
Discussion of BigBench: A Proposed Industry
Standard Performance Benchmark for Big Data

Chaitanya Baru11, Milind Bhandarkar10, Carlo Curino7, Manuel Danisch1,
Michael Frank1, Bhaskar Gowda6, Hans-Arno Jacobsen8, Huang Jie6,
Dileep Kumar3, Raghunath Nambiar2, Meikel Poess9, Francois Raab5,

Tilmann Rabl1,8(B), Nishkam Ravi3, Kai Sachs12, Saptak Sen4, Lan Yi6,
and Choonhan Youn11

1 Bankmark, Passau, Germany
{manuel.danisch,michael.frank}@bankmark.de,

tilmann.rabl@utoronto.ca
2 Cisco Systems, San Jose, USA

rnambiar@cisco.com
3 Cloudera, Palo Alto, USA

{dkumar,nravi}@cloudera.com
4 Hortonworks, Santa Clara, USA

5 Infosizing, Manitou Springs, USA
francois@sizing.com

6 Intel Corporation, Santa Clara, USA
{bhaskar.d.gowda,jie.huang,lan.yi}@intel.com

7 Microsoft Corporation, Redmond, USA
ccurino@microsoft.com

8 Middleware Systems Research Group, Toronto, Canada
jacobsen@eecg.toronto.edu

9 Oracle Corporation, Redwood City, USA
meikel.poess@oracle.com

10 Pivotal, Vancouver, Canada
mbhandarkar@gopivotal.com

11 San Diego Supercomputer Center, La Jolla, USA
{baru,cyoun}@sdsc.edu

12 SPEC Research Group, Gainesville, USA
kai.sachs@sap.com

Abstract. Enterprises perceive a huge opportunity in mining informa-
tion that can be found in big data. New storage systems and processing
paradigms are allowing for ever larger data sets to be collected and ana-
lyzed. The high demand for data analytics and rapid development in
technologies has led to a sizable ecosystem of big data processing sys-
tems. However, the lack of established, standardized benchmarks makes
it difficult for users to choose the appropriate systems that suit their
requirements. To address this problem, we have developed the BigBench
benchmark specification. BigBench is the first end-to-end big data ana-
lytics benchmark suite. In this paper, we present the BigBench bench-
mark and analyze the workload from technical as well as business point of
view. We characterize the queries in the workload along different dimen-
sions, according to their functional characteristics, and also analyze their

c© Springer International Publishing Switzerland 2015
R. Nambiar and M. Poess (Eds.): TPCTC 2014, LNCS 8904, pp. 44–63, 2015.
DOI: 10.1007/978-3-319-15350-6 4



Discussion of BigBench: A Proposed Industry Standard Performance 45

runtime behavior. Finally, we evaluate the suitability and relevance of the
workload from the point of view of enterprise applications, and discuss
potential extensions to the proposed specification in order to cover typ-
ical big data processing use cases.

1 Introduction

Enterprises everywhere appear to be reaching a tipping point with data. Large
amounts of data are being accumulated; data continue to arrive from ever increas-
ing number of sources, and at increasing rates; and most applications require
integration of data from multiple heterogeneous sources. The data need to be
queried and analyzed to support enterprise applications. Organizations view
these data as a “natural resource” from which they can potentially extract
significant value for the enterprise. Indeed, this phenomenon, referred to as
“big data”, is the driving force behind major commercial investments in hard-
ware and software. In the current landscape of enterprise big data systems, two
major architectures dominate the analytics market: parallel database systems
and Hadoop-style batch-oriented systems. While there have been several stud-
ies that have attempted to compare and contrast these two approaches, what
is lacking is a benchmark specification that can be used to objectively compare
systems with each other. Furthermore, big data hardware and software vendors
are rapidly evolving their systems to meet the applications needs and demands
of these big data applications. In some cases, there is a common approach emerg-
ing, such as increased support for SQL-like functions, or better support for online
query processing, rather than just batch processing. As vendors begin to incor-
porate similar features and compete in the same markets, it become essential to
have objective benchmarks that can be used to compare system performance, as
well as price/performance and energy consumption.

Thus far, due to lack of existing, accepted standards, vendors have been
forced to run ad hoc benchmarks, or simple benchmarks which may not reflect the
eventual workload encountered by the systems. Furthermore, they have not had
to provide full disclosures regarding system performance. An industry standard
will be able to address such shortcomings, thus improving the overall situation.

We propose BigBench as a first, important step in moving towards a set
of rigorous benchmarks for big data systems. Similar to the well-known TPC
benchmarks, BigBench is an “application-level” benchmark. It captures opera-
tions performed at an application level via SQL queries and data mining oper-
ations, rather than low level operations such as, say, file I/O, or performance of
specific function such as sorting or graph traversal.

In this paper, we provide a detailed discussion of the BigBench specifica-
tion, including the database and the workload. In the process of developing
BigBench, we have obtained feedback from leading industry experts about the
relevance as well as completeness of the workload. After a technical discussion
of the benchmark and a discussion of sample runs on two different “small” and
“large” platforms, we provide a summary of the feedback as well as ideas for



46 C. Baru et al.

future extensions to the benchmark. We recognize that Big Data is a complex
as well as evolving space. BigBench represents only the first step towards pro-
viding a systematic way of benchmarking big data systems. We expect that big
data benchmarking will need to be an agile activity for the near-term future,
in order to both keep pace with changing technological trends and the evolving
application requirements in this area.

The paper is organized as follows. Section 2 describes benchmarking efforts
and activity relevant to big data and to BigBench. Section 3 provides an overview
of the BigBench benchmark, followed immediately by a description of the exper-
iments performed on the small and large test platforms in Sect. 4. Section 5
summarizes the characteristics of the BigBench schema as well as the queries
in the workload. Section 6 discusses the community feedback that was provided.
Based on this, some possible future extensions to BigBench are presented in
Sect. 7. Including a broad range of features within a single benchmark would
likely make the benchmark unwieldy, difficult to understand, difficult and expen-
sive to implement and, most important, difficult to interpret the results. Our
goal is to capture community feedback, and use the information to develop a
roadmap of big data benchmarks, rather than incorporating all features into a
single unwieldy benchmark. Section 8 elaborates on the additional steps needed
to make BigBench an industry standard benchmark, based on experience with
benchmarks like the TPC. Finally, the paper concludes with Sect. 9.

2 Related Work

A number of efforts are currently underway for developing benchmarks for dif-
ferent aspects of big data systems. For example, TPC-H [14] and TPC-DS
[12] benchmarks, developed by the Transaction Processing Performance Council,
have been used for benchmarking big data systems. The TPC-H benchmark has
been implemented in Hadoop, Pig, and Hive [5,18]. A subset of TPC-DS has
been used to compare query performance with implementations using Impala
and Hive. However, while they have been used for measuring performance of
big data systems, both TPC-H and TPC-DS are “pure SQL” benchmarks and,
thus, do not cover the new aspects and characteristics of big data and big data
systems. Several proposals have been put forward to modify TPC-DS to cover
big data usecases, similar to what we have proposed here with BigBench. For
example, Zhao et al. propose Big DS, which extends the TPC-DS model for social
marketing and advertisement applications [23]. However, Big DS is currently in
the early stage of design—a data model and query set are not available. We
believe that once the benchmark has been better defined, it would be possible to
complement BigBench with the extensions proposed by Big DS. Another TPC-
DS variant is proposed by Yi and Dai, as part of the HiBench ETL benchmark
suite [8]. The authors extend the TPC-DS model to generate web logs, similar to
BigBench. Once again, we believe that the specific extensions could be relatively
easily incorporated into BigBench in future. Several other proposals have been
made for component benchmarks that test specific functions of big data sys-
tems. Notable examples are the Berkeley Big Data Benchmark, the benchmark



Discussion of BigBench: A Proposed Industry Standard Performance 47

presented by Pavlo et al. [13], and BigDataBench, a suite similar to HiBench
and mainly targeted at hardware benchmarking [20]. Although interesting and
useful, these benchmarks do not present an end-to-end scenario and, thus, have
a different focus than BigBench.

In November 2013, the TPC announced the creation of a Big Data Work-
ing Group (TPC-BD)1, which recently released the TPCx-HS benchmark (TPC
Express Benchmark for Hadoop Systems) in August 20142. TPCx-HS is based on
the TeraSort benchmark, which is a relatively simple Hadoop-based sort bench-
mark that has been successful in establishing an annual sorting competition3.

Additionally, there are other active efforts in the database community as
well as the high-performance computing community in the area of graph bench-
marks. A well-known graph benchmark is the Graph 500, developed by the HPC
community [11]. Official benchmark results are published in the Graph 500 list4.
Another example is LinkBench [1], a benchmark that models the social graph of
a social application. A general discussion of graph database benchmarks can be
found in [6].

3 BigBench Overview

BigBench [7] is an end-to-end big data benchmark based on TPC-DS [15],
TPC’s latest decision support benchmark. TPC-DS is designed with a multiple-
snowflake schema populated with structured data allowing the exercise of all
aspects of commercial decision support systems, built with a modern database
management system. The snowflake schema is designed using a retail model con-
sisting of three sales channels, Store, Web and Catalog, plus an Inventory fact
table. BigBench’s schema uses the data of the Store and Web sales distribution
channels of TPC-DS and augments it with semi-structured and unstructured
data.

The semi-structured part captures registered and guest user clicks on the
retailer’s website. Some of these clicks are for completing a customer order. As
shown in Fig. 1, the semi-structured data is logically related to the Web Page,
Customer and Sales tables in the structured part. The design assumes the semi-
structured data to be a key-value format, similar to Apache web server log
format. Typically, database and MapReduce (MR) systems would convert this
format to a table with the following five columns (DateID, TimeID, SalesID,
WebPageID, UserID). However, such conversion is not necessary, since some
systems may choose to run analytics on the native key-value format itself.

Product reviews—a growing source of data in online retail sales—is used to
populate the unstructured part of the BigBench data model. Figure 1 shows
product reviews on the right-hand side, and its relationship to Item, Sales,
and Customer tables in the structured part. A possible implementation for the
1 www.tpc.org/tpcbd/.
2 www.tpc.org/information/other/tpcx-hs%20press%20release final.pdf.
3 http://sortbenchmark.org.
4 http://www.graph500.org/.

www.tpc.org/tpcbd/
www.tpc.org/information/other/tpcx-hs%20press%20release_final.pdf
http://sortbenchmark.org
http://www.graph500.org/


48 C. Baru et al.

Fig. 1. BigBench logical data schema

product reviews data is via a single table with the structure: (DateID, TimeID,
SalesID, ItemID, ReviewRating, ReviewText).

BigBench employs a data generator that is based on PDGF [17], a parallel
data generator capable of producing large amounts of data in a scalable and
high performance fashion. PDGF “plugins”, which are java extensions, enable
the program to generate data for any arbitrary schema. Using such plugins,
PDGF can generate data for all three parts of the BigBench schema, viz., struc-
tured, semi-structured and unstructured. The weblogs, representing the semi-
structured part of the schema, are generated using a key-value plugin. Product
reviews (the unstructured part) are generated using a Markov Chain plugin.
The algorithm produces synthetic text by extracting key words from sample
input into a dictionary and applying Markov Chain techniques to generate arbi-
trary text. Sample data was taken from publicly available data at the Amazon
website. PDGF has been programmed to generate a BigBench database of any
size between 1 GB and 1 PB (petabyte). Some tables, such as Customers, scale
sublinearly, to avoid unrealistic table sizes, whereas other tables, e.g. Sales and
Returns, scale linearly.

The BigBench query workload includes 30 queries, of which the ten queries
that operate only on the structured part of the schema have been taken from
the TPC-DS workload. The remaining 20 queries were adapted from a McKinsey
report on big data use cases and opportunities [9]. Of those, 7 queries run on
the semi-structured part of the schema; 6 queries run on the unstructured part;
and the remaining run on the structured part.

Similar to many current big data systems, BigBench employs batch-oriented
processing. Following the precedent established by other, similar (TPC) bench-
marks, the preferred performance metric is a single, “abstract” value that is
used for comparing end-to-end performance of different big data systems. Thus,
the proposed metric, which is loosely based on the TPC-DS metric, includes the
following [16]:



Discussion of BigBench: A Proposed Industry Standard Performance 49

– TL: Execution time of the loading process;
– TP : Execution time of the power test;
– TTT1: Execution time of the first throughput test;
– TDM : Execution time of the data maintenance task.
– TTT2: Execution time of the second throughput test;
– BBQpH: BigBench Queries per Hour;

BBQpH =
30 ∗ 3 ∗ 3600

TL + TP + TTT1
S + TDM + TTT2

S

(1)

BBQpH =
30 ∗ 3 ∗ S ∗ 3600

S ∗ TL + S ∗ TP + TTT1 + S ∗ TDM + TTT2
(2)

4 Experiments

In the experiments reported here, the BigBench workload was executed on two
test platforms—a 6-node cluster (“Small”) and a 544-node cluster (“Large”).
The test dataset was generated using the BigBench data generator described
in [7]. The dataset size was selected as 1 TB (i.e. ScaleFactor, SF = 1000). The
tables with linear growth rates make up the bulk of the dataset, as explained in
[16]. All the dataset tables were created in Hive.

Benchmark results were produced using the implementation of BigBench for
the Hadoop ecosystem described in [3]. The implementation uses four open-
source software frameworks: Apache Hadoop, Apache Hive, Apache Mahout,
and the Natural Language Processing Toolkit (NLTK). These frameworks are
used to implement the 30 queries employing one of the following methods:

– Pure Hive, for queries 5, 6, 7, 9, 11, 12, 13, 14, 17, 21, 22, 23, 24
– Hive with MapReduce programs, for queries 1, 2
– Hive with Hadoop streaming, for queries 3, 4, 29, 30
– Apache Mahout, for queries 15, 20, 25, 26, 28
– Apache OpenNLP, for queries 10, 16, 18, 19, 27

4.1 Test Platforms

The two clusters used for testing represent two distinct points in the scale-up
spectrum of Hadoop clusters. The “Small” cluster had 6 dual-socket servers,
while the “Large” cluster had 544 dual-socket servers. Details of the cluster con-
figurations are shown in Table 1. The large cluster results are from the Pivotal
Analytics Workbench5, made available by Pivotal Software, Inc. The benchmark-
ing effort on that platform was supported by a grant from Pivotal to the Center
for Large-Scale Data Systems Research (CLDS) at the San Diego Supercomputer
Center, UC San Diego.
5 http://www.analyticsworkbench.com.

http://www.analyticsworkbench.com


50 C. Baru et al.

Table 1. Configuration of test clusters

Cluster configuration Small Large

Processor per node 2×Xeon E5-2680 v2 @2.80GHz 2×Xeon X5670 @2.93GHz

Core/Thread per node 20/40 12/24

Main Memory per node 128GB 48GB

Storage per node 12 × 2TB HDD 7.2Krpm 12 × 2TB HDD 7.2Krpm

Total HDFS storage 90TB 9,420TB

Cluster interconnect 10Gb ethernet 10Gb infiniband

OS type CentOS 6.5 RHEL 6.1 64-bit

Hadoop version Cloudera CDH5 Pivotal HD 2.0.1

JDK version 1.7 1.7

Name node 1 1

Data node/Tasker node 4 542

Hive server 1 1

4.2 Experimental Observations

The 30 BigBench queries were run sequentially on each test cluster and statistics
were collected for each query. The results presented here are from running the
queries without any prior tuning of the systems. Thus, these results represent
the “raw, out-of-the-box” performance of each system. While the performance
of a number of the queries could improve significantly with careful tuning, the
analysis of data collected in this initial set of tests nonetheless provides use-
ful insights into the general characteristics of the workload and, thus, into the
applicability of the benchmark itself.

The first step of the experiment consists of loading the SF = 1000, 1 TB
dataset into the Hive tables. On the large cluster this operation took almost
twice as long as on the small cluster (87 min vs. 48 min). This behavior is the
first indication that the 1 TB database, while appropriate for the small cluster
with 4 data nodes, is highly undersized for the large cluster with 544 data nodes.
Staging and replicating a relatively small amount of data over a large number
of Hive data nodes results in overheads that dominates the performance of the
data ingestion process.

In the next step of the experiment, the queries were run sequentially, and the
execution time was collected for each query. Table 2 presents the query execution
times as measured on both the small and large clusters.

Comparing the query execution times between the two clusters highlights
the lack of tuning prior to query execution as well as the over-scaling of the
large cluster, given that the data set is relatively small for a cluster of that size.
Some queries are highly parallelizable and are, thus, able to take advantage of
the significantly more resources available in the large cluster in order to perform
queries much faster than on the small cluster. However, a number of queries
perform slower on the large cluster due to the under-scaling of the data set as
well as lack of tuning.



Discussion of BigBench: A Proposed Industry Standard Performance 51

Table 2. Query execution times for small and large clusters

Query Small(min) Large(min) Query Small(min) Large(min)

1 5.9 3.6 16 11.7 3.8

2 11.4 3.7 17 3.9 5.7

3 9.8 4.0 18 11.7 10.0

4 908.1 28.8 19 6.2 7.0

5 177.0 16.5 20 14.7 6.0

6 9.7 4.9 21 7.3 3.8

7 14.0 9.9 22 31.9 7.1

8 29.6 10.9 23 107.5 39.8

9 8.0 4.0 24 5.8 3.7

10 10.1 13.4 25 5.5 3.9

11 2.4 2.0 26 7.1 4.1

12 5.1 9.3 27 0.6 0.8

13 5.4 6.6 28 1.9 19.6

14 2.5 1.7 29 24.3 3.6

15 5.1 1.4 30 44.7 6.7

Additional insight can be gained by examining the system utilization statis-
tics that were collected during the experiment. Two queries that were run on
the small cluster are presented here to illustrate the two main cases that were
observed. In the first, the query is able to take advantage of the system resources
provided without the need for tuning, as is the case for query Q16. As shown in
Fig. 2, the resource utilization is well balanced throughout the execution of the
query. Demand for CPU resources spans the entire query execution period. Sim-
ilarly, the disk activity is also distributed across the duration of the query, and
not localized to a small subset of the query execution time. Memory utilization
is also relatively uniform over the execution time, while staying at a comfortable
distance from saturation. Lastly, inter-node communication shows two strong
bursts of activity, which is likely driven by the map and the reduce steps.

In contrast, in the second case, the query has a very skewed profile for system
resource usage. This is exemplified in Q1, as shown in Fig. 2. The resource uti-
lization of the query is characterized by a burst of CPU and disk activity at the
very beginning, followed by a very low level of activity for the remainder of the
query execution time. This is associated with a poor usage of available memory
resources followed by a final burst of network communication toward the very
end of the query execution. Much work remains to be done to fully characterize
the behavior of these un-optimized queries. It is likely that the query uses the
default number of mappers set by Hive and could benefit from a much large
number of tasks (Fig. 3).



52 C. Baru et al.

Fig. 2. System utilization statistics for Q16

Fig. 3. System utilization statistics for Q1



Discussion of BigBench: A Proposed Industry Standard Performance 53

Through this initial set of experiments, we were able to confirm that the
BigBench queries represent a solid challenge for Hadoop clusters of different
sizes. The query set displayed a wide spectrum of behaviors that necessitate care-
ful tuning before reaching a balanced utilization of all major system resources.
Furthermore, during the experiments we also noted that the benchmark queries
could be used for component testing. To focus the testing on a selected cluster
component, one can run specific queries that apply particular stress patterns on
given components, without having to run the entire suite of queries. However,
unlike micro-benchmarks, these focused tests are directly related to specific use-
cases as highlighted by the business description that the benchmark provides for
each query.

In these experiments, the small versus large clusters also represent different
execution environments. The small cluster consists of a limited number of nodes,
which are all dedicated to this task. Whereas, the large cluster consists of a
few hundreds multi-tenancy nodes. While the 544 nodes that were used were
dedicated to this experiment, they were part of a larger cluster of 1000 nodes
that was shared with other applications running on the other nodes.

In this benchmark experiment, we also took the approach of running in
“Power” mode, where each query is executed individually in “stand-alone” mode,
leading to a better understanding of its performance behavior. However, the
benchmark is also designed to run in the so-called “Throughput mode”, where
multiple parallel streams of queries can run concurrently. The benchmark pro-
vides a single metric that combines results from both these modes of execu-
tion—Power mode and Throughput mode, in order to provide a simpler metric
that can be used for comparison.

5 Technical Discussion of the Workload

In this section, we discuss the technical aspects of the 30 BigBench queries. The
discussion is separated in two parts: a description of the generic characteristics
of the workload, followed by details of a Hive-specific implementation.

5.1 Generic Workload Characteristics

As mentioned in Sect. 3, the workload dataset can be separated into three cat-
egories: structured, unstructured, and semi-structured data. BigBench inherits
the general scaling properties of TPC-DS, however, unlike TPC-DS it does not
restrict scaling to discrete, predefined scale factors. Instead, it provides for a
continous scaling model. The database size can range from 1 GB to 1 PB. Lin-
early scaled tables, e.g. the “fact” tables, will have about 1,000,000 times more
records for the 1 PB data set than for the 1 GB data set. Other tables, e.g. the
“dimension” tables, such as, Customer or Store, use logarithmic or square root
scaling. As a result, query input sizes are not necessarily linearly dependent on
the scaling factor. This can be seen in Table 3, where the difference of query
input sizes for Scale Factor SF = 1 is only 7.5 (57 MB : 479 MB), whereas it is



54 C. Baru et al.

Table 3. Input and output of the 30 queries

Query # Tables Input size (SF 1/ SF 1000) Query # Tables Input size

1 2 59 MB/69 GB 16 5 100 MB/103 GB

2 1 88 MB/122 GB 17 7 92 MB/70 GB

3 1 88 MB/122 GB 18 3 112 MB/71 GB

4 4 109 MB/122 GB 19 5 83 MB/9 GB

5 4 180 MB/123 GB 20 2 57 MB/72 GB

6 4 159 MB/168 GB 21 6 154 MB/171 GB

7 5 87 MB/70 GB 22 5 429 MB/70 GB

8 4 165 MB/221 GB 23 4 429 MB/70 GB

9 5 148 MB/69 GB 24 4 86 MB/99 GB

10 1 58 MB/2 GB 25 2 131 MB/168 GB

11 2 135 MB/101 GB 26 2 59 MB/69 GB

12 3 147 MB/122 GB 27 1 58 MB/2 GB

13 4 159 MB/168 GB 28 1 58 MB/2 GB

14 5 83 MB/99 GB 29 2 82 MB/99 GB

15 2 59 MB/69 GB 30 2 93 MB/122 GB

111 for SF = 1000 (2 GB : 221 GB). The table shows the number of tables as well
as the input sizes for each query.

Out of the 30 queries, seven reference semi-structured data, six reference
unstructured data, while 17 queries reference the structured part of the data.

5.2 Workload Characteristics of the Hive Implementation

The Hadoop-based implementation uses a range of programming techniques
to implement the different queries. The workload consists of MapReduce jobs,
HiveQL queries, Hadoop streaming jobs, Mahout programs, and OpenNLP pro-
grams. For the Hadoop streaming jobs, multiple implementation strategies are
used, including command line programs, Java programs, and Python programs.
The Mahout jobs are executed outside of Hive, unlike all other parts of the
workload. OpenNLP programs are integrated into HiveQL as user defined func-
tions (UDFs). In Table 4, an overview of which type of query uses which type of
processing model can be seen.

As shown in the table, 14 out of 30 queries are pure HiveQL queries. Four
queries are implemented using Python, two are Java-based MR jobs. Five queries
use the OpenNLP libraries to implement sentiment analysis and named-entity
recognition. And, finally, five queries use Mahout to implement machine learning
algorithms. It should be noted that all jobs use Hive as a driver, and also for
data processing.



Discussion of BigBench: A Proposed Industry Standard Performance 55

Table 4. Query implementation techniques

Query Processing model Query Processing model

1 Java MR 16 OpenNLP sentiment analysis

2 Java MR 17 HiveQL

3 Python streaming MR 18 OpenNLP sentiment analysis

4 Python streaming MR 19 OpenNLP sentiment analysis

5 HiveQL 20 Mahout k-means

6 HiveQL 21 HiveQL

7 HiveQL 22 HiveQL

8 HiveQL 23 HiveQL

9 HiveQL 24 HiveQL

10 OpenNLP sentiment analysis 25 Mahout K-means

11 HiveQL 26 Mahout K-means

12 HiveQL 27 OpenNLP named-entity recognition

13 HiveQL 28 Mahout naive bayes

14 HiveQL 29 Python streaming MR

15 Mahout K-Means 30 Python streaming MR

6 Community Feedback

In this section, we summarize the feedback received from a number of sources
including the organizations represented by the authors; some of the customers of
some of these organizations; and, from direct interviews with several individuals
representing the Hadoop community at large. In addition to the typical issues
involved in creating a new benchmark, defining a benchmark for big data appli-
cations is particularly challenging due to evolving nature of this new field. The
key takeaway from the feedback received is the tension between the desire to
extend the BigBench specification to cover many more use cases and technology
stacks, versus the requirement to keep the benchmark simple and compact for
ease of use and comparison. We explore how we plan to balance this trade-off
and prioritize the evolution of our benchmark in the upcoming Sect. 7.

Positive feedback. A significant portion of the feedback we obtained expressed
appreciation for the effort to create such benchmark, and for many of the techni-
cal choices we made. There was positive consensus around the choice of starting
from a known benchmark, such as TPC-DS. The community’s familiarity with
that benchmark and the fact that available TPC-DS implementations could serve
as partial implementations of BigBench, were viewed as a clear plus. Also, there
was agreement that a relational-only benchmark does not capture key aspects of
real-life usecases. Thus, the non-relational extensions that were presented were
well received. Providing a reference implementation was also highly appreciated.



56 C. Baru et al.

While there were some suggestions regarding the specific details of the imple-
mentation, most interviewees agreed with the approach and the basic choices
that were made.

Common misunderstandings. While having a reference implementation is criti-
cal to fostering adoption, we also realized that this makes it easy to misconstrue
the benchmark as being prescriptive about a specific combination of frameworks
that happened to be chosen for the implementation, e.g., say, Hive/Hadoop.
For example, we heard the following question a number of times: “Is this just
a Hive benchmark?”, or “Is this just for relational data?”. The existence of an
implementation biases interpretation of the benchmark goals, to the extent that
more than one individual missed the fact that the benchmark specification, and
the implementation, contain several non-relational components. We expect that
this will become less problematic as the benchmark gains traction and different
implementations start to emerge that use other frameworks. For the time being,
we will address such questions by simply providing a clear description of the
scope and goals of the benchmark, and emphasize that the current implementa-
tion is a reference implementation, and not mandatory.

Technology coverage. A common set of requests were about adding features to
the benchmark that stress a specific technology:

1. Graph Analytics is probably one of the number one asks we hear form the com-
munity. Different sources reported that the ability to ingest, update, analyze
large graphs is an important technological challenge faced by organizations
todays. For example Jakob Homan from LinkedIn remarked: “There are the
big players like FB, LI and Twitter, but pretty much every organization has
some type of graph that it uses to drive engagement.”

2. Streaming is the second most cited ask for our benchmark. The ability to
process a continuous feed of data (e.g., tweets, user posts, server logs), and
perform filtering, projection, aggregations, trend detection, outlier detection,
etc. in a near real-time fashion, seems to be another key scenario people
consider a big data problem. Thomas Graves from Yahoo! for example ask
us to consider Storm [10] and Spark [22] to extend our current benchmark to
capture streaming use cases.

3. Interactive Querying. The support for fast ad-hoc queries on top of a large set
of data was another technology stack considered. The argument was towards
supporting the large number of small interactive operations performed by data
scientist while exploring a data set and devising new analysis/algorithms.

Beside the specific technology, people expressed strong feelings about having
a benchmark capable of capturing the following two aspects:

1. Multi-tenancy: speaking with large cluster operators, they strongly underlined
the need to exercise the multi-tenancy capabilities of a big data stack. Often
benchmarks are focused on latency/throughput for a single run of workload
performed in a dedicated set of machines. This often allows for over-tuning



Discussion of BigBench: A Proposed Industry Standard Performance 57

of the execution environment to perfectly serve a single run, making the
benchmark too synthetic, and more generally does not match the typically
operating conditions of the systems under test.

2. Fault-tolerance: another key concern for big data developers and cluster oper-
ators is fault-tolerance. At the typical scale of big data systems, the sheer
volume of hardware/software components involved makes “faults” a common
condition. Capturing this in the benchmark seems to be an important require-
ment. There are two key dimensions to this problem: a functional aspect, e.g.,
no data are lost despite faults, and performance one, e.g., graceful degrada-
tion of throughput and latency under faulty conditions. Moreover captur-
ing “limping” hardware beside all-or-nothing faults seem an interesting extra
dimension.

Use case coverage. A final set of concerns was related to the choice of a specific
vertical use-case. The concern being that the specifics of the use case we picked
was potentially skewing the attention towards certain functionalities more than
other. Concretely this was spelled out as a request to broaden the spectrum of
use cases considered, particularly to include advertisement and social-network
scenarios.

Limiting Complexity. Most of the above comments are pushing us towards mak-
ing our benchmark richer and broader. This is balanced by the need, express
implicitly or explicitly by multiple interviewee, to maintain the size and com-
plexity of the workload contained. Providing a reference implementation allow
users to bare significantly more complexity, but the onerous cost of porting
this benchmark to an alternative technology stack grows dramatically with the
complexity of the benchmark. Moreover, a benchmark that is too complex and
faceted makes interpretation and comparison of the results very problematic,
reducing the value of the benchmark as a tool to compare solutions.

In the following section, we address the above comments, and propose an
agenda on how to extend the benchmark accordingly.

7 Extending BigBench

BigBench is an end-to-end benchmark that focuses on structured data and
declarative workloads with additional support for unstructured data and proce-
dural workloads. This section highlights several possible extensions to BigBench
that can potentially make the benchmark more representative of a broader vari-
ety of real-life big data workloads.

Incorporating Concurrency. The benchmark defines a model for submitting con-
current workload streams in parallel and for randomizing the workload across
the multiple query streams [16]. This is intended to cover multi-tenant scenarios
where multiple instances of the same workload or single instances of multiple
workloads could execute in parallel. Example of a concurrent/complex workload



58 C. Baru et al.

w composed of two elemental workloads w1 and w2 could be: w = n1∗w1+n2∗w2,
where n1 and n2 are the number of instances of w1 and w2 respectively. The query
concurrency models in several existing online transactional processing (OLTP)
and online analytical processing (OLAP) industry standard benchmarks serve
as a good starting point [14,15,19].

Improving Procedural Coverage. BigBench has two procedural workloads defined
at the moment: K-Means and Bayes. Both are representative of the machine
learning domain and their respective specifications define a dependency on a
relational database or suchlike. BigBench could be extended to include “pure”
procedural workloads that process unstructured data without requiring format
conversion. These workloads would also represent categories that are somewhat
under-represented in BigBench, including web-based and component-level bench-
marks. PageRank is a good representative of web-based workloads, while Word-
Count, SleepJob and Sort are excellent representatives of component level bench-
marks.

Including Other Metrics. The specification and reference implementation should
be extended to measure other metrics important to technology choices, such
as price/performance, energy efficiency, and performance under failures. Price/
performance and energy efficiency are already included in various industry stan-
dard benchmarks. Performance under failures is an important consideration for
big data systems, which run on large scale-clusters, and consequently, partial
component failures such as hardware failures can be common.

Incorporating Incremental Data Uploads. In real-world deployments, big data
applications ingest data incrementally, rather than re-loading the entire dataset.
For example, tables are typically implemented as a collection of time-based parti-
tions to support data refresh. Each partition stores data for a time slice, e.g., one
hour or one day. Whenever new data arrive, they are loaded as new partitions,
or aggregated with an existing partitions to create a new partition. Thus, there
never a need to reload the entire data. In the future, Bigbench could account for
such partition-based data refresh strategies.

Incorporating Additional Workloads. TPC-DS is designed to evaluate the per-
formance of decision-support style queries of data warehouse systems. How-
ever, constrainedonly OLAP queries. Many real-world big data systems, also
encounter periodic workloads, i.e. workloads that repeat hourly, daily, or even
weekly, which are different from OLAP queries. A possible extension to Big-
Bench is to include such kind of workloads to better simulate the real-world
Big Data systems. Some good candidates of such workloads include the off-line
collaborative filtering analysis of all items [21], unstructured data indexing and
ranking for intranet search service, user authority or similarity analysis, etc.



Discussion of BigBench: A Proposed Industry Standard Performance 59

8 Towards an Industry Standard Benchmark

As with the development of any software product, the process of turning a bench-
mark idea into a product is not trivial. The three most recognized industry
standard consortia, namely the Standard Performance Evaluation Corporation
(SPEC), the Transaction Processing Performance Council (TPC) and the Stor-
age Performance Council (SPC) have developed processes to organize bench-
mark development; deal with benchmark evolution, i.e., versioning; and publish
benchmark results to ensure successful benchmarking. The TPC, has managed
to retain continuity of benchmarks over a few decades, while keeping the bench-
marks comparable. This has provided companies the ability to compare bench-
mark results over a very long time period and across many products. In this
section, we describe the necessary steps and discuss the advantages and disad-
vantages of developing an industry specification that is similar to TPC.

All TPC benchmark specifications developed so far have been technology
agnostic, i.e., they specify a workload without using terms of any particular
architecture or implementation by defining a set of functional requirements that
can be run on any system, regardless of hardware, database management soft-
ware or operating system. Furthermore, they follow a similar methodology and,
consequently, follow a similar structure. It is the responsibility of those measur-
ing the performance of systems using TPC benchmarks, a.k.a. the test sponsor,
to implement their setup compliant with the benchmark specification and to
submit proof that it meets all benchmark requirements, i.e., that the implemen-
tation complies with the specification. The proof has to be submitted with every
benchmark publication in form of a full disclosure report. The intent of the full
disclosure report is to enable other parties to reproduce the performance mea-
surement. This methodology allows any vendor, using “proprietary” or “open”
systems, to implement TPC benchmarks while still guaranteeing end-users that
the measurement is comparable.

The above approach to benchmarking broadens the applicability of bench-
mark specifications to many architecture and allows for the optimal implemen-
tation of a specific product on a specific platform. At the same time it makes
the first benchmark publication very costly, often too costly, because any new
implementation needs to be reviewed by an independent auditor. As a conse-
quence the TPC has started to develop a novel way to specify benchmarks. The
new benchmark category is labeled TPC Express so that it can easily be dis-
tinguished from the traditional category, which is labeled TPC Enterprise. TPC
Express benchmarks are based on predefined, executable benchmark kits that
can be rapidly deployed and measured. Providing a benchmark kit focuses on
a critical subset of system, trading the ability to demonstrate absolute optimal
performance for improved ease and costs of benchmarking (Table 5).

Summarizing the differences between enterprise and express benchmark spec-
ifications, it seems that enterprise benchmark have a higher price tag, and are
more time consuming compared to express benchmarks. However their imple-
mentation is limited to the technology that is supported in the KIT.



60 C. Baru et al.

Table 5. Comparison enterprise and express benchmark models

Enterprise Express

Specification-based with tools provided
by the TPC to build the data sets and
workloads

Kit-based that runs the benchmark
end-to-end, including tools provided
by the TPC to build data sets and
workloads

Benchmark publication specific
implementation, i.e. each benchmark
publication can be different

Out of the box implementation, i.e. each
benchmark publication follows the
same implementation

Best possible optimization allowed System tuning for “unalterable”
benchmark application

Complete Audit by an independent third
party

Mostly self validation augmented by
peer-reviews

Price required Price eliminated

If Atomicity, Consistency, Isolation and
Durability (ACID) are required as
part of the benchmark, full ACID
testing needs to be done as part of
any benchmark publication

If ACID is required as part of the
benchmark, ACI testing is conducted
as a part of self validation. Durability
cannot be tested as it requires an
auditor to assure correctness

Large variety of configurations Limited number of configurations focused
on stressing key components of the
benchmark

TPC revenues from benchmark
registration

TPC revenues from license sales and
potentially also benchmark
registration

Substantial implementation costs Reduced implementation costs

Ability to promote results as soon as
published to the TPC

Ability to promote results as soon as
published to the TPC

The express benchmark model is very promising as it will lower the entry cost
into benchmarking as well as per benchmark publication costs. The big hurdle for
express benchmarks is the development of a KIT. BigBench defines queries using
functional specifications [2] allowing BigBench to accommodate the diverse and
rapidly evolving nature of big data technologies (e.g., MapReduce, Hive, Spark,
etc.). Currently, BigBench includes a Hive-based reference implementation. The
intent is that for each query there could be multiple implementations satisfy-
ing the benchmark’s functional specification. To increase rapid adoption of the
benchmark, it would be beneficial to make all valid implementations available
as open source to a central repository. The resulting repository can be used to
aid a BigBench express KIT.

The specification will be extended to provide implementation guidelines to
ensure that the essential big data principles are maintained. For example, all file
formats used in an implementation must demonstrate the expected flexibility of



Discussion of BigBench: A Proposed Industry Standard Performance 61

being able to be created, read, and written from multiple popular engines on the
Hadoop stack, e.g., (MapReduce, Pig, Hive). Such formats ensure that all data is
immediately query-able, with no delays for ETL. Costly data format conversion
is unnecessary and thus no overhead is incurred.

In addition to having a KIT, for a possible TPC big data express benchmark
one will need to develop the following sections:
– Introduction/Preamble. This section includes a high level introduction to

the benchmark and general implementation guidelines. The implementation
guidelines if adopted from the TPC exists as a boilerplate in every benchmark,
and can be used with minor modifications. However, special implementation
guidelines can be easily incorporated. For instance, in order to give multiple
popular engines access to the data without incurring costly data conversion
overhead, it might be beneficial to provide guidelines in the BigBench specifi-
cations to ensure that the data formats used in benchmark implementations
ensure that essential big data principles are maintained. For example, all file
formats used in an implementation must demonstrate the expected flexibility
of being able to be created, read, and written from multiple popular engines
on the Hadoop stack, e.g., (MapReduce, Pig, Hive).

– Data/Database Design: Requirements and restrictions on how to implement
the database schema. In case of the express model this section can be relatively
short as only modifications to the KIT need to be discussed. Otherwise the
KIT is what needs to be run.

– Workload Scaling: Tools and methodology on how to scale the workload. This
would include a description and usage of the tools plus methods to scale the
data and potentially the workload.

– Metric and Execution Rules: Again the KIT will serve as a reference implemen-
tation of the metric and execution rules. This section only needs to descrip-
tion, on a high level, how to execute the benchmark and how to derive metrics.
Additionally, it needs to describe any deviations allowed from the execution
implemented in the KIT. This section would also include extensions to Big-
Bench to measure other metrics important to technology choices, such as
performance-per-cost, energy efficiency, and performance subject to failures.
Performance-per-cost and energy efficiency are already included in various
industry standard benchmarks. Performance subject to failures is an impor-
tant metric as big data technologies run on large scale clusters, and conse-
quently, partial component failures such as hardware failures can be common.

– Pricing: This section will cover pricing related wording specific to BigBench.
Generic pricing rules are already available TPC’s pricing specification.

– Full Disclosure Report (FDR): Every TPC benchmark publication includes an
FDR that allows anybody to reproduce the benchmark. In case of an express
benchmark only allowed deviations from the KIT and system specifics need
to be included in the FDR and, hence, the specification wording is limited to
that.

– Audit Requirements: Minimum requirements for the audit process that need
to be followed. In case of an express benchmark, self auditing scripts that show
correct implementation and execution of the benchmark need to be included
and, if desired, rules for peer-auditing.



62 C. Baru et al.

9 Conclusion

As big data analytics becomes an important part of todays data management
ecosystem, there is a need for an industry standard benchmark that can mea-
sure the performance and price-performance aspects total system under realistic
workloads. In this paper, we propose a framework for an end to end big data
analytics benchmark based on BigBench. The benchmark is intended to repre-
sent todays data management ecosystem which is implemented as an extension
of enterprise DW application (structured data) with new data sources (semi-
structured and unstructured). The paper presents 30 queries representative of
real life scenarios, their characteristics and experiment results. This paper is
presented as a proposal to the TPC to create the next generation industry stan-
dard benchmark that can be developed as an Express benchmark or Enterprise
benchmark.

BigBench currently incorporates a retail industry use case. Recent customer
surveys reveal additional important and common use cases from other industries,
e.g., the financial industry [4]. Hence, as additional surveys and empirical data
emerge, BigBench will be extended to incorporate additional use cases.

Acknowledgements. Portions of the research in this paper use results obtained from
the Pivotal Analytics Workbench, made available by Pivotal Software, Inc. Work per-
formed by co-authors Baru and Youn was partially supported via industry sponsorship
from Pivotal and Intel of the Center for Large Scale Data Systems Research (CLDS)
at the San Diego Supercomputer Center, UC San Diego and by a grant from the
Information Technology Laboratory (ITL) of the National Institute for Standards and
Technology (NIST).

References

1. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: LinkBench:
a database benchmark based on the facebook social graph. In: SIGMOD,
pp. 1185–1196 (2013)

2. Chen, Y., Raab, F., Katz, R.: From TPC-C to big data benchmarks: a functional
workload model. In: Rabl, T., Poess, M., Baru, C., Jacobsen, H.-A. (eds.) WBDB
2012. LNCS, vol. 8163, pp. 28–43. Springer, Heidelberg (2014)

3. Chowdhury, B., Rabl, T., Saadatpanah, P., Du, J., Jacobsen, H.A.: A BigBench
implementation in the hadoop ecosystem. In: Rabl, T., Raghunath, N., Poess, M.,
Bhandarkar, M., Jacobsen, H.-A., Baru, C. (eds.) WBDB 2013. LNCS, vol. 8585,
pp. 3–18. Springer, Switzerland (2014)

4. Costley, J., Lankford, P.: Big Data Cases in Banking and Securities - A Report
from the Front Lines. Technical report STAC (2014)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. Dominguez-Sal, D., Martinez-Bazan, N., Muntes-Mulero, V., Baleta, P., Larriba-
Pey, J.L.: A Discussion on the Design of Graph Database Benchmarks. In: Nambiar,
R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 25–40. Springer, Heidelberg
(2011)



Discussion of BigBench: A Proposed Industry Standard Performance 63

7. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen., H.A.:
BigBench: towards an industry standard benchmark for big data analytics. In:
SIGMOD (2013)

8. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite:
characterization of the MapReduce-based data analysis. In: ICDEW (2010)

9. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers,
A.H.: Big data: the next frontier for innovation, competition, and productivity.
Technical report, McKinsey Global Institute (2011). http://www.mckinsey.com/
insights/mgi/research/technology and innovation/big data the next frontier for
innovation

10. Marz, N.: Storm - Distributed and Fault-Tolerant Realtime Computation. http://
www.storm-project.net/

11. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the Graph
500. Cray Users Group (CUG) (2010)

12. Nambiar, R.O., Poess, M.: The making of TPC-DS. In: Dayal, U., Whang, K.Y.,
Lomet, D.B., Alonso, G., Lohman, G.M., Kersten, M.L., Cha, S.K., Kim, Y.K.
(eds.) VLDB, pp. 1049–1058. ACM (2006)

13. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S.,
Stonebraker, M.: A comparison of approaches to large-scale data analysis. In:
SIGMOD, pp. 165–178 (2009)

14. Pöss, M., Floyd, C.: New TPC benchmarks for decision support and web commerce.
SIGMOD Rec. 29(4), 64–71 (2000)

15. Pöss, M., Nambiar, R.O., Walrath, D.: Why you should run TPC-DS: a workload
analysis. In: VLDB, pp. 1138–1149 (2007)

16. Rabl, T., Frank, M., Danisch, M., Gowda, B., Jacobsen, H.A.: Towards a complete
BigBench implementation. In: WBDB (2014). (in print)

17. Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A data generator for cloud-scale
benchmarking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417,
pp. 41–56. Springer, Heidelberg (2011)

18. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce frame-
work. PVLDB 2(2), 1626–1629 (2009)

19. Transaction Processing Performance Council: TPC Benchmark C - Standard Spec-
ification (2010). (version 5.11)

20. Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi, Y.,
Zhang, S., Zhen, C., Lu, G., Zhan, K., Li, X., Qiu, B.: BigDataBench: a big data
benchmark suite from internet services. In: HPCA (2014)

21. Yi, L., Dai, J.: Experience from hadoop benchmarking with HiBench: from micro-
benchmarks toward end-to-end pipelines. In: Rabl, T., Raghunath, N., Poess, M.,
Bhandarkar, M., Jacobsen, H.-A., Baru, C. (eds.) WBDB 2013. LNCS, vol. 8585,
pp. 43–48. Springer, Switzerland (2014)

22. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: NSDI, pp. 2–2 (2012)

23. Zhao, J.M., Wang, W., Liu, X.: Big data benchmark - big DS. In: Rabl, T.,
Raghunath, N., Poess, M., Bhandarkar, M., Jacobsen, H.-A., Baru, C. (eds.)
WBDB 2013. LNCS, vol. 8585, pp. 49–57. Springer, Switzerland (2014)

http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://www.storm-project.net/
http://www.storm-project.net/

	Discussion of BigBench: A Proposed Industry Standard Performance Benchmark for Big Data
	1 Introduction
	2 Related Work
	3 BigBench Overview
	4 Experiments
	4.1 Test Platforms
	4.2 Experimental Observations

	5 Technical Discussion of the Workload
	5.1 Generic Workload Characteristics
	5.2 Workload Characteristics of the Hive Implementation

	6 Community Feedback
	7 Extending BigBench
	8 Towards an Industry Standard Benchmark
	9 Conclusion
	References


