
Towards an Extensible Middleware
for Database Benchmarking

David Bermbach1, Jörn Kuhlenkamp1, Akon Dey2(B), Sherif Sakr3,
and Raghunath Nambiar4

1 Information Systems Engineering Group, TU Berlin, Berlin, Germany
{david.bermbach,j.kuhlenkamp}@tu-berlin.de

2 School of Information Technologies, University of Sydney, Sydney, Australia
akon.dey@sydney.edu.au

3 King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
sakrs@ksau-hs.edu.sa

4 Cisco Systems, Inc., San Jose, USA
rnambiar@cisco.com

Abstract. Today’s database benchmarks are designed to evaluate a par-
ticular type of database. Furthermore, popular benchmarks, like those
from TPC, come without a ready-to-use implementation requiring data-
base benchmark users to implement the benchmarking tool from scratch.
The result of this is that there is no single framework that can be used to
compare arbitrary database systems. The primary reason for this, among
others, being the complexity of designing and implementing distributed
benchmarking tools.

In this paper, we describe our vision of a middleware for database
benchmarking which eliminates the complexity and difficulty of designing
and running arbitrary benchmarks: workload specification and interface
mappers for the system under test should be nothing but configuration
properties of the middleware. We also sketch out an architecture for this
benchmarking middleware and describe the main components and their
requirements.

1 Introduction

Relational database management systems (RDBMS) have been around since the
1960 s and have long been considered to be a one-size-fits-all solution to data per-
sistence.However, over the last few years, a plethora of newdata storage solutions –
typically referred to as NoSQL (Not Only SQL) systems – have been developed
to step in where RDBMS have previously been unable to fulfill certain complex
application requirements, e.g., elastic scalability. Today’s data storage systems are
primarily categorized by their supported data model and their application data
access interface into column stores (e.g., Bigtable [14] or Cassandra[31]), key-value
stores (e.g., Dynamo [19] or Voldemort1), document stores (e.g., MongoDB2 or
1 project-voldemort.com.
2 mongodb.org.

c© Springer International Publishing Switzerland 2015
R. Nambiar and M. Poess (Eds.): TPCTC 2014, LNCS 8904, pp. 82–96, 2015.
DOI: 10.1007/978-3-319-15350-6 6

http://project-voldemort.com
http://mongodb.org


Towards an Extensible Middleware for Database Benchmarking 83

CouchDB3), and RDBMS (e.g., MySQL4 or PostgreSQL5)[13,44]. In addition to
these, there are other database systems targeting special use cases, e.g., caching
storage for objects (e.g., Memcached6 or Redis7) and graph-oriented data (e.g.,
Neo4j8), and the so-called NewSQL9 databases (e.g., VoltDB10 or NuoDB11). In
essence, there are hundreds of different database systems available today and the
number is increasing everyday.

Choosing a single database system from this large set of available database
systems for a concrete use case is a non-trivial task [41]. From an application
developer’s perspective, there are certain functional requirements for a database
system based on the application’s needs. From the subset of database systems
fulfilling the demanded functional requirements, an application developer typi-
cally wants to select the “best” database system based on non-functional qual-
ity attributes like performance, availability, data consistency, security, cost, etc.
This shows the clear need for an ability to compare different database systems in
terms of their non-functional quality characteristics which is usually addressed by
benchmarking.

For such a benchmark to measure these quality attributes in a meaningful
way, it requires running a workload that is comparable to the workload which
will eventually be generated by the application. Therefore, measurement results
obtained while running different workloads have little meaning. Most bench-
marks available today can either be used with a subset of database systems
(e.g., TPC12 benchmarks for RDBMS) or do not use realistic, application-driven
workloads (e.g., YCSB [15] or YCSB++ [36]). This prevents a fair comparison of
database systems from different categories, e.g., a column store and an RDBMS.

Furthermore, such database benchmarks should also be easy to use, i.e., it
should consist of both a measurement method and a ready-to-use toolkit. Again,
existing benchmarks fall short by either not including a toolkit (e.g., see the TPC
Express initiative [35]) or implementing the toolkit based on design decisions
which limit the toolkit’s applicability to only a subset of existing databases (e.g.,
YCSB [15]).

We argue that a middleware for the execution of arbitrary database bench-
marks is missing. When designing a benchmark, the benchmark designer should
concentrate on his core competences – namely, specifying a realistic, application-
driven workload profile and means to analyze obtained measurements. Instead
of having the middleware take care of the hassle of distributed benchmarking
3 couchdb.apache.org.
4 mysql.com.
5 postgresql.org.
6 memcached.org.
7 redis.io.
8 neo4j.org.
9 NewSQL is a term used to refer to a new generation of RDBMS that attempt to

provide the same scalable performance of NoSQL systems for OLTP applications
while maintaining the full ACID guarantees provided by traditional RDBMS.

10 voltdb.com.
11 nuodb.com.
12 tpc.org.

http://couchdb.apache.org
http://mysql.com
http://postgresql.org
http://memcached.org
http://redis.io
http://neo4j.org
http://voltdb.com
http://nuodb.com
http://tpc.org


84 D. Bermbach et al.

and managing the measurement infrastructure, today, a benchmark designer has
to implement this from scratch for every single benchmark. The result of this is
obvious; we end up with either application-driven benchmarks without a toolkit
or benchmarking toolkits with flawed implementations and limited features. We
are of the opinion that workload specifications and mappers should be treated
as configuration parameters only.

In this vision paper, we present the first steps towards a middleware for the
execution of arbitrary database benchmarks which:

– should offer an execution environment for diverse workloads,
– should not make any assumptions regarding the underlying architecture and

implementation of the database under test, and
– should incorporate the measurement of performance as well as of more com-

plex quality of service (QoS) levels.

For this purpose, we first identify the general requirements for benchmarks
in Sect. 2 and describe why these requirements are difficult to maintain without
a benchmarking middleware. Based on this, we discuss the requirements such a
middleware should, hence, fulfill in Sect. 3. Finally, we sketch out the high-level
architecture we envision for this middleware (Sect. 4) and discuss related work
(Sect. 5) before coming to a conclusion in Sect. 6.

Please, note that some of the requirements from Sects. 2 and 3 may overlap
as requirements related to the execution of benchmarks will inevitably also be
requirements for a middleware solution targeting the execution of benchmarks.
Still, the focus might differ depending on the section.

2 Requirements for Database Benchmarks

The process of benchmarking database systems is typically repetitive, time-
consuming and tiresome [42]. To exacerbate the situation, without a good bench-
mark, the results of the benchmarking process can be confusing and misleading
and may result in making wrong design or database system choices. The task of
performing the benchmark in a new application domain or using newly devel-
oped database systems, like NoSQL systems, can be even more drawn-out due
to the lack of a good benchmark. In order, to be suitable for testing the per-
formance and usability of a wide range of database systems and to be useful
in simulating a wide variety of application use cases, we define the following
desirable characteristics of the benchmark.

Easy to use: In order to be suitable for a wide variety of application and cater
to different types of database users, the benchmark should be easy to configure,
run, use, and extend. The results of the benchmarking process must be easy to
understand so that they are suitable for making objective decisions.

Distributed Application Aware: Increasingly, typical applications are deployed
as a set of distributed database clients, spread across an often large geograph-
ical area that may span continents. To successfully emulate such application



Towards an Extensible Middleware for Database Benchmarking 85

scenarios, the benchmark itself must be distributed in nature to simulate these
geographically distributed database clients. The framework must make it easy
to define a workload simulating a distributed application; distribution and coor-
dination of the workload should be handled efficiently and correctly. The results
of the execution of the benchmark should be gathered across all the benchmark
workload instances in a correct and efficient manner as though they were running
on a single machine.

Negligible Impact on Results: The benchmark itself and the infrastructure
needed to perform the distribution must be sufficiently light-weight so that it
neither becomes a performance bottleneck nor adversely skews the recorded mea-
surements. This means that the benchmark itself should be able to scale and that
changing the implementation of the benchmark should not affect the measure-
ment results.

Fine-Grained Measurements: Measurements obtained during the benchmark
should be collected and stored in a suitably fine-grained manner so that they
can be easily sliced and diced for further analysis. This does not preclude collec-
tion of aggregate metrics as long as raw, unprocessed data is captured as well.
Therefore, the size of collected measurement data can become large, e.g., for high
request numbers per second or long running benchmarks. Thus, in combination
with the requirement for negligible impact on results, efficient data structures
are needed to persist measurements.

Repeatability: The workload and operations performed during the execution of
the benchmark should be repeatable. This will enable an identical workload to
be run against different database systems in various configurations in order to
perform comparative analysis and A-B testing. For instance, it may be needed
to perform an analysis based on whether encryption is enabled or not. This
requires being able to replay exactly the same sequence of operation of another
benchmarking run.

Wide Applicability to Application Domains: The benchmark should closely
emulate a wide variety of application use cases in the form of predefined work-
loads so that it can be used by application designers and architects to objectively
pick a suitable database system that meets their needs. Extending the predefined
workloads to incorporate application-specific operations or scenarios in order to
enable an apples-to-apples comparison of the database systems under test should
also be easy. There should be an ability to define workloads in the form of a mix
of a variety of operations to be executed in different execution patterns to sim-
ulate a wide variety of application scenarios. This should include the ability to
simulate cases of increasing and decreasing load and differing periodicities of
workload intensity such as sudden spikes and troughs. Workloads should not be
limited to either OLTP or OLAP applications.

Provide Suitable Abstractions: The benchmark should not make any assump-
tions about the specific capabilities of the database under test and be unaware
of the specific database implementation. For instance, it must not know whether
the database supports transactions with ACID guarantees. The interface to the



86 D. Bermbach et al.

database should be abstracted to enable this behavior. However, a too high
abstraction level can result in workloads that only use limited software features
provided by a database system under test. Thus, the implementation of specific
workload scenarios becomes more difficult. Similarly, there should not be any
assumptions about other QoS guarantees provided by the underlying database.
Modern database systems make explicit but frequently also implicit QoS trade-
offs decisions in their implementation. The benchmark should track both sides
of the trade-off, i.e., different QoS dimensions. For instance, instead of making
assumptions about transactional capabilities as prescribed by ACID guarantees
it should track transaction isolation violations during the execution of the work-
load.

Support Micro-Analysis: Many evaluations of database systems use micro-
benchmarks to target specific database system features, e.g., index structures,
using a subset of an application scenario. To be useful in such situations, the
benchmark must allow the user to define targeted patterns of operations in the
benchmark that can be used to define micro-benchmarks which analyze specific,
database features in isolation. Based on the more high-level application work-
load, micro-benchmarks should be a direct result of a drill-down in the workload
stack, i.e., the benchmark should allow to enable and disable all operations of
the high-level, application-driven workload individually.

Support Different Deployment Topologies: The benchmark should be able to
simulate scenarios in which database applications as well as the database itself
are deployed in various deployment topologies including geo-distributed deploy-
ments. Increasingly, applications also use one or more database technologies
simultaneously working in concert. Benchmarking these combined setups in par-
allel should be supported in order to simulate such distributed application sce-
narios.

In our opinion, a benchmarking middleware is a suitable architecture for
building a benchmarking framework that fulfills the requirements above. Due to
today’s speed of innovation in database systems, such a middleware may even
have become a necessity. This is largely because of the following reasons:

– A middleware-based architecture will enable reuse which mitigates the risk
of having to rebuild the infrastructure needed for new benchmarking applica-
tions. This in turn reduces the risk of mistakes in the benchmarking applica-
tion leading to distorted measurement results.

– The application developer or database administrator can focus on the actual
application-specific workload instead of worrying about the infrastructure
needed to run a benchmark (e.g., distributed execution and coordination or
the mapping between operations and database interface).

– The middleware abstracts the measurement and collection of a wide variety of
metrics and performance characteristics across the various QoS dimensions.
For instance, it is a non-trivial task to either detect transaction isolation
anomalies as a result of transactional ACID property violations or to measure
degrees of database (in-)consistency.



Towards an Extensible Middleware for Database Benchmarking 87

3 Requirements for a Benchmarking Middleware

Building on the requirements for distributed database benchmarks which we
identified in Sect. 2, we will now analyze middleware features necessary for creat-
ing middleware-supported benchmarks according to the mentioned benchmark-
ing requirements. We will use this to identify requirements that the middleware
for database benchmarking should fulfill.

In order to increase ease of use and allow for wide applicability to applica-
tion domains, a ready-to-use toolkit which does not make any assumptions about
the application domain or application scenario is required. This is closely linked
to providing suitable abstractions as well as supporting distributed workloads
and deployments, i.e., the benchmarking middleware itself should be completely
unaware of anything happening above or below the middleware layer; it should,
hence, be entirely database- and application-agnostic and be able to handle dis-
tribution and coordination. Ease of use also calls for the middleware tool to come
bundled with built-in basic workloads that are ready to use.

Fine-grained measurements will create large amounts of data so that a bench-
marking middleware must be able to handle such a data stream in terms of per-
sistence, i.e., storage of fine-grained results is required. Due to the complexity
of implementing such measurements, the measurement process itself should also
be handled by the middleware – not only for well-explored QoS dimensions like
latency or throughput but also for more complex dimensions like consistency or
transaction isolation. Therefore, a benchmarking middleware should come bun-
dled with support for advanced QoS dimensions. Finally, a benchmarking imple-
mentation with little or no impact on repeatable measurement results obviously
requires the same of an underlying middleware solution, that is, an efficient
implementation offering a trace-based execution of experiments.

Building on this connection between requirements for benchmarks and the
corresponding requirements for a benchmarking middleware, we will now discuss
each of the middleware requirements in more detail:

Database- and Application-Agnostic: The middleware should provide a one-
size-fits-all framework that supports all kinds of workloads with a variety of
database access patterns (e.g., changing workload intensity, OLTP and OLAP,
transactional and non-transactional, complex queries and key-based access, etc.)
without any assumptions on the application scenario or the application workload.
In addition to this, the middleware needs to be independent of the underlying
database and should be equipped with a flexible set of mappers that map and
facilitate the execution of its workloads on the different data models supported by
different database systems (e.g., relational, column-oriented, document-oriented,
and key-value) with the flexibility to support the definition of new data models
with associated mappers.

Support for Advanced QoS Dimensions: In addition to measuring the standard
evaluation metrics for database systems like response time and throughput, the
middleware should facilitate the measurement of advanced QoS metrics such as
consistency [4,9–12,26,48,50], availability and elasticity [43], where applicable.



88 D. Bermbach et al.

Ideally, the measurement component of the middleware should be extensible
so that it provides the ability to define new metrics and to plug-in new mea-
surement modules for these newly defined metrics. Furthermore, for cloud-based
deployments, the middleware should be able to track concrete usage of cloud
resources (e.g., storage, CPU, network, etc.) in order to facilitate monetary cost
benchmarking which is an important aspect of cloud environments [23].

Storage of Fine-Grained Results: The middleware needs to track and store all the
raw measurement data which introduces a certain degree of complexity as raw
measurement results can potentially become very large. To ease further analysis
and to also offer convenient access to aggregated results, the middleware should
also come bundled with a data analysis module that provides the ability to
gain insights from the collected large amount of measurement data by suitably
aggregating, transforming, correlating, and analyzing the raw measurement data.

Efficient Implementation: The middleware itself should not have a significant
negative impact on the performance of the benchmark and the measurements
of the evaluation metrics, i.e., choosing a different middleware implementation
should not notably affect the measurement results.

Distribution and Coordination: The middleware should manage distribution and
coordination of (potentially geographically) distributed measurement clients and
do so in a way transparent to the benchmark developer.

Trace-Based Execution: A repeatable benchmark execution, e.g., for A-B testing,
requires a trace-driven implementation so that a priori instead of ad hoc workload
generation is the logical choice. Obviously, such an operation trace should also
contain information on the measurement client issuing the operation according
to the desired level of distribution. This will assert that repeated executions
will issue the same operations after the same test duration from the same geo-
location. Depending on whether the load balancer is considered to be part of
the application or the database system, this may even require – in the case
of replication – to issue these same requests also to the same replicas. This is
especially important when measuring consistency behavior [8].

Built-in basic workloads: The middleware should come bundled with a basic set
of built-in basic workloads which are ready to use. These can then also be used
as building blocks for advanced workloads more closely resembling the actual
workload of a concrete application use case. This will also serve as a way to
perform an apples-to-apples comparison between competing database systems
for general purpose use without a concrete application in mind. The TPC suite
of benchmarks and the default workloads provided by YCSB [15] have played a
similar role in the past.

4 An Architecture for a Benchmarking Middleware

To fulfill the requirements identified in the last section, a benchmarking middle-
ware needs to be extensible in several dimensions. We aim to address these with
the following high-level architecture (see also Fig. 1 which gives an overview):



Towards an Extensible Middleware for Database Benchmarking 89

Fig. 1. High level architecture of the proposed benchmarking Middleware

Mappers are responsible for mapping queries to a particular database
instance. This is implemented in two stages. In the first stage, queries are mapped
to a particular type of database, e.g., a column store, but are not yet bound to a
specific database system, e.g., Cassandra [31]. In the second stage, the abstract
interface is mapped to a concrete database system. This way, standard mappers
for different types of databases can be supported along with custom mappers.
Furthermore, this also enables the ability to support additional database systems
as well as entirely new types of database systems in the future.

For example, the first stage may choose to store an object as well as all
objects referenced by this object through one-to-many relationships under the
same key in a key-value store. It may also choose to do so in the JSON format.
The second stage, in contrast, will then map the abstract CRUD interface of
the key-value store to, for instance, Voldemort. This staged mapper approach
keeps the middleware entirely agnostic of both the application workload and the
underlying database system under test.

As another example, a query retrieving a data item based on three filter
criteria might be mapped to an RDBMS with a query like SELECT * FROM table

WHERE a AND b AND c . For a column store, in contrast a standard mapping might
be to use the concatenated values of the fields referenced by a, b and c as row
key and to, therefore, issue a get query for this row key.

The Workload Executor is responsible for executing all requests of the work-
load according to the workload specification. For this purpose, we propose to
use a precomputed operation trace, i.e., a priori workload generation, to remove
much of the necessary coordination effort. We imagine that a secondary tool
will be used to create operation traces – either based on real-world traces or the



90 D. Bermbach et al.

Fig. 2. Coordination between multiple benchmarking instances

corresponding workload description – in a standardized format, e.g., as tuples
containing a relative timestamp, a SQL query and an origin location. Through
this a priori workload generation, the Workload Executor will maintain the
repeatability requirement. The requirement of having an efficient implementa-
tion is largely independent of the proposed architecture and mainly depends on
the concrete implementation but an a priori workload generation through an
external tool will certainly help the middleware layer to remain relatively thin
by moving most coordination overhead to a time before the actual benchmark
execution.

The Measurement Manager keeps track of all the individual measurement
modules (e.g., performance or consistency behavior) and their individual mea-
surement outputs. For this purpose, the manager provides detailed information
to the modules (e.g., start and end time of requests or business transactions,
operation results, etc.) and persists the metric output in a local database for
post-processing. This component will include predefined measurement modules
to determine latency, throughput, availability, elasticity, scalability, and consis-
tency behavior. Therefore, the requirements of being able to store fine-grained
results as well as support for advanced QoS metrics will not be violated.

As a typical benchmark run will be distributed, there will be different bench-
marking instances which need to be coordinated. The Benchmark Coordina-
tor is, therefore, responsible for communication across instances to assert, for
instance, that all benchmarking instances have the correct information available



Towards an Extensible Middleware for Database Benchmarking 91

on operation traces, start times, etc. We propose a master-based approach as
a single point of failure is, in this particular case, actually desirable, since fail-
ures will render benchmarking results unusable and fault-tolerance mechanisms
would hide this from the user. The coordination of benchmarking instances is
illustrated in Fig. 2. This approach requires sufficiently precise clock synchro-
nization as provided by NTP13 as well as the use of reliable messaging protocols
for communication. Implementing the Benchmark Coordinator component will
fulfill the requirement of handling coordination and distribution within the mid-
dleware layer.

5 Related Work

Related work on benchmarking middleware for distributed databases is scarce.
Difallah et al. [21] propose an extensible testbed for the execution of bench-
marks against relational databases. In particular, they argue for encapsulation
of recurring functionality within a universal benchmarking infrastructure. There-
fore, the work is closely related to our proposed benchmarking middleware. To
our knowledge, this is the sole publication addressing not only a subset of our
use case.

In the following, we discuss related work in three groups: (i) identified bench-
marking requirements for database systems in different contexts, e.g., cloud
environments, (ii) existing benchmarking approaches that address subsets of
requirements outlined in Sects. 2 and 3 and (iii) specialized foundational works
that address single functionalities of a benchmarking middleware, e.g., distrib-
uted generation of synthetic data sets.

Benchmarking Requirements: A good benchmarking middleware must identify
requirements for building meaningful and useful benchmarks. Huppler [29] dis-
cusses five general characteristics of a good benchmark, i.e., relevant, repeat-
able, fair, verifiable and economical. Nambiar and Poess argue that database
technologies are changing at such a rapid pace that deployment of benchmarks
have became increasingly complicated. Therefore, easier means to develop and
execute benchmarks are required. Smith [46] and Folkerts et al. [24] discuss
requirements for benchmarks in cloud environments. Furthermore, Poess [37]
and Baru et al. [6] discuss requirements for Big Data environments, respectively.
Bermbach [8] discusses requirements for (consistency) metrics. Specifically, these
have to be meaningful, fine-grained, have a high resolution and allow reproducible
measurement results.

Benchmarking Approaches: Benchmarking approaches are application-driven or
system-driven. Application-driven approaches, i.e., end-to-end benchmarks, focus
on providing realistic and meaningful workloads for an application domain.
System-driven approaches are often micro-benchmarks and typically build on
synthetic workload generation; they focus on a broad coverage of workloads to
measure isolated database features.
13 ntp.org.

http://ntp.org


92 D. Bermbach et al.

Examples of application-driven approaches grouped by application domains
are: OLTP [17,18], decision support [16,25], social media [5], CEP [32], ETL [49].
Examples of system-driven approaches are the Yahoo! Cloud Serving Benchmark
(YCSB) [15] and Rain [7]. YCSB provides an extensible benchmarking tool with
adapters for a number of distributed database systems, e.g., HBase, Cassandra
and MongoDB. Two extensions to YCSB are YCSB++ [36] and YCSB+T [20].
YCSB++ adds new features to YCSB: bulk loading for databases based on
B-trees, Zookeeper-based [28] start of distributed YCSB clients and distributed
monitoring based on Ganglia [33]. YCSB+T extends the original workload by
providing the ability to define multi-item transactions and a data validation and
anomaly detection phase that can be used to classify and quantify database
anomalies introduced by the workload. Rain [7] is a workload generation toolkit
that provides a load scheduling mapper that can be extended with application-
specific workload generators.

Different TPC benchmarks do not provide an implementation and workload
models provide limited flexibility, thus, setup and customization requires addi-
tional effort. YCSB allows the generation of synthetic workloads based on a
stochastical workload model. For a large number of application workloads, an
accurate emulation based on the workload model is impossible or difficult to
instantiate. Furthermore, support for important features, e.g., benchmark dis-
tribution and customized collection of metrics, are limited by existing bench-
marks and frameworks. Our proposed benchmarking middleware closes the gap
between - application-driven and system-driven workload models and provides
frequently used benchmarking functionals in a transparent way.

Foundational Work: To realize the different components of our envisioned bench-
marking middleware, related work from different areas must be taken into
account. To address this, we discuss related work with selected examples, which
include, distributed data set generation for the Benchmark Coordinator, work-
load scheduling for the Workload Executor and complex QoS-metrics for the
Measurement Manager. Gray et al. [27] discuss the generation of synthetic data
sets. This work has been extended with a focus on distributed generation of
data sets by Alexandrov et al. [1–3] and Rabl et al. [38,40]. In essence, both
these approaches aim to provide a speed-up through parallelization with regard
to the preparation time of database benchmarks. Schroeder et al. [45] propose
additional parameters to be explicitly considered during workload generation,
namely a scheduling model for requests. The model differentiates between work-
load generators that do or do not schedule new requests independent of received
responses to the preceding request. Since, trade-offs exist between QoS met-
rics, it is not sufficient to characterize database systems based on a single QoS
dimension, e.g., performance. Among others, the following examples of bench-
marking approaches address specific system qualities: (i) consistency [4,9–12,26,
48,50], (ii) dependability [47], (iii) scalability [15,39], (iv) elasticity [22,30], and
(v) security [34].



Towards an Extensible Middleware for Database Benchmarking 93

6 Conclusion

Historically, industry standard database benchmarks have enabled healthy com-
petition among rival vendors that resulted in improved product offerings and was
also a significant contributing factor towards the evolution of database systems
themselves. While these benchmarks continue to serve both the industry and
research community well, they lack some of the flexibility and extensibility
required by modern cloud-based application systems in which different types
of data management systems often coexist and complement each other. Further,
these applications often make QoS and performance trade-offs based on a much
wider set of requirements and criteria – yet, in current database benchmarks
the ability to study these trade-offs is missing. In addition to this, today’s data-
base benchmarks either do not come with a read-to-use toolkit or are limited to
certain kinds of database systems and based on synthetic workloads.

In this paper, we describe our vision and architecture of a middleware for
benchmarking different databases and workloads. The authors plan to further
extend as well as actually implement this framework to provide the necessary
infrastructure for benchmarking database systems with regards to arbitrary QoS
dimensions and trade-offs, to help in determining price-performance trade-offs,
and to enable modern benchmarks for studying QoS behavior of multi-tenant,
frequently cloud-based, federated multi-database environments.

References

1. Alexandrov, A., Brücke, C., Markl, V.: Issues in big data testing and benchmarking.
In: Proceedings of the Sixth International Workshop on Testing Database Systems,
DBTest 2013, pp. 1:1–1:5. ACM, New York (2013)

2. Alexandrov, A., Schiefer, B., Poelman, J., Ewen, S., Bodner, T.O., Markl, V.:
Myriad: parallel data generation on shared-nothing architectures. In: Proceedings
of the 1st Workshop on Architectures and Systems for Big Data, ASBD 2011, pp.
30–33. ACM, New York (2011)

3. Alexandrov, A., Tzoumas, K., Markl, V.: Myriad: scalable and expressive data
generation. Proc. VLDB Endowment 5(12), 1890–1893 (2012)

4. Anderson, E., Li, X., Shah, M.A., Tucek, J., Wylie, J.J.: What consistency does
your key-value store actually provide? In: Proceedings of the 6th Workshop on Hot
Topics in System Dependability (HOTDEP), HotDep 2010, pp. 1–16. USENIX
Association, Berkeley (2010)

5. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: LinkBench: a
database benchmark based on the facebook social graph. In: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, SIGMOD
2013, pp. 1185–1196. ACM, New York (2013)

6. Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., Rabl, T.: Setting the direction
for big data benchmark standards. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012.
LNCS, vol. 7755, pp. 197–208. Springer, Heidelberg (2013)

7. Beitch, A., Liu, B., Yung, T., Griffith, R., Fox, A., Patterson, D.A.: Rain: a work-
load generation toolkit for cloud computing applications. Technical report, Uni-
versity of California at Berkeley (2010)



94 D. Bermbach et al.

8. Bermbach, D.: Benchmarking eventually consistent distributed storage systems.
Ph.D. thesis, Karlsruhe Institute of Technology, Germany, February 2014, to be
published

9. Bermbach, D., Kuhlenkamp, J.: Consistency in distributed storage systems. In:
Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 175–189.
Springer, Heidelberg (2013)

10. Bermbach, D., Tai, S.: Eventual consistency: how soon is eventual? An evaluation
of amazon S3’s consistency behavior. In: Proceedings of the 6th Workshop on
Middleware for Service Oriented Computing (MW4SOC), MW4SOC 2011, pp.
1:1–1:6. ACM, New York (2011)

11. Bermbach, D., Tai, S.: Benchmarking eventual consistency: lessons learned from
long-term experimental studies. In: Proceedings of the 2nd International Confer-
ence on Cloud Engineering (IC2E). IEEE (2014)

12. Bermbach, D., Zhao, L., Sakr, S.: Towards comprehensive measurement of consis-
tency guarantees for cloud-hosted data storage services. In: Nambiar, R., Poess,
M. (eds.) TPCTC 2013. LNCS, vol. 8391, pp. 32–47. Springer, Heidelberg (2014)

13. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Record 39(4), 12–27
(2010)

14. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. In: Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI), OSDI 2006, pp. 205–218. USENIX Associa-
tion, Berkeley (2006)

15. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st Symposium on Cloud
Computing (SOCC), SOCC 2010, pp. 143–154. ACM, New York (2010)

16. T. P. P. Council. TPC benchmark DS: standard specification version 1.1.0. Tech-
nical report, Transaction Processing Performance Council (2012)

17. T. P. P. Council. TPC benchmark e: standard specification version 1.13.0. Technical
report, Transaction Processing Performance Council (2014)

18. T. T. P. Council. TPC benchmark c: standard specification revision 5.11. Technical
report, The Transaction Processing Council (2010)

19. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Proceedings of 21st Symposium on Operating Systems
Principles (SOSP), SOSP 2007, pp. 205–220. ACM, New York (2007)

20. Dey, A., Fekete, A., Nambiar, R., Röhm, U.: YCSB+T: benchmarking web-scale
transactional databases. In: 2014 IEEE 30th International Conference on Data
Engineering Workshops (ICDEW), pp. 223–230, March 2014

21. Difallah, D., Pavlo, A.: OLTP-bench: an extensible testbed for benchmarking rela-
tional databases. Proc. VLDB Endowment 7(4), 277–288 (2013)

22. Dory, T., Mej, B., Roy, P.V.: Measuring elasticity for cloud databases. In: Pro-
ceedings of the Second International Conference on Cloud Computing, GRIDs,
and Virtualization (CLOUD COMPUTING 2011), pp. 154–160 (2011)

23. Florescu, D., Kossmann, D.: Rethinking cost and performance of database systems.
SIGMOD Record 38(1), 43–48 (2009)

24. Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl, V., Tosun, C.: Bench-
marking in the cloud: what it should, can, and cannot be. In: Nambiar, R., Poess,
M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 173–188. Springer, Heidelberg (2013)



Towards an Extensible Middleware for Database Benchmarking 95

25. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.-A.:
BigBench: towards an industry standard benchmark for big data analytics. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, SIGMOD 2013, pp. 1197–1208. ACM, New York (2013)

26. Golab, W., Li, X., Shah, M.A.: Analyzing consistency properties for fun and profit.
In: Proceedings of the 30th Symposium on Principles of Distributed Computing
(PODC), PODC 2011, pp. 197–206. ACM, New York (2011)

27. Gray, J., Sundaresan, P., Englert, S., Baclawski, K., Weinberger, P.J.: Quickly
generating billion-record synthetic databases. In: ACM SIGMOD Record, vol. 23,
pp. 243–252. ACM (1994)

28. Hunt, P., Konar, M., Junqueira, F., Reed, B.: ZooKeeper: wait-free coordination
for Internet-scale systems. In: USENIX ATC (2010)

29. Huppler, K.: The art of building a good benchmark. In: Nambiar, R., Poess, M.
(eds.) TPCTC 2009. LNCS, vol. 5895, pp. 18–30. Springer, Heidelberg (2009)

30. Kuhlenkamp, J., Klems, M., Röss, O.: Benchmarking scalability and elasticity of
distributed database systems. PVLDB 7(12), 1219–1230 (2014)

31. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Operating Syst. Rev. 44(2), 35–40 (2010)

32. Li, C., Berry, R.: CEPBen: a benchmark for complex event processing systems.
In: Nambiar, R., Poess, M. (eds.) TPCTC 2013. LNCS, vol. 8391, pp. 125–142.
Springer, Heidelberg (2014)

33. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:
design, implementation, and experience. Parallel Comput. 30(7), 817–840 (2004)

34. Müller, S., Bermbach, D., Tai, S., Pallas, F.:Benchmarking the performance impact
of transport layer security in cloud database systems. In: Proceedings of the 2nd
International Conference on Cloud Engineering (IC2E). IEEE (2014)

35. Nambiar, R., Poess, M.: Keeping the TPC relevant!. Proc. VLDB Endowment
6(11), 1186–1187 (2013)

36. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs,
A., Rinaldi, B.: YCSB++: benchmarking and performance debugging advanced
features in scalable table stores. In: Proceedings of the 2nd Symposium on Cloud
Computing (SOCC), SOCC 2011, pp. 9:1–9:14. ACM, New York (2011)

37. Poess, M.: TPC’s benchmark development model: making the first industry stan-
dard benchmark on big data a success. In: Rabl, T., Poess, M., Baru, C., Jacobsen,
H.-A. (eds.) WBDB 2012. LNCS, vol. 8163, pp. 1–10. Springer, Heidelberg (2014)

38. Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A data generator for cloud-scale
benchmarking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417,
pp. 41–56. Springer, Heidelberg (2011)

39. Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.-A.,
Mankovskii, S.: Solving big data challenges for enterprise application performance
management. Proc. VLDB Endowment 5(12), 1724–1735 (2012)

40. Rabl, T., Jacobsen, H.-A.: Big data generation. In: Rabl, T., Poess, M., Baru,
C., Jacobsen, H.-A. (eds.) WBDB 2012. LNCS, vol. 8163, pp. 20–27. Springer,
Heidelberg (2014)

41. Sakr, S.: Cloud-hosted databases: technologies, challenges and opportunities. Clus-
ter Comput. 17(2), 487–502 (2014)

42. Sakr, S., Casati, F.: Liquid benchmarks: towards an online platform for collabo-
rative assessment of computer science research results. In: Nambiar, R., Poess, M.
(eds.) TPCTC 2010. LNCS, vol. 6417, pp. 10–24. Springer, Heidelberg (2011)

43. Sakr, S., Liu, A.: Is your cloud-hosted database truly elastic? In: SERVICES, pp.
444–447 (2013)



96 D. Bermbach et al.

44. Sakr, S., Liu, A., Batista, D.M., Alomari, M.: A survey of large scale data man-
agement approaches in cloud environments. IEEE Commun. Surv. Tutorials 13(3),
311–336 (2011)

45. Schroeder, B., Wierman, A., Harchol-Balter, M.: Open versus closed: a cautionary
tale. In: Proceedings of the 3rd Conference on Networked Systems Design & Imple-
mentation, NSDI 2006, vol. 3, pp. 18–18. USENIX Association, Berkeley (2006)

46. Smith, W.D.: Characterizing cloud performance with TPC benchmarks. In:
Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 189–196.
Springer, Heidelberg (2013)

47. Vieira, M., Madeira, H.: A dependability benchmark for OLTP application envi-
ronments. In: Proceedings of the 29th International Conference on Very Large Data
Bases, VLDB 2003, vol. 29, pp. 742–753. VLDB Endowment (2003)

48. Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data consistency properties
and the trade-offs in commercial cloud storages: the consumers’ perspective. In:
Proceedings of the 5th Conference on Innovative Data Systems Research (CIDR),
pp. 134–143, January 2011

49. Wyatt, L., Caufield, B., Pol, D.: Principles for an ETL benchmark. In: Nambiar, R.,
Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 183–198. Springer, Heidelberg
(2009)

50. Zellag, K., Kemme, B.: How consistent is your cloud application? In: Proceedings
of the 3rd Symposium on Cloud Computing (SOCC), SOCC 2012, pp. 6:1–6:14.
ACM, New York (2012)


	Towards an Extensible Middleware for Database Benchmarking
	1 Introduction
	2 Requirements for Database Benchmarks
	3 Requirements for a Benchmarking Middleware
	4 An Architecture for a Benchmarking Middleware
	5 Related Work
	6 Conclusion
	References


