s concept of universal logic, compar-
isons are a central task, but it is also a task of universal logic to figure out what to do when
the orderings seem to go in different directions. Beziau has suggested that it is like the
so-called Galilean paradox, which notes that there are more square natural numbers than
there are natural numbers, and also notes that those two collections are evenly matched. It
is not that Galileo’s solution is recommended for the Beziau example. That is not a possi-
ble way out, since Galileo thought that, in the case of infinite collections, the notion of “is
larger than” just doesn’t apply. The intended similarity, as we see it, is that in both cases
there are two ways of explaining the notion of one collection having more members than
another, and one logic being more powerful than another. The two ways give opposing
verdicts, and the resolution of this situation, Beziau maintains, is a task that lies squarely
within the province of universal logic.

We mentioned that the study of Hexagonal logics of opposition falls squarely within the
province of universal logic, for they provide a good example of finite logical systems, with

2 Beziau [1].
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a specified particular implication relation between their sentences (taken pairwise). In fact
there is a growing literature which considers consequence relations on finite geometrical
arrays of different dimension. All belong comfortably within the project that is universal
logic.

We also mentioned that paraconsistent logics are included in the program. That should
be obvious if one considers the various consequence relations to be found in that branch of
logic. Also we need to mention the beautiful studies of Dov Gabbay in which he proposed
the study of restrictive access logics as an alternative to paraconsistent logics that is an
extension of classical logic.3

These restrictive access logics can be described by using a substructural consequence
relation, where there is a modification of the Gentzen structural conditions on implication.
It then becomes an interesting problem to see what features the logical operators have
will have as a consequence.4 The examples of paraconsistent and restrictive logics lie well
within the province of present day logic.

In contrast, what is interesting and novel is that Beziau’s observations in (iv) Beyond
Syntax and Semantics permits the extension of the program beyond the more traditional
range of contemporary logical systems. As he stated, not only can we have the notion
of consequence for scientific propositions, and nonpropositional, nonsentential objects
including, data, acts, and events, but we do now add pictures (perhaps mathematical dia-
grams), and even the epistemic notion of states of belief for which consequence relations
exist, and the possibility of logical operators acting on pictures as well as states of belief.
We are concerned with consequence relations that are beyond the semantical or proof-
theoretical.

The case for a consequence relation between pictures has recently been forcefully made
by Jan Westerhoff. Here, compactly, is the claim:

“I will describe an implication relation between pictures. It is then possible to give
precise definitions of conjunctions, disjunctions, negations, etc. of pictures. It will turn out
that these logical operations are closely related to, or even identical with basic cognitive
relations we naturally employ when thinking about pictures.”5

This example with its particular consequence relation, and the pictures it relates, is an
extension well beyond the usual restriction of logic to syntax and semantics. It illustrates
the broad implications of Beziau’s observations in (iv) and the fertility of the project of
universal logic. It is not business as usual.

Finally, we will briefly describe another case Peter Gärdenfors,6 who developed a logic
of propositions on the basis of a theory about belief revision. His results can be recast in
such a way that they also follow as a case where he defines propositions as special kinds
of functions, and also defines a special relation among those functions that turns out to
be a consequence relation. The result is fascinating: the conjunction of functions turns out
to be the functional composition of functions, and Gärdenfors’ special relation among the

3 Gabbay and Hunter [4].
4 Private communication from D. Gabbay, 2005.
5 Westerhoff [6]. The implication relation proposed for pictures is similar to one that Corcoran [3] pro-
posed for propositions, as noted by Westerhoff.
6 Gärdenfors [5].
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functions is a consequence relation provided that functional composition is commutative
and idempotent.

More specifically, (1) let S be a set of states of belief of some person. (2) Let P be
a set of functions from S to S (called propositions) which is closed under functional
composition. (3) For any members f1; f2; : : : ; fn and g in P , let (G) be the condition that

f1; f2; : : : ; fn) g if and only if gf1f2 : : : fn D f1f2 : : : fn
(the concatenation of two functions here indicates their functional composition).

In particular, for any two propositions (functions) f and g, f implies g (f ) g) if
and only if gf D f . It is easy to prove that the relation (G) is a consequence condition
if and only if functional composition is commutative and idempotent. The logic of these
propositions has been shown by Gärdenfors to be Intuitionistic, and his consequence rela-
tion (G) is clearly epistemic. Again, it is not logic as usual, but it is just one more case of
the fruitfulness of the ideas that the project of universal logic embodies.
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Personal Recollections About JYB
by Newton da Costa and Others

Katarzyna Gan-Krzywoszyńska

Abstract The aim of this chapter is to present the personal recollections of some of Jean-
Yves Béziau’s friends and collaborators from all over the world. The chapter is divided
into sections written by his supervisors, collaborators, and disciples, describing their first
encounters and collaboration, and the inspiring work of Jean-Yves Béziau. They reflect
on his rich personality, many different interests and talents besides logic, i.e., philosophy
and art (music, film, paintings, photography) from the perspective of his endless travels
and global organizing activity.

Keywords Universal logic � Paraconsistent logic � Philosophy of logic

Mathematics Subject Classification (2010) Primary 01A70 � Secondary 03B22, 03B53

1 Licence to Think – My Friend Jean-Yves Béziau

I met Jean-Yves Béziau (aka JYB) for the first time in January 1991 during one of my
systematic visits to Paris. He was then a young student interested in logic, particularly in
paraconsistent logic. We discussed several topics related to these subjects and I became
very much impressed with his personality and some of his ideas. Therefore, during my
stay in Paris, with the help of Michel Paty, I tried to get a French scholarship for him in
order that he would be able to spend some time in Brazil at the Department of Philosophy
at the University of São Paulo, where I had a group of young colleagues and graduate
students in logic and philosophy of science. Béziau got the scholarship and spent one
academic year in Brazil.

He was an active participant in my seminar at the University of São Paulo, he decided
to enter in our Ph.D. in Philosophy program, we collaborated in some joint papers, and
he passed his Ph.D. thesis on philosophy of logic under my guidance in 1996. However,
earlier he had returned to France for some time and obtained his Ph.D. in Mathematics at
the University of Paris.

One of his first results that I cannot forget owing to personal reasons concerns the cut-
elimination theorem and Gentzen’s formalization of paraconsistent calculi, really a nice
result. But the fact is that he devoted himself to various logical and philosophical themes.

1© Springer International Publishing Switzerland 2015
A. Koslow, A. Buchsbaum (Eds.), The Road to Universal Logic, Studies in Universal Logic,
DOI 10.1007/978-3-319-15368-1_1



2 K. Gan-Krzywoszyńska

His field of research may be classified in three basic areas: paraconsistency, universal
logic, and the philosophy of logic and science. In these three domains, he made significant
contributions.

However, Béziau is not only a logician and a philosopher, but he is also an excellent ad-
ministrator, organizing several meetings and congresses of logic and philosophy in Brazil
and abroad. This fact is of fundamental relevance for a country such as Brazil, contributing
to its cultural development in domains of knowledge in which it is so lacking.

Béziau was one of my best graduate students, and today is one of my best friends. I
believe that his independence of judgment and tendency to see the central problems of
a given field of knowledge are evident in the following portion of a letter he sent to me
from Wrocław, Poland, in November 1993 (the original was written in French):

“Considering the concept of structure as fundamental, we always start with a structure already
given, which presupposes a notion of trivial identity, each element is identical to itself, two different
elements are different. Then we can consider different notions of identity, among which the one
mentioned above seems the most interesting.

What about quasi-objects? I think the quasi-objects can be precisely be those objects that are
logically identical, but not in reality, hence the paradoxes of quantum physics. I think we can reject
Leibnizian identity simply by noticing that it is not an absolute identity but a relative one. If we
make additional determinations, if we complexify the structure, then objects that seemed to us
identical will turn to be different. If we then consider that there is no fundamental structure, but
a hierarchy of more or less complex structures each corresponding to a certain representation of
reality, there is therefore no absolute concept of identity, since to change the structure is to change
the notion of identity.

A different approach about the theory of proposition is what we might call the axiomatic theory
of proposition, recently developed in particular by Suppes. We consider the proposition as a prim-
itive term and we are looking for axioms characterizing it. The circularity of this approach is even
more striking: the construction of an axiomatic system presupposes the notion of proposition, in
particular an axiom defining what a proposition is.

Getting back to Curry, he takes as a starting point the notion of formal system and he considers
that mathematics and logic in particular are part of a general theory of formal systems. His defi-
nition of formal system is based on a “formalist” approach, more or less close to the conception I
called the materialist conception. The ontological nature of what he calls an “ob” is not very clear.

When certain objects are given, we can give them such or such names, following the interpre-
tation that we have in mind and to which we are aiming at, in fixing some determinations, in one
way or another, to these objects. The philosophical choice is performed at the first level, we are
therefore not really committed when speaking of “proposition,” “line,” etc.

In my thesis, I developed to the full the tautological conception of logical truth, to see up to
which point we can follow this direction. However, I think the tautological conception is not the
only one, and can be included in a much more general context, considering structures of type hLI `i
where ` is consequence relation defined on a set of objects L without a proper structure.

The term abstract logic seems to me to fit well for these kinds of studies, because it means
in some sense we make abstraction of the nature of the elements of L by opposition to the usual
method, formal logic, where the nature of the objects is fixed by the distinction form/content.
The expression universal logic seems also excellent to me, especially in relation with the idea of
universal algebra and the Bourbachic conception of mathematics. We can be universalist without
thinking that there is only one logic.

I believe that if we want to go further and better understand the Bourbachic conception notion
(or to reinterpret it), we must try to clarify the concept of type of structure type as opposed to
species of structure (Warning! I am not using these notions of species and type according to the
definitions of Bourbaki; cf. pages 130 and seq.). We should in particular precisely define the notion
of type of structure which intuitively corresponds to a thought frame.
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Regarding the new solution, and its relation to the usual method, I would like to make some
additional remarks. The ordinary method today may seem natural, but it is rather a matter of habit.
In fact this method did not appear suddenly, it is the result of a long development and the confluence
of two very different streams: on the one hand, the linguistic stream (Frege, Peano, Carnap) and on
the other hand, the stream of “structuralist” abstract mathematics. Frege is now considered as the
father of the theory of quantification, but at the time he was writing the Begriffsschrift, the notion
of structure was still almost inexistent. It is only in the 1950s that these two streams merged with
the development of model theory. However, this wedding is not quite harmonious, and contains
certain defects, the result of the superposition of two disparate ways of thinking.

Regarding quantification, everyone agrees that the intuitive interpretation of quantification cor-
responds to infinite conjunctions and infinite disjunctions. However, according to the usual method,
there is no simple formalization of this intuitive interpretation, because it would be necessary to
consider the proposition 9xRxa not only as an infinite disjunction, but also as an infinite con-
junction of infinite disjunctions, because the undetermined constants R and a must range over the
whole class of structures.

My method permits one to avoid this problem by starting to work within a particular structure.
As the fundamental idea of the tautological concept of logical truth is that logical truth should not
depend on the nature of the structure, the notion of logical truth that will be defined will be the
same as if we had chosen another structure, so we do not lose any generality.”

Newton da Costa
Federal University of Santa Catarina
Florianópolis, Brazil

2 A Letter to Professor Jean-Yves Béziau

Department of Logic and the Methodology of Sciences
University of Wrocław

3 Koszarowa Street
PL 51-149 Wrocław

Poland

December 5, 2014

Dear Professor Béziau, mon cher collègue et ami,

I am writing to you on the occasion of your upcoming 50th birthday on January 15,
2015. On this day, I would join the many logicians and philosophers from every continent
who will be sending you their best wishes and congratulations. . .

I would also take this opportunity to sketch a few reminiscences of how we became
acquainted, and our work together. The first time I encountered your name, though not
you in person, was when the Section for International Collaboration at my university, the
University of Wrocław, approached me in a letter dated April 8, 1992, asking me to give
you a 10-month academic fellowship with the Department of Logic and the Methodology
of Sciences (on a French government stipend). After reviewing your research proposal
(projet d’étude), which began with the words,
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«Les logiciens polonais furent au début de ce [XXe] siècle les principaux fondateurs de la logique
moderne. . . . Une des particularités de l’école polonaise de logique est qu’elle a toujours considéré
comme primordiales les questions philosophiques alors même que la logique se faisait de plus en
plus mathématique. Il en résulte une conception très générale de la logique étroitement liée au
problème des fondements de cette science.»,

. . . and noting your extensive training in the foundations of logic and philosophy (from
Lycée Henri IV, Université Paris 1 & Paris 7, and the University of São Paulo), it did not
take me long to agree: on April 23, 1992, I informed my university’s authorities that you
would be a research fellow in my charge from October 1, 1992 to July 31, 1993. Things
went well, and the following year the term of your fellowship was extended by another
five months, to December 31, 1993.

We met in person in early October, 1992, at Wrocław’s main train station, Wrocław
Główny; after exchanging greetings I drove you to your hotel in my Fiat 126p, known
in Poland as a “little” (mały) Fiat. I do not remember exactly, but it was probably the
hotel attached to the Polish Academy of Sciences, at 75 Podwale St., near the German
consulate. From mid-October on, you lived in Apt.18–21 Plac Grunwaldzki, a small flat
the University has for visiting academics, at the κέντρον of Wrocław’s old intelligentsia
neighborhood, where the polytechnic and university communities meet. My mały Fiat
again got you and your bags there. But I will leave those details for another day, interesting
though they be, and try to tell you how I view the fruits of your time in Wrocław from the
vantage point of today.

You learned about Polish logic, especially its approach to the theory and methodol-
ogy of sentential calculi. At your insistence I suggested lots of contemporary authors you
should read, such as (in alphabetical order) G. Bryll, J. Czelakowski, W. Dzik, W. Dzio-
biak, J. Kabziński, J. Łoś, G. Malinowski, M. Omyła, J. Perzanowski, W.A. Pogorzelski,
T. Prucnal, S.J. Surma, R. Suszko, P. Wojtylak, and A. Wroński. Your work frequently
cites their investigations and results; hence you are their heir and successor.

You established personal contacts with many logicians and university centers of re-
search into logic in Poland. I remember that the first such contacts I helped you estab-
lish were with people at universities in Łódź (Malinowski), Kraków (Perzanowski &
Wroński), Kielce (Prucnal), and Katowice (Dzik & Wojtylak). Later, over the next two
decades, you expanded your contacts and collaboration to other logicians and centers of
logic research in Poland, e.g., the University of Toruń (Jaśkowski’s Memorial Sympo-
sium in 1998), Adam Mickiewicz University in Poznań, and Jan Długosz University in
Częstochowa (the conference “Application of Logic in Algebra and Computer Science,”
Zakopane 2006).

In 1992–1993 you were an active participant in my seminar in the Logic Department in
Wrocław. I can confirm this by recalling the titles and dates of your lectures (in a historic
building and room: 36 Szewska St., 4th floor). . .

(a) “On abstract universal logic” (10 December 1992);
(b) “Rules and derived rules” (21 January 1993);
(c) “On Russell’s paradox and the liar antinomy” (1 April 1993);
(d) “On a problem posed by T. Prucnal” (6 May 1993);
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(e) “What is negation” (14 October 1993);
(f) “On logical truth” (18 November 1993).

Notice that all those dates were Thursdays, which was the traditional day for the seminar
to meet. Some of your lectures were delivered to joint meetings of the Logic Department
and the Wrocław branch of the Polish Philosophical Society. It may be worth adding
that 1993 abounded with foreign guests; the Department enjoyed talks by Peter I. Bystrov
(Moscow), Thomas Uebel (Boston), Antonio de Freitas (Covilhã, Portugal), V.V. Rybakov
(Krasnoyarsk), and Jan Tarski (Berkeley).

By the way, do you remember the trip we made to the sacred Mount Ślęża in mid-May,
1993, partly on account of Rybakov’s being just then in Wrocław? It has had so many
different names over the ages: monte Silentii, monte Silencii, Monte Slenz, Zobtenberg,
Góra Sobótka. Remember the prehistory of it: how, in the Neolithic period, at least as far
back as the 7th century BC, the heathen tribes of the Lusatian culture were living there?
And then it was settled by Celts, and later by Germanic Lugians? Our group, consisting of
you, Rybakov, Max Urchs, Jacek Hawranek, the late Dr. Krzysztof Zielnica and myself,
went to explore the remains of those cultures in the sanctuary, and then we “conquered”
the summit. A nice photograph still survives, documenting that experience, recording the
bright green spring colors. Hawranek recalls that during the trip, perhaps under the influ-
ence of the history of the place, you gave us a mini-lecture on La Chanson de Roland – the
oldest surviving major work in French literature.

While in Wrocław, in 1993, you wrote two papers: “Recherches sur la logique ab-
straite: logiques normales,” and “More about the connection between the Axiom of Choice
and Lindenbaum’s extension lemma.” The first was published in the “Logika” Series of
our University’s journal Acta Universitatis Wratislaviensis – Logika, vol. 18 (see Zbl
1023.03523). The second came out later under a somewhat different title: “La véritable
portée du théorème de Lindenbaum-Asser” ‘The real import of the Lindenbaum-Asser
theorem’ (see Zbl 1013.03033).

Over the time you were here, 1992–1993, you also completed a doctoral dissertation,
titled “Sur la vérité logique,” which you submitted for a Ph.D. in philosophy at Université
Paris 1 – Panthéon–Sorbonne in October, 1993. [Your advisor was Philippe de Rouilhan,
who maintained close relations with logicians from the University of Łódź. A copy of
your dissertation, which I keep to this day, was graciously given me by its author on June
24, 1993, along with another typescript, “La logique paraconsistante”, by Newton C.A.
da Costa and Jean-Yves Béziau.] I did not have any direct influence on the content of
this dissertation “on logical truth”. I recall discussions with you on the topics raised in
it – discussions which were conducted at 36 Szewska Street over quantities of coffee and
tea. My role consisted mainly of suggesting relevant readings from the literature on the
subject, which can be found in the list of references at the end of the thesis. Despite the
fact that my contribution was slim, you did me a great honor; the last sentence of the
dissertation reads:

“L’auteur tiens à remercier MM. les professeurs Newton C.A. da Costa et Jan Zygmunt qui l’ont
accueilli respectivement au Brésil et en Pologne.”

The fruits of your Wrocław sojourn are further evident in your second dissertation,
which you developed and finished in the first half of 1994 in Paris, where you went after



6 K. Gan-Krzywoszyńska

Wrocław. This second dissertation, titled “Recherches sur la logique universelle (excessiv-
ité, négation, séquents)” (see MR 1645129 (99f:03008)), was submitted to the Université
Denis Diderot – Paris 7 in partial fulfillment of the requirements for aDoctorat de Logique
et Fondements de l’Informatique – a type of doctorate degree, existing in the French sys-
tem, distinct from a Ph.D. Professor Daniel Andler was your advisor, and I was honored
to be a member of your examining committee for this work. The discharge of my duties in
this role, which would have been a pleasure for me under any circumstances, involved on
this occasion the additional delights of visiting Paris at the beginning of July, 1995, and
being able to meet Marcelo Tsuji and Richard Zuber while I was there.

Dear Professor Béziau – Drogi Jubilacie,
We could reminisce on and on – But this letter should come to a point, so I shall save
further memories for your next jubilee. Nevertheless, I must add one more thing: It is
said that no man lives by bread alone. . . and in our case “bread” can be taken to mean
“logic.” I and my Wrocław colleagues remember your many and varied interests: in art,
in literature, and film. In your spare time you painted in oils, and wrote a novel. You were
passionate about film, and the history of film. You established close working relation-
ships with the Wrocław division of Alliance Française, and its director, Madame Teresa
Pękalska. Through them, you arranged and led enthusiastic classes on French cinema. You
held Polish filmmakers in high esteem, particularly Krzysztof Kieślowski, and you were
adamant in your assessment that his Trois couleurs: Rouge was by far his best picture. I
also remember your writing to me, that once at a film festival somewhere in far-off Brazil
you were profoundly touched by a particular Polish entry – a psychological drama about
loneliness, directed by Dorota Kędzierzawska, titled Wrony (Crows).

Nearly 23 years ago, when you were writing your projet d’étude with the intention of
moving to Poland and studying Polish logic, you stood, in fact, before a great unknown.
But even then it was clear that your plans and intentions were underpinned by an un-
shakeable belief in their rightness. Later you would go on to harness this same strength of
conviction in the service of your supreme idea, the idea of universal logic, and to bring
the idea to life in the form of an international journal, Logica Universalis, a book series,
“Studies in Universal Logic,” and the creation of World Congresses and Schools on Uni-
versal Logic. Since then many Polish logicians have been invited by you to collaborate in
the field of universal logic and are deeply grateful to you for the opportunity. In particu-
lar, I, and three of my colleagues, Janusz Czelakowski, Piotr Wojtylak, and Robert Purdy,
sincerely thank you for providing us with this chance to be part of your enterprise, and we
send you our heartfelt félicitations.

From all of us I would say: Stay forever free-spirited and young in your soul. Keep for-
ever true to your innermost compass. There are precious few Rimbauds in this Hobbesian
world. Let us not lose one of its last lights.

Yours sincerely,
Jan Zygmunt

Translated by Robert Purdy
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3 Dr Yes-and-No

Between 1990 and 1992, I worked at the Department of Computer Science of the Uni-
versity of Buenos Aires (UBA), in the Group for Artificial Intelligence (GIDIA), led by
Adolfo Kvitca, in close collaboration with Carlos Alchourrón’s group of logic at the Law
Faculty of UBA. During that time, we received many visiting researchers from a vari-
ety of countries, including Newton da Costa (who inspired me to move to Brazil), David
Makinson, Peter Gärdenfors and, in April 1992, a young, brilliant, and enthusiastic French
logician, named JYB. After his very nice talk on a general theory of valuations (which
pleased all the audience, including Carlos Alchourrón), we talked about logic in my office
at UBA for about an hour. I was surprised at his broad knowledge of the subject, despite
his being young.

We met again in July 1994 in São Paulo. At that time, both of us were studying for our
respective Ph.D. degrees at the University of São Paulo (USP). Jean-Yves was concluding
his first Ph.D. in Paris under the supervision of Daniel Andler while working on his second
Ph.D. thesis at the Philosophy Department of USP under the supervision of Newton da
Costa, and I was working on mine at the Department of Mathematics under the supervision
of Francisco Miraglia. Our friendship began then, spending long nights at the exotic bars
of downtown São Paulo, or watching classic movies and listening to music together with
other friends in my small apartment at Estação da Luz, over a period of several years. He
moved to Rio de Janeiro and Petrópolis by the end of 1995, but our cultural meetings have
continued through to the present day, due to periodic visits in both directions.

From an academic perspective, I learned a lot of Logic from Jean-Yves’ papers and
personal communications. He has plenty of original ideas, and his insights are remarkable
and inspiring. He always surprises me with original perspectives and observations. His
tireless work as a promoter and disseminator of Logic as a broad discipline, interacting
with several other areas of knowledge, is also outstanding.

I would like to send my warmest congratulations to Jean-Yves for his remarkable aca-
demic work and career (observing that he is only 50!), and I would like to thank him for
his sincere friendship during these years.

Marcelo Coniglio
UNICAMP
Campinas, Brazil

4 From St. Petersburg with Snow

I first met Jean-Yves through my colleague Vladimir Vasyukov; I cannot now remember
the exact dates and circumstances but most likely this happened in 2003 in St. Petersburg.
In 2005, I’ve got an invitation from Jean-Yves to give a tutorial on Categorical Logic at the
First World Congress and School on Universal Logic (Unilog) in Montreux (Switzerland).
In the intellectual and political climate of the 2000s, which especially emphasized the
need to tolerate multiple systems of thought as well as multiple systems of logic, the title
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“Universal Logic” sounded very provocative. This name could be used for a certain system
of logical norms offered as the only “true” logic – against the current trend to logical
pluralism. However, I quickly learned that Jean-Yves’ idea was different and actually
more interesting. It was about bringing together many different people working in various
areas of logic (including people coming from outside the current academic mainstream),
making them to talk to each other and finally asking them to describe a hypothetical notion
of “universal logic,” which, if it makes any sense at all, remains invariant through a wide
variety of things found under the name of logic on the contemporary intellectual market.
I am very grateful to Jean-Yves for this kind invitation, which I used for systematizing
my own knowledge and ideas about the subject and for learning a lot of contemporary
philosophical logic.

This and some other meetings organized by Jean-Yves and our personal discussions
gave me quite a lot of inspiration for my further work. And it still inspires an important
part of my research today. Among other things, this concerns the concept of logical trans-
lation, i.e., translation between conceptual frameworks or “different logics.” This sort of
translation not only allows different systems of logic to talk to each other but also deter-
mines the core structural features of these very particular logical systems. See my abstract
“Logical Forms versus Translational Categories” in the Unilog2007 Handbook and also,
for a keen approach, “Homotopical Categories of Logics” by Peter Arndt in the first vol-
ume of the present Festschrift, pp. 13–58. I believe that this translational view on logic
is very promising and deserves to be further developed. I also believe that Jean-Yves has
made a great contribution to this and other research projects, which fall under the scope
of universal logic in Jean-Yves’ very liberal and always friendly sense of the word.

Happy Birthday, dear Jean-Yves, and Many Many Happy Returns!

Andrei Rodin
Saint Petersburg University
Saint Petersburg, Russia

5 “Torpedo” Béziau

I have been kindly asked to accomplish the following task, namely writing some words
about the hero of the day, viz. Professor JYB (“Beez-you,” with the English-worldwide
accent), at the occasion of his half-centenary. It is my pleasure to reply positively to such
a proposal, all the more that a lot has to be said about this public character. Let me just say
a couple of words about him; however, English is not my Muttersprache, and this is only
a sketchy portrait, but here it is, as far as I can honestly picture it.

A well-known football club in Moscow is called “Torpedo Moscow,”1 where the first
word has a blatantly military meaning that everyone can guess. But another reading also
refers to the sea-fish philosophers are very familiar with: it is the fish which served as
a nickname for Socrates, due to his legendary capacity to address people in the street with

1 Note to the purists: write “�������” in Russian, but “ ������� 	�
���” for the whole name of the
team with a genitive declension of the word.
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simple questions before leaving them with serious headaches. Jean-Yves is exactly like
one of these provocative dialecticians, juggling with concepts just as some humorists may
play with boundaries.

But Socrates also struggled against the Sophists, and Jean-Yves seems closer to these
when dealing with paraconsistent flows. Like a Sophist, but in a neutral sense of the word;
not the pejorative one which so harshly affected the official memory of genuine thinkers
from ancient Greece such as, e.g., Heraclitus. And yet, the Sophists flirted with conven-
tions; whether for want of money in life, or for any other reason. Anyway, it is much fairer
to say that Jean-Yves’ sarcastic mind nicely matches with that of someone like Diogene
of Sinope. Had Kripke asked him anything, Jean-Yves would have ordered Saul to stand
out of his light; certainly, because he could not read his non-truth-functional matrices on
the wall, or the like.

Indeed, one of the best moments I experienced during Jean-Yves’ talks was the very
first one in Montreal on September 2003.We were attending a conference organized by the
Francophone Society for Analytic Philosophy (SOPHA). Jean-Yves talked about possible-
world semantics, a famous “hot topic” among those one is delighted to put on the table
for very philosophical purposes. What of Jean-Yves? He simply threw the modern idol on
the floor, mocking those who venerate the Holy Accessibility Relationship and claiming
that this machinery was nothing but an extensive by-product of algebraic bi-functions. I
have to point out that it was my first time as a conference speaker. Not sure that most of
the usual speakers had such a subversive mission in mind, speaking in a distant way to
astonished people while eating grape breads. Then the discussion came to be somehow
“dynamic,” once the idol had been hurt and underestimated by an incredulous torpedo.

Likewise, all of Jean-Yves’s talks play with pedagogical pictures and so general ideas
that most of the listeners do not want to take seriously. Wasn’t it the same with the foolish
Diogenes in ancient Greece, whether for right or wrong reasons? Identity, Proposition,
Truth-Value, Opposition, Logical constants . . . our Professor is used at launching insight-
ful discussions with simple ideas, and it is not the least courageous philosophical act to do
this. Borrowing from Timothy Williamson’s words: “To be precise is to make it as easy as
possible for others to prove one wrong. That is what requires courage.”

From excessively simple words to really strong points, let me quote some main con-
tributions of Jean-Yves: the S5-translation of paraconsistent negation, following Gödel’s
S4-translation of intuitionist negation, non-truth-functional matrices non-classical con-
stants, and a reply to philosophical objections concerning the nature of paraconsistent
negation (cf. Slater’s challenge), a revival of the ancient theory of opposition, following
Robert Blanché’s developments, and the launching of a bunch of new results (especially
with one of his former students, Alessio Moretti).

Finally, he is an everlasting globetrotter going throughout the world and spreading in
exotic countries some exciting events like Unilog, The Square of Opposition, together
with a top-level scientific journal (Logica Universalis) and a collection of book series for
logicians, mathematicians, and philosophers, and a clear editorial success à la Gabbay.

I have only talked about what I am most familiar with, being aware that a huge number
of technicalities Jean-Yves faced largely go beyond my mental capacities. However, I still
take him to be the one who stimulated my first pure reflections about formal semantics,
negation, or the logical concept of opposition, until the day when he agreed to be a jury
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member for my Ph.D. defense on March 2007. Something about epistemic modalities
. . . here is just a way to refresh his mind with Kripkean possible worlds, or Hintikka’s
epistemic logic.

Jean-Yves, in a nutshell is a logical comet between Molière and Diogenes, and not
far from Montherlant in attitude. Not regarding his style of writing, I must confess, due
to Jean-Yves’s inner struggle with the French syntax and his clear taste for rational ab-
stractions rather than lexical subtleties. Someone who never forgets to point at those Mr
Jourdains of philosophical logic, i.e., those playing seriously with truth valuations just as
kids wage war with tin soldiers.

Now I should return to my own conceptual toys. I just sketched our beloved scratching
powder in a very subjective Gonzo style that some readers might find appropriate or not.
Tertium non datur, notwithstanding the blatant affinity between many valuedness and our
dear Professor, alias Jean-Baptiste Torpedo Béziau of Sinope.

To the Baron of Chambourcy, pending another future heading for our common master
of situationist logic.

�� �������� ������	 
�����2

Fabien Schang
National Research University Higher School of Economics
Moscow, Russia

6 The Man with the Golden Thought

I do remember the Jean-Yves of the old days – pretty much the same as he is now but with
time enough on his hands for long rides toward artificial cities on Brazilian coaches. He
was an enthusiast of new breeding grounds: Schopenhauer, universal algebra, Badiou and
non-classical logics were his ingredients at the time. I recall universal logic being roughly
ready in his head as a road if not as a castle. I suppose he likes castles less. Then he hit the
road. I met him again years later for a night out in Palo Alto. He was sort of a habitué. He
spent the evening showing me the core of the place. And how unfulfilling it was! I suppose
it is a logician’s way to go places – see the (hard) core of it and you see its imbrications.
His approach to seeing places, I suspect, was like the ideas of universal logic he had been
cherishing: make a mosaic of these cores. No place, like no logic, is fully and universally
satisfactory. But you can hope for something out of a cubism of (hard) cores.

Hilan Bensusan
University of Brasília
Brasília, Brazil

2 “See you soon, dear Jean-Yves!”
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7 Jean-Yves Béziau’s Imprint on Universal Logic

I first met Jean-Yves in 2005 in Mumbai when we both were on our way to a conference
in Pune. He had rented a car and we traveled there together, and afterward we went on
for a spontaneous roadtrip. Altogether we spent around two and a half weeks together,
connecting our thoughts, discussing logic and life, and encountering incredible India. This
was a marvelous start and our paths kept crossing, and will hopefully continue doing so
for a long time.

When I first encountered the idea of universal logic (this was before meeting Jean-
Yves), it struck me as natural and convincing. However, I could not imagine how such
a grand and general undertaking could be pursued in a focused way, how it could be more
than just disconnected research, driven by individual curiosities, and maybe somewhat
randomly forming a bigger picture over decades. Seeing Jean-Yves in action taught me
otherwise.

With the efforts he put into articles, lectures all around the world, creating conference
series and book and journal series, Jean-Yves managed to transmit his ideas widely and to
convey the impression that there is indeed a big picture to be understood, a goal to reach
for, and that conscious effort can bring us closer to it. He got a lot of people engaged in
the project.

One reason that he succeeded is, of course, that the idea of universal logic itself is good.
Another reason is his remarkable openness to ideas, his huge willingness to learn from

others who have thought about a subject, and his ability to connect the different things that
he learns. He must have opened the eyes of quite a few people to the fact that what they
are doing is related to different activities in ways that they never suspected (the square
of oppositions is a prime example). This got them interested in universal logic, and made
them see where they had something to contribute.

And the third reason is his own style in research (which is something that is not easily
found in science). Careful analysis of situations and solid arguments should be part of any
scientific action.

But Jean-Yves has two further trademarks: he asks fruitful and intriguing questions and
puts a major emphasis on them. They are ambitious but just within the reach of making
progress. And they are not rhetoric; he wants people to try and give answers (as exem-
plified by the Unilog contests). He is also great at bringing up examples, not just for
clarification but also for pointing out our confusion about some ideas, and showing places
where we can strive for a better understanding (think of the collapsing problem in the fib
ring of logics).

All of this made universal logic the project of many, while bearing Jean-Yves’s personal
imprint. So, Jean-Yves, keep up your inviting and challenging style; it has served us well!
Happy birthday!

Peter Arndt
University of Regensburg
Regensburg, Germany
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8 The World Is not Enough

I first met Jean-Yves in 2004 in Portugal. That was also my first encounter with his uni-
versal logic project, which was advertised on that occasion. I immediately had a strong
feeling that I had met with the long awaited home in logic for my activity. Gradually,
we have also become good friends. Jean-Yves is a highly unusual character in contem-
porary academia. In a scientific world dominated by narrow specializations, autism, and
ruthless competitiveness, he brings in a wide perspective and an impartial approach. He
persistently provides dedicated support for ideas outside mainstream scientific activity.
Many of them, albeit very interesting, can be marginalized or even ignored just as an ef-
fect of the toxic competitiveness that dominates our academic world. For this, I regard
Jean-Yves as a sort of intellectual hero.

This kind of intellectual generosity may also bear some costs. The events aroundUnilog
are too big compared to how much the highly substantialist Western scientific culture is
capable of accommodating the nonsubstantialist thinking underlying universal logic. The
latter seems to be related, at least in spirit, to other scientific traditions of humankind
that modernity has put in the shadows. In my view, there is a danger that authentic uni-
versal logic thinking may become marginal within Unilog events. But with wisdom and
care, I think that this can be avoided and universal logic will fulfill the prophecy of some
paramount scientists, as a true renaissance of mathematical logic.

Răzvan Diaconescu
The Romanian Academy & S, coala Normală Superioară Bucures, ti
Bucharest, Romania

9 On Logic’s Secret Service

I had a lively image of JYB even before we first met, back in 2001, for a logic event in
Las Vegas, USA that he was organizing. A number of common acquaintances had told me
about his work and interests, but also about his colorful and outspoken French–Brazilian
character, and I must say that I was not disappointed. I had recently become interested in
his work on the theory of valuations, which I found extremely interesting and which ended
up being very influential to my own research on generalized compositional meaning and
the combination of logics. We got along very easily from the first moment, and have kept
in regular contact ever since. JYB visited me in Lisbon, Portugal on several occasions,
and I also visited him in Neuchâtel, Switzerland, and most recently in Rio de Janeiro, the
Land of the Future. Over the years, we ended up spending many hours discussing this and
that, some of the happiest over a glass of wine, ranging from logic, science, mathematics,
philosophy and art, to politics, and life in general.

Along with his talent for thinking out of the box, JYB has an eye for simple but pro-
found problems. As Lloyd Humberstone put it, and I could not say better, JYB “has
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a knack for noticing areas of logical theory where we find ourselves with intuitions pulling
in different directions.” I do not know where JYB’s wit comes from, in part certainly from
his multidisciplinary background, but I am sure that his inquisitive globe-trotting nature
is an important part of the equation. He seems to have visited every logician around the
world, knows about their research, and is able to pick all these scattered inputs (we all
know how scattered they can be) and understand the common ground. His universal logic
initiative, including the World Congress and School, the journal, and the book series, is
the remarkable result of his vision, but also of his resolve. I have done it personally, but it
is only fair to thank JYB again, on this occasion, for such a remarkable indelible effort.

JYB and I have collaborated on several initiatives, events, committees, and projects,
and have discussed many ideas for joint work. As JYB would put it himself, all you need
is “um prroblemo interressante.” We have identified several such interesting problems
together but, as I write, my JYB number is sadly still 2. I am sure that one of the ideas
that we have in the freezer will eventually come to life, but now it has become urgent: we
shall not wait for another 50 years, and no Icelandic volcano will prevent that!

Happy birthday, aquele abraço.

Carlos Caleiro
University of Lisbon
Lisbon, Portugal

10 Jean-Yves: Logician and Globetrotter

How many people know that JYB published a paper on the philosophical conception of
suicide in Schopenhauer? Surely many know him nowadays as a serial organizer of confer-
ences all over the world, and as a prolific editor of journals and books, with topics related
to intersections of logic with philosophy, mathematics, computer science, linguistics, psy-
chology, theology, and arts. But who else would think about doing a complete Ph.D. in
Brazil, after having defended a successful doctoral thesis at Paris 7? And who else would
dream of becoming a professor in Brazil after acting as a professor in Switzerland? Who
in the world would strive to organize a scientific conference at Easter Island?

The man who counts maybe as the only incarnation of Bourbaki as a philosopher has
been for years tirelessly circumnavigating the globe, madly sailing into all sorts of re-
search centers. This is the man who stops and takes pictures at stop signs, who brought
logical insights to penguins in the far south, as well as to hardly accessible tribes in the
Amazon, the man who has been both praised and condemned for smuggling turbo-polar
paraconsistent logic into Poldavia.

His influence in my work started as soon as I did my first proper courses on logic. I
have learned a lot from him about the intricacies of bivalence, about the many varieties of
paraconsistency and of modalities, about the complexity of identity, about the paradoxes
hidden inside the notion of translations between logics and revealed by the combinations
of logics. . . and logicians. Since then we’ve met (often by sheer chance) in the most
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unlikely places, from a secluded island in South Africa to an old mosque in Turkey, from
the streets of São Paulo to the Costa Rican jungle.

It’s been almost 20 years now, Jean-Yves and we have still not gotten bored of living
this adventure. Many thanks for being a good friend all along, and for making our logical
path so much more exciting!

João Marcos
Federal University of Rio Grande do Norte
Natal, Brazil

11 On JYB

Basically, I describe my impressions of an icon, an idol I have. I remember very well
when I met Jean-Yves. Indeed, I had already read one of his articles and, for that reason
I was pretty much interested in meeting him personally. He was sitting on a bed pool
in a hotel in South Brazil talking with a woman. He had a weird hair, a red nose, and I
tried to approach him asking some questions on modal logics. But he declined to answer
arguing that he did not know anything about modal logics. However, some days later, to
my surprise, I started receiving by post packages of his articles on many aspects of modal
logics! What a paraconsistent character!

Enjoying since then we have had a prosperous collaboration, where I learned too much,
and he invited me to join his research group on universal logic at the University of Neuchâ-
tel, Switzerland. There I recognized that I got much more than a Ph.D. supervisor, but
a real friend, the kind of friend we find only two or three times in life.

Zooming in, he has a universal, generalist, and rare mind which attracts all kinds of
collaborators and persons, making him a natural ambassador of logic in the domain of
culture, connecting it to even the most unexpected topic. Being a workaholic, he always
organizes meetings, writes papers, edits books in nonstop mode.

In his great care and attention to people, we discover a holy being, who is a gentle
and helpful person: each human being is super valued when in touch with him. He tries
to make each one develop its own powers, stimulating research and creative thinking in
a way that is very difficult to describe.

After all, what really attracts me in his personality is that his way of thinking is not
a provincial one because he has a very good philosophical ouverture to discuss all ten-
dencies. Without prejudices he is always open to debates, and does not try to impose his
concepts and ideas.

Unique, original, creative, not dogmatic, and with a good sense of humor, JYB is my
favorite philosopher and logician.

Alexandre Costa-Leite
University of Brasília
Brasília, Brazil
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12 The Real Universal Thinker

I have known JYB for 11 years. The First World Congress and School on Universal Logic –
Unilog’05 in Montreux was the first major congress I had ever participated in, thanks
to Jean-Yves, also as a member of the organizing committee. First, Unilog was a huge
success, an absolutely fantastic event in a very beautiful place by Lake Geneva in the
Alps. It was the time when I decided to participate whenever possible in all the events
organized by Jean-Yves.

12.1 Some Unknown Facts About Jean-Yves

Fact 1 Because he was living some time in Corsica he was given the nickname
“Napoleon,” but I am sure it was also due to his strategic abilities and logical genius.

Fact 2 He once wanted to be a rock star. It is said that in Switzerland he had a band with
some other now renowned researchers. I think rock and roll may have lost a great star, but
surely logic has a much more fun spirit thanks to the failure of Jean-Yves’ music career.
Anyway, I think that in this way he has more devoted fans.

Fact 3 He loves Smurfs and has a collection of Smurf figures. Jean-Yves considers this
to be a very philosophical cartoon, and after many philosophical debates, I still think that
Peanuts beats Smurfs, but this remains an open metaphysical problem.

Fact 4 His father was the first person who crosses the Sahara desert on a BMW motor-
cycle.

Fact 5 His mother made her communion in a dress made from a parachute of Antoine
de Saint-Exupéry, souvenir or an emergency landing of the aviator in the property of her
family.

Fact 6 Deep down he is a Polish guy with a Slavic soul. How do I know this? First of
all, he is a great logician, he has a great imagination, he is extravagant, he has a special
absurd sense of humor, and he is quite repetitive, but he is still very funny, that is, when he
is not being extremely repetitive (like telling the same joke 20 times in the same evening).
He is very inspiring and a truly great friend. He enjoys good, strong alcohol, herrings, and
poppy seed cake. And he never gives up. And here the proof ends.

12.2 The Art (of Life) by JYB

He is an art lover and an artist at the same time. Perhaps, it is not even a love, just an
organic part of his existence. Whether it is photography, drawing, music, painting, film
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or just beautiful shoes, he is an expert, admirer, and practitioner. He is a professional and
sincere, absolutely snob-free, authentic art-lover and artist. He always listens to music,
though in my opinion, a little too melancholic. Too sad!

His photography exhibition “World in the wrong way” perhaps shows his interest: the
limits and borders he wants to cross and the obstacles he loves to conquer.

He travels around the world together with Catherine promoting their ideas, art, and
a true and rare sense of scientific and artistic cooperation and dialogue, facing very dif-
ferent people, cultures, and systems, and thanks to this, many unexpected international,
intercultural, interreligious friendships, connections and cooperation have started. And as
they should be, they are very welcomed everywhere.

Jean-Yves has great taste in film, and is a cinematic connoisseur and professional. If
you haven’t seen it yet, please find and watch every video he has made with Catherine,
movie, interview or filmed performance. I think it was the first time in the history that the
main organizer of a congress made a professional movie concerning the main topic of the
event. This is the case with “The Square of Salomé,” where Jean-Yves plays Jean-Baptiste.

12.3 Paradoxes

His life is full of paradoxes. Maybe that is why he is so keen on paraconsistency and is
searching for way to go beyond dichotomies.

� He takes many risks, but he is not reckless.
� He has his own strong opinions, yet he listens carefully to everyone’s opinion.
� He has a great imagination and fantasy, but works hard every day like a monk.
� Hemay sometimes be shy; however, he is fearless in expressing any controversial claim

and in defending his own – even the most unusual – opinions.
� He has what all philosophers, scientists, artists must have – a great imagination. But he

is also down to earth and understands everyday problems.
� He works at the same time on the most abstract and refined questions in logic, and also

does the most fundamental, basic work on a universal, global level.

12.4 Logical Mogul that Never Goes 50/50

I do not really know if anyone is aware of how hard he works. He personally takes care
of so many things concerning congresses, publications, searching for cooperation, helping
young and old researchers from all around the world. When it comes to the organization of
congresses (like Unilog, Square of Opposition, Paraconsistency, Logic in Questions, and
so many more), he worries over absolutely every detail: from the venue where the event
will take place and the invited speakers, to the food, climate, prices, distractions, excur-
sions, etc. He let me work with him, which was one of the most important experiences
of my life, and I always look forward to spending time with him and Catherine. They are
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so incredibly talented and creative, yet such very down-to-earth people. We spent weeks
together working in many countries around the world, and afterward I was always totally
exhausted but extremely happy. Jean-Yves usually has to invest all his time, sometimes
his own money, and definitely he is paying with his own health for the success of all these
events, publications, and enormous activity.

I also think that his idea of “université mondiale”3 should be seriously studied and de-
veloped. It is an antidote for the bureaucratic pandemic in the academic world around the
world. He has proved that a wonderful academic career can be at the same time a fascinat-
ing adventure with artistic flavor.

I truly admire him and cherish our friendship; however, we usually have very different
tastes in music, philosophy, and fashion, and many varying opinions. Although I do not
like to say this, sometime later I usually have to admit he was right. I have learned so
much from him. He inspires me, as I am sure he does so many other people, as well. He
is so patient and looks for the best in people. And hopefully he finds it.

At the end, on the one hand, poor Jean-Yves hits 50, but on the other hand, with all due
respect to his unquestionable achievements, let me quote Jack Nicholson when he received
the Life Achievement Award, because I am sure that with Jean-Yves it’s the same story:
“You ain’t seen nothing yet!”

Happy Birthday Jean-Yves!

Katarzyna Gan-Krzywoszyńska
Adam Mickiewicz University
Poznań, Poland

13 A Logician Who Loves Me

There is the man, the researcher in logic, in philosophy, the artist, the photographer, the
painter, I live with all the men in him, in a train, in a boat, in a plane, in a car, in Rio,
in Paris, in Valparaiso, in Beirut, in Buenos Aires, in Lisbon, in New York, in Montreal,
in Melbourne, in Montreux, in Bombay, in Rome, in Bucharest, in Budapest, in Moscow,
in Copenhagen, in Athens, in Poznań, in Berlin, all over the world I live with him, in
a double room, in a hotel, in a castle, in a guest house; it is the universal life, because this
man loves open spaces; he constantly creates and thinks all the time; sometimes he would
like to take holidays from thinking, but this is impossible; he is animated by research, his
passion, to gather people from around the world from many different disciplines, to try
to understand and organize congresses where everyone can meet, discuss, exchange new
ideas, if possible, not so easy to have new ideas, but for him, no question of settling for
a little life reduced to a miniature.

He thinks big, he sees large, he sees universal, he offers, he shares; his congresses and
his journals show it; living with him is the great life, the wonderful life, but one must be
strong, be obstinated, brave, generous, be creative, inventive; our thoughts are creations,

3 See J.-Y. Béziau, “Les universités face à la globalisation: vers une université mondiale?,” In Journée de
l’Unesco 2004, vol. 10, F. Naishtat (ed.), Unesco, Paris, 2006, pp. 207–211.
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his thought is constantly active and creative, but above all he believes in potential be-
cause life offers only what we give; he gives everything, he believes in life, its always
strange mystery he wants to understand and break through, he believes in man’s power of
reasoning, and he is a spiritual man hidden behind all his research.

Happy birthday Jean-Yves!
With all my love, Catherine Chantilly

K. Gan-Krzywoszyńska (�)
Adam Mickiewicz University, Poznań, Poland
e-mail: katarzyna.gan.krzywoszynska@gmail.com

katarzyna.gan.krzywoszynska@gmail.com


Logical Autobiography 50

Jean-Yves Béziau

Abstract After describing my family background and interest in mathematics and phi-
losophy at school, I explain how I became interested in logic when studying at university
in Paris. I describe how I discovered the work of Newton da Costa on paraconsistent logic,
how I met him in Paris, and then go to do research in Brazil, Poland and USA before de-
fending my PhD on universal logic at the Department of Mathematics of the University
of Paris 7 and a PhD on logical truth at the Department of Philosophy at the University
of São Paulo. I recount my postdoctoral years in Rio de Janeiro and Stanford and how I
settled down for a couple of years in Neuchâtel, Switzerland, organizing the First World
Congress on Universal Logic in Montreux and launching a journal and book series on this
topic. I tell how I came back to the land of the future, starting more editorial projects,
organizing logic events around the world (Paris, Beirut, Vatican, Lisbon, etc.) and con-
tinuing to develop research related to all aspects of logic (mathematical, philosophical,
semiotical, historical). I finish with a short overview of my future projects, supported by
a list of potential papers and books following a complete list of my writings to date.

Keywords Autobiography � Universal Logic � Paraconsistent Logic � Square of Opposi-
tion

Mathematics Subject Classification (2000) Primary 01A70 � Secondary 03B22, 03B53,
03A05, 03B45

A designer knows he has achieved perfection
not when there is nothing left to add,
but when there is nothing left to take away.
—Antoine de Saint-Exupéry

19© Springer International Publishing Switzerland 2015
A. Koslow, A. Buchsbaum (Eds.), The Road to Universal Logic, Studies in Universal Logic,
DOI 10.1007/978-3-319-15368-1_2



20 J.-Y. Béziau

1 Why an Autobiography?

I1 see two good reasons to write an autobiography: on the one hand, to reflect on and
become more conscious of what we have done; and on the other hand, to inspire and
provide guidance and advice to others. I have read a few autobiographies that were very
useful to me. Let me give two important examples: Confessions [41] by Jean-Jacques
Rousseau and I Want to Be a Mathematician: An Automathography [22] by Paul Halmos.

I read Confessions – Part I when I was a teenager and it continues to have a strong
influence on me to this day. I do not know much about Rousseau’s philosophy and this is
the only book by him that I have read in its entirety. I feel close to Rousseau because I have
been connected to several places where he lived: Geneva, Annecy and Neuchâtel. How-
ever, this is only one aspect. This geographical connection is not necessarily an emotional
one – it is more as if he were there, part of the landscape. In fact, I do not feel a special
affinity with Rousseau’s personality; my own personality is perhaps closer to that of his
rival, Voltaire. Yet I was much impressed by the way Rousseau conducted his life, always
innovating, thinking about all kinds of topics while traveling on foot through Europe.

Paul Halmos’s autobiography is quite different, since it is pretty much restricted to his
intellectual life. As with Rousseau, I do not feel a real affinity with Halmos’s personality.
However, what I like is that he was not just a follower, and that he had many interesting
ideas regarding both his main area of specialisation, mathematical logic, and the way he
conducted his academic life. He not only gives a lot of useful tips, but also reflects on the
activity of the mathematician, worthy of a thousand papers in the philosophy of mathe-
matics. A typical controversial remark by Halmos is: “The best notation is no notation;
whenever it is possible to avoid the use of a complicated alphabetic apparatus, avoid it.
A good attitude to the preparation of written mathematical exposition is to pretend that
it is spoken. Pretend that you are explaining the subject to a friend on a long walk in the
woods, with no paper available; fall back on symbolism only when it is really necessary.”
([23], §15. Resist symbols.) I like that, although I do not necessarily agree with it, since
I believe in the power of (non-trivial) symbolism – cf. my recent book La Pointure du
Symbole (2014).

Of similar interest to me is Gian-Carlo Rota’s Indiscrete Thoughts [39] with its remarks
about teaching, publishing, lecturing, accurate testimonies and provocative ideas about the
relation between logic, mathematics and philosophy – including his essay “The pernicious
influence of mathematics upon philosophy”. I also enjoyed very much Suppes’s “Intel-
lectual autobiography, Part I, 1922–1978” [49] and The Part and The Whole by Werner
Heisenberg [24]. Other autobiographical works, which I have read only in part, are also
very interesting, like André Weil’s The Apprenticeship of a Mathematician [50], Alexan-
der Grothendieck’s Récoltes et Semailles [19], Lévi-Strauss’s Tristes tropiques [30], and
Carl Jung’sMemories, Dreams, Reflections [26].

Regarding consciousness, it is very important to write an autobiography especially
when it is not a final autobiography at the end of life, because this is a reflection not only
about the past, but also about the present and the future. In this sense I think it is worth

1 Many thanks to Robert Purdy, Patricia McCaslin and Damien Bureau for proofreading this paper.
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writing different autobiographies at different stages of our life. I wrote one in 2000, when
I was 35 years hold. It is called “From paraconsistent logic to universal logic” (2000). It
was a couple of years after my two PhDs, one in mathematical logic at the University of
Paris 7 in 1995 and one in philosophical logic at the University of São Paulo in 1996. At
this stage I was starting to develop a full research program but I did not have a permanent
position – I was a visiting scholar at Stanford University. I had no precise idea about how
I could or would be able to do that. However, shortly after that I got a position in Switzer-
land for a couple of years and was able to implement my research activities. The above
autobiographical paper is a 30-page paper about the period 1990–2000, in which I explain
in detail how I started to develop the idea of universal logic. It is complemented by a paper
I wrote this year: “The relativity and universality of logic” (2014). I will not repeat here
the details of the development of my research project on universal logic, nor those of my
project on the square of opposition that I have described in “The new rising of the square
of opposition” (2012).

In the present paper I will give a general vision of my life up to now, with more personal
elements, although this is mainly an intellectual autobiography. I have tried to write some-
thing of interest, not only for people working in a particular area of research. This paper
can be of interest for people working in areas related to the work I have conducted con-
cerned with logic, mathematics, philosophy, computer science and semiotics. Moreover, I
hope it can also be of interest for people working in any area of research.

2 Youth and Adolescence (1965–1983)

2.1 Birth and Family

I was born on January 15, 1965 in the city of Orléans, France, the last of a family of
five children. My parents had previously given birth to four girls: Hélène (1954), Eliza-
beth (1956), Pascale (1958) and Françoise (1963). Orléans is a quite famous town, about
130 km south-west of Paris, associated in particular with Joan of Arc (nicknamed The
Maid of Orléans). I was born in a hospital just near her famous statue. Orléans is connected
to the French royal family d’Orléans, itself linked to the American city NewOrleans, orig-
inally La Nouvelle Orléans. I only lived for 2 years in the region of Orléans. I am not of
a definite origin. My father is from the west of France, my mother was born in Casablanca,
Morocco, and we have never settled down anywhere; there is no place to which I belong.

My father, Jacques Béziau, was born in 1929 in La Guichère, a small village in the west
of France, close to the Atlantic Ocean, near the boundary between Brittany and Vendée.
The family name Béziau is from this region. There is a place called La Bézilière close to
my father’s birthplace. It is not a common name in France.2

2 Presently there is officially no accent in my proper family name – my name is Jean-Yves Beziau – the
accent having been lost through some Kafkaesque administrative process that I will not explain here.
However, I am happy with that, I think accents are a useless complication. One of the advantages of the
English language is that there are no accents or other parasites surrounding its letters.
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This is one of the most Catholic regions of France. During the French revolution, the
people there supported the King of France. The counter-revolutionary Catholic army of
Vendée was directed by François Athanase Charette de la Contrie, who had at some point
restructured his army in La Bézilière. Charette was shot and is considered a hero in this re-
gion. He was admired by Napoleon, who, when taking power over the revolution, stopped
the anti-Catholic frenzy, and for this reason is cherished in the Vendée area. My father’s
aunt, Adèle, entered the Catholic Church as a nun. My father’s brother became a priest:
he was one of the worker-priests – a missionary initiative by the French Catholic Church.
However my father himself, and my grandfather, were rather critical of this church.

My grandfather, Vincent, had a strong personality. Being a tough guy he was sent for
3 years of military service during the 1920s in the Middle East, in the region that is now
divided into the countries of Lebanon, Israel and Syria. Back home he married a girl who
lived in Paris but was from this region and returned there during the holidays. Her name
was Alice. She was raised on Avenue Foch, near Champs-Elysées and her father was
a policeman. He died at an early age and Alice had to earn money when she was still
a teenager – working with fashion at Guerlain. She met Vincent, who was a member of
one of the wealthiest families of her region of origin, married him and never lived in Paris
again, although she liked this city very much and went there from time to time. Alice’s
brother lived in Paris with his wife Madeleine; he was a barber and had a hairdressing
salon in rue Saint-Denis. Later in the 1980s Madeleine helped me to find a flat to rent
nearby, in rue Tiquetonne.

At the time I lived here, at the end of the 1980s, this area was quite decadent, a mix
of prostitution, clandestine workers in the Sentier (brands like Naf Naf and Kookaï were
appearing), suburban gangs emerging from the Forum des Halles. Nearby was Beaubourg
with a lot of tourists and street animators, the très chic Café Coste, the gay and Jew-
ish quarters in the Marais, the Gothic church Saint-Eustache, the Bibliothèque Nationale
(National Library), Passage Choiseul where Louis-Ferdinand Céline grew up, Port Royal,
Paris Bourse, the Louvre, . . . The heart of Paris (the 1st, 2nd and 3rd Arrondissments) is
a part of my life.

My grandfather lost most of his money during the Second World War through bad
transactions. My father wanted to be an airplane pilot, but due to the lack of money he was
placed in a marine mechanics school in the nearby city of Nantes. Nantes has been a very
important town in the history of France for marine activities (including the triangular
trade) and this was a very good school. After the end of school my father was able to
work on boats at an early age. First he sailed on oil boats going up to Kuwait, then on
merchandise boats going to North-Africa. The boats stopped in various harbors, and my
father had the opportunity to visit many different places, for example Beirut and so on.
He sometimes met his brother, who as a priest went to the harbors to help mariners to not
spend all their money on drinks and prostitutes in a few hours.

My father became fascinated by the desert and undertook the project to cross the Sahara
by motorbike. A project that he realized. He was the first man to cross this huge desert by
motorbike (a BMW). Form Morocco he went down to Afrique noire (Black Africa) and
came back to Morocco by crossing the desert one more time. The German company BMW
rewarded him with a brand new engine and invited him to visit their factory in Munich.
My father and his brother liked motorbikes very much, a passion they inherited from their
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father. Unfortunately, his brother died in a motorbike accident when he was 23 years old.
This was an emotional shock to my father because they were very close. His brother’s
name was Yves. This is why, later, my parents gave me the name Jean-Yves.

My father met my mother in Morocco, the place he chose as a basis for his Sahara
expedition. My mother was born there and she and my father lived in this country for
a couple of years. My elder sister was born in Morocco, before my parents went back
to France. These were the last years before the independence of Morocco. As my father
later described it to me, this was an amazing place, a mixture of Arabs, Frenchmen, Jews,
Berbers, Italians, Spanish and also Americans. Americans went there during the Second
World War, and my father at some point worked in an American military base. The famous
movie Casablanca is about this epoch.

My mother was born Louise Desmeules in 1929 in Casablanca, Morocco. Her father,
William Desmeules, was from a small town called Ropraz near Lausanne, Switzerland.
William’s mother had become pregnant at an early age, and William never met his father.
Later his mother married another man with whom she had several children. Due to the
English name she gave her first child, it is suspected that William’s father was of English
origin. When still young, William left Switzerland for a life of adventure. He settled in
Marocco where he worked at the post office and later had a grocery shop. He married
Marcelle Heitz, born in Oran, Algeria, whose parents were from Alsace. They were typ-
ical Pieds-noirs settlers, with a huge farm and a big family – my grandmother had about
ten sisters and brothers. At some point, her family had moved from Algeria to Morocco,
where she and William met. Antoine de Saint-Exupéry made an emergency landing on
Marcelle’s parents’ farm, near Casablanca. William ran to meet the aviator, which is how
he met Marcelle. Saint-Exupéry gave the family his parachute as a souvenir, and later this
parachute was used to make a white dress for my mother for her communion.

One of the important connections between William and Marcelle was the Protestant
religion and culture. They had three daughters: Louise, Marguerite and Germaine, my
mother Louise being the eldest. As a child my mother was sent to Switzerland by boat and
train through a Swiss Protestant organisation, crossing Europe during the Second World
War. At the end of colonisation, my grandparents went back to Switzerland and lived in
Lausanne, where I spent some time during the holidays when I was a child and of which
I have strong memories. Their home was full of souvenirs from North-Africa and there
were books of all kinds everywhere. At the time when my mother met my father she was
working in a Montessori school, and the plan was for her to go to Paris to study pedagogy
with Jean Piaget, but she did not go because they had their first child. Her sister Mar-
guerite went instead and was a student of Piaget. Later Marguerite dedicated her life in
France to helping people from Africa learn French so that they might integrate better into
society. She married Jean Dybowski, a descendant of the famous Jean Dybowski, a French
colonizer in Africa of Polish origin. On this side of my family we also have a Polish con-
nection through cousins of my mother, who emigrated to Argentina and Australia and all
married Polish descendants. The younger sister of my mother, Germaine, married a Swiss
engineer, and they went to live, like her parents, in the region of Lausanne. Part of the
family of her husband are Swiss immigrants in Brazil.

My mother was interested in education all her life; for some years she was very active
in the parent–teacher association Cornec. Later in life she worked in Geneva in a private
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retirement home and was responsible for running its cultural activities and helping its
residents to prepare to face death. She also helped a friend of hers who had the Atelier
Arno Stern of therapeutic painting in Geneva. My mother always liked flowers and plants
very much and had a strong interest in botany and she frequently went to the botanic
garden in Geneva. She did not like travelling very much, and after leaving Morocco she
never went back there and spent most of her life in the Genevois. At some point I did the
trekking promenade around the four-forest cantons lake with her, which was designated
to commemorate the 700 years of the Swiss confederation in 1991. My mother liked to
say that she had attended all the three Swiss national expositions that happened during her
lifetime: in Zurich in 1939, in Lausanne in 1964 (when she was pregnant with me), and in
Neuchâtel in 2002, when I had just returned to live there. My mother never told me what
was wrong or right to do, she had the idea that children have to try and discover things on
their own.

My father would have liked me to become an airplane pilot but never forced me to go
in that direction. He liked the sky and astronomy – observing the stars with telescopes –
and also the sea very much; at one point he bought a sailboat and we used to go sailing
on weekends. He did not like TV and we never had a TV at home, but my parents liked
listening to the radio and music and going to the cinema to see all kinds of movies, and
also attending sessions of Connaissance du Monde (Knowledge of the World) – a series
of documentary movies about different parts of the world followed by a lecture and a dis-
cussion with the film director. They took me along with them and this opened me to the
world.

2.2 Early Years – Forest and Mountain

I was born in the city of Orléans at the time when my parents lived in Orléans forest. My
father had entered the ONF (Office National des Forêts) – the National Forests Office.
In France most forests belong to the state. I do not remember almost anything about this
forest. I have seen some photos (Fig. 1), my father liked taking photos, a passion which
he inherited from his father. He was quite good at that, with a good knowledge of how to
capture light. We lived in wild conditions at the middle of the largest forest in France with
very old sequoias. We were in isolation in the middle of the forest in a house of the ONF,
which in the beginning was without electricity and running water. Nowadays, the house is
an abandoned ruin. My sisters did not go to school, my mother educated them.

When I was 2 years old my parents moved to Cruseilles, a small town in France 25 km
South of Geneva, 20 km North of Annecy. It is from this place that I have my first mem-
ories. Because he worked in the administration of the forest, my father had the possibility
to change location every 3 years.3 He asked to come to this region because he likes the
mountains and it was close to my mother’s family in Lausanne, Switzerland. Cruseilles

3 At the end of his career he worked in the French Caraibe, responsible for the natural park surrounding
the volcano La Grande Soufrière on Guadeloupe island. I visited him there and had the opportunity to
dive in Jacques Cousteau’s underwater reserve–one of the most spectacular diving sites in the world.
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Fig. 1 With my sisters – in the middle of Orleans forest

is located in the Genevois, close to the mountain Salève, which dominates Geneva. The
forest of this mountain was administrated by my father and we used to go there. Cruseilles
is also in the Savoie area (the name is related to pines, which are numerous in this region),
formerly part of the Kingdom of Sardinia. This area became a part of France only in the
second part of the 19th century.

In this region there is Mont Blanc, the highest mountain in Europe (4800m), which
lies between France, Switzerland and Italy. Mont Blanc was explored in particular by
Horace-Bénédict de Saussure (1740–1799), the founder of alpinism, ancestor of the lin-
guist Ferdinand de Saussure. When I organized the First World Congress and School on
Universal Logic in Montreux in 2005, by lake Geneva, Kripke told me that he was happy
to see Mont Blanc from his hotel room at the time he was writing a paper for a book
commemorating 100 years of Bertrand Russell’s paper “On denoting”. References to this
mountain can be found in the correspondence between Russell and Frege. Russell wrote
to Frege on December 12, 1904: “I believe that in spite of all its snowfields Mont Blanc
itself is a component part of what is actually asserted in ‘Mont Blanc is more than 4000
metres high’.” However, this was not Frege’s idea, who replied to Russell on December
13, 1904: “Mont Blanc with its snowfields is not itself a component part of the thought
that Mont Blanc is more than 4000 metres high” [16]. When I was in my twenties I did
the tour of Mont Blanc with my sister Françoise. It is a spectacular trekking promenade
of about 200 km circling the mountain going up (to 3000m) and down to villages in three
countries, attracting many people from all over the world. When we lived in Cruseilles, I
started to do mountain trekking and skiing at a young age.

Cruseilles was in a booming region. Winter sports were flourishing and the nearby city
of Annecy on the banks of a very nice lake is charming. Local people are good at business,
and this is the place of origin of Carrefour, which is today one of the largest retail groups
in the world. Since my youth I have known the Carrefour hypermarket in Annecy and also
the original shop of Fournier, the founder of the group. In Cruseilles we had a big ONF
chalet, the furniture was made from wood produced by my father. Cruseilles is the place I
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Fig. 2 In Cruseilles

started school (Fig. 2). My first contact with school was to pass an exam to skip the first
year. I remember a personal interview during which I had to answer some questions. When
I arrived at school I already knew how to read and write; I had learned at home with my
mother. My sisters liked to read tales to me, and I also soon started to read, we had plenty
of story books at home. It made a strong impression on me and greatly developed my
imagination. I also listened to music. My father and sisters went to attend a show of Los
Calchakis in Geneva, who played music from the Andes, and came back with their disc,
which I like very much. I also liked other, completely different panpipe music – Roma-
nian music promoted by Gheorghe Zamfir, who became world famous through the Swiss
musical explorer Marcel Cellier. In my twenties I attended a show by Zamfir at the Saint-
Germain church in Paris, where panpipe was mixed with the organ, an idea of Cellier.
At school we listened classical music and we had to recognize who the composer was.
I was quite good at this and in particular I liked Russian composers: Rimsky-Korsakov,
Moussorgski, Tchaikovsky and Prokoviev. Another memory I have is that we still learned
to write with a fountain pen and an inkpot.

My family decided to leave Cruseilles, not because they did not like the region but
because my father had some problems with his supervisor. He did not agree with spreading
DDT over large areas, a very strong insecticide.4 Since living in the forest my parents
started to be concerned by the protection of nature. They were also in favour of organic
food and were attracted by alternative medicine. This was at the end of the 1960s, long
before it became fashionable. They formed a strong friendship with the pharmacist of
Cruseilles, who was completely different from Homais, the famous character of Flaubert.
He was Vietnamese and initiated them into Asiatic culture. My father liked it very much,
and at home we incorporated a series of Asiatic types of behaviour. My parents were also

4 On his wish list for a “mutation” (transfer) my father put Alsace as number one, Corsica at the end. He
was transferred to Corsica as a kind of retaliation; it was a place that people were afraid to go to because
of the harsh behaviour of Corsicans against outsiders, which sometimes led to murder.
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against nuclear energy, and we used to take part in meetings. This was the beginning of
the hippie period, there was a very good atmosphere, relaxed and friendly. Although my
parents were not of the traditional and conservative type, they were never hippies with
long hair, or strange clothes and they did not use drugs. My father at some point smoked
cigarettes (Gauloises), which in fact at this time were freely provided by the ONF to their
officers, but he stopped through acupuncture treatment. One of my sisters later became an
acupuncturist.

France is a very rationalist country where all these things were dismissed at this time
and the government promoted many wrong things based on some “scientific” dogmas.
This was strongly criticized by Alexandre Grothendieck, in particular in his talk about
scientism, “The new universal church” [20], presented in 1972 for Russell’s centenary.
I was raised during this period, in a culture quite close to these ideas, but my parents
were never radical in the way Grothendieck turned out to be. I discovered Grothendieck’s
essay much later and I think it is very interesting, a good reflection about rationality and
science, which points out the paradoxical irrationality of some scientists. It took more
than 20 years, and quite a number of toxic deaths, before the French government took
action about asbestos at the main scientific campus (Jussieu) within Paris. At the time this
campus was constructed, there were already warnings about the danger of asbestos. For
many years the authorities negated the possible negative effects on students and professors,
but in the end the campus was completely evacuated for some years to remove asbestos.
The campaign against asbestos was a long fight, and by some coincidence was led by
mathematical logicians working on the campus, in particular my former teacher Michel
Parigot – I had already left by this time. I spent only 2 years in this asbestos environment.

2.3 The Age of Reason on the Island of Beauty

I lived for 3 years on Corsica Island, between the ages of 7 to 10 – important years in
the development of a child. This is where I entered the age of reason and started to have
a real interest in mathematics. Paradoxically, this happened in a mythical location where
I was surrounded by a natural not to say supernatural atmosphere. This had a very strong
influence on my life, which lasted up to now. Corsica is incredible from a geographical
point of view. In French it is known as Ile de Beauté, which means Island of Beauty. It
is a mixture of mountains (the highest, Monte Cinto with permanent snow) and sea, a lot
of contrasts in a very small area. Nowadays 3 million tourists visit Corsica, which is an
island inhabited by 300 000 habitants, per year, mainly in the summer. Despite tourism,
the island is preserved due to the fact that Corsicans resist invasion, in particular they do
not let foreigners settle and/or buy houses or construct buildings.

During the first half of our stay in Corsica we lived in an isolated house at the middle of
the island in the mountains, near the river Golo (Fig. 3); it was called Onia. It was a wild
place and the nature was very impressive, in particular there were many different kinds
of mushrooms. I walked a lot in the nature around our house, alone or with our tiger cat,
Popolasca, who we had named after the mountains in this area. School was about 3 km
away in Ponte Castirla, and I went there by bicycle with my sister Françoise. This was an
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Fig. 3 In Corsica – with my sisters Françoise and Helene

elementary school with very few children. For this reason, we were all in the same class
and room. What I remember from this time is that for recitation exercises we were able to
choose the poems we wanted. I liked La Fontaine and to chose the longest fables to push
my memory capacity to the limit.

Corsica was at the same time wild and protected from globalisation, but connected
to the whole world, since there are Corsicans in many parts of the world and they always
come back to their island. Our teacher at school was a Corsican lady who had spent several
years in China. My sisters listened to the music of this time, the early 1970s. Two pieces
of music impressed me. One was Slag solution by Joe Buffalo’s band and the other one
was Ouverture to the sun by Sunforest, incorporated in the soundtrack of Kubrick’s movie
A Clockwork Orange. My sister Hélène used to paint and I did my first painting under her
supervision. I liked to paint Corsican villages in the mountains and boats on the sea.

The island attracted hippies and adventurous people. My father used to take hitchhik-
ers in his car and sometimes invited them to our house. My parents had many friends and
we went to their houses. I especially remember two Canadian families from Québec. One
lived in the convent of Omessa – we were slept in the cells, and the other one lived in
a small village in Cap Corse, which was completely abandoned, with houses with doors
open and still full of furniture and things. I have a rare copy of the Pensées by Blaise Pas-
cal, which we found in this village. My father was in charge of a big part of the Corsican
forest and we travelled all around the island. The atmosphere of the ONF was quite good
and there was the tradition of méchoui convivial parties (barbecued whole lamb) imported
from North-Africa – at some point the Sultan of Morocco Mohammed V had been exiled
to Corsica with his family.

At school we learned about the history and geography of Corsica. The lessons were
held in French, but all the local children had Corsican as their mother tongue. Corsica
is known because this is the place where Napoleon Bonaparte was born, the first French
Emperor, and one of the most famous politicians in the history of humanity. His nephew
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Napoleon III was the second and last Emperor of France. The writer Prosper Mérimée was
part of Bonaparte’s circle, a good friend in particular of the Empress Eugenia, the wife of
Napoleon III. He made Corsica famous through his novel, Colomba. Mérimée is also the
author of the novel Carmen, a story which became famous through Bizet’s opera that is
based on it. Napoleon, although supposedly a real Corsican, is not very popular in Corsica
because the Corsicans had to fight for their independence. The island has been invaded
and dominated through the years by foreigners. Pasquale Paoli (1725–1807) succeeded in
creating a Corsican republic from 1755–1769. It was based on a constitution that is con-
sidered the first constitution of the modern world, probably the first constitution in history
allowing women’s suffrage. Jean-Jacques Rousseau supported Corsicans and was asked
by them to work on a constitution – see [42]. The Corsican constitution has inspired that
of the United States. In the USA five towns are called Paoli, remembering the Corsican
politician. Paoli also created a university in Corte in 1765, the historical capital of Corsica,
the town where we lived during the second part of our stay. In May 8–9, 1769 Corsicans
lost the battle against French troops at Ponte novu and since then Corsica has been a part
of France. Napoleon was born August 15, 1769 in Ajaccio, but he was conceived in Corte
where his father was attending the university. Napoleon strongly contributed to the incor-
poration of Corsica within the French Empire that he himself developed.

The University of Corte was closed in 1768 and only reopened in 1981 under the name
Università di Corsica Pasquale Paoli. I remember that when we lived in Corte, the re-
opening of this university was a main issue for Corsicans. Many years later in 2010 I
had the possibility to organize the 2nd Word Congress on the Square of Opposition at
this university with the help of my friend Pierre Simonnet, who was working at the Com-
puter Science Department. We had the participation of Damian Niwiński from Warsaw
University, Editor-in-Chief of Fundamenta Informaticae, and of the famous mathemati-
cian Pierre Cartier, one of the most active members of the second generation of Bourbaki
and a close friend of Grothendieck. Cartier likes Corsica very much, in particular because
he spent his honeymoon there. During the congress we filmed Cartier talking in detail
about his meeting with Gödel in his house in Princeton in the 1950s. It was in Corte that
I encountered modern mathematics, not at school but through some booklets by Georges
Papy that my mother gave me. Pappy (1920–2011) was a Belgian mathematician, a great
promoter of modern mathematics for young children but also for a wider audience. His
booklets are full of pictures and it is stated that the age of the readers ranges between 7
to 77. These booklets present many important results about set-theory and infinity, like
the one-to-one correspondence between natural numbers and a proper subset, Cantor–
Schroeder–Bernstein’s theorem, etc.

In Corte I was reading a lot of books – we lived next door to a library. It was then that the
comic book Astérix in Corsica by Goscinny and Uderzo was released. I read many other
comic books by Goscinny, my favorite being the series Iznogood (a joint work with Tabary
producing the pictures) and I also liked Le Petit Nicolas, which he produced with Sempé.
René Goscinny is of Polish-Jewish origin and spent his youth in Buenos Aires. He is a very
talented and imaginative writer who has had a strong influence in France, rivaled only by
the Belgian cartoonist Hergé with his famous Tintin, which is also excellent. By contrast
to Goscinny, Hergé was pro-Nazi and it has been claimed that Tintin’s dog, Milou, was
inspired by Hitler’s dog. This is certainly not the case of Astérix’s dog Idéfix (Dogmatix in
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English–Goscinny was very good at word play, most of them simply untranslatable), who
is known to cry when a tree is cut. I also walked around the city by the rivers Restonica
and Tavignano. The atmosphere at elementary school was very good, the students were
smart and friendly, the girls beautiful. I enjoyed the exercises we had to do – inventing
stories inspired by the music we listened to while writing. Here I was always number one
at school without any special effort.

2.4 Thorens Glières and Annecy

We left Corsica in 1975 and went back to Haute-Savoie, to a small village called Thorens
Glières. This is the place where Saint François de Sales (1567–1622) was born. He was
the bishop of Geneva and is the author of Introduction to the Devout Life. We lived in an
ONF house a few metres from the chapel and the castle related to his family. In this castle
Napoleon III met the count of Cavour, minister of the Kingdom of Sardinia, to discuss
the affiliation of the Savoie area within France, which was formalized in the Treaty of
Turin in 1860, according to which the County of Nice also became part of France. The
region was full of forests and mountains. I did a lot of hiking, skiing and bicycling. In
the mountains there was a national park that my father took care of, which was accessible
only by climbing and there were some mountain refuges where people from the ONF and
their family and friends were allowed to stay for a couple of days. My father participated
in the re-introduction of several extinct species of animals, and this park was also known
for the western capercaillie – specialists went there to study its behaviour. I took part in
observations of these birds.

Because I had come from Corsica, for several years my nickname was Napoleon, or
Napo for short, or Bonaparte. I attended a middle school in the nearby village of Groisy
for 4 years. I did not like the atmosphere much at that school, and I did not get very good
marks, except in mathematics, and in “la composition française” – exercises in imagining
things and then writing essays about them. The mathematics classes were strongly in
the spirit of modern mathematics. We were taught abstract algebra, and the exams were
much more directed toward proof than calculation. I was able to solve the most difficult
questions. At this time mathematics saved me, because in France it was considered the
number one discipline, the absolute proof of intelligence. I also got good results on IQ
tests. At that time it was a popular practice to administer IQ tests in schools, and your IQ
was taken into account when determining what track your further education should follow.

I started to read a lot of science fiction books, classics by Isaac Asimov, van Vogt
(who I later learned was a follower of Korzybski, a promoter of non-Aristotelian logic),
Philip José Farmer and Philip K. Dick. They gave me a lot of inspiration. The writings
of Asimov about robots have a quite interesting logical aspect, and Asimov is thought
to have anticipated the idea of Wikipedia.5 My favorite author turned out to be Fredric

5 Although Asimov may have anticipated Wikipedia, no science fiction writers anticipated personal com-
puters and the web, two fundamental components of our present world. Reality is always more surprising
than fiction.
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Brown; I liked his style, sense of humour, ability for ingenious plot, incredible imagination
and psychological subtlety. Before he started writing science fiction, Brown wrote crime
stories – The Far Cry is my favorite. He was also much influenced by Lewis Carroll,
whose works I also read at this time.

Our neighbor was a colleague of my father. He was about 30 years old and he liked to
play chess. I started to play chess and after a couple of weeks I was able to win against
him. I liked this game very much. For me it was connected to reasoning. Before I had
a maths exam, I thought it was good to play a game of chess to fortify my mind. At this
time I listened to all kinds of music. I liked singers like Eddie Cochran, Leonard Cohen
and Peter Gabriel, and bands like the Beatles, Pink Floyd, Deep Purple, King Crimson and
Genesis. Then disco music appeared with Cerrone and BoneyM, and punk music with the
Sex Pistols, Clash, Ramones, etc. I started to play music, composing different pieces. Also
through my father, who has always been interested in cars, a passion that he inherited from
his father, I began to take an interest in car racing, in particular Formula 1. My father had
worked for Ferrari in Morocco and had met Ascari. My favorite driver was Niki Lauda.

After middle school I went to the nearest high school, which was in Annecy, about
20 km from Thorens Glières: the Lycée Gabriel Fauré, bearing the name of a famous
French musician. I had to go by bus, and it was quite slow because the bus stopped in
many villages along the way. During the winter there was lots of snow, so we went very
slowly. I would wake up at 6 o’clock in the morning and come back home at 7 o’clock in
the evening. All this had a negative effect on my schooling; I had to repeat my first year of
high school, but this was also related to a general teenage feeling of dissatisfaction. I went
to Paris for the first time and stayed with my sister Hélène who lived there. Paris made
a very strong impression on me. I wanted to be independent and even thought of quitting
school.

At some point, in Annecy there was a competitive exam to be a postman at the post
office, and I decided to be a candidate. I had a positive idea of the post office, since this
was related with my grandfather William and Saint-Exupéry, who had worked for the
famous postal line from Europe to Chile – I had a collection of stamps. Also, I knew
that Gaston Bachelard had been a postmaster, so it seemed to me that this kind of work
was not incompatible with intellectual life. I had felt empathy with Bachelard, also influ-
enced by Korzybski’s non-Aristotelian logic. Later, when I was a student at the Sorbonne,
Bachelard’s daughter Suzanne was one of my professors. She held a class on the Dioptric
of Descartes. She criticized Descartes, although she liked him, laughing at him in a funny
way. I did not become a postman because I failed the post office exam – strangely enough
because of mathematics. The general exam was not very difficult. We had to know a lot
about geography, and I was good at that, and we had to write a composition française,
which was also easy for me. Then there was a mathematics test, which was a rule-of-three
problem. However, due to my modern mathematical training, I had had very little expo-
sure to such questions, and I did not succeed in solving it. Modern maths again saved my
life.

I, therefore, had to continue with high school and prepare for my “baccalauréat”. The
situation improved because I moved to Annecy and I found a nice girlfriend. At first I
shared a flat with my sister Françoise and her boyfriend, but I soon lived on my own. This
was in 1981; I was 16 years old, lived alone, and I never went back to living with my
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parents. For many years, up to 2002, I was without any kind of longer-term “home base”,
changing addresses nearly every year and sometimes living in hotels. Later Pat Suppes
would tell me I was like Kreisel, a good friend of his, but opposite in personality to him,
since Kreisel moved around a lot while Suppes had been living at the same address on the
Stanford campus since the 1950s.

Kreisel has been pivotal for the development of logic in France. In the 1960s under
his influence a school of mathematical logic started up in France. Jean-Louis Krivine and
Jean-Yves Girard were taught by him. Krivine and Girard were both teachers of mine, so
in some way I have benefited from Kreisel spreading logic in the world. However, I must
say that I have never been much attracted by Kreisel’s style, personality, or directions
of work in logic – a “Tarskian dissident”, as depicted by Sol Feferman (see [14]). I have
always felt close to Alfred Tarski. Yet Kreisel is definitely an interesting character. He was
a good friend of Raymond Queneau, one of my favorite writers, and had many interests
in life. Even if there is an apparent similarity between myself and Kreisel from the point
of view of nomadic versus sedentary person, there is a strong difference in the sense that
Kreisel was a rich man. In my case, nomadism was related most of the time to living
in a precarious situation. This was not at all easy, but it was a conscious choice. I had
a preference for a life of adventure; I wanted to avoid a boring everyday repetitive life.
For me, reasoning and thinking are connected to this nomadism in two opposite ways: on
the one hand, traveling is good for developing ideas, and on the other hand, reason makes
a good defence against fear and despair, not so much in the sense that analyzing emotions
by reasoning dissolves the problems, but rather that reasoning is good for the health.

Being short of cash I would take “summer jobs” during the holidays for pocket money
during the school year. I had three very different kinds of jobs: one to do with apple trees,
one with a security agency, and one in a cheese factory. These jobs gave me a clear idea
of what I did NOT want to do, and motivated me to go on studying. In the cheese factory I
worked on a production line 7 h=day, from 5:00 a.m. until noon, repetitively placing little
pieces of cheese on a rail that carried them into a machine that automatically wrapped
them in plastic.6 Until doing that, I had had no real idea that there were people who do
this their whole life. I had seen Chaplin’s movieModern Times. Watching a movie is quite
different from living through the experience. I watched lots of movies because my parents
had registered me in Annecy’s cinema club, one of the oldest in France – and in Annecy
there is the yearly international festival of animation films, which I also attended. I saw
many great movies by Pasolini, Godard, Eisenstein, etc.

At Gabriel Fauré high school I had two friends, Alain and Jacques, with whom I talked
about most everything and even started a music band. They were the two best students
in the school. Alain was the very best. For him everything was easy, he always got top
marks in all fields, i.e. 20/20 in the French system. In the last year of high school he
had a philosophy teacher who was a Lacanian and who had a reputation for being very
harsh; nobody understood what he was talking about and it was difficult to get a mark
higher than 5/20. Alain regularly got about 15/20. For him this was the most interesting
and challenging subject, exactly because it was difficult to understand. After high school

6 I have seen the same little piece of cheese wrapped in ornamental plastic bags with different colourful
brands, so that the consumer has the illusion of choosing among diversity.
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he decided to go on in this direction and he did his PhD with Jacques-Alain Miller in
Paris, the main Lacanian after Lacan’s death. Lacan was strongly criticized by Sokal and
Bricmont in their book Impostures intellectuelles – translated into English as Fashionable
Nonsense – (see [48]).

Most of their book is rather argumentum ad personam, with no serious argumentation
and/or philosophical basis. In 1998 I was invited with other colleagues to take part in
a debate with Sokal and Bricmont at the University of São Paulo. In my talk I criticized
their “argument” about Kristeva. At some point in their book they say that she speaks
about the continuum and @1 in the context of poetry, and that this makes no sense because
in literature there is only a finite number of characters or strings of characters. I said
two things about that. First that it is possible to write a poem involving all the transfinite
cardinals: @0 is a beautiful cardinal, etc. This is a poem close to the Oulipo spirit, mixing
mathematics and poetry. On the other hand, I told them that in Hilbertian proof theory,
a proof is considered as a finite string of characters but that nevertheless Gentzen proved
the consistency of arithmetic using transfinite recursion up to �0. Bricmont answered me
something like: “Maybe, but nevertheless Kristeva wrote a lot of nonsense”. Sokal and
Bricmont defend a return to the Siècles des Lumières – I am not sure that this is very
interesting. Their book gives a distorted vision of French intellectual life in the decade
after the Second World War, which is one of the most intellectually interesting periods.
There was in particular a mixing of mathematics with other fields in a highly creative way.
This was the time of structuralism. André Weil collaborated with Claude Lévi-Strauss. Le
Lionnais, co-founder of Oulipo, edited a beautiful book, Les grand courants de la pensée
mathématique [29], including in particular Bourbaki’s masterpiece The Architecture of
Mathematics but also a piece by le Corbusier and much more.

My other friend, Jacques, was principally interested in mathematics, and after he passed
his “baccalauréat” he entered “Mathématiques supérieures” at the Lycée Berthollet, also
in Annecy. I entered this school too, but in “Lettres supérieures”. In France these are
called “classes préparatoires”, nicknamed “prépa”, and they are taught in high schools
even though you cannot enter them until after you have passed your “baccalauréat”, which
is the end exam of high school. In “prépa”, students prepare for the entrance exam to the
Ecole Normale Supérieure, which is considered to be the best post-secondary school in
France – one dare not call it a mere “university” – and one of the best in the world.

At the time when I started high school it was standard practice for students to be as-
signed different “tracks” according to aptitude. Since I was good at mathematics I was
placed on a scientific track. I did not like the atmosphere, particularly the fact that 80% of
my class were boys and only 20% were girls, but also because we had to take physics and
chemistry, which I found boring. Then I transferred to a section combining literature with
mathematics, and that was fun. We had a very good literature teacher, and I started to write
all kinds of things. In my “baccalauréat” there was an oral exam on literature where we
had to comment on a text chosen by the examiner from a list that we had prepared. The list
of texts was supposed to follow some rules, but it was allowed to include personal writ-
ings. Most students did not do this, but I put quite a few of my own compositions on the
list, hoping to be asked to comment on something I had written. However, the examiner,
a woman, asked me to comment on a poem by Arthur Rimbaud. I refused to do so, ex-
plaining that for me the whole business was absurd. The woman told me that I was wrong



34 J.-Y. Béziau

not to be interested in Rimbaud, that I would probably like his poetry, that I was a bit like
him. In the end, I got quite a low mark for literature, and only passed my “baccalauréat”
thanks to a high mark in mathematics. I always enjoyed mathematics at high school, real
mathematics, based on reasoning. At some point when I was about 14 years old I had the
feeling that reasoning was independent of the contents that were being reasoned about,
and after that I did not have much interest in the specific contents. I was more interested in
difficult types of reasoning. Rubik’s cube was very popular at that time among students,
but it never interested me; it was not the kind of difficulty that I was interested in.

In the last year of high school I had about 9 h of philosophy a week. The program
included a wide range of topics. We had a very dedicated teacher, a young woman. I
was very enthusiastic and got the highest marks. She recommended me to go to “Lettres
supérieures” in Annecy and then to continue in Paris, where, she told me, I would have
the best teachers. This is what I did. After 1 year of “Lettres supérieures” I applied to go
to “Première supérieure” to the top ten best “Lycées” in Paris. For this second year we had
to choose a specialty. For nine of them I applied with history as a speciality and only for
the best, Henri IV, did I apply with philosophy as a speciality. I was selected to all of them
and, therefore, went to Henri IV for philosophy. Before my class of “Lettres supérieures”
I had had no particular interest for history, but during that year we studied Greek antiquity,
Roman antiquity and 19th century French history. I liked it a lot and this was the discipline
where I had the best marks. I was also good in philosophy, but traditionally in France, it
is more difficult to get a good mark in philosophy than in any other area. In history I had
average marks of 17/20, in philosophy 14/20. I preferred philosophy to history, but since
I wanted to be sure to be selected in a good “Lycée” in Paris, that is the reason why I
applied to all the “Lycées” with history, excepted one, the best. That was a kind of wager.
A strange wager, quite different from that of Pascal’s.

During that year in philosophy we studied Blaise Pascal and I liked it. Our professor
was an old Christian lady, and we studied in detail the Book of Job. She also liked Plato
and, in particular, we studied the Symposium. During this year I learned a lot about Greek
culture, writing in particular a 40-page essay analyzing in detail religion in the Iliad and
Odyssey. During the Easter holidays a trip was organized for all the students to the region
of Tuscany in Italy.We visited all the museums in Florence and Siena and many historical
things spread over small villages. It was a fantastic trip in a region that is a wonderful mix
of beautiful nature and culture. This was 2 weeks of relaxation, much welcome because in
“prépa” we had to work hard all the time, writing lots of dissertations in the section that I
was in.

3 Student in Paris (1984–1991)

3.1 Lycée Henri IV – Focusing on Philosophy at the Top of Paris

In 1984 I moved to Paris and attended “Première Supérieure” at Lycée Henri IV. This was
originally called Lycée Napoleon and is the highest rated “lycée” in France together with
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the nearby Lycée Louis Le Grand. There is a legendary rivalry between the two. Louis le
Grand is better for science and Henri IV is better for humanities. Many famous people are
alumni of these two “lycées”. One reason for the objective superiority of Henri IV is both
geographical and physical. Henri IV is at the top of the Montagne Saint-Geneviève and
has a tower, the Clovis tower, after the name of Clovis the first king of the Franks. This
tower was the highest building in Paris for many centuries. I was “interne” (boarder) in
the “lycée” and we used use to climb to the top of the tower (which was not open to the
public) at night for the nice view of Paris. We also explored underground passages and the
many buildings of the “lycée” (several movies have been shot there, such as La Boume,
or in English: The Party or Ready for Love). We were allowed to go outside at night
and come back any time, so for me Henri IV was not at all a prison unlike the nearby
Lycée Saint-Louis (a third famous “lycée”) was for Jean Van Heinjenoort. As reported
by Anita Feferman: “We were walking on Boulevard Saint-Michel, towards the Seine,
when he pointed to a large building and said directly to me, “That’s the prison where I
was locked up for two years.” “Prison?” I said, “What do you mean, prison?” “Well, it is
a school, I was an interne, which means I wasn’t allowed to go out except on Sundays.”
[13]7 Contrary to a prison, Henri IV was a nice and quiet refuge including a beautiful
flowered cloister. I was happy to go back there after wandering around discovering Paris.
The “lycée” attracted students of many different backgrounds and origins; in particular
Henri IV has a tradition of welcoming the children of French expatriates living in the
ex-colonies of France. I had good friends and the atmosphere was quite extraordinary.

As far as the lessons were concerned I was not very motivated because it was a lot of
cramming for entrance to the Ecole Normale Supérieure, especially since I was preparing
for the entrance exam for ENS Saint-Cloud, where there is a specific program changing
every 2 years. In history the program was colonisation and in geography the Maghreb
(Tunisia, Algeria and Morocco) in which, despite of, or maybe because of, the history
of my family, I had little interest. During this year of “Première Supérieure” I was only
interested in philosophy. Since philosophy was my area of specialisation, I had two classes
of philosophy: one which was common to everybody, and one which was only for those
who were specializing in philosophy. The one for everybodywas given by Pierre Raymond
and the topic of the program was “La morale”; the other was given by Pierre Jacerme and
there were two topics, “L’existence” and “Le symbole”. I especially liked the topic on the
symbol – years later I am still working on that topic, organizing a congress and publishing
a book on it – cf. La Pointure du Symbole. Independently of the topics these philosophy
classes were interesting because of the strong personalities of the two teachers. They were
two opposite characters and figures. Raymond was a former student of Althusser and
Jacerme a former student of Beaufret, the two main leading figures of philosophy in France
in the 1960s and 1970s.

Raymond was a nice guy but his classes were rather boring and not easy to understand
because it was not clear what he was aiming at. One thing I remember is that he told

7 As it is known, Heijenoort left the Lycée Saint-Louis to join Trotsky in Turkey, spent 10 years as his
secretary and bodyguard in Mexico, and then went to the USA where he became a good friend of Quine
and the first historian of modern logic, promoting the myth of Frege as the founding father – the detailed
story is related in Anita Feferman’s book [12].
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us about Wittgenstein, which was the first time I heard about this philosopher. My first
contact with Wittgenstein was not with his Tractatus or logic but with ethics. I read his
writings about ethics and esthetics and quite liked them, in particular his criticism of the
way we use language, how our mind can be directed by language without understanding
what we are thinking about. Later I found similar criticisms in Schopenhauer, one of the
major influences on Wittgenstein.

Through Jacerme I learned about Heidegger. The first book I read wasWhat is a Thing?
and I liked it very much, especially the first part where he talks about mathematics explain-
ing the original meaning of the word. To date I think this is one of the best introductions
to philosophy. Later I also read The Principle of Reason, one of his best books, and vari-
ous of his essays of the 1940s and 1950s, in particular those collected in the book Off the
Beaten Track. On the other hand, I never had any interest in Being and Time. Later, I read
his essay “Plato’s doctrine of truth”, which led me to write a Master’s thesis on Plato’s
cave.

I presented myself for the ENS exam but without much motivation. On the one hand,
I had no interest in disciplines other than philosophy, and on the other hand, even for
philosophy, I was not much interested in entering ENS, because at that time it meant
following a not very exciting track: preparing “agrégation” (another cramming thing),
teaching in high school, etc. A track connected with quite a secluded life. I wanted to have
more contact with real life. With research in philosophy in mind, I decided, therefore, to
go to university.

3.2 Studies at the Universities Paris 1 and 7 – The Logical Way

After doing 2 years of “prépa” it is possible to get an equivalence certificate to enter
the third year of university. The Sorbonne was just nearby. When I speak here of Sor-
bonne, I mean the building. Historically, the Sorbonne was a university located in one
building, “rue de la Sorbonne”, but nowadays the Sorbonne is spread over many buildings
and it is not only one university, but three universities have the name Sorbonne: Univer-
sité Panthéon-Sorbonne (Paris 1), the Université Paris-Sorbonne (Paris 4), and Université
Sorbonne Nouvelle (Paris 3). After May 1968 the University of Paris was split into many
universities. Today there are 14 universities, each with a number and a name: from Paris 1
to Paris 14. I have studied in Paris 1, Paris 3 and Paris 7. From my entry to the university
in 1985 up to definitively leaving Paris in 1991, I received seven diplomas:8

� Licence de philosophie, 1986
� Licence de logique, 1987
� Maîtrise de philosophie, 1987
� Maîtrise de logique, 1988
� Diplôme d’études approfondies de philosophie, 1988

8 I have indicated the names of the diplomas in French because there are no straightforward translations.
These university diplomas do not exist anymore in the new Bologna system that has been implemented
in Europe. A “Licence” was a 3-year degree, a “Maîtrise” a 4-year degree, and a “Diplôme d’études
approfondies” (=“DEA”) a 5-year degree, equivalent to a Master’s degree.
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� Diplôme d’études approfondies de logique et fondements de l’informatique, 1990
� Licence d’études cinématographiques et audiovisuelles, 1991

I came back to Paris in 1995 for a few days just to defend my eighth French diploma,
a PhD in mathematical logic.

I will try here to explain how logic became my main topic of study. Logic most of the
time does not appear as the name of a field of study or a discipline. It is very difficult to
find a university with a department of logic and/or a diploma of logic. In Paris there were
no (and there still aren’t any) departments of logic, but some diplomas of logic: “Licence”
and “Maîtrise” in the Department of Philosophy at Paris 1, and a Master’s degree and PhD
in the Department of Mathematics at Paris 7. I obtained all four of these degrees. When
I applied for an equivalence certificate to enter the “Licence” of philosophy at Paris 1,
I was required to pass some exams in logic because this field was a strong part of the
philosophy curriculum in that department and did not exist in “prépa”. I had no precise
idea of what was beyond the substantive word “logic”. In French there is an adjective
and a noun, which are the same word: “logique”. As with the English adjective “logical”,
the French adjective is part of natural language. The French noun, however, is not widely
used – the layman does not exactly know what it means, and among intellectuals there is
a lot of ambiguity surrounding it. I did not know exactly what logic was about but I was
attracted by the very word. After asking colleagues about the program, I studied by myself
and passed these exams. They were about basic propositional and first-order logic, with
some exercises of translation from natural language sentences into formal language.

I then entered the “Licence” of philosophy. There was a bit of everything: I remem-
ber that I studied Sartre with Hélène Védrine and Plato with Sarah Kofman. It was also
possible to do a “Licence” of logic based on an advanced class of logic centred on the com-
pleteness theorem for first-order logic, together with some epistemology and philosophy
of science. I completed this second “Licence” while I was doing my “Maîtrise” of philos-
ophy. Such a “Maîtrise” was a compound of two classes of philosophy and a dissertation
of 100–150 pages. I wrote a dissertation about the philosophy of modern physics under
the direction of Bernard d’Espagnat, a very famous physicist who also taught the philos-
ophy of physics at Paris 1.9 My dissertation is focused on David Bohm’s holomovement
(cf. [5]) but with a strong part about the Copenhagen interpretation and on the background
Heidegger’s analysis of the relation between thing and thought. I was quite impressed by
the writings of Werner Heisenberg. In 1987 Bohm was supposed to come to Paris but he
was not allowed to because of a visa obligation, and I went in London to have a discussion
with him. Besides the dissertation and a class with d’Espagnat, I followed an interesting
class held by Sarah Kofman on the comparative study of the Presocratics viewed by Hegel,
Nietzsche and Heidegger.

After my “Maîtrise” I first thought of doing a Master’s of Philosophy on logic and
foundations of mathematics with Jacques Bouveresse. But then I read “Plato’s doctrine
of truth” by Heidegger and decided to work on Plato’s cave. Since I liked the classes of
Sarah Kofman I asked her if she would agree to direct my work on this topic, and she
gave me a positive reply. Kofman did her PhD on Nietzsche with Deleuze and then met
Derrida with whom she became a good friend and was much influenced by. I never really

9 Later d’Espagnat won the Templeton prize.
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read texts by Derrida but I read several of Kofman’s books. My favorite one is Comment
s’en Sortir? (How to find a way out?) [28] which is about the notion of “aporia” in Plato.
Plato’s cave is one of the most famous texts of philosophy, and I wanted to understand
its profound meaning (if any). My initial idea was to examine and classify all the various
interpretations and also, since I liked images, the different pictorial representations of the
cave. A book by the Canadian Yvon Lafrance was very helpful for this work–in this book
he indexed all texts about Books 6 and 7 of Plato’s Republic with short abstracts of their
contents. On the one hand, I was much surprised to discover that there were very few
different interpretations of the cave – and also very few pictures – but on the other hand, I
discovered some interesting things, in particular about a cave in Crete that inspired Plato.

I decided to write a dissertation in three parts, each being a caricature of three different
interpretations. The first is a class given by a high school teacher commenting on Plato’s
cave, explaining the theory of ideas and epistemology with a touch of morality. The second
is a dialogue of Jean Beaufret with “one who is questioning”, a parody of the books of
Beaufret Dialogues avec Heidegger. The third is a mix of new age, neo-Platonism and
Hellenic history that emphasises the rituals happening in the cave discovered in Crete, in
which Pythagoras and Plato supposedly took part. I defended my Master’s dissertation at
Sarah Kofman’s own house – she had some difficulties of locomotion. She liked it and
gave me a good mark. Later on, when I had already left Paris, she committed suicide and
I dedicated a paper I wrote about Schopenhauer’s analysis of suicide to her.

I was then thinking of doing a PhD of philosophy about Schopenhauer. I started to
have a strong interest in this philosopher after reading various books by Clément Rosset
10 about him. However, Rosset was in Nice and I did not succeed in getting in touch with
him. Finally I decided to matriculate for a PhD with Philippe de Rouilhan to do something
about the philosophy of logic. I knew de Rouilhan from the “Maîtrise” of logic I was doing
in parallel with my “Maîtrise” of philosophy. He was a kind of provocative dandy from
an aristocratic family – one of his ancestors had been secretary to the King of France. His
style contrasted that of traditional philosophers, whether continental philosophers or ana-
lytic philosophers like Bouveresse, his former PhD advisor. Initially a mathematical logi-
cian, he shifted to the philosophy of logic, or rather the history of logic, and became a spe-
cialist of Frege and Russell. We studied Frege’s “Über Sinn und Bedeutung” and various
paradoxes of this time with him. De Rouilhan was a strong admirer of Heijenoort, whom
he had the opportunity to meet. In this “Maîtrise” of logic Bouveresse also gave a class
about philosophy of logic, but the core of this degree was modern logic. We had four
classes for each of the main topics: model theory by Joël Sakarovich, set theory by Michel
Eytan, recursion theory by Jean Mosconi and Susana Berestovoy, and proof theory by Joël
Combase. There was also a class of computation by Susana Berestovoy – we learned LISP,
the famous computer programming language invented by John McCarthy in 1958.

This was a fine and serious background for logic studies given by a group of eclectic
people (Sakarovich was also interested in architecture – see his book [43]). Eytan liked
category theory and he used the book Axiomatic Theory of Sets and Classes by Mur-
ray Eisenberg [11]. I wrote my first philosophical essay about logic for his class on the
topic he gave us about the truth of assertions in set theory. Susana Berestovoy was from
Argentina, she was very dedicated and it was possible to discuss with her for hours after

10 For me Rosset is the best French philosopher of the second part of the 20th century.
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class. Combase had studied with Kreisel and then Feferman at Stanford, he was intelligent
and friendly but had some psychic troubles.

After the “Maîtrise” of logic at the Department of Philosophy of Paris it was possible,
but not easy, to be admitted to the Department of Mathematics of Paris 7, to go on to study
logic, doing a Master’s and a PhD in logic. The University of Paris 7 is the most inter-
disciplinary university in Paris (the others are generally focused on some specific topics),
which is why it was named “Denis Diderot”, after the name of the famous encyclope-
dist. However, it is especially known for its Department of Mathematics, one of the best
in France. At that time it was directed by a former student of Grothendieck, Jean-Louis
Verdier, but unfortunately he died in a crash accident shortly after I arrived, in 1989. The
department was strong in algebra, category theory and logic. At this time the logic group
of this department gathered the main French logicians, Jean-Louis Krivine, Jean-Yves
Girard, Daniel Lascar, etc. A few years later it was split in various groups, and Girard
developed his own group in Marseille.

In this department there were the degrees Master and PhD in Mathematical Logic,
which had just been renamed Master and PhD in Logic and “Fondements de l’Informa-
tique”, corresponding to some fashion and the shift of interest of some members of the
group from model and set theories to lambda calculus and foundations of programming.
These people focused on the relation between proofs and programs, the Curry–Howard
correspondence being a kind of motto that they were putting forward at each talk they
gave (a litany which is still going on). These logicians had strong personalities; they were
different from each other and did not necessarily have good relations with each other. We
had a very dedicated teacher, René Cori. He and Lascar later published a two-volume
book corresponding to what they were teaching to us in the first semester (see [6]). As the
reader can check, it is a lot of material and a very intensive class about the basic elements
of modern logic. The academic year was divided into two semesters, and in the second
semester we could choose some optional classes. I did one with Girard on proof theory
and also one with Daniel Andler on non-classical logics.

Then during the summer we had to write a monograph corresponding to research work
showing (or not) our capacity to do research and go on with a PhD. Very few people
intended to go on to do a PhD and we were not especially encouraged to do so. I wanted
to do a PhD but it was not clear on which subject I would work. This was the case of
other students who generally were incorporated to one of the groups, in particular those
working on linear logic with Girard. I did not follow this linear road. An interesting subject
naturally appeared to me.

In Paris I had a nice girlfriend whose father was a psychoanalyst who had been analysed
by Lacan. At some point we were relaxing in his house in the countryside on the banks
of the Loire river. In these circumstances I read an interview of Newton da Costa in the
Lacanian magazine L’âne (The donkey). I had never heard about this Brazilian logician
and his work before. The title of the magazine article was something like, “Paraconsistent
logic: a logic for the unconscious?”. I liked the personality of da Costa, the way he replied
to the interviewer’s questions and the way he maintained that he did not consider himself
only as a technician of logic. At the end of the interview he quoted Pierre Curie saying:
“Faire de la vie un rêve, et d’un rêve une réalité” (To turn life into a dream, and a dream
into reality). Furthermore, I was very much interested in the topic: paraconsistent logic,
a logic in which the principle of non-contradiction does not hold. I wanted to understand
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how this could work, mathematically speaking. Moreover, it seemed to me very interest-
ing from a philosophical point of view, since the principle of non-contradiction is often
presented as the most basic law of thought.

Back in Paris I went to the library to look for da Costa’s papers. I had no difficulty
finding them because his initial papers have been published in French in the Comptes
Rendus de l’Académie des Sciences de Paris. How this happened is explained by Marcel
Guillaume in [21], a Bourbachic mathematician friend of da Costa. Though these papers
had been published in France, nobody knew about them in Paris. I started to work on that
and asked Daniel Andler if he would be interested supervising myMaster’s on this subject.
He had given us a class on non-classical logics including modal logic and non-monotonic
logic but did not know paraconsistent logic, although he knew Guillaume. I explained to
him what paraconsistent logic is, and he gave a positive reply. Andler had done his PhD
in Berkeley in Tarski’s group at the beginning of the 1970s – see [1]. Later, his interest
turned to artificial intelligence, cognitive science and the philosophy of science. At the
time I met him he was researcher at CREA (Research Centre for Applied Epistemology),
which was attached to the polytechnical school, and was working on the launching of the
cognition department at ENS-Ulm, which he would succeed to create. He is now Professor
of Philosophy of Science at Paris 4, Université Paris-Sorbonne.

I enjoyed working on that Master’s thesis very much. I read in detail the papers by da
Costa, trying to understand everything. I reformulated the main concepts, developed some
new techniques, in particular using sequent calculus, which I had just learned, and pre-
sented some new proofs. I very much liked the work of Gentzen and the cut-elimination
theorem that I had studied in detail when reading the Gentzen’s original paper and follow-
ing the class of Girard, who told us that this was one of the most fundamental theorems
in modern logic. I succeeded in developing a proof of the cut-elimination theorem for
a sequent calculus I constructed for the paraconsistent logic C1 of Newton da Costa and
variations of it. A former student of Paul Bernays, Raggio, had presented an incomplete
work in that direction 20 years before. By doing this work on paraconsistent logic I had
a better understanding of how classical logic works. I tried to see what was similar to both
of these logics and what was different–both from the semantical viewpoint and the proof-
theoretical viewpoint. This was the first step in the direction on my work on universal
logic that I later developed in my PhD, as I explained in details in my 2001 paper “From
paraconsistent logic to universal logic”.

While doing my Master’s of Logic at Paris 7, I was going to the seminar of de Rouilhan
at IHPST,11 where interesting logicians gave talks. I remember in particular a very attrac-
tive talk by George Boolos (1940–1996). Sol Feferman also presented a talk, about Gödel.
The atmosphere was relaxed; at this time, after the talks, there were cocktail parties with
plenty of champagne. I think nowadays they serve Coca-Cola.

At Paris 7 I had a friend who was studying logic with me and who liked category
theory very much and the philosophy of Alain Badiou. At this time Badiou’s book L’être
et l’événement had just been released – a book in which Badiou deems the invention of

11 IHPST stands for Institut d’Histoire et Philosophie des Sciences et Techniques and is an institute that is
affiliated with Paris 1 and CNRS, located in the Odeon area of Paris, close to Saint-Germain des Prés. It
was originally created in 1932 and directed by Gaston Bachelard from 1940 to 1955.
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the notion of forcing, by Paul Cohen, to have been the main event for philosophy in the
20th century. My friend started to organize some meetings with a small group of people to
discuss the book gathering Badiou and some mathematicians, mainly people working in
category theory, in particular René Guitart. This was useful to reinforce the link between
mathematics and philosophy. After that Guitart was invited to give a seminar at theCollège
International de Philosophie, which I attended and which was very interesting. Guitart had
good relations with Jacques Riguet (1921–2013), a mathematician and friend of Lacan,
who taught Lacan graph theory and did a nice PhD on relational structures.

While I was studying logic I also studied cinema. I had always been interested in cin-
ema from an early age and thought of becoming a film director. France is a very important
country for cinema; one can argue that this is where it started with the projection of movies
of the Lumières brothers at Salon indien du Grand Café, place de l’Opéra in 1895. This
is also the first country in the world where cinema was introduced at the university. I ma-
triculated for “Licence” of cinema, which was a joint degree of Universities Paris 1 and
Paris 3. I attended very interesting classes on the history of cinema, critical analysis of
movies, script writing, soundtrack, etc. I saw many, many movies, at one stage an average
of three movies a day. The university film library in Paris is the biggest in the world with
lots for rare and original movies, which were projected at those universities, and there was
also the general film library of Paris and many movie theaters in the Latin Quarter. I also
attended a retrospective of Swiss movies at the Swiss Cultural Centre in the Marais, which
was close to my house. I thought of entering the newly created school of cinema, FEMIS,
directed by Jean-Claude Carrière, who had written many scripts of Luis Buñuel’s movies,
in particular That Obscure Object of Desire, his last and best movie. However, for some
reason I followed the logical road with the idea that I could work in cinema later. This is
what I have done to such an extent, producing movies related to logic and philosophy. On
the other hand, at some stage, I completely stopped watching movies because of a lack of
time and also because I think it is more interesting to live in reality than in fiction – these
two reasons being connected.

During these years in Paris I progressively focused on logic. Logic did not appear
suddenly to me as a kind of new creature of which I became fascinated or obsessed,
running after it. Before really studying logic I liked abstract mathematics and philosophy.
The substantive word “logique” appeared to me, I liked it and discovered that it was not
just an illusory reality, that there is a real substance in it. I was lucky to be in a place
and time where modern logic was taught and where there were even degrees of logic. I
went on doing research in logic and I am now a professor of logic. I do not see logic
as a field among others. The meaning of the Greek word “logos” is related to science,
reasoning, language, relation. Logic is a very rich notion. As Rougier put it: “Le logos,
voilà la création du génie grec, dans les sciences, les arts, en morale et en politique; et le
logos veut dire tout à la fois discours, raison et raisonnement, rapport et proportio” (The
logos, here is the creation of the Greek genius, in sciences, arts, moral and politics; and
logos at the same time means discourse, reason, reasoning, relation and proportion) [40].
I gave a talk about that in 2013 during a congress organized by my friend Olga Pombo
at the occasion of the unification between the two main Universities of Lisbon, and the
corresponding paper has been published under the title “Philosophy, mathematics, logic:
three sisters”.
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3.3 Meeting Newton da Costa and Leaving Paris

I had had the idea of studying abroad for a couple of years. I thought mainly of the United
States, because I was attracted by the country itself, in particular California, and because
I know that there are very good universities there. However, no concrete opportunity ap-
peared for me to go there at this time and instead of going to North America, I went to
South America – different continents but nonetheless America. For someone from Europe
they certainly have something more in common than just the name. Before knowing the
work of da Costa, I had not thought of going to Brazil. However, while working on da
Costa’s paraconsistent logic I started to think it was a good idea. Brazil is famous for car-
nival and soccer – I was not really interested in such things – but also for the Amazon
forest and the contrasting futuristic project of Brasilia, capital of the land of the future,
created out of nothing.

While working on my Master’s I wrote a letter to da Costa, but did not succeed in
getting in touch with him. This was before e-mails and standard mail did not work well,
nor did I have the exact address. By chance da Costa showed up in Paris in January 1991,
just few days before the application deadline for a 1-year Lavoisier grant from the French
Ministry of Foreign Affairs to go to Brazil. Da Costa gave a series of talks and I attended
one at IHPST. This was quite spectacular. I was introduced to him and I met him nearly
every day for 1 week. The contact was very good. Da Costa asked me why I was interested
in paraconsistent logic. He was curious, but also apprehensive and worried, because many
people are attracted to paraconsistent logic because they venerate contradictions – a partic-
ular case being the Marxists. When I told him that my interest was about the foundations
of logic he was relieved. We shared the same interest; he wrote a book entitled Ensaio
Sobre os Fundamentos da Lógica (Essay on the Foundations of Logic) that I would later
translate into French [7]. He wrote me a letter of invitation I was able to join with my
application. Some weeks later I faced a jury of not less than ten very serious men at the
Ministry of Foreign Affair in Paris. To go to study logic in Brazil was quite weird, more-
over I did not speak Portuguese. But I was supposed to go to the best University of Brazil,
USP (Universidade de São Paulo) and I additionally received a letter of support from
Michel Paty of REHSEIS12, a philosopher of physics and good friend of da Costa, who
had been cooperating with USP for a couple of years. Shortly after the interview I received
a positive reply to this grant. Before traveling to Brazil I wrote two papers based on my
Master’s thesis and went to Portugal to learn the language. I gave a talk at the University
of Braga and visited Porto and Lisbon. I liked Lisbon very much, and it continues to be
one of my favorite cities in the world. In August I flew from Paris to São Paulo.

My departure from Paris in 1991 was a turning point in my life. On the one hand, I
received a grant, which in itself was enough for housing and daily expenses, and after that
I always succeeded, not always easily, by earning my life doing research and/or teaching
logic. On the other hand, I left France and never went back there to live permanently.
During my studies in Paris I survived financially with a little money from my parents,

12 REHSEIS was a CNRS research institute about history and philosophy of science founded by Paty,
attached to Paris 7; it has now been incorporated into an institute called SPHERE, CNRS-Paris 7.
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some grants and some paid work I did. At this time in France, there were some grants
based on family income for undergraduate students, provided that the student progressed
normally with his studies. Since my father had a quite low salary I received this kind of
grant and was also housed in a low cost “cité universitaire” where priority was given to
people with low income (for a limited duration of time). At the Master’s level the grants
were based only on the quality of the studies of the students; I received such kind of grants
for 2 years. These grants were helpful but far from enough for daily living. To get more
money I started to give private lessons. In Paris there is a good market for that. I first
mainly gave lessons to secondary school students, helping them to do their homework
in all fields. However, I progressively concentrated on giving philosophy lessons to high
school students preparing for the “baccalauréat”. I was quite good at that in the sense that
my students succeeded in obtaining good marks at the exams. However, it was a bit tiring
and time consuming because I had to go to the people’s home in all districts of Paris.
Nevertheless, it was very interesting in the sense I was in touch with a great variety people
and saw their homes. I stopped doing this when at some stage I started to work at the
“Lycée autogéré” of Marly le Roy.

We taught students in their homes or in our homes. I did this for about 3 years. I gave
a class of philosophy twice a week. This was quite an interesting experience. The salary
was low but it was a regular income. The students were interesting people and we had
many discussions. In general, I think teaching is a nice activity and that we learn a lot
by teaching. The final year I also worked in a marketing company. We worked mainly
through using the telephone. We had to phone to a huge quantity of various people, asking
them all kinds of questions. At some point we worked for Arthur Andersen. Consulting
agencies were becoming important in France at this time. We had to phone to the most
important companies and succeed in interviewing of one of the main directors; this was
a detailed interview that lasted about 1 h and consisted in asking all about what he expected
from a consulting agency. It was quite challenging. I learned a lot about the services of
consulting agencies and about how to succeed to talk to the boss. At some point, I also
applied to work in the new MacDonald’s in the Latin quarter; they wanted students for
part-time work. I thought it could be a funny experience and would give me a regular
income, but I was not selected.

I left France when I was 26 years old. So, roughly speaking I have now spent half of
my life in France and the other half outside of France. While I regularly return to France
on visits, and although I like the country very much for a few days or a few weeks at
a time, I am rather critical of the French intellectual world. Moreover, I am becoming
doubtful about the evolution of the culture, society and politics in France. Concerning the
French academic world, the people are often both arrogant and ignorant at one and the
same time. They think they know and yet they do not know, which is the worst kind of
ignorance (Blaise Pascal wrote a nice text about two kinds of ignorance in Pensées). I
think that the division between universities and CNRS is not a good idea. In Switzerland
and in Brazil, in contrast to France where CNRS researchers get a full salary and have
no real obligation to teach, the science foundations (respectively SNF and CNPq) restrict
themselves to giving grants in support of projects directed by university professors.
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4 Research Around the World (1991–2002)

I did two PhDs in about 5 years while living in Brazil, Poland, France and the USA,
and traveling to many other countries – in particular making two round-the-world trips.
I defended a PhD dissertation on universal logic in the Department of Mathematics at
the University of Paris 7 in July 1995 and a PhD on logical truth in the Department of
Philosophy at the University of São Paulo in March 1996. At the same time that I was
working on my PhDs I was writing papers, assisting conferences, presenting talks, meeting
and having discussions with a lot of people around the world. I do not think it is a good
idea to work on a PhD in complete isolation, writing a hundred pages, not connected
with what is going on, that nobody will never read. I believe that research is a collective
endeavor that flourishes by interaction between human beings. On the other hand, I think
it is good to have moments of isolation to concentrate on writing. I wrote each of my PhDs
in about 1 month after months of thinking and discussion. When I write a paper this is also
the methodology that I use: after thinking about a topic and presenting it to conferences, I
sit down and write the paper in 1, 2 or 3 weeks. I do not work on only one topic. I work
on many topics that are in gestation and, depending on the circumstances, one or another
will materialize in a paper. During this 10-year PhD and post-PhD period, I gave about
200 lectures and wrote about 50 papers.

4.1 Interaction with Newton da Costa in São Paulo

I arrived in Brazil in August 1991. I didn’t really like the country at first sight, but only
after a couple of years. It certainly changed my life because the Brazilian spirit is very
different from many other countries. It is quite difficult to know exactly at which point I
changed, because I do not remember exactly how I was before, but when I go to France
I see how much people are different. In Brazil, in general, people smile and are kind.
This is good for physical and psychic health. There is no depression here. It will maybe
arrive when people are “rich”: locked in their house watching TV and taking their car to
go to the supermarket, a project of society promoted by politicians in Brazil as in many
other countries. However, it not clear that they will succeed in Brazil. Other countries in
Central and South America are like Brazil: Mexico, Costa Rica, Peru, Bolivia and Chile.
Yet in Brazil it is stronger. Maybe this is a kind of indigenous spirit inherited from the
natives to which outsiders have been mixed. Moreover, in Brazil it is reinforced by the
Portuguese culture, which is quite different from the Spanish culture that predominates in
other countries of Central and South America.13

In his famous book, Brazil, Land of the Future, Stefan Zweig wrote the following about
Brazil: “Arriving in Rio, I received one of the most powerful impressions of my whole life.

13 Some people use the expression “Latin America” to talk about Central and South America. I think
this is misleading. Can we not say that French-speaking people in Canada are Latin? In Brazil “latinos”
has a pejorative flavor, designating in a negative way “other” people of South America, those who speak
Spanish.
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I was fascinated, and at the same time deeply moved. For what lay before me here was
not merely one of the most magnificent landscapes in the world, a unique combination
of sea and mountain, city and tropical scenery but quite a new kind of civilisation. There
were colour and movement which fascinated and never tired the eye; and wherever one
looked there was a pleasant surprise. I was overwhelmed by a rush of joy and beauty. . .
Brazil’s importance for the coming generations cannot be assessed even by the most daring
calculations. I knew I had looked into the future of our world.” [51]

My first contact with Brazil was not easy because I arrived in São Paulo, which at
the time was very dirty and polluted. The country was not yet open to mondialisation.
There was very few imported products. The people were dressed with ugly clothes. The
price of a home phone line was the same as a car. At first I lived on the campus of the
University of São Paulo, far from the center with quite nothing inside. One main attraction
was a collection of snakes at Butantã Institute.

I attended the seminar of da Costa. I soon realized that very few people, if not to say
nobody, worked any longer in paraconsistent logic in Brazil. That was not a problem for
me because my interest was to develop a general theory of logics and I was mainly inter-
ested in working on the theory of valuation, a general semantic theory developed by da
Costa. I wrote two papers with da Costa on the theory of valuation and developed ideas on
abstract logic, which I later wrote down in my paper “Recherches sur la logique abstraite”,
which are a central part of my PhD in mathematical logic. I was concentrating on “log-
ical structures” in a Bourbachic spirit. Bourbaki had a strong influence in Brazil and in
particular in São Paulo where André Weil, Jean Dieudonné and Alexander Grothendieck
(about the visit of the latter see [2]) came for extended stays in the 1940s and 1950s. Da
Costa was a former student of Edison Farah, a set-theoretist who had been a good friend of
André Weil. He was retired and we used to visit him in his house; he told us many stories
about the adventures of the Bourbachic tribe in Brazil.14 Da Costa brought me also to the
house of Miguel Reale, a person he had known for many years. Reale was an important
jurist – the man responsible for Brazil’s new civil code – who took a strong interest in
philosophy and logic. He founded the Instituto Brasiliero de Filosofia (IBF), launched the
Revista Brasileira de Filosofia (RBF), and the first series of conferences on philosophy in
Brazil.

During my first year in São Paulo, I developed contacts with various students and col-
leagues of da Costa. Edelcio de Souza and his wife, Simone, helped me to discover São
Paulo, in particular taking me to all the most famous restaurants in town. Andrea Loparic,
who was working with da Costa on the theory of valuations and lived nearby the USP,
invited me for lunches at her house – she speaks fluent French, having done her PhD
in Belgium, and also takes an interest in psychoanalysis. I also had contact with Décio
Krause, who lived in Curitiba, but regularly came to USP and Nelson Papavero, who
worked in biology and put me in touch with a friend of his in Rio, who later on invited
me to work with him. I met Otávio Bueno, who at this time was a young undergraduate
student with long blond hair who stayed late at night at the library – we used to come back
to town together by bus discussing many topics. I also had some contacts with a group of

14 Farah proved a statement that Weil thought was false: the equivalence between the axiom of choice and
infinite distributivity of intersection and union.
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young French guys; I shared a flat with one of them and started to write a novel in French
that was never published called L’Oubli de Vivre (Forgetting to Live).

In April 1992 I went on a 1-month trip outside of Brazil; I went to Chile and Argentina.
This was quite interesting. Argentina is completely different to Brazil. I went to Buenos
Aires and liked it very much. I had a colleague there whom I had met in Paris, Fran-
cisco Naishtat, who had lived in Paris during the military dictatorship and also had spent 1
year at Berkeley. He introduced me to colleagues and friends, in particular Mario Lipsitz,
a former PhD student and friend of Michel Henri, who became a good friend of mine. I
gave a talk at the Computer Department of the University of Buenos Aires, where I met
Marcelo Conglio (who later moved to Brazil where he is presently the President of the
Brazilian Society of Logic) and Carlos Alchourrón (known in particular for the AGM the-
ory, the logic of theory change he developed with David Makinson and Peter Gärdenfors).
In Chile I gave a talk to the logic group of Rolando Chuaqui at the Department of Mathe-
matics of PUC (Pontifical Catholic University) in Santiago. I went North up to the desert
of Atacama, and South to Ponte Arena and Tierra del Fuego via Chiloé Island. I climbed
one of the most active volcanos near Puerto Monte and also visited Valparaiso.

In June 1992 I went to Rio de Janeiro for the second time (I had been there briefly
in January). I visited Vera Vidal, a specialist of Quine whom I had met in Paris together
with da Costa, who was at this time the director of the Philosophy Department of the Fed-
eral University of Rio de Janeiro (UFRJ), where I am presently working. I also met Luiz
Carlos Pereira, a proof-theoretist, who did his PhD with Dag Prawitz in Sweden and who
works at the PUC of Rio de Janeiro. This was the time of ECO 92, the very big United
Nations Conference on Environment and Development that gathered more that 100 heads
of government from the whole world. There were many events. I missed the concert of
Philip Glass accompanying the projection of Godfrey Reggio’s movie Powaqqatsi but I at-
tended an Amazonian version of AMidsummer’s Night Dream by Shakespeare directed by
Werner Herzog with the telenovela actress Lucelia Santos, best known as Escrava Isaura.

In August 1992 I again went to Argentina, this time to take part to the 9th Latin Ameri-
can Symposium on Mathematical Logic, which took place in Bahía Blanca. This is a town
about 700 km south of Buenos Aires where there is an important group of logicians
founded by Antonio Monteiro, a Portuguese who first moved to Brazil and the settled
down in Bahía Blanca. The people there work mainly on algebraic logic, with connec-
tions with the work of the Romanian logician Grigori Moisil, who developed De Morgan
algebras. The congress took place between August 10–14, 1992. I was supposed to go
back after 1 year in France, i.e. July 31, and my air ticket had 1 year’s validity. It was not
possible to extend this validity and I had to buy a new air ticket. I had little money and I
went from São Paulo to Bahía Blanca by bus (2 days of travelling between São Paulo to
Buenos Aires) and train (one night on the train from Buenos Aires to Bahía Blanca).

At the congress I presented my joint work with da Costa on the theory of valuation.
There were celebrities like Jerome Keisler and the Polish logician Stan Surma, one of the
major figures of logic of Poland after World War Two (WWII), who directed a group on
logic in Krakow. On the night train back to Buenos Aires he was on the seat next to me
and I told him that I was going to spend 1 year in Poland. He drew me a map of logic
in Poland. He had left Poland during the communist time and now lived in New Zealand,
but knew all the Polish logicians, most of them having been his students. He was traveling
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with his son, Charles. Later in China in 2007 during the 2ndWorld Congress on Universal
Logic where he went together with his father who was an Invited Speaker, Charles told
me about his adventures in Africa where his father had taught mathematics in the jungle
upon escaping communism in Poland. In China I also made an interview/movie of Stan
Surma relating his carrier, in particular how he was sent to Moscow and studied with
Kolmogorov. He was not converted to communism but to constructivism.

4.2 In Wrocław, Poland Hosted by Jan Zygmunt

After 1 year I could have stayed in Brazil, incorporating myself in one way or another into
the Brazilian academic system – da Costa supported me to stay longer. However, when I
told him that I wanted to go to Poland he also strongly supported me in that. He had been
several times in Poland himself and had invited Polish logicians to Brazil during the 1970s.
For reasons that are even now not completely clear, logic flourished in Poland between the
two world wars, and Poland became the strongest centre of activities of logic in the world;
this was known as the Lvov-Warsaw school – seeWoleński’s books and papers. WhenWII
started, Alfred Tarski was visiting the USA and was forced to stay there, settling in UC
Berkeley after some years of uncertainty and developing what would be the main group of
logic in the world for three decades. He visited Poland during the communist times only
a few times. At the University ofWrocław I had an office where it was written: “Tarski was
here in 195?” – I do not remember the exact date. Why did I want to go to Poland? Had
not the center of logic moved from Poland to California? Not for what I was interested in.
My main interest was the theory of the consequence operator, initially developed by Tarski
at the end of the 1920s. He did not go on working on this theory when in California and
developed model theory there. Nevertheless, people in Poland after WWII kept working
on that and related subjects. In particular Jerzy Łoś and Roman Suszko, and their student
Ryszard Wójcicki. I tried to get in touch with Wójcicki. He was a friend of da Costa
and had spent some months in Brazil. However, it was not clear where he was located
and whether he was still working on this subject – indeed at some point he focused on
the philosophy of science. I ended up in Wrocław working with Jan Zygmunt, a former
student of Stan Surma and at that time the Editor-in-Chief of Studia Logica.

My reasons for going to Poland were not exclusively logical. After the experience of 1
year of being immersed in a completely different culture, I wanted to repeat the experience
with a different environment. I had always had good feelings about Poland and I was
curious to live in a country of the second world.15

When I was young it was a mystery to us of what life was like in the Soviet empire.
It was difficult to go there, those who went were communists and what they said was
not taken seriously, which contrasted the anti-communist propaganda based in particular
on stories of people who had escaped and were refugees. When I was 14 years old I

15 The tripartition of the world into First World, Second World and Third World, was effective after Alfred
Sauvy coined the expression “Tiers Monde” in a paper published August 14, 1952 in the French magazine
L’Observateur.
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went on an exchange trip with my school and stayed 2 weeks with a German family in
Bayreuth. One tourist attraction there was to go to the border. The separation between
East and West was much more than the symbolic wall separating Berlin into two parts.
It was a metallic wall of grids and explosives of thousands of kilometres separating the
communist world from the rest of the world. At the border we gazed at the communist
world, a hundred metres away from where we were, looking at people we could not meet.
The whole atmosphere looked different, old-fashioned, with old cars. West Germany, on
the contrary, was hypermodern, much connected to the USA, especially in this Bavarian
region that was controlled by the Americans.

The Berlin Wall was destroyed in 1989, and the Soviet Union came to an end in August
1991 when I was in Brazil. When I arrived in Poland it was a transition period where most
people were still living in the old communist style. At the same time there was a very
strong capitalist development, a kind of conquest by different kinds of people coming
from all over the world. The Polish people were quite optimistic because many of them
have strong sympathy for the USA and antipathy for the Russians who dominated the
country for many centuries before and during communism. I arrived in Poland in Warsaw
in September 1992 aboard the legendary Paris–Moscow train of communist times, which
does not run anymore. The situation was strange and confusing.

Paris–Warsaw was a 24-hour trip. The train arrived at the end of the afternoon on
a Friday. I was expecting some French officials at Warsaw train station but there was
nobody there. I did not speak Polish, had very little money in my pocket, and did not
know where to go. For my stay in Poland I had applied for another grant from the French
Ministry of Foreign Affairs. It was quite easy to get this grant, there was no impressive
interview like for the grant to Brazil. Very few people were attracted to come to Poland.
This exchange program was still working as during the communist times, so, in particular,
our grant was in local currency. My grant was less than 100 US dollars per month, which
was supposedly enough to survive on in Poland (on the other hand, Poles who came to
France would get their grants in French currency, which corresponded to an amount of
more than 1000 US dollars). At Warsaw train station I asked the help of a friendly Polish
man who had traveled with me on the train and I met a French girl who was in the same
situation as me. The guy helped us to call the French Embassy. They said that they could
do nothing right now because it was Friday afternoon but offered us to stay in an apartment
for visitors in the French Embassy for the weekend. I stayed with that girl and we visited
Warsaw. On Monday morning we had a meeting with some authorities who put us on
a train to Wrocław. Coincidentally this was also the destination of this girl (the only other
French grantee in all Poland) who was going to Wrocław’s art school, which is quite
important.

In Wrocław Jan Zygmunt took care of me, first lodging me for a few days in a student
dormitory, and then getting me a small flat in the house of scientists – designed during the
communist period for professors–on Maria Curie-Skłodowska street. At the University
of Wrocław there is a Department of Logic and Methodology of Science, like in several
other universities in Poland, of which Zygmunt was the director. It is traditionally one
of the most important centres of logic in Poland. After WWII, the Soviets annexed large
parts of Eastern Poland, including the city of Lvov (now this area is in the Ukraine), and
gave a part of Germany, the Silesia, back to Poland; thus the city of Breslau was renamed
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with its original name, Wrocław. The University of Breslau was important during the
German time; in particular, this is where Schrödinger worked and where in 1884 Frege’s
bookDie Grundlagen der Arithmetik: eine logisch-mathematische Untersuchung über den
Begriff der Zahl (in English: The Foundations of Arithmetic: the logical–Mathematical
Investigation of the Concept of Number) was published.

After WWII the university went on to be an important university in Poland, one of
the main ones indeed, with a lot of students coming from all of Poland and in my time
also from other countries. After WWII Wrocław was a kind of transposition of Lvov;
many Polish people from Lvov moved to Wrocław, including academic people and the
Ossolineum foundation (which is famous for its library and is also an academic publishing
house, the original publisher of Studia Logica). Jerzy Łoś, one of the leading figures of
logic in the 1940s and 1950s, worked there and in 1949 he published, with Wrocław
University Press, his famous monograph about logical matrices [31]. The Department
of Logic had several unpublished manuscripts by him, some in French, which Zygmunt
showed me. Jan Zygmunt was much interested in the history of logic. He is the official
editor of Tarski’s works in Poland – Tarski’s son Jan Tarski visited him when I was there.
After seeing Zygmunt’s paper “Life and Work of Mojżesz Presburger” [52] I had the idea
of asking him to write a similar paper about Adolf Lindenbaum, who is considered to be
one of the most prominent Polish logicians of the inter-war period. After many years, the
paper is now finished and has just been published in Logica Universalis [53].

I was interested in the work of Lindenbaum because I was working on a generalisation
of the maximalisation theorem, which is attributed to him. Zygmunt showed me a quote
of a Polish logician making a nice metaphor comparing a maximal theory to a glass that
is so full that adding only one more drop causes it to overflow. During that period I made
good progress in my work. I fully developed the idea and project of universal logic – this
was where I decided to choose the expression “universal logic” – and I wrote my PhD
thesis about logical truth that I sent to my advisor Philippe de Rouilhan in Paris. I gave
various talks at Polish universities, in particular in Łódź (invited by Grzegorz Malinowski,
a many-valued logician directing a strong group there), Krakow (where I met Wroński),
Kielce (where I met Prucnal), and went to the Czech Republic near Prague to take part in
LOGICA’93 – one of the first meetings of the ongoing LOGICA series of events.

I very much enjoyed the centre of Wrocław, with its Gothic architecture and many
canals. It was like time had stopped in the 1930s – and then there were the suburbs with
communist buildings from the 1960s. I usually had lunch at the Ossolineum restaurant,
which was next door to the Department of Logic. I liked Polish food very much and also
the fact that people drank tea all the time. I prefer tea to coffee. Coffee in Poland was very
expensive but tea very cheap and there was a huge variety, some very good types, imported
from China; this was a positive consequence of the Soviet regime.16 The atmosphere was
interesting, a mixture of the old communist world with the rising of a new world with a lot
of adventurers. The Russian army was on the leave. There were some Russian markets
where everything was sold, fromwatches to planes. I bought some oil paintings and started

16 I have never been a Marxist. I think the materialist philosophy of Marx is rather crude. On the other
hand, the communist world as it emerged from Marxism–Leninism was interesting because it was pre-
served from consumerism, all people were highly educated and there were no beggars in the streets.
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Fig. 4 Consciousness 3 – A painting that I realized during the Polish winter of 1993

to paint (Fig. 4). This was quite an inspiring atmosphere and I finished my novel Forgetting
to Live and wrote a couple of short stories.

It was quite cold during the Polish winter, but there was beautiful, sunny snowy weather
and a nice landscape with rivers and trees. I remember ducks landing on the ice and crowds
of ravens. At first I was quite isolated, in particular because I did not speak Polish; I tried
at the beginning but just gave up. In the end I knew a lot of people and there were parties
nearly every day. The city was booming, the economy was strong, new bars and shops
were opening all the time. Was elected as mayor of Wrocław a logician, former student
of Zygmunt. Since my grant was low Zygmunt suggested that I give classes at Alliance
Française where his daughter was learning French. I was engaged there and gave a 2-hour
class per week. I received a salary similar to my monthly grant. It was an advanced class
and I just had to talk in French about any subject I liked. That was fun. I also organized
a cine-club at Alliance Française. I started with the projection of a French movie that was
not difficult from the linguistic point of view, La Guerre du feu (Quest for Fire) by Jean-
Jacques Annaud. In Poland, French language and culture are very popular, this is so for
various reasons, one of them being that Napoleon created the Duchy of Warsaw in 1807,
liberating Poland from Prussia. Even if this era had a very short life of 7 years, it was very
important for Polish people. After that Poland was occupied by Russians and Austrians
until 1918.

At the end of my 1-year stay my idea was to go to France to defend my philosophy PhD
and go ahead to California. Nothing of that directly worked out. I applied for a Fulbright
grant in Paris when I was in Poland and was selected for an interview but was not able to
go because I did not have enough money to pay for the trip. When I was in Poland I was
registered at the Swiss consulate, this is, in fact, mandatory for any Swiss citizen abroad
and I received the magazine for Swiss abroad. In this magazine there was an article about
the Swiss National Science Foundation (SNF) encouraging Swiss from abroad to apply
for SNF grants. I decided to apply for an SNF grant for young researchers, to go back 1
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more year to Brazil while waiting for the next deadline to apply for a Fulbright grant. The
man responsible for SNF grants for Swiss abroad was the President of the Swiss Academy
of Science, at that time Jean-Daniel Nicoud, Professor at the EPFL (Polytechnical Federal
School of Lausanne), the father of the optical mouse. He told me that it would not be
a problem for me to get the grant but that he wanted to meet me before making a decision.
I planned to go there just after the end of my stay in Poland, which was extended for
a couple of months as requested by Zygmunt to the Polish academic authorities.

Back in Paris at the end of 1993, after having spent the end of the year with my family,
I went to Lausanne early in 1994, met Nicoud and gave a talk at his institute (EPFL
Institute of Microinformatics). I received a positive reply for the grant but had to wait
about 6 months before effectively getting it – including the air ticket. During this time I
went to Paris, trying without success to defend my PhD but having a positive interview
at the American Centre for a Fulbright grant that I would use the following year. The
future was good but I had no money for the present. A good friend of mine, Pascal Duval,
helped me for accomodation and I succeeded to survive by signing a contract with the
publisher Masson to translate the book of da Costa into French and giving some private
lessons on logic to the President of the Cause Freudienne, the Lacanian Association of
Psychoanalysis. Her name was Liliane Majhoub-Trobas and she wanted to know more
about logic because Jacques-Alain Miler was giving a seminar making many references
to logic (the main interest of Lacan was topology, but Miller is more interested in logic).
I enjoyed doing that. In June 1994 I came back to Poland to send to Brazil the many
boxes of books and papers I had had to leave there. I also took the opportunity to go to
the LOGICA meeting in the not so far Czech Republic for a second time. I presented my
first talk about universal logic there. The corresponding paper, entitled simply “Universal
logic”, was subsequently published in the proceedings.

Let me now explain the situation with my philosophical PhD. In France, for a PhD it is
just necessary to write a monograph, there are no classes to attend, no necessity, therefore,
to be on location. Before leaving Paris in 1991 I matriculated for a PhD at the Philosophy
Department of Paris 1 with de Rouilhan and for a PhD at the Mathematics Department of
Paris 7. I sent my philosophy PhD to de Rouilhan from Poland and waited for his feedback.
He did not like the work. When I met him in Paris he told me that this was a completely
different kind/style of work from what he was acquainted with and that we would never
reach an agreement. He told me he would help me to work with another colleague. That
was quite fair, but I was not able to find anybody who was interested. The next in line was
Dubucs and he also did not like the work either. So I left Paris for Brazil without solving
the problem and decided to concentrate on my mathematical PhD. In Paris I also met my
advisor for this PhD, Daniel Andler, who encouraged me to go ahead.

My philosophical PhD is called Sur la Vérité Logique (On Logical Truth). This is a new
framework for logical truth for structures with one binary relation. I discuss the crucial
notions of constants, variables, quantifiers, infinity, equality and function. I developed
a theory based on an idea of Wittgenstein to have a (non-ambiguous) name for each object
and applied this theory to classical logic but also to paraconsistent logics – the standard
model theoretical approach does not properly work for such logics. Later, I presented this
work for a PhD at USP in São Paulo. This is still one of my less known works.



52 J.-Y. Béziau

4.3 São Paulo Again and Los Angeles

In July 1994 I arrived in São Paulo for the second time in my life. With a grant from the
Swiss National Science Foundation, I thought I would have a comfortable financial situa-
tion, but this was not the case – I would have to wait another 8 years for that. The Brazilian
government had just launched a new currency, the “Real”. This completely stopped the
inflation and that was good. However, quite unexpectedly the currency rose everyday for
a couple of months. The Real was launched on the basis of a 1 to 1 correspondence with
the US dollar, but after a few months, the value of 1 Real was about 1.20 dollars. This was
a general situation vis-à-vis all currencies, including the Swiss Franc, and therefore I lost
an important part of my grant. I found a room to rent close to Paulista Avenue in front of
Maksoud Plaza, at the time the most prestigious hotel in the city, the Rolling Stones came
here during my stay.

São Paulo turned out to be one of the most expensive cities in the world. Richard Syl-
van and Graham Priest visited Brazil at this time, and I remember that they were quite
surprised at the situation. This was the first time I met these two pseudo-Australian lo-
gicians and the last time in the case of Sylvan, who unfortunately died 2 years later on
a trip to Bali. I gave Sylvan my paper “Universal logic” that I had written just after my
talk at LOGICA’94 in the Czech Republic that I was finishing to prepare to send for pub-
lication. The next day he gave me back the paper; he had read it in detail and made some
annotations (I still have this copy).

In August 1994 I wrote my PhD of mathematical logic in about 1 month. I was work-
ing hard day and night putting all my results together. The title of this work is Recherches
sur la Logique Universelle (Excessivité, Négation, Séquents). The first part contains some
general results about completeness based on the concept of relatively maximal theory.
Then there is a general theory of negation, followed by the study of some paraconsis-
tent systems. In the third part I establish the connection between valuations and sequents
and develop some general results about cut-elimination. My PhD has led to about five
published papers. The main result is a theorem that establishes a close relation between
sequents and bivaluations. I had been looking for that for 2 years and in August 1994,
while writing my PhD, the solution naturally appeared. I had the basic idea by reading
the first paper of Gentzen, which is about Hertz’s Satzsysteme, his main inspiration for
sequent calculus and the cut rule. This theorem is a nice, new and non-trivial result –
a minimum condition I think to get a PhD in Mathematics. Having finished writing my
PhD in September 1994 I was eager to send it to Andler, since I wanted to defend it by the
end of the current French academic year, i.e. July 1995.

The process for the defense was quite long. At the Department of Mathematics of
Paris 7, it was as follows: if your PhD advisor thought your thesis was good enough he
submitted it to a commission of the department, of which he was not part. This commission
sent your work to referees chosen by them who were to give their advice; on this basis the
commission allowed or refuted the defense. Andler was very careful and read my PhD
in detail; it took him about 3–4 months to do so. Then he presented it to the commission
of the department. I was a bit nervous; I had to wait and relax. I gave copies of my PhD
to different colleagues, in particular to Luiz Carlos in Rio who carefully read the part on
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sequent calculus and corrected some minor mistakes. The chosen referees gave approval
for the defense in April 1995 and the defense was carried out in July 1995.

Early 1995 I went to California to enjoy my Fulbright grant. I was invited to the De-
partment of Mathematics of UCLA (University of California at Los Angeles), by Herbert
Enderton (1936–2010). I knew his books of introduction to logic and set theory, which are
very nice. UCLA together with UC Berkeley was at this time one of the most important
centres for logic. I arrived in Los Angeles and found a flat to rent in Venice. I was going
by bus from Venice to the Westwood area where UCLA is located, via Santa Monica. I
liked to see the sunset on Venice beach and sometimes I walked on the beach from Venice
to Santa Monica.

At UCLA I attended seminars in the Department of Mathematics and in the Department
of Philosophy. People from the Math Department attended seminars at the Philosophy De-
partment (but not vice versa); in particular Tony Martin who had a double position in both
departments, but also Yiannis Moschovakis, the greatest Greek logician since Aristotle,
as he liked to say. In the Philosophy Department I attended the seminar of Joseph Almog
and also that of David Kaplan. This was a small group of people who knew each other
and used to go out to dinner together every week. Kaplan also invited people to parties at
his house; I went there once. It was friendly and quite provincial. It was not clear at all
that they knew what was going in the rest of the world, even outside California, or LA.
Once during his seminar Almog told us that he had discovered a very nice paper by a to-
tally unknown guy named John Corcoran. In the Math Department the situation was a bit
strange with some weird people showing up. There were seminars of mathematic logic,
in particular the Cabal seminar. No philosophers came but there were computer scientists
at the main seminar. There was a wine and cheese party after this seminar, where I gave
a talk.

Mathematical logicians at UCLA liked to play badminton. I was sharing an office with
a nice guy called Gary, who had come back from Israel after having worked with Shelah.
He taught me how to play badminton in a way I did not know, the idea being to hit the
shuttlecock so that your partner cannot get it like the ball in tennis. When I was a child I
used to play badminton in a way similar to what is called frescobol in Brazil and matktot
in Israel, the objective being to keep the shuttlecock in the air. This is a good example of
how by changing the teleological rule, we completely change the game. I wrote a paper
on this topic later entitled “Rules of the game” (joint paper with Tarcisio Pequeno).

I had no car and only went outside of LA twice: one visit to Ojai and one to some
natural parks near Palm Springs organized by the Fulbright program for all Fulbright
fellows. The director of the program was a nice lady called Ann Kerr, widow of the former
president of the American University of Beirut (AUB) who was shot on location–later, in
2012, I organized the 3rd World Congress on the Square of Opposition at AUB. During
this tourist tour I remember that we stopped at a shop in an Indian reserve and an Indian
woman told us a bit about the story of her tribe. At the end of her talk one of the Fulbright
Fellows wanted to thank her and asked her how to say “thank you” in her native language.
She replied that there was no word for that in her language. I think that this is a very
interesting situation that can be interpreted in two opposite ways: these natives were too
rude to express their thanks or they were advanced enough not to need to transform their
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feelings into a formality through a word. It is, indeed, very easy to say “thank you” all the
time without feeling anything.

I went back to Paris at the beginning of July 1995 to defend my PhD in the Mathematics
Department of Paris 7. LA airport was under threat by a person nicknamed the Unabomber
(later on identified as Theodore Kaczynski, a former mathematician of UC Berkeley) and
in Paris I escaped a bombing in the underground train RER, which killed many people.
My PhD defense was not a big event. I had prepared some slides but the projector did not
work. There was no party after the defense. In France it is a tradition to organize a “Pot
de thèse”: drinks and food paid by the student and/or his family after the defense. I did
not live in Paris, none of my family came to my defense, I had little money of my own,
and what little I did have I was trying to save for the future. The members of the jury were
Jean-Louis Krivine, Jan Zygmunt, René Guitart, Michel de Glas and Daniel Andler.

4.4 Copacabana

After my PhD I was not eager to have a permanent position as professor at a university.
I wanted to go on doing research. I wanted to go to Rio de Janeiro, this was the place I
wanted to live for a couple of years. I had made contact for this with Mauricio Kritz, whom
I knew through his friend Nelson Papavero, himself a good friend of Newton da Costa.
Kritz worked at the LNCC = Laboratório Nacional de Computação Científica (National
Laboratory for Scientific Computing), a research lab located near the Sugar Loaf. One
of the bosses there was his former PhD advisor Marco Antonio Raupp, later Minister of
Science in Brazil. Kritz had some interest to apply logic and category theory to biology.
I arrived in Rio in July 1995 and had some difficulties to receive a grant, in particular
because my profile of post-doc from abroad was not part of the system, and Brazilian
bureaucracy is quite tricky. I had to wait nearly 1 year without a salary. Also my laptop
computer broke because of voltage variations and I had no money to buy another one.
Nevertheless I did not give up.

At some point there was a permanent job for a logician with the Department of Phi-
losophy at the University of Brasilia. I went there to meet the people and to discuss the
conditions. I had already been in Brasilia in 1992 during my first stay in São Paulo with
my friend Hilan. They were ready to contract me but I decided not to go. I preferred to
stay in Rio without a job than to go to Brasilia. The reason is that I think the place for
daily life is not a secondary thing, it is really important. Brasilia is an interesting town to
visit for a couple of days, but I would never like to live there. One friend of mine, who did
his PhD in Oxford, told me that Oxford was the worst place he had lived. I have always
been very cautious about the place I live. In Rio I rented a room in a flat in Copacabana on
Atlantic Avenue, facing the ocean. Every morning I went to swim and run on the beach.
I started running more and more, and after a couple of months I was easily running the
full lengths of the beaches of Copacabana, Ipanema and Leblon without difficulties. My
friend Otávio is also a good runner, he likes to participate in ultra-marathons (100 miles).

In January 1996 I was invited by my friend Carlos Knudsen to give a summer course in
logic at the Math Department of the Federal University of Pará in Belém, in the North of
Brazil, some 2500km from Rio. Belém is a nice town on the estuary of the Amazon river.
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I visited the interesting Émil Goeldi museum and research centre on Amazonia. Since
arriving in Rio I had been going to USP every two weeks, staying at Marcelo Coniglio’s
place, which was in the centre of São Paulo in a trendy area. I was going there to attend da
Costa’s seminar at USP. On March 27, 1996 I defended my PhD of Philosophy on logical
truth at this University.17

When I arrived at USP in 1991 I did not matriculate as a PhD student, just as a visitor.
However, at some point the people of the Philosophy Department thought it would be nice
if I had a PhD from their department. I therefore matriculated and presented the work I
originally intended to present at Paris 1 with de Rouilhan. Many years later it was quite
useful for me to have this diploma to get a job in Rio. USP is considered the best University
in Brazil and also the best in all of Central and South America. Many famous scientists
have worked at USP, like the physicist David Bohm, who emigrated to Brazil after he was
fired from Princeton University during the McCarthy era.

After about 1 year Kritz succeeded to get me a grant at the LNCC. It lasted 1.5 years.
In 1998 my grant was cut. This was the first economical crisis of the “plano real” and the
Brazilian government decided to cut the grants of foreigners. I again spent more than half
a year without income. Petrucio, a friend of mine who was working at the Math Depart-
ment of UFF, a university on the other side of the Guanabara Bay, then succeeded to get
me a position as an Invited Professor, and I also got a research grant from FAPERJ – Rio
de Janeiro Research Foundation – to go on working at LNCC, which had been relocated
to Petrópolis (“City of Peter”), the former Imperial city, 60 km from Rio in the mountains.
I circulated between these different locations, always based on Copacabana.

Despite my financial instability during this period, I went to many conferences in Brazil
and in the world. This may appear quite paradoxical, but is explained by the fact that, on
the one hand, I was member of some research projects with money for traveling to events
and, on the other hand, I started to be an invited speaker. Here is the list of events in which
I took part during my stay in Rio from 1995 to 1999. I have indicated the name of the
event, dates, location and the title of the lecture.

� 9th Brazilian Meeting of Philosophy, September 3–7, 1995, São Paulo, Brazil, Appli-
cations of Paraconsistent Logic to Justice and Law

� Pratica’96 (Proof, Type and Category) April 24–25, 1996, Rio de Janeiro, Brazil, Rules,
Derived Rules, Permissible Rules and the Various Types of Systems of Deduction

� 11th Brazilian Meeting of Logic May 6–10, 1996, Salvador, Brazil, The Mathematical
Structure of Logical Syntax

� 3rd WoLLIC (Workshop on Logic, Language, Information and Computation) May 8–
10, 1996, Salvador, Brazil, Paraconsistent Model Theory

� 3rd Bariloche Meeting of Philosophy August 29–31, 1996, San Carlos de Bariloche,
Argentina, Present Philosophical Tendencies

� 2nd Annual Conference on Applications of Logic in Philosophy and Foundations of
Mathematics April 24–27, 1997, Karpacz, Poland, Universal Logic in Perspective

� 27th International Symposium on Multiple-Valued Logic May 28–30, 1997, Antigo-
nish, Canada,What is Many-Valued logic?

17 Among the members of the Jury was David Miller, who was secretary and friend of Karl Popper. He
fully approved my dissertation with a 10/10 mark – I guess because it is 100% irrefutable.
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� 1stWorld Congress on Paraconsistency July 30–August 2, 1997, Ghent, Belgium,What
is Paraconsistent Logic?

� 4th Wollic (Workshop on Logic, Language, Information and Computation) August 20–
22, 1997, Fortaleza, Brazil, Classical Negation can be Expressed by One of its Halves

� 20th Brazilian Congress of Applied and Computational Mathematics September 8–12,
1997, Gramado, Brazil, Neojunction: between Conjunction and Disjunction

� 4th BrazilianMeeting of Analytic Philosophy October 6–9, 1997, Florianópolis, Brazil,
Philosophical Aspects of Non Classical Logic

� Logic, Proofs and Algorithms April 15–18, 1998, Campinas, Brazil, Sequents and Bi-
valuations

� Visions of Science – Meeting with Sokal and Bricmont April 27–28, 1998, São Paulo,
Brazil, Round table on Logic and Language

� Pratica’98 (Proof, Type and Categories) June 18–19, 1998, Rio de Janeiro, Brazil, Log-
ical Rules and Logical Laws

� 4th Bariloche Meeting of Philosophy June 24–27, 1998, San Carlos de Bariloche, Ar-
gentina, Philosophy and Logic: Asset and Perspectives

� Stanislaw Jaśkowski Memorial Symposium July 15–18, 1998, Torun, Poland, The
Paraconsistent Logic Z

� 20th World Congress of Philosophy August 10–16, 1998, Boston USA, Do Sentences
Have Identity?

� 8th National Brazilian Meeting of Philosophy – ANPOF September 26–29, 1998, Cax-
ambu, Brazil, Round table on Translations between Logics

� 11th Brazilian Meeting of Logic May, 24–28, 1999, Itatiaia, Brazil, Singular Terms in
Mathematical Logic

� 5th Wollic (Workshop on Logic, Language, Information and Computation) May, 24–
28, 1999, Itatiaia, Brazil, A Sequent Calculus for Lukasiewicz’s Three-Valued Logic

� 1st Principia International Symposium August 9–12, 1999 Florianópolis, Brazil, Are
there any Logical Principles?

� 11th International Congress of Logic, Methodology and Philosophy of Science August
20–26, 1999, Kraków, Poland, The Philosophical Import of Polish Logic

� 1st Southern African Summer School and Workshop on Logic, Universal Algebra and
Theoretical Computer Science December 1–10, 1999, Johannesburg, South Africa,
From Paraconsistent Logic to Universal Logic

A series of papers correspond to these talks, which the reader can find in my complete
bibliography, up to the present, at the end of this paper. During this period I made good
progress in my logical research and had several new ideas. In particular I discovered an
important connection between modal logic and paraconsistent logic, showing that S5 is
a paraconsistent logic, this being connected with the square of opposition. Details of the
development of these works are described in my 2007 paper “Adventures in the paracon-
sistent jungle” and my 2012 paper “The new rising of the square of opposition”.

I wrote the two papers “What is paraconsistent logic?” and “What is many-valued
logic?”.18 These papers are connected to clarification and understanding of basic notions

18 Later I wrote a paper entitled “What is classical propositional logic?” I intend to go on writing other
“What-is” papers – see the section “Future papers” in my list of writings.
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of the fields of paraconsistent logic and many-valued logic. This can be called “logical
philosophy” if we use this expression in a way similar to how Bertrand Russell used
the expression “mathematical philosophy”. Logical philosophy in this sense is neither
mathematical logic, nor philosophy of logic.19 The idea is to have a deeper understanding
of the mathematical notions involved in connecting them to philosophical questions. This
is not “philosophy of”, because by so doing we are actively interacting with the object
of study. Moreover, this is not just mathematics, because we are trying to understand the
meaning of the constructions, not just to prove theorems. Modern logic is often rejected
both by philosophers and mathematicians. Philosophers say that it is mathematics and they
do not see the philosophical value of all this. Mathematicians say that this stuff may have
philosophical interest but that this is not real mathematics, it is a lot of formal trash with
no real mathematical value. Both are right to some extent. Modern logic is many times
lost in a twilight zone between mathematics and philosophy, being neither one, nor the
other. Yet it can be both and then it is beyond mathematics and philosophy, the mixture of
the two leading to some real enlightenment.

During this period I worked on general philosophy. For the first time I attended a WCP:
World Congress of Philosophy, the one in Boston in 1998. On this occasion I met Quine. I
had been in touch with him when editing a special issue of the journal Logique et Analyse
about logic in Brazil. He sent me a paper “Mission to Brazil” [37] recalling his 1-year stay
in Brazil in the 1940s. Quine quite liked Brazil and learned to speak and write Brazilian
Portuguese. He published an excellent book in Portuguese, which has not yet been trans-
lated into English O Sentido da Nova Lógica [36]. At this event in Boston I presented my
paper “Do sentences have identity?” criticizing Quine’s idea that sentences exist but not
propositions because there are “no entities without identity” (one of Quine’s most famous
mottos).

I presented a talk about the present state of philosophy in Bariloche, Argentina, where
every 2 years there is a big international congress of philosophy. In this talk I critically
presented three tendencies of philosophy: traditional philosophy, analytic philosophy and
new age philosophy. I emphasized in particular the weakness of academic philosophy in
not being able to attract ordinary people. This was later published in my 2003 bilingual
booklet Tendances Actuelles de la Philosophie/Tendências Atuais da Filosofia. In Bar-
iloche I attended a talk by John Searle on money. I think he is a good example of what can
done. Searle is one of the most famous philosophers alive, but nevertheless in the USA it
is very difficult to find a book by Searle in a bookshop.

I faced this difficulty when at Stanford in 2000. I was looking for his book The Mys-
tery of Consciousness [44] and was not able to find it in the bookshops of Palo Alto and
surroundings areas. It was, in fact, easier to find it in bookshops in Brazil, translated into
Portuguese. In Brazil this book even helped me to solve a question with the police. I had
this book in my bag when I was flying from Rio de Janeiro to Johannesburg, South Africa,
to attend a big school and conference organized by Val Goranko. When checking in at the
airport the police was convinced that I was a drug trafficker because, as they explained to
me later, I was well dressed and arrived at the last minute at the check-in. This was a typi-

19 The expression “philosophical logic” is also used, cf. in particular The Journal of Philosophical Logic.
Its meaning is not necessarily clear.
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Fig. 5 With Arthur Buchsbaum and Newton da Costa at the 2nd World Congress on Paraconsistency in
Juquehy, Brazil, 2000

cal behaviour of traffickers, who were numerous for this destination, Rio de Janeiro being
a huge cocaine export hub in South America and South Africa one of the most important
consumers on the market. When they asked me what I was going to do in South Africa
and saw the book of Searle, they just let me go away without an advanced search.

During this period in Rio I reinforced my contact with Brazilian colleagues, on the
one hand, the group of Campinas, on the other hand, the group of Fortaleza. Campinas is
traditionally the most important centre for logic in Brazil. There is there, indeed, a Centre
for Logic, it is called Centre for Logic, Epistemology and History of Science, CLE =
Centro de Lógica, Epistemologia e História da Ciência, but it is mainly logic. Up to now
they have escaped the danger of being transformed into a Centre of History and Philosophy
of Science, as did happen with the LMPS congresses launched by Tarski, where logic has
became marginal. CLE has, in fact, been visited by Tarski in the 1970s. This visit was
organized by Itala D’Ottaviano, one of the two pillars of the CLE for nearly 30 years
together with Walter Carnielli, both being ex PhD students of da Costa. This is a very
active group with many visitors and publications, which is connected to the Brazilian
Society of Logic (SBL).

After the 1st World Congress of Paraconsistency (WCP1) organized in Ghent, Bel-
gium, in 1997, CLE logicians planned to organize WCP2 in 1999 to commemorate the
70th birthday of Newton da Costa. With João Marcos, a master student of Walter at the
time, we travelled by car during 3 days on the coast of the state of São Paulo to find
a good location. We found a nice hotel on a nice beach, named Juquehy (meaning “Rain
Dance” in Puppy Guarana). WCP2 was held in 2000 (there was a delay) and it was a great
success; the participants enjoyed it very much – the best WCP so far (Fig. 5). I became
good friends with João Marcos, who is interested in many things and, like Walter, fluently
speaks about 10 languages. I only speak three language fluently. I think it is nice to know
lots of languages, it helps to open our minds. This was the idea of Schopenhauer, whose
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favorite language was Spanish – I think Portuguese, especially from Brazil, is better. How-
ever, I am not sure that knowing a lot of languages is a sufficient or necessary condition
for good communication. Most of the time it is beyond words, and João Marcos and Wal-
ter sometimes have difficulties understanding each other despite being able to speak 10
languages.

My contact with Fortaleza was established through Arthur Buchsbaum. He did his
PhD on paraconsistent and paracomplete logics. We were in touch via e-mail when I was
in Poland. When I arrived in Rio he was working in Fortaleza, Ceara, and came to Rio
for the defense of his PhD at PUC. This was the first time I met him and we became
good friends. His advisor was Tarcisio Pequeno from Fortaleza. After spending many
years in Rio working at IBM and then the Department of Informatics of PUC-Rio, the
best in Brazil, Tarcisio came back to Ceara and started to develop a group of logic and
artificial intelligence (LIA). He was interested in a mixture of paraconsistent logic and
non-monotonic logic.

At this time, Tarcisio invited me to take part in his research group, and I started to
go regularly to Fortaleza, about 2000 km north of Rio. As a good friend of Tarcisio and
his colleagues and students (Ana Teresa, Marcelino, Ricardo) I enjoyed the climate and
culture very much; it was quite different from Rio. Besides logic he had a strong interest
in philosophy and with Vanderveken he organized a congress with Searle in Fortaleza. We
had many deep discussions. What I learned with Tarcisio, and also other colleagues in
Brazil, is to work all the time with uncertainty and flexibility and I think this is good.

4.5 Stanford, USA and Two Trips Around the World

I arrived in Stanford, California in January 2000, where I would stay 2 years. My situation
in Rio was instable. Half of the time I was without income. I decided to apply for an
advanced grant of the Swiss National Science Foundation to go somewhere. The idea of
going to Stanford appeared naturally. I was interested in going to California for a longer
period. There was a good connection between the group of Patrick Suppes at Stanford
and the group of da Costa, in particular through the Chilean logician Rolando Chuaqui
and, more recently, with Francisco Doria from Rio who had been visiting Pat, and his
former student Acacio de Barros who was on location working with Pat. One idea I had
about Suppes was his relation with Tarski. In 1957 together with Tarski and Henkin he
organized a big meeting on axiomatic methods at Berkeley (cf. [25]), which was the first
step for the launching of the LMPS (logic, methodology and philosophy of science) series
of congresses, the first having been organized in 1960 at Stanford by Suppes himself.
When I arrived at Stanford Suppes was mainly working on the brain and I would work
with him on this topic but he let me develop my research as I liked. When I was at Stanford
John Etchemendy, philosophical logician, became the Provost of the university, a function
he still occupies. Sol Feferman and Grigori Mints were the leading logicians. Johan van
Benthem came every year and he was becoming a strong person for the development of
logic there. Richard Zach was finishing his PhD at Berkeley and was lecturer at Stanford.
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Again my financial situation was quite a disaster because this was a time of a booming
economy in Silicon Valley and the Swiss franc, as other currencies, was losing ground
against the American dollar – although nowadays the Swiss franc is higher than the US
dollar. I had to rent very expensive rooms (nearly 1000 USD a month) in some houses of
“poor” people20, and I was going around the “farm”, as Stanford is known, by mountain
bike, and from time to time going to San Francisco, taking my bike with me on the train.
This was the time of the rising of Google, founded by the two Stanford students, Larry
Page and Sergey Brin, recalling the exploits of the legendary Stanford duo Bill Hewlett and
Dave Packard, who during my stay gave to Stanford the highest donation in the history of
donations. Maybe in the future Page and Brin will surpass this record. A few years earlier,
Bill Gates had also donated a large amount of money to the Computer Science Depart-
ment of Stanford. Besides money the farm also boasted nice racoons, several statues by
Rodin (a version of The Thinker and others), and a memorial installation about Eadweard
Muybridge, author of the “motion picture” that proved Leland Stanford’s contention, that
all four hooves of a horse are off the ground at the same time while trotting).

When I was at Stanford I also travelled quite a lot taking part in congresses. During
the summer of 2000 I took part in two big events of the Association for Symbolic Logic –
the ASL wanted to do something special for the year 2000. They organized one event
in Champaign, USA and one in Paris, France. That June in Champaign I saw Saunders
MacLane for the first and only time. The ASL congress in Paris in July was much bigger;
it took place at the Sorbonne and was the biggest congress in the history of logic up to now.
I presented talks about universal logic at both events. In August I went to the ESSLLI in
Birmingham (12th European Summer School in Logic, Language, and Information). I had
been selected to give a course on paraconsistent logic. That was nice; among the students
of that course I counted Alessio Moretti and Catarina Dutilh-Novaes.

The following year, 2001, for the first time I went to a meeting of the SEP (Society of
Exact Philosophy), an annual meeting held alternately in Canada and the USA – this time
it was in Montréal. I gave a talk titled “Sentence, proposition and identity”, work I was
doing in connection with Suppes’s idea about congruence. Identity is a notion in which I
have always been interested. It is a notion where typically logical philosophy is important.
One has to know what a congruence relation is. On the other hand, one needs to have
a good philosophical interpretation of this notion. Suppes has articulated the notion of
congruence to study the relation between sentences and propositions, an articulation that
can be used to defend the notion of proposition against Quine’s rejection of it. During my
stay at Stanford Quine died and there was a 1-day workshop with talks by Suppes, Mints,
Feferman, etc. Pat’s was quite provocative, sinking Quine in his grave: by an analysis of
the bibliography of Word and Object, he showed that Quine knew quite nothing about
the recent advances and experiments about language and psychology when he wrote that
book, relying mainly on what his Harvard colleague and friend B. F. Skinner told him.

In May 2001 I went to Russia for the first time in my life for the Smirnov meeting
to which I had been invited – a biennial logic meeting in Moscow. Mike Dunn, Paul
Weingartner and Diderik Batens were also there. The event was organized in particular

20 At some point I was renting a room in a house in Menlo Park, and the woman asked if I would take
a shower in the morning or in the evening. My reply was both and her reply that this was not possible.
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Fig. 6 With Mike Dunn, Alexander Karpenko and Vladimir Vasyukov at the Academy of Science in
Moscow in 2001

by Vladimir Vasyukov, whom I knew from Poland. His father had been a Russian army
officer and he had grown up in Poland. Another organizer was Alexander Karpenko, the
director of the chair of logic of the Russian Academy of Sciences in Moscow; he was
also a poet, with whom I became good friends (Fig. 6). After that I went to Russia several
times, for some conferences in Moscow and St Petersburg, and I always enjoyed it.

In June 2001, together with Darko Sarenac who was doing his PhD at Stanford, I or-
ganized a workshop on paraconsistent logic in Las Vegas. In July 2001 I did my first trip
around the world. It was a round trip following the direction of the rotation of the earth
in the Southern Hemisphere: from San Francisco to Australia, then South Africa, then
Brazil, then back to San Francisco at the end of August. In Australia I went to Hobart,
Tasmania, for the Australasian Philosophical meeting. There I took part in a workshop on
logical pluralism organized by JC Beall and Greg Restall. Then I gave a lecture at a 1-day
workshop in Melbourne where I met Lloyd Humberstone. Next, I went to the far west
of Australia, to Perth, where Slater worked, and I gave my first talk about the square of
opposition, in relation with his paper “Paraconsistent logics?” claiming that there are no
paraconsistent logics. From Perth I flew to Johannesburg, where Goranko still worked at
Rand Afrikaans University and gave a talk on universal logic. Then in Brazil I took part in
events in Fortaleza and Florianópolis. In particular, I gave a mini-course on paraconsistent
logic at the Annual Brazilian Meeting on Computer Science.

The Swiss National Science Foundation (SNF) grant that I had been receiving at Stan-
ford was due to end in July 2001, before my first trip around the world. Pat Suppes asked
me what my future plans were and offered to engage me for a couple of more months
at Stanford to work with him. This seemed good to me and I gave him the positive re-
ply to work with him up to the end of November 2001. In the autumn of 2001 I met Pat
nearly every day for discussions; this led to our joint paper “Semantic computation of truth
based on associations already Learned” (published in 2004). Therein we have a prelimi-
nary philosophical and theoretical basis to explain how the brain work. At his “Brain Lab”
Suppes conducted lots of experiments but he was not a naive empiricist and he knew that
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data make sense only through a theory. What I remember about all these experiments is
that, surprisingly, a triangle as a picture, as a written word, and as a spoken word provokes
the same effect on the brain.

My plan after Stanford was to go to Switzerland. There was a new program of the
SNF, a grant of several years, a mix of research and teaching, for people who had had
a PhD for a couple of years but did not yet have a permanent position. The SNF program
was designed to prepare a wave of retirements of professors, avoiding the loss of good re-
searchers and brain draining due to unemployment, providing a smooth transition between
research and the permanent position of professor. The idea was to locate the winners of
these grants in some Swiss universities, where there was a possibility for them to get a job
later. My plan was to go to the University of Neuchâtel where there was an Institute of
Logic. The director of this institute, Denis Miéville, had written to me, suggesting that I
apply. I therefore applied for this grant at the beginning of 2001 and was selected for an
interview at the beginning of January 2002 in Bern. My idea was to stop in Bern while do-
ing a second quasi-complete around the world trip, earth rotation: leaving San Francisco
for Brazil stopping in New Zealand, Asia, India and Europe. My intention was to go to
Brazil, wait for the result, stay in Brazil if the result was negative and apply again the fol-
lowing year. The competition was very tough. About 30 people were selected every year
in all Switzerland and all fields. I knew it would not be that easy to apply with a project in
logic.

A the end of November I left California. I first stopped at the Australasian logical
meeting in Wellington. From Wellington I went by train to Auckland. I did this trip of
a whole day’s duration with Stephen Read. In Auckland I took part in a philosophical
meeting and then flew to Singapore. From there I went to Thailand, crossing Malaysia by
bus, and then flying from Bangkok to Katmandu, Nepal. It was shortly after the Nepalese
royal massacre, when the King and seven members of the royal family had been killed
by his son, and in the countryside some Maoists were trying to get the power, attacking
and murdering people. I nevertheless took a drive in the direction of Himalaya and visited
Bakthapur, which I liked very much. From Katmandu I flew to Varanasi, India. It was my
first visit to this country. I did a trip by boat on the Ganges and I went to visit the nearby
city of Sarnath, where the Buddha made his first speech. I then went by train to Chennai
and Mumbai.

From Mumbai I had a night flight to Zurich with a stop in Dubai on Emirates Airlines.
My flight was to arrive in the morning, shortly before the interview in Bern. I tried several
times to change this flight with the travel agency that had booked my around the world
trip in San Francisco, but there was no way to change it. I went to Emirates’s office in
Mumbai, also without success. My flight was at 3:00 in the morning. Before going to the
airport I was training in my hotel room in Mumbai for the interview. I was quite exhausted
when boarding the plane after queueing and confusion at this big airport. Fortunately the
atmosphere on board was pretty relaxing, Emirates at this time had been elected number
one airline in the world. We landed at Dubai airport early in the morning, where I had
to change planes. At this airport I bought a music tape to which I listened a lot during
the coming months, especially when flying. It was by a woman singer whom I did not
know yet, the Lebanese Nawal Al Zoghbi, and this was her seventh and most successful
album, El Layali (The Nights), with a song of the same name, my favorite one. On arrival
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in Zurich I had to run to catch my train to Bern. Once on the train I fell asleep and nearly
missed disembarking at Bern. After leaving my luggage in a locker at the station, I ran to
the SNF building. I arrived only 2 or 3 minutes before the interview. I asked if it would be
possible to grab a quick coffee. They told me that there was no time to do so, that the jury
was waiting for me. I succeeded to rightly conduct the presentation of my project.

After that I took the train again to go to Neuchâtel, where I would sleep and meet my
potential collaborators the next day. This is what I did. I remember that there was a lot of
snow and that it was cold; this was my first time in Neuchâtel and I quite liked it. After
that I went back to Brazil and waited for the reply. It came sooner than expected, at the
beginning of February. My contract would start August 1st in Switzerland, I had time to
relax a bit. I took this opportunity to visit Machu Pichu and went on the Inca Trail. I also
crossed the region of the Titicaca lake up to La Paz in Bolivia – a wonderful trip. In April
2002 I organized a workshop with Décio Krause in Florianópolis21 for the 80th birthday
of Pat Suppes, who was visiting Brazil on his way to Chile.

5 Launching Projects from Switzerland (2002–2008)

5.1 By the Transparency and Depth of a Swiss Lake

I left Brazil at the end of July 2002. I spent a few days in Rio de Janeiro with Arthur Buchs-
baum at his brother’s house at the foot of the “Cristo redentor” – Christ the redeemer – and
participated in the 8th WoLLIC (Workshop on Logic, Language, Information and Com-
putation) that took place at PUC-Rio. From Rio I flew to Italy to take part in the 14th
ESSLLI (European Summer School in Logic, Language and Information) in Trento in
which João Marcos was organizing a workshop on paraconsistent logic, together with
Diderik Batens (the big smurf of logic in Belgium). This was giving continuity to the
1st and 2nd World Congresses on Paraconsistent Logic (WCP1, Ghent, Belgium 1997;
WCP2, Juquehy, Brazil, 2000).

At this time I started discussions with Walter Carnielli about the organisation of WCP3
in Toulouse at IRIT for 2003 (the idea being to hold WCP every 3 years). IRIT (Institut
de Recherche en Informatique de Toulouse) is a major research centre in France, with 700
researchers and a good diversity of lines of research, including strong logic trends, in par-
ticular with the two fuzzy guys, Henri Prade and Didier Dubois (one of the main editors
of the Journal Fuzzy Sets and Systems) of the ADRIA team (Argumentation, Décision,
Raisonnement, Incertitude et Apprentissage), and with the LILaC team (Logique, Inter-
action, Langue, et Calcul) with people like Andreas Herzig, Philippe Besnard, Philippe
Balbiani, Jonathan Ben-Naim and Luis Fariñas del Cerro. Luis was at that time the gen-

21 Florianópolis is located on a very nice island in the state of Santa Catarina, south of Brazil. This is
where my friend Arthur Buchsbaum moved after living for a couple of years in Fortaleza, because it was
too hot for him. This is also the place where Newton da Costa moved with his family after his retirement
from USP. Saint Exupéry used to stop on this island on his way to Chile. The hut where he stayed still
exists near a small village whose central street is called “Avenida Pequeno Príncipe”.
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eral director of IRIT and gave us full support for organizing this event. Walter had been
in touch with Luis and IRIT for a couple of years. IRIT had taken over the Journal of
Non-Classical Logics, founded by Walter and others in Campinas, which on this occasion
had been renamed as Journal of Applied Non-Classical Logics.

From Trento I went to Neuchâtel to start a new life. This would be the first time after
I left Paris in 1991 that I would really have my own house and the first time I would have
a non-precarious position. This was a 4-year contract with the Swiss National Science
Foundation (SNF), with a possible 2-year extension, and at the end perhaps a permanent
position. In Neuchâtel I was attached to the Institute of Logic and Centre of Semiological
Research founded by Jean-Blaise Grize. Grize was retired when I arrived and the institute
was directed by his former PhD student, Denis Miéville, who was mainly interested in
the work of the Polish Logician Stanislaw Lesńiewski, the PhD advisor of Alfred Tarksi.
It was through this Polish connection that I arrived in Neuchâtel. Miéville wanted to de-
velop his institute, having heard about the SNF program, reading some of my papers and
knowing I had been working in Poland, he invited me to come there. When I arrived in
Neuchâtel, Miéville was the Rector of the University of Neuchâtel, as had been also Jean-
Blaise Grize between 1975–1979. Grize (1922–2013) was a former student of Piaget. The
father of Jean Piaget, Arthur Piaget, (1865–1952) was the first Rector of the University of
Neuchâtel (1909–1911). Jean Piaget (1896–1980) was born in Neuchâtel and his first re-
search study was on the mollusks of the lake. He was then professor in Paris and founder
of a research centre in Geneva, Geneva International Centre of Genetic Epistemology.
Grize worked with him in Geneva and then settled down at the University of Neuchâtel.

Neuchâtel is a beautiful city in Switzerland, situated by a lake with transparent wa-
ter from the mountains and thus good inspiration for philosophy. Schopenhauer wrote:
“The real philosopher always looks for limpidity and precision, he will invariably try to
resemble not a turbid, impetuous torrent, but instead a Swiss lake which by its calm-
ness preserves transparency despite its great depth, a great depth revealing itself precisely
through its great transparency.” (On the fourfold root of the principle of sufficient rea-
son) [46]. Precision is famous in Switzerland through the watch industry. Neuchâtel is
a few kilometers from Watch Valley, where the most famous watches in the world are
made, at the border between Switzerland and France in two small towns in the mountains:
Le Locle and La Chaux-de-Fonds. The latter is also famous because it is the town of Le
Corbusier and, less known, of Louis Chevrolet (Chevrolet’s logo is a cross, remembering
the Swiss flag). In La Chaux-de-Fonds the correspondence between Bertrand Russell and
Louis Couturat 22, which was edited and published by Anne-Françoise Schmid [45], had
been found recently.23 A very interesting book where the who logicians talk about many
different subjects.

22 Louis Couturat (1868–1914) promoted the work of Leibniz on logic and completely unknown for sev-
eral centuries. Couturat is the author of La Logique de Leibniz [8] and also L’Algèbre de la logique [10],
Histoire de la langue universelle [9] and many other interesting books.
23 Anne-Françoise is a good friend of mine who invited me to take part to a joint project jointly organized
with Nicole Mathieu, “Modélisation et interdisciplinarité”. For 5 years (2007–2012) we invited, listened
to and questioned 12 great French intellectuals in Paris. I have a strong memory of two of them: Maurice
Godelier and Radyadour K. Zeytounian. This resulted in a book – I was responsible for the section on
logic and linguistics featuring Jean-Pierre Desclés and Patrick Blackburn, see my paper [98].
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The region of Neuchâtel is also where the legendary absinthe beverage was conceived
at the end of the 18th century. The nickname of this beverage is the “green fairy” and it
was very popular among artists in the 19th century. Van Gogh was a great consumer and it
is suspected that the colours of his paintings are connected with the psychic effects of this
beverage, which are considered hallucinogenic. At some point absinthe was outlawed in
all countries – in Switzerland fromOctober 7, 1910 until March 1, 2005. So when I arrived
in Neuchâtel it was still illegal, but everybody had a clandestine bottle at home. After its
re-legalisation (following some strict rules that lower the effects), it became a popular
drink in bars and restaurants of the city. Neuchâtel, like many places in Switzerland, is an
interesting mixture of provincial and cosmopolitan atmospheres. Switzerland is one of the
countries in the world with the highest percentage of foreigners, in particular because of
the strong traditional asylum policy of the country.

The basis of Switzerland’s banking system was laid by French protestants seeking
asylum in Switzerland from persecution – 16th to 18th centuries. When I lived in Neuchâ-
tel the recent political refugees were mostly Albanians. There are also people settling
in Switzerland for business due to the very stable political and economical situation. In
Neuchâtel there is one of the biggest Philip Morris’s factories in the world, which was the
first factory of Philip Morris outside the USA. When I arrived in Neuchâtel there was the
Swiss national exposition – nearly 40 years after the preceding one in 1964 in Lausanne –
and it was really animated. I found a big flat to rent, with a nice view of the lake and the
mountains and used to invite colleagues and friends for fondue parties.

When I arrived in Neuchâtel, Miéville was quite busy with his activities as rector, but
he had meetings with his assistants and students almost every Monday morning. This was
a friendly group. There was a diploma of logic “licence de logique” which disappeared
through the Bologna process of “uniformisation”24 of studies in Europe. At the beginning
of October the annual meeting of the Swiss Society for Logic and Philosophy of Science
was organized in Neuchâtel. The topic for 2002 was quantification. This was the opportu-
nity to present the work of my PhD on logical truth. I presented this work again, in more
detail, at a small workshop that we had in the winter of 2003 at a monastery near Lau-
sanne. It led to my CQFD 2005 paper “Le Château de la Quantification et ses Fantômes
Démasqués”. This was directly connected with the work of my colleagues in Neuchâtel on
Leśniewski’s systems. Leśniewski had the idea that a variable can range over one, many
or zero objects, contrary to the main trend, up to now dominating, where a variable range
only over single objects. I told them that I was not interested into empty domains, because
if there is nothing, there is nothing to say. For me that perfectly justifies the standard
model theory developed by Tarski according to which the domain of a structure is always
considered to be non-empty. As a consequence, “for all” implies “there exists”, which is
better formulated as “at least one”, avoiding existential and scholastic problems.

I know the work of Fraïsse, French logician friend of Tarski, his tentative to develop
a framework for model theory with empty domains, but I think philosophically it is am-
biguous for the above reason. Although I like Fraïsse’s idea of zerology (cf. [15]), consid-
ering that we can understand things through limit cases, I also think that there is a danger

24 Giving the same form, unifying the multiplicity into one single form. There is no exact English transla-
tion of this word.
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in focussing on exceptions. Obsession for exceptions and monstrous cases in philosophy
can lead to sophistry. At some point in our discussions Pat Suppes emphasized that, saying
that what is important first of all is the general situation. I agree with him: if you focus
on awkward cases you will create an awkward theory. Of course, in mathematics one
counter-example is enough to kill a theorem, but there is a difference between a theorem
and a conceptual framework.

This question of empty domain and quantification is also related to the square of op-
position, a topic that became one of my main topics during the beginning of my stay
in Neuchâtel.25 I already discussed the square of opposition in relation with paraconsis-
tent logic visiting Slater in Perth in July 2001. I discussed it again at the 14th ESSLLI in
Trento, leading to my 2005 paper “Parconsistent logic from a modal viewpoint”. However,
in my first months in Neuchâtel I made important progress, which led to the development
of my research project on the square of opposition, where paraconsistent logic is only
one aspect. Part of this work can be found in my 2003 paper “New light on the square
of opposition and its nameless corner”. The two central ideas that I had at this time are
concerned with the extension of the theory of the square of opposition in two ways: to the
third and other higher dimensions (polyhedra), to go to polytomy (this does or does not
lead to polyhedra).

Going to the third dimension by itself was not a new idea, because people had already
the idea to generalize the square of opposition to a cube of oppositions. However, I pre-
sented a different polyhedra than a cube, to which I was led by wanting to relate three
hexagons of opposition dealing with interactions between modalities and negations. On
the one hand, in doing that I used hexagons, which are two-dimensional generalisations
of the square of opposition. On the other hand, my construction of polyhedra of oppo-
sitions was motivated by an intrinsic necessity and was not the product of an abstract
generalisation in the air. Generalisation and abstraction are two very interesting features
of mathematics and thought in general. To generalize is interesting, but most of the time
it is trivial. There are some people who want to generalize everything all the time; this is
quite superficial. Most of the time these people are not capable of studying the details of
a particular thing, because this requires care and attention. The same can be said about
abstraction, the two phenomena going hand to hand. To jump into abstraction, to fly in
the sky of generalities allowing us to have a general vision of the phenomena, is a very
difficult task to perform. If we fail, we sink into an ocean of trivialities or just splash in
a swimming pool with artificial plastic tools. This difficulty manifests itself regarding the
question of polytomy of oppositions.

The theory of oppositions started with dichotomy promoted by Pythagoras and Plato.
It was generalized into a trichotomy by Aristotle introducing the notions of contrariety
and indetermination. Blanché’s generalisation of the square of opposition strongly em-
phasized trichotomy. His hexagon is obtained by putting together two triangles 26. Kant
in his logic book [27] argues that only dichotomy is a priori, that all other polytomies are
empirical. However, Blanché’s hexagon indeed shows that he is wrong. One may decide

25 I will not present the details of this study here. I have described it in my 2012 overview paper “The new
rising of the square of opposition”.
26 About this hexagon, see Blanché’s masterpiece [4] and my 2012 paper “The power of the hexagon”.
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to generalize dichotomies of opposition to any kind of polytomies; this can easily be done
mathematically. One can generalize, for example, the hexagon of Blanché based on tri-
chotomy to an octagon of oppositions based on the mix of two quatritomic figures (one
of contrariety, one of subcontrariety) looking like the octagons found in Islamic culture.
The question is whether or not this is philosophically interesting. Similar discussions can
be developed about many-valued logic. I do not necessarily agree with Quine saying that
many-valued logic is not logic but algebra, but I think that it is important when working
with many-valued logic to keep in mind the philosophical aspect. Truth and falsity are
represented in modern logic by 1 and 0. This does not necessarily mean that all natural
numbers or real numbers can be considered as truth values.

Back in the old world I was eager to develop contacts with people of different countries
in Europe. It started first with France and Italy. At the 14th ESSLLI in Trento, which was
attended also by Alessio Moretti a French-Italian guy living in Nice. It was the second time
I met him after the 12th ESSLLI in Birmingham in 2000. We had good contact because,
like me, he was interested in many things, including Smurfs. He was a philosopher with an
open mind and a good knowledge of both analytic and continental philosophy. Moreover,
he also had a strong interest in logic and mathematics. He lived in Nice and was doing
a PhD under the direction of Jean-François Mattéi (1941–2014), a specialist in Pythagoras
and Plato – he wrote the excellent book on Plato, L’Etranger et le Simulacre [33], which
I read when working on Plato’s cave.

At the end of August 2002 there was the ASPLF congress organized by Mattéi in Nice,
and Alessio invited me to stay at his house. I went to Nice by plane from Geneva, a short
(less than 1 h) and very beautiful flight, one of my favorites. There is a nice view of the
lake and Mont Blanc on take-off in Geneva, and then you go south seeing the Alps up to
the Mediterranean sea, with the plane flying above the sea before landing at Nice’s airport.
I like the region of Nice very much; it is geographically similar to Corsica and culturally it
is an atmosphere that is a mix of France, Italy, England and Russia. The ASPLF congress
was nice. I met a lot of new people. ASPLF meansAssociation des Sociétés de Philosophie
de Langue Française. It is an organisation that gathers French-speaking philosophers from
all around the world and there have been international congresses regularly since 1938 – in
Nice this was the 29th congress. This was the start of a long collaboration with Alessio.
Later, I presented him with my idea about the square of opposition, which became his
favorite topic up to now and he did a PhD with me (2005–2009) on the Geometry of
Logical Opposition [34] at the University of Neuchâtel.

In October I went to Nice again, on my way to Sardinia. I had organized a series of talks
on my new ideas on the square of opposition. From Nice I took a boat to Corsica – my
first time in Corsica since I had left in 1975. I arrived in Ajaccio, went south to Bonifacio,
going through Colomba’s village near Sartène. I spent one night in Bonifacio and the
next day took a boat to Sardignia and then crossed the whole island to arrive in Cagliari
where I gave my first talk of this tour – I had contact with Francesco Paoli, whom I had
met in Tasmania in 2001 and who worked there. From Cagliari I took a boat to Naples.
The arrival in Naples by boat is very impressive, with a view of Vesuvius. In Naples I
had contact with Nicola Grana, a long-time friend of Newton da Costa, who worked on
paraconsistent logic and the theory of valuations (see [18]). I gave two talks and in 2 days
Nicola showed me everything in Naples, a city I enjoyed very much. It is a bit like Brazil



68 J.-Y. Béziau

(there are many Italian descendants in Brazil, especially in São Paulo, and most of them
are from Naples). I also visited Pompeii. From Naples I went to Rome, my first visit to
this impressive city, and then go on up to Siena, where my friend Claudio Pizzi was, an
Italian modal logician who has been adopted by the Brazilian community, and again gave
a talk on the square. From Siena I went back to Nice and then Geneva.

I also made strong connections with a group of people in Nancy, where I met Fabien
Schang and Katarzyna Gan. From some time we developed an N3-linkage (N3 = Nice-
Neuchâtel-Nancy). In Nancy a group of logic and philosophy of science was developed by
Gerhard Heizmann, in particular through the Archives Poincaré – the famous mathemati-
cian Henri Poincaré was from Nancy. This culminated with the organisation of the 14th
LMPS in 2011. Fabien was at this time a PhD student of Heizmann, who later on invited
me to take part in Fabien’s defense. Heizmann was very talented in organizing events,
in particular emphasizing very friendly gathering around food and drinks. He certainly
inspired me for my later organisational activities. In the autumn of 2002 I took part in
an event he was organizing named PILM = Philosophical Insights into Logic and Mathe-
matics: The History and Outcome of Alternative Semantics and Syntax. Many important
logicians were there, in particular van Benthem and Hintikka. I presented work I had been
doing since Stanford, showing that in most of the cases possible worlds are superfluous for
relational semantics.27 The corresponding paper was subsequently published in the nice
book resulting from PILM: The Age of Alternative Logics (see [3]). Later, there was also
a congress on Polish logic in Nancy, organized by Roger Pouivet, a French philosopher
married to a Polish woman, who translated the famous book on the principle of contradic-
tion in Aristotle by Łukasiewicz into French.

On this occasion I met Katarzyna, a Polish student, who was going back and forth
between Nancy and Poznań. This was the beginning of a long-lasting friendship and col-
laboration. I went to Poland in 2003 to take part in an event that Jan Zygmunt organizes
every year in Karpacz, a nice village in the mountains in the south of Silesia, bringing
with me two colleagues from Neuchâtel.

In November 2002 a position for a logician at the University of Lausanne was an-
nounced. I decided to apply, although I was not very motivated because I had just started
my 4-year SNF fellowship, which in many senses was more interesting for me for the
coming years. This position was in particular organized in the perspective of the devel-
opment of the Centre Romand de Logique et Philosophie de la Science, a research centre
to develop activities in logic and philosophy of sciences between Geneva, Lausanne and
Neuchâtel.28 I was selected with two other peoples (one of them was Marcus Kracht) for
a lecture and an interview. I remember that during the interview, since I had nothing to
lose, I clearly told the committee that I was not interested in teaching logic just by pre-
senting truth tables, translation exercises and so on. The committee did not retain any
of us. They decided to summon other candidates among those not selected for the first

27 This is related to my paper “Possible worlds: a fashionable non-sense?”, which I wrote when at Stanford,
stressing the fact that most of the time people do not know what they are talking about when they talk
about possible worlds – this paper has not yet been published, it was rejected several times in the actual
world. Late in 2010 I published a paper entitled “What is a possible world?”
28 The creation of this centre, an idea due to Jean-Claude Pont, was aborted due to discord between people.
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round, among them Achille Varzi from Columbia, who was chosen after the interviews
of this second round. But Achille gave up. People suspected that he applied a very com-
mon strategy in the USA: since the salaries in Switzerland are very high, and his salary at
Columbia was low, in the end he got an increase of his salary to stay in New York, which
he likes very much, after a free trip to visit Switzerland for the interview.

In the second place, the committee had listed Jacques Duparc, who therefore got the
job. Jacques was my former friend from the Lycée Gabriel Fauré in Annecy. After en-
tering the math sup “prépa” he quit because he liked mathematics very much and this
was too much oriented towards engineering. For some reason he then entered the faculty
of medicine and then quit again to do philosophy. After a couple of years I met him by
chance in Paris and I told him I was studying logic and explained to him all about it and
the logic cursus at Paris 1 and Paris 7. He had been working on Heidegger and Wittgen-
stein but then started to study logic and liked it very much, especially set theory, getting
very good results and ending up defending a logic PhD at Paris 7, after a stay at UCLA.
At the time of the open position in Lausanne he was teaching logic in Germany.

Miéville was sad not to have Varzi because Varzi had been interested in the mereology
of Leśniewski. At this stage I think Miéville did not support me because in any case I
would be around at least 4 years and the idea was to enlarge the logic community with
one more person. On the other hand, the president of the committee was a mathematician,
Dominique Arlettaz, from the University of Lausanne (now Rector of this university),
with whom I had previously had a peculiar issue. In 1999 before going to Stanford, there
was a position of logic in Lausanne, a kind of tenure track position. I applied and was
chosen by Dominique Arlettaz. Since I also got the grant to go to Stanford, I decided not
to go to Lausanne. I explained this to Arlettaz but he insisted very much on me taking this
position, saying that I was exactly the kind of person they were looking for. If I had taken
this position in 1999, I probably would have been nominated full Professor of Logic in
2003 at the University of Lausanne, the time this position was attributed to Duparc.

I do not regret anything. It was not easy to choose but I think this was the right choice,
both going to Stanford in 2000 and not making specific efforts to get the position in 2003.
Before the interview in Lausanne I clearly told Arlettaz in a personal meeting when he was
visiting the University of Neuchâtel to give a talk that I was not interested in the position
right now, but he told me they could not wait.29

With my SNF project I had a 4-year grant for a student doing a PhD with me. In
Switzerland there was no one in the position to do a PhD in logic. I decided to invite
a Brazilian student, Alexandre Costa-Leite, whom I had met a couple of years perviously
at a congress in Florianópolis. At the time he was an undergraduate student at the Federal
University of Goias, near Brasilia, the region he is from. We were keeping in touch and
he was asking me for advice. I advised him in particular to do his Master’s at UNICAMP.
This what he did: a Master’s thesis on the Fitch paradox, directed by Walter Carnielli. He

29 I have always thought it strange that at universities everywhere in the world whole life positions are
assigned in a few weeks. Also, most of the time the procedure is highly dubious due to the way the jury is
constituted. The ones who choose are not rightly chosen and/or self chosen, so on this basis how can the
final choice be good? André Weil stated an interesting law of university hiring: first-rate people hire other
first-rate people. Second-rate people hire third-rate people. Third-rate people hire fifth-rate people, . . .
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had just finished, so that was good timing. He was glad to be invited to Switzerland, he
adapted quickly and easily and enjoyed Neuchâtel very much and also the nearby cities
of Bienne and Fribourg. He also traveled around, benefiting from the Erasmus program to
do research visits of a couple of months each in Amsterdam, Paris and Lisbon during his
PhD. The title of his PhD is Interactions of Metaphysical and Epistemic Concepts. This is
a work in logical philosophy related with combination of logic. The defense was in 2007
with Paul Gochet, Pascal Engel and Arnold Koslow as members of the jury.30 Alexan-
dre had a strong interest in the combination of logic; we both went to CombLog’2004
in Lisbon, organized by Amilcar Sernadas and Walter Carnielli at IST (Instituto Supe-
rior Técnico), and the day after his defense we organized the workshop CombLog’07 in
Neuchâtel. At CombLog’2004 I presented the “copulation paradox”: the fact that when
combining conjunction and disjunction, we get more: distributivity. Gabbay liked the ex-
pression. Later I developed this work further with Marcelo Coniglio, who was also present
at this event among many others: Razvan Diaconescu, Jospeh Goguen, Carlos Caleiro,
Don Pigozzi, etc. There was a really nice atmosphere in Lisbon surrounded by Fado and
Bifadas.

I attended CombLog’2004 on my way back to Switzerland after a third around the
world trip, this time in reverse rotation. It was the shortest, less than 30 days, and the
craziest around the world trip I have done. From Geneva I went to St. Petersburg, then
Hong-Kong, Bali, Australia, Tahiti, Easter Island, Santiago de Chile, Buenos Aires, São
Paulo, Lisbon and back to Geneva. In Australia I took part to the Australian Congress
of Philosophy on South Molle Island in the Great Barrier Reef Marine Park. I presented
the talk “Three definitions of human beings”, comparing Plato, Aristotle and Desmond
Morris’s definitions, respectively, bipeds without feathers, rational animals and naked
apes. In his famous essay on the axiomatic method [35], which strongly inspired Alfred
Tarski, Blaise Pascal emphasises the trilogy axioms/definitions/demonstrations. Neverthe-
less, Pascal claims that there are some notions that are useless to define and gives as an
example “human beings”. On the contrary, I think that this notion is one of the most inter-
esting to define. I am working on this subject and have presented several time talks on it
but have not yet written a paper. Besides this around the world trip I also went to series of
events I had already taken part in before: LMPS, WCP, SEP. The 12th LMPS took place
in Oviedo, Spain, the 21st WCP in Istanbul, Turkey and the 31st SEP in Montréal (all in
2003). I also kept in touch with Brazil and South and Central America, taking part in sev-
eral meetings there, in particular going to the 12th SLALM (Latin-American Symposium
on Mathematical Logic) in San Jose, Costa Rica in January 2004. I enjoyed Costa Rica
very much, visiting both the Pacific and the Caribbean sides.

In Geneva in October 2004 I took part in the first congress on Louis Rougier (1889–
1982) organized by Jean-Claude Pont. Before this event, like many people, I knew nothing
about Rougier, who was a very important French philosopher of the 20th century, a friend
of Schlick and promoter of the Vienna Circle. He married Lucy Friedman, Schlick’s sec-

30 Alexandre was my first PhD student. Alessio Moretti, the second, also defending his PhD in Neuchâtel.
Tzu-Keng Fu from Taiwan started a PhD with me in Switzerland but after my departure he finished it with
Oliver Kutz at the University of Bremen in Germany, the title is Universal Logic and the Geography of
Thought.
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retary, and adopted her daughter from a previous marriage – this woman came to the
meeting in Geneva. Rougier has written many interesting books and was very active. The
reason why he remained unknown is due to his constant support of Marshal Pétain during
and after the Second World War. For this and other reasons nobody wanted to talk to or
about him. Rougier was neither pro-nazi, nor antisemitic but he was anti-communist and
also anti-democrat. He defended neo-liberalism, a position that was not welcome among
the intellectuals in France after WWII. He was also anti-rationalist and anti-Christian. Al-
though I disagree with most of his ideas, I think he is certainly one of the most brilliant
thinkers of the period. His criticism of rationalism is quite interesting, his way of ques-
tioning basic principles considered as obvious by rationalists, indeed not obvious at all
and sometimes wrong. Rougier was the first to strongly defend relativism in logic. He had
a good knowledge of what was happening in logic and the appearance of different non-
classical logics. He was a conventionalist and had the idea that there are different logics for
different situations. He wrote the following: “Avec la logique, l’homme a brûlé sa dernière
idole” (with logic, man has burnt his last idol). I later wrote the paper “Rougier: logique et
métaphysique” (2011), a critical presentation of his main ideas, and asked Mathieu Mar-
ion, a good specialist on Rougier, to write an introduction on Rougier’s essay “On the
relativity of logic” for the Anthology of Universal Logic I edited in 2012. (A good friend
of mine, Louis Allix, surprisingly told me that Rougier was one of his uncles.)

In 2004 I also took part in an interesting meeting: the Third Philosophy Day, at UN-
ESCO in Paris, on November 18. I was invited to take part in a panel on globalisation
organized by my friend Francisco Naishtat. On this occasion I presented the idea of
a world university. At the end of the day there was a very nice music show by Herbie
Hancock, after which the happy few were invited to a cocktail party on the roof of the
UNESCO building (UNESCO has good location in Paris, near Napoleon’s gravestone at
Invalides). Herbie had a nice pendant with coloured feathers and I asked him what it was.
He told me that was a gift from Carlos Castaneda.

5.2 Universal Logic’s Take-Off

In the autumn of 2004 I started to organise the 1st UNILOG, 1st World Congress and
School on Universal Logic projected to take place in April 2005 (Fig. 7). In October
2003 I had organized a small workshop on universal logic with Alexandre Costa-Leite,
with the participation of Arthur Buchsbaum, who was visiting me in Switzerland at the
time, and also Petrucio, Paulo and Sheila Velso, Darko Sarenac, Jacques Duparc, Ramon
Jansana and a few others. However, organizing a big event was a completely different
story. This was my first experience of doing that and I worked very hard to be sure it
would be a success. It was important to find a good location and good timing. I chose the
city of Montreux, which is beautifully situated on the banks of Lake Geneva, and for the
timing I thought that Easter would be nice because many important events are organized
in the summer and in Spring around Montreux there is still a lot of snow, which is quite
nice. During the event we organized a trip to the Marmot paradise which is at 2000m
above Montreux; we went there by the typical cog railway and this was a very pleasant
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Fig. 7 Poster of the 1st UNILOG

promenade at the middle of the snow. I decided to organize a combination of a school and
a congress. For the congress I had the idea to have a contest and a secret speaker (a speaker
whose identity is revealed only at the time of his talk). This format was successful and
was repeated at the following editions of the event. Alexandre continuously helped me to
organize this event and suggested to have Kripke, one of his favorite philosophers, as the
secret speaker. We had no idea if he would accept, but he did. He liked the universal logic
project and had never been to Switzerland, he wanted to get to know this country. We
succeeded in organizing his coming without much trouble and it was a success (Fig. 8).
Indeed, the whole event was a great success for various reasons. The hotel was a charming
family hotel. Montreux is really relaxing. We had lots of famous logicians and also a very
good book exhibition. Some Chinese logicians came and suggested organizing the second
UNILOG in China and we started to discuss this possibility in Montreux.

The book Logica Universalis – Towards a General Theory of logic, published by
Birkhäuser, a collection of papers related to universal logic was launched at the 1st
UNILOG. In November 2004 I entered into contact with Birkhäuser to propose to them to
launch a new journal: Logica Universalis. Birkhäuser is the publisher of the journal Alge-
bra Universalis and many other important mathematical journals and books, in particular
the collected papers of Alfred Tarski. For me that was the natural editor for a journal
on universal logic. They very quickly replied to me. Birkhäuser is based in Basel, about
90min by car or train from Neuchâtel. Two representatives visited me in the next days and
I also went to Basel. They told me that launching a journal is a very serious enterprise,
that it has to be done carefully so that the journal will not disappear in a few years.
They thought a book series would be safer. Anyway, we agreed to produce as a kind of
experiment a book with the title Logica Universalis. Thomas Hempfling, now the present
director of Birkhäuser, came to the 1st UNILOG in Montreux to talk with the people,
to feel if the atmosphere was propitious for a new journal of logic. Birkhäuser agreed to
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Fig. 8 With Saul Kripke on the roof of Hotel Helvetie

sponsor the contest by offering a 500-Swiss franc book coupon to the winner. In the end
all was positive and Birkhäuser decided to launch the journal Logica Universalis and the
book series Studies in Universal Logic. This was carefully prepared and both started in
2007. Up to know I have managed the editing of this journal and the book series – very
interesting work. Logica Universalis rapidly became one of the most important journals
of logic and in the book series we have published many interesting titles, the latest being
a book on Leon Henkin: The Life and Work of Leon Henkin [25].

After the great success of the 1st UNILOG – many people told me it has been the best
conference of their life – I was quite optimistic about my future. But success rhymes with
difficulties. It is like mountain climbing: the higher we go, the more beautiful view we
have, the more risks we face, and the more likely it becomes that a lethal fall may happen.
In September 2005 I was traveling in the West part of USA. I gave a talk at the Santa
Fe Institute in New Mexico, an interesting interdisciplinary institute where a friend of
mine, David Krakauer, was working and visited the nearby artistic town Taos where Julia
Roberts lives. I did not go there to meet her, but I was interested to visit Taos because this
is where the novel of Fredric Brown, The Far Cry, takes place. At the Sante Fe Institute I
met the writer Eric McCormack who dedicated me one of his books. He is living in Santa
Fe and had some interest for logic. In California I visited Pat Suppes at Stanford and drove
through Los Angeles by the highway number 1 through legendary places like Carmel and
Big Sur, a trip I had no opportunity to do when at UCLA and Stanford since I had no car
at this time. I visited Herb Enderton at UCLA and gave a talk there at the cheese and wine
seminar.

After my talk at UCLA I was relaxing in Ojai, a nice town in the mountains near LA,
on my way back to San Francisco. I then received some surprising news: the Rector of
the University of Neuchâtel told me it would not be possible for me to have my SNF
grant at the University of Neuchâtel prolonged. I had been working at this university for
3 years, I had 1 year left but already had to ask for the 2-year prolongation at the SNF.
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Such a prolongation would, in principle, be nearly automatic, since the idea of the SNF
was to avoid brain drains, keeping the good researchers in Switzerland until they found
a permanent job, I had not yet found one. I had to ask for a prolongation by writing
a report of what I had done during the 3 years, and I had done a lot of things, that was not
the problem. The problem was that I needed the formal agreement of the university that
was hosting me.

Since I arrived in Neuchâtel the rector had changed. It was no longer Denis Miéville.
Miéville had become quite unpopular and he had to leave his position. Since the direction
of the university was confused, the state of Neuchâtel, who finances the university, de-
cided to change the way to choose the rector. They decided that the rector will be chosen
by the state (the same situation, indeed, as in France and Brazil), not by an internal de-
cision of the university. They decided to choose Alfred Strohmeier, a computer scientist,
former director of the big Department of Informatics of the Federal Polytechnical School
of Lausanne (EPFL). The e-mail I received when in Ojai was from Strohmeier, but he told
me that it was not possible for him as a rector to give me his approval for the prolongation
of my grant since Miéville was against it and the approval of the rector has to be in con-
formity with the decision of the host institute. What was happening was that Miéville did
not want me to stay for two intertwined reasons. Due to his failure as a rector he was quite
bitter, he wanted to come back to his activities of logician, and from this point of view the
success of my activities was overshadowing. However, it was difficult for him to tell me
that he did not want me to stay, so he tried to make me believe that he had supported my
prolongation of the SNF grant but that Strohmeier was against it, because he was against
him as a former rector. However, the real state of affairs was revealed.31

Faced this intricate situation I tried to find a solution. Strohmeier told me he would
support my prolongation if another institute of the University of Neuchâtel would host
me. I talked with Jean-Jacques Aubert, new Dean of the Faculty of Letters and Human
Sciences. He wanted me to stay and did his best to support me. I ended up at the Institute of
Psychology, directed by Anne-Nelly Perret-Clermont, who was in connection with Piaget
school. Because I had the invitation of this institute, Strohmeier gave me his approval and
received a positive reply from the SNF for a 2-year prolongation of my project. I move
to her institute at the end of my 4-year period, i.e. in August 2006. I worked there for
2 years and it was very nice. Students of psychology were quite interesting and I took the
opportunity to give courses on various topics, in particular on imagination.

During this period I organized an interdisciplinary congress on imagination at the
University of Neuchâtel. I really like interdisciplinarity and Piaget, a symbolic figure of
Neuchâtel, who was also a promoter of interdisciplinarity; he coined the word “transdisci-
plinarity”, which he thought was better. So I thought that the circumstances were good for
organizing interdisciplinary events. In 2005, still at the Institute of Logic, I organized the
First Interdisciplinary Congress on the Symbol – the main topic of which was a critical
appraisal of Ferdinand de Saussure’s claim that arbitrary signs (by opposition to symbols
that are considered as non-arbitrary signs) are very important. My idea of such an inter-
disciplinary event was to try to gather colleagues of one university from as different fields
as possible. The University of Neuchâtel was good for that because all the main fields that

31 When Miéville retired in 2012, the Institute of Logic of the University of Neuchâtel was closed.
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can be found in a university are there, and the university is small so that it is not so dif-
ficult to get in touch with everybody. The University of Neuchâtel has different buildings
in different places in the town, but the town is also small, everything is at a walking dis-
tance. I had an office at the Department of Mathematics in the Faculty of Science. From
this faculty, I succeeded to convince not only a mathematical colleague (Alain Robert, the
author of a very good book on non-standard analysis [38]) but also a chemist, a geologist
and a physicist to join the event. Colleagues from the Faculty of Theology (Lytta Bas-
set), the Department of Linguistics (Louis de Saussure), the Department of Philosophy
(Daniel Schulthess), etc., joined. The event was quite a success. I also invited a couple of
colleagues from outside, in particular Claudine Tiercelin, who gave a talk on Peirce. This
gave birth to the book La Pointure du Symbole. By doing this congress and book I dis-
covered many things, in particular the excellent works on signs by the typeface designer
Adrian Frutiger (see [17]). For the book I received additional papers by Robert Dewar on
traffic signs, Elisabeth Nemeth on Neurath, and Jeremy Narby on life signs.

The second event was easier to organize because I had already organized one and the
theme imagination was naturally attractive. For this second event I invited Catherine Chan-
tilly, my present wife, to film the event. We had become acquainted through an artistic
event she has been organizing every year since 2005 with Alessio. They took place in cas-
tles in the Bourbonnais, the centre of France, her region of origin, which is full of castles.
I took part in this event in 2005, 2006 and 2007, and enjoyed it very much. In 2005 I had
a photo exhibition there about the Do Not Enter traffic sign (in French: Sens Interdit. In
2003 I started to work seriously on photography and decided to start a parallel career in
photography, which I found as interesting as filming. My idea to work on theDo Not Enter
traffic sign suddenly appeared to me in Moscow in 2003 when I took the first photo of such
a sign. My interest in this sign was connected with symbolism. I presented this exhibition
in several locations. In French the name of the exhibition was Le Monde en Sens Interdit,
in English Do not Enter in the World. This is a funny name for this exhibition that I had
in Chengdu, China, while I was on a trip in 2006 to prepare the organisation of the 2nd
UNILOG (Fig. 9).

After my visit in the winter of 2006 in China, we decided to organize the 2nd UNILOG
in Xi’an, the ancient capital of China, rather than in Beijing where the 23rd LMPS was
projected. We scheduled UNILOG for August 16–22, 2007, just after the LMPS meeting
so that participants of LMPS could join us and know more about China. Xi’an is a city
which is, indeed, much more interesting than Beijing. It is more authentic with a strong
cultural variety and the famous Terracota Warriors. Huacan He the main Chinese orga-
nizer was working at The Northwestern Polytechnical University in Xi’an at the time. The
2nd UNILOG was a nice event, which allowed people to know more about China.

Before the 2nd UNILOG I organized the First World Congress on the Square of Op-
position in Montreux, June 1–3, 2007. I was not in favour of again organizing UNILOG
in Montreux because I thought it better to have this event circulating around the world.
However, since the conditions in Montreux were very good, I thought it would be nice
to take the opportunity to organize a second event there. The SQUARE was easier to or-
ganise because it was smaller (no school). Yet, it was nonetheless quite challenging. In
particular I wanted to develop interdisciplinarity. I thought the square was a good basis
for that because it is a very simple theory that everybody can understand. I also wanted
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Fig. 9 Do not Enter in the World, Chengdu, China, February 2006

to have an artistic part. Since we were in Montreux, music naturally came to my mind. I
asked Michael Frauchiger to help me with that. Michael is Swiss and married a Brazilian
girl, the Manager of the Lauener Foundation.

Henri Lauener (1933–2002) was a Swiss philosopher who before his death gave some
money to organize a prize, which is awarded on a regular basis. I was at the first award
ceremony in Bern in 2004 – the prize was awarded to Pat Suppes – and I noticed that
there was an important music part, jazz music. Michael told me that it was so, because
Lauener liked music very much. Michael asked jazz musicians to prepare pieces of music
based on the square of opposition and a show for our event in Montreux and we got a nice
result. For this event we also produced a movie, a remake of the biblical story of Salomé,
where we used the square to articulate the relations between the four main characters of the
story. Our version of this story is quite different from the original and Flaubert’s and Oscar
Wilde’s versions. The movie was shot in Morocco in April 2007 with Catherine acting as
Herodias, Alessio as Herod, Joana Medeiros, a Brazilian actress, as Salomé and myself
as St John the Baptist. The four of us filmed and directed the movie at the same time, it
was quite an interesting experience. Another event I organized when in Switzerland was
a workshop on possible worlds with Saul Kripke in Neuchâtel in June 2008. I had invited
Kripke for the SQUARE in Montreux but at the last moment he had to cancel his trip due
to health problems, but I was able to reschedule his air ticket so that he could come to
Switzerland in the near future.

During the period 2005–2008, besides organizing seven events (two UNILOGs, two
interdisciplinary congresses in Neuchâtel, the first SQUARE, CombLog’07 and the work-
shop with Kripke), I also took part in several events and did some lecture tours in USA
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Fig. 10 With Alexandre Costa-Leite and Arnold Koslow, New York, April 2008

and India. In Europe I took part in The Impact of Categories – 60 Years of Category
Theory in Historical and Philosophical Retrospect, October 10–14, 2005 (organized by
Andrei Rodin at ENS in Paris, France); Paradox: Logical, Cognitive and Communicative
Aspects November 4–6, 2005 (Organized by Jurgis Skilters in Riga, Latvia); Applications
of Algebra to Logic and Informatics X, March 6–12, 2006 (Organized by Joanna Grygiel
in Zakopane, Poland); the 15th Annual Meeting of the European Society for Philosophy
and Psychology July 9–12, 2007 (organized by Kevin Mulligan in Geneva, Switzerland);
Identity and Structure, December 7–8, 2007 (Organized by Karin Verelest in Brussels,
Belgium); International Workshop on Truth Values, March 29–June 2, 2008 (Organized
by Heinrich Wansing in Dresden, Germany); ECAP08 – 6th European Conference on
Computing and Philosophy, June 16–18, 2008 (Organized by Jean Sallantin in Montpel-
lier, France).

In Central and South America I took part in the 13th SLALM (Latin American Sym-
posium on Mathematical Logic), August 7–12, 2006, in Oaxaca, Mexico and in the 14th
SLALM, May 11–17, 2008, in Paraty, Brazil. This was my first time in Mexico and I
really enjoyed Oaxaca and Puerto Escondido on the nearby coast. In Oaxaca I presented
a talk on absolute maximality, a concept that I introduced. The idea is the following: Emil
Post proved the maximality of classical propositional logic (CPL) in the sense that the
connectives of this logic cannot be strengthened, but it is known that we can extend CPL
by adding non-definable connectives like modal operators. CPL is post-maximal, but it is
not “absolutely maximal”. A logic that would be absolutely maximal is a logic to which no
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Fig. 11 With Walter Carnielli in Poona, India, December 2005

additional connectives can be added without trivialisation, i.e., transforming this logic into
a trivial logic in which anything is derivable from anything. Up to now I have not written
yet a paper on that topic. After SLALM in Mexico I flew to Madrid in 2006 to attend the
World Congress of Mathematics. On this occasion the Field medals were attributed to Ter-
ence Tao, Grigori Perelman, Andrei Okounkov and Wendelin Werner. I presented a poster
on universal logic in the logic section and won the prize for posters in this section. I at-
tended an interesting lecture by Leo Corry about Hilbert and Einstein. After Madrid I went
to Budapest for the 31st Meeting of ASPLF, the topic of which was Le Même et l’Autre
where I took part in a panel on identity and logic. In July 2008 there was the 4th World
Congress on Paraconsistency (5 years after WCP3 in Toulouse) in Melbourne, Australia.

In 2008 I also did a tour of lectures in the East of USA, going fromNewYork to Buffalo
and back. Alexandre was doing a post-doc at CUNY with Arnold Koslow (Fig. 10). I
also went for 1 month on a mission of the Swiss Secretary of Education and Research in
India. I gave talks in Kanpur, Mumbai (where my friend Raja Natarajan works at the Tata
Institute of Fundamental Research), Chennai and stopped on the way to Varanasi, one of
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my favourite towns in India. This was my third visit to India after the first one on the way
to my SNF interview in Bern in 2001, and a second at a congress of artificial intelligence
in Pune in December 2005 (Fig. 11). After the congress in Pune I drove about 3000km up
to Goa then Hyderabad and back to Mumbai, spending about 2 weeks with Peter Arndt
walking and discussing on Goa’s beaches.

6 Back to the Land of the Future (2008–2014)

6.1 Honeylips Beach

My contract with SNF was ending July 31st 2008 and I did not know exactly what I would
do in the near future. In Switzerland there was no job. At some point in 2006, I started to
make some formal administration to be able to be a candidate in France. In this country,
if you want to apply for a job at a university you must first be “qualified” by a national
committee. This is a pre-selection that will tell you if you can apply for positions as assis-
tant professor or full professor, or for no positions at all. It is not easy and and you have to
apply in some specific sections. I applied to the philosophy section and mathematical sec-
tion for full professorship and was qualified for both. However, there were no interesting
positions open, so I did not apply. It is, in fact, not easy to find a position that corresponds
to what we are doing and I never wanted to apply to a permanent one in something outside
of my main research interest, i.e. logic.

I then received an invitation from my friend Tarcisio Pequeno for a 3-year research
position to work in Fortaleza, Brazil (Fig. 12). I think this was a nice proposal that would
allow me to go on with my research and apply for some jobs. Moreover, I like the state
of Ceara, of which Fortaleza is the capital. Due to some delay typical of Brazilian bureau-
cracy – in particular there was a problem in getting the visa to work there – I started to
work officially in Fortaleza only on October 1st, 2008. I had given up renting my flat in
Neuchâtel and with Catherine I spent some days in a camping near Neuchâtel, discovering
another aspect of Switzerland that I had not imagined: ordinary people living on campsite.
I did not succeed getting my visa at the Brazilian consulate in Geneva. At the beginning
of September we decided to go Portugal; this was the first step of 2000 km in the direction
of Brazil, and I had some contacts at the Brazilian consulate in Lisbon. I succeeded in
getting my visa there but I had to wait a couple of days. We decided to go to the Algarve,
South of Portugal.

At this time I started to develop my project of an anthology of universal logic. The idea
was to prepare a collection of logical papers of the 20th century in the spirit of universal
logic, with each paper commented by a specialist. I chose 15 papers and asked colleagues
to work on them. The book was finally released in 2012. The full title is Universal Logic:
An Anthology – From Paul Herz to Dov Gabbay. There was some delay due to copyright
issues. The preface of about 10 pages is a general presentation of what universal logic
is, explaining the choice of these 15 papers. Among them, there are five papers that were
translated into English for the first time: two that were originally in German by Paul Hertz
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Fig. 12 With Tarcisio Pequeno in Guaramiranga, Ceara, Brazil

and Paul Bernays and three that were originally in French by Alfred Tarski, Haskell Curry
and Jean Porte.

We finally moved to Fortaleza. There I started to work again in paraconsistent logic and
also took part in the international congress commemorating the 80th birthday of New-
ton da Costa in Campinas in September 2009. The work on paraconsistent logic that I
developed in Ceara is philosophical. I had always been unsatisfied with the existing philo-
sophical discussion surrounding paraconsistent logic, ambiguous praise or/and apology of
contradictions, remembering Mao Tse-tung’s 1937 essay, On contradiction. I now have
a clear idea of a serious philosophical approach that can justify paraconsistent logic. I
developed these ideas when I was in Fortaleza but up to now I have not had any time
to write this down, it will be developed in a projected paper entitled: “Cats, tigers and
stones”. The idea is that tigers are cats that are not cats. Big Cats, as we say in English,
are different from small domestic cats, which are the real cats. This is a typical exam-
ple interestingly expressed here by a scriptural variation of a capital letter, a “differance”
à la Derrida. For most concepts we can make a difference between “real things” and bor-
der cases. A general perspective of such border cases corresponding to “to be and not to
be” can be found through representation. A typical symbolic example is Magritte’s 1919
painting, The Treachery of Images, known also through what is written on it “Ceci n’est
pas une pipe” (This is not a pipe): we have a pipe which is not a pipe.

This approach combines well with the dual notion, that of paracomplete negation,
which is better known and more accepted. The idea is that, given a concept C, it is possible
for something to be neither C, nor non-C, because it is out of the scope of the concept.
For example, we can say that animals such as wolves, snakes, birds, etc., are not cats – but
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does it make sense to say that a stone is not a cat? The same with many notions such as
the number 4, a cell phone, the Soviet Union, etc., which are all in an incomplete zone
dual of the inconsistent zone. The idea is to construct a logic with a negation which is
both paraconsistent and paracomplete. Up to now it is not clear what a good mathematical
construction for that is.32

While in Fortaleza I went on to work on universal logic. I “crystalized”33 the similar-
ity between Garrettt Birkhoff’s approach to universal algebra and universal logic by the
expression “axiomatic emptiness”, and also developed the notion of anti-classical logic as
a typical example and motivation for axiomatic emptiness. I presented a talk about that at
the 6th Smirnov’s Readings in June 2009 in Moscow. I also worked hard to prepare the
3rd UNILOG in Portugal. The event took place between April, 18–25, 2010 in Estoril,
near Lisbon. Carlos Caleiro and his colleagues from IST in Lisbon did a great job, which
was nearly annihilated by the eruption of Eyjafjallajökull in Iceland. The eruption started
on April 14 and led to the strongest ever paralysation of air traffic in Europe. We were
afraid that we would have to cancel the event, to which we were expecting about 300 par-
ticipants. We succeeded, nevertheless, to organize the event with about 200 participants.
On the one hand, the eruption stopped and, on the other hand, many people succeeded to
come in one way or another. Some people came by train, bus or car.

Among them, the famous proof-theorist Gerhard Jaeger, who was one of our keynote
speakers. Facing this situation he decided to come by car from Bern, which is a driving
distance of about 2200km – to compare: the distance between New York and Miami is
about 2100km. I did not see his car, but as a German I guess he has a BMW, Mercedes or
Porsche, a comfortable and speedy car; nevertheless in France and Spain the speed on the
highway is limited, a situation which is different from Germany. Moreover, the eruption
did not affect direct flights from Brazil or USA to Portugal. Hintikka was able to join as
a secret speaker. It was nice to have him at UNILOG despite the fact that his project is
clearly opposed to universal logic, since he believes, like Ross Brady and Huacan He, in
the idea of a universal system of logic, which according to him is its own system IF.

During this period I also kept working on the square of opposition, in particular on
developing further applications. In October 2009 in Buenos Aires I presented applications
of the square and the hexagon to economy. I emphasized that, like in many other situ-
ations, the theory of opposition behind the square permits us to refine our thinking and
theories, going beyond dichotomies. I discussed the trichotomies buy-sell-rent and save-
spend-invest. In November 2009 I went to Corsica to prepare the Second World Congress
on the Square of Opposition, which took place June 17–20 in 2010 at the University of
Corsica Pasquale Paoli in Corte. This was probably the first time that a real international
congress was organized there with people from all over the world who had never been
to Corsica before, in particular Brazilians, like my friends Arthur Buchsbaum and Luiz
Carlos Pereira. They were very impressed by Corsica, and I was happy to introduce them

32 The expressions “paracomplete negation” and “paracomplete logic” were introduced by Newton da
Costa, by analogy to the expression “paraconsistent negation” and “paraconsistent logic” suggested to him
by Miró Quesada. Quesada suggested to him “non-alethic” for something which is both “paraconsistent”
and “paracomplete”. I have suggested “paranormal” for a good para–llelism.
33 This is a Frenchism: it means that various ideas or thoughts nicely take a specific form.
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to the place where I grew up. There are many tourists in Corsica during the summer, but
they are mostly from Europe.

Corte is a small town in the middle of the mountains and the atmosphere of the congress
was very relaxing. Michel Barat, the Rector of the Academy of Corsica, came and deliv-
ered an introductory speech. It was not just a few formal words but a whole lecture. He
is a philosopher and also a freemason who has been the great master of the Grande Loge
de France (GLDF). We tried to organize an artistic counterpart like at the first congress
in Montreux but we just ended up with some Corsican students singing some traditional
Corsican polyphonic music that was not inspired by the square. During this stay I discov-
ered by chance a Corsican band with a Portuguese/Spanish name – “A Primavera” (the
Spring) – mixing Corsican music and music from the Andes, which I liked very much.
This revealed to me a strong connection between Corsica and Peru.

During this time in Fortaleza I also worked with Catherine on the project of a movie
on living philosophers. My original idea was to make interviews of the most important
living philosophers (between 10 to 15 people). Catherine likes to work on films and joined
me on this project. In Fortaleza she was contracted by the FUNCAP (Cearense Science
Foundation) to do such work. We had already started this before arriving in Ceara, filming
in particular Jaakko Hintikka in Paraty. By developing the project, we changed the general
setting and decided to rather produce a series of movie by countries, a project that can be
called World Philosophy or/and Philosophy in the World. There are different reasons for
proceeding this way. One is that it is not at all clear who the 10 most important living
philosophers are, if there are any. The other reason is to present less known philosophers
from different countries and cultures. The project is developing slowly but I think at the
end it will be nice.

During this period in Fortaleza we produced a first movie about France, filming Alain
Badiou, François Laruelle and Jean-Luc Marion in their private homes during our visits
in Paris. In 2010 we went on a 1-month trip to Canada, from West to East, filming John
Woods in Vancouver and Thomas De Koninck in Quebec City. De Koninck is known to
have inspired Saint Exupéry for The Little Prince. The aviator was hosted by De Koninck
family when Thomas was a child and he was asking a lot of questions. Later, Thomas
De Koninck became Professor of Philosophy at the University of Laval in Quebec City.
Saint Exupéry is certainly very philosophical. I think the case of De Koninck perfectly
justifies the new direction of our project. De Koninck is not one of the 10 most important
philosophers in the world, but he is an important philosopher in Canada, certainly not as
well known abroad as he should be.

When I was in Fortaleza, a position opened up at the Federal University of Rio de
Janeiro in 2009. After reflection I decided to apply seriously. I was 44 years old and up to
this age had not had a permanent position. I knew that waiting more would make it more
difficult each time, but I was in some sense ready to face the challenge. In my life I always
have refused to choose a job for comfort. The reason I decided to apply to this position in
Rio is related to three criteria:

� Nice place to live
� Good position in a good university
� Interesting intellectual environment.
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Rio is one of best towns to live: it is geographically spectacular, a big international town,
one of the most famous cities in the world, in the middle of the sea, the forest and the
mountains.34 I had been working in different departments, but my preference was to be
a professor of logic in a philosophy department. This was exactly the position that was
offered, at the University of Brazil, a.k.a. the Federal University of Rio de Janeiro, or
UFRJ, the oldest and largest university in Brazil, which is considered one of the top three
universities in Brazil, and in all of Central and South America, along with USP in São
Paulo and UNICAMP in Campinas. The intellectual environment in Brazil is good for me
because this is one of the countries in the world where logic is the most developed, with
a variety of people from mathematical, philosophical and computer science backgrounds.
There is a Centre of Logic in Campinas (CLE), a Brazilian Society of Logic (SBL) and
a regular Brazilian Congress of Logic (EBL). I, therefore, applied for this position and was
selected in May 2009, but it took more than 1 year to be contracted and to start my work
in Rio due to some bureaucratic difficulties. Going back to Fortaleza from Rio de Janeiro
after the interview I had a serious problem swimming in the sea. In Fortaleza, we lived in
a flat by the sea, in “Praia de Iracema” (Honeylips Beach – Iracema is a legendary Indian
girl from the Tabajara tribe), with a 180-degree panoramic view. It was like we were at
the middle of the sea where dolphins were bathing. I went on swimming and was driven
by strong waves to some sharp rocks to which I tried to grip on, but which cut my skin. I
succeeded to get back to the beach bleeding. I still have some (not so dramatic) scars.

6.2 Flowing in the River of January

I started to work at the University of Brazil – UFRJ – in Rio de Janeiro in August 2010,
the second semester of the academic year. In Brazil the academic year is divided into
two semesters. The first one starts at the end of summer, i.e. after Carnival, sometime in
February, and goes up to early July, then there is a break of about 1 month, and then the
second semester goes until December. With a permanent position I started to give some
regular courses. In the Department of Philosophy of UFRJ there is an introduction to logic
class which is mandatory for undergraduate students and several optional classes of logic.

We are supposed to give two classes per semester. Generally, the first semester I give
“Introduction to Logic” and in the second semester an optional class which is a follow up.
Additionally, there is an optional class on logic and/or a graduate seminar each semester.
I really like giving the class on the introduction to logic. For me it is important to give
a very general vision of logic not limiting this class to some truth-tables, basic first-order
logic and translation of sentences of natural language into these logical systems. In this
perspective I wrote a paper “Logic is not logic” giving a general idea of what is logic and
emphasizing the difference between reasoning and the theory of reasoning that I have ex-
pressed by the a capital variation, one more “differance”. I also orient Master’s and PhD
theses. Brazilian students are friendly, they have a variety of interests, are open to new

34 For me the ten top cities in the world are: Rio de Janeiro, Geneva, Paris, St Petersburg, Rome, Lisbon,
San Francisco, London, Montréal and Athens.
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Fig. 13 With Peter Arndt in Regensburg, Germany, January 2012

ideas and are eager to learn. A couple of years ago the Brazilian government has launched
a very nice project called “Scientific Initiation” to encourage research already among un-
dergraduate students. The students can receive a grant to develop a research project, and
in all universities in Brazil there is an annual week of ‘Scientific Initiation”, where stu-
dents present their work and are evaluated by a jury. At Brazilian universities research
is also strongly encouraged among professors, who are not considered just teachers. The
Brazilian research council (CNPq) gives grants to this end.

Since 2010 I have been taking part in many conferences and have organized many
events. I was invited to different events, in particular: the Journées Alain Badiou in Paris,
the 70th birthday congress of Istvan Németi in Budapest, the 60th birthday congress of
Arnon Avron in Tel Aviv and the Vasiliev memorial congress in Moscow. In the winter of
2012 I took a tour of Germany, supported by the Humboldt Foundation, and gave more
than ten lectures throughout the whole country and also neighboring countries like Liecht-
enstein and Poland. I gave talks to philosophy departments, to mathematics departments
and to computer science departments. I met some old friends (like André Fuhrmann in
Frankfurt and Peter Arndt in Regensburg – Fig. 13) and made new ones – I was particu-
larly happy to give a talk in Darmstadt, a place related to Ernst Schröder.

Before going back to Brazil I went to Lebanon to prepare the 3rd World Congress on
the Square of Opposition at the American University of Beirut (AUB). I had contact there
with Ray Brassier, at the time Director of the Department of Philosophy of AUB (where
David Makinson had worked previously) and Wafic Sabra, the Director of the Center for
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Fig. 14 With Catherine Chantilly and João Ricardo Moderno, Rio de Janeiro in 2013

Advanced Mathematical Sciences of AUB, who had worked with David Bohm in London.
The event in Beirut was a great success. We received the support of the embassies of
Switzerland, France, Italy and Brazil. The Swiss Ambassador in Lebanon, Ruth Flint,
kindly offered a very nice Swiss cheese and wine cocktail party for the opening of the
event and the Brazilian Ambassador, Paulo Roberto Campos Tarrisse da Fontoura, also
offered a cocktail party for all participants at the Brazilian cultural center in Beirut35). He
was happy to learn that logic was an important field of research in Brazil.

In the autumn of 2012 I started to organize the 4th UNILOG, scheduled to take place
March–April, 2013, in Rio de Janeiro. This was an important step for the development
of UNILOG. It was the most successful of all UNILOGs, with nearly 500 participants,
50 invited speakers, many tutorials, including one about logic for the blind given the by
late Laurence Goldstein. And of course there was also a contest and a secret speaker (the
late Grisha Mints – he was not able to travel, but he presented an online lecture). For the
organisation we benefited from the full support and dedication of Katarzyna and her hus-
band Przemysław Krzywoszyński from Adam Mickiewicz University. The school started
with a general discussion about reasons for studying logic and ended with a discussion
about publication, to encourage young researchers to publish. There was also a good book
exhibition. The event was organized in a marvelous location at the foot of the Sugar Loaf.
We succeed in organizing it in a strategic military school there – ECEME – thanks to the
president of the Brazilian Academy of Philosophy (ABF), João RicardoModerno (Fig. 14).

I was elected titular member of this Academy in 2012 and shortly after I was named
Director of International Relations of ABF. In this position I presented the candidacy of
Rio de Janeiro to host the World Congress of Philosophy. I did that during the summer of
2013 at the 23rd World Congress of Philosophy in Athens. I was supported in particular
by Itala d’Ottaviano, representing the IBF (Brazilian Institute of Philosophy). We lost to
Beijing. The Chinese had already put in a bid once before and lost, so this was their turn.
During the assembly the members admitted that Rio would be nice. . . but next time. The
WCP take place in 2018 in Beijing (the frequency of WPC is once every 5 years) and

35 In Brazil there are many people from Lebanon and Syria. One of my Brazilian colleagues, Fabio Tfouni,
came to this square event with his parents and met relatives living in Syria.
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then most probably in 2023 in Rio. During the 23rd WCP in Athens, I also discussed with
the Honorary President of ASPLF (Association des Sociétés de Philosophie de Langue
Française), Jean Ferrari, who suggested that I organize a congress of ASPLF in Rio. At
this time the next ASPLF was already scheduled for August 2014 in Rabat, capital of the
Kingdom of Morocco. I went there to present the candidacy of Rio and I also presented
a plenary talk there, the topic being “Le possible et l’impossible”. At the assembly of
ASPLF in Rabat we discussed the candidacy of Rio de Janeiro and the idea is to organize
the congress of ASPLF in Rio in 2018.

While in Rio I launched, on the one hand, a new series of events, an annual 2-day
workshop at the Sorbonne called Logic in Question=La Logique en Question, and on the
other hand, a seminar of logic in Rio de Janeiro, Logica Carioca, trying to gather logicians
spread over the various universities in Rio (there are about ten universities in this city). I
also launched four new editorial projects: Cadernos de Lógica e Filosofia, SAJL = South
American Journal of Logic, Logic PhDs and the Encyclopaedia of Logic. Cadernos is
a book series published by College Publication, a publishing house of Dov Gabbay. The
idea is to translate some important works related to logic for undergraduate students and/or
a wide audience.

We will soon launch the translation of The Game of Logic by Lewis Carroll, a collection
of papers by Peirce and the translation of Tarski’s classical book Introduction to Logic
and the Methodology of Deductive Sciences. The idea of SAJL is to promote interaction
between logicians of all kinds in South America and to make their works known in the
rest of the world. This is a joint project with Marcelo Coniglio. We are preparing a special
issue dedicated to the Argentinian logician, Carlos Alchourrón. Logic PhDs is another
series with College Publication, were PhDs of famous logicians will be published.

The PhD of Haskell Curry presented by Jonathan Seldin (Curry wrote his PhD in Ger-
man and was the last student of Hilbert) and the “classical” PhD of Krister Segerbeg on
modal logic presented by Patrick Blackburn will be published soon. We will also publish
the PhD of Saunders MacLane (presented by Peter Arndt), which was on logic, as few
people know, and was also written in German and defended at Göttingen. In this series
we will additionally publish the best recent PhDs. The Encylopaedia of Logic is a joint
project with IEP = Internet Encyclopedia of Philosophy. Since August 2013 I have been
the logic area editor of IEP and with the support of the general editors of this web Ency-
clopedia, James Fiser and Bradley Dowden, and the general editor of College Publication,
Dov Gabbay, I also decided to produce a printed encyclopedic logic book.

In February 2014, together with Mihir Chakraborty, I organized the 5thWorld Congress
on Paraconsistency at the Indian Statistical Institute in Kolkata, in India. People in India
are starting to have a strong interest in paraconsistent logic. We decided to organize three
tutorials preceding the congress so as to give a better understanding of what paraconsistent
logic is. In May 2014, the 4th SQUARE took place at the Pontifical Laterian University
(PUL) in the Vatican. Raffaela Giovagnoli, professor at PUL, had made the proposal to or-
ganize the event there during the 3rd SQUARE in Beirut, and we received the full support
of Gianfranco Basti, Dean of the Faculty of Philosophy of PUL. Moreover, the Bishop
Enrico dal Covol, Rector of the Pontifical Lateran University, gave an introductory lecture
(in French) at the beginning of the event. Katarzyna Gan succeeded in organizing a cock-
tail party at the Polish Embassy in Vatican with the Ambassador Piotr Nowina-Konopka,
and Juliette Lemaire (with the support of Anne Hénault) organized a cocktail party at the
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Embassy of France in the Vatican with the Ambassador Bruno Joubert – this Embassy is
located in Villa Pauline Bonaparte, named after the sister of Napoleon.

During the world soccer cup in June 2014 our university in Rio was closed, so I took
the opportunity to make an extended trip to Europe through the Marie Curie exchange
program GeTFun (Generalizing Truth-Functionality) set up by Carlos Caleiro and João
Marcos. I did my first trip to Romania, where I visited my friend and colleague, also a GeT-
Funian, who lives in the very nice village of Sinaia. This is where the second International
Mathematical Olympiad was organized in 1960, the first also having been organized in
Romania, in 1959 in Brasov. Razvan won the Romanian Mathematical Olympiad when
he was young and is now researcher at Simion Stoilow Institute of Mathematics of the
Romanian Academy (IMAR) in Bucharest where I gave a talk and had the opportunity
to meet an old friend of Grigori Moisil. I went to the Vienna Summer of Logic where
we had the workshop GeTFun 2.0 and then to Greece where I was keynote speaker at
a workshop on Logic and Utopia on Andros Island organized by Petros Stefaneas and
Thalia Magioglou. I spent a few days in Athens, in particular to develop a good synergy
between UNILOG’2015 which is scheduled for June 20–30, 2015 in Istanbul and the 10th
Panhellenic Logic Symposium scheduled June 11–15, 2015 on Samos Island, the Greek
Island where Pythagoras was born.

7 Projects

7.1 Research and Publications

I will go on working on universal logic, the square of opposition and non-classical logics,
and also on various philosophical topics. To get an idea of what I plan to do, the reader
may look at my projected future papers and books that can be found in my list of writings
at the end of this chapter.

7.2 Organisation of Events

I think that workshops and congresses are very important. These are where people meet,
discuss ideas, and plant the seeds of future collaborations. I have taken part in many events,
and I constantly work to promote these kinds of exchanges.

To date I have launched three series of congresses:

� UNILOG World Congress and School on Universal Logic – a biennial or triennial
peripatetic event – Montreux 2005, Xi’an 2007, Lisbon 2010, Rio de Janeiro 2013,
Istanbul 2015

� SQUARE World Congress on the Square of Opposition – a biennial or triennial peri-
patetic event – Montreux 2007, Corsica 2010, Beirut 2012, Vatican 2014, Easter Island
2016

� LIQ Logic in Question / La Logique en Question – an annual 2-day workshop in the
spring at the Sorbonne, Paris, France
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Fig. 15 Square of Opposition event in Rapa Nui, aka Easter Island planned for 2016

The idea of UNILOG is to have a school followed by a congress. Moreover, during the
congress there is a contest and a secret speaker. UNILOG is an event that promotes logic
in all its aspects: philosophical, mathematical, computational, historical, and more. For the
next gathering, in Istanbul in 2015, we will have three types of tutorials: tutorials about
the history of logic (logic according to Aristotle, Leibniz, Kant, etc.), tutorials connecting
logic with other topics/fields (logic and music, logic and information, logic and colours,
etc.), and tutorials presenting an important theorem (incompleteness, completeness, com-
pactness, etc.) in a universal perspective, i.e. examining the logical basis of this theorem.
The contest will be about the future of logic and the secret speaker is still secret.

The idea of SQUARE is to have a really interdisciplinary event centred on a simple
but rich and fruitful logical theory, the theory of opposition, also known as “the square
of opposition”. The expression “square of opposition” may refer to a particular stage of
this theory, in particular Boethius’s formulation of it with an explicit square diagram.
However, the theory of opposition started with Pythagoras, Plato and Aristotle before
any notion of a square entered into it, and it has been further developed on the basis
of other diagrams: cubes, hexagons, polyhedra . . . The SQUARE is open to semiotics,
linguistics, psychology, psychoanalysis, art, architecture, sociology, etc. After starting the
first SQUARE inMontreux like the first UNILOG, we have organized the following square
events in some eccentric/unsual localities: Corsica, Beirut, the Vatican. Our idea is to go
on in that direction, and the next event is planned for Rapa Nui/Easter Island (Fig. 15).
The SQUARE may end on the moon.

LIQ is a bilingual workshop in Paris about logic in its diversity, to promote interaction
between anyone interested in logic in a wide sense, trying to answer some basic ques-
tions about the nature and importance of logic. I developed the idea of this workshop
together with Jean-Pierre Desclés, who for many years was the director of the Department
of Mathematics and Informatics at the University of Paris Sorbonne (Paris 4), Anca Pascu,
a former student of his, and Amirouche Moktefi, one of the best specialists in the logic
of Lewis Carroll. We had one workshop where we discussed the teaching of logic in high
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school. However, LIQ can also be topical, in the sense that it acknowledges and addresses
current events – such as, for example, the workshop in 2014, where we had a special panel
about Peirce, as it was the centenary of his death.

I am presently working with my colleague Ricardo Silvestre on the organisation of the
1st World Congress on Logic and Religion, to be held April 1–5, 2015 in João Pessoa,
Brazil. The connection between logic and religion is very strong, in many different ways.
The notion of logos figures in the Bible, where it is identified with God: “In the beginning
was the logos, and the logos was with God, and the logos was God”(John 1:1). In Chris-
tian culture, many “proofs” of God were proposed from Anselm to Gödel. In the other
main religions, reasoning is also important. I had planned to organize such an event when
I was in Switzerland. I wanted to organize it in Monte Verità, the “Hill of Truth”, located
near Ascona in Ticino, where a peculiar colony attracting many famous people was cre-
ated at the beginning of the 19th century. It is now a centre for congresses of all kinds
administrated by ETZ Zurich (the Swiss Federal Institute of Technology). This event in
João Pessoa will probably be the first in another successful series of itinerant international
events.

I am actively taking part in the organisation of two other series of events. The Brazilian
Congress of Logic (EBL) is organized by the Brazilian Society of Logic (SBL), of which
I am presently the vice-president. The 17th EBL was held in Petrópolis in 2014. The next
EBL is scheduled to take place in Pirenópolis, a nice bucolic village near Brasilia, in
2017. The World Congress of Paraconsistency (WCP) was staged in Ghent, Belgium in
1997 (WCP1); in Juquehy, Brazil in 2010 (WCP2); in Toulouse, France in 2003 (WCP3);
in Melbourne, Australia in 2008 (WCP4); and in Kolkata, India in 2014 (WCP5). I was
one of the principal organizers of WCP2, WCP3 and WCP5. The plan is to stage the next
one, WCP6, in Vancouver, Canada in 2016.

In Athens in 2013, during the 23rd World Congress of Philosophy, as the Director of
International Relations of the Brazilian Academy of Philosophy, I put forward the candi-
dacy of Rio de Janeiro to host a future staging of this event. The 24th congress will be
held in Beijing in 2018, and we are working on organizing the 25th edition in Rio in 2023.
Before that we intend to organize the 37th congress of ASPLF (Association des Sociétés
de Philosophie de Langue Française) in Rio de Janeiro in 2018.

7.3 Editorial Work

Up until now I have launched two logic journals: Logica Universalis (LU) and the South
American Journal of Logic (SAJL); and three book series: Studies in Universal Logic,
Logic PhDs, and Cadernos de Lógica e Filosofia. I will go on to develop these editorial
projects and develop new ones. I have the idea of developing a book series dedicated to
some specific logical systems: All about the Modal Logic S5, All about First-Order Logic
and All about Łukasiewicz’s Three-Valued Logic L3, etc. These books will include his-
torical, philosophical and mathematical accounts of these systems. I also intend in the
future to launch the World Journal of Pictorial Philosophy (WJPP), a journal of philoso-
phy mainly based on the use of images. The cover will be a picture of Plato’s cave.
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In the coming months I will devote a lot of energy to editing entries in the area of logic
for the Internet Encyclopedia of Philosophy, of which I am the present editor. In addition
to being on the web, these entries will also be gathered into a printed book to be titled
Encyclopaedia of Logic, the first ever encyclopedia of logic. To develop this project I have
divided the entries into three categories: history (main figures, schools and books), tools
(theorems, concepts, logical systems), and notions/topics (including the relation of logic
to other fields). Hundreds of entries are on the way. . .

I will also go on to develop the project of “World Philosophy” with Catherine Chantilly,
producing a series of DVDs, each dedicated to philosophers of a given country.

7.4 University of the World

Beyond my research in logic, I have the idea to promote the creation and development of
a world research center, which I prefer calling a “world university”, or better, a “univer-
sity of the world”. On the one hand, I firmly believe that research and teaching have to
be linked; so calling it a “research center” would not sufficiently emphasize the teaching
aspect, which is an essential component in my view. On the other hand, the word “univer-
sity” fits nicely because it is connected with universality and the universe.

Human beings, including academics, still behave in a very primitive way, close to trib-
alism. Groups fighting against groups, an “evolution” of cannibalism. I think the creation
of a world university could get us out of that. How, where and when? Those are elementary
but fundamental questions, which will be answered by actions promoted and undertaken
by people who are conscious of the limitations of tribe-centered activities. We can be
inspired by people who have already worked in that direction, like for example Julian
Huxley, brother of Aldous Huxley, who was the first director of UNESCO and also the
creator of the World Wide Fund for Nature (WWF). I already gave some preliminary hints
in my paper “Les universités face à la globalisation: vers une université mondiale?”, which
I presented at UNESCO in 2004.

8 Workshops and Events Organized

1. Logic in Rio de Janeiro, Rio de Janeiro, Brazil, February 17–18, 2000
2. 2nd World Congress on Paraconsistency, Juquehy, Brazil, May 8–10, 2000
3. Workshop on Paraconsistent Logic – Part of International Conference on Artificial

Intelligence IC-AI’2001, Las Vegas, USA, June 25–28, 2001
4. Foundations of Science Workshop dedicated to the 80th Birthday of Patrick Suppes,

Florianópolis, Brazil, April 22–23, 2002
5. 3rd World Congress on Paraconsistency, Toulouse, France, July 28–31, 2003
6. International Workshop on Universal Logic, Neuchâtel, Switzerland, October 6–8,

2003
7. 1st World Congress and School on Universal Logic UNILOG’05, Montreux, Switzer-

land, March 26–April 3, 2005
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8. Symbolic language – Interdisciplinary workshop on logic, semiotics, linguistics,
chemistry, physics, psychology, mathematics, philosophy, theology and art, Neuchâ-
tel, Switzerland, December 7–8, 2005

9. The Square of Opposition – A general framework for cognition, Montreux, Switzer-
land, June, 1–3, 2007

10. CombLog’07 – International Workshop on Combinations of Logics, Neuchâtel,
Switzerland, July 4th, 2007

11. 2nd World Congress and School on Universal Logic – UNILOG’07, Xian, China,
August, 16–22, 2007

12. Imagination – Interdisciplinary workshop on logic, semiotics, linguistics, chemistry,
physics, psychology, mathematics, philosophy, theology and art, Neuchâtel, Switzer-
land, December 17–18, 2007

13. Workshop with Saul Kripke, Neuchâtel, Switzerland, June 5, 2010
14. 3rd World Congress and School on Universal Logic – UNILOG’2010, Lisbon, Por-

tugal, April, 18–25, 2010
15. 2nd World Congress on the Square of Opposition, Corte, Corsica, June, 17–20, 2010
16. Workshop LIQ1 – Logic in Question 1, Sorbonne, Paris, May 2–3, 2011
17. Workshop LIQ2 – Logic in Question 2, Sorbonne, Paris, May 2–3, 2012
18. 3rd World Congress on the Square of Opposition, Beirut, Lebanon, July, 17–20, 2012
19. 4th World Congress and School on Universal Logic – UNILOG’2013, Rio de Janeiro,

Brazil, April, 18–25, 2013
20. Workshop LIQ3 – Logic in Question 3, Sorbonne, Paris, May 2–3, 2013
21. Workshop on Imagination at the 23th World Congress of Philosophy, Athens, August

4–10, 2013
22. 5th World Congress on Paraconsistency, Kolkata, India, February 13–17, 2014
23. 4th World Congress on the Square of Opposition, Vatican, May 5–9, 2014
24. Workshop LIQ4 – Logic in Question 4, Sorbonne, Paris, France, May 12–13, 2014
25. Workshop The Logic of Lewis Carroll, Federal University of Rio de Janeiro, Brazil,

November 28, 2014

9 Writings and Publications

9.1 University Writings

1. Beziau, J.-Y.: L’holomouvement selon David Bohm, Maîtrise de Philosophie,
Bernard d’Espagnat (Advisor), 150 p., Department of Philosophy, University Pan-
théon-Sorbonne, Paris (1986). This work includes a discussion I had with David
Bohm in London in July 1986.

2. Beziau, J.-Y.: Quels sont les moyens par lesquels on peut se convaincre soi-même (et
les autres) de la vérité des assertions concernant les ensembles?, 13p., Homework.
Maîtrise de Logique, Michel Eytan (Advisor), Department of Philosophy, University
Panthéon-Sorbonne (Paris 1), Paris (1988)
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3. Beziau, J.-Y.: D’une caverne à l’autre, 60 p., Diplôme d’Etudes Approfondies de
Logique et Fondements de l’Informatique, Sarah Kofman (Advisor), Department of
Philosophy, University Panthéon-Sorbonne (Paris 1), Paris (1988)

4. Beziau, J.-Y.: La logique paraconsistante C1 de Newton da Costa, 51 p., Diplôme
d’Etudes Approfondies de Logique et Fondements de l’Informatique, Daniel Andler
(Advisor), Department of Mathematics, University Denis Diderot (Paris 7), Paris
(1990)

5. Beziau, J.-Y.: Recherches sur la logique universelle (Excessivité, Négation, Sé-
quents), 176 p., Doctorat de Logique et Fondements de l’Informatique, Daniel
Andler (Advisor), Department of Mathematics, University Denis Diderot (Paris 7),
Paris (1995)

6. Beziau, J.-Y.: Sobre a verdade lógica, 200 p., Doutorado de Filosofia, Newton da
Costa (Advisor), Department of Philosophy, University of São Paulo (1996)

9.2 Papers

1. Beziau, J.-Y.: Calcul des séquents pour logique non-aléthique. Log. Anal. 125–126,
143–155 (1989)

2. Beziau, J.-Y.: Logiques construites suivant les méthodes de da Costa. Log. Anal.
131–132, 259–272 (1990)

3. Beziau, J.-Y.: Au sujet d’une preuve du principe de contradiction, 3 p., Vincennes,
France, unpublished (1991)

4. Beziau, J.-Y.: O princípio de razão suficiente e a lógica segundo Arthur Schopen-
hauer. In: Évora, F.R.R. (ed.) Século XIX : O Nascimento da Ciência Contem-
porânea, pp. 35–39. CLE-Unicamp, Campinas (1992)

5. da Costa, N.C.A., Beziau, J.-Y.: Carnot’s logic. Bull. Sect. Log. 22, 98–105 (1993)
6. Beziau, J.-Y.: La critique Schopenhauerienne de l’usage de la logique en mathéma-

tiques. O Que Nos Faz Pensar 7, 81–88 (1993)
7. Beziau, J.-Y.: Nouveaux résultats et nouveau regard sur la logique paraconsistante

C1. Log. Anal. 141–142, 45–58 (1993)
8. Beziau, J.-Y.: La logique abstraite au sein de la mathématique moderne. Ruch Filoz.

50, 289–293 (1993)
9. Beziau, J.-Y.: Sémantique universelle, 18 p., Champagne sur Seine, France, unpub-

lished (1994)
10. Beziau, J.-Y.: Théorie législative de la négation pure. Log. Anal. 147–148, 209–225

(1994)
11. Beziau, J.-Y.: Universal logic. In: Childers, T., Majer, O. (eds.) Logica’94 – Proceed-

ings of the 8th International Symposium, Prague, pp. 73–93 (1994)
12. da Costa, N.C.A., Beziau, J.-Y.: La théorie de la valuation en question. In: Abad, M.

(ed.) Proceedings of the Ninth Latin American Symposium on Mathematical Logic,
pp. 95–104. Universidad del Sur, Baíha Blanca (1994)

13. da Costa, N.C.A., Beziau, J.-Y.: Théorie de la valuation. Log. Anal. 146, 95–117
(1994)
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14. Beziau, J.-Y.: De la logique formelle à la logique abstraite. Bol. Soc. Parana. Mat.
14, 41–50 (1994)

15. Beziau, J.-Y.: Du Pont’s paradox and the problem of intensional logic. In: Kolar,
P., Svodoba, V. (eds.) Logica’93 – Proceedings of the 7th International Symposium,
Prague, 1994, pp. 62–65 (1994)

16. da Costa, N.C.A., Beziau, J.-Y., Bueno, O.A.S.: Paraconsistent logic in a historical
perspective. Log. Anal. 150–152, 111–125 (1995)

17. da Costa, N.C.A., Bueno, O.A.S., Beziau, J.-Y.: What is semantics?. Sorites 3, 43–47
(1995)

18. da Costa, N.C.A., Beziau, J.-Y., Bueno, O.A.S.: Aspects of paraconsistent logic.
Bull. Interest Group Pure Appl. Log. 4, 597–614 (1995)

19. Beziau, J.-Y.: Negation: what it is and what it is not. Bol. Soc. Parana. Mat. 15, 37–43
(1995)

20. da Costa, N.C.A., Beziau, J.-Y.: Théorie paraconsistante des ensembles. Log. Anal.
153–154, 51–67 (1996)

21. da Costa, N.C.A., Beziau, J.-Y., Bueno, O.A.S.: Malinowski and Suszko on many-
valued logics: On the reduction of many-valuedness to two-valuedness. Mod. Log.
6, 272–299 (1996)

22. Beziau, J.-Y.: Identity, logic and structure. Bull. Sect. Log. 25, 89–94 (1996)
23. Beziau, J.-Y.: Logic may be simple. Log. Log. Philos. 5, 129–147 (1997)
24. da Costa, N.C.A., Beziau, J.-Y.: Overclassical logic. Log. Anal. 157, 31–44 (1997)
25. Beziau, J.-Y.: What is many-valued logic?. In: Proceedings of the 27th International

Symposium on Multiple-Valued Logic, pp. 117–121. IEEE Computer Society, Los
Alamitos (1997)

26. Krause, D., Beziau, J.-Y.: Relativizations of the principle of identity. Log. J. Interest
Group Pure Appl. Log. 5, 327–338 (1997)

27. Beziau, J.-Y.: Do sentences have identity?. In: Proceedings of the XXth World
Congress of Philosophy. The Paideia Project, Boston (1998)

28. da Costa, N.C.A., Beziau, J.-Y.: Définitions, théories des objets et paraconsistance.
Theoria 32, 367–379 (1998)

29. Beziau, J.-Y.: Idempotent full paraconsistent negations are not algebraizable. Notre
Dame J. Form. Log. 39, 135–139 (1998)

30. Beziau, J.-Y.: Recherches sur la logique abstraite: les logiques normales. Acta Univ.
Wratislav. 18, 105–114 (1998)

31. Beziau, J.-Y.: Ruth Barcan Marcus est-elle la mère du fils de Wittgenstein? (Consid-
érations existentialistes sur la formule de Barcan). Manuscrito 22, 11–27 (1999)

32. Beziau, J.-Y.: A sequent calculus for Lukasiewicz’s three-valued logic based on
Suszko’s bivalent semantics. Bull. Sect. Log. 28, 89–97 (1999)

33. Beziau, J.-Y.: The future of paraconsistent logic. Log. Stud. 2, 1–28 (1999). Roma-
nian translation in Lucica, I., et al. (eds.) Ex falso qodlibet, pp. 159–181. Tehnica,
Bucarest (2004)

34. Beziau, J.-Y.: A logical analysis of singular terms. Sorites 10, 6–14 (1999)
35. Beziau, J.-Y.: Rules, derived rules, permissible rules and the various types of systems

of deduction. In: Haeusler, E.H., Pereira, L.C. (eds.) Proof, Types and Categories,
pp. 159–184. PUC, Rio de Janeiro (1999)
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36. Beziau, J.-Y.: The mathematical structure of logical syntax. In: Carnielli, W.A.,
D’Ottaviano, I.M.L. (eds.) Advances in Contemporary Logic and Computer Sci-
ence, pp. 1–17. American Mathematical Society, Providence (1999)

37. da Costa, N.C.A., Beziau, J.-Y.: La logique paraconsistante. In: Sallantin, J.,
Szczeciniarz, J.J. (eds.) La preuve à la lumière de l’intelligence artificielle, pp. 107–
115. Presses Universitaires de France, Paris (1999)

38. Beziau, J.-Y.: Was Frege wrong when identifying reference with truth-value?. Sorites
11, 15–23 (1999)

39. Beziau, J.-Y.: Classical negation can be expressed by one of its halves. Log. J. Inter-
est Group Pure Appl. Log. 7, 145–151 (1999)

40. Beziau, J.-Y.: La véritable portée du théorème de Lindenbaum-Asser. Log. Anal.
167–168, 341–359 (1999)

41. Beziau, J.-Y.: Y a-t-il des principes logiques?. In: Dutra, L.H., Mortari, C.A. (eds.)
Princípios Seu papel na filosofia e nas ciências, pp. 47–54. NEL, Federal University
of Santa Catarina, Florianópolis (2000)

42. Beziau, J.-Y.: What is paraconsistent logic?. In: Batens, D., et al. (eds.) Frontiers of
Paraconsistent Logic, pp. 95–111. Research Studies Press, Baldock (2000)

43. Beziau, J.-Y.: Sequents and bivaluations. Log. Anal. 44, 373–394 (2001)
44. Beziau, J.-Y.: The logic of confusion. In: Arabnia, H.R. (ed.) Proceedings of the

International Conference of Artificial Intelligence IC-AI2002, pp. 821–826. CSREA
Press, Las Vegas (2001)

45. Beziau, J.-Y.: From paraconsistent to universal logic. Sorites 12, 5–32 (2001)
46. Beziau, J.-Y.: What is classical propositional logic?. Log. Investig. 8, 266–277

(2001)
47. Beziau, J.-Y.: Possible worlds: a fashionable non-sense?. Unpublished (2001)
48. Beziau, J.-Y.: La théorie des ensembles et la théorie des catégories: présentation de

deux soeurs ennemies du point de vue de leurs relations avec les fondements des
mathématiques. Bol. Asoc. Mat. Venez. 9, 45–53 (2002)

49. Beziau, J.-Y.: The philosophical import of Polish logic. In: Talasiewicz, M. (ed.)
Methodology and Philosophy of Science at Warsaw University, pp. 109–124. Sem-
per, Warsaw (2002)

50. Beziau, J.-Y.: S5 is a paraconsistent logic and so is first-order classical logic. Log.
Investig. 9, 301–309 (2002)

51. Beziau, J.-Y.: Are paraconsistent negations negations?. In: Carnielli, W., et al. (eds.)
Paraconsistency: The Logical Way to the Inconsistent, pp. 465–486. Marcel Dekker,
New-York (2002)

52. Beziau, J.-Y.: New light on the square of oppositions and its nameless corner. Log.
Investig. 10, 218–232 (2003)

53. Beziau, J.-Y.: Quine on identity. Principia 7, 1–15 (2003)
54. Beziau, J.-Y.: Bivalence, exluded middle and non contradiction. In: Behounek, L.

(ed.) The Logica Yearbook 2003, pp. 73–84. Academy of Sciences, Prague (2003)
55. Beziau, J.-Y.: A paradox in the combination of logics. In: Carnielli, W.A., Dionisio,

F.M., Mateus, P. (eds.) Workshop on Combination of Logics: Theory and Applica-
tions, pp. 75–78. IST, Lisbon (2004)
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56. Suppes, P., Beziau, J.-Y.: Semantic computation of truth based on associations al-
ready learned. J. Appl. Log. 2, 457–467 (2004)

57. da Costa, N.C.A., Beziau, J.-Y., Bueno, O.A.S.: On the usefulness of paraconsistent
logic. In: Vanderveken, D. (ed.) Logic, Thought and Action. Logic, Epistemology,
and the Unity of Science, pp. 465–478. Springer (2005)

58. Beziau, J.-Y.: Le château de la quantification et ses fantômes démasqués. In: Joray,
P. (ed.) La quantification dans la logique moderne, pp. 211–232. L’Harmattan, Paris
(2005)

59. Beziau, J.-Y.: Paraconsistent logic from a modal viewpoint. J. Appl. Log. 3, 7–14
(2005)

60. Beziau, J.-Y.: Les universités face à la globalisation : vers une université mondiale ?
In: UNESCO Philosophical Day 2004, pp. 207–222. UNESCO, Paris (2006)

61. Beziau, J.-Y.: Universal Logic in 13 questions. Bull. Sect. Log. 25, 133–150 (2006)
62. Beziau, J.-Y.: The paraconsistent logic Z. A possible solution to Jaskowski’s prob-

lem. Log. Log. Philos. 15, 199–211 (2006)
63. Beziau, J.-Y.: Transitivity and paradoxes. In: Skilters, J. (ed.) The Baltic International

Yearbook of Cognition, Logic and Communication, pp. 207–211. University of Riga,
Riga (2006)

64. Beziau, J.-Y.: Les axiomes de Tarski. In: Pouivet, R., Rebuschi, M. (eds.) La philoso-
phie en Pologne 1918–1939, pp. 135–149. Vrin, Paris (2006)

65. Beziau, J.-Y.: Many-valued and Kripke semantics. In: van Benthem, J., et al. (eds.)
The age of alternative logics, pp. 89–101. Springer (2006)

66. Beziau, J.-Y.: Sentence, Proposition and Identity. Synthese 154, 371–38 (2007)
67. Beziau, J.-Y.: Adventures in the paraconsistent jungle. In: Handbook of Paraconsis-

tency. College Publication, London (2007)
68. Beziau, J.-Y.: Mystérieuse identitée. Le même et l’autre, identité et différence –

Actes du XXXIe Congrès International de l’ASPLF, Eotvos, Budapest, 2009,
pp. 159–162 (2009)

69. Beziau, J.-Y.: What is ‘formal logic’?. In: Myung-Hyun-Lee (ed.) Proceedings of
the XXII World Congress of Philosophy, vol. 13, pp. 9–22. Korean Philosophical
Association, Seoul (2008)

70. Beziau, J.-Y.: Bivalent semantics for De Morgan logic (the uselessness of four-
valuedness). In: Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M.L. (eds.) The
Many Sides of Logic, pp. 391–402. College, London (2009)

71. Beziau, J.-Y.: Synopsis of Robert Blanché, ‘Sur le système des connecteurs inter-
propositionnels’ [‘On the System of Interpropositional Connectors’]. http://cahiers.
kingston.ac.uk/synopses/syn10.7.html

72. Beziau, J.-Y.: Biconditional drive to paradox. Rev. Bras. Filos. 233, 196–201 (2009)
73. Beziau, J.-Y.: What is a logic? – Towards axiomatic emptiness. Log. Investig. 16,

272–279 (2010)
74. Beziau, J.-Y., Chantilly, C.: Salomé multi-screen. In: Sobieczszanski, M., Masoni-

Lacroix, C. From Split-screen to Multi-screen, pp. 319–326. Peter Lang, Bern (2010)
75. Beziau, J.-Y.: What is a possible world?. In: Imaguire, G., Jacquette, D. (eds.) Possi-

ble Worlds. Philosophia Verlag, Munich (2010)

http://cahiers.kingston.ac.uk/synopses/syn10.7.html
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76. Beziau, J.-Y.: Rougier: Logique et Métaphysique. In: Murray, D.G. (ed.) 4th World
Conference onMetaphysics, pp. 464–472. Fondation Ortega y Gasset, Madrid (2010)

77. Beziau, J.-Y.: Truth as a mathematical object. Principia 14, 31–6 (2010)
78. Beziau, J.-Y.: Logic is not logic. Abstracta 6, 73–102 (2010)
79. Beziau, J.-Y., Kritz, M.V.: Théorie et Modèle I: Point de vue général et abstrait.

Cadernos UFS Filos. 6, 9–17 (2010)
80. Beziau, J.-Y., Coniglio, M.E.: To distribute or not to distribute?. Log. J. Interest

Group Pure Appl. Log. 19, 566–583 (2011)
81. Pequeno, T., Beziau, J.-Y.: Rules of the game. In: Beziau, J.-Y., Coniglio, M.E. (eds.)

Logic Without Frontiers, pp. 131–144. College Publication, London (2011)
82. Beziau, J.-Y.: Badiou et les modèles. In: Vodoz, I., Tarby, F. (eds.) Autour d’Alain

Badiou. Germina, Paris (2011)
83. Beziau, J.-Y.: A new four-valued approach to modal logic. Log. Anal. 54, 18–33

(2011)
84. Beziau, J.-Y.: Pure alethic modal logic. Coginitio 13, 25–36 (2012)
85. Beziau, J.-Y.: The power of the hexagon. Log. Univers. 6, 1–43 (2012)
86. Kritz, M.V., Beziau, J.-Y.: Théorie et Modèle II: Sciences empiriques. Cadernos UFS

Filos. 8, (2012)
87. Beziau, J.-Y.: La logique universelle. De la logique moderne à la logique post-

moderne. In: Schmid, A.-F. Epistémologie des frontières, pp. 30–59. Pt́ra, Paris
(2012)

88. Beziau, J.-Y.: The new rising of the square of opposition. In: Beziau, J.-Y., Jacquette,
D. (eds.) Around and Beyond the Square of Opposition, pp. 6–24. Birkhäuser, Basel
(2012)

89. Beziau, J.-Y.: History of truth-values. In: Gabbay, D.M., Woods, J. (eds.) Handbook
of the History of Logic, Vol. 11 – Logic: a history of its central concepts, pp. 233–
305. Elsevier, Amsterdam (2012)

90. Beziau, J.-Y.: Paralogics and the theory of valuation. In: Universal Logic: An An-
thology – From Paul Hertz to Dov Gabbay, pp. 361–372. Birkhäuser, Basel (2012)

91. Beziau, J.-Y.: Les modèles selon Alain Badiou. Al Mukhatabat 1/3, 251–305 (2012)
92. Beziau, J.-Y.: Preface of Universal Logic: An Anthology – From Paul Hertz to Dov

Gabbay, pp. v–xii. Birkhäuser, Basel (2012)
93. Beziau, J.-Y.: The metalogical hexagon of opposition. Argumentos 10, 111–122

(2013)
94. Beziau, J.-Y.: Three Sisters: Philosophy, Mathematics and Logic. In: Nabais, N.,

Pombo, O. (eds.) O lugar da Filosofia da Ciência na Universidade de Lisboa,
pp. 171–191. CFCUL, University of Lisbon (2013)

95. Beziau, J.-Y.: Opposition and order. In: Beziau, J.-Y., Gan-Krzywoszynska, K. (eds.)
New Dimensions of the Square of Opposition, pp. 321–336. Philosophia Verlag,
Munich (2014)

96. Beziau, J.-Y.: The relativity and universality of logic. Synthese – Special Issue Istvan
Németi 70th Birthday, on-line first March 2014 (2014)

97. Beziau, J.-Y.: Paraconsistent logic and contradictory viewpoints. Rev. Bras. Filos.
241 (2014)
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98. Beziau, J.-Y.: Linguistica et Logica Acta. In: Mathieu, N., Schmid, A.-F. (eds.) Mod-
élisation et Interdisciplinarité – Six Disciplines en Quête d’Épistémologie. Quae,
Versailles (2014)

99. Beziau, J.-Y., Buchsbaum, A.: Let us be antilogical: Anti-classical logic as a logic.
In: Moktefi, A., Moretti, A., Schang, F. (eds.) Let us be Logical. College Publication,
London (2015)

100. Beziau, J.-Y.: Is modern logic non-Aristotelian?. In: Zaitsev, D. (ed.) Nikolai
Vasiliev’s Logical Legacy and Modern Logic. Springer, Heidelberg (2015)

101. Beziau, J.-Y.: Le possible et l’impossible, au-delà de la dichotomie. In: Ferrari, J.,
et al. (eds.) Actes du 35 ème Congrès de l’ASPLF – Association des Sociétés de
Philosophie de Langue Francçaise. Vrin, Paris (2015)

102. Beziau, J.-Y., Franceschetto, A.: Strong three-valued paraconsistent logics. In:
Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent
Logic. Springer, New Delhi (2015)

103. Beziau, J.-Y.: Modelization of causality. In: Beziau, J.-Y., Krause, D., Arenhart, J.
(eds.) Conceptual Clarifications. Festschrift for Patrick Suppes on the Occasion of
his 90th Birthday. College Publication, London (2015)

104. Beziau, J.-Y.: Possible worlds: a fashionable nonsense?, 10 p., unpublished, Stanford
(2001)

105. Beziau, J.-Y.: Identification of identity, 8 p., unpublished, Neuchâtel (2008)

9.3 Edited Books

1. Arabnia, H.R., Beziau, J.Y., et al. (eds.) Proceedings of IC-AI’2001 (International
Conference on Artificial Intelligence). CSREA Press, Las Vegas (2001)

2. Beziau, J.-Y., Costa Leite, A., Facchini, A. (eds.) Aspects of Universal Logic. Uni-
versity of Neuchâtel, Neuchâtel (2004)

3. J.-Y. Beziau (ed.): Logica Universalis. Birkhäuser, Basel (2005), second edition
(2007)

4. Beziau, J.-Y., Costa Leite, A. (eds.): Perspectives on Universal Logic, Polimetrica,
Monza (2006)

5. Beziau, J.-Y., Carnielli, W.A., Gabbay, D.M. (eds.): Handbook of Paraconsistency.
King’s College, London (2007)

6. Beziau, J.-Y., Costa Leite, A. (eds.): Dimensions of Logical Concepts. CLE, Camp-
inas (2009)

7. Beziau, J.-Y., Payette, G. (eds.): New Perspectives on the Square of Opposition. Peter
Lang, Bern (2011)

8. Beziau, J.-Y. (ed.): Anthology of Universal Logic – From Paul Hertz to Dov Gabbay.
Birkhäuser, Basel (2012)

9. Beziau, J.-Y., Coniglio, M.E. (eds.): Logic without Frontiers. Festschrift for Walter
Alexandre Carnielli on the Occasion of his 60th Birthday. College Publication (2011)



98 J.-Y. Béziau

10. Beziau, J.-Y., Jacquette, D. (eds.): Beyond and Around the Square of Opposition.
Springer Lang, Bern (2012)

11. Beziau, J.-Y., Gan-Krzywoszynska, K. (eds.): New Dimensions of the Square of Op-
position. Philosophia Verlag, Munich (2014)

12. Beziau, J.-Y. (ed.): La Pointure du Symbole. Petra, Paris (2014)
13. Beziau, J.-Y., Krause, D., Arenhart, J. (eds.): Conceptual Clarifications. Festschrift

for Patrick Suppes on the Occasion of his 90th Birthday. College Publication, Lon-
don (2015)

14. Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.): New Directions in Paraconsistent
Logic. Springer, New Delhi (2015)

15. J.-Y. Beziau (ed.): Encyclopaedia of Logic. College Publication, London (2015)

9.4 Edited Special Issues of Journals

1. Beziau, J.-Y., Doria, F.A. (eds.): Contemporary Brazilian Research in Logic Part I.
Log. Anal. 153–154 (1996)

2. Beziau, J.-Y., Tsuji, M. (eds.): Contemporary Brazilian Research in Logic Part II.
Log. Anal. 157 (1997)

3. Beziau, J.-Y.: The Challenge of combining logics. Log. J. Interest Group Pure Appl.
Log. 19 (2011)

4. Beziau, J.-Y., Krause, D. (eds.): New trends in the foundations of science. Synthese
154(3) (2007)

5. Beziau, J.-Y., Costa Leite, A. (eds): Uses of non-classical logics: foundational issues.
J. Apppl. Non-Class. Log. 21 (2011)

6. Beziau, J.-Y., Read, S. (eds.): The square of opposition in historical perspective. Hist.
Philos. Log. (2014)

9.5 Books

1. da Costa, N.C.A., Beziau, J.Y., Bueno, O.A.S.: Elementos de Teoria Paraconsistente
dos conjuntos. CLE, Campinas (1998)

2. Beziau, J.-Y.: Tendances actuelles de la philosophie – Tendências Atuais da Filosofia.
Nefelibata, Florianópolis (2003)

9.6 Translation

1. Translation of the bookEnsaio sobre os Fundamentos da Lógica by Newton da Costa
in French: Logiques Classiques et non Classiques, with a Preface and two Appen-
dices by the translator. Masson, Paris (1997)
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9.7 Reviews

1. Anellis, I.H.: Logic and its history in the work and writings of J. van Heijenoort,
published in Mod. Log. 8, 105–117 (2000)

2. Peirce, C.S.: Chance, Love and Logic. Bison Books (1998). Review published in:
Mitcham, C. (ed.) Metaphysics, Epistemology and Technology, pp. 395–397. Else-
vier, New York (2000)

3. Grattan-Guinness, I.: The search for mathematical roots, published in Rev. Mod.
Log. 10, 135–138 (2005)

4. Brady, G.: From Peirce to Skolem. A neglected chapter in the history of logic, pub-
lished in Rev. Mod. Log. 11, 155–161 (2007)

5. Odintsov, S.: Constructive Negation and Paraconsistency, published in Stud. Log.
100, 653–65 (2012)

6. Shramko, Y., Wansing, H.: Truth and Falsehood. An inquiry into generalized logical
values, published in Stud. Log. 102, 1079–1085 (2014)

I have also written about 100 reviews forMathematical Reviews.

9.8 Future Papers

All these papers are at a stage of gestation, the birth of each will depend on circumstances.
Some will perhaps never be born, and others, not in this list, may appear.

9.8.1 Square of Opposition

1. Beziau, J.-Y.: “The two dualities a priori/a posteriori and synthetic/analytic in
a hexagonal perspective”

2. Beziau, J.-Y.: “A semiotic hexagon”
3. Beziau, J.-Y.: “Incompatibility”
4. Beziau, J.-Y.: “Beyond dichotomy”
5. Beziau, J.-Y.: “The logic of traffic sign”
6. Beziau, J.-Y.: “Square and hexagon of causality”
7. Beziau, J.-Y.: “A triangle of ways of reasoning: induction, deduction, abduction”

9.8.2 Paraconsistency and negation

1. Beziau, J.-Y.: “Round squares are no contradictions”
2. Beziau, J.-Y.: “Abstract theory of negation”
3. Beziau, J.-Y.: “Two formulations/formalizations of the principle of non-contraction”
4. Beziau, J.-Y.: “What is paracomplete logic?”
5. Beziau, J.-Y.: “Cats, tigers and stones”
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6. Beziau, J.-Y.: “Absurdity, triviality, nonsense, contradiction”
7. Beziau, J.-Y.: “Identity and contradiction”
8. Beziau, J.-Y.: “Disjunctive syllogism and paraconsistency”
9. Beziau, J.-Y.: “Conditional negation”
10. da Costa, N.C.A. and Beziau, J.-Y.: “Is god paraconsistent?”
11. Beziau, J.-Y.: “Philosophical aspects of the paraconsistent logic Z”

9.8.3 Order Logic

1. Beziau, J.-Y.: “What is zero-order logic?”
2. Beziau, J.-Y.: “The philosophy of first-order logic”
3. Beziau, J.-Y., Viana, P.: “Third-order logic”
4. Beziau, J.-Y.: “Undetermined constants, variables, parameters”

9.8.4 Philosophy of Logic/Logical Philosophy

1. Beziau, J.-Y.: “How to define logic”
2. Beziau, J.-Y.: “Logic: past, present and future”
3. Beziau, J.-Y., Carnielli, W.A.: “Names of logic”
4. Beziau, J.-Y.: “The identity sign”
5. Beziau, J.-Y.: “What is modal logic?”
6. Beziau, J.-Y.: “What is constructivism?”
7. Beziau, J.-Y.: “Non-transitive logics”
8. Beziau, J.-Y.: “What is a propositional function?”
9. Beziau, J.-Y.: “What is a propositional variable”
10. Beziau, J.-Y.: “Philosophy of logic, philosophical logic and logical philosophy”
11. Beziau, J.-Y.: “Logic, reasoning and rationality”
12. Beziau, J.-Y.: “Three notions of contingency”
13. Beziau, J.-Y.: “Peirce’s law: its meaning and behaviour”
14. Beziau, J.-Y.: “The ambiguity of quotation marks”
15. Beziau, J.-Y.: “Panorama de l’identité”
16. Beziau, J.-Y., Marcos, J.: “What is non truth-functional logic?”
17. Beziau, J.-Y.: “What is positive propositional logic?”

9.8.5 History of Logic

1. Beziau, J.-Y., Buchsbaum, A.: “Adventures of the turnstyle”
2. Beziau, J.-Y., Hudry, J.L.: “All men are white”
3. Beziau, J.-Y.: “The origin of classical logic”
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9.8.6 Universal Logic

1. Beziau, J.-Y.: “The completeness theorem in a universal logic perspective”
2. Beziau, J.-Y.: “The incompleteness theorem in a universal logic perspective”
3. Beziau, J.-Y.: “Logics and theories”
4. Beziau, J.-Y.: “Absolute maximality”
5. Beziau, J.-Y., Sernadas, A.: “Combining disjunction with negation”
6. Beziau, J.-Y, Caleiro. C.: “Non truth-functional extensions of truth-functional logics”
7. Beziau, J.-Y.: “Bivalence and modality”

9.8.7 Language, Thought and Reality

1. Beziau, J.-Y.: “Exemplifying an idea”
2. Beziau, J.-Y.: “Word, idea and reality”
3. Beziau, J.-Y.: “Descriptive and normative”
4. Beziau, J.-Y.: “Islands and clouds”
5. Beziau, J.-Y.: “What is a category?”
6. Beziau, J.-Y.: “Imagination, conceptualization and possibility”
7. Beziau, J.-Y.: “Rationality and representation”
8. Beziau, J.-Y., Chantilly, C., Lihoreau, F.: “Sensation, feeling and emotion”
9. Beziau, J.-Y.: “Dices, hazardous symbol of chance”
10. Beziau, J.-Y.: “Symbolically typical”
11. Beziau, J.-Y.: “Aspects of structuralism”

9.8.8 General Philosophy

1. Beziau, J.-Y.: “Three definitions of human beings”
2. Beziau, J.-Y.: “Rodin’s thinker: a symbol for philosophy?”
3. Beziau, J.-Y.: “Rational animals”
4. Beziau, J.-Y.: “Control Z”
5. Beziau, J.-Y.: “Death in 5 lessons”

9.9 Future Books

9.9.1 Edited Books

1. Beziau, J.-Y. (ed.): Anthology of Paracaconstent Logic
2. Beziau, J.-Y. (ed.): Anthology of Modal Logic
3. Beziau, J.-Y. (ed.): Anthology of Many-valued Logic
4. Beziau, J.-Y., Moktefi, A. (eds.): Conceptions of Logic through History
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9.9.2 Monographs

1. Beziau, J.-Y.: Logic Compendium
2. Beziau, J.-Y.: An Introduction to Universal Logic
3. Beziau, J.-Y.: Beyond Dichotomy
4. Beziau, J.-Y., Costa-Leite, A.: A Panoramic Introduction to Paraconsistent Logic
5. da Costa, N.C.A., Beziau, J.-Y.: The World of Possible Logics

References

1. Andler, D.: Models of uncountable theories categorical in power. PhD, University of California,
Berkeley (1973)

2. de Azevedo, A.: Grothendieck no Brasil. Rev. Mat. Univ. 44, 39–49 (2008)
3. van Benthem, J.F.K., et al. (eds.): The Age of Alternative Logics. Springer, Dordrecht (2006)
4. Blanché, R.: Structures intellectuelles. Essai sur l’Organisation Systématique des Concepts. Vrin,

Paris (1966)
5. Bohm, D.: Wholeness and the Implicate Order. Routlege, London (1980)
6. Cori, R., Lascar, D.: Logique Mathématique, Volume I et II. Masson, Paris, (1993). English transla-

tion: Mathematical Logic. A course with Exercices, Volume I and II, Oxford University Press, Oxford
(2000)

7. da Costa, N.C.A.: Ensaio sobre os Fundamentos da Lógica. Hucitec, São Paulo, (1980). French Trans-
lation: Logiques Classiques et Non Classiques. Masson, Paris (1997)

8. Couturat, L.: La Logique de Leibniz. D’après des Documents Inédits. Alcan, Paris (1901)
9. Couturat, L.: Histoire de la langue universelle. Hachette, Paris (1903)
10. Couturat, L.: L’Algèbre de la logique. Gauthier-Villars, Paris (1905)
11. Eisenberg, M.: Axiomatic Theory of Sets and Classes. Holt, Rinehart and Winston, New York (1971)
12. Feferman, A.B.: Politics Logic and Love. The Life of Jean Van Heijenoort. Jones and Bartlett, Boston

(1993)



Logical Autobiography 50 103

13. Feferman, A.B.: Jean van Heijenoort: Kaleidoscope. Log. Univers. Special Issue: Perspectives on the
History and Philosophy of Modern Logic: Van Heijenoort Centenary, ed. by I.H. Anellis, 6, 277–291
(2013)

14. Feferman, S., Feferman, A.B.: Tarski: Life and Logic. Cambridge University Press, Cambridge (2004)
15. Fraisse, R.: La zérologie: une recherche aux frontières de la logique et de l’art: applications à la

logique des relations de base vide. Int. Log. Rev. 26, 67–29 (1982)
16. Frege, G. (ed.): Philosophical and Mathematical Correspondence, Gabriel Hermes, Kambartek, Thiel

and Veraart, University of Chicago Press, Chicago (1980)
17. Frutiger, A.: Signs and Symbols, Their Design and Meaning. Van Nostrand Reinhold, New York

(1989)
18. Grana, N.: Sulla teoria delle valuazioni di N. C.A. da Costa. Liguori, Naples (1990)
19. Grothendieck, A.: Récoltes et Semailles – Réflexions et témoignage sur un passé de mathématicien.

Unpublished
20. Grothendieck, A.: La nouvelle église universelle. Pourquoi les mathématiques, pp. 11–35. UGE, Paris

(1974)
21. Guillaume, M.: Regard en arrière sur quinze années de coopération douce avec l’école brésilienne de

logique paraconsistante. Log. Anal. 39, 6–14 (1996)
22. Halmos, P.R.: I Want To Be a Mathematician. An Automathography. Springer, Berlin (1985)
23. Halmos, P.R.: How to write Mathematics. L’Enseignement Mathématique 16, 123–152 (1970)
24. Heisenberg, W.: Der Teil und das Ganze. Gespräche im Umkreis der Atomphysik. R. Piper, Munich

(1969)
25. Henkin, L., Suppes, P. and Tarski, A. (eds.).: The axiomatic method with special reference to geometry

and physics. Proceedings of an international symposium held at the University of California, Berkeley,
December 16, 1957–January 4, 1958. North-Holland, Amsterdam (1958)

26. Jung, C.G.: Memories, Dreams, Reflections. Pantheon book, New York (1963)
27. Kant, I.: Logik. (1800)
28. Kofman, S.: Comment s’en Sortir? Galilée, Paris (1983)
29. Le Lionnais, F.: Les Grands Courants de la Pensée Mathématique. Cahiers du Sud, Marseilles (1948)
30. Lévi-Strauss, C.: Tristes Tropiques. Plon, Paris (1955)
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to Logical Consequence
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Abstract In this chapter, we propose a definition of logical consequence based on the
relation between the quantity of information present in a particular set of formulae and
a particular formula. As a starting point, we use Shannon’s quantitative notion of infor-
mation, founded on the concepts of logarithmic function and probability value. We first
consider some of the basic elements of an axiomatic probability theory, and then con-
struct a probabilistic semantics for languages of classical propositional logic. We define
the quantity of information for the formulae of these languages and introduce the concept
of informational logical consequence, identifying some important results; among them
certain arguments that have traditionally been considered valid, such as modus ponens,
are not valid from the informational perspective; the logic underlying informational logi-
cal consequence is not classical, and is at the least paraconsistent sensu lato; informational
logical consequence is not a Tarskian logical consequence.

Keywords Logical consequence, Information, Probability, Semantics, Informational log-
ical consequence, Nonclassical logics, Paraconsistent logic
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1 Introduction

Logical consequence can be considered in different ways. In intuitive terms, it is often
understood as a relation established between a given set of statements of a language and
a statement of the same language. In logic, it is common to define it in a way that is
close to intuitive, for example, as a type of relation between elements of the power-set
of a nonempty set, as done by Feitosa and D’Ottaviano (2004), among others. In this
sense, logical consequência is as a relation between a given set (which could be empty
or even infinite) of formulae of a language (usually formal), and a formula of the same
language. The statements or formulae belonging to the given set are termed premises, and
the other statement or formula is termed the conclusion. The role of the premises is to
found, sustain, and support the conclusion.

In the 1930s, Tarski [19–22] introduced and improved his definition of consequence
operator, or logical consequence, and proved the fundamental properties of it (cf. [2]).
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In Tarskian terms, given the language L of the (classical) propositional calculus, a con-
sequence operator on the set of formulae of L, Form(L), is a function C : }(Form(L))
! }(Form(L)) such that, for all � , � � Form.L/, it satisfies the following properties:

(T1) � � C.� /;
(T2) If � � �, then C.� / � C.�/;
(T3) C.C.� // � C.� /.

The first property above is named reflexivity; the second is named monotonicity, and
the third property is named transitivity. A logical consequence operator that satisfies these
properties is usually named a Tarskian logical consequence.

When suitably combined in a sequence, the set of premises and the conclusion consti-
tute an argument. We can say that a conclusion is logical consequence of a set of premises
if, and only if, the argument constituted by the union is logically valid, or simply valid.

In semantic terms, the relation of consequence is usually defined starting from the
degree of truth of the premises and conclusion: a formula is a logical consequence of
a given set of formulae if, and only if, it is true under all circumstances (e.g., valuation,
structure, interpretation, and model), such that all the premises are true.

In this chapter, we propose a definition of logical consequence based on the quantity of
information present in the set of premises and in the conclusion. As a starting point, we
use the usual languages of classical propositional logic (CPL), as constructed by Shoen-
field [18], for example.

In our theoretical approach to logical consequence, we do not consider the qualitative
semantic aspects of information, considered in works such as those of Dretske [7] and
Gonzalez [9]. In our case, the informational value of a message or a formula depends only
on its probability of occurrence, established using probability space. In the next section,
we consider some elements of a usual axiomatic theory of probabilities, indicating some
of its definitions and basic results, which will be used later; these concepts include the
notions of event and random experiment.

In Sect. 3, we construct a probabilistic semantics for CPL; we establish a relation be-
tween the formulae of the CPL language and the events of a random experiment, from
which we define a probability value for each formula of a given language. At the end
of the section, we introduce the definitions of probabilistically valid and probabilistically
equivalent formulae, and of probabilistic logical consequence.

In Sect. 4, we discuss the notion of quantity of information present in a formula of
a CPL language; we propose a quantitative-informational definition of logical conse-
quence, which we call informational logical consequence, and we demonstrate some of
the results and properties that follow from this definition. In particular, we show the ex-
istence of arguments which are considered valid according to the classical perspective,
but which are invalid from the informational perspective. For example, modus ponens is
informationally invalid, given the possibility that the conclusion of this argument could
possess a greater quantity of information than its set of premises. Furthermore, we show
that the logic underlying informational logical consequence is not classical, but is, at the
least, paraconsistent sensu lato. In addition, we demonstrate that although it might sat-
isfy the property of transitivity, informational logical consequence is neither reflexive nor
monotonic; in other words, it is not a Tarskian logical consequence.
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In the final considerations, we summarize and analyze the main properties and results
of informational logical consequence.

Our approach is based on the quantitative concept of information, developed in the
Mathematical Theory of Communication. One of the pioneers in studies of the quantifica-
tion, storage, and transmission of information was Hartley [12]. He describes the quantity
of information present in a source in terms of its number of possible messages. Later,
Shannon [16] further developed this idea, including new factors such as the effect of noise
in the channel, possible economy in the transmission of information, and the possibility
that messages might possess distinct quantities of information.

From the quantitative perspective, there can only be information where there is doubt;
this, in turn, requires the existence of alternatives, which presupposes the presence of
choice, selection, and discrimination. For Hartley [12], the information in a message is
measured by the freedom of choice that someone has in selecting it, based on a source.
According to Shannon andWeaver [17, pp. 8–9], “. . . information in communications the-
ory relates not so much to what you do say, as to what you could say. That is, information
is a measure of one’s freedom of choice when one selects a message.”

In an unbiased toss of a coin, for example, there are two equally probable possibilities:
heads or tails. In an unbiased throw of a dice, there are six possibilities. The degree of
freedom of choice in the first case is less than in the second. In the case of the dice, we
could say many more things than would be possible in the case of the coin. Hence, from
the present perspective, the quantity of information present in the throw of the dice is
greater than that present in the toss of the coin.

For Hershberger [13], information can be defined as a measure of the reduction of un-
certainty. It is related to the unpredictability in a message or a source, with the emergence
of an element that was absent prior to its occurrence. In the toss of the coin, the reduction
of uncertainty is less than in the throw of the dice. The occurrence of an event in a source
such as the example of the toss of a coin only eliminates one alternative, while in the throw
of a dice five equally probable alternatives are eliminated. Information is also associated
with notions such as those of order (or organization, in the terms of Bresciani Filho and
D’Ottaviano [3]) and entropy, as discussed by Alves [1].

The central interest in quantitative studies of information generally lies in measurement
of the quantity of information in a source, rather than in particular messages. In a broad
sense, a source can be characterized as a process that generates information. Its constituent
elements can be understood as a finite set of events, of messages, of symbols that have
a certain probability of occurrence. Discrete ergodic sources are those in which every
element produced, in addition to being discrete, has the same statistical properties as any
other, and its properties remain unaltered with time. Once the probabilities of occurrence
of the elements are discovered, it becomes possible to predict its probability of occurrence
at any moment, as occurs in the toss of a coin or the throw of a dice.

According to Shannon and Weaver [17], the quantity of information of the i-th message
of a source F, denoted by Ii.F/, is the numerical value defined by

Ii.F/ Ddf � log2 pi.F/ ;

where “pi.F/” denotes the probability of occurrence of the i th message of F.
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The quantity of information in a source F with n elements, denoted by HF, is defined
by

HF Ddf

nX

iD1
pi.F/ � Ii.F/ :

If HC and HD denote the quantities of information in the throw of the coin and dice,
respectively, then HC D 1 and HD � 2:58. Since, in both cases, the events corresponding
to the messages are equiprobable, it can be demonstrated that the quantity of information
in each message in the source is equal to the quantity of information in the source itself.

The greater the freedom of choice and reduction in uncertainty in a source, the more
informative it is. Information reaches its maximum value in a source when all its messages
have an equal chance of being selected. The informational value is zero when only one
of them can occur. It is within this framework that in the next sections we propose our
informational perspective of logical consequence.

2 Elements of an Axiomatic Theory of Probability

We employ probability in cases where two or more different results can occur in a given
circumstance. This means that the result is not predictable (or is indeterminate), in the
sense that it is not possible to previously determine which result might occur at a given
moment.

Probability theory, henceforth denoted P , studies random experiments. As a basis for
P , we shall use the Zermelo–Fraenkel set theory with the choice axiom (ZFC), with the
usual elementary arithmetic theory (cf. [8]). Hence, the language (alphabet and defini-
tions) and theorems of ZFC will also be considered elements of P . The only symbols
belonging to the alphabet of P are the symbols Ai , for 0 � i � n and i 2 N, where “A”
represents the primitive concept of P known as happening, result, or occurrence, used for
the definition of random experiment.

Definition 2.1 (Random Experiment)

(a) A random experiment or random phenomenon, denoted by “˙ ,” is one that, repeated
various times, presents different results or occurrences, called results of ˙ or occur-
rences of ˙ , denoted by “Ai.˙/.”

(b) The sample space of a random experiment ˙ , denoted by “U.˙/,” is the set of all
possible results of ˙ .

(c) The number of elements of the sample space, denoted by “n.U.˙//,” in which
n.U.˙// > 0 is finite, is the quantity of elements of “U.˙/.”

(d) A sample space is equiprobablewhen all its elements have the same chance of occur-
ring.

The toss of a coin, the throw of a dice, and the removal of a card from a pack are
examples of random experiments. Their results would be the fall of the coin with one or
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other face upwards, the fall of the dice with one of the numbers from one to six upwards,
and the withdrawal of one of the cards of the pack, respectively.

Definition 2.2 (Event of a Random Experiment)

(a) An event of a random experiment˙ , denoted by “E.˙/,” is any subset of the sample
space U.˙/, in other words, E.˙/ � U.˙/.

(b) The number of elements of an event E.˙/, denoted by “n.E.˙//,” is the quantity of
elements of U.˙/ belonging to E.˙/.

(c) An elementary event E of ˙ is that where n.E.˙// D 1.
(d) The correct event E of ˙ is that where n.E.˙// D n.U.˙//.
(e) The impossible event E of ˙ , denoted by “;,” is that where n.E.˙// D 0.
(f) A contingent event E of ˙ is that where n.;/ < n.E.˙// < n.U.˙//.
(g) The event Ei of ˙ , complementary to E.˙/, denoted by “ NE.˙/,” is defined by

NE.˙/ Ddf fA 2 U.˙/jA … E.˙/g :

(h) The event E of ˙ , the union of Ei.˙/ and Ej .˙/, denoted by “(Ei.˙/[Ej .˙//,”
is defined by

.Ei .˙/[ Ej .˙// Ddf fA 2 U.˙/jA 2 Ei.˙/ouA 2 Ej .˙/g :
(i) The event E of ˙ , the intersection of Ei.˙/ and Ej .˙/, denoted by “(Ei.˙/ \

Ej .˙//,” is defined by

.Ei .˙/ \ Ej .˙// Ddf fAjAg 2 Ei.˙/eA 2 Ej .˙/g :

Henceforth, when there is no risk of ambiguity, we shall remove the references to ˙
between parentheses of the notations. Hence, instead of A.˙/, U.˙/, or n.U.˙//, we
shall use only A, U , or n.U /, respectively.

Example 2.3 (Random Experiments)

˙i U.˙i / E.˙i / n.E.˙i //

˙1 (Toss of coin) {H, T} E1.˙1/: {H}(Fall head)
E2.˙1/: {T}(Fall tail)

1
1

˙2 (Toss of biased
coin)

{H1, H2, H3, T} E1(˙2/: {H1, H2, H3}(Fall head)
E2(˙2/: {T}(Fall tail)

3
1

˙3 (Throw of dice) {1, 2, 3, 4, 5, 6} E1(˙3/: {2, 4, 6}(Fall even)
E2(˙3/: ; (Fall head)

3
0

In the above example, a “model” is proposed for each random experiment, its sample
space, and some of its events, associating them with entities of a “world.” In the third
column, in parentheses, we give the common name for each event in order to express the
results that comprise it.
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Although our theoretical approach does not consider qualitative elements of infor-
mation, the examples suggested throughout this chapter involve content, in order to aid
understanding. Meanwhile, the same results could have been obtained using a purely for-
mal mode of construction.

The notion of random experiment can be compared with that of a discrete ergodic
source of information, as indicated in Sect. 1. In a way that is similar to this type of
source, the elements belonging to a random experiment must be previously defined with
precision. Furthermore, every sample space considered, in addition to being finite, must be
equiprobable, and the probability values of the events must be given and fixed. This will
enable us to determine with precision the existence of the relation of logical consequence
between formulae (as shown in Sect. 4).

Definition 2.4 (Probability of an Event) The probability of occurrence of an event
E in the random experiment ˙ with an equiprobable sample space U.˙/, denoted by
“p.E.˙//,” is the numerical value defined by

p.E.˙// Ddf
n.E.˙//

n.U.˙//
:

The probability function, p, provides events of a random experiment with values be-
tween 0 and 1; in other words, p: E.˙/! Œ0; 1� � Q. The probability value of an event
E.˙/ is given by p.E.˙//.

Example 2.5 (Probability of the Events of Example 2.3)

E E1.˙1/ E2.˙1/ E1.˙2/ E2.˙2/ E1.˙3/ E2.˙3/ E1.˙3/[
E2.˙3/

E1.˙2/\
E2.˙2/

NE1.˙2/

p.E/ 1=2 1=2 3=4 1=4 1=2 0 1=2 0 1=4

Having constituted the basic elements of the language of P , we now describe its axioms
and some of its elementary results.

The axioms for P are as follows

(AxP1): p.E/ 	 0, for every E � U
(AxP2): p.Ei [ Ej / D p.Ei /C p.Ej / � p.Ei \ Ej /
(AxP3): p.E [ NE/ D 1.

In the next theorem, some results concerning the probability of events are stated, being
important to the continuation of this chapter. For simplicity, we do not present the proof
of this, and some other theorems. Their proofs can be found in Alves [2].

Theorem 2.6

(a) p.E/ � 1, for every E � U .
(b) p.U / D 1.



A Quantitative-Informational Approach to Logical Consequence 111

(c) p.;/ D 0.
(d) n.Ei \ Ej / D 0) p.Ei [Ej / D p.Ei /C p.Ej /.
(e) p.E \ NE/ D 0.
(f) p. NE/ D 1 � p.E/.
(g)

Pm
iD1 p.Ei / D 1, for Ei D fAig, for 1 � i � m, with U D fA1; : : :; Amg.

Based on P , in what follows we develop a probabilistic semantics for CPL.

3 A Probabilistic Semantics for Languages of CPL

We call this perspective the probabilistic semantics for CPL (henceforth, SP ). As shown
by Alves [2], the behavior of SP is not strictly equivalent to the behavior of the usual
classical veritative-functional semantics (henceforth, SV/, as developed by Tarski [19],
Mendelson [15], Shoenfield [18], and Mates [14], among others.

We associate the formulae of a CPL language, denoted by “L,” with the events of a ran-
dom experiment,˙ . We define some of the notions that are fundamental to the objectives
of this chapter, and describe some results characteristic of SP .

The expression “Form(L)” denotes the set of formulae of a languageL, the letters “',”
“ ,” and “�” are metalinguistic variables that represent elements of Form(L); “P0,” “P1,”
“P2,” etc., are the atomic formulae of L, and “� ” represents any finite subset of Form(L/.
We adopt negation and disjunction as primitive logical connectives of L.

Definition 3.1 (Situation for a Language L) A function f is a ˙ -situation for L, or
simply a situation, denoted by “f .˙/,” if f .˙/: Form.L/! }.U.˙//, such that

(a) If ' is atomic, then f .˙/.'/ D E.˙/, defined by f itself;
(b) If ' is of the form : , then f .˙/.'/ D f .˙/. /;
(c) If ' is of the form  _ � , then f .˙/.'/ D f .˙/. /[ f .˙/.�/.

A situation for L consists of an attribution of a single event of a given random experi-
ment to each well-formed formula ofL, according to a function f . The fact that a situation
is defined using a function enables us to avoid ambiguities in the next definitions, espe-
cially in the case of informational logical consequence.

To say that f is an ˙ -situation for L is the same as saying that the random experiment
˙ is an f-structure for L.

Although each formula ofL is associated with a single event in a given situation f .˙/,
distinct formulae can be associated with the same event in f .˙/. This always occurs,
given that the set of formulae of any L is infinite, in contrast to the number of events of
a random experiment, which is always finite.

Definition 3.2 (Probability of Formulae According to a Situation) The probability
function of a formula ' according to f .˙/, denoted by “P.f .˙//,” is defined as follows,
where “p” is the probability function concerning events as defined in P :

(a) If ' is atomic, P.f .˙//.'/ Ddf p.f .˙/.'//;
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(b) If ' is of the form : , P.f .˙//.'/ Ddf p.f .˙/. //;
(c) If ' is of the form  _ � , P.f .˙//.'/ Ddf p.f .˙/. / [ f .˙/.�//.

It can be seen that P.f .˙//: Form.L/ ! Œ0; 1� � Q, such that p.f .˙//.'/ is the
image of ' according to P.f .˙//. The probability value of the formula ' according to
f .˙/ is given by P.f .˙//.'/, a rational number between 0 and 1. It is the probability
value of the event of ˙ corresponding to ', according to f .˙/.

It can be shown that P(f .˙// satisfies the properties described in Theorem 2.6, inter-
preted in the light of SP .

Henceforth, when we say “for every f ,” we mean “for every situation f .˙/, given˙ .”
In addition, when there is no possibility of ambiguity or imprecision, we shall use “P.'/”
as an abbreviation for “P.f .˙//.'/,” “p.'/” as an abbreviation for “p.f .˙/.'/,”
“f .'/” as an abbreviation for “f .˙/.'/,” and “f ” as an abbreviation for “f .˙/.”

In accordance with the usual definitions in L, we have

(a) f .' ^  / D f .:.:' _: //
(b) f .' !  / D f .:' _  /
(c) f .' $  / D f ..' !  / ^ . ! '//

(d) P.' ^  / D P.:.:' _ : //
(e) P.' !  / D P.:' _  /
(f) P.' $  / D P..' !  /^ . ! '//.

Example 3.3 (Probability of Formulae in ˙1 and ˙2, for U.˙1/ D f1; 2; 3; 4; 5; 6g and
U.˙2/ D fH;Tg)

' f .˙1/.'/ P.f .˙1//.'/ f .˙2/.'/ P.f .˙2//.'/

P1 f2; 4; 6g 1=2 fHg 1=2

P2 f1; 3; 5g 1=2 {T} 1=2

P3 f1; 2; 3; 5g 2=3 ; 0

P4 {1} 1=6 ; 0

P5 ; 0 ; 0

P1 ^ P2 ; 0 ; 0

P1 ^ P3 {2} 1=6 ; 0

P2 ^ P3 f1; 3; 5g 1=2 ; 0

P1 _ P3 fU g 1 {H} 1=2

:.P1 _ P3/ ; 0 {T} 1=2

P1 ! P2 f1; 3; 5g 1=2 {T} 1=2

Theorem 3.4 For every f , we have

(a) P.:'/ D 1 � P.'/.
(b) f .' ^  / D f .'/ \ f . /.
(c) P.' ^  / D p.f .'/ \ f . //.
(d) P.' !  / D p.f .'/ [ f . //.
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Definition 3.5 (Inconsistency, Validity, and Contingency of Formulae of L in SP )

(a) A formula ' is probabilistically inconsistent or probabilistically contradictory, which
is denoted by “?P ,” if, for every f .˙/, P.f .˙//.'/ D 0.

(b) A formula ' is probabilistically valid or probabilistically tautological, which is de-
noted by “>P ,” if, for every f .˙/, P.f .˙//('/ D 1.

(c) A formula ' is probabilistically contingent if it is neither probabilistically contradic-
tory nor probabilistically valid.

Definition 3.6 (Probabilistically Equivalent Formulae) Two formulae, ' and  , are
probabilistically equivalent, which is denoted by “' 
  ,” if, for every situation f .˙/,
P.f .˙//.'/ D P.f .˙//( /.

Definition 3.7 (Probability Value of a Set of Formulae) Let � D f'1, . . . , 'ng �
Form.L/. The probability value of � according to f .˙/, denoted by “P �.f .˙//.� /,”
is defined by

P �.f .˙//.� / Ddf P.f .˙//.'1 ^ � � � ^ 'n/ :
If � D ;, then P �.f .˙//.� / D 1. When � is infinite, P �.f .˙//.� / is indefinite.

It can be seen that P �.f .˙//: }(Form.L// ! Œ0; 1� � Q, such that P �.f .˙//.� /
is the image of � according to P �.f .˙//. The probability value of the set of formulae
� according to f .˙/ is given by P �.f .˙//.� /, a rational number between 0 and 1.
When there is no risk of ambiguity or imprecision, we shall write P.� / instead of
P �.f .˙//.� /.

According to Definition 3.7, the probability value of a given set of formulae of L in
a situation f is, in the final analysis, defined from the probability value of the intersection
of the events associated with the elements of � . In other words, by Definition 3.7, and The-
orem 3.4c, we have that P �.f .˙//.� / D P.f .˙//.'1^ . . . ^'n/ D p.f .˙/.'1/\ . . .
\f .˙/.'n//. Given the definitions in question, we can say that f .˙/.� / D f .˙/.'1^
. . . ^'n/.

Strictly speaking, it is not possible to define the probability value of an empty set of
formulae. Definition 3.2, which forms the basis of Definition 3.7, only applies to the prob-
ability values of formulae of languageL. But ; is not a formula of L. Although a formula
might be associated with the empty event, with its probability value being defined as zero,
it makes no sense to say that an empty formula can have any probability value.

In order not to leave the empty set without a definition of the probability value, it was
decided to define it arbitrarily in the way described above. This decision can be justified
as follows: in this case, to say that P.� / ¤ 1 would signify the existence of some 'i 2
� such that P.'i / ¤ 1. Since there are no formulae in � with this value, given the
inexistence of formulae in � , then P.� / D 1.

Definition 3.8 (Probabilistic Logical Consequence) A formula ' is probabilistic log-
ical consequence of a set � of formulae, which is denoted by “� ˆP ',” if, for every
situation f .˙/, P.f .˙//.� / � P.f .˙//.'/.
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When � D ;, instead of � ˆP ' we simply write ˆP '. The expression “�P'”
denotes that ' is not probabilistic logical consequence of � . The formulae of � are called
premises and ' is termed conclusion.

Despite possessing certain specific characteristics, SP is a semantics for CPL. The
formulae considered valid by SP are exactly the same as those considered valid by SV.
Furthermore, � ˆP ' if, and only if, � ˆV '. The similarities and differences between
SP and SV are described by Alves [2]. In the following discussion, we address the notion
of informational logical consequence.

4 Informational Logical Consequence

In this section, we propose a quantitative-informational definition of logical consequence
and present some of its properties. We first introduce notions such as the quantity of infor-
mation present in a formula of L and in a set of formulae, based on the notion of quantity
of information developed by Shannon and Weaver [17].

Definition 4.1 (Quantity of Information of a Formula According to a Situation) The
quantity of information or informational value of a formula ' of L according to a situation
f .˙/, denoted by “I.f .˙//.'/,” is the numerical value defined by

I.f .˙//.'/ Ddf � log2 P.f .˙//.'/ :

When P.f .˙//.'/ D 0, we define that log2 0 D 0, in other words, I.f .˙//.'/ D 0.
When there is no risk of ambiguity or imprecision, we shall use “I.'/” instead of
“I.f .˙//'.” It can be shown that I.f .˙//: Form.L/! QC.

Example 4.2 (Quantity of Information in Formulae Based on the Two Situations in Ex-
ample 3.3)

' f .˙1/.'/ I.f .˙1//' f .˙2/.'/ I.f .˙2//'

P1 f2; 4; 6g 1 {H} 1

P2 f1; 3; 5g 1 {T} 1

P3 f1; 2; 3; 5g 0.58 ; 0

P4 {1} 2.58 ; 0

:P1 f1; 3; 5g 1 {T} 1

P1 ^ P3 {2} 2.45 ; 0

P1 _ P3 U 0 {H} 1

P1 ! P2 f1; 3; 5g 1 {T} 1

P1 ! P3 f1; 2; 3; 5g 0.58 {T} 1

P2 ! P3 U 0 {H} 1
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Definition 4.3 (Quantity of Information in a Set of Formulae) Let � D f'1, . . . ,
'ng � Form.L/. The informational value of � (quantity of information in � /, according
to f .˙/, denoted by “I�.f .˙//.� /,” is defined by

I�.f .˙//.� / Ddf � log2 P
�.f .˙//.� / :

When there is no risk of ambiguity or imprecision, we shall use I.� / instead of
I�.f .˙//.� /. Although the domain of this function may be different from that of the
information function concerning formulae, its image set is the same; in other words,
I�.f .˙//: }(Form.L//! QC.

Definition 4.4 (Informational Logical Consequence) A formula ' is informational
logical consequence of a set � of sentences, which is denoted by “� jjH ',” if, for
every f .˙/, I.f .˙//.� / 	 I.f .˙//.'/.

When � D ;, instead of “� jjH ',” we simply write “jjH '”; “� ³ '” denotes that
' is not informational logical consequence of � . The formulae of � are called premises
and ' is termed conclusion.

According to the above definition, a formula is informational logical consequence of
a given set of formulae if, and only if, the quantity of information present in the conclusion
is never greater than the quantity of information in the premises. In probabilistic logical
consequence, the relation is inverse.

Theorem 4.5

(a) ' !  jjH :' _  .
(b) ' _  jjH :.:' ^ : /.
(c) ' ^  jjH :.:' _ : /.
(d) ' ^  jjH  ^ '.
(e) ' _  jjH  _ '.
(f) ::' jjH '.
(g) ' ^ ' jjH '.
(h) ' _ ' jjH '.
(i) >P ^ ' jjH '.
(j) >P _ ' jjH >P .
(k) ?P ^ ' jjH ?P .
(l) ?P _ ' jjH '.
(m) >P jjH ?P .
(n) ' jjH '.

Since the quantity of information in the premise and conclusion of each one of the
items of the above theorem is the same for each given situation, the reciprocal of each one
of the items is also valid, such that one formula is informational logical consequence of
the other.

The first three items of the above theorem show that the definitions of one connective,
obtained from others, are maintained in informational logical consequence. The first item
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shows that the notion of implication presupposed here is that of material implication. The
fourth and sixth items show, respectively, that the logic underlying informational logical
consequence is neither temporal logic nor intuitionistic logic.

Theorem 4.6

(a) jjH ' , I.'/ D 0, for every f .
(b) jjH ' , � jjH ', for every � .
(c) I.� / D 0, for every f , and � jjH ' )jjH '.
(d) ˆP ' )jjH '.

Proposition 4.7

(a) ' ^  ³ '.
(b) ' !  , ' ³  .
(c) ' !  , : ³ :'.
(d) ' !  ,  ! � ³ ' ! � .
(e) ' ³  ! '.
(f)  ³ ' _  .
(g) � _ ', :� _  ³ ' _  .

The above proposition shows that the rules of inference of a large part of formal log-
ical systems are not valid in informational terms. The second item is the rule of modus
ponens, adopted in systems such as that of Mendelson [15]; the last two items are the ex-
pansion rule and the cut rule, adopted by Shoenfield [18]. The same can be said when the
above items are treated as arguments. Arguments that are traditionally considered valid
can present more information in the conclusion than in the set of premises, which means
that, according to the perspective in question, they act to amplify information.

As shown by Alves [2], the invalidity of these rules of inference or arguments is gen-
erally due to the possibility of the set of premises being informationally empty in a given
situation. In the case of the expansion rule, when, in a given situation ˙ , P. / D 0 and
I.'/ ¤ 0, then I. / < I.' _  /. Hence,  ³ ' _  . While the premise is infor-
mationally empty, the conclusion produces novelty and reduces uncertainty. For example,
in the game of dice, the sentence “it fell on number seven,” for which the probability
of occurrence is zero, would not reduce the uncertainty about what occurred in the game.
Meanwhile, the sentence “it fell on an even number or on number seven” possesses a quan-
tity of information that is greater than zero, since it reduces uncertainty: the dice could
have fallen on numbers two, four, or six, eliminating the possibility of having fallen on an
odd number. Thus, in the conclusion, there is something that did not exist in the premise.
There was an informational gain, given that the quantity of information in the premise was
null.

In the case of modus ponens, the situation f .˙1/ of Example 4.2 above provides an
example in which the informational value of the premises, interpreted as “if it falls on
evens, then it falls on odds” and “it falls on evens,” is less than the informational value
of the conclusion, interpreted as “it falls on odds.” Here, the informational value of the
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premises is null. Since the events “fall on odds” and “fall on evens” are mutually exclusive,
the sentence “if it falls on evens, then it falls on odds” is equivalent to “it falls on odds
or it falls on odds,” which is equivalent to “it falls on odds.” The probability of the set of
premises is therefore defined from the union of “it falls on odds” and “it falls on evens,”
equivalent to “it falls on odds and does not fall on odds,” for which the probability is
zero. Meanwhile, the conclusion possesses a quantity of information that is greater than
zero, since it possesses an informational value that is greater than the value of the set of
premises.

The example discussed in the preceding paragraph, which is an individual case of
Theorem 4.8b, outlined below, seems to fit an intuitive notion of informational logical
consequence. Intuitively, “fall on odd and not fall on odd” provides no information con-
cerning a circumstance. Hence, any probabilistically contingent conclusion can contain
more information than is contained by the premises.

Several steps of the demonstrations of the following theorems have been omitted. These
steps, indicated by “TPP,” refer to theorems previously proved in Alves [2].

Theorem 4.8 Let � D f'1, . . . , 'ng. Then:
(a) � jjH ' if and only if I.'/ D 0, for every f , or ('1^ . . . ^'n/ 
 ';
(b) If I.'/ > 0, for a given f , then ?P ³ ';
(c) � jjH >P ;
(d) � jjH ?P ;
(e) If I.'/ > 0, for a given f , then >P ³ '.

Proof

(a) .)/ W Let � jjH '. Suppose that I.'/ ¤ 0, for a given f , and .'1 ^ : : : ^ 'n/ 6

'. It is then possible to show the existence of f 0 such that I.f 0/.� / < I.f 0/.'/,
contradicting the initial hypothesis: I.f 0/.� / D 0 and I.f 0/.'/ D I.f /.'/. Hence,
when � jjH ' we have that if I.'/ ¤ 0, for a given f , then .'1 ^ � � � ^ 'n/ 
 ', in
other words, I.'/ D 0, for every f , or .'1 ^ � � � ^ 'n/ 
 '.
.(/ W Case 1: Let I.'/ D 0, for every f . Then, by TPP, I.� / 	 I.'/, for every f
and every � . So, by Definition 4.4, � jjH '.
Case 2: By Definition 3.6, .'1^� � �^'n/ 
 ' if and only if P.'1^� � �^'n/ D P.'/,
for every f . By Definition 3.7, P.'1 ^ � � � ^ 'n/ D P.'/, for every f if and only
if P.� / D P.'/, for every f . Then, by TPP, I.� / D I.'/, for every f . So, by
Definition 4.4, � jjH '.

(b) Let P.'/ D 1=2. Then I.?P / D 0 < I.'/ D 1.
(c) Since I.>P / D 0, then I.� / 	 I.>P /.
(d) Since I.?P / D 0, then I.� / 	 I.?P /.
(e) Let P.'/ D 1=2. Then I.>P / D 0 < I.'/ D 1. �

The first item above describes the arguments that are valid according to the informa-
tional perspective of logical consequence.

The second item explains that a probabilistically contradictory formula cannot lead in-
formationally to any informative formula. In fact, only formulae that are probabilistically
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valid or invalid, in other words not informative, are informational logical consequence of
contradictory formulae.

Presupposing the distinction between classical and nonclassical systems, as suggested
by Da Costa [4, 5], or by Haack [11], we can conclude from the second item of the above
theorem that classical logic is not the logic underlying informational logical consequence.
This is because, in classical formal logical systems, a contradiction generates any formula.
Considering that complementary logics, such as modal logic, retain the same principles of
classical logic, we can also conclude that no complementary logic underlies informational
logical consequence. The remaining candidates are heterodox logics, such as intuitionistic
and paraconsistent systems, as described by D’Ottaviano [6].

In intuitionistic logics, negation possesses certain particular characteristics. Such char-
acteristics do not permit, for example, recourse to proofs employing reduction to the
absurd, given that formulae such as ' $ ::' are not valid in these systems. Meanwhile,
it can be shown that ::' jjH ' and ' jjH ::' and, from Theorem 4.9b below, we have
jjH ' $ ::'. Therefore, intuitionistic logic cannot provide a basis for informational
logical consequence.

Theorem 4.8, especially the second item, indicates that the logic underlying informa-
tional logical consequence is, at least, paraconsistent sensu lato. This is because this
notion of consequence does not permit, for example, the Ex Falso Quodlibet, also known
as the Explosion Principle, such that from a contradiction does not follow any formula.

The third item of the above theorem is shared by both probabilistic and veritative-
functional logical consequence, but for different reasons. Informationally, a probabilisti-
cally valid formula is logical consequence of any formula, because its value is minimal;
hence, it cannot provide more information than any other formula. In probabilistic and
veritative-functional terms, it is logical consequence of any formula because its value is
maximal; in other words, it possesses the probabilistic value “1” or the true value “V.”

The fourth item, like the second, is not valid in the other two notions of logical conse-
quence considered here. In these notions, an inconsistent formula is logical consequence
solely of a contradictory set of formulae. In the informational version, it is logical con-
sequence of any set of formulae. In informational terms, there is no distinction between
valid and inconsistent formulae.

The fifth result expresses a similarity between informational logical consequence and
the other notions of consequence: contingent formulae are not logical consequence of
valid formulae.

Theorem 4.9

(a) If ' jjH  , and  jjH � , then ' jjH � .
(b) If ' 
  , then jjH ' $  .
(c) Is not the case that: � , ' jjH  if and only if � jjH ' !  .
(d) Is not the case that: jjH ' e jjH  if and only if ' 
  .
(e) Is not the case that: � jjH ' if and only if f .� / � f .'/, for every f .
(f) Is not the case that: � jjH ' if and only if � ˆV '.
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Proof

(a) Let ' jjH  , and  jjH � . By Definition 4.4, I.'/ 	 I. / 	 I.�/, for every f . Then,
by TPP, I.'/ 	 I.�/, for every f . So, by Definition 4.4, ' jjH � .

(b) By TPP, if ' 
  , then ' $  is>P . And, by TPP, ' $  is>P , thenˆP ' $  .
So, by Theorem 4.6d, jjH ' $  .

(c) ( 6)): Let � D ;. ?P , but jjH ?P !  .
( 6(): ³  ! ?P , but  jjH ?P .

(d) ( 6)): jjH ?P e jjH >P , but ?P 6
 >P .
( 6(): ' !  
 :' _  , butˆP ' !  andˆP :' _  do not occur.

(e) ( 6)): >P jjH ?P , but f .>P / D U 6� f .?P / D ;.
( 6(): Let f .'/ ¤ ;. Then f .?P / � f .'/, but ?P'.

(f) ( 6)): ' _ :' jjH ' ^:', but ' _ :'V' ^ :'.
( 6():  ˆV ' _  , but  ³ ' _  . �

The above theorem expresses some of the characteristic properties of informational log-
ical consequence, when compared to the probabilistic and veritative-functional versions.
In contrast to the latter two versions, the reciprocal of Theorem 4.9b, especially, cannot
be shown for the informational version; in other words, is not the case that if jjH ' $  ,
then ' 
  , given that, for example, jjH ?P $ >P , but ?P 6
 >P .

Theorem 4.9c shows the invalidity of the corresponding semantics of the deduction
theorem. The fourth and fifth items illustrate some of the innate characteristics of informa-
tional logical consequence, as discussed in the final considerations (below). Theorem 4.9f
expresses a distinction between the relations of informational and veritative-functional
logical consequence.

We show below that informational logical consequence is not a Tarskian logical conse-
quence, according to the definition set out in the introduction of this chapter.

Theorem 4.10

(a) Is not the case that: if ' 2 � , then � jjH '.
(b) Is not the case that: if � � � and � jjH ', then � jjH '.
(c) If � jjH  , for each  2 � , and � jjH ', then � jjH '.

Proof Let f be any situation.

(a) Let P.� / D 0 and P.'/ D 1=2. Then, by TPP, I.� / < I.'/.
(b) Let � D f'g, � D f';:'g and I.'/ > 0. Then, by TPP, � jjH ' and � ³ '.
(c) Case 1: Let I.�/ D 0. Then, by Hypothesis, I. / D 0, for each  2 � . By TPP,

I.� / D 0. Thus, by Hypothesis, I.'/ D 0. So, I.�/ D I.'/.
Case 2: Let I.�/ ¤ 0. By TPP, and by Hypothesis, P.�/ � P. /, for each  2 � .
In this case, it can be shown that f 0.�/ � f 0.� / � f 0.'/, for every f 0. Then, by
TPP and Definition 3.8, P.�/ � P.� / � P.'/. So, by TPP, I.�/ 	 I.'/. �

Thus, informational logical consequence is neither reflexive nor monotonic, although
it may satisfy the condition of transitivity.
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According to our objectives in this paper, we finish our presentation of informational
logical consequence. Others results and properties can be found in Alves (2012b).

5 Final Considerations

The shift of perspective in the analysis of the notion of logical consequence, from the true
value to the quantity of information of formulae, enables characteristics to emerge that
are uniquely attributable to this approach. Alves [2] presents some of the main similarities
and differences between this concept and the usual perspective whereby logical conse-
quence is defined in terms of maintenance of the truth of the premises for the conclusion
of an argument. In what follows, we highlight the main results obtained from the elements
presented in this chapter.

FC1 Informationally empty formulae are informational logical consequence of the empty
set (Theorem 4.6a). This means that probabilistically valid and contradictory formulae are
self-sustained, which illustrates a first difference between, on one hand, the veritative-
functional and probabilistic versions and, on the other hand, the informational version
of logical consequence. In these two versions, a contradiction is generally not a logical
consequence of a given set of premises.

FC2 The formulae that are informational logical consequence of a given set of formu-
lae whose quantity of information is always null are informational logical consequence
of the empty set (Theorem 4.6c). This result also illustrates an inherent characteristic of
the informational perspective of logical consequence. From this, it follows that if a for-
mula is logical consequence of a contradictory set of formulae, it is informational logical
consequence of the empty set. This does not generally hold in the case of the veritative-
functional and probabilistic perspectives of logical consequence.

FC3 Some of the rules of inference of classical formal logical systems, and some of the
arguments traditionally considered valid, do not possess general validity in the informa-
tional perspective of logical consequence (Proposition 4.7). The cases in which the set of
premises possesses null information provide examples showing that the conclusion can
be more informative than the set of premises in these rules or arguments. Meanwhile, it
can be shown that when the quantity of information in the set of premises is greater than
zero, the quantity of information in the conclusion is always smaller than the quantity of
information in the set of premises.

This result indicates that according to the veritative-functional perspective, the conclu-
sion of a valid argument can possess more information than its set of premises. This seems
to support the conception that in a valid argument, the information in the conclusion is al-
ready implicitly or explicitly given in the premises. We leave it open for future work to
investigate the nature of the information underlying the veritative-functional perspective,
as well as the association between the true and probability values and the sentences in-
volved in a logical consequence relation. We believe that this analysis should resolve, at
least partially, the strangeness indicated in this paragraph.
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In the informational and veritative-functional perspectives, amplifying inductive argu-
ments, where the conclusion is more informative than the set of premises, are invalid.
Meanwhile, such arguments may be considered interesting in some areas of knowledge,
given that they amplify information.

The theorem in question also shows that the informational perspective of logical conse-
quence is not equivalent to the veritative-functional and probabilistic perspectives. There
are formulae that are the veritative-functional and probabilistic logical consequence of
a given set of formulae, but are not informational logical consequence of it. On the other
hand, as already shown from Theorem 4.6d or 4.8d, some formulae can be informational
logical consequence of a given set of formulae, but cannot be logical consequence from
the probabilistic or veritative-functional points of view.

FC4 A formula is only informational logical consequence of a given set of formulae if
that set of premises is probabilistically equivalent to the conclusion, or if the conclusion is
informationally null (Theorem 4.8). This result shows that a probabilistically contradictory
formula can be informational consequence of a given set of informative formulae. As an
example: ' jjH :' ^ '.

If, on one hand, informational logical consequence is distinct from traditional classical
deductive logical consequence, on the other hand, it should not be considered to be an
inductive inference. This is because a characteristic of induction is that it permits the
conclusion to possess more information than its set of premises.

FC5 The logic underlying informational logical consequence is, at the least, paraconsis-
tent sensu lato (Theorem 4.8b). One of the motives for arriving at this conclusion is that
in paraconsistent logics, the principle of explosion is not valid: from a contradiction does
not follow any formula. A proposal for future work is to analyze the elementary character-
istics of a paraconsistent system, and show that they are satisfied by informational logical
consequence.

The logic underlying informational logical consequence is not classical logic, since
in classical formal logical systems a contradiction generates any formula. Consequently,
the complementary logics are also unable to provide a basis for informational logical
consequence, given that they satisfy the principles of classical logic. Heterodox logics,
such as the intuitionistic and temporal systems, are also unable to fulfill this role, as shown
in the commentaries on Theorems 4.8b and 4.5d.

From Theorem 4.8b, we find that, in contrast to the veritative-functional and probabilis-
tic perspectives, in formal logical systems that adopt informational logical consequence,
the inconsistency of a given theory does not imply its triviality, as shown by Alves [2].
From the point of view of formal logical systems such as the classical ones, this signifies
that any formula would be considered a theorem of the given theory. Consequently, from
the theorem of completeness, for these systems we have ˆV  and ˆP  , for any  .
Meanwhile, since in informational logical consequence, in general, ?P ³  , it is not
possible to conclude that the inconsistency of a theory implies its triviality.

FC6 The corresponding semantics of the theorem of deduction is not valid in the in-
formational perspective of logical consequence (Theorem 4.9c). The last three items of
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Theorem 4.9 illustrate other significant results specific to the informational perspective.
In the veritative-functional and probabilistic perspectives, if two formulae are logical con-
sequence of an empty set of inferences, then they are equivalent, as they are both valid.
In the informational version, as expressed in Theorem 4.9d, this does not possess general
validity. A probabilistically valid formula and another that is probabilistically inconsistent
provide an example to demonstrate the invalidity of this result.

Theorem 4.9d illustrates another specificity of informational logical consequence. This
result can be easily shown for the probabilistic version, as reported by Alves [2]. In the
case of the veritative-functional version, it is necessary to adapt the right hand side of the
result: the true value of the set of premises is smaller than the true value of the conclusion,
in all evaluations. This signifies that it is never possible that all the premises can be true
while the conclusion is false in the same single evaluation. Finally, the last item of the
theorem states that informational and veritative-functional logical consequence cannot be
satisfied by the same sets of sentences.

FC7 Informational logical consequence is not a Tarskian logical consequence (Theo-
rem 4.10). A large part of the characteristics specific to the informational perspective of
logical consequence, such as that which refers to nonmonotonicity, derives from cases in
which the quantity of information is null. The specific difference of this perspective is
found in cases that concern extreme probability values, whether in individual situations or
in all situations.

While this may be the basic difference, it should not be considered a small difference.
It produces results that might be considered discrepant, when compared to the tradi-
tional perspectives of logical consequence. Among these, we recall that some rules of
inference do not constitute valid arguments, and that not every formula is informational
logical consequence of a contradictory set of formulae. Furthermore, it shows that logical
consequence, when analyzed from the informational viewpoint in question, ceases to be
Tarskian, and that the logic underlying this perspective is not classical, but at the very least
paraconsistent.

FC8 The set of premises of an informational inference is always finite, and the sample
space is constituted of a finite set of events. These two characteristics represent serious
restrictions in our proposal. The first restriction indicates the impossibility of dealing with
arguments using a potentially infinite set of premises, such as the !-arguments, described
by Tarski [20]. This author claims to have constructed a theory in which sentences of
the type “n possesses the property P ,” for natural n, are theorems of the theory, and the
sentence “every natural number possesses the property P ” cannot be proved in the theory.
Hence, this sentence is not their logical consequence, which in this case seems absurd.

The second restriction limits the possible models for a language of a formal system.
A proposal for future work would be to consider informational logical consequence based
on a definition that involves an infinite probability space. It would then become viable to
analyze informational logical consequence for languages of first-order theories, which has
not been addressed in the present work.



A Quantitative-Informational Approach to Logical Consequence 123

References

1. Alves, M.A.: Informação e conteúdo informacional: notas para um estudo da ação. In: Gonzalez,
M.E.Q., BROENS, M.C. (Orgs.) Informação, Conhecimento e Ação Ética, pp. 98–112. Cultura
Acadêmica, São Paulo (2012)

2. Alves, M.A.: Lógica e Informação: Uma Análise da Consequência Lógica a Partir de uma Perspec-
tiva Quantitativa da Informação. Doctorate thesis, Universidade Estadual de Campinas, Campinas/SP
(2012)

3. Bresciani Filho, E., D’Ottaviano, I.M.L.: Conceitos básicos de sistêmica. In: D’Ottaviano, I.M.L,
Gonzales, M.E.Q. (Orgs.) Auto-organização: Estudos Interdisciplinares, pp. 283–306. Coleção CLE,
v. 30. Universidade Estadual de Campinas/CLE, Campinas (1990)

4. Da Costa, N.C.A.: Lógica Indutiva e Probabilidade, 2nd edn. Ed. HUCITEC, São Paulo (1993)
5. Da Costa, N.C.A.: Logiques Classiques et Non Classiques. Essai sur les Fundements de la Logique.

Masson, Paris (1997)
6. D’Ottaviano, I.M.L.: A lógica clássica e o surgimento das lógicas não-clássicas. In: Évora, F.R.R.

(Org.) Século XIX: O Nascimento da Ciência Contemporânea, pp. 65–93. Coleção CLE, v. 11. Uni-
versidade Estadual de Campinas/CLE, Campinas (1992)

7. Dretske, F.: Knowledge and the Flow of Information. Basil Blackwell, Oxford (1981)
8. Enderton, H.B.: Elements of Set Theory. Academic Press, San Diego (1977)
9. Gonzalez, M.E.Q.: Informação e cognição: uma proposta de (dis)solução do problema mente-corpo.

In: Encontro Brasileiro/Internacional de Ciências Cognitivas, 2, 1996, Campos dos Goytacazes.
Anais. . . pp. 53–60. Universidade Estadual do Norte Fluminense, Campos de Goytacazes (1996)

10. Feitosa, H.A, D’Ottaviano, I.M.L.: Um olhar algébrico sobre as traduções intuicionistas. In: Sautter,
F.T., Feitosa, H.A. (Orgs.) Lógica: Teoria, Aplicações e Reflexões, pp. 59–90. Coleção CLE, v. 39.
Universidade Estadual de Campinas/CLE, Campinas (2004)

11. Haack, S.: Philosophy of Logics. Cambridge University Press, Cambridge (1978)
12. Hartley, R.: Transmission of information. Bell Syst. Tech. J. 7, 535–563 (1927)
13. Hershberger, W.: Principles of Communication Systems. Prentice-Hall, New York (1955)
14. Mates, B.: Elementary Logic. Oxford University Press, New York (1972)
15. Mendelson, E.: Introduction to Mathematical Logic. D. Van Nostrand, Princeton, NJ (1964)
16. Shannon, C.: A mathematical theory of information. Bell Syst. Tech. J. 27, 379–423 (1948)
17. Shannon, C., Weaver, W.: The Mathematical Theory of Information. University of Illinois Press, Ur-

bana (1949)
18. Shoenfield, J.: Mathematical Logic. Addison Wesley, Reading, MA (1967)
19. Tarski, A.: On some fundamental concepts of metamathematics. In: Tarski, A. (ed.) Logic, Semantics,

Metamathematics: papers from 1923 to 1938, Translated by J.H. Woodger, pp. 30–37. Clarendon
Press, Oxford (1956)

20. Tarski, A.: Fundamental concepts of methodology of deductive sciences. In: Tarski, A. (ed.) Logic,
Semantics, Metamathematics: papers from 1923 to 1938, Translated by J.H. Woodger, pp. 60–109.
Clarendon Press, Oxford (1956)

21. Tarski, A.: Concept of truth in formalized languages. In: Tarski, A. (ed.) Logic, Semantics, Meta-
mathematics: papers from 1923 to 1938, Translated by J.H. Woodger, pp. 152–278. Clarendon Press,
Oxford (1956)

22. Tarski, A.: On the concept of logical consequence. In: Tarski, A. (ed.) Logic, Semantics, Metamathe-
matics: papers from 1923 to 1938, Translated by J.H. Woodger, pp. 409–420. Clarendon Press, Oxford
(1956)



124 M. A. Alves and I. M. Loffredo D’Ottaviano

M. A. Alves
UNESP, Philosophy Department, State University of São Paulo, Marília/SP, Brazil
e-mail: marcosalves@cle.unicamp.br

I. M. Loffredo D’Ottaviano (�)
Unicamp, Philosophy Department, Centre for Logic, Epistemology and the History of Science –
CLE, University of Campinas, Campinas, Brazil
e-mail: itala@cle.unicamp.br

marcosalves@cle.unicamp.br
itala@cle.unicamp.br


Finite-Variable Logics Do not Have Weak Beth
Definability Property

Hajnal Andréka and István Németi

Abstract We prove that n-variable logics do not have the weak Beth definability property,
for all n 	 3. This was known for n D 3 (Ildikó Sain and András Simon), and for n 	 5
(Ian Hodkinson). Neither of the previous proofs works for n D 4. In this paper, we settle
the case of n D 4, and we give a uniform, simpler proof for all n 	 3. The case for n D 2
is left open.

Keywords Definability theory � Weak Beth definability property � Finite-variable frag-
ment of first-order logic �Mathematical logic

Mathematics Subject Classification (2010) Primary 03B10, 03C40 � Secondary 03B20,
03C07, 03C40

1 Introduction

Definability theory is one of the most exciting and important parts of logic. It concerns
concept formation and structuring our knowledge by investigating the category of theo-
ries. Implicit definitions are important in understanding concept formation and explicit
definitions are vital ingredients of interpretations between theories. This has applications
in the methodology of sciences [4, 6, 15].

The Beth definability theorem for first-order logic (FOL) states that each implicit def-
inition is equivalent to an explicit one, these are modulo theories. Investigating whether
this theorem holds for fragments of first-order logic gives information about the complex-
ity of the explicit definition equivalent to the implicit one. The Beth definability property
is equivalent to surjectivity of epimorphisms in the associated class of algebra (this is
a theorem of Németi [17]; see also [7, 13, 18]).

The failure of the Beth definability property for finite variable fragments was first
proved in 1983 [3] (for all n 	 2) by showing that epimorphisms are not surjective in
finite-dimensional cylindric algebras, see [2]. That proof, translated to logic, relies in-
herently on the fact that the implicit definition it uses is not satisfiable in each model of
the theory. The question came up whether the so-called weak Beth definability property
holds for finite-variable fragments. The weak Beth definability property differs from the
original Beth definability property in that we require not only the uniqueness, but also

125© Springer International Publishing Switzerland 2015
A. Koslow, A. Buchsbaum (Eds.), The Road to Universal Logic, Studies in Universal Logic,
DOI 10.1007/978-3-319-15368-1_4
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the existence of the implicitly defined relation. In some sense, the weak Beth definability
property is more intuitive and is considered to be more important than the (strong) Beth
definability property, see e.g., [5].

In this paper, we prove that n-variable logics do not have the weak Beth definability
property either, for all n 	 3. This means that there are a first-order logic theory, and an
implicit definition that has exactly one solution in each model of the theory, such that both
the theory and the implicit definition are written up using n variables only, yet any explicit
definition equivalent to this implicit one has to use more than n variables. For more on
finite-variable logics and Beth definability properties see [12] and the remarks at the end
of this chapter.

2 The Main Theorem

The n-variable fragment Ln of an FOL language L, where n is any finite number, is the
set of all formulas in L which use n variables only (free or bound). To make this more
concrete, we may assume that L uses the variables v0; v1; : : :; while Ln uses only the
variables v0; v1; : : :; vn�1. In finite variable fragments we do not allow function or constant
symbols, but we allow equality. Here is a definition of the formulas of Ln:
� R.vi1 ; : : :; vik / is a formula of Ln if R is a k-place relation symbol and i1; : : :; ik < n.
� vi D vj is a formula of Ln if i; j < n.
� :', ' ^  , 9vi ' are formulas of Ln whenever '; are formulas of Ln and i < n.
The above are all the formulas of Ln. We use other logical connectives, e.g., 8vi ;_;!
as derived ones. Models, satisfiability of formulas under evaluations of the variables, and
validity in Ln are the same as in FOL. The following theorem says that Ln does not have
even the weak Beth definability property whenever n 	 3.

Theorem 2.1 (No Weak Beth Property for Ln.) Let n 	 3. There are a theory Th in the
language of an n-place relation symbol R and a binary relation symbol S , and a theory
˙.D/ in the language of Th enriched with a unary relation symbolD such that

� in each model of Th there is a unique relation D for which ˙.D/ holds (we call such
˙.D/ a strong implicit definition ofD in Th);

� there is no explicit definition for D in Th, i.e., for each n-variable formula ' in the
language of Th we have

Th [˙.D/ 6ˆ 8v0ŒD.v0/$ '�:

Proof We write out the proof in detail for n D 3. Generalizing this proof to all n 	 3 will
be easy. We will often write x; y; z for v0; v1; v2 and we will write simplyR forR.x; y; z/.
We will use U0.x/; U1.y/; U2.z/ as abbreviations of the formulas on the right-hand sides
of the respective$ below:

U0.x/ W$ 9yzR ; U1.y/ W$ 9xzR ; U2.z/ W$ 9xyR :
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These formulas express the domain of R, i.e., the first projection of R, and the second
and third projections of R. We will include formulas in Th that express that U0;U1; U2
are sets of cardinalities 3; 2; 2 respectively, and they form a partition of the universe. We
will formulate these properties with three variables after describing the main part of the
construction. Let us introduce the abbreviations T and big.R/ as

T W$ U0.x/ ^ U1.y/ ^ U2.z/; and

big.R/ W$
^
f9viR$ 9vi .T ^ :R/ W i D 0; 1; 2g:

In the above, T is the “rectangular hull” of R, and big.R/ expresses that R cuts this
hull into two parts, each of which is sensitive in the sense that as soon as we quantify
over them, the information on how R cuts T into two parts disappears. (Note that big.R/
implies that 9viR$ 9viT $ 9vi .T ^ :R/.) Assume that jU0j D 3; jU1j D 2; jU2j D 2
and partition.U0; U1; U2/ are formulas in L3 that express the associated meanings. Then
we define

Th WD fjU0j D 3; jU1j D 2; jU2j D 2; partition.U0; U1; U2/; big.R/g:

We will show that Th has exactly one model, up to isomorphism. However, before doing
that, let us turn to expressing the promised properties about the Ui ’s using three variables.

We will use Tarski’s way of substituting one variable for the other. That is, we introduce
the abbreviations

U1(x) W$ 9y.x D y ^ U1.y//; U2(x) W$ 9z.x D z ^ U2.z//:

We now can express that U0;U1; U2 form a partition of the universe:

8x.U0.x/ _ U1(x) _ U2(x)/; 8x.Ui.x/! :Uj .x// for i ¤ j; i; j < 3:

To express the sizes of the sets Ui we will use the abbreviations

U1.z/ W$ 9y.z D y ^ U1.y//; U2.y/ W$ 9z.y D z ^ U2.z//:

Now, for i D 1; 2 we define the formulas

jUi j � 2 W$ :9xyz.x ¤ y ^ x ¤ z ^ y ¤ z ^ Ui.x/ ^ Ui.y/ ^ Ui.z//;
jUi j 	 2 W$ 9xy.x ¤ y ^ Ui.x/ ^ Ui.y//;
jUi j D 2 W$ jUi j 	 2 ^ jUi j � 2:

It remains to express that U0 has exactly three elements. In Ln with n 	 4 we can express
jU0j D 3 similarly to the above, but in L3 we have to use another tool. To express in L3
that U0 has exactly three elements, we will use the binary relation S . (This is the sole use
of S in Th, for n 	 4 we can omit S from the language.) We shall express that S is a cycle
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of order 3 onU0. The following formulas express that S is a function onU0 without a fixed
point:

8x9y S.x; y/; S.x; y/ ^ S.x; z/! y D z; S.x; y/! .U0.x/ ^ U0.y/ ^ x ¤ y/:

The following formula expresses that U0 consists of exactly one 3-cycle of S :

S.x; y/$ 9z.S.y; z/ ^ S.z; x//; S.x; y/ _ S.y; x/ _ x D y:

In the above, we used Tarski-style substitution of variables without mentioning (e.g.,
U0.y/) and we omitted universal quantifiers in front of formulas (e.g., we wrote S.x; y/^
S.x; z/! y D z in place of 8xy.S.x; y/ ^ S.x; z/! y D z/). This expresses that U0
has exactly three elements.

We turn to showing that Th has exactly one model up to isomorphism. Let M D
hM;R; Si ˆ Th. Let Ui ; T be defined as above. Then M is the disjoint union of the
Ui ’s, and the sizes of the Ui ’s for i D 0; 1; 2 are 3; 2; 2, respectively. (So M has seven
elements.) Let U1 D fb0; b1g, let c; d be the two elements of U2, and let

X WD fu 2 U0 W hu; b0; ci 2 Rg:

By M ˆ big.R/ and jU2j D 2 we have that hu; b0; d i … R if u 2 X and hu; b0; d i 2 R
if u 2 U0 �X . Hence

U0 �X D fu 2 U0 W hu; b0; d i 2 Rg:

Also, by M ˆ big.R/, X has one or two elements (it cannot be that X has zero or three
elements). If jX j D 1 then let us use the notation c0 D c; c1 D d , and if jX j D 2 then
let c0 D d; c1 D c. Let us name the elements of U0 as a0; a1; a2 such that X D fa0g if
jX j D 1, X D fa1; a2g if jX j D 2 and S D fhai ; aj i W j D i C 1 .mod 3/ and i; j � 3g.
This can be done byM ˆ Th. The setting so far determinesR byM ˆ big.R/, as follows.
For all i � 2; j; k � 1we have hai ; bj ; cki 2 R if and only if hai ; bjC1 .mod 2/; cki 2 T�R
if and only if hai ; bj ; ckC1 .mod 2/i 2 T � R. This is so by M ˆ big.R/ and by jUi j D 2

for i D 1; 2. From this we have that

R D fhu; bi ; cj i W u D a0 and i C j D 0 .mod 2/g [
fhu; bi ; cj i W u D a1 _ u D a2 and i C j D 1 .mod 2/g :

We have seen that all models of Th are isomorphic to each other. The above also show that
there is no automorphism ofM that would move fa0g.

We are ready to formulate our implicit definition ˙.D/. We design ˙.D/ so that, by
using the above notation, it specifies fa0g. We will writeD in place ofD.x/.

˙.D/ WD f T ^ :D ^R ! 8x.T ^ :D ! R//;

T ^ :D ^ :R ! 8x.T ^ :D ! :R//;
D ! U0.x/; jDj D 1 g:
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Then in each model of Th there is exactly one unary relation D for which ˙.D/ holds,
namely D has to be the unary relation fa0g � U0. Thus ˙.D/ is a strong implicit defini-
tion ofD in Th.

It remains to show that ˙ cannot be made explicit in L3, i.e., there is no three-variable
formula ' in the language of Th for which Th [˙.D/ ˆ D $ '. Our plan is to list all
the L3-definable relations in the above model and observe that fa0g, the relation that ˙
defines, is not among them. For any ' 2 L3 define

mn.'/ WD fha; b; ci WM ˆ 'Œa; b; c�g:
In the above, M ˆ 'Œa; b; c� denotes that the formula ' is true in M when the variables
v0; v1; v2 are evaluated to a; b; c, respectively, and mn abbreviates “meaning”. Let

A WD fmn.'/ W ' 2 L3g:
Clearly, A is closed under the set Boolean operations because

mn.' ^  / D mn.'/ \mn. /;
mn.:'/ DM3 �mn.'/;

and so A is closed under intersection and complementation with respect to M3, the set
of allM -termed three-sequences. SinceM is finite, this implies that A is atomic and the
elements of A are exactly the unions of some atoms.

We will list all the atoms of A. It is easy to see that the elements Ui � Uj � Uk for
i; j; k � 2 are all in A and they form a partition ofM3. To list the atoms of A, we will list
the atoms below each Ui � Uj � Uk by specifying a partition of each. For i; j; k � 2 let
us abbreviate the sequence hi; j; ki by ijk.
U0 � U1 � U2 is T , and the partition of T will be fR; T � Rg. For ijk a permutation

of 012, the partition of Ui � Uj � Uk, the permuted version of T , will be the correspond-
ingly permuted versions of R and T � R. Assume i; j; k are all distinct, i.e., they form
a permutation of 0; 1; 2. We define

X.ijk; r/ WD fhui ; uj ; uki W hu0; u1; u2i 2 Rg;
X.ijk;�r/ WD fhui ; uj ; uki 2 Ui � Uj � Uk W hu0; u1; u2i … Rg:

We note that
X.012; r/ D R; and X.012;�r/ D T �R:

Note that
mn.R.vi ; vj ; vk// D X.ijk; r/;

and the same for �r in place of r , so X.ijk; r/; X.ijk;�r/ are elements of A.
Assume now that ijk is not repetition free, i.e., jfi; j; kgj < 3. In these cases, the blocks

of the partition of Ui �Uj �Uk will be put together from partitions ofUm�Un (m;n < 3).
Recall that S D fha0; a1i; ha1; a2i; ha2; a0ig. We define

S WD fha; bi W hb; ai 2 Sg;
idi WD fha; ai W a 2 Uig;
dii WD fha; bi W a ¤ b; a; b 2 Uig:
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Above, idi ;dii abbreviate “identity onUi”, and “diversity onUi”, respectively, and S is the
inverse of S . Since S is a cycle on the three-element set U0, its inverse S is its complement
in the diversity element of U0, so fS; S; id0g is a partition of U0 � U0. Also, fdii ; idig is
a partition of Ui�Ui for i D 1; 2. We are ready to define the “binary partitions” as follows

Rel00 WD fS; S; id0g; Rel11 WD fdi1; id1g; Rel22 WD fdi2; id2g;
Relij WD fUi � Uj g for i ¤ j :

Note that for all e 2 Relij , e0 2 Reljk we have eıe0 2 Relik, where ı denotes the operation
of composing binary relations. In general, when jfi; j; kgj < 3 and e D he0; e1i 2 Relij �
Reljk we define

X.ijk; e/ WD fha; b; ci 2 Ui � Uj � Uk W ha; bi 2 e0; hb; ci 2 e1g:
Notice that we already defined X.ijk; e/ for the case when i; j; k are distinct and e 2
fr;�rg. Let choice.e; ijk/ denote e 2 fr;�rg when ijk is repetition free, and e D
he0; e1i; e0 2 Relij ; e1 2 Reljk otherwise. Define

B WD fX.ijk; e/ W i; j; k � 2; choice.e; ijk/g;
C WD f

[
Y W Y � Bg:

The following notation will be convenient when choice.e; ijk/ and ijk are not repeti-
tion free.

e01 WD e0; e12 WD e1; e02 WD e0 ı e1;
eij WD S when i > j and ej i D S ;
eij WD ej i when i > j and ej i ¤ S :

The intuitive meaning of eij is that hai ; aj i 2 eij whenever ha0; a1i 2 e0 and ha1; a2i 2 e1.
We want to prove that A D C . We show A � C by showing mn.'/ 2 C for all

' 2 L3, by induction on '. The atomic formulas are:

mn.R.vi ; vj ; vk// D X.ijk; r/ when jfi; j; kgj D 3 ;
mn.R.vi ; vj ; vk// D ; otherwise;
mn.S.vi ; vj // D

SfX.n1n2n3; e/ W ni D nj D 0; eninj
D Sg;

mn.vi D vj / D
SfX.n1n2n3; e/ W ni D nj ; eninj

2 fid0; id1; id2gg:
Clearly,M3 2 C , and C is closed under complementation with respect toM3 and inter-
section, because B is finite and its elements form a partition ofM3. Thus,

mn.:'/ 2 C; mn.' ^  / 2 C whenever mn.'/;mn. / 2 C:
To deal with the existential quantifiers, let us define for arbitraryH �M3

C0H WD fha; b; ci 2M3 W ha0; b; ci 2 H for some a0g;
C1H WD fha; b; ci 2M3 W ha; b0; ci 2 H for some b0g;
C2H WD fha; b; ci 2M3 W ha; b; c0i 2 H for some c0g:
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Then we have, by the definition of the meaning of the existential quantifiers, that for all
i � 2

mn.9vi'/ D Cimn.'/:

Thus, to show that
mn.9vi'/ 2 C whenever mn.'/ 2 C

it is enough to show that C is closed under Ci , i.e., CiX 2 C whenever X 2 C (and
i � 2). Since Ci is additive, i.e., Ci .X [ Y / D Ci .X/ [ Ci .Y /, it is enough to show that

CmX.ijk; e/ 2 C for all i; j; k;m � 2; and a good choice e for ijk :

Assume that i; j; k are distinct and e 2 fr;�rg. Then byM ˆ big.R/

C0X.ijk; e/ DM � Uj � Uk ;
C1X.ijk; e/ D Ui �M � Uk ;
C2X.ijk; e/ D Ui � Uj �M :

It is easy to check that Ui � Uj � Uk 2 C for all i; j; k, and hence V0 � V1 � V2 2 C
whenever Vi are unions of U0;U1; U2. When i; j; k are not all distinct

C0X.ijk; e/ DM � e12 D fha; b; ci W hb; ci 2 e12g DSfX.mjk; e0/ W m � 2; e0
12 D e12g;

C1X.ijk; e/ D fha; b; ci W ha; ci 2 e02g DSfX.imk; e0/ W m � 2; e0
02 D e02g;

C2X.ijk; e/ D
SfX.ijm; e0/ W m � 2; e0

01 D e01g:

We have seen that A � C .
To show that C � A we have to check that each X.ijk; e/ is the meaning of a formula

' 2 L3 in M. We already did this for X.ijk; r/, i; j; k distinct. For ijk D 000 and
e D hS; Si

X.000; hS; Si/ D mn.U0.x/ ^ U0.y/ ^ U0.z/ ^ S.x; y/ ^ S.y; z//;

where U0.x/ D 9yzR; U0.y/ D 9x.x D y ^U0.x//; U0.z/ D 9x.x D z ^U0.x// are
the abbreviations introduced before. The other cases are similar, we leave it to the reader
to check them.

Finally, to show that mn.D.x// D fha0; b; ci W b; c 2 M g … A, observe that the
domain of each element in B either contains U0 or else is disjoint from it, and there-
fore the same holds for their unions. Clearly, this is not true for mn.D.x//. This shows
that mn.D/ … A, i.e., D cannot be explicitly defined in M. Since M is a model of Th,
this means that ˙.D/ is not equivalent to any explicit definition that contains only three
variables.
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To generalize the construction and the proof from n D 3 to n 	 4 is straightforward.
In the general caseM has 2nC 1 elements, it is the disjoint union of sets U0;U1; : : : Un�1
of sizes 3; 2; : : : ; 2, respectively, and R D fs 2 U0 � � � � � Un�1 W .s0 D a0 ^˙fai W 1 �
i < ng is even)_ .s0 2 fa1; a2g ^˙fai W 1 � i < ng is odd/g. �

There is an FOL-formula '.v0/ for Th and ˙.D/ as in Theorem 2.1, which explicitly
definesD.v0/, since the Beth definability theorem holds for FOL. The above theorem then
implies that this explicit definition has to use more than n variables. Thus, both the theory
and the implicit definition use only n variables, but any equivalent explicit definition has to
use more than n variables. In our example,D.v0/ can be defined by using nC1 variables.
By using a construction from [10], Ian Hodkinson [12] proved that for any number k
there are also a theory and a (weak) implicit definition using only n variables such that
any explicit definition to which this implicit definition is equivalent has to use more than
nC k variables.

Theorem 2.1 implies (the known fact) that Craig’s interpolation theorem does not hold
for n-variable logic, either, for n 	 3. This is so because in the standard proof of the Beth’s
definability theorem in, e.g., [8, Thm. 2.2.22], the explicit definition is constructed from
an interpoland. Complexity investigations for Craig’s theorem were done earlier, see, e.g.,
Daniel Mundici [16].

The proof given here proves more than what Theorem 2.1 states. In the proof, Th and
˙.D/ are written in the so-called restricted n-variable logic, and ˙.D/ is not equivalent
to any n-variable formula using even infinitary conjunctions and disjunctions in a finite
model of Th. A formula is called restricted if substitution of variables is not allowed in it,
i.e., it uses relational atomic formulas of form R.v0; : : :; vk/ only (and it does not contain
subformulas of form R.vi0; : : :; vik/ where hi0; : : :; iki ¤ h0; : : :; ki), see [11, Part II,
Sect. 4.3]. Thus the weak Beth definability property fails for a wide variety of logics, from
the restricted n-variable fragment with finite models only, to Ln1;! .

The variant of Ln in which we allow only models of size � nC 1 has the strong Beth
definability property, for all n, this is proved in [2]. Another variant of Ln that has the
strong Beth definability property is when we allow models of all sizes but in a model truth
is defined by using only a set of selected (so-called admissible) evaluations of the variables
(a generalized model then is a pair consisting of a model in the usual sense and this set of
admissible evaluations). The so-called guarded fragments of n-variable logics also have
the strong Beth definability property. For more on this see [1, 9, 14].

We note that L2 does not have the strong Beth definability property (this is proved
in [2]), and we do not know whether it has the weak one. There are indications that it
might have it. If so, L2 would be a natural example of a logic distinguishing the two Beth
definability properties. At present, we only have artificial examples for this, see Chapter
XVIII by J. Makowsky in [5, p. 689, item 4.2.2(v)].
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Peirce’s Role in the History of Logic:
Lingua Universalis and Calculus Ratiocinator

Irving H. Anellis

Abstract This chapter discusses central issues of Peirce’s conception of logic, comparing
his work with the works of other logicians of the time, in particular Boole, Venn, Schröder,
and Frege. It presents a detailed analysis of Peirce’s approach to notation, including pasig-
raphy and Peirce’s claw.
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1 General Account

Recently, Vladimir Ivanovich Shalak [120] undertook to describe two different concep-
tions of logic: the traditional, which derives from Aristotle and whose approach is onto-
logical; and the semiotic, which understands logic to be both formal and linguistic, and as
such is a normative science. While the concept of logic as semiotic, and as a normative
science, is familiar to historians of logic, and in general to Peirce scholars, Shalak, regret-
tably, does not examine the origin of this distinction; either does he give any indication
of the significance of the distinction. Thus, for example, the very well known differences
between the traditional and the Boolean squares of opposition, in which the validity of
inferences depends upon the question of the existential import of propositions, are not
considered.1

A major historiographic development was undertaken by Jean van Heijenoort (1912–
1986) in 1967, when he published his anthology From Frege to Gödel: A Source Book in
Mathematical Logic, 1879–1931 [128], which undertakes to trace, through the most salient
and representative publications, the origins and formation of mathematical logic, or, “mod-
ern” logic, which he traced to 1879 and the publication in that year of the Begriffsschrift

For a detailed account of the full panoply of characteristics of modern logic claimed to have been due to
Frege, but which occur in the classical Boole–Schröder calculus, many of them due to Peirce, see [4].

1 We know, for example, that there are inferences that fail in traditional logic in the presence of the empty
set that are valid in the class calculus and modern propositional logic. For a discussion of the issue with
respect to the traditional versus Boolean squares of opposition, see, e.g., Wu [144, 145].
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of Gottlob Frege (1848–1925), and which culminated with the incompleteness theorems
of Kurt Gödel (1906–1978) in 1931. In this work, van Heijenoort remarked [128, vi] that
“Considered by itself, the period would, no doubt, leave its mark on the history of logic,
but it would not count as a great epoch,” but a great era in the history of logic did open in
1879, when Gottlob Frege’s Begriffsschrift was published [128, vi]. Not only that, together
with the Arithmetices principia [61] of Giuseppe Peano (1858–1932), it also initiated
a “new era.” In a posthumously published manuscript of 1974 van Heijenoort [134] made
an even stronger remark, “Modern logic began in 1879, the year in which Gottlob Frege
(1848–1925) published his Begriffsschrift.” This seems to be a very far cry, for example,
from Peirce’s [87] judgment that on the history of modern or “exact” logic, that logic was
begun by De Morgan. His article, Logic as Calculus and Logic as Language, [129]was
published at the same time when From Frege to Gödel was published. van Heijenoort
sought to explain and analyze the differences between the algebraic tradition and the lo-
gistic tradition, or, to use the terminology subsequently proposed by Hans Sluga [122]:
the “Booleans” and the “Fregeans.” Specifically, whereas both traditions were inspired
by Gottfried Wilhelm Leibniz (1646–1716) (see especially Leibniz’s “Fundamental cal-
culi ratiocinatoris” of circa Summer of 1688; see Leibniz [52, pp. 917–922]; see also
Leibniz [53]), the algebraic tradition took logic to be a calculus, inspired by Leibniz’s
calculus ratiocinator, in which one dealt with a specific, limited universe of discourse, ap-
propriately defined for the occasion, and the logicist tradition took logic to be a language,
inspired by Leibniz’s lingua universalis or lingua characterica, in which the universe of
discourse was the universe.2 This universe was fixed; but it encompasses every universe of
discourse, in effect all that there is, allowing it to formulate propositions about everything

2 Esquisable [20] understands Leibniz’s characteristica, however, to be a formal combinatorial system,
in which symbols (such as numbers as the quintessential symbol) represent symbolic knowledge (cogni-
tio symbolica) that is subject to manipulation in accordance with combinatorial rules. Though symbolic
knowledge is entirely blind (cognitio caeca; cognitio suppositiva), it differs from intuitive knowledge
(cognitio intuitiva) by its complexity and symbolic mediation and formal representation. Leibniz’s ear-
liest treatment of symbolic knowledge is found in his “Meditationes de cogitationes, veritate et ideis”
of November 1684; see Leibniz [52, pp. 585–592]. Legris [50] examines Frege’s use of this Leibnizian
concept to evaluate Frege’s Begriffsschrift notation. Legris [51] also uses the analysis of the cognitio
symbolica of Esquisable [20] to examine the extent to which Boole, Schröder, and Frege developed math-
ematical logic as the attainment of Leibniz’s program, and concludes that both Schröder’s algebra of
relatives and Frege’s Begriffsschrift share the goal of simultaneously constructing both a language and
a calculus, and that, as a consequence, van Heijenoort [129] and Hintikka [40] made too sharp a distinc-
tion between logic as calculus and logic as language. Legris [50] examines Frege’s use of this Leibnizian
concept to evaluate Frege’s Begriffsschrift notation. See also Patzig [60] for an account of Frege’s and
Leibniz’s respective conceptions of the lingua characteristica (or lingua charactera) and their relation-
ship. Patzig [60, p. 103] notes that Frege wrote of the idea of a lingua characteristica along with calculus
ratiocinator, using the term “lingua characteristica” for the first time only in 1882 in “über den Zweck der
Begriffsschrift” (in print in [24]) and then again in “über die Begriffsschrift des Herrn Peano und meine
einige” [27], in the Begiffsschrift [21] terming it a “formal language” – “Formelsprache.” In the foreword
to the Begriffsschrift, Frege wrote only of a lingua characteristica or “allgemeine Charakteristik” and
a calculus ratiocinator, but not of a charcteristica universalis. Peckhaus [75] likewise argues that both
logic as calculus and logic as language are to be found in the work of Schröder. Other aspects of demon-
strating the extent to which Schröder’s work satisfied the criteria defined for a modern mathematical logic
include Peckhaus [71–75] and Thiel [124, 125], and Peckhaus [76] is an extensive sustained survey of
Schröder’s work.
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that can be said, without changing one’s semantic reference. For Frege, for example [26],
the comparison of the Boolean conception of logic given by Ernst Schröder (1841–1902)
in his review [115] of the Begriffsschrift is erroneous, based upon a misunderstanding of
what the Begriffsschrift has taken as its goal and has accomplished. That is, Frege [26]
declared that while George Boole (1815–1864) had produced a mere calculus, he had in
his own Begriffsschrift produced both a calculus and a language, but a language first and
foremost.3 Similarly, he declared [27] that, whereas Peano had moved in the direction of
producing a caracteristica, his Arithmetices principia nevertheless still remained essen-
tially a calculus, not a language, and thus a pasigraphy. Schröder [118, 119], meanwhile,
set out to compare Peano’s pasigraphy, as displayed in the Formulario [64–67], with that
of Peirce (albeit using his variation of Peirce’s notation), and found it to be superior to that
of Peano.

It is not an easy task to explicate the conception of logic of Charles Sanders Peirce
(1839–1914), since his use of the term evolved over time, and many of his pronunciations
seem to be contradictory. His use of the term “logic” seems, at best, equivocal, since in
a broad sense, it encompasses the entire theory of signs, or semiotics; at other times, taken
more narrowly, he called that branch of semiotics “critic,” which is best understood as the
formal theory of deduction, akin to what Aristotle called “analytic” and medieval logicians
called “dialectic.” If pressed, I would argue that, given Peirce’s use of the broad sense of
logic as semiotic and the narrow sense of logic as “critic,” it served him both as a language
and as a calculus. Peirce himself sought to explain his equivocal use of logic, for example,
in a letter to Victoria Welby (1837–1912) of March 14, 1909, by noting [98, 421] that he
“at first defined logic as the general science of the relation of symbols to their objects. And
I still think that this defines the Critic of Argument which is the central part of logic.”

In what follows, I want to emphasize in particular the semiotic aspect of Peirce’s
conception of logic. And, taking critic as a branch of semiotic (along with speculative
grammar and methodeutic),4 it follows that, for Peirce, logic serves both as a calculus and
as a language. It is the speculative grammar that establishes the vital connection between
logic as a calculus and logic as a language.

Frege evidently borrowed the term “Begriffsschrift” from the characterization [127, 4] by Friedrich
Adolf Trendelenburg (1802–1872) of Leibniz’s general characteristics. The term had already been used
by Wilhelm von Humboldt (1767–1835) in the treatise “Ueber die Buchstabenschrift und ihren Zusam-
menhang mit dem Sprachbau” of 1824 (see [43]) on the letter script and its influence on the construction of
language, and by Franz B. (also Frantisek Bolemír) Kvet (1825–1864) in Leibnitz’ens Logik. Trendelen-
burg’s work was known to, and cited, by both Frege in the Begriffsschrift [21, V] and by Schröder in both
Der Operationskreis des Logikkalkuls [114, VI] and in the Vorlesungen über die Algebra der Logik [116,
I, 38].
3 Korte [46, 183], however, rejects the nearly universal claims, not only by Frege, but by van Heijenoort
and Sluga, among others, that the Begriffsschrift is, indeed, a language, but not a calculus. Korte’s claim
is argued upon the basis of Frege’s logicism.
4 Peirce also divides the branches of semiotics into “pure grammar,” “logic proper,” and “pure rhetoric,”
the latter his alternative name for methodeutic (q.v. [97, 99]).
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Peirce [92, 2.227;5], [97, 98] wrote: “Logic, in its general sense, is, as I believe I have
shown, only another name for semiotic (σημειωτηκἠ), the quasi-necessary, or formal, doc-
trine of signs.”

We can use this as a starting point to understand his conception of logic and to under-
stand his contributions to and role in the development of logic.

In his algebra of relatives, Peirce introduced the concept of truth-functional analysis,
defining, in particular, his relation “��<” such that the expression “a ��< b” is defined
as being true whenever b is true, and false only in case b is false while a is true, that
is, as material implication. With this, Peirce explicitly introduced formal logic into the
concept of syntactic truth, or validity, which we understand as truth invariant with respect
to the extra-logical references of the terms of the proposition “a ��< b.” Considering
the matter in more detail, we note that in the manuscript “On the Algebraic Principles of
Formal Logic” written in the autumn of 1879 – the very year in which Gottlob Frege’s
Begriffsschrift appeared, Peirce [103, 23] explicitly identified his “claw” as the “copula of
inclusion” and defined material implication or logical inference, illation. From there, he
immediately connected his definition with truth-functional logic, by asserting [103, 23]
that:

This definition is sufficient for the purposes of formal logic, although it does not distinguish be-
tween the relation of inclusion and its converse. Were it desirable thus to distinguish, it would be
sufficient to add that the real truth or falsity of A ��< B , supposes the existence of A.

The following year, Peirce continued along this route: in “The Algebra of Logic” of
1880 [81, 21], [103, 170], where A ��< B is explicitly defined as “A implies B .”

In the manuscript fragment “Algebra of Logic (Second Paper)” written in the summer
of 1884, Peirce [103, 111–115] reiterated his definition of 1880, and explained in greater
detail there [1989, 112] that, “In order to say ‘If it is a it is b,’ let us write a ��< b.
The formulae relating to the symbol ‘��<’ constitute what I have called the algebra of the
copula . . . The proposition a ��< b is to be understood as true if either a is false or b is
true, and is only false if a is true while b is false.”

It was at this stage that Peirce undertook the truth-functional analysis of propositions
and proofs, and also introduced specific truth-functional considerations, saying that, v the
symbol for “true” (verum) and f the symbol for false (falsum), the propositions f ��< a

and a ��< v are true, and either one or the other of v ��< a or a ��< f is true, depending
upon the truth or falsity of a, and going on to further analyze the truth-functional properties
of the “claw.”

In its formal sense, what I have called the formal or syntactic aspect of Peirce’s semi-
otics is logical critic, the analysis and articulation of formal deductive reasoning, what
in the traditional Aristotelian terms is the analytic of arguments. It is the “science of the
sheer form of thought in general” [99, 164].

Thus, it is now made entirely explicit that the truth or falsity of a proposition is de-
pendent exclusively and wholly upon the structure of the proposition, that is, upon the
definition of the connective or relation and the truth of the terms (or relata) of the propo-

5 The standard mode of reference in Peirce scholarship for citing material from Peirce’s Collected Papers
is by volume number and paragraph; thus, e.g., 4.239 cites volume IV, paragraph 239 of the Collected
Papers.
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sition. Peirce explained that, in asserting that logic is semiotic in the sense of being
“quasi-necessary or formal,” he understands that it is concerned with signs and their char-
acter, which we consider through abstraction. This is precisely how Hilbert’s remark was
meant to be understood, that “Man muss jederzeit an Stelle von Punkten, Geraden und
Ebenen Tische, Stühle oder Bierseidel sagen konnen” (as quoted in Blumenthal [8, 403];
see also Freudenthal [29, 391]). It forms the basis of the formalist philosophy of mathe-
matics that the syntactic structure of propositions, determined by the definitions, axioms,
and logical inference rules of a mathematical system, is the basis for the validity of the
formulas (or propositions) derived within that system. That is, “logic proper is the formal
science of the conditions of the truth of representations . . . ” [97, 99], [92, 2.229]. The lo-
gician is interested in the “formal responsibility” for the truth of propositions; hence, “The
question for him (the logician) is: What is the nature of the sort of sign of which a prin-
ciple variety is called a proposition, which is the matter upon which the act of judging
is exercised?” [97, 103], [104, 292]. The difference between a formula and a proposition
for Peirce is that the former makes no commitment to extra-logical assumptions about the
truth which it expresses, in Peirce’s words, “carries no positive truths,” but “must hold in
any universe” [104, 382]6.

For Peirce, the three subdivisions of semiotic, or the theory of signs included syntactics,
semantics, and pragmatics. The latter is concerned with the relation of signs to interpreters.
Modern mathematical logic, to the extent that it is formal in the Hilbertian sense, dismisses
pragmatics, relegating it to the realm of psychologistic philosophies of logic or the concern
of psychology, rather than of logic properly so-called. Semantics, however, is a critical
component of modern logic.

The semantic component of Peirce’s algebra of relatives rests upon the concept of the
universe of discourse first formulated by Augustus De Morgan (1806–1871), who was the
first to introduce the concept of a universe of discourse, or, as he termed it, a “universe
of a proposition, or of a name” [17, 380], [18, 2] that, unlike the fixed universe of all
things that was employed by Aristotle and the medieval logicians, and remained typical
of the traditional logic, “may be limited in any manner expressed or understood.” The
concept was subsequently borrowed by George Boole, who in The Mathematical Analysis
of Logic [9] used algebraic symbols to represent classes and members of classes, without,
however, using De Morgan’s terminology [9, 5]. He called the entire universe of discourse
1 and the empty or null class 0, and under the appellation the Universe, he understood it “as
comprehending every conceivable class of objects whether actually existing or not . . . ” [9,
15].

Peirce (in MS 493, an undated, unpaginated manuscript notebook) defined the universe
of discourse as “aggregate of the individual objects which ‘exist’, that is are independently
side by side in the collection of experiences to which the deliverer and interpreter of a set
of symbols have agreed to refer and to consider.” The extensional conception of a universe
of discourse, comprised of individuals and classes, was adopted by Peirce partially from
De Morgan, but also partially from Mitchell, who added the concept of dimensionality to
De Morgan’s universe [92, 2.536]. Underlying the semantic interpretation of a universe
of discourse for Peirce was the ontological commitment to individuals and the classes to

6 My emphasis.
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which they belong. The inhabitants of the universe of discourse may be physical, deter-
mined by experience, through the senses; or they may be imaginary, as populated by the
contents of a work of art. As Peirce [92, 2.536]) wrote:

In every proposition the circumstances of its enunciation show that it refers to some collection of
individuals or of possibilities, which cannot be adequately described, but can only be indicated
as something familiar to both speaker and auditor. At one time it may be the physical universe
of sense, at another it may be the imaginary ‘world’ of some play or novel, at another a range of
possibilities.

This suggests that, for Peirce, like Hilbert, the universe of discourse is chosen at will, and
depends upon the particular circumstances of the discourse. In other words, the proposi-
tions of logic with which one deals may be propositions concerning either tables, chairs,
and beer mugs, or points, lines, and planes. What is subject to change is the semantic inter-
pretation of a logical system; what remain unchanged are the formal logical properties of
the logical relations between the terms (relata) of propositions (relations) as defined by the
syntactic structure of the propositions, the axioms of the systems, and the inference rules
holding for the connectives (relations) of the system. Using a textbook example, whereas
it is both syntactically valid and semantically true that, “If all Greeks are men, and all men
are mortal, then all Greeks are mortal,” it is syntactically valid and semantically false (or
meaningless) that, “If all boojams are snarks and all snarks are burdips, then all boojams
are burdips.” As further expressed by Peirce [96, 6.351], therefore,

“. . . I wish my description of what is true or false, to apply to what is not only true or false
generally, but also to what is true or false under conditions already assumed. Whatever may be
the limitations previously imposed, that to which the truth or falsity is limited may be called the
universe of discourse. For example, at the mention of a certain name, every person initiated into
the Eleusinian mysteries invariably experiences a feeling of awe. This is true. It is therefore true
that every person initiated into the Eleusinian mysteries always experiences a sentiment of awe;
not universally, but only under the limitations already understood before this is said.”

The formalism that rests upon the syntactical or structural relation between terms of propo-
sitions and between propositions in determining the validity or truth of arguments or
proofs, in Peirce’s terminology, the formal conditions of truth, coupled with the extra-
syntactic dependence upon the semantic interpretation of propositions, rooted in the uni-
verse of discourse, in the case of Boole and Peirce these being defined by classes, is
one of the principal conditions or characteristics of modern formal logic. Historiography
initially attributed the unification of the semantic and syntactic streams of logic to the
work in the first instance of Leopold Löwenheim (1878–1957) [54] and Thoralf Albert
Skolem (1887–1963) [121], and in the second instance to Jacques Herbrand (1908–1931)
[33], who applied the definitions of the universal and existential quantifiers, taken from
Peirce as presented in the Vorlesungen über die Algebra der Logik [116] of Ernst Schröder
(1841–1902), treating logic as a calculus, in terms of logical sums and products, and
applied it to the concept of logic as language, dealing with a universal universe of dis-
course, Frege’s Universum, and applying David Hilbert’s (1862–1943) concept of proof
as formal (referring to [35–38] and [39] – to which I would have added [34]) to Bertrand
Russell’s (1872–1970) conception, as found in the Principia Mathematica [139, 140],
of logic as language in which the universal universe of discourse is the sum total of all
classes of classes. The contrast between logic, on the one hand, as a mere calculus, ex-
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emplified by the algebraic logicians, Boole, De Morgan, Peirce, and Schröder, and, on
the other hand, as a language, exemplified by Frege and Russell, was first enunciated by
van Heijenoort [130]. It is clear, however, that Peirce had already taken into considera-
tion both aspects of logic, but did not develop it methodically or systematically. Indeed,
in some respects he is close to Hilbert; specifically, to the extent that for Hilbert, as for
Peirce, the major task for logic is to serve as a metamathematics. Expanding upon Peirce’s
contrast between logic and mathematics with his father Benjamin Peirce’s (1809–1880)
conception of mathematics as “the science which draws necessary conclusions” [78, 97];
C. Peirce [93, 3.558], [94, 4.229], and Charles Peirce’s [94, 4.239], that logic is “the sci-
ence of drawing conclusions,” we may take as elucidating the distinction Peirce’s [94,
4.373], assertion that the task of the logician “is simply and solely the investigation of the
theory of logic, and not at all the construction of a calculus to aid the drawing of infer-
ences.” Van Heijenoort in “Set-theoretic Semantics” [130] elaborated this distinction as
the one between syntax and semantics, and held that, the algebraic logicians, in producing
logic as a calculus, provided the concept of a semantic as an interpretation for their calculi
(adding to van Heijenoort’s claim that the basis for this aspect of modern logic is owing to
De Morgan and his conception [17, 380], [18, 2] of universes of discourse), whereas from
Frege and later Russell and to some extent Peano comes the concept of logic as a formal
system, providing a syntax.7 It is the combination of these two aspects of language in the
work largely of Löwenheim and Skolem, who arose from the semantic stream, with the
syntactic stream, that established modern mathematical logic as typified by the first-order
predicate, or first-order functional logic.

The argument that it was Frege’s [21] Begriffsschrift that inaugurated the era of modern
mathematical logic as a lingua universalis or lingua characterica, rather than a mere cal-
culus ratiocinator, and that the logic of Boole, De Morgan, Peirce, and Schröder satisfied
the condition of being a calculus, but not a language, was formulated by Frege himself,
who designated his Begriffsschrift a Formelsprache [21, X–XI], [27, 371]. In defense of
this claim, Frege and his modern adherents point to Frege’s Universum as a fixed and uni-
versal universe of discourse, outside of which there is nothing. This universality enables
one to formulate propositions within the logical system about anything whatever. the fact
that Frege chose to replace the subject–predicate syntax that held since Aristotle with the
function–argument syntax is a subsidiary, if still essential, issue in the claim that the Be-
griffsschrift is both a calculus and a language. Van Heijenoort [133] and others argue that
the universality of Frege’s Begriffsschrift and that of Whitehead and Russell’s Principia
Mathematica rule out the possibility of asking about the properties (such as completeness
and consistency) of their logical systems, because there is nothing extra systematic. The
corollary claim is that the reintroduction, by Löwenheim, Skolem, and Herbrand, of the
calculus aspect of the algebraic logic of Boole, De Morgan, Peirce, and Schröder, and,
thus, the simultaneous reintroduction of their model-theoretic approach through universes

7 See, e.g., Thiel [126] for a discussion of the relation of syntax and semantics according to Frege; see
Anellis [4] for an analysis of the relation between these dichotomies and where Peirce’s work in particular
stood.
Anellis [4, 261–262] argues that, even if Peirce had no explicit and formal definition of formal system, it
is present and at least implicit in his work, for example in his [82] “On the Logic of Number” providing
an informal axiomatization of number theory.
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of discourse, enabled logicians thereafter, and in the wake in 1931 of Kurt Gödel’s [30]
incompleteness theorems for Principia-like systems, to begin to ask about the properties
of logical systems, and thereby establishing first-order predicate logic as the exemplar of
modern mathematical logic (q.v. [6, 11, 129]). For Leibniz in his “Fundamenta calculi ra-
tiocinatoris,” the calculus ratiocinator and the lingua characterica were indeed intended
to be two aspects of a single program, of establishing a logical mathesis universalis.

Peirce’s conception of logic as semiotic, however, encompassing semantic and syntac-
tic aspects, and in which one is free to operate either with a specific universe of discourse
or with the universe that includes both the actual and the possible, presents his algebra
of relatives both as a calculus and as a language, and one in which, as a calculus, the
focus is upon the formal truth (or, strictly speaking, the validity) of formulas, and one
in which, as a language, the focus is upon the positive truth of propositions. This is the
case underlying Schröder’s argument of 1898 [118, 119] that Peirce’s system, but not that
of Peano, provides a pasigraphy, or formal language; Schroder denies Peano’s claim in
Notations de logique mathématique [64, 52] to having attained Leibniz’s aim of provid-
ing a pasigraphic language – that “Le probléme proposé par Leibniz est (donc) résolu,”
and compares Peirce’s logic of relatives with Peano’s logical system, to the detriment of
Peano; but even so admitted that there was still much work to be done, and recognizes
Peirce’s logic of relatives as a calculus ratiocinator, which is capable of serving as the
formal basis of a lingua characteristica or scriptura universalis. But Schröder doubts that
such a lingua could be constructed, even in principle. Meanwhile, he dismissed Frege’s
Begriffsschrift as having been surpassed while failing to take account of the work already
done. But Schröder did not take into account the semantic aspects of Peirce’s conception
of logic as semiotic.

The connection between the semantic and the syntactic is established in the case of
both Peirce and Frege within the context of the universe, or universe of discourse. For
both Peirce and Frege, the Universe, whatever its ontological (or existential) cardinality
is, is ultimately resolved into two objects. For Peirce in “Truth and Falsity and Error,”
following Boole in The Mathematical Analysis of Logic [9], the universe of discourse
resolves into two classes, X and not-X ; “Truth is a character which attaches to an ab-
stract proposition. . . ” [95, 5.567]; moreover, “Truth and falsity are characters confined to
propositions. . . . To say that a proposition is true is to say that every interpretation of it is
true,” and to be false entails that there is at least one interpretation for which the character
asserted by the proposition fails [95, 5.567]; this is the basis upon which a proposition
must either be true or false. For Frege, the Universum, which is fixed and includes every
[logical] object (Gegenstand) reduces to two objects: The True (das Wahre) or The False
(das Falsche); and every proposition is the name either of The True or The False, or, more
formally, the meaning (Bedeutung) of propositions are the names of a truth values (Namen
von Wahrheitswerthen) [25, 34].

We turn now to a detailed historical account and analysis of Peirce’s development of his
pasigraphy or semiotics and of the algebraic logic which he and his coworkers developed
as the calculus for his pasigraphic system.
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2 Peirce’s Semiotics and Pasigraphy8

Charles Peirce has been considered by many to be the founder of modern semiotics, and
his theory of signs has not only attracted the attention of historians and philosophers of
logic and language, but has also been the basis or starting point for much work in semi-
otics. Peirce was also deeply involved in the technical development of logic in the 19th
century, and was an important and direct influence upon the work in the algebra of logic of
Ernst Schröder. Indeed, Schröder’s magnum opus, his Vorlesungen über die Algebra der
Logik [116] can readily be characterized as the codification and systematization of Peirce’s
work in logic, which in turn can be understood as the unification of the logic of relatives
of De Morgan with the algebraic logic of Boole. Moreover, although Peirce was preceded
by a half-dozen years by Gottlob Frege in the introduction of quantifiers into logic, and,
hence, contributing to the development of first- and higher order predicate logic, Peirce’s
quantification theory had an immediate and profound impact upon the work of other logi-
cians, whereas Frege’s quantification theory largely languished in the library, awaiting the
attention paid to it by Bertrand Russell in 1903 in the Principles of Mathematics [112].

In a letter of 1871 to Peirce concerning notations employed for symbolizing algebraic
operations, James Edward Oliver (1829–1895) commends Peirce for the invention of new
symbols, and in particular expresses agreement with Peirce’s contention that the introduc-
tion of new concepts in mathematics which are outside the parameters of the established
use of symbols that represent settled concepts, warrant, and indeed require the creation
of new symbols (see Peirce [100, 492–497]). Oliver does not say, in his letter, which of
Peirce’s writings he has in mind, but it is clear from the context that he is referring to
Peirce’s paper of 1870, “Description of a Notation for the Logic of Relatives. . . ” [79],
in which, among other things, Peirce introduced his “claw” (��<), which does duty, in
this particular context as a copula, and by virtue of which Peirce was able to express
Aristotle’s Barbara syllogism, “All S are M , all M areP ; therefore, all S are P ” as
..S ��< M/&.M ��< P// ��< .S ��< P/. This is the work in which Peirce intro-
duced an algebraic format into DeMorgan’s logic of relations (for which, see Merrill [58]).
He employed algebraic symbols extending to relations those used by Boole for class terms.
This new sign was understood by Peirce to be the logical analogue of “�,” the mathemati-
cian’s sign for the relation of less than or equal to. In order to suggest, however, that the
relation he had in mind is less complex than less than or equal to he chose to invent a sym-
bol which was typographically less complex than “�.” Peirce’s choice of the “claw” over
the algebraist’s “�” would seem to suggest that he considered de Saussure to be mistaken
in claiming that arbitrary signs are better than what de Saussure called “symbols,” that
is, signs for which there are connections between the sign and its meaning. That this is
what Peirce believed is confirmed by his later creation of a new notation for the 16 binary
connectives which was carefully designed precisely to conform to their logical meanings
(and to avoid arbitrary elements).

8 This section is an expanded version of the original English text, translated into French by Jean-Marie
Chevalier, under the title “La Logique et la théorie de la notation (sémiotique) de Peirce” [5].



144 I. H. Anellis

Initially, Peirce conceived of his “claw” as a symbolic representation of inclusion
rather than as implication. More specifically, Peirce most probably initially had in mind
for this connective general inclusion, that is, any relation that is transitive, reflexive, and
asymmetrical, rather than material implication specifically (see Houser [41, 431, 437 n.
6]). However, its interpretation, as either inclusion or as implication, could vary accord-
ing to the specific context in which it occurred. Its use was also further adapted as set
membership. One of the arguments that Bertrand Russell later set forth against the Boole–
Peirce–Schröder notation as against the notation of Peano, as a proof of its inferiority as
compared with the latter, was precisely that the former failed to distinguish between these
interpretations. Peano employed the “horseshoe,” a backward “C” (which evolved into the
more familiar “�”), to symbolize implication for “conseguenza,” which was subsequently
adopted by Russell, and the epsilon, written as “2,” to symbolize set membership [61].
Russell told Welby in 1904 [113] that “a symbolism based on Peano’s is practically more
convenient” than the Boole–Peirce–Schröder notation. On the question of the logic of re-
lations, Russell [111] raises specific criticisms of Peirce’s work, granted, as we remarked,
that in 1870 Peirce introduced the same symbol (��<) for class inclusion and for impli-
cation. This was seen by Russell [1901] as a serious weakness; and he takes pains there to
distinguish his own work from that of Peirce and Schröder. (His complaint is presumably
based upon his own distinction [112, 187] between “Universal Mathematics,” meaning
universal algebra in what he understood to be Whitehead’s sense, and the “Logical Cal-
culus,” the former “more formal” than the latter. In particular, for Universal Mathematics,
the signs of operations are variables, whereas for the Logical Calculus, as for every other
branch of mathematics, the signs of operations have a constant meaning.) But Russell
misses the point, inasmuch as he interprets Peirce’s notation to be a conflation not of class
inclusion with implication, but of class inclusion with set membership. In Peirce’s opin-
ion his algebraic logic of 1880 was highly abstract and could be interpreted as a class
calculus, predicate calculus, or propositional calculus. (This erroneous interpretation is
reiterated by Kennedy [45, 367–368].) In a letter to Russell of January 27, 1901, Louis
Couturat (1868–1914) expresses his agreement with the need to distinguish implication
from set membership [16]. In fact, however, Peirce made no distinction in his work prior
to “On the Algebra of Logic: A Contribution to the Philosophy of Notation” [84] between
sets and classes, and so the charge that he conflates the notation for class inclusion with
the notation for set membership is moot for Peirce, if there is an issue here at all. Schröder
too, following Peirce, used the same symbol “C,” for class inclusion and implication, for
which he, in turn, was criticized by Frege [26].9

In the manuscript “On the Algebraic Principles of Formal Logic” written in the autumn
of 1879 (in Peirce [103, 21–37]), Peirce explicitly identified the “claw” as the “copula of
inclusion” and defined it [103, 23] and defined material implication or logical inference as

1st; A ��< A; whatever A may be.

2nd; If A ��< B; and B ��< C; then A ��< C:
9 For details of Russell’s and Peirce’s accounts and criticisms of one another’s contributions to logic, see
Anellis [1995]; for discussion of the views of Peirce and his adherents towards Russell’s work in logic,
see [3].
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From there he immediately connected his definition with truth-functional logic, by assert-
ing that:

“This definition is sufficient for the purposes of formal logic, although it does not distinguish
between the relation of inclusion and its converse. Were it desirable thus to distinguish, it would be
sufficient to add that the real truth or falsity of A ��< B , supposes the existence of A.”

Schröder replaced Peirce’s claw with the symbol “C,” which he named Subsumption, and,
like Peirce’s symbol, was capable, depending upon the specific context in which it was
employed, of doing duty as either implication, set membership, or inclusion (the copula
of predication).10

In his own “Elementary Notes. I. General and Logico-Mathematical Notation” pub-
lished in 1888 in the Annals of Mathematics, which is a disorganized catalog of mathemat-
ical concepts and associated notational devices that had been introduced into mathematics
research works and textbooks in modern times, much of the discussion focuses on diverse
applications of the copula, only one of which is arithmetic identity. Among the variety of
uses, we are most interested in the logical copula, about which Oliver [59, 192] wrote:

We need a logical copula to assert the dependence of one statement upon another without first
asserting the truth of either. This, ) and * cannot do; but it is done by Prof. C.S. Peirce’s ��< and
>��; thus P ��< Q, orQ >�� P , means “If P be true, so isQ;” and .A D B/ ��< .C D D/,
or .C D D/ >�� .A D B/ means “If A D B , then C D D.” Such a statement neither implies
nor denies its own converse; but we might write P >��< Q, for “If P be true, so is Q, and
conversely, ifQ, then P ;” i.e., “Statements P and Q are equivalent;” and this, or some other sign
of equivalence, would often be wanted. Peirce’s sign of equivalence is not >��<, but D; which is
the best in his studies of Pure Logic, but which, of course, is preoccupied in Mathematics. Hence,
it may be as well not to employ the forms ��<, >��, if, as I think is the case, another form (the
square half bracket) is already somewhat used for a quite analogous purpose, and is rather more
convenient. When we write

C D D; [(8)

the marginal reference, [(8), is commonly a reason for the statement C D D; and if the formula
(8), referred to, be A D B , we have thus virtually written C D D Œ A D B , in the sense
.C D D/ >�� .A D B/, above; that is, we have the copulas [“Is implied by or necessary to;”]
“Implies or is sufficient to:”] [“Is equivalent, or both necessary and sufficient to.” These copulas
[, ], ][, or their equivalents >��, ��<,>��<, can, at need, be variously modified by indices. Thus,
we could form copulas for “Does not imply,” “Implies but is not implied by,” etc., analogous to the
familiar “Is not equal to.” When a logical copula connects only equations not continued and whose
second members are zero, we might, for shortness, write only their first members; as ACB �C;D

for AC B D 0 � C D D D 0; i.e., for AC B D 0 � C D 0;D D 0.

Peirce’s notation was developed as a linear expression of formulas suitable for algebraic
relations. The notation which Peirce devised was based in large measure upon that pre-
sented by Boole and originating as the symbolic representation for an algebra of logic, but
which was further expanded by Peirce to accommodate De Morgan’s development of rela-
tions between terms. For Peirce, the old Aristotelian structure of subject-predicate syntax,
which had been arithmeticized by Boole, so that the traditional proposition “All X are Y ”

10 In a review published inMind in January 1892 [48] of the first volume of Schröder’s Vorlesungen über
die Algebra der Logik, Christine Ladd-Franklin remarked on Peirce’s view that “for the purposes of Logic,
there is no difference between the transitive relation for terms and the transitive relation for propositions”
[48, 128] and discussed some respects in which Schröder’s views differed from Peirce’s.
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was rewritten as XY D 1, “No X are Y ” was rewritten as XY D 0, etc., could be still
further expanded, so that propositions such as “A is the father of B” could be rewritten as
relational expressions, and that relations involving more than two relata could also readily
be accommodated, so that we now have, for example, X (Y to express “All X are Y ”
and X , Y to express “No X are Y .” Writing X ��< Y to express “All X are Y ” and
X ��< Y to express “No X are Y ,” it was a simple matter for Peirce to formulate longer
expressions which involved more than two terms. Refining his notation further by the use
of indices, Peirce was able to represent relations, so that, for example, if f is the symbol
for the relation “father” and a and b are the notational representation of the relata, fa;b ex-
pressed the relation “a is the father of b,” which was easily distinguished from the relation
fb;a to represent the relation “b is the father of a.” It is a simple notational matter, then, to
express a triple relation, for example f , fa;b;c to express the relation between grandfather,
father, and son. Moreover, the use of quantifiers different from the relational term and the
relata-terms could be introduced, and the addition of indices applied to quantifiers as well
as to relations, enabled Peirce to easily algebraicize Aristotle’s categorical propositions.
Denoting the existential and universal quantifiers by “

P
i” and “

Q
i ,” respectively, as log-

ical sums and products, e.g.,
P

i xi D xiCxjCxkC : : : and individual variables, i; j; : : : ,
are assigned both to quantifiers and predicates, Peirce was able not only to express rela-
tions, but to enumerate the terms (or conditions) that were required to render a quantified
proposition true or false.

It is Peirce’s notation that Schröder, with minor variation, adopted in his Vorlesun-
gen. And this is the notation that logicians employed until it was in the main supplanted,
starting, under the influence of Russell’s Principles, of Peano’s notation.11 (The Peirce–
Schröder symbols for the quantifiers were the primary exception, these being adopted
from Hilbert and integrated into the Peanesque notation with which we are most familiar
today.) In a letter to Peirce of March 2, 1897, Schröder wrote (as quoted in Houser [42,
223–224]):

As one instance I should like to draw your attention to the pasigraphic movement in Italy. Have
you ever noticed the 5 vols. of Peano’s Rivista di Matematica together with his “Formulario” and
so many papers of Burali-Forti, Peano, Pieri, de Amicis, Vivanti, Vailati, etc. therein, as well as in
the reports of the Academia di Torino and in other Italian periodicals (also in the German Mathe-
matische Annalen)?

By the bye you had better not [emphasize] the comparatively trifling divergencies of our sys-
tems of notation in view of the contrast with the latter of the one, unanimously employed by those
most active Italian investigators, which is, at least with regard to relative notions, so very inferior
to ours. I have so to say to stand out nearly alone against them all; whereby “the Good” again and
again proves to be an enemy of “the Better” – as is averred by the [German] proverb: Das Gute ist
des Bessern Feind.

The origin of the term “pasigraphy” can possibly be traced to Joseph de Maimieu (1753–
1820) and his books Pasigraphie . . . ou . . . premiers élémens du nouvel art-science
d’écrire d’imprimer en un langue de maniére a etre lu et entendu dans toute autre langue
sans traduction [55], and Pasigraphie . . . oder . . . Anfangsgründe der neuen Kunst-
Wissenschaft in einer Sprache alles so zu schreiben und zu drucken, dass es in jeder

11 In 1891, in his “Principii di logica matematica,” [62, n. 5] remarked on the connection of his “sign of
deduction” and notations used by others, including that of Peirce.
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andern ohne übersetzung gelesen und verstehen werden kann erfunden und verfasset [56]
and Johann Severin Vater (1771–1826) and his book Pasigraphie und Antipasigraphie;
oder Ueber die neueste Erfinderung einer allgemeinen Schriftsprache für alle Völker, und
von Wolkens, Leibnitzens, Wilkens und Kalmars pasigraphischen Ideen. It is possible that
Peano, whose interest went beyond mathematics and logic to include artiticial languages,
borrowed the term for the linguistic aspects of his axiomatic system from these early uses.
Benjamin Hawkins [32, 120] suggests that Schröder was the likely source for the labeling
by Peirce of Peano’s logical system as a pasigraphy.

The value of a uniformization of notation was recognized by late 19th- and early
20th-century logicians, who not only remarked the wide variety of definitions and sym-
bolizations for the most basic elements of logic, but complained about the confusing
profusion of notational systems. (See Fig. 1 for the compilation by John Venn (1834–
1923) [136] of notations for the most common propositions of logic from the late-17th
century to 1879, from the logical systems devised from Leibniz through Frege.) Venn di-
vided the 33 forms into seven different general types. The authors whose notations are
considered range from Leibniz to Boole and Hamilton, and from Charles Peirce and his
students to Frege. That same year, he was one of those who published a review of Frege’s
Begriffsschrift [135] in which the main point was the cumbrousness of Frege’s notation.
In 1888, Sophie Willock Bryant (1850–1922), in her article “On the Nature and Functions
of a Complete Symbolic Language” [12] – not unnaturally, then – complained of the exis-
tence of too many competing logical notations and systems, and she advocated a return to
Boole’s original system. The last two decades of the 19th century saw a vigorous, if not
rancorous, debate about the various notations being devised by logicians; the more crucial
aspects of this debate were carried out within the context of the broader philosophical
issues of the purpose of the notation as reflective of the nature, purpose and proper role
of logic itself. The leading participants in this aspect of the history of the philosophy of
logic at that time were Schröder, Frege, and Peano. Schröder’s review [115] of Frege’s
Begriffsschrift was the most serious, sustained, systematic, and comprehensive treatment
of Frege’s tract; nevertheless, Schröder, likewise, found the Begriffsschrift-notation to be
clumsy and argued that, more importantly, it both ignored the work of the algebraic lo-
gicians and failed to add anything new or important. Echoes of Schröder’s criticisms of
Frege’s Begriffsschrift can be seen in the thesis [141] of Norbert Wiener (1894–1964) for
Harvard University of 1913, in which a comparison is rendered by Wiener between the
classical Boole–Schröder algebra of logic as represented in Schröder’s Vorlesungen über
die Algebra der Logik on the one hand and the logic of Principia Mathematica on the
other, in which Wiener argued against Russell’s claims that the Boole–Schröder algebra
cannot express what Russell’s method expresses.12 Peirce for his part always neverthe-
less held that logicians should experiment with alternative notations and that notational
systems should evolve as the conceptual systems they represented evolved, since new con-
ceptions call for new symbols. Additionally, Peirce believed that different kinds of logical
analysis might best be handled with different notational systems.

Among the recipients of a large number of complaints was the two-dimensional rep-
resentation of as simple a proposition as A implies B in Frege’s Begriffsschrift, written

12 See also [31] for a survey and analysis of Wiener’s thesis.
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Fig. 1 John Venn’s Classification of Notations for the most common propositions of logic [136, 38] and
[137, 481]

as

which Venn [135] termed “cumbrous and inconvenient” as compared with a linear no-
tation such as employed by the majority of logicians, mainly working in the Boolean
style, who took their cue from the “symbolical algebra” which Boole, De Morgan, George
Peacock (1791–1858), Charles Babbage (1792–1871), Benjamin Peirce (1809–1880),
Charles Peirce, Arthur Cayley (1821–1895), and James Joseph Sylvester (1814–1897),
and their colleagues were developing through the 19th century. Schröder thought it
a “monstrous waste of space” which “indulges in the Japanese custom of writing verti-
cally.” (See Fig. 2 for Frege’s Theorem 71 in the Begriffsschrift notation, which is rendered
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Fig. 2 Frege’s Theorem 71,
Begriffsschrift [21, 59]

as Œ8a .f .x; a/ � F.a// � .f .x; y/ � F.x; y//� � Œ8bŒF.b/ � 8a.f .b; a/ �
F.a//� � ŒF .x/ � .f .x; y/ � F.y//� in the Peano–Russell notation.) One of the few
early reviewers who defended Frege’s notation against the linear notation of the algebraic
logicians was the philosopher Kurd Lasswitz (1848–1910), who [49] attacked the Boole–
Schröder notation as “one-sided” and thought Frege’s notation in some respects the more
preferable. Terrill Ward Bynum noted [14, 19] that Schröder read Lasswitz’s review prior
to writing his own, and concluded that Schröder consequently came to consider Frege’s
notation as a “threatening alternative to his own”.

In examining the pasigraphy of Peano and his school and comparing it with that of
Peirce for the algebra of relatives and as adopted for his own use in the Algebra der Logik,
Schröder [118, 148], [119, 46] wrote that:

The problem to be solved for any given branch of science amounts to: expressing all the notions
which it comprises, adequately and in the concisest possible way, through a minimum of primitive
notions, say ‘categories’, by means of purely logical operations of general applicability, thus re-
maining the same for every branch of science and being subject to the laws of ordinary Logic, but
which latter will present themselves in the shape of a ‘calculus ratiocinator’. For the categories and
the operations of this ‘lingua characteristica’ or ‘scriptura universalis’ easy signs and simple sym-
bols, such as letters, are to be employed, and – unlike the ‘words’ of common language they are to
be used with absolute consistency (with perfect ‘Konsequenz’, as we Germans say, or mathematical
strictness, ‘Strenge’).

Schröder explained in his article on pasigraphy that he was led to abandon consideration
of Peano’s notation in favor of his own modification of Peirces upon coming to the con-
clusion that Peano’s notation was incapable of expressing relations (see Peckhaus [71] for
a discussion of Schröder’s comparison of Peirce’s and Peano’s notation).13

Schröder [118, 147], [119, 46] then described the purpose of the pasigraphy, or
“pasigraphic language,” as “to serve and forward on account of its logical structure the
purposes of Science; first of all of that science, which the ancient Greek called ‘the sci-
ence (katexochen)’, Mathesis, and next: of Logic and an exact Philosophy. . . .” Schröder’s
assessment argues for the superiority and greater flexibility of the Peircean pasigraphy

13 Schröder announced the shift in his attitude towards formal logic as a result of having read Peirce’s [83]
“The Logic of Relatives.” Schröder’s also explained his shift in letters to Felix Klein (1849–1925) (see
Peckhaus [71, 198–202] for transcriptions of the letters).
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in comparison with Peano’s, although he evidences considerable respect for the efforts
of Peano and his school in that direction. The bulk of his treatment considers in detail
the similarities and differences between the Peircean and Peanesque, and in particular
examines various examples in their respective treatments of various concepts of logic and
set theory. (The specific cases which Schröder offers for comparison would be of interest
primarily to the specialist in algebra, algebraic logic, or set theory, and we shall conse-
quently forego these illustrations.) On the other hand, Schröder has little of comfort to
say about Frege’s Begriffsschrift, and dismisses it with but a few words: Frege, Schröder
writes [118], [119, 60–61], is “heedless of anything accomplished in the same direction by
others, took immense pains to perform what had already been much better done and was
therefore superseded from the outset, thus delivering a still-born child. . . .” Schröder had
also already undertaken a brief consideration of signs in 1890 [116]. Schröder expressed
the nature of his own plan in the Algebra der Logik as devising the algebraic logic as:
“Der Gedanke einer philosophisch wissenschaftlichen Universalsprache” [116, I, 93] in
which the “Verwirklichung des gedachten Ideals einer wissenschaftlichen Klassifikation
und systematischen Beziehung alles Benennbaren” [116, I, 93] could be fulfilled. The
fulfillment of this plan would yield “die vollendete Kenntnis der die Begriffselemente der
verknüpfen bestimmte Grundoperationen und die Bekanntschaft mit deren Gesetzen.”
Thus, Schröder was conceiving his system, as presented in the Algebra der Logik, in
terms of an ideal language, which would also serve as the foundation for the algebra of
logic and the algebra of relatives. It is on this basis that Peckhaus came to understand that
Schröder was moving to adopt a logicist position in philosophy of mathematics [71, 72].

Schröder concluded that the Boolean calculus of equivalent statements offers little more
than a system of denotation, while the Peanesque pasigraphy, in its failure to employ
Peirce’s algebra of relatives, offers an obstacle to the profitable application of Peirce’s
algebra to the Peano’s system of denotation [118, 161], [119, 61]. He compares Peano’s
system, as presented in the Formulario, to a sailboat, in contrast with his own Algebra der
Logik, which in comparison with Peano’s sailboat, is a steamship [118, 161], [119, 61].

Frege responded to the criticisms of his Begriffsschrift, and in particular to Schröder’s
criticisms, by arguing that the purpose of his work was misunderstood. He argued, in par-
ticular, that whereas the algebraic logicians had presented either a mere calculus, or at best
a calculus which was also, but only secondarily, a language, his Begriffsschrift was at once
both a calculus and a language, and primarily and foremostly, a language. We find these in
“Booles rechnende Logik und die Begriffsschrift” [22], “Booles logische Formelsprache
und die Begriffsschrift” [23], “über den Zweck der Begriffsschrift” [Frege 1883], and in
“über die Begriffsschrift des Herrn Peano und meine einige” [27], Frege undertakes to
compare his own Begriffsschrift with Peano’s pasigraphy and to argue that Peano’s sys-
tem of notation is on its way towards becoming a fully fledged lingua characterica, but
remains has not yet attained that status; that, moreover, while it is a pasigraphy, and more
or less a lingua, it remains a calculus.14

14 Van Heijenoort [129, 325, n. 3] understood Frege [27, 371] to have asserted that “Boole’s logic is
a calculus ratiocinator, but no lingua charaterica; Peano’s mathematical logic is in the main a lingua
characterica and subsidiarily, also a calculus ratiocinator, while my Begriffsschrift intends to be both
with equal stress.”
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How did Peirce understand the concept of pasigraphy? And how did he understand the
relation of pasigraphy to logic, to language, and to a calculus? Once these questions are
answered, we can the more readily consider the merits of Peirce’s notation for logic with
its major competitors.

We may begin by noting that the concept of logic for Peirce was equivocal. In the
narrow sense, it is a normative science, establishing the rules for correctly drawing, or de-
ducing, conclusions from given propositions. It is on this basis that Peirce was able, as we
have seen, to translate the Aristotelian syllogism as an implication. Thus, for Peirce [93,
4.239] “To draw necessary conclusions is one thing, to draw conclusions is another, and
the science of drawing conclusions is another; and that science is Logic.” Logic in this
usage is a deductive methodology,15 and in that case a system of logical symbols is the
means by which we can “analyze a reasoning into its last elementary steps” [94, 4.239].
In an unpublished manuscript of 1873, intended as part of a larger work on logic, Peirce
went so far as to defined logic as a study of signs; he wrote [80], [102, 82–84]:

A sign is something which stands for another thing to a mind. To its existence as such three things
are requisite.

In the first place, it must have characters which shall enable us to distinguish it from other
objects.

In the second place, it must be affected in some way by the object which it signifies, or at least
something about it must vary as a consequence of a real causation with some variation of its object.
One of the simplest examples of this is a weathercock, which is directly moved by the force of the
wind. A photograph is caused by a radiant light from the object it represents. In the case of a picture
executed by hand the causation is less direct, but none the less exists. The relation of a historical
statement with its object is that of being caused by it. If a promise is made, this is a sign of the
thing promised only so far as it will itself cause the existence of its being, unless we are to regard
it as a prophecy which is caused by that state of mind which will cause the thing prophesied to be
carried out. Thus the causation may either be from the object to the sign, or from the sign to the
object, or from some third thing to both; but some causation there must be.

The third condition of the existence of a sign is that it shall address itself to the mind. It is not
enough that it should be in relation to its object but it is necessary that it shall have such a relation
to its object as will bring the mind into a certain relation with that object namely, that of knowing
it. In other words, it must not only be in relation with its object, but must be regarded by the
mind as having that relation. It may address the mind directly, or through a translation into other
signs. In some way it must be capable of interpretation. We have seen that thoughts themselves have
intellectual significance only so far as they prove themselves to other thoughts. So that thoughts are
themselves signs which stand for other objects of thought. And since, on the other hand, there is no
sign which the mind may not make use of in reasoning, it follows that the science of thought in its
intellectual significance is one and the same thing with the science of the laws of signs. Now there
are many general truths with regard to signs which hold good for all signs whatever, of necessity;
being involved in the essential nature of signs. The origin of these principles is undoubtedly the
nature of the mind. But they are involved in so much of what is true of the mind as is implied in our
capability of reasoning at all and which may therefore be said to be implicitly taken for granted by
all men, that is, to be deducible from what everybody agrees to and must agree to before we can
begin any discussion whatever in a rational way, and which is thus taken out of the special domain
of psychology and made the common property of science. These principles might be evolved from
a study of the mind and of thought, but they can also be reached by the simple consideration of any
signs we please. Now the latter mode of studying them is much the easiest, because the examination

15 In a much broader sense, Peirce would also include induction and deduction as means of inference along
with deduction.
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of external signs is one of the most simple researches which we can undertake, and least susceptible
to error, while the study of the mind is one of the most difficult and doubtful. We shall therefore
proceed in the remainder of this part of the work to compare signs, and generalize our results, being
guided in doing so by a certain feeling of the necessity that this or that must be true, such as is felt
in mathematics the origin of which necessity clearly is, in this case at least, that the principles are
involved in the postulate, that the mind is so constituted as to investigate.

The business of Algebra in its most general signification is to exhibit the manner of tracing
the consequences of supposing that certain signs are subject to certain laws. And it is therefore to
be regarded as a part of Logic. Algebraic symbols have been made use of by all logicians from
the time of Aristotle, and probably earlier. Of late, certain logicians of some popular repute, but
who represent less than any other school the logic of modern science, have objected that Algebra is
exclusively the science of quantity, and is therefore entirely inapplicable to Logic. This argument is
not so weak that I am astonished at these writers making use of it, but it is open to three objections:
In the first place, Algebra is not a science of quantity exclusively, as every mathematician knows;
in the second place these writers themselves hold that logic is a science of quantity; and in the third
place, they, themselves, make a very copious use of algebraic symbols in Logic.

For Peirce, signs may be either icons, an indices, or symbols, according to whether they
are, respectively, in some relevant manner like the objects they represent; or physically or
causally related to the their objects; or represent their objects by agreement or convention.
Peirce introduced this conception in 1880 in “On the Algebra of Logic,” and subsequently
further developed this characterization. He held that all three of these types of sign are
necessary for logic. Schröder [117, 3431] explained that “the sign is a handle by which
we take hold of the things of thought.” In “On the Algebra of Logic: A Contribution to the
Philosophy of Notation” [84], Peirce explained his theory of signs. General signs, soon
to be called symbols, convey conventional meanings; demonstrative signs, called indexes,
to denote individuals in appropriate universes of discourse; and signs of resemblance,
called icons, to exhibit relations and structures. It was in this paper that he gave the first
clear introduction of truth-values and a decision procedure as a general procedure for
determining whether a proposition could be proven to be a theorem.

Once more, Peirce’s choice of the “claw” over the algebraist’s “�” would seem to
suggest that he would have considered de Saussure was mistaken in claiming that arbitrary
signs (Peirce’s symbols) are better than symbols, as signs – Peirce’s icons and indices –,
for which there are nonarbitrary connections between the sign and its meaning.

It is, said Peirce, the icon that represents its object by sharing some quality or structural
feature. By examining an icon of an object we are at the same time examining a feature
of the object itself. Carefully constructed iconic notations provide us with a means for
learning about the objects and structures they represent through the manipulation and
examination of the signs themselves.

In 1906, Peirce wrote a series of articles for a journal of philosophy in which he de-
fended his idiosyncratic graphical notation for logic. He imagined himself responding to
a great general who questioned why one should bother to perfect a notation to represent
some course of thought that must already be present to us. Peirce argued that the function
of a good diagram in logic is similar to that of a good map in a military campaign. Just as
the general might stick pins into a map to experiment with different military strategies so
the logician might manipulate his diagrams to learn about the relations or structures they
represent. Peirce – whose degree at Harvard was in chemistry – expressed it thusly [88,
493], [94, 4.530]:
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one can make exact experiments upon uniform diagrams; and when one does so, one must keep
a bright lookout for unintended and unexpected changes thereby brought about in the relations of
different significant parts of the diagram to one another. Such operations upon diagrams, whether
external or imaginary, take the place of the experiments upon real things that one performs in
chemical and physical research. Chemists have ere now, I need not say, described experimentation
as the putting of questions to Nature. Just so, experiments upon diagrams are questions put to the
Nature of the relations concerned.

Peirce then argues that just as the chemist is really investigating the molecular structure
of his samples, so the logician is investigating the form of relation instantiated in his
diagram. It could be suggested that in a certain respect the chemist appears to have an
advantage over the logician; namely, in experimenting with actual samples of the chemical
compound under investigation the chemist has a sort of guarantee that the genuine article
is being studied. If the molecular structure of interest is H2O we can hardly go wrong if
we experiment with a sample of pure water. Furthermore, because the molecular structure
of interest is so precisely represented by our sample, by experimenting with our beaker of
water we may learn unexpected and perhaps even unimagined things about H2O. While it
is true that chemists sometimes have this advantage over logicians (and mathematicians),
that does not have to be the case. Peirce’s idea was that logicians can have this same
“advantage” by designing notations to precisely embody the structures they represent. If
that were accomplished the logician and mathematician could learn a great deal by the
mere rule-governed manipulation of signs.

The solution for Peirce was to devise graphical methods for experimentally manip-
ulating the constituents of propositions to investigate their logical relations. Therefore,
beginning around 1890, Peirce began to concentrate on graphical logic. In “The Critic
of Arguments” [85], Peirce extended the concept of function to many-place function and
insists that even algebra is a kind of diagram, but that it is not especially powerful as graph-
ical systems go. After 1892, in a number of papers mostly involving graphical systems or
semiotics, Peirce turned his attention to quantification theory. Much of the work which
he carried out in logic in the final decade of his life was devoted to developing graphi-
cal systems of logic. His entitative graphs came first, and treated propositional logic. The
surface of the graph was a sheet which represented a truth-theoretic plane, and the letters
representing the terms of the calculus were connected by lines representing the relations
between these terms. A “cut” in the sheet, depicted by a circle around a letter representing
a term in the universe of discourse, indicated a whole in the sheet, and thus represented
the negation, or falsity, of the encircled term. In his existential graphs, the next phase of
his work, Peirce used a similar graphical technique to deal with quantified propositions.16

In the entitative graphs, P together with Q, i.e., their mere concatenation, means “P or
Q” while in the existential graphs it would mean “P andQ.”

Placing a cut around two concatenated terms P or Q which have each already been
negated yields, by De Morgan’s Laws, the proposition not (not-P and not-Q), i.e., P or Q:

16 Similar, because it would be incorrect to understood existential graphs are basically just the entitative
graphs with quantification.
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P Q

Entitative graph: “P and Q,” i.e., “It is not the case that not-P or not-Q”

In 1897, as [123] reminds us, Peirce switched to the dual form, existential graphs,
which were based on conjunction, negation, and existential quantification. For the exis-
tential graphs,

QP 

Existantial graph: “P orQ,” i.e., “It is not the case that not-P and not-Q”

now represents De Morgan’s Law as not (not-P and not-Q), i.e., P orQ.
Peirce continued to develop versions of existential graphs for modal logic and higher-

order logic until his death in 1914. Peirce’s ˛-graphs were existential graphs for sentential
calculus and Boolean algebra. The empty sheet of assertion again represented the universe
of discourse, and the cut indicated the negation of a term. The concatenation of two terms
represented their conjunction. Lines of identity [straight or curved] are introduced for ˇ-
graphs, which are existential graphs for first-order logic. In the existential graph, writing
“man” on the sheet is read “there exists a man.” Thus, the graph

man

read intuitively represents a proposition which should probably be read “Either something
is a man or it eats a dog;”; see read existentially, it represents the proposition “Some man
eats some dog.” The existential graph

is a man

is mortal

is to be read as “There is some man who is not mortal” (see the manuscript “Existential
Graphs” [94, 4.407].)

Peirce’s �-graphs, which added elements of color and stacks of sheets of assertion,
were still in the experimental stage at the time of Peirce’s death, and were developed for
modal logic and for higher order quantification theory.
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EG, Peirce’s existential graphs, are his highly iconic, graphical system of logic. He
described them, in the manuscript “Phaneroscopy” of 1906 as a moving picture of thought,
“rendering literally visible before one’s very eyes the operation of thinking in actu,” and
as a “generalized diagram of the Mind” [88], [94, 4.582].

Also among the graphical treatment for representation of the propositions of logic
devised by Peirce were truth tables. Thus, one of Peirce’s manuscript of “The Simplest
Mathematics” written in January 1902 (“Chapter III. The Simplest Mathematics (Logic
III),” MS 431; see [94, 4:260–262]) contained a table presenting the 16 possible sets of
truth values for a two-term proposition:

Charles Peirce’s table for the 16 binary connectives (as presented in Clark [1997, 309])

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F F F F T T T T F F F F T T T T

F F F T F T F F T T F T F T T T

F F T F F F T F T F T T T F T T

F T F F F F F T F T T T T T F T

As part of this work, Peirce developed a special iconic notation for the 16 binary con-
nectives that enabled him to give a quasi-mechanical procedure for identifying thousands
of tautologies from the substitution sets of expressions with up to three term (or proposi-
tion) variables and five connective variables. In his X-frames notation, the open and closed
quadrants are indicate truth or falsity respectively, so that for example, �, the completely
closed frame, represents row 1 of the table for the 16 binary connectives, and �, the com-
pletely open frame, represents row 16. The X-frame notation is based on the representation
of truth values for two terms as follows:17

TT

TF               FT

FF

A well-designed notation enables us to investigate our subject by manipulating the
notation. But we must keep our purposes in mind. If we want to investigate inferential re-
lationships between propositions, or discover what conclusions can be drawn from given
premises, the Existential Graphs should be our choice. But for investigating the inter-
nal structure of propositions, for exploring variations of form, or for studying the group
properties of the propositional connectives, EG will rank far behind Peirce’s advanced
algebraic logic. For Peirce, then, the benefits of designing notational signs to iconically
represent their objects are by no means limited to logical connectives. Peirce liked to
distinguish mathematics from logic by pointing out that mathematics is concerned with
deducing consequences from given assumptions, while logic is concerned with analyz-
ing procedures and methods of reasoning. As a result, mathematicians want efficient and

17 For details on computational aspects Peirce’s X-frame notation and applications, see Clark [15] and
Zellweger [146].
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powerful notational systems, while logicians tend to prefer weak systems which, though
inefficient, are more analytical and reveal more about the inferential process. It is reason-
able to suppose that different systems of notation are called for and that a good notation
for deduction will model large inferential steps while a good notation for fine analysis will
model the smallest steps of inference and the most elementary relations between terms.

In the broader sense, Peirce associated logic with the theory of signs, and thus he
devoted considerable attention to the distinctions between icon, index, and symbol.
“Logic,” he wrote [97, 98], “in its general sense, is . . . only another name for semiotic
(σημειωτηκἠ), the quasi necessary or formal, doctrine of signs.” Adam Vile [138, 1]
consequently argues that Peirce’s work in logic, “from a semiotic underpinning,” was
an attempt at developing logic which “aimed at clarifying reasoning and formulating
easily understandable general principles of reasoning” [138, 1]. In doing so, he took the
rationale for this study of logic to be concerned with what the medieval had called specu-
lative grammar (grammatica speculativa), and it is the relation between symbols and the
relations between objects or facts that they represent that are examined. The speculative
grammar, or pasigraphy, is the syntactic basis for the research into the non-logical universe
that provides the model-theoretic semantic – or as Jaakko Hintikka [40] would have it in
reference to Peirce, the game-theoretic – interpretation for the research into reasoning. For
Peirce, the distinct tools of methodologies of research, and thus the three branches of logic
in this broad senese, are deduction, induction, and abduction. Logic in this broad sense,
then, is the theory of all reasoning, and the speculative grammar, or theory of signs, insep-
arably linked to logic, is the syntactic aspect of logic. This conception was inherited by
Peirce from the work of Thomas Maulfelt (Thomas of Erfurt; 14th cent.) and his school,
in particular, the Tractatus de modis significandi seu Grammatica speculativa (see, e.g.,
[57]), which, in Peirce’s day, was still attributed to Johannes Duns Scotus (1266?–1308).
As recently expressed by Alessandro Isnenghi [44, 150], for Thomas and his school:

Logic depends upon and presupposes Grammar, as in Peirce’s theory. Grammar does not concern
direct references to the thing: on the contrary it is the dimension of truth, belonging to logic,
that presupposes the notion of congruity of grammar. . . . [T]he existence or non-existence of an
object. . . is something that concerns only the work of the logician.

As Peirce said for himself, for example, in 1903 in “A Syllabus of Certain Topics of
Logic,”

Logic may be regarded as the science of the general laws of signs. It has three branches: (1) Spec-
ulative Grammar, or the general theory of the nature and meaning of signs, whether they be icons,
índices, or symbols; (2) Critic, which classifies arguments and determines the validity and degree
of force of each kind; (3) Methodeutic, which studies the methods that ought to be pursued in the
investigation, in the exposition, and in the application of truth. Each division depends on that which
precedes it [96, 2:260].

Scotus himself distinguished theoretical logic from practical logic and proper from im-
proper inferences, a distinction which we may suppose played a role in Peirce’s differenti-
ation between logic as speculative grammar or semiotics, and logic as a deductive science.

This approaches the notion, formulated by Descartes, Leibniz, and their intellectual
heirs, of a mathesis universalis. And whereas Descartes had sought to make more geomet-
rico themathesis, on the ground that Euclid’s Elements provided the most perfect example
of rigorous deductive reasoning, Leibniz undertook the Project, taken up by Boole, Peirce,
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and, in different directions, Frege and Russell, to devise a mathesis based upon a reformu-
lation of traditional logic as a deductive science. The basis of such a mathesis was to be, on
the one hand, a pasigraphy, or formal universal language, a lingua characteristica. The de-
ductive aspect was to be provided for the language by a calculus, a calculus ratiocinator.
For Leibniz, Boole, Peirce, Frege, Russell, and their colleagues, logic was either a calcu-
lus, or a language, or both. The question, when considering the primacy of one aspect of
logic over another was determined by the selection of the calculus. The logica utens was
the choice of the “Booleans,” or algebraic logicians and the American postulate theorists
who followed them: Boole, De Morgan, Peirce, Schröder, Huntington et al. The logica
utens is a calculus designed for application to a specific universe of discourse, Schröder’s
Denkbereich. The axioms and the primitives, or undefined terms of the syntax, are selected
on the basis of the purpose of the specific field for which the system was devised. Thus,
for example, in formulating one’s axioms, if the purpose was to formulate and develop
a geometric theory rather than, say, an area of algebra. The axioms and primitives would
be designed that were appropriate to geometry. And if a narrower theory was at issue, one
would select axioms and primitives appropriate to, say, projective, rather than to metric,
geometry, or to Euclidean, rather than to non-Euclidean geometry, as the case might be.
The logica utens was not a language, but a calculus, since the primitives to which the ax-
ioms were to be applied could be left uninterpreted until after the axiomatic system was
developed. This is what David Hilbert (1862–1943) was attempting to articulate when he
was reported as saying that it was a matter of indifference whether the primitives of an
axiomatic system were composed of points, lines and planes, or tables, chairs, and beer
mugs (as quoted in Blumenthal [8, 403] and Freudenthal [29, 391]).

A key idea of the “Leibniz programme” of developing a mathesis universalis which
was at once both a calculus ratiocinator and a lingua characteristica was that the logical
symbols can, and should, be treated formally, without recourse to special interpretations.
According to Boole,

[W]e may in fact lay aside the logical interpretation of the symbols in the general equation; convert
them into quantitative symbols, susceptible only of the values 0 and 1; perform upon them as such
all the requisite processes of solution; and finally restore to them their logical interpretation. (italics
in the original) [10, 70]

Thus, from the beginning Boole understood that the resulting algebra could be studied
either in the abstract as a special branch of mathematics, or under various interpretations
as different kinds of logics. He also makes it clear from the outset that his explicit goal
is to devise logic “in the form of a calculus” [10, 11]. The general laws of thought for
this calculus are “the signs appropriate for the science of logic in particular” and of the
investigation which he undertakes for his logical calculus are concerned with “the laws
to which that class of signs are subject” [10, 24]. In devising and working through the
deductive consequences of his algebra, Boole left his calculus uninterpreted, so that it
could perform precisely as a pure calculus, rather than as a language whose formulas or
expressions concerned propositions, or classes, or sets.

For Peirce, the distinction between logica docens and logica utenswas consistently for-
mulated in terms of the logica utens as a “logical theory” or “logical doctrine” as a means
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for determining between good and bad reasoning (see, e.g., “The Proper Treatment of
Hypotheses: a Preliminary Chapter, toward an Examination of Hume’s Argument against
Miracles, in its Logic and in its History” (MS 692, 1901) [101, 2:891–892]; from the
“Minute Logic,” “General and Historical Survey of Logic. Why Study Logic? Logica
Utens,” ca. 1902 [Peirce 1933, 2.186]; “Logical Tracts. No. 2. On Existential Graphs,
Euler’s Diagrams, and Logical Algebra,” ca. 1903 [94, 4.476]; Harvard Lectures on Prag-
matism, 1903 [95, 5.108]), and the logica docens in terms of specific cases. In the entry
on “Logic” for Baldwin’s Dictionary [106, II, 21], Peirce, in collaboration with his former
student Christine Ladd-Franklin (1847–1930), wrote:

In all reasoning, therefore, there is a more or less conscious reference to a general method, im-
plying some commencement of such a classification of arguments as the logician attempts. Such
a classification of arguments, antecedent to any systematic study of the subject, is called the rea-
soner’s logica utens, in contradistinction to the result of the scientific study, which is called logica
docens. [See REASONING]

That part of logic, that is, of logica docens, which, setting out with such assumptions as that
every assertion is either true or false, and not both, and that some propositions may be recognized
to be true, studies the constituent parts of arguments and produces a classification of arguments
such as is above described, is often considered to embrace the whole of logic; but a more correct
designation is Critic (Gr. κριτική. According to Diogenes Laertius, Aristotle divided logic into
three parts, of which one was πρὸς κρı́σιν). . . .

In the next paragraph, Peirce and Ladd-Franklin [106, II, 21], establish the connection
between logic as critic and the grammatica speculativa:

It is generally admitted that there is a doctrine which properly antecedes what we have called
critic. It considers, for example, in what sense and how there can be any true proposition and
false proposition, and what are the general conditions to which thought or signs of any kind must
conform in order to assert anything. Kant, who first raised these questions to prominence, called this
doctrine transcendentale Elementarlehre, and made it a large part of his Critic of the Pure Reason.
But the Grammatica Speculativa of Scotus is an earlier and interesting attempt. The common
German word is Erkenntnistheorie, sometimes translated EPISTEMOLOGY (q.v.).

Ahti-Veikko Pietarinen [107] has characterized the distinction for Peirce as one between
the logica utens as a logic of action or use and the logica docens as a general theory
of correct reasoning. In the terms formulated by van Heijenoort (see, e.g., [129]), a log-
ica utens operates with a specific, narrowly defined and fixed universe of discourse, and
consequently serves as a logic as calculus, and thus as a calculus ratiocinator, whereas
a logica docens, or, more precisely, a logica magna, operates with a universal domain,
or universal universe of discourse, characterized by Frege as the Universum, which is in
fact universal and fixed. There are several interlocking layers to van Heijenoort’s thesis
that, as a result of its universality, it is not possible to raise or deal with metalogical, i.e.,
metasystematic, properties of the logical system of Principia Mathematica. These aspects
were dealt with in a series of papers by van Heijenoort over the course of more than
a decade. The writings in question, among the most relevant, include “Logic as calculus
and Logic as Language” [129], “Historical Development of Modern Logic” (1974) [134];
“Set-theoretic Semantics,” [130], “Absolutism and Relativism in Logic” (1979) [131], and
“Systéme et métasystéme chez Russell” [133].

At the same time, however, we are obliged to recognize that Peirce’s own understand-
ing of logicautens and logica docens is not precisely the same as we have represented
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them here and as understood by van Heijenoort. For Peirce, a logica utens is, or corre-
sponds to a logical theory, or logic as critic, and logica docens is the result of the scientific
study, and more akin to an uncritically held but deeply effective logical theory, and hence
normative, which because it governs our actions almost instinctively amounts almost to
a moral theory.

We should distinguish more carefully logica docens from logica utens as conceived
by van Heijenoort as it relates to Peirce.18 A logica utens is specific calculus designed to
serve a specific purpose or narrow field of operation, and is typically associated to one uni-
verse of discourse (a term coined by De Morgan) which applies to a specific, well-defined
domain. The classical Boole–Schröder algebra of logic is understood by van Heijenoort
as a logica utens in this sense. Although admittedly the universe of discourse can have
more than one semantic interpretation, that interpretation is decided ahead of time, to ap-
ply specifically to sets, or to classes, or to propositions, but never does duty for more than
one of these at a time. In a more practical sense, we might consider the axiomatic sys-
tems developed by the postulate theorists, who set forth a specific system of axioms for
specific fields of mathematics, and for whom, accordingly, the universe of discourse is
circumspect in accordance with the area of mathematics for which an axiomatic system
was formulated. For example, we see one for group theory, and another for geometry;
even more narrowly, we find one for metric geometry, another for descriptive geometry;
etc. The universe of discourse for the appropriate postulate system (or logica utens) for
geometry would consist of points, lines, and planes; another universe of discourse, might,
to borrow Hilbert’s famous example be populated by tables, chairs, and beer mugs. We
may, correspondingly, understand the logica docens as an all-purpose logical calculus
which does not, therefore, operate with one and only one or narrowly constrained specific
universe of discourse or small group of distinct universes of discourse.

Associated with the logica utens/logica docens distinction is the logic as calculus/logic
as language distinction. Logic as calculus is understood as a combinatorial tool for the
formal manipulation of elements of a universe of discourse. Typically, but not necessarily,
this universe of discourse is well-defined. We should, perhaps, better the logic as calcu-
lus on a purely syntactic level. The “Booleans” (and, although van Heijenoort did not
specifically mention them, the Postulate theorists), reserved a formal deductive system
for combinatorial-computational manipulation of the syntactic elements of their system.
The semantic interpretation of the syntactic elements to be manipulated was external to
the formal system itself. The semantic interpretation was given by the chosen universe
of discourse. Again, the axioms selected for such a system were typically chosen to suit
the needs of the particular field of mathematics being investigated, as were the primi-
tives that provided the substance of the elements of the universe of discourse, whether
sets, classes, or propositions, or points, lines, and planes, or tables, chairs and beer mugs.

18 In its original conception, as explicated by the medieval philosophers, the logica utens was a practical
logic for reasoning in specific cases, and the logica docens a teaching logic, or theory of logic, concerning
the general principles of reasoning. These characterizations have been traced back at least to the Logica
Albertici Perutilis Logica (ca. 1360); see [1] of Albertus de Saxonia (1316–1390) and then his school
in the 15th century, although the actual distinction can be traced back to the Summulae de dialectica
of Johannes Buridanus (ca. 1295 or 1300–1358 or 1360) (see Buridanus [13]). See, e.g., Bíard [7] for
Buridan’s distinction, and Ebbesen on Albert.
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On the other hand, the logica docens is intended as an all-purpose formal logical system
which is applicable regardless of the universe of discourse which provides the contents for
its manipulation, regardless of the primitive terms upon which it operates, or their seman-
tic interpretation, if any. It is in these terms that van Heijenoort also therefore distinguishes
between relativism and absolutism in logic; a logica docens is appropriate relative to its
specific universe of discourse; a logica utens is absolute in being appropriate to any and
every universe of discourse. More broadly, there are many logica utenses, but only one,
universally applicable, logica docens.

Pietarinen, for one, would agree with van Heijenoort with regard at least to Peirce, that
his work belongs to logic as calculus; as Pietarinen ([108, 19] in the preprint version of
[109]) expresses it, “in relation to the familiar division between language as a universal
medium of expression and language as a re-interpretable calculus,” Peirce and his sig-
nificant followers took language to serve the latter role.” Elsewhere, Pietarinen makes the
case even more strongly and explicitly, asserting [110, 63] that: “Peirce’s disaffection with
unreasonably strong realist assumptions is shown by the fact than he did not advocate any
definite, universal logic that would deserve the epithet of being the logic of our elementary
thought. Logical systems are many, with variable interpretations to be used for the various
purposes of scientific inquiry.” Pietarinen makes it clear that Peirce was “not a believer in
unrestricted classical logic” and he bases this claim precisely upon the distinction between
logica utens and logica docens.

For Russell, as for Frege, says van Heijenoort, it is the character of this inclusive-
ness that makes their logical systems suitable not merely as a calculus ratiocinator, but
as a lingua characteristica or charcteristica universalis. Thus, Frege’s Begriffsschrift and
Whitehead and Russell’s Principia Mathematica are both calculus and language at once.
Moreover, Frege would argue, that his Begriffsschrift, unlike the calculi of the Booleans,
not simply both calculus and language, but a language first and foremost. As we know,
Schröder and Peano would argue over whether the classical Boole–Schröder or the logic of
the Formulaire was the better pasigraphy, or lingua universalis,19 and Frege and Schröder,
along the same lines, whether the Begriffsschrift or the classical Boole–Schröder was a lin-
gua, properly so-called, and, if so, which was the better. Van Heijenoort would argue for
the correctness of Frege’s appraisal.

The other aspect of this universality is that, as a language, it is not restricted to a specific
universe of discourse, but that it operates on the universal domain, what Frege called the
Universum. Thus, the universe of discourse for Frege and Russell is the universal domain,
or the universe. It is in virtue of the Begriffsschrift’s and the Principia system’s universe
of discourse being the universe, that enables these logical systems to say (to put it in
colloquial terms) everything about everything in the universe. One might go even further,
and with van Heijenoort understand that, ultimately, Frege was able to claim that there are
only two objects in the Universum: the True and the False, and that every proposition in
his system assigns the Bedeutung of a proposition to one or the other.

If there is a difference between Frege and Peirce, it is that, taking logic as a normative
science and connecting it explicitly with ethics, Peirce ultimately adheres to the duality
of the antipodes of the True and the False into which Frege divides the universe, with

19 Peano’s assessment of Schröder’s system is found in Peano [63, 68].
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propositions as serving as the names of das Wahre and das Falsche, Peirce [86, 188–
189, 200] taking arguments, rather than propositions, as being either good or bad. Peirce
says [86, 188]: “the logica utens is a particular species of morality. Logical goodness and
badness, which we shall find is simply the distinction of Truth and Falsity in general,
amounts, in the last analysis, to nothing but a particular application of the real general
distinction of Moral Goodness and Badness, or Righteousness and Wickedness.” He is
also clear that it is the argument or proof, or as he says, inferences, that are either good
or bad; and that [103, 200], since “no argument can exist without being referred to some
special class of arguments,” “[t]he act of inference consists in the thought that the inferred
conclusion would be true,” making it clear that it is the proof, or argument which, being
good or bad, must yield a conclusion which is either true or false, and that, since each
argument is a case of a “special class of arguments, these arguments is a representation or
name of Truth or of Falsity.”

What makes the logic of the Begriffsschrift (and of the Principia) a language preemi-
nently, as well as a calculus, rather than a “mere” calculus, was that it is a logica docens,
and it is absolute. The absoluteness guarantees that the language of the Begriffsschrift is
a language, and in fact a universal language, and fulfills the Leibniz program of establish-
ing it as a mathesis universa, which is both a language and a calculus.

But, because of this universality, there is, van Heijenoort argues, nothing “outside” of
the Universum. (This should perhaps set us in mind of Ludwig Wittgenstein (1889–1951),
and in particular of his proposition 5.5571 of the Tractatus Tractatus logico-philosophicus
[142], that “The limits of my language are the limits of my world” – “Die Grenzen meiner
Sprache bedeuten die Grenzen meiner Welt.”) If van Heijenoort had cared to do so, he
would presumably have quoted Proposition 7 from the Tractatus, that, by virtue of the
universality of the logica docens and its universal universe of discourse, anything that can
be said must be said within and in terms of the logica docens (whether Frege’s variant
or Whitehead–Russell’s), and any attempt to say anything about the system is “wovon
man nicht sprechen kann.” In van Heijenoort’s terminology, then, given the universality
of the universal universe of discourse, one cannot get outside of the system, and the sys-
tem/metasystem distinction becomes meaningless, because there is, consequently, nothing
outside of the system. It is in this respect, then, that van Heijenoort argued that Frege and
Russell were unable to pose, let alone answer, metalogical questions about their logic. Or,
asWittgenstein stated it in his Philosophische Grammatik [143, 296]: “Es gibt keine Meta-
mathematik,” explaining that “Der Kalkül kann uns nicht prinzipielle Aufschlüssen über
dieMathematik geben,” and adding that “Es kann darum auch keine ‘führenden Probleme’
der mathematischen Logik geben, denn das wären solche. . . .”

Turning then specifically to Peirce, we can readily associate his concept of a logica
docens as a general theory of semiotics with van Heijenoort’s conception of Frege’s Be-
griffsschrift and Whitehead–Russell’s Principia as instances of a logica magna with logic
as language; and likewise, we can associate Peirce’s concept of logica utens as with van
Heijenoort’s concept of algebraic logic and the logic of relatives as instances of a logica
utens with logic as a calculus. It is on this basis that van Heijenoort argued that, for the
“Booleans” or algebraic logicians, Peirce included, the algebraic logic of the Booleans was
merely a calculus, and not a language. By the same token the duality between the notions
of logic as a calculus and logic as a language is tantamount to Peirce’s narrow conception
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of logic as critic on the one hand and to his broad conception of logic as a general theory
of signs or semiotics. It is on this basis that Volker Peckhaus has concluded [71, 174–175]
that in fact Peirce’s algebra and logic of relatives “wurde zum pasigraphischen Schlüssel
zur Schaffung einer schon in den frühen zeichentheoretischen Schriften programmatisch
geforderten wissenschaftlichen Universalsprache und zu einem Instrument für den Auf-
bau der ‘absoluten Algebra’, einer allgemeinen Theorie der Verknüpfung,” that is, served
as both a characteristica universalis and as a calculus ratiocinator, the former serving
as the theoretical foundation for the latter. Quoting Peirce from a manuscript of 1906 in
which he offered a summary of his thinking on logic as a calculus and logic as a language,
Hawkins leads us to conclude that Peirce would not be content to consider satisfactory
a logic which was merely a calculus, but not also a language, or pasigraphy also; Peirce,
comparing his dual conception of logic both as a calculus and as a language with the con-
ceptions which he understood to be those of Peano, on the one hand, of Russell on the
other, writes ([90, MS 499:1–5]; as quoted by [32, 120]):

The majority of those writers who place a high value upon symbolic logic treat it as if its value
consisted in its mathematical power as a calculus. In my (1901) article on the subject in Baldwin’s
Dictionary I have given my reasons for thinking. . . if it had to be so appraised, it could not be rated
as much higher than puerile. Peano’s system is no calculus; it is nothing but a pasigraphy; and while
it is undoubtedly useful, if the user of it exercises a discreet [sic] freedom in introducing additional
signs, few systems have been so wildly overrated as I intend to show when the second volume of
Rusell and Whitehead’s Principles of Mathematics appears.20 . . . As to the three modifications of
Boole’s algebra which are much in use, I invented these myself, – though I was anticipated [by De
Morgan] as regards to one of them, – and my dated memoranda show . . . my aim was . . . to make
the algebras as analytic of reasonings as possible and thus to make them capable of every kind of
deductive reasoning. . . .It ought, therefore, to have been obvious in advance that an algebra such as
I am aiming to construct could not have any particular merit [in reducing the number of processes,
and in specializing the symbols] as a calculus.

Taking Peirce’s words here at face value, we are led to conclude that, unlike those
Booleans who were satisfied to devise calculi which were not also languages, Peirce,
toward the conclusion of his life, if not much earlier, required the development of a logic
which was both a calculus (or critic, “which are much in use, I invented these myself”)
and a language (or semiotic), and indeed in which the semiotic aspect was predominant
and foundational, while considering the idea of logic as a language of paramount utility
and importance.

It is with these considerations that we can comprehend that the duality between the
notions of logic as a calculus and logic as a language is tantamount to Peirce’s narrow
conception of logic as critic, on the one hand, and to his broad conception of logic as
a general theory of signs or semiotics, on the other. It is on this basis that Volker Peckhaus
has concluded [71, 174–175] that, in fact, Peirce’s algebra and logic of relatives

“wurde zum pasigraphischen Schlüssel zur Schaffung einer schon in den frühen zeichen-
theoretischen Schriften programmatisch geforderten wissenschaftlichen Universalsprache und

20 Peirce tended to conflate Russell and Whitehead even with respect to Russell’s Principles of Mathemat-
ics, even prior to the appearance of the co-authored Principia Mathematica [139], presumably because of
their earlier joint work “On Cardinal Numbers” [139] in the American Journal of Mathematics, to which
Russell contributed the section on, a work with which Peirce was already familiar.
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zu einem Instrument für den Aufbau der ‘absoluten Algebra’, einer allgemeinen Theorie der
Verknüpfung”

that is, served both as a characteristica universalis and as a calculus ratiocinator, the
former serving as the theoretical foundation for the latter.

Acknowledgement The author is grateful to Nathan Houser for suggestions that considerably improved
the text and helped clarify a number of points.
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The Meaning(s) of “Is”: Normative vs. Naturalistic
Views of Language

Ignacio Angelelli

Abstract One of the founders of modern logic, G. Frege, has insisted on the variety of
meanings of the little word “is.” He explicitly distinguished four such meanings (sheer
predication or subsumption, identity, assertion, and existence); a fifth meaning (subordi-
nation) follows from Frege’s new theory of predication. It is part of the Fregean doctrine
that special symbols corresponding to different meanings of “is” are to be used. Such
distinctions have been strongly challenged by J. Hintikka, in a twofold way: theoretically
and historiographically. Neither challenge is regarded as successful. Behind the conflict on
“is” two opposite conceptions of language may be perceived: language as culture versus
language as nature (“natural language”).
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1 Introduction

In Sect. 2, the distinction of five meanings of “is” that follows from Frege’s work is
presented; in Sect. 3 its rejection by J. Hintikka is examined. In Sect. 4, two opposite
conceptions of language are considered as possible explanation of the conflict.1

2 The Five Meanings of “Is” According to Frege

From Frege’s work it follows that five meanings of “is” should be singled out: (1) sheer
predication or subsumption (Subsumtion), (2) identity, (3) assertion, (4) existence, (5) sub-
ordination (Unterordnung). “Follows from Frege’s work” as opposed to “explicitly given
in Frege’s work” rather applies to (5).

There is abundant textual support for the distinction between sheer predication and
identity, which appears to be in fact the distinction Frege is most enthusiastic about: [14],

1 My earlier publications on this topic include [2–6].
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§57; [15] in [25], pp. 168–169; [24], letter to Linke; [16] in [25] p. 200; [22], pp. 255–256,
258–259; [17] in [25], p. 280. Frege thought of “is” as involving (at least) two uses, Ge-
brauchsweisen: as a mere copula, a “mere formal word of the enunciation,” or as meaning
identity. It must be observed that although not every predication statement involves iden-
tity,2 in every identity statement predication is included. The distinction of the two uses is
concealed (verhüllt) by ordinary language. Frege’s normative approach to logic and lan-
guage is at work here: the mere realization that there are two uses in ordinary German is
not the end; it is necessary to adjust our notation, writing, for instance, “A D B” instead
of “A is B .”

With regard to the assertive “is” several Fregean texts are very clear: [19], p. 192; [20],
pp. 201, 207, 211; [21], p. 214. The word “is” is often combined with an assertoric force
(die behauptende Kraft). Frege observes that in logic books predicating is confused with
judging (So wird es auch in den Logiken, wie es scheint, das Prädizieren verquickt mit
dem Urteilen [21], p. 201). Frege’s normative approach to language becomes active: it is
necessary to adopt a special sign for assertion: “Es besteht das Bedürfnis, einen Gedanken
auszudrücken, ohne ihn als wahr hinzustellen. In der Begriffsschrift habe ich ein eigenes
Zeichen mit behauptender Kraft: den Urteilsstrich. In den mir bekannten Sprachen fehlt
ein solches Zeichen, und die behauptende Kraft ist mit dem Indikativ in den Hauptsätzen
fest verbunden” (It is necessary to express a thought without presenting it as true. In the
ideography, I use a special sign to convey assertoric force: the judgment stroke. The lan-
guages known to me lack such a sign, and assertoric force is closely bound up with the
indicative mood of the sentence that forms the main clause.) [21], p. 214.

The existence meaning of “is” is not at all Frege’s favorite. One might conjecture that
this is because the German (or English, etc.) uses of the existential “is” are unusual, con-
trary to Latin (Deus est). The reason is rather that Frege regards the existential use of
“is” as uninformative, empty, leading in the end to a “deification” of the copula (Vergöt-
terung, [18], p. 71, wrongly translated into “apotheosis” in the Posthumous Writings [23],
p. 64).

The just listed four senses of “is” were known in the pre-Fregean history of logic, which
does not mean that special notations were used. As Weidemann points out: “Aquinas is
well aware of the difference between the ‘is’ of predication and the ‘is’ of identity” [36],
p. 183. Frege’s complaint that logic books mix up assertion and predication is under-
standable relative to what was in the air in the 19th century (“judgment” or “Urteil,”
properly meaning assertion but wrongly used as “proposition”); in the scholastic tra-
dition, with which Frege was not familiar, this distinction was very familiar, continued
into neoscholastic texts (for example [45], §35: the copula “is” has a “double function”:
“merely copulative” and “properly judicative”). The contrast between predication and
existence was quite popular before Frege under the terminology de tertio, de secundo
adiacente, respectively.

The fifth subordination “is,” or more precisely “est,” can be detected mainly in the Latin
(or Greek) texts from the history of logic and philosophy, provided one looks at these texts

2 This should not be understood as contradicting the general ontological insight according to which the
ultimate truth maker of any predication is an identity (cf. [7], Sect. 9).
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from the standpoint of Frege’s revolutionary predication theory. Given two predicates or
concepts: M and P , the sentences of the form “M est P ” mean that any object that is
M is also P ; for example “homo est rationalis,” “equus est animal” express that the con-
cept homo is subordinated to the concept rationalis, and equus to animal. These sentences
may also mean that P is part of the “essence” of M . Concepts P were referred to as
marks (Merkmalen, notae) of the concept M . Pre-fregean authors, focusing on predica-
tion, the converse of est, said that a mark P is predicated of the concept M of which P
is a mark: rationalis praedicatur de homine, animalis praedicatur de equo. This was the
principal feature of the pre-Fregean predication theory (cf. [7]). This principal feature was
rejected by Frege, for a very understandable reason: in his philosophy of number, he had
seen that numbers “appear” as a part of our discourse about concepts. For example, num-
ber 12 occurs as part of our talking about the concept apostle. “Having 12 individuals”
is something that we want to say of, predicate of the concept apostle; “having 12 indi-
viduals” is a property of the concept apostle, not a mark of it. Frege rightly realizes that
the two cases are quite different. For one thing, in the case of marks we have transitivity
(proclaimed by Kant as supreme rule of knowledge3), not so in the case of properties of
the concept. Contrary to, for example, the scholastic Caietanus, who tolerates, and “lives
with” the two senses of “predication” (praedicari de praedicato contingit dupliciter, to be
predicated of a predicate happens in two ways, [7], Sect. 3), Frege takes the radical course
of refusing to call “predication” the traditionally accepted, alleged predication of a mark
of the concept of which it is a mark. This happens first in [14], § 53; a later text: “Man
sollte mit Subjekt und Prädikat in der Logik aufräumen; oder man sollte diese Wörter
auf die Beziehung des Fallen seines Gegenstandes unter einen Begriff (Subsumtion) ein-
schränken. Die Beziehung der Unterordnung eines Begriffes unter einen Begriff ist so
verschieden von jener, dass es nicht erlaubt ist, auch hierbei von Subjekt und Prädikat
zu reden” (letter to Husserl Oct. 1906 in [24]).4 Thus, when a fan of Frege reads Latin
history of logic texts, she will not construe the “est” of “homo est rationalis” or “equus
est animal” as subsumption, but as subordination: such is the fifth sense of “is” or rather
“est” indirectly introduced by Frege, via his new predication theory. It is very hard to find
examples of the German “ist” or of the English “is” in the subordination sense; a rare case
occurs in English with sentences of the form of “man is P ,” for example, “man is ratio-
nal.” Normally, the Latin est sentences go into universal affirmative sentences, where the
one or two occurrences of “is” (or “are”) are of the subsumption type, or into sentences of
the form “theM is P ,” where the new problem is to understand the nature of the strange
object “theM ” (in [15], p. 170, Frege suggests two ways of handling this issue).

3 Aus dem Angeführten erkennet man, daß die erste und allgemeine Regel aller bejahenden Vernunft-
schlüsse sei: Ein Merkmal vom Merkmal ist ein Merkmal der Sache selbst (nota notae est etiam nota rei
ipsius). [43], § 2, pp. 601–602. English translation: “From the aforesaid one sees that the first and universal
rule of all affirmative consequences is: a mark of the mark is a mark of the thing itself.” The last portion
in the German text simply repeats the principle for the Latin “nota” instead of the German “Merkmal.”
4 One should get rid of subject and predicate in logic, or one should restrict these words to the relation of an
object falling under a concept (subsumption). The relation of subordination of a concept under a concept
is so different from it, that it is not admissible to talk, in its case, also of subject and predicate.
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3 Hintikka’s Twofold (Theoretical and Historiographical) Revolt
Against Frege

This chapter is restricted to the consideration of J. Hintikka’s criticism of Frege’s dis-
tinction of meanings of “is.” Such a criticism is only part of a general “revolt” against
Frege [32].

In the particular issue of the semantics of “is” Hintikka’s anti-Frege campaign is
twofold: theoretical (no need to distinguish meanings of “is” in English) and historical
(the distinction of meanings of “is” does not help in our study of texts from the history of
philosophy, and should not be retrospectively applied to them.) The following brief exam-
ination of this double “revolt” is based on [26–40]. The literature on the meanings of “is”
includes many other valuable and often quite challenging essays [9, 10, 12, 13, 42, 46, 47]
not discussed in this chapter.

3.1 Theoretical Revolt

It is not easy to determine what is exactly the theoretical opposition to the distinctions of
“is.” There is on the one hand, a recognition, on the part of Hintikka, of semantical discrep-
ancies among the occurrences of “is.” He observes that the “is” of “Jack is a boy” is clearly
predicative, while the “is” of “Jack is John Jr.” is clearly one of identity (Self-Profile, [11],
p. 36). On the other hand, however, these discrepancies are, as it were, minimized in the
sense that the context suffices to resolve them, which entails, according to Hintikka, that
no special notations are required (no special sign for identity, for example).

The main problem is that beyond the five Fregean meanings, reduced to the status of
“discrepancies,” there arises in Hintikka’s writings a sixth component in the semantics
of “is.” Using the Greek “esti” instead of the English “is,” Hintikka refers to “the basic
meaning of esti” ([37], end of Sect. 3), “the basic semantical force of esti” ([37], p. 86),
“the basic semantical meaning of esti” ([37], p. 87). The nature of this semantic nucleus
of the “is” remains unexplained, and seems to be unexplainable.

The hints at understanding the “basic meaning” of “is” with the help of the old analogia
entis only obscure the issue further, since then instead of “the basic meaning” we have
phrases such as “analogical focal meaning theory of ‘is’” ([38], p. xiv), “focal meaning”
([37], p. 108), “analogous term” [36], p. xiii).

In sum, it seems unavoidable to conclude that the “revolt” against Frege boils down
to the rejection of special symbols to express the various meanings, senses, uses,
forces. . . semantic discrepancies of “is.” The revolt ends up being merely “symbolic,”
i.e. not a real revolt, and just limited to the prohibition of new symbols. Imagine that the
first thesis of Wittgenstein’s Tractatus: “Die Welt ist alles, was der Fall ist,” is read both
by Frege and by Hintikka, and that a discussion follows. Frege would point out that the
first “ist” is of identity, while the second is predicative (copula, cf. his April 1920 letter
to Wittgenstein [41]). If Frege recommended the rewriting of the thesis in the following
form: “Die Welt = alles, was der Fall ist,” Hintikka would disapprove – but only because
(for him) the context suffices to determine that the “ist” between “Welt” and “alles” means
identity.
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3.2 The Historiographical Campaign

Hintikka’s intention in editing, with S. Knuuttila, the impressive collective volume The
Logic of Being [36] may be described as follows. The lack of a distinction of meanings of
“is” in English or in the pre-Fregean tradition is not to be regarded as a defect (as a “logical
howler” [36], p. x) but as a feature to be praised since it reflects a better semantics of
natural language ([36], p. 82). Scholars interested in revealing the good things of ancient
philosophy should no longer feel obligated to show that classical authors paved the way
for the “Frege–Russell thesis”5 – such a precursorship would be, in Hintikka’s judgment,
a “non-honor” ([36], p. 257).

Four important claims made by Hintikka’s [37] on Aristotle are the following. (1) “Aris-
totle does not recognize the Frege-Russell ambiguity of ‘is”’(such is the title of Sect. 1),
that however “the nonambiguity of esti does not preclude purely existential uses” (title
of Sect. 2), or “purely identificatory” uses (Sect. 3, last paragraph). That they are uses
rather than meanings merely indicates, in Hintikka’s approach, that there is no need for
special notations for each one of them: the context will tell. (2) Moreover, Hintikka admits
in Aristotle a “simultaneous presence of several Frege meanings in esti” ([37], p. 85) and
suggests that this should help to understand such texts asMetaphysics Z 6, where Aristotle
affirms the identity of each thing with its essence. (3) While for those of us who have been
corrupted by Frege, the solution of the famous Coriscus fallacy (“you know Coriscus,
Coriscus is the man who is approaching, hence you know the man who is approaching
[whereas in fact you do not know the man who is approaching]”) is in terms of a failure
of the substitutivity of identicals (cf. [1]), for Hintikka the Aristotelian solution consists in
distinguishing two types of predication: a transitive and a nontransitive one ([37], p. 83).
(4) Hintikka writes: “it is clear that there is no Frege–Russell type difference in meaning
for Aristotle between the different occurrences of “is” in ’Socrates is a man’ and ’a man
is an animal’ ([37], p. 84).”

The following are comments on points (2)–(4). With regard to (2), pace Hintikka, it is
hard to see how by just letting “is” display its identity meaning, the traditional puzzles
about the famous passage are going to be solved, given that such puzzles originate, pre-
cisely, from an alleged identity. With regard to (3), it is inconsistent to reject the distinction
of meanings in “is” while allowing it in the case of “predicated of” which is, after all, the
converse. With regard to (4), surely there is no difference between the two, or potentially
three “is” occurring in the two sentences: all of them express subsumption. But the Latin
(or Greek) sentences of the logico-philosophical tradition are “Socrates est homo, homo
est animal,” where the difference between the two “est” cannot be ignored: the former
goes from an individual to a concept (subsumption), the latter from a concept to another
concept (subordination).

Hintikka celebrates that there is not, in Kant, the Fregean distinction subsumption–
subordination: “As for the fourth alleged sense of ‘is’ apud Frege and Russell, Kant’s
assimilation of it to other senses (especially to the ‘is’ of predication) is seen from his
failure (or refusal) to distinguish the subsumption of one concept to another from the

5 Hintikka often adds Russell to Frege in referring to the logicians who launched the thesis of the various
meanings of “is.”
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application of a concept to a particular (in other words, this particular’s falling under the
concept).” [31], p. 258. Crucial in this passage is the parenthetical suggestion that Kant
“refused” to distinguish subsumption and subordination, presupposing that he knew the
distinction. Unfortunately, Hintikka does not elaborate on this point.

As for some of the other contributions to The Logic of Being [36] the following re-
marks can be made. Kahn distinguishes seven ways of understanding the Greek esti. One
of these is the “veridical meaning,” curiously the same as the assertive meaning empha-
sized by Frege but overlooked by Hintikka in the inventory of senses of “is.” Kahn’s paper,
if anything, helps Frege rather than Hintikka’s historiographical program, pace the edi-
tors’ claim in the Introduction (p. ix): “Kahn has argued that Frege and Russell’s thesis
that verbs for being, such as ‘esti’, are multiply ambiguous is ill suited for the purpose of
appreciating the actual conceptual assumptions of Greek thinkers.” Mates’ contribution,
while highlighting the uniqueness of “the primitive is” (which is as mysterious as Hin-
tikka’s “basic meaning” of the little word) appears to acknowledge at least some of the
Fregean different meanings under the guise of special axioms stipulated for the primitive
“is”; less than clear what is Mates’ help to the “frontal attack” on Frege. Dancy’s contribu-
tion is helpful in an amazing way. Dancy displays a lethal reason to discourage the friends
of the “Frege–Russell thesis” both from projecting it on the old Greek texts and from ap-
plying it to English: the little word “is” has no meaning at all. No stronger argument can be
imagined against the Fregean thesis on the ambiguity of “is” – the little word is declared to
be. . .meaningless, but then, at the same time, Hintikka’s “basic meaning” of “is” vanishes
too. The relevance of Knuuttila’s paper to The Logic of Being’s main purpose is the ob-
servation that Aquinas being is analogous. It seems that this is part of the assumption that
the analogy of being is a weapon against the Frege–Russell thesis, a wrong assumption in
my view. In sum, the otherwise excellent papers included in [36] are not helpful at all in
the historiographical part of the “revolt” against Frege’s distinctions.

4 Language as Culture Versus Language as Nature

The controversy on “is” seems to hinge, in the final analysis, on whether it makes sense to
talk of a “natural” language which, like other phenomena of nature, should be left alone
or, on the contrary, language is to be regarded as a cultural product, a tool which can
and should be improved by its users, that is, with regard to which one may proceed in
a normative way.

It is obvious on which side stands Frege. As he writes to Husserl: Die Logik soll Rich-
terin sein über die Sprachen, logic must be the judge of languages [24], p. 103. This
normativism with regard to language became weaker or even went lost towards the sec-
ond half of the 20th century, being replaced by a linguistic naturalism (often strangely
combined with a huge amount of axiomatic set theory, the latter however not intended to
“change nature” in the least but to discover its secrets). The normative view survived in
individual cases (e.g. Lorenzen, cf. [44]).

If one adopts a normative approach to language, and one is interested in enhancing the
clarity and precision of the linguistic tools, one will recommend, with Frege, the use of
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a special symbol, say “D,” instead of “is” in sentences such as “Venus is the morning
star” and one will find, with Weyl [48], §8, that the “confusion of the copula with exis-
tence and with equality” is “grotesque.” The predicament of the naturalistic conception of
language lies in failing to realize that ordinary (not natural) language is itself a product of
many special notations introduced (normatively or carelessly) in past centuries. There is
no “natural” language.6

It is interesting that in such a comprehensive volume [36] there seems to be just one
single hint at the normative approach to language. According to Jacobi, Abelard thought
that the role of the science of argumentative discourse was “to reflect on and explain
language and yet not to shy away from correcting it and bringing to it a greater precision”
(p. 156).
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The Relation Between Logic, Set Theory and Topos
Theory as It Is Used by Alain Badiou

Régis Angot-Pellissier

Abstract Topos theory plays, in Alain Badiou’s philosophical model, the role of inner
logic of mathematics, given its power to explore possible mathematical universes; whereas
set theory, because of its axiomatics, plays the role of ontology. However, in category
theory, which is a vaster theory, topos theory embodies a particular axiomatic choice, the
fundamental consequence of which consists in imposing an internal intuitionist logic, that
is a non-contradictory logic which gets rid of the principle of excluded middle. Category
theory shows that the dual axiomatic choice exists, namely the one imposing, this time,
a logic of the excluded middle which accepts true contradictions without deducing from
them everything, and this is called a paraconsistent logic. Therefore, after recalling the
basics of category and topos theory necessary to demonstrate the categorical duality of
paracompleteness (i.e. intuitionism) and paraconsistency, we will be able to introduce
into Badiou’s thought category theory seen as a logic of the possible ontologies, a logic
which demonstrates the strong symmetry of the axioms of excluded middle and of non-
contradiction.
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1 The Place of Mathematical Theories (Set, Category, Topos)
in Alain Badiou’s Philosophy

Mathematics plays a central role in the theory of the French philosopher Alain Badiou1,
given that in his view they embody ontology. However, his conception of mathematics has
evolved progressively within his increasingly closer study of new mathematical theories

1 This paper is the written version of a talk given, in front of Alain Badiou, at the postgraduate congress
“Autour de la pensée d’Alain Badiou”, organised by Alessio Moretti on behalf of the “Association des
Thésards en Philosophie de Nice (ATP)” at the University of Nice, France, 19th March 2004 (Alain Badiou
was an Invited Speaker at this event).
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such as category and topos theory. As he writes in his paper “Platon et/ou Aristote-Leibniz.
Théorie des ensembles et théorie des topos sous l’oeil du philosophe” (1995) ([1])2, math-
ematics is no longer just ontology, it is rather onto-logical. Here the hyphen “-” is very
important insofar it relates two diametrically opposed conceptions of mathematics.

The “onto-” prefix expresses the purely ontological part of mathematics, following a vi-
sion inherited by Plato, according to Badiou’s analysis. In fact, according to the French
thinker mathematics is thinking and, as such, it thinks “being”, which makes it an on-
tology (i.e. a study of being). Set theory, as inherited from Cantor at the end of the 20th
century embodies this “Platonic” conception, at least in the interpretation given by Badiou
to this adjective (Platonic), which is situated on the opposite side with respect to what is
commonly called “mathematicians’ Platonism”. As it happens, by virtue of its axiomatic
treatment of the notion of “set”, which is left undefined by set theory, this theory consists
in a decision about being, the “essence” of which is seen in the pure multiplicity sym-
bolised by the notion of set (“set” means nothing other than pure multiplicity). It must be
remarked that the logic immanent in set theory is classical logic (i.e. a logic with excluded
middle and non-contradiction).

The “-logic” suffix concerns a more Aristotelian conception of mathematics, where the
latter is seen from the viewpoint of the formal consistency of its arguments. However,
Badiou goes farther. Following Leibniz, mathematical logic is not, for Badiou, a linguistic
phenomenon, it is on the contrary a logic of the possible ontologies. This new aspect of
mathematics, far from the Hilbertian formal rigors, is rediscovered by Badiou in the more
recent theories of categories and of topoi. As it happens, category theory and, more par-
ticularly (inside it), topos theory expound, classify and explore the possible mathematical
universes. Topos theory makes explicit the conditions that must be verified by a universe in
order to make it possible to practice in it mathematics. However, the power of this theory
does not stop here; it also puts into light the fact that the internal properties of a universe
do induce a particular kind of logic in it. Consequently, the theorems of topos theory say
nothing other than the following thing: to any given axiomatic decision relative to a uni-
verse corresponds, for that universe, a particular logic. This means, in philosophical terms,
that with any decision about being, i.e. with any ontological decision, derives a logic that
follows from that choice. Whence we find that the choice of a local, and not a qualita-
tive, difference, joined with the choice of the unicity of void (which are the fundamental
choices of set theory) entails that the logic there will be classic.

Now, topos theory, a development of category theory that appeared after World War II,
although developed by classical mathematicians,3 has shown by irony of history that the
logic underlying a topos is, in general, an intuitionist logic and that classical logic is only
a very particular case. Let us recall here that inside the mathematics of topoi classical logic
is nothing else than a particular intuitionist logic, given that it shares the same axiomatic
basis but verifies, additionally, a few more axioms, among which the axiom of excluded
middle. This is the reason why Badiou, considering topoi as the only possible universes,
writes in the aforementioned paper ([1] page 78):

2 “Plato and/or Aristotle–Leibniz. Set theory and topos theory as seen by the philosopher’s eye”.
3 By classical mathematicians I mean mathematicians who are not partisans or followers of intuitionism.
They constitute the overwhelming majority of the mathematical community.
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It is remarkable to acknowledge that everything, in the classification of Topos, turns around the
excluded middle. For the book gamma of Metaphysics shows well that in between the principle of
non-contradiction (which is the issue of the “war” with the Sophists) – a principle which any Topos
verifies – and the principle of excluded middle, which is the founding issue of the stability of the
possible attributes of a substance (for they belong to it or they do not belong to it), we have made
a change: we stepped from general logic to a special logic, which is appropriate to the ontological
choices of Aristotle.

This is why we find in Badiou, the traditional asymmetry between the axiom of non-
contradiction and the axiom of excluded middle. My purpose in this paper consists in
showing that Badiou’s analysis of the logic of mathematics can (and must) be pushed
farther. Relying on the axiomatics of category and topos theory, as well as on the practice
of mathematics on the level of contemporary research, I propose to establish category
theory as the logic of mathematics, which for philosophy has three main consequences,
which are intrinsically related. Firstly, this will put topos theory in its place, namely that
of an ontological choice, already made (i.e. no longer open), of the possible mathematical
universes; a choice with respect to which sets constitute a particular case. Secondly, the
asymmetry between non-contradiction and excluded middle will no longer any reason to
exist, mathematically speaking, given that it will dissolve into a perfect categorical duality;
a duality only veiled by the choice of topoi as the only possible mathematical universes.
Thirdly, paraconsistent logics, that is the logics that accept true contradictions without
getting trivial4, will be rehabilitated as logics dual of intuitionist (i.e. paracomplete) logic,
which is the one that gets rid of the principle of excluded middle without getting trivial.

Here philosophy stops, and mathematics begins. Nevertheless, my discourse bearing
mainly on the formalism and on the analysis of modern mathematical praxis is directed
both to the neophyte and to the experimented mathematical reader. Consequently, this
paper can be read according to different levels of reading and it can, at least I hope so,
either initiate or bring some light to the readers of Badiou on the elements of category
and topos theory, which are central in his theory starting from the Court traité d’ontologie
transitoire ([2]).5

2 Topoi Axiomatics

2.1 Categories

Contrary to set theory which deals only with collections of mathematical objects, cat-
egory theory has been created in order to deal with mathematical structures. However,
these structures are less carried by the objects themselves than by the relations between
them, whose main property is the preservation of the structure. For example, what is the
difference between a mathematical group and the set of its elements? The group is en-
dowed with morphisms of the group, which are relations between elements of the group

4 One says that a logic is trivialised when it deduces everything, i.e. when inside it everything becomes
a theorem (so that the notion of “theoremhood” no longer means anything).
5 They will become even more central in his book Logiques des mondes (2006).
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and which preserve the group structure. This is why category theory deals with objects
and their relations.

The formal definition of a category is very simple and short, nevertheless the subse-
quent theory has a power that has no pair in any branch of mathematics, even nowadays.
It is given below.

A category consists of a collection of objects and for every couple of objects a set of
oriented arrows between these objects. We could see that the undefined notions of object
and arrow (also called morphisms) are the primary notions of category theory, whereas the
notions of set and membership are the primary notions of set theory. Furthermore we could
remark that, by definition, a category can easily deal with an inconsistent multiplicity of
objects (we talk of a class of objects). This is the case of the category of sets whose
objects are the sets and whose arrows are the sets applications, yet we know quite well
from Russell’s paradox that the collection of all sets cannot be a set. At this stage of
the definition, a category is like an oriented graph whose vertices are the objects of the
category and whose paths are the arrows of the category, like in the following example:

Nevertheless, to be a true category a minimal number of axioms must be checked. In
terms of graphs, they ensure that the graph can be intuitively travelled by following the
directed paths.

First of all, a category is endowed with a composition operation:

If we go from A to B by f , then if we go from B to C by g, we can always go
straightaway from A to C by following the composed path g ıf , which runs along f and
then g.

This composition verifies the associativity axiom:

If we go from A to B by f , then from B to C by g and then from C to D by h, we
can either go from A to C by g ı f , then from C toD by h or go from A to B by f , then
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from B to D by h ı g. In both cases we go from A to D passing through B and C by the
same path noted h ı g ı f .

This composition also verifies the unitary axiom:

This axiom tells us that, in any vertex of the graph, we can stay on the spot. Here the
staying on the spot B is noted IdB and is called the identity morphism forB . Its properties
are the following: if we go from A to B by f and then we stay on B , we are in fact going
from A to B by f . In the same manner, if we first stay on B and then go from B to C by
g, we directly go from B to C by g. Here we must insist on the difference between paths
from B and going back to B with the identity morphism for B : it is the only path from B

to B that stays on the spot. In fact, it is the morphism representing the object B : it is the
object B as an identical identity of B with itself6.

In short, a category is a collection of objects and oriented arrows between these ob-
jects endowed with an associative and unitary composition for arrows and that is all.
Despite this imaged presentation of category theory, this theory is not a visual game but
an extremely powerful mathematical concept; indeed each mathematical structure forms
a category whose objects are the studied objects endowed with the structure and the ar-
rows the applications or relations preserving the structure. In doing so, we have a category
of sets with their applications, a category of groups with their morphisms of groups, a cat-
egory of vector spaces with their linear applications, a category of topological spaces with
their continuous functions and so on. . .

Furthermore, the definition of a category is so poor that category theory also supports
non-mathematical structures; there exist logical categories, linguistic theories categories,
lambda-calculus categories. . .

Last but not least, category theory, unlike set theory, studies not only categories and
graphs but it can also study itself, as we could expect from it! As category theory deals with
all mathematical structures and as categories form a mathematical structure, there must
exist a category of categories, even if some technical size limitations must be made in order
to cut Russell’s paradox short. That’s why, in category theory, language and metalanguage
are at the same level, with the consequence that, in topoi theory, logical syntax and logical
semantics are of the same nature and then lose their profound difference.

The last element of category theory that we would like to present here is duality, which
deals with the orientation of the arrows. As we have seen, a category must be seen as an
oriented graph. However, the orientation of the graph is arbitrary and it is also natural to
consider the same graph with all arrows in opposite direction; we call it the opposite cate-
gory and, if we take our former example of category C, we obtain the following opposite

6 Cf Chap. XVI of the Court traité d’ontologie transitoire ([2]).
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category:

Here also, we are not in a visual game but in the heart of the notion of categorical
duality, a fundamental notion of category theory. Categorical duality is the fact that to
each category corresponds an opposite category with the same objects but with all arrows
in the opposite direction. It is with this notion that important tools as sheaves or colimits
are defined.

We must remark at this point that as orientation in graphs is arbitrary, so is the choice
between a category and its dual. Furthermore, the dual of the opposite category is the
category itself. Then it is categorically impossible to distinguish, between a category and
its dual, which is the primordial category as in the question about which came first, the
hen or the egg.

Besides, some known examples of duality contain a profound mathematical signifi-
cance, like open/closed topological subsets or affine schemes/rings. We shall return to one
of them later.

To conclude this presentation of category theory, let us recall that this simple and
graphic notion that transcends mathematical structures is due to MacLane between the
two World Wars. From it, the notion of topos was born in the 1960s. This notion is the
subject of the following section.

2.2 Topoi and Internal Logics

The notion of topos7 is more complex than the notion of category and needs difficult
categorical tools. Therefore, here we shall not give topos axiomatics but we shall comment
on its definition: a closed Cartesian category endowed with a subobject classifier. For
an axiomatic approach, the reader is referred to reference books and for a philosophical
approach to the paper of Alain Badiou quoted above or Lavendhomme’s book Lieux du
sujet. Psychanalyse et mathématiques ([5]).

Nevertheless, it is important to understand what is meant by closed Cartesian category.
It means that to be a topos a category must contain some objects with a typical configura-
tion in terms of a graph.

First of all, a closed Cartesian category must possess an initial object and a terminal
object, two dual categorical notions. An initial object is an object with a unique arrow to
each object of the category, we denote it by 0. If we view arrows as order relations, it is
like a minimal object of the category. Dually, a terminal object is like a maximal object

7 from old Greek “topos”, place, whose old-Greek plural is “topoi”.
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denoted by 1.

The above parallelogrammust be considered as the heart of our category, whose objects
0 and 1 are, respectively, the initial and terminal objects. We say that a diagram commutes
when, in the above graph, for each triangle the third arrow is the composition of the two
other arrows.

Let us examine the well-known category of sets: the initial object is the empty set,
which is included in only one manner in each set, and the final object is the point because
all sets go to it in only one manner, which consists of identifying all their elements. This
example shows that although the empty set is the smallest element, the point is not the
greatest element and, furthermore, it can go to all non-empty sets. Generally, it is possible
that some objects go to the initial object or that the terminal object go to some objects!

The second requirement for a category to be a closed Cartesian category is the existence
of a product and of a coproduct, two more dual notions. The product of two objects A and
B is denoted A � B and is the greatest object of the category that goes to both A and B ,
the arrows of the product to A or B are called projections. The expression “the greatest”
signifies that, for each object C going to A by f and B by g, there exists a unique arrow
h from C to A � B factorizing f and g through the projections. The coproduct, dual of
the product, denoted A

`
B is the smallest object to which both A and B go.

Here the diagrams commute, which is the visual translation of the factorization.
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In the category of sets, the product is the Cartesian product; for example, the product of
two real lines IR is the real plane IR2 with its two projections on the coordinate axes. The
coproduct is the disjointed union of sets; the coproduct of two real lines is a set consisting
in two real lines.

The last and central element of the notion of closed Cartesian category is the existence
of exponential objects. This is the most subtle notion and the richest from a logical point
of view. For each pair of objects B and C , there exists an exponential object CB verifying
the following property:

To each arrow of the product A � B to C there corresponds a unique arrow from A to
CB and conversely.

A more concrete vision is given by the example of the category of sets. An arrow from
A � B to C is, in fact, a two-variable function f .x; y/ where x lies in A, y in B and the
result of the function lies in C . The exponential object CB is the set of arrows from B

to C . In particular, for each element a in A, f .a; y/ is a one-variable function from B

to C . Therefore, for each element a in A, we can associate a function f .a; y/ that is an
element of CB . Then we have constructed a function from A to CB that represents the
two-variable function f .x; y/. In another way, it is clear that the function g.a/ from A to
CB gives for each a in A a function from B to C denoted g.a/.:/. That means that for
each y in B , g.a/.y/ is an element of C . We can construct a two-variable function as fol-
lows: g.x; y/ D g.x/.y/, which represents the function g. This result, called adjunction,
between product and exponential object in the category of sets bespeaks a crucial mathe-
matical phenomenon: to each two-variable function there corresponds a unique parametric
collection of one-variable functions and conversely. We must be careful not to generalize
this result to each category equipped with exponential objects! Let us remark that expo-
nential objects and products are really relied by the categorical adjunction. In the case of
sets, the parametric collection of one-variable functions of the exponential object repre-
sents the two-variable functions whose source is the product of sets, which is, in fact, the
set of the pairs of variables.

Where does the logic lie in this axiomatics of closed Cartesian category? The answer is
quick if we consider the mathematical point of view of deductive systems, which is a set
of formulas formed with variable letters and logical connectors verifying some axioms.
Here in the axiomatics of closed Cartesian category we have, in fact, the axiomatics of
positive (i.e. without negation) intuitionist propositional calculus.

We can consider that the objects of the category are the formulas of the language and
the arrows are the deductions between formulas. The false? is the initial object 0 because
it goes to each object in the same manner that from the false one can deduce all formulas.
Dually, the true > is the terminal object 1 because true is deduced from all formulas. We
can clearly see that all objects going to 0 correspond to false formulas and all objects to
which 1 goes correspond to true formulas.

As for logical connectors, the product is the conjunction “and” ^ and the coproduct is
the inclusive disjunction “or” _. We know, in fact, that from A^B we can deduce both A
and B and that if from C we can deduce both A and B , then from C we can also deduce
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A ^ B ; A ^ B is then the greatest formula from which we can deduce both A and B and,
therefore, it is the productA�B . We can demonstrate by duality that the coproduct axiom
is the very definition of the connector _.

For the implication, we shall use the following definition:) is the binary connector
verifying the following property: fromA andB we can deduce C if and only if fromAwe
can deduce B ) C . By this definition, we can recognize in the implication the notion of
exponential object. Furthermore, applying the definition of the exponential object to the
objects 1, B and C gives us back the deduction theorem, as follows. To each arrow from
1 to CB corresponds a unique arrow from 1 � B to C and conversely. However, we can
easily show by the above axioms that 1�B is, in fact, B . Therefore, we have thatB ) C

is true (i.e. from 1 we deduce CB ) if and only if from B we can deduce C .
Finally we can complete our positive intuitionist propositional calculus in a complete

intuitionist propositional calculus by defining the negation connector : as follows: :A is
by definition A ) 0 (this is the most frequent definition of intuitionist negation). Cat-
egorically 0A is the negation of A. However, applying the definition of the exponential
object to the trivial deduction “from :A we can deduce :A” (which is true because each
category must have one identity arrow for each of its object) gives us:

Therefore, the adjoint arrow to the identity arrow of 0A is the arrow from 0A � A to
0, which means that the formula :A ^ A is false, i.e. that the axiom of non-contradiction
holds. Category theory shows us that the axiom of non-contradiction is, in fact, adjoint
to the identity arrow of :A and, moreover, that this fact is a direct consequence of the
axiomatics of a closed Cartesian category endowed with an intuitionist negation. This is
why it is natural that the internal logic of a topos is intuitionist, as this fact is inscribed in
its axiomatics.

This last result is fundamental because category theory shows not only that the ax-
iomatics of topos in itself induces an intuitionist logic (in fact, it is true for a closed
Cartesian category as well) but also that this choice of axiomatics carries in its notion
of exponential object the source of non-contradiction. We can conclude, therefore, that
the non-contradiction is purely a choice induced by an axiomatics of mathematical nature,
and the categorical duality shows us that this choice is purely arbitrary and that we can, in
fact, choose to accept contradiction and preserve the axiom of excluded middle, which is
the object of the following section.

2.3 Cotopoi and Paraconsistent Logic

Categorical duality enables us to define a “cotopos” as a closed co-Cartesian category
with quotient classifier.8 However, let us insist upon co-Cartesian closure. As dual of the

8 This notion and the analysis of its internal logics are explored by William James and Chris Mortensen in
their book Categories, Sheaves and Paraconsistent Logic.
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notion of Cartesian closure, we find in it all dual constructions: to be a closed co-Cartesian
category a category must have initial and terminal objects, products and coproducts as
a closed Cartesian category because these constructions are dual one from another.

However, it does not need to have exponential objects, which is the heart of a Cartesian
closure. On the contrary, it must have a co-exponential object. For all pairs of objects A
and B , there must exist a co-exponential object AB with the following property:

To each arrow from the co-exponential object AB to C there corresponds a unique
arrow from A to the coproduct B

`
C and conversely. As an exponential object is the

adjoint to a product, a co-exponential object is, dually, the adjoint to a coproduct.
To illustrate this notion of co-exponential object, we cannot examine the case of the

category of sets, which is not a closed co-Cartesian category. However, its restriction to
the category of subsets of a fixed set with inclusions for arrows is a closed co-Cartesian
category. Here the co-exponential object is the set differenceA�B formed by all elements
ofA not included inB . In fact, if A�B is included in C , asAmay contain either elements
ofA not included inB or elements ofA included inB , thenA is included inB

S
C , which

is a coproduct. Reciprocally, if A is included in B
S
C , elements of A are either in B or

in C , therefore all elements of A that are not in B are by force in C , then we can conclude
that A�B is included in C . Here we can clearly see that the co-exponential object is tied
with the set difference and this notion of set difference is itself very closely tied to the
excluded middle, because the preceding proof is based on the fact that A is the union of
A
T
B and A � B . Here we again recognize the categorical adjunction because the set

difference A� B is tied to the coproduct .A
T
B/
S
.A � B/, which is, in fact, A.

What sort of logic is induced by the axiomatics of a closed co-Cartesian category?
Again, we consider the category objects as the formulas of the language and the arrows
as the deductions. 0 is again false, 1 is true and products and coproducts are, respectively,
the connectors “and” ^ and “or” (inclusive or) _. A formula is true when there exists an
arrow from 1 to the object which is the formula and it is false when there exists an arrow
from the object which is the formula to 0.

The most delicate notion is the co-exponential object, which naturally does not repre-
sent the implication but the dual connector called pseudo-difference and denoted by �.
This connector plays the role that was usually played by the implication. As implication
is adjoint to conjunction “and”, pseudo-difference is adjoint to inclusive disjunction “or”
from A�B we can deduce C if and only if from A we can deduce B or (inclusive or) C .
As for implication, there is a deduction theorem: A � B is false if and only if from A we
can deduce B . This theorem is a mere consequence of the definition of co-exponential ob-
ject applied to objects A, B and 0: to each arrow from AB to 0 there corresponds a unique
arrow from A to B

`
0 and conversely. However, we can easily prove that B

`
0 is, in

fact, B .
In so doing, we have deduced from the axiomatics of a closed co-Cartesian category

a propositional calculus dual to the intuitionist positive propositional calculus based on
the pseudo-difference which is dual to the implication and, as the latter, intimately tied to
deduction.
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The natural negation connector for this calculus will be defined by the pseudo-
difference true, as intuitionist negation was implication to false: :A is then by definition
>�A. This negation is, in fact, paraconsistent and with it the preceding calculus becomes
a paraconsistent propositional calculus. A logical system is called paraconsistent when
contradiction may happen but the logical system does not collapse. This means that, in
these systems, it is no more true that fromA^:Awe can deduce all formulas.9 This is the
case of our calculus, which is dual to the intuitionist propositional calculus: intuitionist
calculus forbids contradiction and accepts middle terms, therefore by categorical duality
our calculus permits contradictions and forbids middle terms.

The fact that the excluded middle axiom is valid in this system (and not the non-
contradiction axiom) is derived directly from the definition of co-exponential object ap-
plied to the identity arrow of 1A:

Therefore, the adjoint arrow to the identity arrow of 1A is the arrow from 1 to A
`
1A,

which means that the formula A _ :A is true, i.e. that the axiom of excluded middle
holds. As non-contradiction is the arrow adjoint to the identity arrow of the negation object
defined by exponential and initial objects, the excluded middle is the arrow adjoint to the
identity arrow of the negation object defined by co-exponential and terminal objects.

Finally, as the excluded middle axiom is not induced by the axiomatics of a closed
Cartesian category (in those categories this means that for each object A of the category,
there should exist an arrow from 1 to A _ :A D A

`
0A), closed Cartesian category

and topoi can be either classical or intuitionist, depending on whether or not this axiom
is added to the axiomatics. Dually, the non-contradiction axiom is not induced by the
axiomatics of a closed co-Cartesian category (in these latter categories this means that
for each object A, there should exist an arrow from A ^ :A D A � 1A to 0). Therefore,
contradiction is optional: a closed co-Cartesian category can be either classical or paracon-
sistent. Moreover, if there is contradiction, the logic does not collapse; if a contradiction
A � 1A exists, this means that there is no arrow from A � 1A to 0, but if this contradiction
had induced a collapse of the whole logic, all formulas would have been deduced from the
contradiction and then there would be arrows fromA�1A to all objects of the category and
in particular to 0, which cannot be the case. We have then proved that the calculus dual to
the intuitionist propositional calculus is paraconsistent because no existing contradiction
can induce the collapse of the whole logic.

All this shows that, from a purely formal point of view, the choice of non-contradiction
and the choice of excluded middle are strictly dual because they are both induced by
axiomatic choices bearing upon structures of mathematical universes that are themselves
categorically dual. Therefore, category theory shows us that the intuitionist logics, which
are internal to topoi and more generally to closed Cartesian categories, are not central

9 These logic systems were discovered in 1963 by da Costa in Brazil. It is important to remark that all
these systems possess a paraconsistent implication, whereas our calculus does not possess implication but
possesses a pseudo-difference, because it is the dual of the intuitionist propositional calculus. This special
paraconsistent system was discovered more recently by the Brazilian school (da Silva de Queiroz 2001)
([3]).



192 R. Angot-Pellissier

logics but symmetric to paraconsistent logics, internal to closed co-Cartesian categories
and dual to closed Cartesian categories. The reason for this is that these logics are, in fact,
contained in the axiomatics defining these categorical structures. Then a question arises:
why do topoi have such an axiomatics, or, which is the same, why are the topoi of an
intuitionist nature? The next section gives an answer to these questions.

3 Intuitionism and Paraconsistency: a Duality of the Type
Open–Closed Subsets

3.1 Heyting Algebras and Open Subsets of a Topological Space

A known mathematical result says that each intuitionist propositional calculus is equiva-
lent to a Heyting algebra. Despite this barbarous name, a Heyting algebra is a simple tool:
it is an ordered set endowed with a minimal element 0, a maximal element 1, for each
pair of elements .a; b/ an element inferior to both a and b, denoted by inf.a; b/, and an
element superior to both a and b, denoted by sup.a; b/, but also an element a ) b such
as, for all elements c, we have inf.c; a/ � b if and only if c � a) b. The identification
with intuitionist logic is as follows: formulas are the elements of the set, deduction is the
order on the set, ? is the minimal element, > the maximal element, a ^ b the element
inferior to both a and b, a _ b the element superior to both a and b, for implication itself,
and the negation of an element a is defined as a)?.

The reader will recognize the structure to be of the closed Cartesian category. Heyting
algebra is, in fact, a category whose objects are the elements of the set and the arrows the
order relations; there exists a unique arrow from a to b if and only if a is smaller than
b. However, as a category, Heyting algebra is a closed Cartesian category: 0 is the initial
object, 1 the terminal object, inf.a; b/ the product of a and b, sup.a; b/ the coproduct of a
and b and a) b the exponential object for a and b. The categorical definition of Heyting
algebra is simpler than its definition in set theory: Heyting algebra is an ordered set that
is, as a category, a closed Cartesian category.

However, a very important result says that each Heyting algebra corresponds to
a unique category of open subsets and conversely so. This result implies general no-
tions of topology and it is not within the scope of this paper to detail topological matters.
Nevertheless, we can present the main lines of topology. A topological space is a set
endowed with two families of subsets: the open subsets family and the closed subsets
family, one being the set complement of the other. The open subsets family verifies some
properties: the empty set and the total set are open subsets, infinite unions of open subsets
and finite intersections of open subsets are open subsets. Dually, the closed subsets family
verifies the following properties: the empty set and the total set are closed subsets, finite
unions and infinite intersections of closed subsets are closed subsets. Open subsets of
a topological space endowed with inclusions form a category that is a Heyting algebra and
reciprocally to each Heyting algebra corresponds a subcategory of the category of open



The Relation Between Logic, Set Theory and Topos Theory as It Is Used by Alain Badiou 193

subsets of a topological space. Properties of open subsets show us that the empty set is the
initial or minimal object, the total set (the topological space itself) is the terminal or maxi-
mal object, the intersection is the product or inf, the union the coproduct or sup. To define
the exponential object or implication, we must use the notion of interior: the interior of
a subset of a topological set is the greatest open subset included in the subset. Implication
U ) V will be defined as interior of the intersection of V with the set-complement of U .
The induced negation will only be the interior of the set-complement.

Let us take an example to better understand these definitions. The real line IR has
a natural topology whose open subsets are unions of intervals of type �a; bŒ, a or b could
even be1. Therefore, the subset of strictly positive reals �0;C1Œ is an open subset and
then a formula of our language. Let us denote it by A. :A is by definition the interior of
the set-complement of A. The set-complement of A is clearly the subset of negative reals
��1; 0�, but this subset is not open. (Let us note here that 0 is both negative and positive
in the French school of mathematics). Its interior, the greatest open subset that it contains,
is in fact ��1; 0Œ, the subset of strictly negative reals. However, A _ :A, which is the
union, contains all strictly positive reals and all strictly negative reals, but 0 is missing!
Therefore, the axiom of excluded middle is not valid because A _ :A is not the total set,
the whole real line.

Thus open subsets of a topological space sustain the intuitionist propositional calculus;
as mathematical objects, they follow the rules of intuitionist propositional calculus. Fur-
thermore, each intuitionist propositional calculus has a mathematical translation in open
subsets of a topological space. This is a fundamental result tying logic and mathematics.
Moreover, it is also the reason why topoi are intuitionist. To understand this, let us recall
some mathematics history.

The notion of topos was introduced afterWorldWar II by the French school of algebraic
geometry of Grothendieck. Their motives were the study of geometric objects such as
varieties and schemes by the local–global duality. The credo of this duality is: all which
is globally true is locally true and if some locally valid things can “glue” together (i.e.
are compatible on intersections), then those things are induced by a global something,
which is globally valid. From these considerations the notion of sheaves on a topological
space was born: a sheaf is a gluing together of elementary and local bricks which are,
in fact, open subsets of a topological space. A Grothendieck topos is only a category of
sheaves. However, the internal logic of a Grothendieck topos, bearing by its subobject
classifier, is the algebra of the elementary and local bricks glued together to form the
sheaves of this topos, and it is, in fact, the algebra of the open subsets of a topological
space. Thus it is natural that Grothendieck topoi are intuitionist because they were created
for a mathematical method of study of geometry by the local–global duality. Moreover,
the notion of local is the essence of the open subsets in topology and is tied with the gluing
together principle, which builds the global from compatible locals, which is also a typical
intuitionist principle. However, the irony is that all this mathematical history is of a most
classical nature!

From this notion of Grothendieck topos, some mathematicians and logicians such as
Lawvere defined the notion of elementary topos, the basis of topoi theory, with what is
common to sheaves and sets. Then in the notion of topos they resumed the whole axiomat-
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ics necessary for a universe of a generalized type of sets. Therefore, topos theory is the
pendant of category theory because for mathematicians the second one explores all math-
ematical structures and the first one only the generalized sets as sheaves. Furthermore,
these generalized sets universes can only be intuitionist or even classical if the excluded
middle axiom holds, because all are based on the gluing together principle, which builds
the global from compatible locals.

Nevertheless this is not the only one type of mathematics. As we saw, the notion of
closed Cartesian category, the heart of the topos notion, with its internal intuitionist logic
has a dual notion of closed co-Cartesian category with paraconsistent logic. In the next
section, we shall explore this paraconsistent logic and what is behind it.

3.2 Co-Heyting Algebra and Closed Subsets of a Topological Space

The categorical duality permits us to define co-Heyting algebras, also called Brouwer al-
gebras although they are paraconsistent, as dual categories of the Heyting algebras viewed
as categories. Their structure is very simple: they are ordered sets that are closed co-
Cartesian categories. Therefore, these algebras possess a minimum, a maximum, inf and
sup, and also differences defined by a � b � c if and only if a � sup.b; c/. As each
intuitionist propositional calculus is equivalent to a Heyting algebra, each paraconsistent
propositional calculus dual of an intuitionist calculus is equivalent to a co-Heyting alge-
bra, formulas being objects, deductions being order relations, false being the minimum
and true the maximum, conjunctions being inf and inclusive disjunctions being sup, dif-
ferences being themselves and negations being differences with true.

As we saw before, a very important theorem identifies Heyting algebras with algebras
of open subsets of a topological space, letting open subsets be mathematical incarnations
and essences of intuitionist propositional calculus. Categorical duality then gives us a dual
theorem: co-Heyting algebras corresponds to dual categories of open subsets algebras
viewed as categories. Yet, concretely what are these algebras? The answer is simple and
elegant: the dual category of an open subsets algebra viewed as a category is the algebra
of the corresponding closed subsets! We recall here that closed subsets are exactly the
set-complements of open subsets in a topological space.

The co-Heyting algebra of closed subsets of a topological space is then the category
of these closed subsets with inclusions for arrows. The minimum is the empty set and
the maximum the total set (the topological space itself), which are both closed subsets
by the definition of a topology. Inf are intersections and sup are unions, closed subsets
being stable by infinite intersections and finite unions. In order to define difference, we
shall use the topological notion of closure: the closure of a subset of a topological space
is the smallest closed subset containing the subset. Difference F �G will then be defined
as closure of the set difference, i.e. as the closure of the intersection of F with the set-
complement of G. Negation will be simply the closure of the set-complement.

Let us return to our example of the real line IR. 0 was the non-excluded middle of
the intuitionist propositional calculus of open subsets because it is not a member of the
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open subset A of strictly positive reals nor a member of its negation :A, the open subset
of strictly negative reals. Thus the proposition A _ :A is not the total set (the whole
real line) because 0 is missing and, consequently, this proposition is not true. On the
contrary, here in the closed subsets propositional calculus, 0 bears a contradiction without
a collapse of the whole calculus. The closed subsets are unions of intervals of type Œa; b�,
��1; b� or Œa;C1Œ. Let be B the closed subset of positive reals Œ0;C1Œ (here again
recall that 0 is both positive and negative for the French school of mathematics), we can
remark that it contains 0, which is a positive number. Its negation :B is the closure of
its set-complement. The set-complement of B is the open subset of strictly negative reals
��1; 0Œ, but it is easy to see that the smallest closed sunset containing it is the closed
subset of negative reals ��1; 0�, which contains 0, which is a negative number. Therefore,
the intersection B ^ :B is the closed subset of reals, both positive and negative, thus it
is the singleton (a set with only one element) Œ0; 0�. We can conclude that a contradiction
holds for 0. So, B ^ :B is not included in the empty set, which means that from B ^
:B we cannot deduce false and, furthermore, that the contradiction B ^ :B is not false
and that the logic does not collapse. In fact, we have even the very important following
result: from B ^ :B we can deduce C if and only if the closed subset C contains 010!
This propositional calculus of closed subsets of a topological space is then paraconsistent
because contradictions can exist and the logic does not collapse.

We can thus view closed subsets as the essence of the paraconsistency dual of intuition-
ism. As open subsets correspond to a mathematical method, it is the same for the closed
subsets. We have seen that following Grothendieck, French algebraic geometry studies
geometric objects with the point of view of the duality global–local: global data are valid
on the local level and each gluing together of compatibles local data forms a global data.
However, at the beginning of the 20th century, the Italian school of algebraic geometry
studied geometric objects, varieties by example, from the point of view of their equations.
These equations being polynomials, it is sufficient to know their decompositions in more
simple polynomials to know what the subvarieties of a given variety are. This method is
called splitting and gives many important results in algebra about rings and rings of poly-
nomials, mathematical structures forming categories but not topoi. Theses varieties are
closed sets because they are formed by all points verifying their equation. More generally
each closed subset corresponds to a set of solutions of one or more equations or one or
more not strict inequations. Closed subsets then correspond to an equational and polyno-
mial way to study algebraic geometry. This method is neither exclusive nor a rival of the
global–local method: it is simply dual and complementary.

Two anecdotes complete this part. The first one is that this formal duality of the global–
local and polynomial method in mathematics is symbolized in a very beautiful mathemat-
ical result. Schemes, geometric structures of a sheaf type studied by Grothendieck and his
school, have affine schemes for elementary bricks. However, the dual category of affine
schemes is the category of (commutative unitary) rings whose extensions, the rings of

10 This contradicts the principle of classical logic known as Pseudo-Scot or ex falso quodlibet, which says
that from a contradiction such as B ^ :B we can deduce anything.
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polynomials, are the worlds where the equations defining varieties live, geometric struc-
tures studied by classic algebraic geometry from the time of the Italian school.

The second anecdote is based on the preceding result. Bourbaki, an association of
French mathematicians, which has made a refoundation of classic mathematics from clas-
sical logic and set theory to more complex theorems by reconstructing one after another
all mathematical notions, also wanted to deal with recent results on sheaves, schemes and
topoi, which are intuitionist notions. However, in order to do that, the Bourbaki group
would have had to rework the set foundations of mathematics to have a categorical foun-
dation, because category theory is the basis of these notions. That would be too much work
and a new beginning! Therefore, on applying the categorical duality of affine schemes and
rings, Bourbaki was able to demonstrate very difficult results of Grothendieck algebraic
geometry only from the point of view of rings, making, without knowing it, paraconsistent
mathematics.

This last example shows very well the complementarity of two mathematical approach
of geometry, the global–local approach and the polynomial or equational approach. There-
fore, we shall end our paper on examples where intuitionism and paraconsistency are not
only dual but complementary.

3.3 Subsets, Subgraphs: Universes Uniting Intuitionism
and Paraconsistency

Up to now categorical duality has been viewed from a Manichean approach: either we are
in a category or we are in its dual category. Nevertheless, some categories are their own
duals: they are auto-dual. That is the case by example of the category of subsets of a given
set and also of the category of subgraphs of a given graph. However, the category of sets
and the category of graphs are, in fact, topoi and then their internal logic is intuitionist
and lies in their subobjects classifier, which assures that each category of subobjects of
a given object is a Heyting algebra. Therefore, categories of subsets of a given set or those
of subgraphs of a given graph are Heyting algebras, and then closed Cartesian categories
with a propositional intuitionist calculus. However, these categories are, in fact, auto-dual
because they are their own dual. As dual to themselves, they are also co-Heyting algebras
and consequently closed co-Cartesian categories with a propositional paraconsistent cal-
culus. We then have two types of categories, both closed Cartesian and closed co-Cartesian
categories.

When a category is both closed Cartesian and closed co-Cartesian, it possesses an initial
object 0, a terminal object 1, products �, coproducts `, exponential objects) and co-
exponential objects �, respectively, adjoint to products and to coproducts. The deduction
of B from A corresponds both to the fact that A) B is true and that A � B is false. We
can then define, for each elementA, two negations: an intuitionist negation:iA D A) 0

and a paraconsistent negation :pA D 1 � A. The intuitionist negation verifies the non-
contradiction axiom and with the exponential objects gives a propositional intuitionist
calculus to the category. The paraconsistent negation verifies the excluded middle axiom
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and with the co-exponential objects gives a propositional paraconsistent calculus to the
category. The fundamental result is the following: if the two negations coincide then the
logic of the category will be classical and conversely so.

This phenomenon occurs in particular in the category of subsets of a given set which is
both a Heyting and co-Heyting algebra; the morphisms are the inclusions, 0 is the empty
set, 1 the total set, � is the intersection,

`
the union, A ) B is the union of B with the

set-complement of A, hence :iA is the set-complement of A, and A�B is the difference
of subsets, i.e. the intersection of A with the set-complement of B , hence :pA is again
the set-complement of A. Therefore, the two negations coincide and the logic is classical:
we have here a Boolean algebra. A very well-known result says that each Boolean algebra
can be identified with a category of subsets and conversely. As the classical propositional
calculus is equivalent to a Boolean algebra, we arrive at the well-known fact that subsets
of a given set are the mathematical representatives of classical logic, whereas open subsets
of a topological space represent intuitionist logic and closed subsets of a topological space
represent paraconsistent logic. Moreover, we can remark that each set can be viewed as
a topological space with all its subsets for open and closed subsets; we call this type of
topology discrete topology. We have been able to see clearly see that categories of subsets
of a given set are both categories of open subsets and categories of closed subsets of the
set viewed as a discrete topological space; intuitionism and paraconsistency, coinciding
in particular on their negations, form a classical logic because the first one brings the
non-contradiction axiom and the second one brings the excluded middle axiom!

As for the categories of subgraphs of a given graph with their inclusions, we also have
both Heyting and co-Heyting algebras but this time the two negations do not coincide.
The categorical structure is as follows: 0 is the empty graph, 1 the whole given graph, � is
intersection and

`
union, A) B and A � B are defined by their adjunction properties.

As these properties are too complex too be defined in this paper, let us explore directly
the induced negations. On the one hand, by the topos structure of the category of graphs,
categories of subgraphs inherit of an intuitionist negation :iA is the greatest subgraph
whose intersection with A is empty, which ensures the validity of the non-contradiction
axiom. On the other hand, the mathematical practice defines the pseudo-complement of
a subgraph A as follows: it is the smallest subgraph whose union with A is equal to the
whole given graph. We can show that it is, in fact, the paraconsistent negation :pA of
the category of subgraphs of a given graph, whose definition ensures the validity of the
excluded middle axiom. However, in this case, these two negations do not coincide, which
gives to the category of subgraphs of a given graph two distinct propositional calculi,
one being intuitionist and the other paraconsistent. In order to better see this particular
phenomenon of coexistence of two distinct propositional calculi, let us take the following
example:

Here the given graph is � , the subgraph A is the first arrow. The intuitionist negation :iA

of A, being the greatest subgraph whose intersection with A is empty, is then the vertex
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2. The excluded middle axiom does not hold for this negation because the second arrow
is missing in the union of A with 2 if we want this union to be equal to the whole graph
� . The paraconsistent negation :pA of A is the second arrow because it is, in fact, the
smallest subgraph whose union with A is the whole graph � . However, the vertex 1 is
both an element of A and of its paraconsistent negation :pA. Thus this contradiction is
no longer false and at the same time the whole logic does not collapse because only the
subgraphs containing 1 can be deduced from this contradiction; by example neither the
empty graph nor the vertex 2 can be deduced from this contradiction.

The case of subgraphs is very interesting at two levels. On the one hand, it shows that
in mathematical practice, the choice of intuitionist logic when classical logic does not
hold is not so natural as we can think at first sight. Although graphs form a topos, it is
a paraconsistent negation (pseudo-complement of a subgraph) that is used by mathemati-
cians and not the intuitionist one induced by the topos structure. This example confirms
the fact viewed in the preceding part that geometry can study either the intuitionist point
of view of global–local or the paraconsistent point of view of polynomials. On the other
hand, with this example the circle is complete because we started from categories, which
can be viewed as graphs, in order to explore different mathematical universes and their
internal logic and we have arrived at the fact that the logic of subgraphs is a very subtle
one combining intuitionism and paraconsistency. All this confirms the complexity and va-
riety of logics inhabited category theory, in contrast to the monotony of topos logics which
are only intuitionist or classical (even if by playing on topology, we can obtain sheaves
logics with interesting modal interpretations: localized logics, fuzzy logics, temporal log-
ics . . . 11) This is why it seems very simplistic to us, in light of mathematical notions and
practices, to consider that topoi with their intuitionist logics are the only possible math-
ematical universes. Therefore, we suggest to go further than Alain Badiou and view in
category theory the basis of the logic of possible ontologies.

4 Conclusion

In Badiou’s metaphysics mathematics plays a central role. It takes place in it as onto-logic,
which means that it offers at the same time a decisional face and a formal vision. Ontol-
ogy, as a decision over being, is represented inside mathematics, by set theory with its
axiomatics, which bears on the undefined notion of set, sets being in turn the representa-
tives of being as pure multiplicity. The logic of ontology, in Badiou’s eyes, is represented
by topos theory, conceived as the theory that explores the possible mathematical universes
and which, by the way, makes explicit the link between the properties of a universe and the
underlying logics. The fact that this theory shows that these universes are intuitionist, or
in some cases classic, confirms the Aristotelian asymmetry holding between the axiom of
non-contradiction, vital for logic, and the axiom of the excluded middle, which is purely
optional for a logic.

11 These logics of sheaves parameterized by topology are one the main themes explored in Alain Badiou’s
book Logiques des mondes.
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Now, as we have tried to show in this paper, which wemust admit is quite mathematical,
the framework of topos theory corresponds only to the different possible set-theoretical
universes, these universes having – because of their very axiomatics – an intuitionist in-
ternal logic. The theory that has been created in order to explore the different possible
universes, namely the different possible mathematical structures, is category theory. It is
the latter that enabled us to see, on the one hand, which ontological choices have been
made for the topoi, inducing intuitionism on them; but also, on the other hand, that a dual
choice exists, which leads to paraconsistent universes where contradiction exists without
thereby trivialising the logic, and where it is the excluded middle that is vital. Therefore,
the axioms of non-contradiction and of the excluded middle are formally symmetric, they
are dual in the categorical meaning of the word, and the choice of taking either one or the
other corresponds to mathematical practices of localisation and of polynomial equations,
which are each one as mathematically natural as the other and which, most of all, are
complementary.

This is why the categorical-theoretical working mathematician, as well as the reader of
Alain Badiou, would lay category theory as the logic of the possible ontologies, for the
topoi already constitute, among the different categorical universes, an ontological choice,
one generalising the choice of sets. This position has the advantage of going farther than
Badiou in the direction of the desacralisation of the Aristotelian axioms, given that cate-
gory theory demonstrates the duality, the logical symmetry of non-contradiction and of the
excluded middle. If we can, as the intuitionists, touch almost unpunishably the excluded
middle, there is no reason, neither on the formal nor on the practical level of mathematics,
for having to avoid touching, as the paraconsistents do touch, non-contradiction, provided
that occurring contradictions do not lead to a trivialisation of the logic! In Badiou’s sense,
all this is only an ontological choice between the different possible ontologies, even if it
is not the most easily tenable choice in front of the challenge of making a decision about
being. However, in the end, is not the most comfortable choice, philosophically speaking,
the one of the axiomatics of set theory, which makes out of the category of sets the best of
the possible mathematical universes, in the sense of Leibniz?. . .

Finally, if category theory is really the logic of ontologies, then it is natural to ask
ourselves the following question: for that given mathematical structure, what were the
ontological choices, and what underlying logic derives from that? This work has just begun
in mathematics and the notion of topos is only a first draft of the answer to that question.
We are persuaded that the pursuit of fundamental research in this direction will make it
possible not only to shed light on the current mathematical practices bearing on these
structures, but will also have many implications for the conception of logic and, more
generally, for philosophy.

References

1. Badiou, A.: Platon et/ou Aristote. Théorie des ensembles et théorie des topoi sous l’œil du philosophe.
In: Panza M., Salanskis, J.M. (eds.) L’Objectivité mathématique. Masson, Paris (1995)

2. Badiou, A.: Court traité d’ontologie transitoire. Seuil, Paris (1998)



200 R. Angot-Pellissier

3. da Silva de Queiroz, G.: Sobre a dualidade entre intuicionismo e paraconsistência. PhD thesis, Brasil
(1998)

4. Lambek J., Scott, P.J.: Introduction to higher order categorical logic. Cambridge Studies in Advanced
Mathematics 7. Cambridge University Press, Cambridge (1986)

5. Lavendhomme, R.: Lieux du Sujet. Psychanalyse et Mathématiques. Seuil, Paris (2001)

R. Angot-Pélissier (�)
Le Mans, France
e-mail: rpelliss@yahoo.com

rpelliss@yahoo.com


Potentiality and Contradiction
in Quantum Mechanics

Jonas R. Becker Arenhart and Décio Krause

Abstract Following J.-Y.Béziau in his pioneer work on nonstandard interpretations of
the traditional square of opposition, we have applied the abstract structure of the square
to study the relation of opposition between states in superposition in orthodox quantum
mechanics in [1]. Our conclusion was that such states are contraries (i.e., both can be false,
but both cannot be true), contradicting previous analyzes that have led to different results,
such as those claiming that those states represent contradictory properties (i.e., they must
have opposite truth values). In this chapter, we bring the issue once again into the center
of the stage, but now discussing the metaphysical presuppositions which underlie each
kind of analysis and which lead to each kind of result, discussing in particular the idea
that superpositions represent potential contradictions. We shall argue that the analysis
according to which states in superposition are contrary rather than contradictory is still
more plausible.

Keywords Contradiction � Superposition � Potentiality � Contrariety � Opposition
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1 Introduction

J.-Y. Béziau has advanced the thesis that the square of opposition is a general framework
that may be profitably employed for conceptual analysis (e.g., in [4]). Almost any kind
of opposition between propositions may be profitably studied by the conceptual machin-
ery furnished by the square, so that the proper relationships between the propositions in
question may be brought to light and further analyzed. In this sense, the traditional oppo-
sition between Aristotelian categorical propositions is one of the many interpretations of
the abstract structure of the square.

Bearing these multiple interpretations in sight, one of the possible uses of the square
concerns application in the case of quantum superpositions. States in quantum mechan-
ics such as the one describing the famous Schrödinger cat – which is in a superposition
between the states “the cat is dead” and “the cat is alive” – present a challenge for our
understanding which may be approached via the conceptual tools provided by the square.
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According to some interpretations, such states represent contradictory properties of a sys-
tem (for one such interpretation see, e.g., [6]). On the other hand, we have advanced the
thesis that states such as “the cat is dead” and “the cat is alive” are contrary rather than
contradictory (see [1, 2]).

To keep the paper self-contained, we now recall the traditional definitions of the op-
positions which shall be employed in this paper and that are used in the discussions of
applications of the square:

Contradiction: Propositions ˛ and ˇ are contradictory when both cannot be true and both
cannot be false.

Contrariety: Propositions ˛ and ˇ are contrary when both cannot be true, but both can be
false.

Subcontrariety: Propositions ˛ and ˇ are subcontraries when both can be true, but both
cannot be false.

Subaltern: Proposition ˛ is subaltern to proposition ˇ if the truth of ˇ implies the truth
of ˛.

Subalterns are not in any sense in a relation of opposition, but rather a kind of implica-
tion. Anyway, they are part of the traditional discussions of the square and so are usually
included in the nonstandard approaches to the square.

In this chapter we shall once again engage in the discussion by presenting some fur-
ther differences between the two approaches to superposition, viz., the one that considers
them as contradictions and the one that considers them as contraries. In the next section
we present in outline both approaches, the one which considers quantum states of a super-
position as contradictory and as contrary, so that our discussion can be self-contained. In
Sect. 3, we discuss the relation between contradiction and potential properties. It is said
that the analysis of superposition as contradictory holds when such a state is thought as
a superposition of potential properties, so we analyze this claim. In Sect. 4 we investigate
whether a concept of potentiality can sit comfortably with a notion of contradiction. In
view of the previous discussions, we conclude by defending the idea that contrariety is
still a more adequate way to understand superpositions.

2 Contradictions and Contrariety in Superpositions

The proper understanding of superpositions is an open challenge typical of most of quan-
tum mechanical conceptual innovations. Typically, to address the problem an interpre-
tation of the theory is offered, and along with it, the hopes that the difficulties that are
generated by superpositions in quantum mechanics get a proper explanation. As is well
known, Dirac [9, p.12] claimed that superposition is not reducible to any classical notion,
it is a sui generis feature of quantum mechanics: it lies behind most of the applications
of the theory, and represents somehow the essence of the novelties brought by quantum
mechanics.
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In a recent paper, da Costa and de Ronde [6] proposed to deal with superpositions by
adhering to a completely innovative approach to the superpositions and, as a result of such
move, by adjusting the underlying logic with which we discuss such issues: according to
their proposal, a superposition involves in general contradictory properties, and the un-
derlying logic for the discussion of those issues is a paraconsistent logic. Indeed, it is
usually said that paraconsistent logics deal with contradictions without allowing trivial-
ization.1

To take an example that illustrates the main thesis, consider a spin- 1
2
system which

is in the state j "zi. Now, when we change the direction and consider the x axis, this
state is in a superposition between j "xi and j #xi. Each of these states corresponds
to a projection operator j "xih"x j and j #xih#x j, respectively, with each projection
representing a propriety of the system (in this case, “to have spin up in the x direction”
and “to have spin down in the x direction,” respectively). Now, according to da Costa and
de Ronde [6, p. 848], these properties “which constitute the superposition and must be
considered simultaneously are in general contradictory properties.”

So, it seems that the idea is very simple. Two properties such as “to have spin up” and
“to have spin down” (from now on, the context should make it clear that they are being
taken in the same spatial direction), when their corresponding states are in a superposition,
are said to be contradictory. Furthermore, they are not actual properties of the system, but
rather possible or potential properties (more about this in the next section, see also [8]).
Then, potentially, the system has contradictory properties (see da Costa and de Ronde loc.
cit.). According to them, this fact must be dealt with by a paraconsistent approach, that is,
we must adopt a paraconsistent logic as the underlying logic (see [6, Sect. 5]).

Obviously, if two properties are to be thought of as contradictory, then one must make
clear what is the meaning of contradiction. We attempted such an explanation in [1]. In-
deed, if “spin up” and “spin down,” or else (taking into account Schrödinger’s cat) “cat
dead” and “cat alive” are to be understood as contradictory, then this contradictoriness
must be spelled out. To spell out this fact by using the traditional definition of contradic-
tion of the square of opposition results in the fact that such attribution of properties must
always have well-defined truth values: recalling that contradictory propositions have op-
posed truth values, the system must have spin up and not have spin down, or else have spin
down and not have spin up. However, this was obviously not the idea behind the claim that
we must “consider simultaneously” those properties. It is simply impossible to take them
simultaneously and still keep them as contradictories when “contradiction” is understood
in the terms provided by the traditional definition of the square.

Then, an analysis through the square seems to provide for an obstacle for the consid-
eration of contradictory properties in a superposition. What alternative do we have? One
could, perhaps, insist in a paraconsistent approach along the following lines. Let us con-
sider properties such as “to have spin up” and “to have spin down” as being somehow one
paraconsistent negation of the other. Then, following the suggestion of the paraconsistent

1 In a nutshell, in classical logic, in the presence of a contradiction any proposition whatever may be said
derivable, and the resulting system is called trivial. In paraconsistent systems, on the other hand, even if
expressions formally representing contradictions are derivable, not every proposition is also derivable, so
that the system is not trivial. For the details see [7], and also the discussion in Béziau [3, 5].
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approach, we could explain how both can be taken as true of a system. Indeed, when the
system is in a superposition we would have something of the form ˛ ^ :˛, a true contra-
diction. However, this move would not do. First of all, an expression such as ˛ ^ :˛ is
not a contradiction in a paraconsistent logic, strictly speaking. As philosophical analyzes
have made it clear (see, e.g., [3] and [5]), paraconsistent negations represent subcontrari-
ety, that is, when : is taken as paraconsistent negation, ˛ and :˛ are subcontraries, not
really contradictories. This move would at best amount to a change in terminology (see
also [2]). Second, subcontrariety requires that both propositions involved can be true but
both cannot be false. So, by adopting this view, one would be obliged to accept that in
a superposition, at least one of the properties corresponding to the states in superposition
always hold. This, however, is still weaker than the requirement that both always be the
case. Furthermore, it is not clear whether this assumption does not violate some form of
no-go theorems that prohibit such kind of property attribution in quantum mechanics.

We have suggested an alternative route in [1]: to take common wisdom seriously and
claim, following Dirac, that a superposition represents a new state of the system, one in
which the system, as far as we know, does not have any of the properties involved. To
explain how to account for superpositions according to this analysis, let us consider once
again the case of the spin- 1

2
system, as an electron in the j "zi state. When we inquire

about what happens in the x direction, then the system is in a superposition between
j "xi and j #xi. Now, instead of allowing that the system has both associated properties
j "xih"x j and j #xih#x j, we say that the system does not have any of the properties. In
this sense, it can be false that the system has “spin up” and it can be false that the system
has “spin down.” However, if it is the case that the system has one of the properties (e.g.,
spin up), then it does not have the other (spin down). This situation describes precisely
contrary propositions. So, the case of such superpositions involves an opposition, but it is
not contradiction, but rather contrariety.

Notice that this view does not rule out interpretations such as versions of the modal
interpretation (see [11]). It could be the case that the system, even if it is in a superposi-
tion, does have one of the associated properties (modal interpretations, recall, break the
eigenstate–eigenvalue link). However, as we mentioned, in this case, contrariety is still
preserved, because only one of the properties is the case, while the other is not. In fact,
modal interpretations seem to be incompatible with any kind of approach to superposition
in which the states in superposition correspond to properties that must be taken simulta-
neously.

Now, even though this seems to be very plausible (to our minds, at least), the approach
that considers that states in superposition are contrary does seem to take into account
some assumptions about property instantiation that a paraconsistentist may deny. Indeed,
de Ronde [8] has approached the subject following these lines. According to this line of
reasoning, to consider that states in superposition are contraries but not contradictories
involves assuming an orthodox metaphysical view, which includes the assumption that
quantum mechanics describes entities and how they bear properties. The paraconsistent
approach, on the other hand, should be understood as taking properties as potentialities,
following a completely different metaphysical approach. We shall explore the different
metaphysical views underlying the paraconsistent approach in the next two sections.
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3 Potentiality and Contradiction

As we have mentioned by the end of the previous section, perhaps two distinct kinds
of metaphysical assumptions underlie the two analyzes proposed for the case of quan-
tum superposition. As we have suggested, there may be a different set of metaphysical
presuppositions making the job in each case, and these presuppositions may well be in-
compatible. So, in order to make things clearer, in this section we shall discuss a little
more the suggestion that distinct modes of being underlie each kind of analysis, mainly
by trying to bring to light the idea of potentiality that accompanies the paraconsistent
approach.

As da Costa and de Ronde [6] and de Ronde [8] have suggested, systems described by
states in a superposition are such that they have only potentially or possibly the properties
associated with each state. More than that, those properties, as we have already quoted,
must be taken simultaneously and are thought of as contradictory. Now, the main question
is: what are possible properties or potencies and how can they be contradictory?

Let us begin by exploring the idea of a contradiction in the potential realm. Once we
admit that reality is divided in two spheres, the actual and the potential (or possible), both
equally real, we may have contradictions in both. Given that superpositions are existent
only in the potential realm, we may concern ourselves only with this case. The first point
we shall raise concerns is terminology: possibility and potentiality are treated as synony-
mous, it seems, by the paraconsistent approach. However, “possible” here has two distinct
senses. In the most straightforward sense, it is said of a proposition that it is possible,
while in the intended sense we are discussing, it is said of a property that it is possible.
It is obviously the second sense that is being used here: possibility regarding properties.
However, in its traditional use, a possible property, also called a modal property, is under-
stood as a property that an object does not have, but could have. It is a useful notion, for
instance, in the metaphysical discussion concerning the numerical difference (or identity)
of a statue and the piece of clay of which it is made: if modal properties are admitted as
legitimate properties in this case, then the statue is different from the piece of clay. Clearly,
the statute could not be squashed and still be the same, while the piece of clay could be
squashed and still be the same (see [12]).

Now, if this analysis of a possible property is correct, then we are entitled to understand
potential properties as metaphysicians have traditionally understood modal properties.
However, if the properties corresponding to the states in a superposition are modal prop-
erties of the system, then there can be no contradiction between them. Indeed, once again
consider the case of the electron in j "zi. When we are concerned with the x direction, the
system is in a superposition between j "xi and j #xi, and both properties j "xih"x j and
j #xih#x j are possible (modal) properties. However, if it is correct to associate possible
properties with modal properties, then these are properties the system does not actually
have. In this case, then, it is difficult to understand how they can be contradictory; both
simply fail to be properties of the system, and as a bonus, our suggestion that they are
merely contraries applies (recall Sect. 2).

So, modal properties, even though they may be related to potential properties, will
not work. Let us leave modal properties behind for now and keep with the same line of
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inquiry, but now turning our attention to “potential property.” It happens that one can ad-
vance a very similar argument. Traditionally, potential is understood as being in straight
opposition to actual (more on this in the next section). However, once again, a potential
property is one which is not actually possessed by the system (by definition). In a super-
position, when we identify the properties corresponding to the states in the superposition
as potential properties in this sense (i.e., as opposed to actual), then, those are properties
not possessed by the system. Again, there is no contradiction in this case, but only mere
contrariety.

Perhaps through these analyzes we are still considering the potential and the possi-
ble too closely related to actuality and actualization. What if we consider potentiality as
a separated realm completely independent of any entity in which it exerts its actualiza-
tion? Could this independence somehow help us in attributing some sense to the idea that
a contradiction is real in this realm? It is this suggestion that we now investigate.

The first point of the suggestion seems to be that properties are potential all by them-
selves. In this sense, they are independent of their possible attribution to a system. That
is, a property is not possible because it is the modal or potential property of any specific
system, but rather it is an independent power, existent by itself. In this sense, powers like
“spin up” and “spin down” are contradictory. But it is even more difficult to make sense
of contradiction here.

As far as contradiction is defined by the square of opposition, or even in other con-
texts, it involves some kind of affirmation and some kind of negation. Also, it involves
truth and falsehood. Both, broadly understood, are missing in the completely independent
understanding of contradictory properties.

First of all, a property, taken by itself as a power (a real entity not actual), is not affirmed
nor denied of anything. To take properties such as “to have spin up in the x direction” and
“to have spin down in the x direction” by themselves does not affirm nor deny anything.
To say “to have spin up in the x direction” is not even a statement, it is analogous to
speak “green” or “red hair.” To speak of a contradiction, it seems, one must have complete
statements, where properties or relations are attributed to something. That is, one must
have something like “spin up is measured in a given direction,” or “Mary is red haired,”
otherwise there will be no occasion for truth and falsehood, and consequently, no occasion
for a contradiction. So, the realm of the potential must also be a realm of attribution of
properties to something if contradiction is to enter in it. However, this idea of attribution
of properties seems to run counter the idea of a merely potential realm. On the other hand,
the idea of a contradiction seems to require that we speak about truth and falsehood.

Second, perhaps we can make clearer the idea of contradictory properties by analyzing
the formal approach to contradictions advanced by da Costa and de Ronde. In [6, p. 855]
it is provided for a paraconsistent set theory ZF1 in which superpositions are formalized.
Let us consider a system S which is in a superposition of states s1 and s2, both “classically
incompatible.” A predicate symbol K.S; s1/ is introduced in the language of ZF1 by da
Costa and de Ronde to represent the predicate that “S has the superposition predicate
associated with s1.” The same reading holds with obvious adaptation for K.S; s2/ and
similarly for :K.S; s1/ and :K.S; s2/, where : is a paraconsistent negation. Now, with
the help of these predicate symbols the Postulate of Contradiction is introduced: when S
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is in a superposition of s1 and s2, we have

K.S; s1/ ^ :K.S; s1/ ^K.S; s2/ ^ :K.S; s2/ :

This postulate somehow represents the situation in a superposition.
Now, let us apply this postulate to our former example of an electron (our system S) in

j "zi which in the x direction is in a superposition of the states j "xi and j #xi (our states
corresponding to s1 and s2). The Postulate of Contradiction now reads

K.S; j "xi/ ^ :K.S; j "xi/ ^K.S; j #xi/ ^:K.S; j #xi/ :

But as we have remarked in [1], the contradiction now comes from the postulation of
K.S; j "xi/ ^ :K.S; j "xi/, not from any relation between j "xih"x j and j #xih#x j.
Anyway, let us concede this point and accept that a superposition is inconsistent because
it involves things like K.S; j "xi/ ^ :K.S; j "xi/. There are some difficulties with this
move.

To begin with, this attribution of contradiction requires that there is a system S which
both has “spin up” and does not have “spin up.” This is clearly an actualist reading of
property attribution, in the sense that the system has actually the property and actually
does not have it. Indeed, this is a contradiction in the actual world. So, in this sense, the
Postulate violates the requirement that the properties in a superposition be only potential
in order to build a contradiction. This move clearly goes against the main motivation to
consider the properties of a superposition as potential.

But what if we count such an attribution as merely potential? We could try to read
K.S; s1/ as “the system S potentially has the predicate associated with s1.” Now, an am-
biguity enters the stage in the case of negation. If this suggestion is correct, when we try
to read :K.S; s1/ we have two options. The first one reads “the system S does not have
potentially the predicate associated with s1,” understood as meaning that it is not poten-
tially that the system has this property, it rather has it actually. The second reading is “it is
not the case that the system S has potentially the predicate associated with s1,” that is, it
is false that S is potentially s1. Both readings are problematic.

The first reading is obviously troublesome when we consider the Postulate of Contra-
diction: it says that S has the predicates associated with s1 and s2 both potentially and
actually. However, as the case of the electron illustrates, the system would have to be
both “spin up” and “spin down” in the potential realm and in the actual realm, which, at
least in the last case, is impossible. The second reading is also problematic for the ap-
proach. Indeed, since the motivation for approaching superpositions as contradictions was
by considering properties in a superposition simultaneously, there seems to be no reason
to consider them as holding simultaneously, even if potentially, and then deny that they
hold simultaneously, even if potentially. That is, the introduction of a negation read as
denying that the system has a given property potentially simply does not make sense if the
idea was to represent a superposition as attributing both properties to the system (even if
potentially). In this sense, the Postulate of Inconsistency does not seem to represent the
intuition behind the paraconsistency approach to superpositions.
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However, it may be the case that a paraconsistent set theory is just an inadequate for-
malism to capture the idea of a potential property, and a language involving an operator
whose role is to represent potential property attribution could help us better in this task.
Our next section shall investigate the prospects of this move.

4 Potentiality and Oppositions

What if the difficulties presented above come from distinct senses of “contradiction”?
Perhaps the contradiction as represented in the traditional square is not the same as a con-
tradiction for potential properties. In this section, we shall discuss a little more the idea of
a potential property by employing the square of opposition. Throughout this section, we
shall introduce a special operator ˙ to represent potentiality. In this sense, ˙p means that
“p is potential.” Now, of course we must deal with p as representing potential property
attribution to something, in general, to an already given system.

First of all, to establish the terminology, one could begin by distinguishing two distinct
ways the operator may represent potential property attribution that could, both, represent
the case of superposition. Let us suppose that s1 and s2 are in a superposition and let us
concede in using s1 and s2 ambiguously both for the states as for the statements that the
system is in the corresponding state. In a first reading of the situation, we could understand
this situation as represented by the formula ˙.s1 ^ s2/ or as .˙s1 ^˙s2/. We shall argue
that only the second reading is a sensible reading of a superposition, and that it is difficult
to understand any of both statements as contradictory.2

Consider first the second statement, .˙s1 ^ ˙s2/. If this is the intended meaning of
the claim that a superposition involves potentiality, then clearly there is no contradiction
in it. There is a simple analog in classical modal logic with the statement .˙p ^ ˙:p/.
Notice that it is possible for some proposition to be the case and it is possible for it not
to be the case, and this is different from the contradictory statement .˙p ^ :˙p/. It is
this last statement we would need to represent a contradiction, but this is clearly not the
case in a superposition, that is, we do not have .˙s1^:˙s1/. Indeed, no one would claim
that a state in a superposition stands for a potential property of the system and then try to
represent such thing by including the information that it also does not stand for a potential
property of the system. That move, we believe, renders the project of introducing potential
properties in the discussion senseless.

However, one may complain that this reading of potentiality is not the intended mean-
ing at all. This meaning, it could be argued, behaves too close to classical potentiality, it
does represent at best the relation of a potential property coming to actuality, and is not
the real quantum potentiality (see [8]), which is pure potentiality independently of actu-
ality. In this case, it is the first reading of ˙, as it appears in ˙.s1 ^ s2/ that represents
a superposition. If this is the case, then some further difficulties arise.

2 We have our doubts about the possibility of representing a superposition this way, in particular, in reading
the C sign of a superposition as a conjunction, but we shall do that for the purposes of argumentation in
this section (see also [1]).
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First of all, taken by itself, this does not represent a contradiction in the sense of the
square. Indeed, one needs two statements in order to have such a contradiction. Perhaps
the meaning of contradiction is different, as we have already suggested in the beginning
of this section, in the sense that the paraconsistentist wishes that this formula be a logical
contradiction, a formula that is always false (as defined in traditional logic textbooks). But
what is the use in quantum mechanics of a formula that is always false? Furthermore, is it
really the case that ˙.s1^s2/ is always false? Not really, in any standard version of normal
modal logic this formula would represent a contingent statement, while in nonnormal
modal logic it would be always true in the nonnormal worlds, for instance, due to the
peculiar semantical understanding of ˙ in those worlds (see [10]). So, to tackle this issue
seriously one must provide the axioms or rules for the operator ˙, which we have been
understanding only informally till now.

However, instead of advancing a formal analysis of the operator ˙, we shall now inves-
tigate different meanings it could have and see how well they fare in relation to the idea
that ˙.s1 ^ s2/ is a potential contradiction, or, a contradiction in the potential realm. To
fix our ideas, let us keep with the case of the electron whose state is a superposition of
j "xi and j #xi. So, if the idea is that ˙.s1 ^ s2/ represents a contradiction in the potential
realm, in our example that means that potentially our system has both spin up and spin
down. Obviously, no system has actually both spin up and spin down.

Now, this raises some important questions. First of all, what is the relation of the op-
erator ˙ with actuality? Let us introduce for simplicity an operator @ for actuality. One
could think at first that actuality and potentiality are mutually incompatible: when some-
thing is potential it is not actual, and when it is actual, then it is not potential. In this sense,
the statements ˙p and @p are contradictory, in the sense of the square. However, if this
is a sensible reading, notice that even though ˙(spin up and spin down), we never have
@(spin up and spin down). In this sense, the postulated contradiction in the potential realm
never gets actualized, it does not work for actual entities. That leaves the contradiction in
the potential realm unmotivated, and makes the reading of a superposition as (˙ spin up
and ˙ spin down) much more plausible, without the need for a contradiction, once again.
That is, since the alleged contradiction is not doing any physical and any metaphysical
work, we may plausibly leave it behind. Some people call it an application of Priest’s ra-
zor, the metaphysical principle according to which we should not populate the world with
contradictions beyond necessity (see [14] and [1] for a related discussion of this principle
in the same context).

For a second possibility, let us consider that ˙ and @ are not contradictory, but are
somehow compatible, in the sense that potential properties may also be actual and vice
versa. In this sense,˙p and@p represent rather subcontrary statements, not contradictory
statements. Indeed, according to this reading, any property must be either actual or poten-
tial (both cannot be false), but some properties can be both actual and potential (both can
be true). Our main difficulty with this interpretation is once again the lack of motivation
for introducing the claim that ˙( spin up and spin down) represents a contradiction and to
prefer this reading of a superposition instead of (˙ spin up and ˙ spin down), which is not
contradictory in any sense. Because even though some simple properties may be under-
stood as being both actual and potential, this is clearly not the case for quantum properties
such as spin up and spin down: that is, even if one accepts that potentially the system
can be both simultaneously, actually that never occurs. So, this reading would provide for



210 J. R. Becker Arenhart and D. Krause

a distinct understanding of the relation between ˙ and @ which saves the postulation of
a contradiction in potentiality, but it still does not help motivating the postulation.

Obviously, our proposal is not that both ˙p and @p could both be false, generating
a kind of limbo between actuality and potentiality, but rather that if one is going to concede
that some kind of potentiality must be introduced to account for superpositions (notice
the conditional), then perhaps the best way to understand that potentiality in relation to
superposition is by leaving ˙.s1 ^ s2/ behind and sticking to .˙s1 ^ ˙s2/. In this sense,
we can still grant that a superposition represents a state in which not both properties are
actual, that is, it is not the case that .@s1 _@s2/ must be necessarily true. The case is
left open whether one or the other obtains, but the issue depends on some interpretational
details that we shall present very briefly in the next section.

5 Conclusion: Contrariety Again

We hope we have made it clear that even though a paraconsistent approach to quantum
superpositions is viable and defensible, it is still hard to see it as well motivated by the the-
ory. Furthermore, there are some difficulties related with the very idea that a paraconsistent
logic deals with contradictions stricto sensu as well as with the idea that superpositions
are indeed contradictory (for the first difficulty, see again [3, 5] and for the second, see
Sect. 2 and [1]).

Now, to consider that a superposition is better understood as a contrariety still leaves
some issues open. It is a position compatible with very weak requirements on quantum
mechanics. Let us make the issue clearer. We take it as a rather reasonable assumption
that whenever a quantum system is in an eigenstate, then it really does have the prop-
erty associated with the corresponding eigenvalue. This is a Minimal Property Ascription
Condition, in a formulation taken from Muller and Saunders [13, p. 513]:

The minimal property attribution condition: If a system is in an eigenstate of an operator
with eigenvalue v, then the system has the qualitative property corresponding to such value
of the observable.

Notice that this puts a fairly weak condition for us to attribute properties to quantum sys-
tems: when in an eigenstate, we can surely say the system has the associated property. This
is only half of the famous eigenstate–eigenvalue link. But what happens when the system
is not in an eigenstate, when it is in a superposition? The condition is silent about that. One
can complement the minimal condition in a variety of ways, for instance, by claiming that
when not in an eigenstate the system does not have any of the properties associated with
the superposition. This option is compatible with the claim that states in a superposition
are contraries: both fail to be the case. Or instead of adopting this position, one can assume
another interpretation, such as modal interpretations, and hold that even in a superposition
one of the associated properties hold, even if not in an eigenstate (see [11]). Following this
second option, notice, the understanding of superpositions as contraries still holds: even
when one of the properties in a superposition holds, the other must not be the case.
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So, the idea that states in a superposition are contrary rather than contradictory are com-
patible with a variety of interpretational moves. It is compatible with assuming only the
minimal property attribution condition. The paraconsistent approach, on the other hand,
introduces a further interpretational postulate, a kind of converse for the minimal condition
according to which every superposition corresponds to properties attributed simultane-
ously to the system (see [1]):

Paraconsistent property attribution: When in a superposition, the system does have the
properties related to the vectors forming the superposition, and they are contradictory.

This move, obviously, closes some alternative interpretation which are also plausible
candidates. So, it seems, this is a further advantage of dealing with superpositions as con-
traries: one leaves open some important issues that are still hot issues of interpretation in
quantum mechanics, while the paraconsistent property attribution seems to put a priori
constraints on the theory and its future developments.
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Abstract This paper is a modest contribution to a universal logic approach to many-
valued semantic systems. The main focus is on the relation between such systems and
two-valued ones. The matter is discussed for usual many-valued semantic systems. These
turn out to exist for more logics than expected. A new type of many-valued semantics is
devised and its use has been illustrated. The discussion that involves truth functionality
and the syntactic rendering of truth-values leads to philosophical conclusions.
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Like the volume in which it appears, this paper is a tribute to Jean-Yves Béziau. We met
a long time ago on the side of those who fought then widespread prejudices on paracon-
sistency. Later, I admired his efforts for “universal logic” – papers, books, and the journal
Logica Universalis. My paper is a modest contribution toward universal logic with a strong
paraconsistent flavor.

1 Aim of This Chapter

The general aim of this chapter concerns the relation between two-valued and many-
valued semantic characterizations of Tarski logics – reflexive, transitive and monotonic
functions that map sets of closed formulas (the premises) to sets of closed formulas (the
consequences). Suszko [38] has shown that logics (in this sense of the term) have a two-
valued semantics.1 This casts doubts on the use of “many-valued” as an attribute of logics.
Moreover, it suggests that, at least for some logics, there must be an interesting relation be-
tween the values of their two-valued semantics and their many-valued semantics. We shall
see in Sect. 3 that this relation is usually of a specific kind. In the present chapter, three-
valued and four-valued logics will be introduced that are rather unusual. For example, the

1 Throughout this chapter, “semantics of a logic L” should be read as “characteristic L-semantics.”

The author is indebted to Joke Meheus for comments on a former draft.
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relation between their values and the values from the two-valued semantic characterization
will be very different from the similar relation for usual many-valued logics.

A two-valued semantic characterization of a (so-called) many-valued logic connects
the logical symbols to truth preservation, as Suszko’s proof underlines. We shall consider
several relations that connect the values of the two-valued characterization to values of
a many-valued characterization. Varying the relation brings one from the same two-valued
semantics to different many-valued semantics and to different interpretations.

A new such relation will be introduced in this chapter. Its use will be illustrated in
terms of a specific problem in adaptive logics, viz. the identification of flip–flop logics –
Sect. 6. Readers that have no specific insight in adaptive logics should not worry; the flip–
flop problem will be easy to understand. In comparison to CL (Classical Logic), some
Tarski logics allow for gluts or gaps – see Sect. 2 – with respect to certain logical symbols.
Delineating the precise points at which gluts or gaps originate offers important insights for
solving the flip–flop problem. As we shall see, the delineation also provides an revealing
interpretation of the nonextreme values.

Needless to say, the new type of many-valued logics are not meant to replace the usual
ones. Also, they are not superior in any sense of the term. They are helpful, however, to
reveal the presuppositions that lurk underneath widespread views on many-valued logics,
often confusing technical features with ontological ones. Rather central presuppositions
concern truth-functionality.

2 Preliminaries

A logic is defined over a language schema L, of which F is the set of formulas and W
is the set of closed formulas. I shall need some names for sets of schematic letters for
nonlogical symbols: S (sentential letters), Pr (predicates of each rank r 2 f1; 2; : : :g), C
(individual constants), and V (individual variables).

To handle quantifiers in the semantics, extend L to the pseudolanguage schema LO.
This is just like L except that the role of C is played by C [ O, in which O is a set of
pseudoconstants. Strictly speaking, we introduce a pseudolanguage schema O for each
modelM , requiring that O has at least the cardinality of the domain ofM .2 FO and WO
are the sets of formulas and closed formulas of LO, respectively.

A model is a tuple. One of the elements of the tuple is the domain D, which is
a nonempty set. Another element is the assignment v, which relates certain linguistic
entities to the other elements of the tuple. Next, for each model M , the meaning of the
logical symbols of L is fixed by vM , the valuation function determined byM .

In the usualCL-semantics, v relates the nonlogical symbols to the model. More specif-
ically vW S ! f0; 1g. In order to turn indeterministic two-valued semantic systems into
deterministic ones – see below – I shall generalize this to vWWO ! f0; 1g.3

2 The pseudolanguage schema LO is not a language schema whenever its set of symbols is nondenumer-
able. The resulting style of semantics – examples follow in the text – offers a means to quantify over
nondenumerable sets.
3 This move is independent of the reference to the pseudolanguage schema LO. To combine the move with
a different semantic style, restrict it to vWW ! f0; 1g.
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In the case of the CL-semantics, the pseudolanguage schemas LO extend the standard
predicative language schemaLs (which I do not describe here). ACL-modelM D hD; vi,
in which D is a nonempty set and v an assignment function, is an interpretation of WO.
The assignment function v is defined by4

C1 vWWO ! f0; 1g
C2 vWC [ O! D (whereD D fv.˛/ j ˛ 2 C [ Og)
C3 vWPr ! }.Dr/.

The valuation function determined byM , vM WWO ! f0; 1g, is defined as follows:
CS where A 2 S, vM .A/ D v.A/
CPr vM .�

r˛1; : : : ; ˛r / D 1 iff hv.˛1/; : : : ; v.˛r /i 2 v.�r /
CD vM .˛ D ˇ/ D 1 iff v.˛/ D v.ˇ/
C: vM .:A/ D 1 iff vM.A/ D 0
C� vM .A � B/ D 1 iff vM.A/ D 0 or vM.B/ D 1
C^ vM .A ^ B/ D 1 iff vM.A/ D 1 and vM.B/ D 1
C_ vM .A _ B/ D 1 iff vM.A/ D 1 or vM.B/ D 1
C
 vM .A 
 B/ D 1 iff vM.A/ D vM .B/
C8 vM .8˛A .˛// D 1 iff fvM.A.ˇ// j ˇ 2 C [ Og D f1g
C9 vM .9˛A.˛// D 1 iff 1 2 fvM.A.ˇ// j ˇ 2 C [ Og
M � A (CL-modelM verifies A) iff vM.A/ D 1.M is a model of � iffM � A for

all A 2 � . � �CL A iff all models M of � verify A. �CL A (A is valid) iff all models
verify A.

The metalanguage is classical and will be so in the rest of this chapter. All identities
that occur in the semantics outside the expression vM.˛ D ˇ/ are metalinguistic identities
and hence are classical.

I still need to illustrate the use of clause C1. The logic CLuN is like CL except in that
it allows for gluts with respect to Negation – in some CLuN-modelsM there are A such
that vM .A/ D vM .:A/ D 1.5 A semantics of CLuN is obtained from the CL-semantics
by replacing the equivalence C: by an implication

C:iu if vM .A/ D 0, then vM.:A/ D 1.
The resulting logic is paraconsistent (e.g., p;:p ²CLuN q),6 invalidates Replacement

of Equivalents (for example �CLuN p 
 .p _ p/ and �CLuN :p � :p but ²CLuN :p �
:.p _ p/), invalidates Replacement of Identicals (e.g., a D b;:Pa ²CLuN :Pb), and
invalidates many other rules validated byCL (e.g., Disjunctive Syllogism, Contraposition,
Modus Tollens, . . . ).

This CLuN-semantics is indeterministic. Indeed, consider a CLuN-model M D
hD; vi in which v.p/ D 1 and hence vM .p/ D 1. In view of C:iu, both vM .:p/ D 0 and
4 The restriction in C2 ensures that hD; vi is only aCL-model if every element ofD is named by a constant
or pseudoconstant. In C3, }.Dr / is the power set of the r th Cartesian product ofD.
5 The indeterministic propositional semantics was first formulated in [8]; the deterministic predicative
semantics in [10].
6 Technically speaking, a logic L is paraconsistent iff A;:A `L B does not hold generally. Interesting
discussions of the underlying philosophical questions are available, for example, by Béziau [18, 19].
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vM .:p/ D 1 are possible. To be more precise, the CLuN-semantics is bound to contain
a copy of this M in which vM .:p/ D 0 and another copy in which vM .:p/ D 1. Both
copies of M need to belong to the CLuN-semantics because a semantics is required to
exhaust the logical possibilities – in this case CLuN-possibilities.

That a semantics is indeterministic is somewhat annoying. Models are supposed to
exhaust the logical possibilities. That variants have to be taken into account – actually
a nondenumerable set of variants for each model – introduces a complication that is not
matched by any advantage.7 Fortunately, it is possible to devise a deterministic semantics
for CLuN [10] and the result was later generalized to other gluts and gaps – the best
survey paper on the matter [15] is only electronically published at this moment. In order
to obtain the deterministic CLuN-semantics one replaces C:iu by

C:u vM .:A/ D 1 iff vM.A/ D 0 or v.:A/ D 1 .
The first disjunct guarantees that Excluded Middle holds, the second disjunct intro-

duces gluts for some A.
This approach is easily generalized, first to gaps with respect to negation and to both

gluts and gaps with respect to negation, and next to gluts and gaps with respect to other
logical symbols – details are in another paper [15]. Just to give you the flavour, the logic
CLaN allows for gaps (not gluts) with respect to negation. Its indeterministic semantics
requires

C:ia if vM .A/ D 1, then vM .:A/ D 0
and its deterministic semantics is delivered by

C:a vM .:A/ D 1 iff vM.A/ D 0 and v.:A/ D 1 .
CLoN allows for both gaps and gluts with respect to negation. Its indeterministic se-

mantics is obtained by dropping the negation clause altogether. Its deterministic semantics
is obtained by

C:o vM .:A/ D v.:A/ .
Restoring Replacement of Identicals in CLuN is easy. Given a CLuN-model M , de-

fine, for each A 2WO, an equivalence class �A�: (i) A 2 �A� and (ii) if ˛; ˇ 2 C [ O, A
is B.˛/, and v.ˇ/ D v.˛/, then B.ˇ/ 2 �A�. Note that �A� D fAg if A 2 S. Next, replace
C:u by
C:uR vM.:A/ D 1 iff vM.A/ D 0 or v.:B/ D 1 for a B 2 �A� .

and analogously for C:a and C:o. Note that the semantics characterizes the same logic if
“for a B 2 �A�” is replaced by “for all B 2 �A�” – for every model of the one semantics
there is a model of the other semantics that verifies exactly the same members of W –
recall that verification depends on vM and not on v.

The present approach to gluts and gaps leads to rather basic logics. Thus, the proposi-
tional fragment of CLuN was shown [32] to be the intersection of all propositional logics

7 Still, indeterministic semantic systems, have been around at least since the 1970s and led to interesting
studies, for example, in work by Arnon Avron and associates [5–7].
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that allow for negation gluts but do not allow for any other gluts nor for any gaps. Ob-
viously, some logics extend CLuN and are nevertheless paraconsistent, and similarly for
other gluts and for gaps. A very popular paraconsistent extension of CLuN is a logic
that I prefer to call CLuNs because its propositional version was first proposed by Kurt
Schütte [36].8 The idea is that de Morgan properties and all similar negation-reducing
properties are restored. I consider at once a version that validates Replacement of Iden-
ticals. Let Fa

O be the set of atomic (or primitive) members of FO – those not containing
any logical symbols other than identity – and W a

O the set of atomic members of WO. The
deterministic CLuNs-semantics is obtained by replacing C: in the CL-semantics by the
following clauses:

C:us where A 2W a
O, vM .:A/ D 1 iff vM .A/ D 0 or v.:B/ D 1 for a B 2 �A�

C:: vM.::A/ D vM.A/
C:� vM.:.A � B// D vM .A ^ :B/
C:^ vM.:.A ^ B// D vM .:A _ :B/
C:_ vM.:.A _ B// D vM .:A ^ :B/
C:
 vM.:.A 
 B// D vM ..A _B/ ^ .:A _ :B//
C:8 vM.:8˛A.˛// D vM .9˛:A.˛//
C:9 vM.:9˛A.˛// D vM.8˛:A.˛//.

The CLuNs-semantics enables me to illustrate a method to restore Replacement of
Identicals that does not refer to equivalence sets. Let v assign to predicates a couple of
extensions rather than a single one: vWPr ! h˙1;˙2i with ˙1 [ ˙2 D Dr . Identity
is handled as a binary predicate with the special characteristic that ˙1 D fho; oi j o 2
Dg. For all predicates, including identity, one defines vC.�r/ D ˙1 and v�.�r/ D ˙2.
Finally, one replaces v.�r/ by vC.�r/ in CPr , and one replaces C:us by two clauses:

� where A 2 S, vM .:A/ D 1 iff vM.A/ D 0 or v.:A/ D 1
� vM.:�r˛1 : : : ˛r/ D 1 iff hv.˛1/; : : : ; v.˛r /i 2 v�.�r/.
This may be called the ˙-semantics of CLuNs.9

The words “glut” and “gap” were used rather intuitively until now. Actually, these
words were used with several meanings in the literature. For example, Georg Henrik von
Wright [40] says that there is an overlap (rather than glut) when a formula is true together
with its negation and that there is a gap if a formula is false together with its negation. In
the same place, von Wright calls a formula false iff its negation is true. So he also says
that there is a glut (or overlap) if a formula is both true and false, and a gap if it is neither.

I shall use the terms differently. I already mentioned that the metalanguage of this
chapter is fully classical. Unlike von Wright, I shall consider “true” and “false” as exhaus-
tive and exclusive within a classical metalanguage. Finally, “glut” and “gap” will be used
in a way that is directly contingent on the clauses of the CL-semantics. Any formula in
WO�W a

O has a specific logical form F, determined by its central logical term �. The CL-
semantics contains a specific clause for F. This clause may be seen as the conjunction of

8 CLuNs is apparently the most popular paraconsistent logic. It is known under a mutiplicity of names.
Further useful references to studies of CLuNs and of its fragments are [2–4, 8, 16, 22, 24–29, 33, 34, 37].
Proofs of some results are in [13, 16].
9 Another version of the approach, requiring only a single clause, is illustrated in a paper under review [39].
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two implications, one specifying when vM.F/ D 1 and one specifying when vM .F/ D 0.
Consider a model M of a logic L. If in M the condition is fulfilled for vM .A/ D 1 in
CL-models but vM .A/ D 0, then this situation is said to cause a �-gap. If inM the con-
dition is fulfilled for vM.A/ D 0 in CL-models but vM .A/ D 1, then this is said to cause
a �-glut. Thus that vM.p_q/ D vM .:r/ D 1 and vM ..p_q/^:r/ D 0 causes a ^-gap.
Similarly, that 1 … fvM.A.ˇ// j ˇ 2 C [ Og and vM .9˛A.˛// D 1 causes a 9-glut.

Let us make this more precise. Define, for each A 2WO, the set of direct subformulas
of A, dsub.A/, as follows: (i) dsub.:A/ D fAg, (ii) where � 2 f_;^;�;
g, dsub.A �
B/ D fA;Bg, and (iii) where ˛ 2 V and � 2 f8; 9g, dsub.�˛A.˛// D fA.ˇ/ j ˇ 2
C [ Og. If A … W a

O, then, in the CL-semantics, vM.A/ is a function of the valuation
values of the members of dsub.A/. In a semantics of a different logic, vM .A/ will be said
to be a glut or a gap if it departs from that function. Consider a CLuN-model in which
vM .p/ D 1, vM .:p/ D 1 and vM.::p/ D 0. The former two cause a :-glut. The
combination of the first and third do not cause a gap, notwithstanding the fact that, within
the CL-semantics, vM.::A/ D 1 whenever vM .A/ D 1.

This seems the best point to mention a few simple technicalities. The set of subformulas
of A 2 WO, sub.A/ is the smallest set such that (i) dsub.A/ � sub.A/ and (ii) if B 2
sub.A/, then sub.B/ � sub.A/. Note that A … sub.A/.

We shall need the set of first subformulas of A 2WO, fsub.A/. This is the smallest set
such that (i) A 2 fsub.:A/, (ii) where � 2 f_;^;�;
g, A 2 fsub.A � B/, (iii) where
˛ 2 V and � 2 f8; 9g, A.a/ 2 fsub.�˛A.˛//, and (iv) if A 2 fsub.B/, then fsub.A/ �
fsub.B/.10 The crucial distinction with the set sub.A/ is in (ii) and (iii). We actually need
fsub.A/ to define the set of first superformulas of A, viz. fsup.A/ D fB 2 WO j A 2
fsub.B/g.

Another concept we shall need is that of a (finite) pseudopartition. f˙1; : : : ; ˙ng is
a pseudopartition of ˙ iff (i) ˙i \ j̇ D ; for all different i; j 2 f1; : : : ; ng and
(ii)

Sf˙1; : : : ; ˙ng D ˙ (but it is not required that the members of the pseudopartition
are nonempty).

3 The Usual Many-Valued Approach

The CL-semantics is deterministic: the valuation value of every formula is determined
by the model; in the presence of LO it is determined by the assignment values of the
nonlogical symbols that occur in the formula and its subformulas. The CL-semantics is
also recursive: there is a complexity function such that, for every nonatomic formula A 2
WO, vM.A/ depends only on valuation values of formulas that are less complex than A.
The CL-semantics is also truth-functional: there is a function that connects the valuation
value of every nonatomic formula A 2 WO to the valuation values of subformulas of A;
only the value of atomic formulas is directly determined by assignment values.

10 In (iii), a is the alphabetically first individual constant, which is used here as a metalinguistic name of
itself.
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A presupposition of this type of semantics is that a distinction can be made between two
things. On the one hand, there is the model itself:M D hD; vi. This represents a state of
the world. All nonlogical symbols receive their meaning here – the assignment assures that
they do. On the other hand, there is the realm of the logical symbols. These are required to
formulate statements about the world. Indeed, by merely concatenating atomic statements
one cannot express that an atomic statement is false or that one of two atomic statements
is true but not necessarily both. Still, truth-functionality makes complex statements para-
sitic on atomic statements in that the valuation values of the complex statements are fully
determined by the valuation values of atomic statements.

To be sure, a semantics is defined with respect to a language schema. In this sense, its
models represent at best structural states of the world. In order to transform the models
into representations of actual states of the world, one needs to replace the language schema
by a language that is covered by the schema. So a semantics involves a hypothesis about
the structure of the language in which the world, or some parts or aspects of it, may
be adequately described. Needless to say, adequacy comes in degrees and the estimated
adequacy may be poor due to the present state of our knowledge.11

Whenmany-valued logics came around, new valuation values were added next to “true”
and “false.” There were two intuitions behind the new values. One idea was that some sen-
tences do not have a truth-value, but are indeterminate in one of several senses. According
to the other idea there are further truth-values, which are sometimes seen as expressing
degrees of partial truth. The logical symbols of those logics were still truth-functions,
namely, with respect to the extended set of valuation values. Apparently, the architects of
many-valued logics first had the idea of additional “truth-values” and next devised truth-
functional operators in terms of them. They apparently did not imagine, and possibly could
not imagine, that a logical symbol would not be truth-functional.12

Within a many-valued semantics, semantic consequence is defined in terms of desig-
nated and nondesignated values. This shows the way from the many-valued semantics
to the two-valued one. It is instructive to consider also the opposite road. This road was
explored a long time ago for the propositional case, among others by me [9], and the
generalization to the predicative level is obvious. The idea is that bivalent values of sev-
eral formulas are “melted together” into a many-valued value of a single formula. The
approach works fine for some paraconsistent logics, for example, for CLuNs. Consider,
for any A 2 WO, the couple hvM .A/; vM .:A/i in the above two-valued semantics. The
possible couples are h1; 0i, h1; 1i, and h0; 1i. These may be handled as three valuation
values and, if they are so handled, it is convenient to rename them to T , I , and F , which
correspond to “consistently true,” “inconsistent” and “consistently false” respectively. The
resulting three-valued semantics is truth-functional, as I show below. The matter is utterly
simple for the propositional case. For predicative models, the easiest approach requires
that the assignment is redefined, for example, as in the next paragraph.

11 Carnap [20, 21] clearly saw the linguistic relativity of the semantic enterprise. Apparently, many have
forgotten his insight and seem to presume that they can talk about states of the world in an absolute way.
12 I do not intend to refer, for example, to a worlds semantics but rather to a nontruth-functional semantics
such as the ones from Sect. 2, the indeterministic as well as the deterministic ones.
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In a three-valued CLuNs-model M D hD;V i, defined over the language LO, the
domain D is a set and the assignment V has the following four properties. (i) V W S !
fT; I; F g.13 (ii) V WC [ O ! D (where D D fV.˛/ j ˛ 2 C [ Og). (iii) V WPr !
h˙1;˙2;˙3i such that f˙1;˙2;˙3g is a pseudopartition of }.Dr/. To simplify the no-
tation, consider V as composed in this case of the three functions V T , V I , and V F , with
V T .�r/ D ˙1, V I .�r/ D ˙2, and V F .�r/ D ˙3.14 (iv) Identity is handled as a binary
predicate with the special characteristic that V T .D/[ V I .D/ D fho; oi j o 2 Dg.

The valuation function VM WWO ! fT; I; F g is defined as follows:
CS where A 2 S, VM .A/ D V.A/
CPr for X 2 fT; I; F g, VM.�r˛1 : : : ˛r / D X iff hV.˛1/; : : : ; V .˛r/i 2 V X.�r/

Ccon : � T I F ^ T I F

T F T T I F T T I F

I I I T I F I I I F

F T F T T T F F F F

C8 VM ..8˛/A.˛// D T iff VM.A.ˇ// D T for all ˇ 2 C [ O
VM ..8˛/A.˛// D F iff VM .A.ˇ// D F for at least one ˇ 2 C [ O
VM ..8˛/A.˛// D I otherwise.

DefineM � A (a three-valued CLuNs-modelM verifies A) iff VM.A/ 2 fT; I g; and
so on.

The other logical symbols are defined explicitly: A_B Ddf :.:A^:B/, A 
 B Ddf

.A � B/ ^ .B � A/, and .9˛/A.˛/ Ddf :.8˛/:A.˛/.
This three-valued CLuNs-semantics is equivalent to the two-valued CLuNs-semantics

from Sect. 2 in that their semantic consequence relations coincide – this is easily shown
by slightly modifying the proof of Theorem 1 in [16].

So this is the usual approach to many-valued logics. There is a n-tuple of func-
tions hf1; : : : ; fni such that fi WWO ! WO for each i ; the n-tuple of bivalent values
hvM.f1.A//; : : : ; vM .fn.A//i functions as the many-valued value VM .A/. Expressed
somewhat crudely, the (bivalent) values of formulas containing A are pushed into the
(many-valued) value of A.

The attractiveness of the approach seems related to the fact that the many-valued valua-
tion values appear to be a kind of truth-values that are more sophisticated than the bivalent
valuation values and that are introduced for sound philosophical reasons. The view on
logical symbols is simply the traditional view: they are truth functions. They differ from
the classical logical symbols as a result of the modified set of valuation values.

Let us proceed more carefully. We already knew that a logic that has a many-valued
semantics also has a two-valued semantics. It seems obvious that any many-valued se-
mantics can be described as obtained by pushing the bivalent values of a tuple of formulas
into the many-valued value of an atomic formula. From a technical point of view, the
two semantics are on a par. Still, there is the philosophical question which semantics is
ontologically correct. Are there many truth-values or are these merely tuples of binary

13 There is no need to assign a three-valued assignment value to all members of WO .
14 The three functions determine for which r-tuples the predicate is true, inconsistent, and false respec-
tively.
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truth-values? Consider again CLuNs. Is the truth of :A a consequence of the fact that A
has the truth-value I or is saying that A has the value I merely a statement summarizing
that A and :A are both true?

The truth-values of the bivalent CL-semantics may be seen as “expressed” within the
standard CL-language byA and :A, respectively. Similarly, one may (explicitly) define n
logical symbols V1; : : : ;Vn within the language of Łukasiewicz’s n-valued logics Łn such
that, for all i 2 f1; : : : ; ng,M � ViA iff vM.A/ D i – see [35, 39]. It is not possible to
do so for CLuNs; a definable symbol does so correspond to the semantic value I , but no
definable logical symbol so corresponds to T or to F .

Some will see this as an argument to consider the truth-values of the two-valued CL-
semantics and those of the n-valuedŁn-semantics as real truth-values, at least with respect
to the presuppositions of those logics, but will not consider the valuation values of the
three-valuedCLuNs-semantics as real truth-values.15 They might argue that, if statements
may have three different truth-values, then the logical symbols of your language should
enable you to express, for each of the truth-values, that it pertains to a statement. Whether
you may get to know the actual truth-value of a statement is altogether a different matter.16

Others will be less demanding and consider the fact that a logic has an adequate many-
valued semantics in which all its logical symbols are truth-functions as a sufficient reason
to consider those values as truth-values. The view apparently presupposes that some logics
do not have such a semantics, but is that correct?

It seems unlikely a priori that CLuN has an adequate semantics in which all logical
symbols are truth-functions. Apart from some transparent exceptions, such as .p^:p/^
:.p ^:p/ `CLuN p ^:p, inconsistencies seems to be independent of each other within
CLuN. Consider, for example, the set � D f:p;:.p ^ p/;:.p ^ .p ^ p//;:.p ^
.p ^ .p ^ p///; : : :g. Each member of � is CL-equivalent to :p. However, for every
�0  �, there is a CLuN-model M such that M � A for all A 2 fpg [ �0, whereas
M ± A for all A 2 � ��0. And there is more. Let Wp comprise the formulas in which
no other nonlogical term than p occurs. For every �0 � �, infinitely many members
of Wp are verified by some CLuN-models of fpg [ �0 and falsified by other CLuN-
models of fpg [ �0. Here are some examples of members of Wp for which this holds:
:B for any B 2 �0; :..p ^ p/ ^ p/ and all similar results of commuting two different
conjuncts in a conjunctive subformula of a B 2 �0; all :.p ^ B/ 2 Wp � �0 such that
the considered models verify B ; and so on. Notwithstanding all this, all logical symbols
are truth-functions in an infinite-valued CLuN-semantics. This is shown in Sect. 4.

If even the negation of CLuN is a truth-function in a many-valued semantics, one won-
ders whether being a truth-functional logic (with respect to some many-valued semantics)
is a distinctive feature and, if it were distinctive, whether there is anything interesting
about it. According to a truth-functional logic, the truth-value of every formula is fully
determined by the truth-value of its atomic subformulas. This hardly means anything if it

15 Similarly for the valuation values of the three-valued LP-semantics [34] and for the valuation values of
four-valued semantics for relevant logics [1].
16 As was already pointed out by Viktor Kraft [31], nothing warrants that the syntactically atomic sen-
tences of a language are also epistemologically atomic.
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is realized by coding the binary valuation value of every complex formula into the many-
valued valuation value of an atomic formula.

Independent of philosophical worries concerning truth-functionality, one may wonder
whether many-valued logics may not be cast in a way that is different from the usual
approach. I shall be looking for an unusual mould in Sect. 5.

4 The Case of the Logic CLuN

In this section, it is shown that even CLuN is a many-valued logic on the usual many-
valued approach. It seems instructive to describe the way in which this result was obtained,
both in order to make the argument transparent and in order to illustrate the way in which
the result may be extended to other logics.

The usual approach requires that all information required to fix the valuation value
of a formula A is contained in the valuation value of the atomic subformulas of A. It
follows that infinitely many bits of information have to be contained in a single valua-
tion value. Recall indeed that the following holds for the two-valued CLuN-semantics: if
vM .p/ D 1, then vM.:p/ may be 1 or 0, depending on the value of v.:p/; if vM.p/ D
vM .:p/ D 1, then the same applies to vM .::p/; and so on. So the information contained
in v.p/; v.:p/; v.::p/; : : : in a two-valued CLuN-model needs to be compressed in the
valuation value of p within the corresponding many-valued CLuN-model – I shall write
this valuation value as VM .p/.17 The situation is even more complex. If vM.p ^ q/ D 1,
then vM .:.p^q//may be 1 as well as 0, depending on the value of v.:.p^q//, and this
information too must be contained in VM .p/ or in VM .q/. Note also that, in the considered
case, v.:.p ^ q// and v.:.p ^ r// are not only independent of each other, but also of
v.:p/, v.:q/, and v.:r/.

So, if the approach can be applied to CLuN, then the valuation value VM.A/ con-
tains all information contained in an infinite list hvM.A/; v.B1/; v.B2/; : : :i in which
B1;B2; : : : are formulas of which A is a subformula. In view of this, it seems fitting
to identify VM.A/ with an infinite sequence of 0s and 1s. In order for the approach to be
viable, several difficulties have to be resolved.

Consider VM .:.p^q//. This should be a truth-function of VM .p/ and of VM.q/. So, in
terms of the two-valued semantics, the information on v.:.p^q// needs to be contained in
VM.p/ or VM.q/. For every binary logical term �, I shall store the information on v.:.A�
B// in VM.A/. This is obviously a conventional matter and there are several alternatives.
The information on the two-valued assignment value v.:8xPx/ should also be contained
within the many-valued valuation value of an atomic formula. I shall store it in VM .Pa/.
In view of these conventions, I defined (at the end of Sect. 2), for every A 2 WO, the set
fsub.A/ of “first subformulas” of A and the set fsup.A/ of “first superformulas” of A. For

17 In the text I use the name M for both models although they are not only different but even different in
kind. Where it matters, I shall obviously introduce different names.
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every B 2 fsup.A/, v.B/ (from the two-valued model) will be stored in VM .A/ (from the
many-valued model).18

Fact 1 For all A 2WO, fsub.A/ is finite and decidable.

Fact 2 For all A 2WO, there is exactly one B 2 fsub.A/ \W a
O.

Fact 3 If A;B 2W a
O are different, then fsup.A/ \ fsup.B/ D ;.

Fact 4 If A 2 fsub.B/, then fsup.B/ � fsup.A/.

Fact 5 If A … fsub.B/ and B … fsub.A/, then fsup.A/ \ fsup.B/ D ;.
So the present state of our plot is to identify a many-valued valuation value with

hvM.A/; v.B1/; v.B2/; : : :i, where hB1;B2; : : :i is an ordering of fsup.A/. However,
notwithstanding Fact 3, fsup.A/ is uncountable if LO is uncountable and this is al-
ways the case if model M is uncountable. In that case, however, there is no list
hvM.A/; v.B1/; v.B2/; : : :i. Fortunately, the Löwenheim–Skolem theorem enables one to
restrict a semantics to its countable models. So let us do this and consider only countable
pseudolanguage schemas LO in the sequel of the present section.19

Fact 6 For all A 2WO, fsup.A/ is infinite, enumerable, and decidable.

Consider a Gödel numbering and let G.A/ be the Gödel number of A. Let LA D
hB1;B2; : : :i be such that (i) fB1;B2; : : :g D fsup.A/ and (ii) i � j iff G.Bi / � G.Bj /.
Where B 2 fsup.A/, let #A.B/ be the place of B in LA – so if LA D hB1;B2; : : :i, then
#A.Bi/ D i .

Fact 7 For all A 2WO, LA is a recursive list.

Fact 8 If B 2 fsup.A/, then all members of LB occur in the same order in LA.

Fact 9 If B 2 fsup.A/, then there is a computable function f such that LB D f .LA/.
Let S, the set of valuation values, be the set of infinite sequences of 0s and 1s; let

s be a variable for members of S; let SD D fhd0; d1; : : :i 2 S j d0 D 1g (the set of
designated values). Where VM.A/ D hd0; d1; : : :i, define VM .A/ŒA� D d0 and define, for
all B 2 fsup.A/, VM.A/ŒB� D d#A.B/.

20

18 If B does not have the form :C , then v.B/ does not play any role within the CLuN-semantics. So
one might just as well decide not to store the value of v.B/ in VM .A/ for such B 2 fsup.A/. While
the disadvantage of the approach followed in the text is that some digits of VM .A/ are irrelevant, the
advantage is that the approach is more general, as is the case for the assignment function of the two-
valued semantics itself. That the advantage outweighs the disadvantage will be shown in Sect. 5.
19 These are actually language schemas. Still LO need to be different from L in order to allow for models
that are not !-complete.
20 So, if LA D hB1; B2; : : :i and VM .A/ D h1011 : : :i, then VM .A/ contains the information that in the
corresponding two-valued model M 0 holds: vM 0 .A/ D 1, v.B1/ D 0, v.B2/ D 1, v.B3/ D 1, and so
on.
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In a S-valued CLuN-model M D hD;V i (defined over the countable pseudolan-
guage schema LO), the domain D is a countable set and the assignment V has the
following four properties. (i) V W S ! S. (ii) V WC [ O ! D (where D D fV.˛/ j
˛ 2 C [ Og). (iii) Where S D fs1; s2; : : :g, V WPr ! h˙s1 ; ˙s2 ; : : :i such that
(a) f˙s1 ; ˙s2 ; : : :g is a pseudopartition of }..C [ O/r / and (b) if V.ˇ/ D V.˛i / (1 � i �
r), h˛1; : : : ; ˛i�1; ˛i ; ˛iC1; : : : ; ˛ri 2 ˙sj , and h˛1; : : : ; ˛i�1; ˇ; ˛iC1; : : : ; ˛ri 2 ˙sk ,
then sj ; sk 2 SD or sj ; sk 2 S � SD . To simplify the notation, consider V as com-
posed in this case of uncountably many functions V s1

, V s2
, . . . , with V s1

.�r/ D ˙s1 ,
V s2

.�r/ D ˙s2 , and so on. (iv) Identity is handled as a binary predicate with the special
characteristic that

SfV s.D/ j s 2 SDg D fh˛; ˇi j ˛; ˇ 2 C [ OIV.˛/ D V.ˇ/g. The
valuation function VM WWO ! S is defined as follows:

CS where A 2 S, VM .A/ D V.A/
CPr VM .�

r˛1 : : : ˛r / D s iff h˛1; : : : ; ˛ri 2 V s.�r/

C: Where L:A D hC1; C 2; : : :i, VM .:A/ D hmax.1 � VM.A/ŒA�; VM .A/Œ:A�/;
VM .A/ŒC

1�; VM .A/ŒC
2�; : : :i.

C^ Where LA^B D hC1; C 2; : : :i, VM.A ^ B/ D hmin.VM .A/ŒA�; VM .B/ŒB�/;
VM .A/ŒC

1�; VM .A/ŒC
2�; : : :i.

C_ Where LA_B D hC1; C 2; : : :i, VM.A _ B/ D hmax.VM .A/ŒA�; VM .B/ŒB�/;
VM .A/ŒC

1�; VM .A/ŒC
2�; : : :i.

C� Where LA�B D hC1; C 2; : : :i, VM.A � B/ D hmax.1 � VM .A/ŒA�; VM .B/ŒB�/;
VM .A/ŒC

1�; VM .A/ŒC
2�; : : :i.

C
 Where LA�B D hC1; C 2; : : :i, VM.A 
 B/ D hmin.max.1 � VM.A/ŒA�;

VM .B/ŒB�/;max.1 � VM.B/ŒB�; VM.A/ŒA�//; VM .A/ŒC 1�; VM .A/ŒC
2�; : : :i.

C8 Where L8˛A.˛/ D hC1; C 2; : : :i, VM.8˛A.˛// D hminfVM.A.ˇ// j ˇ 2 C [ Og;
VM .A.a//ŒC

1�; VM .A.a//ŒC
2�; : : :i.

C9 Where L9˛A.˛/ D hC1; C 2; : : :i, VM.9˛A.˛// D hmaxfVM.A.ˇ// j ˇ 2 C [ Og,
VM .A.a//ŒC

1�; VM .A.a//ŒC
2�; : : :i.

DefineM � A (a S-valued CLuN-modelM verifies A) iff VM .A/ 2 SD; and so on.
To avoid confusion, let � �S

CLuN A denote that A is a CLuN-semantic consequence of �
on the S-valued semantics.

Fact 10 The S-valued CLuN-semantics is recursive.

Fact 11 All logical symbols are truth-functions in theS-valued CLuN-semantics.

Lemma 4.1 If M D hD; vi is a two-valued CLuN-model, then there is a S-valued
CLuN-modelM 0 D hD;V i such that, for all A 2WO, VM 0.A/ŒA� D vM .A/ and, where
LA D hB1;B2; : : :i, VM 0.A/ŒBi � D v.Bi / for all i 2 f1; 2; : : :g.

Proof FromM constructM 0 as follows. For all ˛ 2 C [O, V.˛/ D v.˛/. If A 2 S and
LA D hB1;B2; : : :i then V.A/ D hvM.A/; v.B1/; v.B2/; : : :i. For all ˛1; : : : ; ˛r 2 C [ O,
h˛1; : : : ; ˛ri 2 V s.�r/ iff, where L�r˛1:::˛r

D hB1;B2; : : :i, s D hvM.�r˛1 : : : ˛r /,
v.B1/; v.B2/; : : :i.
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From this, one establishes the lemma forA 2W a
O. With that as a basis, one establishes

the lemma by an obvious induction. �

Lemma 4.2 If M 0 D hD;V i is a S-valued CLuN-model, then there is a two-valued
CLuN-modelM D hD; vi such that, for all A 2 WO, vM.A/ D VM 0.A/ŒA� and, where
LA D hB1;B2; : : :i, v.Bi / D VM 0.A/ŒBi � for all i 2 f1; 2; : : :g.

Proof Obvious in view of the converse of the transformation described in the proof of
Lemma 4.1. �

Theorem 4.3 � �CLuN A iff � �S
CLuN A.

Proof ) Suppose that � ²S
CLuN A. So there is aS-valued CLuN-modelM that verifies

all members of � and falsifies A. By the transformation described in the proof of Lemma
4.1, there is a two-valued CLuN-modelM 0 that verifies exactly the same formulas asM .
( Suppose that � ²CLuN A. In view of the relevant Löwenheim–Skolem theorem,

a countable two-valuedCLuN-modelM verifies all members of � and falsifies A. By the
transformation described in the proof of Lemma 4.2, there is a S-valued CLuN-model
M 0 that verifies exactly the same formulas asM . �

LetT be the set of all finite sequences of 0s and 1s. The logic CLuN is compact. This
enables us to replace theS-valued semantics by a semantics that takes its values fromT .

As a first step, we represent some infinite sequences of 0s and 1s by finite sequences.
This is easy: remove trailing ones from the sequences, reducing for example the infinite se-
quence h110100011 : : :i, in which the ellipsis represents ones only, by the finite sequence
h1101000i. Of course, the first member of a sequence is always retained. So the finite
sequences are h0i; h1i; h00i; h10i; h000i; h010i; h100i; h110i; : : :, all but one of which end
with a 0. The remaining infinite sequences are those in which there is no last 0. We simply
remove them.

The set T of valuation values is the set of sequences hd0; : : : ; dni such that (i) n 	 0,
(ii) d0; : : : ; dn 2 f0; 1g, and (iii) dn D 0 if n > 0. Let t be a variable for members of T .
Let TD D fhd0; : : : ; dni 2 T j d0 D 1g (the set of designated values). Where VM.A/ D
hd0; : : : ; dni, define VM .A/ŒA� D d0 and define, for all B 2 fsup.A/, VM.A/ŒB� D d#A.B/

if #A.B/ � n and VM.A/ŒB� D 1 otherwise.21 Where hd0; : : : ; dni is a sequence of 0s and
1s, let hd0; : : : ; dn Bi be the result of removing trailing 1s as long as the sequence counts
more than one digit. So hd0; : : : ; dn Bi 2 T .

Fact 12 T is denumerable (infinite and enumerable) and decidable.

After these preliminaries, let us turn to the semantics. In a T -valued CLuN-model
M D hD;V i (defined over the countable pseudolanguage schema LO), the domain D is
a countable set and the assignment V has the following four properties. (i) V W S ! T .
(ii) V WC [ O ! D (where D D fV.˛/ j ˛ 2 C [ Og). (iii) Where T D ft1; t2; : : :g,
21 So, if LA D hB1; B2; : : :i and VM .A/ D h1110i, then VM .A/ contains the information that in the
corresponding two-valued model M 0 holds: vM 0 .A/ D 1, v.B1/ D 1, v.B2/ D 1, v.B3/ D 0, and
v.Bi / D 1 whenever i > 3; similarly, VM .A/ D h0i then contains the information that in the corre-
sponding two-valued modelM 0 holds: vM 0 .A/ D 0 and v.Bi / D 1 for all i 2 f1; 2; : : :g.



226 D. Batens

V WPr ! h˙t1; ˙t2 ; : : :i such that (a) f˙t1; ˙t2 ; : : :g is a pseudopartition of }.Dr/

and (b) if V.ˇ/ D V.˛i / (1 � i � r), h˛1; : : : ; ˛i�1; ˛i ; ˛iC1; : : : ; ˛ri 2 ˙tj , and
h˛1; : : : ; ˛i�1; ˇ; ˛iC1; : : : ; ˛ri 2 ˙tk , then tj ; tk 2 TD or tj ; tk 2 T �TD . To simplify
the notation, consider V as composed in this case of the denumerably many functions
V t1

, V t2
, . . . , with V t1

.�r/ D ˙t1 , V t2
.�r/ D ˙t2 , and so on. (iv) Identity is handled

as a binary predicate with the special characteristic that
SfV t.D/ j t 2 TDg D fh˛; ˇi j

˛; ˇ 2 C [ OIV.˛/ D V.ˇ/g.
In the clauses below, let VM .A/ count nA members and let VM.A.a// count nA.a/ mem-

bers. The valuation function VM WWO ! T is defined as follows:

CS where A 2 S, VM .A/ D V.A/
CPr VM .�

r˛1 : : : ˛r / D t iff h˛1; : : : ; ˛ri 2 V t.�r/

C: Where L:A D hC1; C 2; : : :i, VM .:A/ D hmax.1 � VM.A/ŒA�; VM .A/Œ:A�/;
VM .A/ŒC

1�; : : : ; VM .A/ŒC
nA � Bi.

C^ Where LA^B D hC1; C 2; : : :i, VM .A ^ B/ D hmin.VM.A/ŒA�; VM .B/ŒB�/,
VM .A/ŒC

1�; : : : ; VM .A/ŒC
nA/� Bi.

C_ Where LA_B D hC1; C 2; : : :i, VM.A _ B/ D hmax.VM.A/ŒA�; VM .B/ŒB�/,
VM .A/ŒC

1�; : : : ; VM .A/ŒC
nA/� Bi.

C� Where LA�B D hC1; C 2; : : :i, VM.A � B/ D hmax.1 � VM .A/ŒA�; VM .B/ŒB�/;
VM .A/ŒC

1�; : : : ; VM .A/ŒC
nA/� Bi.

C
 Where LA�B D hC1; C 2; : : :i, VM.A 
 B/ D hmin.max.1 � VM.A/ŒA�;

VM .B/ŒB�/;max.1 � VM.B/ŒB�; VM.A/ŒA�//; VM .A/ŒC 1�; : : : ; VM .A/ŒC
nA/� Bi.

C8 Where L8˛A.˛/ D hC1; C 2; : : :i, VM.8˛A.˛// D hminfVM.A.ˇ// j ˇ 2 C [ Og;
VM .A.a//ŒC

1�; : : : ; VM .A.a//ŒC
nA.a/ � Bi.

C9 Where L9˛A.˛/ D hC1; C 2; : : :i, VM.9˛A.˛// D hmaxfVM.A.ˇ// j ˇ 2 C [ Og,
VM .A.a//ŒC

1�; : : : ; VM .A.a//ŒC
nA.a/ � Bi.

AM � A (a T -valued CLuN-modelM verifies A) iff VM .A/ 2 TD; M is a model
of fA1; : : : ; Ang iffM � A1, . . . , andM � An. B1; : : : ; Bn �T

CLuN A iff everyT -valued
CLuN-model of fB1; : : : ; Bng verifies A; � �T

CLuN A iff B1; : : : ; Bn �T
CLuN A for some

B1; : : : ; Bn 2 � .
The only “inconvenience” with this semantics is that, for some � and A, � ²T

CLuN
A while no T -valued CLuN-model of � falsifies A. An example is f:3np;:3nC1p,
:3nC2p � q j n 2 Ng ²T

CLuN q in which :i abbreviates a sequence of i occurrences
of :. Every two-valued CLuN-model M of f:3np;:3nC1p;:3nC2p � q j n 2 Ng
that falsifies q has, for all n 2 N, v.:3nC1p/ D 1 and v.:3nC2p/ D 0. There is a S-
valued CLuN-model that corresponds to M but obviously not a T -valued one. Indeed,
as VM 0.p/ D V.p/ counts finitely many digits, say m, there is bound to be a n such that
#p.:3nC2p/ > m, whence VM 0.:3nC2p/ 2 TD; but then VM 0.:3nC2p � q/ … TD or
VM 0.q/ 2 TD; so ifM 0 is a model of f:3np;:3nC1p;:3nC2p � q j n 2 Ng, it falsifies
q. Of course the inconvenience has no effect on the semantic consequence relation in view
of the special way in which it is defined.

Fact 13 The T -valued CLuN-semantics is recursive.

Fact 14 All logical symbols are truth-functions in theT -valued CLuN-semantics.
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Lemma 4.4 If M D hD; vi is a two-valued CLuN-model, M � A, M ± B , and
M 0 D hD; v0i is obtained from M by letting v.:C/ D 1 whenever :C … fA;Bg [
sub.A/ [ sub.B/, thenM 0 is a two-valued CLuN-model,M 0 � A andM 0 ± B .

Proof By an obvious induction on the length of A or of B , whichever is longer. �

Lemma 4.5 If M D hD; vi is a two-valued CLuN-model, and, for every A 2 W a
O,

v.B/ D 0 for at most finitely many B 2 fsup.A/, then there is a T -valued CLuN-
model M 0 D hD;V 0i such that, for all A 2 WO, VM 0.A/ŒA� D vM.A/ and, where
LA D hB1;B2; : : :i, VM 0.A/ŒBi � D v.Bi / for all i 2 f1; 2; : : :g.

Proof Suppose that the antecedent is true. In view of Lemma 4.1, there is a S-valued
CLuN-model M 00 D hD;V 00i with the required property. The S-valued CLuN-model
M 00 is transformed to the required T -valued CLuN-modelM 0 D hD;V 0i by the follow-
ing steps. Consider an A 2 S and let VM 00.A/ D s. As, for every A 2 W a

O, v.B/ D 0

for at most finitely many B 2 fsup.A/, there is bound to be a last 0 in the sequence s.
So the result of removing trailing 1s from s results in a member of T . The reasoning for
formulas �r˛1 : : : ˛r proceeds similarly. Next one invokes an obvious induction on the
length of A 2WO as in Lemma 4.1. �

Lemma 4.6 If M 0 D hD;V i is a T -valued CLuN-model, then there is a two-valued
CLuN-modelM D hD; vi such that, for all A 2 WO, vM.A/ D VM 0.A/ŒA� and, where
LA D hB1;B2; : : :i, v.Bi / D VM 0.A/ŒBi � for all i 2 f1; 2; : : :g.

Proof Obvious. �

Lemma 4.7 IfM is a two-valuedCLuN-model,M 0 is aT -valued CLuN-model, andM
andM 0 correspond in the sense of Lemmas 4.5 and 4.6, thenM � A iffM 0 � A for all
A 2WO.

Proof A proof by cases gives one the result for A 2 W a
O. This provides the basis for the

obvious induction on the complexity of A 2WO. �

Theorem 4.8 � �T
CLuN A iff � �CLuN A.

Proof ) Suppose that � ²CLuN A. Consider any B1; : : : ; Bn 2 � . As CLuN is com-
pact, B1; : : : ; Bn ²CLuN A. Note that B1 ^ : : : ^ Bn ²CLuN A. In view of the relevant
Löwenheim–Skolem theorem and of Lemma 4.4, there is a countable binaryCLuN-model
M D hD; vi such thatM � B1^� � �^Bn, andM ± A and v.C / D 0 for at most finitely
many formulas C … W a

O. In view of Lemmas 4.5 and 4.7, it follows that there is a T -
valued CLuN-modelM 0 such thatM 0 � B1 ^ � � � ^ Bn andM 0 ± A.
( Suppose that � ²T

CLuN A. The definition of �T
CLuN entails, for arbitrary B1; : : : ;

Bn 2 � , that B1 ^ � � � ^Bn ²T
CLuN A. So aT -valued CLuN-model verifies B1^ � � � ^Bn

and falsifies A. By Lemmas 4.6 and 4.7, there is a two-valued CLuN-modelM 0 such that
M 0 � B1 ^ � � � ^ Bn andM 0 ± A. �
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The members of T are obtained from members of S by removing trailing 1s. The
reader may find it more convenient to consider finite sequences of 0s and 1s that are ob-
tained by removing trailing 0s. Another alternative is finite sequences from which trailing
1s are removed except for the first one as well as finite sequences from which trailing
0s are removed except for the first one. In both cases, the result corresponds to the one
presented above and the inconvenience is exactly the same.

5 A Different Many-Valued Approach

Take another look at the two-valued CLuNs-semantics from Sect. 2, comparing it to the
three-valued CLuNs-semantics from Sect. 3. That a two-valued model verifies p ^:p is
the result of v.p/ D 1 and v.:p/ D 1 and these are separate and independent “facts.” If
a two-valued model verifies A ^ :A for complex A, then againM � A depends on one
set of “facts” whereasM � :A depends on a separate set of “facts.” The idea behind the
three-valued semantics is completely different. That a three-valued model verifies p^:p
depends on the sole “fact” that V.p/ D I . Moreover, if M � A ^ :A for complex A,
then, as a little inspection readily reveals, there are always inconsistent “facts” on which
bothM � A andM � :A depend.

I now set out to construct a very different kind of many-valued semantics, called tuaf
semantics. For a start, the assignment of the tuaf semantics will be the same as the assign-
ment of the two-valued semantics. I shall retain the convention that valuation values are
determined starting from the least complex formulas. If v.p/ D 1, then p will obtain the
valuation value t (for true), independent of the valuation value of :p. If vM .p/ D t and
v.:p/ D 0, then vM .:p/ D f (for false). However, if vM.p/ D t and v.:p/ D 1, then
vM .:p/ D u (for glut). Similarly, if vM.p/ D f and v.:p/ D 0, then vM.:p/ D a (for
gap).22 The idea is that a formula receives the valuation value u, respectively a, iff it has
the wrong truth-value with respect to its subformulas. This idea is clearly different from
the usual one, described in Sect. 3. However, as we shall soon see, some choices have still
to be made in order to turn the approach into something workable.

By way of preparation, we start with an alternative formulation of the CL-semantics.
The semantics from Sect. 1 will be called the clausal semantics. Let us turn it into a tab-
ular semantics by leaving the assignment function unchanged, replacing the ten clauses
specifying the valuation function by the following ten tables – the last two are amalga-
mated.

Where A 2 S: v.A/ A

1 1

0 0

Where ˛1; : : : ; ˛n 2 C [ O and � 2 Pn: hv.˛1/; : : : ; v.˛n/i; v.�/ �˛1 : : : ˛n
2 1

… 0

22 Some values will be absent for some logics; CLuNs, for example, does not allow for gaps.
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Where ˛; ˇ 2 C [ O: v.˛/; v.ˇ/ ˛ D ˇ
D 1

¤ 0

:
1 0

0 1

^ 1 0

1 1 0

0 0 0

_ 1 0

1 1 1

0 1 0

� 1 0

1 1 0

0 1 1


 1 0

1 1 0

0 0 1

fvM.A.˛// j ˛ 2 C [ Og 8˛.A.˛// 9˛.A.˛//
f1g 1 1

f0; 1g 0 1

f0g 0 0

We have seen that some logics display gluts or gaps or both. For them, I shall articulate
a semantics in which the valuation has the form vM WWO ! ft; u; a; f g, in which the
values intuitively stand for true, glut, gap, and false – hence the name tuaf semantics. The
designated values are t and u. So M � A iff vM .A/ 2 ft; ug. This settles at once the
semantic consequence relation � � A.

Some logics do not allow for gluts or for gaps. So only two or three of the values
will be used in their tuaf semantics. For example, the tuaf semantics for CL is boringly
isomorphic to CL’s tabular semantics: for the valuation, every 1 is replaced by t and every
0 by f – the point of the replacement will soon become clear. I spell out this semantics
for future reference.23

Where A 2 S: v.A/ A

1 t

0 f

Where ˛1; : : : ; ˛n 2 C [ O and � 2 Pn: hv.˛1/; : : : ; v.˛n/i; v.�/ �˛1 : : : ˛n
2 t

… f

Where ˛; ˇ 2 C [ O: v.˛/; v.ˇ/ ˛ D ˇ
D t

¤ f:

These three first tables, which concern the atomic formulas, are identical for all subsequent
logics. They will not be repeated.

:
t f

f t

^ t f

t t f

f f f

_ t f

t t t

f t f

� t f

t t f

f t t


 t f

t t f

f f t

fvM .A.˛// j ˛ 2 C [ Og 8˛.A.˛// 9˛.A.˛//
ftg t t

ff; tg f t

ff g f f

23 I use the same notation, vM .A/, for the valuation function in all three kinds of semantics and I shall do
so for all logics. The matter is always disambiguated by the context.
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The matter gets interesting when we move to logics that tolerate gluts or gaps. Let us
start with CLuN. Its tabular semantics is identical to that for CL, except that the table for
negation is replaced.

A v.:A/ :A
1 0 0

1 1 1

0 (any) 1

The table describes vM.:A/ as a function of vM .A/ and of v.:A/. The “(any)” indicates
that the value of v.:A/ has no effect at this point, viz. where vM .A/ D 0.

Let us turn to the tuaf semantics of CLuN. Its assignment is as for all two-valued
semantics in this chapter and the three valuation tables for atomic formulas is as for CL.
The rest of the valuation function is determined by the following tables – some explanation
follows:

A v.:A/ :A
t 0 f

t 1 u

u 0 f

u 1 u

f (any) t

^ t u f

t t t f

u t t f

f f f f

_ t u f

t t t t

u t t t

f t t f

� t u f

t t t f

u t t f

f t t t


 t u f

t t t f

u t t f

f f f t

fvM .A.˛// j ˛ 2 C [ Og 8˛.A.˛// 9˛.A.˛//
� ft; ug t t

D ff g f f

(other) f t

As the value u is introduced by the table for negation – if vM.A/ 2 ft; ug and v.:A/ D
1, then vM.:A/ D u – the value u has to occur in all tables in which the input entries
are valuation values. The “(any)” has the same meaning as in the tabular semantics. The
“(other)” obviously means that the set fvM .A.˛// j ˛ 2 C [ Og contains at least one f
and at least one t or u.

Until now, the design of the tuaf semantics proceeded on somewhat insecure grounds.
There apparently is a clear design behind it, but the design is not made fully explicit. So
let us see where precisely the tuaf semantics assigns the value u? This question may be
answered in several ways and, depending on the answer, the tuaf semantics of other logics
will vary. That the question may be answered in at least two different ways is caused
by the fact that CLuN has the following remarkable property: for any formula A, an
adequate CLuN-semantics has models M and M 0 such that (i) M � A and M � :A,
(ii) M 0 � A and M 0 ± :A, and (iii) M and M 0 verify exactly the same subformulas
of A. So for no true A, however complex, does the truth of its negation result from its
proper subformulas. CLuN has also a different, actually more general, property. Consider
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a complexity function that assigns to a formula A a complexity c.A/ that is higher than
the complexity it assigns to any proper subformula of A. For any formulaA, there are two-
valued CLuN-modelsM andM 0 such that the aforementioned (i) and (ii) obtain whereas
M andM 0 verify exactly the same subset of fB j c.B/ < c.A/g.

A first view on the tuaf semantics of CLuN may be called the agreement view. In the
tabular semantics forCL, every table defines, for a nonatomic form A, vM.A/ as a function
of the valuation value of subformulas of A. So it is easy to check whether the valuation
function of CLuN, or of any other logic L allowing for gluts or gaps, agrees with CL at
a specific point. If a two-valued L-model M has vM.A/ D vM.B/ D vM.A ^ B/ D 1,
then the tuaf L-model M 0 has vM 0.A ^ B/ D t because vM .A ^ B/ D 1 agrees with
all CL-models M that have vM .A/ D vM .B/ D 1. If a two-valued L-model M has
vM .A/ D 0 and vM.A^B/ D 1, then the tuaf L-modelM 0 has vM 0.A^B/ D u because
CL-models have vM .A^B/ D 0whenever they have vM .A/ D 0. By a similar reasoning,
if the L-modelM has vM.A/ D vM .B/ D 1 and vM .A ^ B/ D 0, then the tuaf L-model
M 0 has vM 0.A ^ B/ D a. It is left to the reader to check that the occurrence of output
entries u in the tuaf semantics of CLuN is in line with the agreement view.

Next there is what I shall call the interference view. The two output entries u in the tuaf
semantics of CLuN depend on the assignment. For both, v.:A/ D 1. If this is modified
to v.:A/ D 0, the value of vM .:A/ is modified to f . So, on the interference view,
a complex formula A obtains the valuation value u, respectively a, iff the two-valued
valuation value depends on the assignment value v.A/, and not only on valuation values
of subformulas of A. So this view incorporates the agreement view and moreover takes
into account whether the valuation value of a specific complex formula is a function of
the valuation values of its subformulas. Put differently, the values u and a are assigned at
points where gluts or gaps originate.

An example clarifies this even further. In the two-valued CLuNs-semantics, vM .::A/
D vM.A/. Let vM .p/ D 1 D v.:p/ in a two-valued CLuNs-model M , whence
vM .:p/ D vM .::p/ D 1. So the corresponding tuaf model M has vM.:p/ D u

because if v.:p/ were 0, then vM.:p/ would be 0 in the two-valued semantics. How-
ever, vM .::p/ D t on the interference view. Indeed, although vM.:p/ D 1 and
vM .::p/ D 1 in the two-valued semantics, the latter value does not depend on v.::p/
but is a direct result of vM.p/ D 1.24 Note that the agreement view leads to a different
result at this point for CLuNs; it leads to vM .::p/ D u in the considered example.

It is again left to the reader to check that the occurrence of output entries u in the tuaf
semantics of CLuN is in line with the interference view. Both views explain the absence
of output entries u outside the negation table. They also clarify in general why :A may
have the valuation value uwhereasAwill never have that valuation value, unless of course
in case A itself has the form :B . In the sequel of this chapter, I shall restrict attention to
the interference view.

The tabular semantics as well as the tuaf semantics of CLuNs require the equivalence
classes defined in Sect. 2. The tabular semantics is just like that for CL, except that the

24 The counterfactual and causal phraseology can obviously be rephrased extensionally (in terms of all
models that have certain properties).
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table for negation is replaced by the following tables:

Where A 2W a
O: A fv.:B/ j B 2 �A�g :A

1 D f0g 0

1 ¤ f0g 1

0 (any) 1

A ::A
A ^ :B :.A � B/
:A _ :B :.A ^ B/
:A ^ :B :.A _ B/

.A _ B/ ^ .:A _ :B/ :.A 
 B/
9˛:A.˛/ :8˛A.˛/
8˛:A.˛/ :9˛:A.˛/

1 1

0 0

The lower table is obviously a summary of seven tables, each stating that the formula
in the right column has the same value as the formula in the left column. Of course, the
fascinating bit is the tuaf semantics. Again, the assignment is as for CL and so are the
three tables for the atomic formulas.

Where A 2W a
O: A fv.:B/ j B 2 �A�g :A

t D f0g f

t ¤ f0g u

f (any) t

A ::A
A ^ :B :.A � B/
:A _ :B :.A ^ B/
:A ^ :B :.A _ B/

.A _ B/ ^ .:A _ :B/ :.A 
 B/
9˛:A.˛/ :8˛A.˛/
8˛:A.˛/ :9˛:A.˛/

t t

u t

f f

^ t u f

t t t f

u t t f

f f f f

_ t u f

t t t t

u t t t

f t t f

� t u f

t t t f

u t t f

f t t t


 t u f

t t t f

u t t f

f f f t

fvM .A.˛// j ˛ 2 C [ Og 8˛.A.˛// 9˛.A.˛//
� ft; ug t t

D ff g f f

(other) f t



Two, Many, and Differently Many 233

There is only one output entry u in all these tables. Atomic formulas never receive the
value u. Formulas of which the central symbol is not a negation cannot receive a u because
their valuation value (does not depend on their assignment value but) is fully determined
by the valuation value of less complex formulas. In the table for the negation of complex
formulas, there is a u among the input entries. Please note that the only formulas in the left
column that may have a valuation value u are those of the form A that moreover have the
form :C . But even if this formula has the value u, the formula of the corresponding form
::A needs the value t because the assignment does not interfere. Indeed, it holds within
the two-valued CLuNs-semantics that vM.::A/ D 1 if vM .A/ D 1, whatever v.::A/.

I mentioned before that the tuaf semantics introduces values u and a where the gluts or
gaps originate. Please check this. If vM.Pa/ D vM .:Pa/ D 1 in the clausal or tabular
CLuNs-semantics, the tuaf semantics settles for vM.:Pa/ D u. It holds within the two-
valued CLuNs-semantics that if vM.Pa/ D vM.:Pa/ D vM .Qb/ D 1, then vM .Pa ^
Qb/ D vM .:Pa_:Qb/ D 1, and hence also vM.Pa^Qb/ D vM.:.Pa^Qb// D 1.
The tuaf semantics settles for vM.:.Pa ^Qb// D t . This is precisely as we want it: the
glut does not originate with :.Pa ^Qb/; it originates with :Pa.

Consider the tuaf semantics of a very weak extension of CLuN, viz. with A � ::A,
for which I shall use the rather arbitrary name CLuNNN . The tuaf semantics is identical to
that of CLuN, except for the tables for negation – there are two of them. Let Wn

O be the
set of formulas that do not have : as their first symbol.

Where A 2Wn
O: A v.:A/ :A

t 0 f

t 1 u

f (any) t

A v.::A/ ::A
t (any) t

u (any) t

f 0 f

f 1 u

There are no input entries u in the first table because only formulas of the form :B can
have the value u. The output value of the second line of the second table is t because the
assignment does not interfere. If vM.A/ D f , then vM.:A/ D t , whence vM .::A/ 2
fu; f g.

There are two output entries u in this semantics. So negation gluts originate at two kinds
of points in CLuNNN-models, first where the negation of a nonnegated verified formula is
itself verified and next where the double negation of a falsified formula is verified – the
negation of the formula is then verified and, by the interference of the assignment, also its
double negation.

Let us, as a nonparaconsistent illustration, consider the tuaf semantics for the logic
with the beautiful name CLuCoDaM, in words, the logic that leaves room for conjunc-
tion gluts, for both disjunction gluts and disjunction gaps, and for implication gaps. Let
us consider the version in which Replacement of Identicals is not added. So we do not
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need the equivalence classes from the CLuNs-semantics. Moreover, I skip the tabular se-
mantics. The reader may very easily construct it in case the tuaf semantics would not be
obvious at once. The assignment and the valuation tables for atomic formulas are as for
CL.

:
t f

u f

a t

f t


 t u a f

t t t f f

u t t f f

a f f t t

f f f t t

v.A ^B/ D 1 W
^ t u a f

t t t u u

u t t u u

a u u u u

f u u u u

v.A _ B/ D 1 W
_ t u a f

t t t t t

u t t t t

a t t u u

f t t u u

v.A � B/ D 1 W
� t u a f

t t t f f

u t t f f

a t t t t

f t t t t

v.A ^ B/ D 0 W
^ t u a f

t t t f f

u t t f f

a f f f f

f f f f f

v.A _ B/ D 0 W
_ t u a f

t a a a a

u a a a a

a a a f f

f a a f f

v.A � B/ D 0 W
� t u a f

t a a f f

u a a f f

a a a a a

f a a a a

fvM .A.˛// j ˛ 2 C [ Og 8˛.A.˛// 9˛.A.˛//
� ft; ug t t

� fa; f g f f

(other) f t

This semantics illustrates a variety of cases. As there are no gluts or gaps with respect to
negation, equivalence, and the quantifiers, the output entries are all t and f in the tables
for those logical symbols. For conjunction, there are only gluts. So if v.A ^ B/ D 0, one
obtains the normal table; if v.A ^B/ D 1 every f in the normal table is replaced by a u.
Implication and disjunction illustrate the other cases.

The tuaf semantics of da Costa’s Cn logics [23] illustrates a possible complication.
Let A.1/ abbreviate :.C ^ :C/ and let A 
c B denote that A and B are congruent
in the sense of Kleene or that one formula results from the other by deleting vacuous
quantifiers – Kleene [30, p. 153] summarizes his definition as follows: “two formulas are
congruent, if they differ only in their bound variables, and corresponding bound variables
are bound by corresponding quantifiers.” The congruence requirement may be handled by
first defining a prevaluation, which looks just like a tuaf semantics itself, and next defining
a valuation from the prevaluation. The tuaf semantics of C1 clarifies the matter.

The assignment function is again the general one, as in the CL-semantics from the
beginning of this section. For atomic formulas, the prevaluation vM WWO ! ft; u; f g has
the same tables as the tuaf valuation of CLuN – these tables are not repeated.



Two, Many, and Differently Many 235

Where A 2W a
O: vM .A/ v.:A/ vM.:A/

t 0 f

t 1 u

f (any) t

Where � 2 f_;^;�g and A � B has not the form C ^ :C :

vM .A � B/ vM.A
.1// vM .B

.1// v.:.A � B// vM .:.A � B//
t t t (any) f

t (other) 0 f

t (other) 1 u

f (any) (any) t

Where Q 2 f8; 9g:

vM.Q˛A.˛// fvM.A.ˇ/.1// j ˇ 2 C [ Og v.:Q˛A.˛// vM .:Q˛A.˛//
t D ftg (any) f

t ¤ ftg 0 f

t ¤ ftg 1 u

f (any) (any) t

The other tables apply to all members of WO:

vM .:A/ v.::A/ vM .::A/
t (any) f

u 0 f

u 1 u

f (any) t

:A A.1/

t t

u f

f t

^ t u f

t t t f

u t t f

f f f f

_ t u f

t t t t

u t t t

f t t f

� t u f

t t t f

u t t f

f t t t


 t u f

t t t f

u t t f

f f f t

fvM.A.˛// j ˛ 2 C [Og 8˛A.˛/ 9˛A.˛/
2 }ft; ug t t

D ff g f f

(other) f t

Let f .A/ be obtained by first deleting all vacuous quantifiers in A and then systematically
replacing all variables in the result by the first variables of the alphabet in alphabetical
order. Next, define the valuation values VM in terms of the prevaluation values vM by
VM.A/ D vM.f .A//.

Alternatively, a prevaluation vM is called a valuation iff vM .A/ D vM.B/ whenever
A 
c B .
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Transforming the above semantics to aCn logic (for 1 < n < !) is an easy exercise left
to the reader – the formulation of the tables for C1 and the plot described in the previous
paragraph indicate the road. For C! , one replaces the tables for negation by the left and
middle tables below; for C! (which is C! extended with classical negation, �) one adds
the table to the right below.

vM.A/ v.:A/ vM .:A/
t 0 f

t 1 u

f (any) t

vM .:A/ v.::A/ vM.::A/
t (any) f

u 0 f

u 1 u

f (any) t

A �A
t f

u f

f t

Incidentally, an indeterministic tuaf semantics is often more transparent than its deter-
ministic counterpart. As an indeterministic tuaf semantics does not refer to the valuation,
it has less clutter in the heads of the tables. So let me display the relevant tables, viz.
negation tables, for C1.

Where A 2W a
O: A :A

t Œf; u�

f t

Where � 2 f_;^;�g and A � B has not the form C ^ :C :

A � B A.1/ B.1/ :.A � B/
t t t f

t (other) Œf; u�

f (any) t

Where Q 2 f8; 9g: Q˛A.˛/ fvM.A.ˇ/.1// j ˇ 2 C [ Og :Q˛A.˛/
t ftg f

t (other) Œf; u�

f (any) t

The other tables apply to all members of WO: :A ::A
t f

u Œf; u�

f t

:A A.1/

t t

u f

f t

The expression Œf; u� indicates that the value may be f or u – this is an indeterministic
semantics. Note that the “normal” value, the one that agrees with CL at this point, is
f . So if the value is u, it “drops from the sky” as far as the indeterministic semantics is
concerned – in the deterministic semantics, the assignment function interferes at this point.
The “dropping from the sky” holds for the semantics only; a premise set may require that
some values are u in its models. For other logics, a premise set may require some values
to be a. The metaphor is helpful, however, because it highlights that the values u and a
occur at points where an abnormality is generated.

The application of the semantics should clearly be separated from the underlying idea.
Even in indeterministic versions, the occurrence of output values u should be understood
in terms of the assignment’s interference.
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6 An Application: The Flip–Flop Danger

A logic assigns a set of consequences to every premise set.25 A logic L is adaptive if
it adapts itself to the specific premises to which it is applied. One way to explicate this
phrase is by saying that there are rules R such that L does not validate R, but L validates
some applications of R to some premise sets. Adaptive logics were developed with the
aim to obtain precise formulations of defeasible reasoning forms. These reasoning forms
are methodological, rather than logico-deductive.

This is not the place to present an introduction to adaptive logics – many survey papers
are available and a new state-of-the-art overview is on its way [11, 12, 14]. I shall merely
present an example to give the reader a feel of adaptive logics. The example will allow me
to point out a problem that is solved by the new type of many-valued semantics.

Let �1 D fp; q;:p_r;:q_s;:qg. Note that �1 °CLuN s and �1 °CLuN r . Yet, there
is a clear difference between p and q. While �1 requires that q behaves inconsistently, it
does not require that p behaves inconsistently. This holds intuitively and CLuN leads to
exactly the same insight: �1 `CLuN q ^ :q whereas �1 `CLuN p but �1 °CLuN :p. The
idea behind inconsistency-adaptive logics is to interpret premise sets as normal as possible,
where normality is obviously connected to consistency. Interpreting �1 as normally as
possible entails that q is considered as inconsistent whereasp andmany other formulas are
considered as consistent. Doing so results in r and not in s. Indeed, �1 `CLuN r_.p^:p/
and p ^ :p is considered to be false; �1 `CLuN s _ .q ^ :q/ but q ^ :q is true anyway.
Precisely this result is delivered by the inconsistency-adaptive logic CLuNm.

A crucial component of adaptive logics is their set of abnormalities. In the case of
CLuNm, this set is f9.A^:A/ j A 2 Fg, the existential closure of contradictory formulas.
As suggested before, the idea is that, ifB is an abnormality andA is not, ifA_B isCLuN-
derivable, and if the premises allow one on systematic and formal grounds to consider B
as false,26 then A is an adaptive consequence, in this case a CLuNm-consequence.

Now consider another inconsistency-adaptive logic, CLuNsm. One difference is that
CLuN is replaced by CLuNs. This has the effect that all CLuNs consequences are deriv-
able from the premises independently of the fact that one aims at a maximally normal
interpretation. Thus �1 `CLuNsm ::q, whereas �1 °CLuNm ::q.27

In defining CLuNsm, one might be tempted to consider the same set of abnormalities
as in the case of CLuNm, viz. f9.A ^ :A/ j A 2 Fg. If one does so, however, one
looses the adaptive effect. Indeed, although �1 `CLuNs r _ .p ^ :p/ and �1 °CLuN

p ^:p, one cannot simply consider p as behaving consistently on �1. This is so because
�1 `CLuN .p ^ :p/ _ ..r ^ q/ ^ :.r ^ q//, whereas �1 °CLuN .r ^ q/ ^ :.r ^ q/.
So .p ^ :p/ _ ..r ^ q/ ^ :.r ^ q// is a minimal disjunction of abnormalities that is
CLuNs-derivable from �1. One of the disjuncts is false, but we do not know which one
and cannot decide on logical grounds for one or for the other if both disjuncts count as

25 This weak characterization is preferable in order to avoid prejudged narrowing of the domain. It is
equivalent to the characterization offered by Béziau [18].
26 The matter is handled by an adaptive strategy – see the referred survey papers.
27 If this sounds puzzling, please realize that fq;:q;::q;:::qg is more inconsistent than
fq;:q;:::qg and that CLuN does not validate A � ::A.
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abnormalities. It can be shown that this reasoning can be generalized. If CLuNsm is given
f9.A^:A/ j A 2 Fg as its set of abnormalities, the consequences derivable by CLuNsm

from any inconsistent premise set � are identical to the consequences derivable byCLuNs
from � . Such an adaptive logic is called a flip–flop: its consequence set is identical to the
CL-consequence set if � is consistent and to the CLuNs-consequence set otherwise.28

This does not mean that a decent inconsistency-adaptive logic CLuNsm cannot be de-
fined. Such a logic is obtained, e.g., by defining f9.A ^ :A/ j A 2 Fag as the set of
abnormalities, Fa being the set of atomic formulas of L. In this case p ^ :p can be
considered as false and r will be a CLuNsm-consequence of �1.29

Abnormality is used here as a technical term. There is obviously a relation to the in-
tuitive sense of the term. The intuitive sense may be seen as defined by CL.30 Every
inconsistent theory is intuitively abnormal: it has no CL-models. This justifies the choice
of f9.A ^ :A/ j A 2 Fag as the set of abnormalities for the inconsistency-adaptive logic
CLuNsm. Indeed, if � is inconsistent, then there is an A 2 f9.A ^ :A/ j A 2 Fag such
that � `CLuNs A. So if � is normal in the intuitive sense, then it is CLuNsm-normal; and
vice versa.

The handiest way to describe gluts and gaps is available when all classical logical
symbols are present in the language. A negation gap will, for example, be described
by L:A L̂ L::A, in which the “checked” symbols have their CL-meaning.31 Similarly,
a disjunction glut may be described by L:A L̂ L:B L̂ .A _ B/ or, more transparently, by
L:.A L_ B/ L̂ .A _B/.

A possible source of confusion should be clarified here. If vM.:p/ D u in a tuaf-
semantics, thenM � L:p ^ L::p – the classical negation of p is true while its standard
negation is false. If vM .:p/ D a in a tuaf-semantics, thenM � L: L:p^:p – the classical
negation of p is false while its standard negation is true.32 Similarly for other logical
symbols. So it is important to distinguish between the formula A that “displays” a glut or
gap in a model M , whether on the agreement view or on the interference view, and the
formula that “describes” the glut or gap and is verified by M . Let the .A/a, respectively
.A/u, be the formula that “describes” that A “displays” a gap, respectively a glut.

An adaptive logic that is a flip–flop may be turned into a non-flip–flop by weakening
its set of abnormalities. There is, however a danger to that as well. The danger may be
illustrated by considering the inconsistency-adaptive logic – call it X – that is obtained by
replacing the set of abnormalities of CLuNm by the set f9.A ^:A/ j A 2 Fag. Consider
the simple but explicit premise set �2 D fp_..q^r/^:.q^r//g. The fact is that �2 °X p

and the reason is that there are no abnormalitiesA1; : : : ; An 2 f9.A^:A/ j A 2 Fag such

28 In some exceptional cases, one wants an adaptive logic that is a flip–flop.
29 The formula .r ^ q/^ :.r ^ q/ is not an abnormality but it is a CLuNsm-consequence of �1. Indeed,
q^:q is aCLuNs-consequence (and hence aCLuNsm-consequence) of �1, r is a CLuNs

m-consequence
of �1, and q ^ :q; r `CLuNs .r ^ q/ ^ :.r ^ q/.
30 Still and to the best of my knowledge, paraconsistent logics that do not allow for other gluts or gaps and
were proposed to serve a sensible purpose agree with CL in classifying � as inconsistent.
31 The “checked” symbols are metalinguistic names for certain symbols of the language L of logic L. If
the ^ is a classical conjunction in L and � is a classical negation in L, then the formula in the text stands
for �A^ �:A.
32 Note thatM � p ^ :p will do just as good.
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that �2 `CLuN p_.A1_� � �_An/. So here lurks a different danger: that the technical sense
of abnormality is too weak with respect to the intuitive sense of abnormality, whence some
consistent sets, like �2, are not assigned all CL-consequences. If the aim is to interpret
theories as consistently as possible in the sense of CL, then the inconsistency-adaptive
logic X is clearly too weak.

So while there is, on the one hand, the flip–flop danger, there is, on the other hand,
(what may be called) the wimp danger. It is typical for adaptive logics that both extending
the set of abnormalities and reducing it may lead to a weakening of the consequence set.
The matter is too complex to fully discuss it here, but the use of the many-valued logics
from the previous section may still be illustrated. They do not offer a single criterion, but
rather two criteria. Moreover, they obviously can only be applied if the considered logics
have a tuaf semantics. Finally, I cannot show that the (partial) criteria in the subsequent
paragraph are correct because this requires much more technical information on adaptive
logics – people familiar with adaptive logics will find the matter rather transparent.

Let L be the deductive logic that underlies the adaptive logic – like CLuN and CLuNs
in the previous examples – and let the semantic phraseology refer to the tuaf semantics of
L. Let the adaptive logic be Lm and˝ W its set of abnormalities.

(a) Lm is not a flip–flop if, for every A 2 W , (i) .A/a … ˝ if there is a L-tuaf-modelM
such that vM .A/ D t andM � .A/a and (ii) .A/u … ˝ if there is a L-tuaf-modelM
such that vM .A/ D f andM � .A/u.33

(b) Lm is not a wimp if, for everyA 2W , (i) .A/a 2 ˝ if there is a L-tuaf-modelM such
that vM.A/ D a andM � .A/a and (ii) .A/u 2 ˝ if there is a L-tuaf-modelM such
that vM.A/ D u andM � .A/u.34

The main antecedent of (a) is not fulfilled for any flip–flops but is fulfilled for some
wimps. The main antecedent of (b) is not fulfilled for any wimps, but is fulfilled for some
flip–flops. If it sounds confusing, realize that (a) and (b) delineate extremes of the sets of
abnormalities, not of the adaptive consequence sets.

7 Some Reflections

The tuaf semantics introduced in Sect. 5 provides insights that are useful independent of
the flip–flop problem.35 The tuaf semantics delineates the points at which inconsistencies
originate – similarly for other nonstandard features, but I shall continue to concentrate
on inconsistencies. So the information provided by a tuaf semantics is very valuable for

33 The main antecedent warrants that there are L-models M and M 0 of intuitively abnormal � such that
fA 2 ˝ j M � Ag � fA 2 ˝ j M 0 � Ag. That some L-models of intuitively abnormal � are not
minimally abnormal L-models of � entails that Lm is not a flip–flop.
34 The main antecedent warrants that every minimally abnormal L-modelM of an intuitively normal � is
such that fA 2 ˝ j M � Ag D ;. This entails that, for all intuitively normal � , � `Lm A iff � `CL A.
So Lm is not a wimp.
35 In connection with the flip–flop problem, the result may easily be generalized to, for example, modal
logics. There are indeed adaptive logics in which abnormalities have the form ÞA ^ :A or the form
ÞA^ Þ:A. This, however, should not be elaborated here.
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comparing different paraconsistent logics and even for understanding specific paracon-
sistent logics separately. A typical difference between CLuNs and CLuN is that the for-
mer makes all inconsistencies dependent on inconsistencies in atomic formulas, whereas
CLuN makes inconsistencies independent of each other.36 While it is not difficult to un-
derstand the behavior of inconsistencies in those two logics, the matter is more difficult
for other paraconsistent logics, such as C1 or CLuNNN – and also for other nonstandard
behavior as allowed by logics like CLuCoDaM. In all such cases, the tuaf semantics is
definitely clarifying. Some readers may question the use of these many-valued logics in
view of the fact that the information they provide may also be obtained (in a more labori-
ous way) from the two-valued semantics. This objection does not hold water. If it did, it
would just as well be an objection against usual many-valued semantic systems.

The main conclusion on semantic systems in general is that one should separate techni-
cal features from philosophical ones. That a logic has a many-valued semantics is a tech-
nical feature, and so is the fact that the logical symbols are or are not truth-functions in
that semantics. Such technicalities do not determine the ontological structure of domains
to which the logic may sensibly be applied. The same logic may very well agree with
different ontological views and each of these may suggest a different set of valuation val-
ues. A nice example is that Priest’s LP has a three-valued semantics in which all logical
symbols are truth-functions, but that the ontology underlying this semantics is clearly at
odds with Priest’s dialetheism [34, §19.7] – see also footnote 15.

A logic L need not to be given an interpretation that agrees with an L-semantics in
which all logical symbols are truth-functions. In some cases it is hard to imagine an in-
terpretation that would go along with such a semantics – the S-valued and the T -valued
semantics of CLuN are ready examples. Which is the set of truth-values, or more gener-
ally of valuation values, that statements may take, is a philosophical question. A sensible
person might hold that there are three truth-values, say plain truth, plain falsehood, and
inconsistency, and this person might want to allow for complex inconsistencies that have
only consistent components, some true, some false. This person might end up with CLuN
as her preferred logic and might end up with a three-valued CLuN-semantics, in which
negation is not a truth-function, as the best way to picture the world’s ontology.

The aim of this chapter was to raise questions, rather than to draw conclusions. The aim
of the questions was to criticize prejudices, especially prejudices on many-valued logics,
on the use or need to express the valuation values within the object language, on truth-
functionality, and on the connection of all this to the semantics’ ontological significance.

In a sense this chapter concerns consequences of Suszko’s aforementioned result. If
many-valued logics have a two-valued semantics and if this semantics, unlike the many-
valued one, expresses the truth-preservation underlying the consequence relation, then the
many-valued semantics is bound to serve a different purpose. But obviously there are sev-
eral such purposes and these will lead to different many-valued semantic characterizations
of the same logic.

Much work remains to be done in connection with the two preceding paragraphs. An
obvious topic of research is the generalization of theS-semantics and of theT -semantics

36 A conjunct of an inconsistency may be an inconsistency itself, as is the case for .p^:p/^:.p^:p/.
Even then the complex inconsistency is independent of the less complex one.
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to other logics than CLuN and the study of the properties of logics and of classes of
logics revealed by this generalization. Coding the information from a worlds-semantics
into a many-valued semantics seems a closely related task. A very different topic concerns
the articulation of many-valued logics originating from the agreement view, as opposed
to the interference view, and the study of insights offered by both types of many-valued
semantics. While CL was considered as the absolute point of reference in the present
chapter, shifting to a different point of reference may have enlightening effects. All such
research will help us, logicians, to overcome traditional prejudices and to better understand
the aims, properties, and uses of logic at the service of reasoning and thus of understanding
and action.
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Logics and Their Galaxies

Hilan Bensusan, Alexandre Costa-Leite, and Edelcio Gonçalves de Souza

Abstract This chapter introduces some concepts that help exploring the ontological im-
port of universal logic. It studies the notions of an antilogic and counterlogic associated
with each logic and shows some of their properties. It presents the notion of galaxy, as the
class of possible worlds compatible with a given logic. We explore some consequences of
these developments.
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1 Towards a Universal Metaphysics

Metaphysicians make constant use of logic. They need it to make claims about what is
logically possible, what is logically necessary or contingent. They need it to reason on
what ought to be the case once some assumptions are made – issues of logical compos-
sibility. They need it whenever they investigate a priori knowledge and whenever they
appeal to a sufficient reason. Without an underlying logic, no thesis concerning contin-
gency, compossibility, necessity, or sufficient reason can be substantial. The use of logic
by metaphysics is evident when we consider the framework of possible worlds – taken by
David Lewis [11], pp. 1–4, to be a paradise for philosophers. At least since the Lewis work,
back in the 1970s, metaphysicians have been making use of possible worlds to discuss and
evaluate claims and arguments concerning several topics such as causation [9, 10], disposi-
tions [13], monism and pluralism [4], semantics [16], or the existence of necessary objects
[22]. The appeal to possible worlds, however, hinges always on a distinction between pos-
sible and impossible worlds (distinction drawn by Lewis himself [11], p. 1). A logically
impossible world can arguably be dismissed from metaphysical considerations.

Now, there are different logics. In fact, an infinite number of them. Clearly, as meta-
physics is entangled with logic, different underlying logics produce different results in
metaphysics. Things are evaluated differently and distinct claims are made possible when
we move from one logic to another. To see this, it is enough to focus on what makes
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a world impossible. What is impossible in classical logic is not necessarily so in para-
consistent or intuitionistic logics. The question arises then as to which logic to choose. In
general, metaphysicians have dealt with this in an easy and oversimplified way: just use
classical logic. To be sure, nevertheless, the choice of a logic is a tricky issue that, at the
face of it, involves circularity: we cannot argue that one particular logic is somehow nec-
essary without appeal to an underlying logic. Given these difficulties, it is quite common
to dismiss the question altogether by saying that in the absence of any reason to select
any other logic, classical logic is best retained. Such a response, nevertheless, has been
challenged by recent developments in universal logic.

Universal logic looks at the plurality of logics not in order to choose one among them
but rather to study the relations between them. It explores how to compare them, how to
put them together and how to build new logics out of the known ones. It aims at a general
investigation of logics in a way that is similar to what has been achieved with universal
algebra (see [1]). To this purpose, universal logic has been using methods such as the
combination of logics, techniques of translating logics, and tools in category theory. It
looks at the space of all logics and how it constrains the scope of a particular logic.

The present chapter explores the idea that universal logic – and not any logic in par-
ticular – should underlie the efforts of metaphysicians. It points towards a metaphysics
grounded on universal logic – a universal metaphysics. We begin our exploration by con-
sidering possible worlds in a framework where different logics take different worlds to be
impossible. In order to do that, we develop the notion of a galaxy compatible with a given
logic – a galaxy is a class of possible worlds. It is a way to formalize the notion of under-
lying logic of a theory. If we are right, metaphysicians should be looking at galaxies and
their properties whenever they make claims involving possibility, necessity, and related
concepts.

2 Logics, Antilogics, and Counterlogics

In order to consider the infinite number of logics and to make evident how different logics
yield different ontological commitments, we make use of the notions of antilogic and
counterlogic defined for a suitable logic. Here we will not consider any logic in particular,
but rather a logic in an abstract sense.

A logic L is a structure .F;`L/ such that F is a set and `L is a binary relation on
}.F / � F without any restriction.1 We use � `L ' to indicate that .�; '/ 2 `L and we
say that ' is a consequence of � in L. So, `L is called a consequence relation of L.

The antilogic of a given logic L is denoted by NL.2 The counterlogic of a given logic
L is denoted by QL. Antilogics and counterlogics are also logics in the sense that they are
sets and consequence relations without axioms. If we define logics using consequence
relations with Tarskian conditions, then antilogics and counterlogics would not be logics.

1 Tarski proposed an operator of logical consequence with conditions on it (see [20]). We use a conse-
quence relation without restrictions in the sense of [2].
2 The concept of antilogic has been developed by Łukasiewicz in [12], and studied in [17] as rejected
propositions or in [18] under the label of refutation systems. For anticlassical propositional logic, there
are results in [3], [6], and [21].



Logics and Their Galaxies 245

The antilogic NL of a given logic L D .F;`L/ is a pair .F;` NL/ such that

� ` NL ' if and only if it is not the case that � `L ' :
It is clear that for each L there is exactly one NL. Moreover, considering that conse-

quence relations are sets of pairs, a natural consequence of the above definitions is that
there is nothing in common between the set corresponding to a logic and the one corre-
sponding to its antilogic:

`L \ ` NL D ¿I
`L [ ` NL D }.F / � F :

This means that the two sets cover all the well-formed formulas expressed in the vocab-
ulary where L (and of course, NL) is defined. In this sense (but not necessarily in another
to be considered in the next section involving the concept of galaxies), we can say that NL
is the complement of L.

Let L D .F;`L/ be a logic such that F is closed by an unary operation of negation,
that is, if ' 2 F , then :' 2 F . In this case, we say that L is a logic with negation. Given
a logic with negationL D .F;`L/, the :-counterlogic3 of L is the logic given by the pair
QL D .F;` QL/ such that

� ` QL ' if and only if � `L :' :
Again, it is clear that for each L, and for each negation operation, there is exactly one
QL.
We already have elements to prove that soundness and completeness are preserved from

a logic to its antilogic and its counterlogic.

Theorem 2.1 If L D .F;`L/ is sound and complete with respect to a semantic structure
(which is also a logic in the sense above) S D .F;�S /, that is, if it holds that: � `L '
if and only if � �S '; then, NL is sound and complete with respect to S D .F;� NS /, such
that � NS is given by � � NS ' if and only if it is not the case that � �S '. A similar result
can be stated to counterlogics.

As for interactions of a logic with negation, its antilogic and its counterlogic, it is
important to note that

NNL D L I
QQL D L I
NQL D QNL I

� ` NL ' if and only if it is not the case that � ` QL :' I
� ` QL ' if and only if it is not the case that � ` NL ' :

3 Henceforth, whenever nonambiguous we use simply “counterlogic”.
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Note also that, as the antilogic and the counterlogic are defined in terms of the conse-
quence relation, a logic that entails nothing (`LD ¿) is its own counterlogic. Moreover,
its antilogic is the trivial logic (`LD }.F / � F ).

3 Antilogic, Counterlogic, and the Square of Oppositions

The antilogic and the counterlogic of a logic can define interesting oppositions concerning
relations between logics. These oppositions can be thought in terms of the framework of
the square of oppositions. Such a framework (and its extensions in the so-called geom-
etry of oppositions (see [14]) has been used to study all sorts of relations of opposition.
Different logics are such that they can hold relations analogous to those of contradiction,
contrariety and subalternity between them. In this section, we begin to study these rela-
tions of oppositions by seeing different logical systems as poles in a triangle or a square.
By presenting a square of logics that capture some of their relations, we pave the way for
a more systematic study of the oppositions between logics.

We start with some brief remarks concerning the square. We call a square complete
if it is a square with all four oppositions: contradiction, contrariety, subcontrariety, and
subalternation. A square is standard if it fits any family of concepts satisfying traditional
oppositions. A square is perfect if it is complete and standard. Moreover, any square which
is not complete or/and standard is called degenerate square.

We can now explore the oppositions between a logic and its counter and antilogic in
terms of the square. The main question is to determine what are the oppositions between
these logics.

Because the vertices of the square (or of the triangle formed by a logic, its counterlogic
and its antilogic) are not propositions, we reconstruct the classical oppositions accord-
ingly. We define them in terms of relations between logics – instead of truth-values.

First, let L1 D .F;`L1
/ andL2 D .F;`L2

/ be two logics. We say thatL1 is a sublogic
of L2 if and only if `L1

� `L2
. We use the following notation: if `L� }.F / � F , then

°L is the complement of `L with respect to }.F / � F .
Now we introduce some relations between logics:

(d ) L1 and L2 are contradictories if and only if `L1
\ `L2

D ¿ and °L1
\ °L2

D ¿;
(c) L1 and L2 are contraries if and only if `L1

\ `L2
D ¿ and °L1

\ °L2
¤ ¿;

(sc) L1 and L2 are subcontraries if and only if `L1
\ `L2

¤ ¿ and °L1
\ °L2

D ¿;
(s) L1 is subaltern to L2 if and only if L2 is a sublogic of L1.

It is not straightforward to present oppositional structures for any logic. We will pro-
ceed by introducing some restrictions. First, we restrict ourselves to logics which accept
elimination of double negation in an obvious sense. Additionally, let L be a logic with
negation. We say that L is well behaved if and only if for every pair .�; '/, it is not the
case that (� `L ' and � `L :').

Theorem 3.1 If L is well behaved then QL is a sublogic of NL.
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Suppose that � ` QL '. By definition, � `L :'. Since L is well behaved, this is not the
case that � `L '. Therefore, � ` NL '.

Let L D .F;`L/ be a logic with a negation. Consider ' 2 F . We say that L is '-silent
if and only if we have neither ¿ `L ' nor ¿ °L '. L is called silent if and only if there
exists ' 2 F such that L is '-silent. Note that if L is silent then its corresponding NL is
not well behaved.

We can start out by remarking that L and NL are contradictories. Also, if L is well
behaved and with double negation elimination rule, L and QL are contraries. Note that QL
is then also well behaved. Since L is well behaved, QL is a sublogic of NL and therefore
the former is subaltern to the latter. We can then have a triangle of oppositions for a well-
behaved L:

We can now consider a fourth vertex. Consider NQL which we have seen is equivalent to
QNL. Clearly, for any L that is well behaved, silent, and with the double negation elimination

rule, so is QL. Then we can see that if L is well behaved, QQL is a sublogic of NQL, by the

theorem above. As QQL = L, then L is subaltern to NQL (and therefore to QNL). Furthermore, if
L1 and L2 are contraries, then NL1 and NL2 are subcontraries.

We can then present a square of oppositions for a well behaved, silent with double
negation L:

This square of logics displays oppositions between any well behaved, silent, and ac-
cepting double negation logic on the one hand and three other logics constructed from it
on the other. It is a complete square, but not a standard one and therefore it is a degenerate
square. To be sure, it could be possible to find a perfect square of logics by extending
differently the triangle above. However, the degenerate square is enough to show how
any given well behaved and silent logic is accompanied by four other ones in relations to
opposition. It is a square of logics showing how different (and yet related) logics are in
relation to opposition.

4 Galaxies

The relations between any logic and its corresponding antilogic and counterlogic provides
a convenient set-up to investigate the nature of logical necessity and therefore what counts
as a possible world outside classical logic. It is clear that to each logic there is an associated
class of possible worlds. To think of different logics in terms of possible worlds enable
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us to consider not only (accessibility) relations between different worlds made possible
by a single logic but also relations between worlds made possible by different logics. The
connection between a logic and its associated class of possible worlds began to be made
explicit (and fruitful) by Kripke’s semantics.

Indeed, in modal logic, it is customary to understand a logic in terms of the possible
worlds associated with it (see [5]). In Kripke’s semantics, different modal logics (primar-
ily the normal ones K, T, S4, and S5) are each associated with the different accessibility
relations between worlds and therefore to a class of possible worlds. What discriminates
between those classes is the type of accessibility relations between worlds that they fea-
ture. In general, modal logics makes it clear that classes of possible worlds are associated
to consequence relations. The more abstract idea is that a consequence relation can be
understood in terms of an associated class of possible worlds. To these classes, we turn
now.

Let L be a class of all logics. Consider, also, a class W which elements will be called
possible worlds. Let � be a binary relation in W �L. We call this compatibility relation.
When w � L we say that the possible world w is compatible with the logic L.

Let G be a function (of classes) defined as

G W L ! }.W / ;

L 7! G.L/ WD fw 2W W w � Lg :
Therefore, given a logicL,G.L/ is the set of possible worlds compatible withL.G.L/

is called the galaxy of L. Note that for each logic L associated to a single consequence re-
lation there is one and only oneG.L/. A galaxy can be seen as the ontological counterpart
of a logic.

The following condition on the compatibility relation has to be satisfied:

Sublogic Condition (SC): Consider thatL1 is a sublogic ofL2, ifw � L1, thenw � L2.

Further, we can also introduce an extra condition relating a logic and its antilogic:

Strong Constraint Condition (SCC): For every w 2 W , w � L if and only if it is not
the case that w � NL.

Under SCC, we have

G.L/\G. NL/ D ¿ I
G.L/[G. NL/ DW :

SCC, though, could be too strong for it fails to capture the standard way to talk about
possible worlds. To see this, consider the following toy example. Let L D .F;`L/ be
a logic, such that F D f˛; ˇg. Suppose further that ¿ `L ˛ and it is not the case that
¿ `L ˇ. Therefore, we have ¿ ` NL ˇ and it is not the case that ¿ ` NL ˛. Let w1 2 W
and w2 2 W be possible worlds such that ˛ and ˇ are the case in w1, and ˛ and ˇ are
not the case in w2. It would be reasonable to consider that for all w 2 W , w 2 G.L/
if and only if for any ' 2 F , ¿ `L ' implies that ' is the case in w. Thus, in our toy
example, w1 2 G.L/ and w2 … G.L/ while w1 2 G. NL/ and w2 … G. NL/. In other words,
G.L/\G. NL/ ¤ ¿, and G.L/[G. NL/ ¤W .
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It can be therefore natural to weaken the constraint on the compatibility relation. An
alternative condition would then be

Weak Constraint Condition (WCC): Given a logic L and its antilogic NL, for every w 2
W , it is not the case that (w � L if and only if w � NL).

It is interesting to consider how the galaxy of a logic and of its counterlogic relate. It
could be that

G.L/[G. QL/ ¤W :

Neither a logic and its respective counterlogic can cover all formulas where the logic
is defined nor their respective galaxies can cover all worlds. Also, it could be that

G.L/ \G. QL/ ¤ ¿ :

When this is the case, this is a remarkable intersection class for it is composed of only
inconsistent worlds. All logics that admit inconsistencies are such that their galaxies are
in this intersection.

So, let a class of all inconsistent logics be defined as such

� D fL 2 L W there is a ' such that ¿ `L ' and ¿ `L :'g :

If so we can say that for any L

G.L/\G. QL/ � G.�/ WD
[
fG.L/ W L 2 �g :

In other words, the intersection between the galaxy of a logic and of its counterlogic is
a subclass of the galaxy of all inconsistent logics. The intersection is always inconsistent.
We call a world w such that w 2 � a dialethea, or an inconsistent world.4 It follows that

for each w 2 G.�/ there is an L such that w 2 G.L/\G. QL/ :

These prospective remarks can be viewed as the starting point of an algebra of galax-
ies that is neither reducible nor isomorphic to the algebra of logics (or the algebra of
consequence relations (see [19])). Such an algebra is a tool to study how different logics
intersect each other. Also, operations on galaxies reflect operations on logics – such as
fusion (in the sense of combination of modal logics (see [8])). So, we have

G.L1 ˚ L2/ D G.L1/ [G.L2/ :

The algebra is a useful tool to look at the ontological issues raised by universal logic.

4 The term is used here in a way that is reminiscent but not equal to that used by Priest (see [15]). He
takes a dialethea to be a part of reality which harbours inconsistencies, and true contradictions. We take
it to be simply an inconsistent world. It is also worth noticing that if L is such that it is not the case that
¿ `L ' ^ :' then ¿ ` NL ' ^ :'. Therefore NL could contain dialetheas (true contradictions) also in
Priest’s sense.
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5 Prospects for a Metaphysics of Galaxies

We can then say that a world is possible only with respect to a galaxy. This has an impact
on the notion of logical truth – or necessity simpliciter as it is classically conceived given
that (logical) truths are relative to galaxies. When we say that something is the case in all
possible worlds, we ought to specify a galaxy in which these possible worlds are. We can,
however, say some general things through the framework of galaxies. A relevant general
result is that for any ', if ' is contingent in a galaxy, there is a galaxy in which it is
necessary.

A notion directly affected by understanding a possible world as relative to a galaxy
is that of necessity. Either reduced to a single type (broadly constructed as metaphysical
necessity or narrowly conceived as logical necessity) or as a multiplicity (where natural or
normative necessity cannot be understood in terms of logical or metaphysical necessity,5

necessity is understood in terms of classes of possible worlds. Now, it seems that it follows
from consideration on galaxies that necessity is relative to a place in the space of galaxies.
There is no such thing as absolute necessity. How would a metaphysics without a notion
of absolute necessity look like?

This is the main metaphysical open problem raised by galaxy theory, i.e., the study
of galaxies. It bifurcates into two different issues: the nature of modal claims under the
framework of galaxies and the ontological status of galaxies. As for the first issue, modal
claims in general appear to have to be indexed by galaxies. These claims become relative
to a class of worlds. It is interesting to remark that the relative character of necessity entails
also the relativity of contingency to galaxies. At first sight, a metaphysics that takes into
consideration different galaxies of possible worlds is close to a Humean approach in that
it exorcises necessity; and in fact it is more extreme than typical Humean approaches as
it dismisses logical necessity as well. It would be a metaphysics of absolute contingency.
However, nothing happens contingently in all galaxies. There is no such thing as (logical)
contingency simpliciter. If there is nothing but things that are contingent on something
else, maybe other modal notions such as dependency and compossibility should rather be
taken as basic. Those notions are relational ones and make explicit that modal ties are not
absolute and have to be placed in the space of galaxies. Given a galaxy (or a collection of
galaxies), we can study necessary (or accidental) connections within it. As for the overall
picture where we ask questions about, say, the contingency of it all, they would have to be
fully reformulated.

As for the second issue, we can make some sketchy remarks about the reality of galax-
ies. David Lewis has championed a version of modal realism [11] that maintains that all
possible worlds exist – the actual one being no more than the one which happens to be
this. There is no special property that renders any world actual, it is a world among others
and it is actual for those who are in it. Actuality is indexical while existence is shared by
all worlds (within a chosen galaxy – the classical one). From the point of view of galax-
ies, for a world to exist, it is enough to be in the right galaxy. Now, given the plurality of
galaxies, one could formulate a stronger version of modal realism that would include all

5 Kit Fine [7], for example, considers three irreducible varieties of necessity: metaphysical necessity, nat-
ural necessity and normative necessity.
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worlds across all galaxies. One could be a realist concerning worlds possible in all logics
and therefore extend realism to galaxies. If galaxies are part of the furniture of the uni-
verse, then the plurality of logics – the concern of universal logic – becomes a plurality
not only about reality but in reality. In Lewis’ realism about possible worlds, each world is
actual for its citizens. Analogously, a galactic (modal) realism would take the actual world
as no more than our current address. But then further questions concerning the plurality
of logics in reality could be raised. The issue can be framed in terms of where does this
world belong within the space of galaxies.

The plurality of galaxies is the opening door to a metaphysics informed by univer-
sal logic. This plurality does not entail the relativity of all metaphysical truths but rather
guides the metaphysical gaze towards this plurality. Kit Fine [7] has studied three options
with respect to the tension between a notion of reality that is neutral, absolute, and coher-
ent and the plurality of perspectives that arises fromMcTaggart’s problems with the reality
of tense. Those three alternatives could have counterparts in the context of the plurality
of galaxies – and its connection to reality. The first would be to choose one among the
many alternative galaxies and take it to be real. This would take reality not to be neutral
and would embrace a galactical antirealism contrasting with the modal realism formulated
above. The second option would be to consider that each galaxy has its own reality – re-
ality would then be no longer absolute but relative to each galaxy. The third option would
be to consider a broader reality – Fine labels it über-reality – that encompasses all galax-
ies, even though that reality would by no means exhibit coherence. Fine himself favours
the equivalent of this third option and explores some of its consequences. Here again, the
third option is more clearly in line with what we mean by a universal metaphysics oriented
by a galaxy theory. A metaphysics guided by universal logics attempts to investigate this
über-reality formed by the multiple galaxies and the way they relate to each other.

The focus on galaxies enables us to consider metaphysical issues beyond a parochial
point of view on necessity and contingency. It goes along with universal logic for it springs
out from the idea that each logic has a class of possible worlds associated to it. Galaxy
theory is the ontological counterpart of universal logic. The latter is the study of all logics
while the former is the study of their respective galaxies. It is also the study of all logics
through its associated class of possible worlds. Furthermore, as we see it, it is not simply
a subsidiary of the universal logic, but rather feeds its development and can guide its
endeavours.

Acknowledgment Thanks to Arnold Koslow and Graham Priest for discussions concerning ideas of this
paper.
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Can Identity Be Relativized?

Otávio Bueno

Abstract What is the scope of identity? The intuitive response is that it applies every-
where, since every object is identical to itself. In this sense, identity is a general concept.
In this chapter, I argue for the generality of identity by critically examining some attempts
at relativizing it. I argue that each alleged instance of relativization ultimately presupposes
identity, and as a result, identity still stands – in all of its un-relativized glory.

Keywords Identity, Relativization, Quantification, Nonclassical, Logics
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1 Introduction

Identity seems to be a general concept, one that can be, and regularly is, applied to any
domain, from ordinary concrete objects through theoretical constructs to abstract entities
and structures. Is the same concept of identity used in all of these cases? The answer
seems to be affirmative: for what could different concepts of identity possibly be? In order
to determine the difference (or sameness) in such concepts, we would need to invoke the
concept of identity – the very concept whose application conditions and extension we
are trying to determine. In this sense, identity seems to be an absolute notion rather than
a relative one. Identity’s generality and absolute character seems to go hand in hand.

In contrast, there have been a series of significant challenges to the effect that the con-
cept of identity is general (see, e.g., [4]). In this chapter, I examine some of the central
arguments in support of the relativization of identity, and I try to resist them. The alter-
native, suggested here, is one in which identity is the most general concept, and there is
a single identity concept that needs to be taken as primitive. (I call this a full, un-relativized
concept of identity.) However, I stress, no substantive metaphysics is needed in order to
make sense of this concept.1

1 Considerations in support of the unsubstantial character of identity can be found in [1].
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2 Relativizing Identity?

Several arguments can be, and have been, invoked to relativize identity, that is, to sug-
gest that identity is a relative concept, which depends on contextual considerations. I’ll
consider, in particular, three such arguments: (a) the definability of identity; (b) the de-
pendence of identity on the underlying logic, and (c) identity’s dependence on particular
frameworks. Each of the arguments will be examined in turn.

(a) The definability of identity The first argument is that identity can be defined: ei-
ther explicitly (depending on the underlying logic) or implicitly (via suitable postulates).
And given that definitions depend on the underlying language and the available logical re-
sources, by changing the language, the logical resources or both, one would thereby also
change identity, which is, thus, relativized.

In the case of an explicit definition, if the underlying logic is second-order, the well-
known argument goes, identity can be defined via Leibniz’s two principles of identity: the
identity of indiscernibles and the indiscernibility of identicals [9]. Taken together, the two
principles state that

.L/ x D y $ 8P .Px $ Py/ ;

where “P ” ranges over properties. Given that identity is not invoked in the right bi-
conditional, identity is then defined in terms of second-order quantification over proper-
ties, and the resulting definition, so goes the argument, is not circular. But this definition,
of course, crucially requires second-order quantification. If such quantification were not
available, one would be unable to define identity explicitly.

Alternatively, one could adopt a broader understanding of definition, in which identity
is implicitly defined via suitable postulates ([4], p. 328, note 2). Among these postulates,
the reflexivity and substitutivity of identity are obvious candidates (see [6], p. 95):

.R/ 8x x D x .reflexivity/ :

.S/ If x D y ; then Bxx ! Bxy .substitutivity/ :

Reflexivity expresses the fact that each object is self-identical – a basic feature of identity
that is taken to hold universally over all objects (however broadly they are taken to be).
Substitutivity allows one to infer that the same objects have the same properties. In this
case, although identity is not explicitly defined by these two conditions, (R) and (S), it is
implicitly formulated as that which satisfies these postulates. Thus, given a broad enough
understanding of definition, identity can still be (implicitly) defined.

However, it is now a matter of the underlying logic how such an implicit definition is
ultimately implemented. Different strategies can be adopted to define identity implicitly,
depending, once again, on the resources of the underlying language and logic. In this
sense, even though, when defined, identity is taken to hold universally, the concept is
now relativized to the particular logical and linguistic devices available to implement the
implicit definition. As a result, identity is not taken as an absolute notion: it is relativized.

(b) The relativization of identity to logic One of the reasons that have been advanced
for the relativity of identity is that identity depends on the underlying logic, not only in
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terms of the resources available to express, or to define, identity (as we have just seen),
but also in terms of the properties that identity is supposed to have (as will be discussed
now).

Depending on the logic that one considers, different concepts of identity emerge, in the
sense that different principles of identity are associated with the logic under consideration
(see [4], pp. 329–330). Here are a couple of illustrations:

(i) In first-order logic, identity can be formulated – although not fully defined – in
a slightly more direct way than the one discussed above, in terms of the following
condition:

.F/ x D y $ .Px $ Py/ ;

in which x and y are arbitrary individual variables, and F is an arbitrary formula. Of
course, given the limitations in expressive power of first-order logic, (F) does not ex-
press the condition that identical objects have the same properties. Strictly speaking,
(F) only states that identical objects will satisfy the same formulas. But clearly this is
not enough to guarantee the identity of the objects in question. After all, suppose that
there are uncountably many properties.2 In this case, we will not be able to express
each one of them with a formula in first-order logic (since there are at most countably
many such formulas). As a result, even if the right-hand bi-conditional in (F) were
satisfied, this would not guarantee that the objects in question were indeed identical.

(ii) This problem, of course, will not emerge in second-order logic, given that one can
then quantify over properties, and express directly Leibniz’s principles (L), discussed
above. These principles clearly provide a better way of formulating identity. But they
also have significant limitations. Suppose that on the right-hand bi-conditional in (L),
one quantifies over all properties of an object, and consider a concrete object, that
is, an object located in spacetime. In two different instants in time, the object will no
longer be the same, given the distinct properties it has. In fact, on this formulation,
identity is extremely hard to preserve for spatiotemporal objects.

I am assuming here that it makes sense to talk of different instants in time in the context
of Leibniz’s principles (L). It may be argued that classical logic, whether in a first-order
or in a higher order setting, is timeless, and so relativization to time is not something
this logic can, strictly speaking, capture. On this view, any time relativization naturally
requires some change in logic. This means that in order not to violate classical logic, one is

2 The assumption is not unreasonable. Consider a physical magnitude, such as gravitational potential in
field theories, and suppose that each value of this magnitude is a particular property. In this case, as one
moves away from the source of the field, the field intensity decreases continuously. As a result, there
would be uncountably many properties (see [10]). A far more controversial illustration would be this:
Consider the properties identical to the real number 0, identical to the real number 1, identical to the real
number 2, and so on. Note that each property of this kind is a property only of the corresponding number:
identical to 0 is a property of 0, and 0 alone; identical to 1 is a property of 1, and 1 alone, etc. Since
there are uncountably many real numbers, there are uncountably many properties. Identity already figures
here, as it should, as an extremely general (relational) property; in fact, it is arguably the most general
one. It may be complained that identity is not a property, but a relation of an object to itself and to no
other object (see, for instance, [11]). But this clearly presupposes identity [2]: the reference to “no other
object” requires that there is no object distinct (that is, not identical to) the one under consideration. And
it is unclear what else identity could be.
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not quantifying over all properties, but only over all non-temporal properties. As a result,
the full force of the principles of identity is not properly captured, since what is required
for objects to be the same is that they share all properties, rather than all properties of
a certain kind. If, however, one restricts the properties that are quantified over – e.g., to
essential properties, non-temporal properties, non-spatiotemporal properties – one would
have, at best, a limited, restricted formulation of identity rather than identity simpliciter
(for further discussion of this issue, see [3]).

(c) The relativization of identity to particular frameworks Identity is not only rela-
tive to the logic that is adopted in a given context, but it is also relative to the conceptual
resources of the framework that is employed. Two illustrations can be offered of this phe-
nomenon (see [4], pp. 329–330).

First, identity can be relativized to the particular kind of objects one considers, thus
yielding a form of objectual relativization. In classical set theory, such as Zermelo–
Fraenkel set theory with the axiom of choice (ZFC), to mention a well-known case,
identity for sets is formulated in terms of the extensionality axiom:

.E/ x D y $ 8z.z 2 x $ z 2 y/ :
This axiom expresses the fact that the identity of a set is determined only by its members:
sets are the same just in case the same members constitute them. This is not a general
characterization of identity, nor is it meant to be. But it provides a particular instance of
identity to a given domain of objects: it is tailor-made to the relevant framework – not
surprisingly, it applies particularly well to it. In this way, we have a particular kind of
framework relativization of identity.

Second, identity can also be relativized to a given condition (formulated in terms
of a collection of properties). Consider what Krause and Béziau ([4], p. 329) call the
“conceptual relativization” of the principles of identity: x and y are identical relative to
a collection of properties C just in case, for every property in that collection, x has that
property as long as y has it, and vice versa. More formally, we have

.C/ x DC y $ 9C8P .P 2 C ! .Px $ Py// :

This provides an additional illustration of the relativity of identity to a given framework; in
this case, a conceptual relativization of the principles of identity to a certain condition C .

3 Resisting the Challenges

Can these challenges to the relativization of identity be resisted? I think they can, and I
will examine each of them in turn.

(a) The undefinability of identity The alleged fact that identity can be defined provides
no grounds to support the relativity of identity. First, it is not clear that identity can, in fact,
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be defined – either explicitly or implicitly. Any allegedly explicit definition of identity –
for instance, in second-order logic – ultimately presupposes identity [1, 5], and [8]. The
intelligibility of Leibniz’s principles of identity presupposes that the same variables are
used in each side of the two bi-conditionals:

.L/ x D y $ 8P .Px $ Py/ :

If the variables x and y, on the left side of the main bi-conditional, are not the same as the
corresponding variables on the right, the resulting statement will not express the intended
meaning: objects x and y are not the same if some object z, distinct from them, has the
properties that are quantified over. Moreover, if the variable P is not the same on both
sides of the right bi-conditional, the resulting statement will also fail to be adequate, since
two objects are not the same if they have different properties.

It may be objected that, in this case, identity is only required in the metalanguage
in order to express Leibniz’s principles. Identity is nowhere to be found, as a primitive
concept, in the object language. In particular, it does not figure in the right side of (L)’s
main bi-conditional in terms of which the concept is defined. Thus, no circularity is, in
fact, involved.

In response, the fact that identity is needed in the metalanguage clearly indicates that
the concept is ultimately presupposed (see also [1]). For it is the intelligibility of the
object-language expression that is at stake. If the same variables are not used on both sides
of the bi-conditionals in Leibniz’s principles, the statement fails to express the intended
concept. As a result, Leibniz’s principles can properly express the target concept only by
presupposing the very notion that the principles are supposed to define, namely, identity.
Although perhaps it is only in the metalanguage that identity is explicitly invoked, the
fact remains that identity is presupposed in the object language. And this is enough to
challenge the claim that identity has been successfully defined.

Moreover, even if the object language is sufficiently impoverished so that it is unable
to express fully the concept of identity – such as a fragment of classical propositional
logic – the notion of identity is still presupposed. Consider classical logic’s conjunction-
elimination rule that allows one to infer A from the conjunction (A ^ B). One needs
to use the same variable A in the premise and in the conclusion of the rule in order to
properly express it; otherwise, an invalid rule would be formulated: clearly C does not
follow logically from (A^B) if C is different from both (and is not itself a logical truth).
But this means that identity is presupposed even in logics that cannot express the notion
(for further discussion, see [1]).

Second, even attempts at defining identity implicitly, via postulates, presuppose iden-
tity. Consider the reflexivity and the substitutivity of identity, (R) and (S), mentioned
above. Both postulates clearly presuppose that the same variables are used. In the case
of reflexivity – namely, 8x x D x – the same variable x needs to be in place on both
sides of the identity sign. Similarly, in the case of the substitutivity of identity – that is, if
x D y, then Bxx ! Bxy – the same variables x and y also need to be invoked. In both
cases, failure to do so would imply an inadequate formulation of the relevant postulates.
But their proper formulation clearly presupposes the very concept that they attempt, albeit
implicitly, to define.
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(b) The nonrelativity of identity to logic It was argued above that identity is relative
to the logic under consideration. Depending on the logic, the argument goes, identity is
expressed differently – if it can be expressed at all. As a result, identity has different
scopes: it is more restricted in some logics and less so in others.

Consider the formulation of the principle of identity in first-order logic:

.F/ x D y $ .Px $ Py/ :

Is this a relativization of identity to a logic in which one is unable to quantify over proper-
ties? I don’t think it is. First, note that identity is presupposed in the formulation of (F): the
same variables x and y need to be quantified over on both sides of the main bi-conditional.
Thus, rather than providing a first-order, restricted formulation of identity, (F) ultimately
relies on the full, un-relativized concept in order to be properly expressed. Second, since
one cannot quantify over properties in a first-order context, identity cannot be fully char-
acterized. But the fact that it has not been thus characterized does not entail that identity
has been somehow relativized. After all, as noted, the full concept is invoked to ensure the
adequacy of (F), by guaranteeing that the same variables are used throughout. Therefore,
identity is not restricted or relativized in (F): the un-relativized concept is employed, and
full identity is ultimately invoked.

Now, in (F) an arbitrary propositional variable is free. Of course, given the quantifica-
tional resources of first-order logic, this variable cannot be quantified over. But what does
it range over? There are two obvious answers: predicates (perhaps formulas) or proper-
ties. The former are linguistic items, the latter are features of the world. But none of these
options works in this context. If the variable ranges over predicates, the content of (F)
will fail to capture identity fully, since identity is supposed to be a relevant trait of objects
rather than something limited to linguistic expressions. Furthermore, as is well known,
there are countably many predicates in a language, but there are (at least) uncountably
many properties. So, there is a mismatch between what is minimally required to formulate
properly identity (that is, quantification over uncountably many properties) and the avail-
able expressive resources of first-order languages (that is, countably many predicates).

The same point goes through,mutatis mutandis, if the predicate variable in (F) is taken
to range over formulas (see [4], p. 329), since there are at most countably many of them.
Note that formulas don’t seem to be the right items in this case. Consider the one-place
formula “x is thought of by Frege.” Presumably the identity of an object does not depend
in general on the relations it can enter into. Thus, whether x is identical to y or not should
not depend on whether Frege thought of x or y. But it would if the predicate variable in
(F) ranged over formulas.

In contrast, let us suppose that in (F) the propositional variable ranges over properties.
This option at least puts the proposal on the right track. However, even this would not do.
After all, presumably (F) can only express identity if what it expresses is true. Since the
propositional variable P in (F) is not quantified over, (F) is an open formula that lacks
truth value. We can, of course, consider individual instances of (F) for particular values of
P . But these instances do not have the quantificational force to express identity. In fact,
as a definition of identity, any particular instance of (F) would be false: objects are not the
same just in case they both satisfy a single property.
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We thus have a dilemma: Either (F) has generality or it does not. If it does have general-
ity, and thus at least in principle could range over a number of different properties, it lacks
truth value; after all, in this case, (F) is an open formula. If (F) does not have generality,
and a particular property is instantiated in each case, (F) will have a truth value, but each
instance of (F), as noted above, will then be false, and thus inadequate as a formulation
of identity. In either case, (F) fails to express identity properly. As a result, since identity
has not been adequately expressed, it has not been relativized either. Any relativization of
identity should be recognized, first, as identity. However, this is not the case, given (F)’s
falsity in one horn and its lack of truth value in the other.

These objections would not emerge in the context of second-order logic, since quan-
tification over properties is allowed. We thus have Leibniz’s principles, discussed above:

.L/ x D y $ 8P .Px $ Py/ :

But we still do not have a relativization of identity. First, as noted above, identity is not
defined by (L), since it is presupposed in the formulation of (L) itself. The expression,
thus, fails to define properly the concept.

Furthermore, even if identity were somehow characterized by (L), it would not thereby
be relativized. Although what can be expressed in a given formal language does indeed
depend on the resources of that language, this fact does not entail that identity itself has
been relativized to the language in question. Given the limitations in expressive power
of any given language, a particular aspect of identity may have been formulated, but that
is different from fully capturing a relativized concept of identity. Talk of a relativized
concept suggests that identity – full identity – has been been formulated, and it turns out
to be somehow relativized. But given that full identity is needed in order to make sense
of any such relativization, it is unclear that any significant relativization has in fact been
reached. A purely linguistic relativization, which simply acknowledges the fact that in
a given language certain things cannot be expressed, is not philosophically significant.
Such a linguistic relativization may well be right, but it is largely irrelevant. What would
be relevant is a different concept of identity – a genuine concept of identity – that has
in fact been relativized. But it is unclear that we can have that since expressions of that
concept ultimately presuppose full identity, for the reasons discussed in this chapter, and
thus the identity concepts at stake are not really rivals.

These points also apply to (L). As noted, its formulation does presuppose identity.
Moreover, as also highlighted above, suppose that the properties that are quantified over
in (L) are only of a certain kind: they may involve essential properties, temporal properties,
spatiotemporal properties, etc. Since quantification is restricted to the relevant properties,
even in the context of (L) one obtains at best a limited formulation of identity, which
focuses on the particular properties that are quantified over. However, since (L) still pre-
supposes the full concept of identity, no philosophically significant relativized notion
emerges in the end.

(c) The nonrelativization of identity to particular frameworks Two forms of rela-
tivization of identity to a framework were considered above: the first involved the rel-
ativization to a certain kind of objects, the second focused on conceptual relativization
(expressed in terms of the characterization of a domain via suitable properties). Neither
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form of relativization goes through, though – or, at least, none has the implication that
identity has indeed been relativized.

Consider, first, objectual relativization. The extensionality axiom in set theory provides
identity conditions for sets, that is, it specifies the conditions under which a set differs from
other sets and the conditions under which it does not. This does not entail, however, that
identity itself has been relativized. If sets are the same as long as they have the same
members, the notion of identity that is invoked remains unaltered. In fact, had it been
altered, the extensionality axiomwould not have the content it is supposed to have, namely,
that the identity of a set depends only on its members, and so any difference between two
sets has to be traced back to a difference between the relevant members.

To see why this is the case, consider the notion of difference that is invoked. Given
extensionality, two sets x and y can differ only if there is an object o that is a member of
x but not of y, or vice versa. Thus, if o is a member of x, it needs to be distinct from each
member of y; alternatively, if o is a member of y, it has to be distinct from each member
of x. To be distinct, of course, just is not to be identical. And if this notion of identity is
somehow relativized – in this case, to a particular set – the extensionality axiom will fail
to guarantee that the identity of sets depends only on their members. After all, whether the
object o is distinct from each member of y (or of x, depending on the case) would depend
on whether o is itself a member of some other set, given the presumed relativization to
a set. Thus, whether sets are identical or not would then depend not only on their members,
but also on whether their members belong to some other set, which provides the presumed
relativization of identity. But this is clearly against the extensionality axiom.

Moreover, in this case, we would also face a regress. After all, the set with respect
to which identity is relativized should have well-defined identity conditions (so that it is
determined whether o is itself a member of that set), but this presupposes the extension-
ality axiom. Since this axiom is taken, by hypothesis, as invoking a relativized notion of
identity, whether an object is, or is not, a member of a given set ultimately depends on
whether this object is a member of some other set with respect to which identity is rela-
tivized. This set, in turn, also needs to have well-defined identity conditions, which also
presupposes extensionality, and a regress emerges. To block such a regress what is needed
is a nonrelativized concept of identity – that is, one that is not dependent on any set. For
in this case, two sets differ as long as there is an object which belongs to one of them and
is distinct (that is, not identical) to any member of the other. (Note that identity is presup-
posed in order for an object not to be a member of a given set, since the object needs to
be distinct from each member of that set.) Given that the difference between this object
and the relevant members of the set does not depend on membership to any set, there’s no
need to invoke extensionality, and the regress is blocked.

The fact that such a regress does not emerge in the first place when classical set theory
is developed already indicates that a nonrelativized concept of identity is ultimately in
place. For these reasons, the very content of extensionality requires the nonrelativized
concept of identity. But this means that this axiom does not relativize identity after all:
it presupposes the usual, nonrelativized identity concept – on pain of not capturing the
axiom’s content.

Second, conceptual relativization is also not a relativization of the concept of identity.
As we saw, x and y are identical relative to a collection of properties C if, and only if, for
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every property in that collection, x has that property if, and only if, y has it as well. This
was then formulated in terms of the following equivalence:

.C/ x D C y $ 9C8P .P 2 C ! .Px $ Py// :

Identity is not relativized in this case. Expressed in (C) is not the concept of identity, but
that of similarity (that is, identity with respect to some properties). And it’s crucial that
the underlying concept of identity, which is presupposed in (C), is itself not relativized.
Otherwise, (C) will fail even to express similarity between the objects in question. Note,
to begin with, that to ensure that the objects x and y are considered throughout, it is
crucial that the same variables are invoke on both sides of the main bi-conditional in
(C). Furthermore, since x and y are not required to share the same properties in general,
but only those of a restricted class C , clearly these objects need not be identical. But
their similarity – identity with respect to C – presupposes (nonrelativized) identity. After
all, all those properties that are in the restricted class C are involved in establishing the
relevant similarity between x and y, that is, any property distinct from those in C need
not be shared by these objects. Otherwise, instead of similarity, we would have identity
via Leibniz’s principles, since the objects x and y would then have the same properties.
Once again, identity is not relativized here: it is presupposed.

If identity is not relativized, does this mean that it is an absolutely unrestricted con-
cept?3 I don’t think it does. We have here a pragmatic point. Similarly to any other
concept, the use of identity presupposes a context in which it is applied. Relative to that
context – which may be determined by a framework, by particular conditions, or by a given
logic – identity seems to be relativized. This provides the appearance that the concept has
indeed undergone some sort of relativization. In practice, however, appearances are de-
ceptive, and the nonrelativized notion of identity – the single notion that is presupposed in
each use – is invoked. In each particular instance, the same concept is employed: the one
just referred to in this very sentence!

But, as with any quantificational use, it is always relative to a context that a particu-
lar application is articulated. In the very statement of the thesis that identity is a general
concept – that is, one that is applied everywhere – a particular context is at stake, namely,
the attempt at determining the scope of identity. And in different contexts, different con-
siderations are put forward. As we saw, there are attempts at restricting identity to certain
frameworks, or particular conceptual conditions, or given logics. Any individual appli-
cation context of identity provides the relevant range of contrasts for the concept. The
important point, however, is that, despite the different contexts, the same concept of iden-
tity is used, or presupposed, throughout. It is unclear that there is another concept in any
case. After all, as argued above, in each alleged relativization of identity, the full, un-
relativized concept of identity is ultimately presupposed.

This supports the conclusion that identity is an extremely general concept. However,
this does not entail that identity is an absolutely unrestricted concept. Just as quantification
is always restricted – a particular domain for the quantifier needs to be specified in order
for the quantifier to be properly determined and to avoid potential incoherence – identity is
similarly constrained. Despite its generality, identity is applied in particular contexts, and

3 For discussions of absolute generality, see the papers in [7].
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in different contexts different constraints emerge. These are constraints about the context
(frameworks, conditions, logics), which restrict particular uses of the concept – despite
the fact that, in each case, the concept is the same.

4 Conclusion

I examined three considerations to the effect that identity can be relativized: (a) Identity
can be defined, and since definitions depend on the underlying logical resources, different
concepts of identity emerge. (b) Identity is also relative to logic; hence, changes in logic
entail changes in identity, which is, thus, relativized. (c) Finally, identity is relative to
a framework, and as a result, another source of relativity of identity is in place. I argued
that there are difficulties for each of these claims, and given the fact that full, un-relativized
identity is presupposed throughout, it is unclear that identity has indeed been relativized.
Identity is too basic a notion for that.
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Abstract In this chapter, I describe how complement toposes, with their paraconsistent
internal logic, lead to a more abstract theory of topos logic. Béziau’s work in Univer-
sal Logic – including his ideas on logical structures, axiomatic emptiness and on logical
many-valuedness – is central in this shift and therefore it is with great pleasure that I wrote
this chapter for the present commemorative volume.
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The point of these observations is not the reduction of the familiar to the unfamiliar (. . . ) but the
extension of the familiar to cover many more cases.
—Saunders Mac Lane, Categories for the Working Mathematician.

1 Introduction

Probably most readers of this Festschrift are familiar with Béziau’s personal journey from
paraconsistent logic to Universal Logic, as accounted for example in [7]. In this chapter,
I want to explore a similar conceptual shift in the case of topos logic. I will show that
the notion of complement topos, with its paraconsistent internal logic, plays a significant
role in finding the truly universal, structural features of topos logic, since, in spite of what
many category theorists think, until nowadays there are plenty of material, non-invariant
or non-structural elements in topos logic.

The plan of the chapter, is as follows. In the next section, I will expound the basics of
what I call standard topos theory and the view of the internal logic, or topos logic, arising
from it. In Sect. 3, I will present complement toposes, the features of their internal logic
and the exact elements of standard topos logic that they help to exhibit as non-structural,
namely certain particular Skolemizations in the equational structure of a topos. The very
existence of complement toposes runs against a theorem that is usually read as stating
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that the internal logic of a topos is in general intuitionistic. In Sect. 4, I examine the
preconditions for proving that theorem, and that make its usual reading posible, and show
that many of them are also non-structural elements from standard topos logic. This allows
us to give, in Sect. 5, a more structural, invariant, purely equational formulation of topos
logic, which closely resembles Béziau’s notion of logical structure in his Universal Logic.

The reader is assumed to know classical logic and to understand first-order languages
and naïve set-theoretic notation. Those are the prerequisites. A fluent reading presupposes
the knowledge of some category theory, order theory and algebra.1 There is a convention
to keep on mind: I use the adjective ‘categorial’ exclusively used as shorthand for ‘cat-
egory theoretic’, but note that this convention has not been applied to quotations, where
‘categorical’ is commonly used.

2 Basics of Standard Topos Logic

When the main contradictions of a thing have been found,
the scientific procedure is to summarize them in slogans
which one then constantly uses as an ideological weapon
for the further development and transformation of the thing.
—William Francis Lawvere, ‘Quantifiers and sheaves’.

2.1 Introduction: Toposes as Universes of Sets

A category can be thought of as a universe of objects and their transformations or con-
nections, called morphisms, subject to some very general conditions. An example of
a category is Set, whose objects are sets and its morphisms are functions between sets.
In Set there is a special kind of objects, namely objects with two elements. As objects
with two elements, all these objects are isomorphic to each and each of them has all and
only those mathematical properties (as expressible in categorial terms) as any other, so the
sign ‘2Set’ can be used to denote any of them and speak as if there were only one of them.
We will say that an object with the property of having exactly two elements is unique up to
isomorphism. 2Set act as truth values object in Set in the sense that suitable compositions
with codomain 2Set serve to expresses that certain sets are part of others. Hence, the two
elements of 2Set are conveniently called trueSet and falseSet.

Other logical notions besides truth values, such as zero- and highero rder connectives,
can be defined in Set. It can be proved that the right logic to study the objects in Set, its
internal logic, is that induced by the algebra formed by 2Set and the connectives, which
turns out to be classical. This logic is called internal for two main reasons. First, because
it is formulated exclusively in terms of the objects and morphisms of the category in
question. Second, because it is the right logic to reason about the category in question
since it is determined by the definitions of its objects and its morphisms, in a way that

1 A good starting point are Chapters 1, 2 and 4 of [26].
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using a different logic for that purpose would alter the defining properties of those objects
and morphisms and thus it would not be a logic for the intended objects and morphisms;
in other words, it cannot be a canon imposed “externally” to reason about the category.

As in usual axiomatic membership-based set theories like ZF(C), most of mathematics
can be interpreted and carried out in Set. However, a set theory developed from a category-
theoretic point of view is not based on the notion of membership, but rather on those of
function and composition (of functions).

There are other Set-like categories, called elementary toposes or simply toposes. In
a topos E there are objects which play the role of 2Set in the particular case of Set, i.e.
they serve to express that certain objects are part of others via suitable compositions of
morphisms. An object that plays such a role in a topos is also unique up to isomorphism
and any of them can be denoted by ‘˝E’ and speaks as if there were only one of them.
Logical notions such as truth values and zero- and higher order connectives can also be
defined in a topos. However, in general, ˝E has more than two elements and, since ˝E
has all the same universal properties as 2Set and the latter can be considered a truth values
object, so can the former. In addition, the logic appropriate for dealing with the objects
and morphisms in a topos, its internal logic, is in general intuitionistic, not classical. This
is precisely a logic arising from objects and morphisms themselves, not from our devices
to reason about them. Like Set, toposes also allow for the interpretation of set theoretical
notions and hence of significant parts of mathematics, but the reconstruction of mathe-
matics carried out in a topos corresponds to mathematics as done in an intuitionistic set
theory. If toposes can be considered universes of sets and, given that at least parts of math-
ematics can be reconstructed in a set theory, toposes also allow for the reconstruction of
those parts of mathematics, then the universal laws of mathematics are those valid across
all universes of sets, namely, the laws of intuitionistic logic.

2.2 Properties and a Comprehension Axiom

For our convenience, think of an object O of a topos as a type, collection of things, or
generalized set – the O’s.2 Thus an object O is the objects of o’s, in the same way that
a product is the object of pairs hx; yi such that x is in X and y is in Y . The basic means
of getting logic in a topos will be by a generalized notion of comprehension of subobjects
by ‘properties’. There are two things one needs to know about such properties:

Properties are local: A property is always a property of o’s of some O; thus, every prop-
erty has a fixed domain of significance.
Properties are variable propositions: If ' is a property with a domain of significance O ,
and a is a constant element of type O , then '.a/ is a proposition.3

So in a topos a property with a domain of significance O will be called a propositional
function on O . Every morphism must have a codomain, so a topos will include an ob-

2 This elucidation of toposes in logical terms follows closely [1].
3 As Awodey has noted, this is Russell’s notion of propositional function, for example in The Principles
of Mathematics § 22 or Principia Mathematica, pp. 14 and 161.
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ject ˝ of propositions or (algebraic) truth values. Its elements (if any) p W 1 �! ˝ are
propositions, and its generalized elements ' WX �!˝ are variable propositions, hence
propositional functions. If the propositionp factors as p D '.a/ W 1 �! O �! ˝, then
p results from evaluating the propositional function ' for the element a of O . Like for
every object of a category, the elements of˝ form a partial order, i.e. for any propositions
p, q and r ,

p � p I
If p � q and q � p, then p D q I
If p � q and q � r , then p � r :

The core assumption in standard topos theory – at least for the part concerning the theory
of the internal logic of toposes, or topos logic – is that there is a proposition true W1�!˝

satisfying a certain comprehension principle. I will use a subscript S to denote all the
morphisms, objects and constructions that depend on this assumption and I will explain
later in more detail and more precisely the notation. Thus, such a proposition S true W
1 �! ˝ is said to satisfy the following (Standard) Comprehension axiom. For each
S' WO �! S˝ there is an equalizer of S' and S trueO , and each monic m WM �O is
such an equalizer for a unique S'. In diagrams, S true is such that for every S' and every
object T and morphism o W T �!O , if m ıS ' D m ıS trueO and x ıS ' D x ıS trueO ,
then there is a unique h WX �!M that makes the diagram below commutative:

M >
m

> O
S'

>

S trueO
> S

X

x

^
h

<

The propositional function S' is also called ‘the (standard) characteristic (or classifying)
morphism of m’, denoted by S'm for more convenience. A subobject classifier is unique
up to isomorphism and so is S'm. Now a topos can be defined more precisely: A cate-
gory SE with equalizers, (binary) products, coequalizers, coproducts, exponentials, and
a (standard) subobject classifier is called elementary (standard) topos.4

Then, for any object O in a topos, the composite S trueıŠO WO �! 1�! S˝ denotes
a constant, S true-valued propositional function onO , abbreviated as S trueO . Propositional
functions specify subobjects as follows. Given a propositional function ' WO�!S˝, one
gets the part of the o’s of which S' is true, if any, as an equalizer m WM � O of S'
and S trueO . This subobject will be named accordingly the extension of the propositional
function S'.

The connection of this Comprehension axiom with more traditional logical notions
is much less mysterious than it might appear at first sight. Consider the diagram in the

4 Note by the way that, unlike many authors, I prefer the equalizers presentation of logic, not the pullbacks
one.
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definition of an equalizer:5

W
i

> X
f

>

g
>
Y

Z

j

^
k

<

As a particular case for the Comprehension axiom one has

M >
m

> O
S'

>

S trueO
> S

X

x

^
h

<

The only morphism from X to S˝ that makes the diagram above commutative is S trueX :

M >
m

> O
S'

>

S trueO
> S

X

x

^

S trueX

>

h

<

Thus, the following diagram is obtained:

M >
m

> O
S'

> S

X

x

^

S trueX

>

h

<

Note that, according to the definition of an equalizer, h must be the only morphism that,
among other properties, x D m ı h. But this suffices to satisfy the categorial definition of
x 2 m. Hence, what the Comprehension axiom states is that S'.x/ D StrueX (because
of the right commutative triangle) if and only if x 2 m (because of the left commutative
triangle).

Given the notion of a subobject classifier, one can also define S false W 1 �! S˝ as
the character of 01, the only morphism from an initial object to a terminal one:

5 Let f WX�!Y and g WX�!Y be morphisms in a category C. An equalizer in C for f and g is given
by an object W and a morphism i WW �!X in C with the following two properties: (1) f ı i D g ı i
and (2) for any morphism h WZ�!X in C, if f ı h D g ı h, then there is exactly one morphism in C
k WZ�! W such that h D i ı k.
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Example 2.1 Let Set be the (standard) category of (abstract constant) sets as objects and
functions as morphisms. S˝Set has only two elements with the order S falseSet < S trueSet.
Hence, in this category S˝Set D 2

SSet. Thus, for every element t of O , t W1�!O , t 2 O
if and only if S' ı t D S trueSet, and t … O if and only if S'm ı t D S falseSet, since
S falseSet is the only morphism distinct from S trueSet. According to the aforementioned
convention, I will use ‘SSet’ to denote that ˝Set is S˝Set. A similar convention will be
used for the categories below.

Example 2.2 SSet! is the standard category of functions. A terminal object in this cate-
gory, 1

SSet! , is the identity function from 1
SSet to 1SSet.

Consider two objects of Set!, f WW A�!B and g WW C �!D. If f is a subobject of
g, then A � C , B � D and f is the restriction of g, that is, f .x/ D g.x/ for x 2 A.
To the question ‘Is a given element x of C also an element of B?’ there are only two
possible answers: Either it is or it is not, so the codomain of a function playing the role
of a subobject classifier can be S˝SSet. But before giving that definite answer, one must
compute whether x is in A or not. One then has three options:

(i) Either x 2 A, so the final answer to the original question is ‘Yes’, because g.x/ 2 B ;
or

(ii) x … A, but the final answer to the original question will be ‘Yes’, because g.x/ 2 B
after all; or

(iii) x … A, but the final answer will be ‘No’ because x … B too.

Then, the domain of a function playing the role of a subobject classifier will be any
three-element set to represent these three options. Let me use ‘1’, ‘ 1

2
’ and ‘0’ to denote

each of those elements, respectively. So S˝Set! looks like this:

t W3
SSet�!S ˝Set

with t.0/ DS falseSet and t. 12 / D t.1/ DS trueSet.
Thus, a subobject classifier in this category is S trueSet! W 1Set! �! S˝Set! , i.e. a pair

of morphisms ht 0Set; trueSSeti from id1Set W1Set �! 1Set to S˝Set! . There are only two truth
values in this category. The calculation is straightforward and can be left to the reader
(Hint: There seems to be an additional value; let us denote it as S˛Set! D ht 0Set; trueSSeti.
Note that although t 0 ¤ t 00, S˛Set! DS trueSet! ).

Example 2.3 SS
## is the category of (standard irreflexive directed multi-) graphs and

graph structure preserving maps.6 An object of SS## is any pair of sets equipped with

a parallel pair of maps A
s
>
> t
V whereA is called the set arrows and V is the set of dots

(or nodes or vertices). If a is an element of A (an arrow), then s.a/ is called the source of
a, and t.a/ is called the target of a.

6 Nice introductions to this category can be found in [38] and [22].
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Fig. 1 Truth values object of
SS##

Morphisms of SS## are also defined so as to respect the graph structure. That is, a mor-

phism f W .A
s
>
> t
V /�! .E

s0
>

> t 0
P / in SS## is defined to be any pair of morphisms

of Set fa WA�!V , fv W E�!P for which both equations

fv ı s D s0 ı fa
fv ı t D t 0 ı fa

are valid in SSet. It is said that f preserves the structure of the graphs if it preserves the
source and target relations.

A terminal object in this category, 1
SS

## , is any arrow such that its source and target
coincide.

This topos provides a simple yet good example of a truth values object with more than
two elements. S˝S## has the form of a graph like that in Fig. 1. There are exactly three
morphisms 1

SS
## �! S˝S## in this category, which means that S˝S## has three truth

values with the order S falseS## < S.
s
t /S## < StrueS## .

2.3 The Standard Connectives

A morphism k W .S˝�� � �� S˝/S˝

:::
S ˝X

�! S˝ (with S˝ � � � � �S ˝ n times and

S˝
:::
S ˝

t times, n; t 	 0), abbreviated as k W S˝nm �! S˝, will be said to be an
(standard) n-ary connective of order m (where m D t � 1). Propositions, i.e. morphisms
1�!S˝ can thus be considered 0-ary connectives when n D t D 0.

Usual connectives are defined as certain equalizers which imply the following truth
conditions:

Negation: :p D S true if and only if p D S false; otherwise :p D S false
Conjunction: .p ^ q/ D inf.p; q/
Disjunction: .p _ q/ D sup.p; q/
Conditional: .p) q/ D S true if and only if p � q, otherwise .p) q/ D q
Universal quantifier: 8X'.x/ D inf.'.x//
Particular quantifier: 9X'.x/ D sup.'.x//.
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2.4 The Internal Logic of a Standard Topos

There is a theorem establishing necessary and sufficient conditions for a proposition Sp

being the same morphism as S true in a given standard topos SE. Let ‘ˆI ’ indicate that
logical consequence gives the results as in intuitionistic logic. Then the following theorem
holds.

Theorem 2.4 For every proposition Sp,ˆSE Sp for every topos SE if and only ifˆI Sp.
i.e. S˝ is a Heyting algebra.7

Summarizing, the standard categorial analysis of logic implies the following:

(IL1) Propositions form a partial order, i.e. for every propositions p, q and r :
(IL1a) p � p
(IL1b) If p � q and q � p, then p D q
(IL1c) If p � q and q � r , then p � r
(IL2) There is a truth value called S true with the following property:

For every proposition p; p �S true:
(IL3) One can define a truth value called S false that has the following property:

S false �S true
(IL4) From (IL2) and (IL3) one can obtain

For every proposition p; S false � p
(IL5) Connectives obey the following truth conditions:

:p D S true if and only if p D S false; otherwise :p D S false

.p ^ q/ D inf.p; q/

.p _ q/ D sup.p; q/

.p � q/ D S true if and only if p � q; otherwise .p � q/ D q
8X'.x/ D inf.'.x//

9X'.x/ D sup.'.x//:

(IL6) The categorial analysis of logic does not imply, but rather assume, the traditional,
‘Tarskian’, notion of logical consequence.
Let ‘pˆ

SE q’ denote that q is a logical consequence of p in a standard topos E,
i.e. that whenever p is the same morphism as S true in SE, so is q. Equivalently,
if q is not the same morphism as S true, p neither is. ˆ

SE p means that p is the
same morphism as S true in SE.

(IL7) From (IL1)–(IL6), the internal logic of a standard topos is in general intuitionistic.

7 I have made a little abuse of notation, for I used ‘Sp’ in both ˆ
SE and ˆI . In rigour, Sp is a morphism

which corresponds to a formula .Sp/� in a possibly different language, but there is no harm if one iden-
tifies them. A proof can be found in [15, see 	8:3 for the soundness part and 	10:6 for the completeness
part].
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Example 2.5 The internal logic of SSet is classical. For example, in SSet, every proposi-
tion p is the same as one and only one of S trueSet and S falseSet. : ı S trueSet DS falseSet
and : ıS falseSet DS trueSet. Hence, for any p, ::p D p. Also, for any p .p _ :p/ D
_ ı hp;:pi D sup.p;:p/ DS trueSet.

Example 2.6 Even though it is many-valued, the internal logic of SSet2 is classical:
S˝Set2 is a Boolean algebra with four elements, which in turn is the Cartesian prod-
uct of a two-element Boolean algebra with universe fS true˝Set ; false˝Set

g with itself (i.e.
operations act coordinatewise). For example, negation gives

:S trueSet2 D h:trueSSet;:trueSSeti D hfalseSSet; falseSSeti D S trueSet2

:S˛Set2 D h:trueSSet;:falseSSeti D hfalseSSet; trueSSeti D SˇSet2 :

The cases of S˛Set2 and S falseSet2 are left to the reader. It is easy verify that for every p in
SSet2, ::p D p and that .p _ :p/ D S trueSet2 .

Example 2.7 As I havementioned, S˝S## has three truth values with the order S falseS## <

S.
s
t /S## < StrueS## . Negation gives the following identities of morphisms:

:StrueS## D SfalseS## ; :S.st /S## D falseS## ; :SfalseS## D StrueS## :

Since .p � q/D S true if and only if .p ^ q/ D p, in general .::p � p/¤ S true
in S## because even though .::p�p/D S trueS## either when p D S trueS## or when
p DS falseS## , .::p ^ p/ ¤ ::p when p D S .

s
t /S## . Given that .::p � p/ ¤

S trueS## but there is no formula ˚ such that ˚ D true in classical logic and ˚ D false
in intuitionistic logic, .::p � p/ D S .

s
t /S## when p D S .

s
t /S## . Moreover, p _ :p

fails to be the same morphism as S trueS## since .p _ q/ D S true if and only if either
p D S true or q D S true. If p D S .

s
t /S## , :p D S falseS## , so neither p D S trueS##

nor :p D S trueS## and hence .p _ :p/ ¤ S trueS## .

2.5 Standard Topos Logic in a Nutshell

The beautiful picture of logic in a topos described above can be summarized in the fol-
lowing slogans:8

(S1) ˝E is (or at least can be seen as) a truth-values object. (Common categorial wisdom;
see, for example, [15, 21–23].)

(S2) The internal logic of a topos is in general many-valued. (Common categorial wisdom;
but see [3–5, 15, 21, 22, 26].)

8 I use the word ‘slogan’ here pretty much in the sense of van Inwagen: ‘a vague phrase of ordinary
English whose use is by no means dictated by the mathematically formulated speculations it is supposed
to summarize’ [36, p. 163], ‘but that looks as if it was’, I would add.
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(S3) The internal logic of a topos is in general (with a few provisos) intuitionistic. (This
also is common categorial wisdom, just to name but two important texts where this
is asserted; see [15] and [23].)

(S4) Intuitionistic logic is the objective logic of variable sets. (A powerful metaphor
widely accepted; see [18, 19, 27].)

(S5) The universal, invariant laws of mathematics are those of intuitionistic logic (cf.
again [3–5].)

With the exception of (S5),9 which is a claim specifically due to Bell, these slogans
are theses so widely endorsed by topos theorists as accurate readings of some definitions,
results and constructions in topos theory that it is hardly worth documenting, but I have
done it just to show that they appear in several major texts written by leading category the-
orists. In the remaining of the chapter, I will show that these slogans are heavily loaded,
philosophically speaking, and that they are not immediate consequences of the purely
mathematical features of toposes, and that there is a more purely structural characteriza-
tion of toposes. The notion of complement topos plays a crucial role in finding such a more
structural characterization of toposes.

3 Complement-Toposes and the Non-Structural Components
of Topos Logic

(. . . ) philosophy continues to suffer from a certain ‘prejudice towards truth’. (. . . ) But why should
truth be privileged over flasehood? Why should acceptance be privileged over rejection?
—João Marcos, Ineffable inconsistencies.

3.1 A Categorial Approach to Inconsistency: Bi-Heyting Toposes

A bi-Heyting algebra is a distributive lattice which is both a Heyting algebra and a Brouw-
erian algebra (the dual of a Heyting algebra, also called ‘co-Heyting algebra’). Clearly,
a Boolean algebra is a bi-Heyting algebra. Let c./ be the operation of Boolean com-
plement. Define then a ! b D c.a/

W
b and a � b D a

V
c.b/. In this case

�a Dea D c.a/.
A bi-Heyting topos is a standard topos for which the algebra of subobjects of any object

is a Brouwerian algebra. Since the algebra of subobjects of any object in a standard topos
is a Heyting algebra, a bi-Heyting topos can be defined as a standard topos for which the
algebra of subobjects of any object is bi-Heyting.

There might be objects in a standard topos whose algebra of subobjects is a co-Heyting
algebra. In [31], following the work in [20], some examples in the category SS

## are
given. This is the closest one will get paraconsistency in standard toposes, though. The

9 And maybe also of (S4), due mostly to the appearance of Hegelian terminology (‘objective’), very fre-
quent in Lawvere but not in other topos-theorists. Omitting that, one can add [2] and [15] as supporters of
this slogan.
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internal logic of a bi-Heyting topos is never dual to an intuitionistic or superintuitionistic
logic. Remember that the internal logic of a topos is determined by the algebra of S˝ and
the connectives, not by the algebra of its subobjects, and it is a co-Heyting algebra only if
it is a Boolean algebra. This is assured by the following theorems.

Theorem 3.1 Let ı WS˝�!S˝ a morphism such that ı � id
S˝ and ı ı S true D S true.

Then ı D id
S˝ .

(This is corollary 1.12 in [30] or proposition 4.1 in [31], where a proof is given.)

Theorem 3.2 In any topos SE the following conditions are equivalent:

(a) SE is Boolean.
(b) : ı : D id

S˝ .

(This is proved as theorem 7.3.1 in [15].)

Theorem 3.3 If SE is Boolean, then its internal logic is classical.

(This is proved as theorem 7.4.1 in [15].)
However, these results rely heavily on the standard character of a topos, i.e. on a par-

ticular description of its categorial structure. In what follows, I will show that the same
categorial structure can be described in an alternative, coherent way, such that the internal
logic of a topos can also be described as dual intuitionistic or paraconsistent.

3.2 Introducing Complement-Toposes

Mortensen’s argument for developing an inconsistency-tolerant approach to category the-
ory is that every topological space gives a topos (the category of pre-sheaves on the space),
mathematically

(. . . ) specifying a topological space by its closed sets is as natural as specifying it by its open sets.
So it would seem odd that topos theory should be associated with open sets rather than closed sets.
Yet this is what would be the case if open set logic were the natural propositional logic of toposes.
At any rate, there should be a simple ‘topological’ transformation of the theory of toposes, which
stands to closed sets and their logic [i.e. inconsistency-tolerant], as topos theory does to open sets
and intuitionism. [28, p. 102]

If the duality between intuitionistic logic and CSL is as deep as topological, then a repre-
sentation of CSL as the internal logic of a topos should be equally natural. So Mortensen’s
remark amounts to this: The same categorial structure described as supporting intuition-
istic logic should also be describable as supporting inconsistency-tolerance. Note that
the crucial motivation is the topological motivation, and does not turn on paraconsistent
ideology (even though Mortensen subscribes to the latter). In what follows, I expound
Mortensen and Lavers’s dualization of logical connectives in a topos.10

10 It is important to set their individual contributions. Of the ten diagrams in [28, Ch. 11], Mortensen drew
the first one and the final five, while Lavers drew the remaining four. The diagram for the dual-conditional
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Think of the objects of complement toposes as the objects of standard toposes in sec-
tion 2 and retain the definition of propositional functions. It will be assumed that there
is a proposition false W 1 �! ˝. This assumption will obligate certain names for other
morphisms. ‘D˝’ will denote this initial assumption about the name of a certain mor-
phism with codomain ˝ ‘false’ in this case) and from here on, Df will denote that there
is a monomorphism from D˝ to the codomain of f and DE that the morphisms with
codomain of the object of propositions of E receive their names according to this initial
assumption.

Then, for any object X in a complement topos, the composite Dfalse ı ŠX W X �! 1
�! D˝ denotes a constant, Dfalse-valued propositional function on X , abbreviated as
DfalseX . Propositional functions will specify subobjects as follows. Given a propositional
function D' WX �! D˝, one gets the part of the x’s of which D' is false, if any, as an
equalizerm WM �X of D' and DfalseX . This subobject will be named the anti-extension
of the propositional functionD'. A morphismDfalse W1�!D˝, called the dual classifier,
has the following property:

Anti-comprehension axiom For each D' W O �! D˝ there is an equalizer of D' and
DfalseO , and each monic m WM �O is such an equalizer for a unique D'. In diagrams,
Dfalse is such that for everyD' and every object T and morphism o WT �!O , ifmıD' D
m ıD trueO and x ıD ' D x ıD trueO , then there is a unique h WX �!M that makes the
diagram below commutative:

M >
m

> O
D'

>

D falseO
> D

X

x

^
h

<

never was explicitly drawn, but it was discussed in [28, p. 109]. The full story, as told by Mortensen in
personal communication is as follows. Mortensen gave a talk at the Australian National University (Can-
berra) in late 1986, on paraconsistent topos logic, arguing the topological motivation for closed set logic.
He defined a complement topos, drew the first three diagrams from Inconsistent Mathematics, chapter
11, that is including the complement versions of S true and paraconsistent negation, and criticized Good-
man’s views on the conditional. But it was not seen clearly at that stage how the logic would turn out.
Peter Lavers was present (also Richard Routley, Robert K. Meyer, Michael A. McRobbie, Chris Brink and
others). For a couple of days in Canberra, Mortensen and Lavers tried without success to thrash it out.
Mortensen returned home to Adelaide and two weeks later Lavers’ letter arrived in Adelaide, in which he
stressed that inverting the order is the key insight to understanding the problem, drew the diagrams for
conjunction and disjunction, and pointed out that subtraction is the right topological dual for the condi-
tional. Mortensen then responded with the four diagrams for the S5 conditional, and one for quantification
(last five diagrams in Inconsistent Mathematics, chapter 11). A few months later (1987), Mortensen wrote
the first paper, with Lavers as co-author, and sent it to Saunders Mac Lane and William Lawvere (also
Routley, Meyer, Priest). Mac Lane replied but Lawvere did not. A later version of that paper became the
eleventh chapter of Inconsistent Mathematics.
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Let me call Dfalse W 1 �! D˝ a dual classifier. D' is then the dual characteristic mor-
phism of m.11 A complement topos DE is then a Cartesian closed category with a dual
classifier. Thus, what the Anti-comprehension axiom says is that D'.x/ D DfalseX if and
only if x 2 m. This implies the reconceptualization of certain components of toposes men-
tioned earlier: Given a propositional function D', the part of the O’s for which it is false
is obtained as an equalizer of D' and D falseO (a constant propositional in O with false as
value). Such an equalizer is a subobject m WM �O , the anti-extension of the proposi-
tional function D'. Now, D˝ is in general a Brouwerian algebra, because as the standard
connectives form a Heyting algebra, their duals form a Brouwerian algebra, which can be
easily verified. This means that the internal logic of a complement topos is not intuitionis-
tic, but a certain kind of dual intuitionistic, paraconsistent logic (examples of the dualized
internal logic of concrete toposes can be found in [11]). The truth conditions implied by
the definitions of the connectives would be

Negation: � p D Dfalse if and only if p D D true; otherwise � p D Dtrue
Disjunction: .p g q/ D sup.p; q/
Conjunction: .p f q/ D inf.p; q/
Subtraction: .q � p/ D S false if and only if qD � p; otherwise .q � p/ D q
Particular quantifier: EX'.x/ D sup.'.x//
Universal quantifier: AX'.x/ D inf.'.x//

Given that DE is a category with exponentials, one has D˝X , D˝D˝X
, etc. for any

X in DE, which may be regarded as representing collections of properties, properties of
properties, etc. defined over X , so one can also have higher order dual propositions.

If SE is a standard topos and DE is the category obtained by assuming not the name
S true, but Dfalse for a given morphism with codomain ˝ and making the corresponding
suitable choice of names for connectives, then DE and SE are categorially indistinguish-
able since terminal and initial objects, pullbacks, pushouts, and exponentials are notions
and constructions prior to the characterization of classifiers and connectives. Moreover,
Mortensen proved the following

Theorem 3.4 (Duality Theorem) Let S be a statement about DE obtained by the above
relabelling method from a statement S 0 about SE. Then S 0 is true of SE if and only if S
is true of DE.
A proof can be found in [28, p. 106].

Clearly, Heyting algebras and Brouwerian algebras, on one hand, and the logics they
give rise to, on the other, are dual. Nonetheless, toposes SE and DE are not dual in the
traditional categorial sense, so this other kind of duality has to be studied. A categorial
characterization of the ‘duality’ between standard toposes and complement toposes would
be most welcome, but for now I will describe in more detail the internal logic of comple-
ment toposes.12

11 Mortensen and Lavers use the names complement-classifier and complement topos, which are now the
names set in the literature (cf. [11, 28, 29, 37]). I have decided not to use the name ‘dual topos’ because
the adjective ‘dual’ applied to categories has another well-entrenched meaning in category theory.
12 I have attempted such a categorial description of this kind of duality in [10].
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The internal logic of a complement topos DE is the algebra induced by the object of
propositions or algebraic truth values, D˝, and the connectives (�, f, etc.). Consequence
is defined as usual: Let Dp ˆDE Dq denote that whenever the morphism Dp is the same
morphism as D true in DE, so is Dq (ˆ

DE Dp means that Dp is the same morphism as
Dtrue in DE).

There is a theorem establishing necessary and sufficient conditions for a proposition
Dp being the same morphism as Dtrue in a given complement topos DE. Let ˆCSL be
the extension of the consequence relation of closed set logic. Then the following theorem
holds.

Theorem 3.5 For every topos DE and proposition Dp, ˆDEDp if and only ifˆCSLDp.
i.e. D˝ is a Brouwerian algebra (by Theorem 2.4 and the Duality Theorem 3.4 above).13

Summarizing, the complement-categorial analysis of logic implies the following:14

(DIL1) Propositions form a partial order, i.e. for every propositions p, q and r :
(DIL1a) p 	 p
(DIL1b) If p 	 q and q 	 p, then p D q
(DIL1b) If p 	 q and q 	 r , then p 	 r
(DIL2) There is a truth value called Dfalse with the following property:

For every proposition p; p 	D false

(DIL3) One can define a truth value called Dtrue that has the following property:

Dtrue 	D false:

(DIL4) From (DIL2) and (DIL3) one can obtain

For every proposition p;Dtrue 	 p:

(DIL5) Connectives obey the following truth conditions:

� p D D false if and only if p D D true; otherwise � p D Dtrue

.p g q/ D sup.p; q/

.p f q/ D inf.p; q/

.q � p/ D S false if and only if qD � p; otherwise .q � p/ D q
EX'.x/ D sup.'.x//

AX'.x/ D inf.'.x//:

13 Again, I have made a little abuse of notation, for I used ‘Dp’ in both ˆ
DE and ˆI . In rigour, Dp is

a morphism which corresponds to a formula .Dp/� in a possibly different language.
14 By abuse of notation but to simplify reading, I will not indicate that the order here is dual to that in
standard toposes, unless there is risk of confusion.
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(DIL6) The categorial analysis of logic in complement toposes assumes the Tarskian
notion of logical consequence too.
Let ‘p ˆ

DE q’ denote that q is a logical consequence of p in a complement
topos DE, i.e. that whenever p is the same morphism as Dtrue in DE, so is q.
Equivalently, if q is not the same morphism as Dtrue, p neither is.ˆ

SE p means
that p is the same morphism as Dtrue in DE.

(DIL7) From (DIL1)–(DIL6), in the internal logic of a complement topos hold at least
the laws of dual intuitionistic logic, as shown in Theorem 3.5.15

Example 3.6 Since classical logic is its own dual (just as a Boolean algebra is its own
dual), the internal logic of e.g. Set is not modified by renaming and thus complement-Set
(DSet) is the same as Set.16

Example 3.7 Complement-S## or DS## has, mutatis mutandis, the same three truth
values with its original order,17 but negation gives now the following identities of
morphisms:

�D falseS## DD trueS## ; �D .st /S## DD trueS## ; �D trueS## DD falseS## :

In S## one has .p _ :p/ ¤ S trueS## , and in the alternative labelling one obtains .pf �
p/ ¤ DfalseS## . Remember that in a complement topos .p f q/ D Dfalse if and only
if either p D Dfalse or q D Dfalse. If p D D.

s
t /S## then � p D D trueS## , so

neither � p D DfalseS## nor p ¤ D falseS## and hence .pf � p/ ¤ D falseS## .
Besides, in a Heyting algebra (like the algebra S˝), in general, it is not the case that
q � .p _ :p/, which in the alternative labelling corresponds to the fact that in a Brouw-
erian algebra (like D˝), in general, it is not the case that .pf � p/ � q. So, the internal
logic of complement-S## is not classical (nor intuitionistic!), but inconsistency-tolerant.
Moreover, in complement-S## both pg � p and � .pf � p/ are the same morphism
as DtrueS## , unlike their standard counterparts. In standard S##, .p ^ :p/ D S falseS## ,
which in the alternative labelling gives .p g � p/ D DtrueS## . In standard S##,
:.p_:p/ D S falseS## (for in intuitionistic logic the negation of a classical theorem is
always false), and the alternative labelling gives � .pf � p/ D DtrueS## .

15 Inconsistency-tolerant categorial structures are studied further in [28, chapter 12, written by William
James] and in [16].
16 Thus, as Vasyukov ([37] p. 292) points out: ‘(. . . ) in Set we always have paraconsistency because of the
presence of both types of subobject classifiers (. . . )’ just as we always have in it (at least) intuitionistic
logic. The presence of paraconsistency within classical logic is not news. See, for example [8], where
some paraconsistent negations in S5 and classical first-order logic are defined.
17 It is easy to verify that after making all the necessary changes, i.e. changing S trueS## for D falseS## ,
etc. the names are ordered in the same way as they are in SS

##.
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3.3 Consequences for the Standard Story of Toposes

Being D˝ and S˝ isomorphic, standard toposes and complement toposes are both, well,
toposes, because they do not differ in categorial structure. A further consequence of this
isomorphism is that complement toposes are not parasitic on standard toposes: One could
start with complement toposes and then obtain standard toposes by renaming. This means
that, even if the categorial structure invites to be named in certain ways, it does not force it.
All this helps to solve the following perplexity: If SE and DE should be indistinguishable
because they are categorially indistinguishable, how can one in fact distinguish between
them? According to the legend, Mac Lane, in response to Mortensen and Laver’s paper
mentioned in footnote 10, said that complement toposes are just standard toposes, that
they are indistinguishable because they have the same categorial structure. However, they
seem distinguishable; after all, they seem to have different internal logics, intuitionistic the
ones and paraconsistent the others. The appropriate answer, I think, is this: To date, there
is more than categorial structure in the study of toposes, to wit, special, intuitive names
for some of the morphisms, invited, but not necessitated, by the categorial structure. It is
worth emphasizing that complement toposes do not claim to be categorially different from
standard toposes nor to say that dual connectives acquire further categorial properties qua
morphisms after the renaming, but rather stress the fact that the same categorial stuff can
be described in at least two different ways. Neither of the names is imposed by the cate-
gorial structure of toposes itself so, in its current form, there is more than just categorial
structure in the study of toposes. As I have discussed elsewhere, given the isomorphism
between D˝ and S˝, one cannot argue against complement toposes, as has been done for
example in [9], using theorems T1; : : : ; Tn which involve S˝ and connectives Sk, when
the right theorems for complement toposes are DT1; : : : ;D Tn, which involve D˝ and Dk.

Thus, the notion of complement topos goes against slogans (S3)–(S5), but I think it is
possible to advance further. The main morals of Mortensen and Lavers’ study of comple-
ment toposes seem to be the following:

Moral 1. There is a ‘bare’ or ‘abstract’ categorial structure of toposes that can filled in
at least two ways (the standard way and the way suggested by Mortensen and
Lavers). Said otherwise, there are underlying universal properties in topos logic
dissembled by certain intuitive conceptualizations of the categorial structure of
toposes, yet not necessitated by this.

Moral 2. The theorem stating the intuitionistic character of the internal logic should be
read rather as follows: Under certain conditions c1; : : : ; cn, most of them extra-
categorial, (S3) is the case.

Moral 3. The universal, invariant laws of mathematics are not those of intuitionistic logic.
They seem to be so only when c1; : : : ; cn are adopted.

In the next section, I explore in more details these implications of complement toposes.
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4 The Substance Behind the Categorial Orthodoxy

Are there any names which witness of themselves that they are not given arbitrarily,
but have a natural fitness?
—Plato, Cratylus.

4.1 Two Skolemizations

Note that the assumption in standard topos theory that there is a proposition true W 1�!
˝ is actually a twofold assumption. On the one hand, there is a categorial, ‘formal’ or
‘structural’ assumption, merely concerning the existence of a certain morphism

Existence of a truth value. There is a morphism 
 W 1 �! ˝ On the other hand, there
is a ‘material’ or more substantive concerning a very loaded conceptualization of such
a morphism.

Name of a truth value. It is better thought of as ‘true W 1 �! ˝’ provided a plausible
conceptualization of the properties it satisfies.

Complement-toposes share the first assumption, but give a different conceptualization
of certain parts of the categorial structure of toposes in a way that it satisfies rather

Name of a truth value�. The morphism 
 W1�!˝ is better thought of as ‘false W 1�!˝’
provided a plausible conceptualization of the properties it satisfies. Thus, the particular
Skolemization behind standard topos logic is not a purely categorial component of topos
logic, and hence there should be a more abstract form of topos logic, independent from
both standard and complement toposes.

Amorphism 
 W1�!˝, called a (bare) subobject classifier, has the following property:

(Bare) Comprehension axiom For each ' W O �! ˝, there is an equalizer of ' and

O , and each monic m WM �O is such an equalizer for a unique '. In diagrams, 
 is
such that for every ' and every object T and morphism o W T �!O , if m ı ' D m ı 
O
and x ı ' D x ı 
O , then there is a unique h WX �!M that makes the diagram below
commutative:

M >
m

> O
'

>

O

>

X

x

^
h

<

Note that, according to the definition of equalizer, h must be the only morphism that,
among other things, x D m ı h. But this satisfies the definition of x 2 m. Thus, what the
(Bare) Comprehension axiom says is that '.x/D vX if and only if x 2 m. This clearly
invites the reading of 
 as true, if m is thought of as the extension of the property ', as



280 L. Estrada-González

is natural to think, but it also encompasses the reading in which complement toposes are
based. In formal terms, both the standard and complement conceptualization are particular
Skolemizations of the (equational) formula describing the (bare) subobject classifier.

The condition Name of the truth value, the ‘standard Skolemization’ of 
, obligates
certain names for other categorial ingredients, which I have denoted using the subscript
S , but let me state more formally how it works. Let ‘pq’ denote an instantiation device,
such that ‘pxq’ denotes a constant which is the replacement of x and thus ‘Spxq’ denotes
the standard instantiation of x. Thus,

.Strue/Sp
 W1�!˝q D Strue W1�!S˝ :

According to this, ‘S˝’ denotes that

(S˝) for every f WX �!˝ in a given topos E, pf WX �!˝q is standard according to
the initial Skolemization for 
 W1�!˝.
‘SE’ denotes something similar to ‘S˝’, but emphasizing the ambient topos ‘E’:
(SE) in a given topos E, for every f WX �!˝, pf WX �!˝q is standard according to
the initial Skolemization for 
 W1�!˝ and
‘Sf ’ denotes quite the same as the two symbols above but emphasizing the morphism f :
(Sf ) for the morphism f W X �! ˝ in a given topos E, pf W X �! ˝q is standard
according to the initial Skolemization for 
 W1�!˝.

Similar conventions rule the use of the subscriptD for complement toposes.
I must confess I do not know how to rinse the phrase ‘pf W X �! ˝q is standard

according to the initial Skolemization for 
 W 1�!˝’ otherwise than by saying that the
pf WX �!˝q’s correspond with some prior knowledge or conception of logical notions
which is coherent with the initial choice of name for 
 W 1 �!˝. Consider the (partial)
truth condition p#q D 
 if and only if p D 
 and q D 
: If one has chosen the name
‘true’ for 
 then the best name for # is ‘conjunction’, not ‘disjunction’ or some other.

Even if from a mathematical point of view all this might be regarded as uninteresting,
preferring one reading above the other may have (and has had) important philosophical
consequences. This is not a mere play with labels and, even though the underlying dualities
between Heyting algebras and Brouwerian algebras are well known, the choice of names
affects what we are considering as the internal logic of a topos. The choice of labels has
profound philosophical implications. For example, the well-known Theorem 2.4 in topos
theory is thought of as claiming what slogan 3 says:

(S3) The internal logic of a topos is intuitionistic (with a few provisos). (As I have said,
this is common categorial wisdom.)
Given that most of ordinary mathematics can be reconstructed within a topos just as
in traditional axiomatic set theories, the aforementioned result is sometimes read as
stating slogan 5:

(S5) The universal, invariant laws of mathematics are those of intuitionistic logic (cf. [3–
5])
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There is also another philosophical claim connecting the internal logic of standard
toposes and ‘the objective form of variation’:

(S4) The objective logic of variable sets is intuitionistic (cf. [18, 19, 27])

Nonetheless, complement toposes show that Theorem 2.4 should not be paraphrased
laxly as (S3). Complement-toposes suggest that Theorem 2.4 should be read rather as
follows: Under certain conditions c1; : : : ; cn (and one of the ci ’s are the names chosen for
morphisms with codomain ˝), including the proof of the theorem, (S3) is the case. The
universal, invariant laws of mathematics do not seem to be those of intuitionistic logic,
as stated in (S5). They seem to be so only when very specific c1; : : : ; cn are adopted.
Nor variation as embodied in standard toposes exhausts all kinds of variation, as claimed
in (S4), for sets can also vary backwards (as opposed to forwards variation as in usual
Kripke models). All this deserves more careful discussion; I just wanted to point out that
choosing labels and names is not conceptually trivial and it does not lack mathematical
interest.

4.2 The Tarskian Assumption and Logical Many-Valuedness

Slogans (S1) and (S2) are also in a similar, difficult position. Remember that the logical
consequence in a topos is assumed to be traditional, Tarskian consequence:
q is a (Tarskian) logical consequence of premises � , in symbols � ˆT q, if true is

preserved from premises to the conclusion and is not a consequence if the premises are the
same morphism as true but the conclusion is not. A thm is a consequence of an empty set
of premises, i.e. if it is a morphism which is the same morphism as true. A non-theorem is
a morphism which is different from true. But the two values true and not true (or untrue,
etc.) are the only values required to define the (Tarskian) consequence.

The internal logic of complement toposes is Tarskian, too. Even though the subobject
classifier and the connectives are described in a different, dual way, the notion of con-
sequence in the internal logic of complement toposes is the same as that of (ordinary or
standard) toposes. Therefore, the subsequent discussion for the rest of this section can be
cashed in terms of toposes simpliciter, ignoring whether they are standard or not unless
otherwise indicated.

I said that slogans (S1) and (S2) are in a difficult position because there is a theorem by
Roman Suszko which states that every Tarskian logic, i.e. every logic whose consequence
relation is reflexive, transitive and monotonic, has a bivalent semantics. A philosoph-
ical intuition behind Suszko’s result is the distinction between algebraic truth values
and logical truth values. Logical values are those values used to define a valid seman-
tic consequence: If every premise is true, then so is (at least one of) the conclusion(s). In
a contrapositive form, the other logical value can also be used to explain the valid semantic
consequence: If the (every) conclusion is not true, then so is at least one of the premises.
Thus only the two logical truth values true and not true or, more generally, designated and
antidesignated, are needed in the definition of consequence.
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Reductive results similar in spirit to Suszko’s were presented independently by other
logicians, for example, Newton da Costa (see, e.g., [17]), Dana Scott (cf. [33, 34]) and
Richard Routley and Robert K. Meyer [32]. Moreover, there is a family of akin results of
different strengths under the label ‘Suszko’s reduction’. Suszko’s reduction, strictly speak-
ing, required from the logic not only to be reflexive, transitive and monotonic, but also to
be structural. Suszko-da Costa’s reduction dropped the structurality requisite. Suszko–
Béziau’s reduction only requires reflexivity from the logic (cf. [35]).

Suszko declared that many-valuedness is ‘a magnificent conceptual deceit’ and claimed
that ‘(. . . ) there are but two logical values, true and false (. . . )’. This claim is now called
Suszko’s thesis and can be stated more dramatically as ‘All logics are bivalent’ or ‘Many-
valued logics do not exist at all’. Reductive results, especially the strongest form (Suszko-
Béziau’s reduction), seem to be overwhelming evidence in favour‘of Suszko’s thesis be-
cause virtually all logics regarded as such are in the scope of these theorems.

A possible way to resist Suszko’s thesis is by extending the scope of logics to cover
non-Tarskian logics, especially to non-reflexive ones to avoid Suszko–Béziau’s reduction,
and this reply is what I will discuss more extensively after discussing reductions in a cat-
egorial setting.

These reductive results can be given categorial content. The internal logic of a topos
is said to be algebraically n-valued if there are n distinct morphisms 1 �! ˝ in the
given topos. As reductive results have shown, an algebraically n-valued Tarskian logic, in
general, is not also logically n-valued. Accordingly, the internal logic of a topos is said to
be logicallym-valued if its notion of consequence implies that there arem distinct logical
values. The internal logic of a topos, whether standard or complement, is a Tarskian logic,
and this means that it is in the scope of Suszko’s theorem. Such internal logic is defined,
as usual, by distinguishing between those propositions that are the same morphism as true
and the other ones, no matter what or how many algebraic truth values there are, i.e. what
is playing the leading logical role is the bipartition true and not true, independently of
the number of algebraic values (elements of ˝). So, provided that the notion of logical
consequence is that usually assumed, and it is to deliver intuitionistic logic in the standard
case and a dual of this in the complement case, the internal logic of a topos is logically
bivalent.

The logical m-valuedness of the internal logic of a topos can be itself internalized just
in case it can be replicated appropriately in terms of morphisms and compositions of the
topos itself. I study here first the case of internalizing m-valuedness when m D 2 and
suggest a more general definition in the next section.

Definition 4.1 In a non-degenerate category C with (respectively, dual) subobject classi-
fier, a Suszkian logical truth values object, or Suszkian object for short, is an object S such

that there are exactly two morphisms 1
ıC

>
> ı�

S and a morphism sep W˝ W C�! S such
that sep is the unique morphism which satisfies the following properties:

(Sus1) sep ı p D ıC if p D trueC, and
(Sus2) sep ı p D ı� if p ¤ trueC



From (Paraconsistent) Topos Logic to Universal (Topos) Logic 283

The morphisms ıC and ı� can be collectively denoted by biv and are called a Suszkian
bivaluation. Thus, the diagram below commutes according to the above definition of biv
and the conditions (S1) and (S2):

1
p

> C

S

sep
_biv

>

From the very definition of a Suszkian object, for every proposition ', either sep ı '
D ıC or sep ı ' D ı�. Now, for every theorem ˚ , sep ı ˚ D ıC, and for ev-
ery non-theorem � , sep ı � D ı�. Consider the three truth values in SS

##. Then
sep ıS trueS## D ıC and sep ıS falseS## D sep ıS .st /S## D ı�. Hence, for example,
sep ı .: : p ) p/ D ı�, for .::p) p/ DS .st /S## when p DS .st /S## . Something
similar happens with .p _:p/.

As a consequence of the definition, there is no morphism  W1�!S such that  2 ıC
and  2 ı�. However, this does not mean that \ ı .ıC; ı�/ D ¿. This implies that,
in general, S is not isomorphic to 2 in spite of having exactly two morphisms 1 �! S

(nonetheless, it is easily proved that a Suszkian object and ˝ are isomorphic for example
in Set).

Unlike a subobject classifier, a Suszkian object does not necessarily classify subobjects
and it does not necessarily count them, either, for it collapses every other proposition
different from S true into ı�. A Suszkian object provides a bivaluation biv D sep ı p for
˝, i.e. it says whether a proposition is logically true or not, full stop. This justifies the
suggested definition of a Suszkian object, but the difficult part is proving the claim that
every (non-degenerate) topos has a Suszkian object as defined here. Maybe not all toposes
have a Suszkian object as defined here but only those with certain discreteness conditions.
However, I only wanted to show that it seems possible to internalize the notions involved
in the reductive results.

There are notions of logical consequence which are not Tarskian and that could intro-
duce interesting complications in the theory of the internal logic of toposes.18 Consider
first Frankowski’s P-consequence (‘P’ for ‘Plausible’; cf. [13, 14]):

P-consequence. q is a logical P-consequence from premises � , in symbols � ˆP q, if
and only if any case in which each premise in � is designated is also a case in which
' is not antidesignated. Or equivalently, there is no case in which each premise in � is
designated, but in which q fails to be not antidesignated.

Thus logical many-valuedness in a topos could be obtained at a different level, by
taking it into account from the very characterization of logical consequence. However,
this would result in a change in the description of the internal logic, for it would be no

18 Someone could argue that these are not notions of logical consequence at all, since logical consequence
has to satisfy the Tarskian conditions. I guess (and hope) that readers of this Festschrift do not have this
kind of doubts. For a defense of the logicality of non-Tarskian relations of logical consequence, see for
example [12].
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longer intuitionistic. The Tarskian properties are indissolubly tied to the canonical char-
acterizations of consequence, but P-consequence is non-Tarskian: it is not transitive. Let
me exemplify how radical the change would be in the internal logic if P-consequence is
adopted instead of the Tarskian one.

In general, P-consequence does affect the collection of theorems. Since theorems are
those propositions which are consequences of an empty set of premises, theorems accord-
ing to P-consequence are those propositions that are not antidesignated. So theorems of
the internal logic are not the same as those when Tarskian consequence is assumed even
if trueE is taken as the only designated value. For example, let us assume as above that
S trueS## is the only designated value in SS## and that S falseS## is the only antidesig-
nated value. p _ :p would be a theorem in SS## because there is no case in which it is
antidesignated.

P-consequence affects also the validity of inferences. Remember that unlike Tarskian
consequence, P-consequence is not transitive. Suppose that pD S trueS## , qD S.

s
t /S##

and r D S falseS## . Thus p ˆP
SS

##
q and q ˆP

SS
##
r , but p ²P

SS
##
r , because P-

consequence requires that if premises are designated, conclusions must be not antides-
ignated, which is not the case in this example.

However, in being reflexive P-consequence is in the scope of Béziau’s reduction to bi-
valence, it does not assure logical many-valuedness. This is not the case with Malinowski’s
Q-consequence ‘Q’ for ‘Quasi’; cf. [24, 25]), though:

Q-consequence. q is a logical Q-consequence from premises � , in symbols � ˆQ q, if
and only if any case in which each premise in � is not antidesignated is also a case in
which q is designated. Or equivalently, there is no case in which each premise in � is not
antidesignated, but in which q fails to be designated.

The changes in the internal logic would be as follows. Theorems are those proposi-
tions which are consequences of an empty set of premises, so theorems are propositions
that are always designated. This is just the usual notion of theoremhood, but whether Q-
consequence affects the collection of theorems depends on what are the designated values,
because one has to choose by hand, as it were, what are the designated, antidesignated and
neither designated nor antidesignated values. If E true is the only designated value as usual,
the theorems of the internal logic are the same whether the Tarskian or Q-consequence is
assumed.

Nonetheless, Q-consequence does affect the validity of inferences even if E true is the
only designated value. Unlike the Tarskian consequence, Q-consequence is not reflexive.
For example, let us assume that S trueS## is the only designated value in SS## and that

S falseS## is the only antidesignated value. Suppose that pDS .st /S## . Then p ²Q

SS
##
p,

because Q-consequence requires that if premises are not antidesignated, conclusions must
be designated, which is not the case in this example.

The above are not the only possible changes. Consider the case when designated and
antidesignated values form mutually exclusive and collectively exhaustive values; for
simplicity take the Tarskian logical consequence ˆT , which states that if premises are
designated, then the conclusions are also designated; equivalently, under the preceding
assumption on values, if conclusions are antidesignated, premises are also antidesignated.
Elaborating on [39], let me isolate and separate these forms of logical consequence:
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DC-consequence. q is a logicalDC-consequence from premises� , in symbols� ˆDC

q,
if and only if any case in which each premise in � is designated is also a case in which q
is designated. This is called forwards preservation (ofDC).

D�-consequence. q is a logicalD�-consequence from premises � , in symbols� ˆD�

q,
if and only if any case in which q is antidesignated is also a case in which some premise
in � is antidesignated. This is called forwards preservation (ofD�).

When the arrangement of values is such thatDC[D�¤A (withA the collection of all
algebraic values considered) or DC \D�¤¿, DC-consequence and D�-consequence
do not coincide. Let us consider the category SS## and let us assume that S trueS## is the
only designated value and that S falseS## is the only antidesignated value. Then one has
p ^ .p) q/ ˆDC

q but p ^ .p ) q/ ²D�

q.
Again, mutatis mutandis, examples similar to the above can be given to show how

each notion of consequence modifies the internal logic of a complement topos. [39] is
a good source of inspiration for other notions of logical consequence. Abstraction on the
notions of logical consequence could go further up to a definition of a logical structure
analogous to that of an algebraic structure given in Universal Algebra such that other
notions of consequence and particular logics appear as specifications of that structure:
That is Béziau’s project of Universal Logic; see [6] for an introduction. However, I will
stop generalization here because of limitations of space and because it has been enough to
show that the issue of the many-valuedness of topos logic is not as neat as thought in the
categorial orthodoxy.

A problem at this point is to know whether the non-Tarskian notions of consequence
can be internalized in a topos, but I will be back to that in the next section.

5 Bare Topos Logic

The undetermined is the structure of everything.
—Anaximander (in Jean-Yves Béziau’s paraphrase)

5.1 Bare Toposes, Bare Order and Bare Connectives

One can forget for a moment all what one knows about toposes and tell the story from
the beginning, in a way much similar to Awodey’s [1] but with no particular, intuitive
name for some of the main characters. I have started such description in the previous sec-
tion, in describing the (Bare) Comprehension axiom. In this section, I will continue to
make explicit the ‘bare’ or ‘unlabelled’ categorial structure of toposes, as well as equally
unlabelled definitions of some logical connectives, and show how standard and comple-
ment toposes and their connectives are instances of those bare definitions. This allows an
abstract definition of the internal logic of a topos from which it is evident that one gets
intuitionistic logic if certain conditions are assumed, dual-intuitionistic or paraconsistency
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if another conditions are met, and what not if variation is taken to its last consequences.
The results of this chapter summarize and end the justification of my criticisms on slogans
(S1)–(S5). This is not so odd as it might seem at first sight. For example, in group theory
there are different notations for the binary operation, which is in itself neither additive
nor multiplicative. There is no need to call it, for example, ‘addiplicative’ since it can be
referred to as the binary operation of the group and then specify different notations for
it. This maneuver is not available here due to the presence of many interacting n-ary op-
erations. So the bared structure of topos has to be thought as the abstract group and the
specially named presentations as notations for that group.

It is well-known that the subobjects of a given object form a partial order. In particular,
the elements of˝ form a partial order, which means that propositions form a partial order,
i.e. for every propositions p, q and r :

� pOp
� If pOq and qOr , then pOr
� If pOq and qOp, then p D q

Note that the direction ofO depends on the name given to 
. The definition of 
 implies
that, for every proposition p, pO
. If 
 is read as true, as in standard toposes, O is better
interpreted as�, but if 
 is read as false, as in complement toposes,O is better interpreted
as 	.

IfO is interpreted as a deducibility relation, `, the properties above say that deducibil-
ity is reflexive, transitive and that interdeducible propositions are equivalent, no matter
what the direction of the relation is.

Given a subset S of a partial order P , insup denotes an element such that it is the
infimum of S and, if the order in P is reversed, it turns out to be the supremum of S , or
vice versa. supin is the defined as the dual of insup, i.e. an element such that it is the
supremum of S and, if the order in P is reversed, it turns out to be the infimum of S , or
vice versa.

We can define another proposition, �, as the bare classifying morphism of 01 (the only
morphism from an initial object to a terminal one):

0
01

> 1
Ddef : '01

>

1
> S

Let us call 
 and � ‘special bare values’.

A morphism k W .˝�� � ��̋ /˝
:::

˝X

�!˝ (with˝�� � ��˝ n times and˝
:::

˝

t times,
n; t 	 0), abbreviated as k W˝nm�!˝, will be said to be an abstract n-ary connective of

order m, where m D 0 if and only if ˝
:::

˝X

Š 1 and m D .t C 1/ otherwise. Abstract
propositions, i.e. morphisms 1�!˝ can thus be considered 0-ary connectives (and can
be of any order) with .˝�� � ��˝/ Š 1.

As I have said, ‘S˝’ denotes that n-ary abstract connectives receive their standard well-
known names and definitions; ‘D˝’ denotes that n-ary abstract connectives receive their
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names and definitions as in complement toposes. For convenience, sometimes I will use
‘Sp’ (respectively, ‘Dp’) as a shorthand for p W 1�! S˝ (respectively, p W 1 �! D˝)
and I will use a similar shorthand for propositional functions. If n-ary bare connectives
of a bare topos T receive all some intuitive names and definitions, then we are going
to call T a concrete topos, denoted by ‘E’. ‘SE’ and ‘DE’ denote arbitrary standard
and complement toposes, respectively. Respecting historical priority and if the context
prevents any confusion with the abstract notions, I will occasionally omit the subscript in
‘S˝’, ‘SE’, ‘Sp’ and ‘S'’. Whenever the context allows it, I will also omit the subscript
indicating the complement names. In the case of connectives, the differences between the
names of the elements of ˝ will be indicated by a difference in the connective symbol.
For example, the difference between k W S˝nm �! S˝ and k W D˝nm �! D˝ will be
indicated by writing a W˝nm �!˝, b W˝nm �!˝, respectively, where a and b are
two different symbols. Thus, a.p1; : : : ; pn/ (respectively, b.p1; : : : ; pn/) will stand for

1
hp1 ;:::;pni

> S˝
nm

a
> ˝ (1

hp1 ;:::;pni
>D˝

nm
b

> ˝). For simplicity, I will avoid the
composition notation in the case of unary and binary connectives (the only ones I will deal
with here). That is, instead of writing k1ıp or k2ı.p; q/, where k is a connective where
the superscript indicates the arity, I will write kp and pkq, respectively.

So 
 is called S true in standard toposes and D false in complement toposes. Clearly,
� is called S false in standard toposes and D true in complement toposes. The assumed
name for the special value 
 in standard toposes is S true W 1 �! S˝ and false W 1 �!
D˝ in complement toposes. Let us consider now just three unary and three binary bare
connectives.

Let be 
 W1�!˝. Then�W˝�!˝ is the bare characteristic morphism of �:

1 > S

def : '
>

> S

This implies the following truth condition for�:

�p D 
 if and only if p D �I otherwise � p D � :

It says that�p has one of the special values if and only if p has the other one; otherwise
�p has that other special value. For standard toposes it gives

:p DS true if and only if Sp DS false; otherwise :p DS false

and for complement toposes

� p DDfalse if and only if Dp DDtrue; otherwise � p DDtrue :

Ë W˝�˝�!˝ is defined as the bare characteristic morphism of h
; 
i W 1 �! ˝�˝:

1
h i

>

Ë Ddef : 'h i
>

>
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This implies that p Ë q D insup.p; q/. For standard toposes it gives the diagram

1
hS true; S truei

> S S

^ Ddef : S'hS true; Struei
>

S true
S S

> S

which implies the following truth condition:

.p ^ q/ D inf.Sp; Sq/

For complement toposes one has instead the following diagram:

1
hD false; D falsei

> D D

g Ddef : D'hD false; Dfalsei
>

D false
D D

> D

which implies the following truth condition:

.p g q/ D sup.Dp; Dq/:

Ì W˝�˝ �!˝ is defined as the characteristic morphism of the image of Œh
 ; id˝i,
hid˝; 
i� W˝ C˝ �!˝ �˝:

C ImŒh id i;hid i
>

Ì Ddef : 'ImŒh id i; hid i
>

>

This implies that p Ì q D supin.p; q/. For standard toposes, it gives the diagram

S CS

ImŒhS true;id
S i;hidS ;S truei

> S S

_Ddef :S'
ImŒhS true;id

S
i;hid

S
;S truei

>

S true
S S

> S

which implies the following truth condition:

.p _ q/ D sup.Sp; Sq/:

For complement toposes the truth condition is

.p f q/ D inf.Dp; Dq/

which is expressed in the following diagram:

D CD

ImŒhD false;id
D i;hidD ;D falsei

>D D

fDdef :D'
ImŒhD false;id

D i;hidD ;D falsei
>

D false
D D

>D
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•W ˝ �˝ �! ˝ is defined as the characteristic morphism of � W��! ˝ �˝ (the
equalizer of Ë W˝�˝�!˝ and the first projection p):

O >
e
>

• Ddef : 'e
>

>

In standard toposes, one has the morphism)WS˝�S˝�!S˝, defined as the charac-
teristic morphism of e W��! S˝�S˝, the equalizer of ^ W S˝� S˝ �! S˝ and the
first projection p:

S >
e
> S S

) Ddef : S'e
>

S true
S S

> S

whose corresponding truth condition is the following one:
.p ) q/ D S true if and only if Sp � Sq (equivalently, if and only if (p ^ q/ D p);

otherwise .p) q/ D q
In complement toposes, dual-implication, subtraction or pseudo-difference � W D˝�

D˝ �! D˝ is defined as the characteristic morphism of Ne W 	�!D˝�D˝, where Ne is
the equalizer of g WD˝�D˝�!D˝ and the first projection p:

D >
Ne
> D D

def : D' Ne
>

D false
D D

> D

which implies the following truth condition:
.p � q/ DDfalse if and only if Dp 	Dq (equivalently, if and only if (p g q/ D p);

otherwise .p � q/ D q).
Finally, let us consider two first-order unary connectives. .AS/X W˝X �!˝ is defined as

the characteristic morphism of �x:
X , the ‘name’ (exponential transposition) of 
X ıprX W
1�X�!X �!˝:

1 x X
> S

X

.AS/X Ddef : ' x X
>

X

>

This implies the following truth condition:

.AS/X'.x/ D insup.'.x// :

It says that .AS/X'.x/ has the special value 
 if and only if '.x/ has that special value for
all instances of x (in the domain X). A more illustrative way to put it is:

.AS/X'.x/ D 
 if and only if '.x/ D 
; for all x :

For standard toposes it gives the following diagram:

1 x :StrueX
> S

X

8X Ddef : S' x:StrueX
>

S true
S

X

> S
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according to which 8X'.x/ D S true if and only if S'.x/ D S true, for all x. The exact
truth condition implied by the above definition is

8X'.x/ D inf.'.x// :

For complement toposes one has instead the following truth condition:

EX'.x/ DDfalse if and only if D'.x/ DDfalse; for all x;

or more exactly
EX'.x/ D sup.D'.x//

embodied in the following diagram:

1 x :DfalseX
> D

X

EX Ddef : D' x:DfalseX
>

D false
D

X

> D

.SA/X W˝X �!˝ is defined as the characteristic morphism of the composite pXı2X .2/:
2�˝X�X �!˝X (where px is the first projection and 2X is the subobject of˝X�X
whose character is the evaluation morphism eX W ˝X � X �! ˝):

pXı 2X .2/ Im.pXı 2X /
> X

.S
A
/X Ddef : 'Im.pXı2X/

>

X

>

This implies the following truth condition:

.SA/X'.x/ D 
 if and only if '.x/ D 
; for some x

or, more exactly,
.SA/X'.x/ D insup.'.x//:

It says that .AS/X'.x/ has the special value 
 if and only if '.x/ has that special value for
some instances of x (in the domain X).

For standard toposes one has then the following diagram:

SpXı 2X .2/ Im.SpXı S2X /
> S

X

9X Ddef : S'Im.SpXıS2X/
>

S true
S

X

> S

and the following truth condition:

9X'.x/ DS true if and only if S'.x/ DS true; for some x :

or more exactly,
9X'.x/ D sup.'.x//;
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whereas for complement toposes one has the following truth conditions:

AX'.x/ D inf.'.x//; that is; AX'.x/ D Dfalse if and only if D'.x/ DDfalse;

for some x

and the corresponding diagram:

DpXı 2X .2/ Im.DpX ı D2X /
> D

X

AX Ddef : D'Im.DpXıD2X/
>

D false
D

X

> D

5.2 Logical m-Valuedness

In the previous section, I showed how to internalize certain Suszkian ideas. I also argued
that the notion of logical consequence in toposes is externally assumed by the theorists
rather than internally imposed by their categorial structure. However, I left as an open
problem the issue of describing and proving the existence of objects suitable to internalize
those other notions of consequence.Without trying to settle that question here, I will probe
an idea at least for consequences based on a form of forwards preservation.

I say that a topos is algebraically n-valued if there are n morphisms from 1 to ˝.
A topos is said to be logicallym-valued if the assumed notion of consequence, �, implies
that there are m logical values. Logically m-valuedness is internalized if

(1) there is an object V such that it is the codomain of exactly m morphisms with do-
main 1 such that to each logical value implied by � corresponds one and only one
morphism from 1 to V; and

(2) there is a unique morphism sep W ˝ �! V such that sep satisfies the following
properties:

(2.1) For every ıi W1�!V there is a p W1�!˝ such that sep ı p D ıi .
(2.2) If p � q implies that p and q have certain �-logical values vi and vj , respec-

tively, then if sep ı p D ıi , sep ı q D ıj (where ıi corresponds to vi and ıj
corresponds to vj ).

The morphisms ı1; : : : ım can be collectively denoted bym-val and are called a logical
m-valuation (based on �). Thus, the diagram below commutes according to the definition
of m-val just given and conditions (1) and (2):

The morphism ıi such that sep ı trueE D ıi will be called ‘morphism of designated
values’ and will be denoted by ‘ıC’; the morphism ıj such that sep ı falseE D ıj will
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be called ‘morphism of antidesignated values’ and will be denoted by ‘ıC’. A similar
procedure has to be followed to individuate each additional logical value, if any.

Again, an open problem is to determine which kind of toposes are logically m-valued
in the sense defined above and to provide a definition that could encompass all toposes.

5.3 Bare Internal Logic

A (bare) internal logicLT of a toposT is a tuple ho˝T1; : : : ; o˝TnINI�IT ı1; : : : ;T ımi,
where the o˝Ti are operations of ˝T (˝ in T ), N is a collection of labels or names for
those operations, � is a consequence relation and the T ıj are morphisms of logical
values. As we have seen, the common place stating that the internal logic of a topos is
intuitionistic is grounded on a theorem which presupposes that

(SN) the names for the morphisms with codomain˝ are the standard ones,
(topSıC) S true is the only designated value, and
(�T ) the underlying notion of consequence is Tarskian.

The same bare categorial structure of toposes may support several internal logics, de-
pending on what particularN, � and T ıj are considered. For example, the internal logic
of a complement topos satisfies (�T ) but not (SN) (hence, it does not exactly satisfy
(top T ı

C), either). Instead, a complement topos satisfies

(DN) the names of the morphisms with codomain˝ are described by %.Sp/,
(topDıC) Dtrue is the only designated value.

6 Conclusions

Thus we seem to have partially demonstrated that even in foundations not Substance but invariant
Form is the carrier of the relevant mathematical information.
—William Francis Lawvere, An elementary theory of the category of sets.

I have expounded the basics of the standard theory of topos logic, which leads to set
the following slogans:

(S1) ˝ is (or at least can be thought of as) a truth values object.
(S2) In general, the internal logic of a topos is many-valued.
(S3) In general, the internal logic of a topos is (with some provisos) intuitionistic.
(S4) Intuitionistic logic is the objective logic of variable sets.
(S5) The universal, invariant laws of mathematics are intuitionistic.

However, complement toposes give rise to doubts about the standard description of the
internal logic of a topos. Specifically, they directly go against (S3), (S4) and (S5), and
allow us to raise doubts about the other slogans. Thus, complement toposes, with their
paraconsistent internal logic, suggest that current topos theory gives us just part of the
concept of topos, that some common theorems on topos logic tell just part of the relevant
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story and that in a further, more abstract development the slogans above have just limited
application and that logicality lies beyond any particularity of a logic.

Moreover, I gave a categorial version of Suszko’s thoughts on many-valuedness. Ac-
cording to Suszko’s reduction, every Tarskian logic (a logic whose consequence relation is
reflexive, transitive and monotonic) has a bivalent semantics, which implies the rejection
of (S1) and (S2). I did this working mainly with standard toposes, but the result can be
easily transferred to complement toposes. I showed that (S2) can be maintained (with ‘can
be many-valued’ instead of ‘is many-valued’) changing the underlying notion of logical
consequence, but this does not save the other slogans and, indeed, can be used as a further
case against them.

I described how do a topos and an internal logic look like once all the non-categorial as-
sumptions that gave rise to (S1)–(S5) are removed. Unsurprisingly, it turns out that a topos,
and especially its internal logic, is a truly Protean categorial creature which can accom-
modate the most diverse descriptions and support an enormous variety of logics besides
that mentioned in the slogans. For reasons of space I could not discuss other important
parts of topos theory, like Kripke and sheaf semantics or Lawvere–Tierney topologies, but
they are subject to dualization too, and also to the step into abstraction.

If I was to use the Hegelian–Lawverean terminology, I would say that this is what
toposes are, and this is what their internal logic is. The labels and special names are ‘sub-
jective’, ‘substance’ befouling the objective and invariant forms. Standard toposes do not
provide us the full story about variable sets and, again, the objective logic of variable sets
would be that surviving all the variations in the parametersN (the names for certain parts
of the equational structure), � (the underlying notion of logical consequence), T ıj (the
adopted logical values). But even if my attempted step into abstraction were misguided
and my attack on the presuppositions fell short and they were really unshakeable, I think I
have succeeded in highlighting them and, thus, in contributing to make clearer the founda-
tions of topos logic. The best of the study of the interactions between toposes, philosophy
and logic is yet to come.
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A Note on the Internal Logic of Constructive
Mathematics: The Gel’fond–Schneider Theorem
in Transcendental Number Theory

Yvon Gauthier

Abstract The question of an internal logic of mathematical practice is examined from
a finitist point of view. The Gel’fond–Schneider theorem in transcendental number the-
ory serves as an instance of a proof-theoretical investigation motivated and justified by
constructivist foundations of logic and mathematics. Constructivist notions are empha-
sized by contrasting the arithmetical proof procedure of infinite descent with the principle
of transfinite induction. It is argued that intuitionistic logic cannot alone provide secure
foundations for constructivist mathematics and a finitist logic is briefly sketched in the
framework of polynomial arithmetic.

Keywords Constructive mathematics � Finitism � Infinite descent � Number theory
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1 Introduction. The Logical Problem

To illustrate the excluded middle principle of classical logic, Dummett [4, p. 6] cites the
well-known example of a theorem in classical logic which gives a rational solution to two
irrational numbers xy :

There are solutions of xy D z with x and y irrational and z rational. Take
p
2

p
2
as

either rational or irrational:

If
p
2

p
2
is rational, take (as irrational) x D p2 and y D p2, so that z D p2

p
2
which

by hypothesis is rational.

If on the other hand
p
2

p
2
is irrational, put x D p2

p
2
and y D p2 so that z D

.
p
2

p
2
/
p
2 D .p2/2, which is certainly rational.

Thus, in either case a solution exists, but the excluded middle principle is unable to tell
us what is the case. Intuitionistic logic requires that one of the disjuncts of a disjunction
be proven or instantiated (as for the existential quantifier). Of course, we know now thatp
2

p
2
is irrational and even transcendental, due to the Gel’fond–Schneider theorem: here

an intuitionist logician like A.S. Troelstra (see his Proof theory and Constructivism [26])
is content to say that there is a constructive proof and simply refers to the Gel’fond–
Schneider theorem without further comment!
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The Gel’fond–Schneider theorem (1934) is a solution to Hilbert’s seventh problem:

For ˛ and ˇ algebraic numbers with ˛ ¤ 0; 1 and ˇ irrational, ˛ˇ is transcendental.

Schneider [23] puts the problem in the form

For ! an algebraic number ¤ 0; 1 and � irrational, !� is transcendental with � D log �= log !
for � D !� .

The proof proceeds by logarithmic approximations to algebraic numbers and concludes
that any logarithm of an algebraic number with an algebraic base must be a transcendental
or a rational number. By reductio ad absurdum, !� is transcendental. With a similar pro-
cedure, Gel’fond [11] comes to the conclusion that the logarithms of algebraic numbers
with an algebraic base are transcendental or rational numbers.

Both proofs are (partially) constructive in the sense that they extract arithmetical
content (that is logarithmic approximations, minorizations and majorizations, effective
bounds, etc.) from analytical methods (infinite series or power series, periodic functions,
etc.); they use polynomial inequalities for the rational values of an analytic function f .x/
and end up by contradicting an assumption to the effect that finite values make it vanish
identically f .x/ D 0.

Baker [1] extended and generalized those results in transcendental number theory us-
ing auxiliary functions or polynomials – which he calls fundamental polynomials – linear
forms and logarithms for approximations of algebraic numbers in order to establish alge-
braic independence by contradiction or reductio ad absurdum.

It is only in 1962 that Gel’fond produced an elementary (constructive) proof for real
algebraic numbers !, a > 0, b for e! with e the base of natural logarithms and ab (see [13,
Chap. 12]. Gel’fond relates that he used only Rolle’s theorem as an analytical tool – here
a radical constructivist could mention that a constructive version of Rolle’s theorem is to
be found in [2]. Essentially, Rolle’s theorem says classically that a continuous function
of a real variable on Œa; b� with f .a/ D f .b/ for a < b has a derivative f 0.c/ D 0.
Bishop’s constructive version introduces jf 0.x/j � � with � > 0 for moduli of continuity
of f 0 and differentiability of f . In other words, Bishop defines more precisely the limits
of the real interval Œa; b� much in the manner of Kronecker for Bolzano’s theorem on
intermediate values (see [7]). Bishop has admitted ([3]) that his foundational project was
closer to Kronecker’s finitist programme than to Brouwer’s intuitionism.

However, Gel’fond’s work is in analytic number theory and constructive number the-
ory, not in constructive analysis. His results in transcendental number theory are algebraic
in nature. The main theorem in [13, Chap. 12] states that “if ! ¤ 0 is an algebraic real,
than e! is not algebraic” and is couched in the language of algebraic integers in finite
fields. A finite field is also the arena for an another elementary proof ([13, Chap. 10]),
Hasse’s theorem on integral solutions for the equation:

y2 
 x3 C ax C b .mod p/ (1.1)

for integers a, b and a prime p > 3. Gel’fond formulates his solution in terms of an
inequality

jN � pj < 2pp (1.2)

where N is the number of integral solutions of the equation. Here, the language used is
the language of polynomials and divisors with an algebro-geometric interpretation and
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Gel’fond quotes a major result of André Weil on Riemann’s hypothesis in function fields
(see [28]). Weil’s result is a special case of the Riemann hypothesis for quadratic finite
fields (with a finite number of elements or points on a projective surface) and Weil claims
that his result is free of the transcendental (analytic) theory. The main arithmetical tool
here is the theory of forms or homogeneous polynomials. That theory has been developed
first in great generality by Kronecker in his “Allgemeine Arithmetik” or General Arith-
metic and Weil has repeatedly refered to Kronecker as the founding father of algebraic –
arithmetic geometry on finite fields. Kronecker’s theory of forms is equivalently a divi-
sor theory (of modular systems) for which infinite descent works, since homogeneous
polynomials are finite (integral and rational) functions with integer coefficients and inde-
terminates (variables). Fermat’s infinite or indefinite descent, as Fermat qualified it, is in
fact a finite process.

Weil describes infinite descent in the following:

Infinite descent à la Fermat depends ordinarily upon no more than the following simple observa-
tion: if the product ˛ˇ of two ordinary integers (resp. two integers in an algebraic number-field) is
equal to anmth power, and in the g.c.d. of ˛ and ˇ can take its values only in a given finite set of in-
tegers (resp. of ideals), then both ˛ and ˇ aremth powers up to factors which take their values only
in some assignable finite set. For ordinary integers this is obvious; it is so for algebraic number-
fields provided one takes for granted the finiteness of the number of ideal-classes and Dirichlet’s
theorem about units. In the case of a quadratic number-field Q.

p
N ), this can be replaced by

equivalent statements about binary quadratic forms of discriminant N . (see [29, pp. 335–336])

What interests us here in this modern terminology is the finiteness results and the character
of effectivity that attaches to the proofs by infinite descent. In that context, Fermat’s infinite
descent is a generalized Euclidean algorithm or a division algorithm in finite number fields
and in finite function fields. The original idea of Fermat’s infinite or indefinite descent
appears in his 1670 commentary on Diophantus:

Eodem ratiocinio dabitur et minor istâ inventa per viam prioris, et semper in infinitum minores
invenientur numeri in integris idem praestantes. Quod impossibile est quia, dato numero quovis
integro, non possunt dari infiniti in integris illo minores ([5]).

I translate the last quotation as

By the same calculation it is supposed that a smaller number is found in a descending procedure and
that one can always find numbers smaller than the preceding one ad infinitum, which is impossible,
since for an arbitrary integer there cannot be found an infinity of smaller ones in integers.

Let us remark that the method of infinite descent can be applied to a variety of prob-
lems, starting with the proof of the irrationality of

p
2 or the impossibility of

x4 C y4 D z2 (1.3)

for all z > 0 and and x; y ¤ 0. Infinite or indefinite descent is, in fact, finite; it does
not transcend the finite and the reductio ad absurdum is innocuous here, since the ensu-
ing double negation is finitary. The finiteness of the procedure is still more evident when
it is applied to “positive”questions, as Fermat says. Take the theorem: “Any prime num-
ber which is greater than a multiple of 4 by one must be composed of two squares.” If
there was such a prime number greater than a multiple of 4 by 1, but which would not be
composed of squares, there would be a smaller one of the same nature and still smaller
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ones till one reaches 5, which is the smallest number having the said property. One must
then conclude that the theorem is true. What we have here is simply a generalization
of Euclid’s division algorithm, but it has been used variedly from Fermat to contempo-
rary arithmetic geometry as a proof-theoretical device of reduction (Legendre’s term),
Kronecker’s elimination theory or decomposition of forms (homogeneous polynomials)
in divisor theory and diverse descent techniques as in Grothendieck’s programme (see
my forthcoming paper [10] for details). Of course, not all those techniques are effective,
even in number theory, that is, they do not necessarily provide calculations with explicit
bounds. In some cases, like in n-category theory (infinity or !-categories), descent can be
encapsulated as a fly down escape from the aether of higher dimensional categories, the
totality of which live in the ˝-universe of all ordinals – described by Cantor as an abso-
lutely inconsistent plurality “eine absolut inkonsistente Vielheit.” But even without the ˝
totality of universes, categorical foundations still need an inaccessible cardinal of higher
set theory, that is transfinite induction beyond �0, as V. Voevodsky admits in his univa-
lent foundations for homotopy type theory (see [27]). The same is true for Martin-Löf
intuitionistic (or so-called constructive) type theory with dependent or contextual types
together with the program proof assistant Coq also needed in Voevodsky’s categorical
foundations. However, descent is still lurking in the background under the clothings of the
axiom of foundation introduced by von Neumann for the cumulative rank structure of ax-
iomatic set theory.Mochizuki [22] is keen on keeping the axiom of foundation as a descent
procedure in the set-theoretic foundations of his ambitious programme of interuniversal
geometry for the putative proof of the so-called ABC conjecture in number theory.

I would qualify such foundational programmes as descriptive – like in descriptive
set theory – as opposed to reductive foundational programmes, meaning that founda-
tions should incorporate a critical evaluation and a justification for mathematical practice
hopefully within mathematics itself with a minimal (constructivist) philosophy, not just
a unifying language. Although descriptive theories may have a computational or algo-
rithmic intent, as in Voevedsky’s univalent foundations or in Mochizuky interuniversal
geometry, the abstract or general framework in higher category theory or higher topos the-
ory, which both need transfinite induction (and recursion), is not constructive or so feebly
constructive that the computational output seems to be a by-product, rather than a natural
outcome of the theory – the algorithmic results are most of the time grounded on poly-
nomial arithmetic as a basis for higher (alien) structures or creatures ! Note that the ABC
conjecture mentioned above has been demonstrated for polynomials constructively, that is
by elementary (nonanalytic) means.

2 The Internal Logic

The logical outcome of this can be stated in a few words : both disjuncts in number theory
must have a number-theoretic content, while intuitionistic logic requires only that one of
the disjuncts be instantiated in order that a disjunction may have a truth-value or rather
a verification value – the same for the existential quantifier. What our example shows is
that a constructivist logic must be dependent upon an external resource, a numerical con-
tent, in order to be effective in arithmetic. This means that the logic is derived and comes
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after or is posterior to what Hilbert called ‘inhaltliches logische Schließen’, a terminology
I have translated as ‘internal logic’ (see [7] Gauthier 2002 for details). Formal logic, in
Hilbert’s view, was an external metamathematical means ‘äußeres Handeln’ to treat the
internal logic of mathematical theories or the inferences pertaining to mathematics proper,
not to the metamathematics or the proof theory of formal systems.

But if we follow Hilbert’s lead, formal logic must depend upon mathematics’ inner
workings and Brouwer, who is not a Hilbertian by any means, would follow suit and
concur by saying that the excluded middle principle is not admissible particularly in the
mathematical analysis of infinite sequences or infinitely proceeding sequences (of natural
numbers). Kolmogorov was well aware of the significance of intuitionistic logic which
he interpreted as a logic of problems (and solutions) and he made a distinction between
real mathematics and the classical mathematics of pseudo-truth (pseudoistinosti) where
transfinite induction is operative. Problems, in Kolmogorov’s mind, are essentially well-
posed mathematical problems, since in the Hilbertian spirit, they must have a solution.
We know that Brouwer was suspicious of logic and we could ask if intuitionistic logic,
following Heyting and his successors, is faithful to Brouwer’s original intent. I give only
one example or counterexample in line with Brouwer’s practice, the attempt to confound
Gentzen’s transfinite induction with Fermat’s infinite descent; the former is designed to
provide a consistency proof for Peano arithmetic while, the latter is a constructive method
of proof in classical number theory, from Fermat, Euler, Gauss, Lagrange, Legendre, Kum-
mer, Kronecker to contemporary number theory and algebraic–arithmetic geometry in the
hands of Mordell, Hermann Weyl, André Weil, Gert Faltings among others.

3 Descent or Descending Induction

Infinite descent in classical number theory from Fermat to Kronecker and Weil is not
infinite descent in the set-theoretic setting of an infinite set of natural numbers. It is in fact
a finite arithmetical procedure that has little to do with the transarithmetical process of
transfinite induction.

As A. Baker explains in in his major work on transcendental number theory ([1]),
Gel’fond’s and Schneider’s proofs proceed by construction of auxiliairy functions and
polynomials and they then derive their results by induction on an arbitrary (finite) large
integer n by assuming that if the result holds for n � 1, it holds for all n. In the same
vein, J.-P. Serre defines descending induction as “acting on two (positive) integers m and
N with m > N descending to N ” (see [21]). For integers or numerical predicates, the
procedure looks like

Axn

Axn�1
:::

Axn�.n�1/
Ax0 D Axn�n : (3.1)
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Axn is what Bourbaki has called a general term. While classical infinite descent works
with the descending sequence of finite ordinals (natural numbers), designated as weak
well-ordering by Kreisel, transfinite induction calls for the strong well-ordering of trans-
finite ordinals up to �0 of Cantor’s second number class. This well-ordering has to deal
with the subsets of N. Here the logician must pick up a certain quantifier-free subset of
the ordinal ! hierarchy, because he knows that the set of all countable ordinals of the !’s
including the �’s is the uncountable !1 corresponding to the cardinal @1 – Cantor sug-
gested that the continuum c was @1 D 2@0 . The power set of the set of natural numbers is
significant in that connexion, since the well-ordering principle says

8S � N.S ¤ 0 ^ Ax.x 2 S//! .9y < x ^ y 2 S/ ; (3.2)

that is, there exists a strictly decreasing sequence for all elements of the subsets of the set
N of natural numbers. This is the strong strict well-ordering of N requiring the excluded
middle on the power set of P.N/ D 2@0! Transfinite induction runs along an initial seg-
ment of the !-sequence beyond the first ! up to its limit �0, while infinite descent starts
with an arbitrary integer n below the first !. Here is one main cleavage between finitist
and infinitist proof theory, but Gentzen wanted to believe that classical infinite descent
was a disguised form of complete induction in order to justify transfinite induction over
the denumerable ordinals (see [14]). Following suit, Kreisel has simply noticed that it was
a form of infinite descent that Gentzen had used (see [18]).

Polynomials as the finite support of infinite power series are the natural extension of
natural numbers and provide with a finitist alternative to set-theoretic Peano–Dedekind
arithmetic. For polynomials of the form

P.x/ D a0xn C a1xn�1 C � � � C an�1x C an (3.3)

in decreasing powers for integer coefficients a’s and indeterminates x’s, one works with
their degrees (exponents or powers) and heights (the maximum of the absolute values of
the coefficients) and the idea is to come down to irreducible polynomials, i.e., polynomials
that cannot be factorized over the integers.

I have emphasized the finitist character of infinite descent and I want now to contrast it
with the infinitist dimension of transfinite induction.

4 Transfinite Induction

The transfinite induction principle says

Proof
8Œ.8�/.� � /A.�; x/! A.; x/�! 8A.; x/ (4.1)

for  and � as ordinals in the �0 segment of Cantor’s second number class defined by

lim
n!!

!!
:::

! �
n D �0 (4.2)
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where epsilon naught is the limit ordinal of the omega hierarchy with n tending to !, the
limit of finite natural numbers n. Infinite descent in set-theoretic terms with a universal
quantifier on natural numbers boils down to

8x.Ax ! 9y.y � x/Ay/! 8x:Ax : (4.3)

By successive transformations (classical equivalences and tautologies), I get

8x:Ax _ 9yAy (4.4)

and
.:8x:Ax ^ :9yAy/ _ 8x:Ax (4.5)

and by
.:8x:Ax/$ 9xAx (4.6)

I get
8x:Ax _ 9xAx; (4.7)

which is the excluded middle. What we end up with is a derivation of the excluded middle
obtained from a double negation operation on the infinite set of natural numbers. This is
equivalent to the double negation elimination rule, not admissible in intuitionistic logic
where the excluded middle principle is prohibited in general and specifically in nonfinite
situations. Kolmogorov thought that the principles of excluded middle and double nega-
tion were involved in some forms of transfinite induction ([16, pp. 666–667]). The fact
that intuitionists after Heyting (see [25]) accept complete induction on the infinite set of
natural numbers

8x.8y.y � x/Ay ! Ax/! 8xAx (4.8)

leads them naturally to accept transfinite induction, which is just complete induction on
ordinals up to �0. A similar exercise can be made with the smallest number principle
(equivalent to infinite descent as classically interpreted, but not intuitionistically valid)

9yAy ! 9y.Ay ^ 8z.z � y/:Az/ (4.9)

By substituting :Ay to Ay, we have

:9y.Ay ^ 8z.z � y ! :Az// (4.10)

and I obtain by classical equivalences and MP (Modus Ponens)

8y.:Ay ^ 8z.z � y ! :Az// (4.11)

and
8y.8z.z � y ! :Az//! Ay (4.12)

and
8y:Ay (4.13)

which is the consequent of infinite descent derived from Peano’s induction postulate

8yAy.A0! .8yAy ! ASy//! 8yAy (4.14)

and the induction rule
A0 and 8yAy ! ASy (4.15)

by MP. �
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5 Conclusion: A Finitist Logic for Constructive Mathematics

A simple idea for the internal logic of finite arithmetic is that such a logic should be arith-
metical, that is, it should represent or translate the logic of arithmetic in arithmetical terms.
The idea is to interpret logical operators, expressions, and formulas in arithmetic and that
arithmetic is polynomial arithmetic. Logic can be embedded in polynomial arithmetic,
since it is a larger arena than integral arithmetic with all the arithmetic operations and it
constitutes a field, in particular a finite field where infinite (indefinite or finite descent)
can be freely enacted. The main advantage of the polynomial translation is that it is not
simply an assignment of integers to logical expressions (like Gödel numbers), but a direct
interpretation of logic in a purely arithmetical syntax. Such a direct translation would look
like the following:

a ^ b WD a � b (5.1)

a _ b WD aC b (5.2)

:a WD Na for 1 � a (5.3)

a! b WD NaC b (5.4)

9x WD ˙.a1; a2; a3; : : : ; an/ (5.5)

8x WD ˘.a1; a2; a3; : : : ; an/ (5.6)

>̇x D ˘.a1; a2; a3; : : : ; an; : : : / (5.7)

Remarks The new quantifier >̇ is meant to express quantification over the unlimited se-
quence of natural numbers or Brouwer’s infinitely proceeding sequences beyond the finite
sets subjected to the classical quantifiers. A way to formalize infinite descent in Fermat–
Kronecker arithmetic would be to use the unlimited or “effinite quantifier” in the following
formulation:

>̇xf.ŒAx ^ 9y.y < x/Ay�! 9y>̇z.z < y/Azg ! >̇x:Ax; (5.8)

which is the “negative” version of infinite descent. This means unlimited or indefinite
quantification on an arbitrary sequence (not an infinite set) of natural numbers. The posi-
tive formulation looks like this

>̇xf.ŒAx ^ 9y.y < x/Ay�! 9y8z.z < y/Azg ! 9z.z D 0 _ 1 _ n/Azg ! >̇xAx
(5.9)

and it means that a descent could stop at 0 or 1 or any positive integer (like 5) in order to
give way to an unlimited number of solutions for diophantine equations, for example. This
quantification is not bounded quantification, nor quantification in predicative arithmetic à
la Nelson, it just reveals a formal contrast to Peano’s induction postulate or complete
induction on the (completed) infinite set of natural numbers.

The numerical expression “1” refers to the unlimited arithmetical universe. The arith-
metical expression Na for 1 � a stands for a local negation instead of the set-theoretic
topological relative complement. Such a logic could be called a modular polynomial logic
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if we add a Modus Ponens in the form of

1 � a0x 
 b0x .mod a0x/ (5.10)

where a0x and b0x are monomials (see [8] for details) and from the point of view of
Gentzen’s sequent calculus, the cut rule equivalent toMP is innocuous, since it ismodular,
that is, taken into account and then discarded in a pure (cut-free) equational calculus. Such
a calculus is a calculus of polynomial content and could be considered as an internal logic
for Kronecker’s theory of forms in his general arithmetic.

The arithmetical logic I have sketched should be finitely decidable – the theory of fi-
nite fields is decidable. Of course, the arithmetic in question is not Peano arithmetic (or
Dedekind–Peano) with its induction postulate on the denumerable set of natural num-
bers, but rather Fermat–Kronecker arithmetic with infinite descent substituting for infinite
induction and acting on forms, that is the homogeneous polynomials with integer coeffi-
cients and indeterminates of Kronecker’s general arithmetic (allgemeine Arithmetik).

After the arithmetization of analysis by Cauchy and Weierstrass – one can also include
Dedekind and Cantor – and the arithmetization of algebra by Kronecker, my contention is
that Hilbert has inaugurated the arithmetization of logic pursued in the work of Skolem,
Gentzen, and Gödel and particularly active in contemporary theoretical computer science
after Turing.

As far as number theory is concerned, the Gel’fond–Schneider theorem is a revealing
instance of constructive proofs. Liouville’s and Lindemann’s proofs on the existence of
trancendental numbers were not constructive, Dirichlet’s analytical proof on the infinity of
prime numbers in arithmetic progressions had to wait for the 1949 Selberg’s constructive
proof. The French logician and number-theorist Jacques Herbrand, a follower of Hilbert,
even formulated a general hypothesis to the effect that theorems in nonanalytic (elemen-
tary) number theorymust have a nonanalytic, i.e. constructive proof ([15]). It is an intrinsic
feature of transcendental number theory that the existence of transcendental numbers is
only negatively or indirectly demonstrated by reductio ad absurdum, but direct elementary
proofs provide more information on the content of a theorem in the case of constructive
mathematics and more so in finitist foundations. The emphasis is on what Hilbert called
“Sicherheit” and “Sicherung,” certainty or certification of the tools and means of the math-
ematician or the logician who wants to count on more information in order to rely on the
concrete proof procedures at work in constructivist mathematics and in its internal logic.
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Is Logic Universal or Hierarchical?

Ivor Grattan-Guinness

Abstract Some conceptions of logic claim that they are universal. By contrast, I assume
that the applications of any logic are central to its conception, so that it has to comprise
a hierarchy of its metalogics, metametalogics, . . . , indefinitely extended but never capped
off with some universal logic. I also advocate for the distinction between parts and mo-
ments of a multitude as key to this conception, and I query the assumption that set theory
provides the most general means of handling collections of objects.

Keywords Logics � Hierarchies of metalogics � Logical pluralism � Self-reference � Mul-
tisets � Universal logic � Paraconsistent logics
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[. . . ] the attempt to formulate the foundations of logic is rendered arduous by a corresponding
‘logocentric’ predicament. In order to give an account of logic, we must presuppose and employ
logic.
—Henry Sheffer [22, pp. 227–228]

1 On Logical Knowledge

Logic is a strange subject. It seems to be present, to a greater or lesser extent, in all dis-
courses on any topic, especially concerning the development of a line of reasoning and
comparisons between rival lines; yet it is elusive, hard to disentangle from the discourse
itself, which usually is not logic but anything else (for example, proofs of theorems in
geometry, or assessing the sweetness of wines, or studying the history of violin-making
in Belgium . . . ). I take logic to be concerned with the properties of correct and incorrect
reasoning from premises to conclusions in a discourse, whether in a formalised or a nat-
ural language. My approach may be called ‘naturalistic’, since I am much influenced by
previous attempts to characterise logic; every suggestion that I offer below has been advo-
cated somewhere. However, the combination that I offer might be new, especially for this
reason.
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I do not ask ‘what is logic?’, for it is subject to the usual criticisms concerning es-
sentialism; instead I pose the much more modest question ‘where is logic?’, especially in
discourses and in applications (for which I use the word ‘settings’). The difference be-
tween the two questions is very considerable; in particular, the fact that the role of logic
in its settings is as important as its ‘pure’ characteristics makes this approach quite dif-
ferent from others. Another basic difference is that I reject the common claim that ‘logic
dictates that . . . ’ to justify some line of reasoning in a setting; for, with the important
exception presented in Sect. 3, in my characterisation logic contains none of its settings,
and so cannot dictate anything about any of them. Naturally this dependent status does not
discourage or invalidate the development of logic ‘purely’ on its own, without appeal to
a setting. However, I am struck by the paucity or superficiality of the discussion of logic
as such in many logic textbooks!

Some assumptions and limitations need to be confessed before the characterisation of
logic is described. Firstly, the word ‘logic’ refers to the subject, not to other uses such as in
‘the logic of the situation’ or ‘logistics’. Secondly, well-formed propositions are translin-
guistic objects; languages have ‘sentences’, which are uttered as ‘statements’. Thirdly,
I shall consider only propositions in declarative mood, ignoring logics concerned with
questions or commands (which are ignored too often). Fourthly, I grant epistemological
priority to propositions over terms. Fifthly, I do not treat probability logic, often called
‘inductive logic’ in the older literature, for it is only one (or some) important logic among
many. Sixthly, logical pluralism obtains, so that I use ‘logics’, ‘a logic’ and ‘any logic’,
and ‘logical knowledge’ for the total ensemble of logics.

2 Specification

2.1 List

Although I do not try to ‘capture’ logic, I need to furnish a working list of topics that
a logic should contain. Each topic is necessary for logichood, none is sufficient.

1) Well-formed propositions as translinguistic objects and their calculi (languages have
‘sentences’, uttered as ‘statements’).

2) Connectives, including their inter-definability.
3) Propositional functions, covering also relations and attributes, and their calculi.
4) Existential and universal quantification of individuals, propositions and propositional

functions, to any order; each quantifier to reign over some specified universe of dis-
course.

5) Assertion or denial of the truth-values assigned to its propositions.
6) (In)valid reasoning, covering (at least) deduction, implication, entailment, inference,

derivation, proof, natural deduction and logical consequence.
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2.2 Comments

Many issues, especially philosophical ones, play important roles in discussions of logic.
Cases include whether a logic is construed epistemologically or ontologically or conven-
tionally or predicatively . . . ; whether propositions are to be understood positivistically or
Platonically or . . . ; whether quantification is construed objectually or substitutionally: the
deployment or avoidance of non-monotonic reasoning; the statuses that may be imposed
upon symbols (schematic letters, quantifiable variables, constants, semiotic families of
signs, and so on); on the extra-logical factors that may be associated with the specification
of truth-values (for example, empirical testing). I hope that my modest question allows me
to remain neutral on them.

I also hope that the various kinds of definitions needed in logics (which again are
often ignored) can be formulated; not only nominal ones but also contextual definitions,
definitions under hypothesis, creative definitions within an axiom system (that can help
prove an otherwise unprovable theorem that contains neither the defined term nor any
term dependent upon them), definition by mathematical induction and more generally by
recursion, and allegedly essentialist ones.

3 Logics as Momental Theories

Logics have long been considered as concerned with forms; important examples include
the classification of (in)valid syllogistic inferences in Aristotle and many later authors, and
the distinction between form and matter that was emphasised by various logicians in the
19th century. ‘Schema(ta)’ and ‘logical skeleton’ have also been used; also ‘structure’ is
sometimes used, although there are various theories outside logics that exhibit structures;
for example, abstract algebras in mathematics. This status is often exhibited by writing
a proposition in forms such as ‘all . . . are . . . ’.

This approach is attractive, but lacks a clear means of distinguishing forms from non-
forms in the first place; so I call upon a powerful philosophical distinction made by
phenomenologists between independent and dependent parts (or ‘moments’) of a totality.
It was applied widely to logics and mathematics especially by the philosopher Edmund
Husserl from the 1890s, and is explored in detail in [24]. An example is the tail of a dog
and its weight: the tail can be considered on its own, but its weight necessarily pertains
to it as the totality. Both parts and moments may have their own parts and moments (the
fur on the tail, the weight of that fur, the owner’s surprise over that weight, and so on).
While parts of parts of . . . of a totality can all be expressed in set theory using member-
ship and inclusion; moments cannot, for they do not belong to the totality in the same way.
However, one can speak of a set of moments for a given totality.

Here a logic is taken to be ‘momental’ relative to its setting and always subordinate
to it in the way just described; talk of ‘forms’ and ‘structures’ is momental. To emulate
a characterisation of philosophy made by Popper [17, p. 73], any logic is ‘deeply rooted
in non-[logical] problems’, namely, its settings. This status helps to explain why a logic is
so elusive; although it is omnipresent, it is always momentally dependent upon its settings
for expression.



310 I. Grattan-Guinness

The distinction between parts and moments occurs also within a logic. For instance,
the propositions ‘P ’ and ‘Q’ are parts of their conjunction ‘P &Q’, but ‘&’ is a moment
of it. So are all other connectives, and also quantifiers, with their laws of combination
indicated by their scopes.

4 The Central Importance of Hierarchies

Unlike a part, no ‘host’ logic L exists in isolation. Instead it unavoidably requires a met-
alogic M.L/ which, among other duties, is to express inference and assertion, and to
(fail to) show consistency and completeness. When it takes itself as a setting, it is the
site not only for metapropositions such as the consistency of L but also, for example, for
paradoxes like ‘all propositions are untrue’. I use the plural ‘metalogics’ which allows for
the fact that L can generate several: the formalist kind that David Hilbert developed is
a major one, but there are others, often not formalised, such as comparisons with other
logic, ways of teaching L, and its history. One reason why hierarchies cannot be avoided
is that they are needed already in the list; assertion and inference belong to M.L/. Each
M.L/ has metametalogics MM.L/; : : : , and so on up, thereby generating a denumerable
‘first-order’ hierarchy

H.L/ WD hM.L/;MM.L/; : : : i:
H.L/ is a well-ordered sequence of collections of logics; while each member is a logic
momental of all its predecessors. It is not itself a logic, nor is any subset. It is discussed in
its own momental metatheory MH.L/, which generates a ‘second-order’ hierarchy

HH.L/ WD hMH.L/;MMH.L/; : : : i; and so on,

in which, again, each member logic is a moment of all its predecessors. ‘Meta. . . logic’
names any logic.

As usual, the logic that forms each meta. . . logic in a hierarchy can, but does not have
to, differ from each other. Among examples, the metalogic of bivalent logic is usually also
bivalent and that of fuzzy logic is fuzzy; but the ‘mathematics of the second order’ of
L.E.J. Brouwer’s intuitionistic mathematics was bivalent [4, p. 61].

The assumed existence of the hierarchy will please supporters of Tarskian theories,
Tr of truth, who will use it to lay out their solutions to paradoxes. However, it does not
endorse or reject any proposed solutions to paradoxes; all may be tried, not only Tr but
also types, say, or limitation of size. Each logic in a hierarchy may contain paradoxes of
its own, awaiting attention of some kind.

5 No Universal Logic(s)

Some logicians advocate a ‘universal’ logic U , which is maximal, incapable of extension,
embracing all known logic; but there cannot be such a logic, since U cannot contain
H.U /. The reply might be that H.U / is universal; but this is no defense, since H(U) has to
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be talked about, and this can only be done in its own momental metalogic M.U /, which
generates its own hierarchy HH.U / of H.U /, and so on forever, but with no universal
theory at the ‘end’. Each logic has limits of various kinds (of settings, for example), but
logical knowledge has no limits: the only appropriate talk of universes in logics is about
expanding ones!

My doubts about universal logic resemble the difference between Georg Cantor and
Bertrand Russell on transfinite arithmetic. In his theory of transfinite ordinals and cardinals
Cantor found it basically a mistake to imagine that there could be a largest of either kind
of number; neither has an immediate predecessor, just as no .@0 � 1/ or .! � 1/ can
be found just before his transfinite sequences. The reason is that if one offered him any
set S , then he would invoke his power-set proof-method and exhibit its power set, which
has a larger cardinality or ordinality than S . It was Russell who proposed the (sic) set of
all sets as a universal set, applied Cantor’s power-set argument to it, and thereby found
his paradox [8]. Cantor’s reply to him could have been: ‘serve you right’. In the same
way, whatever logic a universal logician proposes as universal, I invoke its own hierarchy,
which it cannot contain.

There is also no possibility of finding some universal category that embraces all the
roles that were assigned to the list, as some Kantian and Hegelian logicians hoped to find
in judgements. On the contrary, the roles include both logical and metalogical notions, so
that the hierarchy is already in use.

6 Logics and/in Mathematics

A major concern for many logics, especially since the 1870s or so, is their relationships
to branches of mathematics, in particular, those with a strong philosophical component
and/or some generality. An interest among universal logicians is the characterisation of
logics relative to mathematical theories: ‘Universal logic [. . . ] is not new logic, but a gen-
eral theory of logics, considered as mathematical structures’ [3, p. vii]. However, take
a logic L and consider the mathematical theories T relative to which it is considered: they
have their own metatheories, which are bound to involve some logical notions. Mathe-
maticians seldom explicitly list the logical needs of their theories, but in this context it is
essential, and the charge of vicious circles must be examined; any item in the hierarchy
H.T / of T cannot be in L. In particular, it is likely that H.T / includes some basic gear
from bivalent (meta)logic, such as consistency and the law of excluded middle, and/or
some tools from set theory. For example, Lutz Straßburger [25] seeks to characterise logic
(and also proof) by attractive means E, which include ordering and several elements from
set theory; but they appear to assume bivalence, and so cannot capture any logic (or theory
of proof) that contains elements of E.

A reply might appeal to a distinction between ‘working’ everyday arithmetic that,
among other duties, numbers the pages of a book on the foundations of arithmetic in
which, without begging any questions, the author lays out on page 58 some foundational
definition of cardinals from 0, including 58. One might make an analogous distinction
between everyday set theory and topology and their foundational formulations, and re-
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move them from the logic underlying T . However, none of these every-day theories in
the elements of E helps the universalists: for on the contrary, the influence must go in the
opposite direction, from L to them.

7 On Paraconsistent Logics: Gaps or Gluts?

Those logics with aspirations for universality need special attention. One influential case
is paraconsistency, an example of the ‘truth-glut’ kind of logic, where in the context of
bivalent logics some propositions, especially those that generate paradoxes, are both true
and untrue. The reaction to paradoxes is accommodation: rejected is the ‘explosion’ rule

P and not P I thereforeQ

for any propositions P and Q. An impressive range of theories has been found [2].
‘Dialethism’ is the name given to the version of these theories that holds further that
contradictions and paradoxes are both true and untrue, and permits P to be substituted by
(P is true) and vice versa in well-formed contexts. Self-reference is handled similarly: the
property ‘is untrue of itself’ is true of itself and also untrue of itself. While generality as
such is not a prime property or claim for either logic, the scale of their potential applica-
tion is extensive enough to excite quiet widespread doubts similar to those over universal
logics: if a paraconsistent logic is to be really logical, then it has to be accompanied by its
hierarchy, just like any other logic, including metaproposals such as paradoxes being both
true and untrue. It is advocated especially by Graham Priest ([18] and elsewhere).

‘Suppose, then’, says the dialethist, ‘that we allow sentences to take as semantic values
one of the corresponding four subsets of the set ftrue; falseg’; then the liar paradox quickly
shows that if any proposition a is both true and untrue, then so are both not a and (a
and not a) [18, pp. 4–5]. However, the assumption of truth-glut, especially in dialethic
contexts, is dubious. The ‘truth-gap’ alternative, where some propositions are neither true
nor untrue, is much more convincing: from ‘it is true that this proposition is untrue’ we
deduce that ‘it is untrue that this proposition is untrue’ and also vice versa, suggesting that
neither of these propositions take any truth-value, although each of them is interpretable
in its metalogic. In a fine comparison of truth-glut and truth-gap theories Hartrey Field is
strongly critical of the gluttists, especially the dialethists [6, especially Chapts. 7–8 and
Part 5].

8 Sortality and Syntax

The preference for gaps over gluts benefits two important but often-overlooked aspects of
the predicate calculus.

Firstly, gaphood accords with the theory of ‘sortal terms’, which Russell captured beau-
tifully in a letter to Louis Couturat in 1906: ‘To say, for example, that the principle of the
excluded middle is not red, would be to utter a nonsense, and not a truth’ [23, p. 604]. That
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is, the subject of this ill-suited proposition does not belong to the range of significance (or
‘sort’) of its predicate. The same can be said of the negation of the proposition, so that
neither proposition takes a truth-value. Elaborating sortality is a challenging task, but it
constitutes an important point of interaction between logics and semantics [15].

Secondly, gaps bear upon another much underrated aspect, namely, specifying ranges
of significance of predicates called ‘syntactic relativisation’. Here changing the range, or
the universe of discourse of a logical argument, can convert an ill-sorted proposition to
an untrue one.1 For example, the pair of propositions ‘all raccoons (dis)like Sundays’ is
ill-suited if its range of significance contains only raccoons; but if the range were extended
to, say, all entities, then the propositions become ‘for all x, if x is a raccoon, then x (does
not hate) hates Sundays’, which can be regarded as untrue.

9 On Collections, Especially Multisets

Throughout the history of logics collections have been handled. From antiquity up to the
algebraic logicians such as George Boole and C.S. Peirce the usual theory was based upon
some version of the part–whole distinction; the name ‘mereology’ is attached to some
versions. I name this type of collection ‘class’. From the late 19th century onwards it was
challenged by Cantor’s set theory, in which things belonged to sets and their membership
was distinguished from the inclusion of subsets. A major difference was that in set theory
an object is distinguished from its unit set, whereas in part–whole theory this distinction
does not hold. Since around 1900 mathematical logicians have assumed that set theory
is the only way to handle collections and they seem to have devised various axiomatic
versions. However, other theories should be noted; not only mereologies but also, for
instance, constructive set theories and fuzzy set theory.

Thus we have a meta-collection of theories of collections, which constitutes a body of
knowledge of its own, not reducible to any logic. Indeed, as with mathematical theories,
each will have to rely upon a logic and its hierarchy.

Thus I reject the claims of the universality of set theory, whether in general or embodied
in laicisms, or whether related to mathematics (‘set theory is the foundation of all mathe-
matics [. . . ]’ according to Felix Hausdorff [12, p. 1], a noted despiser of logic!). However,
my position does not rely on any of the considerations treated in this paper, but on pointing
out a severe limitation in set theory itself: namely, that an object can be a member of a set
only once (and analogously in mereologies, that a part is a part only once). This restriction
severely limits the applicability of both kinds of theory, for it is very easy to find contexts
in which multiple partship or membership is required, and no order is imposed upon the
repeated occurrences: for example, repeated zeroes of polynomials and of latent roots of
matrices, the repeated appearance as prime factors of many integers such as 16 and 28, and
tallying the value of the coins in my purse. We cannot express such properties in terms of
either theory; for example, the factors of 16 are 2, 2, 2 and 2, which forms neither a class

1 See [21]. [13] contrasts the need for sortal terms in linguistics with their superfluity in mathematical
logic; I regard them as relevant to any context involving predicates.
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nor a set. It is just as easy to find cases in ordinary life or circumstances: for instance,
words are multisets of letters and propositions of words.

Whatever logic is being developed with some wide-ranging generality or omnipresence
intended, multisets must be used, that is, collections to which a member or part can pertain
more than once. It is a total mystery to me that such an obvious point is not ‘universally’
known and accepted long ago; but multisets are still almost unknown among mathemati-
cians and logicians [11].2 Computer scientists are rather better served, due to the advocacy
by Donald Knuth ([14] and elsewhere).

10 On Relevance Logics

One of Fields’s criticisms of dialethism was Priest’s rogue conditional [6, pp. 371–375].
This is unfortunate, because implication provides a link across to relevance logics, where
the antecedent and consequent must be related in some way, such as having a proposition
or a propositional function in common; for if in addition the antecedent is contradictory,
then explosion cannot occur. The range of these logics provides a framework capable of
formulating not only bivalent but also intuitionistic and modal logics3 (always accom-
panied by hierarchies, of course); perhaps sufficiently large to accommodate a universal
logic. They are paraconsistent logics, for the existence of a contradiction will not cause
explosion. This follows from the fact that a conditional with a contradictory antecedent
that does not share any propositional or predicate letters with the consequent cannot be
true (or derivable).

Another aspect of relevance logic is its relationship to logic diagrams, which Dejnocka
argues is much closer than has been realised [5]. They have a substantial history, and
in recent years have gained a remarkably wide range of roles (see, for example, [1]).
Some diagrams are partly representational (such as Euler and Venn diagrams), some are
schematic (such as arrow diagrams). So what is the status of diagrams in logics?

Self-reference arises again, as self-referencing self-reference, which is so elusive that
it seems to escape all hierarchies (of hierarchies of . . . ). Does it need a third dimension?
If so, comprising what? Does it arise within some other logics that may have potential for
universality?

11 On the History of Logical Hierarchies and Logical Pluralism

A.N. Whitehead and Russell were universal logicists in two respects: firstly, they regarded
bivalent logic monistically as the only one; secondly, they made no effort to isolate its
metalogical components (as we could construe them): [22] recognised the consequences
at the heart of this article. Understandably puzzled, Ludwig Wittgenstein had already at-

2 A good survey of applications of multisets is given in [27]. A short historical review of their presence
and especially absence is provided in [11].
3 A good formulation of relevance logics is available in [16] and [28].
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tempted in his Tractatus to specify logic independently of the logicist thesis and imposed
his own monism. Pondering the limitations of thought and logic, he denied that one could
think beyond the limits; in particular, ‘It is clear: the logical laws may not themselves
fall again under logical laws’. He also distinguished between what can only be shown
and what can be said (including this distinction, apparently!) [29, clause 6.123, see also
especially clauses 4.1212, 5.6, 5.61, 5.621, 6.21, 7].

In his introduction to the essay, Russell noted this feature and proposed as an alternative
position ‘that every language has, as Mr. Wittgenstein says, a structure concerning which,
in the language, nothing can be said, but that there may be another language dealing
with the structure of the first language, and having itself a new structure, and that to this
hierarchy of languages there may be no limit’ [20, p. xxii]. He rejected the enterprise of
thinking about limits and limitations; in contrast, Wittgenstein’s commitment to it was
to be an important motivation for forming dialethic logics in the 1980s, especially with
Priest [18, especially Chapt. 12].

Wittgenstein was not the first philosopher to focus upon limitations of various kinds; in
an excellent survey Priest discusses several predecessors, including Aristotle, Immanuel
Kant and G.F. Hegel. In those days, the usual view of logics was monistic, in favour of
some version of bivalent logic, and metalogics were not distinguished from their host
logic. However, now that hierarchies are available, the doubt over a supposedly universal
logic carries over to paraconsistent logics: each of them has its hierarchy, and there is no
limiting case.

By contrast to Russell’s bewilderment and Wittgenstein’s disdain, great improvements
were made by many others from the late 1920s and early 1930s, when it was recognized
not only that metalogic was distinct from its host logic, but also that this distinction was of
central importance. Among the leaders in this direction were David Hilbert with various
papers in the 1920s, Kurt Gödel’s paper [7] on incompletability (after reading it Rudolf
Carnap proposed ‘metalogic’ as a technical term in 1931), and Alfred Tarski (and maybe
some other Polish logicians as well) on ‘metalanguage’.

It would be a pleasure to judge Russell as one of the father figures of this change,
but this is not possible. His rebuff of Wittgenstein was one of his finest contributions
to philosophy, but he never recognised its importance; in particular, it did not suggest
to him any analogous hierarchy of logics and metalogics. Neither did his hierarchy of
propositions in – that is, within – the theory of types that he used to solve the paradoxes.
Thus he never understood Gödel’s first (meta)theorem; not only did he always misstate it
as applicable to all mathematical theories (a frequent error!) but especially he thought that
his hierarchy of languages solved some ‘puzzle’ that it posed rather than being essential to
its statement.4 He always remained a logical monist with no hierarchy – one of the most
striking ironies in the history of philosophy and logics.5

From the 1930s onwards metalogic, and metatheorising in general, became a central
feature of logics and the foundations of mathematics. However, hardly any study seems to

4 For discussion and evidence of this situation see [9, pp. 565, 592–593]. Russell seems to have ignored
Gödel’s second theorem.
5 A similar position may be predicated of Gottlob Frege, but it differs from the absolutism imposed on
him by Jean Van Heijenoort.
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have beenmade of metametalogics, metametametalogics, . . . , metametametamathematics;
search engines find very few occurrences of these words. I think this is the territory to
explore; it is capable of indefinite extension and iteration, but with no ‘universal’ logic
embracing it ‘all’ . . .

The reluctance of logicians to explore hierarchies contrasts strongly with the keenness
for logical pluralism [10]. I share this enthusiasm, to the extent that I find the lateness of
its arrival and slow progress in the early 1900s hard to understand.6 The millennia-long
history of over-looking temporal logics is especially extraordinary. Surely it is obvious,
not only now but some millennia ago, that we very often make statements about sequences
of actions and decisions effected in some order in time, with ‘and’ meaning ‘and then’;
for example, ‘he opened the door and walked down the corridor’, which is not logically
equivalent to ‘he walked down the corridor and opened the door’. However, this is not
bivalent logic because conjunction is not commutative.7 Yet temporal logics were not
even among the non-bivalent logics to develop first.

12 The Glut of Foundational Notions

The main features of this conception are as follows. A logic has six offices to fulfil, involv-
ing propositions, connectives, propositional functions, quantification, deduction, assertion
and truth-values; it comes with an attached hierarchy of meta. . . logics, which is momental
internally and also relative to the setting in which it is used; there is no universal logic; the
proposition is the prime concept; no logic includes any theory of collections (including
multisets); logical pluralism abounds but hierarchies rarely feature above the meta level.

Numerous notions are now involved in the study of foundational theories in logics and
mathematics. Taking in a few topics that have not been explicitly mentioned, at least the
following are involved (where the grouping of topics is not necessarily defensible):

� logics: metalogics, hierarchies, form and matter, structure, parts and moments;
� logical monism and pluralism, universality, paraconsistency, generality;
� propositions, connectives, assertion, truth-values, theories of truth;
� implication, (rules of) inference, deduction, entailment, relevance, semantic tableaux;

6 I am struck by the conformities between my advocacy of logical pluralism and hierarchies and the criti-
cisms of the biologist Robert Rosen of the dominant status assigned to physics among the sciences, which
for him forbade adequate engagement with biology and the life sciences in general. He associated phys-
icalism with, for example, the foundationalists’ preference for syntax over semantics and the advocacy
of Hilbert’s metamathematics. (He could have added the philosophy behind Russell’s logicism, but not
Whitehead’s.) In his alternative approach Rosen used other devices from logic and foundations, especially
relations and category theory, in order to specify minimal capacities that a material system should possess
in order to be one of the simplest functional organisms normally regarded as being ‘alive’ [26].
7 This difference is obtained independently of any construal of time itself (whether relative or absolute, for
example, or as conceived in relativity theories). One must distinguish temporal logics from the expression
of the temporal order of events in terms of ordered sets within bivalent logic. W.V. Quine does not do this
in his treatment of tense in [19, pp. 30–31], the only attention paid to time in his book on the ‘Philos-
ophy of Logic’. He staunchly supported monism for bivalent logic while rejecting Russell’s all-purpose
‘implication’.
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� non-monotonic reasoning, logical consequence;
� propositional functions, relations, attributes;
� quantification, relativisation of syntax, universe of discourse, (un)sortal predicates;
� self- and cross-reference, paradoxes, contradictions, fallacies, vicious circles;
� metamathematics, axiomatisation, proof theory, formalism;
� various senses of completeness, independence, consistency, constructivity;
� modality, impredicativity, temporality, vagueness;
� logicism, types, definite descriptions;
� various theories of collections, infinities, order-types, diagonalisation;
� vagueness, fuzziness;
� intension and extension;
� various senses of existence, judgments, analyticity, identity;
� model theory: categoricity, compactness, soundness;
� symbolism, well-formedness, semiotics, abstract algebras, operator algebras;
� syntax, logic diagrams, various kinds of definition;
� various kinds of foundations of mathematics.

The situation shows the merits of pluralism; but when there is such prolificacy, how do top-
ics relate to each other?8 Take a few of the principal topics: set theories, metamathematics,
model theory, axiomatisation, mathematical logics, arithmetic, abstract and operator alge-
bras and category theory. I have tried to find a comprehensible representation or summary
of their relationships, but in vain; they seem to be extraordinarily complicated, with no
powerful strategies for simplification.

Further, as was mentioned in Sect. 4 in connection with mathematics in logics and log-
ics in mathematics, a serious danger lies in vicious circles, especially if a logic contains
and also uses some logic. The only clear conclusion is that no universal logic will ac-
commodate all, including itself. There does not appear to be much effort to tackle either
question.

Acknowledgment For discussions or comments on the draft material I am indebted to Gregory Landini
and Michael Scanlan.
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The English Tenses, Blanché and the Logical Kite

Dany Jaspers

Abstract There exists a very systematic limitation on natural compositional concept for-
mation in natural language whose full complexity has not been laid bare. The first section
of this chapter will revisit the lexical domains of logical constants, where conceptual “kin-
ship and contrast” define a pattern of opposition first represented in the form of a kite in
[21]. Next, I propose a kite analysis for the system of English finite tenses which has a par-
tial precursor in a now-forgotten little article by Robert Blanché on the one hand and in
the much more detailed system of binary temporal relations proposed by Vikner [23] on
the other. From the former the kite structure for the finite tenses differs in that it focuses
on the inviolability of prior binary divisions for later ones – which is the operation in this
realm of progressive universe restriction (PUR) as defined in [21] – and on resulting asym-
metries in the tense system; from the latter it differs in proposing a system of two pairs
of binary oppositions, a temporal pair and an aspectual pair, yielding four binary relations
in all (rather than three), with a surprising similarity between the internal architecture of
the temporal and the aspectual pair of relations. On the whole, the pattern suggests that
basic conceptual oppositions and lexicalization principles are guided by innate linguistic
patterns of which binarity, opposition, and asymmetry are the central properties. If cor-
rect, the analysis proposed is striking confirmation in yet another semantic domain of the
asymmetry approach to the square of opposition and its extensions of our earlier work.

Keywords Tenses � Square of opposition � Logical hexagon � Logical kite

Mathematics Subject Classification (2000) Primary 03B45, 03B10, 03B65, 03G05 �
Secondary 05C99, 47H05

1 Introduction

“It is as if as human beings – a particular biologically given organism – we have in our heads to
start with a certain set of possible intellectual structures, possible sciences. Now in the lucky
event that some aspect of reality happens to have the character of one of these structures in our
mind, then we have a science: that is to say that, fortunately, the structure of our mind and the
structure of some aspect of reality coincide sufficiently so that we develop an intelligible science.
And it is because of this, it is because of this limitation, initial limitation in our minds to a certain
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kind of possible science, it is precisely that that provides the tremendous richness and creativity of
scientific knowledge. It is important to stress that. This has to do with your point about limitation
and freedom. If it were not for these limitations, we would not have the creative act of going
from a little bit of experience to a rich and highly articulated and complicated array of knowledge.
(. . . ) That doesn’t mean that everything is ultimately going to fall within the domain of science.
Personally I believe that many of the things we would like to understand, and maybe the things we
would most like to understand, such as the nature of man, or the nature of a decent society, or lots
of other things, might really fall outside the scope of possible human science.”
—Noam Chomsky, Human Nature versus Power – Noam Chomsky debates with Michel Foucault
[boldface mine, DJ].

This chapter revisits a universal limitation on natural compositional concept formation
and simplex lexicalization in natural language which grew out of a series of studies on
the lexical semantics of logical operators [13, 21] and found a lot of inspiration in work
by Seuren [19, 20], Horn [11], and Smessaert [22], but above all in a seminal monograph
by the French philosopher Robert Blanché: Structures Intellectuelles [5], as well as in
a little, now forgotten article by the same author [1]. It does so to extend the analysis
to a new group of semantically cognate but contrasting concepts, namely those which
define the English tense system and its expression in lexical predicates. To set the stage
and characterize the nature of the binary concept formation constraint (CFC), Sect. 2 will
review its genesis and historical antecedents and its effects in the lexical domain of logical
operators.

The data set that our analysis will be built on consists of triadic sets of lexical items
belonging to designated closed lexical domains:

predicate calculus operators: ŒŒall some� none� (1.1)

propositional calculus operators: ŒŒand or� nor� (1.2)

tenses: ŒŒfuture present� past� (1.3)

Not only is this triadic pattern surprisingly uniform – as proved for a wide range of
cases in [21] and here extended to the tenses – the square brackets indicate that each
triad contains two elements that stand out from the third by sharing a property that the
third lacks: in the case of the operators, the bracketing sets off two affirmatives from
a negative. In the case of the tenses, the future (in English and several other languages)
is formed on the basis of present tense morphology, like the present itself, so that from
a morphosyntactic perspective (but also for deeper conceptual reasons to be elucidated)
the past is the lone third in this triad. But there is more to the square brackets uniting two
elements of the triad: in each case the meaning expressed by the union of the denotations
of the bracketed pair is itself lexicalised, carrying the same label as one of the bracketed
elements and resulting in a lexical relation of colexemic hyponymy (or autohyponymy)
between the contained and the containing colexemic item. This can be brought out by
labeling the bracket in question and assigning the hyperonym the subscript 2 and the
hyponym the subscript 1:

ŒŒSOME2 all some1� none� (1.4)

ŒŒOR2 incl and or1� nor� (1.5)

ŒŒPRESENT2 future present1� past�: (1.6)



The English Tenses, Blanché and the Logical Kite 321

In the predicate calculus, this introduces the unilateral operator SOME2 (D some maybe
all) over and above bilateral some1 (D some but not all); in the propositional calculus it
gives a place in the system to inclusive OR2 incl alongside exclusive or1 excl. In the En-
glish finite tenses system, it introduces PRESENT2, which occurs in sentences such as “If
you work with John or Bill, I’ll be delighted to learn that”, where work may ambiguously
refer to a situation that already obtains at present or whose future realization will lead
to happiness. The concept formation constraint consists in the fact that while it is pos-
sible to combine the bracketed, semantically most closely related pair into a hyperonym
yielding the fully natural lexicalizations just mentioned at level 2 (called level 2 and thus
subscripted because they are combinations of two of the three level 1 predicates), the com-
bination of the third element of the triad with one of the members of the natural pair is
invariably nonnatural [21], 623. The level 2 bracketing that separates a pair from a third
element somehow seems to preclude simplex lexicalization of any of its two hyponyms
with the isolated third item. Thus, in the case of the predicate calculus operators, there ex-
ists no natural lexicalization *nall to express the notion “some1 or none” [8–11]; nor does
there exist a natural lexicalization *allno for the combination “all or none” (see [15, 16]).
In the case of the propositional operators, there are no fully natural level 2 hyperonyms
*nand (= or1 or nor) or *iff (D and-or-nor). In this chapter, we shall try to argue that in
the system of the tenses, there is no simplex or periphrastic morphological lexicalization
*nonpresent1 (= “future or past”), nor *nonfuture (= “present1 or past”), while there is
a hyperonym PRESENT2 as illustrated above.

Now that the data and the constraint to be fleshed out are in place, let us turn to the case
originally made in [13] and [21], which forms the fertile soil for the new extension in the
rest of the chapter.

2 The Concept Formation Constraint for Logical Operators

In De Interpretatione 6–7, 17b.17–26 and Prior Analytics I.2, 25a.1-25, Aristotle set up
a classification of propositions in terms of two binary criteria: a Quality opposition (affir-
mative versus negative) and a Quantity opposition (universal versus particular) (Fig. 1).

The oppositional nature (“versus”) of the two qualities and two quantities is reflected
in the fact that each pair of propositions exhibits one of four possible metalogical relations
of opposition (Table 1).

The first diagram in history to represent these relations is in book III of De dogmate
platonis philosophi, attributed to Lucius Apuleius (c.124–c.170) [5, 22]. Much later the
pattern was formalized by the late Roman philosopher and statesman A.M.S. Boethius
(480–524) in the well-known Square of Opposition (with full lines for contradiction,
arrows for subaltern entailment, a dashed line for contrariety, and a dotted line for subcon-
trariety, see Fig. 2).

To understand how the analysis developed in this paper relates to the Aristotelian-
Boethian conception, it is important to be clear from the start about the status of three
things: (1) the metalogical relations M in Table 1, (2) the propositions Q and R between
which they obtain, and (3) the meanings (conceptual content) of the logical operators
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Affirmative Negative

All citizens are proud

Some citizens are proud

All citizens are not proud

“No citizens are proud”

Some citizens are not proud

“Not all citizens are proud”

Universal

Particular

Fig. 1 Aristotle’s quality and quantity oppositions

“all,” “some” and “no” which are the ultimate defining factors of the relations that obtain,
given that the propositions related are identical except for the operators used. To clarify
our stance on these matters, we first consider the following example of a sentence in which
another relation between two entities is expressed: “Mary is taller than Bill.” The relation
established here clearly has no independent mind-external reality out there, it is an ex-
clusively mind-internally assigned attribute. All there arguably is out there is the persons
Mary and Bill – arguably, since we have no access to reality “an und für sich,” but we are
nonetheless confident they exist. Viewing them from the perspective of their respective
sizes and then relating those sizes by taking Mary’s as the first size considered and Bill’s
as the size Mary’s size is compared to, and concluding that the relation involved is “taller
than,” is all mind-internal activity involving mental representations. Note that for exactly
the same reality out there we can switch the arguments of the proposition around and turn
the relation “is taller than” into its converse “is shorter than” and get an equally valid
mental perspective on exactly the same reality out there: “Bill is shorter than Mary.” With
all this in mind, we return to the metalogical relations M, the propositions Q and R and

Table 1 Metalogical relations

Metalogical relations Description Example

Contradiction Q and R cannot be true at the
same time nor false at the same
time

Q: no citizens are proud vs
R: some citizens are proud

Subaltern entailment Whenever Q is true, R is also
necessarily true

Q: all citizens are proud
R: some citizens are proud

Contrariety Q and R cannot be true at the
same time, but can be false at the
same time

Q: all citizens are proud vs
R: no citizens are proud

Subcontrariety Q and R can be true at the same
time but cannot be false at the
same time

Q: some citizens are proud vs
R: some citizens are not proud
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Fig. 2 Boethius’ square of op-
position

A : Al l S are P

I : Some S are P O : Some S are not P

E : No S are P

the logical operators. Here we posit that the relations M are once again purely derivative.
Specifically, they are a function of the internal properties of the much more tangible real
entities Q and R that are related. The nature of these entities is different from that of Bill
and Mary in the earlier example in that they are themselves mental representations. They
are real enough, but unlike Bill and Mary they are transient objects (propositions) in the
mind/brain, not in the mind-external world. Moreover, they are themselves still complex
entities further decomposable into less transient and more minimal mental representations
called propositional functions, i.e., predicates over variables, such as ALL, SOME, or NO
in ALL(S,P), SOME(S,P), and NO(S,P). It is these semantically cognate lexical pred-
icates – more specifically the differences between their respective semantic contents –
which are the reality that defines the set of metalogical relations of opposition and hence
the nature of the logic involved.

Two important conclusions follow from this outlook. First, if one should decide to con-
sciously play around with the meaning of one or more of the operators involved, one will
thereby affect the nature of the relations and hence create a new logic [21]. In earlier work
([14], 558) it was argued that the choice to consciously modify the semantic content of
operators is what distinguishes mathematical logic from the natural logic of ordinary lan-
guage, which we claim runs on the innately specified constrained pattern that is described
in [21] and further elaborated in this article rather than on consciously constructed oper-
ators. Secondly, our outlook implies that in the logic of natural language the relations of
contradiction, entailment, contrariety and subcontrariety which hold between two propo-
sitional functions are themselves purely derivative: they are solely what they are in virtue
of the actual existence of the mentally encoded natural meanings of the words employed.
The task of the linguist is therefore to be a good lexical semanticist and decompose with
formal precision the molecular meanings of the small set of cognate logical predicates in
the propositions in the vertices and thereby explain why they form a closed lexical field
exhibiting – in Wittgenstein’s words – both “kinship and contrast.”

But before embarking on that task, it is important to return to a point made at the
outset and realize that from the viewpoint of natural language and more specifically its
expressibility, there is something anomalous about the O-corner of the Boethian square
[8, 9, 11]: there seems to be no simplex lexicalization for it. While all, some and no are
natural lexicalizations, one has to resort to the syntactic combination some (. . . ) not or not
all for the O-corner, in the absence of a simplex form such as *nall. This problem, perhaps
originally raised for Latin predicate calculus operators by Thomas Aquinas ([9], p. 253),
was to my knowledge first stated explicitly in more recent times by Blanché [4], pp. 95–96
(our translation, DJ) in the following passage:
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“The common language, for its part, has at its disposal no more than three words: tout, nul, quelque;
it lacks for the particular concept the splitting in two that characterizes the universal. Lacuna or in-
differentiation?” Is it the negative form that is lacking, or the distinction between affirmation and
negation? In still other terms: are we dealing with an incomplete and irregular tetrad stripped of
its O-corner or of a system that is regular and complete in its kind, but simplified and of a mani-
festly triadic form, in which the third element falls neither precisely in I or in O, but, so to speak,
somewhere in between these two?”

Elsewhere ([3], p. 370), he generalizes the remark to modals and proposes a revision of
the square to accommodate his finding:

“Now it is important to notice – a remark which has general value, and will hold good in modal
systems as well as in the quantified one – that it often suffices to consider, instead of this tetrad [A,
I, E, O, (DJ)], a mere triad. Since the two subcontraries [I and O, (DJ)] may be, and in fact often
happen to be, both true, we possibly need not – or perhaps cannot – distinguish between them: we
do not think of either separately, but of both together. Let us designate by Y this third (or fifth) case,
which results from the conjunction or logical product of I and O. (. . . ) The third possible case is
thus formed by the simultaneous rejection of the first two, i.e., by the negation of their disjunction
or, what amounts to the same, by the conjunction of their negations. We thus fall again into the
case designated by Y, since I and O are the negations of E and A.”

This results in a pentagonal system (Fig. 3) in which “we have five positions to consider
and to designate,” namely the following extension of the Square, with (as anyone can
check) the appropriately added dotted lines of the Hamiltonian triangle of contraries AYE,
as well as entailment arrows from Y to I and O, a subscript 1 for the Y reading of some
to distinguish it from the I-reading (subscript 2), and the corner without natural simplex
lexicalization boxed.

Adding Y is a useful step in virtue of the fact that in ordinary language many propo-
sitions with some indeed have the reading Y:some1 .not al l/: it would clearly be felt to
be deceptive to say some flags are green when one in fact knows that A:all are. Similarly,
when we say that not all flags are green, the normal ordinary language interpretation is
that Y:some1 .not al l/ are. Yet, just adding Y does not resolve the O-corner problem as
long as just a single case can be found where the meanings of I and O are still attested. And
they are. In If you find some articles on Elisabeth of Spalbeek, please send them to me, the
word some clearly means I:some2 .or al l/, as the injunction includes the request to send
the articles if you find all of them (the set of existing articles on Elisabeth of Spalbeek
is fairly small). And in If not all forms are filled in correctly, you will not get a visa the
applicant is not entitled to claim a visa if he has filled in none of the forms correctly. So the

Fig. 3 Blanché’s pentagon of
opposition

A al l

I some2 (or al l)

Y some1 (not al l)

O nal l

E none
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Fig. 4 The hexagon of opposi-
tion (Jacoby, Sesmat, Blanché)

interpretation of not all here clearly does include E:none and hence has a full-blown O-
corner interpretation rather than Y. In sum, the mere addition of Y does not suffice to solve
the O-corner problem. In hindsight, it must be said that although he had revived Aquinas’
O-corner problem, Blanché did not pursue the question in sufficient depth, mainly because
this linguistic asymmetry problem came second for him to a seemingly conflicting more
pressing endeavour, namely to promote further extension of his logico-conceptual pen-
tagon into a fully symmetrical bitriangular hexagon of opposition (first discovered by the
American logician Jacoby [12]) by adding a final vertex U to the system. Its meaning is
the contradictory of Y, and hence amounts to the disjunction of A and E (Fig. 4).

In several ways, Horn’s work [8–11] marks important progress in the study of the O-
corner problem. Not only did he bring the work of Blanché to the attention of the linguistic
community [10], he also provided a Neo-Gricean pragmatic analysis which he (i.a.) used
to address the remaining problem posed by the kinds of conditional sentences that still
plagued Blanché’s proposal. Moreover, he generalized the pattern further by including
binary connectives, i.e., the propositional operators and, or, nor and *nand in the story
(see the scheme in [11], p. 404). This extension proved crucial, since it yielded a paradigm
of operators which turned out more easily amenable to a decomposition analysis than the
other lexical fields under study (cf. [13], chapter 4).

In Horn’s Neo-Gricean account, bilateral Y:some1 .not al l/ and unilateral I:some2
.or all/ are not two distinct logical operators, but the Y-case is considered a pragmatic
restriction of the I-operator, fromwhich its bilateral interpretation is derived in terms of the
Gricean maxim of quantity. Not only I, but also O gets such a bilateral reading on account
of that maxim, which means that its interpretation is then identical to that of bilateralized I.
This identity “results in the superfluity of one of these subcontraries for lexical realization;
given the functional markedness of negation (see Horn 1989 for a comprehensive review),
the superfluous, unlexicalized subcontrary will always be O rather than I.” [11], p. 404.

As said above, this type of pragmatic analysis can be put to use to provide a solution
to the abovementioned problem of the I-reading (some2 .or all/) in the protasis of certain
conditionals, e.g. If you find some articles on Elisabeth of Spalbeek, please send them to
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me, where the unilateral lexical reading survives.1 Given that the use of the conditional in
the simple present here signals that the speaker cannot yet have certain or full knowledge
about the reality of the proposition, the conditions for Gricean implicatures are not met
and hence the use of some in this case does not trigger the implicature but not all.

However, although this line of reasoning can help to predict when the I-reading sur-
vives, the solution is not unproblematic: it comes at the cost of acknowledging that O and
I do not always get a bilateral reading and are in those cases not equivalent. From this,
Hoeksema [7] concluded: “if I and O are often not even pragmatically equivalent, because
the conditions for Gricean implicatures are not met, then why should O be superfluous?”

In view of similar considerations, the view developed in [18, 20] and [13] was that the
ban on O-corner lexicalization is a matter of lexical semantics, to be sought in a constraint
on intralexical concept formation below word level rather than in a general pragmatic
blocking constraint. Specifically, the argument in [13] was that the foundational opposition
in the square and its offshoots is the E–I contradictory opposition. This fundamentum di-
visionis is inviolable for further concept formation in the same lexical field. This amounts
to the claim that the lexical predicate in A, carved out on the affirmative side of the E–I
opposition, contains I as a presupposition (thereby also lexically encoding that in natu-
ral language the subject set in A propositions is interpreted as nonnull – known as the
source of the existential import problem). The consequence at the propositional level is
that both A:all flags are green and Y:some flags are green contain the presupposition
some2. And consequently, (presupposition-preserving) negation of A keeps the presuppo-
sition intact in its natural reading, so that Not all flags are green normally does not get
an O-interpretation, but an Y-interpretation. This does not, however, preclude an O-corner
reading for the phrasal construct not all in If not all forms are filled in correctly, you will
not get a visa provided the lexical presupposition can be blocked from projecting. Such
blocking is actually quite common in conditionals. Thus, the factive verb discover, which
normally entails the truth of its sentential object, is no longer factive in

If I discover that Bill is in New York; there will be trouble. (2.1)

The picture that emerges is different from Horn’s Neo-Gricean analysis: some is just
another case of lexically polysemy – a widespread phenomenon in the lexicon anyway –,
and the unilateral interpretation is restricted to contexts of (disjunctive) incomplete knowl-
edge.

An argument in favor of this analysis is that it predicts that just as O is inaccessible for
simplex lexicalization due to breaking out of the I subuniverse, U is similarly inaccessible.
U-concepts would also combine a proper subpart of I, namely A, with E, which is outside I,
a combination which our theory prohibits ([15], 13, and [21]). As far as we have been able
to ascertain, this prediction is borne out by the facts: not only are there no natural O-corner
lexicalizations, there are no natural U-lexicalizations either (Fig. 5). For this universal,
which falls out automatically from our concept formation constraint, there seems to be no
plausible analysis in terms of scalar implicatures.

1 The matter of quantifier readings in the protasis is complex, as there are many other types than future
(predictive) conditionals, cf. [2].
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Fig. 5 The four-cornered
hexagon of opposition

When the O and U vertices and the relations of opposition involving them are removed
from the Hexagon, we end up with a quadrilateral (Fig. 6) in the form of a Kite [21],
p. 621.

With respect to the latter, a caveat is in order concerning its scope. Specifically, it should
be borne in mind throughout the rest of the chapter that the constraint is strictest for con-
cept formation involving functional lexis. As the conditional sentences discussed earlier
showed, the Hexagon remains in place as a logical substrate for the interpretation of certain
supralexical syntactic constructs which contain more than functional lexis alone and for
full utterances, in which lexical presuppositions can be overridden and O-interpretations
for instance are not impossible. Furthermore, it also remains in full force with all relations
intact when one decides to consciously give up the natural bounds to construct less mun-
dane lexicalizations (such as the O-corner lexicalization nand widely used in the context
of engineering and computing, but also the non-conventionalized forms *nall and *allno).

Fig. 6 The kite of opposition
for the predicate calculus
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3 Time and Tense

Having briefly sketched work extending the Square of Opposition and dealing with the
O- and U-corner problems, the next section is devoted to the English finite tenses system,
intended to pave the way for a final section which will show its relation to the logical kite.

3.1 Time in the Mind

Although our cognition perceives time and space as different things, science knows better.
In the natural world time is not a separate thing, as classical mechanics had it. Rather, it
is a fourth coordinate which is required, along with three spatial ones, to specify an event.
That four-dimensional continuum, called space–time, is a scientific construct which our
mind needs considerable conscious training and learning to grasp: apparently our natural,
innate “intellectual structures” are limited such that time and space are invariably expe-
rienced as separate – and for our purposes crucially bidyadic kite-structured – systems,
not as one four-dimensional whole. Space itself is felt as a stable three-dimensional ex-
panse in which we can move about, in thematic terms a stable LOCATION within which
and relative to whose points of location the experiencing subject is either a non-motional
THEME, c.q. a motional “running” THEME moving from a SOURCE LOCATION to
a GOAL LOCATION (Gruber 1965).

[TH John] is [LOC in the garden] (3.1)

[TH Mary] travelled [SOURCE LOC from Spain] [GOAL LOC to Italy] (3.2)

Time, for its part, has two converse forms of triadic conceptual organization. One con-
ception is that of human beings taking steps from the past into the future, i.e., with human
beings as themes, the past as their source location and the future as the goal location.
Yet, instead of looking at the future and the past as the locations, there is a compet-
ing experience which turns the tables and conversely conceives of time as fleeting, as
the “running” theme that moves (as expressed by the Dutch noun “toekomst” (means
“coming-toward”)) toward an immobile experiencing subject, or reaches and hence co-
incides with it (D present) and then passes the subject by (“past”), leaving him behind.
Relative to that fleeting time, the subject is the immobile LOCATION, eternally locked
in the now-moment of experience and incapable of time-travel. Apparently, our cogni-
tion is unable by its triadic design to experience things other than from these two angles.
Clearly, our common sense cognitive experience of time and space does not change be-
cause physics tells us that our perception is not scientifically accurate. Just as we still say
that the sun rises and sets and can accurately calculate the times at which this happens
even though we know that it is really the earth which moves, our cognition unfailingly
thinks of space as a stable unlimited three-dimensional expanse with three coordinates
(D axes).

Interestingly, the description above of experiential time indicates that our mind expe-
riences time just as three-dimensionally as space: past, present and future. Specifically, it
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constructs time as a continuum which – since it is intangible – is often abstractly repre-
sented as a unidirectional line on which each temporal point is in one of three possible
relations relative to the fixed here-and-now point: before now (future), coinciding with
now (present), behind now (past). These three form a triad of incompatible contrary predi-
cates. The segment to the right of the now-dot is the future time sphere (the arrow indicates
that the future is what the present moves into, transforming it former self into a past in the
process), the segment to its left is the past time sphere:

This is a representation of our perception and conception of time, i.e., of time as we
experience it. A curious property of this depiction is that we use objects in space (a line and
a point) to capture something which we so clearly experience as different from space. It is
Gruber (1965) who first demonstrated in great detail that our mind has adapted “insofar as
possible, the independently motivated algebra of spatial concepts to (. . . ) new purposes”
(Jackendoff 1983:188) including time. Linguistically, this is evidenced by the fact that
prepositions of time are on the whole identical to spatial expressions:

at the corner, at 6:00 o’clock (3.3)

from Lubbock to Amarillo, from Monday to Friday (3.4)

Actually, it is probably due to the concepts our mind uses that we have the intuitive
feeling that time (which is felt to be different from space as it is felt to be fleeting) is
somehow harder to come to terms with than space. In fact, we feel we can travel in space,
visit the same place repeatedly, etc., but cannot really revive the past or pay an actual visit
to the future. Maybe our illusion that we should somehow be able to travel in time (given
that we can at least conceive of time travel) is caused by the fact that “traveling” is a spatial
notion, and spatial concepts – though very useful – are not necessarily in all respects fully
appropriate in non-spatial semantic fields. In any case, time in everyday cognition, which
we call conceptual time, is experienced as being different from time in natural science.

3.2 Time in Speech: The Situation of Discourse and the Tense System

From natural time and experiential time, we now move to the expression of conceptual
time in language. The prototypical counterpart of conceptual time in natural languages
is the tense system.2 Although that system is invariably predicated on experiential time,
some additional apparatus is required. More specifically, perceptual time enters into the
description of a situation of discourse, but the latter is arguably more asymmetric due to

2 The term prototypical is used to remind us (i) that time is often indicated by means of other words
than tensed verbs (“yesterday,” “at five,” “week,” etc.) and (ii) that tenses can be used for non-temporal
purposes (“Could you do me a favor?”: use of the past tense to make the utterance sound more polite).
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Fig. 7 Diagram of the past and the nonpast tense

a binarity requirement. First of all, the ever-shifting present moment is more narrowly
defined as the Moment of (de)coding (M), which usually is the moment of speaking (but
can also be the moment of decoding of a written message). From this vantage point we
have a past-oriented binary choice to make: [Cretroject] (past) or [�retroject] (nonpast).
In the former case we jump away from M to a Retrojected Temporal Reference Point (R)
preceding the moment of speech M, resulting in reference to the past time-sphere (R<M),
in the latter we choose [-retroject], landing R at a point simultaneous with M (RDM), i.e.,
in the nonpast time sphere (Fig. 7).

Note that at this point there is no specific future time reference yet, which accommo-
dates the fact that finite tenses in English are morphologically invariably either past or
present. Indeed, linguistic means do not give immediate simplex morphological “flesh” to
the future sphere of the threefold semantic opposition (past, present, future) of our world
of temporal experience. There is in English no specific bound morpheme to mark the fu-
ture form of the verb. Of course, this does not mean that English has no way of referring
to future time. But the prototypical construction referring to future time and sometimes
called a compound future tense is a combination of present tense with the auxiliary verb
“will/shall + Vn,” as in

One day, I shall/will move into my new house (3.5)

The crucial point supporting the initial past–nonpast time sphere divide is then that
even the future tense is morphologically a present tense: it uses the present tense of the
modal shall/will to obtain its semantic future time reference. This is why we are justified
in postulating the drawings for the binary past–nonpast tense opposition in Fig. 7 above
as the most primitive and for further divisions inviolable binary basis for the English
finite tense system. Whatever choice is made, it leads to universe restriction (PUR) for
further binary subdivisions. Vikner ([23], pp. 84), who proposed the same initial binarity
constraint, formulates the binary choice and its morphosyntax as follows:

The first element of a past tense forms ends in the morpheme -ed (3.6)

The first element of a non-past tense form ends in the morpheme -s or ; (3.7)

To obtain a real future and a present-only tense a further specification is required that
will yield within the nonpast time sphere the opposition between the actual present time
reference to M, and the actual future tense. These effects are realised by turning around
from a past-orientation at M to a future-orientation at R and using R as the vantage point
for a second, this time future-oriented but once again binary choice: [Cproject] (simple
future) or [�project] (simple present). In other words, a new arrow either projects away
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Fig. 8 Diagram of the future and the present tense

from the temporal reference point R (the retrojection point temporally coinciding with
M) to a projection point P beyond R and M (P>RDM), into the future, or – in case of
[�project] – it refrains from doing so, resulting in PDRDM.

Vikner [23, p. 84] describes this second binarity in the following morphosyntactic
terms, illustrating that the second, future-oriented binarity turns on whether use is made
of will/shall or not:

The first element of a future tense form is a form of will/shall (3.8)

This is not the case with a non-future tense form (3.9)

Since we defined R as the vantage point for the second, future-oriented binary choice
between [Cproject] and [�project], this process can apply no less to a past R than to the
nonpast one, which yields the configuration for the conditional and the definite past tense
(as in John left yesterday), respectively (Fig. 9).

The dashed arrow in the diagram of the conditional represents the fact that this is the
only tense where the position of P relative to M is indeterminate, a consequence of the
fact that retroject and project both apply so that this is the only of the four tenses reached
at this point (past, present, future, and conditional) which has temporal reference steps
jumping in opposite directions. It seems probable that the fact that of these four tenses the
conditional is also experienced as the odd one out is a consequence of this indeterminacy.
In the three other tenses, there is never doubt about the position of P relative to M.

Last night at 7, John said he would do the dishes. (3.10)

. . . and he did at 9 (3.11)

. . . and he is doing them now (3.12)

. . . but he hasn’t done them yet (3.13)

Given that the conditional tense form is itself indeterminate about the location of P, the
three continuations of the first sentence above are all conceivable.

Fig. 9 Diagram of the conditional and the definite past tense
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Let us now turn from the four basic tenses to aspect, starting with the perfect. Contrary
to Vikner [23] and Declerck [6], I do not consider perfective (have + -ed) as a subcategory
of tense and different from the progressive in that respect. Although Vikner is right that
the binarity of the perfect ([Cperfect] or [�perfect]) shows resemblance to the two tense
binarities R and P, and that it allows reference to a situation that precedes P, I believe there
is a major difference between temporal reference points like R and P and the perfect. While
the former regulate reference to a temporal reference point at which an entire situation
gets located, they impose no constraint on how much time gets wrapped into that point:
it may be an instant, but equally as well a century or whatever in its entirety. This is why
when P coincides with R and M and we get a present tense without further aspectual
embellishment, the present time reference may be to a timeless present. The reference
point is the entirety of the situation, which may encompass even all time that includes the
present.

Water freezes at 0 degrees Centigrade. (3.14)

Two and two is four. (3.15)

What the two aspects do, then, is not retroject or project to a reference point of a whole
situation of any possible length of internal temporal duration, but they restrict the time
relevant for a main verb situation to a segment of the time line that includes the point P.
The situation expressed by the main verb is then located at one or more points on that
limited segment which ends (perfect) or begins (progressive) in P, as represented in the
Fig. 10.

In other words, the perfect stretches the time zone within which the situation denoted
by the main verb is located from P back into the past. The progressive on the other hand
stretches the relevant time segment forward into the future from P, with the effect that at P
the situation is often still in the middle of occurring and hence unfinished. This accounts
for the following examples:

John has been with us since yesterday (3.16)

John has lost his key (3.17)

Mary is playing tennis now, so don’t disturb her. (3.18)

Mary is playing tennis this afternoon. (3.19)

The time adverbials here indicate that some constraint is typically imposed on the time
line, reducing it to a segment which precedes and leads up to P in the case of the perfect,
or which starts from P and includes a limited period beyond P into the future in the case

Fig. 10 Diagram of the perfect
and the progressive aspects pf.

prog.

M

R

P
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Table 2 The 16 active finite
English tenses

Name Example Past
(R)

Fut
(P)

Perf Prog

Simple pres Works � � � �
Pres prog Is working � � � +

Pres perf Has worked � � + �
Pres perf prog Has been working � � + +

Simple fut Will work � + � �
Fut prog Will be working � + � +

Fut perf Will have worked � + + �
Fut perf prog Will have been working � + + +

Simple past Worked + � � �
Past prog Was working + � � +

Past perf Had worked + � + �
Past perf prog Had been working + � + +

Simple cond Would work + + � �
Cond prog Would be working + + � +

Cond perf Would have worked + + + �
Cond perf prog Would have been working + + + +

of the progressive. The second and fourth examples illustrat that the main verb situation
located in the aspectually limited segment need not necessarily include P.

Observe that if one maintains with most traditional accounts that perfect is as much an
aspect as progressive, we note a surprising parallel between the demarcation of temporal
reference points R and P on the one hand and the segment demarcation by perfect and
progressive respectively. Just as in the temporal reference point pair of binary relations,
a past-oriented choice precedes a future-oriented choice in the aspectual pair of relations as
well: first the perfect, then the progressive, in that order. The only difference between the
two pairs is in the nature of the relation. The steps to R and P involve the choice to jump or
not to a point, the perfect and progressive involve stretching out a period from P to a point
earlier, respectively later than P, resulting in a line segment. Though R and P go in different
directions, they can be combined (conditional). The same is true for the perfect and the
progressive: different directions of operation, but not incompatible with one another. In
sum, by keeping to the tradition, one gets two pairs of choices with the same order in the
processes that apply. The only difference is in the nature of what happens. All in all, the
four binary choices result in 2 � 2 � 2 � 2 D 16 active finite English tenses (Table 2).

4 Blanché’s “note Sure Les Relations d’ordre” and the Tenses Kite

Given that the pair of binary tense choices R and P and the Logical Kite both involve
a dyad of binary oppositions, with the second choice constrained by the result of the first,
we will take that as a first indication that there is a connection between the tenses and
the Kite. The required link between the two was observed in a totally forgotten little note
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Fig. 11 The hexagon of opposi-
tion (Jacoby, Sesmat, Blanché)

from 1975 by Robert Blanché [1]. In this note, he returns to the hexagon of arithmetical
relations which he discussed in par. 14 of [5] and was originally proposed by Sesmat [17].

Rather than using it to compare quantities, he now wants to apply it to serial order: from
cardinalities to ordinals. He states that ordinal numbers are the prototypical case of linear
order and changes the meanings of the symbols for arithmetical relations to accommodate
the system: < is interpreted as precedes, > as follows and D as coincides with, giving the
foundational triad of contraries of linear order. He then goes on to point out that the prime
concrete model of linear order is temporal succession: “before and after, anterior and pos-
terior” (my translation, DJ), with simultaneity in between the two. Given the associations
defined, before (and hence the past) ends up in the E-corner, after (and the future) in the
A-corner and simultaneity (hence the present) in Y, exactly as needed for the tense kite if
it is to do justice to the fact that the future has present tense morphology and is hence to
be located in the nonpast subuniverse PRESENT2, with the non-future present in Y.

ŒŒPRESENT2 future present1� past� (4.1)

This provides a model for a double Kite-structure for the tenses, within which we have
made provisions for the conditional tense in a second kite that is connected to the topright
E-corner of the leftmost kite (Fig. 12). It is that leftmost kite which gives expression to
the arrangement of the present, future and past as proposed by Blanché. These tenses
are here represented by means of the more detailed and compositional system of arrows
elaborated in Sect. 3. In the A-corner of the leftmost kite, we find the simple future, with
the specification [�R, CP]; in the Y-corner of the same kite resides the instantaneous
simple present, with the specifications [�R, �P]. In the I-corner of the same kite, we find
the kind of present (PRESENT2) which occurs in sentences such as “If you work with
John or Bill, I’ll be delighted to learn that,” where work can get an interpretation like that
of the A-corner (future). This I-A shift [13] is typical of many other I-corner predicates:
note that the interpretation of I-corner or in the propositional calculus, which is used in the
if-sentence above also has a meaning which includes that of A-corner and: the meaning
is “if you work with John, or Bill, or both John and Bill.” In the E-corner of the leftmost
kite we find a past with the single specification [CR]. This is not yet the actual definite
past with the specification [CR, �P], which is in the Y-corner at the bottom of the second
kite. What then is the nature of the past in the E-corner of the leftmost kite? The answer
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Fig. 12 Kite structure with the tense system

is straightforward once it is realized that this form is the I-corner of the second kite: it is
the modal past found (i.a.) in conditionals.

If you worked with Bill or John, I would be very happy (4.2)

In this case too, just as in the I-corner of the leftmost kite, the I-corner element includes
the meaning of its A-corner (conditional tense), hence is interpreted as a conditional,
which is supported by the fact that a possible Dutch translation of this past tense is

Als je met Bill of John zou werken (= would work), zou ik zeer gelukkig zijn (4.3)

The actual definite past tense with regular past meaning, is located in the Y-corner of
the rightmost kite, completing the pattern.

It will be clear from the analysis provided that the system of English tenses has no
lexicalizations for the O- and U-corners of the two kites, exactly as predicted in [21].
The initial E–I opposition of the leftmost kite turns out to be equally as inviolable for
tense systems as for logical operators and a wealth of other lexical fields. We take this
to be strong support for both an analysis of tenses as envisaged here and the kite-system
developed earlier. This does not mean there are no questions left of course. First of all,
our kite structure does not yet provide for the aspectual binarities. How are they to be
included, given that their structure is so parallel to that of the two temporal reference
points? Such questions, which may involve 3D-extensions of the present model, are left
for future work. What is provided here should be viewed as the backbone of our analysis
of tenses, but since the literature on the topic is enormous and the data to be covered
extremely rich, we can only hope that it is tried out on different languages.
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5 Conclusion

This chapter was an exercise in extending a surprising pattern of concept formation con-
straints in closed lexical fields from the realm of logical operators to the triadic past–
present–future structure of the English finite tense system, though it might prove to be
much more generally valid given the conceptual generality – arguably universality – of
the Kite pattern.
The foundations for this development were laid in [15], and [16], where a cognitive par-
allellism was established between opposition relations among primary (Red, Green, Blue,
or RGB) and secondary (Yellow, Magenta, Cyan, or YMC) colour percepts on the one
hand and oppositions between logical operators (all, some-maybe-all, some-but-not-all,
and none) on the other. In that context, a constraint on lexical concept formation origi-
nally proposed in [13] was shown to affect both lexical fields alike, resulting in each case
in a bifurcation between natural (RGBY and all, some-maybe-all, some-but-not-all, and
none respectively) and constructed (MC and *nall, *allno) lexical items.
The first half of the logical variant of that constraint, namely the resistance to natural
simplex lexicalization of the so-called O-corner of the Square of Opposition (the *nall-
problem) was embryonically introduced in the twentieth century by VonWright [24], then
generalized by Blanché [5], and consequently further generalized and analyzed in Neo-
Gricean pragmatic terms by Horn [8–11]. The generalization involved extension of the
O-corner problem to a wider number of logical calculi – such as the operators of the
propositional calculus, where alongside the natural operators or, nor, and there is the con-
structed term *nand – and beyond.
The second part of the constraint emerged in the context of an extension of the Square
of Opposition into a logical Hexagon, first developed by the American philosopher Paul
Jacoby [12] and consequently adopted and elaborated by [4, 10, 17] and several other
authors. In the context of this Logical Hexagon, the universal ban on simplex lexical-
ization does not remain restricted to the O-corner, but affects another vertex, namely the
so-called U-corner of the logical Hexagon [15, 16, 21]: there is no natural simplex lex-
icalization for an operator expressing the meaning all-or-no, the *allno-problem. It is in
light of this new observation that an alternative to the Neo-Gricean O-corner analysis
was worked out [16, 21], which captures the universal ban on lexicalization of the two
vertices in terms of a single constraint, arguably a more economical analysis than the
Neo-Gricean alternative. The constraint in question consists in the claim that natural con-
cept formation involves recursive binary opposition with progressive universe restriction
(PUR) [21], 610). This mechanism operates below the level of standard (big) syntax. Its
operation arguably exhausts the space of possible concepts available in purely functional
fields such as those of the logical operators or the tenses, but does not in domains that are
root [21] or semi-lexical. Although in the latter cases part of the space is still organised by
the same “logically structured” substratum, another part appears to be supplied through
the operation of other capacities.
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Topological Aspects of Matrix Abduction 1

Azriel Laufer and Dov M. Gabbay

Abstract A new method of abduction, matrix abduction, has been introduced in Abra-
ham, M., Gabbay, D., Schild, U.: Talmudic argumentum a fortiori inference rule (Kal
Vachomer) using matrix abduction. Studia Logica 92(3), 281–364 (2009). This method
describes the Kal Vachomer and the Binyan Abh rules by using microscopic parameters
which exist in the inputs of these rules. In order to find these parameters the method
needs to calculate the minimal number of parameters that will describe the logical rule. In
the current chapter, the matrix abduction method is formulated by Partially Orderd Sets
(Posets). Consequently it is shown that the minimal number of parameters similarly de-
fined to the dimension and k-dimension of Posets and a new poset dimension is defined
which is the Kal Vachomer Dimension. In addition, several theorems and bounds of this
dimension are shown.

Keywords Partially ordered sets � Poset dimension � Graph theory � Matrix abduction �
Kal Vachomer

Mathematics Subject Classification Primary 06A07 � Secondary 03B48

1 Background and Orientation

The article “Analysis of the Talmudic argumentum a fortiori inference rule (Kal Va-
chomer) using matrix abduction” [1] suggests an analysis of the nondeductive rules, anal-
ogy (Binyan Abh) and argumentum a fortiori (Kal Vachomer) by using logical model
named “matrix abduction.” These two logical rules are represented by binary matrix with
missing value which defined the matrix abduction problem. The way to find this missing
value is based on the assumption that microscopic parameters are exist in the logical rules
data.

In order to find the missing value two alternatives are compared: filling with 1 value
and filling with 0 value. The nicer alternative is the correct value. In order to decide which
alternative is nicer, the matrix is generates a graph and four characteristics of this graph are
used as criteria. Three of these characteristics are easy to calculate: the number of points on
the graph, the number of connected components (connectivity) and the number of changes
of direction. The fourth characteristic is the minimal number of microscopic parameters
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A. Koslow, A. Buchsbaum (Eds.), The Road to Universal Logic, Studies in Universal Logic,
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that describes the logical rules (named the Kal Vachomer dimension). In contrast to the
first three characteristics, the calculation of this characteristic is not trivial.

In this chapter, the dimension calculation problem is mathematically defined using the
partially ordered set dimension term. Several theorems are shown in order to find bounds
to the dimension and to learn about its properties. Furthermore, there is a reference to the
algorithm shown in [1] and a disproof is shown in this article.

2 Matrix Abduction

The matrix abduction problem is defined as follows [1]: Let A D Œai;j � be 0–1 matrix,
where ai;j 2 f0; 1; ‹g, i D 1; : : : ; m (m rows), j D 1; : : : ; n (n columns) such that the
following holds:

a. m � n.
b. Exactly one ai0;j0

is undecided, all the others are in f0; 1g.
The matrix abduction problem is to devise some algorithm which can decide whether
ai0;j0

D‹ should be 1 or ai0;j0
D‹ should be 0 or ai0;j0

D‹ must remain undecided.
This matrix consists of n Boolean vectors of lengthm, i.e., V j D .a1;j ; a2;j ; : : : ; am;j /.

An order is defined on two vectors V ;V 0 by comparing their coordinates in this way:
V � V 0 , for all i : vi � v0

i , where V D .v1; : : : ; vm/, V 0 D .v0
1; : : : ; v

0
m/. This order is

indicated by writing V ! V 0. By using the arrow one can draw a graph which describes
the relation between the matrix columns (every column is represented by a vertex).

For example, given matrix A:

A D

0

BBBBBBBBB@

a b c d e f g

1 1 1 1 0 0 0

1 0 1 0 0 1 1

1 1 0 1 1 0 1

1 1 1 1 1 1 0

1 1 1 0 1 1 1

1 0 0 0 0 0 0

1

CCCCCCCCCA

The appropriate graph G for A is shown in Fig. 1.
The graph is generated for two matrices: one represents the matrix with ai0;j0

D 1 and
the other represents the matrix with ai0;j0

D 0. The algorithm is deciding which answer
is nicer according to four criteria:

1. Number of vertices (the fewer vertexes the nicer graph).
2. Connectivity (the less connected components the nicer graph).
3. Changes of direction (the fewer changes in the graph the nicer graph).
4. Kal Vachomer dimension (lower dimension is better).

This article will focus on the fourth criterion, i.e., the Kal Vachomer dimension.
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Fig. 1 Graph G that described
matrix abduction A

d e g f

b

a

c

3 Kal Vachomer Dimension

The graph dimension is defined by multisets in the following way: Let L be a set of labels
L D f˛1; ˛2; : : : g. Let M.L/ be the family of all multisets based on L, so these are
subsets with copies from L. Let M1.L/ be all multisets of the form fm˛; ˇ1; : : : ; ˇk�1g,
i.e., at most one element appears with more than one copy. The elements ofM1.L/ are the
microscopic parameters mentioned before. In order to give a set of microscopic parameters
for every vertex, the function f WV.G/ ! M1.L/ is used. The function constraint is
that assuming two column vectors V ;V 0 2 A the following condition should satisfy:
V � V 0 , f .V 0/ � f .V /. The Kal Vachomer dimension is defined as the minimal
number of labels satisfying this condition. One can see an example for graph G in Fig. 2.

Following the matrix abduction and the Kal Vachomer dimension will be described as
partially ordered set and partially ordered set dimension.

4 Partially Ordered Set

A partially ordered set (poset) is a pair .X;P / where X is a set and P is a reflexive,
antisymmetric, and transitive binary relation onX . Elements of the setX are called points.
The poset is finite if the set X is finite, this article will discuss only finite posets. When
.x;y/ 2 P we denote it by writing x � y in P or y 	 x in P . Let .x;y/ 2 P with
x ¤ y , we say x and y are comparable in P when either x < y in P or y < x in P . On
the other hand, x and y are incomparable in P if neither x < y in P nor x > y in P .
We say x is covered by y in P , denoted by x <W y in P , when x < y in P and there is
no point z 2 X for which x < z in P and z < y in P . A poset .X;P / is called a chain
if every distinct pair of points from X is comparable in P , when .X;P / is a chain, P is
called linear order. Similarly, a poset .X;P / is called an antichain if every distinct pair
of points from X is incomparable in P .

A point x 2 X is called maximal point (respectively, minimal point) if there is no
point y 2 X with x < y in P (respectively, x > y in P ). An element x 2 X is called
a maximum point of P if y � x in P for every y 2 X . Similarly, x 2 X is called
a minimum point of P if y 	 x in P for every y 2 X . The set of all chains in a poset
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Fig. 2 Microscopic parameters
for matrix A

{5α
1
} {4α

1,α3
} {3α

1,α2
} {2α

1,α2,α3
}

{α
1,α2,α3

}

{α
1
}

{4α
1
}

.X;P / is partially ordered by set inclusion and the maximal elements in this poset are
called maximal chains. A chain C is maximum chain if no other chain contains more
points than C . Maximal and maximum antichains are defined analogously. The height of
a poset .X;P / is the number of points in a maximum chain and the length is one less than
the height. The width of a poset .X;P / is the number of points in a maximum antichain.

When .X;P / and .Y;Q/ are posets, a bijection f WX ! Y so that x1 � x2 in P ,
f .x1/ � f .x2/ in Q defines an isomorphism from .X;P / to .Y;Q/. An isomorphism
from .X;P / to a subposet of .Y;Q/ is called an embedding of .X;P / in .Y;Q/. The dual
of a partial order P on a set X is denoted by P d and is defined by P d D f.y;x/ j .x;y/ 2
P . The dual of the poset .X;P / is defined by .X;P d/.

A cover graph is associated with a poset .X;P /. The edges of the cover graph consist
of those pairs .x;y/ 2 P for which x <W y in P or y <W x in P . It is often convenient
to specify a finite poset by means of suitably drawn diagram of the cover graph in the
Euclidean plane. A vertical coordinate system in the plane is chosen and the requirement
is that the vertical coordinate of the point corresponding to y be larger than the vertical
coordinate of the point corresponding to x whenever x <W y in P . Such diagrams are
called Hasse diagrams.

5 Representation of Matrix Abduction by Poset

As shown before the matrix abduction consists of n Boolean vectors of length m which
define an order between themselves. Assuming two columns (vectors) V ;V 0 2 A the
order is defined by the vectors coordinates: V � V 0 , for all i : vi � v0

i . It is easy to
see that this order is reflexive, antisymmetric, and transitive binary relation. According to
the poset definition, one can notice that the matrix abduction is poset and the columns are
the poset elements. We will denote it by .Zm2 ; P /. Furthermore, the appropriate graph G
for matrix A shown above is the Hasse diagram for .Zm2 ; P /. The use of the Euclidean
coordinate system allows us to omit the arrows from the graph.

The function f WV.G/!M1.L/ used for giving microscopic parameters to the graph
vertices can be defined as embedding of .Zm2 ; P / in (N � Zd2 ; P ) under the constraint
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Fig. 3 Hasse diagram for ma-
trix A

(5,0,0) (4,0,1) (3,1,0) (2,1,1)

(1,1,1)

(1,0,0)

(4,0,0)

mentioned before (V � V 0 , f .V 0/ � f .V /) One can see an example for graph G in
Fig. 3.

The minimal number of parameters .d C 1/ that satisfies this embedding is the Kal
Vachomer dimension and it will be defined by using the poset dimension term.

6 Poset Dimension

Let P andQ be order sets on the set X . Q is an extension of P if P � Q, i.e., if x 	 y

in P then x 	 y in Q for all x;y 2 X . The set of all extensions of P is partially
ordered and the maximal elements of this set are linear orders on X . These elements
are called linear extensions of P and the set of all linear extensions of P is denoted by
".P /. It is easy to see that P D T

".P /. The dimension of a poset .X;P / was defined
by Dushnik and Miller [4] as the least positive integer t for which there exists a family
R D fL1;L2; : : : ; Ltg of linear extensions of P so that P D T

R D Tt
iD1 Li , denoted

by dim.X;P /.
Ore [8] has defined alternatively the dimension of .X;P / as the least positive integer t

for which .X;P / can be embedded in the Cartesian product C1 � C2 � � � � � Ct of finite
chains. There is no restriction on the sizes of the chains. Golumbic [5] has explained it by
representing each element x 2 X with the vector .x1; x2; : : : ; xt /. If x � y in P then the
vectors are satisfying partial order in the following way: xi � yi , .x1; x2; : : : ; xt / �
.y1; y2; : : : ; yt / for all i when equality is not satisfying for all indexes.

Trotter [9] and Novak [7] have defined the k-dimension of .X;P / as the least positive
integer t for which .X;P / can be embedded in the Cartesian product C1 � C2 � � � � � Ct
of finite chains, where jCi j D k for all i . It is denoted by dimk.X;P /. Some studies
have focused on the case where k D 2 [6, 10, 11]. By this definition the Kal Vachomer
dimension can be defined similarly [12].

Definition (Kal Vachomer Dimension) Assuming a poset .X;P / that was generated
from matrix abduction A, the Kal Vachomer dimension of .X;P / is the least positive
integer t for which .X;P / can be embedded in the Cartesian product C1 � C2 � � � � � Ct
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of finite chains where jCi j D 2 for all i > 1, there is no restriction on jC1j. We denote it
dim�.X;P /.

7 Kal Vachomer Dimension Bounds

Studies have been conducted [10] in order to find bounds to the poset dimension and to
the k-dimension. It is easy to see that the relation between dim�.X;P /, dim2.X;P / and
dim.X;P / is: dim.X;P / � dim�.X;P / � dim2.X;P /. This fact means that every lower
bound for dim.X;P / is also a lower bound for dim�.X;P /. Similarly, every upper bound
for dim2.X;P / is also upper bound for dim

�.X;P /. This section includes some theorems
about the bounds and of the Kal Vachomer dimension and a few other characteristics
of it. Further research should be conducted in order to find connections between these
dimensions.

Assuming an antichain with n elements An D .X;P / then: dim�.An/ D dlog2 ne C 1.

Theorem 7.1 (Dimension of Antichain) Assuming an antichain with n elements An D
.X;P / then: dim�.An/ D dlog2 ne C 1.

Proof Let us denote dim�.An/ D d C 1. We will find the maximal antichain which can
be embedded with d C 1 parameters by combinatorial considerations. The first element
of the antichain will look like this: .0; 1; : : : ; 1/„ ƒ‚ …

dC1
. In the next elements, the first param-

eter will increase by 1 and in order to save the incomparable other parameter will be 0:
.1; 1; : : : ; 1; 0/„ ƒ‚ …

dC1
. Since we can set 0 to more parameters, we can describe the next element as

.1; 1; : : : ; 1; 0; 1/„ ƒ‚ …
dC1

and so on for all the parameters. After using all the parameters, we will

increase the first parameter again and two other parameters will be 0: .2; 1; : : : ; 1; 0; 0/„ ƒ‚ …
dC1

.

This process can continue until the first parameter will be d and all the others are 0:
.d; 0; : : : ; 0/„ ƒ‚ …

dC1
. The number of elements from this construction is n and we can calculate it

in the following way:

n D
 
d

d

!
C
 

d

d � 1

!
C
 

d

d � 2

!
C
 

d

d � 3

!
C � � � C

 
d

1

!
C
 
d

0

!
D

dX

kD0

 
d

k

!
D 2d :

The right-hand side of the equality can be proved by Newton’s binomial formula. Now we
will find d in order to know how much parameters we will need for maximal number of
elements n:

d D log2 n;
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i.e., with d parameters we can build an antichain with n elements at most. Generally, the
minimal d for given n elements which are incomparable is d D dlog2 ne. Hence

dim�.An/ D dlog2 ne C 1: �

Theorem 7.2 (Dimension of a Chain) Assuming a chain with n elements Cn D .X;P /
then: dim�.Cn/ D 1.

Proof Since there is no restriction on jC1j one can define a bijection f WX D fx1;x2; : : : ,
xng ! C1 D f1; 2; : : : ; ng in the following way: f .xi / D i . This means that the least
positive integer t is 1, i.e. dim�.Cn/ D 1. �

Theorem 7.3 Assuming a poset .X;P / then dlog2width.X;P /e C 1 � dim�.X;P /.

Proof Assuming the opposite dim�.X;P / < dlog2width.X;P /eC 1. Since dim�.X;P /
is a positive integer then dim�.X;P / D dlog2width.X;P /e. According to the assump-
tion we can choose a maximal antichain with width.X;P / elements and embed it with
dlog2width.X;P /e parameters, in contradiction to Theorem 7.1. �

Theorem 7.4 Assuming a poset .X;P / with n elements then dim�.X;P / � n.

Proof In [9] Trotter has proved that dim2.X;P / � n. Since dim�.X;P / � dim2.X;P /

then dim�.X;P / � n. �

Theorem 7.5 Assuming a poset .X;P / that was generated from matrix abduction with
m rows and n columns then dim�.X;P / � m.

Proof The matrix abduction columns define subposet of Boolean poset, where the size of
each vector is m. Let us define a bijection f W .X;P / ! .Y;Q/, where X is in the form
f.x1; x2; : : : ; xm/g and Y is f.y1; y2; : : : ; ym/g, the bijection will be f .x1; x2; : : : ; xm/ D
.2 � x1; 1 � x2; : : : ; 1 � xm/. The image of the bijection is embedding of the poset under
the constraints mentioned before. Thus the upper bound for the Kal Vachomer dimension
is m. �

In order to formulate the next theorem several notations will be defined.

Vertices Level The set of vertices from level 1 of poset .X;P / is defined as

level 1 D fx 2 X j Ày 2 X Wy > xg:
For each element from this set x 2 level 1 we will denote level.x/ D 1.

The set of vertices from level nC 1 of poset .X;P / is defined as:
level.nC 1/ D fx 2 X j 8y 2 Pr.x/W level.y/ � n and 9y 2 Pr.x/ W level.y/ D ng:

For each element from this set we will denote level.x/ D nC 1.
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Fig. 4 Tree T

D E F G H

C

A

B

Antichain Sets The set of all antichains of poset .X;P / is also poset [2] and is denoted
by A.X;P /. A subposet of A.X;P / will be defined from all the antichains that have
a common cover element:

AT.X;P / D fA 2 A.X;P / j 8x;y 2 AW 9z 2 X Wy <W z, x <W zg:
Now, we will make a subposet of AT.X;P /, which consists of all the antichains such that
the common cover element is from level i :

AT
i .X; P / D fA 2 AT.X;P / j level.z/ D i; i D 1; : : : ; l.X;P /g:

The maximal element of this subposet is the antichain with maximal number of elements,
we will denote it by

maxAT
i .X; P / D fA 2 AT

i .X; P / j 8B 2 AT
i .X; P /W jAj 	 jB jg:

One can see an example for these definitions on the tree T in Fig. 4.
We will divide the vertices to levels:

level 1 D fAg; level 2 D fB;C g; level 3 D fD;E ;F ;G ;H g:
All the antichains with common cover element are

AT.T / D ffB;C g; fD;Eg; fF ;G ;H gg:
The set which consists all the level 1 antichains is:

AT
1 .T / D ffB;C gg:

The set which consists all the level 2 antichains is

AT
2 .T / D ffD;Eg; fF ;G ;H gg:

The maximal antichain in this set is: maxAT
2 .T / D fF ;G ;H g.

Now we can formulate a bound for a special case of poset – a tree.
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Theorem 7.6 (Dimension of a Tree) Assuming a poset .X;P / whose Hasse diagram is
a tree then:

dim�.X;P / �
length.P /X

iD1
dlog2 jmaxAT

i .X; P /je C 1

Proof Poset .X;P / has just one element with level 1 (it is a tree), this element is the
maximum vertex. In order to embed this element we will need one parameter.

� Antichains from level 1: The elements covered by the maximum vertex are generate
antichain. Since this antichain is the only antichain that covered by the maximum ver-
tex we can denote it by: maxAT

1 .T /. According to Theorem 7.1 we can embed this
antichain by dlog2 jmaxAT

1 .T /je parameters besides the first parameter (from the max-
imum vertex) that will increase in order to contain themaximum vertex. The parameters
of every element will inherit to all of its sons.

� Antichains from level 2: The quantity of level 2 antichains is jAT
2 .T /j. For each an-

tichain we will add other parameters (beside the parameters that inherited). The param-
eters number determine according to the biggest antichain. Thus, the added parameters
quantity is dlog2 jmaxAT

2 .T /je.
We will continue in the same way until we get to the last antichains set.

� Antichains from level l.T /: We will add dlog2 jmaxAT
l.T /.T /je parameters analogously

to the previous step.

The number of parameters that is requested in order to embed the tree is:

1C dlog2 jmaxAT
1 .T /je C dlog2 jmaxAT

2 .T /je C � � � C dlog2 jmaxAT
l.T /.T /je

D
l.T /X

iD1
dlog2 jmaxAT

i .T /je C 1:

In other words, we have generated an embedding such that

dim�.T / �
l.T /X

iD1
dlog2 jmaxAT

i .T /je C 1: �

Example (Theorem 7.6) One can see in Fig. 5 embedding that generated according to
Theorem 7.6 proof.

The upper bound can be calculated according to Theorem 7.6:

dim�.T / �
2X

iD1
dlog2 jmaxAT

i .T /je C 1

D dlog2 jmaxAT
1 .T /je C dlog2 jmaxAT

2 .T /je C 1
D dlog2 2e C dlog2 3e C 1 D 1C 2C 1 D 4:
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Fig. 5 Embedding of tree ac-
cording to theorem 7.6 proof

(8,0,1,0) (9,0,0,0) (1,1,0,1) (1,1,1,0) (7,1,0,0)

(1,1,0,0)

(1,0,0,0)

(8,0,0,0)

The following conjecture is based on Dilworth’s theorem, therefore this theorem will be
shown (proof in [10]).

Dilworth’s Theorem Assuming a poset .X;P / with height.X;P / D n, then there exists
a partition X D A1 [A2 [ � � � [ An, where Ai is an antichain for i D 1; 2; : : : ; n.

Conjecture Assuming a poset .X;P / with height.X;P / D n. Let there be a partition
into n antichains, according to Dilworth’s theorem, then:

dim�.X;P / �
nX

iD1
dlog2width.Ai /e C 1:

Disproof The crown Skn is defined as a poset with nCkmaximal elements a1; a2; : : : ; anCk
and nCkminimal elements b1; b2; : : : ; bnCk , i.e. height.Skn / D 2. Each bi is incomparable
with ai ; aiC1; : : : ; aiCk and less than the remaining n�1maximal elements. In [9] Trotter
has shown that dim2.S

k
n / D nC k for every n 	 3, k 	 0. In case that k D 0 the crown is

denoted by Sn. Let us check the S8 graph. According to the conjecture the Kal Vachomer
dimension is dim�.S8/ �

P2
iD1 dlog2width.Ai /e C 1 D dlog2 8e C dlog2 8e C 1 D 7.

But according to Trotter’s theorem dim�.S8/ D 8 in contrast to the conjecture. �

Theorem 7.7 Assuming a poset .X;P / then dim�.X;P / D dim�.X;P d/.

Proof Assuming dim�.X;P / D d . First we will see that .X;P d/ can be embedded with
d parameters. Finally, we will show that this is the minimal embedding. Let us denote
the maximal value of the vectors first parameter as maxC1.X;P / and define a bijection
from the embedding of .X;P / to those of .X;P d/ f W .N�Zd�1

2 ; P /! .N�Zd�1
2 ; P d/,

where the elements of the posets are in the form .x1; x2; : : : ; xd / and .y1; y2; : : : ; yd /, the
bijection will be f .x1; x2; : : : ; xd / D .maxC1.X;P / � x1; 1 � x2; : : : ; 1 � xd /. We can
see that dim�.X;P d/ � d .

Now we will see that we cannot embed .X;P d/ with less that d parameters. Assuming
the opposite that .X;P d/ can be embedded with d � 1 parameters. Using the bijection
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f defined above one can see that .X;P / can be embedded with d � 1 parameters, in
contradiction to the assumption that dim�.X;P / D d . Hence dim�.X;P d/ 	 d )
dim�.X;P / D d D dim�.X;P d/. �

8 The Kal Vachomer Algorithm

An algorithm to minimally embed a graph under the conditions mentioned before is shown
in [1]. This algorithm and comments about it will be shown in this chapter. In order to
present the algorithm some definitions will be defined.

Let poset .X;P /, a projection of maximal chain C � X is the set C � D fy jy 	
c; c 2 C g. A maximal chain C1 � X is a maximal thin path if there is no other maximal
chain C2 � X such that C �

2 has less elements than C �
1 .

An element z 2 X is a critical point if the following holds:

a. z has at least two predecessors.
b. There exist y 2 X such that y – z and all predecessors of z are also predecessors of

y.

The level partition is done as above.

Step 0 Identify and choose one maximal thin path in .X;P /, call it T . Also identify all
critical points.

Step 1 Consider all maximal points (level 1 points). One of them, say x1 is in T . We will
embed to this point one component vector f .x1/ D .1/. If the other maximal points are
y1; : : : ;yk then n more components are added to the vector while an embed to element
y i is defined by f :

f .y i /.j C 1/ D
(
0; j ¤ i;
1; j D i; j D 1; 2; : : : n; i D 1; 2 : : : k:

The embedding of x1 will be updated according to n and will be: f .x1/ D .1; 0; : : : ; 0/„ ƒ‚ …
kC1 components

.

Step nC 1 Consider all level nC 1 points. One of them, say e is in T . Let the others be
e1; : : : ; ek . There are the following possibilities for a level nC 1 point e.
a. e has only one predecessor and e is in T .
b. e has only one predecessor and e is not in T .
c. e has several predecessors and e is the only one with these predecessors. We have two

subcases:

1. e is a critical point.
2. e is not critical.
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d. e and e1; : : : ; ek have the same set of predecessors and e … T .
e. e and e1; : : : ; ek have the same set of predecessors and e 2 T .

We now will embed vectors for all the elements according to different cases (the em-
bedding of a cover element y is f .y/ D .y1; : : : ; yn/).
a. Let y be the single predecessor of e. Then since e 2 T , we also have y 2 T . We

distinguish two subcases:

1. e is the only element covered by y . Let: f .e/ D .y1 C 1; : : : ; yn/.
2. y covers more elements apart from e. Let m.y/ be the number of nonembedded

elements in chain T . Then: f .e/ D .y1 Cm.y/; : : : ; yn/.
b. Let y be the single predecessor of e. Since e … T then y … T . We distinguish two

subcases:

1. The first component in the embedding of y is not 0, i.e., f .y/ D .y1 ¤ 0,
y2 : : : ; yn/. Then, f .e/ D .y1 C 1; : : : ; yn/.

2. The first component in the embedding of y is 0, i.e., f .y/ D .0; y2 : : : ; yn/. Then,
more component is added to the vector: f .e/ D .y1; : : : ; yn; 1/.

3. The first component in the embedding of y is not 0 and there exists an element z
smaller than y (z < y in P ) and also smaller than some point in T . Then, more
component is added to the vector: f .e/ D .y1; : : : ; yn; 1/.

c. Let the predecessors of e be y1; : : : ;yk . We distinguish two subcases:

1. e is not critical. Then,

f .e/ D .max.y i /1; : : : ;max.y i /n/; i D 1; : : : ; k:
2. e is critical. Then, more component is added to the vector:

f .e/ D .max.y i /1; : : : ;max.y i /n; 1/; i D 1; : : : ; k:
d. Let y;y1; : : : ;yk be the predecessors, then the embedding for elements e i is

f .e i / D .max.y i /1; : : : ;max.y i /n; 0; : : : ; 1„ƒ‚…
nC1Ci

; : : : 0/; i D 1; : : : ; k:

The embedding for element e is similar:

f .e/ D .max.y i /1; : : : ;max.y i /n; : : : ; 0; : : : ; 1„ƒ‚…
nC1

; : : : ; 0/:

e. Same as case d. besides the embedding of element e:

f .e/ D .m.y/Cmax.y i /1; : : : ;max.y i /n; : : : ; 0; : : : ; 1„ƒ‚…
nC1

; : : : ; 0/:

As a last step, we compare the number of vector components to the biggest vector by
adding zeros.
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Fig. 6 Graph to demonstrate the
Kal Vachomer Algorithm
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Example to the Algorithm An example to the algorithm is shown in [1] (diagram .X;P /
in Fig. 6).

Step 0 Set of all critical points: C D fug.
Maximal thin path: T D fx1;x2;x3; z;x4; vg.

Step 1 The set of level 1 points is: fx1;y1;y2;y3g. The size of the embedded vector is 4,
as the number of level 1 points. x1 is in T and therefore the first component of its vector
will be 1, the embedding to the points will be

f .x1/ D .1; 0; 0; 0/;
f .y1/ D .0; 1; 0; 0/;
f .y2/ D .0; 0; 1; 0/;
f .y3/ D .0; 0; 0; 1/:

Step 2 Level 2 points: fx2;ug, x2 2 T , u 2 C . The embedding will be

f .x2/ D .5; 0; 0; 0/:
When we embed u more component is added to the vector

f .u/ D .0; 0; 1; 1; 1/:
Step 3 Level 3 points: fx3;wg. The embedding will be

f .x3/ D .5; 1; 0; 0; 0/;
f .w/ D .1; 0; 1; 1; 1/:
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Step 4 Only z is level 4 point. It is on T and therefore the embedding will be

f .z/ D .6; 1; 0; 0; 0/:
Step 5 Only x4 is a level 5 point. The embedding will be

f .x4/ D .6; 1; 1; 0; 0/:
Step 6 Level 6 points: fx5; vg. The embedding will be

f .x5/ D .6; 1; 1; 1; 0/;
f .v/ D .7; 1; 1; 0; 0/:

A 0 component will be added to the first five vectors in order to complete it to 5 compo-
nents. According to the algorithm one can notice that dim�.X;P / D 5.

9 A Note About the Algorithm Optimality

It can be distinguished that already in level1 the algorithm used too much components.
For four points the algorithm used four components when three components are sufficient
if combinations are included. For example (to the level 1 points):

f .x1/ D .0; 1; 1/;
f .y1/ D .1; 1; 0/;
f .y2/ D .1; 0; 1/;
f .y3/ D .2; 0; 0/:

This fact raises the concern that the algorithm is not optimal. According to Theorem 7.3,
a lower bound can be calculated: dim�.X;P / 	 dlog2 4e C 1 D 3. Despite it is not
possible to embed the diagram with three components. By brute force algorithm [3] we
can find that dim�.X;P / D 4. The embedding is shown in Fig. 7.

From this example, one can see that the algorithm is not optimal. A correction to an
embedding shown in [1] is written in the appendix.

10 Appendix – Correction for Graph

The following matrix abduction is shown in [1]:

A D

0

BBBB@

K G H Y P A N

0 0 1 0 1 1 0

0 0 0 0 0 ‹ 1

1 0 1 1 0 1 1

1 1 0 0 0 1 0

1

CCCCA
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Fig. 7 Embedding with only
4 parameters
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(1,0,1,0) (0,0,0,1)

(0,0,1,1)

(1,0,1,1)

(2,0,1,1)

(3,0,1,1)

(4,0,1,1)

(4,1,0,0)

(4,1,0,1)

(3,0,0,0) (0,1,0,0)

(3,1,1,1)

Fig. 8 Appropriate graph for
matrix A with undecided value
equal 1

N

G Y P

A

K H

The appropriate graph for this matrix such that the undecided value is 1 is shown in Fig. 8.
The minimal embedding that was calculated in [1] is written alongside the vertices

(Fig. 9).
According to this solution the Kal Vachomer dimension of the graph is 4.
In contrast to this calculation one can see that three parameters are enough as shown in

Fig. 10.
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Fig. 9 Embedding matrix A
with 4 parameters

N

G Y P

A

K H(1,0,1,0)

(1,1,0,1) (2,1,1,0) (3,0,0,0)

(1,0,0,0)

(1,1,0,0) (2,0,0,0)

Fig. 10 Minimal embedding for
matrix A with only 3 parameters

N

G Y P

A

K H(1,1,1)

(3,1,0) (2,1,1) (3,0,1)

(1,0,0)

(2,1,0) (2,0,1)

The width of this graph is 3. According to Theorem 7.3, the next inequality holds:

dim� 	 dlog2 3e C 1 D 3:
Therefore, the Kal Vachomer dimension of this graph is 3.
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It can be shown similarly that the Kal Vachomer dimension of the matrix with 0 value
in the undecided component is 3 and not 4.
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Mai Ben Adar Bessos and Dov M. Gabbay

Abstract In the last few years, several publications discussed a new method of matrix
completion, called matrix abduction, which is particularly useful in the context of Talmu-
dic logic and legal ruling systems in general. Given a matrix A with entries that are either
in f0; 1g or blank, the method allows us to decide whether each blank entry should be 0 or
1, or remain undecided. Unlike existing matrix completion methods, which are based on
notions of analogy using distance (analogy to nearest neighbors), the new method takes
a different approach and completes the matrix using only topological criteria; as a result,
the outcome of the process is often significantly different. This chapter will focus specifi-
cally on one of these criteria, involving the representation of the finite partially ordered set
as minimally generated multisets (ordered by inclusion) for which there is no known exact
polynomial-time evaluation algorithm. We examine the existing efficient greedy algorithm
for this criteria, its connection the similar known concepts dimension and two dimension
of a poset (partial ordered set) then derive new useful properties and an algorithm. We start
by proving that the exact evaluation of the criteria is NP-complete both in the general case
and in the limited context of matrix abduction. We then discuss one-point removal proper-
ties of the problematic criteria, which may aid in solving specific cases and be utilized by
new algorithms. Finally, we present a new greedy algorithm that offers a significant im-
provement over the existing one, and discuss the possibility of reusing existing algorithms
that approximate 2-dimension of a poset.

Keywords Bit-vector encodings � Partially ordered sets � Matrix abduction � Greedy al-
gorithms � Kal Vachomer

Mathematics Subject Classification (2010) Primary 03C45

1 Introduction and Orientation

Consider n vectors A1;A2; : : : ;An of values f0; 1g of length m C 1, m 	 n. Let B be
another vector of lengthmC 1 which has f0; 1g in coordinates 1; : : : ; m and a “?” at place
mC 1. The problem is to determine by analogy of B withA1; : : : ;An what value to give
for “?” Current methods use distance. We consider the truncated vectors A0

1; : : : ;A
0
n; B

0
without the .mC 1/th coordinate, and choose the nearest vectors, say A0

i1
; : : : ;A0

ik
to B

357© Springer International Publishing Switzerland 2015
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and see what values A0
i1
; : : : ;A0

ik
have at their respective .mC 1/th coordinate. Accord-

ingly, we decide what value to give to B at the .mC 1/th coordinate, 0 or 1 or undecided.
We can arrange the vectors as columns in the matrix M D .A1; : : : ;An; B/ and call the
problem the “matrix abduction problem.” This problem arises in modeling Talmudic rea-
soning. To find an appropriate answer to the question of what value to give to “?,” in the
Talmudic case, it was found that the distance analogy method is not adequate, but instead
a new topological method needs to be used. The topological method works as follows:
let B0 and B1 be the vectors obtained from B by letting ? D 0 and ? D 1, respectively.
Define an ordering on vectors X D .x1; : : : ; xmC1/ by X � Y if and only if xi � yi
for all i D 1; : : : ; m C 1. This yields two graphs, G0 obtained using fA1; : : : ;An;B

0g
and G1 D fA1; : : : ;An;B

1g. We compare the two graphsG0, G1 according to four topo-
logical criteria and depending on what we find we decide whether ? D 1, ? D 0 or
? D undecided. The topological method works correctly for Talmudic logic, and does not
always agree with the distance method. One of the criteria required involves the problem of
representing a graph .G;�/ by a certain type of multiset, generated by a minimal number
of generators f˛; ˇ1; ˇ2; : : : g. We let a function f be the representation with f .x/ D Ex ,
x;y 2 G, Ex a multiset, and we require that x � y if and only if Ex � Ey . There
is a problem of finding for a given graph G, representations f as above in terms of the
minimal number of generators. Note that this is a purely combinational problem of rep-
resenting finite graphs for partially ordered sets in terms of faithful multiset inclusion of
certain types. This question has been considered in the general mathematical literature
and seems to have arisen in modeling Talmudic logic. This chapter contributes toward the
complexity problem of this question.

We now explain by example the context in which this problem arises. Suppose we want
to buy a screen, considering few preferences. Our options are:

� Xerox XM7 24A,
� Viewsonic FHD VX 2640w,
� Nec WVX,
� Nec WMCX.

Table 1 describes how each screen matches our preferences; each column describes a dif-
ferent property and each row describes one of the compared items. Note that a value of
“1” consistently indicates support in a certain direction. In this case, a value of “1” implies
the screen offers better performance. The matrix abduction method assumes that such a
direction exists in the given matrix and relies on it in order to deduce the missing value in
“?”.

From the mathematical point of view, the abduction is a problem of analogical rea-
soning. Many of the existing matrix completion algorithms aim to minimize the Euclidian
distance or the rank of the recoveredmatrix (e.g., k-nearest neighbor and convex optimiza-
tion [2, 10]). In a broader sense, there were many attempts for modeling analogy and new
methods are still being developed today, based on slightly different approaches [8, 16] pro-
vide a thorough review of such approaches and corresponding methods). Moreover, even
though not defined as such, many classification algorithms may be used for abductive
inference, since the underlying goal is similar: deriving a conclusion regarding an occur-
rence based on pre-established reliable data. The need for different approaches stems from
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Table 1 Comparison of different screens, considering specific preferences

(1) Price
over 450 £

(2) Self-
collection

(3) Screen big-
ger than 24 inch

(4) Dot size
less than 0.275

(5) Stereo-
phonic

(6) Reaction
time below 4ms

Xerox 1 0 1 0 0 1

Nec WMCX 0 0 0 0 1 1

Nec WVX 1 1 0 1 0 1

Viewsonic 0 0 0 1 1 ?

1 – yes, 0 – no, ? – no data given

5 6

1

2

Assigning ? = ‘0’ Assigning ? = ‘1’

3

4

5

6

1

2 3

4

Fig. 1 Resulting Poset Comparison

the multitude of contexts and forms of data representation. The matrix abduction method,
arising from modeling the use of analogy in Talmudic logic, takes an entirely new ap-
proach and relies only on topological criteria, unlike the existing methods; as a result, the
outcome of the process is often significantly different compared to other algorithms, and
has better applicability in different cases. In its simplest form, the method takes as input
a matrix with entries in f0; 1g and several blank entries, then under the assumption that
the data of the matrix meets certain properties, the method allows us to infer whether each
blank entry is 0, 1, or should be left undecided. The decision is made by assigning ev-
ery possible combination of values instead of the missing entries, then transforming each
complete matrix into a poset (partial ordered set) which may be reexamined and evaluated
using four specific quantitative topological criteria. For each complete matrix the criteria
are evaluated and compared, and if a conclusive decision may be made then the preferable
assignment is chosen. For example, assigning “0” and “1” instead of the missing values,
results in the posets as illustrated in Fig. 1. Intuitively, assigning “1” gives us a simpler
graph, and indeed when evaluated using the four topological criteria (further explained in
Sect. 2) it is deemed preferable.

In more detail, the four criteria are:

� amount of elements,
� index of connectivity i.e. the amount of connected components,
� index of directional change (maximal amount of turns when walking in the graph),
� dim� – a new concept, discussed in more details in the next section.
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In this example, dim� and the amount of elements are tied, but the index of connectivity
and the index of directional change are in favor of assigning “1.” In contrast, the result
of comparing distances (k-nearest neighbor algorithm) would be assigning “0.” Section 2
provides an additional, more detailed comparison of the two algorithms, after we fully
define the new method.

Three of the above criteria are easy to evaluate using efficient algorithms, but dim� (also
referred to as logical model dimension) cannot be evaluated as easily. The primary goal
of this chapter is advancing toward a practical algorithm for evaluating the result of the
matrix abduction method. In Sect. 2, we establish the necessary preliminaries and define
the method itself. Section 3 gives a brief review of the related work. In Sect. 4, we examine
the computational complexity of the matrix abduction method and the evaluation of dim�
and prove the suspicion that both problems are NP-complete. Afterward, we will present
multiple dim� point – removal properties that are useful when performing an abduction.
Finally, in Sect. 5, we present an improved variation of the algorithm devised in [1], which
allows us to produce a better evaluation of dim� and consequently also a better evaluation
of the matrix abduction. In our experiments, we had nearly 800 comparisons, and the new
algorithm has produced better results than the existing one in almost every test.

2 Preliminaries

In this section, we give some of the basic definitions that will be used in the scope of this
chapter. Similar definitions may also be found in [1, 6, 10, 13, 18]. Additional proposi-
tions, definitions, and annotations will be given along with the context of their use.

Let P D .X;�P / be a partial order on the ground set X . We only consider finite orders
and denote by jP j the cardinality ofX . Similarly, we may apply binary set operations onX
(e.g., union, intersection, difference etc.), and use P instead of X to denote the operation.
The same order relation �P restricted to a subset Y of X is called a suborder of P and
also referred to as the order induced by P on Y . Let x;y 2 X , x ¤ y, then we say that
x and y are comparable in P if either x �P y or y �P x. Otherwise, we say that x and
y are incomparable. Let B; T � X , we denote B �P T if for every b 2 B , t 2 T it
holds that b �P t. A partial order where every pair of elements is comparable is called
a chain. A partial order where every pair of different elements is incomparable is called
an antichain. By extension, for the poset P D .X;�P /, a nonempty subset Y of X is
called a chain (resp. antichain) of P if every pair of different elements of Y is comparable
(resp. incomparable) in P . Let Y1; Y2 be antichains of P . If Y1 �P Y2, we say Y1; Y2 are
ordered antichains of P . The maximum cardinality of a chain of P minus 1 is called the
height of P , and is denoted by h.P /. The maximum cardinality of an antichain of P is
called the width of P and is denoted by w.P /. An element x 2 X is called the maximum
(resp. minimum) of P if for all y 2 X , y �P x (resp. x �P y). An element x 2 X is
maximal (resp. minimal) of P if for all y 2 X , x �P y (resp. y �P x) does not hold.
The dual poset of P , denoted by P d, is a poset which consists of the same ground set X ,
and the order relation�P d such that for all x;y 2 X , x �P y if and only if y �P d x. The
comparability graph of poset P , denoted G.P /, is the undirected graph whose vertices
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are the elements of X and where two elements are adjacent if they are comparable in P .
The strict order relation for P D .X;�P / is denoted by <P and defined for all x;y 2 X
as x <P y if x �P y and x ¤ y . For each x 2 X , the set of predecessors (resp.
successors) of x in P is defined by PredP .x/ D fy 2 X jy <P xg (resp. SuccP .x/ D
fy 2 X jx <P yg). Moreover, we say that x is covered by y in P , and denote x �P y ,
if x <P y and there is no element z 2 X such that x <P z and z <P y . For each x 2 X ,
we define the set of immediate predecessors (resp. immediate successors) of x in P which
is ImPred.x/ D fy 2 X jy �P xg (resp. ImSucc.x/ D fy 2 X jx �P yg). An order
T D .X;�T / is called a tree if it has a minimum m and for every x 2 X , x ¤ m, x
has a unique immediate predecessor. Given a chain C D fc1; c2; : : : ; chg of P such that
h > 1 and c1 �P c2 �P : : : �P ch, we say that C is a thin chain if for 1 � d < h it holds
that cd is a unique immediate predecessor of cdC1.

Definition 2.1 (Abduction Matrix) Given m � n-matrix A D Œai;j �, where ai;j 2
f0; 1; ?g (1 � i � m, 1 � j � n/, A is an abduction matrix if the following holds:

1. m � n (i.e., no less columns than rows).
2. Except for ai0j0

D ?, the rest of the values are in f0; 1g.
The abduction will be done by deciding whether the value of ai0j0

is 0, 1 or should stay?
in cases it is not possible to decide. The data in the matrix is suitable for abduction if
each row represents a subject for comparison, and each column represents a property.
Additionally, it is assumed the data has some underlying direction, e.g., if some properties
apply to a subject, it indicates that other properties also apply. Note that the definition of
abduction matrix may be extended to include cases with multiple missing values and not
necessarily binary, but such matrices will not be discussed in the scope of this chapter.

Definition 2.2 (Matrix Abduction Method) Given an abduction matrix A, the method
will decide whether the value of ai0j0

is one of 0, 1, or ?. LetA1 denote the matrix in which
ai0j0

D 1 and let A0 denote the matrix in which ai0j0
D 0. Let ˘1 and ˘0 denote the

poset of the columns of A1 and A0, respectively, where the columns are used as vectors
and compared coordinate wise. The method decides which of ˘0 and ˘1 is preferable,
using the criteria defined below. If ˘0 is preferable to ˘1, it is decided that ai0j0

D 0. If
˘1 is preferable to ˘0, ai0j0

D 0. Otherwise, ai0j0
D ?.

Poset Preference Definition

1. Let L D fˇ1; ˇ2; : : : g be a set of labels. We denote byM1.L/ the family of multisets
of the form fm˛; ˇ1; : : : ; ˇk�1g, i.e., every multiset which consists of m 2 f0g [ N
copies of the label ˛, and up to one copy of each of the other labels in L. We refer to
k as the dimension and refer to m as the index of the multiset.

2. Let E be a finite subset ofM1.L/. We define the dimension and the index of E as the
maximum of the respective dimension and index of its elements.

3. Let .X;�P / be a poset, and L a set of labels.
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(a) We say the function f WX !M1.L/ is a .L; f /-realization of .X;�P / if and only
if the condition x �P y , f .x/ � f .y/ holds for each x;y 2 X , and we say
that the label(s) in r 2 M1.L/ is (are) assigned to the element x 2 X if and only
if r � f .x/. We define the dimension and the index of f as the dimension and the
index of ff .x/ jx 2 Xg. We say .L; f / is label minimal if and only if there is no
other realization .L; f 0/ of smaller dimension. We also denote the dimension of
the label-minimal realization as dim�.

(b) We define the index of connectivity of .X;�P / as the amount of connected compo-
nents of .X;�P /.

(c) For each x;y 2 X , we define xRy as x <P y _ y <P x. We denote by R�
the transitive closure of R. If xR�y , then there exist z1; : : : ; zk 2 X such that
xR1z1R0z2; : : : ; RizkR1�iy , R1;R0 2 f<p;>pg and R1 ¤ R0. We denote by
�.x; y/ the minimal k for which such a z1; : : : ; zk sequence exists. We define the
index of directional change as maxx;y �.x; y/, i.e., the maximal amount of direction
changes necessary to travel between any two points in X .

4. We define partial order preference by comparing the following evaluations, where
smaller values are preferred:

� amount of elements in the poset,
� index of connectivity,
� index of directional change,
� dimension of a label-minimal realization.

When comparing the partial orders˘ and˘ 0, if˘ is preferable in at least one of these
evaluations and ˘ 0 is preferable in none, we say ˘ is preferable to ˘ 0. Note that these
criteria may not be comprehensive and additional evaluations may be considered, depend-
ing on the context of the abduction. Also note that while the above definition is limited
to solving only a single missing value in the abduction matrix, it may be extended to al-
low multiple missing values (instead of generating the matrices A1 and A0, we generate
a separate matrix for every possible completion combination). Other existing methods for
abduction may also reach a tie between different decisions, and a common solution for
this problem, which may also be used in this method, provides additional information, up
to a point where the decision is clear. In fact, when applying the matrix abduction method
in an actual debate, e.g., in the context of Talmudic reasoning, each side in the debate is
expected in its turn to introduce new information in order to affect the result of the abduc-
tion; therefore, the construction of the matrix is often gradual (for a detailed example, see
[1, p. 338]).

Comparison of Matrix Abduction with Existing Algorithms We now revisit the ex-
ample given in the introduction (in Table 1), and demonstrate the difference between the
matrix abduction method and decision by the Euclidian distance (k-nearest neighbor al-
gorithm).
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Fig. 2 Example minimal realizations

Euclidian Distance In this method we compare distances between the known values of
column (6) and the other columns. Column (1) is the best match, and therefore we use 0
to complete the matrix.

(1) (2) (3) (4) (5)

2 1 1 1 1

Matrix Abduction In this method, we compare the evaluations of the aforementioned cri-
teria.

Table 2 specifies the evaluations of the topological criteria over the posets in Fig. 2. As
the table shows, the only difference between the two options is under the criteria of index
of directional change, and since 1 is preferable, we use 1 to complete the matrix.

Definition 2.3 (Dimension and 2-dimension of a Poset) We denote the dimension of
poset P D .X;�P / by dim.P /, which is defined similar to dim�, with the exception that
in this context the realization’s range is a vector of natural numbers, i.e., f WX ! Nk , k 2
N. We also similarly define the 2-dimension ofP , denoted by dim2.P /, with the exception
that in the context of dim2 the range is a vector of bits, i.e., f WX ! f0; 1gk, k 2 N. In
order to distinguish between different types of realizations, we use dim realization, dim�
realization and dim2 realization. Note that any dim� realization is also a dim realization,
and any dim2 realization is also a dim� realization, therefore for any poset P , dim2.P / �
dim�.P / � dim.P / holds. Also note that the evaluation of dim and dim2 is known to be
NP-complete.

Table 2 Comparison of evaluated criteria for both possible values of a missing entry

Assumed value Amount of elements Index of connectivity Index of directional change dim�

0 6 1 2 2

1 6 1 1 2
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3 Related Work and Algorithms

The first algorithm for evaluating dim� was presented along with the concepts introduced
in [1], but at the time of its publication, it was yet unknownwhether the algorithm produces
a precise evaluation of dim� or not. Soon after, examples that contradict the algorithm’s
optimality were discovered and presented in [17] and made it clear that the algorithm
may be improved in certain cases; moreover, Laufer identified and described in [13] the
similarity between the definition of dim� and the existing concept 2-dimension of a poset
whose evaluation is a known NP-complete problem. This was a hint that the matrix abduc-
tion method is hard to evaluate, but also provided additional motivation for finding better
dim� approximations, since it may serve as an alternative to two dimensions in some of
its existing practical uses.

Apart from [14], the connection between the matrix abduction method and existing
common methods such as matrix completion algorithms or more general classification
algorithms was yet to be thoroughly studied. At a glance, the assumptions that guide the
completion process are useful in entirely different contexts and even demand different
computational power to solve; therefore, if such a connection exists, it may not be simple
to find.

4 Properties of Matrix Abduction

In this section, we provide several new theorems that may be useful when conducting an
abduction, and for further research on dim�. We begin in Sect. 4.1 with additional pre-
liminaries and known properties of dim� which will be used implicitly in the following
sections. Afterward, in Sect. 4.2 we provide proofs by reduction that both the exact eval-
uation of dim� in the general case and the matrix abduction method are NP-complete.
Finally, in Sect. 4.3 we discuss point-removal properties which may aid in the evaluation
despite the aforementioned result. Note that in Sect. 4.2, it is assumed that the reader is
familiar with basic topics in computational complexity theory, such as the 3-SAT prob-
lem, the NP-complete complexity class, and the process of proving NP-completeness by
a polynomial-time reduction. (For a thorough discussion on these topics, see [11].)

4.1 Preliminaries

Definition 4.1 (Poset Levels) Let P D .X;�P / be a poset, andM � X be the set of all
minimal elements in P . We define the level of an element x 2 X in P , denoted levelP .x/,
by

levelP .x/ D
(
1; x 2M;
1Cmaxe2PredP .x/.levelP .e//; x 2 X nM;
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i.e., the level of each element is greater by 1 the highest level of its predecessors in the
poset. Note that all elements of the same level make an antichain.

dim� of Dual Posets [13] Given poset P D .X;�P /, which was produced from the
complete m � n-abduction matrix A D Œai;j � (1 � i � m, 1 � j � n), as described in
Definition 2.2, thenP d may be produced from them�n-matrixAd D Œ1�ai;j �. Moreover,
for any poset P , it holds that dim�.P / D dim�.P d/.

Monotony of dim� Given poset P D .X;�P / and Q, a suborder of P , then it holds
that dim�.Q/ � dim�.P /. Proof is trivial, since every valid dim� realization of P is also
a valid realization ofQ.

Definition 4.2 (Encoding) In the context of dim� we abbreviate a set of assigned labels
by pairing a natural number and bit vector encoding, e.g., for .L; f / dim� realization,
where L D f˛; ˇ1; ˇ2; ˇ3; ˇ4g, we abbreviate f3˛; ˇ1; ˇ3g to 3;1010. We call the process
of assigning labels to an element as encoding the element. Moreover, the encoding of
multiple elements, which represents a label-minimal realization of the poset they make, is
called minimal encoding.

Definition 4.3 (Encoding Cardinality) Given a poset P D .X;�P /, .L[f˛g; f / dim�
realization ofP , and x 2 X , we denote by f˛.x/ the amount of alpha label copies in f .x/.
Also, jf .x/j denotes the amount of distinct labels in f .x/, i.e., jf .x/j D jL\f .x/jC k,
where k is 1 if f˛.x/ 	 1 and is 0 otherwise.

Encoding Chains [13] Given a poset P D .X;�P / that is also a chain with l 	 1

elements, then dim�.P / D 1 holds. Let X D fx0; x1; : : : ; xl�1g such that x0 < x1 <

: : : < xl�1, then .L; f / dim� realization of P , where L D f˛g, f .xi / D f.i/˛g, provides
a minimal encoding.

Encoding Antichains [13, 17] Given a poset P D .X;�P /, and A D fa1;a2; : : : ;alg �
X , L D fˇ1; ˇ2; : : : ; ˇdlog2.l/eg, we denote by EL;A.ai / the set of labels given by
fblog2.l � i/c˛g [ fˇbC1 j bi=2bcmod 2 D 1g, i.e., labels that correspond to the bi-
nary representation of each element’s index, and the amount of ˛ label copies is the
minimal number that guarantees the encoding EL;A.ai / will not conflict with the encod-
ing of any other encoding EL;A.x/, ai ¤ x 2 X . This method of encoding was first
presented in [17], and proved to be optimal for antichains in [13], i.e., at least dlog2.l/e
nonalpha labels must be modified in any encoding of the antichain. Moreover, given any
poset P , it holds that dim�.P / 	 1C dlog2.w.P //e.

Lemma 4.4 (Encoding Ordered Antichains) Given a poset P which consists of h 	
1 ordered antichains A0;A1; : : : ; Ah�1, such that A0 �P A1 �P : : : �P Ah�1, then
dim�.P / D 1CPh�1

iD0dlog2 jAi je.
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Proof By induction:
For h D 1: Same as antichain encoding.
For any h 	 1: We assume that for some h 	 1, for any poset Ph which consists of

h ordered antichains (as described above) it holds that dim�.Ph/ D 1C
Ph�1

iD0dlog2 jAi je
and .L [ f˛g; f / gives a minimal encoding.

For hC1: Consider the poset PhC1 D .X[Ah �PhC1
/, which is constructed by adding

to Ph an antichain on the ground set Ah such that A0 �PhC1
: : : �PhC1

Ah�1 �PhC1
Ah

holds. PhC1 may be encoded by the following .L [ Loptf opt/ dim� realization:

f opt.x/ D
(
f .x/; x 2 X;
L [ f.k/˛g [ ELopt;Ah

.x/; x 2 Ah;

where k D maxx2X.f˛.x// and Lopt D fˇ1; ˇ2; : : : ; ˇdlog2 jAhjeg. Thus, it holds
that dim�.PhC1/ � dim�.Ph/ C dlog2 jAhje. Moreover, for any x 2 X and any
.L [ L0; f 0/ dim� realization of PhC1, it holds that f 0.x/ � T

y2Ah
f 0.y/. Since at

least dlog2 jAhje labels must be modified in the encoding of Ah, then dim�.PhC1/ 	
dim�.Ph/C dlog2 jAhC1je must also hold. �

Lemma 4.5 (EncodingMinimal andMaximal Elements) Given a poset .X;�P /, .L[
f˛g; f / dim� realization of P , and let M � X be the set of all minimal (resp. maximal)
elements in P . If jM j 	 2, then for any x 2 M it holds that jf .x/j > 0 (resp. jf .x/j <
jLj C 1), with the exception that for one maximal element x 2 X , jf .x/j D jLj C 1 may
hold if f˛.x/ < f˛.y/ for any y 2 X , y ¤ x.

The proof is trivial, since contradicting these inequalities clearly causes a conflict.

4.2 Computational Complexity of Evaluating dim� and Matrix
Abduction

Proposition 4.6 The precise evaluation of dim� is NP-complete.

Proof Given a 3-SAT input, the CNF formula F which consists of n 	 3 variables de-
noted vi (0 � i < n) and k 	 1 clauses denoted by ci (0 � i < k), where each clause
depends on exactly three variables, we construct the poset R�.F / D .XR� ;�R�/ and
show that defining .L; f / dim� realization on R�.F / is as hard as finding an assignment
which satisfies the given formula. The formula may be satisfied if and only if exists a dim�
realization such that jLj D 4jnj C 1.

Construction 4.7 (Suborders VG�
i
) Let VG�

0 ;VG
�
1 ; : : : ;VG

�
n�1 be similar, separate

suborders of R�.F / each consisting of 10 elements. We denote the elements of suborder
VG�

i eh
�
i , el

�
i f , el�i t, el�i w1; : : : ; el

�
i w7, as illustrated in Fig. 3a.
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Fig. 3 Constructions VG�
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Definition 4.8 (Spare Labels) Let e 2 fel�i f ; el�i tg, poset P and a valid encoding f
of P be given. We define spare.f .e// D fˇ0; ˇ1; : : : g as the set of labels such that for
any single label ˛ ¤ ˇ 2 spare.f .e//, if ˇ is removed from f .e/ then f stays a valid
encoding of P .

Remark 4.9 (Encoding Limitations of VG�
i ) Using an exhaustive scan of realizations, it

is possible to prove that for every suborder VG�
i it holds that dim�.VG�

i / D 4, and for
every 0 � i < n, either spare.f .el�i f // D ; or spare.f .el�i t// D ; for any minimal en-
coding of VG�

i (for example, in the encoding illustrated in Fig. 3a, it is possible to remove
a label that is used for encoding el�i t, but for el�i f it is not). Note that every element eh�

i

is one of the multiple maximal elements in R�.F /, along with another maximal element
e for which jf .e/j D dim�.R�.F // (will be discussed later). Therefore, it holds that

jf .eh�
i /j < dim�.R�.F //: (4.1)

Construction 4.10 (Suborders CG�
i
) Let CG�

0 , CG
�
1 ; : : : ;CG

�
k�1 be similar, separate

suborders of R�.F /, each consists of three elements. We denote the elements of suborder
CG�

j by ec�
j , ecc

�
j;0, and ecc�

j;1, as illustrated in Fig. 3b. The element ec�
j is the immediate

predecessor of el�i f (resp. el�i t) if and only if cj may be satisfied by the negative (resp.
positive) literal of vi .

Assuming each suborder VG�
i is encoded by modifying distinct four nonalpha labels,

then encoding every element ec�
i by the labels shared by its predecessors will not pose

a conflict between the elements ec�
0 ; : : : ; ec

�
k�1. Additionally, since ecc�

i;0 and ecc�
i;1 make

an antichain of size 2, at least one nonalpha must be modified in order to encode it. If
for some immediate successor e of eci exists a label in spare.f .e// it may be modified
without causing conflicts between ecc�

i;0, ecc
�
i;1 and any other element of any suborder

VG�
i .
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Fig. 4 Procedure
set_realization*

Construction 4.11 (Suborders WG�
i
) Let WG�

0 , WG�
1 ; : : : ;WG�

n�1 be similar, separate
suborders of R�.F /, which consist of 4.n� 1/-ordered antichains, as illustrated in Fig. 5.
For WG�

i the elements in levels 3; : : : ; 4.n � 1/ make antichains of width 2 and are de-
noted by ew�

i;d;0 and ew�
i;d;1 (where d corresponds the level of the element) and the two

elements that are in levels 1 and 2, denoted by ew�
i;1 and ew

�
i;2, make a chain. Each of these

elements is a predecessor of all elements in VG�
i , as illustrated in Fig. 4. We denote by

ewt�i the set of seven elements in WG�
i that are in levels 2–5, and denote by B�

i the set
of nonalpha labels that are used to encode the elements of ewt�i . Encoding the elements
of levels 3; : : : ; 4.n � 1/ in WG�

i requires the modification of at least one nonalpha label
which was not already modified for encoding elements in the higher levels. Note that every
element ew�

i;1 is one of the multiple minimal elements in R�.F /, along with another ele-
ment e which is necessarily encoded by ˛ labels only (will be discussed later). Therefore,
jf .ew�

i;1/j 	 1 and f˛.ew�
i;1/ < f˛.e/ also holds. Consequently, the elements ew�

i;4.n�1/;0
and ew�

i;4.n�1/;1 must be encoded (together) using at least 4.n� 1/ nonalpha labels, and at
least 4.n � 1/ copies of ˛ label. Considering (4.1), and since suborders VG�

0 ; : : : ;VG
�
n�1

are encoded by modifying at least three nonalpha labels, it holds that

4.n � 1/C 1 � maxfjf .ew�
i;4.n�1/;0/j; jf .ew�

i;4.n�1/;1/jg
� jf .eh�

i /j � 3 � dim�.R�.F // � 4: (4.2)

The elements of WG�
i may be encoded using the labels ˇt j0 � t < 4n [ f˛g, using the

procedure set_realization*, as shown in Fig. 4.

Remark 4.12 (Correcting WG�
i Instances) We assume the encoding defined in set

_realization* will be a part of the minimal encoding, and that it affects accord-
ingly on the encoding freedom of suborders VG�

0 ; : : : ;VG
�
n�1. Additionally, we assume

that for every element ew�
i;0;1, ec

�
j , ecc

�
j;0 and ecc

�
j;1, the following holds:

1. f˛.ec�
j / D f˛.ecc�

j;1/ D 4.n� 1/C 1.
2. 4.n � 1/ D f˛.ecc�

j;0/ D f˛.ew�
i;0;1/.

With these assumptions, we apply element contractions for elements that are given iden-
tical encoding, and fix the order between the elements to match the encoding. That is, we
assume that the spare label that is used to encode ec�

j is also used to encode ecc�
j;0; thus, the
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Fig. 5 Construction WG�

i
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only immediate successor of ecc�
j;0 is ec

�
j , and the predecessors of ecc

�
j;0 and ecc

�
j;1 depend

solely on the labels that are necessarily shared by the successors of ec�
j . We now define an

additional suborder which compels the minimal encoding to match these assumptions.

Construction 4.13 (Suborder AG) Let AG be a suborder of R�.F /, which consists of
8n � 7-ordered antichains as follows:
1. The element in level 8n � 3, denoted ea�

8n�3, is a maximal element of R�.F /.
2. The elements in levels 8n � 4 	 d > 4n � 4 make antichains of width 2 and are

denoted ea�
d;0, ea

�
d;1, where d corresponds to the level of the element.

3. The elements in levels 4n � 4 	 d 	 1 make a chain, and are denoted ea�
d , where d

corresponds to the level of the element.

The purpose of the suborder AG is to limit the relative amount of ˛ labels given to ele-
ments in suborders WG�

0 ; : : : ;WG�
n�1 by introducing a chain of height 4.n � 1/ � 1 that

is necessarily encoded by ˛ labels only.
The element ea�

8n�3 is a successor of every element in each of the suborders VG�
0 ,

. . . , VG�
n�1 except for the elements eh�

0 ; : : : ; eh
�
n�1. Similarly, each of the elements ea�

d;0

and ea�
d;1 is the successor of these elements, with the exception that for 7n � 3 � d <

8n� 3, ea�
8n�4�i;1 and its predecessors are not successors of any element that its assumed

encoding includes the label given by f .ew�
i;1/ as assigned by set_realization*.

Note that ea�
7n�3;1 is the successor of only ea�

7n�3�1;1, ea�
7n�3�1;0, and the added constraints

are independent from asymmetric decisions. In order to limit the freedom of ˛ labels given
to element in WG�

i , we assume that for d � 4n � 4 any element ea�
d is encoded by .d/˛

and that the assumptions described in suborders WG�
i definition also hold; accordingly,

we insert constraints to every element ea�
d from elements in suborders GG�

0 ; : : : ;GG
�
k�1,

and WG�
0 ; : : : ;WG�

n�1. For 0 � i � n � 1, 1 � d � 4.n � 1/, these constraints imply
that ea�

d <R� ew�
i;d;1 holds, but ea

�
d and ew�

i;d;0 are incomparable.
For each level 8n � 4 � d � 4n � 4 , at least one nonalpha label must be modified in

order to encode the elements ea�
d;0 and ea

�
d;1, and therefore f .ea

�
8n�3/ 	 4nC1must hold
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in any encoding. Since the element ea�
8n�3 is a maximal element, along with every element

eh�
i , then under the assumption that dim�.R�/ D 4nC1, it holds that f .ea�

8n�3/ D 4nC1,
and for every element eh�

i , f .eh
�
i / D 4n. Moreover, for d � 4n � 4, no nonalpha

labels may be used for encoding any element ea�
d . Since this also applies to ea�

8n�4,
which is a minimal element along with every element ew�

i;4.n�1/, then f˛.ea�
8n�4/ D 1,

jf .ew�
i;4.n�1//j D 1 and f˛.ewi;4.n�1/

�/ D 0 hold.

Construction 4.14 (Poset R�.F /) The poset R�.F / is defined by the composition of:

1. VG�
0 ; : : : ;VG

�
n�1, where every element eh�

i is a maximal element of R�.F /.
2. CG�

0 ; : : : ;CG
�
k�1, connected to VG�

0 ; : : : ;VG
�
n�1 according to the given formula.

3. WG�
0 ; : : : ;WG�

n�1 after contractions are applied, including the additional implied con-
straints, where every element ew�

i;1 is a minimal element of R�.F /.
4. AG, where ea�

8n�3 is a maximal element ofR�, and ea�
1 is a minimal element ofR�.F /.

For any encoding f of R�.F / that makes use of no more than 4n nonalpha labels, the
inequality (4.2) and the following limitations hold:

1. f˛.ew�
i;d;0/ < f˛.ew�

i;d;1/, since ea
�
d <R ew�

i;d;1 holds, but ea
�
d and ew�

i;d;0 are incom-
parable.

2. For any i; j 0 � d < l � n�1, it holds that f˛.ew�
i;d;0/ < f˛.ew

�
j;l;0/ and f˛.ew

�
i;d;1/ <

f˛.ew�
j;l;1/, for a similar reason.

3. jf .eh�
i /j D jf .ew�

i;4.n�1/;0/j C 3 D 4n (derived from (4.2) and the above limitations).
4. Given ew�

i;d;0; ew
�
i;d�1;0; ew�

j;d2;0 such that ew
�
i;d;0 	R� ew�

j;d2;0^ew�
i;d�1;0 �R� ew�

j;d2;0

then 9ˇ 2 f .ew�
j;d2;0/ \ f .ew�

i;d;0/ ^ ˇ … f .ew�
i;dC1;0/ ^ ˇ ¤ ˛. This also holds for

ew�
j;d2 (i.e., the two minimal elements in each suborder WG�

i /.
5. Due to the definition of set_realization* for any two chains WG�

i and WG�
t ,

where t ¤ .nC i �1/modn, there are exactly four consecutive elements in WG�
i , that

are not in ewt�i and are direct successors of elements in ewt�t , for which the condition
described in the limitation 4 applies.1 Consequently, the only labels that may be used
for encoding ewt�i are completely distinct from the ones in ewt�t , i.e., B�

t \ B�
i D ;.

Clearly, for any n 	 3 this applies to any two chains WG�
i ;WG�

t .
6. For every ew�

i;4.n�1/;0; t , where 0 � t < n and t ¤ .n C i � 1/modn, it holds that
B�
t  f .ew�

i;4.n�1/;0/. Therefore, VG
�
i must be encoded by modifying only ˛ labels,

and nonalpha labels that are in B�
.nCi�1/mod n, and jf .eh�

i / [ f .ew�
.nCi�1/mod n;1;0/j D

LC 1.
7. Given ec�

i ; ep1 2 fel�p1
f ; el�p1

tg, ep2 2 fel�p2
f ; el�p2

tg, ep3 2 fel�p3
f ; el�p3

tg, where
ep1; ep2; ep3 are direct successors of ec

�
i , then eh�

p1, eh
�
p2 and eh�

p3 are also successors
of ec�

i , and any other element in any suborder VG�
j is incomparable with ec�

i , ecc
�
i;0

and ecc�
i;1. Additionally, for some element e 2 fep1; ep2; ep3g spare.f .e// ¤ ; must

hold in order to avoid conflicting encodings with other elements.

1 The only exception to this is when elements are shared (contracted), but the desired limitation still holds.
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Considering these limitations, it is possible to define .L [ f˛g; f / dim� realization of
R�.F /, where L D fˇt j 0 � t < 4ng if and only if the formula may be satisfied by the
assignment S D fri j 0 � i < ng, and that realization is given by:

1. Encode WG�
i instances as defined in set_REALIZATION*.

2. Encode AG according to the following rules:

� f .ea�
8n�3/ D L [ f.8n� 3/˛g.

� f .ea�
8n�4;0/ D L [ f.8n� 4/˛g.

� f .ea�
8n�4;1/ D L n ˇ1 [ f.8n� 3/˛g.

� For 4n � 4 < d � 8n � 5, f .ea�
d;0/ D f .ea�

d�1;0/ n f˛; ˇdg and f .ea�
d;1/ D

f .ea�
d�1;1/ n f˛; ˇd g.� For 1 � d � 4n � 4, f .ea�

d / D f.d/˛g.
3. Encode each suborder VG�

i by modifying the nonalpha labels in B�
.nCi�1/mod n, as il-

lustrated in Fig. 3a, where f .eh�
i / D L.8n � 2/ f̨ .ew�

.nCi�1/mod n;1/ and we insure
that spare.f .el�i f // ¤ ;, if ri D false, or that spare.f .el�i t// ¤ ; otherwise.

4. Encode each element ec�
i , ecc

�
i;0 and ecc�

i;1 as described in Construction 4.10. The
element ecc�

i;0 and ecc
�
i;1 may be encoded with no conflicts if and only if clause ci may

be satisfied by S .

If and only if the formula may be satisfied, we can derive a satisfying assignment for it
from any valid encoding according to the amount of labels used to encode the elements in
suborders VG�

0 ; : : : ;VG
�
n�1. �

Remark 4.15 Note that the above reduction may also be used to prove hardness of addi-
tional, similar poset dimension types (e.g., dim2) with relatively simple modifications.

Graph Representation Theorem [1] Let P D .S;</ be poset on the ground set S D
fa1; : : : ; amg. Then there exists a definite matrix with m columns and m rows such that
the column ordering is the same as .S;�/, and it is given by the matrix A D Œai;j �,
1 � i; j � m, defined by ai;j D 1 if and only if ai � aj .

Theorem 4.16 Given an abduction matrix A and two posets R0 and R1 produced by
assigning 0 and 1, respectively, in the missing entry of A, then the decision whether
dim�.R0/ is either greater, less, or equal to dim�.R1/ is NP-complete.

Proof Let F D .V; C / be a 3-SAT input, the CNF formula F (as given in the previous
reduction). We construct an abduction matrix with a single missing value b, and we show
that deciding whether b D 0 or should remain undecided, according to the relevant criteria
values that depend on b (amount of elements in the poset, index of connectivity, index of
directional change and dim�/ is as hard as deciding whether F may be satisfied or not.
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Construction 4.17 (the Posets R�
1
.F /, R�

0
.F /)

1. Arbitrarily choose one clause ci , which depends on the variables vp1; vp2; vp3. Let ck D
:ci andF 0 D .V; C[fckg/ be the formula that is necessarily unsatisfiable and consists
of k C 1 clauses.

2. Construct the posets R�.F / and R�
1 .F / D R�.F 0/, as previously described in Con-

struction 17.
3. Translate R�

1 .F / into a matrix A1 D Œai;j �, 1 � ij � jR�
1 .F /j as described in the

graph representation theorem. Let the elements ecc�
k;0 and ecc

�
k;1 (which are associated

with the newly added negated clause) be represented by two vectors V k1;V k2 2 M ,
respectively. Note that the vectors are identical, except for four entries ak1;r ; ak1;t 2
V k1 and ak2;r ; ak2;t 2 V k2, for which ak1;r > ak2;r and ak2;t > ak1;t hold. Let A0 be
the matrix produced by replacing the value of ak1;r from 1 to 0, and denote by R�

0 .F /

the poset it represents.

Since it is not possible to satisfy the formula F 0, it is also not possible to encode R�
1 .F /

using L D fˇt j 0 � t < 4ng and ˛ labels alone. However, by using an additional non-
alpha label ˇ4n, we may encode the poset by ensuring that for any e 2 fel�i f ; el�i tg,
ˇ4n 2 spare.f .e// holds, making it certain that a valid encoding is possible regardless of
the satisfiability of F ; thus, dim�.R�.F // � dim�.R�

1 .F // D 4nC 2.
In order to show that the decision whether A0 is preferable to A1 depends solely on

the satisfiability of F , we show that checking whether dim�.R�
0 .F // D dim�.R�

1 .F //

depends on the satisfiability of F , and the evaluation of the additional criteria of the matrix
abduction method is necessarily tied and therefore does not affect the decision.

Dimension It is easy to see that the posetR�
0 .F /may be encoded usingL D fˇt j 0 � t <

4ng and ˛ labels if and only if F may be satisfied. Consider the hierarchy of the elements
ec�
k ; ecc

�
k;0; ecc

�
k;1 as it is in R

�
1 .F /, compared to the hierarchy of the respective elements

in R�
0 .f /, as illustrated in Fig. 6. For R�

0 .F /, the element ec�
k may be encoded using one

less nonalpha label, since it has one predecessor instead of two; thus an ˛ label copy may
be modified instead of a nonalpha label. Therefore, dim�.R�

0 .F // D dim�.R�.F // holds,
and dim�.R�

0 .F // D dim�.R�.F // D dim�.R�
1 .F // holds if and only if F may not be

satisfied.

Amount of elements in the poset. Due toR�.F / construction definition,R�
0 .F / represents

the same amount of elements as R�
1 .F / does.

Index of connectivity. Similarly, due to R�.F / construction definition, every element is
connected, and the index of connectivity of both R�

0 .F / and R
�
1 .F / is 1.

Index of directional change. It is easy to see that the change in the hierarchy of the el-
ements E D fec�

k ; ecc
�
k;0; ecc

�
k;1g does not affect any of the longest sequences that goes

through the minimal necessary direction changes, even if the sequence goes through them.
Given such a sequence S , one of the following applies:
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Fig. 6 CG�

i hierarchy of R�

1 .F /

(a) and R�

0 .F / (b)

,1
,0

,1

,0

*

*

*

*

*

*

a b

� If S begins and ends in predecessors and successors of elements in E:
In both R�

0 .F / and R
�
1 .F /, going through any subset of E will not require any di-

rectional changes. Moreover, any path that goes through a subset of these elements
multiple times (i.e., after at least one direction change occurs) may necessarily be short-
ened.

� If S starts or ends at an element in E:
Since no element in E is maximal or minimal, the travel may be prolonged into a pre-
decessor/successor without increasing the amount of direction changes; thus this case
is similar to the first.

� If S starts and ends at an element in E:
This implies that the index of directional change is smaller than 2, which is necessarily
false by the definition of R�

0 .F / and R
�
1 .F /. �

4.3 Characterizing dim� in the Context of Matrix Abduction

Consider we are given the abduction matrix A with a single missing entry, the complete
matrices A0 and A1 produced by assigning either 0 or 1 in the missing entry of A, and
the posets P0 and P1 that A0 and A1 represent, respectively. The only possible difference
between P0 and P1 is limited to a single element, since the difference is limited to a sin-
gle column in the matrix. We now show to what extent this difference affects dim�.P0/
compared to dim�.P1/, i.e., we delimit jdim�.P0/ � dim�.P1/j. For this purpose, three
separate cases should be considered:

1. jP0j ¤ jP1j.
2. P0 D P1.
3. jP0j D jP1j ^ P0 ¤ P1.
We reach case 1 if the assigned value in one of the complete matrices makes for a column
that overlaps the existing one; thus the matrix will represent a poset with one element
removed. In this case, Proposition 21, which we show next, may be used.
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Reaching case 2 means that either the assigned value produces an overlapping column
in both complete matrices, or that the assigned value makes for a column representing an
element which is positioned similarly in the hierarchy of the poset represented by both
matrices. Clearly, handling this case is trivial.

We reach case 3 if the above conditions do not hold, and we regard this as reposition-
ing of the element e 2 P0; P1. We show in Theorem 4.19 that in this case it holds that
jdim�.Pi /� dim�.P1�i /j � 1.

One-point removal theorem for dim2 (Folklore) Given a poset P D .X [ feg;�P /, it
holds that dim2.P n feg/ � dim2.P / � dim2.P n feg/C 2.

Proof A proof for this theorem may be found in [15] as follows: The left part of the
inequality holds due to monotony of dim2. Concerning the right part, we show that for any
valid dim2 realization of P n feg, by using two additional labels, we can encode P . Let
.L; f / be a label-minimal dim2 realization of P nfeg. We define the valid dim2 realization
.L [ fˇ1; ˇ2g; f 0/ of P (for ˇ1; ˇ2 … L) by:

f 0.x/ D

8
<̂

:̂

f .x/; x <P e;

f .x/[ fˇ1; ˇ2g; e <P x;

f .x/[ fˇ1g; e —P x ^ e �P x;

and f 0.e/ D fˇ2g [ .
S

x<P e f
0.x//. �

Proposition 4.18 Given the poset P , it holds that dim�.P nfeg/ � dim�.P / � dim�.P n
feg/C 2, and this inequality is tight in the general case (proof is given in the appendix).

Theorem 4.19 Given an abduction matrix A and two posets P0 and P1 produced by
assigning 0 and 1, respectively, in the missing entry of A, then:

1. If jPi j < jP1�i j, then dim�.Pi / � dim�.P1�i / � dim�.Pi/C 2.
2. If jPi j D jP1�i j and Pi ¤ P1�i , then j dim�.Pi / � dim�.P1�i /j � 1.

Proof Let .L0; f0/ be a dim� realization of P0. We show that if jP0j D jP1j holds, we
may produce dim� realization .L0[fˇg; f1/ of P1, ˇ … L0. Let B0; T0; B1; T1 � P0\P1
such that B0 <P0

feg <P0
T0 and B1 <P1

e <P1
T1. LetE 0 andE 1 be the columns in A0

and A1, respectively, that correspond to the repositioned element e. The column E1 may
be produced by altering a single value ofE0 from 0 to 1. Therefore, it holds that B0 � B1
and T1 � T0, since E 1 makes for a poset in which e may only become a successor of
additional elements, and may no longer be a predecessor of some elements.

Lemma 4.20 B1\T0 D ;, and for any t 2 T0nT1, b 2 B1nB0, t and b are incomparable.
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Proof Let t 2 T0, b 2 B1 n B0 and let their corresponding columns be T ;B ¤ E ,
respectively. We denote by ai;j the entry of the value that differs between E 0 and E1,
and denote by ai;k 2 T , ai;m 2 B the values that are compared with ai;j for the purpose
of translating the matrix into a poset. The effect on the hierarchy between e and t that is
caused by altering the value of ai;j from to 1 falls into one of the following two cases:

1. e and t become incomparable, since 1 D ai;j > ai;k D 0 and for some other row n, it
holds that an;k > an;j .

2. e <P1
t still holds, since ai;k D ai;j D 1 and for some other row n it holds that

an;k > an;j .

(We disregard the option ofE and T becoming identical, since the case of jP0j ¤ jP1jwas
discussed previously.) In none of the cases a successor of e in P0 turns into a predecessor
of e in P1, and therefore B1 \ T0 D ;.

As stated in case 1, if t 2 T0 n T1, then ai;k D 0 and for some other row n it holds
that an;k > an;j . In an opposite manner, for b 2 B1 n B0, it holds that ai;m D 1, and for
the same row n it holds that 1 D an;k>an;j D an;m D 0; therefore, any such b and t are
incomparable. �

We are now ready to define f1.

1. If B1 n B0 D ;, define:

f1.x/ D
(
f0.x/; x �P1

e;

f0.x/ [ fˇg; x 	P1
e:

Since in this case the only difference between P0 and P1 is that e no longer precedes
the elements in T0=T1, we may use the additional label ˇ … L0 to enforce this, and the
encoding is valid.

2. If B1 n B0 ¤ ;, define:

f1.x/ D

8
<̂

:̂

LB [ f0.e/ n f.f˛.LB//˛g; x D e;

f0.x/; x 2 B1;
fˇg [ f0.x/; x 2 P1 n .feg [ B1/;

where LB D S
b2B1nB0

.f0.b//, and ˇ … L0. Note that for every t 2 T1, it holds that
f1.e/  f1.t/ since if e <P1

t, then for any b 2 B1 it also holds that b <P1
t . Also

note that for any t 2 T0 n T1, f1.e/ and f1.t/ are incomparable since ˇ 2 f1.t/^ ˇ …
f1.e/ holds, and due to Lemma 23, there also exists an element b 2 B1 n B0 such
that f1.e/ � f0.b/ ^ f0.b/ ª .fˇg [ f0.t// D f1.t/; therefore, the encoding of all
elements is valid.

Even though the above refers to the limitations derived from turning ai;j from 0 to 1,
considering the duality properties of dim�, it is easy to see that the it is also true for
turning ai;j from 1 to 0, and Theorem 4.19 holds in the general case. �

Remark 4.21 The matrix abduction method may be extended in order to complete mul-
tiple missing values of a matrix, and be used as a part of an ongoing debate. Theorem 2
may be particularly useful in such cases.
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Example 1 Consider a debate over a certain undecided entry, where the losing side wants
to overturn the current result of the matrix abduction. Suppose it has the ability to either
introduce a new column to the matrix (which translates into a new element in the poset)
or insist instead on altering a previously established value. We now know that unless
altering the value would turn a column into a duplication of an existing column, this option
is discouraged since it may, at best, lead to a tie, but never overturn the result of the
abduction.

Example 2 Consider a debate over n entries at once in the same matrix. In this case,
not only that the evaluation of dim� for each complete matrix is hard, there may also be
many value combinations to test. Fortunately, we now know that the maximal difference
of dim� between any two complete matrices depends directly on the amount of altered
values; therefore, if we can identify two combinations for which the difference of dim� is
maximal, according to the theorem, then the need for testing additional combinations may
be spared.

4.4 Specific Cases that Are Easy to Evaluate

Before devising an effective algorithm for evaluating the result of the matrix abduction
method, we would like to identify cases in which it may be possible to easily evaluate
the result of the abduction, ideally sparing the need for using an algorithm altogether. The
next two propositions generalize some of these cases.

Proposition 4.22 Given a poset P , and e 2 P the minimum or the maximum of P , then
dim�.P / D dim�.P n feg/.

Proof Let P1 D .X;�P /; P0 be the two posets, where feg 2 P1 is the minimum of P1,
P0 is the order induced by P1 onX nfeg, and let .L; f / be a dim� realization of P0. Then,
we may produce the valid dim� realization .L0; f 0/ of P1 as follows:

f 0.x/ D
(
f .x/ [ f˛g; x ¤ e;

;; x D e:

For any poset P such that jP j > 1, there exists a label-minimal dim� realization in which
˛ label is already used, and therefore L0 D L, i.e., dim�.P0/ D dim�.P1/. Considering
the duality properties of dim�, we may derive that this principal holds in the case that e is
the maximum of Pi , too. �

Proposition 4.23 Given a poset P , a thin chain C of P and e 2 C , then dim�.P / D
dim�.P n feg/.
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Proof Let P1 D .X;�P1
/, P0 be two posets, C a thin chain of P1, e1; e2 2 C such that

e1 �P1
e2, P0 is the order induced by P1 on X n e1, and .L; f / dim� realization of P0.

We may produce the valid dim� realization .L0; f 0/ of P1 as follows:

f 0.x/ D

8
<̂

:̂

f .e2/; x D e1;

f .x/; x <P1
e1;

f .x/ [ f˛g; x —P1
e1:

Similar to the previous proposition, we assume that ˛ 2 L and therefore L0 D L. The
poset P1 n fe1g is equivalent to P1 n fe2g, and we get dim�.P1/ D dim�.P1 n fe1g/ D
dim�.P1 n fe2g/. �

It is noteworthy that these two propositions fit well with the concept behind the matrix
abduction. That is, inserting a maximum/minimum element or placing an element within
a thin chain is equivalent to introducing information that already abides by the existing
values, and the value of dim� reflects this. Moreover, note that using ˛ labels, which
allows giving realizations a kind of direction, is necessary for these propositions to hold
(unlike dim2, for which they clearly do not).

5 Greedy Algorithms for Evaluating dim�

At this point, it is still hard to characterize the way labels are assigned in any good approxi-
mation of minimal dim� realizations, and it is still unknownwhat is the best approximation
ratio that is feasible to achieve using a deterministic tractable algorithm (although such
results exist for the case of dim2 [6] and dim [7]). In this section, we introduce an im-
provement of the existing greedy algorithm that was originally presented in [1]. Even
though the new algorithm still does not provide a satisfying solution for all posets, it helps
in identifying useful heuristics.

5.1 Improved Algorithm for Finding dim� Realizations

The new algorithm separates a given poset into levels and then processes the elements of
each level separately, similar to the existing algorithm, and utilizes a set of heuristics in
order to choose at each step the preferred assignment of labels. We assign each processed
element with the minimal set of labels that contains the encodings of its predecessors,
then insert additional labels as needed in order to solve every conflict in realization that
this assignment has produced. In order to keep the implementation simple, we restrict
ourselves to never remove any of the previously assigned labels, and instead we assign
additional labels up to the point the encoding implies the correct order. Two questions
remain open and are answered by heuristic functions:
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� Which labels should be assigned in order to solve a conflict, given that multiple assign-
ment combinations are available, considering the labels allocated up to that point?

� In what order the elements of the same level should be processed? (Since the amount
of assignment combinations dwindles as more elements are processed.)

The last consideration is the amount of preallocated labels when the process begins. The
assignment combinations available for each element depends on the amount of the already
allocated labels; therefore, the initial amount of preallocated labels may significantly af-
fect the encoding given to elements in the first few levels and consequently affect the
complete realization. A lower bound of dim� may serve as a heuristic for deciding how
many labels to preallocate, but in many cases it would be better to retry generating the re-
alization several times, each time preallocating a different amount of labels (and allocating
additional labels as needed).

The algorithm may be described with two procedures, as defined in Fig. 7. The proce-
dureproduce_realization, given posetP , tries at each iteration to find a realization
f , after preallocating d nonalpha labels. The heuristic h1 chooses an assignment combi-
nation out of a given list, and the heuristic h2 chooses the next element to process.

The procedure process_poset iterates through every element x 2 P and assigns
f .x/ � L. If the labels in L do not suffice in order to assign a valid encoding, new labels
are inserted into L as needed.

The three resolve procedures are difficult to outline, but simple to describe. Each of
the procedures generates every minimal assignment combination that may solve the con-
flict, under the principal that the encoding of each element only needs either more ˛
label copies than the other, or exclusively contain any nonalpha label. The difference
between the three is the additional constraints that affect it. For example, the procedure
resolve_containing_incomparable takes advantage of the fact that the element
a was not yet processed, and therefore may be assigned with additional labels freely. On
the other hand, resolve_contained_incomparable generally has a more limited
set of options, as changing the encoding of a previously processed element will also affect
its successors and more likely to produce new conflicts. In order to avoid this, the algo-
rithms also manages a list of constraints which must not be undone (also omitted from
the presented outline). Out of the valid assignment combinations, every assignment and
its effect on successors is evaluated using h1, and the preferred one is applied by updating
L and f accordingly.

5.2 Heuristics Implementations for the Algorithm

In this section, we discuss heuristics that may be used in the new algorithm – one imple-
mentation for h2 and several implementations for h1.

Generally speaking, heuristics that implement h2 are given the elements of a level
before it is processed, and decide the priority of how carefully each element should be
encoded compared to others in the same level. Heuristics that implement h1 are given
a list of valid assignments; the effect of applying each of the assignments is simulated,
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Fig. 7 Procedures produce_realization and process_poset

and the heuristic chooses the preferable simulated state. Note that these heuristics may be
given weights and combined in order to achieve a better evaluation.

Heuristic 1 (Preserve Encoding Size, as h2) Given the antichain A and its incomplete
realization f 0, we define the heuristic by h2.A/ D argmina2A jf 0.a/j. That is, we as-
sume that if an element is currently encoded using less nonalpha labels than others in the
same antichain, then it should be processed earlier, with the underlying assumption that
it is highly preferable to keep encoding the element by using more ˛ label copies instead
of introducing additional nonalpha labels (and therefore this option must be available).
While this heuristic may be unintuitive, it proved to be the most effective of the ones
tested, since it allows us to preserve preferred conflict resolutions from previous levels,
which implicitly indicated that assigning the element additional nonalpha labels is unde-



380 M. Ben Adar Bessos and D. M. Gabbay

sired. Interestingly, this method also resembles the minimal encoding of a single antichain,
where the element with the most ˛ label copies is encoded by using nonalpha labels, while
the element with least ˛ label copies may be encoded by every available label.

Heuristic 2 (Balance Distribution of Non-alpha Labels, as h1) Given the poset P , the
incomplete realization f 0, and the set of labels it uses (excluding ˛ labels) denoted L, we
define:

k.f; l;x/ D
(
1; l 2 f .x/;
0; l … f .x/;

h1.L; f
0; P / D �Var

�X

l2L

�X

x2P
k.f 0; l;x/

��
;

i.e., each assignment is evaluated by minus the variance of the presence of every non-
alpha label in the encoding. These criteria encourages encodings that utilize as many
combinations as possible using the allocated labels. To see this, consider again the op-
timal encoding of an antichain, in which the variance is maximized.

Heuristic 3 (Minimize Label References, as h1) In this heuristic, we simply mini-
mize the sum of nonalpha label assignments. While this may seem as a second attempt
to achieve balance in the amount of label references in the encoding, it encourages in-
stead assigning nonalpha labels to shorter paths. Unfortunately, this also encourages the
avoidance of inevitable assignments equally to truly undesirable assignments since some
elements simply must be encoded by many nonalpha labels. In order to fix this, an ad-
ditional prioritization mechanism is used. Given the poset P , the realization f 0 and the
estimated weight of each element w, we define the heuristic by:

h1.f
0; P;w/ D �

X

x2P

jf 0.x/j
w.x/

:

In our implementation, we have calculated the size of the maximal antichain below ev-
ery element, then derived a rough estimation of the minimal amount of nonalpha labels
which must be assigned to it as the weight of the element. The width of the poset may
be evaluated using bipartite graph matching, for which exist efficient algorithms such as
Hopcroft–Karp algorithm [5, 9]. Another method for bounding dim� of a suborder, al-
beit much slower, is using a dynamic programming algorithm which attempts to find the
minimal encoding of the poset that stems from each element separately.

It is noteworthy that when considering the weights, this heuristic encourages the as-
signment of nonalpha labels to shorter paths which consist of elements with higher weight,
which highly resembles the use of maximal thinnest path in the first algorithm, and may
be considered as its generalization.

Heuristic 4 (Mimic dim2, as h1) In this heuristic, we demonstrate the option of de-
signing a heuristic that relies on existing algorithms. The evaluation of dim2 appears to
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be a good candidate, since it is simple to approximate and shares a lot of properties with
dim� (consider antichain and ordered antichains encodings, one-point removal theorem,
etc.). One issue that must be addressed specifically is the extreme case of encoding chains,
which demonstrates the lower bound of dim� (as mentioned before), but also demonstrates
the upper bound of dim2, since for a chain C of height n � 1 it holds that dim2.C / D n.
While thin chains within a poset may be eliminated, as previously mentioned, the differ-
ence makes it hard to estimate the similarity between dim� and dim2 for more complex
posets.

There are many known algorithms that evaluate dim2, where some target-specific poset
classes (see [4, 6] for two of the most well-known results) and some offer a solution for the
general case (see [3, 12]). Most algorithms for the general case rely, as described in [12],
on a different kind of realization called simple encoding. That is, given a poset, the algo-
rithms transform it into a graph by selecting certain critical elements, then approximate
the simple encoding of the graph using graph coloring algorithms, and finally translate the
simple encoding into a dim2 realization for the original poset. Unfortunately, the simple
encoding, similar to dim2 realizations, relies on a single type of labels and apparently there
is no sensible way of reusing it for dim�. Considering this limitation, we attempt to mimic
the result of the existing algorithms indirectly. Given the poset P , the incomplete dim�
realization f 0 and the complete dim2 realization g, we define

h1 D
X

x;y2P
x>P y

� jf 0.y/j
jf 0.x/j �

jg.y/j
jg.x/j

�
;

i.e., the heuristic encourages assignments with similar length ratio in both realizations, be-
tween every two comparable elements (empty encodings are neglected). To see the reason
to exclude the ratio between incomparable elements, consider the optimal encoding of an
antichain. For an antichain A of width n D 2b , in the case of dim� half of the elements
are encoded using dim�.A/=2 nonalpha labels, while in the case of dim2, every element in
the optimal encoding is encoded by using dim2.A/=2 labels. Therefore, in cases such as
this, the heuristic provides a poor evaluation. Additionally, while the heuristic hints which
elements should be assigned by more nonalpha labels than others, it gives no indication
which specific nonalpha label should be assigned. However, unlike the heuristics presented
previously, in this method we may identify and transfer difficult combinatorial decisions
which allow minimizing the amount of needed labels in both realizations. In conclusion,
we believe that this heuristic might be useful when paired with another heuristic, and di-
vert otherwise neutral decisions (note that this heuristic was yet to be implemented and
tested).

5.3 Result Comparison

Table 3 gives a comparison between the existing algorithms (the new algorithm, the pre-
vious one and exhaustive scan). The values presented are the average dim� as evaluated
by the algorithm as a function of the poset size. Note that for the exhaustive scan, several
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Table 3
Result comparison

Poset size Old New Exhaustive

5 2.76 2.40 2.40

6 3.64 3.17 3.00

7 4.39 3.61 3.33

8 5.20 3.92 3.63

9 6.28 4.58 3.90

10 6.82 4.92 4.12

11 7.48 5.33 4.42

12 8.42 5.88 4.68

13 9.18 6.20 4.70

posets were omitted from the average since the completion of the procedure took too long
(therefore the data presented is slightly biased). In the new algorithm, heuristics 1, 2, and 3
were used (2 and 3 were given the same weight).

6 Conclusion and Further Work

Even though the new algorithm provides significantly better results than the previous one,
we believe that there is still much room for improvement, both in evaluating dim� and in
the evaluation of matrix abduction in general. One straightforward direction is to examine
and implement additional heuristics which may be used by the new algorithm, in order to
further characterize the problem. Another possible direction would be to find additional
ways of reusing existing algorithms for evaluating dim2, by efficiently separating the as-
signment of ˛ labels and nonalpha labels (e.g., by first assigning ˛ labels to every element
in the poset using a local-search algorithm, then adapting the input for an existing dim2

evaluation algorithm). Additionally, methods of evaluating the matrix abduction method
without explicitly evaluating dim� should also be considered (e.g., by identifying hints
telling which of two given posets is preferable for the abduction). Finally, the approxima-
tion ratio of the existing algorithms, and what approximation ratio is possible to achieve
at all, is left open.

It is noteworthy that aside from its uses in matrix abduction, dim� may be used as
an alternative practical way for encoding hierarchies. Using dim2 realizations (bit-vector
encodings) in order to encode hierarchical structures such as class objects (for object ori-
ented programming environments) is one of the established methods, since it typically
produces compact encodings and allows implementing very quick class inclusion checks.
Unfortunately, as previously mentioned, dim2 realizations encode chains very poorly. On
the other hand, dim� realizations encode chains much more efficiently, and for antichains,
the amount of bits needed in both realizations is almost identical. That is, for an antichain
of size n, bit-vector encoding uses [6]: log2.n/C log2 log2.n/=2, while dim

� realizations
use log2.n/ nonalpha labels (a bit per label) and ˛ label counting up to log2.n/, i.e., addi-
tional log2 log2.n/ bits, which is almost on par. Therefore, finding an efficient algorithm
that provides a good approximation for dim� may be useful even by itself.
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Fig. 8 A poset with dim� of 5 (a) and a poset with dim� of 7 (b)

7 Appendix

Proof of Proposition 21. It is easy to see that the proof used for the one-point removal
theorem for dim2 may be also used as is for the case of dim� in order to derive a similar
bound. In order to see that no preferable method does exist for the case of dim� in the
general case, consider the example posetEnfng D .fa;b; c; : : : ;mg;�E/, as illustrated in
Fig. 8a. We show that for the insertion of a certain new element n it holds that dim�.E/ D
dim�.E n fng/C 2. As illustrated in the same figure, there exists a realization of E n fng
which uses multiple ˛ labels and additional four nonalpha labels. Therefore, dim�.E n
fng/ � 5 holds and we only need to prove that dim�.E/ 	 7. Our implementation of
the exhaustive scan algorithm may not be used to prove this since it is impractically slow;
instead, we give a detailed explanation which depends on two constraints that are proved
below.

Constraint 1 For the posetE and any encoding of � ofE it holds that j�.g/[�.h/j 	 4.

Proof Since g 	E fc;d ; e;f g, then if j�.c/[�.d /[�.e/[�.f /j 	 4, it also holds that
j�.g/[�.h/j 	 4. Otherwise, since c;d ; e;f make an antichain of size 4, then g must be
encoded using at least two nonalpha labels, i.e., j�.g/j 	 3. Let �.g/ � f.x1/˛; ˇ1; ˇ2g.
The encoding combinations that may be used for c;d ; e;f are:

� f.y1/˛; ˇ1; ˇ2g,
� f.y2/˛; ˇ1g,
� f.y3/˛; ˇ2g,
� f.y4/˛g,
where y1 < y2; y3 < y4. Note that either c or d is encoded by f.y1/˛; ˇ1; ˇ2g, and either
e or f is encoded by f.y4/˛g, since both c and d are the successors of the antichain
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fa;bg. Clearly, the antichain must be encoded using at least one nonalpha label � , and
consequently � 2 �.c/\�.d/, which may be possible only if it holds that �.c/ ¤ f.y4/˛g,
�.d/ ¤ f.y4/˛g and either �.c/ D f.y1/˛; ˇ1; ˇ2g or �.d/ D f.y1/˛; ˇ1; ˇ2g holds.
As a result it also holds that �.c/ D f.y4/˛g or �.d/ D f.y4/˛g. If we assume that
j�.g/[�.h/j < 4, then since g and h are incomparable, and j�.g/j 	 3, it must hold that
�˛.h/ > �˛.g/ and consequently, �.n/ � .�.c/[�.d/[�.h// � f.�˛.h//˛; ˇ1; ˇ2g �
�.g/, but this is not possible, since n and g are incomparable. �

Constraint 2 For the poset E and any encoding � of E, if j�.m/ [ �.l /j < 7, then
�˛.l / > �˛.m/ holds.

Proof Let L1 D �.m/ [ �.l / and L2 D �.g/ [ �.h/ � fˇ1; ˇ2; ˇ3g. Since i ; j ;k; l

make an antichain of size 4, and fi ; j ;k; lg 	E fg;hg, then the nonalpha labels ˇ4; ˇ5 2
L1 n L2 must be modified to encode i ; j ;k; l , and the encoding combinations that may
be used are:

� L2 [ f.y5/˛; ˇ4; ˇ5g,
� L2 [ f.y6/˛; ˇ4g,
� L2 [ f.y7/˛; ˇ5g,
� L2 [ f.y8/˛g,
where y5 < y6; y7 < y8. Consequently, it holds that �.m/ � .�.i / [ �.j / [ �.k// �
.L2 [ fˇ4; ˇ5g/, and since m and l are incomparable, then �˛.l / > �˛.m/. It is easy to
see that using additional nonalpha labels is not possible if j�.m/ [ �.l /j < 7, and so we
are done. �

Let � be a label minimal encoding ofE. According to the constraints above, if jL1j < 7
then it holds that �˛.l/ > �˛.m/ > �˛.n/. Since n and l are incomparable, there must
be a nonalpha label � 2 .�.n/ n �.l // � .L1 nL2/ D fˇ4; ˇ5g, but since .�.i /\ �.j /\
�.k// � �.n/, and i ; j ;k make an antichain of size 3, then the labels ˇ4; ˇ5 may not be
modified in order to encode the elements. Therefore, an additional nonalpha label must be
used, and for any valid encoding it holds that jL1j 	 7. �
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Deciding Theoremhood in Fibred Logics Without
Shared Connectives

Sérgio Marcelino, Carlos Caleiro, and Pedro Baltazar

Abstract Fibring is a powerful mechanism for combining logics, and an essential tool for
designing and understanding complex logical systems. Abstract results about the seman-
tics and proof theory of fibered logics have been extensively developed, including general
soundness and completeness preservation results. Decidability, however, a key ingredient
for the automated support of the fibered logic, has not deserved similar attention.

In this chapter, we address the problem of deciding theoremhood in fibered logics with-
out shared connectives. Namely, under this assumption, we provide a full characterization
of the mixed patterns of reasoning that leads to theorems in the fibered logic, and uses it to
prove a general decidability preservation result. The complexity of the decision procedure
we obtain is also analyzed.

Keywords Combined logics � Fibring, theorem � Decidability � Complexity
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1 Introduction

Fibring is a powerful and appealing mechanism for combining logics, a valuable tool for
the construction and analysis of complex logics, and thus a key ingredient of the general
theory of universal logic [2, 3]. As first proposed by Dov Gabbay in [11, 12], given two
logics L1 and L2, fibring should combine L1 and L2 into the smallest logical system for
the combined language which is a conservative extension of both L1 and L2. However, it is
not hard to see that a conservative extension of the given logics may not always exist. Still,
this circumstance does not necessarily imply that the construction is meaningless, as one
can then aim at being “as conservative as possible.” This idea has led to the study of the
fibring operation as yielding the smallest logic that extends L1 and L2, without worrying
about conservativity [8]. It is worth mentioning that the characterization of conservativity
in this context is a problem that remains highly unexplored.

Despite the depth of the track of work on fibered logics that led to a substantial un-
derstanding of their semantics and proof theory, including very general soundness and
completeness preservation results (see [1, 5, 9, 14–16, 18], inter alia), the question of

387© Springer International Publishing Switzerland 2015
A. Koslow, A. Buchsbaum (Eds.), The Road to Universal Logic, Studies in Universal Logic,
DOI 10.1007/978-3-319-15368-1_18
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decidability has not been satisfactorily addressed. The only general result related to, but
markedly distinct from, decidability for fibered logics is [10], where the preservation by
fibring of the semantic notion of finite model property is studied.

In this chapter, we focus on the decision problem for theorems of fibered logics, in
the case when the logics being combined do not share any connectives. We manage to
give a full characterization of the mixed patterns of reasoning that lead to the proofs of
theorems in the fibered logic and, as a result, we obtain a general decidability preserva-
tion result for theoremhood, the first of this kind. We also analyze the complexity of the
decision procedure obtained.

In Sect. 2 we recall the notions and results needed throughout the chapter, namely
about fibered logics, and introduce some useful notation. In Sect. 3 we illustrate the dif-
ficulties involved in deciding theoremhood in fibered logics without shared connectives,
and provide a thorough analysis of the mixed patterns of reasoning that may occur in the
combined logic. Finally, in Sect. 4 we prove our main result: a decidability preservation
result for theoremhood in fibered logics with no shared connectives, and a characteriza-
tion of the complexity of the decision procedure obtained. We conclude, in Sect. 5, with
an assessment of the results obtained and paths to pursue in future work.

2 Definitions

In this section, we recall the essential concepts that we are dealing with in this chapter,
namely fibring, and introduce some useful notions and notations.

2.1 (Trans)finite Sequences

Along the chapter, we will need to deal with (not necessarily finite) sequences of objects.
Let A be a set (of objects). Given an ordinal �, we use a D ha�i�<� to denote an �-
long sequence of elements of A, or simply an �-sequence, understood as a function from
f� W � < �g to A. The �-sequence a is said to be injective precisely when it is injective
as a function, that is, when ai ¤ aj for all i; j < � with i ¤ j . As usual, if � � �, the
sequence ha�i�<� is dubbed a prefix of a.

Note that when � is a limit ordinal, an �-sequence does not have a last element. On the
contrary, if � is a successor ordinal, and in particular a finite ordinal, then an �-sequence
a can be understood as a0; a1; : : : ; a��1, and may also be represented by ha�i����1. The
0-sequence (empty sequence) is simply not represented.

2.2 Syntax

A signature is an N0-indexed family ˙ D f˙ngn2N0
of sets. The elements of ˙n are

dubbed n-place connectives. Being indexed families of sets, the usual set-theoretic notions
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can be smoothly extended to signatures. We will sometimes abuse notation, and confuse
˙ with the set .

U
n2N0

˙n/ of all its connectives, and write c 2 ˙ when c is some n-place
connective and c 2 ˙n. For this reason, the empty signature, with no connectives at all, is
simply denoted by ;.

Let˙;˙ 0 be two signatures. We say that˙ is a subsignature of˙ 0, and write˙ � ˙ 0,
whenever ˙n � ˙ 0

n for every n 2 N0. Expectedly, we can also define the intersection
˙ \ ˙ 0 D f˙n \ ˙ 0

ngn2N0
, union ˙ [ ˙ 0 D f˙n [ ˙ 0

ngn2N0
, and difference ˙ 0 n

˙ D f˙ 0
n n ˙ngn2N0

of signatures. Clearly, ˙ \ ˙ 0 is the largest subsignature of both
˙ and ˙ 0, and contains the connectives shared by ˙1 and ˙2. When there are no shared
connectives, we have that ˙ \ ˙ 0 D ;. Analogously, ˙ [ ˙ 0 is the smallest signature
that has both˙ and˙ 0 as subsignatures, and features all the connectives from both˙ and
˙ 0 in a combined signature. Furthermore,˙ 0 n˙ is the largest subsignature of ˙ 0 which
does not share any connectives with ˙ .

Given a signature ˙ and a set P of variables, the generated set of formulas is the
carrier set L˙.P / of the free˙ -algebra generated by P .

As usual, we define the size of a formula as given by the function size such that
size.p/ D 1 if p 2 P , and size.c.'1; : : : ; 'n// D 1CPn

iD1 size.'i /. For � � L˙.P /,
we further define size.� / DP'2� size.'/.

If ' 2 L˙.P / then we define the head of ' to be either head.'/ D p when ' D
p 2 P , or head.'/ D c when ' D c.'1; : : : ; 'n/ for formulas '1; : : : ; 'n 2 L˙.P / and
c 2 ˙n. Clearly, if ˙ � ˙ 0 and P � P 0 then L˙.P / � L˙ 0.P 0/. Of course, given
 2 L˙ 0.P 0/, head. / may not be in ˙ nor P .

We also define the set of variables occurring in ' to be either var.'/ D fpg when ' D
p 2 P , or var.'/ D Sn

iD1 var.'n/ when ' D c.'1; : : : ; 'n/ for formulas '1; : : : ; 'n 2
L˙.P / and c 2 ˙n.

In the following, we shall assume that signatures are countable and sets of variables
are denumerable. We assume a denumerable set P of variables fixed. If ˙ is a countable
signature then L˙.P / is clearly denumerable.

Let˙ � ˙ 0 be signatures.We shall call a˙ -monolith of 2 L˙ 0.P / to any outermost
subformula of  whose head is in ˙ 0 n˙ . The set Mon˙. / of all ˙ -monoliths of  is
defined as follows:

Mon˙. / D

8
<̂

:̂

; if  2 P;Sn
iD1Mon˙. i / if  D c. 1; : : : ;  n/ and c 2 ˙n;

f g; otherwise.

We extend the notation also to sets of formulas, using Mon˙.�/ to denote
S
 2�

Mon˙. /, given � � L˙ 0.P /. Clearly, if � � L˙.P / then Mon˙.� / D ;.
We shall now consider a reasonable way of defining the perspective, from the point of

view of ˙ , that one may have of a formula in a given context � � L˙ 0.P / (which will
most often be left implicit). For the purpose, we shall consider a (bijective) enumeration
e W fn 2 N W 1 � n � jMon˙.�/jg ! Mon˙.�/ of the relevant ˙ -monoliths, and
use a denumerable set of additional propositional variables X D fxn W n 2 N0g, disjoint
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from P . We define the function skel˙ W �! L˙.P [X/ as follows:

skel˙. / D

8
<̂

:̂

 if  2 P;
c.skel˙. 1/; : : : ; skel˙. n// if  D c. 1; : : : ;  n/ and c 2 ˙n;

xe�1. /; otherwise.

We call skel˙. / the ˙ -skeleton of  . Clearly, skel˙. / is obtained from  by sub-
stituting each of its ˙ -monoliths  0 by the variable xn such that e.n/ D  0.

Let ˙ � ˙ 0 and P � P 0. A ˙ 0-substitution is a function  W P ! L˙ 0.P 0/, which
extends freely to a function  W L˙.P / ! L˙ 0.P 0/. Given a formula ' 2 L˙.P /, .'/
is the instance of ' by  , sometimes denoted simply by ' , and is the result of uniformly
replacing each variable p 2 P occurring in ' by .p/. When � � L˙.P / we use �  to
denote Œ� � D f' W ' 2 � g.

Given a context � � L˙ 0.P / and an enumeration e of Mon˙.�/, as well as ' 2
L˙.P [X/ and a �-sequence ˛ of L˙ 0.P / formulas, we will often write 'Œ˛�˙ to denote
the formula '.˛/ where .˛/ W P [ X ! L˙ 0.P / is such that .˛/.p/ D p if p 2 P ,
.˛/.xn/ D ˛n�1 if 0 � n � 1 < �, and .˛/.xn/ D xn otherwise. Hence, we will write
skel˙. /Œe�˙ instead of  if we want to highlight the ˙ -monoliths in the structure of  ,
where e is any sufficiently long prefix of the sequence he.�/i�<jMon˙ .�/j.

Taking advantage of the notation, given two �-sequences ˛ and ˇ of L˙ 0.P / formulas,
with ˛ injective, we will also write  Œ˛=ˇ�˙ to denote the formula obtained by replacing
each occurrence of ˛i as a ˙ -monolith of  by ˇi , for all i < �. It is not difficult to
check that  Œ˛=ˇ�˙ D skel˙. /Œ��˙ where �’s length must be bigger than e�1.˛�/ for
all � < �, with �n D ˇ� if e.nC 1/ D ˛� , and �n D e.nC 1/ if e.nC 1/ does not occur
in ˛.

These square bracket notations will be extended to sets of formulas in the obvious
manner.

Example 2.1 Let ˙ be the signature with exactly two connectives, a 0-place connective
c and a 2-place connective g, that is, ˙0 D fcg, ˙2 D fgg and ˙n D ; for all n 2
N0 n f0; 2g. Let ˙ 0 extend ˙ with an additional 1-place connective f , that is, ˙ 0

0 D fcg,
˙ 0
1 D ff g, ˙ 0

2 D fgg and ˙ 0
n D ; for all n 2 N0 n f0; 1; 2g.

Taking the L0̇ .P / formula  D g.f .p/; g.c; f .g.f .c/; f .p///// we have that
Mon˙. / D ff .p/; f .g.f .c/; f .p///g:

Note, in particular, that the subformula f .c/ is not a ˙ -monolith of  because if occurs
inside the (outermost) monolith f .g.f .c/; f .p///. For the same reason, f .p/ is only
a ˙ -monolith of  because it also occurs outside f .g.f .c/; f .p///.

Hence, we have (in the appropriate context) that skel˙. / D g.x1; g.c; x2//, and thus
 D g.x1; g.c; x2//Œf .p/; f .g.f .c/; f .p///�˙ :

Moreover,

 Œf .p/=ˇ�˙ D g.ˇ; g.c; f .g.f .c/; f .p///// ;
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noting that ˇ only replaces the leftmost occurrence of f .p/ in , where it is a˙ -monolith,
leaving the second untouched.

2.3 Logical Consequence

A logic (over signature ˙ ) is a tuple L D h˙; `i, where ` W 2L˙ .P / ! 2L˙ .P / is
a consequence operator (see [17], for instance), that is, it satisfies the following properties:

� � � ` .extensiveness/

� ` � .� [�/` .monotonicity/

.� `/` � � ` .idempotence/

.� `/ � .� /` .structurality/

for every �;� � L˙.P / and  W P ! L˙.P /. Note that we do not require, in general,
that the logic is finitary, i.e., it may happen that � ` properly contains the union of all �0̀
for finite �0 � � .

As usual, we shall confuse the consequence operator with its induced Tarskian conse-
quence relation. Thus, given ' 2 L˙.P /, we will write � ` ' whenever ' 2 � `. When
� D f'1; : : : ; 'ng is finite, we write '1; : : : ; 'n ` ' instead of f'1; : : : ; 'ng ` '. More-
over, as usual, if � D ; we write ` ' instead of ; ` ', and dub ' a theorem of L. We
also write �;� ` ' instead of � [� ` '.

We shall call any � � L˙.P / such that � D � ` a theory of L, and denote the
set of all theories of L by Th.L/. It is well known that Th.L/ constitutes a complete
lattice under the inclusion ordering (see [17], for instance). The top theory of the lattice is
L˙.P /, which is also called the inconsistent theory.

A logic L D h˙; `i is said to be consistent if ;` ¤ L˙.P /. Clearly, L is inconsistent
(not consistent) precisely when ` p for some p 2 P , or alternatively when its only theory
is inconsistent, that is, Th.L/ D fL˙.P /g. L is said to be trivial, if for all nonempty
� � L˙.P / we have � ` D L˙.P /. Equivalently, L is trivial if there exist distinct
variables p; q 2 P such that p ` q. Another equivalent characterization is that L is trivial
if Th.L/ � f;; L˙.P /g. Of course, all inconsistent logics are trivial.

We say that a logic L0 D h˙ 0; `0i extends L D h˙; `i if ˙ � ˙ 0, and ` � `0, in
the sense that � ` � � `0

for every � � L˙.P /. We say that the extension of L by L0 is
conservative if for all � � L˙.P /, � ` D � `0 \ L˙.P /. We also say that the extension
of L by L0 is weakly conservative if ;` D ;`0 \ L˙.P /. It is perhaps more common to
express these properties in terms of the induced consequence relations. Clearly,L0 extends
L when � ` ' implies � `0 ' for all � [ f'g � L˙.P /. Furthermore, the extension is
conservative precisely when � ` ' if and only if � `0 ', and weakly conservative when
` ' if and only if `0 '.

Given a signature ˙ , it is well known that the set of all logics over ˙ , Log.˙/,
constitutes a complete lattice under the extension ordering defined above (see [17], for
instance).
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2.4 Hilbert Calculi

AHilbert calculus is a pairH D h˙;Riwhere˙ is a signature, andR � 2L˙ .P /�L˙.P /
is a set of inference rules. Given h�; i 2 R, we refer to � as the set of premises and
to  as the conclusion of the rule. When the set of premises is empty,  is dubbed as an
axiom. A rule is said to be finitary if it has a finite set of premises, and H is said to be
finitary if all the rules in R are finitary. An inference rule h�; i 2 R is often denoted by
�
 
, or simply by  1 :::  n

 
if � D f 1; : : : ;  ng is finite, or even by  

if � D ;.
Given ˙ � ˙ 0 and P � P 0, a Hilbert calculus H D h˙;Ri induces a consequence

operator `H on L˙ 0.P 0/ such that, for each � � L˙ 0.P 0/, � `H is the least set that
contains � and is closed for all applications of instances of the inference rules in R, that
is, if �

 
2 R and  W P ! L˙ 0.P 0/ is such that � � � `H then   2 � `H . Of course,

this definition induces a logic LH D h˙; `H i.
The definition of LH above is arguably too abstract, as it does not highlight the se-

quence of rule applications that leads one to conclude that � H̀ ', when that is the case.
Let us be more detailed. Given ˙ � ˙ 0, P � P 0, and � � L˙ 0.P 0/, a H-derivation
from � is a sequence ' D h'�i�<� of formulas in L˙ 0.P 0/, for some ordinal �, such that,
for each � < �, either:

� '� 2 � , or
� there is �

 
2 R and  W P ! L˙ 0.P 0/ with   D '� and � � f'� W � < �g.

The fact that ' is aH-derivation from � is denoted by � H̀ '. We say that such a deriva-
tion is a H-proof from � of each of its formulas, as it is clear that any prefix of a H-
derivation from � is also a H-derivation from � .

Clearly, � H̀ ' precisely if ' has a H-proof from � , that is, there exists some H-
derivation h'�i�<� from � such that ' D '� for some � < �, in which case h'�i�<�C1 is
a H-proof of ' from � ending in '.

Example 2.2 Along the chapter, in order to illustrate the problems at hand and the results
obtained we will use the following collection of examples:

� Hinc.˙/ D h˙;Rinci, for each signature˙ , where Rinc has the unique rule

p
:

� Htonk D h˙tonk; Rtonki, where ˙tonk has a unique 2-place connective tonk, and Rtonk
has the rules

p

tonk.p; q/
tonk.p; q/

q
:

� Hcls D h˙cls; Rclsi, where ˙cls has a unique 2-place connective), and Rcls has the
rules

.p) .q) r//) ..p) q/) .p) r//

p) .q) p/ ..p) q/) p/) p

p p) q

q
:



Deciding Theoremhood in Fibred Logics Without Shared Connectives 393

� Hint D h˙int; Rinti, where ˙int has a unique 2-place connective!, and Rint has the
rules

.p ! .q ! r//! ..p ! q/! .p! r//

p! .q ! p/

p p! q

q
:

� Hneg D h˙neg; Rnegi, where˙neg has a unique 1-place connective:, andRneg has the
rules

p

::p
::p
p

p :p
q

:

� Hcnj D h˙cnj; Rcnji, where ˙^ has a unique 1-place connective ^, and Rcnj has the
rules

p ^ q
p

p ^ q
q

p q

p ^ q :

Clearly, each Hinc.˙/ induces an inconsistent logic, whereas Htonk is Prior’s infamous
tonk system and induces a consistent but trivial logic. The calculiHcls andHint induce the
logics of classical implication and intuitionistic implication, respectively. Finally, Hneg
induces the logic of (classical or intuitionistic) negation, andHcnj the logic of (classical or
intuitionistic) conjunction. Note that with the possible exception of theHinc.˙/ calculi, all
other examples have very simple signatures with one single connective. This is a deliberate
choice meant to keep the focus of attention on the relevant problems ahead, and not on the
relative complexity of the syntax. 4

Given a logic L D h˙; `i, we can easily associate with it a Hilbert calculus HL D
h˙;`i, where the consequence operator ` in the former is replaced by the induced con-
sequence relation ` in the latter. It is easy to check that LHL D L (see [17], for instance).

For simplicity, we will use Lname to denote the logic LHname for each of the calculi
named in Example 2.2.

2.5 Fibring

Let L1 D h˙1;
`1i and L2 D h˙2;

`2i be two logics. The fibring of L1 and L2 is the
smallest logic L1 � L2 over the joint signature ˙12 D ˙1 [ ˙2 that extends both L1 and
L2. A direct characterization of this fibered logic can be most easily given by first defining
the fibring of Hilbert calculi.

Given Hilbert calculi H1 D h˙1;R1i and H2 D h˙2;R2i, let their fibring be the
Hilbert calculus

H1 �H2 D h˙12;R1 [R2i:

Clearly, besides joining their signatures, the fibring of the two calculi consists in simply
putting together their rules.
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We can now give a simple characterization (see [4]) of the fibring of two logics L1 and
L2:

L1 � L2 D LHL1
	HL1

:

This means that if L1 � L2 D h˙12;
`12i then, given � � L˙12

.P /, � `12 is obtained by
a (possibly transfinite) sequence of alternate applications of `1 and `2 using substitutions
 W P ! L˙12

.P /.
Both for logics and Hilbert calculi, when there are no shared connectives, i.e. ˙1 \

˙2 D ;, the fibring is usually said to be unconstrained.

3 Theoremhood and Mixed Reasoning

In this section, we will review the notion of theoremhood in fibered logics, illustrated
by means of a series of examples, and then, with the focus on unconstrained fibring, we
obtain a technical result about the way mixed reasoning can be controlled in the fibered
logic.

3.1 Theoremhood in Fibred Logics

We start by proving a few simple results characterizing the nature of the theoremhood
relation in fibered logics. Let L1 D h˙1;

`1i and L2 D h˙2;
`2i be two logics, and

L1 � L2 D h˙12;
`12i be their fibring.

Proposition 3.1 L1 �L2 has theorems if and only if L1 has theorems or L2 has theorems.

Proof If `12  , for some  2 L˙12
.P /, then, by definition of fibring, there exists

a .HL1
� HL2

/-proof  D h �i�<�C1 (from ;) such that  � D  . Thus, it is also the
case that `12  0. Hence, by definition of derivation, there must exist �

'
2 .`1 [ `2/ and

 W P ! L˙.P / such that ' D  0 and � � f � W � < 0g D ;. Therefore, � D ;,
and we have that `i ' provided that ;

'
2 `i . We conclude that either L1 has theorems or

L2 has theorems.
Reciprocally, let i 2 f1; 2g and assume that Li has a theorem, that is, `i ' for some

' 2 L˙i
.P /. By definition of fibring, `i ' implies `12 ', and we conclude that L1 � L2

has theorems. �

This result tells us that the theoremhood relation is empty in logics resulting from the
fibring of two logics without theorems. Let us look at an example.

Example 3.2 Take the logics Lcnj and Lneg from Example 2.2. Their fibring Lcnj � Lneg
does not have theorems, since neither Lcnj nor Lneg has theorems. Just note that the calculi
defining the two logics do not have any axioms.
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The logic Lcnj �Lneg is not to be confused with the conjunction and negation fragment
of classical logic, which of course has theorems, e.g., :.p ^ :p/. 4

Even if one of the logics has theorems, the theoremhood relation in the fibered logic
can still be quite uninteresting.

Proposition 3.3 If L1 is inconsistent or L2 is inconsistent then L1 � L2 is inconsistent.
Proof Let Li be inconsistent, for some i 2 f1; 2g. Then `i p, which implies `12 p, and
we conclude that L1 � L2 is inconsistent. �

This result shows that every formula is a theorem in logics resulting from fibrings
involving a trivial logic. Let us see an example.

Example 3.4 Take the Linc.˙/ from Example 2.2, for some signature˙ , and consider any
other logic L. Their fibring Linc.˙/ � L is inconsistent. Namely, p 2 P is a theorem, and
therefore, by structurality, every formula is a theorem. 4

Still, a fibered logic can be inconsistent even when both the logics being combined are
consistent.

Proposition 3.5 If L1 is consistent and trivial and L2 has theorems then L1 �L2 is incon-
sistent.

Proof If L1 is trivial, then we know that p `1 q, where p; q 2 P and p ¤ q. If L2 has
theorems, let `2 ' for some ' 2 L˙2

.P /. Now, p `1 q implies p `12 q, and structurality,
on its turn, implies that ' `12 q. But `2 ' implies `12 ', and thus `12 q. We conclude
that L1 � L2 is inconsistent. �

An example follows.

Example 3.6 Take the logics Ltonk and Lcls from Example 2.2, where Ltonk is consistent
but trivial, as p `tonk q, and Lcls has theorems, namely `cls p ) p. Their fibring Ltonk �
Lcls D h˙tonk [˙cls;

`i is inconsistent. Take any formula ' 2 L˙tonk[˙cls.P /. Easily,
p `tonk q implies that p ` q, and structurality in the fibered logic implies that p ) p `
'. Therefore, as `cls p) p implies ` p) p, we have ` '. 4

Triviality is actually preserved by fibring, leading to uninteresting trivial fibered log-
ics, where the theoremhood relation is therefore total (when the fibered logic becomes
inconsistent) or empty (when the fibered logic remains consistent).

Proposition 3.7 If L1 is trivial or L2 is trivial then L1 � L2 is trivial.
Proof Let Li be trivial, for some i 2 f1; 2g. Then p `i q with p ¤ q, which implies
p `12 q, and we conclude that L1 � L2 is trivial. �

At this point, we know that the theoremhood relationship in L1 � L2 is only interesting
if L1 and L2 are both nontrivial and at least one of the two has theorems. In that case, how
can we decide if a (mixed) formula is a theorem of L1 � L2?
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Example 3.8 Take the logics Lcls and Lint from Example 2.2. Both logics are nontrivial,
and have theorems. Furthermore, it is known that Lcls and Lint are decidable. The fibring
Lcls � Lint was studied in [6, 7], and shown to be a conservative extension of both Lcls and
Lint. We will show below that the theorems of Lcls � Lint are indeed decidable. 4

3.2 Consequences of Nonmixed Formulas

Let us now have a more technical look at the patterns of mixed reasoning that occur in
fibered logics. We start with a result about syntax.

Lemma 3.9 Let ˙ � ˙ 0 and � � L˙.P /. Then, for every  W P ! L˙ 0.P /, and
every two �-sequences ˛ and ˇ of formulas in L˙ 0.P /, with ˛ injective, there exists
� W P ! L˙ 0.P / such that

� � D �  Œ˛=ˇ�˙:

Proof One should observe, to start with, that Mon˙.� / D ;. Thus, if ˛� 2 Mon˙.'/
for some ' 2 � , then there must exist a variable p 2 P occurring in ' such that ˛� 2
Mon˙..p//. Hence, the substitution defined by �.q/ D .q/Œ˛=ˇ�˙ for every q 2 P
satisfies the conditions of the lemma. �

The previous lemma reflects the fact that the occurrence of ˙ -monoliths in instances
of L˙.P / formulas is only possible if they are brought about by the substitution.

Next, we prove a (quite) technical lemma, characterizing the irrelevance of certain
monoliths in derivations from a set of variables in logics obtained by unconstrained fibring,
motivated by the square bracket monolith substitutions introduced earlier. Note that the
disjointness of the signatures is instrumental in proving this result.

Lemma 3.10 Let H1 D h˙1;R1i and H2 D h˙2;R2i be Hilbert calculi such that ˙1 \
˙2 D ;, V � P and  D h �i�<� a sequence of L˙12

.P / formulas.
If V `H12

 and ˛ 2 L˙12
.P / then, either

� ˛ D  � for some � < �, or
� V `H12

h �Œ˛=ˇ�˙i
i�<� for every ˇ 2 L˙12

.P / and i 2 f1; 2g.

Proof Let us assume that ˛ ¤  � for every � < �. The proof of the second condition
follows by complete transfinite induction on the size � of the derivation. For each � < � �
�, we assume, by induction hypothesis, that V `H12

h �Œ˛=ˇ�˙i
i
�<�

, and show that it
implies V `H12

h �Œ˛=ˇ�˙i
i
�<�

.
If � D 0 the result is trivial, as the derivation is empty. If � is a limit ordinal then

the result is immediate, by definition of derivation. If � is a successor ordinal, we have to
consider two cases.



Deciding Theoremhood in Fibred Logics Without Shared Connectives 397

1.  ��1 2 V .
Then, ��1 2 V � P , and we have that ˛ … Mon˙i

. ��1/ D ;. Thus, ��1Œ˛=ˇ�˙i
D

 ��1 2 V .
By induction hypothesis, we have V `H12

h �Œ˛=ˇ�˙i
i�<��1 and so, by definition of

derivation, we also have V `H12
h �Œ˛=ˇ�˙i

i�<� .
2.  ��1 D ' , �' 2 R1 [R2, and � � f � W � < � � 1g.

Here we have two possibilities, given that i 2 f1; 2g.
(a) �

'
2 Ri .

Applying Lemma 3.9 to�[f'g � L˙i
.P /,  , ˛ and ˇ, we know that there exists

� such that
'� D ' Œ˛=ˇ�˙i

D  ��1Œ˛=ˇ�˙i
, and also �� D �Œ˛=ˇ�˙i

� f �Œ˛=ˇ�˙i
W

� < � � 1g.
By induction hypothesis, we have V `H12

h �Œ˛=ˇ�˙i
i�<��1 and so, by defini-

tion of derivation, we also have V `H12
h �Œ˛=ˇ�˙i

i�<� .
(b) �

'
… Ri .

If ı 2 � and ˛ 2 Mon˙i
.ı / then (since ı 2 L˙3�i

.P /) either ˛ D ı or
head.ı / 2 ˙i . By assumption the former cannot be the case, therefore we must
have head.ı / 2 ˙i . Hence ı 2 P and ˇ 2 Mon˙i

.ı /. Consider the sub-
stitution defined by �.q/ D .q/Œ˛=ˇ�˙i

for every q 2 P . Clearly, as above,
'� D ' Œ˛=ˇ�˙i

D  ��1Œ˛=ˇ�˙i
, and also �� D �Œ˛=ˇ�˙i

� f �Œ˛=ˇ�˙i
W

� < � � 1g.
By induction hypothesis we have that V `H12

h �Œ˛=ˇ�˙i
i�<��1 and so, by defi-

nition of derivation, we also have V `H12
h �Œ˛=ˇ�˙i

i�<� . �

In order to finally state and prove our main result about mixed reasoning, we need
the following definition, where we are going to collect extra variables to represent some
contextual relevant properties.

Definition 3.11 Let H1 D h˙1;R1i and H2 D h˙2;R2i be Hilbert calculi, V � P

 2 L˙12
.P / and i 2 f1; 2g. We define Xi

V . / � fx0g [ fxe�1. 0/ W  0 2 Mon˙t
. /g to

be the set such that:

� x0 2 Xi
V . / whenever V

`H12 ¤ ;, and
� xe�1. 0/ 2 Xi

V . / whenever V `H12
 0.

Example 3.12 IfH1 D Hcnj andH2 D Htonk, then, for i 2 f1; 2g, we have the following
equalities.

Xi;.q/ D ;
Xi

fpg.q/ D fx0g
X1;.p ^ tonk.p; q// D fxe�1.tonk.p;q//g
X1

fpg.p ^ tonk.p; q// D fx0; xe�1.tonk.p;q//g
X2;.p ^ tonk.p; q// D fxe�1.p^tonk.p;q//g: 4
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We can finally prove the following result, relating proofs from variables in the fibered
logic with proofs from variables in the component logics, in the case of unconstrained
fibring.

Proposition 3.13 Let H1 D h˙1;R1i and H2 D h˙2;R2i be Hilbert calculi such that
˙1 \˙2 D ;, V ¨ P , and  2 L˙12

.P /. Then, for i; j 2 f1; 2g with i ¤ j , V `H12
 

if and only if

V;Xi
V . / `Hi

skel˙i
. / or .V [ .fx0g \Xi

V . ///
`Hj D L˙12

.P [X/ :

Proof We start by proving the simpler implication from right to left. Let p 2 P n V . If
V `H12 ¤ ; fix � 2 V `H12 , and let  W P [ X ! L˙12

.P / be such that .p/ D  ,
.q/ D q if q 2 P with q ¤ p, .xn/ D e.n/ for n > 0, and

.x0/ D
(
x0 if V `H12 D ;;
� if V `H12 ¤ ; :

Now, knowing on one hand that V;Xi
V . / `Hi

skel˙i
. / and using structurality, we

obtain V  ; .Xi
V . //

 `Hi
.skel˙i

. // . But clearly, V  D V , .Xi
V . //

 � V `H12 ,
.skel˙i

. // D  , and we conclude that V `H12
 .

If, on the other hand, we know that .V [ .fx0g \Xi
V . ///

`Hj D L˙12
.P [X/, then

we have V [ .fx0g \Xi
V . // `Hj

p. But clearly, V  D V , .fx0g \Xi
V . //

 � V `H12 ,
p D  , and we conclude again that V `H12

 .
Let us now consider the implication from left to right, and assume that we have V `H12

 . Clearly, V `H12 ¤ ; and so x0 2 Xt
V .'/ for every ' 2 L˙12

.P / and every t 2 f1; 2g.
If .V [ .fx0g \ Xi

V . ///
`Hj D .V [ fx0g/`Hj D L˙12

.P [ X/ then the statement
immediately follows, hence we proceed assuming that we have

.V [ fx0g/`Hj ¤ L˙12
.P [X/ :

The proof follows by complete transfinite induction on the length of H12-derivations.
Given that V `H12

 , there must exist a H12-derivation  D h �i�<�C1 from V such
that  � D  . We want to show that V;Xi

V . �/ `Hi
skel˙i

. �/. Thus, we will prove that
V;Xi

V . �/ `Hi
skel˙i

. �/ for any � � � assuming, by induction hypothesis, that the left
to right implication holds for any H12-derivation with length lower than � , and for both i
and j .

Note that the case when head. �/ 2 j̇ is trivial. Indeed, in that situation, we have
that Mon˙i

. �/ D f �g, and thus skel˙i
. �/ D xe�1. � /

2 Xi
V . �/. But then, clearly,

V;Xi
V . �/ `Hi

skel˙i
. �/. We assume, henceforth, that either  � 2 P or head. �/ 2

˙i , which implies that skel
j̇
. �/ 2 P [X .

We have to consider two cases.

(1)  � 2 V .
We have that Mon˙i

. �/ D ;. But then, clearly, V;Xi
V . �/ `Hi

skel˙i
. �/ as

skel˙i
. �/ D  � 2 V .
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(2)  � D ' , �' 2 R1 [R2, and � � f � W � < �g.
Here we have two possibilities.

(a) �
'
2 Ri .

Let M D S
��� Mon˙i

. �/. Consider any injective sequence ˛ of formulas in

M where each formula inM appears exactly once, and define ˇ to be of the same
length sequence such that each ˇ� D xe�1.˛�/

. Note that �Œ˛=ˇ�˙i
D skel˙i

. �/

for every � � � .
Hence, applying Lemma 3.9 to � [ f'g � L˙i

.P /,  , ˛ and ˇ, we know that
there exists � such that '� D ' Œ˛=ˇ�˙i

D  �Œ˛=ˇ�˙i
D skel˙i

. �/, and
�� D �Œ˛=ˇ�˙i

� f �Œ˛=ˇ�˙i
W � < �g D fskel˙i

. �/ W � < �g, and we can
conclude that fskel˙i

. �/ W � < �g `Hi
skel˙i

. �/.
By induction hypothesis we have that V;Xi

V . �/ `Hi
skel˙i

. �/ for each � <
� , and therefore, we have that V;

S
�<� X

i
V . �/ `Hi

skel˙i
. �/.

Consider the substitution � W P [X ! L˙i
.P [X/ such that

� �.p/ D p if p 2 P
� �.xn/ D x0 if e.n/ … Mon˙i

. �/,
� and �.xn/ D xn otherwise.
Clearly, we have V � D V , .Xi

V . �//
� � Xi

V . �/ for each � < � , and
.skel˙i

. �//
� D skel˙i

. �/. Thus, by structurality and monotonicity, V ,
Xi
V . �/ `Hi

skel˙i
. �/.

(b) �
'
2 Rj .

If � D  � for some � < � , by induction hypothesis we have that V;Xi
V . �/ `Hi

skel˙i
. �/ and so V;Xi

V . �/ `Hi
skel˙i

. �/.
We shall finish the proof by showing that no other case is possible. That is, as-
suming that either  � 2 P n V (the case when  � 2 V was covered in (1))
or head. �/ 2 ˙i , and also that  � ¤  � for every � < � , we will derive
a contradiction. Let p 2 P n V . We split in yet another two cases.
(i)  � 2 P n V .

Let  � D p 2 P n V , andM D S
��� Mon

j̇
. �/. Consider any injective

sequence ˛ of formulas in M where each formula in M appears exactly
once, and define ˇ to be the same length sequence such that each ˇ� D
xe�1.˛�/

. Hence, applying Lemma 3.9 to � [ f'g,  , ˛ and ˇ, we know that

there exists � such that '� D ' Œ˛=ˇ�
j̇
D  �Œ˛=ˇ� j̇

D skel
j̇
. �/ D p,

and also �� D � Œ˛=ˇ�
j̇
� f �Œ˛=ˇ� j̇

W � < �g D fskel
j̇
. �/ W � <

�g. We conclude that fskel
j̇
. �/ W � < �g `Hj

skel
j̇
. �/ D p.

As V `H12
h �i�<� , by induction hypothesis, we get to know that

V;X
j
V . �/ `Hj

skel
j̇
. �/ for each � < � . Thus, we also have V ,S

�<� X
j
V . �/ `Hj

p.
Consider the substitution 
 such that 
.xn/ D x0 for all n 2 N0, and 
.q/ D
q for all q 2 P . Clearly, V 
 D V , .

S
�<� X

j
V . 

0
�//


 � fx0g and p
 D p.
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Therefore, by structurality and using 
, we obtain
V 
;

S
�<� X

j
V . 

0
�/

 `Hj

p
 , which implies .V [fx0g/`Hj D L˙12
.P[X/,

and we obtain a contradiction.
(ii) head. �/ 2 ˙i .

Let p 2 P n V and define, for all � � � , let  0
� D  �Œ �=p� j̇

. Clearly,
 0
� D  �Œ �=p� j̇

D p. Let � W P [ X ! L˙12
.P [ X/ defined by

�.xe�1. � // D p, �.xn/ D xn if n D 0 or e.n/ ¤  � , and �.q/ D q for
each q 2 P . Easily, we have that skel

j̇
. 0

�/ D .skel j̇
. �//

� for all � � � .
Arguing as in (i), we know that there exists � such that '� D ' Œ˛=ˇ�

j̇
D

 �Œ˛=ˇ� j̇
D skel

j̇
. �/ D xe�1. � /

, and also �� D �Œ˛=ˇ�
j̇
�

f �Œ˛=ˇ� j̇
W � < �g D fskel

j̇
. �/ W � < �g. We conclude that

fskel
j̇
. �/ W � < �g `Hj

xe�1. � /
. Therefore, by structurality and

using �, it is the case that .fskel
j̇
. �/ W � < �g/� `Hj

.skel
j̇
. �//

�,
that is, fskel

j̇
. 0

�/ W � < �g `Hj
p.

As V `H12
h �i�<� and we assumed that  � ¤  � for all � < � , we

can use Lemma 3.10 to conclude that V `H12
h 0

�i�<� , and by induction
hypothesis, we get that V;Xj

V . 
0
�/ `Hj

skel
j̇
. 0

�/ for each � < � . Thus,

we also have V;
S
�<� X

j
V . 

0
�/ `Hj

p.
Using the substitution 
 as defined in (i), and arguing in the same manner,
we arrive at a contradiction. �

4 Decidability

Using the technical results about mixed proofs obtained in the last section, for uncon-
strained fibring, we can now state and prove our main results concerning theoremhood
decidability.

The result of Proposition 3.13 is quite promising, if we want to analyze the decidability
of logics obtained by unconstrained fibring. Indeed, under the appropriate circumstances,
the result allows us to reduce the problem of checking a theorem (or even a derivation from
a finite set of variables) in a fibered logic to the problem of checking a derivation from
variables in one of the component logics. Let us have a look at an enlightening example.

Example 4.1 Consider the unconstrained fibring Lcls � Lint D h˙cls [˙int;`i that we
have used in Example 3.8. As direct applications of Proposition 3.13, we can conclude
that

� ` .p ! q/ ) .p ! q/, because .p ! q/ ) .p ! q/ D .x1 ) x1/Œp ! q�˙cls ,
and we have

6`int p! q and x0 `cls x1) x1I
� ` p) .p ! p/, because p) .p ! p/ D .p) x1/Œp! p�˙cls , and we have

`int p! p and x0; x1 `cls p) x1I
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Fig. 1 The decidability spec-
trum for a logic L

strong

var

finite

finite var weak

� 6` .p ! p/) p, because .p ! p/) p D .x1) p/Œp! p�˙cls , and we have

`int p ! p and x0; x1 6`cls x1) p:

Clearly, in this way, to decide theoremood in Lcls �Lint, all we need is to have decision
procedures for deciding derivation from variables in Lcls and Lint. 4

Recall that a set A is said to be decidable if there exists an algorithm DA that always
terminates such that

DA.w/ D
(
yes if w 2 A,
no if w … A:

There are several different flavors of decidability that make sense when applied to a logic
L D h˙; `i, some more standard than others. Assuming that ˙ is decidable, we say that
L is

� strongly decidable if there is an algorithm A such that, for each decidable � � L˙.P /,
A.D� / terminates and outputs algorithm D� ` that decides � `;

� finitely decidable if there is an algorithm A such that, for each finite set � � L˙.P /,
A.� / terminates and outputs an algorithm D� ` that decides � `;

� var-decidable if there is an algorithm A such that, for each decidable V � P , A.DV /
terminates and outputs an algorithm DV ` that decides V `;

� finitely var-decidable if there is an algorithm A such that, for each finite set V � P ,
A.V / terminates and outputs an algorithm DV ` that decides V `;

� weakly decidable if ;` is decidable.

The decidability of a logic is often identified in the literature with weak decidability,
precisely the version that we aimed at in this chapter, but one cannot deny the interest in
strong or even finite decidability. Note that, due to the shape of Proposition 3.13, we will
actually have to deal with finite var-decidability instead of weak decidability.

Of course, these different notions of decidability are related with each other in a simple
and clear way, as illustrated in Fig. 1. As we know, one can smoothly replace strong
decidability with finite decidability when dealing with a finitary logic. Moreover, in the
presence of a finitary logic that has an implication-like connective enjoying some form of
the deduction theorem, weak decidability is equivalent to finite decidability, and also to
finite var-decidability.
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Proposition 4.2 If L1 D h˙1;
`1i and L2 D h˙2;

`2i are both finite var-decidable, and
˙1 \˙2 D ;, then L1 � L2 is finite var-decidable.

Proof As a result of Propositions 3.1, 3.3, 3.5 and 3.7, we can assume that both L1 and L2
are nontrivial (otherwise the fibring is trivial, and either every formula is a theorem, or no
formula is a theorem), at least one of the logics has theorems (or the fibring would no have
theorems). Let L1 be finite var-decidable with algorithm A1, and L2 be finite var-decidable
with algorithm A2. Consider the following algorithm:

A W inputV � P
output D W input ' 2 L˙1[˙2

.P /

if head.'/ … ˙2 then i  1 else i  2

let Vi D V [ fx0g;M D Mon˙i
.'/;  D skel˙i

.'/

output Ai .Vi [ fxe�1.'0/ W '0 2M;A.V /.'0/ D yesg/. /:
On input V , A outputs the algorithm A.V / D D, which uses V to compute D.'/ on

input '. Note that D does some syntactic analysis on the input formula, such as comput-
ing its head, monoliths, and skeleton. All these constructions are computable, given their
definitions, and the assumption that˙1 and˙2 are decidable. For this reason, one can test
membership in a signature, and compute a full enumeration e W N ! L˙1[˙2

.P /, and its
inverse.

We claim that L1 � L2 is finite var-decidable with algorithm A. We show, by induction
on the structure of ' 2 L˙1[˙2

.P / that, for all finite V � P , A.V /.'/ terminates, and

A.V /.'/ D
(
yes if V `12 ' ;
no if V 6`12 ' :

For the induction base, let ' D p 2 P . Obviously head.p/ D p … ˙2 so i D 1, and
V1 D V [ fx0g. Moreover, M D Mon˙1

.p/ D ; and  D skel˙1
.p/ D '. Easily,

V1 [ fxe�1.'0/ W '0 2M;A.V /.'0/ D yesg D V1 D V [X1
V .p/, as set in Definition 3.11,

because the fibered logic has theorems and thus X1
V .p/ D fx0g. Hence, in the last line,

A1.V1/.p/ tests precisely whether V;X1
V .p/ `1 p. Since L1 is finite var-decidable with

A1, the algorithm terminates. As .V [fx0g/`2 ¤ L˙1[˙2
.P [X/, or L2 would be trivial,

Proposition 3.13 guarantees that the answer is yes if V `12 ', and no if V 6`12 '.
For the induction step, let ' D c.'1; : : : ; 'n/ for some n-place connective c D

head.'/ 2 ˙1 [˙2. Clearly i D 1 if c 2 ˙1, and i D 2 if c 2 ˙2, and Vi D V [ fx0g.
Moreover,M D Mon˙i

.'/ D Sn
jD1Mon˙i

.'j / and  D skel˙i
.'/. By induction hy-

pothesis, for each '0 2M , A.V /.'0/ terminates and A.V /.'0/ D yes precisely if V `12 '0
and so, easily, Vi [ fxe�1.'0/ W '0 2 M;A.V /.'0/ D yesg D V [ Xi

V .'/, as set in Def-
inition 3.11, because the fibered logic has theorems and x0 2 Xi

V .'/. Hence, in the last
line, Ai .V [ Xi

V .'//.skel˙i
.'// tests whether V;Xi

V .'/ `i skel˙i
.'/. Since Li is finite

var-decidable with Ai , the algorithm terminates. As .V [ fx0g/`3�i ¤ L˙1[˙2
.P [X/,

or L3�i would be trivial, Proposition 3.13 guarantees that the answer is yes if V `12 ',
and no if V 6`12 '. �

Let us now have a quick look at the complexity of the decision procedure.
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Proposition 4.3 Let A be the decision algorithm for L1 � L2 defined in the proof of
Proposition 4.2, using algorithms A1 and A2 for deciding L1 and L2, respectively. The
running time of A.V /.'/ for inputs V � P and ' 2 L˙1[˙2

.P / is given by a function f
such that

f .m; n/ � n �max.f 1.mC n; n/; f 2.mC n; n//

wherem D size.V /, n D size.'/, and f 1; f 2 are the running time functions correspond-
ing to algorithms A1;A2.

Proof The proof, for a given finite V � P and ' 2 L˙1[˙2
.P /, is done by induction on

the structure of '.
For the induction base, let ' D p 2 P . Note that the algorithm sets i D 1, V1 D

V [ fx0g, M D Mon˙1
.p/ D ;, and  D skel˙1

.p/ D p. Hence, we have only to
consider the running time of A1.V1/.p/. If m D size.V /, as size.p/ D 1, we have that
size.V1/ � mC 1, and the running time of the algorithm is

f .m; 1/ D f 1.mC 1; 1/ � max.f 1.mC 1; 1/; f 2.mC 1; 1// :

For the induction step, let ' D c.'1; : : : ; 'k/ for some k-place connective c D
head.'/ 2 ˙1 [˙2. Note that the algorithm sets, i D 1 if c 2 ˙1 and i D 2 if c 2 ˙2,
and Vi D V [ fx0g. If m D size.V /, and n D size.'/, note that size.Vi / � m C 1,
size.M/ � n � 1, and size.skel˙i

.'// � n. Note also that Vi [ fxe�1.'0/ W '0 2
M;A.V /.'0/ D yesg D V [Xi

V .'/, whose size is bounded bymC1C .n�1/ D mCn.
As we have to consider the running time of Ai .V [ Xi

V .'//.skel˙i
.'//, and also of all

A.V /.'0/ for '0 2M , using the induction hypothesis and the natural monotonicity of the
running time functions, the total running time of the algorithm is given by

f .m; n/ �
f i .mC n; n/C

X
'02M f .m; n

0/ D
f i .mC n; n/C

X
'02M.n

0 �max.f 1.mC n0; n0/; f 2.mC n0; n0/// �
f i .mC n; n/C

X
'02M.n

0 �max.f 1.mC n; n/; f 2.mC n; n/// D

f i .mC n; n/C
�X

'02M n
0� �max

�
f 1.mC n; n/; f 2.mC n; n/� D

f i .mC n; n/C size.M/ � max
�
f 1.mC n; n/; f 2.mC n; n/� �

f i .mC n; n/C .n � 1/ �max
�
f 1.mC n; n/; f 2.mC n; n/� �

n �max
�
f 1.mC n; n/; f 2.mC n; n/� ;

where, for improved readability, we used n0 as an abbreviation of size.'0/. �
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Fig. 2 Deciding a mixed formula

The upperbound for the running time of the decision procedure that we established
in Proposition 4.3 is better understood if we look at the scheme shown in Fig. 2. We
are assuming a simple scenario where c1 is a 2-place connective of L1, and c2 a 2-place
connective of L2. On the left-hand side of the figure, we have the syntactic tree of the
combined formula c1.c1.p; c2.c1.p; p/; p//; c1.p; c2.p; p///. The dashed triangles indi-
cate the monolithical structure of the formula. Since the head of the formula is in the
signature of logic L1, triangles appear as soon as one finds the c2 connective when trav-
eling down the tree. Inside each triangle, the same repeatedly applies. On the right-hand
side of the figure we see how the decision algorithm stretches along the tree structure. At
the root note, A is executed, recursively deploying other executions of the algorithm at
the vertices of the outermost triangles, corresponding to its monoliths, denoted by A0 and
A00. The outputs of A0 and A00 are then used at the root node to execute A1, which explains
the annotation A W A1.A0;A00/. The same structure is propagated downwards. Executing A0
deploys A000 at the root of the inner triangle, and then uses its output on A2. On its turn,
A000 simply calls A1, as there are no further monoliths to be analyzed. The same happens
with execution A00, on the right side. This example shows well that the running time of
the decision procedure is bound by the size of the formula (i.e., the number of nodes of
the tree) times the running time of each call to either A1 or A2, as at most one such call is
necessary at each node.

Clearly, this means that the decision problem for the fibered logic reduces polynomially
to the decision problems of the logics given.

Example 4.4 Consider again the unconstrained fibring Lcls � Lint D h˙cls [˙int;`i that
we have used in Example 4.1. It is well known that both logics are weakly decidable,
and also finitary, which makes them finitely var-decidable as both enjoy the deduction
theorem. The corresponding decision problems are known to be in coNP for Lcls, and
PSPACE for Lint. As a direct application of Propositions 4.2 and 4.3, we can conclude
that Lcls �Lint D h˙cls [˙int;`i is also finitely var-decidable, and that the corresponding
decision problem is in PSPACE. 4
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5 Conclusion

We have studied in detail the theoremhood problem for logics obtained by unconstrained
fibring, and shown that it is decidable provided that the component logics enjoy the slightly
stronger notion of finite var-decidability. The result we obtained is the first of its kind, thus
opening the way to formal tool support for fibered logics in a neat and modular way. We
also showed that the complexity of the theoremhood decision problem for the fibered
logic is essentially the same as the complexity of the finite var-decidability problem of
the hardest component logic. Although distinct in nature, it is worth mentioning that our
decision algorithm bears some similarities with the Nelson–Oppen approach to deciding
joint equational theories [13], a connection that may be worth exploring.

Still, the result we obtained is not fully satisfactory, as it does not allow one to con-
clude much about the finite decidability of the fibered logic. Indeed, the key result used in
the decidability proof, Proposition 3.13, is simply not strong enough. It seems to be pos-
sible to extend the proposition to deal with sets of nonmixed hypotheses instead of only
sets of variables, but reasoning under arbitrary sets of hypotheses seems to be out of the
reach of the techniques we have used. In any case, it should be remarked that extending
Proposition 3.13 to deal not just with sets of variables as hypotheses but also with sets of
nonmixed hypotheses would certainly help shedding new light over the fibring construc-
tion, with possible applications going beyond decidability. Namely, such a result may be
fundamental for solving the long standing problem of conservativity of fibring, at least in
the unconstrained case. We are working towards such a result.
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On Rules and Refereeing in Football

Amirouche Moktefi and Fabien Schang

Abstract Recent developments in international football governance seem to be progres-
sively leading toward an increasing use of technological devices for refereeing purposes.
Opponents to change are often portrayed as old-fashioned and conservative. Philosophy
might be of some help to overcome the dispute. In this paper, we first explore several con-
cepts that are central to the current debate on football refereeing. Then, we determine the
business of referees in relation to rules. We assess different arguments displayed regarding
the role of chance and skills in competitions. Finally, we argue for the idea of referees as
full players in football games.

Keywords Rules � Rule-following � Football � Referee � Technology-assisted refereeing �
Rationality in sports � Chance � Skills � Competition � Game � Disagreement

Mathematics Subject Classification 03A99

Clichés argue against a proper philosophy of football: its fans are seldom taken seriously
by the most respectable customers of philosophical literature, although some attempts
to develop a philosophy of football have recently been made [11]. This paper is meant
as a step forward towards a philosophy of football. The idea is to consider the relations
between rules and refereeing in football and carry on with some thoughts developed by
Tarcisio Pequeno and Jean-Yves Béziau on the relationship between games and rules.

Pequeno and Béziau [8] offered a set of five necessary conditions to make a game,
namely: competition, fiction, chance, skill and fun. Two of them (fun and fiction) might
be disputed and will not be considered in our paper. Although one might expect to have
fun by playing a game, we do not consider it to be necessary to make the game. Also,
fiction does not seem to be a necessary criterion of games outside the restricted area of
simulation games, and as such is not relevant for our purpose. Hence, we would like here
to stress the concepts of competition, chance and skill, which we consider to be central in
football, notably in regard to the issue of refereeing. A patient and careful clarification of
these concepts might bring some light upon the philosophical problem of rule-following
and refereeing in sports. We will particularly pay attention to the modern debates on
technology-assisted refereeing in football. Indeed, high claims are regularly made for
technological assistance to improve football refereeing and prevent errors. Opponents to

407© Springer International Publishing Switzerland 2015
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DOI 10.1007/978-3-319-15368-1_19
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reform are often portrayed as old-fashioned and conservative. It is merely a slight exag-
geration to affirm that the champions of technology in sports accuse their challengers of
opposition to truth, and hence of favouring failure and vice against perfection and virtue.
We would like to show that this accusation actually relies upon a misunderstanding of
the very idea of football. For this purpose, we will explore the scope of several concepts
that are central to the current dispute on football refereeing. As such we aim at providing
a common language in order to organize these debates and create better conditions for a di-
alogue between the supporters and the opponents of technology-assisted refereeing. It is
hoped that this work will contribute to the emergence of a serious philosophy of football.

1 Toward Technology-Assisted Refereeing

Recent developments in international football governance seem to progressively lead to-
ward an increasing use of technological devices for refereeing purposes. Sepp Blatter,
current president of FIFA (the governing body of international football), openly expressed
his desire to pursue this path if he were to win the next FIFA elections in 2015. Actually,
several national football associations urged FIFA to accelerate refereeing reforms and of-
fered to test refereeing technologies in their local football competitions. Change might be
slow however. Indeed, it must be kept in mind that FIFA is not the body that determines
football rules. Historical contingencies make that the game is ruled by the International
Football Association Board (IFAB), where FIFA has only half of the votes, while the other
half belongs to the four football associations of the United Kingdom. FIFA itself and IFAB
are genuinely known as conservative bodies, and it is not granted that new rules on tech-
nology assistance will get the votes required for their adoption. Moreover, one should not
underestimate resistance to reform among the football community. Michel Platini, Presi-
dent of the Union of European Football Associations (UEFA), openly opposes technology
assistance and favours adding more ‘human’ referees, if needed.

Platini’s suggestion was actually introduced in recent international competitions, where
two additional referees were located behind the goals. This solution did not prevent the
occurrence of ‘ghost goals’ (legitimate goals that were denied), however. For instance,
Ukraine was refused a legitimate goal in its game against England during the 2012 UEFA
European Championship, despite the action happening right under the eyes of the ‘addi-
tional’ referee. Ironically, 2 years earlier England was refused a legitimate goal against
Germany and was eventually excluded from the 2010 FIFAWorld Cup tournament. These
‘incidents’ made the FIFA feel it necessary to introduce a new technological device during
the recent World Cup that took place in Brazil (12 June–13 July, 2014) to test whether the
ball crossed the goal line. This step forward might prove to be a turning point in FIFA
policy by opening the way to further technology assistance despite the controversies that
it might raise [5, 9].

Controversy is no stranger to football anyway. People argue, agree and disagree about
it all around the world. Unsurprisingly, the fairness and objectivity of refereeing is one
of the favourite objects of dispute among football fans. Although refereeing errors depend
partly on the referee’s technical and psychological skills (on awarding penalties, see [10]),
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the very occurrence of errors is inevitable, as some decisions require unusual optical and
perceptual skills (on judging offside, see [1]). Does this imperfection of human refereeing
entail the necessity of technology assistance? This question is certainly an interesting
challenge to the philosopher. It offers an interesting switch in the perspective: the issue
is not to be viewed as a mere technological problem with philosophical dimensions, but
rather as a philosophical problem in its own with some technological dimensions. This
switch is necessary to accurately address the problem of technology-assisted refereeing.
It makes the question ‘how to improve football refereeing’ depend on ‘what football and
what refereeing we want to have’ and that is what we believe is the appropriate order.

One rough way of expressing the controversy on technology-assisted refereeing is to
say that some think that technology assistance will improve refereeing, while others think
it will not. We should keep in mind that this is a simplification, however, because we actu-
ally have a wide range of positions depending on ‘how much’ technology one introduces
and what use is made of it. Still, the rough formulation has the advantage of pointing out
the main issue at dispute: does technology improve refereeing? During the Brazil World
Cup, we regularly surveyed the arguments displayed on two major and rival French radio
stations: RTL and RMC. Both stations devoted large slots to the tournament, including
live broadcasting of the games and talk shows to debrief and analyse the games with foot-
ball experts, practitioners, journalists and fans. The former station (RTL) team mostly
defended arguments in favour of technology-assisted refereeing, while the latter (RMC)
strongly and regularly expressed its opposition to technology assistance and reluctantly
commented on refereeing decisions at all. A survey of the opposed arguments that were
displayed provides the following picture of the dispute:

‘Human’ 

refereeing

‘Technology-assisted’ 

refereeing

‘Ideal’ 

refereeing

Let us postulate some ideal refereeing (where errors do not occur) achieved by an om-
niscient and objective referee. He is omniscient in the sense that he sees every action in
the game and does not miss anything. He is objective in the sense that he bases his de-
cisions only on the complete information that he has and any other referee who would
have the same amount of information would make the same decision. There seems to be
a kind of general agreement that such an ideal refereeing is impossible and that human
refereeing is far from being infallible. It also seems to be a large consensus as to the fact
that technology-assisted refereeing will not reach that ideal refereeing, although it still is
closer to it than human refereeing. So, the disagreement does not concern as much the
quality of technology-assisted refereeing as the opportunity of appealing to it. In a sense,
opponents highlight the impossibility of filling the gap between technology-assisted refer-
eeing and ideal refereeing, while supporters make high claims for the possibility of filling
the gap between human refereeing and technology-assisted refereeing, thereby shortening
the gap between achievable refereeing and ideal refereeing. So everyone agrees that ref-
ereeing will never be ideal (i.e. supposedly optimal and fair) and that technology-assisted
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refereeing is theoretically better (i.e. more optimal and fair) than human refereeing. The
disagreement is about the opportunity of changing the refereeing practicalities for the sake
of this incomplete improvement. One way to make both parts agree would be to define
some ‘good use’ that could be made of technology in refereeing. There is no agreement
so far but there is a theoretical possibility to make the two parts agree, even on a minimal
scale.

Of course, in practice, it is more complicated. Still the disagreement is not a necessary
one. There is hope of reaching some conciliation. One reason to keep hope is that actually
both parts already seem to agree on the importance of not appealing to technology all
along the game. This ‘good use’ restricts the appeal to technology to ‘decisive moments’
in the game where a team challenges the referee’s decision. As such technology is viewed
as a means to establish the facts and consequently eliminate the disagreements and reach
consensus in litigious situations.

The process at work in the enhancement of refereeing by technology-aid might be
called an objectivation. It is the idea that technology provides further information on the
contentious action and as such increases the chances of settling the matter. Two referees
who disagree at first might agree after consulting the technological aid (for instance, a TV
screening of the action from different perspectives). Actually, the process of decision-
making might even be enlarged to a wide audience by involving the viewers of the game,
who would then act as witnesses [2]. In a sense, this objectivation establishes the ‘fact’
by removing its dependence on the perception of the referee alone. Such a ‘nothing-to-
lose’ use of technology aims at reaching some objectivity and looking for consensual
decisions when disagreements occur. The quality of the refereeing will then be assessed
by the agreement that it settles between the opposite teams. A ‘good refereeing’ makes
the teams agree and leads to no dispute. Such a ‘good refereeing’ is not optimal, however.
Indeed, appealing to technology in instances where there was no disagreement might also
reveal errors that would have not been detected in the ‘good refereeing’ mode. Agreement
is not a guarantee of correctness. As such, the ‘good use’ of technology does not aim at
an optimization of refereeing (reduction of errors) but just its objectivation (reduction of
interpretation).

2 What Referees Do

An analogy can be made with court ruling, in this respect. Technology-assistance advo-
cates tend to depict the referee as a judge whose task is to make the best decision in
a conflict between two sides with opposed interests. No one stands against the use of
scientific devices to unveil the truth in a crime and punish the culprit. Since mistaken de-
cisions in court as well as in football are unfair, one would expect the same disposition to
introduce technological assistance in football in order to offer the same support that scien-
tific assistance does in court. This depiction makes settling disagreements the business of
refereeing decision-making. It puts the referee in the position between the opposed teams,
a place where it is common to find the referee on the field when disputes occur. This
observation would be misleading, however. Indeed, the decisions of the referee are not
the least concerned with the disagreement of the teams. The FIFA guide states that ‘Each
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match is controlled by a referee who has full authority to enforce the laws of the game
in connection with the match to which he has been appointed’ [4, p. 24]. So the referee
stands between the game and its laws, not between the opposed players. He might, for in-
stance, very well make decisions against the will of both teams as long as those decisions
are made in accordance with the rules of the game. Suppose that the ball went out of and
came back onto the field. It is the duty of the referee to stop the game even if both teams
want to continue playing.

One way of making the point is to apply Hintikka’s distinction between definitory and
strategic rules: ‘Definitory [rules] define the basic moves in the game. They tell us what is
and what is not admissible in a game. Following them [. . . ] assures that you are playing
the game correctly [. . . ] Strategic rules [are] the rules which give insight into how to play
a game successfully and well’ [6, pp. 32–33]. The referee is concerned with definitory
rules. The strategic rules of the teams to win the game do not affect his refereeing (for
a history of football strategies, see [12]). The referee just assures that players play the
game accurately, independently of how successfully they play. As such, refereeing is not
about making the game better, but just about making it accurate, independently of its con-
sensus potential. Pequeno and Béziau [8] introduced a slightly different typology of rules:
framework rules (material conditions), deontic rules (permitted and forbidden actions),
teleological rules (goal of the game) and strategic rules (technical modes of playing). The
latter are broadly understood in the same sense as Hintikka’s strategic rules.

Framework and deontic rules also broadly cover Hintikka’s definitory rules. Teleologi-
cal rules to determine the winner of the game are more difficult to work but do not affect
our current discussion. Football’s teleological rules are so ‘analytical’ (the team that scores
the more, wins) that the referee does not need to care about them. Now the game has to
be played correctly in order to be played successfully. Indeed, both teams have to be sub-
ject to the same definitory rules, otherwise that would infringe an essential condition of
the game, i.e. competition, which grants equity among players [8]. This precondition is
also necessary to secure the legitimacy of the winner which supposedly is the team whose
skills have been better than its opponent’s in the game. Hence, the business of the referee
is not to settle disagreements between the teams. It rather is to secure that the definitory
rules of the game are insured regardless of how the teams do react to his decisions.

This rule-formalist approach, assuming rules to suffice in order to rule a game, might
be disputed on the ground that the referee might have to improvise in situations where the
rules are not that clear as to what to do [7]. Actually, referees might even rule against the
rules in case of ‘minor infringements’ in order to save the flow of the game. As such, the
referee would privilege the ‘spirit’ rather than the ‘letter’ of the law [3]. Our objection
to this reading is that it misses the ‘big picture’ by limiting the focus on the two teams
playing. Generally, games take place in tournaments, where every team is not opposed to
just one other team but rather to several others. Any game has consequences on the others,
and the issue at stake is not just the winner of the game but a whole set of outputs, includ-
ing card penalties, injuries, goal average, etc. As such, a permissive refereeing in a given
game would be unfair to other teams who could get benefits from potential decisions. Of
course, there might be general recommendations for the whole tournament, but then expli-
cating them would make them belong to the letter rather than the spirit. Naturally, one still
has to observe how this body of guidelines could be applied by the referee. For instance,
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if it is recommended at the beginning of a competition that injurers should be severely
punished by the referee, one still has to figure out whether a concrete case lies within this
recommendation.

3 On Chance and Skills

When refereeing errors occur, they might allow a team to be successful despite violating
a definitory rule. That’s what makes the game look unfair. However, the very possibility
of the referee making errors seems to be involved in the definitory rules themselves, so
that this possibility applies on both teams and as such might be disadvantageous (but
not necessarily unfair) to one team over the other. The admission of errors in the game
simply introduces an element of chance into the game. This should not be confused with
unfairness, which applies only in games where skills alone determine the winner. Further
light can be thrown on this issue by means of the three concepts alluded to earlier: skill,
chance and competition [8].

Skill is developed in order to strengthen the probability of victory in a ruled compe-
tition. Without this general rationale in mind, it would barely make sense for football
players to train hard for a competition where skills do not determine the winner. Disputes
on football refereeing seem to originate in this blatant incompatibility between skill and
chance. At first, one would expect skills to be the only element to decide between opposed
teams. As such, football referees are not expected to affect the determination of the win-
ner, since this decision has its own rule (the winner is the team that scored more than the
other). The referee is just asked to secure that the competition takes place in accordance
with the rules. The slightest suspicion as to the influence of the referee in the making of
the score might spoil the acknowledgment of the winner among football fans.

For instance, West Germany’s victory at the 1990 World Cup is often underestimated
on the grounds that the team was awarded a ‘generous’ penalty in the final game against
Argentina. Ironically, Maradona’s ‘Mano de Dios’ in the 1986World Cup usually does not
affect the recognition of the Argentinian final victory among football fans. Of course, it is
admitted that Maradona unduly made use of his hand to overcome the goalkeeper’s fist and
score a goal that would happen to be decisive during the quarter final game against Eng-
land. Still, fans would say that Argentina would have won anyway and that they actually
deserved to win for their offensive playing style and the genius of their players. Contrari-
wise, Greece is said not to deserve its victory at the 2004 UEFA European Championship
because of its ‘boring’ defensive playing style. These concerns have nothing to do with
rules, however, and could in no way be seriously considered in a general reflection about
refereeing in football. As skilled as Argentina might have undoubtedly been, their genius
cannot stand as a compensatory argument to justify infringements of rules. Moreover, as
boring as Greece might have admittedly been, they played in accordance to the rules and
as such deserved their victory. Further discussion on the matter is useless for our present
concern.

In football games, the referee takes care of definitory rules. He makes decisions to
secure that those rules are granted. Should a referee’s decisions be challenged by unhappy
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players? In the present state, it might look inadequate since players do not contribute to the
decision-making. The football referee stands alone as the supreme and unique authority
in making decisions about rule-following. In this respect, football refereeing differs from
other sports like rugby or tennis, where players can challenge decisions and ask for the
referee to reconsider his decision (after screening a video replay or appealing to ‘hawk-
eye’ technology, for instance). As true as this claim might be, it needs some adjustment.
Firstly, it must be kept in mind that football refereeing practices are ruled too, and that
teams do insure that referees do not infringe their own definitory rules. As such, they
can challenge refereeing as long as it is not about the very judgement of the referee, but
rather about the application of that judgement. Then, although rugby and tennis do appeal
to technology assistance, final decisions are still held by referees, who continue to stand
as the supreme guarantee of the correctness of rule-following. Technology assistance in
rugby and tennis aims at reducing the element of chance in order to favour the skills of
players, while chance is, in the present state, kept as an essential constituent of the very
idea of football practice.

The acceptance of chance (together with competition and skills) as a desirable ele-
ment of football has strong implications on refereeing policy. Indeed, it trivializes the
referee’s fallibility and makes the appeal to technology unnecessary. It might be objected
that modern football already reduces the elements of chance through the design of the
material conditions of its practice (stadiums, shoes, balls, etc.). The introduction of more
human referees, championed by Platini and other technology opponents, might be viewed
as a way to minimize chance in football refereeing as well. Hence, the introduction of
technology assistance would only join this long list of reforms made in football history to
make it better. Moreover, that would not definitely eliminate the element of chance, since
there will always be uncontrollable elements, notably the natural conditions of the game.
Playing under bad weather conditions might have a crucial influence on a game. For in-
stance, the wind alters the path of the ball and makes it difficult to grasp for. The direction
of the wind becomes crucial and might favour one team over the other. Such natural con-
ditions interfere with the game and make chance an important element that the teams and
the referee have to deal with, as long as football practice is possible. The acceptance of
chance as an element of football does not entail its desirability, however, and it remains
legitimate to wonder whether it is still suitable to reduce that element as much as possible
to favour skills. Hence, the introduction of technology assistance in football refereeing is
viewed as an improvement for those who object to the element of chance and view it as
undesirable. All others will consider technology to actually alter the very idea of the game.
As such, technology assistance would be a wish or a will rather than a need or a necessity.

4 The Referee as a Full Player

Football as it presently is, i.e. a game that involves both skill and chance, embodies the
idea of a referee as a full player of the game. Although he does not compete with the
teams in the same game, he still plays at his best to secure the rules. The teams themselves
and football associations insure that the referee plays correctly (in accordance with his
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definitory rules). Finally, the referee himself devises and appeals to strategic rules to play
the game successfully. The referee’s moves in the game are independent of the agreement
of the teams, since the correctness of the game is irrespective of the players’ opinions.
The best referees are asked by football associations to keep playing at the same ‘stage’ of
the game and might even be promoted to the next stage. Worse referees are retrograded
to the lower stage, since they did not prove to have the skills to play at the current stage.
From this perspective, it appears that technology assistance would not be anything other
than a dummy solution to what turns out not to be a problem in the first place. One might
similarly imagine that players would wear some kind of tele-controlled shoes or electronic
viewfinders to improve their ability to score goals! Neither solution improves the human
skills of the players (including the referee). An obvious objection to this reading, already
alluded to above, is that such improvements are already at work in football practice (sta-
diums, balls, etc.). The issue then becomes a matter of balance. How much change can
we introduce in football rules without altering its very nature? This brings us again to our
main point: the introduction of technology assistance is not a need, it is a will. This is
not meant to reject the possibility of introducing technology for refereeing purposes. It
simply states that if there are any reasons for such a reform, they are not to be found in
the nature of the game. Football governance might need technology-assisted refereeing,
football itself does not.
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Arrow-Hexagons

Alessio Moretti

Abstract Oppositional geometry gives a mathematical model of oppositional phenom-
ena through “oppositional structures” (logical squares, hexagons, cubes, . . . ). It’s so far
known formal entities, the backbone of which are the “oppositional bi-simplexes (and
poly-simplexes) of dimension m”, are distributed into three families (the ˛-, ˇ- and �-
structures). However, some recent studies by different authors exhibit strange structures,
notably strange variations of the notion of “oppositional hexagon” (or “logical hexagon”).
In this paper we show that inside the oppositional tetrahexahedron, i.e. the ˇ3-structure
(discovered in 1968 and rediscovered in 2008) – a 3-D solid made of a logical cube and
6 logical “strong hexagons”, containing 14 vertices and 36 implication arrows – there are
in fact C614 D 30 030 strange hexagons, which we call “hybrid hexagons”. In this paper,
through a systematic study of those among them that have as invariant property a regular
perimeter made of alternated arrows (henceforth “arrow-hexagons”), we show that they
divide into a much smaller number of families, nine, each containing several isomorphic
instances of the same oppositional pattern. An interesting result seems to be that when
seen from the viewpoint of their mutual transformations (i.e. moving from one to another
kind of arrow-hexagon, just by exchanging one of its 6 vertices with one among the re-
maining 14�6 D 8 vertices of the tetrahexahedron), these arrow-hexagonal patterns taken
as points can be displayed in a new kind of 3-D structure. The latter, by putting into order
these points (each representing a family of arrow-hexagons), gives some kind of morpho-
genetic cartography of the arrow-hexagons of the ˇ3-structure. As we will argue, since
several arrow-hexagons play the role of “attractors”, there are reasons for thinking that
such a cartography could be very meaningful in the future for modelling “oppositional
dynamics”, that is the systematic formal study of the situations where a given complex
oppositional structure sees its shape change within time.
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structure � Oppositional role � Oppositional morphodynamics � Oppositional dynamics
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oppositional bi-simplexes (of dimension m)

the square the hexagon the cube

n+1 n+1

the tetrahexahedron

(1968, 2008, 2009)

4-opposition
(2004)

3-opposition
(1950)

2-opposition*
(a fragment of 3-opposition)

(3rd  century)

Fig. 1 The four basic “conceptual actors” of oppositional geometry

1 The Starting Point: Oppositional Geometry (in a Nutshell)

Oppositional geometry is, seemingly, a candidate for being a full-fledged young new
branch of mathematics, centred on the concept of “opposition”. The latter notion is based
on Aristotle’s discovery of two different forms of opposition: “contrariety” and “contra-
diction”. The logical square expresses the way in which these two forms of opposition are
distinct but correlated. Oppositional geometry, in turn, generalises three main oppositional
objects: Aristotle-Apuleius’ “square of opposition” (or “logical square”), Jacoby–Sesmat–
Blanché’s “logical hexagon”, and Sauriol’s “logical tetrahexahedron” (Fig. 1).1

Among the main families of oppositional structures, here one must mention the ˛-,
the ˇ- and the �-structures. The ˛-structures (or “oppositional bi-simplexes of dimension
m”) express n-opposition (a bi-simplex is composed of a blue simplex of contrariety in-
tertwined with its dual green simplex of subcontrariety).2 They are represented by means
of their arrows, neglecting visually the three other relations (Fig. 2).

The ˇ-structures express the oppositional closures of the former: to each ˛-structure
corresponds one (and one only) ˇ-structure (its closure). However, each ˇ-structure con-
tains several ˛-structures, the one of which it is the closure and several instances of smaller
ones. Giving all the possible n-oppositions (the maximal one and the smaller ones) yields
the complete “conceptual panorama” of any oppositional situation (Fig. 3).

the logical
square

m=1 m=2 m=3 m=4 m=5 m=6 etc

α2* α3 α4 α5 α6 α7 αn

...

the logical
hexagon

the logical cube

Fig. 2 The series of the oppositional ˛n-structures (the “bi-simplexes of dimension m”), expressing n-
opposition

1 For an overview, cf. [21].
2 The first elements of this theory were presented in [17]; a mathematically more compact and powerful
axiomatisation has been given in [25].
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the logical hexagon
(Jacoby, Sesmat,

Blanché)

the logical tetrahexadron
(Sauriol, Pellissier, Smessaert)

(Moretti)

n+1 n+1 n+1

β2 β3 β4 βn

Fig. 3 The series of the oppositional ˇn-structures (the “oppositional closures”)
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Fig. 4 Some oppositional � -structures (or “oppositional generators”) already present in, but not yet fully
understood by, modal logic

The �-structures are, so to say, the “generators” of the ˇ-structures: (1) they model in
a very compact format situations where “modalities” (i.e. opposed entities which can be
modal-logical, but not only – they can be more broadly “concepts”) are given a negation
operator and (2) they can be associated to oppositional closures (that is, the �-structures
map, but not bi-univocally, into the ˇ-structures) (Fig. 4).

Oppositional geometry allows, through some translation rules (i.e. Pellissier’s “setting
technique”), to switch from the �- to the ˇ-structures (and, therefore, to give access to
entire bunches of ˛-structures, cf. [19]). As a consequence the ˇ-structures generate an
important new instance of equivalence relation, the “equivalence modulo ˇn”, and, there-
fore, each ˇn-structure is an equivalence class. As such, oppositional geometry is a way
of measuring “oppositional complexity”: the ˇn-structures are increasingly complex op-
positionally speaking.

The theory of the oppositional bi-simplexes generalises into several directions. One is
the theory of the oppositional poly-simplexes.3 This corresponds to the study of the oppo-
sitional geometry of formal systems which rely on some many-valued logic (instead than
on classical 2-valued logic). In the poly-simplicial approach oppositional concepts become
“diffracted”: there are more than one “shade” of contradiction, of subalternation, of con-
trariety and of subcontrariety. For instance, by adding a pivotal black simplex (between

3 The oppositional poly-simplexes were first proposed in [18] (starting from Chapter 18).
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the oppositional tri-triangle

9 kinds of opposition:
3 different simplexes
3 different contradictions
3 different subaltemations

9 kinds of opposition:
3 different simplexes
3 different contradictions
3 different subaltemations

the oppositional tri-tetrahedron
bi-simplexes subaltemations

contradictions
bi-simplexes subaltemations

contradictions

Fig. 5 In an oppositional tri-simplex (whatever its dimension) the classical oppositional relations are
diffracted

the bi-triangle
(bi-simplex of dim.2)

(logical hexagon)

p=2

p+1 p+1 p+1 p+1

p=3 p=4 p=5 p

the tri-triangle
(tri-simplex of dim.2)

the quadri-triangle
(quadri-simplex of dim.2)

the quinia-triangle
(quinia-simplex of dim.2)

etc

Fig. 6 The series of “oppositional poly-simplexes of dimension 2” (i.e. the “oppositional poly-triangles”)

the classical blue and green ones) the tri-simplexes diffract contradiction and subalter-
nation into three (each of the three pairs of simplexes of a tri-simplex, together forming
a bi-simplex, has its own kind of contradiction and its own kind of subalternation) (Fig. 5).

As a result of this generalisation, each kind of simplex (line, triangle, tetrahedron, . . . )
generates an infinite series. For instance, the simplex of dimension 2 (i.e. the triangle) gen-
erates an infinite series of oppositional poly-triangles (the oppositional bi-triangle being
the logical hexagon) (Fig. 6).

The poly-simplexes require, in order to articulate the �-, the ˇ- and the ˛-structures,
a suitable formal treatment involving sheaf theory (cf. [2, 3]). Moreover, they are difficult
to represent graphically. However, this can still be done for one of the simplest ones,
the oppositional tri-triangle (which is the tri-simplicial version of the logical hexagon)
(Fig. 7).

the oppositional bi-triangle the oppositional tri-triangle (the components of the oppositional tri-triangle)

p+1

simplexes contradictions subalternations

Fig. 7 The tri-simplicial version of the logical hexagon (which is a bi-simplex, the bi-triangle) can still
be represented
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- subalternation
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Fig. 8 Oppositional geometry can be seen as emerging from two “meta-oppositional” geometries

Another very important generalisation leads to what H. Smessaert and L. Demey pro-
pose calling “logical geometry” (or “logical geometries”). Here some more “geometrical
components” are unveiled (the “implication geometry” and the “opposition geometry”),
from the interplay of which oppositional geometry (as well as, possibly, some other new
domains) can be seen to emerge (Fig. 8).

In the rest of this paper we remain focussed on the bi-simplicial viewpoint of opposi-
tional geometry (which is currently the most powerful approach to “opposition”), leaving
for other studies the exploration of these extra dimensions of the theory.

2 Some Recent Remarks on Some Strange Hybrid Hexagons

Oppositional geometry owes much to the logician and philosopher Jean-Yves Béziau.
With a seminal paper in 2003 that dealt with a defence of the concept of “paraconsistent
logic” (against H. Slater’s attack of it in 1995), he re-launched the interest of the logical
and philosophical communities for logical hexagons (and thereby, among other things,
gave a start to our own discoveries, which he would later direct in our PhD, which was
defended in 2009). He also built a remarkable institutional framework for geometrical-
oppositional research by creating and keeping alive the now famous series of the “World
Congress(es) on the Square of Opposition” from 2007 to now4. In more recent times (i.e.
in 2012, cf. [6]) Béziau proposed, among several other things, a quite provocative triad
of non-standard new oppositional figures, made only of red lines of contradiction and of
grey (or black) arrows of implication (Fig. 9).

Now, from the point of view of oppositional geometry if we speak, for instance, of
logical hexagons there are stricto sensu only two kinds of them: the “strong” and the
“weak”.5 Moreover, the difference between these two, contrary to Béziau’s proposal, does
not touch the quality (expressed by colours) of the relations constituting these logical
hexagons: these relations (i.e. the colours of the nine segments inside the hexagon, ex-

4 On Béziau’s reaction to Slater and on the origin of oppositional geometry, cf. [20].
5 Weak hexagons were (re-)discovered (after Sauriol’s first quick mention of them in 1968, cf. [26]) and
put into light by Pellissier in 2008, cf. [25].
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Fig. 9 Béziau’s provocative proposal, in 2012, of three oppositional structures made almost only of red
contradiction lines

a strong hexagon in 3D a weak hexagon in 3D
strong and weak hexagons

have the same consitutive relations

Fig. 10 Comparing “strong” and “weak” logical hexagons: geometry can help the eye
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Fig. 11 The difference between “strong” and “week” logical hexagons concerns the interdefinability of
the vertices (Pellissier)

cluding the perimeter made of six grey alternated arrows), are the same in the two kinds
of hexagons. Rather, the difference between strong and weak logical hexagons touches
two other things. Firstly, the geometrical dimensionality (inside the ˇ3-structure): strong
hexagons are “planar” (i.e. 2-D), whereas weak hexagons are “broken” (i.e. 3-D) (Fig. 10).

Secondly, it touches the interdefinability of the vertices: (a) in a strong hexagon each
green vertex is defined as being logically equivalent to the inclusive disjunction of its
two adjacent blue vertices, whereas, dually, each blue vertex is defined as being logically
equivalent to the conjunction of its two adjacent green vertices; (b) in a weak hexagon,
Pellissier docet, things change: the logical equivalencies are weakened and become impli-
cations (in one or the other direction, alternatively) (Fig. 11).
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seen by Sauriol
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(something unknown to Blanché)
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(Blanché´s two hexagons
are of this kind)

Fig. 12 Sauriol’s “logical tetrahexahedron” (1968) and, inside it (hidden), two “arrow-hexagons” (here:
in blue and violet)

So, how can we understand Béziau’s provocative “red” hexagon, the inside of which is
made of nine red segments of contradiction? Is it a new kind of logical hexagon? Is this
possible? Does this contradict oppositional geometry?

As it happens, in the last years this standard view, according to which a logical hexagon
(no difference whether strong or weak) is made of two logical simplexes (a blue triangle
of contrariety and a green triangle of subcontrariety), intertwined so that central symmetry
means contradictory negation (i.e. red diagonals) has been, if not challenged, at least puzz-
led, not only by Béziau, but also by at least three other groups of scholars having made
independently some other strange comparable observations.

First, some strange hexagons (highlighted by us visually in Fig. 12) already appeared
47 years ago in a figure by Pierre Sauriol (1968) – the first known discoverer of the op-
positional tetrahexahedron –, who however did not discuss it (in fact Sauriol tried to use
his tetrahexahedron mainly in order to diminish Blanché’s discovery and polemical use of
the logical hexagon, and thereby in order to put a stop to Blanché’s use of hexagons for
building an anti-analytical philosophy of logic, cf. [11, 12]). Sauriol highlights two kinds
of hexagons in the tetrahexahedron he has discovered (hexagons called by him “regular”
and “irregular”, put by us in red and in green in his figure), but he does not see (or at
least he does not mention) that two more kinds of “arrow-hexagons” (i.e. two chains of
six alternated arrows, put by us in blue and in violet in his figure) are quite visible in the
3-D figures he presents in his paper (cf. [26, 27]; to this we will come back) (Fig. 12).

Secondly, much more recently, D. Dubois and H. Prade discovered a strange and quite
mysterious oppositional hexagon made of arrows not only in its perimeter but also in
part of its inside (namely, its three diagonals are arrows, instead of being red segments of
contradiction). They did this while working, with tools akin to those of oppositional geom-
etry, on the relations holding between “possibility theory” and “formal concept analysis”
(Fig. 13).6

6 Cf. [14]; some critical remarks on the “suboptimal” character of their approach can be found in [22].
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Fig. 13 A strange version of
the logical hexagon (with some
relations modified) proposed by
Dubois and Prade (2012)

N

N

Thirdly, we have made other similar remarks while studying the possible combinatorics
of oppositional structures, looking (as we are) for some kind of “oppositional product”
and “sum” (or “coproduct”). This first appeared in our attempt to combine, by some kind
of “oppositional distribution” (centred on the “^” connective), an oppositional hexagon
with an oppositional tetrahexahedron;7 this operation generates strange new hexagons that
keep a regular perimeter of alternated arrows but have blue (instead of red) diagonals and
an orange (instead of green) lower triangle (orange means “mutual independence”, cf.
Sect. 3.6) (Fig. 14).

Let us call, from now on, “hybrid hexagons” those hexagons that see any change
of colour whatsoever with respect to the standard colours (i.e. relations) of the logical
hexagons, and let us call “arrow-hexagons” those hexagons (standard or hybrid) that keep
intact the perimeter of alternated arrows (some hybrid hexagons are arrow-hexagons, but
not all).

The same result, i.e. an instance of “arrow-hexagon” with blue diagonals and an orange
lower triangle (instead of the standard green triangle), appeared in a study of the oppo-
sitional distribution (centred on the “^” connective) of two logical hexagons, suggesting
that this is a stable, meaningful behaviour (some kind of “signature” of the general opera-
tion of oppositional ^-distribution) (Fig. 15).

The study of the same operation (oppositional distribution), still over two hexagons,
but this time seen from the viewpoint of another junctor (i.e. not the “^”, but the “_”
connective), yields a similar (in fact: “oppositionally dual”)8 result: an “arrow-hexagon”

two operanda

Moretti

nested oppositional structure hybrid oppositional hexagon

β2 β2β3 β3 α3#

Fig. 14 Distributing conjunctively a logical hexagon over a tetrahexahedron produces a bundle of strange
“blueish” hybrid hexagons

7 By a “distribution” we mean the application of the first element (here a logical hexagon), taken as
a whole, on each vertex of the second (here an oppositional tetrahexahedron).
8 Two oppositional structures are said to be “oppositionally dual” if either of the two is obtained from
the other by switching the direction of each arrow and exchanging every blue component (i.e. vertices or
segments) with a green one and vice versa (blue–green vertices and orange segments remain unchanged).
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Fig. 15 Distributing conjunctively a logical hexagon over another one produces a bundle of strange
“blueish” arrow-hexagons
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Fig. 16 Distributing disjunctively a logical hexagon over another one produces a bundle of strange
“greenish” arrow-hexagons

with green (instead of red) diagonals and an orange upper triangle (instead of the standard
blue one) (Fig. 16).

Moreover, while studying the oppositional geometry of partial order, we remark, again,
that strange logical hexagons emerge that, at least in some cases, might be meaningful.
This is precisely the case of the famous “hexagon of orders” (considered by many as the
most elegant known instance of the logical hexagon) when it is “plunged” into partial
order (i.e. when one considers the possibility of having, for a and b, not only the three
possibilities a > b, a < b, or a D b, but also a fourth one: “a and b cannot be mutually
ordered”, i.e. “a k b”). Then its inner relations (i.e. its oppositional inner colours – not the
perimeter made of alternated arrows) have to change (because of the presence, now, of the
order relation “k”) and as a result, inside the new oppositional structure of orders (which
is no longer a ˇ2, but a ˇ3-structure, i.e. not an oppositional hexagon, but an oppositional
tetrahexahedron) it becomes a new kind of strange hexagon, another instance of “arrow-
hexagon”, with two blue (instead of red) diagonals and a partly orange (instead of totally
green) lower triangle (Fig. 17).

This new arrow-hexagon of partial order (which is a fragment of the “tetrahexahedron
of partial order”) is important for at least two reasons. Firstly, it clearly embodies an in-
stance of “oppositional metamorphosis”: the passage from the hexagon of orders (in the
mathematical space of total order) to its hybrid counterpart (in the mathematical space of
partial order) seems to be the first promising step towards a formalisation of “opposition-
ally dynamic phenomena”. Secondly, this hybrid hexagon seems to show (as, in fact, do
also Sauriol’s aforementioned two strange hexagons) that such strange “hybrid hexagons”
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β2 (=α3) β3 α3#
from “total order” to “partial order” an arrow-hexagon

Fig. 17 The oppositional dynamics of the order relations: a ˇ2 becomes ˇ3 leaving an ˛3# “shadow” of
itself inside ˇ3
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Fig. 18 The oppositional tetrahexahedron “pops up” in many different fields of fundamental research

(and more precisely these arrow-hexagons) are, in fact, very natural, since they are implic-
itly present (although generally unseen) in each ˇ3-structure, the latter being, notoriously,
a very powerful “attractor” of oppositional geometry (Fig. 18).

Hence the question, possibly clarifying the previous remarks (made by Béziau and
other scholars) mentioned in this section: how many such arrow-hexagons are there, in
fact, inside the ˇ3-structure? Do they have interesting invariant properties? The rest of
this paper will try to give some element of answer to these questions.

3 How Many “Arrow-Hexagons” Are There in the ˇ3-Structure?

The ˇ3-structure seems to be the first place to look in a systematic way for hybrid
hexagons in general and for arrow-hexagons in particular, since it is a very well-known
structure (among those of oppositional geometry) and has the advantage of being both
very rich and still visually perceivable (differently from the general ˇn-structures, with
n 	 4, which are hyper-dimensional and, therefore, visually counterintuitive). However,
a simple combinatorial calculation shows that in the tetrahexahedron there are exactly
C614, that is 30 030 possible “hexagons”, 30 020 of which are hybrid! In the rest of this
study we shall study only arrow-hexagons. In order to have, in the midst of this thick
combinatorial jungle, a way of naming the transformations that we are be interested in,
we propose the following terminology for naming the tetrahexahedron’s vertices (“b” is
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Fig. 19 The convention adopted
throughout this study for naming
without ambiguity any of the
tetrahexahedron’s 14 vertices

u

b2

r

g4
g3

b1

f b4
h

g1
b3

d

g2

1

for blue, “g” is for green, “u”, “d”, “l”, “r”, “f” and “h” are, respectively, for up, down,
left, right, front, behind) (Fig. 19).

So, we will start by considering the two standard instances of oppositional hexagon,
the “strong” and the “weak”, and then we will try to widen our scope with a suitable
“transformation game”.

3.1 Strong Oppositional (or Logical) Hexagons

Inside the ˇ3-structure our starting point is given by the two kinds of oppositional
hexagons that we know: the “strong” and the “weak” (according to Pellissier’s terminol-
ogy, cf. Pellissier (2008)). In this section let us focus on strong hexagons. As is known,
there are six strong oppositional hexagons inside the ˇ3-structure, two for each of the
three “Cartesian axes” of the oppositional tetrahexahedron (Fig. 20).9

From now on, let us play a new kind of “transformation game” with these six strong
hexagons.

To start with, let us ask ourselves what all the possible “1-move transformations” of
a strong hexagon are, that is the hexagonal structures obtained by changing place of one
of its six vertices in a way such that the resulting structure still has a perimeter made of six
alternated arrows. We know that the six strong hexagons of any ˇ3-structure have three
kinds of vertices: either blue or green (if this vertex belongs to the “heart” of the ˇ3-
structure, i.e. the oppositional cube) or blue–green (this vertex is one of the six “spikes”
or “Egyptian pyramids” of the ˇ3-structure). As it turns out, the only points (i.e. vertices)
of a strong hexagon leading to a possible (i.e. viable) move (i.e. one leading to another
arrow-hexagon) are the blue–green points; moving a blue or a green point, conversely,
generates hexagonal structures the perimeter of which is not uniquely made of alternated
arrows, thus hybrid oppositional hexagons that are not arrow-hexagons, and we are not
interested in such “broken arrow perimeter” hexagons in our present transformation game
(Fig. 21).

9 The first was discovered by Jacoby (1950), Sesmat (1951) and Blanché (1953) independently; the second
and the third by Béziau (2003); the fourth by Moretti (2004) and Smessaert (2009) independently; the fifth
and the sixth by Smessaert (2009). As it happens Sauriol had discovered all six (in 1968) but his paper
was not noticed until 2012, cf. [21].
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Fig. 20 The six strong hexagons contained in the oppositional tetrahexahedron (and their discoverers)

not an arrow-hexagon strong not an arrow-hexagon

Fig. 21 No move of either a blue or a green vertex of a strong hexagon leads to an arrow-hexagon

not an arrow-hexagonstrong

Fig. 22 Some vertices of strong hexagons (i.e. all those belonging to the cube) lead to no possible 1-move
transformation

So, from now on we will express as follows, by a drawing, the fact that there are no
solutions for a 1-move of a vertex (of an arrow-hexagon) such as the one highlighted by
an orange circle (Fig. 22).

Conversely, changing the place of one of the two blue–green vertices of a strong
hexagon (of an oppositional tetrahexahedron) happens to lead to two possible satisfac-
tory outcomes, i.e. to two new instances of arrow-hexagons (we call them, momentarily,
“X1”) (Fig. 23).

Since each of the two blue–green vertices can lead to two transformations (here we
depict only the two “upper” ones), the outcome of which is isomorphic (a “X1” arrow-
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unknown (“X1”) unknown (“X1”)

1-move
1-move

strong

Fig. 23 All possible “1-move transformations” of any blue–green vertex of a strong hexagon

hexagon), we see that for each strong hexagon of a ˇ3-structure there are globally four
possible transformations into a new arrow-hexagon. Moving the lower, instead of the
higher blue–green vertex of the strong hexagon gives an arrow-hexagon of type “X1 bis”;
blue and green vertices are switched, with respect to those of the “X1”, and the order
of each arrow is reversed (we will examine all this in Sect. 3.3, which is devoted to the
special kind of arrow-hexagon “X1” or “X1 bis” thus obtained).

3.2 Weak Oppositional (or Logical) Hexagons

As we already recalled, Pellissier has discovered the presence of four instances of what he
called “weak logical hexagons” inside the ˇ3-structure. More precisely, they are contained
inside the “heart” of the ˇ3-structure, that is, inside the ˛4-structure (i.e. the “oppositional
cube”) (Fig. 24).

As Pellissier established (2008), these four hexagons have properties that are different
with respect to the classical (i.e. the strong) ones. It can also be remarked (cf. [16]) that
in certain contexts of modelling application the weak hexagons, with respect to the strong
ones, are particularly meaningful and interesting in so far as they can play the role of
“extreme choice”; the oppositional hexagon such that it “takes the best” (or “the worst!”)
of two intertwined options cannot be a strong hexagon and has to be a weak hexagon
(Fig. 25).

the oppositional tetrahexahedron
(a β3-structure)

its four weak oppositional hexagons
(α3*-structures)

its “heart”
(an α4-structure)

Fig. 24 The oppositional tetrahexahedron (ˇ3) contains an “oppositional cube” (˛4), which contains four
“weak hexagons” (˛3�)
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Fig. 25 An application of weak hexagons to modelling political theory; avoiding conflict through “oppo-
sitional crossbreeding”

this blue-green vertex
belongs to a “spike”
of the tetrahexahedron

this blue-green vertex
belongs to a “spike”
of the tetrahexahedron strong hexagon weak hexagon

these 2 blue vertices
and these 2 green vertices
belong to the “heart”
of the tetrahexahedron
(i.e. to the “logical cube”)

these 3 blue vertices
and these 3 green vertices
all belong to the “heart”
of the tetrahexahedron
(i.e. to the “logical cube”)

Fig. 26 The chromatic signature of strong and weak hexagons differ with respect to the colour of some
of their vertices

unknown (“X1”)weak unknown (“X2”)

1-move 2-move

Fig. 27 Possible 1-move (and 2-moves) transformation(s) of any of the six vertices of a weak hexagon

It is worth stressing this point (which will become more meaningful later) by saying
that weak hexagons have an “oppositional role”.

Let us now introduce the idea that, truly speaking, there is a slightly different “chro-
matic signature” of the two kinds of oppositional hexagons (strong vs. weak): the two
mixed blue–green points of the former (which represent those vertices that do not belong
to the cube, the tetrahexahedron’s “spikes”) get lost in the latter (Fig. 26).

From the viewpoint of our transformation game the next natural combinatorial question
is then: what are all the possible 1-move transformations of a weak hexagon (of a tetra-
hexahedron)? The answer is synthetically provided by the Fig. 27.

We can see that for any of the six vertices of this hexagonal structure (which is an
instance of an arrow-hexagon) this time there are two different kinds of outcome: the
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intermediate, unknwon hexagon (“X1 bis”)strong hexagon weak hexagon

1-move 1-move

1-move 1-move

Fig. 28 Is there anything “morphodynamical” between strong and weak oppositional hexagons?

“X1” arrow-hexagon (already seen in Sect. 3.1) and the “X2” arrow-hexagon (which is
new). The first transformation, the “1-move” transformation, leads to the same shape (the
“X1” arrow-hexagon) as the one obtained starting from a strong hexagon in the previous
section (this shape will be described in Sect. 3.3 below). The second transformation, the
“2-moves” transformation shown in parentheses in the previous figure, corresponds to
a shape (the “X2” arrow-hexagon) which will be studied in Sect. 3.4. However, for reasons
to appear later, we will consider that the latter is obtained through two 1-moves (and
not just one), so we will not consider it as a transformation directly reachable through
a 1-move. The intuitive idea is that in our game one moves vertices by making them “slide”
over the stellar surface of the tetrahexahedron, from vertex position to vertex position,
and that from this viewpoint some moves are “shorter” than others (they take two moves
instead of one).

Let us also remark that now each of the two classical kinds of hexagon (strong and
weak) can be seen as a transformed counterpart of the other. In other words, let us remark
that in order to transform a strong hexagon into a weak one (or vice versa) one only needs
to displace two vertices of the starting one (be it strong or weak) in a suitable way (Fig. 28).

The rest of this paper will consist as much as possible in a systematic study of the
progressive structure-preserving deformations of oppositional hexagons. More precisely,
we are concerned with the property of being an “arrow-hexagon” (i.e. an hexagon the
perimeter of which is made of regularly alternated arrows). It is this issue that we are
going to explore in the next sections.

So at this stage, qualitatively speaking, we have four different kinds of hexagons (in
the next two sections we shall study the two new ones that we just discovered) (Fig. 29).

weakstrong unknown (“X2”)unknown (“X1”)

Fig. 29 Synoptic view of the four kinds of hexagons perceived so far inside the oppositional tetrahexa-
hedron (or ˇ3-structure)
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The natural question emerging from this exploration will be that of reflecting on how
to order them mutually.

3.3 The Unknown Cases “X1” (and “X1 bis”) Are “Parrot” Hexagons

Let us focus on the new kind of arrow-hexagons we found and named “X1” (and, dually,
“X1 bis”). As we saw, there are two ways of generating it: either by deforming a strong
hexagon or by deforming a weak hexagon. Let us start with weak hexagons, naming them
1, 2, 3 and 4, and labelling them with the labels of our reference tetrahexahedron (cf.
Sect. 3 above, Fig. 19) (Fig. 30).

One way of deforming each of the four weak hexagons consists in applying a 1-move
transformation to one of its three blue vertices to consider a blue–green vertex instead.
This generates the structure previously called “X1”. For reasons soon to appear, let us call
it a “green-beaked parrot” (i.e. a “parrot” whose “beak” is a green vertex). There are 12
of them, distributed (for easiness) in 3 quartets. The first such quartet of green-beaked
parrots is obtained by a 1-move (in the weak hexagons 1, 2, 3 and 4, respectively) of the
vertices b1, b4, b3 and b2, respectively (Fig. 31).

The green-beaked parrots 1 and 3 are said to be “twins” (because they differ only in
one vertex, which makes them symmetric), as are parrots 2 and 4.

The second quartet of green-beaked parrots, represented with respect to the 14 vertices
of the ˇ3-structure is the one resulting from a 1-move (of the weak hexagons 1, 2, 3 and
4, respectively) of the vertices b4, b1, b2 and b3, respectively (Fig. 32).

b1 g4
g3 g3

g4

g3

g2
g1

g2

g4

g1g1
g2

1 2 3 4

b2
b1

b2

b1

b2

b3

b4
b3

b4

b3

b4

Fig. 30 Starting from the four weak hexagons and by a 1-move of some of their vertices we can obtain
“parrot” arrow-hexagons

1 2 3 4

Fig. 31 The first quartet of “green-beaked parrots” (1–4)



Arrow-Hexagons 433

5 6 7 8

Fig. 32 The second quartet of the “green-beaked parrots” (5–8). The green-beak parrots 5 and 8 are twins,
as well as are the 6 and 7

9 10 11 12

Fig. 33 The third quartet of the “green-beaked parrots” (9–12). The green-beaked parrots 9 and 10 are
twins, as are parrots 11 and 12

green-beaked parrot “5” its full 3D structure
inside the tetrahexahedron

the chromatic signature
of the green-beaked parrots

Fig. 34 The chromatic signature of the “green-beaked parrot” arrow-hexagons

Similarly, the third and last quartet of green-beaked parrots is the one resulting from
a 1-move (in the weak hexagons 1, 2, 3 and 4, respectively) of the vertices b2, b3, b4 and
b1, respectively (Fig. 33).

Now, if one considers not only the arrows (subalternation) but also the other three
Aristotelian oppositional relations (contradiction, contrariety and subcontrariety) these
arrow-hexagons have an inner structure that is dramatically different from that of strong
and weak hexagons; one diagonal becomes blue instead of red (which means that con-
tradiction along this diagonal has become a contrariety). This can be highlighted by the
chromatic signature of the green-beaked parrots (here we highlight this feature on green-
beak parrot “5” in our previous list) (Fig. 34).

The second possible 1-move transformation of a weak hexagon consists in moving not
a blue, but any of the three green vertices of any of the weak hexagons. For reasons similar
to the previous ones, this gives 12 arrow-hexagons, each isomorphic to the one previously
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1 2 3 4

Fig. 35 The first quartet of “blue-beaked parrots” (1–4). As one can see, blue-beaked parrots 1 and 3 are
twins, as are 2 and 4

5 6 7 8

Fig. 36 The second quartet of “blue-beaked parrots” (5–8). As one can see, blue-beaked parrots 5 and 8
are twins, as parrots 6 and 7

9 10 11 12

Fig. 37 The third quartet of “blue-beaked parrots” (9–12)

called “X1 bis”, which from now we shall call “blue-beaked parrots”. As previously, it
turns out that there are 12 of these, which we distribute (for easiness) into three quartets.

Relying as previously on the list of the weak hexagons 1–4 (Fig. 30), the first quartet is
the one resulting from a 1-move of the vertices g1, g4, g3 and g2, respectively (Fig. 35).

The second quartet of blue-beaked parrots is the one obtained by a 1-move of the ver-
tices g4, g1, g2 and g3, respectively (Fig. 36).

The third and last quartet of blue-beaked parrots is that obtained by a 1-move of the
vertices g2, g3, g4 and g1, respectively (Fig. 37).

One should remark that blue-beaked parrots 9 and 10 are twins, as are parrots 11 and 12.
The chromatic signature of the blue-beaked parrots is the following (here we highlight

this feature on blue-beaked parrot “8” in our previous list) (Fig. 38).

Remark It is a meaningful feature that the green-beaked and the blue-beaked parrots are
“oppositionally dual” (one can be obtained from the other by inversing the direction of
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blue-beaked parrot “8” its full 3D structure
inside the tetrahexahedron

the chromatic signature
of the blue-beaked parrots

Fig. 38 The chromatic signature of the “blue-beaked parrot” arrow-hexagons

weak blue-beaked parrotgreen-beaked parrot

one red diagonal
becomes green

(and a     vertex
 becomes    )

(and a     vertex
 becomes    )

one red diagonal
becomes blue

Fig. 39 “Weak” hexagons lie between “green-beaked parrot” hexagons and “blue-beaked parrot”
hexagons

Fig. 40 A morphogenetic chart
of the arrow-hexagons of the
oppositional tetrahexahedron
know so far

strong
(6)

weak
(4)

blue-beaked parrot
(12)

green-beaked parrot
(12)

1-move

1-move

1-move

1-move

each arrow and by exchanging blue and green). As previously, this is highlighted by their
chromatic signature (Fig. 39).

We are now able to put into some order at least three of the four kinds of arrow-
hexagons that we have encountered so far. In fact, at a meta-level, we have the following
“transformation path”, between green or blue-beaked parrots, between strong and weak
hexagons: a strong hexagon can become weak by undergoing a temporary 1-move trans-
formation into a green- or a blue-beaked parrot (and vice versa); and a green-beaked
parrot can become blue by undergoing a temporary 1-move transformation into a strong
or a weak hexagon (and vice versa) (Fig. 40).

Note that in some sense we can order these arrow hexagons from the viewpoint of what
we can call their “oppositional degeneration” (Fig. 41).

This gives a second kind of morphogenetic chart, namely one where the transitions
between different kinds of arrow-hexagons follow the progression of the degeneration
(Fig. 42).
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strong weak parrot

Fig. 41 Arrows-hexagons, so far, can be put in linear order of growing “oppositional degeneration”

Fig. 42 A morphogenetic de-
generation chart: a possible way
of modelling “oppositional en-
tropy”

weak
(4)

1

2 2

strong
(6)

blue-beaked parrot
(12)

green-beaked parrot
(12)

These are possibly the first elements of a wider study of how oppositional (hexagonal)
structures can transform themselves into others through small transformations. So let us
see what comes next.

What are all the possible 1-move transformations of a parrot? In order to answer that
question, several distinct cases must be considered, for parrots lose several symmetries
with respect to the strong and weak hexagons (although they still possess some). We re-
strict ourselves to the transformations of a green-beaked parrot (and take the one called “5”
in our list). The possible transformations occasioned by a move of the parrot’s “beak” are
the following two: one is a 1-move transformation, the other is a 2-moves transformation
(Fig. 43).

This brings no novelty: the 1-move generates a strong hexagon while the 2-moves
transformation generates the green-beaked parrot twin of the starting one.

The transformations occasioned by a move of the parrot’s “tail” are the following two,
both of which are a 1-move (Fig. 44).

green-beaked parrot “5”
(its “beak” is in orange)

green-beaked parrot “8”
(twin of the “5”)

strong

Fig. 43 The possible 1-move (and 2-moves) transformation(s) of a parrot’s “beak”
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green-beaked parrot “5”
(its “tail” is in orange)

unknown (“X2”) weak “1”

Fig. 44 The possible 1-move transformations of a parrot’s “tail”

green-beaked parrot “5”
(its “right eye” is in orange)

unknown (“X3”) unknown (“X4”)

Fig. 45 The possible 1-move (and 2-moves) transformation(s) of a parrot’s “eye”

One can see that one of these two 1-move transformations leads to the new kind of
arrow-hexagon called previously “X2” by us (we shall study it in the next section), while
the other leads to a weak hexagon.

Next, the transformations occasioned by a move of one of the parrot’s “eyes” are, in
turn, the following two, the first of which is a 1-move, while the second is a 2-moves
transformation (Fig. 45).

One can see that the 1-move transformation leads to a new kind of arrow-hexagon,
which we call momentarily “X3”, while the 2-moves transformation leads to a further
new arrow-hexagon, which we call momentarily “X4” (both will be studied later in this
chapter).

Finally, no move of any of the parrot’s two “legs” leads to a viable arrow-hexagon
(Fig. 46).

green-beaked parrot “5”
(its “right leg” is in orange)

no arrow-hexagon

Fig. 46 A parrot’s “leg” admits neither a 1-move nor a 2-moves transformation
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As a global result, the green-beaked parrot “5” studied here leads (as well as any other
parrot), by a 1-move transformation of any of its vertices, to five possible arrow-hexagons.

Being done with parrots, let us turn to one new family of arrow-hexagons.

3.4 The Unknown Case “X2” Consists of “Book” Arrow-Hexagons

As it happens, with respect to the morphogenetic chart of the previous section, the blue
and green parrots can be transformed into each other by a 1-move transformation in an-
other way. This is done by passing through a new kind of arrow-hexagon, the one that we
previously called “X2”, which we now call, for a visually understandable reason, “book”.
There are 12 such book-shaped arrow-hexagons, which we distribute into three quartets.
The book-hexagons can also be obtained, outside our game, starting from the oppositional
cube (i.e. the ˛4-structure, the “heart” of the oppositional tetrahexahedron). By deleting,
one by one, each of the four front–rear arrows of the cube (as well as those touching
these), one obtains the first quartet of book-shaped hexagons (Fig. 47).

These four are also generated, respectively, by a 1-move of the tail of the green-beaked
parrots 1, 2, 3 and 4 or (equivalently) by a 1-move of the tail of the blue-beaked parrots
3, 4, 1 and 2. As one can see, books 1 and 3 are “twins” (in a sense comparable to what
justified us speaking about “twin parrots”), and books 2 and 4 are twins as well.

Similarly, by deleting, one by one, each of the four vertical arrows of the oppositional
cube, one obtains the second quartet of book-shaped hexagons (labelled 5 to 8) (Fig. 48).

Again, these four are also generated, respectively, by a 1-move of the tail of the green-
beaked parrots 6, 8, 7 and 5 or (equivalently) by a 1-move of the tail of the blue-beaked
parrots 7, 5, 6 and 8. As one can see, books 5 and 7 are twins, as are books 6 and 8.

1 2 3 4

Fig. 47 The first quartet of “books” (1–4)

5 6 7 8

Fig. 48 The second quartet of the “books” (5–8)
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9 10 11 12

Fig. 49 The third quartet of the “books” (9–12)

book “8” its full 3D structure
inside the tetrahexahedron

chromatic siganture
of the books

(oppositionally self-dual)

Fig. 50 The chromatic signature of the “book” arrow-hexagons

7 10 1 2126 11 54

Fig. 51 Triples of books (one for each quartet) can pave the tetrahexahedron’s heart: the oppositional
cube

In the same way, by deleting the four horizontal arrows of the cube, one by one, we
obtain the third and last quartet of books (Fig. 49).

As previously, these four books can also be generated by a 1-move of the tail of the
green-beaked parrots 12, 10, 11 and 9 or (equivalently) by a 1-move of the tail of the
blue-beaked parrots 11, 9, 12 and 10. Clearly, books 9 and 11 are twins, as are books 10
and 12.

As it happens, each of these 12 books has the same internal structure. This can be put
into evidence by drawing the chromatic signature of any of the book-shaped hexagons (we
do it for book “8” in our list) and this signature is “oppositionally self-dual” (Fig. 50).

Note that triples of books (such that each triple contains one book of each quartet) can
pave the tetrahexahedron’s heart (Fig. 51).

We can now express the morphodynamical relations holding between these five kinds of
hexagons (strong, weak, books, blue-beaked parrots and green-beaked parrots) through the
following morphogenetic chart (which refines the one of the previous section) (Fig. 52).
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Fig. 52 Morphogenetic chart of
the arrow-hexagons contained
inside the oppositional tetrahexa-
hedron known so far

strong
(6)

book
(12)

weak
(4)

blue-beaked parrot
(12)

green-beaked parrot
(12)

Note that, in the middle line, we have a left–right symmetry with respect to being green
or blue (whereas we have no top–bottom symmetry; the structure of the strong hexagons
cannot be said to be symmetric with respect to that of the weak hexagons). The major
gain thus obtained is that one can go, by minimal transformations (i.e. 1-moves), from
one to the other of each of these five families of arrow-hexagons (we come back to this
at the end of the paper). Note also that, so far, geometrically speaking, the “books” play
a pivotal role. More generally the strong hexagons, the weak hexagons and the books are
oppositionally self-dual; in them there is a perfect balance of blue and green).

Moreover, as one can see, one diagonal of the parrots originating the books has become
an arrow (contradiction has become subalternation, i.e. implication), so that from strong
to book, through weak and parrot, we observe, so to say, a growing degeneration of the
chromatic internal structure of the arrow-hexagons (i.e. a loss of balanced symmetries)
(Fig. 53).

The criteria for ordering such hexagons are not straightforward – they consist in com-
paring the diagonals, the simplexes and the vertices – so that in some cases such an
ordering can be seen as a matter of choice. We will try to keep a linear order (although in

strong weak parrot book

Fig. 53 Arrow-hexagons, so far, can be put in a linear order of growing “oppositional degeneration”

Fig. 54 Morphogenetic chart
of “oppositional degeneration”:
a possible way of modelling
“oppositional entropy”

strong
(6)

3 3

22

1 book
(12)

weak
(4)

blue-beaked parrot
(12)

green-beaked parrot
(12)
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book “8”
(in orange one of its “blue corners”) unknown (“X4”)

Fig. 55 The only possible 1-move transformation of a book’s “blue corner”

book “8”
(in orange one of its “green corners”) unknown (“X4 bis”)

Fig. 56 The only possible 1-move transformation of a book’s “green corner”

some cases, as we will see, a fuzzy order relation would be more appropriate). The linear
order of the four families of arrow-hexagons considered so far (“strong > weak > par-
rot > book”) gives the following alternative morphogenetic chart (expressing some kind
of “degeneration dynamics”) (Fig. 54).

This might be read as a “tendency” (or propensity) maybe pertaining to some kind of
“oppositional entropy”.

What are all the possible 1-move transformations of a book? Do these 1-moves yield
new arrow-hexagons? Let us first consider what happens when one of the two “blue cor-
ners” (the two being symmetrical and, therefore, leading to symmetrical results) of a book
is left free to move (we consider here book “8” of our previous list) (Fig. 55).

The only possible transformation leads to a figure that has not yet been seen, which we
will therefore momentarily call “X4” (we will study it later on in this chapter).

Secondly, let us consider what happens if we move one of its two “green corners”
(symmetry considerations will spare us the analysis of the other green corner) (Fig. 56).

The only possible transformation leads to a figure that has not yet been seen but is very
similar (i.e. oppositionally dual) to the one previously called “X4”. Consequently, we will
call it momentarily “X4 bis” (and study it later together with “X4”).

What are the possible 1-move transformations reached by a book when its “green
spine” moves? (Fig. 57).

As we can see, the only 1-move transformation is the one leading to a new instance
of parrot (blue-beaked), which is something we know already. Another transformation is
possible, but it is a 2-moves transformation (that goes through the previous parrot), the
result of which is a weak hexagon, also something that we already know.
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book “8”
(in orange its “green spine”)

blue-beaked parrot “8” weak “4”

Fig. 57 The possible 1-move (and 2-moves) transformation(s) of a book’s “green spine”

book “8”
(in orange its “blue spine”) green-beaked parrot “5” weak “1”

Fig. 58 The possible 1-move (and 2-moves) transformation(s) of a book’s “blue spine”

Finally, what are the possible transformations of a book when the vertex left free for
all possible 1-moves is the “blue spine” (we can expect this case to be oppositionally dual
with respect to the previous one)? (Fig. 58)

The answer is that in this case (as in the previous one) there is only one 1-move trans-
formation; it leads to a (green-beaked) parrot, and this is something that we already know.
A 2-moves transformation (going through this parrot) leads to a weak hexagon, also some-
thing that we already know.

So, let us now turn to the study of the next new shape of the arrow-hexagon, the one
momentarily called by us “X4”.

3.5 The Unknown Case “X4” Consists of “Half-Crab” Hexagons

As we have just seen in the previous section, another transformation of the books is pos-
sible. This gives a new kind of arrow-hexagon, which we called momentarily “X4” (and
“X4 bis”). From now on let us call this arrow-hexagon a “half-crab”. As it happens, there
are neither one (as in the case of the strong, weak and book hexagons), nor two (as in
the case of the parrot hexagons), but four kinds of such half-crab hexagons. As we shall
see, this is due to the fact that two symmetries are at stake here: an oppositional duality
blue/green and a geometrical 3-D symmetry left/right (like for some chemical molecules,
which admit a levorotatory and dextrorotatory version). Complexively, the tetrahexahe-
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Fig. 59 Arbitrary qualitative
terminology useful for handling
book hexagons so to reach half-
crab hexagons

left upper blue corner

right upper blue corner

right lower green corner
left lower green corner

the book “6”

dron contains 48 half-crabs. Since the only way we know (at least so far) to obtain
half-crabs is from books, it is upon books that we must rely for starting our exploration.
To make what follows easier, let us give fixed qualitative names to four of the six vertices
of the book hexagon (Fig. 59).

The first of the four variants is what we will call the “left blue half-crabs”. It is obtained
by moving the “right lower green corner” of each book hexagon. As usual, to make things
easier we present the 12 of them as consisting of three quartets.

The first quartet results from a 1-move (in the book hexagons 1, 2, 3 and 4, respectively)
of the vertices g4, g1, g2 and g3 (Fig. 60).

The second quartet consists of a 1-move (in the book hexagons 5, 6, 7 and 8, respec-
tively) of the vertices g3, g1, g4 and g2 (Fig. 61).

The third quartet consists of a 1-move (in the book hexagons 9, 10, 11 and 12, respec-
tively) of the vertices g2, g4, g3 and g1 (Fig. 62).

The chromatic signature of the left blue half-crabs is the following (here we consider
element “11” in our list) (Fig. 63).

1 2 3 4

Fig. 60 The first quartet of “left blue half-crabs” (1–4)

5 6 7 8

Fig. 61 The second quartet of “left blue half-crabs” (5–8)
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9 10 11 12

Fig. 62 The third quartet of the “left blue half-crabs” (9–12)

left blue half-crab “11”

u u

u

b2 b2

b3

b1 b3 b1

b2

g4 g4

g2
g4

g2

b3g2

b1

its full 3D structure
inside the tetrahexahedron

chromatic signature
of the left blue half-crabs

(knot-theoretical)

Fig. 63 The chromatic signature of the “left blue half-crab” arrow-hexagons

1 2 3 4

Fig. 64 The first quartet of the “right blue half-crabs” (1-4)

The second of the four kinds of half-crabs is what we will call the “right blue half-
crabs”. It is obtained by moving the “left lower green corner” of each book hexagon.
Again, it consists of 12 elements, which we here present in three quartets.

The first quartet consists of a 1-move (in the book hexagons 1, 2, 3 and 4, respectively)
of the vertices g2, g3, g4 and g1 (Fig. 64).

The second quartet consists of a 1-move (in the book hexagons 5, 6, 7 and 8, respec-
tively) of the vertices g4, g2, g3 and g1 (Fig. 65).

The third quartet consists of a 1-move (in the book hexagons 9, 10, 11 and 12, respec-
tively) of the vertices g3, g1, g2 and g4 (Fig. 66).

The chromatic signature of the right blue half-crabs is the following (we consider here
element “2” in our list) (Fig. 67).

As we can remark, these two kinds of half-crabs (out of the four) differ with respect to
their 3-D geometry (they are like mirror images, levorotatory and dextrorotatory), and this
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5 6 7 8

Fig. 65 The second quartet of the “right blue half-crabs” (5–8)

9 10 11 12

Fig. 66 The third quartet of the “right blue half-crabs” (9–12)

right blue half-crab “2” its full 3D structure
inside the tetrahexahedron

chromatic signature
of the right blue half-crabs

(knot-theoretical)

u u

g4

b2 b2

b3

b1
b2 b3

b1

g4

g1

g4

g1 u

g1

b3

b1

Fig. 67 The chromatic signature of the “right blue half-crab” arrow-hexagons

Fig. 68 Comparison of the
(knot-theoretical) chromatic
signatures of the left and right
“blue half-crabs”; they are 3-D
mirror images

left blue half-crab right blue half-crab

can also be expressed with respect to their “chromatic signature”, i.e. this left–right 3-D
symmetry can be expressed even in 2-D space, provided that one distinguishes between
what is crossing and what is crossed in an intersection (i.e. provided one resorts to knot
theory instead of graph theory for building the chromatic signature) (Fig. 68).
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1 2 3 4

Fig. 69 The first quartet of the “left green half-crabs” (1–4)

5 6 7 8

Fig. 70 The second quartet of the “left green half-crabs” (5–8)

9 10 11 12

Fig. 71 The third quartet of the “left green half-crabs” (9–12)

The third of the four kinds of half-crabs is what we propose calling the “left green half-
crabs”. It is obtained by moving the “left upper blue corner” of each book hexagon. There
are 12 instances of it, which we present here in three quartets.

The first quartet consists of a 1-move (in the book hexagons 1, 2, 3 and 4, respectively)
of the vertices b4, b1, b2 and b3 (Fig. 69).

The second quartet consists of a 1-move (in the book hexagons 5, 6, 7 and 8, respec-
tively) of the vertices b3, b1, b4 and b2 (Fig. 70).

The third quartet consists of a 1-move (in the book hexagons 9, 10, 11 and 12, respec-
tively) of the vertices b2, b4, b3 and b1 (Fig. 71).

The chromatic signature of this first group of green half-crabs is the following (here we
consider the left green half-crab “6” of our list) (Fig. 72).

The fourth and last kind of half-crab is composed of what we propose calling “right
green half-crabs”. They are obtained by moving the “right upper blue corner” of each
book hexagon. As previously, there are 12 instances of this kind, which for graphical ease
we present in three quartets.
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left green half-crab “6” its full 3D structure
inside the tetrahexahedron

the chromatic signature
of the left green half-crabs

(knot-theoretical)

g3

1

g3

b2 b2

g2

g3
b41

b2

b4 g1 b4 g1 g1

g2

g2

1

Fig. 72 The chromatic signature of the “left green half-crab” arrow-hexagons

1 2 3 4

Fig. 73 The first quartet of the “right green half-crabs” (1–4)

5 6 7 8

Fig. 74 The second quartet of the “right green half-crabs” (5–8)

The first quartet consists of a 1-move (in the book hexagons 1, 2, 3 and 4, respectively)
of the vertices b2, b3, b4 and b1 (Fig. 73).

The second quartet consists of a 1-move (in the book hexagons 5, 6, 7 and 8, respec-
tively) of the vertices b4, b2, b3 and b1 (Fig. 74).

The third quartet consists of a 1-move (in the book hexagons 9, 10, 11 and 12, respec-
tively) of the vertices b3, b1, b2 and b4 (Fig. 75).

The chromatic signature of this second group of green half-crabs is the following (here
we consider element “9” in our list) (Fig. 76).

As previously, for the first and the second kind of half-crabs (the left and right blue), the
third and the fourth kind here (the left and right green) differ not only in their 3-D shape
(they are 3-D mirror images, levorotatory and dextrorotatory), but also in their chromatic
signature, provided that the expression of the latter graphically distinguishes the segments
crossing from the segments being crossed (again, that is: resorting to knot theory instead
of to graph theory) (Fig. 77).
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9 10 11 12

Fig. 75 The third quartet of the “right green half-crabs” (9–12)

b4

g3

g3

b2 b2

d

g2

db4

b2

g3

g1
b4

g1 g1

g2

d

g2

right green half-crab “9” its full 3D structure
inside the tetrahexahedron

the chromatic signature
of the right green half-crabs

(knot-theoretical)

Fig. 76 The chromatic signature of the “right green half-crab” arrow-hexagons

left green half-crab right green half-crab

Fig. 77 Comparison of the (knot-theoretical) chromatic signatures of the left and right “green half-crabs”;
they are 3-D mirror images

With the further 3D rule (for 3D oppositional duality) of “exchanging the crossing
order”, the four chromatic signatures of the half-crabs are such that each one admits,
among the other three, one which is oppositionally dual to it, in fact the left blue with the
right green and the right blue with the left green (Fig. 78).

The half-crab can pave the surface of the oppositional tetrahexahedron, provided that
one remarks that each half-crab leaves one vertex untouched in its middle (let us call this
“the half-crab’s prisoner”). An example is a paving of the tetrahexahedron by two blue
half-crabs (one left and one right) and two green half-crabs (one left and one right). We
depict these, respectively, in light blue, grey, violet and orange (Fig. 79).

At this level the chart of the possible transformations between arrow-hexagons of the
ˇ3-structure is, therefore, the following (Fig. 80).
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left blue half-crab

these two are oppositionally dual these two are oppositionally dual

right green half-crab left green half-crabright blue half-crab

Fig. 78 The chromatic signatures of the blue and of the green half-crabs (left with right, right with left)
are oppositionally dual
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Fig. 79 The half-crab hexagons can pave (but leaving holes) the surface of the oppositional tetrahexahe-
dron

Fig. 80 The morphogenetic
chart of the arrow-hexagons of
the oppositional tetrahexahedron
know so far

strong
(6)

right blue half-crab
(12)

left blue half-crab
(12)

blue-beaked parrot
(12)

right green half-crab
(12)

left green half-crab
(12)

green-beaked parrot
(12)

weak
(4)

book
(12)

The left–right symmetry, which is a blue–green duality, is kept. However, here a further
symmetry appears, that between “right” and “left” half-crabs, which can be expressed by
turning this morphogenetic chart from 2-D to 3-D. The right “isomers” (of the half-crabs),
i.e. the levorotatory instances, belong to the “rear”, while the left “isomers” (of the half-
crabs), i.e. the dextrorotatory instances, belong to the front of the chart.

One should remark here that the chromatic signature of the half-crabs becomes even
more different – with respect to the one of the strong and weak hexagons – than that of
the parrots or of the books: one diagonal has become an arrow, another one has become
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strong weak parrot half-crabbook

Fig. 81 Arrow-hexagons, so far, can be put in linear order of growing “oppositional degeneration”

Fig. 82 The “morphogenetic
degeneration chart”: a possible
way of modelling “oppositional
entropy”
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1

book
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green (or blue) and one side of the green (or blue) triangle has become an arrow. If one
tries to catch this change with respect to the “degree of chromatic degeneration”, this
gives a linear ordering (strong > weak > parrot > book > half-crab) of the arrow-hexagons
(Fig. 81).

This linear ordering of the five families of arrow-hexagons considered so far gives, in
turn, the following updated version of the “morphogenetic degeneration chart” (Fig. 82).

Are there any more possible transformations? In a half-crab all the vertices are quali-
tatively different (for there are no symmetries inside the half-crab itself). So, all vertices,
and their movements, must be studied singularly.

Let us first consider the 1-move transformations of a half-crab made possible when its
“pincer” is left free to move. Here we consider the left blue half-crab number “8” in our
previous list (Fig. 83).

left green half-crab “8” (its “pincer” in orange) no arrow-hexagon

Fig. 83 A half-crab’s “pincer” admits neither a 1-move nor a 2-moves transformation



Arrow-Hexagons 451

the left blue half-crab “8” (its “elbow” in orange) book “8”

Fig. 84 The only possible 1-move transformation of a half-crab through its “elbow” leads to a book

the left blue half-crab “8” (its “inner leg” in orange) no arrow-hexagon

Fig. 85 Through its “inner leg” a half-crab admits neither a 1-move nor a 2-moves transformation

the left blue half-crab “8” (its “outer leg” in orange) unknown (“X5”)

Fig. 86 The only possible 1-move transformation of a half-crab through its “outer leg” leads to a new
kind of arrow-hexagon

As it happens, no transformation is possible in this case.
Secondly, let us consider what happens when it is a half-crab’s “elbow” that is left free

to move (Fig. 84).
As it turns out, only one 1-move transformation is possible in this case, namely one

which gives a book (here: book “8”).
Thirdly, let us consider what transformations of a half-crab are possible when what

moves is its “inner leg” (i.e. the “leg” closest to the half-crab’s pincer) (Fig. 85).
As it turns out, no transformation is possible in this case.
Fourthly, let us consider the 1-move transformations that are possible when what is left

free to move is the half-crab’s “outer leg” (i.e. the “leg” most distant from the pincer)
(Fig. 86).
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the left blue half-crab “8” (its “outer eye” in orange) unknown (“X6”)

Fig. 87 The only possible 1-move transformation of a half-crab through its “outer eye” leads to a new
kind of arrow hexagon

the left blue half-crab “8” (its “inner eye” in orange) blue-beaked parrot “4”unknown (“X3”)

Fig. 88 The possible 1-move (and 2-moves) transformation(s) of a half-crab’s “inner eye” leads to a new
kind of arrow-hexagon

As it happens, the only possible outcome is a new kind of arrow-hexagon, still un-
known, which we, therefore, will call momentarily “X5”.

Fifthly, let us consider the 1-move transformations that are possible when the free ver-
tex is the half-crab’s “outer eye” (i.e. the “eye” most distant with respect to the pincer)
(Fig. 87).

The only possible result in that case is an arrow-hexagon of a new kind, never seen
before, which we will therefore call momentarily “X6”.

Finally, let us consider the 1-move transformations possible when the free vertex of the
half-crab is its “inner eye” (i.e. the “eye” closest to the pincer) (Fig. 88).

As one can see, the only possible viable 1-move generates a transformation of the half-
crab into a new kind of arrow-hexagon, which we already saw was reachable from the
parrots, and we call it “X3”. Another transformation is possible, but it is a 2-moves one,
leading to a (here blue-beaked) parrot.

So, being finished with half-crabs, let us now study the arrow-hexagon “X3”.

3.6 The Unknown Case “X3” Consists of “Tortoise” Hexagons

As we have seen, a new kind of arrow-hexagon, “X3”, can be reached by a simple trans-
formation in two ways. The first way is from half-crabs: a given blue (or green) “tortoise”
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left blue half-crab “11” right blue half-crab “8”blue tortoise (= “X3”)

Fig. 89 “Tortoise” arrow-hexagons can be obtained by a 1-move transformation of half-crab arrow-
hexagons

blue-beaked parrot “12” blue-beaked parrot “8”blue tortoise (= “X3”)

Fig. 90 “Tortoise” arrow-hexagons can be obtained by a 1-move transformation of parrot arrow-hexagons

– from now on this is what we will call the “X3” – is reachable either from a left or from
a right blue (or green) half-crab (Fig. 89).

The second way is from parrots: any given blue (or green) tortoise is reachable from
a pair of blue (or green) parrots (Fig. 90).

As for the several other kinds of arrow-hexagons that we have already seen, tortoises
can be blue or green. Each of these two variants of tortoises has 12 instances, which we
present in three quartets for graphical ease.

The first quartet of blue tortoises (labelled 1–4) can first be obtained from the blue
half-crabs; either from the left blue half-crabs, namely 9, 11, 10, 12, by a 1-move of,
respectively, their vertices g1, g4, g3, g2; or from the right blue half-crabs, namely 5, 8, 6,
7, by a 1-move of, respectively, their vertices g1, g4, g3, g2. Alternatively, this first quartet
can be obtained from the blue-beaked parrots: either from 11, 12, 9, 10, by a 1-move of,
respectively, their vertices g2, g3, g4, g1; or from 7, 8, 5, 6, by a 1-move of, respectively,
their vertices g4, g1, g2, g3 (Fig. 91).

By a similar reasoning, the second quartet of blue tortoises (5–8) can be obtained first
from the half-crabs; either from the left blue half-crabs, namely 1, 3, 4, 2, by a 1-move
of, respectively, their vertices g1, g3, g2, g4; or from the right blue half-crabs, namely 9,
10, 12, 11, by a 1-move of, respectively, their vertices g1, g3, g2, g4. Alternatively, this
second quartet can be obtained from the blue-beaked parrots; either from 3, 1, 2, 4, by
a 1-move of, respectively, their vertices g4, g2, g3, g1; or from 11, 9, 10, 12, by a 1-move
of, respectively, their vertices g3, g1, g4, g2 (Fig. 92).

Finally, the third and last quartet of blue tortoises (9–12) can be obtained either from
the left blue half-crabs, namely 5, 6, 8, 7, by a 1-move of, respectively, their vertices g1,
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1 2 3 4

Fig. 91 The first quartet of “blue tortoises” (1–4)

5 6 7 8

Fig. 92 The second quartet of “blue tortoises” (5–8)

9 10 11 12

Fig. 93 The third quartet of “blue tortoises” (9–12)

g3, g4, g2; or from the right blue half-crabs, namely 1, 3, 2, 4, by a 1-move of, respectively,
their vertices g1, g3, g4, g2. Alternatively, this third quartet can be obtained from the blue-
beaked parrots: either from 3, 1, 4, 2, by a 1-move of, respectively, their vertices g2, g4, g3,
g1; or from 7, 5, 8, 6, by a 1-move of, respectively, their vertices g3, g1, g2, g4 (Fig. 93).

Consideration of the signature of the blue tortoises obliges us to introduce an interesting
new feature: the oppositional relation of “independence” (represented in orange). The
independence relation, which had already been discussed per se by other authors (e.g. A.
Sion), was discovered geometrically by H. Smessaert in about 2010. In the ˇ3-structure it
holds precisely between each pair of “spikes” (with the exception of those pairs that are
centrally symmetric, and therefore mutually contradictory). Considered as a whole, the 12
orange segments of independence of an oppositional tetrahexahedron form an “octahedron
of independence” (Fig. 94).

If we come back now to the blue tortoises by considering their chromatic signature,
we can see that in each of them a relation of independence appears and it concerns one of
the three sides of what, in a standard oppositional hexagon (i.e. a strong or a weak one),
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the oppositional tetrahexahedron (1968)

Smessaert (2010)

the 'envolope' (made of 'independency segments')
of the oppositional tetrahexahedron

Fig. 94 Each oppositional tetrahexahedron has an octahedral “envelope” made of “independence rela-
tions” (after Smessaert)

blue tortoise “8” chromatic signature
of the blue tortoises

its full 3D structure
inside the tetrahexahedron

Fig. 95 The chromatic signature of the “blue tortoise” arrow-hexagons

would have been its green hexagon of subcontrariety: a side that has now become orange
(here we consider blue tortoise “8” in our list) (Fig. 95).

When the aforementioned transformation of parrots into tortoises concerns green-
beaked parrots or green half-crabs (left or right), the result is a “green tortoise”. Here as
well, there are 12 of them, which for graphical ease we present in three quartets.

The first quartet of green tortoises (1–4) can be obtained either from the left green
half-crabs, namely 8, 5, 7, 6, by a 1-move of, respectively, their vertices b3, b2, b1, b4; or
from the right green half-crabs, namely 12, 10, 11, 9, by a 1-move of, respectively, their
vertices b3, b2, b1, b4. Alternatively, this first quartet can be obtained from the green-
beaked parrots: either from 9, 10, 11, 12, by a 1-move of, respectively, their vertices b4,
b1, b2, b3; or from 5, 6, 7, 8, by a 1-move of, respectively, their vertices b2, b3, b4, b1
(Fig. 96).

The second quartet of green tortoises (5-8) can be obtained either from the left green
half-crabs, namely 10, 9, 11, 12, by a 1-move of, respectively, their vertices b2, b4, b1,
b3; or from the right green half-crabs, namely 2, 4, 3, 1, by a 1-move of, respectively,
their vertices b2, b4, b1, b3. Alternatively, this second quartet can be obtained from the
green-beaked parrots: either from 2, 4, 3, 1, by a 1-move of, respectively, their vertices b3,
b1, b4, b2; or from 10, 12, 11, 9, by a 1-move of, respectively, their vertices b4, b2, b3, b1
(Fig. 97).

The third and last quartet of green tortoises (9–12) can be obtained either from the left
green half-crabs, namely 4, 2, 3, 1, by a 1-move of, respectively, their vertices b4, b2, b1,
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1 2 3 4

Fig. 96 The first quartet of the “green tortoises” (1–4)

5 6 7 8

Fig. 97 The second quartet of the “green tortoise” (5–8)

9 10 11 12

Fig. 98 The third quartet of “green tortoises” (9–12)

b3; or from the right green half-crabs, namely 6, 5, 7, 8, by a 1-move of, respectively, their
vertices b4, b2, b1, b3. Alternatively, this third quartet can be obtained from the green-
beaked parrots: either 4, 2, 3, 1, by a 1-move of, respectively, their vertices b3, b1, b2, b4;
or from 8, 6, 7, 5, by a 1-move of, respectively, their vertices b2, b4, b3, b1 (Fig. 98).

Green tortoises have, of course, a chromatic signature of their own (here we consider
green tortoise number “6” in our list) (Fig. 99).

As one can see, the chromatic signature of the green tortoises is oppositionally dual to
that of the blue tortoises (Fig. 100).

As it happens, this kind of arrow-hexagon is the one we found while studying the
oppositional geometry of partial order as distinct from the simpler oppositional geometry
of total order – this is Sesmat–Blanché’s hexagon of orders (cf. Sect. 2). So it can be
suggested (at least conjecturally) that blue tortoises are “attractors” with respect to what
we propose calling an “oppositional expansion”; each time a ˇ2-structure expands into
a ˇ3-structure (because some new oppositional position is added, like “||” in the case of
order), the six entities which initially decorated the ˇ2-structure (i.e. the six vertices of
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green tortoise “6” its full 3D structure
inside the tetrahexahedron

the chromatic signature
of the green tortoises

Fig. 99 The chromatic signature of the “green tortoise” arrow-hexagons

Fig. 100 From the viewpoint
of their chromatic signature the
blue and the green tortoises are
oppositionally dual

blue tortoise green tortoise

a strong hexagon) now decorate a blue tortoise hexagon. Let us call this blue tortoise the
“oppositional shadow” in the ˇ3-structure of the previous ˇ2-structure. A natural question
is that of knowing whether the green tortoises are, as the blue ones, attractors of something.
If this is the case, it could be said that tortoises have an oppositional role.

As for paving (by comparison with what we saw in Sects. 3.4 and 3.5 above on the
paving power of books and half-crabs), one can remark that tortoises (as well as half-
crabs) cannot pave the tetrahexahedron stricto sensu: they “cut” its volume (as do the
strong hexagons) instead of uniformly covering regions of its surface (by “possessing”
all the vertices of the covered region). Inside the perimeter of a tortoise hexagon two
vertices of the tetrahexahedron remain, so to say, “imprisoned” (as we have seen, each
half-crab has one “prisoner”). Nevertheless, in a broader sense a tortoise can be seen as
paving the tetrahexahedron’s surface; for a tortoise can be seen as a “tile” that covers 8
out of the 24 triangular faces of the tetrahexahedron. In this respect, a complete pavement
of the tetrahexahedron needs three tortoises (here we depict the pavement by three blue
tortoises, respectively depicted in orange, violet and grey). Conversely, given that there
are 24 tortoises, there should be at least eight different ways of paving a tetrahexahedron
with tortoises (Fig. 101).

We are now in the position of drawing a further, more complex version of the chart
representing the hexagonal morphodynamics of the ˇ3-structure with respect to the 11
patterns (and six families) of arrow-hexagons seen so far (Fig. 102).

It seems easy to compare, as for the “degree of oppositional degeneration”, the half-
crabs and the tortoises. One can argue that half-crabs are more degenerate (because inside
a single half-crab there is no left/right symmetry). If one says that, as we will, then the
“degeneration ordering” of the arrow-hexagons known so far can be seen as remaining
linear (Fig. 103).
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Fig. 101 Tortoise hexagons can pave (but with two holes each) the surface of the oppositional tetrahexa-
hedron
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book
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Fig. 102 The morphogenetic chart of the arrow-hexagons of the oppositional tetrahexahedron known so
far

strong weak parrot book tortoise half-crab

Fig. 103 Arrow-hexagons, so far, can be put in a linear order of growing “oppositional degeneration”
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Fig. 104 The “degeneration morphogenetic chart” of the arrow-hexagons of the oppositional tetrahexa-
hedron known so far

blue tortoise “2”
(in orange its “head”)

no arrow-hexagon

Fig. 105 No tortoise leads to a new arrow-hexagon through a 1-move transformation of its “head”

This yields the following “degeneration morphogenetic chart” of the arrow-hexagons
reached so far (Fig. 104).

Again, this might turn out to be meaningful in future studies of oppositional complexity
with respect to the idea of something like an “oppositional entropy”.

Lastly, what are the possible 1-move transformations of a tortoise (whatsoever)? Let us
consider first the 1-move transformations of a tortoise when its moving vertex is its “head”
(in the rest of this section we consider the blue tortoise number “2”) (Fig. 105).

As it happens, no other arrow-hexagon can be reached this way.
Secondly, let us consider the 1-move transformations of the same (blue) tortoise when

its free vertex is its “left arm” (for symmetry reasons, the case of the “right arm” is com-
parable) (Fig. 106).

As it happens, two arrow-hexagons can be reached this way: one is a (blue-beaked)
parrot (here: “12”) and the other is a (right blue) half-crab (here: “8”).
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blue tortoise “2”
(in orange its “left arm”)

blue-beaked parrot “12” right blue half-crab “8”

Fig. 106 The possible 1-move transformations of a tortoise through its “left arm”

blue tortoise “2”
(in orange its “left leg”)

no arrow-hexagon

Fig. 107 No tortoise leads to another arrow-hexagon through a 1-move (or a 2-moves) transformation of
one of its “legs”

blue tortoise “2”
(in orange its “tail”)

unknown “X7” unknown “X5”

Fig. 108 The possible 1-move (and 2-moves) transformation(s) of a tortoise through its “tail”

Thirdly, let us consider the outcomes of the transformation resulting from a 1-move of
its “left leg” (again, because of symmetry the case of the “right leg” will be comparable)
(Fig. 107).

As it turns out, no arrow-hexagon can be reached this way.
Finally, let us test the transformations resulting from the 1-move transformations of the

tortoise’s “tail” (Fig. 108).
In this case, the only possible useful 1-move transformation generates a new kind of

arrow-hexagon, the “X7”. Another transformation is possible by moving the tortoise’s tail,
but it is a 2-moves one, which also leads to a new kind of arrow-hexagon, “X5”.

Having finished the study of the tortoises let us now turn to one of the still unknown
new families of arrow-hexagons, “X7”.
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blue flying squirrel (= “X7”) blue tortoise “2” blue tortoise “8” blue tortoise “11”

Fig. 109 Each “flying squirrel” can be obtained by three different tortoises of the same colour (each time
by a 1-move transformation)

1 2 3 4

Fig. 110 The “blue flying squirrels” (1–4)

3.7 The Unknown Case “X7” Consists of “Flying-Squirrel” Hexagons

As we have seen, tortoise hexagons can be transformed into a new kind of arrow-hexagon,
called momentarily “X7” and which we will from now on call the “flying squirrel”
(Fig. 109).

The correlation is such that blue tortoises give rise to “blue flying squirrels”, whereas
green tortoises give rise to green flying squirrels. There are only four blue flying squirrels
(we label them 1, 2, 3 and 4). The first blue flying squirrel can be obtained from any one
of the three blue tortoises 3, 6, 10, by a 1-move of, respectively, their vertices g1, g4, g2;
the second blue flying squirrel is obtained from any of the three blue tortoises 1, 5, 9, by
a 1-move of, respectively, their vertices g3, g2, g4; the third of the blue flying squirrels
is obtained from any of the three blue tortoises 4, 7, 12, by a 1-move of, respectively,
the vertices g4, g1, g3; and the fourth blue flying squirrel is obtained by any of the three
blue tortoises 2, 8, 11, by a 1-move transformation of, respectively, the vertices g2, g3, g1
(Fig. 110).

The chromatic signature of the blue flying squirrels is the following (Fig. 111).
As we shall recall later, this chromatic signature seems to be rather important (for it

appears in quite interesting contexts, cf. Sect. 2 above).
When instead of from blue we start with green tortoises, we obtain “green flying squir-

rels”. There are four of them (which we label 1, 2, 3 and 4). The first green flying squirrel
is obtained from any of the three green tortoises 1, 8, 12, by a 1-move of, respectively,
their vertices b1, b4, b2; the second green flying squirrel is obtained from any of the three
green tortoises 3, 7, 11, by a 1-move of, respectively, their vertices b3, b2, b4; the third
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blue flying squirrel “4” its full 3D structure
inside the tetrahexahedron

the chromatic signature
of the blue flying squirrels

Fig. 111 The chromatic signature of the “blue flying squirrel” arrow-hexagons

1 2 3 4

Fig. 112 The “green flying squirrels” (1–4)

green flying squirrel is obtained from any of the three green tortoises 2, 5, 10, by a 1-move
of, respectively, their vertices b4, b1, b3; and the fourth green flying squirrel is obtained
from any of the three green tortoises 4, 6, 9, by a 1-move of, respectively, their vertices
b2, b3, b1 (Fig. 112).

The chromatic signature of the green flying squirrels is the following (Fig. 113).
Again, as we suggested when speaking about “oppositional distribution” (cf. Sect. 2),

this chromatic signature seems to be quite meaningful.
As usual, the two signatures, the one of the blue and the one of the green flying squir-

rels, are oppositionally dual (Fig. 114).
It must be remarked that these two kinds of arrow-hexagons are attractors with respect

to oppositional ^-distribution and _-distribution, respectively (cf. Sect. 2 above). In other
words, flying squirrels have an “oppositional role”.

green flying squirrel “4” its full 3D structure
inside the tetrahexahedron

the chromatic signature
of the green flying squirrels

Fig. 113 The chromatic signature of the “green flying squirrel” arrow-hexagons
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appears in “∧-distributions”
(conjunctive combination)

blue flying squirrel green flying squirrel

appears in “∨-distributions”
(disjunctive combination)

Fig. 114 From the viewpoint of their chromatic signatures the blue and the green flying squirrels are
oppositionally dual
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Fig. 115 The four blue flying squirrels and the four green flying squirrels can pave (but each with a hole)
the tetrahexahedron

Can the squirrels “pave” the tetrahexahedron? In a sense, they can, assumed, however,
that they keep one vertex inside their perimeter untouched; this is the flying squirrel’s
“prisoner”. Since squirrels cover six faces and since the tetrahexahedron has 24 faces,
a tetrahexahedron can be paved by four squirrels at a time. One pavement is given by the
four blue flying squirrels (here we depict them in orange, grey, red and brown), the other
is given by the four green flying squirrels (here we depict them in blue, violet, pink and
green) (Fig. 115).

We can now reshape our provisory morphogenetic chart taking into account the flying
squirrels (Fig. 116).

If we try to add the case of the flying squirrels to our study of the degeneration ordering
of the arrow-hexagons things seem to be less simple than previously: (a) flying squirrels
are indeed very symmetric, (b) but they lose much “colour” with respect to the standard of
the strong hexagons. These two features make it difficult to compare the flying squirrels to
the half-crabs. Nevertheless, we will suppose that it makes sense to see the flying squirrels
as more degenerated than the half-crabs, thus arriving at the following linear ordering of
the arrow-hexagons known so far (Fig. 117).

If we accept this ordering (but some alternatives, including partial order, could be pos-
sible without harm), this gives the following “oppositional morphogenetic degeneration
chart” (Fig. 118).

Are there more arrow-hexagons reachable from the flying squirrels? In order to check
this, let us study the possible changes of a flying squirrel. Flying squirrels are very sym-
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Fig. 116 The morphogenetic chart of the arrow-hexagons of the oppositional tetrahexahedron known so
far

strong weak parrot book tortoise half-crab flying-squirrel

Fig. 117 Arrow-hexagons, so far, can be put in a linear ordering of growing “oppositional degeneration”
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Fig. 118 The degeneration chart of the arrow-hexagons of the oppositional tetrahexahedron known so far

metrical, they have a perfect ternary symmetry, and qualitatively speaking they have only
two different kinds of vertices: either blue (or green) or blue–green.

Let us consider first the transformations of a flying squirrel through a 1-move of its
blue (or green) “head” (here we consider blue flying squirrel number “4”) (Fig. 119).
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blue flying squirrel “4”
(in orange its “head”)

no arrow-hexagon

Fig. 119 No flying squirrel leads to a new arrow-hexagon through a 1-move of its “head”

blue flying squirrel “4”
(in orange its “left arm”)

blue tortoise “8” unknown (“X5”)

Fig. 120 The possible 1-move transformations of a flying squirrel through its “left arm”

As it happens, this leads to no other arrow-hexagon. Given the perfect ternary symmetry
of the flying squirrels this negative result also concerns the other two blue (or green)
vertices of the blue (or green) flying squirrel.

Secondly, let us consider the transformations occasioned by a 1-move of the flying
squirrel’s green-blue “left arm” (Fig. 120).

In this case, two arrow-hexagons can be obtained: either a (blue) tortoise (here: number
“8”), or an unknown arrow-hexagon momentarily called “X5” (given its perfect ternary
symmetry, the same result concerns the other two green–blue vertices of the flying squir-
rel).

Being done with the flying squirrels let us turn to one of the still unknown new families
of arrow-hexagons, “X5”.

3.8 The Unknown Arrow-Hexagon “X5” Is a “Shell”

Let us call “shells” the new kind of arrow-hexagon of the oppositional tetrahexahedron
that we momentarily labelled “X5”. A shell can be reached in two independent ways.
Firstly, it can be obtained from the half-crabs (left or right) (Fig. 121).

Secondly, the shell can be obtained from the flying squirrels (Fig. 122).
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left blue half-crab “8” shell (= “X5”) right blue half-crab “8”

Fig. 121 “Shell” arrow-hexagons can be obtained by a 1-move transformation of half-crab arrow-
hexagons

shell (= “X5”) blue flying squirrel “4”

Fig. 122 “Shell” arrow-hexagons can be obtained by a 1-move transformation of flying squirrel arrow-
hexagons

As it happens, in the tetrahexahedron there are 24 shells, 12 of which are “blue shells”,
which we present, for graphical ease, in three quartets.

The first quartet of blue shells can be obtained in three different ways. Either from the
left blue half-crabs 1, 2, 3, 4, by a 1-move, respectively, of their vertices g2, g3, g4, g1;
or from the right blue half-crabs 1, 2, 3, 4, by a 1-move, respectively, of their vertices g4,
g1, g2, g3; or, finally, from the blue flying squirrels 2, 4, 1, 3, by a 1-move, respectively,
of their vertices h, f, h, f (Fig. 123).

The second quartet of blue shells can be obtained either from the left blue half-crabs 5,
6, 7, 8, by a 1-move, respectively, of their vertices g4, g2, g3, g1; or from the right blue
half-crabs 5, 6, 7, 8, by a 1-move, respectively, of their vertices g3, g1, g4, g2; or, finally,

1 2 3 4

Fig. 123 The first quartet of the “blue shells” (1–4)
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5 6 7 8

Fig. 124 The second quartet of the “blue shells” (5–8)

9 10 11 12

Fig. 125 The third quartet of the “blue shells” (9-12)

the blue shell “8” its full 3D structure
inside the tetrahexahedron

the chromatic signature
of the blue shells

Fig. 126 The chromatic signature of the “blue shell” arrow-hexagons

from the blue flying squirrels 2, 1, 3, 4, by a 1-move, respectively, of their vertices d, u, d,
u (Fig. 124).

The third quartet of blue shells can be obtained either from the left blue half-crabs 9,
10, 11, 12, by a 1-move, respectively, of their vertices g3, g1, g2, g4; or from the right
blue half-crabs 9, 10, 11, 12, by a 1-move, respectively, of their vertices g2, g4, g3, g1; or,
finally, from the blue flying squirrels 2, 1, 4, 3, by a 1-move, respectively, of their vertices
r, l, r, l (Fig. 125).

As one can see, the blue shells have the following chromatic signature (here we con-
sider blue shell number “8” in our list) (Fig. 126).

This signature is, so to say, weirder than any previous one. The only thing of the interior
(of the hexagon) that is kept with respect to the standard oppositional hexagon (strong or
weak) is the blue triangle of contrariety.
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1 2 3 4

Fig. 127 The first quartet of the “green shells” (1–4)

5 6 7 8

Fig. 128 The second quartet of “green shells” (5–8)

Similarly, there are 12 green shells, which we present, for graphical ease, in three quar-
tets.

The first quartet of green shells can be obtained in three different ways. Either from the
left green half-crabs 1, 2, 3, 4, by a 1-move, respectively, of their vertices b2, b3, b4, b1;
or from the right green half-crabs 1, 2, 3, 4, by a 1-move, respectively, of their vertices b4,
b1, b2, b3; or, finally, from the green flying squirrels 1, 2, 3, 4, by a 1-move, respectively,
of their vertices f, h, f, h (Fig. 127).

The second quartet of green shells can be obtained either from the left green half-crabs
5, 6, 7, 8, by a 1-move, respectively, of their vertices b4, b2, b3, b1; or from the right green
half-crabs 5, 6, 7, 8, by a 1-move, respectively, of their vertices b3, b1, b4, b2; or, finally,
from the green flying squirrels 3, 4, 2, 1, by a 1-move, respectively, of their vertices u, d,
u, d (Fig. 128).

The third quartet of green shells can be obtained either from the left green half-crabs
9, 10, 11, 12, by a 1-move, respectively, of their vertices b3, b1, b2, b4; or from the right
green half-crabs 9, 10, 11, 12, by a 1-move, respectively, of their vertices b2, b4, b3, b1;
or, finally, from the green flying squirrels 4, 3, 2, 1 by a 1-move, respectively, of their
vertices l, r, l, r (Fig. 129).

Green shells have the following chromatic signature (here we consider green shell num-
ber “12” in our list) (Fig. 130).

As usual, the chromatic signatures of the blue and green shells are mutually opposi-
tionally dual (Fig. 131).

It is worth mentioning that in some sense, at least visually, this kind of hybrid hexagon
appears in the aforementioned study of 1968 by Sauriol (cf. Sect. 2 above). Notice also
that one can see that shells can “pave” the tetrahexahedron’s surface, and differently from
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9 10 11 12

Fig. 129 The third quartet of the “green shells” (9–12)

the green shell “12” its full 3D structure
inside the tetrahexahedron

the chromatic signature
of the green shells

Fig. 130 The chromatic signature of the “green shell” arrow-hexagons

Fig. 131 From the viewpoint
of their chromatic signatures
the blue and the green shells are
oppositionally dual

chromatic signature
of the blue shells

chromatic signature
of the green shells

the half-crabs, the tortoises and the flying squirrels, the shells do pave perfectly (i.e. with-
out holes inside their own hexagonal perimeter). Since a shell covers four out of the 24
triangular faces of the tetrahexahedron, we have that one can pave the latter with six shells
(Fig. 132).

From this viewpoint the shells (with four faces and six instances) and the flying squir-
rels (with six faces and four instances) could even be “dual” in some new geometric sense.

With this eighth new kind of oppositional arrow-hexagon we can update our provisory
morphogenetic chart accordingly (Fig. 133).

If we now address the question of the “degeneration ordering” of the eight families of
arrow-hexagons, the answer is not immediately straightforward. The chromatic signature
of the shells has a strong left/right symmetry, but at the same time it has lost many standard
colours, so it is difficult to compare it with some of the most degenerate arrow-hexagons.
Let us suppose, nevertheless, that it makes sense to put the shells below the flying squirrels
in the degeneration order (Fig. 134).
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Fig. 132 One of the possible ways of paving the oppositional tetrahexahedron with six shell hexagons
(three blue and three green)
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Fig. 133 The morphogenetic chart of the arrow-hexagons of the oppositional tetrahexahedron known so
far

strong weak parrot book tortoise half-crab flying-squirrel shell

Fig. 134 Arrow-hexagons, so far, can be put in a linear order of growing “oppositional degeneration”

If we adopt this hypothesis (the linear character of the ordering of the degeneration of
the signatures of the eight arrow-hexagons known so far) we can express it through the
following refined version of the “morphogenetic degeneration chart” (Fig. 135).

Are there any more arrow-hexagons reachable from here? In order to answer this ques-
tion we now have to examine the possible transformations of a shell.

Let us first consider the 1-move transformations of a shell made possible when its
“head” is left free to move (here we consider blue shell number “8”) (Fig. 136).
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Fig. 135 The morphogenetic “degeneration chart” of the arrow hexagons of the oppositional tetrahexa-
hedron known so far

blue shell “8” (its “head” is in orange) blue flying squirrel “4” blue tortoise “8”

Fig. 136 The possible 1-move (and 2-moves) transformation(s) of a shell through its “head”

blue shell “8” (its “left hand” in orange) unknown (“X6”)

Fig. 137 The only possible 1-move transformation of a shell through one of its “hands” (left or right)
leads to a new arrow-hexagon

As one can see, the only possible 1-move metamorphosis transforms the (blue) shell
into a (blue) flying squirrel; another possible transformation leads to a (blue) tortoise, but
this is reached through a 2-moves transformation, so that it does not count here.

Secondly, let us consider the possible transformations of a shell when the 1-move trans-
formation that it undergoes concerns its “left hand” (the right hand will give a symmetric
case) (Fig. 137).
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blue shell “8” (its “left elbow” is in orange) right blue half-crab “8”

Fig. 138 The only possible 1-move transformation of a shell through its “left elbow”

blue shell “8” (its “tail” is in orange) no arrow-hexagon

Fig. 139 No shell leads to another arrow-hexagon through a 1-move transformation of its “tail”

As we can see, the only possible viable outcome of this is a new kind of arrow-hexagon,
namely one already mentioned by us but not yet treated (we will do this in the next sec-
tion), “X6”.

Thirdly, let us consider the 1-move transformations of a shell’s “elbow” (Fig. 138).
As one can see, there is only one possible viable outcome here, which is a right (blue)

half-crab.
Finally, let us consider the 1-move transformations of a shell’s “tail” (Fig. 139).
As one can see, this does not lead to a viable solution (i.e. no arrow-hexagon can be

obtained this way).
Having examined the shells, let us now turn to the still unknown family of arrow-

hexagons, “X6”.

3.9 The Unknown Arrow-Hexagons “X6” Are “Shrimps”

As we have seen, one more family of arrow-hexagons of the oppositional tetrahexahedron,
“X6” – from now on “shrimps” – can be reached in two ways. Firstly, the shrimps can be
reached from the shells (Fig. 140).

Secondly, the shrimps can be reached from the half-crabs (Fig. 141).
There are 24 shrimps, 12 left shrimps and 12 right shrimps.
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blue shell “10” shrimp (= “X6”) green shell “10”

Fig. 140 “Shrimp” arrow-hexagons can be obtained by a 1-move transformation of shell arrow-hexagons

left green half-crab “10” shrimp (= “X6”) left blue half-crab “10”

Fig. 141 “Shrimp” arrow-hexagons can be obtained by a 1-move transformation of half-crab arrow-
hexagons

1 2 3 4

Fig. 142 The first quartet of “left shrimps” (1–4)

The first quartet of left shrimps can be obtained either from the blue shells 1, 2, 3, 4,
by a 1-move of, respectively, their vertices b4, b1, b2, b3; or from the green shells 1, 2,
3, 4, by a 1-move of, respectively, their vertices g4, g1, g2, g3. Alternatively, these left
shrimps 1-4 can be derived either from the left green half-crabs 1, 2, 3, 4, by a 1-move
of, respectively, their vertices g4, g1, g2, g3; or from the left blue half-crabs 1, 2, 3, 4, by
a 1-move of, respectively, their vertices b4, b1, b2, b3 (Fig. 142).

Similarly, the second quartet of left shrimps can be obtained either from the blue shells
5, 6, 7, 8, by a 1-move of, respectively, their vertices b3, b1, b4, b2; or from the green
shells 5, 6, 7, 8, by a 1-move of, respectively, their vertices g3, g1, g4, g2. Alternatively,
these left shrimps 5–8 can be derived either from the left green half-crabs 5, 6, 7, 8, by
a 1-move of, respectively, their vertices g3, g1, g4, g2; or from the left blue half-crabs 5,
6, 7, 8, by a 1-move of, respectively, their vertices b3, b1, b4, b2 (Fig. 143).
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5 6 7 8

Fig. 143 The second quartet of “left shrimps” (5–8)

9 10 11 12

Fig. 144 The third quartet of “left shrimps” (9–12)
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the chromatic signature
of the left shrimps
(knot-theoretical)

Fig. 145 The chromatic signature of the “left shrimp” arrow-hexagons

In a similar way, the third quartet of left shrimps can be obtained either from the blue
shells 9, 10, 11, 12, by a 1-move of, respectively, the vertices b2, b4, b3, b1; or from
the green shells 9, 10, 11, 12, by a 1-move of, respectively, their vertices g2, g4, g3, g1.
Alternatively, these left shrimps 9–12 can be derived either from the left green half-crabs
9, 10, 11, 12, by a 1-move of, respectively, their vertices g2, g4, g3, g1; or from the left
blue half-crabs 9, 10, 11, 12, by a 1-move of, respectively, their vertices b2, b4, b3, b1
(Fig. 144).

The chromatic signature of the left shrimps is the following (here we consider the left
shrimp number “11”) (Fig. 145).

The right shrimps behave in a similar way.
The first quartet of right shrimps can be obtained either from the blue shells 1, 2, 3,

4, by a 1-move of, respectively, their vertices b2, b3, b4, b1; or from the green shells 1,
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1 2 3 4

Fig. 146 The first quartet of “right shrimps” (1–4)

5 6 7 8

Fig. 147 The second quartet of “right shrimps” (5–8)

2, 3, 4, by a 1-move of, respectively, their vertices g2, g3, g4, g1. Alternatively, the right
shrimps 1-4 can be derived either from the right green half-crabs 1, 2, 3, 4, by a 1-move
of, respectively, their vertices g2, g3, g4, g1; or from the right blue half-crabs 1, 2, 3, 4,
by a 1-move of, respectively, their vertices b2, b3, b4, b1 (Fig. 146).

Analogously, the second quartet of right shrimps can be obtained either from the blue
shells 5, 6, 7, 8, by a 1-move of, respectively, their vertices b4, b2, b3, b1; or from the green
shells 5, 6, 7, 8, by a 1-move of, respectively, their vertices g4, g2, g3, g1. Alternatively,
these right shrimps 5–8 can be derived either from the right green half-crabs 5, 6, 7, 8, by
a 1-move of, respectively, their vertices g4, g2, g3, g1; or from the right blue half-crabs 5,
6, 7, 8, by a 1-move of, respectively, their vertices b4, b2, b3, b1 (Fig. 147).

The third and last quartet of right shrimps can be obtained either from the blue shells
9, 10, 11, 12, by a 1-move of, respectively, their vertices b3, b1, b2, b4; or from the green
shells 9, 10, 11, 12, by a 1-move of, respectively, their vertices g3, g1, g2, g4. Alternatively,
these right shrimps 9–12 can be derived either from the right green half-crabs 9, 10, 11, 12,
by a 1-move of, respectively, their vertices g3, g1, g2, g4; or from the right blue half-crabs
9, 10, 11, 12, by a 1-move of, respectively, their vertices b3, b1, b2, b4 (Fig. 148).

The chromatic signature of the right shrimps is the following one (here we consider the
right shrimp number “12”) (Fig. 149).

As for the chromatic signatures of the left and the right shrimps, similarly to what
we saw with half-crabs (left blue and right blue, or left green and right green), they are
the same if expressed through graph-theoretical tools (in which case each of them is op-
positionally self dual), whereas they differ if they are expressed (as by us here) through
knot-theoretical tools (in which case they are 3D mirror images and oppositionally dual)
(Fig. 150).
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9 10 11 12

Fig. 148 The third quartet of “right shrimps” (9–12)
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Fig. 149 The chromatic signature of the “right shrimp” arrow-hexagons
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Fig. 150 3-D mirror images from the viewpoint of the chromatic signatures of the left shrimps and the
right shrimps (moreover they are oppositionally dual)

This reflects the fact that in the 3-D space of the tetrahexahedron left and right shrimps
are the levorotatory and dextrorotatory versions of the same structure (to speak as Kant,
they are “incongruent counterparts”).

As in the case of the half-crabs, the tortoises, the flying squirrels and the shells (cf.
Sect. 3.5, 3.6, 3.7 and 3.8), the shrimps can also pave the surface of the oppositional
tetrahexahedron. However, shrimps can pave in a perfect way, without holes (shrimps do
not have prisoners). As it happens, the shrimps can pave the tetrahexahedron in several
different ways. Given that two shrimps, if joined suitably, can together cover the same
surface as a tortoise (but with no hole), shrimps can also pave the tetrahexahedron as the



Arrow-Hexagons 477

g2

b1

g3

b2

g1

b3 b3

g4

b2

g3

b4

g2

g4

f r r

g1

d

b4

g3

b1

g4g1

b3

d

g2

1

f

u h

Fig. 151 The shrimp hexagons can pave the surface of the oppositional tetrahexahedron in several ways
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Fig. 152 The morphogenetic chart of the arrow-hexagons of the oppositional tetrahexahedron so far
known

tortoises do (cf. Sect. 3.6). Here we give a more original pavement, made of six shrimps
(depicted in pink, orange, red, violet, brown and light blue) (Fig. 151).

We can refine our previous oppositional morphogenetic chart of arrow-hexagons by
adding left and right shrimps to it (Fig. 152).

If we try to locate the shrimps’ chromatic signature with respect to the linear order of
oppositional degeneration, the most appropriate place to put them, although this remains
debatable (a fuzzy order relation would probably be more appropriate), seems to be in
between the half-crabs and the flying squirrels (Fig. 153).

If we accept this linear ordering, then we can draw the following oppositional “degen-
eration chart” for the nine families of arrow-hexagons known so far (Fig. 154).

Are more arrow-hexagons reachable from the shrimps?
Let us first examine the possible 1-moves of a shrimp’s “blue head” (the “green tail”

will give symmetric, i.e. dual, results). Here we consider the right shrimp number “12”
(Fig. 155).

As it turns out, only one 1-move transformation is possible in this case, namely one
which gives a (here: green) shell.
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Fig. 153 Arrow-hexagons, so far, can be put in a linear order of growing “oppositional degeneration”
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Fig. 154 The morphogenetic “degeneration chart” of the arrow-hexagons of the oppositional tetrahexa-
hedron known so far

right shrimp “12” (in orange its “blue head”) green shell “12”

Fig. 155 The only possible transformation of a shrimp through a 1-move of its “blue head” leads to a shell

Secondly, let us examine the transformations obtained from the possible 1-moves of
a shrimp’s “left green eye” (Fig. 156).

As it happens, no viable transformation (into an arrow-hexagon) is available here.
Thirdly, let us consider the possible 1-move transformations of a shrimp’s “left blue–

green leg” (Fig. 157).
As it turns out, this gives a right blue half-crab.
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right shrimp “12” (in orange its “green eye”) no arrow-hexagon

Fig. 156 A shrimp admits neither a 1-move nor a 2-moves transformation into another arrow-hexagon
through its “green eye”

right shrimp “12” (in orange its “blue-green eye”) right blue half-crab “12”

Fig. 157 The only possible 1-move transformation of a shrimp through its “blue–green eye”

So, seemingly no new arrow-hexagons are reachable from the shrimps. For the first
time in our transformation game we have no more unknown arrow-hexagons to explore.
Are we finished? What could this mean?

4 Some Consequences

Let us now try to draw some consequences from our study. We started by asking whether
arrow-hexagons, in their then mysterious variety, have interesting invariant properties. To
start with, is their variety less mysterious by now? What is this variety?

4.1 Have We Reached a Closure of the Arrow-Hexagons
with These 9 Families?

It would seem that the nine families of arrow-hexagons presented here constitute a closed
structure with respect to our transformation game. Any of the nine can be reached, in
a sufficient finite number of steps, from any other one, and no other arrow-hexagon can
be obtained, step by step, from any of the nine families of arrow-hexagons presented here.
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However, can we be sure that no other arrow-hexagons exist (inside the ˇ3-structure)? For
it could be the case that not all the arrow-hexagons of the ˇ3-structure are morphogeneti-
cally connected and, therefore, it could be the case that some further arrow-hexagon exists,
even though our game will never be able to reach it by connexity. As it happens, one can
prove that the nine arrow-hexagons we obtained are the only existing ones. We will not
give the proof here, which simply consists in considering, by graphical construction of the
ˇ3-structure, either one of the 12 arrows of the cube or one of the 24 arrows of the spike,
these being the only two possible kinds of arrows of a tetrahexahedron, and in showing
that whatever “hexagon” of alternated arrows (in its perimeter) one constructs inside the
ˇ3-structure upon this starting arrow the result is one of the nine kinds of arrow-hexagons
that we presented here.

4.2 In the Tetrahexahedron There Are Also “Folded
Arrow-Hexagons”

As it happens, more kinds of arrow-hexagons can indeed be found inside the oppositional
tetrahexahedron, provided, however, that one allows the appearance (in the “inside” of
the arrow-hexagon, i.e. inside its chromatic signature) of “bi-directional arrows” (i.e. the
logical biconditional connective). This means considering arrow-hexagons such that they
have strictly less than six vertices (i.e. such that some of their vertices play more than one
time, and therefore are joined by a double arrow, being equivalent). It must be remarked
that in some sense the study of such structures would commit us to adopting at least de
jure some of the tools of Smessaert and Demey’s “logical geometry” (cf. Sect. 2 above,
Fig. 8). Their “implication geometry” deals, among other things, with double-sided ar-
rows of logical equivalence (unless what is needed here is rather “equality” than logical
equivalence). In any case, the idea of “counting a vertex two times” would contradict the
so far standard methodology of oppositional geometry: which therefore should/could be
enriched duly. Just to give an intuition, here is a small visual list of such possible “folded
arrow-hexagons” (butterflies, tadpoles, snakes, bacteria. . . ) (Fig. 158).

Their chromatic signature is fully comparable to those we have seen in our study, with
the additional, crucial feature, however, that now such a chromatic signature also contains
double-sided arrows (of logical equivalence) (Fig. 159).
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butterfly

b1 g4

g2 b3

tadpole

b1

u
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b3

snake
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Fig. 158 Some “folded arrow-hexagons”, i.e. arrow-hexagons with strictly less than six distinct vertices
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Fig. 159 The chromatic signature of some “folded arrow-hexagons”, i.e. arrow-hexagons with double-
sided arrows

Note also that these “folded arrow-hexagons”, which contain at least one double-sided
arrow, are not counted among the 30 030 “hexagons” given by the formulaC6

14. So, includ-
ing them in our catalogue gives an even larger number of arrow-hexagons (all contained
in the tetrahexahedron)!

Note also that there could be other interesting ways of conceiving morphogenetic de-
generation charts, for instance by using the dimension “height” of a 3-D representation
for measuring degeneration (thus using “pits” and the like). It also seems likely that our
morphogenetic charts are not yet satisfactory either. For instance, they do not yet express
well the “morphogenetic distance” between two kinds of arrow-hexagons, for example,
the distance – of four moves – between the strong and the shrimps seems to be expressed
suboptimally (in our chart of Fig. 152 the two seem to be close). It might be the case that
the relevant ordering of the nine families of arrow-hexagons must be a four-dimensional
space.

4.3 The Place of the Arrow-Hexagons Among All Hybrid Hexagons

As it happens, the construction which gave, by “unfolding” an arrow of subalternation, an
arrow-hexagon “bacterion” (cf. Figs. 158 and 159), can give, when applied to the other
four possible kinds of segments of the tetrahexahedron (i.e. the red one of contradiction,
the blue one of contrariety, the green one of subcontrariety, the orange one of indepen-
dence), comparable strange “folded hybrid hexagons”. These keep the same “bacterial
structure” of two entangled triangles (each one made of a closed chain of three double
arrows) which characterised the bacterion but have a different perimeter and different di-
agonals according to the oppositional quality of the starting segment. Let us call these
folded hybrid hexagons “segment-hexagons” (or “bacterial hexagons”) (Fig. 160).

This leads us to an important general point. Outside the strong constraint of keeping
the perimeter made of alternated arrows intact (suggested in primis by the logical hexagon
and its intriguing mathematical power) there is, truly speaking, a huge quantity of other
possible oppositional “hexagons”, regular or not. Most of them are highly irregular, but
even in that case they exist by pairs of “oppositionally dual” hexagons, and as any other
hybrid hexagon, these can be represented by their chromatic signature (Fig. 161).
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red bacterium blue bacterium green bacterium arrow bacterium orange bacterium

Fig. 160 Another interesting family of regular folded hybrid hexagons: the “bacterial hexagons”

Fig. 161 Some hybrid
hexagons, regular or not, con-
tained in the ˇ3-structure that
are not arrow-hexagons

There seems to be reason to believe that several of these formal entities possess still
unknown properties that are quite interesting and might be very useful somewhere in the
future.

In particular (cf. [24]), some hybrid hexagons, containing orange segments (of inde-
pendence, cf. Sect. 3.6, Fig. 94), are already known to be quite useful. They are the
attractors (i.e. the expected outcome) of the “partial superposition” of oppositional seg-
ments” (Fig. 162).

Such superpositions admit some families of invariant solutions, among them the fol-
lowing three orange hybrid hexagons (we give their chromatic structure in Fig. 163)
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Fig. 162 The partial ^-superposition of red and from-arrow and the _-superposition of red and to-arrow
are oppositionally dual

Fig. 163 Some hybrid hexagons, regular or not, contained in the ˇ3-structure that are not arrow-hexagons
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cats ∨ dogs

bees ∨ bears bees ∨ bears

¬ cats ∧ ¬ dogs

¬ cats ∨ ¬ bees
∨ ¬ dogs

∨ ¬ bears
cats ∨ dogs

¬ dogs ¬ cats ¬ bees

¬ bears
¬ bears

∧
¬ bees

Fig. 164 The (non-uniform) superposition of two logical hexagons can lead to a suboptimal result
(a strong or weak hexagon)

here dogs and bears become enemies
(unwanted effect of the structure)

here dogs and bears ar mutually indifferent
(this structure is a better model of partial alliance)

Fig. 165 Resorting to suitable hybrid hexagons can lead to better formal tools for expressing “opposi-
tional dynamics”

Moreover, when two logical hexagons are combined by “oppositional superposition”
(which, in this case, is a technique for combining three-oppositional structures to create
models of enmities and alliances) one of these three orange hybrid hexagons expresses
the kind of result that we would like to obtain as an outcome of our model. That is, we
do not want, because cats and bees have made an alliance while their respective enemies
(dogs and bears) do not have, that dogs and bears nevertheless become ipso facto mutual
enemies: which would be yet the case if the hexagon obtained by superposition were
a strong or even a weak one (in that case dogs and bears would be joined, inside such an
hexagon, by a blue segment of contrariety) (Fig. 164).

Resorting to one of the orange hybrid hexagons of Figs. 162 and 163 offers the means
for a much better solution to the problem of expressing oppositional partial alliance (cf.
Fig. 165).

So, provided that we think that there can be quite interesting properties behind differ-
ent kinds of hybrid oppositional structures, it seems natural to think that any tool allowing
“navigation” inside the tetrahexahedron would be very welcome. This chapter tried to pro-
duce one. To give an idea of possible future formal combinatorial games here is a simple,
very small attempted typology (Fig. 166).

Some research is being done in this direction. Smessaert and Demey, for instance, are
investigating, beyond hexagons (but inside the ˇ3-structure), the formal properties of op-
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red-diagonals hexagons
arrow-hexagons

strong weak

orange-hexagons

segment-hexagons

Fig. 166 Some possible, very general families of hybrid hexagons (arrow-hexagons are a very particular
case)

positional structures that keep red diagonals (cf. [33]). However, a general “cartography”
of the hybrid hexagons of the ˇ3-structure seems to be something that is still missing,
and the more general task of studying hybrid oppositional structures beyond hexagons is
something even further away.

5 Béziau’s “Red Hexagon” Does Not Belong
to the Tetrahexahedron!

Yet what about Béziau’s provocative and stimulating “red arrow-hexagon” (Fig. 9) that
we mentioned at the beginning of this study? Doesn’t it contrast, by its simple existence,
our claim according to which there are only the nine families of arrow-hexagons listed
in Sects. 3.1–3.9 above? For it does not belong to any of them. As it happens, the “red
hexagon” proposed by Béziau cannot be exactly as it was first proposed. It is not possible
to have a red “triangle of contradiction” (if p is contradictory to q and q is contradic-
tory to r , r cannot be contradictory to p; rather, r is then equivalent to p). So, instead,
Béziau’s very interesting red hexagon, which is indeed some kind of very singular oppo-
sitional hexagon, turns out to be equivalent to the following non-arrow-hexagon, which
does not have an intact arrow-perimeter and is not uniquely constituted (in its inside) of
red segments of contradiction (Fig. 167).

This hexagon, which is totally new in the field, is clearly not an arrow-hexagon. But
even after correction, Béziau’s new hexagon remains weird, for in some sense it does
not belong to the ˇ3-structure, which is very strange. Béziau, who contributes so impor-
tantly in various ways to the field, so to say happens now to be a “hacker” of oppositional
geometry. He finds the way of constructing something that breaks the framework! The
explanation for this puzzle is the following: “p or not p” (used by Béziau’s red hexagon)
is equivalent to “>”, whereas “p and not p” (also used by Béziau for building his red
hexagon) is equivalent to “?”. However, oppositional geometry has a very special treat-
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Fig. 167 Béziau’s “red arrow-hexagon” is in fact a hybrid hexagon, but not an arrow-hexagon; its perime-
ter is broken

ment for > and ?: on the one hand, they cannot be denoted explicitly by the vertices
(this is a technical point and a very important “trademark” of the theory: explicit (i.e. sim-
plicial) contrariety cannot be trivial). On the other hand, the two trivial logical constants
are nevertheless “expressed geometrically” by the “symmetry centre” of any oppositional
figure, this visible centre (which, again, is not a vertex!) embodying at the same time
“>” and “?” (this fact has been established independently by Angot-Pellissier and Smes-
saert). Therefore, if his strange red hexagon, which exists and does not exist, turned out to
be a solid paraconsistent singularity of oppositional geometry, Béziau might be opening
a new chapter of the theory . . .

6 From the Arrow-Hexagons to the “Arrow-ˇn-Structures”

A final natural question is that of knowing whether the structures highlighted in this study
(i.e. the arrow hexagons and, more generally, the hybrid hexagons) admit an equivalent
at higher levels of oppositional geometry. The present study has, for instance, focussed
on the “avatars” (the “oppositional shadows”) of the ˇ2-structure inside the ˇ3-structure
that replaces it when the oppositional space is “inflated” (as we have seen, this is the role
played by the blue tortoises, as we recalled with the example of the hexagon of total order

the “strong” tetrahexahedron an arrow-tetrahexahedron?

β3

β4

β3#

Fig. 168 Are there hybrid tetrahexahedra and, in particular, arrow-tetrahexahedra inside the ˇ4-structure?
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that becomes a tetrahexahedron of partial order, Fig. 17). The question then is: is some-
thing comparable to this to be expected when a ˇ3-structure becomes a ˇ4-structure? This
will be the possible subject of a future study: studying hybrid instances of the oppositional
tetrahexahedron inside the ˇ4-structure, such that the tetrahexahedron’s 3-D network of 36
alternated arrows remains constant while its inner relations (of contradiction, contrariety,
subcontrariety and independence) change (Fig. 168).

7 Conclusion

In this paper we proposed giving a unified treatment to a mysterious phenomenon encoun-
tered independently by different scholars, including Béziau (cf. Sect. 2). As a methodology
for this we proposed focussing on the notion of the “arrow-hexagon”, which is a general-
isation of the notion of the logical hexagon. In order to develop this, we proposed some
preliminary notions and strategies through a geometric game, such as “hybrid hexagons”,
“chromatic signature”, “oppositional duality”, “oppositional morphogenetics”, “opposi-
tional shadow”, “oppositional degeneration” and “oppositional role”. We were able to
determine that there are nine families of arrow-hexagons, which are mutually related and
bear some roles, and we started to describe them. Among them, four already have an iden-
tified important role, but five remain poorly understood so far. If several oppositional roles
seem to be missing so far for the arrow-hexagons, some important oppositional roles are
already available for hybrid hexagons that are not arrow-hexagons. This seems promising.
Oppositional roles do exist and deserve to be studied (and used in models). Moreover,
this suggests that this kind of enquiry should be generalized, by studying new families of
oppositional fragments of the tetrahexahedron and, more generally, the fragments of any
ˇn-structure. Our aim in the long run consists in establishing formal tools for modelling
“dynamic oppositional phenomena”. This aim is followed both by studying the formal
properties of the hybrid oppositional structures (and beyond) and by trying to give to
them, whenever possible, an intuitive pragmatic interpretation.
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The Distributed Ontology, Modeling,
and Specification Language – DOL
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Abstract There is a diversity of ontology languages in use, among them OWL, RDF,
OBO, Common Logic, and F-logic. Related languages such as UML class diagrams,
entity-relationship diagrams and object role modeling provide bridges from ontology
modeling to applications, e.g., in software engineering and databases. Also in model-
driven engineering, there is a diversity of diagrams: UML consists of 15 different diagram
types, and SysML provides further types. Finally, in software and hardware specification,
a variety of formalisms are in use, like Z, VDM, first-order logic, temporal logic etc.

Another diversity appears at the level of ontology, model and specification modularity
and relations among ontologies, specifications, and models. There is ontology matching
and alignment, module extraction, interpolation, ontologies linked by bridges, interpreta-
tion and refinement, and combination of ontologies, models and specifications.

The distributed ontology, modeling and specification language (DOL) aims at pro-
viding a unified metalanguage for handling this diversity. In particular, DOL provides
constructs for (1) “as-is” use of ontologies, models, and specifications (OMS) formulated
in a specific ontology, modeling or specification language, (2) OMS formalized in hetero-
geneous logics, (3) modular OMS, (4) mappings between OMS, and (5) networks of OMS.
This chapter sketches the design of the DOL language. DOL has been submitted as a pro-
posal within the OntoIOp (ontology, model, specification integration and interoperability)
standardisation activity of the object management Group (OMG).

Keywords Heterogeneous ontologies �Modularity � Interoperability � Institutions

Mathematics Subject Classification (2000) Primary 68T30 � Secondary 03C95

1 Introduction

Logical languages are used in several fields of computing for the development of for-
mal, machine-processable texts that carry a formal semantics. Among those fields are (1)
Ontologies formalizing domain knowledge, (2) (formal) Models of systems, and (3) the
formal Specification of systems. Ontologies, models and specifications will (for the pur-
pose of this paper) henceforth be abbreviated as OMS.
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An OMS provides formal descriptions which range in scope from domain knowledge
and activities (ontologies, models) to properties and behaviours of hardware and software
systems (models, specifications). While the use of OMS varies considerably, there are two
recurring challenges: reusability and interoperability.

Reusability is an issue because the development of OMS is typically done manually by
experts and, thus, an expensive process. Hence, it is desirable to be able to reuse existing
OMS during the development of new OMS. This presupposes a framework that allows
to build structured OMS by identifying modules and their relationships to each other. For
example, it requires the ability to combine two existing OMS in a way that handles the
namespaces of the OMS in an appropriate way. Further, the reuse of an existing OMS
often requires that the OMS is adapted for its new purpose. For example, the adaption
may require the extension of the OMS by new axioms, or the extraction of a subset of the
OMS, or the change of its semantics from open world to closed world.

The interoperability challenge is closely related to the reusability challenge. Since the
development of OMS is not an exact science and is usually driven by project specific re-
quirements, two OMS that have been developed independently will represent the same
domain in different and, often, conflicting ways. They may differ, for example, with re-
spect to the terminology, or with respect to the definitions of the underlying concepts, or
with respect to the perspective from which they represent their domain. Thus, in a situa-
tion where two independently developed OMS are supposed to be reused as modules of
a larger OMS, the differences between these OMS will typically prevent them from work-
ing together properly. Overcoming this lack of interoperability may require an alignment
or even an integration of these OMS. This typically involves the identification of syn-
onyms, homonyms, and the development of bridge axioms, which connect the two OMS
appropriately.

Both the reusability and the interoperability challenges are amplified by the diversity of
OMS languages that are in use. For ontologies these include OWL, RDF, OBO, Common
Logic, and F-logic. Related languages such as UML class diagrams, entity-relationship di-
agrams and object role modeling provide bridges from ontology modeling to applications,
e.g., in software engineering and databases. Also in model-driven engineering, there is
a diversity of diagrams: UML consists of 15 different diagram types, and SysML provides
further types. Finally, in software and hardware specification, a variety of formalisms are
in use, like Z, VDM, first-order logic, temporal logic etc. These languages do not just dif-
fer with respect to their syntax, but with respect to their semantics and to their levels of
expressiveness.

To address both challenges we propose the distributed ontology, modeling and specifi-
cation Language (DOL). DOL is a metalanguage that enables the reuse, integration, and
alignment of existing OMS – even if they are written in different formalisms. The under-
lying methodological stance is that it would be futile to attempt to develop yet another
OMS language that would subsume all the others; instead we have to accept the diversity
of OMS languages and the diversity of perspectives that are represented by different OMS.
DOL provides a sound and formal semantic basis for specifying structured OMS, which
may reuse as modules several existing OMS (possibly written in different languages) with-
out requiring any changes to these modules. Further, DOL allows us to specify mappings
between different OMS (e.g., alignments and logical entailments).
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In particular, DOL enjoys the following distinctive features:

� modular OMS and OMS networks are specially supported,
� OMS can not only be aligned (as in BioPortal [40] and NeON [17]), but also combined

along alignments,
� mappings between OMS (interpretation of theories, conservative extensions etc.) are

supported;
� it supports a variety of OMS languages (OWL, RDF, Common Logic, first-order logic,

CASL; planned: UML, relational database schema, F-logic, distributed description log-
ics, and more);

� OMS can be translated to other OMS languages, and compared with OMS in other
languages;

� heterogeneous OMS (i.e., structured OMSwith modules written in different languages)
can be built;

� OMS languages and OMS language translations are first-class citizens and are available
on the Web as linked data.

The paper is organized as follows: we first discuss the theoretical foundations of DOL
in Sect. 2, followed by a sketch of the DOL language itself in Sect. 3. Section 4 briefly
discusses the DOL-enabled, web-based OMS repository engine Ontohub, and Sect. 5 con-
cludes.

2 Foundations of the Distributed Ontology, Modeling
and Specification Language (DOL)

The DOL1 aims at providing a unified framework for (1) “as-is” use of OMS formulated
in a specific OMS language, (2) modular OMS, (3) mappings between OMS, (4) OMS
networks, and (5) OMS formalized in heterogeneous logics. Historically, the design of
DOL has inherited many ideas and features (1) discussed in the Workshop on Modu-
lar Ontologies series [15, 16, 24, 28, 43, 45], (2) from the Alignment API [10], (3) from
CLEAR, ASL and specifications in an arbitrary institution [5, 41, 42, 47], and (4) from the
CASL (common algebraic specification language) and HetCASL (CASL’s heterogeneous
extension) languages, standardized in IFIP WG 1.32 (Foundations of System Specifica-
tion) [2, 25, 30, 35].

A library in DOL consists of modules formalized in basic OMS languages, such as
OWL (based on description logic) or Common Logic (based on first-order logic with some
second-order features). These modules are serialized in the existing syntaxes of these lan-
guages in order to facilitate reuse of existing OMS. DOL adds a meta-level on top, which

1 DOL has formerly been standardized within ISO/TC 37/SC 3. The OntoIOp (ontology, modeling and
specification integration and interoperability) activity is now being continued at OMG, see the project
page at http://ontoiop.org.
2 See http://ifipwg13.informatik.uni-bremen.de

http://ontoiop.org
http://ifipwg13.informatik.uni-bremen.de
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allows for expressing heterogeneous OMS and mappings between OMS.3 Such mappings
include (heterogeneous) imports and alignments, conservative extensions (important for
studying OMS modules), and theory interpretations (important for reusing proofs). Thus,
DOL gives OMS interoperability a formal grounding and makes heterogeneous OMS and
services based on them amenable to automated verification. The basic syntax and seman-
tics of DOL has been introduced in [37, 38], and the general theory of heterogeneous
specifications for OMS in [27]. DOL uses internationalized resource identifiers (IRIs, the
Unicode-aware superset of URIs) for all entities of OMS libraries to make them reference-
able on the Web.

2.1 Foundations

The large variety of logical languages in use can be captured at an abstract level using
the concept of institutions [12]. This allows us to develop results independently of the
particularities of a logical system and to use the notions of institution and logical language
interchangeably throughout the rest of the chapter.

The main idea is to collect the non-logical symbols of the language in signatures and
to assign to each signature the set of sentences that can be formed with its symbols. For
each signature, we provide means for extracting the symbols it consists of, together with
their kind. Signature morphisms are mappings between signatures. We do not assume
any details except that signature morphisms can be composed and that there are identity
morphisms; this amounts to a category of signatures. Readers unfamiliar with category
theory may replace this with a partial order (signature morphisms are then just inclusions).
See [37] for details of this simplified foundation.

Institutions also provide a model theory, which introduces semantics for the language
and gives a satisfaction relation between the models and the sentences of a signature. The
main restriction imposed is the satisfaction condition, which captures the idea that truth
is invariant under change of notation (and enlargement of context) along signature mor-
phisms. This relies on two further components of institutions: the translation of sentences
along signature morphisms, and the reduction of models against signature morphisms
(generalizing the notion of model reduct known from logic).

Definition 2.1 An institution [12] is a quadruple I D .Sign;Sen;Mod;ˆ/ consisting of
the following:

� a category Sign of signatures and signature morphisms,
� a functor Sen W Sign! Set4 giving, for each signature†, the set of sentences Sen.†/,

and for each signature morphism  W † ! †0, the sentence translation map Sen./ W
Sen.†/! Sen.†0/, where often Sen./.'/ is written as .'/,

3 The languages that we call “basic” OMS languages here are usually limited to one logic and do not
provide meta-theoretical constructs.
4 Set is the category having all sets as objects and functions as arrows.
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� a functor Mod W Signop ! Cat5 giving, for each signature †, the category of models
Mod.†/, and for each signature morphism  W†�!†0, the reduct functor Mod./ W
Mod.†0/ ! Mod.†/, where often Mod./.M 0/ is written as M 0j , and M 0j is
called the  -reduct ofM 0, whileM 0 is called a  -expansion ofM 0j ,

� a satisfaction relation j† � jMod.†/j � Sen.†/ for each † 2 jSignj,
such that for each  W†�!†0 in Sign the following satisfaction condition holds:

.?/ M 0 ˆ†0 .'/ iffM 0j ˆ† '
for eachM 0 2 jMod.†0/j and ' 2 Sen.†/. �

It is also possible to complement an institution with a proof theory, introducing a deriv-
ability relation between sentences, formalized as an entailment system [33]. In particular,
this can be done for all logics that have so far been in use in DOL.

Example 2.2 OWL signatures consist of sets of atomic classes, individuals, object, and
data properties. OWL signature morphisms map classes to classes, individuals to indi-
viduals, object properties to object properties, and data properties to data properties. For
an OWL signature †, sentences are subsumption relations between classes or properties,
membership assertions of individuals in classes and pairs of individuals in properties,
complex role inclusions, and some more. Sentence translation along a signature morphism
simply replaces nonlogical symbols with their image along the morphism. The kinds of
symbols are class, individual, object property, and data property, respectively, and the set
of symbols of a signature is the union of its sets of classes, individuals, and properties.
Models are (unsorted) first-order structures that interpret concepts as unary and properties
as binary predicates, and individuals as elements of the universe of the structure, and sat-
isfaction is the standard satisfaction of description logics. This gives us an institution for
OWL.

Strictly speaking, this institution captures OWL 2 DL without restrictions in the sense
of [44]. The reason is that in an institution, the sentences can be used for arbitrary forma-
tion of theories. This is related to the presence of DOL’s union operator on OMS. OWL
2 DL’s specific restrictions on theory formation can be modeled inside this institution, as
a constraint on OMS. This constraint is generally not preserved under unions or exten-
sions. DOL’s multi-logic capability allows the clean distinction between ordinary OWL 2
DL and OWL 2 DL without restrictions.

In this framework, a basic OMS O over an institution I is a pair .†;E/ where † is
a signature and E is a set of †-sentences. Given a basic OMS O , we denote by Sig.O/
the signature of the OMS. An OMS morphism  W .†1;E1/ ! .†2;E2/ is a signature
morphism  W †1 ! †2 such that .E1/ is a logical consequence of E2. Here, in an
arbitrary institution, notions like logical consequence, satisfiability etc. can be defined in
the standard way.

In the following we will need to assume existence of inclusions between signatures and
of their unions. These concepts can be captured in a categorical setting using inclusion

5 Cat is the category of categories and functors. Strictly speaking, Cat is not a category but only a so-
called quasicategory, which is a category that lives in a higher set-theoretic universe.
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systems [11]. However, inclusion systems are too strong for our purposes and therefore
we will work under weaker assumptions.

Definition 2.3 An inclusive category [14] is a category having a broad subcategory6

which is a partially ordered class with finite products and coproducts, called intersec-
tion (denoted \) and union (denoted [) such that for each pair of objects A;B , A [B is
a pushout of A \B in the category.

A category has pushouts which preserve inclusions if there exists a pushout

for each span where one arrow is an inclusion.
A functor between two inclusive categories is inclusive if it takes inclusions in the

source category to inclusions in the target category.

Definition 2.4 An institution is weakly inclusive if

� Sign is inclusive and has pushouts which preserve inclusions,
� Sen is inclusive, and
� each model category have a broad subcategory of inclusions.

Let I be a weakly inclusive institution. We say that I has differences, if there is a binary
operation n on signatures, such that for each pair of signatures †1;†2, we have

1. †1 n†2 � †1
2. .†1 n†2/ \†2 D ;
3. for any † with the properties 1. and 2. above,† � †1 n†2.

2.2 Translations Between Institutions

Several notions of translations between institutions can be introduced. The most fre-
quently used variant are institution comorphisms [13]. A comorphism from institution
L1 to institution L2 maps L1-signatures to L2-signatures along a functor ˚ and †-
sentences in L1 to ˚.†/-sentences in L2, for each L1-signature †, while ˚.†/-models
are mapped to†-models. Again, a satisfaction condition has to be fulfilled. For institution
morphisms [13], the directions of the translation of sentences and models are reversed.

6 That is, with the same objects as the original category.
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Definition 2.5 An institution comorphism from an institution I D .SignI ;ModI ;SenI ,
ˆI / to an institution J D .SignJ ;ModJ ;SenJ ;ˆJ / consists of a functor ˚ : SignI �!
SignJ , and two natural transformations ˇ: ModJ ı ˚ H) ModI and ˛: SenI H)
SenJ ı ˚ , such that

M 0 ˆJ˚.†/ ˛†.'/, ˇ†.M
0/ ˆI† ':

holds, called the satisfaction condition. �
Here, ˚.†/ is the translation of the signature † from institution I to institution J , ˛†.'/
is the translation of the †-sentence ' to a ˚.†/-sentence, and ˇ†.M 0/ is the translation
(or perhaps better: reduction) of the ˚.†/-model M 0 to a †-model. The naturality of ˛
and ˇ mean that for each signature morphism  W † ! †0 in I the following squares
commute:

Definition 2.6 An institution morphism from an institution I D .SignI ; ModI ;SenI ,
ˆI / to an institution J D .SignJ ;ModJ ;SenJ ;ˆJ / consists of a functor ˚ : SignI �!
SignJ , and two natural transformations ˇ: ModI H) ModJ ı ˚ and ˛: SenJ ı ˚ H)
SenI , such that

M ˆI† ˛†.'/, ˇ˚.†/.M/ ˆJ˚.†/ ':
holds, called the satisfaction condition.

Mappings of institutions are split along the following dichotomies:

� Translation versus projection: a translation embeds or encodes a logic into another one,
while a projection is a forgetful operation (e.g., the projection from first-order logic to
propositional logic forgets predicates with arity greater than zero). It is an interesting
informal observation that translations can be formalized as institution comorphisms,
and projections as institution morphisms.

� Plain mapping versus simple theoroidal mapping [13]: while a plain mapping needs to
map signatures to signatures, a (simple) theoroidal mapping maps signatures to theo-
ries. The latter therefore allows for using “infrastructure axioms”: e.g., when mapping
OWL to Common Logic, it is convenient to rely on a first-order axiomatization of a tran-
sitivity predicate for properties.

Mappings can also be classified according to their accuracy; see [36] for details.
Sublogics are the most accurate mappings: they are syntactic subsets. Embeddings come
close to sublogics, like injective functions come close to subsets. A mapping can be faith-
ful in the sense that logical consequence (or logical deduction) is preserved and reflected,
that is, inference systems and reasoning engines for the target logic can be reused for the
source logic (along the mapping). (Weak) exactness is a technical property that guarantees
this faithfulness even in the presences of OMS structuring operations [4].
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Fig. 1 The current logic translation graph for DOL-conforming languages

2.3 A Graph of Logic Translations

Figure 1 is a revised and extended version of the graph of logics and translations intro-
duced in [36]. New nodes include UML class diagrams, OWL-Full (i.e. OWL with an RDF
semantics instead of description logic semantics), and Common Logic without second-
order features (CL�). We have defined the translations between most of these logics in
earlier publications [36, 38]. The definitions of the DOL conformance of some central
standard OMS languages and translations among them will be given as annexes to the
standard and published in an open registry, which is also the place where the remaining
definitions will be maintained.

3 The Language DOL

3.1 DOL Syntax and Semantics

The DOL language is not “yet another OMS language,” but ametalanguage for expressing
relations between OMS. Therefore, any OMS written in any conforming OMS language
also is a DOL OMS. Therefore, when working with DOL users can reuse OMS as they
are, no changes are required.

DOL provides abstract syntax categories for:

1. OMS (ontologies, models and specifications). Basic OMS are OMS that are written in
some OMS language (e.g., OWL or CASL). Amodular or structured OMS is written in
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a modular way, with the help of DOL structuring operations. A heterogeneous OMS is
a modular OMS that involves modules, which are written in different OMS languages.
The semantics of OMS is given by a signature and a class of models. In some cases, we
can additionally provide a theory-level semantics of OMS, as a signature and a class
of sentences that, if it exists, agrees with the model-level semantics (that is, the model
class is equal to the class of models satisfying the theory). We call an OMS flattenable
if it has a theory-level semantics and elusive if it only admits a model-level semantics.
Whether an OMS is flattenable can be decided based on the structuring operations on
OMS, as follows:

Flattenable OMS: basic OMS are flattenable; if all their components OMS are flat-
tenable, then the following operations on OMS yield flattenable
OMS: extension, union, translation, interpolate/forget, extract, ref-
erence, qualification, combination.

Elusive OMS: the reduction, minimization, or maximization of an OMS is elu-
sive; further, any OMS containing an elusive OMS is elusive.7

For detailed definitions of these types of OMS, see Sect. 3.2.
2. OMS mappings. They denote relations between two OMS or OMS networks, typi-

cally along a signature morphism. Some mappings may also involve other OMS or
other signatures. Examples of OMS mappings are interpretations (specifying a logi-
cal consequence relationship between OMS), equivalences of OMS (specifying that
their model classes are in bijective correspondence), conservative extensions (between
OMS and their modules), OMS alignment. They are presented in Sect. 3.3.

3. Networks of OMS. Networks are graphs with nodes labeled with OMS and edges
labeled with OMS mappings. The edges show how two OMS are interlinked. The
rationale behind networks is that they provide a way to specify or model complex dis-
tributed systems (or domains), where a single OMS would become too complex (this
especially can be the case if the OMS are formulated in different OMS languages).
Instead, the different OMS of the network provide different viewpoints on the system,
while their compatibility is ensured via mappings. Networks are discussed in Sect. 3.4.

4. Libraries of OMS. OMS, mappings, and networks are organized in libraries. A library
consists of a list of declarations involving (possibly modular and/or heterogeneous)
OMS. These declarations can be definitions (assigning a name to an OMS, OMS map-
ping, or network of OMS) and qualifications of the current language, logic and/or
serialization. This is detailed in Sect. 3.5.

The semantics of DOL is based on a fixed (but in principle arbitrary) logic graph.
A logic graph is given by a collection of institutions, institution morphisms, and institu-
tion comorphisms (serving as logics, logic reductions and logic translations). Moreover,
some of the institution comorphisms are marked as default translations and some of the
institution morphisms are marked as default projection (but only at most one between
a given source and target institution).

7 Note that extension, union, translation, reference, qualification and combination are defined for flatten-
able and elusive OMS, while interpolate/forget and extract are only defined for flattenable OMS.
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We assume that for each institution in the logic graph there is a trivial signature ; with
model class M; and such that there exists a unique signature morphism from ; to any
signature of the institution. Moreover, we assume the existence of a designated error logic
in the graph, and a partial union operation on logics, denoted by

S
: L1

S
L2 D .L; �1 W

L1 ! L; �2 W L2 ! L/, when defined.

3.2 Modular and Heterogeneous OMS

Modular and heterogeneous OMS are generated by the following grammar, where † is
a signature, � is a set of sentences over†,  a signature morphism, I an institution, � an
institution comorphism and � an institution morphism8:

OMS ::= hI;†;�i
| IRI
| OMS and OMS | OMS then OMS
| OMS with  | OMS with translation �

| OMS reveal † | OMS hide † | OMS hide along �

| OMS keep † [with I] | OMS keep I | OMS forget † [with I] | OMS
forget I

| OMS extract † | OMS remove †

| OMS select h†;�i | OMS reject h†;�i
| minimize OMS | maximize OMS
| combine Network

The semantics of an OMS O has four components:

� the institution of O , denoted Inst.O/,
� the signature of O , denoted Sign.O/ (which is a signature in Inst.O/),
� the models of O , denotedMod.O/ (which is a class of models over Sign.O/),
� the axioms of O , denoted Ax.O/ (which is a set of sentences over Sign.O/).9

For elusive OMS, Ax.O/ is undefined. For flattenable OMS, Mod.O/ can be obtained
asMod.O/ D fM 2Mod.Sign.O// jM ˆ Ax.O/g.

In the following, we discuss the different kinds of (possibly modular and/or heteroge-
neous) OMS.

8 This is a mathematically abstracted version of DOL. In reality, signatures are represented by symbol
sets, and signature morphisms by symbol maps. The details of passing from symbol sets (resp. maps) to
signatures (resp. signature morphisms) are left out here. Also, we have left out OMS bridges, since their
design is still being discussed.
9 The theory of O , written, Th.O/, is the closure of Ax.O/ under logical entailment. Note, however, that
throughout the text we use “theory” also more informally as denoting some set of axioms in a particular
signature and logic.
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3.2.1 Basic OMS

A basic OMS O written inline, in a conforming OMS language and serialization. The se-
mantics is inherited from the OMS language I 10 and results in a theory h†;�i (therefore,
for simplicity, in the syntax above, we have identified the basic OMS with hI;†;�i). O
can also be an OMS fragment, which means that some of the symbols or axioms may
refer to symbols declared outside O (i.e., in an imported OMS). This is mainly used for
extensions and equivalences. Here are two sample ontologies in OWL (using Manchester
syntax) and Common Logic (using CLIF):

Class: Woman EquivalentTo: Person and Female
ObjectProperty: hasParent

(cl-module PreOrder
(forall (x) (le x x))
(forall (x y z) (if (and (le x y) (le y z)) (le x z))))

Formally,

� Inst.I;†;�/ D I
� Sign.I;†;�/ D †
� Mod.I;†;�/ D fM 2Mod.†/ jM ˆ �g
� Ax.I;†;�/ D �.

3.2.2 IRI Reference

An IRI reference to an OMS existing on the Web,11 possibly abbreviated using prefixes.12

For example:

<http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/pizza.owl>

or alternatively

%prefix(
co-ode: <http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/> )%

co-ode:pizza.owl

The semantics of such an IRI reference would require a global environment mapping IRIs
to (semantics of) OMS. However, for simplicity, we omit the global environment (and
therefore also the semantics of IRI references) here.

10 I is normally determined by the context of the enclosing library and passed around as an additional
parameter of the semantics. For simplicity, here we let I become part of the basic OMS.
11 Note that not all OMS can be downloaded by dereferencing their IRIs. Implementing a catalogue mech-
anism in DOL-aware applications might remedy this problem.
12 Some of the following listings abbreviate IRIs using prefixes but omit the prefix bindings for readability.
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3.2.3 Extension

An extension of an OMS by new symbols and axioms, written O1 then O2, where O2
is an OMS (fragment) in a conforming OMS language. The resulting signature is that of
O1, augmented with the symbols in O2. A model of an extension OMS is a model of this
signature, that satisfies the axioms on O2 and is (when appropriately reduced) a model
of O1. An extension can optionally be marked as conservative (%mcons or %ccons after
the “then”). The semantics is that each O1-model must have at least one expansion to
the whole extension O1 then O2 (for %mcons) resp. that each logical consequence of O1
then O2 is already one of O1 if it is over the signature of O1 (for %ccons). In case that
O2 does not introduce any new symbols, the keyword %implied can be used instead of
%ccons or %mcons; the extension then merely states intended logical consequences. The
keyword %def stands for definitional extensions. This is similar to %mcons, but the model
expansion must always exist uniquely. The following OWL ontology is an example for the
latter:

Class Person
Class Female

then %def
Class: Woman EquivalentTo: Person and Female

The semantics of O D O1 then O2 is
� Inst.O/ D Inst.O1/ D InstO1

.O2/

� Sign.O/ D Sign.O1/[ SignO1
.O2/

� Mod.O/ D fM 2Mod.Sign.O// jM jSign.Oi / 2Mod.Oi /; for i D 1; 2g
� Ax.O/ D Ax.O1/ [ AxO1

.O2/

whereO2 is analyzed in the context of previous declarations inO1, as indicated by adding
an index in its semantics.

3.2.4 Union

A union of two self-contained OMS (not fragments), written O1 and O2. Models of this
union are those models that are (perhaps after appropriate reduction) models of both O1
and O2. For example, the class of commutative monoids can be expressed as

algebra:Monoid and algebra:Commutative

Forming a union of OMS is a particularly common operation in the RDF logic, where
it is known as merging graphs [18, section 0.3]; however, the RDF language provides
no explicit syntax for this operation. When multiple RDF ontologies (“graphs”) contain
statements about the same symbol (“resource”), i.e., syntactically, triples having the same
subject, the effect is that in the merged graph the resource will have all properties that have
previously been stated about it separately. Different kinds of properties, e.g., multilingual
labels, geodata, or outgoing links to external graphs, are often maintained in different RDF
graphs, which are then merged; consider the following excerpt:
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{ :OVGU rdfs:label "Otto-von-Guericke-Universität Magdeburg"@de.} and
{ :OVGU geo:lat "52.1403"^^xsd:float .} and
{ :OVGU owl:sameAs13

<http://de.dbpedia.org/page/OvGU>.}

The semantics of O D O1 and O2 is
� Inst.O/ D I where Inst.O1/

S
Inst.O2/ D .I; .˚1; ˛1; ˇ1/ W Inst.O1/

! I; .˚2; ˛2; ˇ2/ W Inst.O2/! I /

� Sign.O/ D ˚1.Sign.O1// [ ˚2.Sign.O2//
� Mod.O/ D fM 2Mod.Sign.O// j ˇ†i

.M j˚i .Sign.Oi /// 2Mod.Oi /; for i D 1; 2g
� Ax.O/ D ˛1.Ax.O1// [ ˛2.Ax.O2//.

3.2.5 Translation

A translation of an OMS to a different signature (writtenO with  , where  is a signature
morphism) or into some OMS language (written O with translation �, where � is an
institution comorphism). For example, we can combine an OWL ontology with a first-
order axiom (formulated in Common Logic) as follows:

logic OWL : {
ObjectProperty: isProperPartOf
Characteristics: Asymmetric
SubPropertyOf: isPartOf }

with translation OWL22CommonLogic
then

(if (and (isProperPartOf x y) (isProperPartOf y z)) (isProperPartOf
x z))

Note that OWL can express transitivity, but not together with asymmetry.
The semantics of O D O 0 with  is

� Inst.O/ D Inst.O 0/
� Sign.O/ D †0 where  W Sign.O 0/! †0
� Mod.O/ D fM 2Mod.†0/ jM j 2Mod.O 0/g
� Ax.O/ D .Ax.O 0//.

The semantics of O D O 0 with translation � is

� Inst.O/ D I , where � D .˚; ˛; ˇ/ W Inst.O 0/! I

� Sign.O/ D ˚.Sign.O//
� Mod.O/ D fM 2Mod.Sign.O// j ˇSign.O/.M/ 2Mod.O 0/g
� Ax.O/ D ˛Sign.O/.Ax.O 0//.

13 While owl:same as is borrowed from the vocabulary of OWL, it is commonly used in the RDF logic to
link to resources in external graphs, which should be treated as if their IRI were the same as the subject’s
IRI.
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3.2.6 Reduction

A reduction of an OMS to a smaller signature† is writtenO reveal†. Alternatively, it can
be writtenO hide†, where† is the set of symbols to be hidden (i.e. this is equivalent toO
reveal Sig.O/n†). The effect is an existential quantification over all hidden symbols. For
example, when specifying a group in sorted first-order logic, using the CASL language,

sort Elem
ops 0: Elem; __+__: Elem * Elem -> Elem; inv: Elem -> Elem
forall x, y, z : Elem

. 0 + x = x

. x + (y + z) = (x + y) + z

. x + inv(x) = 0
reveal Elem, 0, __+__

revealing everything except the inverse operation inv results in a specification of the class
of all monoids that can be extended with an inverse operation, i.e., the class of all groups
with inverse left implicit.

Here is an example of hiding:

ontology Pizza = %% a~simplified remake of the Pizza ontology [19]
Individual: TomatoTopping
Individual: MozzarellaTopping DifferentFrom: TomatoTopping
ObjectProperty: hasTopping
Class: VegetarianTopping

EquivalentTo: { TomatoTopping, MozzarellaTopping, ... }
Class: VegetarianPizza SubClassOf: some hasTopping VegetarianTopping
...

end

ontology Pizza_hide_VegetarianTopping =
Pizza hide VegetarianTopping

end

A reduction to a less expressive logic is written O hide along �, where � is an institu-
tion morphism. This is a common operation in TBox/ABox settings, where an ontology in
an expressive language provides the terminology (TBox) used in assertions (ABox) stated
in a logic that is less expressive but scales to larger data sets; OWL DL (whose logic is
SROIQ) vs. RDF is a typical language combination:

ontology TBoxABox =
Pizza hide along OWL22RDF
then logic RDF : {

:myPizza :hasTopping
[ a :TomatoTopping ], [ a :MozzarellaTopping ] .

}

The semantics of O D O 0 reveal †0 is

� Inst.O/ D Inst.O 0/
� Sign.O/ D †0
� Mod.O/ D fM j� jM 2Mod.O 0/g where � W †0 ! Sign.O 0/ is the inclusion
� Ax.O/ is undefined.
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The semantics of O D O 0 hide †0 is

� Inst.O/ D Inst.O 0/
� Sign.O/ D Sign.O 0/ n†0
� Mod.O/ D fM j� j M 2 Mod.O 0/g where � W Sign.O 0/ n †0 ! Sign.O 0/ is the

inclusion
� Ax.O/ is undefined.

The semantics of O D O 0 hide along � is

� Inst.O/ D I where � D .˚; ˛; ˇ/ W Inst.O/! I

� Sign.O/ D ˚.Sign.O 0//
� Mod.O/ D fˇSign.O 0/.M/ jM 2Mod.O 0/g
� Ax.O/ is undefined.

3.2.7 Filtering

A filtering O select h†;�i, which selects those sentences from O that have signature †,
plus those in � (where � is a subset Ax.O/). It can also be written O reject h†;�i,
where † is the set of symbols and � the set of axioms to be hidden. For example, we can
select all axioms of Galen14 involving Drugs, Joints, or Bodyparts by

logic OWL
ontology myGalen =

<http://example.org/GALEN/galen.owl>
select Drugs, Joints, Bodyparts

end

The semantics of O D O 0 select h†;�i is defined only if † � Sign.O/ and � �
Ax.O/, and in that case, it is given by

� Inst.O/ D Inst.O 0/
� Sign.O/ D †0 where †0 is the smallest signature with † � †0 and � � Sen.†/15

� Ax.O/ D .Ax.O 0/ \ Sen.Sign.O/// [�
� Mod.O/ is the class of all Ax.O/-models.

The semantics of O D O 0 reject .†;�/ is

� Inst.O/ D Inst.O 0/
� Sign.O/ D Sign.O 0/ n†
� Ax.O/ D Ax.O 0/ \ Sen.Sign.O// n�
� Mod.O/ is the class of all Ax.O/-models.

3.2.8 Interpolation

An approximation [31] (or technically, uniform interpolation) of an OMS, either in a sub-
signature or a sublogic (written O keep †, O keep † with L or O keep L, where † is

14 We assume that GALEN is available as an OWL ontology.
15 If this smallest signature does not exist, the semantics is undefined.
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a signature and L is a logic). The effect is that sentences not expressible in† (resp.L) are
weakened or removed, but the resulting theory still has the same consequences, as fas as
these are expressible in † (and/or L). Technically, this is a uniform interpolant [32, 46].
For example, we can interpolate the first-order DOLCE mereology in OWL:16

DOLCE_Mereology keep OWL

Dually,O forget† orO forget†withL interpolatesO with the signature Sig.O/n†,
i.e. † specifies the symbols that need to be left out (and optionally, L specifies a sublogic
that needs to be targeted). Cf. the notion of forgetting in [32, 46]. For example,

Pizza forget VegetarianTopping

This has both a model-theoretic and a theory-level semantics, i.e., it yields a theory in
the reduced signature (without VegetarianTopping). In contrast, Pizza hide
VegetarianTopping has only a model-level semantics (see also the comparison in
Sect. 3.2.12).

The semantics of O D O 0 keep † with I is

� Inst.O/ D I and .˚; ˛; ˇ/ W Inst.O 0/ ! I is the default projection (in case I is
missing, it is the identity on Inst.O 0/)

� Sign.O/ D ˚.†/
� Ax.O/ D ˛�1

Sign.O 0/.Ax.O
0/	/ \ SenI .Sign.O//,17 i.e. that part of Ax.O 0/ that can be

expressed in the smaller signature and logic
� Mod.O/ is the class of Ax.O/-models

The semantics ofO forget†0 with I is the same as the semantics ofO keep .Sign.O/n
†0/ with I .

3.2.9 Extraction

A module extracted from an OMS, written O extract †, where † is a subsignature of
Sig.O/. The extracted module is a subOMS of O with signature larger than (or equal to)
†, such that O is a conservative extension of the extracted module. Intuitively, a module
(in the sense of module extraction) is a small sub-OMS that says the same about† as the
OMS O itself. For example, we can extract from GALEN a module referring to drugs,
joints and body parts:

logic OWL
ontology myGalen =

<http://example.org/GALEN/galen.owl>
extract Drugs, Joints, Bodyparts

end

(This example is continued in Sect. 3.3.5).

16 Interpolants need not always exist, and even if they do, tools might only be able to approximate them.
17 In practice, one looks for a finite subset that still is logically equivalent to this set. Note that �� is the
set of logical consequences of �, i.e. �� D Th.�/.
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The semantics of O D O 0 extract † is

� Inst.O/ D Inst.O 0/
� Sign.O/ D † [†0
� Ax.O/ D �0
� Mod.O/ is the class of Ax.O/-models

where h†0; �0i is the smallest depleting †-module [22], i.e. the smallest18 subtheory
h†0; �0i of .Sign.O 0/;Ax.O 0// such that the following model-theoretic inseparability
holds

Ax.O 0/ n�0 
†0[† ;:

This means intuitively that Ax.O 0/ n �0 cannot be distinguished from ; (what †0 [ †
concerns) and formally that

fM j†0[† jM 2Mod.Sign.O 0//;M ˆ Ax.O 0/ n�0g
D fM j†0[† jM 2Mod.Sign.O 0//g:

Dually, O remove † extracts w.r.t. the signature Sig.O/ n†,19 i.e. the semantics is given
by that of O extract Sig.O/ n†.

3.2.10 Combination

A combination of OMS, written combineN , whereN is a network. The simplest example
of a combination is a disjoint union (we here translate OWL OMS into many-sorted OWL
in order to be able to distinguish between different universes of individuals):

ontology Publications1 =
Class: Publication
Class: Article SubClassOf: Publication
Class: InBook SubClassOf: Publication
Class: Thesis SubClassOf: Publication
...

ontology Publications2 =
Class: Thing
Class: Article SubClassOf: Thing
Class: BookArticle SubClassOf: Thing
Class: Publication SubClassOf: Thing
Class: Thesis SubClassOf: Thing
...

logic MS-OWL

18 If the smallest such subtheory does not exist, the semantics is undefined. In [22], it is shown that it does
exist in usual institutions.
19 Note that the resulting module can still contain symbols from †, because the resulting signature may
be enlarged.
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network Publications_Network =
1 : Publications1 with translation OWL2MS-OWL,
2 : Publications2 with translation OWL2MS-OWL

end

ontology Publications_Combined =
combine

Publications_Network
%% implicitly: Article 7! 1:Article ...
%% Article 7! 2:Article ...

end

If mappings or alignments are present, the semantics of a combination is a quotient of
a disjoint union (symbols related along the edges are identified). Technically, this is a col-
imit, see [7, 48]. An example for this is given along with the examples for alignments
below.

The semantics of O D combine N is

� Inst.O/ D I
� Sign.O/ D †, where .I;†; f�i gi2jGj/ is the colimit of the graph G given by the

semantics of N
� Ax.O/ D [i2jGj�i.Ax.Oi //, where Oi is the OMS label of the node i in G
� Mod.O/ D fM 2Mod.†/ jM j�i

2Mod.Oi /; i 2 jGjg, where Oi is the OMS label
of the node i in G.

3.2.11 Minimization

A minimization of an OMS imposes a closed-world assumption on part of the OMS. It
forces the nonlogical symbols declared in O to be interpreted in a minimal way. This
is written minimize f O g. Symbols declared before the minimized part are considered
to be fixed for the minimization (that is, we minimize among all models with the same
reduct). Symbols declared after the minimization can be varied. This is borrowed from
circumscription [3, 29]. Alternatively, the nonlogical symbols to be minimized and to be
varied can be explicitly declared:O minimize †1 vars †2. For example, in the following
OWL theory, B2 is a block that is not abnormal, because it is not specified to be abnormal,
and hence it is also on the table.

Class: Block
Individual: B1 Types: Block
Individual: B2 Types: Block DifferentFrom: B1

then minimize {
Class: Abnormal
Individual: B1 Types: Abnormal }

then
Class: OnTable
Class: BlockNotAbnormal EquivalentTo:

Block and not Abnormal SubClassOf: OnTable
then %implied

Individual: B2 Types: OnTable
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The semantics of O D minimize O 0 is

� Inst.O/ D Inst.O 0/
� Sign.O/ D Sign.O 0/
� Mod.O/ D fM 2Mod.O 0/ jM is minimal in Mod.O 0/g
� Ax.O/ is undefined.

Note that for minimality we need the inclusions in model categories. Dually to minimiza-
tions, there are also maximizations.

3.2.12 Hide vs. Remove vs. Forget vs. Reject

We have four ways of removing the class VegetarianTopping from the ontology
Pizza using the keywords hide, remove, forget, and reject, respectively. Table 1 illus-
trates some of the connections between Sects. 3.2.6 and 3.2.9.

Using hiding, we keep the model class of Pizza, but just remove the interpretation of
VegetarianTopping from each model. Note that the resulting ontology has

VegetarianPizza SubClassOf:
Annotations: dol:iri (*)
some hasTopping { TomatoTopping, MozzarellaTopping, ... }

as a logical consequence. This is also a consequence of the corresponding uniform inter-
polant

Pizza forget VegetarianTopping

which captures the theory of Pizza hide VegetarianTopping. Note that there is
a subtle difference between (model-theoretic) hiding and (consequence-theoretic) forget-
ting: a model satisfying the theory of O hide † might itself not be a model of O hide †.
In examples involving “with L,” the uniform interpolant can be weaker than the hiding,
because it is only required to have the same logical consequences in some language L,
and a formula like (*) might not be a formula of L. Also, an extracted module does not
contain (*), because it only selects a subontology, and Pizza does not contain (*). Fi-
nally, Pizza reject VegetarianTopping simply drops all sentences involving
VegetarianTopping, and therefore also consequences like (*) are lost.

Note that while forget/keep and hide/reveal both work w.r.t. smaller signatures and
sublogics, remove/extract and select/reject do not work for sublogics. This is because
remove/extract must always respect the conservative extension property, which may not
be possible when projecting to a sublogic. And if conservativity cannot be guaranteed, then
forget/keep can be used in any case. In the case of select/reject, it is unclear what selecting
of a sublogic should bring other than projecting to the sublogic using hide along.

Proposition 3.1 The following relations among the constructs in Table 1 hold:

Mod.O hide †/
D Mod.O remove †/jSig.O/n†
� Mod.O forget †/
� Mod.O reject †/
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Table 1 Hiding – Extraction – Approximation – Filtering

Hide/reveal Remove/extract Forget/keep Select/reject

Semantic
background

Model reduct Conservative
extension

Uniform
interpolation

Theory
filtering

Relation
to original

Interpretable Subtheory Interpretable subtheory

Approach Model level Theory level Theory level Theory level

Type of OMS Elusive Flattenable Flattenable Flattenable

Signature of result D † 
 † D † 
 †

Change of logic Possible Not possible Possible Not
possible

Application Specification Ontologies Ontologies Blending

3.3 OMS Mappings

OMS mappings are generated by the following grammar:

MappingDefn ::= interpretation NAME : OMS to OMS = 

| entailment NAME = OMS entails OMS
| equivalence NAME : OMS <-> OMS = h†;�i
| conservative extension NAME = O1 of O2 for †

| alignment NAME CARD1 CARD2 : OMS to OMS = Correspondences
| refinement NAME : OMS to OMS = 

| refinement NAME = NAME then NAME

The semantics of an OMS mapping is given as a graph whose nodes N are labeled with

� Name.N /, the name of the node
� Inst.N /, the institution of the node
� Sign.N /, the signature of the node
� Mod.N /, the class of Sign.N /-models of the node
� Ax.N /, the set of Ax.N /-sentences of the node

and whose edges are labeled with signature morphisms between the signatures of the
source and target nodes. The theory of a node corresponding to an elusive OMS may be
undefined. The class of models of a node corresponding to a flattenable OMS is the class
of models of Ax.N /. For brevity, we may write the label of a node as a tuple. We make
the simplifying assumption that any OMS is assigned a unique name. The theory-level
semantics of an OMS is needed for alignments.

In the following we discuss the different types of OMS mappings.

3.3.1 Interpretation

Theory interpretations, written interpretation Id : O1 to O2 =  , expressing that the  -
reduct of each model of O2 is a model of O1. Instead of  , an institution comorphism can
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be referred to. For example, we can express that the natural numbers are a total order as
follows:

interpretation i : TotalOrder to Nat = Elem 7! Nat

Here is a more complex example in Common Logic from the COLORE repository [9]:

interpretation geometry_of_time %mcons :
%% Interpretation of linearly ordered time intervals...
int:owltime_le
%% ... that begin and end with an instant as lines
%% that are incident with linearly ...
to { ord:linear_ordering and bi:complete_graphical

%% ... ordered points in a~special geometry, ...
and int:mappings/owltime_interval_reduction }

= int:ProperInterval 7! int:Interval end

The semantics of interpretation N W O1 to O2 D  is defined iff  is a signa-
ture morphism from Sign.O1/ to Sign.O2/ such that for each M2 2 Mod.O2/, M2j 2
Mod.O1/. In that case, the graph ofN is .O1; Inst.O1/;Sign.O1/;Mod.O1/;Ax.O1//

!
.O2; Inst.O2/;Sign.O2/;Mod.O2/;Ax.O2//

3.3.2 Refinement

Refinements, written refinement Id W O1 to O2 D  , expressing that O2 is an acceptable
realization of O1. Semantically, this is equivalent with a theory interpretation from O1 to
O2 along  . Refinements can be combined using the then keyword, as in the example
below, where the requirement of implementing a monoid is refined to implementing the
monoid of natural numbers with addition, using the representation of numbers as lists of
binary digits, for efficiency:

spec Monoid =
sort Elem
ops 0 : Elem;

__+__ : Elem * Elem -> Elem, assoc, unit 0
end

spec NatWithSuc =
free type Nat ::= 0 | suc(Nat)
op __+__ : Nat * Nat -> Nat, unit 0
forall x , y : Nat . x + suc(y) = suc(x + y)
op 1:Nat = suc(0)

end

spec Nat =
NatWithSuc hide suc

end

refinement R1 =
Monoid refined via Elem |-> Nat to Nat
end
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spec NatBin =
generated type Bin ::= 0 | 1 | __0(Bin) | __1(Bin)

ops __+__ , __++__ : Bin * Bin -> Bin
forall x, y : Bin
. 0 0 = 0 . 0 1 = 1
. not (0 = 1) . x 0 = y 0 => x = y
. not (x 0 = y 1) . x 1 = y 1 => x = y
. 0 + 0 = 0 . 0 ++ 0 = 1
. x 0 + y 0 = (x + y) 0 . x 0 ++ y 0 = (x + y) 1
. x 0 + y 1 = (x + y) 1 . x 0 ++ y 1 = (x ++ y) 0
. x 1 + y 0 = (x + y) 1 . x 1 ++ y 0 = (x ++ y) 0
. x 1 + y 1 = (x ++ y) 0 . x 1 ++ y 1 = (x ++ y) 1

end

refinement R2 =
Nat refined via Nat |-> Bin to NatBin

end

refinement R3 = R1 then R2

The semantics of refinement R W O1 to O2 D  is defined iff  is a signature
morphism from Sign.O1/ to Sign.O2/ such that for each M2 2 Mod.O2/, M2j 2
Mod.O1/. In that case, the graph ofN is .O1; Inst.O1/;Sign.O1/;Mod.O1/;Ax.O1//

!
.O2; Inst.O2/;Sign.O2/;Mod.O2/;Ax.O2//

The semantics of R1 then R2 is defined if and only if the semantics of R1 is

.N1; I1;†1;M1;�1/
1! .N2; I2;†2;M2;�2/, the semantics of R2 is .N 0

1; I
0
1;†

0
1;

M0
1;�

0
1/

2! .N 0
2; I

0
2;†

0
2;M0

2;�
0
2/, such that I2 D I 0

1, †2 D †0
1 and M0

1 � M2,

and then the graph of the composition is .N 00
1 ; I1;†1; fM j1I2

j M 2 M0
2g;?/

1I2!
.N 0

2; I
0
2;†

0
2;M0

2;�
0
2/, where N

00
1 is a new name.

3.3.3 Entailment

Entailments, written entailment Id D O1 entailsO2, express thatO2 is logically entailed
by O1. For example, we can express that in a group, the inverse of an element still exists
after hiding the explicit inverse operation from the specification as follows:

logic CASL

spec InterpolatedGroup =
sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x, y, z: Elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0
forget inv

end

entailment ent = InterpolatedGroup
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entails { . forall x:Elem . exists y . Elem . x+y=0 }
end

The semantics of entailment N D O1 entails O2 is defined iff Sign.O1/ D Sign.O2/
andMod.O1/ ˆ Ax.O2/. In that case, the graph of N is .O1;

Inst.O1/;Sign.O1/;Mod.O1/;Ax.O1//
id! .O2; Inst.O2/;Sign.O2/;

Mod.O2/;Ax.O2//

3.3.4 OMS Equivalence

OMS equivalences, written equivalence Id : O1 $ O2 = O3, expressing that O1 and
O2 have model classes that are in bijective correspondence. This is done by providing
a (fragment) OMS O3 such that Oi then O3 is a definitional extension [27]. For example,
Boolean algebras are equivalent to Boolean rings:

equivalence e : algebra:BooleanAlgebra $ algebra:BooleanRing =
forall x, y : Elem
. x ^ y = x*y
. x _ y = x + y + x*y
. :x = 1 + x
. x*y = x ^ y,
. x+y = (x _ y) ^ :(x ^ y).
end

The semantics of equivalence N : O1 $ O2 = O3 is defined iff for each model
Mi 2 Mod.Oi / there exists a unique model M 2 Mod.Sign.O1/[Sign.O2/;;/.O3/ such
thatM jSign.Oi / DMi . In that case, the graph of N is .O1; I;Sign.O1/;

Mod.O1/;Ax.O1//
�1! .O3; I;Sign.Sign.O1/[Sign.O2/;;/.O3/;

Mod.Sign.O1/[Sign.O2/;;/.O3/;Ax.Sign.O1/[Sign.O2/;;/.O3//
�2 .O2; I;

Sign.O2/;Mod.O2/;Ax.O2// where �i are inclusions.

3.3.5 Conservative Extension

A conservative extension is written as conservative extension Id c :O1 ofO2 for†. This
expresses that O2 contains all knowledge about the signature † from the O1 or, more pre-
cisely,O1 is a conservative extension ofO2 with restriction signature† and conservativity
c. If c is %mcons, this means that every †-reduct of an O2-model can be expanded to an
O1-model. If c is %ccons, this means that every †-sentence ' following from O1 already
follows from O2. This relation shall hold for any module O2 extracted from O1 using the
extract construct. For example, we can specify that we obtained a module of GALEN by
extracting the parts corresponding to drugs, joints, and body parts as follows:

module myGalenIsAModule : myGalen of
<http://example.org/GALEN/galen.owl>
for Drugs, Joints, Bodyparts

end
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The semantics of conservative extension N c : O1 of O2 for † is defined iff † �
Sign.O2/ � Sign.O1/ and if c D%mcons and for eachM 2 Mod.O2/ there is a model
M 0 2 Mod.O1/ such that M 0j† D M j†, or if c D%ccons and for each ' 2 Sen.†/,
O1 ˆ ' implies O2 ˆ '. Then the graph of N is .O2; Inst.O2/;Sign.O2/;Mod.O2/,
Ax.O2//

�! .O1; Inst.O1/;Sign.O1/;Mod.O1/;Ax.O1//, with � being the inclusion.

3.3.6 Alignment Definition

Alignment definitions, written as alignment Id card1 card2 : O1 to O2 = c1; : : : ; cn, as-
suming domain where card1 resp. card2 specify constraints on the alignment relation
concerning the source resp. target. Each cardi is one of 1, ?, +, * (“1” for injective and
total, ‘+’ for total, “?” for injective and “*” for none). The cj are correspondences of form
sym1 rel conf sym2. Here, symi is a symbol fromOi , rel is one of the built-in relations
>, <,D, %, 3, 2, 7!, or an identifier of a relation specified externally, and conf is an (op-
tional) confidence value between 0 and 1. The user can specify the assumption about the
universe where the relations in the correspondences are interpreted using the assuming
clause, with possible values SingleDomain (all ontologies are interpreted over the same
universe, which is also the default),GlobalDomain (the domains of the ontologies are rec-
onciled w.r.t. a global domain of interpretation) andContextualizedDomain (the domains
are connected via relations). This syntax of alignments follows the Alignment API [10].20

If all correspondences of an alignment have the confidence value 1, the alignment can be
given a formal semantics as a network.

ontology Onto1 =
Class: Person
Class: Woman SubClassOf: Person
Class: Bank

end

ontology Onto2 =
Class: HumanBeing
Class: Woman SubClassOf: HumanBeing
Class: Bank

end

alignment VAlignment : Onto1 to Onto2 =
Person = HumanBeing,
Woman = Woman

end

network N =
1 : Onto1,
2 : Onto2,
VAlignment

20 Note that BioPortal’s [40] mappings are correspondences in the sense of the Alignment API and hence
of DOL. BioPortal only allows users to collect correspondences, but not to group them into alignments.
In a sense, for each pair of ontologies, all BioPortal users contribute to a big alignment between these.
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O1 O2

B

O1' O2'
Bridge

Fig. 2 Semantics of alignments

ontology VAlignedOntology =
combine N
%% 1:Person is identified with 2:HumanBeing
%% 1:Woman is identified with 2:Woman
%% 1:Bank and 2:Bank are kept distinct

end

ontology VAlignedOntologyRenamed =
VAlignedOntology with 1:Bank 7! RiverBank, 2:Bank 7! FinancialBank,

Person_HumanBeing 7! Person
end

We sketch the semantics of alignments with the case when the domain of interpretation
is assumed to be shared by the ontologies being aligned. In this case, the semantics is
given by aW -shaped graph like in Fig. 2 whereO1 andO2 are the nodes of the ontologies
being aligned, O 0

1 and O
0
2 collect the symbols of O1 and O2, respectively, that appear in

the correspondences of the alignment, �1 and �2 are inclusions and the bridge ontology B
together with the morphisms 1 and 2 is constructed by turning the correspondences into
bridge axioms. Details can be found in [8].

3.4 Networks of OMS

OMS networks are introduced by the following grammar:

NetworkDefn := network NAME = Network
Network ::= NAME* [ excluding NAME* ]

Here, the NAMEs can name OMS, mappings or other networks. A network is specified
as a list of network elements (OMS, OMS mappings, and subnetworks), followed by an
optional list of excluded network elements. For disambiguating the symbols in the combi-
nation of the network, the individual OMS can be prefixed with labels, like n : O , which
are scoped to the current OMS network. An example has already been presented in the
section on alignments. Together with two OMS included in the network, the graph of
the network implicitly includes all paths along importations between the two nodes. For
example, in the example below, NAT_PLUS imports the specification NAT. Without the
implicit inclusion of this import, the combination would duplicate the theory of NAT.
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spec NAT =
free type Nat ::= 0 | suc(Nat)

end

spec NAT_PLUS =
NAT
then
op __+__ : Nat * Nat -> Nat
...

end

...

network N =
NAT, NAT_PLUS,...

end

spec N_COMBINED =
combine N

end

Formally, the graph of a network is constructed by taking the union of all graphs of its
constituents, provided that we regard the semantics of OMS as a graph with one node and
no edges, and removing from it all subparts specified in the excluding clause.

3.5 Libraries of OMS

Libraries start with the keyword library and the name of the library, followed by a quali-
fication choosing the OMS language, logic, and/or serialization. This is followed by a list
of imports of other libraries, definitions of OMS, OMS mappings, networks of OMS, or
other qualifications which change the current logic. Optionally, a prefix map placed at the
beginning of a library may be used to abbreviate IRIs. A library can also be the inclusion
of an OMS written in a language corresponding to some institution.

%prefix(
bfo: <https://bfo.googlecode.com/svn/releases/1.1.1/>
)%

library Parthood

logic CommonLogic

ontology BFOWithAssociatedAxioms =
bfo:bfo.owl with translation OWL22CommonLogic

then
(forall (x y) (if (snap:properTemporalPartOf x y)

(exists (z) (and (snap:properTemporalPartOf z y)
(not (exists (w)
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Fig. 3 Overview of logics in Ontohub

(and (snap:temporalPartOf w x) (snap:
temporalPartOf w z)

)))))))
end

Note that the prefixes declared in an imported library are available in the imported
library, as illustrated in the example above with the prefix snap:.

This completes our overview of DOL. The full syntax and semantics of DOL will be
available at wiki.ontohub.org and has been submitted to OMG for standardization. The
most recent version of the document is available at ontoiop.org.

4 Tool Support for DOL

Currently, DOL is supported by two tools: Ontohub and the Heterogeneous Tool Set
(HETS). Ontohub (see http://ontohub.org) is a web-based repository engine for OMS that
are written either in DOL or in some specific OMS language.21

Ontohub provides means for organizing OMS into repositories (Fig. 4). The distributed
nature enables communities to share and exchange their contributions easily. The hetero-
geneous nature makes it possible to integrate OMS written in various OMS languages.
Ontohub supports a wide range of DOL-conforming OMS languages building on DOL
and also supports DOL’s interpretations, equivalences and alignments. Users of Ontohub

21 Ontohub’s sources are freely available at https://github.com/ontohub/ontohub.

wiki.ontohub.org
ontoiop.org
http://ontohub.org
https://github.com/ontohub/ontohub
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Fig. 4 Some of the repositories hosted on Ontohub

can upload, browse, search and annotate OMS and OMS libraries in various languages via
a web front end. Figure 3 shows an excerpt of the 25 logics currently available in Ontohub.

The parsing and inference back end is the Heterogeneous Tool Set (Hets [34, 39], avail-
able at hets.eu). Hets supports a large number of basic OMS languages and logics, as well
as the DOL metalanguage as described in this chapter.22

The structural information extracted from DOL OMS by Hets is stored in the Ontohub
database and exposed to human users via a web interface and to machine clients as linked
data.23

5 Conclusion and Future Work

Interoperability between systems as well as reusability, we argued in the introduction to
this chapter, are critical challenges.

We here proposed to address these challenges by introducing two abstractions: firstly,
we introduced the notion of OMS, spanning formalized ontologies, models, and spec-
ifications; secondly, we introduced the DOL language, an abstraction in the sense that
it provides a structuring, module, and mapping language independently of the particular
logical formalism used.

The work presented here brings together previous work pursued in a number of com-
munities, including in particular logical pluralism, modular ontologies, algebraic specifi-

22 Some (but only few) of DOL’s features are still being implemented at the time of the writing of this
chapter.
23 “Linked data” is a set of best practises for publishing structured data on the Web in a machine-friendly
way [1]. DOL and Ontohub conform with linked data.

hets.eu
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cation, and modeling of systems. It therefore combines many isolated logical modeling
and specification solutions into one coherent framework with formal semantics.

A number of open problems and challenges, however, remain:

� What is a suitable abstract meta framework for nonmonotonic logics and rule languages
such as RIF and RuleML? Are institutions suitable here? Are the modularity questions
for these languages different from those for monotonic logics?

� What is a useful abstract notion of OMS query (language)? How to handle answer
substitutions in a logic-agnostic way?

� Can the notions of class hierarchy and of satisfiability of a class be generalized from
OWL to other languages?

� Can logical frameworks be used for the specification of OMS languages and transla-
tions?

Despite these challenges, we hope that the development of DOL will have a pro-
found impact on ontology engineering practices as well as on the way the modeling,
ontology, and specification communities interact and how the systems they develop may
interoperate. The impact on communities can already be seen e.g. by the use of Onto-
hub/DOL for the FOIS 2014 ontology competition. We have illustrated the benefits of
DOL for a wide range of use cases; including for a framework of heterogeneous mod-
eling in UML [20, 21], in biomedical ontology [26], for the specification of blending
diagrams in computational creativity [23], and for the heterogeneous modeling of musical
harmonies [6].

We hope that the future will bring many more diverse and interesting use cases for the
DOL language.
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Abstract This chapter aims to investigate connections between Belnap’s useful four val-
ued logic and Nelson’s constructive logic with strong negation and the role of adding
logical constants to the language. We consider the paraconsistent Nelson’s logic and its
expansions obtained by adding to it logical constant’s corresponding to truth values of
Belnap’s useful four-valued logic.
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1 Introduction

This work continues the investigation started by Odintsov [18]. It is devoted to an inves-
tigation of connections between the well-known useful four-valued logic [2, 3] suggested
by N. Belnap and Nelson’s constructive logic with strong negation [12] and to the study
of effects of adding new logical constants to the language of logic.

Nelson [12] suggested his system of constructive logic with strong negation to over-
come the nonconstructive character of the intuitionistic negation. Subsequently, this sys-
tem, traditionally denoted by N3, was axiomatized by Vorob’ev [27, 28] and studied
algebraically by Helena Rasiowa [20, 21]. Fidel and Vakarelov [7, 26] independently dis-
covered a convenient representation of algebraic N3-models via so-called twist-structures.
The paraconsistent Nelson’s logicN4 is obtained by deleting the “explosive” axiom (Duns
Scottus law) � p ! .p ! q/ from the axiomatics of N3. From the early 1970s several
versions of N4 were studied independently by Routley (later R. Sylvan) in the proposi-
tional case in [22], by López-Escobar in [11] and by Nelson himself in [1], both in the
first-order case.

Kripke semantics for N4 (see, e.g., [19]) is readily obtained from the usual Kripke se-
mantics for intuitionistic logic by assigning to each world, instead of a set of propositional
variables, a set of literals, i.e., propositional variables or strongly negated propositional
variables. Equivalently, we can consider a truth-assignment for the logic N4 as a mapping
sending pairs of propositional variables and worlds into four-element Belnapian matrix
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B4 with its truth values True, False, Neither, and Both [2, 3]. If we do not admit the truth
value Both, we obtain a semantics for explosive Nelson’s logic N3 ([10, 25]). In this way,
Nelson’s logics N3 and N4 can be considered as “intuitionistic approximations” of three-
and four-valued Belnap’s logics.

Algebraic semantics forN4 in terms ofN4-lattices was suggested in [13], and the twist-
structure representation of N4-lattices was studied in [14]. The logicN4? [15] is obtained
from N4 by adjoining the intuitionistic falsity constant ?. It is a conservative extension
of N4 as well as of the intuitionistic logic, but adding this constant provides the class of
N4?-extensions with a regular structure (see [17]). In twist-structure semantics [7, 26],
we have ? D .0; 1/, where 0 and 1 are zero and unit elements of the underlying Heyting
algebra, respectively. In this way ? is a natural analog of the Belnapian constant False,
where as the ground term � ? D .1; 0/ corresponds to the constant True [2, 3].

Another version of paraconsistent Nelson’s logic arose in the course of the study of
substructural properties of the strong implication connective, p ) q WD .p ! q/ ^ .�
q !� p/. This implication connective lacks the contraction property. The formulas
p ) .p ) q/ and p ) q are not equivalent in N3. In [23, 24], it was proved syn-
tactically, with the help of the prover OTTER, that the variety of N3-lattices (providing
algebraic semantics for N3) is definitionally equivalent to the variety of Nelson FLew-
algebras (a subvariety of the variety of residuated lattices), and so N3 can be treated as
an axiomatic extension of FLew, the full Lambeck calculus with exchange and weak-
ening [8]. Busaniche and Cignoli [5] have found more natural (and essentially shorter)
semantic proof of this result. Trying to extend this result to N4 they defined in [4] the
logic, which we denote here bN41, via adding the additional constant b satisfying the
equations b D� b and b ! b D b. The bN4-lattices are N4-lattices with the interpreted
constant b. In twist-structures, the constant b is always interpreted as .1; 1/, and, in this
way, it corresponds to the Belnapian constant Both. In [4], Busaniche and Cignoli defined
a variety of NPc-lattices, a subvariety of the variety of residuated lattices with involu-
tion, and proved that this variety is equivalent to the variety of bN4-lattices. Note that the
syntactical translations in this case are essentially different from that of [23].

In [18], we considered the logic bN4?, the language of which contains both constants
? and b and proved that despite the fact that the logic bN4? is paraconsistent, its expres-
sive power is very close to that of N3. More exactly, we defined the translation  , which
embed faithfully N3 into bN4?, and the translation ˇ providing the embedding of bN4?
into N3. Moreover, the translations  and ˇ will define mutually inverse isomorphisms
of the lattice of N3-extensions and that of bN4?-extensions. This allows us to conclude
that the expressive powers of the paraconsistent Nelson’s logic bN4? enriched with the
Belnapian constant “Both” and of the explosive N3 are essentially the same.

In this chapter, we consider the result of adding an analog of the Belnapian constant
Neither to the logic N4?, and the result of adding the full set of Belnapian constants
to N4. It turns out that the logic nN4? obtained in this way is definitially equivalent to
the logic N4N, an important extension of N4?, via translations ı and � . Moreover, the
translations ı and � define mutually inverse isomorpisms between lattices of nN4?- and

1 In [4], this logic was denoted as eN4. We change the denotation to emphasize the connection between
the constant b and the truth-value Both.
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N4N-extensions. The importance of the logic N4N is conditioned by the fact (see [17])
that it distinguishes in the lattice EN4? of N4?-extensions the class of so-called normal
logics Nor D EN4N. The logics fromNor represent in some sense the nontrivial structures
of contradictions in paraconsistent extensions of the logic N4? [17]. Studying the class
of extensions of a paraconsistent logic it is important to distinguish the subclasses of
explosive logics and of logics representing the behaviour of contradictions. In the case of
N4?-extensions these are the lattices EN3 and EN4N.

Thus, we obtain the following situation. Without the constants ? and the ground term
� ? corresponding to Belnapian truth values True and False we cannot distinguish the
class of normal logics in EN4, but we can do it in the class of N4?-extensions. Adding
the constant b corresponding to Both we restrict the class of N4?-extensions to the class
of its explosive extensions, while adding the constant corresponding to Neither restricts
the class of N4?-extensions to the class of normal logics. Finally, adding to the logic N4
constants corresponding to all Belnapian truth values, we obtain the logic N4Bel whose
class of extensions is syntactically isomorphic to that of N3ı D N3 C N4N, which is
isomorphic in turn to the class of intermediate logics.

2 The Nelson Logics

We consider the basic propositional language L� D f_;^;!;�g and several languages
obtained from L by adjoining constant symbols:

L D L� [ f?g; Lb D L [ fbg; Ln D L [ fng; LBel D L [ fb; ng :
The symbol � stands for the strong negation, while the constant ? is the intuitionistic
falsity constant and it will be used to define the intuitionistic negation. The set of formulas
For.L�/ (For.L/, etc.) is constructed from a fixed set Prop D fp0; p1; : : :g of propositional
variables with the help of connectives of the respective language in a standard way. For
a formula ', we denote by var.'/ the set of all propositional variables that occur in '. We
write ' D '.p0; : : : ; pn/ if var.'/ is a subset of fp0; : : : ; png.

By a logic in the language L� (L, etc.) we mean a subset of For.L�/ (For.L/, etc.)
closed under the substitution rule and the rule of modus ponens (MP). A theory over
a logic L is a set T of formulas of the respective language such that L � T and T is
closed under MP. A theory T is called inconsistent wrt � (wrt ?) if ';� ' 2 T for
some formula ' (if ? 2 T ). A theory T over L is trivial if T contains all formulas of the
respective language. Otherwise, the theory is called nontrivial.

Recall that a logic is called paraconsistent wrt� (wrt?) if there is a nontrivial incon-
sistent wrt� (wrt?) theory over that logic. But if such theory does not exist, then the
logic is called explosive wrt� (wrt?).

If L is a logic and � is a set of formulas in the language of L, we denote by L C �
the least logic containing L [ � . Such logic exists since the intersection of an arbitrary
family of logics is again a logic. If L is a logic in the language L� (L, etc.), we denote by
EL the set of all logics in the language L� (L, etc.) extending L. The operations \ and
C turn EL into the lattice.
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The paraconsistent Nelson logic N4 can be defined as the least logic in the language
L� containing the following list of axioms:

A1. p! .q ! p/

A2. .p ! .q ! r//! ..p ! q/! .p ! r//

A3. .p ^ q/! p

A4. .p ^ q/! q

A5. .p ! q/! ..p ! r/! .p! .q ^ r///
A6. p! .p _ q/
A7. q ! .p _ q/
A8. .p ! r/! ..q ! r/! ..p _ q/! r//

A9. ��p$ p

A10. �.p _ q/$ .�p ^ �q/
A11. �.p ^ q/$ .�p _ �q/
A12. �.p ! q/$ .p ^ �q/.

Recall that a formula ' is a negation normal form (nnf) if the strong negation� occurs
in ' only in front of propositional variables. The strong negation axioms A9–A12 allow us
to reduce any formula to a negative normal form, i.e., to effectively find out for a formula
' 2 For.L�/, a nnf  such that ' $  2 N4. We say in this case that  is a negative
normal form of '. One can define the notion of nnf for every extension of the language
L� via constants. In this case, we assume the strong negation occur in nnf only in front
of atomic formulas (propositional variables or constants). The above result on reducing to
nnf holds for all logics considered in this chapter. Suppose that we fixed some algorithm
reducing a formula ' to its nnf N'.

The explosive Nelson logic N3 can be defined as

N3 D N4C f� p ! .p ! q/g :

The logic N4? is the least logic in the language L containing axioms A1–A12 of N4 and
the additional axioms for the constant ?:
A13. ? ! p and A14. �?

These axioms allow us to define the explosive intuitionistic negation in the usual way:
:' WD ' ! ?. More exactly, it can be proved that N4? is a conservative extension
of the intuitionistic logic defined in the language f_;^;!;?g. The logic N4? is also
a conservative extension of N4. Notice that N4? is paraconsistent wrt� and explosive
wrt?.

If we define the constant? as� .p0 ! p0/, then the axioms A13 and A14 are provable
in N3. In this way, the logic N3 can be considered as an extension of N4?. The following
logics are important for defining the general structure of the lattice EN4?:

N4N D N4? C f::.p_ � p/g; N3ı D N4N C f� p ! .p! q/g D N4N C N3 :
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The logics bN4?, nN4?, and N4Bel are defined in the languages Lb , Ln, and respec-
tively LBel as follows:

bN4? D N4? C fb;� bg; nN4? D N4? C fn! p;� n! pg ;
N4Bel D nN4? C fb;� bg D bN4? C nN4? :

3 Algebraic Semantics for Nelson’s Logics

Recall that an implicative lattice A D hA;^;_;!; 1i is a distributive lattice with the
greatest element 1, and the implication operation! satisfying the equivalence

a ^ c � b iff c � a! b ;

where � is the lattice ordering of A and a; b; c 2 A. A Heyting algebra A D hA;^;_;
!; 0; 1i is an implicative lattice with the least element 0.

The set Fd.A/ D fa _ .a ! b/ j a; b 2 Ag is a filter of dense elements of an
implicative lattice (a Heyting algebra) A. The lattice of filters on A is denoted by F.A/,
and the lattice of ideals is denoted by I.A/. In the case of a Heyting algebra A we have:
Fd.A/ D fa 2 A j ::a D 1g D fa _ :a j a 2 Ag.

Definition 3.1 Let A be an implicative lattice (a Heyting algebra).

1. A full twist-structure overA is an algebra

A‰ D hA � A;_;^;!;�i
.A‰ D hA � A;_;^;!;�;?; 1i/

with twist-operations defined for .a; b/; .c; d/ 2 A � A in the following way:

.a; b/ _ .c; d/ WD .a _ c; b ^ d/; .a; b/ ^ .c; d/ WD .a ^ c; b _ d/
.a; b/! .c; d/ WD .a! c; a ^ d/;� .a; b/ WD .b; a/

.? WD .0; 1/; 1 WD .1; 0// :
2. A twist-structure over A is an arbitrary subalgebra B of the full twist-structure A‰

such that �1.B/ DA, where �i , i D 1; 2, denotes the projection of the direct product
on the i th coordinate.

3. A class of all twist-structures over the algebra A is denoted by S‰.A/.

Notice that if B 2 S‰.A/, then we have �2.B/ DA.
A valuation in a twist-structure B is defined in a usual way as a homomorphism of

the algebra of formulas into B. The relation B ˆ ' means that �1�.'/ D 1 for every
B-valuation � . We write B ˆ � for a set of formulas � if B ˆ ' for all ' 2 � . For
a formula ', the notation ˆ�‰ ' (ˆ‰ ') means that B ˆ ' for each twist-structure B
over an implicative lattice (a Heyting algebra).
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Theorem 3.2 [13, 15] For any ' 2 For.L�/ (' 2 For.L/) the following equivalence is
true:

' 2 N4 ,ˆ�‰ ' .' 2 N4? ,ˆ‰ '/ :

Let A be an implicative lattice (a Heyting algebra). Further, let r 2 F.A/, Fd.A/ �
r, � 2 I.A/. We denote by Tw.A;r; �/ the twist-structure overA with the universe

jTw.A;r; �/j D f.a; b/ j a; b 2 A; a _ b 2 r; a ^ b 2 �g :

It is easy to see that this set is closed under twist-operations. Moreover (see [14]), every
element B of S‰.A/ can be represented as B D Tw.A;r; �/, where

r D fa _ b j .a; b/ 2 Bg and � D fa ^ b j .a; b/ 2 Bg :

In particular, A‰ D Tw.A;A;A/. In [15] it was noticed that a twist-structure B D
Tw.A;r; �/ is a model of the logic N3, B ˆ N3, iff the implicative lattice A contains
the least element 0 and � D f0g. Further, a twist-structure B D Tw.A;r; �/ over
a Heyting algebra is a model of the logic N4N iff r D Fd.A/. Thus, the logic N3 is
characterized by the class of twist-structures of the form Tw.A;r; f0g/, the logic N4N is
determined by the class of twist-structures of the form Tw.A; Fd.A/;�/. Finally, N3ı is
characterized by twist-structures Tw.A; Fd.A/; f0g/.

An algebra A D hA;_;^;!;�i (A D hA;_;^;!;�;?; 1i) isomorphic to a twist-
structure over an implicative lattice (a Heyting algebra) is called an N4-lattice (an N4?-
lattice). We say that ' is true on an N4.?/-lattice A, A ˆ ', if the identity ' ! ' D '

holds on A. This definition agrees with the definition of validity of formulas on twist-
structures. Namely, if B is a twist-structure, then B ˆ ' iff the identity ' ! ' D ' holds
on B. We say that an N4.?/-lattice A is a model of a logic L 2 EN4.?/ (A ˆ L) if
A ˆ ' for all ' 2 L.

In [13, 15], it was proved that the class of all N4.?/-lattices forms a varietyN 4.?/, and
that the lattice Sub.N 4.?// of subvarieties of N 4.?/ is dually2 isomorphic to the lattice
EN4.?/ of N4.?/-extensions. These mutually inverse dual isomorphisms are given by the
rules:

V.L/ D fA jA 2N 4.?/;A ˆ Lg; L 2 EN4.?/I
L.V / D f' jA ˆ ' for all A 2 V g; V 2 Sub.N 4.?// :

It follows from the above remarks on N3-models that for every N4-lattice A the fol-
lowing equivalence holds:

A 2 V.N3/ iff A Š Tw.B;r; f0g/ for some B and r � Fd.B/ : (3.1)

2 By a dual isomorphism of lattices A and B we mean a mapping h W A ! B such that h is an isomor-
phism of A and Bop , where Bop is the lattice with the same support as B, but with the inverse ordering.
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Similarly, for every N4?-lattice, the following holds:

A 2 V.N4N/ iff A Š Tw.B; Fd.B/;�/ for some B and � 2 I.B/ I (3.2)

A 2 V.N3ı/ iff A Š Tw.B; Fd.B/; f0g/ for some B : (3.3)

An algebra A D hA;_;^;!;�; b;?; 1i is called a bN4?-lattice iff the b-free reduct
A D hA;_;^;!;�;?; 1i is an N4?-lattice and the following equations hold: b ! b D
b and � b D b.

An algebraA D hA;_;^;!;�; n;?; 1i is an nN4?-lattice iff the n-free reductA D
hA;_;^;!;�;?; 1i is an N4?-lattice and the following equations hold: :n ! :n D
:n and � n D n. Finally, an N4Bel-lattice A D hA;_;^;!;�; b; n;?; 1i is an N4?-
lattice with two additional constants satisfying the above identities.

The classes of bN4?-lattices, nN4?-lattices, and N4Bel-lattices form varieties, which
are defined by the identities of bN4?-lattices and the identities defining the new constants
b or (and) n. We denote these varieties as bN 4?, nN 4?, and N 4Bel, respectively.

Earlier we have defined mappings V and L establishing mutually inverse dual lattice
isomorphisms between the lattice of N4?-extensions and the lattice of subvarieties of the
variety of N4?-lattices. In exactly the same way we define the following mappings:

V W Sub.bN 4?/! EbN4? and L W EbN4? ! Sub.bN 4?/
V W Sub.nN 4?/! EnN4? and L W EnN4? ! Sub.nN 4?/
V W Sub.N 4Bel/! EN4Bel and L W EN4Bel ! Sub.N 4Bel/ :

We have only slightly modify the proofs from [15] to establish that we obtained mutually
inverse dual lattice isomorphisms between the lattice Sub.bN 4?/ of subvarieties of the
variety bN 4? and the lattice of bN4?-extensions, etc.

Proposition 3.3

1. [18] An algebra A D hA;_;^;!;�; b;?; 1i is an bN4?-lattice iff there are a Heyt-
ing algebra B and a filter r on B (Fd.B/ � r) such that A Š Tw.B;r;B/. The
constant b corresponds to .1; 1/ under this isomorphism.

2. An algebraA D hA;_;^;!;�; n;?; 1i is an nN4?-lattice iff there are a Heyting al-
gebraB and an ideal� onB such thatA Š Tw.B;B; �/. The constant n corresponds
to .0; 0/ under this isomorphism.

3. An algebra A D hA;_;^;!;�; n; b;?; 1i is an N4Bel-lattice iff there is a Heyting
algebra B such that A Š B‰ Š Tw.B;B;B/. The constants b and n correspond
under this isomorphism to .1; 1/ and .0; 0/ respectively.

Proof Item 1 was established in [18].
2. Let A be an nN4?-lattice. In particular, A is an N4?-lattice. Consequently, there

are a Heyting algebra B, a filter r and an ideal � on B such that A Š Tw.B;r; �/. Let
n be interpreted in B as .a; b/. The equality � n D n implies .b; a/ D .a; b/, i.e., a D b.
The equality :n ! :n D :n means that :.a; b/ ! :.a; b/ D .:a; a/ ! .:a; a/ D
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.:a ! :a;:a ^ a/ D .1; 0/ D .:a; a/ D :.a; b/, i.e., a D 0. Thus, n is interpreted
in B as .0; 0/, in particular, .0; 0/ 2 B. Recall that r D fa _ b j .a; b/ 2 Tw.B;r; �/g.
From 0 D 0 _ 0 we obtain 0 2 r, which means that r D B. On the other hand, if
A Š Tw.B;B; �/, then .0; 0/ 2 Tw.B;B; �/ since 0 D 0 ^ 0 belongs to every ideal �
on C. Thus, interpreting n as .0; 0/ turns B into an nN4.?/-lattice.

3. This item follows from 1 and 2. �

Now we know how the constants b and n are interpreted in models of logics bN4?,
nN4?, and N4Bel, and this is the right place to emphasize the connection of these constats
with the truth-values Both and Neither in Belnap’s four-valued logic.

N. Belnap [2, 3, 6] suggested a logical system based on the following four-valued
matrix

B4 WD hfTrue;False;Neither;Bothg;^;_;�; fTrue;Bothgi :

Let 4 D fTrue;False;Neither;Bothg. The intended interpretations of elements of 4 are
subsets of the set f0; 1g of classical truth values:

True D f1g; False D f0g; Neither D ;; Both D f0; 1g :

The matrix operations are then operations on the subsets of the set of classical truth values,
e.g.,

f0; 1g _ f0g D f0; 1g; f1g ^ ; D ;;� f0; 1g D f0; 1g;

where it is possible to calculate by classical considerations; otherwise the value is deter-
mined by monotonicity wrt the truth ordering (see, e.g., [2]).

We can represent the truth values as characteristic functions of subsets of f0; 1g, i.e., as
pairs .a; b/, where a; b 2 f0; 1g, a D 1 iff 1 belongs to the subset, and b D 1 iff 0 belongs
to the subset:

True D .1; 0/; False D .0; 1/; Neither D .0; 0/; Both D .1; 1/:

Under such a presentation, the matrix operations of B4 have the form of twist-operations:

.a; b/_ .c; d/ D .a _ c; b ^ d/; .a; b/ ^ .c; d/ D .a ^ c; b _ d/; � .a; b/ D .b; a/:

This presentation suggests a natural way of defining an implication operation on B4:

.a; b/! .c; d/ D .a! c; a ^ d/:

We also add to the language the constant? interpreted as False and will consider Belnap’s
matrix in this extended language:

B4 WD h4;^;_;!;?;�; fT;Bgi:
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Obviously, the algebra h4;^;_;!;?;�i coincides with 2‰, where 2 is a two-element
Boolean algebra. The set of distinguished truth values of B4 contains exactly all elements
a of 2‰ with �1a D 1. Thus, the validity of a formula on the matrix B4 is equivalent to
its validity on the twist-structure 2‰.

The twist-structure 2‰ is not necessarily a subalgebra of an N4?-lattice A. A twist-
structure presentation of A must contain .0; 1/ D ? and .1; 0/ D� ?, where as
Neither D .0; 0/ and Both D .1; 1/ are optional. Only if we consider 2‰ as an N4Bel-
lattice with interpreted constants b and n, it becomes a subalgebra of any N4Bel-lattice.
Due to this reason we consider N4Bel as Nelson’s logic with the full set of Belnapian
constants. The logic bN4? is a Nelson’s logic with Both, etc.

Concluding this section, we make a few remarks on quotients of N4?-lattices. Let A
be an N4?-lattice. A nonempty subset r � A is called a special filter of the first kind
(sffk) on A if: 1) a 2 r and b 2 r imply a ^ b 2 r; 2) a 2 r and .a ! b/ ! .a !
b/ D a! b imply b 2 r. It is obvious that the set of all sffk onA forms a lattice, which
we denote F1.A/.

Denote by Con.A/ the lattice of congruences on A. It was proved in [14, 15] that the
mappings r 7! �r , r 2 F1.A/, and � 7! r� , � 2 Con.A/,where

�r D f.a; b/ j a; b 2A; a$ b;� a$� b 2 rg ;
r� D fa j a 2A; a�.a! a/g ;

establish mutually inverse isomorphisms between lattices F1.A/ and Con.A/.
Let A 2 S‰.B/. For F � B, put F‰ D f.a; b/ j .a; b/ 2 B; a 2 F g. It was

proved in [15] that F 2 F.B/ iff F‰ 2 F1.A/. Moreover, if F 2 F.B/, then for every
r 2 F.B/ with Fd.B/ � r and � 2 I.B/, we have the following isomorphism:

Tw.B;r; �/=F‰ Š Tw.B=F;r=F;�=F / : (3.4)

The result concerning sffk can be immediately transferred to bN4?-, nN4?-, andN4Bel-
lattices.

4 The Lattices EbN4?, EnN4?, and EN4Bel

First we survey the results from [18] concerning the lattice of bN4?-extensions.
The translation  W For.L/! For.Lb/ is given by the rule

.'/ WD
0

@
^

p2var.'/
:.p^ � p/

1

A! ' :

For arbitrary L 2 EN3, put
.L/ D bN4? C f.'/ j ' 2 Lg:

Recall that a logic L1 is faithfully embedded into L2 via a translation � if for every
formula ' in the language of L1, we have the equivalence: ' 2 L1 iff �.'/ 2 L2.
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Theorem 4.1 [18] For every logic L 2 EN3 and formula ' 2 For.L/, the following
equivalence holds:

' 2 L ” .'/ 2 .L/:

In other words, every N3-extension L is faithfully embedded into a bN4?-extension
via the same syntactic translation. In particular, we have

Corollary 4.2 [18] The logic N3 is faithfully embedded into bN4? via  .

The proof of Theorem 4.1 is based on the following observation.

Lemma 4.3 [18] For every formula ' 2 For.L/, Heyting algebra A, and filter r on A
such that Fd.A/ � r, the following equivalence holds:

Tw.A;r;A/ � .'/ iff Tw.A;r; f0g/ � ':

In fact, the mapping L 7! .L/ establishes an isomorphism between lattices EN3 and
EbN4?. The proof of this fact is based on the following translation ˇ: For.Lb/! For.L/.

First we define the translation ˇ W For.Lb/ ! For.L/ for formulas that are nnfs. If
' D '.p0; : : : ; pn/ is a nnf, then there is a uniquely defined positive formula '0, i.e.,
a formula constructed from propositional variables with the help of positive connectives
_, ^, and!, such that

'.p0; : : : ; pn/ D '0.?;� ?; b;� b; p0;� p0; : : : ; pn;� pn/ :
We put

ˇ.'.p0; : : : ; pn// D '0.?;� ?;� ?;� ?; p0; p1_ � p0; : : : ; p2n; p2nC1_ � p2n/ :
In other words, for nnfs the translation ˇ is defined as follows:

ˇ.?/ D ?; ˇ.� ?/ D� ?; ˇ.b/ D� ?; ˇ.� b/ D� ? ;
ˇ.pi / WD p2i ; ˇ.� pi / D p2iC1_ � p2i ;

ˇ.' ˘  / WD ˇ.'/ ˘ ˇ. / ; ˘ 2 f_;^;!g :
For a formula ', which is not a nnf, we put

ˇ.'/ D ˇ. N'/ :
For a logic L 2 EbN4?, we define ˇ.L/ D N3C fˇ.'/ j ' 2 Lg.

Again, every bN4?-extension L is faitfully embedded into ˇ.L/ via ˇ.

Theorem 4.4 [18] For every logic L 2 EbN4? and formula ' 2 For.Lb/, the following
equivalence holds:

' 2 L ” ˇ.'/ 2 ˇ.L/ :

In particular, the logic bN4? is faithfully embedded into N3 via ˇ.
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From this we can easily infer

Corollary 4.5 The mapping L 7! ˇ.L/, L 2 EbN4?, is an order preserving embedding
of the lattice EbN4? into EN3.

Now it remains to prove that the lattice embeddings defined by the translations  and
ˇ are mutually inverse, and since the lattices that are isomorphic as orders are isomorpic
as lattices also, we obtain.

Theorem 4.6 [18] The mappings L 7! .L/, L 2 EN3, and L 7! ˇ.L/, L 2 EbN4?,
are mutually inverse lattice isomorphisms between EN3 and EbN4?.

We pass to the investigation of nN4?-extensions.
Consider an embedding of N4N into nN4?.
The translation ı: For.L/! For.Ln/ is given by the rule

ı.'/ WD
0

@
^

p2var.'/
::.p_ � p/

1

A! ' :

For arbitrary L 2 EN4N, put
ı.L/ D nN4? C fı.'/ j ' 2 Lg :

Lemma 4.7 For every formula ' 2 For.L/, Heyting algebra A, and an ideal � on A,
the following equivalence holds:

Tw.A;A; �/ ˆ ı.'/ iff Tw.A; Fd.A/;�/ ˆ ' :

Proof Assume that Tw.A;A; �/ ˆ ı.'/ and consider a Tw.A; Fd.A/;�/-valuation
v. Due to the inclusion Tw.A; Fd.A/;�/ � Tw.A;A; �/ we can consider v as
a Tw.A;A; �/-valuation too.

By assumption �1v.ı.'// D �1v.
V
p2var.'/::.p_ � p// ! �1v.'/ D 1, whence

�1v.
V
p2var.'/::.p_ � p// � �1v.'/. Since v is a Tw.A; Fd.A/;�/-valuation, we

have �1v.p/ _ �2v.p/ D �1v.p_ � p/ 2 Fd.A/ for every p 2 Prop. The latter is
equivalent to �1v.::.p_ � p// D 1. Consequently, �1v.

V
p2var.'/::.p_ � p// D 1

and �1v.'/ D 1. We have thus proved that Tw.A; Fd.A/;�/ ˆ '.
Now we assume that Tw.A;A; �/ 6ˆ ı.'/. Let a Tw.A;A; �/-valuation v be such

that �1v.ı.'// ¤ 1. The latter means that

�1v

0

@
^

p2var.'/
::.p_ � p/

1

A 6� �1v.'/ :

Denote a D �1v.
V
p2var.'/::.p_ � p// and b D �1v.'/, then a 6� b. Let hai be

a filter on A generated by a, hai D fc j a � cg. Then we have b 62 hai. Consider the
twist-structure Tw.A=hai;A=hai; �=hai/ and the valuation v0 given by the rule v0.p/ D
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.�1v.p/=hai; �2v.p/=hai/. An easy induction on the structure of formulas allows us to
prove that for any formula  2 For.Ln/, we have v0. / D .�1v. /=hai; �2v. /=hai/.
In particular, we have �1v0.'/ D b=hai. Since b 62 hai, b=hai ¤ 1A=hai, whence
Tw.A=hai;A=hai; �=hai/ 6ˆ '. At the same time, �1v0.

V
p2var.'/::.p_ � p// D

a=hai D 1A=hai, which implies for all p 2 var.'/ that �1v0.::.p_ � p// D 1A=hai,
i.e., �1v0.p_ � p/ D �1v0.p/ _ �2v0.p/ 2 Fd.A=hai/ for all p 2 var.'/. It is true that
Fd.A=hai/ D Fd.A/=hai. Indeed
Fd.A=hai/ D fc=hai _ :c=hai j c 2Ag; Fd.A/=hai D f.c _ :c/=hai j c 2Ag :

It remains to notice that c=hai _ :c=hai D .c _ :c/=hai for all c 2 A. It follows from
the above considerations that on propositional variables from var.'/, the valuation v0 acts
as a Tw.A=hai; Fd.A/=hai; �=hai/-valuation. This fact and �1v0.'/ ¤ 1A=hai imply
Tw.A=hai; Fd.A/=hai; �=hai/ 6ˆ ', i.e., the identity ' ! ' D ' does not hold on
Tw.A=hai; Fd.A/=hai; �=hai/. By (3.4) the twist-structure Tw.A=hai; Fd.A/=hai,
�=hai/ is isomorphic to Tw.A; Fd.A/;�/=hai‰, the quotient algebra of Tw.A,
Fd.A/, �/, which means that ' ! ' D ' is not an identity of Tw.A; Fd.A/;�/
too. Consequently, Tw.A; Fd.A/;�/ 6ˆ '. �

Theorem 4.8 For every logic L 2 EN4N and formula ' 2 For.L/, the following equiva-
lence holds:

' 2 L ” ı.'/ 2 ı.L/ :

Proof That ' 2 L implies ı.'/ 2 ı.L/ follows from the definition of the logic ı.L/.
Take a formula ' 62 L and an algebraA 2 V.L/ such that A 6ˆ '. Since L extends N4N,
we have A ˆ N4N. Consequently, A Š Tw.B; Fd.B/;�/ for some B and �. By the
previous lemma we have Tw.B;B; �/ ˆ ı. / for all  2 L, whence Tw.B;B; �/ 2
V.ı.L//. At the same time, Tw.B;B; �/ 6ˆ ı.'/ in view ofA 6ˆ '. We have thus proved
that ı.'/ 62 ı.L/. �

Corollary 4.9 The logic N4N is faithfully embedded into nN4? via ı.

Proof It remains to notice that ı.N4N/ D nN4?, i.e., ı.'/ 2 nN4? for all ' 2 N4N.
If ' 2 N4N, then Tw.A; Fd.A/;�/ ˆ ' for all A and �. By Lemma 4.7 we obtain
Tw.A;A; �/ ˆ ı.'/ for all A and �. Every nN4?-lattice is isomorphic to a twist-
structure of the form Tw.A;A; �/, consequently, ı.'/ 2 nN4?. �

Corollary 4.10 The mapping L 7! ı.L/, L 2 EN4N, is an order preserving embedding
of the lattice EN4N into EnN4?.

Proof It follows by definition that this mapping preserves the inclusion relation. Let
L1;L2 2 EN4N and ' 2 L1 n L2. By Theorem 4.8, we obtain that ı.'/ 2 ı.L1/ n ı.L2/.
Thus, the mapping L 7! ı.L/ is one-to-one. �

In fact, the mappingL 7! .L/ establishes an isomorphism between lattices EN4N and
EnN4?. Again we define a translation � W For.Ln/! For.L/ and prove that it allows us
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to define an embedding of EnN4? into EN4N, which is inverse to the embedding defined
by ı.

For formulas that are nnfs the translation � : For.Ln/! For.L/ is defined as follows:

�.?/ D ?; �.� ?/ D� ?; �.n/ D ?; �.� n/ D ? ;
�.pi / WD p2i ; �.� pi / D p2iC1^ � p2i ;

�.' ˘  / WD �.'/ ˘ �. /; ˘ 2 f_;^;!g :

For a formula ', which is not a nnf, we put

�.'/ D �. N'/ :

For a logic L 2 EnN4?, we define �.L/ D N4N C f�.'/ j ' 2 Lg.

Lemma 4.11 For every formula ' 2 For.Ln/, Heyting algebraA, and ideal� onA, the
following equivalence holds:

Tw.A; Fd.A/;�/ ˆ �.'/ iff Tw.A;A; �/ ˆ ' :

Proof Since Tw.A;A; �/ ˆ ' iff Tw.A;A; �/ ˆ N', it will be enough to consider the
case of a nnf '.p0; : : : ; pn/.

Assume that Tw.A; Fd.A/;�/ ˆ �.'/ and take arbitrary Tw.A;A; �/-valuation
v. Consider a Tw.A; Fd.A/;�/-valuation v0 such that:

v0.p2i / D .�1v.pi /;:�1v.pi / _ �2v.pi //; v0.p2iC1/ D .�2v.pi /;:�2v.pi // ;

where i D 0; : : : ; n. To check the correctness of this definition we calculate

�1v
0.p2i / _ �2v0.p2i / D �1v.pi / _ :�1v.pi / _ �2v.pi / 2 Fd.A/ :

At the same time

�1v
0.p2i / ^ �2v0.p2i / D .�1v.pi / ^:�1v.pi // _ .�1v.pi / ^ �2v.pi // 2 � :

Consequently, v0.p2i / 2 Tw.A; Fd.A/;�/. For v0.p2iC1/, we have

�1v
0.p2iC1/ _ �2v0.p2iC1/ D �2v.pi / _:�2v.pi / 2 Fd.A/ ;

�1v
0.p2iC1/ ^ �2v0.p2iC1/ D �2v.pi / ^:�2v.pi / D 0 2 � :

We have thus proved v0.p2iC1/ 2 Tw.A; Fd.A/;�/.
Further, �1v0.�.pi// D �1v0.p2i / D �1v.pi / and

�1v
0.�.� pi // D �1v0.p2iC1^ � p2i / D �2v.pi / ^ .:�1v.pi / _ �2v.pi //

D �2v.pi / D �1v.� pi / :
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Using these facts by induction on the structure of formula we can prove that

�1v
0.�.'// D �1v.'/ :

By assumption Tw.A; Fd.A/;�/ ˆ �.'/, consequently �1v.'/ D �1v0.�.'// D 1. We
have thus proved Tw.A;A; �/ ˆ '.

Now we assume that Tw.A; Fd.A/;�/ 6ˆ �.'/. Let Tw.A; Fd.A/;�/-valuation v
be such that �1v.�.'// ¤ 1. Consider a valuation v0 such that

v0.pi / D .�1v.p2i /; �2v.p2i / ^ �1v.p2iC1//; i D 0; : : : ; n :

Check that v is a Tw.A;A; �/-valuation. Indeed,

�1v.p2i / ^ �2v.p2i / ^ �1v.p2iC1/ � �1v.p2i / ^ �2v.p2i / 2 � :

We have �1v.�.pi // D �1v.p2i / D �1v0.pi / and

�1v.�.� pi // D �1v.p2iC1^ � p2i / D �1v.p2iC1/ ^ �2v.p2i /
D �2v0.pi / D �1v0.� pi / :

Again by induction on the structure of formulas we obtain

�1v.�.'// D �1v0.'/ :

Consequently, �1v0.'/ ¤ 1 and Tw.A;A; �/ 6ˆ '. �

Using this lemma and following the line of proof of Theorem 4.8 we can prove

Theorem 4.12 For every logic L 2 EnN4? and formula ' 2 For.Ln/, the following
equivalence holds:

' 2 L ” �.'/ 2 ˇ.L/ :
The next two statements are obtained similarly to Corollaries 4.9 and 4.10.

Corollary 4.13 The logic nN4? is faithfully embedded into N4N via � .

Corollary 4.14 The mappingL 7! �.L/,L 2 EnN4?, is an order preserving embedding
of the lattice EnN4? into EN4N.

It remains to prove that the lattice embeddings defined by the translations  and � are
mutually inverse.

Theorem 4.15 The mappings L 7! ı.L/, L 2 EN4N, and L 7! �.L/, L 2 EnN4?, are
mutually inverse lattice isomorphisms between EN4N and EnN4?.
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Proof Let A be a Heyting algebra and � an ideal on A. It follows from Lemma 4.7 and
the definition of the logic ı.L/ that

Tw.A; Fd.A/;�/ ˆ L ” Tw.A;A; �/ ˆ ı.L/ (4.1)

for all L 2 EN4N.
Similarly, from Lemma 4.11 and the definition of the logic �.L/ we obtain

Tw.A;A; �/ ˆ ı.L/ ” Tw.A; Fd.A/;�/ ˆ �ı.L/ (4.2)

for all L 2 EnN4?.
It follows from (4.1) and (4.2) that the logics L and �.ı.L// have the same models of

the form Tw.A; Fd.A/;�/. Consequently, L D �.ı.L// for all L 2 EN4N.
In the same way, the logics L and ı.�.L// have the same models of the form

Tw.A;A; �/, which implies that L D ı.�.L// for all L 2 EnN4?.
Consequently, the mappings determined by ı and � are mutually inverse. By Corol-

laries 4.10 and 4.14, EN4N and EnN4? are isomorphic as orders. Consequently, they are
isomorphic as lattices. �

Finally, we consider the connections between extensions of the logic N4Bel and exten-
sions of N3ı. We can use the composition of translations  and ı to embed the lattice of
N3ı into EN4Bel.

For L 2 EN3ı, put

ı.L/ D N4Bel C fı..'// j ' 2 Lg :

Lemma 4.16 For every formula ' 2 For.L/ and Heyting algebraA, the following equiv-
alence holds:

A‰ D Tw.A;A;A/ ˆ ı..'// iff Tw.A; Fd.A/; f0g/ ˆ ' :

Proof By Lemma 4.7 the relation Tw.A;A;A/ ˆ ı..'// is equivalent to Tw.A,
Fd.A/;A/ ˆ .'/. The last statement is equivalent in turn to Tw.A; Fd.A/; f0g/ ˆ '

by Lemma 4.3. �

From this lemma arguing as above we infer

Theorem 4.17 For every logic L 2 EN3ı and formula ' 2 For.L/, the following equiv-
alence holds:

' 2 L ” ı..'// 2 ı.L/ :

In particular, N3ı is faithfully embedded into N4Bel via the composition ı ı  .
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Corollary 4.18 The mapping L 7! ı.L/, L 2 EN3ı, is an order preserving embedding
of the lattice EN3ı into EN4Bel.

The inverse translation " W For.LBel/! For.L/ is defined for nnfs as follows:

".?/ D ?; ".� ?/ D� ? ;
".b/ D� ?; ".� b/ D� ? ;
".n/ D ?; ".� n/ D ? ;
".pi / WD p2i ; ".� pi / D p2iC1 ;

".' ˘  / WD ".'/ ˘ ". /; ˘ 2 f_;^;!g :

For a formula ', which is not a nnf, we put

".'/ D ". N'/ :

For a logic L 2 EN4Bel, we define ".L/ D N3ı C f".'/ j ' 2 Lg.

Lemma 4.19 For every formula ' 2 For.Ln/ and Heyting algebra A, the following
equivalence holds:

Tw.A; Fd.A/; f0g/ ˆ ".'/ iff A‰ D Tw.A;A;A/ ˆ ' :

Proof We consider only the case of nnf s.
Assume that Tw.A; Fd.A/; f0g/ ˆ ".'/ and take arbitrary Tw.A;A;A/-valuation

v. Consider a Tw.A; Fd.A/; f0g/-valuation v0 such that

v0.p2i / D .�1v.pi /;:�1v.pi //; v0.p2iC1/ D .�2v.pi /;:�2v.pi // ;

where i D 0; : : : ; n. An easy induction on the structure of formulas allows us to prove that

�1v
0.".'// D �1v.'/ :

By assumption Tw.A; Fd.A/; f0g/ ˆ ".'/, consequently �1v.'/ D �1v
0.".'// D 1.

We have thus proved Tw.A;A;A/ ˆ '.
Now let Tw.A; Fd.A/; f0g/ 6ˆ ".'/, and let v be a Tw.A; Fd.A/; f0g/-valuation

such that �1v.".'// ¤ 1. Consider a Tw.A;A; �/-valuation v0 such that

v0.pi / D .�1v.p2i /; �1v.p2iC1//; i D 0; : : : ; n :

By induction on the structure of formulas we prove �1v.".'// D �1v
0.'/: Consequently

�1v
0.'/ ¤ 1 and Tw.A;A;A/ 6ˆ '. �
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Using this lemma, we can prove

Theorem 4.20 For every logic L 2 EN4Bel and formula ' 2 For.LBel/, the following
equivalence holds:

' 2 L ” ".'/ 2 ".L/ :

Corollary 4.21 The mapping L 7! ".L/, L 2 EN4Bel, is an order preserving embedding
of the lattice EN4Bel into EN3ı.

The proof that the lattice embeddings defined by the translations ıı and " are mutually
inverse is completely analogous to that of Theorem 4.15.

Theorem 4.22 The mappings L 7! ı.L/, L 2 EN3ı, and L 7! ".L/, L 2 EN4Bel, are
mutually inverse lattice isomorphisms between EN3ı and EN4Bel.
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Negative Modalities in the Light of Paraconsistency

Hitoshi Omori and Toshiharu Waragai

Abstract Modality and non-classical negation have some interesting connections. One
of the most famous connections is the relation between S4-modality and intuitionistic
negation. In this chapter, we focus on the negative modalities in the perspective of para-
consistency. The basic idea here is to consider the negative modality defined as ‘not
necessarily’ or equivalently ‘possibly not’ where ‘not’ is classical negation, and ‘nec-
essarily’ and ‘possibly’ are modalities in modal logics. This chapter offers a solution to
the problem of axiomatizing systems of modal logic such as D and S4 in terms of negative
modalities. One of the upshots of this solution is that we may consider the semantics of
paraconsistency with the help of various considerations known in the literature of modal
logics related to D and S4.

Keywords Modal logic � Negative modality � Paraconsistency

Mathematics Subject Classification (2000) Primary 03B45 � Secondary 03B53

1 Introduction

We first give the background of this chapter and then clarify our aim and outline. These
are then followed by some preliminaries.

1.1 Background

In developing systems of modal logic, the usual strategy is to enrich the language of clas-
sical logic by affirmative modalities which are read to be ‘necessarily’, ‘possibly’, etc.
However, there is another possible strategy for this purpose. That is to add negativemodal-
ities instead of affirmative modalities. Here, by negative modalities, we mean connectives
to be obtained by combinations of affirmative modalities and classical negation. Thus,
negative modalities may be read as ‘not necessarily’, ‘necessarily not’, ‘not possibly’,
‘possibly not’, etc. where ‘not’ is to be taken as classical negation.

539© Springer International Publishing Switzerland 2015
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Now, the negative modalities are sometimes connected to negations in non-classical
logics. The most famous example must be the intuitionistic negation which is interpreted
as ‘necessarily not’ where necessity here is known to be the modality in the system S4
together with the heredity condition. Another example can be found in the literature of
paraconsistent logic. Indeed, in [3], Jean-Yves Béziau observed explicitly that negative
modality ‘not necessarily’ (or equivalently ‘possibly not’), where the modalities being
that of S5, may be regarded as a paraconsistent negation. But then, there must be a rather
natural objection when we talk about paraconsistent negation. Indeed, the only condition
accepted by paraconsistent logicians is the failure of the rule known as ex falso quodlibet,
i.e., the following:

A;:A 6` B :
Here, the unary operation : is intended to be a negation, though the definition of negation
is not given in general, or at least there is no agreement amongst paraconsistent logicians,
and this has been one of the problems for those who raise some objections against para-
consistency. For example, Hartley Slater in [24] argues that paraconsistent negation is
not a negation according to a traditional account. On the other hand, there is an attempt of
defining negation. For example, Wolfgang Lenzen in [14, 15] offers some examinations of
negation through three kinds of conditions, i.e., unacceptable conditions, dispensable con-
ditions and indispensable conditions. And based on these conditions, he classifies various
negations including those in intuitionistic logic and paraconsistent logics. In this chapter,
we will not go into this philosophical debate.1 Instead, we will simply understand negation
as a unary operation which meets only some of the theses of classical negation.2 In par-
ticular, paraconsistent negations are those which satisfies some of the theses of classical
negation but not ex falso quodlibet.

Regardless of the motivation, some people turned their attention to the observation
of Béziau. Indeed, after the formulation, given in [4], of the system HZ, which may be
regarded as an axiomatization of S5 in terms of a negative modality, those such as João
Marcos [16], and KrystynaMruczek-Nasieniewska and Marek Nasieniewski, in a series of
papers [17–19], made some effort to extend the results of Béziau. More concretely, they
discovered some axioms for formulating modal logics different from S5 by a negative
modality ‘not necessarily’ (or equivalently ‘possibly not’). However, their attempts are
not entirely conclusive. In particular, they have not discovered the appropriate axioms for
systems such as D and S4 for which many interesting semantic considerations are known
in the literature.

1 We only note that as Michael De is pointing out in [7, Chap. 2], a semantic approach rather than a syn-
tactic approach seems to be promising in this context.
2 Strictly speaking, this will exclude the connexive negation (cf. [28]), but our purpose here is to clarify
our usage of the word ‘negation’, not to claim something about negation in general. Thus we do not
necessarily claim that connexive negation is not a negation.
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1.2 Aim and Outline

Based on the above observations, the aim of this chapter is to add some further results
following the observation of Béziau. The main result is the axiomatizations of D and S4
through a negative modality, which remained open for a while. In view of our result, we
may expect some new perspectives on paraconsistent negation. If paraconsistency is not
of interest, then one can place the result in the context of modal logic, and regard it as
a result on the formulation of modal logics that contain axioms for D and S4 in terms of
a negative modality.

This chapter is organized as follows. After some preliminaries in the next subsection,
we quickly review some of the preceding results related to the present work in the second
section. Then, in the third section, we refine some of the existing results which simplifies
some of the axiomatization considerably.We will meet the new and elegant axiomatization
of S5 in terms of a negative modality in this section. The fourth section will be devoted
to answering some of the open problems. Namely, we provide axiomatizations of D and
S4, and also some of the extensions of S4. We also make some remarks on the topological
interpretation of negation induced by the topological interpretation of the S4-modality.
Finally, we conclude this chapter by summarizing our results and indicating some future
directions.

1.3 Preliminaries

First, in the present work, we need the negation-less fragment of the intuitionistic proposi-
tional calculus and the classical propositional calculus. For this purpose, we fix the former
as follows:

.A1/ A�.B�A/ .A2/ .A�.B�C//�..A�B/�.A�C//

.A3/ A�.A _ B/ .A4/ B�.A _ B/ .A5/ .A�C/�..B�C/�..A _ B/�C//

.A6/ .A ^ B/�A .A7/ .A ^B/�B .A8/ .C�A/�..C�B/�.C�.A ^ B///

.MP/ If A and A�B are theorems, then so is B :

We refer to this system as ILC. The extension of ILC which can be obtained by adding
either Peirce’s law or Dummett’s law (i.e., A _ .A � B/) to ILC will be the classical
positive propositional calculus and we refer to this system as CLC. We also refer to the
classical propositional calculus as CL.

Second, our concern lies in some relation between modal logics, expansions of CL
and paraconsistent logics, subsystems of CL. Therefore, we need some tool to bridge
these two logics living in the different languages. For this purpose, we introduce some
translations. Let us refer to the languages of classical logic and modal logic as LCL and
LML, respectively, which consist of set of logical connectives f�;�, ^;_g and f:;�;�,
^;_g , respectively, together with a set of propositional variables Prop, and also refer to
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the sets of formulas defined in the usual way within those languages as ForCL and ForML,
respectively.3

Definition 1.1 Let �1 be a translation from ForML to ForCL that satisfies the following
conditions:

�1.pi / D pi �1.�A/ D :���1.A/ �1.A�B/ D �1.A/��1.B/
�1.:A/ D :��1.A/ �1.A^B/ D �1.A/^�1.B/ �1.A_B/ D �1.A/_�1.B/;

where :�A is defined as A��.A�A/. On the other hand, let �2 be a translation from
ForCL to ForML that satisfies the following conditions:

�2.pi / D pi �2.A�B/ D �2.A/��2.B/ �2.A_B/ D �2.A/_�2.B/
�2.�A/ D :��2.A/ �2.A^B/ D �2.A/^�2.B/ :

Now, let SML be a system of modal logic. Then our main goal is to find or reformulate
the subsystem SCL of CL that satisfies the following conditions:

`SML A iff `SCL �1.A/ and `SCL B iff `SML �2.B/ :

When SCL satisfies the above two conditions with respect to SML, then we shall call such
SCL as nSML where ‘n’ is intended to be read ‘negative’. For example, if we take S5 for
SML, then the corresponding subsystem of CL will be referred to as nS5.

Finally, we list some formulas and rules which we make use of in the following sec-
tions.

.AT/ A _ �A .AK1/ �.A ^B/�.�A _�B/

.AB/ ��A�A .AK2/ �.A�A/�.A ^ �A/

.AS5/ �A�.��A�B/ .AD/ .A�A/���.A�A/

.AS4/ �.�A�B/�.�A ^ �B/ .AS4:4/ AI�..�A _ B/�.A�B//

.Rep/ If A�B is a theorem, then so is �B��A:

.RMar/ If A is a theorem, then so is �A�B:

Note here that AI Ddef A���A.

2 Revisiting the Previous Results

We now recall some of the previous results related to the present work. We will present
them in chronological order of publication. Also, the proofs for the results will be omitted.

3 For the purpose of emphasizing that negation in the language LCL is not necessarily intended to be
classical negation whereas LML is intended to be classical negation, we distinguished the negations by
writing � and :, respectively.
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2.1 Work of Béziau

The relation between modal logic and paraconsistent logic is rather old. Indeed, Stanisław
Jaśkowski, one of the founding fathers of paraconsistent logic, already made use of modal
logic in developing his system of paraconsistent logic D2 (cf. [10, 11]). However, it seems
that Béziau was the first who pointed out another kind of tight connection between para-
consistent negation and modality. The system he developed in [4] was axiomatized as
follows.

Definition 2.1 (Béziau) The system HZ consists of the following formulas and a rule of
inference in addition to CLC:

.AZ1/A _ �A .AZ2/.A ^ �B/ ^ �.A ^ �B/�.A ^ �A/

.AZ3/�.A ^ B/�.�A _ �B/ .AZ4/��A�A

.RZ/ If A�B is a theorem, then so is �.A ^ �B/ :

Remark 2.2 Note that the above axiomatization is not independent as is proved in [21].
According to the result presented in [21], we obtain an independent axiomatization by
eliminating (AZ1) and (AZ3), and replacing (AZ2) by the formula �.A ^ �B/�.�B�
�A/. However, this axiomatization is still far from being intuitive. We will present an
elegant axiomatization for HZ in the next section. Note also that Diderik Batens [2] de-
veloped a system which is also equivalent to HZ. There is a difference though that Batens
employed a language with two primitive negations whereas we only have one negation
here, just as in the language of classical logic.

Then, the provability and deducibility are defined as follows:

Definition 2.3 A formula A is provable in HZ (notation `Z A) iff there exists a finite
sequence of formulas B1; : : : ; Bn such that Bn D A and Bi (1 � i � n) is an axiom of
HZ or is the conclusion of a rule whose premises are among B1; : : : ; Bm (m < i).

Definition 2.4 A formula A is deducible in HZ from a theory � (notation � `Z A) iff
there are n 	 0, B1; : : : ; Bn 2 � such that `Z B1 ^ � � � ^Bn � A.

Remark 2.5 Note that the deducibility relation is defined in terms of provable formulas, as
is usually done in modal logic (e.g. [9, p. 211]). However, as is well-known, there is at least
another definition of deducibility not relying on provable formulas as follows: � `S A
if there is a sequence of formulas B1; : : : ; Bn; A, n 	 0, such that every formula in the
sequence B1; : : : ; Bn; A either (i) belongs to � ; (ii) is an axiom of S; (iii) is obtained
by one of the rules of S from formulas preceding it in sequence. And in the context of
paraconsistency, even if we have the same set of axioms and rules, the paraconsistent
behavior may be lost depending on the definition of deducibility. In this chapter, we will
stick to the convention of modal logic to keep the connection with modal logic.

Now, the interesting relation proved by Béziau is the following.
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Theorem 2.6 (Béziau) Let �2 be the translation introduced in Definition 1.1. Then,

� `Z A iff �2.� / `S5 �2.A/ :
Based on the above theorem, a natural question is to ask if we can generalize this kind

of relation to other modal logics different from S5. And it is this line of investigation that
we will focus in the present chapter. As we shall see in the following, there are mainly
two works preceding the present chapter. One is by Marcos, and the other is by Mruczek-
Nasieniewska and Nasieniewski.

2.2 Works of Marcos and Mruczek-Nasieniewska and Nasieniewski

Motivated by the work of Béziau, Marcos made effort to generalize the results so that
the translation results hold for other modal logics different from S5. And in [16], Marcos
observed that system nK can be obtained by adding (AK1), (RMar) and (Rep.) to CLC.
He also found that systems nKT, nKB, nK5 can be obtained by adding formulas (AT),
(AB) and (AS5) to nK, respectively.

On the other hand, in their series of papers [17–19], Mruczek-Nasieniewska and Nasie-
niewski also extended the work of Béziau. Some of the results of Marcos were rediscov-
ered independently, but they also explored further where Marcos had not reached. Indeed,
they deal with non-normal modal logics, known as regular modal logics, in [18]. (The
base system they consider consists of (AK1) and (Rep), and they consider its extensions
by (AT), (AS5) and �.A�A/, in our notation.) And finally in [19], they consider the case
of quasi-regular modal logics.

2.3 Work of Waragai and Shidori

Another work in this direction was presented in [30] by Toshiharu Waragai and Tomoki
Shidori. The intuition of their work is quite different from that of Béziau. The starting
point is not in modal logic, but rather in paraconsistent logic in the tradition of Newton da
Costa (cf. [5]). Indeed, the system they introduced was axiomatized with the help of the
notion of ‘behaving classically’ which was the characteristic notion of da Costa’s systems
Cn. With a slight modification presented in [29], the system can be formulated as follows.

Definition 2.7 The system PCL1 consists of the following formulas and a rule of infer-
ence in addition to ILC:

APCL110 ��A�A APCL113 .AI ^BI /�.�.A ^ B/�.�A _ �B//
APCL111 A _�A APCL114 .AI ^BI /�.�.A _ B/�.�A ^ �B//
APCL112:1 AI�..�A _ B/�.A�B// APCL115 AI�..A ^ �B/��.A�B//
RA15

AI

�.A�B/�.A ^ �B/ :

Note here that AI Ddef A���A.
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As observed in [29], there are several differences between the systems Cn of da Costa
and PCL1 of Waragai and Shidori, though the main difference lies in the relation with
modal logic. We quote a theorem from [30] which highlights the difference.

Theorem 2.8 (Waragai and Shidori) Let us consider an extension of PCL1 enriched
by Peirce’s law and the following rule of inference:

If A is a theorem, then so is ��A : (RN)

This system, which we refer to as PCL1CN, satisfies the following :

`PCL1CN A iff `S5 �.A/ :

Remark 2.9 Instead of adding (RN), we can add (Rep) in the above theorem. This shows
one of the differences between Cn and PCL1, since it is proved in [26] that we obtain
classical logic if we add (Rep) to Cn. Note also that we can prove the equivalence of
HZ and PCL1CN. Moreover, the extension of PCL1 by (Rep) is equivalent to TCC! of
Gordienko introduced in [8].4

3 Reexamination of the Results of Marcos

We now turn to examine the result of Marcos.

Definition 3.1 Let nK0 be a system which consists of (AK1), (AK2) and (Rep.) in addi-
tion to CLC.

Proposition 3.2 Two systems nK and nK0 are equivalent.

Proof In order to prove that nK0 is a subsystem of nK, we have to establish that (AK2) is
derivable in nK. But this follows immediately by (RMar). Indeed, we only have to apply
(RMar) to A�A. On the other hand, in order to prove that nK is a subsystem of nK0,
we have to show that the rule (RMar) is derivable in nK0. For this purpose, suppose A.
By (A1), we get .B�B/�A. Furthermore, by applying (Rep.), we have �A��.B�B/.
Hence this together with (AK2), we obtain �A�B , which is the desired conclusion. This
completes the proof. �

Remark 3.3 As is well known, normal modal logics are formulated by adding a single
rule, called necessitation, together with various axioms. And the above result shows that
similar result holds in the case of formulating normal modal logics in terms of a negative
modality.

4 These results are proved in [22].
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Definition 3.4 Let nKB0 be the extension of CLC enriched with (AB) and (Rep).

Proposition 3.5 Two systems nKB and nKB0 are equivalent.

Proof Since it is obvious that nKB0 is a subsystem of nKB, we only have to show that
nKB is a subsystem of nKB0. For this purpose, it will be sufficient to prove two formulas
(AK1) and (AK2) in nKB0. The details can be found in the Appendix. �

Remark 3.6 Note that Ray Jennings observed a similar result in [12] that the systemKTB
can be axiomatized by two axioms �A�A and A�� ÞA and the following rule together
with classical propositional logic5:

if A�B is a theorem, then so is �A��B :

Thus our result is being a generalization of Jennings’ result as we can even establish
a simple axiomatization for KB which is weaker than KTB.

Theorem 3.7 nKT5 can be axiomatized as (AT), (AS5) and (Rep) with CLC.

Proof Let nS50 be the system which consists of (AT), (AS5), (Rep) with CLC. Then, our
goal is to prove nKT5 is equivalent to nS50. The key here is that if we have (AT) and (AS5)
together with CLC, then we can prove (AB). Indeed, by (AS5), we have��A�.�A�A/,
and by (AT), we get .�A�A/�A. Therefore, we obtain ��A�A, as desired. Thus, both
systems nS50 and nKT5 turn out to be equivalent to nKB0 enriched with (AT) and (AS5)
in view of Proposition 3.5. This completes the proof. �

Remark 3.8 nS5’ seems to be an elegant axiomatization of nS5. It is interesting to com-
pare with the fact that classical propositional logic can be obtained by adding (AT) and
.A ^ �A/�B to CLC.

4 Some Formulation of Systems D, S4, etc.

We now proceed to consider some of the open problems, and draw some remarks from the
results.

4.1 Answers to Some Open Problems

We will first deal with the formulation of KD in terms of a negative modality.

Definition 4.1 Let nKD be a system obtained by adding (AD) to nK0.

5 This is also mentioned in [9, p. 69, Exercise 3.13].
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Lemma 4.2 Let �1 and �2 be translations defined in Definition 1.1. Then,

(i) If `KD A then `nKD �1.A/ (iii) `KD A 
 �2.�1.A//
(ii) If `nKD B then `KD �2.B/ (iv) `nKD B 
 �1.�2.B// :

Proof As for (i), it would be sufficient to prove `nKD �1.�A�ÞA/, whereas it would be
sufficient to prove `KD �2.��.A�A// for (ii). (iii) and (iv) can be proved by induction
on the complexity of A. Details can be found in the Appendix. �

Theorem 4.3 `KD A iff `nKD �1.A/; and `nKD B iff `KD �2.B/.

Proof We only consider the former equivalence since the latter can be proved in a similar
manner. Now, the left-to-right direction is already proved in (i) of the previous lemma. The
other way around can be proved by making use of (ii) and (iii). Indeed, by (ii), we obtain
that if `nKD �1.A/ then `KD �2.�1.A//. Therefore, by applying (iii) to the consequent, we
obtain that if `nKD �1.A/ then `KD A, as desired. �

Let us now turn to the formulation of K4. The outline of the proof is exactly the same
as the case for KD.

Definition 4.4 Let nK4 be a system obtained by adding (AS4) to nK0.

Lemma 4.5 Let �1 and �2 be translations defined in Definition 1.1. Then,

(i) If `K4 A then `nK4 �1.A/ (iii) `K4 A 
 �2.�1.A//
(ii) If `nK4 B then `K4 �2.B/ (iv) `nK4 B 
 �1.�2.B// :

Proof As for (i), it would be sufficient to prove `nK4 �1.�A���A/, whereas it would
be sufficient to prove`K4 �2.�.�A�B/�.�A^�B// for (ii). (iii) and (iv) can be proved
by induction on the complexity of A. Again, details can be found in the Appendix. �

Theorem 4.6 `K4 A iff `nK4 �1.A/; and `nK4 B iff `K4 �2.B/.

Proof Apply the same procedure given in the proof of Theorem 4.3. �

Remark 4.7 Based on this result, we obtain a paraconsistent negation with a topological
semantics, as we will observe in the next subsection. Another point to be noted is the
following. As is well known, there are many systems of modal logics that are extensions
of modal logicK4. Therefore, once we get nK4, then it is natural to ask if those extensions
of modal logic can be axiomatized through negativemodalities. And, for many cases this is
possible. However, for the purpose of keeping the paper compact, we will leave the details
for another paper. Finally, a slightly modified version of the system KT4, obtained by
deploying the deducibility relation mentioned in Remark 2.5, offers us a new perspective
on the problem related to the law of double negation first considered by da Costa and
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Béziau in [6], and later discussed by Urbas in [27]. We will keep the details of this too for
another occasion.

Finally, let us consider the following system which is closely related to the axiom
included in PCL1.

Definition 4.8 Let nS4.4 be the extension of nKT4 obtained by adding (AS4.4).

Theorem 4.9 `S4:4 A iff `nS4:4 �1.A/; and `nS4:4 B iff `S4:4 �2.B/.

Proof Apply the same procedure given in the proof of Theorem 4.3. �

Remark 4.10 Note first that (AS4.4) is essentially the axiom which is employed in the
formulation of PCL1 (cf. (APCL112.1) of Definition 2.7.). And, together with the axiom
(AB), we obtain the relation to S5, but the result here shows that without the axiom (AB),
then we obtain a connection to S4.4. Note further that (AS4.4) is equivalent to the follow-
ing formula within IPCC:

.A ^ �A ^��A/�B :
In fact, this formula has been known for a long time in the literature, and has been criti-
cized to be included in a system of paraconsistent logic. Indeed, Jaśkowski refers to this
thesis in [10, p. 41] as the thesis already realized by Jan Łukasiewicz as a result of study
in three-valued logic. And the system having this formula as a thesis is not accepted by
Jaśkowski as a solution to the problem of finding systems of paraconsistent logic.

4.2 Topological Semantics

Since we obtained a formulation of S4 in terms of a negative modality, it is natural to
consider the topological semantics of nS4 which is induced by the topological semantics
for S4. We will devote this subsection to spell out that semantics, and make some related
remarks. We begin by revisiting the classic result of Mackinsey and Tarski.

Definition 4.11 (topological validity) Let hX;O; ii be a topological model, i.e., hX;Oi
is a topological space and i is a mapping from ForML to X which naturally extends to
a valuation v from Prop to X by the following clauses.

� i.pi/ D v.pi /
� i.:A/ D Xni.A/
� i.�A/ D i.A/o where o is the interior operator.
� i.A ^ B/ D i.A/\ i.B/
� i.A _ B/ D i.A/[ i.B/
� i.A�B/ D .Xni.A// [ i.B/ .
Then, A is topologically valid if i.A/ D X for any topological model hX;O; ii.
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Theorem 4.12 (Mackinsey and Tarski) A is topologically valid iff `S4 A.
Now, in view of this result together with our result, we define n-topological validity as

follows.6

Definition 4.13 (n-topological validity) Let hX;O; j i be an n-topological model, i.e.,
hX;Oi is a topological space and j is a mapping from ForCL toX which naturally extends
to a valuation v from Prop to X by the following clauses:

� j.pi/ D v.pi /
� j.�A/ D Xn.j.A/o/, where o is the interior operator.
� j.A ^ B/ D j.A/ \ j.B/
� j.A _ B/ D j.A/ [ j.B/
� j.A�B/ D .Xnj.A// [ j.B/ .
Then, A is n-topologically valid if j.A/ D X for any n-topological model hX;O; j i.

Lemma 4.14 Let hX;O; ii and hX;O; j i be topological and n-topological model induced
by a topological space hX;Oi and a valuation v. Then, for any A 2 ForCL, we have
j.A/ D i.�2.A//.

Proof By an induction on the complexity of the formula. For the base case, if A D pi ,
then j.pi/ D v.pi / D i.pi / D i.�2.pi //. For the induction step, we only consider the
case when A D �B since others are straightforward. The proof for the case in question
runs as follows:

j.�B/ D Xn.j.B/o/ definition of j

D Xn.i.�2.B//o/ Induction hypothesis

D i.:��2.B// definition of i

D i.�2.�B// definition of �2 :

This completes the proof. �

Corollary 4.15 For any A 2 ForCL, A is n-topologically valid iff �2.A/ is topologically
valid.

Proof Let hX;Oi be any topological space and v be any valuation. Then, these natu-
rally induce topological model hX;O; ii and n-topological model hX;O; j i. By the above
lemma, we have j.A/ D X iff i.�2.A// D X for any A 2 ForCL. And this is sufficient for
the desired result. �

Based on these, we reach the following result.

Theorem 4.16 For any A 2 ForCL, A is n-topologically valid iff `nS4 A.

6 Where ‘n’ is for ‘negative’.
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Proof By the combination of the above results as follows.

`nS4 A iff `S4 �2.A/ Theorem 4.6

iff �2.A/ is topologically valid Theorem 4.12

iff A is n-topologically valid: Corollary 4.15 :

This completes the proof. �

Remark 4.17 In view of the above result, it is interesting to examine the semantics for
paraconsistent logics with the help of topology. For some recent discussions toward this
direction, see [1].

5 Conclusion

Our main result is a discovery of some axiomatizations of well-known modal logics
through negative modalities. In view of our results, we may conclude that many of the
well-known modal logics can be developed in terms of a negative modality instead of an
affirmative modality. Then, it might be interesting to discuss whether any differences will
be observed from a philosophical viewpoint between the two formulations, one based on
an affirmative modality and the other based on a negative modality. Seen in this way, the
result we presented may be dealt within the story of modal logic.

However, it is true that we were motivated by a result within paraconsistency given
by Béziau. But then, what kind of conclusions can we draw from that perspective? For
optimistic paraconsistent logicians, the upshot will be that we get more semantic tools for
paraconsistency. However, we find ourselves not being relaxed enough. The most inter-
esting and important question seems to be to ask if the negative modalities such as ‘not
necessarily’ or ‘possibly not’ are negations or not. In other words, the question is to ask
if we can draw a line between negative modalities and negations. This certainly requires
some reasonable accounts of negation and modality, which seems to be not available in
the literature. Thus, we wish to pursue this question in the subsequent paper.

More technically speaking, there seems to be at least three directions to proceed. Let
us illustrate them briefly.

First, we should consider the first-order expansions of the modal logics. As is known,
there are some interesting problems such as the way to deal with Barcan formula. We here
note briefly that if we apply the translation, then the formula is reduced to be de Mor-
gan’s law for the universal quantifier with respect to the paraconsistent negation. In this
way, things might look somewhat different from the case employing the usual affirmative
modality.

Second, we may add more modalities such as with bi-modal logic. This will then give
us systems equipped with several negations. In the case of bi-modal logics, we will have
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two negations. Then one of the topics that might be interesting is to see the connection
between logics with two negations such as systems of Nelson (cf. [13, 20]) and connexive
logic (cf. [28]).

Finally, we may consider the case for intuitionistic modal logics. For example, as is
observed by Hiroakira Ono in [23], there are several systems for S5 in the intuitionistic
context. Furthermore, necessity and possibility will not be inter-definable in the usual
way anymore. However, at the same time, there are some related results in the literature.
Indeed, Richard Sylvan [25], considers extensions of C! of da Costa to recover the inter-
substitutability of provable equivalents and the resulting systems are intuitionic versions of
KB in the following sense. Namely, from the semantic viewpoint, there is another relation
between worlds besides the relation for modality, and from the proof theoretic perspective,
the system can be obtained by simply employing ILC instead of CLC. In this connection,
the result of this chapter offers some intuitionistic versions for KD and K4, though these
are only a small part of the bigger picture, and thus there is much work to be done to fill
the gap.

Appendix
We give the full proofs for those we omitted in the body. For this purpose, let us raise the
theses and a rule of CL which we make use of in the following:

B�.A�A/ .T1/ .A�B/�.:B�:A/ .T5/
:.A�A/�B .T2/ .A�B/ 
 .:B�:A/ .T6/
.A ^ :A/�B .T3/ A 
 ::A .T7/

.A _B/�.:A�B/ .T4/
A�B B�C

A�C : .Syll:/

Note also that :� in extensions of nK is classical negation, and thus we can apply any of
the above theses in extensions of nK, as well as to the negation : in extensions of modal
logic K.

Proof of Proposition 3.5
Ad�.A ^ B/�.�A _ �B/

1 �.�A _ �B/���A [(A3), (Rep)]

2 �.�A _ �B/�A [1, (AB), (Syll.)]

3 �.�A _ �B/���B [(A4), (Rep)]

4 �.�A _ �B/�B [3, (AB), (Syll.)]

5 �.�A _ �B/�.A ^ B/ [2, 4, (A8), (MP)]

6 �.A ^ B/���.�A _ �B/ [5, (Rep)]

7 �.A ^ B/�.�A _ �B/ : [6, (AB), (Syll.)]
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Ad�.A�A/�.A ^�A/

1 �.A�A/���A [(T1), (Rep)]

2 �.A�A/�A [1, (AB), (Syll.)]

3 �.A�A/��A [(A1), (Rep)]

4 �.A�A/�.A ^ �A/ : [2, 3, (A8), (MP)]

This completes the proof. �

Proof of Lemma 4.2

Ad (i) It would be sufficient to prove`nKD �1.�A�ÞA/, but this is equivalent to proving
`nKD :���1.A/�:�:��:��1.A// by the definition of �1. Therefore, it is sufficient to
prove `nKD :��A��:�A. The proof runs as follows:

1 ��.A�A/��:�.A�A/ [(T2), (Rep.)]

2 �:�.A�A/ [2, (AD), (MP)]

3 �:�.A�A/��.A ^ :�A/ [(T3), (Rep.)]

4 �.A ^ :�A/ [2, 3, (MP)]

5 �.A ^ :�A/�.:��A��:�A/ [(AK1), (T4), (Syll.)]

6 :��A��:�A : [4, 5, (MP)]

Ad (ii) It would be sufficient to prove `KD �2.��.A�A//, but this is equivalent to prov-
ing `KD .:�:�.�2.A/��2.A/// by the definition of �2. Thus we need to prove `KD

.Þ�.�2.A/��2.A///, but this is easy.
Ad (iii) We proceed by induction on the number n of connectives.
(Base) If n D 0, then what we need to prove is `KD A 
 A which is provable.
(Induction Step) We split the case depending on the main connective.
Case 1: If A D :B , then

�2.�1.A// D �2.�1.:B//
D �2.�1.B/ � �.�1.B/ � �1.B///
D �2.�1.B// � �2.�.�1.B/ � �1.B///
D �2.�1.B// � :��2..�1.B/ � �1.B///
D �2.�1.B// � :�.�2.�1.B// � �2.�1.B/// :

By (IH), this is equivalent to B � :�.B � B/. Furthermore, by (T6) we obtain �.B �
B/ � :B , and in view of axiom for KD, this is equivalent to :B , as desired.
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Case 2: If A D �B , then

�2.�1.A// D �2.�1.�B//
D �2.��1.B/ � �.�1.B/ � �1.B///
D �2.��1.B// � �2.�.�1.B/ � �1.B///
D :��2.�1.B// � :��2..�1.B/ � �1.B///
D :��2.�1.B// � :�.�2.�1.B// � �2.�1.B/// :

By (IH), this is equivalent to :�B�:�.B � B/. Furthermore, by (T6) we obtain
�.B � B/��B , and in view of axiom for KD, this is equivalent to �B , as desired.
Case 3: If A D B � C where � 2 f^;_;�g, then

�2.�1.A// D �2.�1.B � C//
D �2.�1.B/ � �1.C //
D �2.�1.B// � �2.�1.C // :

By (IH), this is equivalent to B � C , as desired.
Ad (iv) We proceed by induction on the number n of connectives.
(Base) If n D 0, then what we need to prove is `nKD A 
 A which is provable.
(Induction Step) We split the case depending on the main connective.
Case 1: If A D �B , then

�1.�2.A// D �1.�2.�B//
D �1.:��2.B//
D :��1.��2.B//
D :�:���1.�2.B// :

By (IH), this is equivalent to :�:��B , and by (T7) we obtain �B , as desired.
Case 2: If A D B � C where � 2 f^;_;�g, then

�1.�2.A// D �1.�2.B � C//
D �1.�2.B/ � �2.C //
D �1.�2.B// � �1.�2.C // :

By (IH), this is equivalent to B � C , as desired. �

Proof of Lemma 4.5

Ad (i) It would be sufficient to prove `nK4 �1.�A���A/, but this is equivalent to
prove `nK4 :���1.A/�:��:���1.A/ by the definition of �1. Therefore, it is suffi-
cient to prove `nK4 �:��A��A. Now, by recalling the definition of :�, the formula
concerned is equivalent to �.�A��.A�A//��A. So, it would be sufficient to prove
�.�A�B/��A for our purpose. But this can be obtained immediately by (AS4), (A6)
and (Syll.).
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Ad (ii) It would be sufficient to prove `K4 �2.�.�A�B/�.�A^�B//, but this is equiv-
alent to proving `K4 :�.:��2.A/��2.B//�.:��2.A/ ^ :��2.B// by the definition
of �2. Thus it would be sufficient to prove `K4 :�.:�A�B/�.:�A^:�B/, and this
can be proved as follows:

1 ��A��.:�A�B/ [(T3), (R�)]

2 �A��.:�A�B/ [1, Axiom 4, (Syll.)]

3 :�.:�A�B/�:�A [2, (T5), (MP)]

4 �B��.:�A�B/ [(A1), (R�)]

5 :�.:�A�B/�:�B [4, (T5), (MP)]

6 :�.:�A�B/�.:�A ^ :�B/ : [3, 5, (A9), (MP)]

Note here that Axiom 4 and (R�) are the following axiom and rule, respectively:

Axiom 4 W �A���A; (R�): If A�B is a theorem, then so is �A��B .

Ad (iii) and (iv): Similar to the proof of Lemma 4.2. �
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11. Jaśkowski, S.: On the discussive conjunction in the propositional calculus for inconsistent deductive

systems. Log. Log. Philos. 7, 57–59 (1999)



Negative Modalities in the Light of Paraconsistency 555

12. Jennings, R.: A note on the axiomatisation of Brouweresche modal logic. J. Philos. Log. 10, 341–343
(1981)

13. Kamide, N., Wansing, H.: Proof theory of Nelson’s paraconsistent logic: A uniform perspective.
Theor. Comput. Sci. 415, 1–38 (2012)

14. Lenzen; W.: Necessary conditions for negation operators. In: Wansing, H. (ed.) Negation: A Notion
in Focus, pp. 37–58. Walter de Gruyter, Berlin, New York (1996)

15. Lenzen, W.: Necessary conditions for negation operators (with particular applications to paraconsis-
tent negation). In: Besnard, P., Hunter, A. (eds.) Handbook of Defeasible Reasoning and Uncertainty
Management Systems, vol. 2. Reasoning with Actual and Potential Contradictions, pp. 211–239.
Kluwer, Dordrecht (1998)

16. Marcos, J.: Nearly every normal modal logics is paranormal. Log. Anal. 48, 279–300 (2005)
17. Mruczek-Nasieniewska, K., Nasieniewski, M.: Syntactical and semantical characterization of a class

of paraconsistent logics. Bull. Sect. Log. 34(4), 118–125 (2005)
18. Mruczek-Nasieniewska, K., Nasieniewski, M.: Paraconsitent logics obtained by J.Y. Beziau’s method

by means of some non-normal modal logics. Bull. Sect. Log. 37(3/4), 185–196 (2008)
19. Mruczek-Nasieniewska, K., Nasieniewski, M.: Beziau’s logics obtained by means of quasi-regular

logics. Bull. Sect. Log. 38(3/4), 189–204 (2009)
20. Odintsov, S.: Constructive Negations and Paraconsistency. Springer, Dordrecht (2008)
21. Omori, H., Waragai, T.: On Béziau’s logic Z. Log. Log. Philos. 17(4), 305–320 (2008)
22. Omori, H., Waragai, T.: On extensions of a system of paraconsistent logic PCL1 (in Japanese). J. Jpn.

Assoc. Philos. Sci. 39(2), 1–18 (2012)
23. Ono, H.: On some intuitionistic modal logics. Publ. RIMS, Kyoto Univ. 13, 687–722 (1977)
24. Slater, B.H.: Paraconsistent logics? J. Philos. Log. 24(4), 451–454 (1995)
25. Sylvan, R.: Variations on da Costa C systems and dual-intuitionistic logics I. Analyses of C! and

CC! . Stud. Log. 49(1), 47–65 (1990)
26. Urbas, I.: Paraconsistency and the C-systems of da Costa. Notre Dame J. Form. Log. 30, 583–597

(1989)
27. Urbas, I.: A Note on ‘Carnot’s Logic’. Bull. Sect. Log. 23, 118–125 (1994)
28. Wansing, H.: Connexive logic. Stanford Encyclopedia of Philosophy (Fall 2014 Edition) (2014).

http://plato.stanford.edu/entries/logic-connexive/
29. Waragai, T., Omori, H.: Some new results on PCL1 and its related systems. Log. Log. Philos. 19(1–2),

129–158 (2010)
30. Waragai, T. Shidori, T.: A system of paraconsistent logic that has the notion of ‘behaving classically’

in terms of the law of double negation and its relation to S5. In: Béziau, J.Y., Carnielli, W.A., Gabbay,
D. (eds.) Handbook of Paraconsistency, pp. 177–187. College Publications, London (2007)

H. Omori (�)
The Graduate Center, City University of New York, New York, USA
e-mail: hitoshiomori@gmail.com

T. Waragai
Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Tokyo, Japan

http://plato.stanford.edu/entries/logic-connexive/
hitoshiomori@gmail.com


Operativity and Representativity of the Sign
in Leibniz

Olga Pombo

Abstract In opposition to, or in the line of, philosophy cannot grow except inside a tradi-
tion. This is precisely the issue with contemporary research on diagrammatic thinking.We
all agree that it is essential to go back to Peirce or Husserl not only to recognize impor-
tant roots, to honour significant predecessors, but to recover their insights, to make use of
their hypothesis, to recuperate the conceptual instruments that they have been able to put
forward. What I propose here is to go back even more in time, to go back to Leibniz. Not
to claim for Leibniz as a predecessor of cognitive semantics or of present-day diagram-
matic research, but to recall what Leibniz thought out in this respect, to bring into play the
conceptual devices he put up, to bear in mind the distinctions he was able to constitute.
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This paper is a homage to Jean-Yves Béziau and to his marvellous capacity of combining
the strictness and rigor of logics with the care and compassion of meaning.

1 Leibniz’ Cognitive Conception of Language

My first claim is that the historical importance of Leibniz’ philosophy of language is
mostly due to his cognitive conception of language, that is, his recognition of the con-
stitutive symbolic nature of human thought. As he says in the celebrated Dialogus de
connexione inter res et verba (1677):

I will never be able to know, to discover, to prove without using words or without the presence in
my mind of other signs. [2, 7.191]

This cognitive conception of language was mainly formulated in the scope of the debate
with Descartes and of their different mathematical experiences. Descartes tends to star in
geometry, in which figural representation is a merely auxiliary, imaginative support for
reasoning. Leibniz stars in algebra where operations are fully symbolically performed,
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where symbols constitute the reasoning process itself, completely replacing the supposed
direct experience of mathematical objects.

In fact, the Cartesian principle of evidence entails a merely instrumental and commu-
nicative conception of language. For Descartes, language has above all a communicative
function. The most language may be asked to do is to operate as a mnemonic support for
the recall of the long chain of reasons. Leibniz refuses the intuitionism of Descartes. For
Leibniz, rigour cannot be dependent either on subjectively based certainties or on the con-
fidence in the intuitive infallibility of natural light. As Leibniz says in a Letter to Gallois
(1677),

[The Cartesian methodological rules] give surely beautiful decrees but not the guideline for devel-
oping those decrees. [2, 7.21]

According to Leibniz, rigour should be achieved by the use of a symbolic system which
would render visible the more abstract ideas and would constitute a material support for
thought and reasoning, a “filum Ariadnes” [2, 7.22]1, a “filum palpabile” [2, 7.57, 59, 125],
a filum cogitandi [1, 420], a filum meditandi [2, 7: 14], a filum mechanico [1, 351], that is,
a symbolic criterion, a manipulatory device. Something which mathematics has already
developed and which, as Leibniz used to say, needs nothing but paper and ink. Let us look
for what Leibniz writes in the well-known Preface à la Science Générale (1677)

Now the reason why the art of demonstrating has been until now found only in mathematics [. . . ]
is this: mathematics carries its own test with it. For when I am presented with a false theorem, I do
not need to examine or even to know the demonstration, since I shall discover its falsity a posteriori
by means of an easy experiment that is, by a calculation, costing no more than paper and ink.

The tests or experiments made in mathematics to guard against mistakes in reasoning [. . . ] are
not made on a thing itself, but on the characters which we have substituted in place of the thing.

Take for example a numerical calculation: if 1677 times 365 are 612,105, we should hardly
ever have reached this result if it were necessary to make 365 piles of 1677 pebbles each and then
finally to count them all in order to know whether the aforementioned number is found. This test
is performed only on paper, and consequently on the characters which represent the thing, and not
on the thing itself. [1, 154]

Symbolism is for Leibniz the proper, the necessary and essential means of human reason.
Leibniz even goes a step further by claiming that only symbolic signs allow us to operate
with ideal significations, which can only be established by the sign and that only signs
enable us to think. The example of the polygon of a thousand faces presented by Leibniz
in his celebratedMeditationes de Cognitione, Veritate et Ideis (1684) is eloquent:

When I think of a polygon of thousand faces, I do not always consider what is a face, an equality
or the number thousand but I use this words (whose meaning is present on my spirit only in a very
confuse and imperfect way) in order that they (the words) take the place of the ideas which I have
of them [. . . ] I call this knowledge as blind or symbolic. We make use of it in algebra and arithmetic
and in almost all domains. [2, 4.423]

Again, Leibniz’ mathematical experience lies in the basis of this important theory of blind
thought (cogitatio caeca). In infinitesimal calculus, sign does not evoke but fully substi-
tutes notions which the human mind cannot otherwise completely reach. So, I believe, we

1 “La veritable méthode nous doit fournir un Filum Ariadnes, c’est à dire, un certain moyen sensible et
grossier, qui conduise l’esprit, comme sont les lignes tracées en geometrie et les formes des operations
qu’on prescrit aux apprentifs en Arithmetique” [2, 7.22].
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here face two main correlated Leibnizian theses which deserve to be recalled by our cur-
rent research on diagrammatic thinking: a) the not merely communicative but cognitive
conception of language, b) the theory of blind thought.

2 Specificity of Leibniz’ Semiology

My second claim is that it is necessary to be aware of the specificity of Leibniz’ semiology,
namely the prospective, heuristic potentialities that Leibniz attributes to symbolic systems.
In the Letter to the German Mathematician Walter von Tschirnhaus, dated May 1678,
Leibniz writes:

No one should fear that the contemplation of characters will lead us away from the things them-
selves; on the contrary, it leads us into the interior of things. For we often have confused notions
today because the characters we use are badly arranged; but then, with the aid of characters, we
will easily have the most distinct notions, for we will have at hand a mechanical thread of medita-
tion, as it were, with whose aid we can very easily resolve any idea whatever into those of which it
is composed. In fact, if the character expressing any concept is considered attentively, the simpler
concepts into which it is resolvable will at once come to mind. Since the analysis of concepts thus
corresponds exactly to the analysis of a character, we need merely to see the characters in order to
have adequate notions brought to our mind freely and without effort. We can hope for no greater
aid than this in the perfection of the mind. [3, 4.461]

We find here some of the main thesis of the Leibniz semiology:

1. Characters do not disturb the knowledge of reality.
2. On the contrary, characters constitute a powerful means for the development of

knowledge.
3. Characters not only reflect but also promote human knowledge allowing us to go from

confused to clear, distinct notions.
4. This happens because of the written, graphic (iconic) nature of characters.
5. Characters are mostly valuable because they can be contemplated, because they can

be spatially arranged, because they can be handled, manipulated and used as mechan-
ical threads.

6. Characters could then become a mechanical thread of meditation.
7. However, for that to be possible, it is necessary that characters may express concepts.
8. With such expressive characters, the analysis of characters will correspond exactly to

the analysis of concepts.
9. If this happens, then seeing the characters would be the easy way of getting adequate

knowledge.
10. The result should be of the greatest importance for the perfection of the human mind.

Leibniz is always very clear as concerns the recognition of the qualities and potentialities
coming from the spatial nature of characters. He extends that recognition, not only to
the characters of the new artificial philosophical language to be constructed, but also to
natural languages, namely to writing. Themost illuminative passages in this respect appear
in the Nouveaux Essais. While he recognizes the critical arguments presented by Lock’s
Philalethe against the difficulties, insufficiencies and disturbing effects put forward by
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natural languages2, Leibniz position consists invariably in stressing the virtues of language
and most of all the merits of writing for a more rigorous and regulated utilization of the
various dimensions of signification. As he writes:

Mais pour revenir à vos quatre défauts de la dénomination, je vous dirai, Monsieur, qu’on peut
remédier à tous, surtout depuis que l’écriture est inventée (Nouveaux Essais, III, IX, §9)

Leibniz’ project is thus double. He aims: 1) to overcome the difficulties of natural lan-
guages by the exploration of their capacities in terms of definition and writing, 2) to
construct a new language, more exactly, a writing system or Characteristica Universalis
of which mathematics would be just an example. As Leibniz says in a Letter to Gallois
(December, 1678)

But to make it easier and, so to speak, more tangible, I intend to make use of the characteristic,
of which I have spoken with you on occasion, and of which algebra and mathematics are merely
examples. This characteristic consists of a certain writing or language (since he who has the one
can have the other) which perfectly corresponds to the relations of our thoughts. This characteristic
would be completely different from any that has been envisaged until now, since the most important
thing has been overlooked, which is that the characters of this writing have to serve for discovery
and for judgement, like in algebra and in arithmetic. [4, II 1.669]

Again, it is clear that Leibniz praises the properties of writing. Only its two-dimensional
spatiality makes possible a more clear and differentiated expression of relations.

We are here facing the enormous and very much ambitious project of a Characteristica
Universalis. In all his life, Leibniz will be fully committed with this program which he
claimed to be very much innovative.3 In fact, Leibniz does not avoid criticism towards his
predecessors in terms of the construction of new philosophical language, the line that goes
from Lull to Kircher and that which goes from the English pasigraphers to Dalgarno and
Wilkins.4 However, according to Leibniz, none of his predecessors managed to guarantee
the heuristic virtualities that symbolism may offer. Moreover, and this for two main rea-
sons: the insufficient analysis of thoughts which, in Leibniz’ opinion, underlies the set of
predicamenta or suma genera in the basis of which their systems were constructed5 and
the arbitrary nature of the characters they have established6.

2 In fact, the 17th century discusses deeply the role that language performs in the process of knowledge.
Does language help to promote knowledge? Or, on the contrary, is language a disturbing factor for the
acquisition of knowledge? Two great positions can be signalized. A critical position, which emphasizes
language’s insufficiencies and ambiguities: Bacon, Locke, Descartes, Arnauld, Melabranche and, in gen-
eral, all those who look for the construction of new artificial languages, and a positive position which,
although recognizing some limits and imperfection of human languages, nevertheless stresses its consti-
tutive character. From my point of view, just two names in modern times: Thomas Hobbes and Leibniz.
3 Something which is more significant since, as well known, Leibniz was in general very much interested
and attentive to all the achievements of his predecessors.
4 Leibniz knows all their works well. He praised above all Wilkins’s project, An Essay Towards a Real
Character and a Philosophical Language, with an Alphabetical Dictionary, published in 1668, with the
support of the Royal Society. As Leibniz writes: “J’ai consideré avec attention le grand ouvrage du Carac-
tere reel et Langage Philosophique de Mons. Wilkins; je trouve qu’il y a mis une infinité de belles choses,
et nous n’avons jamais eu une Table des predicateurs plus accomplie” (Letter to Burnet, 24 August, 1697
[2, 3.216]).
5 See, for instance, [2, 3.216].
6 See for instance, [1, 177 ff].
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That is to say, contrary to what it may appear, Leibniz is not a full formalist. He does
not fall into the illusion that the automatic functioning of a set of operational rules can
permit the development of science. On the contrary, Leibniz claims that the new symbolic
system should be semantically opened to the reality that it must permit to say. According
to Leibniz, beyond responding to a logical objective of faithfully and rigorously expressed
thought and its articulations, characters should open the road to the progress of knowledge.
That heuristic capacity can only be achieved if the system of characters to be constructed
could be directly open to the reality that they are supposed to say. Above and beyond op-
erativity and functional capacity of the signs within the formal system, characters should
also be “natural”, that is representative of the world which is to be known. Leibniz’ heuris-
tics involves a semantic exigency.

3 Leibniz’ Theory of the Representativity of the Sign

My third claim intends precisely to call attention to the representativity of the sign that
Leibniz wanted to conquer for the characters of the philosophical language to be con-
structed.

With this requirement of the representativity of the sign, Leibniz looks for the isomor-
phism between characteristic signs and the reality that they signify. But how could it be
done? How is it possible for a sign to represent reality? And which reality should be rep-
resented? Its sensory, particular traits as they appear to our perception? Its essence? The
composition of its elements? The inner relation of its parts? Given the extreme difficulty
of such a task, it is easy to understand the heterogeneity of this Leibnizian theory of the
representativity of the sign. I will try to briefly summarise several models that I believe
Leibniz pursued.7

The first model is the extreme proposal of a figurative representativity as the pictorial
representation of the sensible, imagetic traits of the signified reality. As Leibniz says in
the Nouveaux Essais:

Et on pourrait introduire un caractère universel fort populaire et meilleur que le leur, si on employait
de petites figures à la place des mots, qui représentassent les choses visibles par leurs traits, et les
invisibles par des visibles qui les accompagnent, y joignant de certaines marques additionnelles,
convenables pour faire entendre les flexions et les particules. [2, 5.379]

A procedure that Leibniz believes to be applicable to visible and also to invisible realities.

Those (realities) which cannot be figured [pingi], like the intelligible, should however be repre-
sented by some hieroglyphic method at some time uniform and philosophical. This can be done if
we do not pursue particular similarities, as the painters, the mystic and the Chinese do, but if we
follow the idea of the very thing. [3, 5.216]

In second and weaker model, representativity is conceived, not as the figuration of the
particular traits of the signified reality as they appear to our perception, but as its essence,
that is, as the direct representation of the essential basis of those particularities. A good

7 For a developed presentation of the various models of representativity in Leibniz and which we present
here in a condensed, abridged way, see [5, pp. 174–190].
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example is the project that Leibniz calls a Characteristica Realis [2, 7.12–13], in which
the character would represent the unifying principle or “key” (clavis) of the multiple prop-
erties composing the signified idea.

The name of each thing will be the key of all we should say, think and reason about that thing [. . . ].
The name we will give the gold will be the key of all we can humanly know about gold, that is,
by reason, and according to such an order that, by the examination of that name, we can discover
which experiences should be rationally realized with that name. [2, 7.13]

There is, finally, a third model, which I propose to call expressive representativity, which
aims to discover neither the figuration of sensory particularities of the signified reality
(figurative representativity), nor the essential basis of those particularities (essentialist
representativity), but rather the analogical and structural reproduction of the network of
relations constituting the idea and its articulations.

Even if rigorously speaking all representativity is expressive for Leibniz (since expres-
sion is for Leibniz the supreme instance of any kind of relation), it is now geometry that
provides the privilege model for the relation of expression. In fact, geometry is character-
ized by the immediate establishment of an isomorphism between the idea represented, as
an ideal structure, and its schematic figuration. However, this isomorphism does not imply
similarity, as the imitation of the original.8 That which expresses does not have to be sim-
ilar to the thing expressed provided that some kind of analogy can be discerned between
them. The reaction of expression can even accept dissimilarity. As Leibniz says in Essais
de Théodicée:

The same circle can be represented by an ellipse, a parabola, a hyperbola, another circle and even
a straight line or a point. Nothing seems so different, neither so dissimilar, than those pictures;
however, there is an exact relation of each point to each point. [2, 6.327]

Now, it is within this expressive model that Leibniz points to a purely diagrammatic
form of representativity. The most interesting indication is present in the fragment Es-
sais d’Analyse Grammaticale (1683/4) where Leibniz considers it to be licit to connect
the components of characters by different lines since, in this way, he says, it would be
possible “to see” all those components in a simultaneous way. It is worthwhile giving the
word to Leibniz:

It would be licit to connect by different lines the parts of the character since, in this way, it would
be possible to see the in paper in a simultaneous form while the sound speech vanishes and, thus,
the first sound cannot refer the posterior unless the second contains something which corresponds
to what it was in the first. [1, 285]

It should be noted that the recognition of the value of writing in contrast to speech which
Leibniz presents here it is not limited to the stressing of writing’s advantages in terms of
fixing and registering or as a support for the failures of attention or of reasoning. What
Leibniz emphasises here is the two-dimensionality of writing, the possibility of simulta-
neous grasp of the multiple relations that characters (and the ideas they signify) establish
among them. That is, diagrammatic symbolism, to which the passages cited above tend,
has the merit of permitting the simultaneous apprehension of the relations among the en-
tities represented.

8 In fact, this isomorphism implies a search, not for similarities, but rather, as Leibniz puts it, for “un
rapport constant et reglé entre ce qui se peut dire de l’une et de l’autre” [2, 2.112].
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In another passage, Leibniz introduces a slight distinction within expressive representa-
tivity. As he writes in the celebrated Dialogus de connexione inter res et verba, of August
1677:

Even if characters are arbitrary, their use and connection have nonetheless something which is not
arbitrary, that is to say, a certain proportion between characters and things, and, at the same time,
between the diverse characters which express the relations of things among themselves. [2, 7.192]

Here, Leibniz is looking for the possibility of displacing the ideal of representativity from
the character (without, however, completely abandoning it) on to the plane of syntactic
relations. The meaning of a character now comes to depend either on its integration in
a formal structure – its usus et connexio – or on the correspondence (proportio) between
this structure and the structure of the reality which it aims to represent. Now, it is the very
form of relations between characters that is seen analogically with things in the form of
their relations.

Ultimately, there is – I will further argue – another last possibility, which Leibniz ex-
plores in the fragment Characteristica universalis of 10 August, 1679:

The more exact are the characters, that is, the more they represent the relation of things, the bigger
is their utility and if characters are able to exhibit all the relations of the things, as do the arithmetic
characters that I use, then there will be nothing in the things which cannot be deduced from the
characters. [3, 5.141], our emphasis

Representativity is, again, not between structures (syntactic and natural) but between ele-
ments, between the individual (containing relations as its predicates) and the character as
a sign which, through its own flexion, would “exhibit” the multiple relations of the thing.
It is now again each character, and not the relations between characters, that is to express
the relations which individual entities contain as their predicates.

Then, within the expressive model of representativity, Leibniz pursues three ap-
proaches. In the first, the structure is purely formal; in the second, the structure becomes
a source of meaning because, in itself, it imitates the real conceived as a structure; in
the third the structure is absorbed by the sign and it is through the sign that it becomes
expressive. If, in the first tendency (clearly diagrammatic) the semantical level tends to be
entirely reduced to the syntactic, and in the second tendency (strictly structural) priority
is given to analogy between the formal structures of language and the structures of the
real, the third and last tendency (from the figurative and the essentialist models) recovers
the requirement of the semanticity of the sign itself, that is, of a space that should be
symbolically differentiated and, as such, indicative of the signified reality, open to the
world that is to be known.

As I have tried to argue, it is precisely this indicative power of the sign, this openness
of the symbolic system to the signified reality that Leibniz wants to safeguard at all costs.
That is why he pursued so many models, attempted so many different ways of, besides
operativity, gaining such a representativity.

This is a thesis that Leibniz recuperates and pulls through a long tradition coming
from Plato’s Cratylus, the speculations on Adamic language all through the Middle Ages,
Renaissance and modern times.
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It is a thesis that will be advanced by Peirce’s conception of the iconic nature of di-
agrams and of the revelatory, heuristic power resulting from the relational analogy that
lives in their heart.

� � �

We know that Leibniz never achieved any new language system nor did he succeed in
establishing a system of characters with the openness with which he wanted them to
be endowed. He just left projects, drafts, sketches, numerous fragments, specimina and
échantillons. However, his unfinished work must be regarded, not so much as the root of
recent research in the area, but as a source for clarification of the difficulties as well as of
virtualities involved, as a font for the formulation of powerful hypothesis and of delicate
distinctions.
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Abstract This short note discusses preliminary steps in the way to a general picture of
inconsistency handling in an information fusion perspective, by relating some natural ap-
proaches.
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1 Introduction

The fusion of pieces of information coming from different sources and the handling of
inconsistency have motivated works in logic [2, 11] as well as in artificial intelligence
(see, e.g. [7]). The issues are then the appropriate representation of the information pro-
vided by each source, and the handling of conflicts between sources, and possibly inside
sources. However, it is usually assumed that the information provided by each source is
consistent. In the following short discussion, we allow for the inconsistency of informa-
tion provided by individual sources in a propositional format, and show that it leads to
interesting pending questions.

2 Background on the Handling of Possibly Inconsistent
Propositional Knowledge Bases

By a knowledge baseK here, we mean a finite set of propositional formulasK D f'i j i D
1; : : : ; mg. Then, given two knowledge bases K and K 0 D f j j j D 1; : : : ; ng, one can
define their conjunctive and disjunctive combinations, respectively, in a syntactic manner
as

K ˝K 0 D f'i ^  j j i D 1; : : : ; m; and j D 1; : : : ; ng ;
K ˚K 0 D f'i _  j j i D 1; : : : ; m; and j D 1; : : : ; ng :
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Note thatK˝K andK˚K have the same semantic content asK. Moreover,K˝K 0
has the same set of models (possibly empty) as the mere union K [ K 0 of K and K 0.
When K and K 0 are consistent, but not K ˝ K 0, classical inference from K ˝ K 0, or
K [K 0, becomes trivial, and the disjunctive combination K ˚K 0 is of interest. It tacitly
assumes that one source is right but we do not know which source [8]. This idea may be
refined by considering the maximal consistent bases ofK [K 0 and then combining them
disjunctively. Or yet it has been proposed for a long time to compute the intersection of
the sets of consequences of each maximal consistent bases ofK[K 0 (it was first proposed
by Rescher and Manor already in 1970 [12]). In that case, we are back to the problem of
non-trivial inference from a single inconsistent knowledge base.

So consider the case when a single base K is inconsistent. Let S1; : : : ; Sk be the max-
imal consistent subbases of K, and let C.S/ denote the deductive closure of a consistent
propositional base S . It is easy to see that C.S1 ˚ � � � ˚ Sk/ � C.S1/ \ � � � \ C.Sk/.
Note that in order to obtain an equality instead of this inclusion, one should replace ˚ by
a richer disjunction, where we not only perform disjunctions of the form  1 _ � � � _  k

with  i 2 Si for i D 1; : : : ; k, but also all the disjunctions of this kind where now  i is
any conjunction  i

1 ^ � � � ^ i
j of propositions taken in Si (where j ranges between 1 and

card.Si/).
Several other approaches exist to obviate the explosive nature of classical inference.
In [4, 5], it has been proposed to associate an inconsistent propositional logic base

K D f'i j i D 1; : : : ; mg with its so-called paraconsistent completion Ko, defined as
Ko D f.'i ; 1; xi / j i D 1; : : : ; mg where xi D 1 if 9A � K;A consistent; A ` :'i , and
where xi D 0 otherwise.

This method partitions Ko into the inconsistency-free part Ko
fr and the paraconsistent

part Ko
par of K

o, respectively, defined by

Ko
fr D f'i j .'i ; 1; 0/ 2 Ko; i D 1; : : : ; mg

Ko
par D f'i j .'i ; 1; 1/ 2 Ko; i D 1; : : : ; mg :

However, reducing K to Ko
fr, which is consistent, is quite conservative, since while

every consequence from Ko
fr is also a consequence of all maximal consistent subbases of

K, the converse is false, as shown by the following counter-example [4]:

Example 2.1 Let K D f˛;:˛ _ :ˇ; ˇ;:˛ _ �;:ˇ _ �g. Then it can be verified that

� K has three maximal consistent subbases f:˛ _:ˇ; ˇ;:˛ _ �;:ˇ _ �g, f˛; ˇ;:˛ _
�;:ˇ _ �g, f˛;:˛ _ :ˇ;:˛ _ �;:ˇ _ �g;

� Ko
fr D f:˛ _ �;:ˇ _ �g is the intersection of these three bases (this is always true);

� Ko
fr does not entail � ;

� � is entailed by each maximal consistent subbase of K.

Besides, the “paraconsistent completion” can be extended to layered knowledge bases
in the setting of possibilistic logic [5, 9], taking into account the levels of certainty of the
pieces of information.
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A bolder inference mechanism that produces a set of consequences larger than C.S1/\
� � � \ C.Sk/ is provided by the so-called argued inference, which is defined as follows:  
is an argued consequence of a (possibly inconsistent) baseK if there is a consistent subset
ofK that entails  and none that entails : . A set of two argued consequences is always
consistent, but it is no longer the case for larger sets of argued consequences [4]. This
contrasts with the fact that C.S1/ \ � � � \ C.Sk/ is clearly consistent.

These approaches can be encompassed by extending the paraconsistent completion Lo
to the whole language L of K, in the spirit of the proposal by Arieli [1]: 8� 2 L:

� � 2 LT if and only if there is a consistent subset of K that entails � and none that
entails :�; and we can write .�; 1; 0/ 2 Lo.

� � 2 LF if and only if there is a consistent subset of K that entails :� and none that
entails �; and we can write .�; 0; 1/ 2 Lo.

� � 2 LU if and only if there is no consistent subset of K that entails � nor any that
entails :�; and we can write .�; 0; 0/ 2 Lo.

� � 2 LI if and only if there is a consistent subset of K that entails � and another one
that entails :�; and we can write .�; 1; 1/ 2 Lo.

In the above definition, one can restrict to maximal consistent subbases of K. These four
sets of formulas LT ;LF ;LU ;LI partition the language. It can be checked that Ko  Lo
(in particular, Ko

fr  LoT and Ko
par  LoI ), and that LT is the set of argued consequences.

One can view the four annotations by pairs of Boolean values as akin to Belnap [2] epis-
temic truth-values, TRUE, FALSE, NONE, and BOTH, respectively. However, Belnap
logic comes down to computing epistemic statuses of atomic propositions based on in-
formation from various sources, then obtaining the epistemic status of other formulas via
truth-tables extending the usual ones to four values.

The paraconsistent completion and its extension also stem from possibilistic logic [9],
since it comes down to computing degrees of necessity Ni.�/, and Ni.:�/ whereby
Ni.�/ D 1 if and only if Si ` �; otherwise Ni.�/ D 0. Necessity measures Ni are
^-decomposable functions (Ni.� ^  / D min.Ni.�/;Ni . //) akin to KD modalities.
The extended paraconsistent completion can be formally defined as

Lo D
	�
�;

k
max
iD1 Ni .�/;

k
max
iD1 Ni .:�/

�
W � 2 L

�
:

Note that maxkiD1 Ni is just a general monotonic Boolean set-function (and conversely
any such set function is of this form for some integer k), and the annotated formulas can
be encoded in a non-regular modal logic [10].

It is easy to see that for the cautious approach using intersection, it holds that C.S1/ \
� � � \ C.Sk/ D f� W minkiD1 Ni .�/ D 1g. The companion completion of Lo of the form
Lcautious D f.�;minkiD1 Ni .�/;minkiD1 Ni .:�// W � 2 Lg only contains triples of the form
.�; 1; 0/; .�; 0; 1/; .�; 0; 0/, with .�; 1; 0/ 2 Lcautious if and only if .:�; 0; 1/ 2 Lcautious.
The set Lcautious

T D f� W .�; 1; 0/ 2 Lcautiousg is consistent, deductively closed, and equal
to C.S1/ \ � � � \ C.Sk/. Indeed, minkiD1 Ni is again a necessity measure.
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3 Toward Fusing Inconsistent Knowledge Bases

In this section, we turn to the case when the source bases are already inconsistent.

3.1 A Misleadingly Simple Problem

Let us consider the simple case of the fusion of the two atomic knowledge bases K D
fp;:q; qg and K 0 D fp;:p; qg. There are at least four ways of envisaging their fusion:
� A first idea is to merely perform the set-unionK[K 0 D fp;:p; q;:qg; we get a state

of contradiction both about p and about q, which is not appealing, as one may feel
that some information has been lost in the process (the same result would obtain by
merging fp;:pg and fq;:qg).

� However, we can observe that all the maximal consistent subbases of K (resp. K 0)
entail p (resp. q). So if we apply an inconsistency-tolerant inference to each of K and
K 0 prior to merging, we may feel to be entitled to derive p ^ q in the end.

� Alternatively, considerK˚K 0 D fp; p_:p; p _ q; p _:q;:p _:q;:q _ q;:p _
q; qg. It may be reduced to .K ˚ K 0/d D fp;:p _ :q; qg if we delete each formula
which is subsumed by another one. Although .K ˚K 0/d is inconsistent, it is syntacti-
cally different fromK [K 0, and now all consistent subbases of .K ˚K 0/d only entail
p _ q.

� Finally, note that p (resp. q) is inconsistency-free in K (resp.K 0). This may suggest to
view K as a tentative representation of a situation where the associated source asserts
p, and states that it has contradictory information about q, in the sense that .q; 1; 1/ 2
Ko

par, which we shall denote by ?q . Similarly, K 0 corresponds to a situation where
the associated source asserts q, and states that it has contradictory information about
p, namely ?p. It may be considered reasonable to assume that p _ ?p D p (since
p _ .:p ^ p/ D p, and it agrees with the truth-table of disjunction for Belnap logic),
we get

fp;?qg ˚ fq;?pg D fp; q; p _ q;?p _ ?qg ;

which may be reduced to fp; q;?p _ ?qg. It expresses that p and q can be asserted,
and that we have contradictory information about p or about q.

The latter approach that uses a reification of local inconsistencies does not sound coun-
terintuitive; it is just an optimistic way of fusing the information coming from the two
sources stating, respectively, that p is true and information about q is conflicting (para-
consistent) and that q is true and information about p is conflicting. It is less pessimistic
than the second approach which throws away much information to restore consistency of
source information prior to merging.

The basic elements of the calculus implicitly underlying this latter view may be nicely
pictured on Fig. 1, where three squares in solid lines (which are not squares of opposition,
at least in the classical sense) are displayed. The middle of the side of a square is always
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Fig. 1 Conjunctions and disjunctions in squares

the conjunct of its edges, and the vertices of the isosceles triangles are the disjunction of
the edges of their opposite side.

3.2 Elements for a Discussion

Two basic issues, in order to make sense of the problem from an artificial intelligence
point of view, are certainly (i) to have a proper representation of what has to be fused
(which requires a clear understanding of what is supposed to be stated); and (ii) to lay
bare what are the principles underlying the merging process or the conjoint exploitation
of the knowledge bases reflecting the sources of information.

As it may be expected, one observes that if information is modeled by an inconsistent
set of atomic formulas, one may be in one of the four states of information p, :p, ?p ,
and >p regarding a propositional variable p. Here the symbol >p would encode a local
tautology p _ :p in a symmetric way as does ?p for the contradiction. One may then be
tempted to complete the three squares by vertices of the form>p_q, etc. (see the external
square in dotted lines). But it is hard to defend the idea that .>p _ q/ ^ .>q _ p/ D
p_q, as, strictly speaking, it is just a tautology. However, just as the inconsistency-tolerant
approaches try to confine the contradiction to a local feature not destroying knowledge
bases, one could similarly, as a topic of further thought, try to have a local approach
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to tautologies that would avoid the opposite form of trivialization (nothing follows from
a tautology).

The possibility of defining four statuses for formulas with respect to an inconsistent
knowledge base may suggest to try either a multiple-valued logic approach (as in [2]), or
a modal logic approach (as in [3]), or an argumentative approach (as in [1]).

The multiple-valued logic view may be considered misleading as one may argue that
truth-tables are a clumsy way of handling states of information attached to atomic for-
mulas [6]. In fact, the symbol p in the above attempt is ambiguous when put along with
?p , as writing p in the knowledge base here refers to the fact of consistently asserting p,
without its being contradicted by other assertions: in the annotation framework outlined
in the previous section, it really stands for .p; 1; 0/, while ?p stands for .p; 1; 1/.

If we understand the four states of formulas induced by an inconsistent knowledge
base K as encoded by the paraconsistent completion of the language, we see that it may
lead us to questioning the edges of the second inner square (even though they look safe),
namely we can doubt whether, in an inconsistent framework, the conjunction of p and
q is p ^ q at all. Indeed if instead of p, :p, ?p , and >p, we write .p; 1; 0/, .p; 0; 1/,
.p; 1; 1/, and .p; 0; 0/ 2 Lo, then it is easy to check that .p; 1; 0/ 2 Lo; .q; 1; 0/ 2 Lo
do not imply .p ^ q; 1; 0/ 2 Lo, if we work with an inconsistent knowledge base [6].
This is consistent with the fact that the modal approach to capacities [10], set-functions
that provide a general approach to uncertainty, is not regular (axioms K and D do not
hold). This is as well at odds with Belnap logic, which assumes that the four-valued logic
truth-tables extend the ones of Boolean logic. So the proposed set of squares should not
be taken for granted under all approaches to inconsistency.

4 Conclusion

The aim of the above discussion (tentative) is only to draw attention on basic difficulties
in the problem of handling, and more particularly fusing and inferring from propositional
bases in the presence of inconsistency, whereby the syntactic framework of propositional
logic seems to be ambiguous and insufficient to express what is going on.

Clearly, even if many works have been published on inconsistency and what to do
with it, a number of questions remain, and one of the ambitions of this note is to make
preliminary steps in the way to a general picture, relating some natural attempts. The only
other purpose is to seize the occasion of this Festschrift for Jean-Yves Béziau to heartily
wish him a happy birthday.
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Realist Consequence, Epistemic Inference,
Computational Correctness

Giuseppe Primiero

Abstract Standard views on logical consequence stem historically from the propositions
as truth-bearers tradition on the one hand, and from the assertoric standpoint on truth
for propositions by proof-objects, on the other. A further step in the evolution of the no-
tion of logical validity is represented by the formulation of correctness on computational
processes, as suggested by the proofs-as-programs interpretation. We analyse this fairly
recent computational interpretation of logic in view of the new principles it offers to char-
acterize the notion of validity: execution conditions; resources accessibility; local validity;
error-handling. In this new and extended sense, logical validity significantly improves the
simple assertoric interpretation of correctness of non-realistic philosophies of logic. We
set explicitly the connection to the notion of eventual consistency that holds for computa-
tional systems in a distributed setting.

Keywords History of logic � Philosophy of computer science � Eventual consistency

Mathematics Subject Classification (2010) Primary 03A10 � Secondary 68Q01

1 Introduction

The scope of logic is defined through the development of logical notions, relations and
(meta-theoretical) results. In particular, the main relations of validity and correctness play
a crucial role in defining the meaning of a logical system. These notions are historically
unstable and their explanation for current logical systems in view of their historical back-
ground is most needed.

Over the centuries, the notion of logical consequence has been considered the pivotal
turnaround for understanding the philosophy behind our logical systems. Currently, and
for the greatest part of the contemporary approaches, the explanation of the notion of
consequence is based on propositions as truth-bearers, expressing (the obtaining of) cor-
responding states of affairs. This tradition stems from the Bolzano–Frege–Quine–Tarski
school and it has been more recently took over by the Russellian inspired theory of
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truth-makers.1 In this framework, the central notion at stake is the one of consequence
characterized by validity.

Definition 1.1 (Valid consequence) A consequence from antecedents to conclusion is
valid if the latter is true in the same state of affairs or models where the former are.

A different understanding of the notion of logical consequence comes from the as-
sertoric perspective on formulas of logical systems, typical of non-realistic semantics;
under this reading, the propositional content of a formula is declared true by establish-
ing conditions for knowing it. Contents and their assertion conditions have been treated
as mathematical objects in Brouwer’s philosophy and given a full semantic translation in
Heyting’s interpretation of intuitionistic logic from around 1930. What we now call the
Brouwer–Heyting–Kolmogorov semantics defines the truth of a proposition as the exis-
tence of a proof, in the sense of a proof-object of it, translated by Kolmogorov in terms
of problems or tasks and their solutions.2 Possession of a demonstration for a judgement
‘A is true’ expresses thus, in anti-realistic terms, the condition for being entitled to its
assertion. In this framework, holding of a consequence is properly understood by reduc-
ing truth to satisfaction of assertion conditions, and so to the obtaining of an inference
between judgements (the premises and the conclusion) validly asserted under the same
conditions.

Definition 1.2 (Correct Inference) An inference from premises to conclusion is correct
if one is entitled to assert the latter under the same conditions of the former ones.

One of the last heirs of this tradition is represented by Martin-Löf’s Type Theory, based
on intuitionistic logic.3 Notoriously, intuitionistic-type theory fully endorses the formulas-
as-types correspondence, known as the Curry–Howard isomorphism:4 propositions (and
equivalently sets) are expressed by types; proof-objects for the truth of a proposition
(equivalent to an element in a set) are interpreted by terms in types. Expressions of the
calculus are judgements of the form A true (read: ‘A is true’, with A a proposition)
justified by judgements of the form a WA (read: ‘a is a proof-object for A’). Standard in-
tuitionistic connectives apply to propositions, defined by inference rules on proof-objects.
The relation of correctness for such formulas is then generalized to truth valid under as-
sumptions: ŒA1 t rue; : : : ; An t rue� ` A true (read: ‘A is true, given that propositions
A1 up to An are true’). Type correctness (validity) is expressed by type inhabitation, as
the existence of elements (proofs) defining types, and logical consequence is formulated
in terms of dependent types, as the inhabitation of type A given that types A1; : : : ; An are
also inhabited.5

After the realist–anti-realist debate, the historical development of logical systems has
generated no unique framework: along with the well-established realist and anti-realist

1 For the notion of truth maker, see [24] and [21]; this notion was anticipated, among others, by facts in
Moore; and as complex in Russell.
2 See [19].
3 This story is beautifully told in [39].
4 See [38].
5 See also [31, Cap. 1].
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approaches, also a number of other paradigms have been developed, each with a slightly
specific understanding of correctness and validity, like in the case of the sub-structural,
dynamic, and non-monotonic frameworks. One such framework directly derives from the
previously mentioned dialectic, in the form of a contemporary interpretation of the BHK
semantics for typed languages. It represents the most recent and advanced legacy of the
constructive and epistemic understanding of logic based on the correctness of judgemental
acts as endorsed by the constructivist tradition. Such new paradigm endorses the most re-
cent version of the Curry–Howard isomorphism: under this novel interpretation, proofs are
equivalent to programs and types to specifications that programs validate. Logical types
are thus used to characterize algorithms and to represent the operational semantics of pro-
grams. In the following, we shall refer to this version of the Curry–Howard isomorphism
as the computational paradigm. The recent literature in the Philosophy of Computer Sci-
ence has focused on the role of logical types to explore the nature of programs,6 but still
little has been said about the related notions of validity and correctness as compared to
the standard logical traditions. We hope to offer in this chapter a first step in fulfilling this
task.

A first understanding of the notion of validity for the computational paradigm is given
in terms of syntactic correctness, i.e. correct output production when the program is exe-
cuted.7 In [37], the problem of output correctness was introduced for the first time in terms
of a semantic explanation at the level of intentions:

can computer systems satisfy correctly their designers aims?

In this formulation, a novel layer of analysis is offered that appears redundant when purely
logical satisfaction is considered. Here correctness of the satisfaction relation refers to
correct correspondence of a formally valid program with respect to the intention of the
program’s designer: does the program do what we want it to do? When considered under
this computational perspective, syntactic and semantic output correctness receive a new
formulation as discussed next.

Definition 1.3 (Output Correctness Problem) Can a logical system satisfy correctly
the typing relation for which it has been formulated? Is it possible to formulate correct
typing relations so that a certain proof system also satisfies a given validity relation?

Notice that here the qualification of correctness for the satisfaction and validity relations
is not redundant: it does not refer to the formal correctness of the relation itself (in terms
of holding under specified conditions); it rather points at its ability to satisfy the aim for
which it is required, implemented and executed. This reading of correctness, given under
the proofs-as-programs interpretation of the Curry–Howard isomorphism, significantly
differs from the more traditional meaning of logical validity: it reflects typing relations
that can crucially depend on the ability to formulate and access the resources needed for
a given program to execute. Our main thesis is that in this new and extended sense, cor-
rectness basically differs from both the realistic and anti-realistic viewpoints mentioned
above. A valid computation is satisfied by a practical aspect of term resolution, which in

6 See, e.g., [3, 4] and [29].
7 See [12, 17, 42].
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functionally typed (programming) languages typically reduces to solving the type recon-
struction problem.

Definition 1.4 (Type Reconstruction – Computational Version) Given a program p,
there exists an output S and network N such that one can derive a formula saying that p
produces an output of type S when executed in N ?

This way of determining the validity of a logical expression hinges on some essentially
new problems and issues for the notion of (computational) correctness. We will present
them by addressing the following questions:

1. Are conditions for execution and termination of p admissible?
2. Are resources in N reachable?
3. Where in N are processes of p valid as to satisfy S?
4. Finally, how to resolve non-valid executions of p?

In the following, we shall mainly use functional programming as the reference paradigm
and typed systems as the underlying formal languages. Functional programming and typed
languages are the most appropriate to analyse logical relations within the computational
paradigm.

We shall start by presenting the difference in type theory between dependent types and
subtypes, in order to illustrate the distinction between implicit and explicit treatment of
computational information (Sect. 2).8 At this first stage we maintain that, in view of a prin-
ciple of typological non-neutrality for the data of computational acts, not all processes
can be defined correct under the same conditions. We then focus on typed languages as
information processing methods,9 explaining how the standard correctness methods of
proof-checking and type-inhabitation (Sect. 3) require in fact additional extensions for
data-tracking (Sect. 4). Here we will suggest that the semantics of programs relies on such
principles of data-tracking and localisation, which means to address the issue of resources
accessibility as part of the correctness problem. The two issues combined, allow a further
conclusion: given not all data are of the same logical kind, nor reachable by the same
processes, local validity results from distinguishing between contextual and categorical
correctness. Finally, we conclude by suggesting that this extension is helpful in represent-
ing levels of failure and, in turn, an appropriate notion of error resolution becomes crucial
for a general understanding of logical correctness. A full taxonomy of failures can be pro-
vided, enhanced with resolution algorithms for fault-tolerant processes ([33]). As a result,
correctness and so validity are restated as partially decidable properties, as it is formally
stated computationally for distributed systems (Sect. 5).

8 For the formulation of dependently typed programming languages, see, e.g., [2]; for a general in-
troduction to the format of Martin-Löf’s-type theory for programming see [28]; see [31] for a more
logico-philosophical analysis.
9 These represent a recently introduced theme in the literature in computer science, see, e.g., [11]. See also
the ‘Forgetting-Restore Principle’ in [36] for the notion of abstraction and instantiation; its connection to
types and information has been explored from a mainly historical point of view in [32].
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2 Implicit and Explicit Information: Data Polymorphism

The proofs-as-programs identity underlying the semantics of typed programming lan-
guages allows us to treat the meaning of a program analogously to the constructive mean-
ing of proofs. A basic syntax of a typed language and the corresponding intuitive semantics
for programs in a network are given as follows:

� type WD fA;B; : : : g are specifications that an object (program) can compute;
� terms WD fa; b; : : : g are instances of programs;
� a formula of the system is an expression of the form a WA, meaning that a given program
a holds satisfying specification A;

� an assumption x WA is obtained by the process of forgetting the relevant computational
information a of that expression, which can be restored at will: this means to express
the ability of executing the given program for specification A, when needed;

� expressions of the language in their contextual format are read accordingly: Œx1 W
A1; : : : ; xn W An� ` B type says that B is a valid specification under effective execu-
tion of subroutines a1; a2; : : : ; an for specifications A1;A2; : : : ; An; each such type is
dependent on the substitution of the free variable for the term in the preceding type.

In such a language, validity is given by establishing that every routine b of type B ter-
minates, requiring ˇ-reduction on the appropriate variables � D fx1; : : : ; xng of types
A1; : : : ; An from which B depends. The formulation of such a context of assumptions �
presupposes further presupposition judgements of the form hA1 type; : : : ; An typei, where
each expression axiomatically declares the legality of the related specification (in absence
of their values), with all Ai distinct. A specification B depending on a (set of) subrou-
tine(s) Œa1; : : : ; an� is a valid program by stipulating that if A is a type and B is a family of
types over x WA, thenB.x/Œx WA� is the type of functions fromA toB . Along with function
formation, standard logical connectives for conjunction (^) and disjunction (_) are inter-
preted for composition of programs or subroutines: the corresponding introduction rules
explain the conditions under which a modular program is formulated for a complex speci-
fication.10 From a programming perspective, the dependency relation of terms (and types)
on types (and terms) allows thus to describe the behaviour of complex programs, provid-
ing a more precise typing procedure and allowing to exclude more of the bad-behaved
terms. The related notion of correctness and thus of validity of programs relies therefore
precisely on the ability to express and access the modules that a program requires to ter-
minate. To do so, it is appropriate to distinguish between implicit and explicit formulation
of data in the computational process.

Dependent typing as an implementation of modular programming relies on the role of
witnessing information.11 The design of modular program derivations, where the specifi-
cation of B is obtained by the decomposition of sub-problem A, can either be expressed
by making the entire informational load explicit, or by hiding it in terms of appropriate
assumption formation rules. As an example, consider the distinction between the jus-

10 For the standard set of computational rules for Intuitionistic Type Theory, see, e.g., [31, ch. 1].
11 In [41], this problem is explicitly faced, to state the general thesis that it is not always practically feasible
to make witnessing information explicit.
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tification of a typed function to sort lists f W ŒA� ) ŒA� by an assertion of the kind
8x WA; 9y WA:S.x; y/ or rather by asserting the pair .f; p/, where along with the program
f one asserts the proof p that f is of type S.x/; hence the instance of the existential type
.9x W ŒA� ) ŒA�/S.x/ which translates into: .S.x; f .x///Œx WA�.12 Subtyping operations
were in the first instance introduced to represent dependency relations of first-order for-
mulae that were difficult to implement in programs.13 By reading types as pairs .A;B/,
with A a type of the basic theory and B a propositional function defined over A, proposi-
tions are types of the polymorphic version of the theory which may contain quantifications
over the new types.14 By subtyping one expresses terms typed in A with property B ; from
a purely logical perspective, the subtype fx W A j B.x/g of objects with property A that
also have property B is a way to reduce the proof in B in terms of a substitution proce-
dure such that BŒa=x�. This operation is based on the principle of eliminating irrelevant
computational information to express explicitly all and only the data needed for the pro-
gram to be efficient. Subtyping can be restricted to certain sets of data, but it can result
too complex to formulate all the needed subroutines in terms of subtypes. For this reason,
the functional expression obtained by dependency remains the more general paradigm to
express implicit computational information.

Two different aspects of computational processes are highlighted by the dependent/
subtyping distinction:

1. witnessing information in the construction of a program is formally expressed by sub-
type formation;

2. implicit recalling of computational values is given by contextual and dependent types.

The former expresses the output production of all modules needed to satisfy the valid-
ity of a program. The latter formulation expresses the requirements needed to claim that
a certain specification has an appropriate program satisfying it, even when the entire com-
putational load is not directly accessible. This distinction justifies a ground principle of
data typology: when considering recursive computational processes, not all data are of the
same type. In particular, some processes require for their validity explicit computational
content; other processes instead can be formulated by implicit computational content. This
leads, in turn, to the following observation: contextually formulated processes, or proce-
dures depending from implicitly given computational content depend on the accessibility
and execution of the appropriate resources. The related notion of validity is thus local and
this is reflected in the process of correctness checking.

12 Cf. [40], pp. 256–257.
13 See, e.g., the applications mentioned in [1] concerning systems such as LF, LEGO, NuPrl, Coq.
14 For such extension see [28] and [40]. Under the types-as-specifications interpretation of A and B , pro-
grams satisfying specification A also satisfy specification B ; in object-oriented languages, if one expects
an object with interface B , an object with interface A can be safely used. See [1].
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3 Correctness: From Proof-Checking to Type-Reconstruction

The satisfaction of the output-correctness problem for a dependently typed language re-
quires well-typing of each contextual value in terms of ˇ- and �-conversion rules for
component elements of the program. Correspondingly, proof-checking proceeds first on
the well-formedness of types and then performs computation on values.15 Provided the
implicit nature of the computational content of dependent types, to reconstruct values in
view of proving correctness one needs to reconstruct both the origin and the accessibility
of the data involved. This is equivalent to requiring runtime evaluation (or rather looping)
of the programming language, referring to addresses of subroutines and their satisfaction
of mobility rules, to establish where code is safely evaluated. This triggers our next obser-
vation: correctness as it is understood in the computational paradigm makes crucial use of
metadata.

To explore this aspect, a general formulation of the type-checking problem is required.

Definition 3.1 (Type-checking Problem) Given a context � , term a and type A, is � `
a WA a derivable expression?

where � is intended as the information set needed to enter a term a such that the program
computes its typeA in the current context, returning output failure if no such A exists.
The generalization of this problem is notoriously given in polymorphic systems by requir-
ing the notion of type-scheme and allowing the conversion rule, or by formulating identity
conditions on proofs for uniqueness on program specification in the monomorphic ver-
sion. However, subtype introduction can be seen as a declaration of the subroutine from
which the main program can derive the needed values.16 The normalization of routines in
systems with subtyping is also valid only in the context of well-formedness.17 To ensure
such well-formedness of contexts, it is crucial to express location and accessibility of data.
As a consequence, the decidability problem can be reformulated as the type-reconstruction
problem.

15 The other standard method for proof-checking consists in introducing an abstract data type (ADT) of
theorems in a language of pure types, then considering an algorithm on constructions. The proof-checking
problem by abstract data types presupposes a good treatability of computational information by pure
types, and therefore goes along well with the idea of extending the system by subtypes. This format
allows us to dispose at the programming stage with the complete set of needed witnessing information;
the use of dependency relations is reduced by the formulation of an appropriate (and separate) semantic
interpretation of propositions.
16 See, as an example, the NUPRL-derivation described in [35], and further examples in the semantic
justification of expressions of the form A prop and A true.
17 A very clear example is given by the calculus introduced in [1] which adds subtyping to �P: it first
breaks dependency by providing an algorithmic version of the subtyping relation such that relates only to
normal forms; then a second subtyping is introduced which splits reductions on terms and on types. The
presupposition of well-formedness allows us to reduce sensibly the number of typing constraints for decid-
ability. Even so, the required constraints might result computationally harder than (algorithmic) subtyping.
Presupposition of well-formedness is avoided by interrupting circularity from subtyping to kinding, but in
turn conversion on terms bounds types and transitivity holds restricted to bounded variables.
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Definition 3.2 (Type-reconstruction Problem) Given a term a, there exists a type A
and context � such that � ` a WA is a derivable expression?

This formal definition corresponds to the informal one presented in Sect. 1: the context
� formally expresses the set of sentences that describe all the required services in the
Network N ; the term a is the formal counterpart of the program p and the type A cor-
responds to the output type or specification S . In this formulation of the validity for an
expression, one refers not to an already given � , rather to its formulation, requiring ex-
plication of its content. The type-reconstruction problem is reducible to the type-checking
problem in the logarithmic space for the decidable fragment of the language.18 Hence,
type-reconstruction is P-complete for example in simple-typed �-calculi and equivalent
predicative structures.19 However, this is not the case for the formulation of second-order
languages and, in particular, for languages with dependent types, i.e. where A is pos-
sibly of the form B typeŒx W A�, i.e. it embeds dependencies. In such a format, the
type-inhabitation problem is undecidable, and so is type-reconstruction.20 Decidability
is thus affected from the dependency relation since a type-checking algorithm computes
a type A for a term a and it has to assume all of its dependencies being satisfied. If depen-
dency of B type from some A type is not reduced to termination, the usual behaviour of
the program b forB is that of incurring in looping processes. Normalization for dependent
types can be obtained by explicit assumptions checking, matching conversion for distinct
occurrences of the same meta-variable and finally reduction to normal form.21 But a type-
checking algorithm will only check the base of a context and not the type of each variable
in the leaves; hence one can expect to obtain soundness only for well-formed contexts.22

Type-reconstruction represents therefore a more careful formulation of the decidability
issue for the proofs-as-programs model, as it requires explicit account of contextual data
and of their accessibility. Besides the static solution of fixing values of the letter schemas
in the context so that one can always check correctness, this means that a tracking method
is required for subroutines execution and termination to treat the preconditions encoded by
the relation input–output of the main algorithm. Developing such explicit method requires
an appropriate extension of the language, which in turn also affects the related notion of
validity. This offers a new way of looking at how correctness is defined, involving acces-
sibility and execution of computational resources.

18 See, e.g., [38].
19 See, e.g., [15].
20 See, e.g., [43] and [6].
21 See [9].
22 See [2]. Other variants of type-checking algorithms, compromising between implicit and explicit typing,
might for example allow omission of type parameters not causing any ambiguity. This is the case, for
example, of the system introduced in [9], where in a sequence of type parameters those in the final part
can be omitted.
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4 Localizing Validity

In the literature on type-theoretical languages, undecidability by complete recursion is ad-
mitted in view of impredicative extensions, declaring legality for the set of all routines.
The solution typically consists in admitting only predicative types. The weaker problem of
non-terminating subroutines was treated in terms of extensional operations in [41] for the
case of types without their entire informational load.23 The same problem can be treated
from an intensional viewpoint, adding expressive power by an extension to treat local-
ities and indices of terminating routines. Standard logical machineries that can be used
to this aim include modalities and labelling. When the propositions-as-types identity is
instantiated by the proofs-as-programs paradigm, the role of these language extensions
is to express conditions for termination of subroutines on input for the program to meet
its specification. Modal versions of operational semantics and their calculi have been ex-
tremely useful in recent research to reason about validity and termination in distributed
and concurrent computing.24 Indices on terms specify now the locations where execution
is performed. Polymorphism of specifications valid by globally terminating terms along
with the type of specifications valid by locally terminating terms is now expressed by
modal formulas. Under this reading, formulas receive a new interpretation:

� An expression ai WA is the declaration of value for specification A, originating at some
address i .

� An expression xi W A is the declaration of legal code for specification A, bounded at
that given address i .

� A judgement Œx1 WAi ; : : : ; xn WAn� ` B type says that a program valid forB is executed
provided each of the routines Ai : : : ; An terminates.

� The necessity formula �iA is used to express termination of A in every context, i.e.
being valid by subroutine reduction at runtime (globally closed values).

� The possibility formula ÞiA is used to indicate that a procedure for A depends from
locally terminating subroutines at i ; hence it is bounded to i and it is not valid in every
context (locally closed codes).

� A contextual formula ıŒx1 WA1; : : : ; xn WAn� ` ıB (with ı 2 f�;Þg) expresses now the
executable value of B within the resources of a network. The use of indexes allows us
to distinguish among networks where all code is called-by-value, and networks where
only valid code called-by-name can be used.

23 In [41] the notion of completely presented type and proposition is used: a type T is called completely
presented relative to a context � iff for some term t it holds that t inhabits a set abstracting from the
content in � and assuming an instance in T and where the set of free variables of t is a subset of those in
� plus the fresh free variable used for the assumption on T ; a proposition � will be then said completely
presented relative to a context � iff for some term t , t is a construction for a proposition abstracted from
the content in � and assuming �, where the set of free variables of t is a subset of those in � plus the
fresh free variable used for the assumption of �. This procedure restores full computational information
for the problem of type-inhabitation, reducing the form of dependent construction to a reduced normal
form.
24 See, e.g., [8, 10, 13, 18, 23, 25–27].
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Semantically, truth becomes a localised concept: a judgement expressing validity for
a specification A by terminating program ai , without any additional requirement on the
network will reduce to a notion of global truth; a judgement saying that a specification A
is valid bounded to code execution within a network where the relevant program termi-
nates reduces to a notion of local truth. Evaluation defines strong typing (normalisation)
by reduction of expressions to globally valid counterparts, while localised ones are admis-
sible procedural steps but may fail to produce a safe value (when called upon at wrong
addresses). This makes (only) the overall safely evaluated formulas valid.

In such a calculus, one can treat cases where routines that are not globally valid become
admissibile, inducing failure on execution when called at wrong locations,25 thus reformu-
lating the problem of programs that ‘can fail at many different levels’.26 In the following,
we skip aspects of hardware-failure, which do not effect mechanical correctness from
a purely logical and algorithmic point of view. Instead, we consider the language of pro-
grams and specifications as an information-processing system;27 accordingly, the issue of
failure can be for the present purposes approximated to an analysis of levels of information
failure28 affecting our understanding of logical validity in view of type correctness and in-
habitation. Each information level expresses one step performed by a formal type-checker
to control that a program gives a correct output. Routine correctness and correctness of
sub-calls recursion refer to decidability from the viewpoint of type-reconstruction or type-
inhabitation given in Sect. 3. In this internal sense of correctness, the source of failure for
a system is identified by answering the following question:

Internal information failure: ‘at which step of program execution (routines, calls for sub-routines)
does the termination process fail?’.

The tracking of termination procedures by modalities or labelling allows us to recognize
the different levels of internal correctness with respect to sub-calls and recursion pro-
cesses, specifying which ones may incur in local failure.

Correctness of data dependency and correctness of their retrieval refer, respectively, to
the structure of the computation and to its content: formally, content is treated by con-
sidering environments (databases) from which data is extracted; structure is given by the
dependency relation in contexts. The problem is here presented in its external form:

External information failure: ‘which data relevant for the computational process have not been
retrieved or miss appropriate dependency, so that the termination process fail?’.

These external levels of correctness address therefore a different aspect of the output-
correctness issue, and recall the ‘failure-with-world’ problem mentioned in [37].

Program checking under this new formulation requires selection and control over
database information and mistakes override. The notion of failure as a process or a part
of a process that does not satisfy some of the required logical dependency relations in
the sub-routines calls or that fails to access some required data(-locations) is thus clearly
central to correctness. In this sense, data retrieval procedures and dependency control
processes put forward the role of process interaction in the analysis of validity.

25 For a full presentation of such a type system and of its procedural semantics, see, e.g., [34].
26 [37], p. 813.
27 See [30] and [16].
28 See [33].
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5 Reformulating Validity

Already in [22], modern features of computing were given in terms of the following crucial
properties:

1. the entity of interest is no longer a program performing computations, rather an agent
in interaction;

2. the activity focused on is no longer the execution of a function but the performing of
a process;

3. the way to compose parts in the computational process is no longer sequential, but
parallel;

4. the resulting action of a computation is no longer the argument of the function, but
a sent/received message.

In analysing computational correctness by local processes, these properties are expressed
as process execution and meta-data control in terms of data typology and localization.
These properties can be explicitly addressed in a computing process by stressing the role
of contexts and local validity:

� programs act on different data-types (data are not all the same);
� they perform processes of meta-data control (regulating the when/how/where of data);

– by formulating local conditions on network (processes occur as events);
– by introducing originating locations (processes are user originated events);

� some such processes have restricted well-formedness and termination properties (not
every process is explicitly formulated in its reduced form).

In a polymorphic language, some processes carry full informational load and guaran-
tee termination and execution of distributed commands; other processes are admissible
to carry external information about (mutable) conditions for termination. Allocation of
meta-data for accessibility is treated by extensions such as labelling or modal operators,
expressing validity over distinct locations and their interaction (union, intersection); these
refer therefore to external data, such as the ‘when’, the ‘how’, and the ‘where’ of processes
involved by the validity relation on types. In turn, termination of processes is restricted by
their dependency relations.

We can now provide a more general definition of the related notion of validity:

Definition 5.1 (Computational Validity) A process P is valid iff at its execution, P is
capable for any required P 0 of controlling

1. access to location(s) of P 0;
2. commands (reading/writing/exec/broadcasting) of P 0;
3. validity of P 0 (global/local w.r.t. its locations).

Operations are, in general, seen as producing an updated state of the system instantiat-
ing the interaction between processes P;P 0. The principle of validity extracted from the
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previous analysis and conceptually redefined above is also reflected in Theoretical Com-
puter Science in the so-called consistency, availability and partition tolerance principle:29

Theorem 5.2 (CAP Principle) One can only practically build a distributed system
exhibiting any two of its three desirable characteristics: consistency, availability and
partition-tolerance.30

As a result, the notion of consistency typically attributed to such systems is that of even-
tual consistency, i.e. dependent on the possibility that some states of the updated system
will eventually lead to inconsistency; otherwise, there will be some state that might never
become available; or, finally, the system is fault-tolerant with respect to some of its par-
titions. In the notion of eventual consistency, all the characteristics analysed above return
promptly: consistency, and hence validity, is locally understood and locality requires de-
scription of failure conditions and mobility rules. A reinforced version of the same princi-
ple requires that consistency be preserved in the presence of updates, reconfigurations or
failures.

From a logical viewpoint, the formation of classes of type constructors depending on
terms has no computational difference with respect to the class of non-dependent types in
constructive systems.31 This means that, in principle, the reduction of a system with im-
plicit information to one using explicit information requires no additional computational
power for its realization. This corresponds to the assumption that equivalent terminations
be assumed for all dependent inputs: every sequence of reductions leads to a result and
every equivalent sequence of reductions leads to the same result. These are known, re-
spectively, as the strong normalization principle and the Church–Rosser property, essential
results to prove decidability of a system. But, according to the principle of eventual con-
sistency, one is able to offer only a much weaker notion of consistent and valid state for
distributed systems. In turn, the whole principle of strong normalization by reduction of
procedure to their explicit output is to be reconsidered. The design of a system whose re-
quests can add up to trillions of data at the same time (as in the case of highly distributed
web-systems) has to account for cases of data unavailability, resources inaccessibility,
transfer failure. The principle of replicating both data and services becomes the usual
trick to reduce the possibility of failing conditions on execution and thus termination.
This means that a validity relation among computational processes (as introduced in Def-
inition 5.1, Sect. 5) is no longer understood in terms of one consistent execution (i.e. one
consistent model), where, given a set of expressions (a database) accessible by a process
P 0, the process P produces a unique new state of the system updated with an execution
of a command of P 0. In the early days of distributed systems, the unique logical nature
of such model was reflected in the principle of distribution transparency: to the end-user

29 Also known as CAP or Brewer’s Theorem, the theorem originated in 2000 as a conjecture by Eric
Brewer at the Symposium on Principle of Distributed Computing, and formally proved in 2002 in [20].
30 By partition-tolerance in the context of distributed systems one understands the ability of the system to
work even when parts of its network are isolated and no longer accessible.
31 As shown in [5], this dependence corresponds to the coding of high-order proofs in the first-order
arithmetic: both formats have the same typable terms and representable functions, equivalent strong nor-
malization property and the set of logical theorems of a given �-calculus is characterized proving that
a logic with or without type dependence are equivalent (even if the former can prove some new theorems).
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only a unique system is visible, and this requirement has priority over system stability.32

Afterwards, data availability became the most important system feature, generating the
tension between consistency, availability and tolerance expressed by the CAP theorem.
The notion of consistent system is thus constrained only in view of the resulting state of
each operation of the main process P , generating besides a strong version, the weak and
eventual counterparts.

Definition 5.3 (Process’ Strong Consistency) Every execution of P on P 0 generates
a state of the system that is preserved under any independent reading of P on a different
process P 00.

Definition 5.4 (Process’ Weak Consistency) Every execution of P on P 0 generates
a state of the system that has to meet a number of pre-specified conditions to be accepted.

Definition 5.5 (Process Eventual Consistency) Every execution of P on P 0 generates
a state of the system that, given no further execution, generates a state of the system that
is preserved under any independent reading of P on a different process P 00.
The latter notion can be further constrained in view of causal relations, session parame-
ters, monotonic operations. The related notion of weak consistency can be generalized as
follows for a system of processes.

Definition 5.6 (System Weak Consistency) A system is said to be weakly consistent
if the number of processes involved by an update operation and the number of processes
read by that operation is less or equal than the number of replicas of the updating process.
Then the system is vulnerable to reading processes that have not yet received the update.

In view of this notion of system’s consistency, the validity of the interaction relation
among processes and the related understanding of correctness for computational events
is crucially different from the notions of valid consequence and correct inference known
from the logical traditions.

6 Conclusions

In this chapter, we have shown how the anti-realistic reading of logical validity can be
given a truly novel interpretation based on the proofs-as-programs isomorphism, for ex-
ample, as exploited in the language of dependent-type systems. Its meaning relies on
a notion of contextual derivability which interprets logical validity in terms of correctness.
Focusing on the role of programs in this analysis, we reviewed our current approaches to
logical consequence and validity in terms of output correctness by interacting processes
and shown how under this reading validity and correctness are understood as weak no-
tions, with the exemplar case of eventual consistency for distributed systems.

32 See [7].
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A standard meaning of correctness for programs is to require that they do ‘what you
want it to do’ ([37, p.813]).When correctness is understood as a context-dependent notion,
this becomes clearly an insufficient description of what ‘correct’ means for a program.
Our analysis stresses how program design understands correctness in a much broader
sense, accounting for completeness, relevance and accessibility of data. Type-checking
for correctness control is today to be seen as a very different technique than the kind crit-
icised in [14], where it was suggested that ‘because no [. . . ] social process can take place
among program verifiers, program verification is bound to fail’. Correctness is today bet-
ter understood from the perspective of reliability within the standard approach of logical
frameworks, reflecting the interactive nature of programs and the syntactic possibility of
verification. Extensions of such structures are meant to improve methods of control and
to suggest new forms of system reliability. In this way, they also offer the possibility to
design a more complete understanding of correctness, and thus of validity, than the old-
fashioned understanding of logical consequence, both in its realistic and in its anti-realistic
vein.
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Epistemological and Ontological Paraconsistency
in Quantum Mechanics: For and Against Bohrian
Philosophy

Christian de Ronde

Abstract We interpret the philosophy of Niels Bohr as related to the so called linguistic
turn and consider paraconsistency in the light of the Bohrian notion of complementarity.
Following [16], Jean-Yves Béziau has discussed the seemingly contradictory perspectives
found in the quantum mechanical double slit experiment in terms of paraconsistent view-
points [7, 8]. This interpretation goes in line with the well-known Bohrian Neo–Kantian
epistemological account of quantum mechanics. In this chapter, we put forward the idea
that one can also consider, within quantum mechanics and departing from the philosophy
of the danish physicist, a more radical paraconsistency found within one of the main for-
mal elements of the theory, namely, quantum superpositions. We will argue that, rather
than epistemological, the contradictions found within quantum superpositions could be
interpreted as ontological contradictions.

Keywords Paraconsistency � Epistemological � Ontological � Viewpoints � Superpositions
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1 Interpreting QuantumMechanics

Regarding its formal structure we could say that quantum mechanics (QM) seems to be
a “finished theory.” In terms of empirical adequacy, it provides outstanding results, its
mathematical structure – developed in the first three decades of the 20th century byWerner
Heisenberg, Pascual Jordan, Max Born, Erwin Schrödinger and Paul Dirac – seems able
to predict any experiment we can think of. However, apart from its fantastic accuracy,
even today, more than one century after its creation, its physical interpretation remains
an open problem. In the standard formulation, QM assigns a quantum mechanical state to
a system, but “the state” has a meaning only in terms of the outcomes of the measurements
performed and not in terms of “something” which one can coherently relate to physical
reality [29]. It is not at all clear, apart from measurement outcomes, what should be the
interpretation of a vector in Hilbert space, in particular, and of the formal structure, in
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general. If we are to ask too many questions regarding the physical meaning of the theory,
problems start to pop up, and simple answers seem doomed to incoherency.

From the very beginning of the voyage, the problem of the founding fathers was to find
a picture (an anschauliche content), a physical representation which would allow us to
explain what QM was talking about. This idea guided the early attempt of Luis de Broglie
with his matter-wave theory in 1924, and of Schrödinger with the introduction of his wave
equation in 1926. It is also well known that Albert Einstein was very uncomfortable with
the unclear reference of QM to physical reality. His concerns were matter of debate in
the 1927 Solvay conference in Brussels and also, later on, his criticisms were exposed in
the famous EPR paper written in 1935 [33]. However, very soon, it became clear that the
interpretation of QM faced deep problems when attempting to provide a coherent descrip-
tion of physical reality. Due to this impossibility, very soon more pragmatic stances were
developed. For example, Paul Dirac [32, p. 10] writes in his famous book, The Principles
of Quantum Mechanics: “[. . . ] the main object of physical science is not the provision of
physical pictures, but is the formulation of laws governing phenomena and the application
of these laws to the discovery of new phenomena. If a picture exists, so much the bet-
ter; but whether a picture exists or not is a matter of only secondary importance.” Taking
distance from the physical representation of the formalism, Niels Bohr, one of the key
figures in the creation and development of QM, developed a scheme in which he restricted
the reference of the theory to classical phenomena. His choice, in resonance with the
philosophical movements of the period, determined the problems and questioning of the
future generations of physicists and philosophers of physics working on the fundamental
questions about quantum theory.

2 Niels Bohr and the Linguistic Turn in Physics

Niels Bohr might have been the most influential figure who tried – and succeeded to great
extent – to expel metaphysical questions from the debate regarding QM. As remarked by
Arthur Fine:

These instrumentalist moves, away from a realist construal of the emerging quantum theory, were
given particular force by Bohr’s so-called philosophy of complementarity; and this nonrealist po-
sition was consolidated at the time of the famous Solvay conference, in October of 1927, and is
firmly in place today. Such quantum nonrealism is part of what every graduate physicist learns and
practices. It is the conceptual backdrop to all the brilliant success in atomic, nuclear, and particle
physics over the past fifty years. Physicists have learned to think about their theory in a highly
nonrealist way, and doing just that has brought about the most marvelous predictive success in the
history of science. [13, p. 1195]

At a distance from antimetaphysical construals, Einstein was a strong defender of the
physical representation. As recalled by Wolfgang Pauli:

Einstein’s opposition to [QM] is again reflected in his papers which he published, at first in collab-
oration with Rosen and Podolsky, and later alone, as a critique of the concept of reality in quantum
mechanics. We often discussed these questions together, and I invariably profited very greatly even
when I could not agree with Einstein’s view. “Physics is after all the description of reality” he said
to me, continuing, with a sarcastic glance in my direction “or should I perhaps say physics is the
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description of what one merely imagines?” This question clearly shows Einstein’s concern that the
objective character of physics might be lost through a theory of the type of quantum mechanics,
in that as a consequence of a wider conception of the objectivity of an explanation of nature the
difference between physical reality and dream or hallucination might become blurred. [47, p. 122]

It is important to remark that the debate which took place between Einstein and Bohr
regarding physical reality can only be understood as part of the neo-Kantian tradition and
discussion which was taking place in German-speaking countries at the end of the 19th and
beginning of the 20th century. This discussion is very well exposed by Michael Friedman
in his beautiful book, A Parting of the Ways [36]. From this perspective, both Einstein and
Bohr were discussing from within representation, considering specifically the conditions
of possibility to access phenomena. Despite the account provided by many, Einstein and
Bohr were not part of the – extensively addressed in the philosophy of science literature –
realist antirealist debate (see for discussion [40, 41]).

According to our reading of Bohr,1 the preeminence of language within his own philo-
sophical scheme can be only understood in relation to the bigger philosophical movement
which was taking place in Europe and has been called the “linguistic turn.”2 So even
though QM arose in relation to the criticism of Kant’s epistemology – escaping from the
domains of the a priori categories and forms of intuition –, it was soon re-covered by the
neo-Kantian scheme of thought. It was the Danish physicist who was capable of introduc-
ing physics into the philosophical movement of the linguistic turn, shifting quantum theory
from ontological concerns into epistemological ones. Niels Bohr was the first to initiate
the re-turn of physics back into the domain of philosophy after the revolution produced by
relativity theory and QM. Just like Immanuel Kant did with Newtonian mechanics, turn-
ing upside down the relation of power between physics and philosophy (see [45]), Bohr
was able to constrain the strength of physics within the limitations imposed by that which
would now play the role of the a priori: classical language.3

Niels Bohr’s ideas have played a central role in the development of physics in the
20th century, placing the discipline within the main philosophical line of discussion of the
period, namely, the problem of language and its relation to ontology and epistemology.
The linguistic turn is a technical term in the history of philosophy according to which all
problems in philosophy are problems of language. We do not claim that Bohr knew that
movement or was explicitly part of it. Rather, we point to the fact that, quite independently
of this movement, Bohr took for himself many of the discussions and problems involved
within such philosophical stance. A clear statement regarding this point is the famous
quotation by Aage Petersen. According to the long time assistant of Bohr, when asked
whether the quantum theory could be considered as somehow mirroring an underlying

1 We acknowledge there are almost as many interpretations of Bohr as physicists and philosophers of
science. Even though the orthodoxy has been to interpret Bohr from a neo-Kantian perspective, there are
also ontological interpretations of Bohr such as those proposed by Folse [34] and Dieks [30]. In particular,
Dieks interprets complementarity as an ontological notion which relates “experimental situations.”
2 We take the linguistic turn to be a moment with multiple lines of philosophical investigation which can be
comprised by the importance of language as a fundament. See the interesting analysis of Scavino in [53].
3 It is then not a surprise to notice that the philosophy of Niels Bohr has been directly engaged with
philosophers like Ludwig Wittgentstein (see [46]), Jaques Derrida (see [49]), and of course, Immanuel
Kant (see [42] for an extensive review of the relation between Bohr and Kant’s philosophy).
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quantum reality Bohr [59, p. 8] declared the following: “There is no quantumworld. There
is only an abstract quantum physical description. It is wrong to think that the task of
physics is to find out how nature is. Physics concerns what we can say about nature”
The problem was then how to secure communication. Instead of going directly back into
Kant’s a priori, Bohr made a detour into the realm of language, finding his cornerstone,
his “clear and distinct idea” in the the language used by classical physics:

Even when the phenomena transcend the scope of classical physical theories, the account of the
experimental arrangement and the recording of observations must be given in plain language, suit-
ably supplemented by technical physical terminology. This is a clear logical demand, since the
very word experiment refers to a situation where we can tell others what we have done and what
we have learned. [59, p. 7]

Making his point even more explicit, Bohr [59, p. 7] claimed that: “[. . . ] the unambiguous
interpretation of any measurement must be essentially framed in terms of classical physi-
cal theories, and we may say that in this sense the language of Newton and Maxwell will
remain the language of physicists for all time.” In this same sense, Bohr seemed to take
distance from ontological questioning. As also noted by Aage Petersen:

Traditional philosophy has accustomed us to regard language as something secondary and reality as
something primary. Bohr considered this attitude toward the relation between language and reality
inappropriate. When one said to him that it cannot be language which is fundamental, but that it
must be reality which, so to speak, lies beneath language, and of which language is a picture, he
would reply, “We are suspended in language in such a way that we cannot say what is up and what
is down. The word “reality” is also a word, a word which we must learn to use correctly” Bohr was
not puzzled by ontological problems or by questions as to how concepts are related to reality. Such
questions seemed sterile to him. He saw the problem of knowledge in a different light. [48, p. 11]

Bohr’s characterization of physics goes then together with his linguistically based prag-
matic account:

Physics is to be regarded not so much as the study of something a priori given, but rather as the
development of methods of ordering and surveying human experience. In this respect our task must
be to account for such experience in a manner independent of individual subjective judgement
and therefor objective in the sense that it can be unambiguously communicated in ordinary human
language. [9] (emphasis added)

However, this line of thought – which considers a physical theory in pragmatic and lin-
guistic terms – might be regarded as ending up in a path which seems difficult to maintain,
at least in the case we are still willing to state that there is something like “physical reality”
of which our theories talk about. In a spirit very similar to the ideas expressed by Dirac,
and after endless discussions regarding the meaning of the quantum, in the year 2000,
exactly one century after the beginning of the voyage, Christopher Fuchs and Asher Peres
finally took this line to its unavoidable conclusion in a paper entitled: Quantum Theory
Needs no “Interpretation”. There, they wrote:

[. . . ] quantum theory does not describe physical reality. What it does is provide an algorithm for
computing probabilities for the macroscopic events (“detector clicks”) that are the consequences
of experimental interventions. This strict definition of the scope of quantum theory is the only
interpretation ever needed, whether by experimenters or theorists. [37, p. 1]

Of course, this emphasis on prediction to the detriment of description can be severely
questioned. The main objection against this instrumentalistic point of view is that the
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success of a theory cannot be explained, that is to say, we do not know how and why
quantum physics is, in general, able to carry out predictions (and in particular with such
a fantastic accuracy). Or in other words, there is no physical representation of what is
going on according to the theory. Undoubtedly a “hard” instrumentalist may simply refuse
to look for such an explanation, since it is in fact the mere effectiveness of a theory which
justifies it, so that he may not be interested in advancing toward a justification of that
effectiveness. If one takes such a position, there is nothing left to say. Just like the Oracle
of Delphi provided always the right answer to the ancient Greeks, QM provides us with
the correct probability distribution for every experiment we can think of.

3 The Re-Turn of Classical Metaphysics

Since the World War II, the philosophical analysis of science, and that of quantum theory
in particular, has been an almost exclusive field owned by analytic philosophy. Although
the analytical tradition is an inheritor – via logical positivism and logical empiricism – of
a deep criticism to metaphysics, strangely enough, within analytic philosophy of physics
the attempt to return to a classical metaphysical scheme of thought seems to be a recursive
element, especially in the philosophy of QM during the second half of the 20th century.

Indeed, the position of Bohr, which can be very well regarded in close continuation
with analytic concerns against metaphysics, was replaced after the war by approaches
to QM, such as, for example, Bohmian mechanics and DeWitt’s many worlds interpreta-
tion, which recovered the classical metaphysical foundation of thought and understanding.
While Bohr attempted to analyze the logical structure of the theory and concentrated on
the analysis of phenomena, these new lines of research intended “to restore a classical way
of thinking aboutwhat there is” [4, p. 74]. It seems in this case a bit ironic that the aversion
professed by many philosophers of physics – which are part of the analytic tradition – to
Bohr’s ideas does not recognize the profound connection of his thought to analytic phi-
losophy itself. These same philosophers choose – knowingly or not – for metaphysical
schemes going against their own tradition. In the case of many worlds interpretation, the
metaphysical step goes as far as to propose non-observable worlds in order to explain
the formal aspects of QM. Also, from a metaphysical point of view, the many worlds at-
tempt seems to end up in an extreme violation of Ockham’s principle: “Entities are not
to be multiplied beyond necessity.”4 In the case of Bohmian mechanics, the metaphysical
presuppositions got as far as postulating that QM must talk about classical particles with
definite trajectories. Bitbol notices in this respect [6, p. 8] that: “Bohm’s original theory
of 1952 is likely to be the most metaphysical (in the strongest, speculative, sense) of all

4 Although Lev Vaidman [56] claims that: “in judging physical theories one could reasonably argue that
one should not multiply physical laws beyond necessity either (such a verion of Ockham’s Razor has
been applied in the past), and in this respect the many worlds interpretations is the most economical
theory. Indeed, it has all the laws of the standard quantum theory, but without the collapse postulate,
the most problematic of physical laws.” One could argue however, that due to the existence of modal
interpretations, which are also no collapse interpretations and share the same formal structure as many
worlds, there is no clear argument why one should be forced into this expensive metaphysical extension.



594 C. de Ronde

readings of QM. It posits free particle trajectories in space-time, that are unobservable in
virtue of the theory itself.” Furthermore, that which should play the role of space-time
in the mathematical formalism varies its dimension with the addition or substraction of
particles breaking the initial attempt to recover trajectories in space-time. It is not at all
clear that these kinds of attempts bring more solutions than problems.

The Danish physicist remained not only agnostic regarding the metaphysical concerns
raised especially by Einstein, but also those of Heisenberg and Pauli. He tried by all means
to restrict his analysis to the empirical data as exposed by classical physical theories and
language, and not go beyond the interpretation of the formalism in terms of a new con-
ceptual scheme. According to Bohr [59, p. 7] “it would be a misconception to believe
that the difficulties of the atomic theory may be evaded by eventually replacing the con-
cepts of classical physics by new conceptual forms.” Contrary to this approach, Bohmian
mechanics and many worlds interpretations, two of the most important interpretational
lines of research in the present philosophy of QM, compose their analysis with heavy
metaphysical commitments based to a great extent on the actualist picture put forward by
Newtonian physics (see for discussion [28]). Rather than starting from the analysis of the
formal structure of the theory, the metaphysical presuppositions constitute the very foun-
dation and center of gravity of such interpretations. Some of these interpretations even
attempt in some cases (e.g., Bohmian mechanics and GRW theory) to change the formal-
ism in order to recover – at least some of – our classical (metaphysical) conception of the
world.

4 Complementarity and Paraconsistency

Paraconsistent logics (PL) are the logics of inconsistent but nontrivial theories. The ori-
gins of PL go back to the first systematic studies dealing with the possibility of rejecting
the PNC. PL was elaborated, independently, by Stanislaw Jaskowski in Poland, and by
Newton da Costa in Brazil, around the middle of the last century (on PL, see, for exam-
ple, [17]). A theory T founded on the logic L, which contains a symbol for negation, is
called inconsistent if it has among its theorems a sentence A and its negation :A; other-
wise, it is said to be consistent. T is called trivial if any sentence of its language is also
a theorem of T ; otherwise, T is said to be nontrivial. In classical logics and in most usual
logics, a theory is inconsistent if and only if it is trivial. L is paraconsistent when it can
be the underlying logic of inconsistent but nontrivial theories. Clearly, no classical logic
is paraconsistent.

In the context of QM, da Costa and Krause have put forward [16] a PL in order to
provide a suitable formal scheme to consider the notion of complementarity introduced
by Bohr in 1927 during his famous “Como Lecture.”5 The notion of complementarity

5 The logical understanding of complementarity has an interesting history which goes back to Carl
Friedrich von Weizsäcker who wrote an article named: “Komplementarität und Natuurwissenschaft” [58]
for Bohr’s 70th birthday. In this article he explained the concept of complementarity in terms of parallel
complementarity and circular complementarity. The difficulties to understand complementarity is exposed
by a rectification added at the end of the same paper in which von Weizsäcker explains that he received
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was developed in order to consider the contradictory classical representations found in
the double-slit experiment; i.e., the representation provided by the notions of “wave” and
“particle.” According to Bohr [16, p. 103]: “We must, in general, be prepared to accept
the fact that a complete elucidation of one and the same object may require diverse points
of view which defy a unique description.” The starting point of analysis was for Bohr
the classical description of experimental arrangements univocally represented by classical
language (with the aid of physics). Bohr considered the wave-particle duality present in
the double-slit experiment as expressing the most important character of quantum theory.
The resolution of this duality was provided via his own notion of complementarity. Bohr’s
agenda was focused in fulfilling the consistency requirements of the quantum formalism
to apply the well known classical scheme. In this respect, Heisenberg’s principle was only
considered as providing the limits of certainty and applicability of classical concepts as
such. The classical scheme would then remain that which secured the knowledge provided
by QM and analogously, Heisenberg’s uncertainty relations that secured the knowledge
provided by the more general principle of complementarity.6 As Leon Rosenfeld makes
the point:

Bohr wanted to pursue the epistemological analysis one step further [than Heisenberg], and in
particular to understand the logical nature of the mutual exclusion of the aspects opposed in the
particle-wave dualism. From this point of view the indeterminacy relations appear in a new light.
[. . . ] The indeterminacy relations are therefore essential to ensure the consistency of the theory,
by assigning the limits within which the use of classical concepts belonging to the two extreme
pictures may be applied without contradiction. For this novel logical relationship, which called
in Bohr’s mind echoes of his philosophical meditations over the duality of our mental activity,
he proposed the name “complementarity,” conscious that he was here breaking new ground in
epistemology. [59, p. 59]

In [16], the proposal was to go further into the notion of complementary theories.7

[. . . ] we shall say that a theory T admits complementarity interpretation, or that T is a C -theory, if
T encompasses “true” formulas ˛ and ˇ (which may stand for Jammer’sD1 andD2 respectively)
which are “mutually exclusive” in the above sense, for instance, that their conjunction yields to
a strict contradiction if classical logic is applied. In other words, if ` is the symbol of deduction

a letter from Bohr expressing that complementarity can be only defined with respect to phenomena, and as
the Schrödinger wave equation is just an abstract magnitude of calculus and it does not designate in itself
any phenomena, such circular complementarity is by no means possible and only parallel complementarity
should be taken into account.
6 It is important to notice that Heisenberg’s relations can be directly derived from the mathematical scheme
of the theory, as a direct consequence of the quantum postulate. Today, we have more elements to make
precise the relation between both principles, see for example, the analysis of Pekka Lahti in his thesis [44].
As remarked by J. Hilgevoord and J. Uffink [39]: “On the one hand, Bohr was quite enthusiastic about
Heisenberg’s ideas which seemed to fit wonderfully with his own thinking. Indeed, in his subsequent
work, Bohr always presented the uncertainty relations as the symbolic expression of his complementarity
viewpoint. On the other hand, he criticized Heisenberg severely for his suggestion that these relations
were due to discontinuous changes occurring during a measurement process. Rather, Bohr argued, their
proper derivation should start from the indispensability of both particle and wave concepts. He pointed
out that the uncertainties in the experiment did not exclusively arise from the discontinuities but also from
the fact that in the experiment we need to take into account both the particle theory and the wave theory.”
7 This idea of considering complementary theories goes in line with the complementary descriptions ap-
proach proposed in [18].
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of classical logic, then, ˛ and ˇ being complementary, we have ˛, ˇ ` � ^ :� for some � of the
language of T . [16, p. 111]

The proposal of da Costa and Krause was also considered by Jean-Yves Béziau [8]
stressing in his case the notion of viewpoint and taking into account the square of opposi-
tion. According to Béziau:

In modern physics we have a subcontrary opposition between wave and particle in the sense that
the proposition “K is a particle” and “K is a wave” can both be true but cannot both be false. [. . . ]
[O]ne may say that with particle and wave there is an opposition because something cannot be at
the same time a particle and a wave, due to the very nature of wave and particle, in the same sense
that something cannot be a square and a circle. But why then can we say that “K is a particle” and
“K is a wave” can both be true but not that “K is a circle” and “K is a square” can both be true?
In fact it is also possible to say that these two geometrical propositions are both true, but from
a different perspective, which is not the usual flat one. [8]

Béziau then continues to analyze the situation taking into account more explicitly the
position of Bohr and his complementarity approach.

[Bohr] argues that there are no direct contradiction: from a certain point of view “K is a particle,”
from another point of view “K is a wave,” but these two contradictory properties appear in different
circumstances, different experiments. Someone may ask: what is the absolute reality of K, is K
a particle or is K a wave? One maybe has to give away the notion of objective reality. [8]

At this point, it becomes clear that the paraconsistency implied by Béziau relates to the
perspective assumed by the observer. The contradiction appears through the choice of
the subject between the different experimental set-ups. Following this idea, he develops
a logical theory where the central concept is the concept of viewpoint. The price to pay,
as clearly acknowledged by Béziau, is to abandon the notion of objective physical reality.
In the following section, we will argue that paraconsistency can also help us to develop
a new idea of physical reality that would allow us to consider QM as a physical theory
providing an objective representation of a world outside there.

5 Quantum Superpositions and Paraconsistency

In classical physics, every physical system may be described exclusively by means of its
actual properties, taking “actuality” as expressing the preexistent mode of being of the
properties themselves, independently of observation – the “pre” referring to its existence
previous to measurement. Each system has a determined state characterized mathemati-
cally in terms of a point in phase space. The change of the system may be described by
the change of its actual properties. Potential or possible properties are considered as the
points to which the system might arrive in a future instant of time. As Dieks [31, p. 124]
makes the point: “In classical physics the most fundamental description of a physical sys-
tem (a point in phase space) reflects only the actual, and nothing that is merely possible.
It is true that sometimes states involving probabilities occur in classical physics: think of
the probability distributions � in statistical mechanics. But the occurrence of possibilities
in such cases merely reflects our ignorance about what is actual.” It is then important to
recognize that the main character which makes possible this physical description in terms
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of actual properties, and more in general, in terms of an actual state of affairs is the fact
that the mathematical structure allows a global valuation of all properties [29].

In QM, the representation of the state of a system is given by a ray in Hilbert space
H and physical magnitudes are represented by operators on H that, in general, do not
commute. As a consequence, the Kochen–Specker theorem precludes the possibility of
a global valuation of all properties independently of the context [43]. It then becomes
difficult to affirm that all quantum magnitudes are simultaneously preexistent. In order to
restrict the discourse to different sets of commuting magnitudes, different complete sets of
commuting operators (CSCO) have to be chosen. The choice of a particular representation
(given by a CSCO) determines the basis in which the observables diagonalize and in which
the ray can be expressed. Thus, the ray can be written as different linear combinations of
states:

˛i j'B1i i C j̨ j'B1j i D j'B2q i D ˇmj'B3m i C ˇnj'B3n i C ˇoj'B3o i (5.1)

Each linear combination of states is also called a quantum superposition. The Born inter-
pretation tells us that the numbers that accompany each state in square modulus compute
the probability of finding that particular state. It is also well known that such probabil-
ity cannot be interpreted in terms of ignorance [51, 52]. As remarked by Schrödinger in
a letter to Einstein:

It seems to me that the concept of probability [in QM] is terribly mishandled these days. Probability
surely has as its substance a statement as to whether something is or is not the case – of an uncertain
statement, to be sure. But nevertheless it has meaning only if one is indeed convinced that the
something in question quite definitely is or is not the case. A probabilistic assertion presupposes
the full reality of its subject. [12, p. 115]

If we consider a typical Stern–Gerlach experiment, given a spin 1
2
-system whose state

is 1p
2
.j "xi C j #xi/, orthodox QM tells us that we shall obtain either a “click” in the

upper part of the screen with probability 0.5 (which relates to the state j"xi), or, a “click”
in the bottom part of the screen also with probability 0.5 (which relates to the state j #x
i). However, it is not clear at all what is the state before the measurement since, on the
one hand, one cannot claim due to the formalism of the theory that the measurement
discovers a preexistent actual reality, and on the other hand, actuality itself precludes the
existence of the seemingly exclusive possibilities. According to our interpretation, there
are good reasons to claim that, in the just mentioned example, both states (“j "xi” and
“j#xi”) should be regarded as existent – rather than exclusive possibilities. As a matter of
fact, quantum superpositions “evolve” according to the Schrödinger equation of motion,
“interact” with other superposition states – creating the famous entanglement of multiple
states – and can “be predicted” according to the rules of QM. But if, within a physical
theory there is a mathematical expression which allows us to calculate the evolution of
its terms, its interaction with other mathematical expressions of the type and predict its
possible results, after or before the interaction, then it becomes reasonable to claim that
there is something “physically real” about such a mathematical expression.

The problem at this point is that while these two states, j "xi and j #xi, seem to exist
before measurement as somehow contradictory states, the realm of actuality denies – by
definition – the existence of contradictions. This weird fact about quantum superpositions
was cleverly explained by Schrödinger through his famous cat experiment which produced
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a zombie cat half-dead and half-alive. At this point, one might consider two different in-
terpretative strategies to solve the paradox. The first, to find the way to interpret quantum
superpositions escaping contradictions, forcing the actual realm of existence in order to
interpret the formalism – e.g., as many worlds or the modal interpretation of Dieks at-
tempts to do. The second, more radical path, is to develop a realm of existence which is
not that of actuality. It is this latter possibility which we find more interesting.

In [14], Newton da Costa together with the author of this chapter argued in favor of the
possibility of considering quantum superpositions in terms of a paraconsistent approach.
We discussed the idea that, even though most interpretations of QM attempt to escape
contradictions, there are many reasons that indicate it could be worth while to assume that
the terms in a quantum superposition can be, in principle, contradictory – as in the just
mentioned example. It should be also stressed that the paraconsistent approach to quantum
superpositions (PAQS) does not present an interpretation of QM but just a way to account
for quantum superpositions in terms of paraconsistent logics. This formal approach might
lead to different interpretations. However, one may also recognize that intuitively, the
approach might favor an interpretation in which superpositions are considered as contra-
dictory physical existents.

In [1], Arenhart and Krause raised several arguments against the PAQS, one of the main
concerns having to do with the consideration of quantum superpositions as contradictory
existents. In [25], the author of this paper argued, firstly, that the obstacles presented by
Arenhart and Krause are based on a specific metaphysical stance, which we characterized
in terms of what we called the orthodox line of research (OLR). Secondly, that this is
not necessarily the only possible line, and that a different one, namely, a constructive
metaphysical line of research (CMLR) provides a different perspective in which the PAQS
can be regarded as a valuable prospect that could be used by different interpretations of
QM.

It is interesting to point out that the OLR implicitly embraced by Krause and Arenhart
reflects the Bohrian perspective toward the problem of interpretation in QM. Indeed, the
OLR has always debated within the limits imposed by the Danish physicist – this has been
Bohr’s true success. As we have discussed in detail in [25], this path can be condensed
in two main metaphysical presuppositions which block the conceptual development of
quantum superpositions. The first presupposition relates to what Bohr called the corre-
spondence principle, an idea which has been later on reconsidered in the literature in
terms of what is known to be the quantum to classical limit [10].

1. Quantum to Classical Limit: The principle that one can find a bridge between clas-
sical mechanics and QM, i.e., that the main notions of classical physics can be used in
order to explain quantum theory.

The second metaphysical principle can also be traced back to Bohr’s claim that physi-
cal experience needs to be expressed exclusively in terms of classical language [11]. As
a matter of fact, if one considers the core of the classical physical and metaphysical repre-
sentation of the world, one is then stuck with two main concepts: “entity” and “actuality”
(as a mode of existence). In QM, one can also encounter these metaphysical notions as
basic elements of any interpretation.
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2. Quantum Systems and Actuality: The principle that one needs to presuppose the
metaphysics of entities together with the mode of being of actuality in any interpreta-
tion of QM.

The idea proposed in [14] to introduce paraconsistency in order to account for quantum
superpositions might be regarded as opening the possibility of supplementing such formal
scheme with new nonclassical physical notions. It should also be clear, however, that this
is not necessarily the only option, since the PAQS might be regarded as only a formal
proposal. But in case we would be willing to step into the realm of metaphysics and
advance with an interpretation that accepts contradictory existents, then we must also
come up with a realm of existence different from actuality, breaking the equation that has
ruled physics since Newton: ActualityD Reality. One such proposal has been put forward
in [23].

As we have argued extensively in [25], if we now go into the problem of interpretation,
the idea presented by the PAQS can be supported by the CMLR which imposes a different
perspective towards QM, its problems, and the questions that need to be answered. Taking
into account the need to provide a coherent physical interpretation of QM, our CMLR is
based on three main presuppositions:8

1. Closed Representational Stance: Each physical theory is closed under its own formal
and conceptual structure providing access to a specific set of phenomena. The theory
provides the constraints to consider, explain and understand such physical phenomena.

2. Formalism and Empirical Adequacy: The formalism of QM is able to provide (out-
standing) empirically adequate results. Empirical adequacy determines the success of
a theory and not its (metaphysical) commitment to a certain presupposed conception
of the world. The problem is not to find a new mathematical scheme, on the contrary,
the “road signs” point in the direction that we must stay close to the orthodox quantum
formalism.

3. Constructive Stance: To learn about what the formalism of QM is telling us about
reality, we might be in need of creating new physical concepts.

What is needed according to the CMLR is a radical inversion of orthodoxy and its prob-
lems. According to this inversion, for example, the question of contextuality is not a prob-
lem which we need to escape but rather a central feature that any interpretation of QM
should respect. Also, the nonseparable character of QM, its specificity with respect to
identity and individuality, its indeterminate and indeterministic aspects, etc., should be all
considered – rather than obstacles – as the main roadsigns that should guide is in the devel-
opment of a coherent interpretation of the theory. Going back to the meaning of quantum
superpositions, instead of considering the measurement problem, we should focus instead
on the analysis of what we have called the superposition problem (see for discussion [25]).
The constructive stance assumes the radical possibility of considering a different mode of
existence. Elsewhere [20, 21, 23], we have put forward a notion of ontological poten-
tiality which allows us to discuss an independent realm of existence which – contrary to
the orthodox approach to potentiality – cannot be reduced to actuality. Indeed, the PAQS,

8 This proposal was put forward and discussed in [20, pp. 56–57]. See also [24].
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properly supplemented by the CMLR, allows us to interpret quantum superpositions in
terms of potential contradictory existents.

6 Epistemological and Ontological Contradictions

From the above discussions, it is interesting to notice that the use of paraconsistency in
QM can be considered from two very distinct perspectives, according to the philosophical
stance that one assumes in order to approach interpretational issues. On the one hand,
we have the paraconsistency implied by the epistemological approach to QM which deals
with the “contradiction” between multiple classical representations. As remarked by da
Costa and Krause:

It should be emphasized that our way of characterizing complementarity does not mean that com-
plementary propositions are always contradictory, for ˛ and ˇ above are not necessarily one the
negation of the other. However, as complementary propositions, we may derive from them (in clas-
sical logic) a contradiction; to exemplify, we remark that “x is a particle” is not the direct negation
of “x is a wave,” but “x is a particle” entails that x is not a wave. This reading of complementarity
as not indicating strict contradiction, as we have already made clear, is in accordance with Bohr
himself [. . . ] [16]

This could be understood as an epistemological contradiction since it deals with different
perspectives or, in terms of Beziau, “complementary viewpoints.” However, the paracon-
sistency discussed within the PAQS implies a more radical stance regarding the meaning
of contradictions. Indeed, as we have mentioned above, quantum superpositions – accord-
ing to the PAQS – seem to open the door to consider “contradictory existents.” Thus, one
might argue that the PAQS attempts to put forward the introduction of ontological con-
tradictions. As remarked by Aristotle: “It is impossible for the same thing to belong and
not to belong at the same time to the same thing and in the same respect.” [Metaph. IV
3 1005b1920]. It seems that this is not the case of epistemological contradictions which
deal with different, rather than contradictory, representations. It makes no sense to say that
“a wave is contradictory to a particle.” On the other hand, ontological contradictions do
talk about the same property in the same respect and at the same time. If we consider our
earlier Stern–Gerlach experiment the state of affairs is described by the following quan-
tum superposition: 1p

2
.j "xi C j #xi/, which includes the propositions: “spin up in the

x-direction” and “spin down in the x-direction.” Both propositions make reference to the
same property of spin in a contradictory manner, and at the same time.

The introduction of the realm of potentiality reconfigures in itself the meaning of con-
tradiction which has always been considered in terms of the actual realm. Indeed, once we
accept the idea that we can have existents in the potential realm, we can go further and un-
derstand contradictions as related to the path between the potential and the actual realms.
If we now take into account the square of opposition we must consider the following set
of definitions:

Contradiction Propositions: ˛ and ˇ are contradictory when both cannot be true and
both cannot be false.
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Contrariety Propositions: ˛ and ˇ are contrary when both cannot be true, but both can
be false.

Subcontrariety Propositions: ˛ and ˇ are subcontraries when both can be true, but both
cannot be false.

Subaltern Propositions: ˛ is subaltern to proposition ˇ if the truth of ˇ implies the truth
of ˛.

The idea that potentiality determines a contradictory realm goes back to Aristotle
himself who claimed that contradictions find themselves in potentiality. Of course, as re-
marked by Arenhart and Krause, the square of opposition discusses about actual truth and
falsehood. Thus, potentiality is not considered in terms of a mode of existence but rather as
mere logical possibility. The introduction of an ontological realm of potentiality changes
things drastically. The interesting question is if our representation of quantum superposi-
tions in terms of potential contradictory propositions is compatible with the square. We
believe that it is easy to see that such is the case provided special attention is given to the
realms involved in the discussion.

Truth and falsehood have always been considered in relation to actuality, since in the
orthodox view this is the exclusive realm which imposes the limits of what can be under-
stood as real. Contrary to the actualist scheme, our notion of ontological potentiality is
completely independent of actuality. Thus, it makes perfect sense to extend “truth” and
“falsity” to this mode of being. We have investigated this possibility in [26]. Our redefini-
tion of truth and falsehood with respect to potentiality escapes any subjective choice and
regains an objective description of physical reality. The price to pay is to abandon the idea
that everything needs to be defined in terms of the actual realm.

Consider we have a Stern-Gerlach apparatus placed in the x-direction. If we have the
following quantum superposition: ˛ j "xi C ˇ j #xi, this means we have “spin up in
the x-direction, j "xih"x j, with probability j˛j2” and “spin down in the x direction,
j#xih#x j, with probability jˇj2” which can be actualized. Is it contradiction or contrariety
the best notion suited to account for such existent possibilities9 in this quantum experi-
ment? Given this quantum superposition, it is clear that both actualizations (elementary
processes) “j "xih"x j” and “j #xih#x j” cannot be simultaneously “true” in actuality,
since only one of them will become actual; it is also the case that both actualizations (el-
ementary processes) “j "xih"x j” and “j #xih#x j” cannot be simultaneously “false” in
actuality, since when we measure the quantum superposition we know we will obtain ei-
ther the elementary process “spin up in the x-direction,” “j "xih"x j,” or the elementary
process “spin down in the x-direction,” “j #xih#x j.” As we know, given a measurement
on the quantum superposition, ˛ j "xiC ˇ j #xi, one of the two terms will become actual
(true), while the other term will not be actual (false), which implies that both cannot be
false. This experimental fact goes clearly against the proposal of Arenhart and Krause of
considering contrary propositions instead of contradictory ones.

9 We have developed an interpretation in which such existent possibilities are discussed in terms of the
notion of power. See [21, 23, 26].
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7 Final Remarks

In this chapter, we have discussed different approaches regarding the meaning and use of
paraconsistency in QM.We have shown how this subject, from very different perspectives,
both epistemological and ontological, can provide an interesting discussion and develop-
ment of the theory. We hope to continue this analysis in future papers.

Acknowledgment The author would like to thank Newton da Costa, Jean-Yves Béziau, Graciela
Domenech, Hector Freytes, Décio Krause and Jonas Arenhart for many discussions regarding the subject
of paraconsistency in quantum mechanics.

References

1. Arenhart, J.R., Krause, D.: Oppositions in Quantum Mechanics. In: Bèziau, J.-Y., Gan-
Krzywoszynska, K. (eds.) New dimensions of the square opposition, pp. 337–356. Philosophia Verlag,
Munich (2014)

2. Arenhart, J.R., Krause, D.: Contradiction, Quantum Mechanics, and the Square of Opposition.
Logique et Analyse, accepted.

3. Arenhart, J.R., Krause, D.: Potentiality and Contradiction in Quantum Mechanics. In: Koslow, A.,
Buchsbaum, A. (eds.) The Road to Universal Logic (volume II), Springer (2015, in press)

4. Bacciagaluppi, G.: Topics in the modal interpretation of quantum mechanics. Doctoral Dissertation,
University of Cambridge, Cambridge (1996)

5. Bernien, H., Hensen, B., Pfaff, W., Koolstra, G., Blok, M.S., Robledo, L., Taminiau, T.H., Markham,
M., Twitchen, D.J., Childress, L., Hanson, R.: Heralded entanglement between solid-state qubits sep-
arated by three metres. Nature 497, 86–90 (2013)

6. Bitbol, M.: Reflective Metaphysics: Understanding quantum mechancis from a Kantian standpoint.
Philosophica 83, 53–83 (2010)

7. Béziau, J.-Y.: The Power of the Hexagon. Log. Univers. 6, 1–43 (2012)
8. Béziau, J.-Y.: Paraconsistent logic and contradictory viewpoints. Rev. Bras. Filos. 241 (2014, to ap-

pear)
9. Bohr, N.: The unity of human knowledge. In: Philosophical Writings of Neils Bohr, vol. 3. Ox Bow

Press, Woodbridge (1960)
10. Bokulich, A.: Bohr’s Correspondence Principle. In: Zalta, E.N. (ed.) The Stanford Encyclopedia

of Philosophy (Spring 2014 Edition). (2014). http://plato.stanford.edu/archives/spr2014/entries/bohr-
correspondence/

11. Bokulich, P., Bokulich, A.: Niels Bohr’s generalization of classical mechanics. Found. Phys. 35, 347–
371 (2005)

12. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)
13. Curd, M., Cover, J.A.: Philosophy of science. In: Norton and Company (eds.) The Central Issues.

Cambridge University Press, Cambridge (1998)
14. da Costa, N., de Ronde, C.: The Paraconsistent logic of quantum superpositions. Found. Phys. 43,

845–858 (2013)
15. da Costa, N., de Ronde, C.: The Paraconsistent Approach to Quantum Superpositinos Reloaded: For-

malizing Contradictory Powers in the Potential Realm, preprint (2014)
16. da Costa, N.C.A., Krause, D.: The logic of complementarity. In: van Benthem, J., Heinzmann, G.,

Rebuschi, M., Vesser, H. (eds.) The Age of Alternative Logics: Assessing Philosophy of Logic and
Mathematics Today, pp. 103–120. Springer, Berlin (2006)

17. da Costa, N.C.A., Krause, D., Bueno, O.: Paraconsistent logics and paraconsistency. In: Jacquette, D.
(ed.) Handbook ofthe Philosophy of Science (Philosophy of Logic), pp. 791–911. Elsevier (2007)

http://plato.stanford.edu/archives/spr2014/entries/bohr-correspondence/
http://plato.stanford.edu/archives/spr2014/entries/bohr-correspondence/


Epistemological and Ontological Paraconsistency in Quantum Mechanics 603

18. de Ronde, C.: Complementary Descriptions (Part 1). Los Alamos Archive. arXiv: quant-
ph/0507105v1 (2005)

19. de Ronde, C.: For and against metaphysics in the modal interpretation of quantum mechanics. Philo-
sophica 83, 85–117 (2010)

20. de Ronde, C.: The Contextual and Modal Character of Quantum Mechanics: A Formal and Philosoph-
ical Analysis in the Foundations of Physics. PhD dissertation, Utrecht University (2011)

21. de Ronde, C.: La noción de potencialidad en la interpretación modal de la mecánica cuántica. Sci.
Stud. 1, 137–164 (2012)

22. de Ronde, C.: Quantum Superpositions and Causality: On the Multiple Paths to the Measurement
Result. Philosophy of Science Archive. http://philsci-archive.pitt.edu/10049/ (2013)

23. de Ronde, C.: Representing Quantum Superpositions: Powers, Potentia and Potential Effectuations.
Philosophy of Science Archive. http://philsci-archive.pitt.edu/10155/ (2013)

24. de Ronde, C.: The problem of representation and experience in quantum mechanics. In: Aerts, D.,
Aerts, S., de Ronde C. (eds.) Probing the Meaning of Quantum Mechanics: Physical, Philosophical
and Logical Perspectives, pp. 91–111. World Scientific, Singapore (2014)

25. de Ronde, C.: A Defense of the Paraconsistent Approach to Quantum Superpositions (Answer to
Arenhart and Krause). Philosophy of Science Archive. http://philsci-archive.pitt.edu/10613/ (2014)

26. de Ronde, C.: Modality, Potentiality and Contradiction in Quantum Mechanics, WCP5. Springer,
Berlin (2014)

27. de Ronde, C., Freytes, H., Domenech, G.: Interpreting the modal Kochen-Specker theorem: Possibility
and many worlds in quantum mechanics. Stud. Hist. Philos. Mod. Phys. 45, 11–18 (2014)

28. de Ronde, C., Freytes, H., Domenech, G.: Quantum mechanics and the interpretation of the ortho-
modular square of opposition. In: Béziau, J.-Y., Gan-Krzywoszynska, K. (eds.) New Dimensions of
the Square of Opposition, pp. 223–242. Philosophia Verlag, Munich (2014)

29. de Ronde, C., Massri, C.: Revisiting the Orthodox Interpretation of ‘Physical States’ in Quantum
Mechanics, preprint (2014)

30. Dieks, D.: Quantum Mechanics and Realism Conceptus XXII 57, 31–47 (1988)
31. Dieks, D.: Quantum mechanics, chance and modality. Philosophica 83, 117–137 (2010)
32. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, London

(1974)
33. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description be considered complete?

Phys. Rev. 47, 777–780 (1935)
34. Folse, H.J.: Niels Bohr’s concept of reality. In: Lathi, P., Mittelslaedt, P. (eds.) Symposium on the

foundations of Modern Physics 1987, pp. 161–179. World Scientific, Singapore (1987)
35. Freytes, H., de Ronde, C., Domenech, G.: The square of opposition in orthodmodular logic. In: Béziau,

J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition: Studies in Universal Logic,
pp. 193–201. Springer, Basel (2012)

36. Friedman, M.: A Parting of the Ways: Carnap, Cassirer, and Heidegger. Open Court, Chicago (2000)
37. Fuchs, C., Peres, A.: Quantum theory needs no ‘interpretation’. Phys. Today 53, 70 (2000)
38. Heisenberg, W.: Physics and Philosophy. World Perspectives. George Allen and Unwin, London

(1958)
39. Hilgevoord, J., Uffink, J.: The uncertainty principle. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of

Philosophy (Winter 2001 Edition). http://plato.stanford.edu/archives/win2001/entries/qt-uncertainty/
(2001)

40. Howard, D.: Was Einstein Really a Realist? Perspect. Sci. 1, 204–251 (1993)
41. Howard, D.: Einstein, Kant, and the origins of logical empiricism. In: Salmon, W., Wolters, G. (eds.)

Logic, Language, and the Structure of Scientific Theories: Proceedings of the Carnap-Reichenbach
Centennial, University of Konstanz, 21–24 May 1991, pp. 45–105. University of Pittsburgh Press,
Pittsburgh (1994)

42. Kauark-Leite, P.: The transcendental approach and the problem of language and reality in quantum
mechanics. PhD thesis, Centre de Recherche en Epistémologie Appliquée – École Polytechnique
(2004)

http://philsci-archive.pitt.edu/10049/
http://philsci-archive.pitt.edu/10155/
http://philsci-archive.pitt.edu/10613/
http://plato.stanford.edu/archives/win2001/entries/qt-uncertainty/


604 C. de Ronde

43. Kochen, S., Specker, E.: On the problem of hidden variables in quantum mechanics. J. Math. Mech.
17, 59–87 (1967). Reprinted in Hooker 293–328 (1975)

44. Lahti, P.: Uncertainty and complementarity in axiomatic quantum mechanics. Int. J. Theor. Phys. 19,
789–842 (1980)

45. Meillassoux, Q.: Après la finitude. Essai sur la nécessité de la contingence. Éditions du Seuil (2006)
46. Niniluoto, I.: Varities of Realism. In: Lathi, P., Mittelslaedt, P. (eds.) Symposium on the Foundations

of Modern Physics 1987, pp. 459–483. World Scientific, Singapore (1987)
47. Pauli, W.: Writings on physics and philosophy. In: Enz, C., von Meyenn, K. (eds.). Springer, Berlin

(1994)
48. Petersen, A.: The philosophy of Niels Bohr. Bull. At. Sci. Sep 1963, 8–14 (1963)
49. Plotnyski, A.: Complementarity: Anti-Epistemology After Bohr and Derrida. Duke University Press,

Durham (1994)
50. Priest, G.: In Contradiction. Nijhoff, Dordrecht (1987)
51. Rédei, M.: Von Neumann’s concept of quantum logic and quantum probability. In: Rédei, M.,

Stötzner, M. (eds.) John von Neumann and the Foundations of Quantum Physics, pp. 153–172. Kluwer
Academic, Dordrecht (2001)

52. Rédei, M., Summers, S.J.: Quantum probability theory. Stud. Hist. Philos. Mod. Phys. 38, 390–417
(2007)

53. Scavino, D.: La filosofía actual. Paidos, Buenos Aires (2001)
54. Schrödinger, E.: The present situation in quantum mechanics. Naturwissenschaften 23, 807 (1935).

Translated to english in: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement.
Princeton University Press, Princeton (1983)

55. Smets, S.: The modes of physical properties in the logical foundations of physics. Log. Log. Philos.
14, 37–53 (2005)

56. Vaidman, L.: Many-worlds interpretation of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy (Fall 2008 Edition). (2008). http://plato.stanford.edu/archives/fall2008/
entries/qm-manyworlds/

57. Van Fraassen, B.C.: Quantum Mechanics: An Empiricist View. Clarendon, Oxford (1991)
58. von Weizsäcker, C.F.: Komplementarität und Naturwissenschaft. Naturwissenschaften 42, 19–20

(1955). Translated as Complementariedad y Lógica in: La Imagen Física del Mundo. Biblioteca de
Autores Cristianos, Madrid (1974)

59. Wheeler, J.A., Zurek, W.H. (eds.): Theory and Measurement. Princeton University Press, Princeton
(1983)

C. de Ronde (�)
Philosophy Institute “Dr. A. Korn”, University of Buenos Aires, CONICET, Buenos Aires, Ar-
gentina
Center Leo Apostel and Foundations of the Exact Sciences, Brussels Free University, Brussels, Bel-
gium
e-mail: cderonde@gmail.com

http://plato.stanford.edu/archives/fall2008/entries/qm-manyworlds/
http://plato.stanford.edu/archives/fall2008/entries/qm-manyworlds/
cderonde@gmail.com

	Preface
	Contents
	Contributors
	Personal Recollections About JYB by Newton da Costa and Others
	1 Licence to Think – My Friend Jean-Yves Béziau
	2 A Letter to Professor Jean-Yves Béziau
	3 Dr Yes-and-No 
	4 From St. Petersburg with Snow
	5 ``Torpedo'' Béziau
	6 The Man with the Golden Thought
	7 Jean-Yves Béziau's Imprint on Universal Logic
	8 The World Is not Enough
	9 On Logic's Secret Service
	10 Jean-Yves: Logician and Globetrotter
	11 On JYB
	12 The Real Universal Thinker
	13 A Logician Who Loves Me 

	Logical Autobiography 50
	1 Why an Autobiography?
	2 Youth and Adolescence (1965–1983)
	3 Student in Paris (1984–1991)
	4 Research Around the World (1991–2002)
	5 Launching Projects from Switzerland (2002–2008)
	6 Back to the Land of the Future (2008–2014)
	7 Projects
	8 Workshops and Events Organized
	9 Writings and Publications
	References

	A Quantitative-Informational Approach to Logical Consequence
	1 Introduction
	2 Elements of an Axiomatic Theory of Probability
	3 A Probabilistic Semantics for Languages of CPL
	4 Informational Logical Consequence
	5 Final Considerations
	References

	Finite-Variable Logics Do not Have Weak Beth Definability Property
	1 Introduction
	2 The Main Theorem
	References

	Peirce’s Role in the History of Logic: Lingua Universalis andCalculus Ratiocinator
	1 General Account
	2 Peirce's Semiotics and Pasigraphy
	References

	The Meaning(s) of “Is”: Normative vs. Naturalistic Views of Language
	1 Introduction
	2 The Five Meanings of ``Is'' According to Frege
	3 Hintikka's Twofold (Theoretical and Historiographical) Revolt Against Frege
	4 Language as Culture Versus Language as Nature
	References

	The Relation Between Logic, Set Theory and Topos Theory as It Is Usedby Alain Badiou
	1 The Place of Mathematical Theories (Set, Category, Topos) in Alain Badiou's Philosophy
	2 Topoi Axiomatics
	3 Intuitionism and Paraconsistency: a Duality of the Type Open–Closed Subsets
	4 Conclusion
	References

	Potentiality and Contradiction in Quantum Mechanics
	1 Introduction
	2 Contradictions and Contrariety in Superpositions
	3 Potentiality and Contradiction
	4 Potentiality and Oppositions
	5 Conclusion: Contrariety Again
	References

	Two, Many, and Differently Many
	1 Aim of This Chapter
	2 Preliminaries
	3 The Usual Many-Valued Approach
	4 The Case of the Logic CLuN
	5 A Different Many-Valued Approach
	6 An Application: The Flip–Flop Danger
	7 Some Reflections
	References

	Logics and Their Galaxies
	1 Towards a Universal Metaphysics
	2 Logics, Antilogics, and Counterlogics
	3 Antilogic, Counterlogic, and the Square of Oppositions
	4 Galaxies
	5 Prospects for a Metaphysics of Galaxies
	References

	Can Identity Be Relativized?
	1 Introduction
	2 Relativizing Identity?
	3 Resisting the Challenges
	4 Conclusion
	References

	From (Paraconsistent) Topos Logic to Universal (Topos) Logic
	1 Introduction
	2 Basics of Standard Topos Logic
	3 Complement-Toposes and the Non-Structural Components of Topos Logic
	4 The Substance Behind the Categorial Orthodoxy
	5 Bare Topos Logic
	6 Conclusions
	References

	A Note on the Internal Logic of Constructive Mathematics:The Gel’fond–Schneider Theorem in Transcendental Number Theory
	1 Introduction. The Logical Problem
	2 The Internal Logic
	3 Descent or Descending Induction
	4 Transfinite Induction
	5 Conclusion: A Finitist Logic for Constructive Mathematics
	References

	Is Logic Universal or Hierarchical?
	1 On Logical Knowledge
	2 Specification
	3 Logics as Momental Theories
	4 The Central Importance of Hierarchies
	5 No Universal Logic(s)
	6 Logics and/in Mathematics
	7 On Paraconsistent Logics: Gaps or Gluts?
	8 Sortality and Syntax
	9 On Collections, Especially Multisets
	10 On Relevance Logics
	11 On the History of Logical Hierarchies and Logical Pluralism
	12 The Glut of Foundational Notions
	References

	The English Tenses, Blanché and the Logical Kite
	1 Introduction
	2 The Concept Formation Constraint for Logical Operators
	3 Time and Tense
	4 Blanché's ``note Sure Les Relations d'ordre'' and the Tenses Kite
	5 Conclusion
	References

	Topological Aspects of Matrix Abduction 1
	1 Background and Orientation
	2 Matrix Abduction
	3 Kal Vachomer Dimension
	4 Partially Ordered Set
	5 Representation of Matrix Abduction by Poset
	6 Poset Dimension
	7 Kal Vachomer Dimension Bounds
	8 The Kal Vachomer Algorithm
	9 A Note About the Algorithm Optimality
	10 Appendix – Correction for Graph
	References

	Topological Aspects of Matrix Abduction 2
	1 Introduction and Orientation
	2 Preliminaries
	3 Related Work and Algorithms
	4 Properties of Matrix Abduction
	5 Greedy Algorithms for Evaluating dim
	6 Conclusion and Further Work
	7 Appendix
	References

	Deciding Theoremhood in Fibred Logics Without Shared Connectives
	1 Introduction
	2 Definitions
	3 Theoremhood and Mixed Reasoning
	4 Decidability
	5 Conclusion
	References

	On Rules and Refereeing in Football
	1 Toward Technology-Assisted Refereeing
	2 What Referees Do
	3 On Chance and Skills
	4 The Referee as a Full Player
	References

	Arrow-Hexagons
	1 The Starting Point: Oppositional Geometry (in a Nutshell)
	2 Some Recent Remarks on Some Strange Hybrid Hexagons
	3 How Many „Arrow-Hexagons“ Are There in the 3-Structure?
	4 Some Consequences
	5 Béziau's „Red Hexagon“ Does not Belong to the Tetrahexahedron!
	6 From the Arrow-Hexagons to the „Arrow-n-Structures“
	7 Conclusion
	References

	The Distributed Ontology, Modeling, and Specification Language – DOL
	1 Introduction
	2 Foundations of the Distributed Ontology, Modeling and Specification Language (DOL)
	3 The Language DOL
	4 Tool Support for DOL
	5 Conclusion and Future Work
	References

	Belnap Constants and Nelson Logic
	1 Introduction
	2 The Nelson Logics
	3 Algebraic Semantics for Nelson's Logics
	4 The Lattices EbN4, EnN4, and EN4Bel
	References

	Negative Modalities in the Light of Paraconsistency
	1 Introduction
	2 Revisiting the Previous Results
	3 Reexamination of the Results of Marcos
	4 Some Formulation of Systems D, S4, etc.
	5 Conclusion
	References

	Operativity and Representativity of the Sign in Leibniz
	1 Leibniz' Cognitive Conception of Language
	2 Specificity of Leibniz' Semiology
	3 Leibniz' Theory of the Representativity of the Sign
	References

	Being Consistent About Inconsistency: Toward the Rational Fusingof Inconsistent Propositional Logic Bases
	1 Introduction
	2 Background on the Handling of Possibly Inconsistent Propositional Knowledge Bases
	3 Toward Fusing Inconsistent Knowledge Bases
	4 Conclusion
	References

	Realist Consequence, Epistemic Inference, Computational Correctness
	1 Introduction
	2 Implicit and Explicit Information: Data Polymorphism
	3 Correctness: From Proof-Checking to Type-Reconstruction
	4 Localizing Validity
	5 Reformulating Validity
	6 Conclusions
	References

	Epistemological and Ontological Paraconsistency in Quantum Mechanics:For and Against Bohrian Philosophy
	1 Interpreting Quantum Mechanics
	2 Niels Bohr and the Linguistic Turn in Physics
	3 The Re-Turn of Classical Metaphysics
	4 Complementarity and Paraconsistency
	5 Quantum Superpositions and Paraconsistency
	6 Epistemological and Ontological Contradictions
	7 Final Remarks
	References


