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Preface

The Transaction Processing Performance Council (TPC) is a nonprofit organization
established in August 1988. Over the years, the TPC has had a significant impact on the
computing industry’s use of industry-standard benchmarks. Vendors use TPC bench-
marks to illustrate performance competitiveness for their existing products, and to
improve and monitor the performance of their products under development. Many
buyers use TPC benchmark results as points of comparison when purchasing new
computing systems.

The information technology landscape is evolving at a rapid pace, challenging
industry experts and researchers to develop innovative techniques for evaluation,
measurement, and characterization of complex systems. The TPC remains committed
to developing new benchmark standards to keep pace with these rapid changes in
technology. One vehicle for achieving this objective is the TPC’s sponsorship of the
Technology Conference Series on Performance Evaluation and Benchmarking
(TPCTC) established in 2009. With this conference series, the TPC encourages
researchers and industry experts to present and debate novel ideas and methodologies
in performance evaluation, measurement, and characterization.

The first TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2009) was held in conjunction with the 35th International Confer-
ence on Very Large Data Bases (VLDB 2009) in Lyon, France from August 24 to 28,
2009.

The second TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2010) was held in conjunction with the 36th International Confer-
ence on Very Large Data Bases (VLDB 2010) in Singapore from September 13 to 17,
2010.

The third TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2011) was held in conjunction with the 37th International Confer-
ence on Very Large Data Bases (VLDB 2011) in Seattle, Washington from August 29
to September 3, 2011.

The fourth TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2011) was held in conjunction with the 38th International Confer-
ence on Very Large Data Bases (VLDB 2012) in Istanbul from August 27 to 31, 2012.

The fifth TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2012) was held in conjunction with the 39th International Confer-
ence on Very Large Data Bases (VLDB 2012) in Riva del Garda, Trento, Italy from
August 26 to 30, 2013.

This book contains the proceedings of the sixth TPC Technology Conference on
Performance Evaluation and Benchmarking (TPCTC 2014), held in conjunction with
the 40th International Conference on Very Large Data Bases (VLDB 2014) in
Hangzhou, China from September 1 to 5, 2014, including 12 selected peer-reviewed
papers.



The hard work and close cooperation of a number of people have contributed to the
success of this conference. We would like to thank the members of TPC and the
organizers of VLDB 2014 for their sponsorship; the members of the Program Com-
mittee and Publicity Committee for their support; and the authors and the participants
who are the primary reason for the success of this conference.

September 2014 Raghunath Nambiar
Meikel Poess
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About the TPC

Introduction to the TPC

The Transaction Processing Performance Council (TPC) is a nonprofit organization
that defines transaction processing and database benchmarks and distributes vendor-
neutral performance data to the industry. Additional information is available at
http://www.tpc.org/.

TPC Memberships

Full Members
Full Members of the TPC participate in all aspects of the TPC’s work, including
development of benchmark standards and setting strategic direction. The Full Member
application can be found at
http://www.tpc.org/information/about/app-member.asp.

Associate Members
Certain organizations may join the TPC as Associate Members. Associate Members
may attend TPC meetings, but are not eligible to vote or hold office. Associate
membership is available to nonprofit organizations, educational institutions, market
researchers, publishers, consultants, governments, and businesses that do not create,
market, or sell computer products or services. The Associate Member application can
be found at
http://www.tpc.org/information/about/app-assoc.asp.

Academic and Government Institutions
Academic and government institutions are invited to join the TPC and a special
invitation can be found at
http://www.tpc.org/information/specialinvitation.asp.

Contact the TPC

TPC
Presidio of San Francisco
Building 572B (surface)
P.O. Box 29920 (mail)
San Francisco, CA 94129-0920, USA
Voice: 415-561-6272
Fax: 415-561-6120
Email: info@tpc.org

http://www.tpc.org/
http://www.tpc.org/information/about/app-member.asp
http://www.tpc.org/information/about/app-assoc.asp
http://www.tpc.org/information/specialinvitation.asp


How to Order TPC Materials

All of our materials are now posted free of charge on our web site. If you have
any questions, please feel free to contact our office directly or by email at
info@tpc.org.

Benchmark Status Report

The TPC Benchmark Status Report is a digest of the activities of the TPC and
its technical subcommittees. Sign-up information can be found at the following
URL: http://www.tpc.org/information/about/email.asp.
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Introducing TPCx-HS: The First Industry
Standard for Benchmarking Big Data Systems
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Abstract. The designation Big Data has become a mainstream buzz phrase
across many industries as well as research circles. Today many companies are
making performance claims that are not easily verifiable and comparable in the
absence of a neutral industry benchmark. Instead one of the test suites used to
compare performance of Hadoop based Big Data systems is the TeraSort. While
it nicely defines the data set and tasks to measure Big Data Hadoop systems it
lacks a formal specification and enforcement rules that enable the comparison of
results across systems. In this paper we introduce TPCx-HS, the industry’s first
industry standard benchmark, designed to stress both hardware and software that
is based on Apache HDFS API compatible distributions. TPCx-HS extends the
workload defined in TeraSort with formal rules for implementation, execution,
metric, result verification, publication and pricing. It can be used to asses a broad
range of system topologies and implementation methodologies of Big Data
Hadoop systems in a technically rigorous and directly comparable and vendor-
neutral manner.

Keywords: TPC � Big Data � Industry standard � Benchmark

1 Introduction

Big Data technologies like Hadoop have become an important part of the enterprise IT
ecosystem. TPC Express Benchmark™HS (TPCx-HS) was developed to provide an

© Springer International Publishing Switzerland 2015
R. Nambiar and M. Poess (Eds.): TPCTC 2014, LNCS 8904, pp. 1–12, 2015.
DOI: 10.1007/978-3-319-15350-6_1



objective measure of hardware, operating system and commercial Apache HDFS API
compatible software distributions [1]. TPCx-HS is TPC’s first benchmark developed in
the TPC Express Benchmark™ category [1–3]. TPCx-HS is based on well-known and
respected workload defined in TeraSort with formal rules for implementation, execu-
tion, metric, result verification, publication and pricing, thereby providing the industry
with verifiable performance, price-performance and availability metrics. The bench-
mark models a continuous system availability of 24 h a day, 7 days a week.

Even though the modeled application is simple, the results are highly relevant to
hardware and software dealing with Big Data systems in general. The TPCx-HS
stresses both hardware and software including Hadoop run-time, Hadoop File System
API compatible systems and MapReduce layers. This workload can be used to asses a
broad range of system topologies and implementation of Hadoop clusters. The TPCx-
HS can be used to asses a broad range of system topologies and implementation
methodologies in a technically rigorous and directly comparable, in a vendor-neutral
manner.

2 Introduction to TeraSort

Until 2007, Jim Gray defined, sponsored, and administered a number of sort bench-
marks [4] available to the general community. These include Minute Sort, Gray Sort,
Penny Sort, Joule Sort, Datamation Sort and TeraByte Sort. TeraByte Sort measures
the amount of time taken (in minutes) to sort 1 TB (1012 Bytes) of data.

In 2009, Owen O’Malley et al. of Yahoo! Inc. published the results and a
MapReduce implementation of TeraByte Sort called TeraSort [5]. It was implemented
using the Hadoop MapReduce framework. The implementation used three Hadoop
MapReduce applications called, TeraGen, TeraSort, and TeraValidate described here.

TeraGen performs the task of generating the input data to be sorted. It generates
exactly the same data, byte for byte, as generated by the data generation application
originally defined by the TeraByte Sort benchmark written in C. It is implemented
using multiple map tasks, in which, each map instance is assigned a portion of the keys
to generate. This is done by starting the random generator with the same seed on each
mapper each of which skip the generated numbers until it reaches its target record
range.

TeraSort uses the regular map-reduce sort except for a custom partitioner that splits
the mapper output into N-1 sampled keys to ensure that each of the N reducer, receives
records with keys k such that sample[i-1] <= k < sample[i], where, i is the reducer
instance number. The key sampling process is performed before the actual sorting is
done and written to HDFS to be used during the sorting process.

TeraValidate validates that the output is sorted globally. This is done by ensuring
that one mapper validates the contents of each sorted output file from TeraSort by
ensuring that the keys are ordered. When the mapper is done with an output file it emits
one key that consists of the first and last key consumed by it. The reduce process then
takes the output from each mapper and makes sure that there is no overlap between
mapper outputs ensuring that the files are properly sorted.

2 R. Nambiar et al.



3 Metric

The metric is one of the fundamental components of any benchmark definition and
probably the most controversial when trying to reach an agreement between different
companies. The execution rules define the way a benchmark is executed, while the
metric emphasizes the pieces that are measured. TPC is best known for providing
robust, simple and verifiable performance data [6]. The most visible part of the per-
formance data is the performance metric. Producing benchmark results is expensive
and time consuming. Hence, the TPC’s goal is to provide a robust performance metric,
which allows for system performance comparisons for an extended period and, thereby,
preserving the investments companies make into publishing benchmarks.

In general, a performance metric needs to be simple so that easy system compar-
isons are possible. If there are multiple performance metrics (e.g. A, B, C), system
comparisons are difficult because vendors can claim they perform well on some of the
metrics (e.g. A and C). This might still be acceptable if all components are equally
important, however without this determination, there would be much debate on this
issue. In order to unambiguously rank results, the TPC benchmarks focus on a single
primary performance metric, which encompass all aspects of a system’s performance
weighing each individual component. Taking the example from above, the performance
metric M is calculated as a function of the three components A, B and C (e.g. M = f(A,
B,C)). Consequently, TPC’s performance metrics measure system and overall work-
load performance rather than individual component performance. In addition to the
performance metric, the TPC also includes other metrics, such as price-performance
metrics.

The TPC distinguishes between Primary and Secondary Metrics. Each TPC-
Express Benchmark Standard must define Primary Metrics selected to represent the
workload being measured. The Primary Metrics must include both performance and
price/performance metrics [7].

It is clear that one of the key ingredients to the success of a benchmark is a sound
metric. In the process of benchmark development, the measurable components (e.g.
query elapsed time) and variables (e.g. scale factor) were analyzed in respect to their
impact to the metric. TPC-xHS defines three primary metrics:

1. HSph@SF: Composite Performance Metric, reflecting the TPCx-HS throughput;
where SF is the Scale Factor;

2. $/HSph@SF: Price-Performance metric;
3. System availability Date.

TPCx-HS also reports the following numerical quantities:

1. TG, Data generation phase completion time with HSGen reported in hh:mm:ss
format;

2. TS, Data sort phase completion time with HSSort reported in hh:mm:ss format;
3. TV, Data validation phase completion time reported in hh:mm:ss format;

Introducing TPCx-HS: The First Industry Standard 3



When TPC-Energy option is chosen for reporting [8], the TPCx-HS energy metric
reports the power per performance and is expressed as Watts/HSph@SF (see TPCx-
Energy specification for additional requirements).

Each secondary metric shall be referenced in conjunction with the scale factor at
which it was achieved. For example, TPCx-HS TG references shall take the form of
TPCx-HS TG @ SF, or “TPCx-HS TG = 2 h @ 1”.

The primary performance metric of the benchmark is HSph@SF, the effective sort
throughput of the benchmarked configuration, for example (we use the summation
method as an illustrative example):

HSph@SF ¼ SF
T = 3600ð Þ

� �

Where, SF is the Scale Factor and T is the total elapsed time for the run in seconds.
The price-performance metric for the benchmark is defined as:

$ =HSph@SF ¼ P
HSph@SF

Where, P is the total cost of ownership of the SUT.
The System Availability Date is defined in the TPC Pricing Specification [7].

A TPCx-HS Result is only comparable with other TPCx-HS Results of the same Scale
Factor.

Results at the different scale factors are not comparable, due to the substantially
different computational challenges found at different data volumes. Similarly, the
system price/performance may not scale down linearly with a decrease in dataset size
due to configuration changes required by changes in dataset size.

If results measured against different dataset sizes (i.e., with different scale factors)
appear in a printed or electronic communication, then each reference to a result or metric
must clearly indicate the dataset size against which it was obtained. In particular, all
textual references to TPCx-HS metrics (performance or price/performance) appearing
must be expressed in the form that includes the size of the test dataset as an integral part
of the metric’s name; i.e. including the “@SF” suffix. This applies to metrics quoted in
text or tables as well as those used to annotate charts or graphs. If metrics are presented
in graphical form, then the test dataset size on which metric is based must be imme-
diately discernible either by appropriate axis labeling or data point labeling.

In addition, the results must be accompanied by a disclaimer stating: “The TPC
believes that comparisons of TPCx-HS results measured against different dataset sizes
are misleading and discourages such comparisons”.

3.1 Pricing

TPC Benchmarks™ are intended to provide a fair and honest comparison of various
vendor implementations to accomplish an identical, controlled and repeatable task.

4 R. Nambiar et al.



The pricing for these implementations must also allow a fair and honest comparison for
customers to review [7].

The cost associated with achieving a particular TPCx-HS benchmark score is an
important piece of information for decision makers. The pricing gives total hardware,
software and maintenance prices of the total system for 3 years. Hadoop systems are based
on massive scale-out nature of the systems, having pricing included in the benchmark
provides a consequence to using lots of hardware and software resources to achieve a high
score by showing how much it would cost to achieve that score. A published benchmark
may show an attractive level of performance, but if the hardware configuration required to
achieve it is overly expensive then the attractiveness of that benchmark is reduced.

The TPCx-HS price/performance metric provides a way to compare the effective-
ness of the published results by showing how much it costs to achieve each unit of
performance. This metric can be used to compare the effectiveness of each published
result regardless of the size of the configuration. It also provides additional value to the
TPCx-HS benchmark by providing the opportunity to focus benchmark publications on
this metric rather than highest performance.

Therefore, the ability to have pricing in the TPCx-HS benchmark is another way the
TPC adds additional value to the TeraSort workload.

4 Audit

Historically the TPC benchmarks adapted an independent before publishing the
benchmark. Recently the TPC classified the benchmarks in to two categories -
Enterprise and Express. While independent audits are required for Enterprise bench-
marks, either an independent audit or a peer review process can be used for Express
benchmarks [1].

An independent audit requires that the submitted benchmark results be evaluated by
an auditor certified by the TPC. The term “independent” is defined as: “the outcome of
the benchmark carries no financial benefit to the auditing agency other than fees earned
directly related to the audit.” In addition, the auditing agency cannot supply any
performance consulting under contract for the benchmark under audit. The term
“certified” is defined as: “the TPC has reviewed the qualification of the auditor and
certified that the auditor is capable of verifying compliance of the benchmark result.”
Among other rules, the following conditions must be met:

1. The auditing agency cannot be financially related to the sponsor. For example, the
auditing agency is financially related if it is a dependent division, the majority of its
stock is owned by the sponsor, etc.

2. The auditing agency cannot be financially related to any one of the suppliers of the
measured/priced components, e.g., the DBMS supplier, the terminal or terminal
concentrator supplier, etc.

The A peer review audit is the evaluation of a submitted benchmark result by one or
more groups of members in the relevant subcommittee. It comprises a method of
reviewing the results by members the relevant subcommittee. This peer review technique
is implemented to verify the specification’s compliance of the submitted benchmark’s

Introducing TPCx-HS: The First Industry Standard 5



information. Perhaps, one can draw a parallel of this peer review audit to the academic
peer review process to assess a paper to be published in a journal.

Following the publication of the benchmark, the benchmark is available for addi-
tional review for a period of 60 days during which TPC member companies can
challenge the result of the benchmark or any other benchmarks still within their peer
review period.

With the fast-changing landscape of data, applications and workloads, the TPC is
developing some new benchmarks and reconsidering the adoption of other methods of
auditing to compliment the current method. One of which is the peer review audit as
described above.

4.1 The Pros and Cons of Independent and Peer-Review Audits

One of the main advantages of independent audit is its discrete nature of the rela-
tionship between the party and auditor during the auditing process. The exchange
between the two parties is confidential as it should be since the information revealed
during this interaction often comprises of company’s proprietary data and any intel-
lectual property. Thus, the benchmark outcome is kept secret until the benchmark has
passed the audit and published. The confidential nature of the audit becomes very
important when the benchmark result is part of a company’s key announcement such as
new product launch, customer events, etc. To prepare for these events, companies
spend significant amount of time, engineering effort and resources and is often leads to
an announcement that is a part of a company’s strategy. Therefore, it is essential that it
the information regarding the benchmark result be revealed via peer review audit.

Another advantage of independent audit is the auditor’s assistance in the whole
process to make sure the benchmark result is compliant. A “friendly” auditor works
with the company toward this goal. On the contrary, the peer review audit is seen as a
very competitive process in which companies try to dislodge the competitor’s result
during their faultfinding mission. It can be very disruptive to the company who is trying
to obtain benchmark results for a product launch or company event.

Another advantage of independent audit includes consultation with auditor on
various questions for compliance such as a hardware setting that may violate the
specification, software parameter has a known performance gain but not publicly
available, a product used in the benchmark but not supported, etc.

The auditor also offers confidential proxy interactions between the company and
TPC. This often arises during requests for interpretation on difficult topics such as new
technology implementation of novel technique has not seen on previous benchmark.
Additionally, the auditor provides a complete review of benchmark configuration,
testing application protocol, benchmark results in accordance to the TPC provided
auditing lists.

The independent, certified auditor’s experience, credence and knowledge - due to
their participation over the years with TPC - provide the credibility to the auditing
method. This begs the question “why then do we need to consider the peer review audit
method if independent audit satisfies the needs?”
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Paradoxically, the independent auditor’s useful assistance, experience, and
knowledge offered during the audit are the basis for the method’s weakness. The
auditor’s usefulness increases the cost to the benchmark at the time when companies
are looking for ways to cut cost. The “free” peer review audit begins to look more
attractive in the cases where the parties are willing to forgo the confidentiality of the
benchmark. Other than the added value listed above that the independent audit, the peer
review audit can meet other requirements outlined in the auditing lists.

While, one of the main advantages of the peer review audit includes the rigor of
being evaluated by multiple parties whose interests are diverse.

Hence, the TPCx-HS has decided to adopt peer review method to augment the
traditional independent audit. This approach offers options which companies can
choose to fit their needs. In general, the TPC provides the audit’s flexibility, while
addressing confidentiality, cost saving, rigorousness, ease of benchmark as we adapt to
the forever changing world of transaction processing.

5 Sizing and Scale Factors

TPCx-HS follows a stepped benchmark sizing model. Unlike TeraSort which can be
scaled using an arbitrary number of rows in the dataset, TPC-xHS limits the choices to
one of the following1: 10 B, 30 B, 100 B, 300 B, 1000 B, 3000 B, 10000 B, 30000 B
and 100000 B, where each row/record is 100 bytes. In TPC-xHS these dataset sizes are
referred to in terms of Scale Factors, which are defined as follows: 1 TB, 3 TB, 10 TB,
30 TB, 100 TB, 300 TB, 1000 TB, 3000 TB and 10000 TB. For example a 3 TB Scale
Factor corresponds to a dataset with 30B rows. The primary motivation for choosing a
stepped design in benchmark sizing is to ease the comparison of results across different
systems. However, it should be noted that results at different Scale Factors are not
comparable to each other due to the substantially different computational challenges
found at different data volumes. Similarly, the system price/performance may not scale
down linearly with a decrease in dataset size due to configuration changes required by
changes in dataset size.

6 Benchmark Execution

TPCx-HS benchmark workload consists of four modules:

• HSGen generates the input dataset at a particular Scale Factor.
• HSSort sorts the input dataset in total order.
• HSValidate validates the output dataset is globally sorted.
• HSDataCheck verifies the cardinality, size and replication factor of the dataset.

HSGen, HSSort and HSValidate are based on TeraGen, TeraSort and TeraValidate
(as described in Sect. 2) respectively. The TPC-xHS kit also includes HSDataCheck

1 There is no inherent scale limitation in the benchmark. Larger datasets can be added (and smaller
ones retired) based on industry trends over time.
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which verifies that the dataset generated by HSGen and the output produced by HSSort
matches the specified Scale Factor.

A valid benchmark run consists of five separate and non-overlapping phases that
are executed sequentially. All phases are initiated by a master script, which can be
executed from any of the nodes in the SUT. The phases are listed below:

1. Generation of input data via HSGen.
2. Verification (cardinality, size and replication) of the input data via HSDataCheck.
3. Sorting the input data using HSSort.
4. Verification (cardinality, size and replication) of the sorted dataset via

HSDataCheck.
5. Validation of the sorted output data via HSValidate.

If any of the verification or validation phases fail, the run is considered invalid. The
TPCx-HS Performance Metric (see Sect. 3) for a run is based on the end-to-end run
time of all five phases as illustrated in Fig. 1. In order to account for variance, a
benchmark test consists of two identical runs, Run 1 and Run 2 with the reported result
being for the run with the lower performance metric.

No part of the SUT may be rebooted or restarted during or between the runs or any
of the phases. If there is a unrecoverable error reported by any of the applications,
operating system, or hardware in any of the five phases, the run is considered invalid. If
a recoverable error is detected in any of the phases, and is automatically dealt with or
corrected by the applications, operating system, or hardware then the run is considered
valid. However, manual user intervention is not allowed. If the recoverable error
requires manual intervention to deal with or correct then the run is considered invalid.
A minimum of three-way data replication must be maintained throughout the run.

The SUT cannot be reconfigured, changed, or re-tuned by the user during or
between any of the five phases or between Run 1 and Run 2. Any manual tunings to the
SUT must be performed before the beginning of Phase 1 of Run 1, and must be fully
disclosed. Any automated changes or tuning performed by the OS or commercially

Fig. 1. TPCx-HS execution phases
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available product between any of the phases is allowed. Any changes to default tunings
or parameters of the applications, operating systems, or hardware of the SUT must be
disclosed as well.

7 Energy Metric and Power Measurement

The energy metric and power measurement in TPCx-HS benchmark is based on TPC-
Energy Specification which contains the rules and methodology for measuring and
reporting energy metrics [6]. Reporting energy metric is optional.

During benchmark test energy is consumed by each device in SUT, specifically, the
compute devices, data storage devices, also the hardware devices of all networks
required to connect and support the SUT systems. As defined in TPCx-HS [7], if the
option TPC-Energy secondary metrics is reported, the components which are included
in each subsystem must be identified. For each subsystem, the calculations defined for
the TPC-Energy secondary metrics must be reported using the Performance Metric of
the entire SUT and the energy consumption for each subsystem under report. Power
should be measured for the entire system under test [7].

If the SUT is physically standalone, e.g. all devices are in an independent rack, and
the rack is separately powered, energy consumption can be directly measured from the
rack input. If there are devices in the SUT that are separately powered, each of the
devices should be separately measured. The total power is the summation of each
power input, as shown in Eq. (1)

P ¼
X

1� i�m

pi ð1Þ

Where m is the total number of devices, pi is the power measurement of each subsystem
i during the run.

If the SUT shares power input with other devices that are not in the SUT’s device
list, a power measurement subset has to be defined that only includes the SUT devices.
The measurement points need to be identified for the SUT, board level or even chip
level power measurement might be required. In some cases, the SUT power can be
obtained by using the total power minus the power of non-SUT devices.

7.1 Power Measurement Methods

The real-time power consumption of a device can be calculated using the real-time
voltage and current measurement with power analyzers, as shown in Fig. 2(a).

Let Ui
(k) and Ii

(k) represent the measurement reading of voltage and current for a
device i at time k, respectively. Then the instant power of device i at time k is Pi

(k):

Pi
ðkÞ ¼ Ui

ðkÞIiðkÞ ð2Þ
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If the elapsed time to perform next measurement is s, the time k + s is the next
sampling point, and s is the measurement interval. The measurement interval can be
defined at different levels according to the time length, such as less than 1 s, equal to 1 s or
greater than 1 s. For the measurement on AC powers, the integration of the total-energy
function of power analyzers can sample the input power multiple times per AC cycle and
therefore much less susceptible to sampling artifacts caused by the AC waveform.

The power measurement results of each sampling period can be plotted together to
obtain a power chart for the benchmark program. The chart shows the power usage
against execution time during the benchmark test for each device, as shown in Fig. 2(b).

7.2 Energy Calculation Based on Measurement Results

In TPCx-HS, for each subsystem, the calculation defined for the TPC-Energy sec-
ondary metrics is:

E ¼
Z T

0
PðtÞdt ð3Þ

where, T is the elapsed time for the performance run, P(t) is the power measured at
time t.

In real measurements using a power analyzer, there will be limitations on the
minimum sampling interval between each measurement reading. When the sampling
interval is small enough, the sample period s is the approximation of dt. At time k, the
power P kð Þ ¼ P

1� k�m
Pi

ðKÞ. Therefore, the energy calculation of Eq. (3) becomes the

format in Eq. (4):

E ¼
XT
0

PðkÞk ð4Þ

All real measurements can be done with Eq. (4) by using power analyzers.

(a) (b)

Fig. 2. (a) The power measurement method for the devices in a SUT by using power analyzers;
(b) A sample of measurement results and power charts for a SUT composed with 3 devices.

10 R. Nambiar et al.



7.3 TPCx-HS Energy Metric Report

The TPCx -HS power metric is computed as:

E = ðT � HSph@SFÞ ð5Þ

Where E is the energy consumption for the reported run; T is the elapsed time in
seconds for the reported run; HSph@SF is the reported performance metric. The units
of Energy Metric are reported to one digit after the decimal point, rounded to the
nearest 0.1. [1].

8 Conclusion

The TPC has played a crucial role in providing the industry with relevant standards for
total system performance, price-performance, and energy efficiency comparisons [10,
11]. TPC benchmarks are widely used by database researchers and academia. Histor-
ically known for database centric standards, the TPC has developed benchmarks for
virtualization and data integration as industry demanded for those benchmarks.

Now Big Data has become an integral part of enterprise IT, the TPCx-HS is TPC’s
first major step in creating a set of industry strands for measuring various aspects of
hardware and software systems dealing with Big Data. Developed as an Express
benchmark by extending the workload defined in TeraSort with formal rules for
implementation, execution, metric, result verification, publication and pricing; the
TPCx-HS is designed to stress both hardware and software that is based on Apache
Hadoop MapReduce and HDFS API compatible distributions. We expect that TPCx-
HS will be used by customers when evaluating systems for Big Data systems in terms
of performance, price/performance and energy efficiency, and enable healthy compe-
tition that will result in product developments and improvements.
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Abstract. This study quantifies the tradeoff associated with alternative
physical representations of a social graph for processing interactive social
networking actions. We conduct this evaluation using a graph data store
named Neo4j deployed in a client-server (REST) architecture using the
BG benchmark. In addition to the average response time of a design,
we quantify its SoAR defined as the highest observed throughput given
the following service level agreement: 95 % of actions to observe a response
time of 100 ms or faster. For an action such as computing the shortest
distance between two members, we observe a tradeoff between speed and
accuracy of the computed result. With this action, a relational data design
provides a significantly faster response time than a graph design. The
graph designs provide a higher SoAR than a relational one when the social
graph includes large member profile images stored in the data store.

1 Introduction

A graph database provides an intuitive representation of a social graph. It sup-
ports vertices that may represent members and edges that may represent a rela-
tionship such as friendship between two members. Queries may filter vertices of
interest and navigate edges to retrieve relevant data. Updates may insert and
delete a vertex, add and remove edges between vertices, and change the property
value of edges and vertices. Facebook’s TAO [1] is an example graph data store
that serves a social graph to hundreds of millions of users on a daily basis.

One may represent a social graph using different physical graph representa-
tions. To illustrate, consider the friendship relationship between two members A
and B. It may start with one member, say Member A, extending a friend invitation
to Member B. And, Member B accepting this invitation. Two physical represen-
tations, termed Labeled and Distinct, are as follows. With Labeled, the friendship
edge between Member A and B is assigned a value to identify it as a friendship invi-
tation. Once Member B accepts A’s invitation, the value of this edge changes to
denote a confirmed friendship. With Distinct, there are two types of edges, one for
a pending friend invitation and a second for a confirmed friendship. When Member
B accepts A’s invitation, the system deletes the edge corresponding to the friend

c© Springer International Publishing Switzerland 2015
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invitation and creates a confirmed friendship edge between them. This design cre-
ates and deletes edges more frequently than the Labeled design.

A research topic is what are the tradeoff associated with these alternative
designs for different workloads? And, how do they compare with data stores
that implement a different data model such as relational database management
systems (RDBMSs)? To investigate these research topics, we had a choice of
benchmarks including BG [6,7,14], LinkBench [4], LDBC [2,11], or a micro-
benchmark such as [3,16]. After a careful analysis, we decided to use BG for
two reasons. First, BG is a stateful benchmark that quantifies both the average
response time of a data store and its throughput given a pre-specified service
level agreement (SLA). The latter is termed Social Action Rating, SoAR [7],
and is similar to the tps rating1 defined by the TPC-C benchmark [12,15]. As
reported in Sect. 4, an RDBMS may provide an average response time that is
faster than Neo4j for some actions while Neo4j outperforms the RDBMS when
considering SoAR with certain database settings. Second, BG quantifies the
amount of stale, inconsistent, or invalid data (collectively, termed unpredictable
data [7,8]) produced by a data store. This is useful because certain social net-
working actions such as computing the shortest distance between two members
may utilize heuristic search techniques that do not produce correct results, see
discussions of Fig. 4 in Sect. 3.

The primary contribution of this study are two folds. First, it identifies
four physical graph data designs for processing interactive social networking
actions, see Fig. 3. Second, it evaluates these designs using the Neo4j [22] data
store and the BG benchmark. This includes extensions of BG with the follow-
ing three graph oriented actions: Get Shortest Distance, List Common Friends,
and List Friends-of-Friends. The main findings of our evaluation are as follows.
The Distinct physical graph design provides a superior performance when com-
pared with the Labeled design. With the three new graph oriented actions, an
industrial strength relational database management system (SQL-X) provides
faster response times than Neo4j configured with a variant of the Distinct design
named StoredDistinct (see description of Fig. 3 for details). One reason for this
is the normalization guideline of the relational data model that represents a
many-to-many friendship relationship as a table. This enables the graph ori-
ented actions to fetch a smaller amount of data from a single table to provide
faster response times. With a workload consisting of a mix of actions, SQL-X
provides a higher SoAR than Neo4j when the social graph consists of no images.
When large profile images are stored in SQL-X, Neo4j provides a higher SoAR
than SQL-X.

The rest of this paper is organized as follows. We survey the related work in
Sect. 2. Section 3 describes an implementation of the BG benchmark using Neo4j,
detailing four physical graph data designs and their performance characteristics for
different mix of actions. Section 4 quantifies the tradeoffs associated with a graph
and a relational data design.Our future research directions are contained in Sect. 5.
1 SoAR is different than tps in that the SLA can be changed depending on the require-

ments of an application while TPC-C’s specified SLA is fixed.
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2 Related Work

Evaluation of graph data stores has been a subject of active research during the
past few years. The average response time of different actions of a microbench-
mark is presented in [3] to compare two graph databases (Neo4j and Dex) with
a RDF store (RDF-3X) and two relational database management systems (Post-
greSQL and Virtuoso). Similarly, in [16], the response time of several social net-
working actions is used to compare the performance of alternative graph query
languages using Neo4j with Java Persistent API (JPA) using the MySQL rela-
tional database management system. Both studies consider Neo4j deployed in
either embedded or a client-server (REST) mode.

This study is different than [3,16] along two dimensions. First, we focus on
Neo4j Cypher REST to investigate the alternative physical designs of a social
graph, see the taxonomy of Fig. 2 and its discussion in Sect. 3.1. Second, we use
the BG benchmark to analyze both the average response time and SoAR of the
different designs. This analysis includes both read and write actions. (Both [3,16]
focus on read actions only.) A key findining is that a design that provides a
high performance with infrequent write actions may not perform well when the
frequency of write actions is higher, see Table 4 and its discussion in Sect. 3.2.
A novel feature of BG is its ability to quantify the amount of erroneous data
produced by a data store. We use this capability of BG to show that one may
trade performance for accuracy of results with an action such as Get Shortest
Distance. To the best of our knowledge, these findings are novel and have not
been presented else where.

3 BG Benchmark and Its Implementation Using Neo4j

Figure 1 shows the conceptual design of BG’s social graph used for this evalua-
tion. (See [6,7,9] for a comprehensive description of BG.) The Members entity
set contains those users with a registered profile. It consists of a unique identi-
fier and a fixed number of string attributes2. One may configure BG to create
a social graph with or without images. In this paper, we consider both possi-
bilities. With images, all experimental results are obtained using a social graph
configured with a 2 KB thumbnail image and a 12 KB profile image. Thumbnail
images are displayed when listing friends of a member and the higher resolu-
tion profile image is displayed when a member visits a profile. A member may
extend a friend invitation to another member or be friends with a member, rep-
resented using “Invite” and “Friend” relationship sets, respectively. A resource
may pertain to an image, a posted question, a technical manuscript, etc. These
entities are captured in one set named “Resources”. In order for a resource to
exist, a member must “Own” that resource. A member may post a resource,
say an image, on the profile of another member, represented as a “Posted on”
relationship between two members and a resource. A member may comment on
a resource. This is implemented using the “Manipulation” relationship set.
2 The size of these attributes is configurable [6].



16 S. Ghandeharizadeh et al.

Fig. 1. BG benchmark’s conceptual schema.

BG uses a closed emulation model to generate a workload of actions for a data
store. With this model, a thread emulates a Member A who performs an action
on another member or resource. This member who is performing the action is
termed a socialite. A thread does not emulate another socialite until the pending
action of the current socialite is processed. BG controls the load imposed on a
data store by varying the number of threads used to emulate concurrent socialites
performing actions, see [6,7] for details.

Figure 2 shows four different graph representations of this conceptual data
model. We describe these alternatives when presenting the different actions
that constitute the core of BG’s workload. This discussion presents the aver-
age response time (RT ) and Social Action Rating (SoAR) of the alternative
graph models using a single node Neo4j deployment. RT is quantified with BG
emulating a single socialite issuing a mix of actions by issuing one action at a
time. It is the average amount of time elapsed from when a socialite issues a
request to the time Neo4j completes servicing the request. SoAR is the highest
throughput observed with a service level agreement (SLA) that requires 95 % of
actions to observe a response time of 100 ms or faster with no stale data.

The target hardware platform consists of two PCs connected using a Gigabit
switch. Each PC consists of an i7-4770 processor, 16 GB of memory, one TB of
disk storage, and a Gigabit networking card. The operating system of each PC
is a 64 bit Windows 2012 Server. The version of Neo4j server is 2.0.1 and we
used Neo4j’s Cypher3 query language to implement the Client that performs the
interactive social networking actions (termed BGClient). All experiments assume
a social graph consisting of 100,000 members with 100 friends per member (φ)
and 100 resources per member (ρ).

We classify BG’s actions into read and write. Below, we present them in turn.
3 Cypher is a declarative language similar to SQL.
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Fig. 2. Four physical graph representations of BG’s database.

3.1 BG’s Read Actions

BG’s actions and their graph implementation are as follows. First, the View
Profile (VP) action emulates a Socialite with member id A visiting the profile
of a member with id Ur. BG generates A and Ur as input to VP. A may equal
Ur, emulating a socialite referencing her own profile. The output of VP is the
profile information of Ur, including Ur’s attributes and the following two simple
analytics: Ur’s number of friends and number of posted resources on her wall.
If the socialite is referencing her own profile (A equals Ur) then VP retrieves a
third simple analytic, Ur’s number of pending friend invitations.

The observed system performance with the VP action depends on the phys-
ical representation of the graph database. Figure 3 shows four different phys-
ical representations using a two dimensional quad, see also Fig. 2. The two
dimensions correspond to the alternative representations of the simple analytics
and friendship. One may implement the simple analytics using a Cypher query
that computes the required value every time, see the first column of Table 2.
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Fig. 3. Four physical graph designs.

Table 1. RT , in milliseconds, for the alternative physical graph representations using
Neo4j with a 100 K social graph, φ = 100 friends per member, ρ = 100 resources per
member.

ComputeLabeled ComputeDistinct StoredLabeled StoredDistinct

View Profile (VP) 308 93 12 8

List Friend (LF) 435 293 520 313

Alternatively, one may store the value of these simple analytics and update
them in the presence of write actions, enabling the VP action to simply look
up the stored value, see the last column of Table 2. These two alternatives are
termed4 Compute and Stored, respectively.

With the friendship relationship, one may represent pending friend invita-
tions and the confirmed friendships as unique edges (relationships) independent
of one another. This design is termed Distinct friendship. Alternatively, one may
represent both as one edge and label the edge to identify either a pending invi-
tation or a confirmed friendship. This design is termed Labeled friendship. These
two alternatives constitute the rows of Fig. 3, resulting in four physical graph
designs shown in the quad.

The first row of Table 1 shows the average response time, RT , observed with
the alternative designs for the VP action. The StoredDistinct is clearly the fastest
of the alternatives. Its SoAR with VP is more than twice higher than Compute,
see the first row of Table 4.

The List Friend (LF) action of BG emulates a socialite A viewing member
Ur’s list of friends. Similar to the discussion of VP, A may equal to Ur emulating
4 They are termed Basic and Manual in [10] with a relational and JSON representation

of BG social graph.
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Table 2. Cypher queries that implement the View Profile action with four different
data models.

Data Model Query

ComputeLabeled a. MATCH (u:‘Members’)-[f:‘Friend’]-(uu:‘Members’)

WHERE u.userid=profileOwnerID AND f.status=Confirmed

RETURN COUNT (uu) AS total

b. MATCH (u:‘Members’)<-[f:‘Friend’]-(uu:‘Members’)

WHERE u.userid=profileOwnerID AND f.status=Pending

RETURN COUNT (uu) AS total

c. MATCH (u:‘Members’)<-[c:‘Postedon’]- (r:‘Resources’)

WHERE u.userid=profileOwnerID RETURN COUNT(r) AS total

d. MATCH (u:‘Members’) WHERE u.userid = profileOwnerID

RETURN u.userid, u.username, u.lname, u.fname,

u.gender, u.dob, u.jdate, u.ldate, u.address,

u.email, u.tel, u.pic

ComputeDistinct a. MATCH (u:‘Members’)-[f:‘Friend’]-(uu:‘Members’)

WHERE u.userid=profileOwnerID

RETURN COUNT (uu) AS total

b. MATCH (u:‘Members’)<-[f:‘Invite’]-(uu:‘Members’)

WHERE u.userid= profileOwnerID

RETURN COUNT (uu) AS total

c. MATCH (u:‘Members’)<-[c:‘Postedon’]-(r:‘Resources’)

WHERE u.userid= profileOwnerID

RETURN COUNT(r) AS total

d. MATCH (u:‘Members’) WHERE u.userid = profileOwnerID

RETURN u.userid, u.username, u.lname, u.address, u.gender,

u.dob, u.jdate, u.ldate, u.fname, u.email, u.tel, u.pic

StoredLabeled/ MATCH (u:‘Members’) WHERE u.userid = profileOwnerID

StoredDistinct RETURN u.userid, u.username, u.lname, u.fname, u.gender,

u.dob, u.jdate, u.ldate, u.address, u.email, u.tel,

u.friendsCount, u.pendingfCount, u.resourcesCount, u.pic
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the socialite viewing her own list of friends. LF retrieves the profile information
of each friend including their thumbnail image and excluding their profile image.
We implement LF using the following Cypher query: MATCH (u1:Members)-
[f:Friend]- (u2:Members) WHERE u1.userid = Ur AND f. status=Confirmed
RETURN u2.userid, u2.username, u2.fname, u2.lname, ..., u2.thumbnail.

Table 1 shows representation of a friendship as a distinct edge is faster than
using labeled edges. With the latter, the query must incur the additional over-
head of examining the value of each label (pending versus confirmed friendship)
to process the LF action. However, the alternative designs provide comparable
SoAR, see the second row of Table 4.

The Get Shortest Distance (GSD) action of BG computes the distance bet-
ween two members in the social graph. If these two members are the same user
then their shortest path is zero. If they are friends then their shortest path is one.
If they belong to two disjoint social graphs then their shortest path is MAX-INT.
The Cypher query to implement GSD is: MATCH p=shortestPath((u:Members)-
[:Friend*.. depthToTraverse] -(u2:Members)) WHERE u.userid=Ur and
u2.userid=Up RETURN length(p) as total. The parameter depthToTraverse
defines the number of levels (termed depth) of friendship relationship traversed
by the shortestPath function of Neo4j, striking a balance between the observed
response times and the accuracy of the computed value. Increasing depth may
enhance the accuracy of GSD and slow down its processing, resulting in a higher
response time.

Figure 4a show the average response time of GSD as a function of the depth tra-
versed with 10 and 100 friends per member. BG quantifies the percentage of GSD
actions that observe incorrect results, termed unpredictable data [7], τ . Figure 4b
shows the percentage of GSD requests that observe accurate results, termed Accu-
racy (100-τ), as function of the depth with different number of friends per member.
As we increase the traversed depth on the x-axis, the computed distance becomes
more accurate (i.e., τ decreases [7]) and the system becomes slower as the shortest-
Path function visits many more vertices. A sufficiently high depth value causes the
shortestPath to visit all vertices and terminate, producing 100 % accurate results.
The response time level off beyond this depth.

More formally, the response time levels off when the depth traversed multi-
plied by the number of friends equals the total number of members, resulting in
100 % accurate results. For example, in Fig. 4a, with the 100 K social graph and
100 friends per member, the response time levels off at a dept of 1,000. It levels
of at a depth of 10,000 with 10 friends per member. The first row of Table 3
shows the observed response time with a depth of 20,000 with different number
of friends per member, φ. With this depth, GSD provides 100 % accurate resuls
and its response time levels off with all three φ values.

With a fixed depth for the shortestPath function, the response time is faster
with fewer friends per member as this function visits fewer vertices. Hence, its
accuracy is also lower. To illustrate, consider a depth of 100 on the x-axis of
Fig. 4. The observed response time with 10 friends per member is six time faster,
100 versus 600 ms. Moreover, the accuracy is significantly lower, 7 % versus
25 %, as its traversal of each depth visits fewer vertices (10 times lower) and
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3.a Average Response Time ( )

3.b Accuracy

Fig. 4. Average response time and accuracy of GSD as a function of the traversed
depth with a 100 K member social graph and two different settings for the number of
friends per member (φ = 10 and 100).

its likelihood of visiting the vertex of interest is lower. The first row of Table 3
shows the response time increases as a function of φ as GSD must process many
more edges.

The View Friend Request (VFR) action of BG retrieves Socialite A’s
pending friend request, retrieving the profile information of each member who
has generated a friend request for member A. The behavior of VFR with Neo4j
is similar to the discussion of LF.

A socialite uses the ViewComments on Resource (VCR) action to display
the attributes of comments posted on a resource with a unique RID. Its Cypher
query is as follows: MATCH (u:Members)-[m:Manipulation]->(r:Resources)
WHERE r.rid=RID RETURN u.userid, r.rid, m.mid, m.type, m.content,
m.timestamp. The socialite may post and delete comments on a resource (PCR
and DCR) that creates and deletes edges between a member and a resource vertex,
respectively.

The View Top-K Resources (VTR) enables a socialite (Member A) to
retrieve and display her top k resources posted on her wall. Both the value
of k and the definition of “top” are configurable. Our Cypher implementation
uses the unique id assigned to a resource (rid) as the definition of top: MATCH
(u:Members) <-[cf:PostedOn]- (r:Resources) WHERE u.userid=A ORDER
BY r.rid LIMIT k.

The List Common Friends (LCF) action computes the common friends of
two members. If these two members are the same member then their common
friends is an empty set. If they are friends then LCF retrieves their common
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Table 3. RT , in milliseconds, of the StoredDistinct physical graph design as a function
of the number of friends (φ) with a 100 K social graph and ρ = 100 resources per
member.

φ = 10 φ = 100 φ = 1,000

Get Shortest Distance (GSD) 402 2,733 41,027

List Common Friends (LCF) 2,120 4,368 34,630

List Friends-of-Friends (LFF) 12 212 7,939

friends excluding themselves. Otherwise, if their distance is three or higher, then
the result is an empty set. The set is defined as the members who are a distance of
one from both members. Match (u1:Members), (u2:Members),(mf:Members)
WHERE u1.userid=Up AND u2.userid=Ur AND (u1)-[:Friend]-(mf)-[:Fri-
end]-(u2) RETURN mf.userid. The response time of LCF increases as a func-
tion of the number of friends per member, φ. (See the second row of Table 3.) At
times, the result of the LCF action might be the empty set as its input members
may have no common friends. The likelihood of this is lower with higher values
of φ, explaining the higher average response time.

The List Friends-of-Friends (LFF) action computes those members who
are a distance of two from the specified member, including their common friends.
The Cypher query to implement this action is as follows: MATCH (u1:Members)-
[:Friend *2..2]-(u2:Members) WHERE u1.userid=Up and NOT (u1)-[:Fr-
iend]-(u2) RETURN distinct u2.userid. The third row of Table 3 shows the
response time of the LFF action increases superlinearly as a function of φ. With
LFF, a ten fold increase in the value of φ results in a ten fold increase in the
number of retrieved userids. More precisely, given M members, BG constructs
the social graph by assigning members (i+j)%M as friends of Member i where
the value of j varies from 1 to5 φ

2 . Hence, LFF retrieves 2φ userids. For example,
with φ = 10 and 100, LFF retrieves 20 and 200 members, respectively. While
this explains the higher response time as a function of φ, there appears to be
additional overhead that causes the response time of Neo4j to increase superlin-
early.

3.2 BG’s Write Actions

BG supports four write actions that impact the friendship relationship (edges)
between members (vertices). These are Invite Friend (IF), Accept Friend Request
(AFR), Reject Friend Request (RFR), and Thaw Friendship (TF). All involve
Socialite A invoking the action on Member Ur. These actions modify either
the presence of edges or the attribute value of an edge between vertices. For
example, the Cypher create edge command for the IF action with the labeled
design is as follows: MATCH (u1:Members), (u2:Members) WHERE u1.userid=A
AND u2.userid=Ur CREATE (u1)-(:Friend{status:pending})->(u2).
5 The torus characteristics of the mod function guarantees φ friends per member.
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Table 4. SoAR of the four physical graph models with workloads consisting of VP
only, LF only, and a mix of read and write actions.

Workload ComputeLabeled ComputeDistinct StoredLabeled StoredDistinct

View Profile (VP) 971 714 2,205 2,251

List Friend (LF) 93 119 112 118

0.1% Write Actions 117 459 819 835

1% Write Actions 46 369 435 499

10% Write Actions 32 162 0 100

With the Stored representations, these write actions must maintain the sim-
ple analytics attribute values of a vertex (member) up to date. For example, the
AFR action must increment the number of friends of the vertices corresponding
to Members A and Ur. Moreover, it must decrement6 the number of pending
friend invitations for Member A.

Table 4 shows the SoAR of the alternative physical graph designs for a mix
of read and write actions. The first column increases the frequency of the write
actions such as Invite Friend and Thaw Friendship, see Table 5. This reduces
the SoAR of all designs shown in Fig. 2. With a mix consisting of 10 % write
actions, computing the analytics of the View Profile action provides a higher
performance than the stored designs due to their overhead to maintain the value
of simple analytics up to date.

Representing pending and confirmed friendship relationships with unique
edges provides a higher performance when compared with labeled edges, com-
pare ComputeDistinct and ComputeLabeled columns in Table 4. Both slow down
as a function of an increasing mix of write actions. With ComputeDistinct,
when a member confirms a pending friendship invitation, the system deletes
an edge and inserts a new one. With ComputeLabeled, the same action changes
the value associated with a property of an edge. This consumes more of system
resources with our workloads, resulting in a lower SoAR.

4 Comparison of Neo4j with SQL-X Using BG

This section compares the performance of an industrial strength relational data-
base management system (RDBMS) named7 SQL-X with Neo4j using BG. The
schema used for the RDBMS to represent the social graph is as follows:

– Users(userid, username, pw, fname, lname, gender, dob, jdate, ldate, address,
email, tel, profileImage, thumbnailImage, #Friends, #FriendInvitations,
#Resources)

– Friendship(inviter, invitee, status)

6 BG is a stateful benchmark that generates valid actions only. When it invokes the
AFR action involving Member A and Ur, it does so based on its knowledge of Ur

having a pending friend invitation from A. See [7] for details.
7 Due to licensing agreement, we cannot disclose the identity of this system.
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Table 5. Three mixes of social networking actions.

BG Type Very Low Low High

Social (0.1 %) (1 %) (10 %)

Actions Write Write Write

View Profile, VP Read 40 % 40 % 35 %

List Friends, LF Read 5 % 5 % 5 %

View Friend Requests, VFR Read 5 % 5 % 5 %

Invite Friend, IF Write 0.04 % 0.4 % 4 %

Accept Friend Request, AFR Write 0.02 % 0.2 % 2 %

Reject Friend Request, RFR Write 0.02 % 0.2 % 2 %

Thaw Friendship, TF Write 0.02 % 0.2 % 2 %

View Top-K Resources, VTR Read 40 % 40 % 35 %

View Comments on a Resource, VCR Read 9.9 % 9 % 1 %

Table 6. RT in milliseconds with maximum depth = 1,000.

SQL-X Neo4j

Get Shortest Distance (GSD) 718 2,588

List Common Friends (LCF) 14 4,317

List Friends-of-Friends (LFF) 26 163

– Resource(rid, creatorid, walluserid, type, body, doc)
– Manipulation(mid, rid, modifierid, creatorid, timestamp, type, content)

Underlined attributes are indexed and serve as the primary key of a table. An
italicized attribute represents a foreign key relationship. A confirmed friendship
between two members is represented as two rows.

Except for the LCF and the GSD actions, an implementation of BG’s actions
using the SQL query language is straightforward and described in [6,7,10]. We
implement LCF(A,B) using a single query: SELECT DISTINCT f1.inviteeid FROM
Friendship f1, f2 WHERE f1.inviteeid=f2.inviteeid and f1.inviterid=
A and f2.inviterid=B and f1.status=Confirmed and f2.status=Confirmed.
Figure 5 shows an implementation of the Breadth First Search (BFS) algorithm
to implement GSD using the SQL query language. This algorithm issues a SQL
query for each level of BFS starting with one member of the social graph, identi-
fied by UserID1. It terminates once it encounters the other member of the social
graph (UserID2), exhausts all the members of the social graph, or exceeds its max-
imum allowed depth.

Table 6 shows the average response time of GSD, LCF, and LFF with SQL-X
and Neo4j for a social graph consisting of 100 K members, 100 fpm, and 100 rpm.
SQL-X is faster than Neo4j for processing each of these commands. An SQL
implementation of these commands reference a single table, Friendship, that is a
vertical slice of the data. For example, The GSD algorithm of Fig. 5 queries the
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Fig. 5. Get Shortest Distance using SQL-X.

Friendship table repeatedly in Step 5. Neo4j, on the other hand, may retrieve
a vertex that contains several property values of a member including a 12 KB
profile image. It is possible to further enhance the reported GSD numbers with
SQL-X by implementing the algorithm of Fig. 5 as a stored procedure.

Table 7 shows the observed SoAR with SQL-X and Neo4j (using the Stored-
Distinct design, see Fig. 3) for the three mix of write actions shown in Table 5.
We consider a BG database configured with either images or no images. The lat-
ter lacks the 12 KB profile image and the 2 KB thumbnail image. With both, the
schema of SQL-X stores the simple analytics of a member as an attribute value
of a row and requires a write action to maintain these values up-to-date [10].

SQL-X performs poorly when required to store images larger than 4 KB [10,
19] and Neo4j outperforms it by a wide margin. With a social graph that has
no images, SQL-X outperforms Neo4j by a wide margin, see last two columns of
Table 7. SoAR of Neo4j is also enhanced when the social graph has no images.
In [10], we show that storing profile images in the file system, termed Boosted
SQL-X design, enhances the SoAR of SQL-X by more than ten folds. A future
research direction is to analyze Neo4j with images stores in the file system (sim-
ilar to the discussion of Boosted SQL-X). We speculate its performance to fall
between the two extremes shown in Table 7.
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Table 7. SoAR with 100 K members, φ = 100 fpm, and ρ = 100 rpm, with and without
images.

With images No images

SQL-X Neo4j SQL-X Neo4j

0.1 % Write Action 360 835 20,550 1,460

1 % Write Action 290 499 16,135 688

10 % Write Action 0 100 2,095 150

5 Future Research Direction

We are extending this study by considering additional graph data stores, char-
acterizing their scalability and their role in processing more complex social net-
working actions. We describe these in turn.

We are using BG to complete an evaluation of Neo4j and other graph data-
bases such as G* [18] and OrientDB [23]. This includes an analysis of their
scalability characteristics and a comparison with data stores that support alter-
native data models, e.g., document stores, extensible stores, key-value stores and
relational DBMSs. We also intend to analyze the overhead of an Object Graph
Model (OGM) such as Blueprint when compared to using the native interface of
a graph data store [16].

Moreover, we intend to investigate alternative physical graph designs for
processing more complex social networking actions, namely, feed following actions
such as Share Resource (SR) and View New Feed (VNF) [9]. These model a mem-
ber producing events for consumption by others and displaying the events gen-
erated by other members and entities, typically their friends or those that they
follow. Both the highly variable fan-out of the follows graph along with its dynam-
ically changing structure (e.g., a member thaws friendship with another member)
makes an implementation of feed following challenging [9,20]. One may introduce
different designs and implementations to address these challenges [5,17,21]. One
is to materialize the feed of a member and maintain it up to date when new events
are produced by those she follows [21]. A graph database such as Neo4j may be
suitable for this Push paradigm because it supports extensions of a vertex with
new attributes. A design may split a vertex into multiple vertices once it increases
beyond a certain size [13]. Finally, edges may maintain the relationship between
older and newer feed as a member’s feed grows in size. An alternative to Push is
to Pull events and may include clever designs that synergizes those members with
mutual friends by maintaining one news feed for them. We plan to investigate these
alternative implementations with Neo4j and other graph data stores.
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Abstract. Graphs are widely used for modeling complicated data in
different application domains such as social networks, protein networks,
transportation networks, bibliographical networks, knowledge bases and
many more. Currently, graphs with millions and billions of nodes and
edges have become very common. Therefore, designing scalable systems
for processing and analyzing large scale graphs has become one of the
most timely problems facing the big data research community. In prac-
tice, distributed processing of large scale graphs is a challenging task
due to their size in addition to their inherent irregular structure and
the iterative nature of graph processing and computation algorithms.
In recent years, several distributed graph processing systems have been
presented, most notably Pregel and GraphLab, to tackle this challenge. In
particular, both systems use a vertex-centric computation model which
enables the user to design a program that is executed locally for each
vertex in parallel. In this paper, we analyze the performance characteris-
tics of distributed graph processing systems and provide an experimental
comparison on the performance of two popular systems in this area.

1 Introduction

A graph is a fundamental data structure which is used to model relationships
between different objects. Currently, graphs are ubiquitous. They are used to
represent data sets in a wide range of application domains such as social net-
work, telecommunications, semantic web, protein networks, and many more.
Graphs with millions and billions of nodes and edges have become very com-
mon. For example, in 2012, Facebook has reported that its social network graph
contains more than a billion users1 (nodes) and more than 140 billion friendship

1 http://www.insidefacebook.com/2012/10/04/facebook-reaches-billion-user-
milestone/.
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relationships (edges). The enormous growth in the graph sizes leads to the need
of huge amounts of computational power to analyze.

The popular MapReduce framework [2] and its open source realization,
Hadoop2, provides a simple but powerful programming model that enables devel-
opers to easy build scalable parallel algorithms to process massive amounts
of data on clusters of commodity machines. In MapReduce, computations are
expressed using two functions: Map and Reduce. The Map function receives an
input pair and generates a set of intermediate key/value pairs. All intermedi-
ate values associated with the same intermediate key I are grouped together
and get passed to the same Reduce function. The Reduce function receives an
intermediate key I with its set of values and merges them together. However,
the MapReduce programming model has its own limitations [8]. For example, it
does not provide a direct support for iterative data analysis tasks. Instead, users
need to design iterative jobs by manually chaining multiple MapReduce tasks
and orchestrating their execution using a driver program.

In general, graph processing algorithms are iterative and need to traverse
the graph in some way. In practice, graph algorithms can be written as a series
of chained MapReduce invocations that requires passing the entire state of the
graph from one stage to the next. However, this approach is ill-suited for graph
processing and leads to inefficient performance due to the additional communica-
tion and associated serialization overhead in addition to the need of coordinating
the steps of a chained MapReduce. Several approaches have proposed Hadoop
extensions (e.g., HaLoop [1], Twister [3], iMapReduce [14]) to optimize the iter-
ative support of the MapReduce framework. However, these approaches remain
inefficient for the graph processing case because the efficiency of graph com-
putations depends heavily on inter-processor bandwidth as graph structures are
sent over the network after each iteration. While much data might be unchanged
from iteration to iteration, the data must be reloaded and reprocessed at each
iteration, resulting in the unnecessary wastage of I/O, network bandwidth, and
processor resources. In addition, the termination condition might involve the
detection of when a fix point is reached. The condition itself might require an
extra MapReduce task on each iteration, again increasing the resource usage in
terms of scheduling extra tasks, reading extra data from disk, and moving data
across the network.

To solve the inherent performance problem of MapReduce, several distributed
graph processing systems have been recently introduced. In particular, in 2010,
Google has pioneered this area by introducing the Pregel [6] system as a scalable
platform for implementing graph algorithms. Pregel relies on a vertex-centric
approach, which is inspired by the Bulk Synchronous Parallel model (BSP) [12],
where programs are implemented as a sequence of iterations. In each of these iter-
ations, a vertex can receive messages which have been sent in the prior iteration,
send messages to other vertices and modify its own state as well as that of its out-
going edges or mutate the graph topology. In this programming model, the user
only needs to write a function for each graph query type without the knowledge
2 http://hadoop.apache.org/.

http://hadoop.apache.org/
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of distributed programming, which is invoked for each vertex by the underlying
systems. The Pregel system has been cloned by many open source projects such
as Apache Giraph3, Apache Hama4, GoldenOrb5, and GPS [9]. Furthermore,
some other systems that provide asynchronous vertex-centric graph processing
approach have been introduced such as GraphLab [5], Signal/Collect [11] and
GRACE [13].

Given the explosion of Big graph processing and analytics, it becomes cru-
cial to understand and analyze the performance characteristics of existing big
graph processing systems. Unfortunately, so far, there is little objective knowl-
edge regarding the performance characteristics of the different distributed graph
processing platforms. This work represents an attempt to fill this gap by analyz-
ing and experimentally evaluate the performance characteristics of two popular
systems, namely, Giraph and GraphLab. The reminder of this paper is orga-
nized as follows. Section 2 provides a brief overview of the two distributed graph
processing systems which we consider in our study. Section 3 describes the details
of our experimental setup in terms of the testing environment, datasets and the
tested graph algorithms. The detailed results of our experiments are presented
in Sect. 4 before we conclude the paper in Sect. 5.

2 Giraph and GraphLab: An Overview

In this section, we give a brief overview of the two distributed graph processing
system which are considered for evaluation in this study.

2.1 Giraph

Apache Giraph is considered as the most popular and advanced open source
project that clones the idea of Google’s Pregel system [6]. It is based on the Bulk
Synchronous Parallel (BSP) computation model [12]. It is written in Java and
runs on top of Hadoop. In Giraph, graph-processing programs are expressed as a
sequence of iterations called supersteps. During a superstep, the framework starts
a user-defined function for each vertex, conceptually, in parallel. The user-defined
function specifies the behaviour at a single vertex V and a single superstep S.
The function can read messages that are sent to V in superstep S − 1, send
messages to other vertices that are received at superstep S + 1, and modify the
state of V and its outgoing edges. Messages are typically sent along outgoing
edges, but the program can send a message to any vertex with a known identifier.
In principle, each superstep represents atomic units of parallel computation.

During program execution, graph vertices are partitioned and assigned to
workers. The default partition mechanism is hash-partitioning. However, cus-
tom partition can be also applied. Giraph applies a master/worker architecture

3 http://giraph.apache.org/.
4 http://hama.apache.org/.
5 https://github.com/jzachr/goldenorb.
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where the master node assigns partitions to workers, coordinates synchroniza-
tion, requests checkpoints, and collects health statuses. It uses ZooKeeper6 for
synchronization. In general, Giraph programs run as Hadoop jobs without the
reduce phase. In particular, Giraph leverages the task scheduling component
of Hadoop clusters by running workers as special mappers, that communicate
with each other to deliver messages between vertices and synchronize in between
supersteps.

In this programming model, all vertices are assigned an active status at
superstep 1 of the executed program. All active vertices run the compute() user
function at each superstep. Each vertex can deactivate itself by voting to halt
and turn to the inactive state at any superstep if it does not receive a message.
A vertex can return to the active status if it receives a message in the execution
of any subsequent superstep. This process continues until all vertices have no
messages to send, and become inactive. Hence, program execution ends when at
one stage all vertices are inactive. Each machine that performs computation, it
keeps vertices and edges in memory and uses network transfers only for messages.
Therefore, the model is well-suited for distributed implementations because it
doesn’t involve any mechanism for detecting the order of execution within a
superstep, and all communication is from superstep S to superstep S + 1.

2.2 GraphLab

GraphLab7 is an open source project that has been implemented at Carnegie
Mellon University to provide a graph-based and distributed computation frame-
work [5]. It is written in C++. GraphLab supports an asynchronous distributed
shared-memory programming abstraction in which graph vertices share access
to a distributed graph with data stored on every vertex and edge.

In GraphLab, each vertex can directly access information on the current ver-
tex, adjacent edges, and adjacent vertices. In particular, the GraphLab abstrac-
tion consists of three main parts: the data graph, the update function, and the
sync operation. The data graph represents a user-modifiable program state that
stores both the mutable user-defined data and encodes the sparse computational
dependencies. The update function represents the user computation and oper-
ates on the data graph by transforming data in small overlapping contexts called
scopes [5].

On the run time, the GraphLab execution model enables efficient distrib-
uted execution by relaxing the execution-ordering requirements of the shared
memory and allowing the GraphLab runtime engine to determine the best order
in which to run vertices. By eliminating messages, GraphLab isolates the user-
defined algorithm from the movement of data, allowing the system to choose
when and how to move the program state. Generally, the behaviour of the asyn-
chronous execution depends on the number of machines and availability of net-
work resources, leading to non-determinism that can complicate algorithm design
6 http://zookeeper.apache.org/.
7 http://graphlab.org/.

http://zookeeper.apache.org/
http://graphlab.org/
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and debugging. In practice, the sequential model of the GraphLab abstraction
is translated automatically into parallel execution by allowing multiple proces-
sors to run the same loop on the same graph, removing and running different
vertices simultaneously. To retain the sequential execution semantics, GraphLab
must ensure that overlapping computation is not run simultaneously. To address
this challenge, GraphLab automatically enforces serializability so that every par-
allel execution of vertex-oriented programs has a corresponding sequential exe-
cution. To achieve serializability, GraphLab prevents adjacent vertex programs
from running concurrently by using a fine-grained locking protocol that requires
sequentially grabbing locks on all neighboring vertices. Furthermore, the locking
scheme that is used by GraphLab is unfair to high-degree vertices.

2.3 Giraph vs GraphLab: Similarities and Differences

In general, both Giraph and GraphLab apply the GAS (Gather, Apply, Scatter)
model that represents three conceptual phases of a vertex-oriented program.
However, they differ in how they collect and disseminate information. In partic-
ular, Giraph and GraphLab express GAS programs in different ways. In Giraph,
the gather phase is implemented by using message combiners, and the apply and
scatter phases are expressed in the vertex class. Conversely, GraphLab exposes
the entire neighborhood to the vertex-oriented program and allows users to define
the gather and apply phases within their programs. The GraphLab abstraction
implicitly defines the communication aspects of the gather and scatter phases by
ensuring that changes made to the vertex or edge data are automatically visible
to adjacent vertices.

In principle, the fundamental difference between Giraph and GraphLab is
that Giraph relies on a push-based and synchronous computational model while
GraphLab relies on a pull-based and asynchronous model. This primarily affects
the way of how dynamic computation is expressed. In general, an advantage
of asynchronous computation over bulk synchronous computation is that fast
workers do not have to wait for slow workers. However, programming in the
asynchronous model can be harder than synchronous models, as programmers
have to reason about the non-deterministic order of vertex-centric function calls.
Therefore, GraphLab decouples the scheduling of future computation from the
movement of data. For example, GraphLab update functions have access to data
on adjacent vertices even if the adjacent vertices did not schedule the current
update. In contrast, Giraph update functions are initiated by messages and can
only access the data in the message, limiting what can be expressed.

3 Experimental Setup

3.1 Dataset

In our experiments, we used the Amazon dataset8 which consists of reviews from
the popular Amazon E-commerce website. The data span a period of 18 years
8 http://snap.stanford.edu/data/web-Amazon.html.

http://snap.stanford.edu/data/web-Amazon.html
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Table 1. Characteristics of the used graph datasets

Dataset name Number of nodes Number of edges Size on disk

Dataset 1 16,643,669 128,396,350 2.1 GB

Dataset 2 18,312,178 134,275,120 4.8 GB

Dataset 3 19,165,714 136,275,374 8 GB

Dataset 4 21,365,698 140,015,189 12 GB

(Jun 1995–Mar 2013), including about 35 million reviews which include product
and user information, ratings, and a plain text review. In particular, the dataset
include 34,686,770 reviews, 6,643,669 users and 2,441,053 products. The total
disk size of the dataset is 12 GB. For the sake of our scalability tests, we used the
original dataset to create three smaller datasets that preserve the characteristics
of the original dataset by sampling the graph based on the number of products
and number of reviews. Table 1 describes the details of the four datasets used in
our experiments.

3.2 Workload Setup

In order to vary our tests for the different performance characteristics of the
evaluated systems, we built a workload that consists of the following three main
graph computation and processing algorithms:

1. PageRank: A graph computation that assigns a value to each vertex in the
graph according to the number of its incoming/outgoing edges [7].

2. Shortest Path: A graph processing operation to find the path between two
vertices in a graph such that the sum of the weights (i.e., number of edges)
of its constituent edges is minimized. In our workload, we generated ten
instances of this operation. Five instances to find the shortest connecting
paths between two user nodes and five instances to find the shortest connect-
ing paths between two product nodes.

3. Pattern Matching: A graph processing operation to find the existence(s) of
a pattern graph (e.g. path, star) in the large graph. We have also generated
ten instances of this operation in our workload with different patterns based
on the user or product information.

The evaluation workload has been implemented using the API of the two eval-
uated systems. Our implementation for the PageRank and Shortest Path tasks
have followed the implementation presented in the original Pregel Paper [6]. For
the implementation of the Pattern Matching task, we have followed the approach
presented by Fard et al. [4].

3.3 Testing Environment

All of the experiments reported in this paper were performed using the Ama-
zon EC2 platform. We used different configurations of the computing resources
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Table 2. Description of used EC2 instances

Instance type vCPU ECU Memory (GB)

m3.large 2 4 7.5

m3.xlarge 4 8 15

for the different algorithms according to the complexity of their computations.
However, we ensure an apple-to-apple comparison by running the same graph
computation over the different evaluated systems on the same configurations of
the computing resources. In particular, we used a cluster of 6 large instances
for the shortest path and PageRank algorithms. For the pattern matching algo-
rithm, we used a cluster of 7 x-large instances. All instances of our experiment
were running Ubuntu Linux. We monitored the CPU and memory usage of each
worker machine during the experiment in order to ensure their load balancing
efficiency. Table 2 describes the configurations of the EC2 instances that we have
used in our experiments.

For our experiments, we utilized the following systems: Giraph version 1.1.0,
Hadoop version 2.2.0, Hive version 0.13.1, HBase version 0.94.20 and GraphLab
version 2.2. In our evaluation, we were concerned about the variability in EC2
performance [10]. Therefore, each test has been executed 5 times where the
longest and shortest execution times for each test were dropped and the average
of remaining three execution times were taken as the results.

3.4 Performance Metrics

In Giraph and GraphLab, the execution of graph algorithms goes through three
main steps: reading the input graph flow through the execution engine, getting
the graph processed, and writing the result as output graphs or values. Therefore,
in order to measure and compare the performance characteristics of the two
evaluated systems, we used the following metrics:

– Reading Time: represents the required time for reading the input graph data
from the underlying storage layer, partitioning them and loading them into
the memory of the different nodes of the computing cluster.

– Processing Time: represents the required time for executing the graph opera-
tion or computation.

– Writing Time: represents the required time for writing the result to the under-
lying storage.

– Total Execution Time: represents the total time for executing the graph oper-
ation or computation. In particular, it is the total sum of the reading time,
processing time and the writing time.
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4 Experimental Results

4.1 Giraph vs GraphLab

Figure 1 illustrates the performance comparison between the Giraph and Graph-
Lab systems using our four experimental graph datasets (Table 1) and the three
tasks of our workload: PageRank (Fig. 1(a)), Shortest Path (Fig. 1(b)) and Pat-
tern Matching (Fig. 1(c)). For these experiments, the experimental graph data
have been stored in the HDFS storage system. Interestingly, the results show that
Giraph and GraphLab have very comparable performance, either in the total
execution time or in the execution time of the three different phases (reading,
processing and writing), and there is no clear winner among them. In particular,
GraphLab slightly outperforms Giraph for the PageRank task. However, the big-
ger the graph size, the closer the gap in performance between the two systems.
Giraph slightly outperform GraphLab for the Shortest Path task but the simi-
lar pattern of a smaller performance gap is observed as the graph size increases.
The results also show that both systems scale very well with the increasing graph
sizes. Both systems show very comparable performance in the pattern matching
tasks (the most computationally expensive task) for all the four graph sizes.
In general, the results show that both systems could better utilize the available
memory size of the experimental computing clusters. Our experimental data sets
were not too large to fit into the available main memory. Our largest data set is
12GB in size which could fit comfortably in the 105GB aggregate memory of our
7 xlarge instances for the pattern matching task and 45GB of aggregate memory
of our 6 large instances for the PageRank and Shortest Path tasks. In particular,
the results show that both systems need a considerably long time for executing
the different tasks of our workload. For example, both systems need around
35 min for executing the PageRank task on the smallest dataset (Dataset 1) and
they need around 51 min for the largest dataset (Dataset 4). For the Shortest
Path task, both systems need around 22 min for processing the smallest dataset
(Dataset 1) and around 30 min for processing the largest dataset (Dataset 4).
For the Pattern Matching task, both systems need around 50 min for processing
the smallest dataset (Dataset 1) and around 67 min for processing the largest
dataset (Dataset 4).

4.2 Giraph Backends: HDFS, HIVE and HBase

In principle, Giraph is a computing platform which needs to interface with an
external storage in order to read its input graph data and write back the output
results of its computation. It provides a generic API which converts the preferred
type of data to and from Giraph’s main classes (Vertex and Edge)9. In particular,
similar to Hadoop, custom input/output formats can be defined for various data
sources. We have conducted experiments to compare the performance of Giraph
using three different storage systems: HDFS, Hive tables10 and HBase tables11.
9 https://giraph.apache.org/io.html.

10 http://hive.apache.org/.
11 http://hbase.apache.org/.

https://giraph.apache.org/io.html
http://hive.apache.org/
http://hbase.apache.org/
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Fig. 1. Giraph vs GraphLab: a performance comparison
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In Hive, each record in our storage scheme represented a vertex along with its
ID, Values (attributes) and its outgoing Edges. Therefore, each record is defined
as follow:

(id<String>, value<Map<String, String>, List<String> edges)

where id refers to the vertex id, value is a Map in which its key is the name
of each attribute and its value is the value of the attribute (e.g. product name
(Key) and book (Value)). Edges are represented as a list that contains the id of
all vertices which are connected to the vertex. The same storage scheme has been
employed for HBase. However, HBase only stores arrays of bytes. Therefore, we
converted each string which is storing a vertex id, each Map object of Java (for
value of each vertex) and each List of strings (for edges) to an array of bytes
in order to store them into HBase Tables. Figure 2 illustrates the performance
comparison of the Giraph system using the three evaluated storage schemes. The
results show that HDFS and HIVE have very comparable performance for all
tasks and datasets. The results also show that the performance of HDFS and
HIVE strongly outperform the performance of HBase when used as the backend
storage schemes for Giraph’s graph processing tasks.

4.3 Execution Phases

As discussed earlier, the execution of graph algorithms in Giraph and GraphLab
goes through three main steps: reading the input, processing the graph and
writing the results. We have measured the execution times for each of these
phases in all of our experimental tasks in order to characterize the weight for
each of these phases with regard to the total execution times. Figure 3 illustrates
the performance characterization of the different phases of executing the three
different tasks of our workload for Dataset 1 using the Giraph systems with
its three different backends: HDFS represented as Giraph-HDFS, HIVE repre-
sented as Giraph-HIVE and HBase represented as Giraph-HBase in addition to
the GraphLab system with its HDFS storage represented as GraphLab-HDFS.
Figure 4 illustrates the same measurements using Dataset 4. Some key remarks
about these results are given as follows:

– For the PageRank task over Dataset 1 (Fig. 3(a)), the execution time for the
processing phases for Giraph-HDFS and Giraph-HIVE configurations represent
more than 90 % of the total execution times while the execution time for the
reading and writing phases have been considerably small (each of them is less
than 5 %). However, for Giraph-HBase configuration, the execution time for
the reading phase jumped to represent about 20 % of the total execution time
and for the case of GraphLab-HDFS it has jumped further to reach around
28 %. For GraphLab-HDFS, the execution time of the writing phase has also
jumped to reach about 21 %.

– For the Shortest Path task over Dataset 1 (Fig. 3(b)), the execution time
for the reading phase consumes a considerable portion of the total execution
times. In both of the Giraph-HDFS and GraphLab-HDFS, it represented about
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Fig. 2. Giraph backends: HDFS vs HIVE vs HBase
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Fig. 3. Performance characterization for the phases of processing Dataset 1: reading
time vs processing time vs writing time.
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Fig. 4. Performance characterization for the phases of processing Dataset 4: reading
time vs processing time vs writing time.
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32 % of the total execution time and for the case of Giraph-HBase, it has
shown to be the most expensive phase representing about 68 % of the total
execution time.

– For the Pattern Matching task over Dataset 1 (Fig. 3(c)), the execution time
is dominated by the processing phases for the Giraph-HDFS, Giraph-HIVE
and GraphLab-HDFS configurations. The weight of the writing phase has been
nearly negligible for all configurations. The execution time for the reading
phase for all configurations have been representing about 10 % except for the
case of Giraph-HBase where it represented about 32 %.

– Comparing the results of the PageRank tasks over Dataset 1 (Fig. 3(a)) and over
Dataset 4 (Fig. 4(a)) show that as the graph size increases, the weight of the
reading phase in the execution time decreases for the case of GraphLab-HDFS
configuration of the total execution time.

– The characteristics of Shortest Path task over Dataset 4 (Fig. 4(b)) has shown
very similar pattern to the characteristics of the same task over Dataset 1
(Fig. 3(b)). Similarly, the Pattern Matching tasks over Dataset 1 (Fig. 3(c))
and Dataset 4 (Fig. 4(c)).

– It is notable that the performance of Giraph-HBase has been strongly out-
performed by the Giraph-HDFS and Giraph-HIVE in all of the experimental
tasks because of the degraded performance of the reading phase of this con-
figuration.

– The processing phase has shown to have the highest impact on performance for
most of the tasks of all configurations. Therefore, improving the performance
of this phase would have a significant impact on the total execution times of
both systems. The writing phase has shown to be the lowest impact on the
total execution time of all configurations and tasks.

5 Conclusion

This paper provided the first steps for performing a detailed analysis on the per-
formance of distributed graph processing platforms. We showed the results of
the comparison evaluation of two popular systems, Giraph and GraphLab, using
three different graph processing tasks and scalable graph datasets. The results
of our experiment show that the performance of the two systems is compara-
ble and there is no clear winner. Our analysis provides a set of useful insights.
For example, the performance of both systems scale well with the size of the
input graph. However, neither system uses the available memory sizes on the
computing clusters efficiently. Although GraphLab is relying on asynchronous
processing model, it has not shown a clear performance advantage over the syn-
chronous processing model of Giraph. The performance of the underlying storage
system can clearly affect the performance of the reading phase and consequently
the total execution time of the graph processing task. However, the processing
phase still considered the dominant phase in consuming the total execution time.

As a future work, we are planning to extend our analysis to consider more
distributed graph computation platforms, different graph processing tasks and
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various datasets. We are also planning to expand our analysis to consider more
low level evaluation metrics such the communication cost, the CPU utilization
and memory usage. We believe that there is a wide room for research efforts
to further understand and analyze the performance characteristics of existing
big graph processing systems. This will definitely help the research community
to identify the adequate design decisions for improving the current systems or
developing new efficient and scalable systems for processing big graphs.
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Technology (KACST) project 11-INF1990-03.
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Abstract. Enterprises perceive a huge opportunity in mining informa-
tion that can be found in big data. New storage systems and processing
paradigms are allowing for ever larger data sets to be collected and ana-
lyzed. The high demand for data analytics and rapid development in
technologies has led to a sizable ecosystem of big data processing sys-
tems. However, the lack of established, standardized benchmarks makes
it difficult for users to choose the appropriate systems that suit their
requirements. To address this problem, we have developed the BigBench
benchmark specification. BigBench is the first end-to-end big data ana-
lytics benchmark suite. In this paper, we present the BigBench bench-
mark and analyze the workload from technical as well as business point of
view. We characterize the queries in the workload along different dimen-
sions, according to their functional characteristics, and also analyze their
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runtime behavior. Finally, we evaluate the suitability and relevance of the
workload from the point of view of enterprise applications, and discuss
potential extensions to the proposed specification in order to cover typ-
ical big data processing use cases.

1 Introduction

Enterprises everywhere appear to be reaching a tipping point with data. Large
amounts of data are being accumulated; data continue to arrive from ever increas-
ing number of sources, and at increasing rates; and most applications require
integration of data from multiple heterogeneous sources. The data need to be
queried and analyzed to support enterprise applications. Organizations view
these data as a “natural resource” from which they can potentially extract
significant value for the enterprise. Indeed, this phenomenon, referred to as
“big data”, is the driving force behind major commercial investments in hard-
ware and software. In the current landscape of enterprise big data systems, two
major architectures dominate the analytics market: parallel database systems
and Hadoop-style batch-oriented systems. While there have been several stud-
ies that have attempted to compare and contrast these two approaches, what
is lacking is a benchmark specification that can be used to objectively compare
systems with each other. Furthermore, big data hardware and software vendors
are rapidly evolving their systems to meet the applications needs and demands
of these big data applications. In some cases, there is a common approach emerg-
ing, such as increased support for SQL-like functions, or better support for online
query processing, rather than just batch processing. As vendors begin to incor-
porate similar features and compete in the same markets, it become essential to
have objective benchmarks that can be used to compare system performance, as
well as price/performance and energy consumption.

Thus far, due to lack of existing, accepted standards, vendors have been
forced to run ad hoc benchmarks, or simple benchmarks which may not reflect the
eventual workload encountered by the systems. Furthermore, they have not had
to provide full disclosures regarding system performance. An industry standard
will be able to address such shortcomings, thus improving the overall situation.

We propose BigBench as a first, important step in moving towards a set
of rigorous benchmarks for big data systems. Similar to the well-known TPC
benchmarks, BigBench is an “application-level” benchmark. It captures opera-
tions performed at an application level via SQL queries and data mining oper-
ations, rather than low level operations such as, say, file I/O, or performance of
specific function such as sorting or graph traversal.

In this paper, we provide a detailed discussion of the BigBench specifica-
tion, including the database and the workload. In the process of developing
BigBench, we have obtained feedback from leading industry experts about the
relevance as well as completeness of the workload. After a technical discussion
of the benchmark and a discussion of sample runs on two different “small” and
“large” platforms, we provide a summary of the feedback as well as ideas for
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future extensions to the benchmark. We recognize that Big Data is a complex
as well as evolving space. BigBench represents only the first step towards pro-
viding a systematic way of benchmarking big data systems. We expect that big
data benchmarking will need to be an agile activity for the near-term future,
in order to both keep pace with changing technological trends and the evolving
application requirements in this area.

The paper is organized as follows. Section 2 describes benchmarking efforts
and activity relevant to big data and to BigBench. Section 3 provides an overview
of the BigBench benchmark, followed immediately by a description of the exper-
iments performed on the small and large test platforms in Sect. 4. Section 5
summarizes the characteristics of the BigBench schema as well as the queries
in the workload. Section 6 discusses the community feedback that was provided.
Based on this, some possible future extensions to BigBench are presented in
Sect. 7. Including a broad range of features within a single benchmark would
likely make the benchmark unwieldy, difficult to understand, difficult and expen-
sive to implement and, most important, difficult to interpret the results. Our
goal is to capture community feedback, and use the information to develop a
roadmap of big data benchmarks, rather than incorporating all features into a
single unwieldy benchmark. Section 8 elaborates on the additional steps needed
to make BigBench an industry standard benchmark, based on experience with
benchmarks like the TPC. Finally, the paper concludes with Sect. 9.

2 Related Work

A number of efforts are currently underway for developing benchmarks for dif-
ferent aspects of big data systems. For example, TPC-H [14] and TPC-DS
[12] benchmarks, developed by the Transaction Processing Performance Council,
have been used for benchmarking big data systems. The TPC-H benchmark has
been implemented in Hadoop, Pig, and Hive [5,18]. A subset of TPC-DS has
been used to compare query performance with implementations using Impala
and Hive. However, while they have been used for measuring performance of
big data systems, both TPC-H and TPC-DS are “pure SQL” benchmarks and,
thus, do not cover the new aspects and characteristics of big data and big data
systems. Several proposals have been put forward to modify TPC-DS to cover
big data usecases, similar to what we have proposed here with BigBench. For
example, Zhao et al. propose Big DS, which extends the TPC-DS model for social
marketing and advertisement applications [23]. However, Big DS is currently in
the early stage of design—a data model and query set are not available. We
believe that once the benchmark has been better defined, it would be possible to
complement BigBench with the extensions proposed by Big DS. Another TPC-
DS variant is proposed by Yi and Dai, as part of the HiBench ETL benchmark
suite [8]. The authors extend the TPC-DS model to generate web logs, similar to
BigBench. Once again, we believe that the specific extensions could be relatively
easily incorporated into BigBench in future. Several other proposals have been
made for component benchmarks that test specific functions of big data sys-
tems. Notable examples are the Berkeley Big Data Benchmark, the benchmark
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presented by Pavlo et al. [13], and BigDataBench, a suite similar to HiBench
and mainly targeted at hardware benchmarking [20]. Although interesting and
useful, these benchmarks do not present an end-to-end scenario and, thus, have
a different focus than BigBench.

In November 2013, the TPC announced the creation of a Big Data Work-
ing Group (TPC-BD)1, which recently released the TPCx-HS benchmark (TPC
Express Benchmark for Hadoop Systems) in August 20142. TPCx-HS is based on
the TeraSort benchmark, which is a relatively simple Hadoop-based sort bench-
mark that has been successful in establishing an annual sorting competition3.

Additionally, there are other active efforts in the database community as
well as the high-performance computing community in the area of graph bench-
marks. A well-known graph benchmark is the Graph 500, developed by the HPC
community [11]. Official benchmark results are published in the Graph 500 list4.
Another example is LinkBench [1], a benchmark that models the social graph of
a social application. A general discussion of graph database benchmarks can be
found in [6].

3 BigBench Overview

BigBench [7] is an end-to-end big data benchmark based on TPC-DS [15],
TPC’s latest decision support benchmark. TPC-DS is designed with a multiple-
snowflake schema populated with structured data allowing the exercise of all
aspects of commercial decision support systems, built with a modern database
management system. The snowflake schema is designed using a retail model con-
sisting of three sales channels, Store, Web and Catalog, plus an Inventory fact
table. BigBench’s schema uses the data of the Store and Web sales distribution
channels of TPC-DS and augments it with semi-structured and unstructured
data.

The semi-structured part captures registered and guest user clicks on the
retailer’s website. Some of these clicks are for completing a customer order. As
shown in Fig. 1, the semi-structured data is logically related to the Web Page,
Customer and Sales tables in the structured part. The design assumes the semi-
structured data to be a key-value format, similar to Apache web server log
format. Typically, database and MapReduce (MR) systems would convert this
format to a table with the following five columns (DateID, TimeID, SalesID,
WebPageID, UserID). However, such conversion is not necessary, since some
systems may choose to run analytics on the native key-value format itself.

Product reviews—a growing source of data in online retail sales—is used to
populate the unstructured part of the BigBench data model. Figure 1 shows
product reviews on the right-hand side, and its relationship to Item, Sales,
and Customer tables in the structured part. A possible implementation for the
1 www.tpc.org/tpcbd/.
2 www.tpc.org/information/other/tpcx-hs%20press%20release final.pdf.
3 http://sortbenchmark.org.
4 http://www.graph500.org/.

www.tpc.org/tpcbd/
www.tpc.org/information/other/tpcx-hs%20press%20release_final.pdf
http://sortbenchmark.org
http://www.graph500.org/
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Fig. 1. BigBench logical data schema

product reviews data is via a single table with the structure: (DateID, TimeID,
SalesID, ItemID, ReviewRating, ReviewText).

BigBench employs a data generator that is based on PDGF [17], a parallel
data generator capable of producing large amounts of data in a scalable and
high performance fashion. PDGF “plugins”, which are java extensions, enable
the program to generate data for any arbitrary schema. Using such plugins,
PDGF can generate data for all three parts of the BigBench schema, viz., struc-
tured, semi-structured and unstructured. The weblogs, representing the semi-
structured part of the schema, are generated using a key-value plugin. Product
reviews (the unstructured part) are generated using a Markov Chain plugin.
The algorithm produces synthetic text by extracting key words from sample
input into a dictionary and applying Markov Chain techniques to generate arbi-
trary text. Sample data was taken from publicly available data at the Amazon
website. PDGF has been programmed to generate a BigBench database of any
size between 1 GB and 1 PB (petabyte). Some tables, such as Customers, scale
sublinearly, to avoid unrealistic table sizes, whereas other tables, e.g. Sales and
Returns, scale linearly.

The BigBench query workload includes 30 queries, of which the ten queries
that operate only on the structured part of the schema have been taken from
the TPC-DS workload. The remaining 20 queries were adapted from a McKinsey
report on big data use cases and opportunities [9]. Of those, 7 queries run on
the semi-structured part of the schema; 6 queries run on the unstructured part;
and the remaining run on the structured part.

Similar to many current big data systems, BigBench employs batch-oriented
processing. Following the precedent established by other, similar (TPC) bench-
marks, the preferred performance metric is a single, “abstract” value that is
used for comparing end-to-end performance of different big data systems. Thus,
the proposed metric, which is loosely based on the TPC-DS metric, includes the
following [16]:
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– TL: Execution time of the loading process;
– TP : Execution time of the power test;
– TTT1: Execution time of the first throughput test;
– TDM : Execution time of the data maintenance task.
– TTT2: Execution time of the second throughput test;
– BBQpH: BigBench Queries per Hour;

BBQpH =
30 ∗ 3 ∗ 3600

TL + TP + TTT1
S + TDM + TTT2

S

(1)

BBQpH =
30 ∗ 3 ∗ S ∗ 3600

S ∗ TL + S ∗ TP + TTT1 + S ∗ TDM + TTT2
(2)

4 Experiments

In the experiments reported here, the BigBench workload was executed on two
test platforms—a 6-node cluster (“Small”) and a 544-node cluster (“Large”).
The test dataset was generated using the BigBench data generator described
in [7]. The dataset size was selected as 1 TB (i.e. ScaleFactor, SF = 1000). The
tables with linear growth rates make up the bulk of the dataset, as explained in
[16]. All the dataset tables were created in Hive.

Benchmark results were produced using the implementation of BigBench for
the Hadoop ecosystem described in [3]. The implementation uses four open-
source software frameworks: Apache Hadoop, Apache Hive, Apache Mahout,
and the Natural Language Processing Toolkit (NLTK). These frameworks are
used to implement the 30 queries employing one of the following methods:

– Pure Hive, for queries 5, 6, 7, 9, 11, 12, 13, 14, 17, 21, 22, 23, 24
– Hive with MapReduce programs, for queries 1, 2
– Hive with Hadoop streaming, for queries 3, 4, 29, 30
– Apache Mahout, for queries 15, 20, 25, 26, 28
– Apache OpenNLP, for queries 10, 16, 18, 19, 27

4.1 Test Platforms

The two clusters used for testing represent two distinct points in the scale-up
spectrum of Hadoop clusters. The “Small” cluster had 6 dual-socket servers,
while the “Large” cluster had 544 dual-socket servers. Details of the cluster con-
figurations are shown in Table 1. The large cluster results are from the Pivotal
Analytics Workbench5, made available by Pivotal Software, Inc. The benchmark-
ing effort on that platform was supported by a grant from Pivotal to the Center
for Large-Scale Data Systems Research (CLDS) at the San Diego Supercomputer
Center, UC San Diego.
5 http://www.analyticsworkbench.com.

http://www.analyticsworkbench.com
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Table 1. Configuration of test clusters

Cluster configuration Small Large

Processor per node 2×Xeon E5-2680 v2 @2.80GHz 2×Xeon X5670 @2.93GHz

Core/Thread per node 20/40 12/24

Main Memory per node 128GB 48GB

Storage per node 12 × 2TB HDD 7.2Krpm 12 × 2TB HDD 7.2Krpm

Total HDFS storage 90TB 9,420TB

Cluster interconnect 10Gb ethernet 10Gb infiniband

OS type CentOS 6.5 RHEL 6.1 64-bit

Hadoop version Cloudera CDH5 Pivotal HD 2.0.1

JDK version 1.7 1.7

Name node 1 1

Data node/Tasker node 4 542

Hive server 1 1

4.2 Experimental Observations

The 30 BigBench queries were run sequentially on each test cluster and statistics
were collected for each query. The results presented here are from running the
queries without any prior tuning of the systems. Thus, these results represent
the “raw, out-of-the-box” performance of each system. While the performance
of a number of the queries could improve significantly with careful tuning, the
analysis of data collected in this initial set of tests nonetheless provides use-
ful insights into the general characteristics of the workload and, thus, into the
applicability of the benchmark itself.

The first step of the experiment consists of loading the SF = 1000, 1 TB
dataset into the Hive tables. On the large cluster this operation took almost
twice as long as on the small cluster (87 min vs. 48 min). This behavior is the
first indication that the 1 TB database, while appropriate for the small cluster
with 4 data nodes, is highly undersized for the large cluster with 544 data nodes.
Staging and replicating a relatively small amount of data over a large number
of Hive data nodes results in overheads that dominates the performance of the
data ingestion process.

In the next step of the experiment, the queries were run sequentially, and the
execution time was collected for each query. Table 2 presents the query execution
times as measured on both the small and large clusters.

Comparing the query execution times between the two clusters highlights
the lack of tuning prior to query execution as well as the over-scaling of the
large cluster, given that the data set is relatively small for a cluster of that size.
Some queries are highly parallelizable and are, thus, able to take advantage of
the significantly more resources available in the large cluster in order to perform
queries much faster than on the small cluster. However, a number of queries
perform slower on the large cluster due to the under-scaling of the data set as
well as lack of tuning.
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Table 2. Query execution times for small and large clusters

Query Small(min) Large(min) Query Small(min) Large(min)

1 5.9 3.6 16 11.7 3.8

2 11.4 3.7 17 3.9 5.7

3 9.8 4.0 18 11.7 10.0

4 908.1 28.8 19 6.2 7.0

5 177.0 16.5 20 14.7 6.0

6 9.7 4.9 21 7.3 3.8

7 14.0 9.9 22 31.9 7.1

8 29.6 10.9 23 107.5 39.8

9 8.0 4.0 24 5.8 3.7

10 10.1 13.4 25 5.5 3.9

11 2.4 2.0 26 7.1 4.1

12 5.1 9.3 27 0.6 0.8

13 5.4 6.6 28 1.9 19.6

14 2.5 1.7 29 24.3 3.6

15 5.1 1.4 30 44.7 6.7

Additional insight can be gained by examining the system utilization statis-
tics that were collected during the experiment. Two queries that were run on
the small cluster are presented here to illustrate the two main cases that were
observed. In the first, the query is able to take advantage of the system resources
provided without the need for tuning, as is the case for query Q16. As shown in
Fig. 2, the resource utilization is well balanced throughout the execution of the
query. Demand for CPU resources spans the entire query execution period. Sim-
ilarly, the disk activity is also distributed across the duration of the query, and
not localized to a small subset of the query execution time. Memory utilization
is also relatively uniform over the execution time, while staying at a comfortable
distance from saturation. Lastly, inter-node communication shows two strong
bursts of activity, which is likely driven by the map and the reduce steps.

In contrast, in the second case, the query has a very skewed profile for system
resource usage. This is exemplified in Q1, as shown in Fig. 2. The resource uti-
lization of the query is characterized by a burst of CPU and disk activity at the
very beginning, followed by a very low level of activity for the remainder of the
query execution time. This is associated with a poor usage of available memory
resources followed by a final burst of network communication toward the very
end of the query execution. Much work remains to be done to fully characterize
the behavior of these un-optimized queries. It is likely that the query uses the
default number of mappers set by Hive and could benefit from a much large
number of tasks (Fig. 3).
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Fig. 2. System utilization statistics for Q16

Fig. 3. System utilization statistics for Q1
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Through this initial set of experiments, we were able to confirm that the
BigBench queries represent a solid challenge for Hadoop clusters of different
sizes. The query set displayed a wide spectrum of behaviors that necessitate care-
ful tuning before reaching a balanced utilization of all major system resources.
Furthermore, during the experiments we also noted that the benchmark queries
could be used for component testing. To focus the testing on a selected cluster
component, one can run specific queries that apply particular stress patterns on
given components, without having to run the entire suite of queries. However,
unlike micro-benchmarks, these focused tests are directly related to specific use-
cases as highlighted by the business description that the benchmark provides for
each query.

In these experiments, the small versus large clusters also represent different
execution environments. The small cluster consists of a limited number of nodes,
which are all dedicated to this task. Whereas, the large cluster consists of a
few hundreds multi-tenancy nodes. While the 544 nodes that were used were
dedicated to this experiment, they were part of a larger cluster of 1000 nodes
that was shared with other applications running on the other nodes.

In this benchmark experiment, we also took the approach of running in
“Power” mode, where each query is executed individually in “stand-alone” mode,
leading to a better understanding of its performance behavior. However, the
benchmark is also designed to run in the so-called “Throughput mode”, where
multiple parallel streams of queries can run concurrently. The benchmark pro-
vides a single metric that combines results from both these modes of execu-
tion—Power mode and Throughput mode, in order to provide a simpler metric
that can be used for comparison.

5 Technical Discussion of the Workload

In this section, we discuss the technical aspects of the 30 BigBench queries. The
discussion is separated in two parts: a description of the generic characteristics
of the workload, followed by details of a Hive-specific implementation.

5.1 Generic Workload Characteristics

As mentioned in Sect. 3, the workload dataset can be separated into three cat-
egories: structured, unstructured, and semi-structured data. BigBench inherits
the general scaling properties of TPC-DS, however, unlike TPC-DS it does not
restrict scaling to discrete, predefined scale factors. Instead, it provides for a
continous scaling model. The database size can range from 1 GB to 1 PB. Lin-
early scaled tables, e.g. the “fact” tables, will have about 1,000,000 times more
records for the 1 PB data set than for the 1 GB data set. Other tables, e.g. the
“dimension” tables, such as, Customer or Store, use logarithmic or square root
scaling. As a result, query input sizes are not necessarily linearly dependent on
the scaling factor. This can be seen in Table 3, where the difference of query
input sizes for Scale Factor SF = 1 is only 7.5 (57 MB : 479 MB), whereas it is
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Table 3. Input and output of the 30 queries

Query # Tables Input size (SF 1/ SF 1000) Query # Tables Input size

1 2 59 MB/69 GB 16 5 100 MB/103 GB

2 1 88 MB/122 GB 17 7 92 MB/70 GB

3 1 88 MB/122 GB 18 3 112 MB/71 GB

4 4 109 MB/122 GB 19 5 83 MB/9 GB

5 4 180 MB/123 GB 20 2 57 MB/72 GB

6 4 159 MB/168 GB 21 6 154 MB/171 GB

7 5 87 MB/70 GB 22 5 429 MB/70 GB

8 4 165 MB/221 GB 23 4 429 MB/70 GB

9 5 148 MB/69 GB 24 4 86 MB/99 GB

10 1 58 MB/2 GB 25 2 131 MB/168 GB

11 2 135 MB/101 GB 26 2 59 MB/69 GB

12 3 147 MB/122 GB 27 1 58 MB/2 GB

13 4 159 MB/168 GB 28 1 58 MB/2 GB

14 5 83 MB/99 GB 29 2 82 MB/99 GB

15 2 59 MB/69 GB 30 2 93 MB/122 GB

111 for SF = 1000 (2 GB : 221 GB). The table shows the number of tables as well
as the input sizes for each query.

Out of the 30 queries, seven reference semi-structured data, six reference
unstructured data, while 17 queries reference the structured part of the data.

5.2 Workload Characteristics of the Hive Implementation

The Hadoop-based implementation uses a range of programming techniques
to implement the different queries. The workload consists of MapReduce jobs,
HiveQL queries, Hadoop streaming jobs, Mahout programs, and OpenNLP pro-
grams. For the Hadoop streaming jobs, multiple implementation strategies are
used, including command line programs, Java programs, and Python programs.
The Mahout jobs are executed outside of Hive, unlike all other parts of the
workload. OpenNLP programs are integrated into HiveQL as user defined func-
tions (UDFs). In Table 4, an overview of which type of query uses which type of
processing model can be seen.

As shown in the table, 14 out of 30 queries are pure HiveQL queries. Four
queries are implemented using Python, two are Java-based MR jobs. Five queries
use the OpenNLP libraries to implement sentiment analysis and named-entity
recognition. And, finally, five queries use Mahout to implement machine learning
algorithms. It should be noted that all jobs use Hive as a driver, and also for
data processing.
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Table 4. Query implementation techniques

Query Processing model Query Processing model

1 Java MR 16 OpenNLP sentiment analysis

2 Java MR 17 HiveQL

3 Python streaming MR 18 OpenNLP sentiment analysis

4 Python streaming MR 19 OpenNLP sentiment analysis

5 HiveQL 20 Mahout k-means

6 HiveQL 21 HiveQL

7 HiveQL 22 HiveQL

8 HiveQL 23 HiveQL

9 HiveQL 24 HiveQL

10 OpenNLP sentiment analysis 25 Mahout K-means

11 HiveQL 26 Mahout K-means

12 HiveQL 27 OpenNLP named-entity recognition

13 HiveQL 28 Mahout naive bayes

14 HiveQL 29 Python streaming MR

15 Mahout K-Means 30 Python streaming MR

6 Community Feedback

In this section, we summarize the feedback received from a number of sources
including the organizations represented by the authors; some of the customers of
some of these organizations; and, from direct interviews with several individuals
representing the Hadoop community at large. In addition to the typical issues
involved in creating a new benchmark, defining a benchmark for big data appli-
cations is particularly challenging due to evolving nature of this new field. The
key takeaway from the feedback received is the tension between the desire to
extend the BigBench specification to cover many more use cases and technology
stacks, versus the requirement to keep the benchmark simple and compact for
ease of use and comparison. We explore how we plan to balance this trade-off
and prioritize the evolution of our benchmark in the upcoming Sect. 7.

Positive feedback. A significant portion of the feedback we obtained expressed
appreciation for the effort to create such benchmark, and for many of the techni-
cal choices we made. There was positive consensus around the choice of starting
from a known benchmark, such as TPC-DS. The community’s familiarity with
that benchmark and the fact that available TPC-DS implementations could serve
as partial implementations of BigBench, were viewed as a clear plus. Also, there
was agreement that a relational-only benchmark does not capture key aspects of
real-life usecases. Thus, the non-relational extensions that were presented were
well received. Providing a reference implementation was also highly appreciated.
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While there were some suggestions regarding the specific details of the imple-
mentation, most interviewees agreed with the approach and the basic choices
that were made.

Common misunderstandings. While having a reference implementation is criti-
cal to fostering adoption, we also realized that this makes it easy to misconstrue
the benchmark as being prescriptive about a specific combination of frameworks
that happened to be chosen for the implementation, e.g., say, Hive/Hadoop.
For example, we heard the following question a number of times: “Is this just
a Hive benchmark?”, or “Is this just for relational data?”. The existence of an
implementation biases interpretation of the benchmark goals, to the extent that
more than one individual missed the fact that the benchmark specification, and
the implementation, contain several non-relational components. We expect that
this will become less problematic as the benchmark gains traction and different
implementations start to emerge that use other frameworks. For the time being,
we will address such questions by simply providing a clear description of the
scope and goals of the benchmark, and emphasize that the current implementa-
tion is a reference implementation, and not mandatory.

Technology coverage. A common set of requests were about adding features to
the benchmark that stress a specific technology:

1. Graph Analytics is probably one of the number one asks we hear form the com-
munity. Different sources reported that the ability to ingest, update, analyze
large graphs is an important technological challenge faced by organizations
todays. For example Jakob Homan from LinkedIn remarked: “There are the
big players like FB, LI and Twitter, but pretty much every organization has
some type of graph that it uses to drive engagement.”

2. Streaming is the second most cited ask for our benchmark. The ability to
process a continuous feed of data (e.g., tweets, user posts, server logs), and
perform filtering, projection, aggregations, trend detection, outlier detection,
etc. in a near real-time fashion, seems to be another key scenario people
consider a big data problem. Thomas Graves from Yahoo! for example ask
us to consider Storm [10] and Spark [22] to extend our current benchmark to
capture streaming use cases.

3. Interactive Querying. The support for fast ad-hoc queries on top of a large set
of data was another technology stack considered. The argument was towards
supporting the large number of small interactive operations performed by data
scientist while exploring a data set and devising new analysis/algorithms.

Beside the specific technology, people expressed strong feelings about having
a benchmark capable of capturing the following two aspects:

1. Multi-tenancy: speaking with large cluster operators, they strongly underlined
the need to exercise the multi-tenancy capabilities of a big data stack. Often
benchmarks are focused on latency/throughput for a single run of workload
performed in a dedicated set of machines. This often allows for over-tuning
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of the execution environment to perfectly serve a single run, making the
benchmark too synthetic, and more generally does not match the typically
operating conditions of the systems under test.

2. Fault-tolerance: another key concern for big data developers and cluster oper-
ators is fault-tolerance. At the typical scale of big data systems, the sheer
volume of hardware/software components involved makes “faults” a common
condition. Capturing this in the benchmark seems to be an important require-
ment. There are two key dimensions to this problem: a functional aspect, e.g.,
no data are lost despite faults, and performance one, e.g., graceful degrada-
tion of throughput and latency under faulty conditions. Moreover captur-
ing “limping” hardware beside all-or-nothing faults seem an interesting extra
dimension.

Use case coverage. A final set of concerns was related to the choice of a specific
vertical use-case. The concern being that the specifics of the use case we picked
was potentially skewing the attention towards certain functionalities more than
other. Concretely this was spelled out as a request to broaden the spectrum of
use cases considered, particularly to include advertisement and social-network
scenarios.

Limiting Complexity. Most of the above comments are pushing us towards mak-
ing our benchmark richer and broader. This is balanced by the need, express
implicitly or explicitly by multiple interviewee, to maintain the size and com-
plexity of the workload contained. Providing a reference implementation allow
users to bare significantly more complexity, but the onerous cost of porting
this benchmark to an alternative technology stack grows dramatically with the
complexity of the benchmark. Moreover, a benchmark that is too complex and
faceted makes interpretation and comparison of the results very problematic,
reducing the value of the benchmark as a tool to compare solutions.

In the following section, we address the above comments, and propose an
agenda on how to extend the benchmark accordingly.

7 Extending BigBench

BigBench is an end-to-end benchmark that focuses on structured data and
declarative workloads with additional support for unstructured data and proce-
dural workloads. This section highlights several possible extensions to BigBench
that can potentially make the benchmark more representative of a broader vari-
ety of real-life big data workloads.

Incorporating Concurrency. The benchmark defines a model for submitting con-
current workload streams in parallel and for randomizing the workload across
the multiple query streams [16]. This is intended to cover multi-tenant scenarios
where multiple instances of the same workload or single instances of multiple
workloads could execute in parallel. Example of a concurrent/complex workload
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w composed of two elemental workloads w1 and w2 could be: w = n1∗w1+n2∗w2,
where n1 and n2 are the number of instances of w1 and w2 respectively. The query
concurrency models in several existing online transactional processing (OLTP)
and online analytical processing (OLAP) industry standard benchmarks serve
as a good starting point [14,15,19].

Improving Procedural Coverage. BigBench has two procedural workloads defined
at the moment: K-Means and Bayes. Both are representative of the machine
learning domain and their respective specifications define a dependency on a
relational database or suchlike. BigBench could be extended to include “pure”
procedural workloads that process unstructured data without requiring format
conversion. These workloads would also represent categories that are somewhat
under-represented in BigBench, including web-based and component-level bench-
marks. PageRank is a good representative of web-based workloads, while Word-
Count, SleepJob and Sort are excellent representatives of component level bench-
marks.

Including Other Metrics. The specification and reference implementation should
be extended to measure other metrics important to technology choices, such
as price/performance, energy efficiency, and performance under failures. Price/
performance and energy efficiency are already included in various industry stan-
dard benchmarks. Performance under failures is an important consideration for
big data systems, which run on large scale-clusters, and consequently, partial
component failures such as hardware failures can be common.

Incorporating Incremental Data Uploads. In real-world deployments, big data
applications ingest data incrementally, rather than re-loading the entire dataset.
For example, tables are typically implemented as a collection of time-based parti-
tions to support data refresh. Each partition stores data for a time slice, e.g., one
hour or one day. Whenever new data arrive, they are loaded as new partitions,
or aggregated with an existing partitions to create a new partition. Thus, there
never a need to reload the entire data. In the future, Bigbench could account for
such partition-based data refresh strategies.

Incorporating Additional Workloads. TPC-DS is designed to evaluate the per-
formance of decision-support style queries of data warehouse systems. How-
ever, constrainedonly OLAP queries. Many real-world big data systems, also
encounter periodic workloads, i.e. workloads that repeat hourly, daily, or even
weekly, which are different from OLAP queries. A possible extension to Big-
Bench is to include such kind of workloads to better simulate the real-world
Big Data systems. Some good candidates of such workloads include the off-line
collaborative filtering analysis of all items [21], unstructured data indexing and
ranking for intranet search service, user authority or similarity analysis, etc.
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8 Towards an Industry Standard Benchmark

As with the development of any software product, the process of turning a bench-
mark idea into a product is not trivial. The three most recognized industry
standard consortia, namely the Standard Performance Evaluation Corporation
(SPEC), the Transaction Processing Performance Council (TPC) and the Stor-
age Performance Council (SPC) have developed processes to organize bench-
mark development; deal with benchmark evolution, i.e., versioning; and publish
benchmark results to ensure successful benchmarking. The TPC, has managed
to retain continuity of benchmarks over a few decades, while keeping the bench-
marks comparable. This has provided companies the ability to compare bench-
mark results over a very long time period and across many products. In this
section, we describe the necessary steps and discuss the advantages and disad-
vantages of developing an industry specification that is similar to TPC.

All TPC benchmark specifications developed so far have been technology
agnostic, i.e., they specify a workload without using terms of any particular
architecture or implementation by defining a set of functional requirements that
can be run on any system, regardless of hardware, database management soft-
ware or operating system. Furthermore, they follow a similar methodology and,
consequently, follow a similar structure. It is the responsibility of those measur-
ing the performance of systems using TPC benchmarks, a.k.a. the test sponsor,
to implement their setup compliant with the benchmark specification and to
submit proof that it meets all benchmark requirements, i.e., that the implemen-
tation complies with the specification. The proof has to be submitted with every
benchmark publication in form of a full disclosure report. The intent of the full
disclosure report is to enable other parties to reproduce the performance mea-
surement. This methodology allows any vendor, using “proprietary” or “open”
systems, to implement TPC benchmarks while still guaranteeing end-users that
the measurement is comparable.

The above approach to benchmarking broadens the applicability of bench-
mark specifications to many architecture and allows for the optimal implemen-
tation of a specific product on a specific platform. At the same time it makes
the first benchmark publication very costly, often too costly, because any new
implementation needs to be reviewed by an independent auditor. As a conse-
quence the TPC has started to develop a novel way to specify benchmarks. The
new benchmark category is labeled TPC Express so that it can easily be dis-
tinguished from the traditional category, which is labeled TPC Enterprise. TPC
Express benchmarks are based on predefined, executable benchmark kits that
can be rapidly deployed and measured. Providing a benchmark kit focuses on
a critical subset of system, trading the ability to demonstrate absolute optimal
performance for improved ease and costs of benchmarking (Table 5).

Summarizing the differences between enterprise and express benchmark spec-
ifications, it seems that enterprise benchmark have a higher price tag, and are
more time consuming compared to express benchmarks. However their imple-
mentation is limited to the technology that is supported in the KIT.
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Table 5. Comparison enterprise and express benchmark models

Enterprise Express

Specification-based with tools provided
by the TPC to build the data sets and
workloads

Kit-based that runs the benchmark
end-to-end, including tools provided
by the TPC to build data sets and
workloads

Benchmark publication specific
implementation, i.e. each benchmark
publication can be different

Out of the box implementation, i.e. each
benchmark publication follows the
same implementation

Best possible optimization allowed System tuning for “unalterable”
benchmark application

Complete Audit by an independent third
party

Mostly self validation augmented by
peer-reviews

Price required Price eliminated

If Atomicity, Consistency, Isolation and
Durability (ACID) are required as
part of the benchmark, full ACID
testing needs to be done as part of
any benchmark publication

If ACID is required as part of the
benchmark, ACI testing is conducted
as a part of self validation. Durability
cannot be tested as it requires an
auditor to assure correctness

Large variety of configurations Limited number of configurations focused
on stressing key components of the
benchmark

TPC revenues from benchmark
registration

TPC revenues from license sales and
potentially also benchmark
registration

Substantial implementation costs Reduced implementation costs

Ability to promote results as soon as
published to the TPC

Ability to promote results as soon as
published to the TPC

The express benchmark model is very promising as it will lower the entry cost
into benchmarking as well as per benchmark publication costs. The big hurdle for
express benchmarks is the development of a KIT. BigBench defines queries using
functional specifications [2] allowing BigBench to accommodate the diverse and
rapidly evolving nature of big data technologies (e.g., MapReduce, Hive, Spark,
etc.). Currently, BigBench includes a Hive-based reference implementation. The
intent is that for each query there could be multiple implementations satisfy-
ing the benchmark’s functional specification. To increase rapid adoption of the
benchmark, it would be beneficial to make all valid implementations available
as open source to a central repository. The resulting repository can be used to
aid a BigBench express KIT.

The specification will be extended to provide implementation guidelines to
ensure that the essential big data principles are maintained. For example, all file
formats used in an implementation must demonstrate the expected flexibility of
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being able to be created, read, and written from multiple popular engines on the
Hadoop stack, e.g., (MapReduce, Pig, Hive). Such formats ensure that all data is
immediately query-able, with no delays for ETL. Costly data format conversion
is unnecessary and thus no overhead is incurred.

In addition to having a KIT, for a possible TPC big data express benchmark
one will need to develop the following sections:
– Introduction/Preamble. This section includes a high level introduction to

the benchmark and general implementation guidelines. The implementation
guidelines if adopted from the TPC exists as a boilerplate in every benchmark,
and can be used with minor modifications. However, special implementation
guidelines can be easily incorporated. For instance, in order to give multiple
popular engines access to the data without incurring costly data conversion
overhead, it might be beneficial to provide guidelines in the BigBench specifi-
cations to ensure that the data formats used in benchmark implementations
ensure that essential big data principles are maintained. For example, all file
formats used in an implementation must demonstrate the expected flexibility
of being able to be created, read, and written from multiple popular engines
on the Hadoop stack, e.g., (MapReduce, Pig, Hive).

– Data/Database Design: Requirements and restrictions on how to implement
the database schema. In case of the express model this section can be relatively
short as only modifications to the KIT need to be discussed. Otherwise the
KIT is what needs to be run.

– Workload Scaling: Tools and methodology on how to scale the workload. This
would include a description and usage of the tools plus methods to scale the
data and potentially the workload.

– Metric and Execution Rules: Again the KIT will serve as a reference implemen-
tation of the metric and execution rules. This section only needs to descrip-
tion, on a high level, how to execute the benchmark and how to derive metrics.
Additionally, it needs to describe any deviations allowed from the execution
implemented in the KIT. This section would also include extensions to Big-
Bench to measure other metrics important to technology choices, such as
performance-per-cost, energy efficiency, and performance subject to failures.
Performance-per-cost and energy efficiency are already included in various
industry standard benchmarks. Performance subject to failures is an impor-
tant metric as big data technologies run on large scale clusters, and conse-
quently, partial component failures such as hardware failures can be common.

– Pricing: This section will cover pricing related wording specific to BigBench.
Generic pricing rules are already available TPC’s pricing specification.

– Full Disclosure Report (FDR): Every TPC benchmark publication includes an
FDR that allows anybody to reproduce the benchmark. In case of an express
benchmark only allowed deviations from the KIT and system specifics need
to be included in the FDR and, hence, the specification wording is limited to
that.

– Audit Requirements: Minimum requirements for the audit process that need
to be followed. In case of an express benchmark, self auditing scripts that show
correct implementation and execution of the benchmark need to be included
and, if desired, rules for peer-auditing.
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9 Conclusion

As big data analytics becomes an important part of todays data management
ecosystem, there is a need for an industry standard benchmark that can mea-
sure the performance and price-performance aspects total system under realistic
workloads. In this paper, we propose a framework for an end to end big data
analytics benchmark based on BigBench. The benchmark is intended to repre-
sent todays data management ecosystem which is implemented as an extension
of enterprise DW application (structured data) with new data sources (semi-
structured and unstructured). The paper presents 30 queries representative of
real life scenarios, their characteristics and experiment results. This paper is
presented as a proposal to the TPC to create the next generation industry stan-
dard benchmark that can be developed as an Express benchmark or Enterprise
benchmark.

BigBench currently incorporates a retail industry use case. Recent customer
surveys reveal additional important and common use cases from other industries,
e.g., the financial industry [4]. Hence, as additional surveys and empirical data
emerge, BigBench will be extended to incorporate additional use cases.
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Abstract. Nowadays, more and more companies, such as Amazon,
Twitter and etc., are facing the big data problem, which requires higher
performance to manage tremendous large data sets. Data management
systems with a new architecture taking full advantages of computer hard-
ware are emerging, on the purpose of maximizing the system performance
and fulfilling customs’ current or even future requirements. How to test
performance and confirm the suitability of the new data management sys-
tem becomes a primary task of these companies. Hence, how to generate
a scaled data set with desired volumes and in desired velocity effectively
becomes a problem imperative to be solved, together with the goal to
keep the characters of their real data set as many as possible (realistic).
In this paper, we proposed PSUG to generate a realistic database in
terms of required volume and velocity in a scalable parallel manner. Our
extensive experimental studies confirm the efficiency and effectiveness of
our proposed method.

1 Introduction

In the business area, data produced or analyzed has already broken the Petabyte
barrier. Many business companies (e.g., Amazon, Twitter) are producing even
more data at a higher pace fashion. On a specific moment, the data to be gener-
ated may be amazing at both of speed and volume. For example, on “Double 11
Festival” created by Taobao.com in 2013, the number of completed transactions
in whole day is 0.17 billion, with a maximum speed at 68,000 TPS. In such a
case, new requirements on high velocity transaction processing and massive data
analysis are imposed by more and more companies. They attempt to shift their
data management systems to newly built ones, such as VoltDB, Impala, SAP
HANA, and etc., which may be able to take over such rediculous scenarios. It
turns out to be a problem imperative to be solved on testing whether these data
management systems are suitable for their applications or not.

To test the suitability of the new data management systems for the applica-
tions which contain their current or even future requirements on data processing,
companies do need a data generator to simulate their applications with following
characters: (1) Volume. The generator should be able to generate a data set at
any scale in volume. (2) Velocity. The generator should be able to generate a
c© Springer International Publishing Switzerland 2015
R. Nambiar and M. Poess (Eds.): TPCTC 2014, LNCS 8904, pp. 64–81, 2015.
DOI: 10.1007/978-3-319-15350-6 5
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data set at any pace in a parallel way, even with low synchronization cost across
parallel node. Otherwise, the synchronization among nodes will become a bottle-
neck for data generation. (3) Realistic. The generator should be able to generate
a data set which is similar to the real data set (i.e. a real data set provided
as an input) as much as possible. However, the three characters function in a
contradictory manner with each other. To generate a data set for any volume
at any pace, it requires to be generated in a parallel manner. Nevertheless, to
generate a realistic data set which is similar to the given real data set, it has
better to generate in a centralized environment, or it is inevitable to have high
communication cost for synchronization across parallel generation nodes lever-
age on the existed data generation algorithms, which may further pull down the
data generation pace.

Much work has already been done on synthetic database generation. Gener-
ating database in terms of the given real data set or a set of its character descrip-
tion parameters, which is initiated by Jim Gray [6]. Jim Gray provides parallel
algorithms to generate a database efficiently with a predefined schema, but no
correlations between attributes are given. Further on, much work extends the
algorithms proposed by Jim Gray. Users can specify correlations in XML-based
or c-like languages, and get the desired database (e.g., SDDL [8], PDGF [5],
Flexible Database Generators and Tay [3,12]). Although the generators are uni-
versal, they failed to explore the inherent properties. Besides, some generation
tools model a database schema as a directed graph and generate data in terms of
the sequence indicated in the graph (e.g., Houkjaer [9]). However, it is difficulty
to partition the schema graph so that parallelism becomes the bottleneck. At last,
given results of queries, some generation tools can explore the inherent proper-
ties, while they keep the dependency and data distribution at the cost of reducing
generation speed (e.g., Arvind Arasu [1], QAGen [2] and MyBenchmark [11]).

In this paper, we propose PSUG, which is a scalable framework for univer-
sal data generation in parallel, to tackle the problem of generating a realistic
database (or dataset) at any volume and velocity when taking a real database
(or dataset) as the input. Given user defined correlations, a sample database D
containing a small group of tuples, scale factor sf , PSUG can generate a real-
istic database D′ in parallel. PSUG analyzes the correlations between columns
and constructs a corresponding probability graph of column correlations. It is
difficult to generate in parallel when keeping all the correlations in the graph.
Therefore, for parallel database generation, PSUG partitions the graph leverag-
ing on the algorithm of maximum spanning tree. It gets a set of column groups
by keeping the strongest correlation between columns, together with the user-
specified correlations between columns. PSUG generates each column group iter-
atively by our extended multi-dimensional inversion method, which maintains
a similar data distribution over the correlated columns even when the volume
is scaled. We measure the generation error through Jensen-Shannon divergence
and give an error bound for one table generation. Furthermore, PSUG is able
to expand the domain of specific columns when generating for scalable volume
through a replacement method, which keeps the original distribution (e.g. in the



66 L. Gu et al.

stock market, new accounts registered in the next day, generating the distribu-
tion of old accounts similar to that in the real data). PSUG generates data on
multiple-nodes with multi-threads in parallel leveraging on a seed system. In a
whole, the main contributions of PSUG are listed as follows: (a) We proposed
an universal framework to formulate the generation rules for user-given corre-
lations and generate realistic databases in parallel at any scalable volume and
speed. (b) We adopt an improved maxmum spanning tree algorithm for column
grouping and combination. (c) We give an error bound for one table generation
based on Jensen-Shannon divergence. (d) We design an replacement method for
domain expansion which is able to keep the original distribution.

2 Architectural Overview

In this section, we provide the overall architecture of the data generation frame-
work. As shown in Fig. 1, it consists of two main components, including schema
decomposition and parallel generation.

The component of schema decomposition aims to partition the original
schema into column groups. Each column group is independently processed by
the other component. Table schema, user specified correlations and a scale factor
indicating the desired volume of the generated data set are parsed by a parser
component and further transformed to notations defined in PSUG. The compo-
nent of schema decomposition includes two parts, i.e. correlation detection and
correlation combination. PSUG uses a generalized correlation testing method
to detect the inherent correlation which forms a correlation graph. PSUG par-
titions the graph based on the maximum spanning tree algorithm in order to
generate the correlated column groups for parallel data generation. In addition,
the strongest correlation between columns are kept, including the user specified
correlations.

The data generation component is responsible for generating the data in
parallel with the capabilities on maintaining the distribution and expanding
domains of specific columns. There are three main parts in this component.

Fig. 1. The architecture of PSUG Fig. 2. Inversion method in PSUG
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Table 1. Symbols

Notation Description

s Intra-table dependency

m Inter-table dependency

c Numerical computation

d Date computation

j1 Non primary keys referencing primary keys of one table

j2 Primary keys referencing primary keys of one table, subclassification
relation

j3 Primary keys referencing primary keys of one table, interaction relation

j4 Foreign keys referencing multiple tables, combination relation

Firstly, distribution maintenance is based on the inversion method so that PSUG
is able to preserve the distribution for any generated data volume. Secondly,
domain expansion is based on an replacement method which is able to preserve
the original distribution. Thirdly, a seed system is equipped with a linear con-
gruential method which is vital for parallel generation.

PSUG can deal with numerical and categorical domains, while not for textual
strings. PSUG is an universal data generator in terms of its own defined language,
which provides rules for schema reference and computation. Different schemas
may have different computation methods, so that PSUG supports user-defined
functions.

2.1 PSUG Rules

Generally, we take three aspects of dependencies in real data set into account,
i.e., intra-column dependency, inter-column dependency, inter-table dependency.
In this section, we provide the rules to transform the dependencies into a data
structure inside PSUG, especially for inter-column dependency and inter-table
dependency, which are distinguished by flags ‘s’ and ‘m’ irrespectively. We pro-
vide two classes of computations, i.e.,the numerical computation ‘c’ and the date
computation ‘d’. Related symbols are defined in Table 1.

Inter-table dependency is important for keeping join selectivity, and we
defined four types. Firstly, j1 represents foreign key dependency. Secondly, pri-
mary keys of table R1 depends on primary keys of table R2, which can be divided
into two subclasses, i.e., many-to-one relation and one-to-one relation. Many-to-
one relation (j2) is defined as subclassification, for example, in TPC-H schema,
LINEITEM records circumstances(e.g. price) of all goods in one order so that
one value of L ORDERKEY in LINEITEM corresponds to multiple values of
L LINENUMBER. In addition, sum of prices of one L ORDERKEY equals to
the price in ORDERS. Thirdly, one-to-one relation (j3) is defined as interac-
tion, for example, in stock applications, the schema has tables ORDERS and
TRADES. ORDERS records people asking for selling or buying one stock and
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TRADES records the successful orders (one sells stock to another). Therefore,
ORDERS and TRADES have the same stock in one trade. Fourthly, j4 repre-
sents foreign keys referencing multiple tables, which is called as a combination
relation. For example, PS PARTKEY and PS SUPPKET of table PARTSUPP
references P PART of table PART and S SUPPLIER of table SUPPLIER.

PSUG parses the symbols and maintains following five sets which are the
PSUG language and useful for schema decomposition:

– Coarse-grain classifying set {CG}: The set records which column belongs
to the simple flags in one table. The simple flags are s, m, j1, j2, j3 and j4.
The pattern of a record of {CG} is (tableID,(simple symbol,columns)).

– Fine-grain classifying set {FG}: The set records which column belongs to
the flags in one table. The pattern of a record of {FG} is (tableID,(symbol,
columns)).

– Referenced information set {RI}: The set records the referenced table id
and column id of one column in one table. The pattern of a record of {RI}
is (tableID,(column,(referenced tableID, referenced columnID))).

– Detail records set {DR}: The set records the corresponding symbol and
extra information(like proportion, range and so on) of one column in one
table. The pattern of a record of {DR} is (tableID,(column,(symbol, extra
information))).

– Type records set {T R}: The set categories columns into primary key, for-
eign key, numerical domain, categorical domain, date. The pattern of a record
of {T R} is (table id, (type, columns)).

Table 2. Typical columns’ description of LINEITEM of TPC-H

Column name Type Description

L ORDERKEY int p;j2:4.0-[1,7]

L PARTKEY int j1:2.0

L SUPPKEY int j1:2.1

L LINENUMBER int p

L SHIPDATE date dm1:4.4-[1,121]

L RECEIPTDATE date ds1:10-[1,30]

To understand the symbols better, we take LINEITEM table in TPC-H as
an example. Columns with different references are listed in Table 2 as well as
five sets in Table 3. TableIDs of SUPPLIER, PART, PARTSUPP, CUSTOMER,
ORDERS, LINEITEM are 0, 1, 2, 3, 4, 5. The description p;j2:4.0-[1,7] contains
information as follows: L ORDERKEY is the primary key and references column
O ORDERKEY (columnID is 0) of table ORDERS (tableID is 4), while the fre-
quency of concurrence of one value on O ORDERKEY can be 1 to 7 times larger
than that in LINEITEM. The description dm1:4.4-[1,121] means L SHIPDATE=
O ORDERDATE+[1, 121], while ds1:10-[1,30] means L RECEIPTDATE=
L SHIPDATE+[1, 30].
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Table 3. Sets maintained for LINEITEM of TPC-H

Set flag Contents

{CG} 5;s-{12};m-{10,11};j1-{1,2};j2-{0}
{FG} 5;ds1-{12};dm1-{10,11};j1-{1,2};j2-{0}
{RI} 5;0-4.0;1-2.0;2-2.1;12-10;10-4.4;11-4.4

{DR} 5;0-j2-[1,7];1-j1;2-j1;12-ds1-[1,30];10-dm1-[1,121];11-dm1-[30,90]

{T R} 5;primary-{0,3};reference-{0,1,2};numerical-{4,5,6,7};categorical-
{8,9,13,14,15};date-{10,11,12}

3 Schema Decomposition

Real data set contains intra-column dependency which refers to the distribution
maintenance, inter-column dependency and inter-table dependency. PSUG uses
a weighted graph to detect the inter-column dependency. It is time consuming
for PSUG to keep all the dependencies between columns. Hence, we partition
the graph to keep the strongest correlation between columns. Besides both of
the detected correlations and user specified correlation are considered. Conse-
quently, groups of correlated columns are generated for later data generation.
In this section, we introduce the algorithms for correlation detection and graph
partition, as well as the correlation combination algorithm.

3.1 Correlation Detection

In this section, we provided a modified mean-square contingency φ2 for correla-
tion detection. Assume that two columns X and Y are to be tested, where xi is
a value of X, and yj is a value of Y ), and f(xi) is the frequency of value xi. We
apply mean-square contingency φ2 as follows:

φ2 =
1

|X| ∗ |Y |
|X|∑

i=1

|Y |∑

j=1

(f(xi, yj) − f(xi)f(yj))2

f(xi)f(yj)
, (0 ≤ φ2 ≤ 1).

If X is independent of Y , then φ2 = 0 and f(xi, yj) = f(xi)f(yj). If φ2 = 1, then
it is a hard function dependency. However, as for real data, φ has value between 0
and 1. We define columns are independent if φ2 ≤ ε. It needs |X| × |Y | loops
to compute φ which is too expensive if the volume of real data is large. We
use a sampling data for computation, where the probability of false negative is
low [10].

It is time consuming to detect the dependency of each two columns if the
table has more than 100 columns. We use a cardinality based method to prune
the columns which must not be correlated, by the inequality |X|

|R| ≥ 1 − ε (X is
a column of table R).

Through pruning, we can get the columns that has the least correlation with
others and we assume they are independent of others. We put the independent
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columns into an independent set {IS} and others into a candidate set. Besides,
we keep all the relations φ2 in an adjacent matrix.

3.2 Graph Partition

All the relations in the candidate set are stored in the adjacent matrix to form a
weighted graph. Graph partition is needed to find the most correlated columns.
In this section, we consider the graph partition as an altered maximum spanning
tree problem and use the improved Kruskal algorithm to solve it.

We assume each group has at most four columns, and detect the most corre-
lated columns as follows. We sort the edge according to the weight. Each time
we choose the edge which has the max weight and put the adjacent point that
shares the same edge in one group. We do the same work until numbers of vertex
in one group equals to 4 or the columns construct a circle, then put the groups
into the group set {CS}.

An example of graph partition on the table LINEITEM of TPC-H is given
in Fig. 3, where columns(4, 5, 6, 7, 15, 16) are candidates in the set cs, includ-
ing QUANTITY, EXTENDEDPRICE, DISCOUNT, TAX, SHIPMODE, COM-
MENT, and φ2 is set to be larger than 0.4.

3.3 Correlation Combination

The detected and user specified correlations maybe overlap, which should be
combined before data generation. In this section, we introduce the algorithm on
combination.

Fig. 3. The procedure of graph partition. (a) each edge’s weight before partition (b)–(e)
partition steps in sequence (f) partition result
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The symbol m is used for inter-table reference, which affects the schema
decomposition. PSUG combines columns in the set {m} with inter-table refer-
ence. If one column references only one column, PSUG will search the referenced
column’s information. If it has a computation, PSUG puts the column in one
stack so that it keeps the computation order. At last, PSUG puts the combined
result in {GS}. When one column references multiple columns, put the column
in a global set {TECS}. The combination algorithm is shown in Algorithm 1.

To understand it better, we combine both of the user specified and detected
correlations by following the algorithm, using the example of TPC-H. Firstly,
combine inter-table reference j and m, which is ‘m-{10,11};j2-{0}’ in set {CG}
listed in Table 3. For the symbol s, {CG} has ‘s-{12}’. Column 12 references
column 10 (‘12-10’ in {RI}). Search type of column 10 in {DR} and the type
is ‘10-dm1’, then put column 10 into {TECS}. At last, groups in {GS} are
(m-{10,11};j2-{0,3}), (j1-{1,2}), (independent-{8,9,13}), (candidate-{4,5,14,
15}), (candidate-{6,7}). Column 12 is in {TECS} and will be dealt specially
in data generation.

Algorithm 1. Algorithm for correlation combination
input : course-grain classifying set {CG}, fine-grain classifying set {FG},

referenced information set {RI}, detail records set {DR}, type records
set {T R}, independent set {IS}, candidate set {CS}

output: groups {GS}
Define an external computation set {TECS} for table;
Put {IS}, {CS} into {CG}, {DR} using key word ‘independent’ and ‘candidate’
separately;
Combine inter-table reference into {GS} (j and m);
Put {IS} into {GS};
Get set {s} from {CG};
for ci ∈{s} do

Define external computation stack ECS ;
1: put ci in ECS ;
2: get r from {RI} using ci as the key word;
if size of r > 1 then

put ECS into {TECS};
continue;

else
put ri in ECS ;
get type ti from {DR};
if the 2-th letter of ti equals to ′s′ then

go to step 2;

else if the 2-th letter of ti equals to ′m′ then
remove ri from ECS ;
put ECS into {TECS};

else
add ECS to ri and put them in {GS};
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4 Data Generation

In this section, we introduce the data generation for the detected column groups
which have intra-column dependency, inter-column dependency, inter-table
dependency. Inversion method (Definition 1) is used to maintain the data distri-
bution at any scaled volumes. In addition, the generation error is measured by
Jensen-Shannon divergence. We proved the error is bound for one table genera-
tion. As for the difficulty of domain expansion (e.g. the quantity of account will
be larger in stock market from one day to 50 days) when scaling, we propose a
replacement method to solve for the domain composed of both of characters and
numbers with a valid length.

The inversion method means that get random numbers at the vertical axis,
then get the corresponding value at the horizontal axis according to F invert
(g(x)) for a continuous variable. At last, we can get the distribution f(ξ).

Theorem 1. Inversion method: There are several random number distribu-
tions which are equally distributed in (0, 1): g(x), . . .. To get f(ξ)dξ, get

F (ξ) =

ξ∫

−∞
f(ξ)dξ, (1)

invert F (ξ) = g(x) to F invert(g(x)) = ξ and get f(ξ) = F invert(g(x)) under
the prerequisite that f(ξ) should be larger than 0.

4.1 Intra-column Generation

In this section, we demonstrate an altered inversion method for intra-column
generation. We assume one table R and one column X in this circumstance. In
the database area, we use the concept of frequency instead of probability. Thus,
X is a discrete variable and f(X) is the frequency. For the discrete variable and
frequency, getting more samples will result in growth of f(x). However, we can
ensure the proportion is valid. Thus, we define the intra-column generation in
Definition 1.

Definition 1. Intra-column generation: There is a random number distribu-
tion which is equally distributed in (0, T ]: ri. The values of X are (x1, x2, ..., x|X|),
get

F (X) =
x|X|∑

x1

f(x). (2)

Invert F (x) = ri + ϑ to F invert(ri + ϑ) = x and get the function f1(X). Thus
f(xi)
F (X) = f1(xi)

F1(X) .

As shown in Fig. 2, the horizontal axis represents the ordered values of column
X while the vertical axis is its frequency. The figure gives the discrete cumulative
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distribution of F (X). Having a value of x in terms of its probability, a random
number which falls in range of [0, F (X)] can be gotten, then corresponding x is
calculated.

Example 1. Given R with one attribute X which has three distinct attribute
values {a, b, c} (the corresponding frequency are {20, 60, 20} irrespectively), gen-
erate 4 rows synthetic data. First we compute F (X), which is shown in Table 1,
and get 100 as the max number of F (X). Use g(100) to get sequence random
numbers {19, 45, 98, 34}. The first random number 19 is smaller than 20 and
attribute value a is gotten. The second number 45 is between 20 and 45, so b is
gotten. Finally, we get {a, b, c, b}.
To generate data according to its distribution, we calculate the distribution first.
Different domain types use different methods to calculate their distributions,
where the types can be categorical and numerical:

– Numerical: For the numerical domain, it is supposed to be continuous and
bounded. PSUG converts the numerical domain to the categorical domain by
using the width-balanced histograms. For width-balanced histograms, |ai −
ai−1| = |ai+1 − ai| (1 ≤ i ≤ n). PSUG records the minimal min and maximal
max number for the numerical domain. Number of partitions is 100 for default
and length of each field is p = (max − min)/100. Therefore, every field can
be computed, which is [min,min+p), [min+p,min+2p), ..., [max−p,max],
then record the minimal numbers in the field. PSUG scan the data again to
statistics the distribution in the fields. The distribution is min : [min,min +
p) : f1;min + p : [min + p,min + 2p) : f2; ...;max − p : [max − p,max] : fn

(the flag of the field [min,min+p) is min and the frequency is f1). According
to the inversion method, if min is gotten, get a random number between min
and min + p.

– Categorical: For the categorical domain X, the attribute value set is {x1, x2,
..., x|X|}. The attribute value can be static (e.g., Types will be static) or
expanding (e.g., Customer code will accumulate). Static attribute and expand-
ing attribute can be distinguished from enormous difference of cardinality.
Static attributes’ generation can use the inversion method completely, while
expanding attributes should consider domain expansion.

4.2 Inter-column Generation

In this section, we introduce inter-column generation and prove the modified
inversion method ensures inter-column dependency. To deal with inter-column
generation, we convert it to the intra-column generation problem by treating
the value pair as an element. For convenience, we only take one table R and
two attributes X and Y to state how to deal with it. (X,Y ) (it has n = |X,Y |
distinct numbers) has the value pair set {(α11, α21), (α12, α22),..., (α1n, α2n)}.
We give the definition for inter-column generation in Definition 2.
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Definition 2. Multi-column generation: There is a random number distri-
bution which is equally distributed in (0, T ]: ri. (X,Y ) is the variable A. To get
f(α), get

F (α) =
|α|∑

α1

f(α), (3)

invert F (α) = ri + ϑ to F invert(ri + ϑ) = α. Thus f(αi)
F (α) = f1(αi)

F1(α) .

For the property of randomness, more data to be generated, more realistic
the data will be. Thus, there is an error between the database and database gen-
erated. We measure the error by Jensen-Shannon divergence (JS divergence for
short). The error of f(X) and f1(X) is expressed as JS(f(X), f1(X)).
We denote the error of one table as Error(R). The equation for error of one
table can be described as follows:

Error(R) =

∑ColR

j=0 JS(f(X), f1(X))
ColR

.

The error is computed by mean value of the error of every column in R′

and R. In addition, the bound of the error is shown in Theorem 2 and the
generation error is small compared with the max value.

Theorem 2. Bound of Error(table):

Error(R) ≤ H(12 , 1
2 ).

Proof. According to [4], JS(P1, P2) ≤ H(π1, π2) − 2Pe(P1, P2) ≤ H(π1, π2) ≤ 1
(Pe =

∑
ai

min(π1p1(x), π2p2(x)) is the Bayes probability. π1, π2 ≥ 0, π1 + π2 =
1. H(π1, π2) = −π1 log π1 − π2 log π2).

Therefore the upper bound of H(π1, π2) is that of Error(R).
Let f(x) = H(π1, π2) = −x log x− (1−x) log(1−x), x = π1. Therefore, f(x)

must be larger than 0 and f(x) = f(1 − x). f(x + 1
2 ) = f(1 − (x + 1

2 )), so f(x)
and f(1 − x) are symmetric about 1

2 . Let f1(x) = − log(x) + log(1 − x) = 0, so
x = 1

2 . If x ≤ 1
2 , then x ≤ 1 − x and log(x) is monotone increasing, so log(x) ≤

log(1 − x). Therefore If x ≤ 1
2 , f1(x) ≥ 0 and f(x) is monotone increasing. If

x ≥ 1
2 , f1(x) ≤ 0 and f(x) is monotone decreasing, then f(x) ≤ f(12 ). Therefore

H(π1, π2) ≥ H( 12 , 1
2 ). In the end, Error(R) ≤ H(12 , 1

2 ).

4.3 Inter-table Generation

Inter-table dependency is classified into four classes, and we have four paradigms
for them. In this section, we demonstrate the four inter-table generation para-
digms. We assume the type of primary keys is either integer or char. If the type
is char, the primary key is composed of characters and numbers with a valid
length.
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The j1 means foreign keys that non-primary keys reference primary keys. As
the values are static, PSUG regards the generation as inter-column generation.

The j2 means one primary key k1 of table R1 depends on one primary key
k2 of table R2, which is a subclassification relation and has a proportion like
k1 : k2 = [1, n] : 1 (one value of k1 exists 1 to n times in k2). PSUG com-
bines m and j so that it processes them concurrently. The input is the set {m}
and dependency j2. Get a value v2 of k2 according to the composition feature
and a random number r which is in the range [1, n]. Get the values of refer-
enced columns in table R2 that columns in {m} referenced. Loop r times, and
keep v1 of k1 (v1 = v2) invariant. Use the values of referenced columns to gen-
erate column in {m} according to the detail information in {DR}. PSUG can
only deal with the circumstance that R1 has two primary keys and R2 has one
primary key.

The j3 means one primary key k11 of table R1 depends on the primary key
k21 of table R2, which is an interaction relation. PSUG can only deal with the
circumstance that R1 has two primary keys and one sells to another. PSUG can
not deal with the interaction that one sells to more than 1 people in one order.
Table R1 has another primary key k12 and |k11| : |k12| = 1 : 2. In this scenario,
values of columns in {m} in R2 comes from R1. Circle 2 times, keep value of k12
invariant, and make corresponding value in {m} be the same with the values of
referenced columns.

The j4 means one primary key k11 and another primary key k12 of table R1

reference the primary key k21 of R2 and that k31 of R3 separately. Additional
condition as k11 : k12 = 1 : [m,n] needs to be pointed out. We record the
minimum and maximum value of k21 and k31. When generating k21 and k31,
make them plus 1 each time. When generating k11 and k12, get a random
number r that is in the range [m,n]. Keep value k11 unchanged for r times,
then make k12 plus 1. When the value of k12 reaches to the maximum number,
k12 starts from the minimum value to accumulate. Next, repeat the procedure.

4.4 Domain Expansion

In this section, we introduce how to expand the domain for categorial domain
that needs expanding. Given the real data which has θ lines and needs to be
scaled to θ × sf lines, we expand the attribute domain which has a specific
composition, characters and numbers. Find the part that is consist of characters
and the part that is only consist of numbers.

We assume the table has a date time domain, and new values exist in every
day (e.g. there will be new customers every day). PSUG computes the accu-
mulating values δ through comparing cardinality of one time plot with that of
next time slot. PSUG uses a replacement method to do the domain expanding
and preserves the distribution of each column in one group, which is described
in Algorithm 2. For each time slot, PSUG keeps the number of original values
(labeled as o) and adds δ new values. PSUG records the minimal number min and
maximal number max and computes the difference p = max − min + 1. Each
original value has its corresponding new values through adding p. Therefore,
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Algorithm 2. The replacement method for domain expansion
input : minimal number of the domain min, maximum number of the domain

max, accumulating number δ, cardinality κ, original distribution
output: realistic data D′

γ = max − min;
for i∈ [1, κ] do

Generate according to the distribution using the inversion method;

for i ∈ [1, δ] do
get value re after generating according to the distribution;
get the number part of nre and re;
da = nre + re;
concatenate the letter part with da;

when number of original values generated reaches o in one time plot, generate
according to the original distribution and get one value a. We can get the num-
ber part n = a + p, then connects it with letter part. We prove it preserves the
distribution in Theorem 3.

Theorem 3. Distribution preservation after domain expansion: Given
f(x1, x2, ..., xn), x1 ∈ {a1, a2, ..., am} is generated using the inversion method,
and g(x1, x2, ..., xn), x1 ∈ {a1, ..., am, ..., ak} is generated using the replacement
method. γ = xmax − xmin. At last g(x1)+g(x1+γ)

G(X) = f(x1)
F (X) ,

g(x2)+g(x2+γ)
G(X) =

f(x2)
F (X) , ...,

g(xn)+g(xn+γ)
G(X) = f(xn)

F (X) , x1 ∈ {a1, a2, ..., am}.

Assume there are no new values, according to the definition of multi-column
generation, we can get g(x1) = f(x1), g(x2) = f(x2), ..., f(xn) = f(xn). While
from row m to k, only x1 is replaced, such that g(x1)+g(x1+γ)

G(X) = f(x1)
F (X) ,

g(x2)+g(x2+γ)
G(X) = f(x2)

F (X) , ...,
g(xn)+g(xn+γ)

G(X) = f(xn)
F (X) , x1 ∈ {a1, a2, ..., am}.

5 Parallel Generation

PSUG uses a seed algorithm to generate a complicated schema in parallel. We
introduce our parallelism for one table that is composed of different groups, then
show multiple tables generation further.

5.1 Random Number Generator

The linear congruential method [6] was invented to generate pseudo-random
numbers by Lehmer in 1948. It generates pseudo-random numbers based on
the formula xi+1 = (xi × G + c) mod P , which is cost-effective to compute
when c = 0. If numbers smaller than N are to be gotten, make P be larger
than N and the random number sequence is: < Gi mod P |i = 1, ..., P and
(Gi mod P ) ≤ N >. It presents a generated number sequence, each element of
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which is no larger than N . If the values for P and G are set rationally, a dense
unique sequence can be acquired. Dense unique here means that each number in
the sequence {0, 1, ..., N} can be generated for exact once. Besides, the sequence
will be the same if generated again. According to number theory [7], P should
be a prime so that a dense unique sequence can be gotten. To understand how
it works, generate random numbers between 1 and 10. We set P and G to be 11
and 2, then we can get the dense unique sequence: 2, 4, 8, 5, 10, 9, 7, 3, 6, 1. When
multiplying more G, the same sequence will exist again.

In our work, each value to be generated has its own seed which can be
computed using the linear congruential method. When a generation job comes,
the generator uses the method to partition the jobs through multiplying different
numbers of G. For the unique linear congruential method, parallelism can be
achieved. For convenience, we make groups of one table have the same seed.

5.2 Intra-table Parallelism

The parallelism follows two phases, inter-row parallelism and inter-column par-
allelism. PSUG partitions rows to each computers and makes threads be respon-
sible for inter-column parallelism. The inter-column parallelism can be called
as inter-group parallelism. In this part of section, we introduce the two phase
parallelism framework.

PSUG has grouped columns for parallelism and several threads will be respon-
sible for generating the groups in set {GS}. When rows partitioning, it should base
on the primary keys. According to the inter-table paradigm, if the type is j2, there
are two primary keys k1 and k2 (k1 : k2 = 1 : [a, b]). PSUG should get a random
number r and make one of the columns exist r times. The random number genera-
tor can give a dense unique sequence which is in the range a and b. Thus workload
in one computer should be a multiple of (a+b)(b−a+1)

2 . We assume the total rows
is sf × |R|, the number of computers is v, then rows in one computer should be
t = sf×|R|

(a+b)(b−a+1)
2 v

. Therefore, the number of rows that v − 1 computers are respon-

sible for is t(a−b+1) and the last computer generates sf ×|R|−(v−1)t(a−b+1)
lines.

Other groups not contained in the set {j} and {m} should be partitioned
according to the partition of primary keys. For the unique sequence, we know the
random number through the position. Therefore, the v computers should record
it which contains the start and end row position. Independent set {IS} contains
columns that has low cardinality, so that the binary search has low overhead.
Therefore, PSUG regards the independent set as a group and allocates a thread
to generate them in order.

5.3 Inter-table Parallelism

As the inter-table computation depends on the primary key dependency, inter-
table is complicated. In this part of section, we will demonstrate the parallelism
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through dependency of LINEITEM to ORDERS in TPC-H which is complicate
enough.

PSUG will maintain a global information like the seed of each table and
all the sets. In the schema, O TOTALPRICE of ORDERS is computed from
L EXTENDEDPRICE, L DISCOUNT and L TAX, which is the computation
type cm. Therefore, O TOTALPRICE can get the seed of LINEITEM and get
the operation of L EXTENDEDPRICE, L DISCOUNT and L TAX. It should
generate the values of three columns of LINEITEM itself, then compute the
value for O TOTALPRICE. Therefore, O TOTALPRICE should not wait for
the generation of LINEITEM, it can generate the value of LINEITEM.

As columns and rows are partitioned, PSUG use producer-consumer model
to concatenate columns and rows. A concatenation thread is responsible for
concatenating and computing the columns in {TECS}. Each producer has its
own buffer and generates columns they are responsible for and writes them in
their own buffer. Assume there are p buffers. If p − 1 buffers reach a size λ, the
p-th processor will be invoked. The p-th processor gets one line in each buffer
and integrate, and then writes to the p-th buffer.

6 Experiments

In this section, we report our empirical evaluations of PSUG on the properties
of realistic, universal and parallel. PSUG generates two databases, which is the
trade table in stock market and the TPC-H database. Through the distribution
graph, we show the realistic property of PSUG. In addition, we compare PDGF [5]
and PSUG to show its superiority in scaling using Error(R). Join is common for
OLAP systems so that keeping the join selectivity is vital for generators. We con-
cludes all the join example in TPC-H and tests PSUG’s join selectivity to show
PSUG is good at keeping the join selectivity. At last, we experiment on multiple
nodes to show the efficiency of PSUG’s parallel framework.

6.1 Setup

The experiments are run on a 4 core enterprise level server. The server has four
E5606 Intel Xeon CPUs with four cores and eight megabytes cache each. They
are clocked at 2.13Ghz. The server has a total of 378 gigabytes main memory.

We use two datasets in the experimental evaluations, with their detail sta-
tistics summarized as following:

– The Stock dataset includes 20-day transactional records on buying and selling
behavior. The dataset contains 20 columns, including account id, stock id,
date, price, amount and etc. 18 out of the 20 columns are in integer/categorical
value type, and the other 2 columns are in numerical value type.

– The TPC-H dataset consists of 8 tables (SUPPLIER, PART, PARTSUPP,
CUSTOMER, ORDERS, LINEITEM, NATION, REGION). The abbrevia-
tions of them are s, p, ps, c, o, l, n, r in sequence. The lengths of two tables
(n, r) are valid. The other 6 tables has complicated inter-table dependency
and intra-table dependency.
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6.2 Properties Verification

In Fig. 4(a), we evaluate the realistic through distribution of stock id for contin-
uous 5 days and compare with the input data. The horizontal axis means stock
id, and the vertical axis is marked with the proportion of each stock id. Only one
curve can be seen so that the distribution can be maintained when scaling. In
addition, we use PDGF and PSUG to generate the stock data to 1G, 10G and
100G. At last they have the same error(the computation method is in Sect. 4),
and the values are 0.04378, 0.04018, 0.03954, which are much smaller than 1. In
Fig. 4(b), we generate 100G data of the stock schema in 1, 5, 10 nodes. When the
number of nodes increase, the throughout increase linearly and the generating
time decrease rapidly. PSUG can generate any data (universal) in parallel.

Table 4. Comparison of PSUG and PDGF’s join selectivity

Tables TPCH- PDGF- PSUG- TPCH- PDGF- PSUG-

total total total selectivity selectivity selectivity

c-o 999982 999999 999999 [1, 46] [1, 39] [1, 30]

p-ps 2000000 25000 2000000 4 4 4

s-ps 100000 100000 100000 80 1 80

s-n 25 25 25 [3924, 4095] [1910, 4125] [3548, 4379]

s-l 100000 100000 99997 [495, 708] [233, 600] [1, 918]

o-l 15000000 15000000 12856820 [1, 7] [1, 7] [1, 7]

c-n 25 25 25 [59476, 60471] [59491, 60514] [59482, 60547]

p-l 2000000 1999999 1999999 [8, 58] [1, 37] [7, 61]

Fig. 4. Data generation for stork dataset Fig. 5. Comparison of PSUG
and PDGF

In Fig. 5, we generate 1G and 10G data of TPC-H schema using PDGF and
PSUG, and compare their errors. When scale factor is 10, PSUG performs better
than PDGF. However when scale factor is 1, PSUG has a larger error because
it generates the numerical domain according to the distribution rather than
computing the values. Therefore, with much more times, PSUG can generate a
more realistic data.
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Table 4 lists the all the join circumstance of TPC-H. The total is the result
of query ‘select count(*) from (select count(*) from A, B and A.k = B.k group
by A.k);’. The selectivity is the result of query ‘select count(*) from A, B and
A.k = B.k group by A.k;’ or ‘select min(cc),max(cc) from (select count(*) cc
from A, B and A.k = B.k group by A.k);’. The results of PSUG are similar to
that of TPCH.

7 Conclusion and Future Work

In this paper, we present PSUG, a scalable framework for universal data genera-
tion in parallel. Different from existing frameworks, PSUG focuses on capturing
the properties of real data and generating realistic data set for any scaled vol-
umes. PSUG defines its own language for user specified correlation description in
the schema. PSUG is equipped with a schema decomposition technique (includ-
ing correlation detection, graph partition, correlation combination) to preserve
correlation and generate in parallel, and an modified inversion method to gener-
ate the scaled data set with distribution maintenance, as well as the replacement
method for domain expansion. To generate at any velocity, PSUG parallelizes the
generation on multiple nodes. Our experiments verify the superiority of PSUG
on generating the realistic data set.

In our future work, we aim to (1) add more complicated inter-table depen-
dency to support more complicated schema; (2) extend to support new value
types, e.g. columns with strings of various length.
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Abstract. Today’s database benchmarks are designed to evaluate a par-
ticular type of database. Furthermore, popular benchmarks, like those
from TPC, come without a ready-to-use implementation requiring data-
base benchmark users to implement the benchmarking tool from scratch.
The result of this is that there is no single framework that can be used to
compare arbitrary database systems. The primary reason for this, among
others, being the complexity of designing and implementing distributed
benchmarking tools.

In this paper, we describe our vision of a middleware for database
benchmarking which eliminates the complexity and difficulty of designing
and running arbitrary benchmarks: workload specification and interface
mappers for the system under test should be nothing but configuration
properties of the middleware. We also sketch out an architecture for this
benchmarking middleware and describe the main components and their
requirements.

1 Introduction

Relational database management systems (RDBMS) have been around since the
1960 s and have long been considered to be a one-size-fits-all solution to data per-
sistence.However, over the last few years, a plethora of newdata storage solutions –
typically referred to as NoSQL (Not Only SQL) systems – have been developed
to step in where RDBMS have previously been unable to fulfill certain complex
application requirements, e.g., elastic scalability. Today’s data storage systems are
primarily categorized by their supported data model and their application data
access interface into column stores (e.g., Bigtable [14] or Cassandra[31]), key-value
stores (e.g., Dynamo [19] or Voldemort1), document stores (e.g., MongoDB2 or
1 project-voldemort.com.
2 mongodb.org.
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CouchDB3), and RDBMS (e.g., MySQL4 or PostgreSQL5)[13,44]. In addition to
these, there are other database systems targeting special use cases, e.g., caching
storage for objects (e.g., Memcached6 or Redis7) and graph-oriented data (e.g.,
Neo4j8), and the so-called NewSQL9 databases (e.g., VoltDB10 or NuoDB11). In
essence, there are hundreds of different database systems available today and the
number is increasing everyday.

Choosing a single database system from this large set of available database
systems for a concrete use case is a non-trivial task [41]. From an application
developer’s perspective, there are certain functional requirements for a database
system based on the application’s needs. From the subset of database systems
fulfilling the demanded functional requirements, an application developer typi-
cally wants to select the “best” database system based on non-functional qual-
ity attributes like performance, availability, data consistency, security, cost, etc.
This shows the clear need for an ability to compare different database systems in
terms of their non-functional quality characteristics which is usually addressed by
benchmarking.

For such a benchmark to measure these quality attributes in a meaningful
way, it requires running a workload that is comparable to the workload which
will eventually be generated by the application. Therefore, measurement results
obtained while running different workloads have little meaning. Most bench-
marks available today can either be used with a subset of database systems
(e.g., TPC12 benchmarks for RDBMS) or do not use realistic, application-driven
workloads (e.g., YCSB [15] or YCSB++ [36]). This prevents a fair comparison of
database systems from different categories, e.g., a column store and an RDBMS.

Furthermore, such database benchmarks should also be easy to use, i.e., it
should consist of both a measurement method and a ready-to-use toolkit. Again,
existing benchmarks fall short by either not including a toolkit (e.g., see the TPC
Express initiative [35]) or implementing the toolkit based on design decisions
which limit the toolkit’s applicability to only a subset of existing databases (e.g.,
YCSB [15]).

We argue that a middleware for the execution of arbitrary database bench-
marks is missing. When designing a benchmark, the benchmark designer should
concentrate on his core competences – namely, specifying a realistic, application-
driven workload profile and means to analyze obtained measurements. Instead
of having the middleware take care of the hassle of distributed benchmarking
3 couchdb.apache.org.
4 mysql.com.
5 postgresql.org.
6 memcached.org.
7 redis.io.
8 neo4j.org.
9 NewSQL is a term used to refer to a new generation of RDBMS that attempt to

provide the same scalable performance of NoSQL systems for OLTP applications
while maintaining the full ACID guarantees provided by traditional RDBMS.

10 voltdb.com.
11 nuodb.com.
12 tpc.org.

http://couchdb.apache.org
http://mysql.com
http://postgresql.org
http://memcached.org
http://redis.io
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http://voltdb.com
http://nuodb.com
http://tpc.org
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and managing the measurement infrastructure, today, a benchmark designer has
to implement this from scratch for every single benchmark. The result of this is
obvious; we end up with either application-driven benchmarks without a toolkit
or benchmarking toolkits with flawed implementations and limited features. We
are of the opinion that workload specifications and mappers should be treated
as configuration parameters only.

In this vision paper, we present the first steps towards a middleware for the
execution of arbitrary database benchmarks which:

– should offer an execution environment for diverse workloads,
– should not make any assumptions regarding the underlying architecture and

implementation of the database under test, and
– should incorporate the measurement of performance as well as of more com-

plex quality of service (QoS) levels.

For this purpose, we first identify the general requirements for benchmarks
in Sect. 2 and describe why these requirements are difficult to maintain without
a benchmarking middleware. Based on this, we discuss the requirements such a
middleware should, hence, fulfill in Sect. 3. Finally, we sketch out the high-level
architecture we envision for this middleware (Sect. 4) and discuss related work
(Sect. 5) before coming to a conclusion in Sect. 6.

Please, note that some of the requirements from Sects. 2 and 3 may overlap
as requirements related to the execution of benchmarks will inevitably also be
requirements for a middleware solution targeting the execution of benchmarks.
Still, the focus might differ depending on the section.

2 Requirements for Database Benchmarks

The process of benchmarking database systems is typically repetitive, time-
consuming and tiresome [42]. To exacerbate the situation, without a good bench-
mark, the results of the benchmarking process can be confusing and misleading
and may result in making wrong design or database system choices. The task of
performing the benchmark in a new application domain or using newly devel-
oped database systems, like NoSQL systems, can be even more drawn-out due
to the lack of a good benchmark. In order, to be suitable for testing the per-
formance and usability of a wide range of database systems and to be useful
in simulating a wide variety of application use cases, we define the following
desirable characteristics of the benchmark.

Easy to use: In order to be suitable for a wide variety of application and cater
to different types of database users, the benchmark should be easy to configure,
run, use, and extend. The results of the benchmarking process must be easy to
understand so that they are suitable for making objective decisions.

Distributed Application Aware: Increasingly, typical applications are deployed
as a set of distributed database clients, spread across an often large geograph-
ical area that may span continents. To successfully emulate such application
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scenarios, the benchmark itself must be distributed in nature to simulate these
geographically distributed database clients. The framework must make it easy
to define a workload simulating a distributed application; distribution and coor-
dination of the workload should be handled efficiently and correctly. The results
of the execution of the benchmark should be gathered across all the benchmark
workload instances in a correct and efficient manner as though they were running
on a single machine.

Negligible Impact on Results: The benchmark itself and the infrastructure
needed to perform the distribution must be sufficiently light-weight so that it
neither becomes a performance bottleneck nor adversely skews the recorded mea-
surements. This means that the benchmark itself should be able to scale and that
changing the implementation of the benchmark should not affect the measure-
ment results.

Fine-Grained Measurements: Measurements obtained during the benchmark
should be collected and stored in a suitably fine-grained manner so that they
can be easily sliced and diced for further analysis. This does not preclude collec-
tion of aggregate metrics as long as raw, unprocessed data is captured as well.
Therefore, the size of collected measurement data can become large, e.g., for high
request numbers per second or long running benchmarks. Thus, in combination
with the requirement for negligible impact on results, efficient data structures
are needed to persist measurements.

Repeatability: The workload and operations performed during the execution of
the benchmark should be repeatable. This will enable an identical workload to
be run against different database systems in various configurations in order to
perform comparative analysis and A-B testing. For instance, it may be needed
to perform an analysis based on whether encryption is enabled or not. This
requires being able to replay exactly the same sequence of operation of another
benchmarking run.

Wide Applicability to Application Domains: The benchmark should closely
emulate a wide variety of application use cases in the form of predefined work-
loads so that it can be used by application designers and architects to objectively
pick a suitable database system that meets their needs. Extending the predefined
workloads to incorporate application-specific operations or scenarios in order to
enable an apples-to-apples comparison of the database systems under test should
also be easy. There should be an ability to define workloads in the form of a mix
of a variety of operations to be executed in different execution patterns to sim-
ulate a wide variety of application scenarios. This should include the ability to
simulate cases of increasing and decreasing load and differing periodicities of
workload intensity such as sudden spikes and troughs. Workloads should not be
limited to either OLTP or OLAP applications.

Provide Suitable Abstractions: The benchmark should not make any assump-
tions about the specific capabilities of the database under test and be unaware
of the specific database implementation. For instance, it must not know whether
the database supports transactions with ACID guarantees. The interface to the
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database should be abstracted to enable this behavior. However, a too high
abstraction level can result in workloads that only use limited software features
provided by a database system under test. Thus, the implementation of specific
workload scenarios becomes more difficult. Similarly, there should not be any
assumptions about other QoS guarantees provided by the underlying database.
Modern database systems make explicit but frequently also implicit QoS trade-
offs decisions in their implementation. The benchmark should track both sides
of the trade-off, i.e., different QoS dimensions. For instance, instead of making
assumptions about transactional capabilities as prescribed by ACID guarantees
it should track transaction isolation violations during the execution of the work-
load.

Support Micro-Analysis: Many evaluations of database systems use micro-
benchmarks to target specific database system features, e.g., index structures,
using a subset of an application scenario. To be useful in such situations, the
benchmark must allow the user to define targeted patterns of operations in the
benchmark that can be used to define micro-benchmarks which analyze specific,
database features in isolation. Based on the more high-level application work-
load, micro-benchmarks should be a direct result of a drill-down in the workload
stack, i.e., the benchmark should allow to enable and disable all operations of
the high-level, application-driven workload individually.

Support Different Deployment Topologies: The benchmark should be able to
simulate scenarios in which database applications as well as the database itself
are deployed in various deployment topologies including geo-distributed deploy-
ments. Increasingly, applications also use one or more database technologies
simultaneously working in concert. Benchmarking these combined setups in par-
allel should be supported in order to simulate such distributed application sce-
narios.

In our opinion, a benchmarking middleware is a suitable architecture for
building a benchmarking framework that fulfills the requirements above. Due to
today’s speed of innovation in database systems, such a middleware may even
have become a necessity. This is largely because of the following reasons:

– A middleware-based architecture will enable reuse which mitigates the risk
of having to rebuild the infrastructure needed for new benchmarking applica-
tions. This in turn reduces the risk of mistakes in the benchmarking applica-
tion leading to distorted measurement results.

– The application developer or database administrator can focus on the actual
application-specific workload instead of worrying about the infrastructure
needed to run a benchmark (e.g., distributed execution and coordination or
the mapping between operations and database interface).

– The middleware abstracts the measurement and collection of a wide variety of
metrics and performance characteristics across the various QoS dimensions.
For instance, it is a non-trivial task to either detect transaction isolation
anomalies as a result of transactional ACID property violations or to measure
degrees of database (in-)consistency.
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3 Requirements for a Benchmarking Middleware

Building on the requirements for distributed database benchmarks which we
identified in Sect. 2, we will now analyze middleware features necessary for creat-
ing middleware-supported benchmarks according to the mentioned benchmark-
ing requirements. We will use this to identify requirements that the middleware
for database benchmarking should fulfill.

In order to increase ease of use and allow for wide applicability to applica-
tion domains, a ready-to-use toolkit which does not make any assumptions about
the application domain or application scenario is required. This is closely linked
to providing suitable abstractions as well as supporting distributed workloads
and deployments, i.e., the benchmarking middleware itself should be completely
unaware of anything happening above or below the middleware layer; it should,
hence, be entirely database- and application-agnostic and be able to handle dis-
tribution and coordination. Ease of use also calls for the middleware tool to come
bundled with built-in basic workloads that are ready to use.

Fine-grained measurements will create large amounts of data so that a bench-
marking middleware must be able to handle such a data stream in terms of per-
sistence, i.e., storage of fine-grained results is required. Due to the complexity
of implementing such measurements, the measurement process itself should also
be handled by the middleware – not only for well-explored QoS dimensions like
latency or throughput but also for more complex dimensions like consistency or
transaction isolation. Therefore, a benchmarking middleware should come bun-
dled with support for advanced QoS dimensions. Finally, a benchmarking imple-
mentation with little or no impact on repeatable measurement results obviously
requires the same of an underlying middleware solution, that is, an efficient
implementation offering a trace-based execution of experiments.

Building on this connection between requirements for benchmarks and the
corresponding requirements for a benchmarking middleware, we will now discuss
each of the middleware requirements in more detail:

Database- and Application-Agnostic: The middleware should provide a one-
size-fits-all framework that supports all kinds of workloads with a variety of
database access patterns (e.g., changing workload intensity, OLTP and OLAP,
transactional and non-transactional, complex queries and key-based access, etc.)
without any assumptions on the application scenario or the application workload.
In addition to this, the middleware needs to be independent of the underlying
database and should be equipped with a flexible set of mappers that map and
facilitate the execution of its workloads on the different data models supported by
different database systems (e.g., relational, column-oriented, document-oriented,
and key-value) with the flexibility to support the definition of new data models
with associated mappers.

Support for Advanced QoS Dimensions: In addition to measuring the standard
evaluation metrics for database systems like response time and throughput, the
middleware should facilitate the measurement of advanced QoS metrics such as
consistency [4,9–12,26,48,50], availability and elasticity [43], where applicable.
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Ideally, the measurement component of the middleware should be extensible
so that it provides the ability to define new metrics and to plug-in new mea-
surement modules for these newly defined metrics. Furthermore, for cloud-based
deployments, the middleware should be able to track concrete usage of cloud
resources (e.g., storage, CPU, network, etc.) in order to facilitate monetary cost
benchmarking which is an important aspect of cloud environments [23].

Storage of Fine-Grained Results: The middleware needs to track and store all the
raw measurement data which introduces a certain degree of complexity as raw
measurement results can potentially become very large. To ease further analysis
and to also offer convenient access to aggregated results, the middleware should
also come bundled with a data analysis module that provides the ability to
gain insights from the collected large amount of measurement data by suitably
aggregating, transforming, correlating, and analyzing the raw measurement data.

Efficient Implementation: The middleware itself should not have a significant
negative impact on the performance of the benchmark and the measurements
of the evaluation metrics, i.e., choosing a different middleware implementation
should not notably affect the measurement results.

Distribution and Coordination: The middleware should manage distribution and
coordination of (potentially geographically) distributed measurement clients and
do so in a way transparent to the benchmark developer.

Trace-Based Execution: A repeatable benchmark execution, e.g., for A-B testing,
requires a trace-driven implementation so that a priori instead of ad hoc workload
generation is the logical choice. Obviously, such an operation trace should also
contain information on the measurement client issuing the operation according
to the desired level of distribution. This will assert that repeated executions
will issue the same operations after the same test duration from the same geo-
location. Depending on whether the load balancer is considered to be part of
the application or the database system, this may even require – in the case
of replication – to issue these same requests also to the same replicas. This is
especially important when measuring consistency behavior [8].

Built-in basic workloads: The middleware should come bundled with a basic set
of built-in basic workloads which are ready to use. These can then also be used
as building blocks for advanced workloads more closely resembling the actual
workload of a concrete application use case. This will also serve as a way to
perform an apples-to-apples comparison between competing database systems
for general purpose use without a concrete application in mind. The TPC suite
of benchmarks and the default workloads provided by YCSB [15] have played a
similar role in the past.

4 An Architecture for a Benchmarking Middleware

To fulfill the requirements identified in the last section, a benchmarking middle-
ware needs to be extensible in several dimensions. We aim to address these with
the following high-level architecture (see also Fig. 1 which gives an overview):
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Fig. 1. High level architecture of the proposed benchmarking Middleware

Mappers are responsible for mapping queries to a particular database
instance. This is implemented in two stages. In the first stage, queries are mapped
to a particular type of database, e.g., a column store, but are not yet bound to a
specific database system, e.g., Cassandra [31]. In the second stage, the abstract
interface is mapped to a concrete database system. This way, standard mappers
for different types of databases can be supported along with custom mappers.
Furthermore, this also enables the ability to support additional database systems
as well as entirely new types of database systems in the future.

For example, the first stage may choose to store an object as well as all
objects referenced by this object through one-to-many relationships under the
same key in a key-value store. It may also choose to do so in the JSON format.
The second stage, in contrast, will then map the abstract CRUD interface of
the key-value store to, for instance, Voldemort. This staged mapper approach
keeps the middleware entirely agnostic of both the application workload and the
underlying database system under test.

As another example, a query retrieving a data item based on three filter
criteria might be mapped to an RDBMS with a query like SELECT * FROM table

WHERE a AND b AND c . For a column store, in contrast a standard mapping might
be to use the concatenated values of the fields referenced by a, b and c as row
key and to, therefore, issue a get query for this row key.

The Workload Executor is responsible for executing all requests of the work-
load according to the workload specification. For this purpose, we propose to
use a precomputed operation trace, i.e., a priori workload generation, to remove
much of the necessary coordination effort. We imagine that a secondary tool
will be used to create operation traces – either based on real-world traces or the
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Fig. 2. Coordination between multiple benchmarking instances

corresponding workload description – in a standardized format, e.g., as tuples
containing a relative timestamp, a SQL query and an origin location. Through
this a priori workload generation, the Workload Executor will maintain the
repeatability requirement. The requirement of having an efficient implementa-
tion is largely independent of the proposed architecture and mainly depends on
the concrete implementation but an a priori workload generation through an
external tool will certainly help the middleware layer to remain relatively thin
by moving most coordination overhead to a time before the actual benchmark
execution.

The Measurement Manager keeps track of all the individual measurement
modules (e.g., performance or consistency behavior) and their individual mea-
surement outputs. For this purpose, the manager provides detailed information
to the modules (e.g., start and end time of requests or business transactions,
operation results, etc.) and persists the metric output in a local database for
post-processing. This component will include predefined measurement modules
to determine latency, throughput, availability, elasticity, scalability, and consis-
tency behavior. Therefore, the requirements of being able to store fine-grained
results as well as support for advanced QoS metrics will not be violated.

As a typical benchmark run will be distributed, there will be different bench-
marking instances which need to be coordinated. The Benchmark Coordina-
tor is, therefore, responsible for communication across instances to assert, for
instance, that all benchmarking instances have the correct information available
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on operation traces, start times, etc. We propose a master-based approach as
a single point of failure is, in this particular case, actually desirable, since fail-
ures will render benchmarking results unusable and fault-tolerance mechanisms
would hide this from the user. The coordination of benchmarking instances is
illustrated in Fig. 2. This approach requires sufficiently precise clock synchro-
nization as provided by NTP13 as well as the use of reliable messaging protocols
for communication. Implementing the Benchmark Coordinator component will
fulfill the requirement of handling coordination and distribution within the mid-
dleware layer.

5 Related Work

Related work on benchmarking middleware for distributed databases is scarce.
Difallah et al. [21] propose an extensible testbed for the execution of bench-
marks against relational databases. In particular, they argue for encapsulation
of recurring functionality within a universal benchmarking infrastructure. There-
fore, the work is closely related to our proposed benchmarking middleware. To
our knowledge, this is the sole publication addressing not only a subset of our
use case.

In the following, we discuss related work in three groups: (i) identified bench-
marking requirements for database systems in different contexts, e.g., cloud
environments, (ii) existing benchmarking approaches that address subsets of
requirements outlined in Sects. 2 and 3 and (iii) specialized foundational works
that address single functionalities of a benchmarking middleware, e.g., distrib-
uted generation of synthetic data sets.

Benchmarking Requirements: A good benchmarking middleware must identify
requirements for building meaningful and useful benchmarks. Huppler [29] dis-
cusses five general characteristics of a good benchmark, i.e., relevant, repeat-
able, fair, verifiable and economical. Nambiar and Poess argue that database
technologies are changing at such a rapid pace that deployment of benchmarks
have became increasingly complicated. Therefore, easier means to develop and
execute benchmarks are required. Smith [46] and Folkerts et al. [24] discuss
requirements for benchmarks in cloud environments. Furthermore, Poess [37]
and Baru et al. [6] discuss requirements for Big Data environments, respectively.
Bermbach [8] discusses requirements for (consistency) metrics. Specifically, these
have to be meaningful, fine-grained, have a high resolution and allow reproducible
measurement results.

Benchmarking Approaches: Benchmarking approaches are application-driven or
system-driven. Application-driven approaches, i.e., end-to-end benchmarks, focus
on providing realistic and meaningful workloads for an application domain.
System-driven approaches are often micro-benchmarks and typically build on
synthetic workload generation; they focus on a broad coverage of workloads to
measure isolated database features.
13 ntp.org.

http://ntp.org
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Examples of application-driven approaches grouped by application domains
are: OLTP [17,18], decision support [16,25], social media [5], CEP [32], ETL [49].
Examples of system-driven approaches are the Yahoo! Cloud Serving Benchmark
(YCSB) [15] and Rain [7]. YCSB provides an extensible benchmarking tool with
adapters for a number of distributed database systems, e.g., HBase, Cassandra
and MongoDB. Two extensions to YCSB are YCSB++ [36] and YCSB+T [20].
YCSB++ adds new features to YCSB: bulk loading for databases based on
B-trees, Zookeeper-based [28] start of distributed YCSB clients and distributed
monitoring based on Ganglia [33]. YCSB+T extends the original workload by
providing the ability to define multi-item transactions and a data validation and
anomaly detection phase that can be used to classify and quantify database
anomalies introduced by the workload. Rain [7] is a workload generation toolkit
that provides a load scheduling mapper that can be extended with application-
specific workload generators.

Different TPC benchmarks do not provide an implementation and workload
models provide limited flexibility, thus, setup and customization requires addi-
tional effort. YCSB allows the generation of synthetic workloads based on a
stochastical workload model. For a large number of application workloads, an
accurate emulation based on the workload model is impossible or difficult to
instantiate. Furthermore, support for important features, e.g., benchmark dis-
tribution and customized collection of metrics, are limited by existing bench-
marks and frameworks. Our proposed benchmarking middleware closes the gap
between - application-driven and system-driven workload models and provides
frequently used benchmarking functionals in a transparent way.

Foundational Work: To realize the different components of our envisioned bench-
marking middleware, related work from different areas must be taken into
account. To address this, we discuss related work with selected examples, which
include, distributed data set generation for the Benchmark Coordinator, work-
load scheduling for the Workload Executor and complex QoS-metrics for the
Measurement Manager. Gray et al. [27] discuss the generation of synthetic data
sets. This work has been extended with a focus on distributed generation of
data sets by Alexandrov et al. [1–3] and Rabl et al. [38,40]. In essence, both
these approaches aim to provide a speed-up through parallelization with regard
to the preparation time of database benchmarks. Schroeder et al. [45] propose
additional parameters to be explicitly considered during workload generation,
namely a scheduling model for requests. The model differentiates between work-
load generators that do or do not schedule new requests independent of received
responses to the preceding request. Since, trade-offs exist between QoS met-
rics, it is not sufficient to characterize database systems based on a single QoS
dimension, e.g., performance. Among others, the following examples of bench-
marking approaches address specific system qualities: (i) consistency [4,9–12,26,
48,50], (ii) dependability [47], (iii) scalability [15,39], (iv) elasticity [22,30], and
(v) security [34].
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6 Conclusion

Historically, industry standard database benchmarks have enabled healthy com-
petition among rival vendors that resulted in improved product offerings and was
also a significant contributing factor towards the evolution of database systems
themselves. While these benchmarks continue to serve both the industry and
research community well, they lack some of the flexibility and extensibility
required by modern cloud-based application systems in which different types
of data management systems often coexist and complement each other. Further,
these applications often make QoS and performance trade-offs based on a much
wider set of requirements and criteria – yet, in current database benchmarks
the ability to study these trade-offs is missing. In addition to this, today’s data-
base benchmarks either do not come with a read-to-use toolkit or are limited to
certain kinds of database systems and based on synthetic workloads.

In this paper, we describe our vision and architecture of a middleware for
benchmarking different databases and workloads. The authors plan to further
extend as well as actually implement this framework to provide the necessary
infrastructure for benchmarking database systems with regards to arbitrary QoS
dimensions and trade-offs, to help in determining price-performance trade-offs,
and to enable modern benchmarks for studying QoS behavior of multi-tenant,
frequently cloud-based, federated multi-database environments.
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Abstract. The common “one size does not fit all” paradigm isolates
transactional and analytical workloads into separate, specialized database
systems. Operational data is periodically replicated to a data warehouse
for analytics. Competitiveness of enterprises today, however, depends on
real-time reporting on operational data, necessitating an integration of
transactional and analytical processing in a single database system. The
mixed workload should be able to query and modify common data in a
shared schema. The database needs to provide performance guarantees
for transactional workloads, and, at the same time, efficiently evaluate
complex analytical queries. In this paper, we share our analysis of the
performance of two main-memory databases that support mixed work-
loads, SAP HANA and HyPer, while evaluating the mixed workload CH-
benCHmark. By examining their similarities and differences, we identify
the factors that affect performance while scaling the number of concurrent
transactional and analytical clients. The three main factors are (a) data
freshness, i.e., how recent is the data processed by analytical queries,
(b) flexibility, i.e., restricting transactional features in order to increase
optimization choices and enhance performance, and (c) scheduling, i.e.,
how the mixed workload utilizes resources. Specifically for scheduling, we
show that the absence of workload management under cases of high con-
currency leads to analytical workloads overwhelming the system and
severely hurting the performance of transactional workloads.

Keywords: OLAP · OLTP · CH-benCHmark · SAP HANA · HyPer ·
Data freshness · Flexibility · Scheduling · Workload management

1 Introduction

Traditionally, online transaction processing (OLTP) workloads have been the
motivation force behind relational database management systems (DBMS).
c© Springer International Publishing Switzerland 2015
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OLTP workloads are composed of short-lived transactions that read or modify
operational data, and are typically standardized, submitted through application
layers such as an Enterprise Resource Planning (ERP) software or an online web
shop. The increasing importance of business intelligence led to another class of
long-running, scan-heavy, ad-hoc queries, namely online analytical processing
(OLAP) workloads. Due to their substantial differences from OLTP workloads,
OLAP workloads are supported by specialized database systems, which are typ-
ically used in data warehouses. Operational data is periodically replicated from
OLTP systems to data warehouses for analytics.

Nowadays, the design gap between OLTP-oriented and OLAP-oriented
DBMS or data warehouses is even more prominent, since big data applications
demands and performance requirements increase [20]. OLTP-oriented DBMS,
such as VoltDB or DB2, are typical row-stores that deliver high throughput
for updates and index-based queries. OLAP-oriented DBMS, such as Vector-
wise or Sybase IQ or DB2 BLU [19], are typical column-stores that deliver high
performance for complex analytical queries, and do not support transactional
workloads or offer only a chunk-wise mechanism for loading data.

1.1 Real-Time Reporting

In exchange for high performance, OLAP-oriented DBMS typically do not sup-
port full ACID transactions. As a result, data analytics queries run on an out-
dated version of operational data. This is unacceptable for real-time reporting,
where organizations and enterprises are increasingly requiring analytics on fresh
operational data to gain a competitive advantage or obtain insight about fast-
breaking situations [1,16]. Examples include online games that make special
offers based on non-trivial analysis [4], liquidity and risk analysis, which benefits
from fresh data while also requiring complex analytical queries [17], and fraud
detection analyzing continuously arriving transactional data [15].

The need for real-time reporting necessitates the development of a new
class of DBMS that can efficiently support mixed (OLTP and OLAP) work-
loads processing common data of a common schema [17]. Efficient processing
means scaling OLTP clients to as many users as possible, with reasonably short
response times [8], while, at the same time, servicing OLAP clients whose longer-
running queries should be able to efficiently analyze the live operational data.
In this paper, we evaluate the performance of two state-of-the-art mixed work-
load DBMS: SAP HANA [7], and HyPer [10]. By examining their similarities
and differences, we aim to identify the factors that affect the performance of
mixed workloads while we scale the number of concurrent clients.

To evaluate mixed workloads, we cannot readily use benchmarks aimed for
either OLTP or OLAP, such as TPC-C, TPC-W, TPC-H, TPC-DS [2] or OLTP-
bench [6]. As a new direction to benchmarking mixed workloads, we adopt the
CH-benCHmark [5], which considers concurrent OLAP and OLTP clients in a
mixed workload inspired by TPC-C and TPC-H. We find the CH-benCHmark an
adequate solution since it allows to scale the number of concurrent transactional
and analytical clients independently.
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Fig. 1. Conceptual figures of how we expect the performance of mixed workloads to
be affected by (a) data freshness, (b) flexibility, and (c) scheduling.

1.2 Scaling Up Mixed Workloads

We identify three main factors that affect the performance of mixed workloads
while we scale the number of concurrent clients: (a) data freshness, (b) flexibility,
and (c) scheduling. In Fig. 1, we sketch how we expect the performance of the
DBMS to be affected by these factors.

Data freshness refers to how recent the data, that is processed by analyt-
ical queries, is. On the one hand, data can be stale, as is the case for typical
data warehouses where operational data is periodically replicated. This separa-
tion, with a low level of data freshness, allows for various optimizations such
as decoupling transactions and analytics, minimizing the interference between
them, and having additional materialized views or indexes for analytics (which
may be otherwise expensive to maintain with a high level of data freshness).
On the other hand, as the refresh rate is increased, we compromise performance,
because we need to sustain the overhead of frequent snapshots and respect trans-
actional semantics of the concurrent OLTP workload.

Flexibility refers to the restrictions that a DBMS may impose on the trans-
actional features or expressiveness in order to increase optimization choices to
enhance performance. For example, a system can restrict flexibility by requiring
that transactions are instantiated from templates that are known in advance,
allowing for pre-compilation of transactions [21]. Another example is restricting
interactivity, i.e., transactions cannot have multiple rounds of communication
with a remote client, which allows optimizing execution [21]. Moreover, tech-
niques like just-in-time (JIT) compilation, introduce a compilation overhead (of
e.g., several milliseconds), but can improve performance of ad-hoc queries [14].

Scheduling determines how, and the order in which transactions and analyti-
cal queries use the system’s resources, including potential workload management
techniques. For the typical case of high concurrency with numerous OLTP and
OLAP clients and a fully saturated system, the DBMS may opt to either prior-
itize transactions in the expense of analytical queries, or the reverse.

1.3 Contributions

In this paper, we survey, evaluate, and compare two state-of-the-art main-
memory DBMS for mixed workloads: SAP HANA and HyPer. We evaluate the
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CH-benCHmark, which we implement using C++ and ODBC, and provide it as
open source1. Through our analysis, we detail how (a) data freshness, (b) flexibil-
ity, and (c) scheduling affect the performance of mixed workloads while we scale
the number of concurrent clients. The most significant findings of our experi-
mental evaluation (see Sect. 5) are:

– DBMS, that maintain separate versions of the operational data for analytics,
can suffer a decrease in performance of up to 40 % for high refresh rates.

– DBMS, which are optimized for the execution of less flexible or less expressive
transactions, can achieve up to one order of magnitude better transactional
throughput than DBMS optimized for flexible and interactive transactions.

– The absence of workload management in cases of high concurrency, that fully
saturate the system, results in long-running and complex analytical queries
overwhelming the system, and significantly hurting the performance of short-
lived transactional workloads.

Paper outline. In Sects. 2 and 3, we survey how SAP HANA and HyPer handle
mixed workloads. In Sect. 4, we describe how we implement the CH-benCHmark.
Our experimental evaluation is presented in Sect. 5. Finally, we conclude our
paper in Sect. 6.

2 Mixed Workloads in SAP HANA

SAP HANA is a commercial main-memory relational DBMS that supports mixed
OLTP and OLAP workloads. It incorporates four storage engines to support vari-
ous workloads: (a) a column-store, that efficiently supports OLAP-dominated and
mixed workloads, (b) a row-store, that is suited for OLTP workloads, (c) a text
engine, and (d) a graph engine [7]. For the evaluation of our paper, we use the
column-store as it is better suited for mixed workloads. We note that a hybrid
data layout [3,9] can improve the performance of mixed workloads, but, in this
paper, we focus on assessing the scalability of concurrency than different data lay-
out approaches.

Each column in the column-store is composed of two parts: the main, and the
delta, as shown in Fig. 2a. Data in the main is dictionary encoded using a sorted
dictionary. The dictionary-encoded data is static, bit-compressed, and further
compressed for fast scanning. The delta supports transactional operations, and
includes recently added, updated, and deleted data. The delta’s dictionary is
unsorted, and a cache-sensitive B+-tree is employed for fast lookups. To respect
transactional semantics, read operations query both the main and the delta. The
transaction manager uses multi-version concurrency control (MVCC).

Allowing the delta part to grow incessantly compromises performance of both
analytical and transactional operations due to the increasing bookkeeping over-
head of the delta’s dictionary and index. Thus, the delta is periodically merged

1 Available online at: http://www3.in.tum.de/research/projects/CHbenCHmark/.

http://www3.in.tum.de/research/projects/CHbenCHmark/
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Fig. 2. (a) The core data structures of the main and the delta parts of a column.
(b) The delta part of a column is periodically merged into the main part.

into the main part, as shown in Fig. 2b, reconstructing the static data structures
of the main part, and preparing an empty delta for new data. For recovery, the
merge operation may store a savepoint in persistent memory, and further trans-
actional operations (in the delta) are typically logged.

Next, we discuss the issue of data freshness for analytical queries, how flexible
are transactions, and how scheduling works in SAP HANA.

Data freshness. The fact that both analytical and transactional operations
target the same data means that SAP HANA allows analytics to query the most
recent version of operational data. As soon as an OLTP operation, e.g., updates
data in the delta of a column, the new version is immediately available by the
MVCC to upcoming analytical queries. Allowing OLTP and OLAP to target
common data, however, comes with the cost of synchronization for the common
data structures, such as the index of the delta’s dictionary.

Flexibility. SAP HANA supports fully interactive ACID transactions [11], which
can contain multiple round-trips to the client. Efficient and flexible support for
distributed transactions is available. Upon first execution, queries are compiled
and the cached plan is available in subsequent invocations of the same query. It
supports multiple interfaces, including SQL and specialized languages [7].

Scheduling. SAP HANA employs a pool of threads for servicing network clients
and a task scheduler for servicing heavy-weight requests [18]. Analytical queries
can be expressed as single tasks or as multiple tasks (intra-query parallelism)
which are dispatched to task queues. One worker thread is employed per hard-
ware context that continuously gets tasks from the queues and executes them.
The scheduler takes care to maintain the number of active worker threads as close
as possible to the number of hardware contexts, avoid unnecessary involuntary
context switches, and allow stealing tasks to balance task queues.

When the machine is fully saturated, scheduling decides how transactions
and analytical queries utilize resources. We show that the default configura-
tion of SAP HANA favors analytical throughput over transactional throughput.
By decreasing parallelism of analytical queries, however, we can increase trans-
actional throughput to the detriment of analytical throughput (see Sect. 5).
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3 Mixed Workloads in HyPer

HyPer is a research prototype main-memory relational DBMS that supports
mixed OLTP and OLAP workloads [10]. The aim is to support high OLTP
throughput, as well as efficient concurrent execution of OLAP workloads. The
storage engine can be configured to be a row-store or a column-store. In this
paper, we use the column-store configuration.

OLTP clients are serviced serially with a single thread [10]. This avoids the
usage of locks or latches for data structures, and, due to the absence of I/O,
allows transactions to be executed in one-shot, uninterrupted and efficiently.
Multiple threads for OLTP are supported if the schema is manually partitioned
or the machine supports hardware transactional memory [13]. In this paper, we
use the default single-threaded behavior.

For serving OLAP clients, HyPer uses an innovative way to provide snapshots
of operational data. As shown in Fig. 3a, OS- and hardware-supported virtual
memory facilities are leveraged to efficiently create snapshots. Currently, each
arriving OLAP client forks the main OLTP process into another process, get-
ting a virtual memory snapshot to work on. The lazy copy-on-update strategy
ensures that a virtual page is not physically replicated, and OLTP and OLAP
are reading the same physical page. The OS creates a new physical copy only in
the case a transaction modifies a page. In this case, the parent OLTP process
has the latest version, and the OLAP process refers to the older version of the
page. The capability to update OLAP snapshots on demand in a single system
is far more efficient than the usual two system setup (one for OLTP and one for
OLAP), since data does not need to be replicated from system to the other.

Data freshness. Conceptually, HyPer’s main OLTP process is similar to SAP
HANA’s delta and the OLAP processes are similar to versions of the main.
Forking is similar to the merge operation. In contrast to SAP HANA, analytics
read their snapshot and not the freshest data from the OLTP process. This allows
decoupling of OLTP and OLAP, and synchronization overhead is avoided. Also,
since the OLAP client can update its snapshot on demand, data freshness is
customizable: on the one hand, the client can opt to take a snapshot and never
update it, or, on the other hand, update its snapshot after every couple of queries.
The downside of this tactic, however, compared to SAP HANA, is that, in the
case that OLAP clients wish to keep their snapshots as fresh as possible, the
virtual memory snapshot overhead is increased (see Sect. 5).

Flexibility. HyPer is optimized for the execution of prepared statements or
precompiled transactions [10]. Ad-hoc queries and ACID transactions are both
supported and compiled by a just-in-time (JIT) compiler. The overhead of the
elaborate compilation may be amortized for multiple invocations of the same
query or transaction, but can limit the scalability of short-lived ad-hoc OLTP.

HyPer restricts flexibility for clients on purpose to allow for further optimiza-
tions. For example, clients need to define if they are OLTP or OLAP clients.
Also, for an OLTP client, the whole client transaction is performed in a sin-
gle batch, i.e. there cannot be multiple round-trips to a client in a transaction.
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The restrictions for OLTP clients allow for, e.g., analysis of the transaction,
regarding the accessed and updated tables, or the control-flow [14]. These opti-
mizations, along with the serialization of transactions, can achieve significantly
high OLTP throughput (see Sect. 5). Read-only OLAP clients access a read-
only snapshot; ad-hoc queries are fully supported because they are compiled as
they arrive on the database server.

As shown in Fig. 3b, the query plans created by the optimizer are composed
of operator pipelines through which tuples are pushed. Pipelines are broken by
operators that cannot be pipelined (e.g., a sort). By pushing tuples through a
whole pipeline of several operators, performance can be significantly improved
with JIT compilation, better data locality, and predictable branch layout [14].

Scheduling. HyPer includes a NUMA-aware (non-uniform memory access) task
scheduler for queries. Each phase of a query is parallelized, and the scheduler
takes care to distribute work evenly across sockets, using task stealing and elastic
parallelism, and optimize for data locality [12]. In Fig. 3c, we show an example
of how the scheduler executes the probe phases of the hash-joins of pipeline R
(of the query of Fig. 3b), using three of the sockets of a machine (depicted in
different colors). Relation R is partitioned to small fragments, called morsels.
A thread continuously takes a morsel from relation R, local to its socket, and
passes it through the pipeline, probing the hash tables for relations S and T,
finally storing locally the result. In comparison to SAP HANA, we show in our
experiments (see Sect. 5), that HyPer’s scheduling also favors analytical through-
put over transactional throughput in cases of high concurrency and saturation.

4 Setting Up the CH-benCHmark

The CH-benCHmark builds upon the widely used TPC-C and TPC-H bench-
marks [2]. TPC-C is used to analyze the performance of transactional workloads
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in a scenario of order processing, while TPC-H analyzes the performance of
analytical workloads in the context of a wholesale supplier. The goal of the CH-
benCHmark [5] is to combine TPC-C and TPC-H in a unified schema, in order
to analyze the performance of the mixed OLTP and OLAP workload. Next, we
give an overview of the CH-benCHmark, and how we adapt and implement it.

4.1 Overview of the CH-benCHmark

The database schema of the CH-benCHmark is shown in Fig. 4. The schema uses
the nine tables of TPC-C and adds the tables NATION, REGION, and SUPPLIER
from TPC-H. As in TPC-C, the size of the database scales with the number of
warehouses. The integrated schema required the following changes:

– NATION contains 62 rows instead of 25, and SUPPLIER is fixed to 10,000 rows.
– CUSTOMER and NATION can be joined on columns N NATIONKEY and C STATE.

Column C STATE, however, is defined as a two-character code while N NATIONKEY
is defined as integer. To solve this mismatch, the following join condition was
proposed in the original definition of the CH-benCHmark: NATION.N NATIONKEY
= ASCII(SUBSTR(CUSTOMER.C STATE,1,1)). This is also the reason for increas-
ing the number of entries in NATION from 25 to 62. Notice that this join condition
cannot easily be detected as foreign-key relationship.

– Similarly, SUPPLIER and STOCK can be joined using the following condition:
SUPPLIER.SU SUPPKEY = MOD(STOCK.S W ID * STOCK.S I ID, 10000).
Again, this is not easily detected as a foreign-key relationship.

Regarding the workload, the CH-benCHmark uses the five transactions
defined in TPC-C for the OLTP workload. In contrast to TPC-C, an OLTP
client randomly chooses a warehouse, and there is no correlation between the
number of warehouses and the number of clients.
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Fig. 4. Schema of the CH-benCHmark.
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The OLAP workload is based on the 22 queries defined in TPC-H, but
adapted to the modified schema (see Fig. 4). A client either executes the OLTP
workload or the OLAP workload. Hence, the number of clients for each type of
workload can be scaled independently.

4.2 Adapting the CH-benCHmark

As discussed above, the schemas of TPC-C and TPC-H were originally integrated
in an ad-hoc fashion using expressions in the join conditions of the queries. For
foreign-key relationships, as defined between tables CUSTOMER and NATION as well
as tables SUPPLIER and STOCK, real-world schemas would avoid such expressions.
This leads us to the decision to materialize the join expressions explicitly in the
database because it allows us to use standard equi-joins for queries joining these
tables. Thus, we introduce the following:

– A column C N NATIONKEY in table CUSTOMER computed as ASCII(SUBSTR
(CUSTOMER.C STATE,1,1)).

– A column S SU SUPPKEY in table STOCK computed as MOD(STOCK.S W ID *
STOCK.S I ID, 10000).

4.3 Implementing the CH-benCHmark

The core of our implementation is a C++ program that can be started as a:

– OLAP or OLTP client, which generates the test workload, and measures
benchmark performance values.

– Server sampler, which runs on the DBMS host and periodically captures per-
formance metrics, such as system utilization, with a configurable interval.

– Benchmark coordinator, which manages all benchmark processes.

To be able to connect to various DBMS, we use unixODBC, and access SAP
HANA via the ODBC interface. This allows us to connect to various databases
without changing the benchmarking code, and it still allows us to use proprietary
SQL extensions. We use SQL prepared statements for both OLTP and OLAP,
and compile these during the initialization phase of our benchmark. Transactions
are fully interactive and managed by standard ODBC calls.

For HyPer, we use its available client interface, as it does not offer an ODBC
interface yet. We use pre-compiled statements for OLTP (non-interactive), and
send SQL statements for the OLAP workload. The caching of OLAP query plans
in HyPer, however, is similar to using prepared statements.

5 Experimental Evaluation

In this section, we evaluate and compare SAP HANA (see Sect. 2) and HyPer
(see Sect. 3) using the CH-benCHmark (see Sect. 4). First, we detail the exper-
imental configuration, how we setup each system, and the performance metrics
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we measure (see Sect. 5.1). Then, we present the results of the experimental eval-
uation for SAP HANA (see Sect. 5.2) and HyPer (see Sect. 5.3), while detailing
the implications of the results: how data freshness, flexibility, and scheduling
affect the performance of mixed workloads.

5.1 Experimental Configuration

To execute the CH-benCHmark, we use a server that has eight ten-core proces-
sors Intel Xeon E7-8870 at 2.40 GHz, with hyper-threading enabled (for a total
of 160 hardware contexts), and 1 TB of RAM. Each core has a 32 KB L1 cache
and a 256 KB L2 cache. Each processor has a 30 MB L3 cache, shared by all its
cores. The OS is a 64-bit SMP Linux (SuSE), with a 3.0 kernel. We use read
committed for the isolation level of SAP HANA. HyPer executes transactions
using timestamp ordering with a single thread.

In our experiments we use a one minute warm-up period, followed by a five
minutes period to collect throughput information. We use 100 warehouses, which
amount to 6.7 GB of raw CSV files to be imported. We note that we observe
similar trends for a higher number of warehouses. We are, however, more inter-
ested in assessing the scalability of concurrency than the increase in data size.
We scale the number of OLAP and OLTP clients exponentially (power of 2)
between 0 and 27 leading to 81 different combinations. Since the result of combi-
nation 0/0 is trivial, we are left with 80 combinations for the clients of the mixed
workload.

For an OLTP client, the benchmark reports throughput in tpmC, as defined
in TPC-C, i.e., the number of successful new order transactions per minute.
For an OLAP client, throughput is reported in QphH, i.e., the finished TPC-H
queries per hour. Defining an aggregated metric for the whole benchmark is
difficult in practice, and thus we follow the original benchmark proposal and
analyze both measures independently.

For each system, we present a figure showing the analytical throughput of
all combinations of OLTP and OLAP clients, and another figure showing the
transactional throughput of all combinations. In this pair of plots, each experi-
ment is displayed twice. As an example we refer the reader to Fig. 5, where the
black bar (T=32) in section A=8 represents a single experiment with 8 analyti-
cal (OLAP) and 32 transactional (OLTP) clients. We also measure the average
CPU utilization of the host machine as we increase the load.

Due to legal reasons, we do not disclose absolute numbers. For this reason, all
throughput results are normalized to undisclosed constants α for OLAP and τ for
OLTP, where α and τ are the maximum observed throughput values for OLAP
and OLTP respectively. This does not hinder us from showing the implications
of our experiments, because our focus is on the scalability of the mixed workload
as we increase the number of clients, and comparing SAP HANA and HyPer as
to how they handle mixed workloads.
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5.2 Experimental Evaluation of SAP HANA

Figure 5 shows the performance of the default configuration of SAP HANA as we
scale the mixed workload. Figure 5a shows how analytical throughput scales as
we increase the number of analytical clients. For each case of analytical clients,
we also show how analytical throughput scales as we increase the number of
transactional clients. As shown in the figures, analytical throughput increases
almost linearly up to 32 analytical clients. After that, as the system gets satu-
rated (see Fig. 5c), the increase of throughput levels out.

Figure 5b demonstrates the scaling behavior of the transactional throughput
as we increase the number of analytical clients. For a small number of concur-
rent OLAP clients (up to 8), transactional throughput generally increases as we
increase the number of OLTP clients up to 32, after which, OLTP throughput
drops. This is due primarily to the fact that more and more transactions contend
for modifying common data, resulting in higher abort rates, and, secondarily, in
increased synchronization overhead (in the latches of the deltas’ indexes). As we
add more OLAP clients, overall transactional throughput is generally hurt, as it
almost reaches zero throughput for the case of 128 concurrent analytical clients.

We call this scaling behavior the house pattern, due to the increasing overall
OLAP throughput and the decreasing overall OLTP throughput as we increase
the number of OLAP clients. This effect is intrinsic to the behavior of not distin-
guishing between short-lived transactions and complex analytical queries. The
scheduler of SAP HANA employs the machine’s resources for analytical queries

Fig. 5. Performance of the default configuration of SAP HANA.
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Fig. 6. Performance of SAP HANA when intra-query parallelism is disabled.

for long durations, and does not leave enough space for the continuously arriv-
ing short-lived OLTP transactions. That is why, as we add more OLAP clients,
overall OLTP throughput decreases.

To reinforce our argument, we evaluate SAP HANA under a configuration
which disables intra-query parallelism, and decreases the effect of analytical
queries overwhelming execution. We show the results in Fig. 6. In this configu-
ration, OLTP transactions and OLAP queries are mostly executed with a single
thread (or task) each. OLAP throughput is overall lower than the default con-
figuration, since queries do not benefit from parallel execution any more. Still,
OLAP throughput increases as we increase the number of OLAP clients. The
positive effect is that OLTP throughput is overall improved in comparison to the
default configuration. System utilization is lower than the default configuration,
and is only saturated for 128 analytical clients.

5.3 Experimental Evaluation of HyPer

In Fig. 7 we show the experimental results for the most performant case of HyPer.
In this case, we keep the initial snapshot for OLAP clients throughout the whole
experiment duration, i.e., OLAP clients do not see any updates from the OLTP
clients. This configuration minimizes the overhead of creating snapshots, and
minimizes any interference between the OLTP and OLAP workloads.

As we see in Fig. 7a, the analytical throughput increases as we add more ana-
lytical clients, reaching the maximum at around 32 analytical clients. Additional
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Fig. 7. Performance of HyPer with the lowest level of analytical data freshness.

analytical clients drop analytical throughput slightly, due to overwhelming the
system with threads. Limiting the overall number of used threads, similar to
SAP HANA’s task scheduler, can avoid this effect. In comparison to SAP HANA,
analytical throughput reaches almost the same maximum, indicating that both
systems are similar in parallelizing and executing analytical queries. Also, ana-
lytical throughput is not affected by scaling the transactional clients. This is
expected, since transactions are executed separately with a single thread.

Transactional throughput, as shown in Fig. 7b, is significantly higher (up to
an order of magnitude) than that of SAP HANA. This is attributed to several
reasons including: (a) transactions are non-interactive whereas transactions in
SAP HANA are interactive (with multiple round-trips to the client as defined in
TPC-C), (b) transactions are pre-compiled for fast execution, and (c) a single
thread executes transactions serially, avoiding any synchronization overhead.
Conceptually, we can place HyPer to the left-most part of Fig. 1b, and place
SAP HANA to the right-most part of the figure.

The trend of the OLTP throughput, however, is similar to SAP HANA.
Firstly, we notice a similar drop in throughput for more than 32 OLTP clients, for
most experiments. As with SAP HANA, numerous OLTP clients target common
data, and result in high abort rates. Secondly, we also identify the same house
pattern as in SAP HANA: while we increase the number of analytical clients,
overall OLTP throughput drops and reaches almost zero for the case of 128
concurrent OLAP clients. Both SAP HANA and HyPer fall in the left-most part
of Fig. 1c: under cases of high concurrency and saturated resources, the scheduler
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Fig. 8. Performance of HyPer with an intermediate level of analytical data freshness.

favors analytics over transactions. This shows a need for advanced workload
management for mixed workloads, that can enable the DBMS administrator to
dynamically tip the scales of performance to either analytics or transactions,
choosing a spot across the whole span of the line of Fig. 1c.

Next, we show how the performance is affected by a different level of data
freshness. Figure 8 shows the performance of an intermediate level of data fresh-
ness, where every OLAP client takes a new snapshot from the OLTP process
after executing all queries of TPC-H (after every 22 queries). Performance is
overall decreased in comparison to the best performant case of the lowest level
of data freshness, supporting our expectations (see Fig. 1a). Analytical through-
put is decreased by around 40 %. Transactional throughput is decreased as soon
as the first OLAP client is added, by around 30 %. This is mainly due to the
overhead of forking the OLTP process to create snapshots for OLAP clients. It
actually interrupts the single-threaded OLTP process and presents an overhead.

We note that increasing the level of data freshness further is not desirable
in HyPer because the extremely frequent forks at a fine granularity can signif-
icantly deteriorate performance. In such cases, a sort of snapshot bundling can
be implemented to decrease the snapshot overhead at a small expense of data
freshness: instead of every OLAP client forking the OLTP process, several OLAP
clients can be batched and serviced on a single snapshot.

While SAP HANA aims for the highest level of data freshness, HyPer provides
the opportunity to the DBMS administrator to choose the level of data freshness
for analytics. This is a desirable property when it is acceptable not to consider
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the latest updates in reports. For cases where extreme real-time reporting is
required, SAP HANA’s approach to executing both OLTP and OLAP workloads
on common data structures can be better for analytical throughput.

6 Conclusions

In this paper, we analyze two state-of-the-art main-memory DBMS for mixed
workloads: SAP HANA and HyPer as they promise high performance for mixed
OLTP and OLAP workloads. For our experimental evaluation, we evaluate the
CH-benCHmark by scaling the number of concurrent transactional and analyt-
ical clients. Through our evaluation, we find that the most important factors
that affect the performance of mixed workloads are (a) data freshness, i.e., how
recent is the data that analytical queries are processing, (b) flexibility, i.e., opti-
mizing the performance of transactions and queries by restricting interactivity
and/or expressiveness, and (c) scheduling, i.e., how the DBMS utilizes resources
for OLTP and OLAP clients.

Concerning data freshness, SAP HANA’s design, where OLTP and OLAP
clients target common data, is suited for cases where the highest level of data
freshness is required, whereas HyPer’s design is suitable for cases where the
DBMS administrator wishes to toggle the trade-off between performance and
data freshness. Concerning flexibility, we show that HyPer’s less interactive state-
ments allow for pre-compilation and achieve a very high transactional through-
put. Finally, concerning scheduling, we show that both systems exhibit a house
pattern, i.e., increasing OLAP clients can significantly hurt OLTP throughput
in cases of high concurrency and saturated resources. This behavior stresses the
need for workload management in mixed workloads, where OLTP statements
can be distinguished from OLAP statements and can be prioritized differently.
Quantifying this effect of priorities in more detail is part of our future work.

This analysis indicates that it is difficult to achieve maximum performance
for both OLAP and OLTP while at the same time working on the freshest data.
Both systems have made a significant step towards the vision of supporting
mixed workloads in a single database system. Requirements regarding the fresh-
ness of data certainly depend on the application requirements, and it will be
important to analyze this aspect further in real-world applications. Striking a
good balance between high and stable OLTP throughput while at the same time
offering efficient OLAP performance still seems to be solved partially only. We
plan to investigate this topic further as part of our future work.
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Abstract. In this paper we consider the problem of generating parame-
ters for benchmark queries so these have stable behavior despite being
executed on datasets (real-world or synthetic) with skewed data distri-
butions and value correlations. We show that uniform random sampling
of the substitution parameters is not well suited for such benchmarks,
since it results in unpredictable runtime behavior of queries. We present
our approach of Parameter Curation with the goal of selecting para-
meter bindings that have consistently low-variance intermediate query
result sizes throughout the query plan. Our solution is illustrated with
IMDB data and the recently proposed LDBC Social Network Benchmark
(SNB).

1 Introduction

A typical benchmark consists of two parts: (i) the dataset, which can be either
real-world or synthetic, and (ii) the workload generator that issues queries against
the dataset based on the pre-defined query templates. A query template is an
expression in the query language (e.g., SQL or SPARQL) with substitution para-
meters that have to be replaced with real bindings by the workload generator.
For example, a template of a query that asks for all the movie producing com-
panies from the country %Country% that have released more that 20 movies,
looks like:

Query 1.1. IMDB Query

select cn.name, count(t.id) cnt
from title t, movie_companies mc, company_name cn
where t.id = mc.movie_id and cn.id = mc.company_id

and cn.country_code = ’%Country%’ and t.kind_id = 1
group by mc.company_id, cn.name
having count(*) > 20
order by cnt desc
limit 20
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In a query workload, the workload driver would execute this query template
in one experiment potentially multiple times (e.g., 10) with different bindings for
the %Country parameter. It would report an aggregate value of the observed
runtime distribution per query (usually, the average runtime per query tem-
plate). This aggregated score serves two audiences: First, the users can evaluate
how fit a specific system is for their use-case (choosing, for example, between
systems that are good in complex analytical processing and those that have
the highest throughput for lookup queries). Second, database architects can use
the score to analyze their systems’ handling of certain technical challenges, like
handling multiple interesting orders or sparse foreign key joins (in the LDBC
project, we call such technical challenges “choke points” [3]).

In “throughput” experiments, the benchmark driver may also execute the
above experiment multiple times in multiple concurrent query streams. For each
stream, a different set of parameters is needed.

Desired Properties. In order for the aggregate runtime to be a useful mea-
surement of the system’s performance, the selection of parameters for a query
template should guarantee the following properties of the resulting queries:

P1: the query runtime has a bounded variance: the average runtime should
correspond to the behavior of the majority of the queries

P2: the runtime distribution is stable: different samples of (e.g., 10) parameter
bindings used in different query streams should result in an identical runtime
distribution across streams

P3: the optimal logical plan (optimal operator order) of the queries is the same:
this ensures that a specific query template tests the system’s behavior
under the well-chosen technical difficulty (e.g., handling voluminous joins
or proper cardinality estimation for subqueries etc.)

The conventional way to get the parameter bindings for %Country is to
sample the values (uniformly, at random) from all the possible country names
in the dataset (the “domain”). This is, for example, how the TPC-H benchmark
creates its workload. Since the TPC-H data is generated with simple uniform
distribution of values, the uniform sample of parameters trivially guarantees the
properties P1–P3. The TPC-DS benchmark moved away from uniform distrib-
utions and uses “step-shaped” frequency distributions instead [6,7], where there
are large differences in frequency between steps, but each step in the frequency
distribution contains multiple values all having the same frequency. This allows
TPC-DS to obtain parameter values with exactly the same frequency, by choos-
ing them all from the same step.

However, these techniques do not work for benchmarks that use real-world
datasets (IMDB in our example, or DBPedia etc.), or generate datasets with
skewed value distribution and close-to-realistic correlations between values
(LDBC Social Network Benchmark, which is based on S3G2 generator [4]).
In our example above, the behavior of the query changes significantly depending
on the selection of the parameter. We present a detailed analysis of its behavior
in Sect. 2, but most notably, if %Country is ‘[US]’, the query features a volumi-
nous join between movie companies and movie, while for smaller countries
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(like ‘[FI]’) the join is very sparse. As we see, two very different scenarios are
tested for these two parameter choices, and they should ideally be reported sep-
arately. The country parameter bindings for these two scenarios would be drawn
from two buckets of countries, with large number of movies (‘[US]’, ‘[UK]’, ‘[FR]’
etc.) and with a few movies (‘[HK]’, ‘[DK]’ etc.). The recently proposed LDBC
Social Network benchmark is another example where one would need to care-
fully select parameters in order to avoid large variability of plans and execution
times.

We clarify that our intention is not to obviate the interesting query opti-
mization problems related to the real-world distributions and correlations in the
dataset, but to make the results within one query template predictable by choos-
ing the parameters that satisfy properties P1–P3, in order to guarantee that
the behavior of the System Under Test (SUT) and of the benchmark results is
understandable. In case different parameters have very different runtimes and
optimal query plans (e.g. due to skew or correlations) this can still be tested in
a benchmark by having multiple query variants, e.g., one variant with countries
where many movies are made, another with countries where rarely movies are
made. The different variants would behave very differently and test whether the
optimizer makes good decisions, but within the same query variant the behavior
should be stable and understandable regardless the substitution parameter.

Parameter Curation. In this paper we present an approach to generate para-
meters that yield similar behavior of the query template, which we coin “Para-
meter Curation”. We consider a setup with a fixed set of query templates and
a dataset (either real-world or synthetic) as input for the parameter generator.
Our approach consists of two parts:

– for each query template for all possible parameter bindings, we determine the
size of intermediate results in the intended query plan. Intermediate result size
heavily influences the runtime of a query, so two queries with the same oper-
ator tree and similar intermediate result sizes at every level of this operator
tree are expected to have similar runtimes. This analysis on result sizes versus
parameter values is done once for every query template (remember that we
consider benchmarks with a fixed set of queries).

– we define a greedy algorithm that selects (“curates”) those parameters with
similar intermediate result counts from the dataset.

Note that Parameter Curation depends on data generation in a benchmark: we
are mining the generated data for suitable parameters to use in the workload. As
such, Parameter Curation constitutes an new phase that follows data generation
in a typical database benchmarking process.

The astute reader may remark that %Country in the previous example has
the limitation that the country domain is rather limited. Thus, a need to select
e.g., 100 parameter values would imply using a large part of the domain, and in
case of skewed frequency distribution would lead to unavoidable large variance.
This does not invalidate our approach to select parameters in an as stable man-
ner as possible, and we note that benchmark queries tend to have (or can be
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made to have) multiple parameters, so the amount of parameter combinations
is the product of the parameter domain sizes, thus grows explosively, so limited
parameter choices should not be an issue in general.

Outline. The rest of the paper is organized as follows. In Sect. 2 we demonstrate
in examples that the straightforward approach of generating parameter bindings
uniformly at random fails to deliver predictable and stable results. Section 3 for-
malizes the problem of curating parameters that would yield runtime distribution
satisfying properties P1–P3. In Sect. 4 we present our implementation of Para-
meter, used in the LDBC Social Network Benchmark (SNB). Section 5 describes
the set of experiments we conducted on SNB and IMDB queries. Section 6 sum-
marizes and concludes the paper.

2 Examples

We use the recently proposed LDBC Social Network Benchmark [1] and a query
on IMDB dataset (Query 1.1). For the LDBC Benchmark, we generated a social
network with 50.000 users (ca. 5 GB of CSV files). For both datasets we use
Virtuoso 7 database (Column store) and run our experiments on a commod-
ity server with the following specifications: Dual Intel X5570 Quad-Core-CPU,
64 Gb RAM, 1 TB SAS-HD, Redhat Enterprise Linux (2.5.37).

In the following examples (E1–E4), we illustrate our statement that uniform
selection of parameters leads to unpredictable behavior of queries, which makes
interpretation of benchmark results difficult.

E1: Runtime Distribution Has High Variance. When drawing parame-
ters uniformly at random, we encounter a very skewed runtime distribution for
queries over real-world datasets. The runtime of the query from Listing 1.1, for
example, has a variance of 17 · 104. This is caused by the fact that the majority
of the movies is produced in a single country, US; additionally, the top 10 coun-
tries produce 3 times more movies than all the other countries together. This
translates into highly variable amount of data that the query needs to touch
depending on the parameter, which in turn influences the runtime.

This issue is also important for the LDBC benchmark, where the data gener-
ator seeks to mimic some of the properties of the real-world data: the generated
data has correlations and skewed data distributions. In this case, naturally, the
randomly generated parameter bindings result in a very skewed runtime distri-
bution.

E2: Different Plans for Different Parameters. The uniformly generated
parameter bindings can lead to completely different plans for the same query
template. This happens because the cardinalities of the subqueries naturally
depend on the parameter bindings, and sometimes on the combination of the
parameters. For example, two optimal plans for Query 1.1 (as found by the Post-
greSQL database) are depicted in Fig. 1(a) and (b), where leaves are marked with
table aliases from the query listing. Picking ‘US’ as a parameter not only changes
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Fig. 1. IMDB Query 1.1 plans and runtime distribution for different parameters (Color
figure online)

the join order, as compared with the ‘UK’ parameter, but also results in apply-
ing a different group-by method (by sorting as opposed to hash-based grouping
for the ‘UK’ parameter).

As another example, we consider LDBC Query 3 that finds the friends and
friends of friends that have been to countries X and Y. The optimal plan for this
query can start either with finding all the friends within two steps from the given
person, or from extracting all the people that have been to countries X and Y: if
X and Y are Finland and Zimbabwe, there are supposedly very few people that
have been to both, but if X and Y are USA and Canada, this intersection is very
large. In the LDBC benchmark, correlations that might not even be detected by
the optimizer aggravate the execution picture beyond plain frequency differences.
There is a correlation between the location of each user and her friends (they
often live in the same country) and travel destinations are correlated so that
nearby travel is more frequent. Hence combinations of countries far from home
are extremely rare and combinations of neighboring countries frequent.

We note that the plan variability is not a bad property per se: indeed,
this query forces the query optimizer to accurately estimate the cardinalities of
subqueries depending on input parameters. However, the generated parameters
should be sampled independently for two different variants (countries that are
rarely and frequently visited together), to allow a fair and complete comparison
of different query optimization strategies.

E3: Average Runtime Is Not Representative. In addition to being far
from uniform (E1), the query runtime distribution can also be “clustered”:
depending on the parameter binding, the query runs either extremely fast or
surprisingly slow, and the average across the runtimes does not correspond to
any actual query performance. To illustrate this issue, we consider again the
IMDB Query 1.1. Figure 1(c) shows the runtime distribution of that query over
the entire domain of %Country parameter bindings. We see that the average
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runtime (red line on the plot) falls outside of the larger group of parameter
bindings, so in fact very few actual queries have the runtime close to the mean.

E4: Sampling Is Not Stable. A single query in the benchmark is typically
being executed several times with different randomly chosen parameter bindings.
It is therefore interesting to see how the reported average time changes when we
draw a different sample of parameters. In order to study this, we take Query 2 of
the LDBC benchmark that finds the newest 20 posts of the given user’s friends.
We sample 4 independent groups of parameter bindings (100 user parameter
bindings in each group), run the query with these parameters and report the
aggregated runtime numbers within individual groups (q10 and q90 are the 10th
and the 90th percentiles, respectively).

Time Group 1 Group 2 Group 3 Group 4

q10 0.14 s 0.07 s 0.08 s 0.09 s

Median 1.33 s 0.75 s 0.78 s 1.04 s

q90 4.18 s 3.41 s 3.63 s 3.07 s

Average 1.80 s 1.33 s 1.53 s 1.30 s

We see that uniform at random generation of query parameters in fact pro-
duces unstable results: if we were to run 4 workloads of the same query with
100 different parameters in each workload, the deviation in reported average
runtime would be up to 40 %, with even stronger deviation on the level of per-
centiles and median runtime (up to 100 %). When TPC-H benchmark record
results are improved, this often only concerns minor difference with the previous
best (e.g. 5 %). Hence, the desired stability between different parameter runs of
a benchmark should ideally have a variance below that ballpark.

3 Problem Definition

Here we define the problem of generating the parameter binding for benchmark
queries. In order to compare two query plans formulated in logical relational
algebra, we use the classical logical cost function that takes into account the
sum of intermediate results produced during the plan’s execution [5]:

Cout(T ) =

{
|Rx| if T is a scan of relation Rx

|T | + Cout(T1) + Cout(T2) if T = T1 �� T2

The above formula is incomplete and just here for argumentation; a more
complete version of this logical cost formula naturally should include all rela-
tional operators (hence also selection, grouping, sorting, etc.). The main idea
is that for every relational operator Ty it holds the amount of tuples that pass
through it.
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In our experiments, the cost function Cout, which is computed using the de-
facto result sizes (not the estimates!), strongly correlates with query running time
(ca. 85 % Pearson correlation coefficient). Therefore, if two query plan instances
have the same Cout, or even better if all operators in the query plan have the
same Cout, these plans are expected to have very similar running time.

In order to find k parameter bindings that yield identical runtime behavior
of the queries, we could:

a: enumerate the set of all equivalent logical query plans LQ for a query
template Q.

b: for each possible parameter p from domain P , and each subplan Tlq of LQ

compute Cout(Tlq(p)).
c: find subset S ⊂ P , with size |S| = k, such that the sum of all variances∑

∀Tlq∈LQ
Variance∀p∈S Cout(Tlq(p)) is minimized.

Note that this generic problem of parameter curation is infeasibly hard to
solve. The amount of possible query plans is exponential in the amount of oper-
ators (e.g. 2|LQ|, just for leftdeep-only plans, and |LQ| being the amount of
operators in plan LQ), and all these plan costs would have to be calculated
very many times: for each possible set of parameter bindings (whose size is 2|P |,
where |P | is the product of all parameter domain sizes – a typically quite large
number), and for all |LQ| subplans of LQ.

Instead, we simplify the problem by focusing on a single intended logical
query plan. Since we are designing a benchmark, which consists of a relatively
small set of query templates (the intended benchmark workload), and in this
benchmark design we have certain intentions, this is feasible to do manually.
We can, therefore, formulate a more practical problem of Parameter Curation
as follows:

Parameter Curation: For the Intended Query Plan QI and the parameter
domain P , select a subset S ⊂ P of size k such that

∑
∀Tqi∈QI Variance∀p∈S Cout

(Tqi(p)) is minimized.

Since the cost function correlates with runtime, queries with identical optimal
plans w.r.t. Cout and similar values of the cost function are likely to have close-
to-normal distribution of runtimes with small variance. Therefore, the properties
P1–P3 from Sect. 1 hold within the set of parameters S and effects mentioned
in Sect. 2 are eliminated.

The Parameter Curation problem is still not trivial. A possible approach
would be to use query cardinality estimates that an EXPLAIN feature provides.
For each query template Q we could fix the operator order to the intended order
QI, run the query optimizer for every parameter p and find out the estimated
Cout(QI(p)), and then group together parameters with similar values. However,
it seems unsatisfactory for this problem, since even the state-of-the-art query
optimizers are often very wrong in their cardinality estimates. As opposed to
estimates we will therefore use the de-facto amounts of intermediate result car-
dinalities (which are otherwise only known after the query is executed).
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4 Implementation of Parameter Curation

In this section we demonstrate how the problem of Parameter Curation for a
given query plan is solved in several important cases, namely:

– a query with a single parameter.
– a query with two (potentially correlated) parameters, one from discrete and

another from continuous domain. Such a combination of parameters could be:
Person and Timestamp (of her posts, orders, etc.).

– multiple (potentially correlated) parameters, such as Person, her Name and
the Country of residence.

Note that our solution easily generalizes to the cases of multiple parameters
(such as two Timestamp parameters etc.); we consider the simplest cases merely
for the purposes of presentation.

Our solution is divided into two stages. First, we perform data analysis that
aims at computing the amount of intermediate results produced by the given
query execution plan across the entire domain of parameter(s). The output of
the analysis is a set of parameter(s) values and the corresponding intermediate
result sizes produced by every join of the query plan. Second, the output of the
data analysis stage is processed by the greedy algorithm that selects the subset
of parameters resulting in the minimal variance across all intermediate result
sizes.

4.1 Single Parameter

Data Analysis. The goal of this stage is to compute all the intermediate results
in the query plan for each value of the parameter. We will store this information
as a Parameter-Count (PC ) table, where rows correspond to parameter values,
and columns – to a specific join’s result sizes.

There are two ways of computing that table. First, given the query plan
tree we can split it into a bottom-up manner starting with the smallest subtree
that contains the parameter. We will then remove the selection on the parameter
value from the query, and add a Group-By on the parameter name with a Count,
thus effectively aggregating the result size of that subtree across the parameter
domain. In our experiments with LDBC benchmark we were generating group-by
queries based on the JSON representation of the query plan.

The second way of computing the Parameter-Count table is to compute the
corresponding counts as part of data generation. Indeed, in case of the LDBC
benchmark, for instance, all the group-by queries boil down to counting the
number of generated entities: number of friends per person, number of posts
per user etc. These counts are later used to generate parameters across multiple
queries.

As an example, consider a simplified version of LDBC Query 2, given in
Listing 1.2, which extracts 20 posts of the given user’s friends ordered by their
timestamps. The generated plans with Group-By’s on top are depicted in Fig. 2a



Parameter Curation for Benchmark Queries 121

and b. The first subquery plan counts the number of friends per person, the
second one aggregates the number of posts of all friends by user. The resulting
Parameter-Count table is given in Fig. 2c, where columns named |Γ 1| and |Γ 2|
correspond to the results of the first and second group-by queries, respectively. In
other words, when executed with %ParameterID = 1542, Query 2 will generate
60 + 99 = 159 intermediate result tuples.

Query 1.2. LDBC Query 2

select p_personid, ps_postid, ps_creationdate
from person, post, knows
where

person.p_personid = post.ps_creatorid and
knows.k_person1id = %Person% and
knows.k_person2id = person.p_personid

order by ps_creationdate desc
limit 20

Γ 1
PersonID

Person Friends

(a) Step 1:
# Friends per Person

Γ 2
PersonID

Person Friends

Posts

(b) Step 2:
# Posts of Friends

(c) Parameter-Count table

Fig. 2. Preprocessing for the query plan with a single parameter (Color figure online)

Greedy Algorithm. Now, our goal is to find the part of the Parameter-Count table
with the smallest variance across all columns. Note that the order of the columns
matters; in other words, variance in the first column (result size of the bottom-
most join of the query plan) is more crucial to the runtime behaviour than vari-
ance in the last column (top-most join). Following this observation, we construct
a simple greedy algorithm, depicted in Algorithm 1. It uses an auxiliary function
FindWindows that finds the windows (consecutive rows of the table) of size at
least k on a given column i with the smallest possible variance (lines 3–4).
In our table in Fig. 2c such windows on the first column (|Γ 1|) are highlighted
with red and green colors (they consist of parameter sets [1542, 1673, 7511] and
[958, 1367], respectively). Both these sets have variance 0 in the column |Γ 1|.

The algorithm starts with finding the windows W with the smallest variance
on the entire first column (line 9). Then, in every found window from W we look
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Algorithm 1: Parameter Curation (single parameter)

FindWindows
Input: PC – Parameter-Count table, i – column, start, end – offsets in the table

1 begin
2 scan the PC table on the ith column from start to end rows
3 W ← generate Windows of size K
4 merge overlapping windows with the same variance
5 return w ∈ W with the smallest variance of PC[i] values

6 ParameterCuration
Input: PC – Parameter-Count table, n – number of count columns in PC
Result: W – window in PC table with the smallest variance of counts across all columns

7 begin
8 i ← 1 � corresponds to the column number in the table, i.e. |Γ i|
9 W ← FindWindows(PC, 1, 0, |PC|) � find windows on the entire first

10 column while |W > 1| and i < n do
11 i ← i + 1
12 Wnew ← list()
13 for w ∈ W do
14 w′ ← FindWindows(PC, i, w.start, w.end)

15 Wnew.add(w′)

16 sort Wnew by variance asc
17 W ← all w ∈ Wnew with the smallest variance

18 return W

for smaller sub-windows (but of size at least than k, see line 3) that minimize
variance on the second column (lines 12–16). The found windows with the small-
est variance become candidates for the next iteration, based on further columns
(line 17). The process stops when we reach the last column or the number of
candidate windows reduces to 1.

In the example from Fig. 2c, the first iteration brings the two windows men-
tioned above (red and green). Then, in every window we look for windows of k
rows, they are [99, 102], [102, 103] and [120, 101]. Out of these three candidates,
[102, 103] has the smallest variance (highlighted in blue), so our solution consists
of two parameters [1673, 7511].

4.2 Two Correlated Parameters

Here we consider the case when a query has two parameters, discrete and contin-
uous, e.g. PersonID and Timestamp. The continuous parameter is involved in a
selection, e.g. specifying the time interval. We focus on the situation when these
two are correlated, otherwise the solution of the Parameter Curation problem
is a straightforward generalization of the previous case: one would follow the
independence assumption and find the bindings for the discrete parameter using
Parameter-Count table, and then select intervals of the same length as bindings
of the continuous parameter.

However, if parameters are correlated, the independence assumption may lead
to a significant skew in the Cout function values. We take the LDBC Query 2 as an
example again, which in its full form also includes the selection on the timestamp
of the posts ps creationdate < %Date0% (i.e., the query finds the top 20
posts of friends of a user written before a certain date). In the LDBC dataset,



Parameter Curation for Benchmark Queries 123

Γ 2
PersonID,Month(t),Y ear(t)

Person Friends

Posts(Time t)

(a) # Posts of Friends
By Month

(b) Parameter-Count table with Time buckets (PCTime)

Fig. 3. Preprocessing for the query plan with two correlated parameters

the PersonID and Timestamp of the user’s posts are naturally correlated, since
users join the modeled social network at different times; moreover, their posting
activity changes over time. Therefore, if we choose the Timestamp parameter in
LDBC Query 2 independently from the PersonID, the amount of intermediate
results may vary significantly (even if ParameterIDs were curated such that the
total number of posts is the same).

Data Analysis. In order to capture the correlation between two parameters,
we need to include the second one (Timestamp in our example) in the grouping
key during the Parameter-Count table construction. Grouping by the continuous
parameter may lead to a very large and sparse table, so we “bucketize” it (e.g., by
months and years for Timestamp). We then store the results of the aggregation
as a Parameter-Count table, along with the bucket boundaries.

Our example from Fig. 2 is extended with the Timestamp parameter in Fig. 3.
The partial join trees are complemented with additional Group-By on Month
and Year of the timestamp as soon as the corresponding table containing the
Timestamp (in our case Posts) is added to the plan (in this example, at Step 2
when we consider the second join). Assuming that our dataset spans 4 months
of 2014, the resulting table may look like Fig. 3b.

Greedy Algorithm. The first stage of the Parameter Curation for two parameters
ignores the continuous parameter (e.g. Timestamp). As a result, we get the
bindings for the first (discrete) parameter that have similar intermediate result
sizes across the entire domain of the continuous parameter. Now for these curated
parameter bindings we find the corresponding continuous parameters such that
the Cout function values are similar across all the curated parameters.

For the purpose of presentation we consider the solution for the %Date0
parameter that appears in the selection of a form timestamp < %Date0. In
our example from the previous section, we have found two PersonID para-
meters that have the smallest variance in Cout. Let PCTime[i, j] denote the
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count in the Parameter-Count table for the parameter i in bucket j, and N
be the number of buckets for continuous parameter. For example, in Fig. 3b
PCTime[1673,Mar’14] = 30 is the number of posts made by friends of the user
1673 in March 2014, and N = 4.

– We compute the partial sums of the monthly counts Sum[i] =∑
j=1..N−M

PCTime[i, j] for all the discrete parameter bindings i for all the

months except the last M (where M is typically 1..3). In the table in Fig. 3b
for M = 1 these partial sums are 60 and 80 for PersonIDs 1673 and 7511,
respectively.

– We determine the average A across these sums Sum[i] (70 in our example).
– For every discrete parameter i we pick the bucket J such that∑

j=1..J

PCTime[i, j] is as close as possible to the global average A. More pre-

cisely, we pick the first bucket such that the sum exceeds the global average.
In our example, for i = 1673, J is the fourth bucket (Apr’14 ).

– Finally, since our buckets represent continuous variable (time), we can split
the bucket J so that the sum of counts is exactly A. For i = 1673 we need to
get 10 posts in April 2014 (60 are covered by previous months, and we need
to reach the global average of 70). We pick April 42·10

30 = 14 as Date0.

In order to perform the last step in the above computation, we have assumed
that within one bucket the count is uniformly distributed (e.g., every day within
one month has the same number of posts). Even when this assumption does not
hold precisely, the effects are usually negligible.

The timestamp conditions of a different form, e.g. Timestamp > Date0, or
Timestamp ∈ [Date0,Date1] are handled in the same manner. For example, the
Timestamp ∈ [Date0,Date1] condition leads to finding for every PersonID the
median of its post-per-time distribution, that is the median of the PCTable[i, j]
for every row i. Then, the median of those medians is identified across all Per-
sonIDs, and finally every individual PersonID ’s median is made as close as
possible to the global median by extending/reducing the corresponding bucket.

4.3 Multiple Correlated Parameters

Parameter Curation for multiple (more than two) parameters follows the scheme
of two parameters: one is selected as a primary (PersonID), the other ones are
“bucketized”. This way we get sets of bindings, each of those results in identical
query plan and similar runtime behavior.

In case of correlated parameters, however, it may be interesting to find several
sets of parameter bindings that would yield different query plans (but consistent
within one set of bindings). Consider the simplified version of LDBC Query 3
that is finding the friends of a user that have been to countries %C1 and %C2
and logged in from that countries (i.e., made posts), given in Query 1.3 and its
query plan in Fig. 4a.
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Query 1.3. LDBC Query 3

select k.k_person2id, ps_postid, ps_creationdate
from person p, knows k, post p1, post p2
where p.person_id = k.k_person1id

and k.k_person2id = p1.p_personid
and k.k_person2id = p2.p_personid
and p1.place = ’%C1%’
and p2.place = ’%C2%’

order by ps_creationdate desc
limit 20

Since in the generated LDBC dataset the country of the person is correlated
with the country of his friends, and users tend to travel to (i.e. post from)
neighboring countries, there are essentially two groups of countries for every
user: first, the country of his residence and neighboring countries; second, any
other country. For parameters from first group the join denoted �2 in Fig. 4a
becomes very unselective, since almost all friends of the user are likely to post
from that the country. For the second group, both �2 and �3 are very selective. In
the intermediate case when parameters are taken from the two different groups,
it additionally influences the order of �2 and �3.

Both these groups of parameters are based on counts of posts made by friends
of a user, i.e. based on the counts collected in the Parameter-Count table (with
additional group-by on country of the post). Instead of keeping the buckets of all
countries, we group them into two larger buckets based on their count, Frequent
and Non-Frequent as shown in Fig. 4b.

Now we can essentially split the LDBC Query 3 into three different (related)
query variants ((a), (b) and (c)), based on the combination of the two %Country
parameters: (a) %C1 and %C2 from the Frequent group, (b) both from Non-
Frequent group, (c) combination of the two above.

5 Experiments

In this section we describe our experiments with curated parameters in the LDBC
benchmark. First, we compare the runtimes of query templates with curated

3

2

1

Person Friends

Posts (Country = %C1%)

Posts (Country = %C2%)

(a) Query Plan (b) Parameter-Count table

Fig. 4. Case of multiple correlated parameters
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Fig. 5. LDBC Query 4 Runtime Distribution: Curated vs Random parameters

parameters as opposed to randomly selected ones (Sect. 5.1). Then we proceed
with an experiment on curating parameters for different intended plans of the
same query template in Section. All experiments are run with Virtuoso 7 Column
Store as a relational engine on a commodity server.

5.1 Curated vs. Uniformly Sampled Parameters

First experiment aims at comparing the runtime variance of the LDBC queries
with curated parameters with the randomly sampled parameters. For all 14
queries we curated 500 parameters and sampled randomly the same amount of
parameters for every query. We run every query template with each parame-
ter binding for 10 times and record the mean runtime. Then, the compute the

Table 1. Variance of runtimes: Uniformly sampled parameters vs Curated parameters
for the LDBC Benchmark queries

Query 1 2 3 4 5 6 7
Curated 13 31 243 0.6 1300 6931 33
Random 773 2165 444174 184 · 106 52 · 106 278173 362

Query 8 9 10 11 12 13 14
Curated 0.18 99269 4073 1 95 2977 5107
Random 403 880287 102852 39 1535 26777 155032
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Fig. 6. LDBC Query 11 with four different groups of parameters (for countries China,
Canada, Zimbabwe, Random)

runtime variance per query for curated and random parameters. The results,
given in Table 1, indicate that Parameter Curation reduces the variance of run-
time by a factor of at least 10 (and up to several orders of magnitude). We note
that some queries are more prone to runtime variability (such as Query 4 and 5),
that is why the variance reduction is different across the query set. For Query 4
we additionally report the runtime distribution of query runs with curated and
random parameters in Fig. 5.

5.2 Groups of Parameters for One Query

So far we have considered the scenario when the intended query plan needs to be
supplied with parameters that provide the smallest variance to its runtime. For
some queries, however, there could be multiple intended plan variants, especially
when the query contains a group of correlated parameters. As an example, take
LDBC Query 11 that finds all the friends of friends of a given person P that
work in country X. The data generator guarantees that the location of friends is
correlated with the location of a user. Naturally, when the country X is the user’s
country of residence, the amount of intermediate results is much higher than for
any other country. Moreover, if X is a non-populous country, the reasonable plan
would be to start from finding all the people that work at organizations in X
and then figure out which of them are friends of friends of the user P.

As described in Sect. 4.3, our algorithm provides three sets of parameters
for the three intended query plans that arise in the following situations: (i) P
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Table 2. Time to extract parameters in the LDBC datasets of different scales

Scale Parameter extraction time % of total generation time Data size, Gb

10K 17 s 7 % 1

50K 125 s 11 % 5.5

1M 4329 s 12 % 227

resides in the country X, (ii) country X is different than the residence country
of P , (iii) X is a non-populous country that is not a residence country for P . As
a specific example, we consider a set of Chinese users with countries (i) China,
(ii) Canada, (iii) Zimbabwe. The corresponding average runtimes and standard
deviations are depicted in Fig. 6. We see that the three groups indeed have
distinct runtime behavior, and the runtime within the group is very similar.
For comparison, we also provide the runtime distribution for a randomly chosen
country parameter, which is far from the normal distribution.

5.3 Parameter Curation Time

Finally, we report the runtime of the parameter curation procedure for the LDBC
Benchmark. Note that we have incorporated the data analysis stage in our case
is implemented as part of data generation, e.g. we keep the number of posts
per person generated, number of replies to the user’s posts etc. This is done
with a negligible runtime overhead. In Table 2 we report the runtime of the
greedy parameter extraction procedure for the LDBC dataset of different scales
(as number of persons in the generated social network). We additionally show
the size of the generated data; this is essentially an indicator of the amount of
data that the extraction procedure needs to deal with. We see that Parameter
Curation takes approximately 7 % to 12 % of the total data generation time,
which looks like a reasonable overhead.

6 Conclusions

In this paper we motivated and introduced Parameter Curation: a data mining-
like process that follows data generation in a database benchmarking process.
Parameter Curation finds substitution parameters for query templates that pro-
duces query invocations with very small variation in the size of the interme-
diate query results, and consequently, similar running times and query plans.
This technique is needed when designing understandable benchmark query work-
loads for datasets with skewed and correlated data, such as found in real-world
datasets. Parameter Curation was developed and is in fact used as part of the
LDBC Social Network Benchmark (SNB)1, whose data generator produces a
social network with a highly skewed power-law distributions and small diameter
1 See http://github.com/ldbc and http://ldbcouncil.org.

http://github.com/ldbc
http://ldbcouncil.org
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network structure, that has as additional characteristic that both the attribute
values and the network structure are highly correlated. Similar techniques can
be used for transactional benchmarks on graph-shaped data (e.g. BG [2]). Our
results show that Parameter Curation in these skewed and correlated datasets
transforms chaotic performance behavior for the same query template with ran-
domly chosen substitution parameters into highly stable behavior for curated
parameters. Parameter Curation retains the possibility for benchmark designers
to test the ability of query optimizers to identify different query plans in case
of skew and correlation, by grouping parameters with the same behavior into a
limited number of classes which among them have very different behavior; hence
creating multiple variants of the same query template. Our approach to focus the
problem on a single intended query plan for each template variant reduces the
high complexity of generic parameter curation. We experimentally showed that
group-by based data analysis followed by greedy parameter extraction that imple-
ments Parameter Curation in the case of LDBC SNB is practically computable
and can form the final part of the database generator process.
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Abstract. Multitenant databases provide database services to a large
number of users, called tenants. In such environments, an efficient man-
agement of resources is essential for providers of these services in order
to minimize their capital as well as operational costs. This is typically
achieved by dynamic sharing of resources between tenants depending
on their current demand, which allows providers to oversubscribe their
infrastructure and increase the density (the number of supported ten-
ants) of their database deployment. In order to react quickly to variability
in demand and provide consistent quality of service to all tenants, a mul-
titenant database must be very elastic and able to reallocate resources
between tenants at a low cost and with minimal disruption. While some
existing database and virtualization technologies accomplish this fairly
well for resources within a server, the cost of migrating a tenant to a
different server often remains high. We present an efficient technique for
live migration of database tenants in a shared-disk architecture which
imposes no downtime on the migrated tenant and reduces the amount of
data to be copied to a minimum. We achieve this by gradually migrat-
ing database connections from the source to the target node of a data-
base cluster using a self-adapting algorithm that minimizes performance
impact for the migrated tenant. As part of the migration, only frequently
accessed cache content is transferred from the source to the target server,
while database integrity is guaranteed at all times. We thoroughly ana-
lyze the performance characteristics of this technique through exper-
imental evaluation using various database workloads and parameters,
and demonstrate that even databases with a size of 100 GB executing
2500 transactions per second can be migrated at a minimal cost with no
downtime or failed transactions.

Keywords: Database · Live migration · Multitenancy

1 Introduction

The rise of virtualization has eased resource provisioning by abstracting from
physical resources and allowing to create new, now virtualized, resources on
demand. Databases are a central component for most applications, which makes
database virtualization an important consideration of virtualized infrastruc-
tures. Virtualization implies many challenges on database management systems
c© Springer International Publishing Switzerland 2015
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(DBMS). Whether used for consolidation or multitenancy in Cloud-based ser-
vices, the density of virtualized databases, that is the number of hosted users
or tenants on a given amount of physical resources, becomes a key factor for
capital and operational cost. Density can be increased both by lowering the
footprint (the resource demand) of a tenant as well as by sharing resources
between tenants. If the peak resource demand of all tenants exceeds the amount
of physical resources, the deployment is referred to as oversubscribed. One of the
key challenges for multitenant databases is to efficiently manage oversubscribed
resources without violating a tenant’s service level agreement (SLA). Since the
resource needs of a tenant are often unpredictable and can be subject to sudden
change, a multitenant database must be able to provide resources on demand
to ensure good performance and quality of service for all tenants. This becomes
more difficult as resources may currently be in use by other tenants. The ability
to quickly reassign resources from one tenant to another is therefore essential
for the elasticity of a database.

Resources managed by a database typically include CPU, memory (for cache,
metadata and other data structures), storage (capacity, as well as I/O bandwidth
and latency), and network. The choice of virtualization technology can have sig-
nificant impact on the cost at which each of these resources can be shared or
reassigned between tenants. For example, two tenants that are not bound to
particular physical processors might easily share CPU cycles given to them by
a scheduler or hypervisor on a granularity of microseconds, while sharing of
memory might be more coarse-grained if both tenants are deployed in differ-
ent virtual machines, each with dedicated memory. Consolidation technologies
such as multitenant databases [14] provide an interesting alternative to virtual
machines if they can lower the footprint of each tenant by sharing resources
more efficiently and dynamically [27]. The sharing of a common cache between
tenants for example would reduce the cost of allocating and deallocating cache
buffers to the level of traditional cache management with replacement policies
such as Least Recently Used (LRU). Load-balancing and resource management
within a server are important features for multitenant databases to allocate a
proper amount of resources to every tenant at any point in time.

With unforeseen load changes of some tenants, or more tenants being pro-
visioned and becoming active, the physical resources of a server may become
exhausted and make load-balancing across servers necessary. In such a case, a
tenant may have to be migrated to another server. Also planned maintenance
operations often require to take a server offline and thereby require tenants to be
migrated. While maintenance operations might be scheduled during low traffic
times such as at night time, load-balancing can become necessary during peak
traffic hours. Many database applications, especially when they handle online
transactions, may not be able to tolerate any outage of the database as this may
lead to a loss of revenue. Those databases cannot be shut down before migra-
tion, but must be migrated online with as little disruption as possible, referred
to as live migration. Minimizing the downtime, that is the period of time in
which the database is not able to serve requests, is therefore a key objective of
implementing database live migration.
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While VM live migration has been studied by many researchers [5,12,13],
only few have attempted to migrate databases in virtual machines [15,18]. More
recently, some approaches for live migration in multitenant databases have been
proposed [2,7,8]. However, none of them accomplish to migrate databases truly
free of downtime without failing any requests.

We present a technique for live migration in a multitenant shared-disk data-
base aimed at providing efficient migration of transactional online databases
with no service interruption or failed requests and minimal impact on quality
of service. The migration is facilitated by a connection pool we have imple-
mented, which migrates connections from the source to the target node using a
self-adapting algorithm to control the migration rate. The algorithm throttles
or accelerates the rate based on workload behavior and system load, attempt-
ing to minimize impact on the migrated tenant while keeping overall migration
time low. Rather than copying memory pages, the target node pulls frequently
accessed database cache blocks on demand from the source node or the shared
storage, reducing the amount of data to be copied compared to traditional VM
migration to cache content at most.

Our solution for live migration is implemented for the Oracle Database 12c
[9] and leverages the Real Application Clusters (RAC) [21] and Multitenant [19]
options. We thoroughly analyze the influence of different workload characteris-
tics on the performance and scalability of our proposed technique through an
extensive series of experiments. In our study, we not only consider downtime
as a metric, but also analyze our results with respect to total migration time,
amount of migrated data, and migration overhead.

The main contributions of this paper are:

– We present a new technique for database live migration in a shared-disk mul-
titenant database using a client-side connection pool with an adaptive con-
nection migration algorithm.

– We evaluate the performance and scalability of this migration technique by
using various workloads, and provide an in-depth analysis of key performance
metrics based on workload characteristics.

– We demonstrate how this technique successfully accomplishes to migrate data-
base tenants without downtime or failed transactions even for large databases
running high transaction rates.

The remainder of this paper is organized as follows: In Sect. 2 we describe the
technologies used. In Sect. 3 we present the design and implementation details
of our technique. In Sect. 4 we explain the methodology of our experiments and
analyze their results. Further considerations are described in Sect. 5, related work
is summarized in Sect. 6, and we conclude with Sect. 7.

2 Background

2.1 Connection Pooling

On-Line Transaction Processing (OLTP) workloads often serve hundreds or
thousands of requests per second with response time requirements in the range



Downtime-Free Live Migration in a Multitenant Database 133

of milliseconds. To avoid the cost of establishing database connections for each
request, OLTP applications use connection pools of fixed or variable sizes from
which they acquire and release connections as needed. We leverage this by imple-
menting live migration logic inside a connection pool rather than a query router
or proxy to avoid extra latency by additional nodes in the communication chan-
nel. While this implies that our solution requires a certain degree of cooperation
of the client to enable a smooth migration, it is entirely implemented inside the
connection pool and therefore transparent for the application.

2.2 Database Live Migration Techniques

The choice of virtualization technology largely determines the possible tech-
niques available for live migration. In the context of database virtualization,
we distinguish between two primary concepts of virtualization, using virtual
machines or in-database virtualization.

Virtual Machines
A virtual machine (VM) virtualizes the underlying hardware or operating system
(OS) and provides a database running inside the VM access to resources such
as CPU, memory, I/O, OS kernel, and file systems. Regardless of whether the
physical resources are dedicated to a VM or shared between VMs, each database
inside a VM is isolated from other databases in the sense that it can only access
the (virtualized) resources in its own VM. While this model has advantages with
respect to isolation, it also limits the degree of sharing, as it prevents for example
the sharing of common data structures or processes across databases in different
VMs. Examples of such virtual machines are KVM [16], Microsoft Hyper-V [22],
Solaris LDoms and Zones [25], VMWare ESX [30], and Xen [1]. A discussion of
their features and differences is beyond the scope of this paper.

VM Live Migration. The live migration of a VM can be accomplished in
different ways, which typically include the concepts of pre-copy [3,5,24], stop-
and-copy, and post-copy [11] of pages from the source to the target VM. Most
VMs like Xen, KVM, and VMWare ESX use a combination of the first two
concepts [5,24]. They first attempt to transfer the majority of pages from the
source to the target VM while the source VM is still running. This is often done
in multiple phases, as pages in the source VM are continuously being modified
and some pages may need to be transferred again. After some iterations, the
source VM is then brought to a stop, and during a short phase of downtime,
remaining pages are copied to the target VM to bring it into a consistent state
with the source VM. Operation is then resumed on the target VM.

For a database running in a VM this approach means that not only database
content itself is transferred between VMs, but also temporary data, process
stacks and heaps, unused cache blocks, operating system pages, and others.
Depending on the database size relative to the size of the VM, the memory
to be transferred often not only exceeds the (cached) database size, but also the
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VM size due to repeated transfers of pages [11,12]. The advantage of such a
migration is that the database can be completely unaware of the migration and
does not need to provide any migration support.

In-Database Virtualization
Virtualization inside the database moves the concept of virtualization into the
database layer by hosting multiple tenants inside a common database. By doing
so, not only database structures can be efficiently shared between tenants, but
also live migration can be implemented in a way that considers the special
attributes and characteristics of databases.

Das et al. [7] have shown that by migrating the database cache rather than
VM pages in a shared-disk multitenant database, a downtime as short as 300 ems
is achievable. In another study, Elmore et al. [8] use a combination of pulling
and pushing of database pages in a shared-nothing architecture to migrate a
multitenant database without downtime and only few failed operations. In our
study, we show that an Oracle Multitenant database running on Real Application
Clusters (RAC) can be migrated without any downtime, no failed transactions,
and minimal impact on quality of service.

Oracle RAC. Oracle Real Application Clusters is an option of the Oracle
database that allows multiple database instances, running on different nodes
(servers) in a cluster, to access a common database simultaneously. The database
resides on a shared storage and can be partially or completely cached in each
instance, where instances may cache both identical as well as different data
blocks. When an instance needs to access a block (e.g. when executing a query),
it has to request this block from another instance’s cache or from storage if it does
not hold the current copy itself. A distributed lock manager keeps track where
the current copy of each block is held, guaranteeing data consistency across all
instances. Instances communicate over a dedicated private network called cluster
interconnect. A cache transfer from one instance to another is referred to as cache
fusion [17].

Oracle Multitenant. Oracle Database 12c introduced a new option called
Oracle Multitenant that virtualizes databases within the database. The host-
ing database is referred to as container database (CDB), into which virtualized
databases called pluggable databases (PDB) are deployed (plugged). Within a
CDB, all PDBs are isolated in terms of namespace, but share a common cache
as well as database background processes. The container database can be a RAC
database spanning multiple nodes. A database service is associated with each
PDB. The PDB is accessed by establishing database connections to that service,
which creates a database connection to the node where the service is running.
While it is possible to run a service on multiple nodes at the same time and thus
connect to the same PDB through multiple nodes, we instead propose the use
of singleton services that only run on one node at a time. By doing so, all data
of a PDB is accessed on one node only, which increases cache reach by avoiding
duplicate copies of identical data blocks and reduces cache fusion traffic.
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3 Design and Implementation

Based on the Oracle database options Multitenant and Real Application Clusters,
we present a new technique by which a pluggable database can be migrated
from one RAC node to another without any downtime. To achieve this goal, we
have implemented a connection pool that upon receiving a migration request
slowly drains connections to the source node while at the same time establishing
new ones to the target node. Our implementation adapts the rate at which
connections are migrated automatically to workload behavior and system load
and attempts to minimize the impact of migration on ongoing requests while
at the same time keeping overall migration time low. By doing so, we smoothly
migrate the database from one node to another, allowing the target node enough
time to fetch frequently accessed cache blocks from the source node without
causing disruption for the migrated tenant. During the migration, the database
is accessed in both nodes simultaneously, while data integrity is maintained by
Oracle RAC’s cache fusion protocol and distributed lock manager [17].

3.1 Service Migration

The migration is initiated by relocating the singleton service associated with
the tenant’s pluggable database to another node. During service relocation, the
service is first stopped on the current node and then started on the target node.
As part of starting the service, the associated PDB is opened on the target node
(if it has not been opened before), which just requires metadata operations that
typically take a few seconds only. Even though the service may be down for a
short period during migration, already established connections remain usable,
so the database continues to serve requests even if the service is down. The only
consequence is that new connections cannot be established during this time, for
example in case of pool resize operations or new applications being started. The
period in which the service is down can be further reduced to below 1 s by first
opening the PDB and then relocating the service. While this could be a useful
optimization for production systems to minimize the probability of the service
being down while applications try to connect, we do not test such a scenario and
therefore did not apply this optimization for our tests.

3.2 Connection Pool

We have implemented a client connection pool that allows to handle the live
migration of a PDB transparently for the application. It registers itself at the
database for events through the Oracle Notification Service (ONS). When a
service is stopped as part of a relocation, ONS sends out a service down event.
Since the stopping of a service has no effect on already established connections,
the client keeps using the connections in the pool just as before. Shortly after, the
service will come up on the target node. The connection pool will then receive
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another ONS notification, a service up event. Only after receiving this event1,
we will now start migrating connections to the new node by disconnecting idle
connections (connections that are currently not borrowed from the pool) from
the source node and reconnecting them to the same service again, which is
now running on the target node. During a certain period of time to which we
refer as the migration time in this paper, the client is connected to both nodes
simultaneously and accesses database blocks on both nodes. The first requests
on the target node will lead to cache misses as blocks for this PDB have not
yet been cached. These blocks will be fetched either from the source node or
from disk. Previous work shows that typical workloads have a working set of
frequently accessed data that is smaller than the overall database size [10,28].
While first requests are executed on the target node, it can quickly build up a
cache of the most frequently accessed blocks without needing to load the entire
database into cache. As we continue migrating connections, more and more work
shifts from the source to the target node, until finally all connections have been
migrated. From that point on, clients exclusively access the database on the
target node.

In our tests we found that the ideal migration speed depends heavily on the
workload characteristics such as access patterns, working set size, and transac-
tion rate. If connections are migrated too quickly, the target node is not given
enough time to warm up its cache, resulting in high response times for many
transactions and eventually exhaustion of the number of database connections.
This leads to queuing of requests on the application side waiting for connections
to become available. To avoid this situation as much as possible, we found it
beneficial to start with a very low migration speed. Since many workloads have
a small subset of blocks such as index blocks that are frequently accessed, a few
migrated connections can be sufficient to fetch these blocks from the source node
without overwhelming the target node with too many requests at once. As the
migration of connections continues, the initially chosen speed may be too low.
At best, this only results in a longer than necessary overall migration time. For
update-intensive workloads however, especially if they have a small subset of
frequently updated blocks, a low migration speed can also lead to adverse effects
as blocks that have already been transferred to the target node are now again
being requested by the source node. In this situation, system resources can be
wasted for repeated block transfers (also referred to as block pinging).

We have therefore implemented an algorithm that automatically adjusts the
rate at which connections are being migrated to the workload and performance
characteristics of the database. It attempts to migrate a tenant as quickly as
possible under the constraint of affecting its quality of service (QoS), namely
throughput and response times, as little as possible. When balancing these two
(sometimes) conflicting goals, we value QoS over migration speed.

1 If the service is taken down permanently or in case of error situations, a client is
advised to stop using the service. Our prototype does not consider this situation.
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Migration Algorithm
To allow the implementation of different migration rates and policies as the
migration is progressing, we evenly divide the migration into four stages. The
end of each stage is defined by the number of connections that have already
been migrated relative to the total number of connections (25 %, 50 %, 75 %,
and 100 % for stages 1, 2, 3, and 4). During early stages, we use a low migration
rate and the possibility of additional throttling. In later stages, we allow higher
migration rates and the possibility of additional acceleration. For each stage,
the algorithm computes every second a base migration rate, being the number of
connections to migrate this second (1 %, 2 %, 4 %, and 10 % of the total number
connections in stage 1, 2, 3, and 4), rounded to the next integer. Additionally, it
computes average response times for all requests that were served by the source
and target node in the previous second. The base migration rate may then be
adjusted based on the following policies, applied in the order as described, which
then determine the actual migration rate of how many connections to migrate
each second2.

– Throttling: In the first three stages, we throttle the migration rate if response
times on the target node significantly exceed those on the source node: If
response times are 2 or more times higher, we throttle the actual migration
rate to 50 %; if they are 3 or more times higher, we throttle to 25 %. High
response times on the target node are an indication for a cold cache. By throt-
tling the migration rate, we give more time to the target node to build up its
cache and not overwhelm it with too many requests. In the last stage, where
more than 75 % of all connections have been migrated, the risk of already
transferred cache blocks being requested again by the source node increases,
which is counter-productive to the migration. We therefore implement no fur-
ther throttling in the last stage.

– Acceleration: If response times on the source node exceed those on the target
node, we double the migration rate. Once caches on the target node have
sufficiently filled and requests are running better on the target than on the
source node, there is no reason to hold migration back, so accelerating it
reduces overall migration time.

This algorithm has proven to reduce the impact on response times for the
migrated tenant by starting migration at a low pace, throttling the connection
migration rate even more when needed, and then accelerating as the cache on
the target node is warming up (Sect. 4.4; see Fig. 2 for an illustration).

While the base migration rates as well as the response time thresholds, throt-
tling and acceleration factors could be made configurable for fine-tuning, we
believe this will generally not be necessary. The base migration rate is chosen
2 The number of connections migrated each second is the integral component of the

calculated actual migration rate, while the remainder of it is rolled over to the next
second. For example, if a rate of 1.75 has been calculated, one connection will be
migrated, and the remaining value of 0.75 will be added to the rate calculated in the
next second.
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relative to the number of connections and therefore adapts to different connec-
tion pool sizes. The response time thresholds are based on relative differences
between source and target node and independent of absolute response times, and
the throttling and acceleration factors are reasonable adjustments to the base
migration rate. By considering response time differences, the algorithm adapts
not only to workload characteristics, but also performance differences between
various platforms. We successfully verified this algorithm for different workloads
and connection pool sizes between 10 and 200 connections.

4 Experimental Evaluation

We now evaluate the live migration of a PDB with our connection pool imple-
mentation using a variety of workloads to analyze how different attributes of a
workload, such as database size, transaction rate, and access type and distribu-
tion affect migration time, impact, and cost.

4.1 Test Setup

System Configuration. We conduct this analysis on an Oracle SuperCluster
T4-4 configuration using 2 T4-4 servers for the database software, and 7 X2-2
Exadata Storage Servers, connected through Infiniband fabric. Each database
server has 4 SPARC T4 processors (8 cores and 64 threads each), running at
2.998 GHz, and is equipped with 512 GB of memory. The servers run Solaris 11
Update 1 with the latest Oracle 12.1.0.1 database software. As load generator,
we use a server with 2 Intel Xeon X5670 processors running Oracle Enterprise
Linux 6, which is connected to the database servers through 10 GbE.

Load Test Environment. For load generation and statistics collection we use
CloudPerf, a Java-based performance test environment we have developed. It
uses an open load generator [26] capable of maintaining a configurable injection
rate regardless of the performance of the system under test (SUT). Requests are
served by a pool of worker threads which acquire connections from a connection
pool. Since every request needs exactly one database connection, we configure
the worker thread pool size identical to the connection pool size, with the same
minimum and maximum setting for both. Requests that wait for a worker thread
will be queued. As we adequately want to mimic the perceived performance of
applications, we include this queuing time in all reported response times. If a
request has been queued for more than 1000 ms, we discard it and count it as
a failed request to avoid infinite queuing in case the SUT does not keep up.
CloudPerf also captures all relevant operating system and database statistics
used in this study.

4.2 Workloads

In our evaluation, we use two different OLTP workloads which we have imple-
mented on CloudPerf. For our in-depth analysis of the influence of workload



Downtime-Free Live Migration in a Multitenant Database 139

Table 1. Table sizes and attributes (CRUD)

Rows Partitions Index Data Blks Index Blks DB size

1 M 128 ID 271,148 6,550 2.1 GB

10 M 512 ID 2,065,880 41,367 16.1 GB

50 M 16 ID, PART 8,472,506 361,807 67.4 GB

characteristics on our migration technique we use CRUD, an internal workload
that performs random insert, select, update, and delete operations on a single
table. It allows us to easily change the table size and transaction mix and thus
create different data access patterns. While CRUD is a well-suited workload for
such analysis, it lacks the complexity of real-world workloads. As a more relevant
workload that resembles typical OLTP workloads more closely, we use ODB-CL,
an implementation of the Oracle Database Benchmark for CloudPerf.

CRUD. CRUD3 is an OLTP workload we developed for database experiments
to investigate certain characteristics of high-level workloads in a deterministic
and controlled manner. It performs a configurable mix of random select, update,
insert, and delete operations on a single table of arbitrary size, using a unique
number (ID) as a primary key, and a partition key (PART) for further filtering.
In a BLOB4 field (DATA), we store an arbitrary amount of binary data. The
table is partitioned based on the partition key.

We conduct our experiments with table sizes of 1, 10, and 50 million rows
with 1024 byte of data stored in the BLOB field using a default block size of 8192
byte, resulting in a database size of 2.1, 16.1, and 67.4 GB, respectively (Table 1).
The mix of queries we run consists of select, update, insert, and delete operations,
which each select, update, insert, or delete 5 rows per execution. For select and
update operations, the first of these rows is randomly picked using a uniform
distribution across the entire range of IDs, while the remaining 4 are rows with
the next-highest ID in the same partition. Both operations fetch and update the
data in the BLOB field. The remaining operations insert or delete rows beyond
the last provisioned row at a predetermined index that is incremented with every
insert and delete.

For the first set of experiments with 1 and 10 million rows, we only use
a unique index on the ID column, which forces select and update queries to
scan parts of a table partition, thus accessing a large number of blocks on each
execution. In these experiments, block accesses spread equally across all blocks,
with about 99 % of the blocks accessed being table blocks (Tables 2 and 3).
For the experiments with 50 million rows, we create an additional index on
ID and PART. By doing so, we eliminate table blocks scans, reducing overall
block accesses for select and update operations significantly, and shift the access
3 The name CRUD refers to Create, Read, Update, Delete (in database context Insert,

Select, Update, Delete).
4 Binary Large Object.
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Table 2. Block accesses per query (CRUD)

Rows Select Update Insert Delete

1 M 2020 2072 43 48

10 M 4079 4080 77 95

50 M 24 51 65 56

Table 3. Block access by table and index (CRUD)

Rows Statement mix Reads (Tbl/Idx) Updates (Tbl/Idx)

1 M, 10 M Select only 99 %/1 % none

1 M, 10 M Select/Update 99 %/1 % 100 %/0 %

1 M S/U/I/D 98 %/2 % 65 %/35 %

10 M S/U/I/D 99 %/1 % 23 %/77 %

50 M S/U/I/D 44 %/56 % 64 %/36 %

distribution more towards index blocks, which now account for 56 % of all block
accesses (Tables 2 and 3). Since the number of index blocks is just a fraction of
the number of data blocks, this leads to a small set of frequently accessed blocks,
while the majority of the blocks is less frequently accessed, a pattern more typical
for many real workloads [10,28]. With respect to block modifications, the update
operations only modify data blocks, which again spread equally across the entire
table. The insert and delete operations however need to maintain the index
as well, reflected in modifications of index blocks. Since there are much fewer
index than data blocks, index modifications can lead to concurrent updates of
index blocks (especially root index blocks), which might need to be repeatedly
transferred between nodes if accessed on both nodes simultaneously. We use this
to include effects arising from increased update concurrency in our analysis. For
each of the three aforementioned table sizes, we run a set of four experiments,
varying the transaction mix between 100 % select, 80 % select and 20 % update,
20 % select and 80 % update, and 20 % select, 40 % update, 20 % insert, 20 %
delete.

ODB-CL. ODB-CL is an implementation of the Oracle Database Benchmark
(ODB) [10] for CloudPerf. Its data model consists of 9 tables, accessed by 5
transactions, which portray the order management of a wholesale supplier with
a number of warehouses organized in districts5. We report throughput as trans-
actions per second (tps), being the total number of executed transactions of any
of the five types.
5 While ODB-CL has similarities with the industry-standard TPC-C Benchmark [29],

it is not a compliant TPC-C implementation. Any results presented here should not
be interpreted as or compared to any published TPC-C Benchmark results. TPC-C
Benchmark is a trademark of Transaction Processing Performance Council (TPC).
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4.3 Methodology

In an initial series of experiments, we migrate a single database running at a
steady load from one node to another, using different workloads and workload
parameters. For these experiments, this database is the only active database, that
is the target node is idle before the migration, and the source node is idle after
the migration. After analyzing the results obtained from these experiments, we
then migrate a tenant’s database running concurrently with other tenants from
a node under load to another node under equal load.

Each experiment consists of a warmup phase long enough to bring the work-
load into a steady state, followed by three phases of five minutes each: steady
state before migration, migration, and steady state after migration (Fig. 1).

Fig. 1. Overview of migration phases

For single-tenant migration tests, the container database cache size has been
configured to 32 GB (unless otherwise noted), which is sufficiently large to cache
the tenant’s entire database in memory. In the test with multiple active tenants,
we use a cache size of 320 GB.

Migration Phases

Phase 1 - Steady State Before Migration. In the first phase, we collect
data during steady state before the migration. This data is used as a reference
point to later determine migration overhead by comparing performance metrics
during migration against the metrics collected in this phase.

Phase 2 - Migration. During the second phase, we migrate the database from
the source to the target node. This phase begins with initiating the migration
by failing over the service to the target node, which includes opening of the
PDB on that node. After the service is back up, we begin migrating connections
until all connections have been reconnected to the target node. Once the last
connection has been migrated, we consider the migration as completed and note
this time as the migration time. Since the target node fetches database blocks
only on demand, either from the other node or from disk, the transfer of blocks
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to the target node may continue after migrating the last connection. The tenant
might therefore still face some degradation in quality of service if the cache on
the target node has not yet fully been build-up. We measure the time during
which a tenant’s response times are affected, beginning with migrating the first
connection, as the migration impact time.

Phase 3 - Steady State After Migration. The last phase of 5 min only
serves as a verification of whether throughput and response times as well as
CPU utilization match those of phase 1 again, where the expectation for CPU
utilization is that the target node is now running at the same CPU utilization
as the source node before the migration, and vice versa.

Metrics
Common metrics used by researchers to evaluate live migration performance
are downtime, total migration time, amount of migrated data, and migration
overhead [13]. Since by design our technique does not impose any downtime, we
omit this metric. In the beginning of the migration phase, the service is relocated,
and the database is opened on the target node. While we measure the service
relocation time (few seconds in our tests), we do not explicitly report it in this
paper as it does not affect the workload, but include this time in the reported
migration time.

With our solution, the total migration time is difficult to determine as there
is no clearly defined end of the migration. Therefore we note the time from
initiating the service relocation until the last connection has been migrated as
migration time. As a second metric, we calculate the time from migrating the
first connection until the quality of service of the migrated tenant has been fully
reestablished, which we define as average response times being within 10 % of
those during steady state before migration, and request failure rate being zero.
We refer to this time as the migration impact time. Requests that cannot be
handled by the database immediately (because all connections in the pool are
in use) will be queued for up to 1 s in the load generator. After 1 s, they will be
discarded and counted as failed requests. For a failure rate of 0, throughput is
identical to the injection rate. Instead of throughput of successful transactions,
we report injection rate and the number of failed requests, and in case of failures
also the failure rate (based on overall requests in phase 2).

We measure average response times across all database transactions in the
steady-state phase before migration as well as during migration, and report latter
ones for the period of time in which a tenant is impacted (migration impact time).
These response times include any potential queuing time in the load generator.

Due to the nature of our migration technique, we split the amount of trans-
ferred data during migration into two categories: data transferred from the source
to the target node, and data transferred in the opposite direction. The latter can
occur if blocks modified on the target node during migration are again requested
by transactions still running on the source node.
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Table 4. CRUD 10 M rows (16.1 GB), 200 conn, IR = 2500, S/U/I/D Ratio 80/20/0/0

Conn Pool Conn Migr Rate Migr Tm Impact Tm Failed TX Rsp Steady Rsp Migr Result

UCP Abrupt/max 17.0 s 38 s 62,006 24.2ms 1932.0ms Failed

(8.3%)

CloudPerf 10 Conn/s 30.8 s 41 s 15,113 24.3ms 369.2ms Failed

(2.0%)

CloudPerf 5 Conn/s 47.6 s 37 s 0 24.3ms 49.6ms Successful

CloudPerf 3 Conn/s 73.6 s 31 s 0 24.3ms 41.5ms Successful

CloudPerf Adaptive 62.5 s 38 s 0 24.2ms 32.4ms Successful

We calculate CPU cost of migration as the ratio of aggregate CPU utilization
from source and target node during the migration phase (phase 2) divided by
the aggregate CPU utilization during the steady-state phase before migration.
A cost of 1.1 would mean that the combined CPU utilization of both nodes was
10 % higher during migration than during steady-state.

For each experiment, we verify that response times and CPU utilization dur-
ing steady-state before and after migration are within 10 % (with CPU utilization
on both hosts interchanged), and that not a single request has failed in any of the
three phases. Only then we call an experiment successful. Otherwise we consider
it failed.

For each experiment, we capture and report the following metrics:

– migration time (Migr Tm)
– migration impact time (Impact Tm)
– number of failed transactions for migrated tenant (Failed TX ))
– response times for migrated tenant during steady-state before migration (Resp
Steady) and during the migration impact time (Rsp Migr)

– amount of data transferred from source to target node (Data Rcvd)
– amount of data transferred from target back to source node (Data Sent)
– CPU cost of migration (CPU Cost)
– test result (Result, successful (unless otherwise stated) or failed)

4.4 Experiments and Analysis

CRUD (Connection Migration)
In the first series of experiments (Table 4), we evaluate the behavior of different
connection migration algorithms by migrating a single tenant running the CRUD
workload on a table with 10 million rows at a rate of 2500 transactions per second
(80 % select, 20 % update), using a connection pool size of 200.

As a baseline, we compare against the Oracle Universal Connection Pool
(UCP) version 12.1.0.1, which in this version6 immediately after receiving the

6 Based on our work, UCP version 12.1.0.2 will implement a similar connection migra-
tion as presented in this paper, including a timeout in case the service is taken down
permanently.
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Fig. 2. CRUD 10 M rows, 200 conn, IR = 2500, S/U = 80/20: Conn. Migration Rate

Fig. 3. CRUD 10 M rows, 200 conn, IR = 2500, S/U = 80/20: Cached Blocks

service down event terminates all connections that are returned to the pool, and
begins establishing new connections after the service is back up at the fastest pos-
sible rate until the configured minimum pool size has been reached again. Table 4
shows that this leads to a high rate of failed transactions (8.3 % of all transac-
tions in phase 2) and average response times (including queuing) of almost 2 s
over a period of 38 s, caused by a combination of a short time during which
the service is down on both nodes, and a high rate of requests hitting the target
node and its empty cache all at once as soon as service is resumed. Note that the
failed transactions are exclusively a result of queuing exceeding 1 s; the database
itself does not abort or fail any transactions.

Our connection pool prototype for CloudPerf only starts migrating connec-
tions after the service has come back up, therefore completely avoiding any
downtime. With a fixed connection migration rate of 10 connections per second,
we still see requests failing because of queuing as the target node does not keep
up servicing requests in a timely manner due to a cold cache, even though the
failure rate has reduced to 2.0 %. In order to give the target node enough time to
warmup its cache, connections need to be migrated at an even lower rate, such
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Fig. 4. CRUD 10 M rows, 200 conn, IR = 2500, S/U = 80/20: CPU Utilization

as 5 or 3 connections per second. The difficulty with a fixed rate however is to
find the right balance between migration time and migration impact.

Our connection migration algorithm described in Sect. 3.2 minimizes response
times during migration and achieves a similar migration time without the need
of manual tuning (Table 4). Figure 2 shows how our algorithm starts migrating
connections at a very low rate, giving the target node enough time to fetch most
frequently accessed blocks (Fig. 3), and then accelerates the rate once response
times on the target node stabilize again. In the beginning of the migration, the
source node has to serve cache blocks for the target node, increasing its CPU
utilization temporarily (Fig. 4), which then drops again as more and more work
is transferred to the target node.

CRUD (Single Tenant, fully cached)
For the next series of experiments, we again migrate a single database tenant
running the CRUD workload from one node to another, while no other tenants
are active. The tenant’s database is fully cached in the source node before migra-
tion. We analyze the impact of different database sizes, transaction rates, and
transaction mixes on live migration performance, using our connection pool pro-
totype with adaptive tuning of the connection migration rate. The results are
shown in Tables 5, 6, and 7.

Table 5. CRUD 1 M rows (2.1 GB), 30 connections, IR = 1000 tps

S/U/I/D Migr Impact Failed Rsp Rsp Data Data CPU

Ratio Tm Tm TX Steady Migr Rcvd sent cost

100/0/0/0 24.5 s 11 s 0 7.7 ms 9.1 ms 2.0 GB 0.0 GB 1.01

80/20/0/0 40.4 s 56 s 0 9.0 ms 11.9 ms 4.1 GB 0.1 GB 1.19

20/80/0/0 42.2 s 91 s 0 11.9 ms 16.3 ms 6.1 GB 0.4 GB 1.13

20/40/20/20 42.8 s 123 s 0 7.5 ms 10.7 ms 5.8 GB 0.6 GB 1.19
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Table 6. CRUD 1 M rows (2.1 GB), 100 connections, IR = 2500 tps

S/U/I/D Migr Impact Failed Rsp Rsp Data Data CPU

Ratio Tm Tm TX Steady Migr Rcvd Sent Cost

100/0/0/0 29.1 s 10 s 0 10.9 ms 11.9 ms 2.1 GB 0.0 GB 0.98

80/20/0/0 43.6 s 38 s 0 14.0 ms 17.3 ms 6.3 GB 0.4 GB 1.11

20/80/0/0 54.3 s 73 s 0 15.8 ms 23.6 ms 10.6 GB 1.9 GB 1.16

20/40/20/20 54.2 s 119 s 0 9.4 ms 15.5 ms 10.2 GB 4.1 GB 1.36

Table 7. CRUD 10 M rows (16.1 GB), 200 connections, IR = 2500 tps

S/U/I/D Migr Impact Failed Rsp Rsp Data Data CPU

Ratio Tm Tm TX Steady Migr Rcvd sent cost

100/0/0/0 45.3 s 21 s 0 21.7 ms 26.2 ms 15.8 GB 0.0 GB 1.02

80/20/0/0 62.5 s 38 s 0 24.2 ms 32.4 ms 21.1 GB 0.3 GB 1.10

20/80/0/0 86.0 s 153 s 0 30.3 ms 40.1 ms 33.7 GB 1.3 GB 1.28

20/40/20/20 87.7 s 104 s 0 16.8 ms 29.5 ms 33.6 GB 4.0 GB 1.55

The transaction rate has only a small influence on migration time and impact.
Since a higher transaction rate requires a larger number of connections to sustain
the traffic, our algorithm migrates connections at a rate proportional to the pool
size, and throttles if necessary when transactions on the target node face too
high response times. For this reason, migration times increase a bit with higher
transaction rate, but the migration impact time decreases as higher throughput
(given a fixed database size) reduced the time until all blocks have been requested
on the target node at least once.

While it is not a surprise that a larger (cached) database increases migration
time, it is worth noting that the additional time needed is underproportional to
the database size: Eight times more cached data can be migrated in just about
twice the time, while the time the tenant is impacted is even less than double.
The reason lies in the self-adapting migration algorithm which imposes an upper
bound on migration time, provided network bandwidth is sufficient.

The workload mix however has a dominating effect on both migration time
and cost. In a read-only workload, each block only has to be fetched from the
source node at most once, limiting the amount of data to be transferred to
the amount of cached blocks on the source node. For these experiments, the
database was fully cached in memory, and the amount of data transferred from
the source to the target node matches the database size. The CPU cost is neg-
ligible7, and response times during migration are only 10–20 % higher than at
steady state. Even migrating a 16 GB fully-cached database impacts the tenant’s
7 For the test of 1 million rows and 2500 tps, the average CPU utilization across both

nodes is even lower then during steady state, caused by better hardware efficiency
(reduced cache misses in CPU caches) as both nodes share traffic.
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Table 8. CRUD 50 M rows (67.4 GB), 50 conn, IR = 2500, S/U/I/D Ratio 60/20/10/10

DB Migr Impact Failed Rsp Rsp Data Data

Cache Tm Tm TX Steady Migr Rcvd Rmt Read Dsk

64 G 47.4 s 327 s 0 2.6 ms 3.1 ms 46 % 54 %

32 G 40.6 s 49 s 0 3.1 ms 4.2 ms 29 % 71 %

16 G 43.3 s 43 s 0 3.2 ms 4.3 ms 25 % 75 %

8 G 39.8 s 49 s 0 3.2 ms 4.5 ms 20 % 80 %

response times for just 21 s. When transactions modify blocks, Oracle clones
them to provide consistent read (CR) for concurrent sessions. The cache on the
source node before migration consists of both regular data blocks as well as co-
called CR blocks, which during migration may both be transferred to the target
node. Additionally, transactions executed on the source node during migration
may request some already transferred blocks, visible in the results as data sent
back to the source node, which might then be requested again at a later point.
Hot blocks, such as frequently updated index blocks, contribute most to this
scenario and may ping back and forth between nodes multiple times: They con-
tribute 30 % to the blocks being sent back to the source node in the tests with
insert and delete operations. Those tests have a 2–3 times higher number of
blocks pinging than tests with a high update rate on data blocks only, even
though index blocks in this workload make up only for 2 % of overall blocks. As
a consequence, also response times during migration are up to 75 % higher than
at steady state when concurrent updates on a small number of blocks increase.

CRUD (Single Tenant, partially cached)
Typical workloads do not access all content of a database with equal probability,
but rather have a small set of frequently needed blocks, allowing databases to
be significantly larger than the cache, which attempts to cache hot blocks while
purging less frequently used ones. To analyze the effects partially cached work-
loads have on our migration technique, we grow the database to 50 million rows
(67 GB) and create an additional index that eliminates the scans of table blocks
(Table 8). In this configuration, index blocks make up for 4 % of the total blocks
(2.8 GB), but are subject to 56 % of all read accesses and 36 % of all updates.
With 64 GB of cache, the database is (nearly) fully cached. While the migration
itself is fast (47 s), the time during which the tenant is impacted by at least
10 % higher response times lasts for 327 s. As a result of eliminating the partial
table scan, it now takes much longer for the workload to access all data blocks
at least once, so only index blocks are transferred quickly. Once we shrink the
cache and the database is not fully cached any more, the impact time drops to
43–49 s as the tenant’s queries face a higher cache miss rate even in steady state.
During migration, after the frequently accessed index blocks have been cached
in the target node, the tenant quickly reaches similar response times as before
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Table 9. ODB-CL 10, 500 and 1000 warehouses (1, 50 and 100 GB)

# WH IR Conn Migr Impact Failed Rsp Rsp Data Data CPU

Tm Tm TX Steady Migr Rcvd sent cost

10 100 tps 10 22.2 s 147 s 0 4.8 ms 7.2 ms 0.9 GB 0.0 GB 1.06

500 1000 tps 25 54.1 s 287 s 0 6.0 ms 9.0 ms 19.1 GB 0.4 GB 1.40

1000 1000 tps 25 54.1 s 302 s 0 7.5 ms 11.6 ms 21.4 GB 0.3 GB 1.45

1000 2500 tps 100 72.2 s 166 s 0 7.6 ms 13.9 ms 31.5 GB 1.8 GB 1.53

Fig. 5. ODB-CL (1000 warehouses, 100 connections, IR = 2500 tps): Cached Blocks

the migration. As we shrink the cache, more and more blocks which the target
node needs to read into its cache are read from disk rather than fetched from
the source node8. From this experiments we conclude that our migration tech-
nique is friendly to partially cached workloads and benefits from them as it only
transfers frequently accessed cache blocks between nodes and is independent of
the database size on disk.

ODB-CL (Single Tenant)
After analyzing the characteristics of our migration technique using a simple
workload such as CRUD, we apply it to a more complex database workload. In
these experiments, we migrate a single database tenant running the ODB-CL
workload using different number of warehouses and transaction rates as described
in Sect. 4.2 from one node to another. The results are shown in Table 9.

In contrast to CRUD, the data access in ODB-CL spreads across multiple
tables and indexes, with none of them contributing more than 5 % (a very small
table of only 8 MB size) to the overall accesses. The four tables which together

8 Dynamic remastering changes block mastership to the node where blocks are most
frequently accessed. Once blocks are mastered on the target node, it may prefer to
read them from disk rather than remote cache, resulting in some disk reads even for
fully-cached databases.
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Fig. 6. ODB-CL - 33 active tenants (IR = 1000); migrated tenant: 500 WH, 50 conn

account for 50 % of all block changes also consume half the database size. With
this, the time during which the migrated tenant is impacted by higher response
times is fairly large with values between 2.5 and 5 min. While this may seem
long, it is caused by a very long tail of slightly increased response times as the
cache on the target node is slowly being filled (Fig. 5). The total amount of data
transferred from source to target node, with only about 20 GB transferred data
for a 50 GB database, and 32 GB transferred data for a 100 GB database, is a
factor 2–3 smaller than the database size. While this is partially due to the fact
that we configured only a cache of 32 GB, a tenant in a consolidated environment
will also not get the entire cache for itself, as the next test will show. With a
cache limitation of 32 GB, we are trying to simulate limited cache resources even
for this single-tenant experiment, which still allowed the tenant to achieve a
cache hit rate of about 98 %. The percentage of the data that is transferred back
to the source node, mostly data blocks from the stock and warehouse tables9, is
with 2–4 % of the total amount of transferred data much smaller than in some of
the previous experiments with the CRUD workload. While the CRUD workload
allowed us to study the dependencies of our algorithm, the more realistic ODB-
CL workload behaves more balanced.

ODB-CL (Multiple Tenants)
For the last experiment, we deploy a total of 33 tenants: 16 tenants on node
1 and 16 tenants on node 2, issuing 1000 transactions per second against a
ODB-CL database of 500–1000 warehouses each, and one tenant that is being
migrated from node 1 to node 2. The migrated tenant’s database comprises
500 warehouses, and is being accessed at the same rate of 1000 transactions
per second, using a connection pool of 50 connections. The result of this test
is shown in Table 10 as well as Fig. 6. The database cache has a size 320 GB
per node. As our tenant has to compete for cache with the other tenants, the
amount of its data cached in the source node is 23.8 GB before migration, similar
9 Both tables are frequently updated. The warehouse table is a small table with high

concurrency.
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Table 10. ODB-CL - 33 active tenants (IR = 1000); mig. tenant: 500 WH , 50 conn

Migr Impact Failed Rsp Rsp Cached Data Data CPU

Tm Tm TX Steady Migr before Migr Rcvd sent cost

91.1 s 370 s 0 12.8 ms 19.8 ms 23.8 GB 18.5 GB 0.7 GB 1.07

to previous tests where we artificially limited the database cache size. While
the database servers are running at around 50 % CPU utilization, migrating
this tenant takes 91 s. Its response times, on average 50 % higher than before
migration, are affected for a duration of 370 s, slowly approaching a steady level,
with a long tail of slightly elevated response times. For the database size of
50 GB, only 18.5 GB had to be transferred to the target node, which caused CPU
utilization to increase by only 7 % during the migration phase. This increase is
lower than in earlier experiments where the migrated tenant was running in
isolation; while the absolute CPU cost is similar, the relative cost on a heavily
utilized system with many tenants becomes marginal.

As for all other experiments with our connection pool and migration algo-
rithm, this tenant faced no downtime, and not a single transaction was aborted.
The effect on other tenants is negligible: Their response times increase no more
than 4 % during a short period in which CPU utilization increases as blocks are
being transferred. After the migration, tenants on node 2 face slightly higher
response times (13 ms) than before migration (12 ms) as overall load on node 2
has increased, while response times for tenants on node 1 have dropped from
13 ms to 12 ms on the now lower utilized node.

Summary
The experiments demonstrate the scalability of our migration technique to large
databases of even 100 GB size and transaction rates of 2500 tps, proving the
feasibility of this approach also in consolidated environments with many active
tenants. Our self-adapting algorithm successfully controls the connection migra-
tion rate, limiting the effect on the migrated tenant by automatically throt-
tling or accelerating migration speed as needed. In all experiments, the tenant
was migrated with not a single failed request and no downtime. Migration took
between 24 and 91 s and increased response times for the migrated tenant by
20–50 % for most experiments, with only a few tests in which response times
almost doubled.

With our migration technique, transactions will never fail at the database
layer. The only possible cause for failed requests in our experiment are due to
queuing times in the load generator exceeding 1 s when injection rate exceeds
processing rate. In order to maintain throughput when response times increase,
a sufficient number of connections is needed. For our experiments, we used a
connection pool size about twice as high as the connection demand during steady
state. Based on our experience with production systems, such a pool size is
typical for many OLTP workloads, which have to accommodate peaks in response
time also in situations other than live migration. While we would typically not
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advise the use of dynamic connection pools with the maximum pool size being
set higher than the minimum size, a temporary increase of the pool size during
migration could be a worthwhile extension of our technique.

5 Further Considerations

5.1 Provider’s View

Our migration technique is implemented inside a client connection pool, which
reacts to service relocation events it receives from the database. For environ-
ments in which the database service provider also controls the applications, this
might be sufficient. However, to protect against misbehaving clients, especially
when they are external, the provider should close the PDB after a certain time
on the source node, which then disconnects all clients from that node and flushes
remaining cache contents to disk. By doing so, further access to the database on
this node is prevented, both for clients as well as other nodes in the cluster. For
experiments not quoted in this paper, we have explicitly closed the PDB on the
source node 120 s after relocating the service. This shall give clients sufficient
time to gradually migrate their connections, while at the same time providing a
guarantee to the provider that no further access will happen on the source node
after 2 min. A client that did not act accordingly upon receiving the relocation
notifications will then face errors when attempting to access the database. There-
fore it is in the sole interest of the client to comply and migrate its connections
in time.

5.2 Server-Side Migration Control

As an extension of our idea, migration control could be implemented in the server
by explicitly disconnecting (idle) client connections one by one on the server
side10. The connection pool could then, transparent for the application, reestab-
lish them to the target node without failure of any transactions. If transactions
were interrupted when a connection was terminated, features like Application
Continuity [20] could transparently replay these transactions on the target node.
A similar algorithm as presented in this paper to determine the rate at which
to close connections could then be implemented in the server. Further enhance-
ments could potentially eliminate any dependency on a client’s connection pool
if database connections including their TCP socket could be relocated to another
host [4] without the need of reestablishing them. We leave the investigation of
these possibilities for future work.

5.3 Long-Running Transactions

Our prototype only migrates connections that are currently not in use by a client,
which avoids migration of connections that are within a transaction. This implies
10 Oracle 12.1.0.2 will implement a pluggable database relocate command to accomplish

this.



152 N. Michael and Y. Shen

that workloads with long-running transactions will only migrate their connec-
tions after transactions have completed, causing potentially longer migration
times. With the enhancements described in Sect. 5.1, the provider can limit the
maximum migration time regardless of transaction duration.

5.4 Other Workloads

Other workloads such as Decision Support Systems (DSS) and batch work-
loads often do not use connection pools but establish connections on demand.
After the service has been relocated, their next request will be directed to the
new node automatically. The previous section also applies to their long-running
transactions.

5.5 Failure Scenarios

Traditional VM live migration only addresses planned migrations and does not
help in supporting unplanned outages where VMs fail unexpectedly. For high
availability of virtualized database deployments, alternative solutions have been
proposed [23]. Our technique is based on Oracle RAC which can handle both
planned and unplanned events. While the migration of databases in case of a
node failure will not be as seamless as in a controlled migration, services will
fail-over and connections will be reestablished in a similar way. The presented
technology can therefore cover both planned migration as well as failure scenarios
and provide seamless live migration and high availability at the same time.

It is worth noting that our technique is therefore also robust against node
failures during migration. A failure of the source node during migration will
terminate connections to this node, which will then be reestablished to the target
node. The migration therefore continues. A failure of the target node will cause
the service to fail back to the source node (or another node in the cluster) and
essentially abort or revert the migration. In both cases, no data is lost, and
operation resumes after a short cluster reconfiguration phase.

6 Related Work

Live migration has become a popular technique, but few studies focus on the live
migration of databases. For virtual machines in general, Hu et al. [12] quantify
migration time using different hypervisors and demonstrate how both memory
size as well as memory dirtying rate affect migration time. Their study shows
that the amount of data to be transferred can in some cases exceed the VM size
by a factor of 2 if pages are repeatedly updated, similar to results in [13]. Liu
et al. [18] have migrated a database in a 1 GB VM running TPC-C in less than
20 s at a downtime of 25 ms using Xen.

Our migration technique is based on the idea of migrating a tenant’s
database connections and transferring database content rather than VM pages.
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A similar approach for shared-disk databases, named Albatross, has been pro-
posed by Das et al. [7]. By copying database cache using an iterative pre-copy
technique, they were able to migrate databases with downtimes as low as 300 ms.
For a 1 GB TPC-C database, the downtime increased to slightly below 1 s with
more requests failing when the transaction rate was increased to 2500 tpmC
(equivalent to about 93 tps11). For shared nothing architectures, Elmore et al.
[8] presented Zephyr, which migrates a database without downtime by copying
database content using a combination of an on-demand pull phase similar to
ours, followed by a push phase. In contrast to our implementation, Zephyr redi-
rects requests to the target node abruptly, which requires frequently accessed
data to be transferred quickly during the pull-phase. Using YCSB [6] as a work-
load, which like CRUD performs a mix of read, update, and insert operations
on a table, they observe a 10–20 % increase in query response times and some
aborted transactions due to index modifications during migration. Both Alba-
tross and Zephyr use a query router to direct traffic to the correct database
node. Our technique is different as clients connect directly to the database and
the migration of connections is handled in the client’s connection pool rather
than a router. Slacker, a database migration system presented by Barker et al.
[2], migrates database content by taking an initial database snapshot followed by
streaming of change records to the target database, and achieves downtimes of
less than 1 s with response times increasing from 79 to 153 ms during migration
for a 1 GB YCSB database.

7 Conclusions

Providing on-demand database service requires database consolidation to be elas-
tic and scalable, while at the same time achieving a high density through resource
sharing between tenants. In such a multitenant database environment, an effi-
cient method to seamlessly migrate tenants from one set of physical resources
to another is a crucial component to support dynamic changes in demand and
implement load balancing. We have presented a technique that allows to migrate
a tenant’s database by only transferring database cache. Our prototype connec-
tion pool implements an algorithm to automatically adapt migration speed to
workload and system behavior in order to minimize impact on the migrated ten-
ant while keeping overall migration time low. It is completely transparent to the
application and requires no modifications on the application side. To demon-
strate the scalability and feasibility for real-world workloads, we evaluated our
technique at much larger scale than other researchers with per-tenant database
sizes of up to 100 GB and transaction rates up to 2500 tps. In a detailed analysis,
we characterized the performance of our solution depending on various workload
parameters and verified that also in an environment under load, with 33 tenants
executing queries at a rate of 33,000 tps, our technique allows the migration of
a tenant with no downtime, not a single failed transaction, and only a moderate
increase of response times.
11 Based on a 45 % share of NEWORDER transactions as quoted in the paper.
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Abstract. TPC-VMS is a benchmark designed to measure the performance of
virtualized databases using existing, time-tested TPC workloads. In this paper,
we will present our experience in using the TPC-E workload under the TPC-
VMS rules to measure the performance of 3 OLTP databases consolidated onto a
single server. We will describe the tuning steps employed to more than double the
performance and reach 98.6 % of the performance of a non-virtualized server – if
we aggregate the throughputs of the 3 VMs for quantifying the tuning process.
The paper will detail lessons learned in optimizing performance by tuning the
application, the database manager, the guest operating system, the hypervisor,
and the hardware on both AMD and Intel processors.

Since TPC-E results have been disclosed with non-virtualized databases on
both platforms, we can analyze the performance overheads of virtualization for
database workloads. With a native-virtual performance gap of just a few per-
centage points, we will show that virtualized servers make excellent platforms for
the most demanding database workloads.

Keywords: Database performance � Virtualization � SQL server � Workload
consolidation � Performance tuning � Cloud computing

1 Introduction

Server virtualization is a cornerstone of cloud computing and has fundamentally
changed the way computing resources are provisioned, accessed and managed within a
data center. To understand this new environment, customers need a tool to measure the
effectiveness of a virtualization platform in consolidating multiple applications onto one
server. According to IDC [5], in 2014, 32 % of the new server shipments are deployed as
virtualized servers, running not only the light weighted applications, but also CPU-
intensive and I/O-intensive workloads, such as OLTP applications. As a result, there
exists a strong demand for a benchmark that can compare the performance of virtualized
servers running database workloads. TPC-VMS is the first benchmark that addresses
this need by measuring database performance in a virtualized environment.

With all the benefit of virtualization technology, comes a price – the overhead of
server virtualization. Vendors and customers need to have effective ways of measuring
this overhead, as well as characterizing the applications running in virtualized
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environments. Although TPC rules prohibit comparing TPC-VMS results with results
of other TPC benchmarks on native servers for competitive or commercial purposes,
we are able to make that comparison in an academic paper to quantify the overhead
database workloads experience when the deployment platform is a virtualized server.

HP, in partnership with VMware, published the first two TPC-VMS results. In this
paper, we will share our experience in running and tuning the TPC-E workload under
the TPC-VMS rules to measure the performance of 3 OLTP databases consolidated to a
single server for both Intel and AMD platforms. We will analyze the performance
overhead of the virtualized database using native TPC-E result as the reference point,
and will provide insights into optimizing large databases in a virtualized environment.

The paper will start with a short introduction to the TPC-VMS benchmark, present
published results, describe the tuning process, share the lessons learned, and conclude
with characterizing the overheard of server virtualization using the benchmark results.

1.1 TPC-VMS Benchmark

In responding to the need for a standardized benchmark that measures the performance
of virtualized databases, TPC introduced TPC Virtual Measurement Single System
Specification, TPC-VMS [13], in December 2012. TPC-VMS models server consoli-
dation, which is the simplest, oldest use of virtualization: a single, virtualized server
consolidating 3 workloads that could have been deployed on 3 smaller, or older,
physical servers.

TPC-VMS provided a methodology for test sponsors to use four existing TPC
benchmarks, TPC-C [9], TPC-E [10], TPC-H [11] or TPC-DS [12], to measure and
report database performance in a virtualized environment. The three virtualized
workloads, running on the same physical server, have to be one of the four existing
TPC benchmarks and they have to be identical (with the same attributes). The TPC-
VMS score is the minimum score of the three TPC benchmarks running in the virtu-
alized environment, specifically, VMStpmC, VMStpsE, VMSQphDS@ScaleFactor or
VMSQphH@ScaleFactor. Each of those four TPC-VMS results is a standalone TPC
result and can’t be compared to each other, or to its native version of the TPC result for
commercial or competitive purposes.

1.1.1 Other Virtualization Benchmarks
Besides TPC-VMS, there are two other existing virtualization benchmarks in wide
usage – VMmark 2.x and SPECvirt_sc2013.

VMmark 2.x [14], developed by VMware, is a multi-host data center virtualization
benchmark designed to measure the performance of virtualization platforms. It mimics
the behavior of complex consolidation environments by incorporating not only the
traditional application-level workloads, but also the platform-level operations, such as
guest VM deployment, dynamic virtual machine relocation (vMotion) and dynamic
datastore relocation (storage vMotion). The application workloads include LoadGen,
Olio, and DS2. With a tile-based scheme, it measures the scalability of a virtualization
platform by adding more tiles. The benchmark also provides an infrastructure for
measuring power usage of virtualized data centers.
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SPECvirt_sc2013 [8], developed by SPEC, is a single-host virtualization bench-
mark designed to measure the performance of a consolidated server running multiple
workloads. It measures the end-to-end performance of all system components including
the hardware, virtualization platform, the virtualized guest operating system and the
application software. It leverages several existing SPEC benchmarks, such as SPEC-
web2005, SPECjAppServer2004, SPECmail2008 and SPEC INT2006. It also uses a
tile-base scheme and allows benchmarkers to measure power usage of the virtualized
servers.

Both VMmark 2.x and SPECvirt_sc2013 workloads are relatively light, and as a
result, the guest VMs are relatively small, and usually take a fraction of a physical core.
Most of real-life database workloads, however, are CPU-intensive and require much
bigger guest VMs to handle the loads. TPC-VMS fills the need for measuring the
performance of databases running on virtualized servers.

Another benchmark under development by the TPC is the TPC-V benchmark [3],
which will address several features that existing benchmarks do not:

• The VMs in some benchmarks, such as VMmark 2.x and SPECvirt_sc2013, have
the same load regardless of the power of the server. At the other end of the
spectrum, TPC-VMS will always have exactly 3 VMs; so more powerful servers
will have VMs that handle heavier loads. TPC-V emulates a more realistic scenario
where not only do more powerful server have more VMs, but also each VM handles
a heavier load than less powerful servers. Both the number of VMs and the load
handled by each VM grow as servers become more powerful.

• TPC-V VMs have a variety of load levels and two different workload types – OLTP
and DSS – to emulate the non-uniform nature of databases virtualized in the cloud.

• The load to each VM varies greatly during a TPC-V execution, emulating the load
elasticity that is typical in cloud environments.

• Unlike previous TPC benchmarks, TPC-V will be released with a publicly avail-
able, complete end-to-end benchmarking kit.

TPC-V is not yet available. So the only representative option for benchmarking
virtualized databases is still TPV-VMS.

1.2 Characteristics of the TPC-E Workload

Of the 4 possible workloads to use under TPC-VMS rules, we used the TPC-E
workload. TPC Benchmark™ E is composed of a set of transactional operations
designed to exercise system functionalities in a manner representative of complex
OLTP database application environments. These transactional operations have been
given a life-like context, portraying the activity of a brokerage firm, to help users relate
intuitively to the components of the benchmark. The brokerage firm must manage
customer accounts, execute customer trade orders, and be responsible for the interac-
tions of customers with financial markets. Figure 1 illustrates the transaction flow of the
business model portrayed in the benchmark:

The customers generate transactions related to trades, account inquiries, and market
research. The brokerage firm in turns interacts with financial markets to execute orders
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on behalf of the customers and updates relevant account information. The number of
customers defined for the brokerage firm can be varied to represent the workloads of
different size businesses.

The benchmark is composed of a set of transactions that are executed against three
sets of database tables that represent market data, customer data, and broker data. A
fourth set of tables contains generic dimension data such as zip codes.

The benchmark has been reduced to simplified form of the application environ-
ment. To measure the performance of the OLTP system, a simple Driver generates
Transactions and their inputs, submits them to the System Under Test (SUT), and
measures the rate of completed Transactions being returned. This number of transac-
tions is considered the performance metric for the benchmark.

2 Published Results

In this section we will present and analyze the two published results for TPC-VMS. Since
the authors were responsible for both disclosures, we can share the details of the tuning
process, explain why settings were changed, and quantify the impact of those changes.

2.1 First Disclosure

The first TPC-VMS result is on an HP ProLiant DL385p Gen8 server running the
vSphere 5.5 hypervisor, Microsoft Windows Server 2012 guest operating system, and
Microsoft SQL Server 2012 DBMS. In this section, we will discuss the benchmark
configuration and the tuning process.

2.1.1 Configuration
The DL385p Gen8 VSUT1 test environment is shown in Fig. 2. There are three major
components to the test environment:

Fig. 1. TPC-E Business Model Transaction Flow

1 VSUT is a term coined by the TPC-VMS benchmark, and is formally defined in the TPC-VMS
specification [13]. In our case, it includes the Consolidated Database Server plus the client systems
required by the TPC-E specification.
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• the clients, on the left
• the Consolidated Database Server, which is the hardware and software that

implements the virtualization environment which consolidates the TPC-E database
server functionality, in the center

• the storage subsystem, on the right

The two client servers are HP ProLiant DL360 G7 using 2 x Hex-Core 2.93 GHz
Intel Xeon X5670 Processors with 16 GB PC3-10600 Memory and are connected to
the host through a 1 Gb network.

The Consolidated Database Server is an HP ProLiant DL385p Gen8 using 2 x
AMD Opteron 6386SE 16-core 2.8 GHz processors with 256 GB of memory. There are
a total of 32 physical processor cores in 2 sockets. However, note that there are 4
distinct physical NUMA nodes present in the hardware.

Three P421 SmartArray controllers are used; two SAS ports from each controller
are directly connected to a D2700 enclosure which hosts LUNs for a database. One
P420 SmartArray controller is connected to the internal storage array which hosts
LUNs for the database logs. Three 1 Gb NIC ports from client 2 are directly connected
to the tier B database server. The fourth NIC port is connected to lab net and is used for
remote access and management. Three HP StorageWorks D2700 disk Enclosures are
used, one per VM, each attaches to 8 x 400 GB 6G SATA MLC SFF SSDs for a total
of 24 drives.

2.1.2 Comparing Native and Virtualized Performance
In the remainder of this paper, we will show results with TPC-E running on a single
VM, on 4 VMs, or TPC-VMS running on 3 VMs in a virtualized server, and compare
them to native TPC-E results on the same server. It should be emphasized that we
used the comparison to native results only as a yardstick to measure our progress.
Comparing TPC-VMS results to native TPC-E results are not only against TPC fair
use rules, but as we will show in Sect. 4, such comparisons are also misleading if

Fig. 2. DL385p Gen8 VSUT configuration
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intended as a way to directly contrast the performance of a virtualized server against a
native server.

2.1.3 Tuning Process
An audited TPC-E result of 1,416.37 tpsE2 on this exact server had been published just
prior to the start of this project. We started the TPC-VMS tuning project by repro-
ducing the native TPC-E result on the setup to establish a baseline. After we got to the
satisfactory performance level, we installed vSphere 5.5, and moved to tuning in the
virtualized environment. Since DL385p Gen8 has four NUMA nodes, running 3 guest
VMs on a 4 NUMA node machine introduces imbalance. We decided to approach the
tuning in three phases: first, have one guest VM running one instance of TPC-E;
second, have 4 guest VMs each running one instance of TPC-E; last, have 3 guest VMs
each running one instance of TPC-E, which is the configuration for TPC-VMS.

The goal for phase one tuning is to find tunes that reduce the overhead of hyper-
visor and get as close to native performance as we can with one big guest VM. The end
result was 85 % of native performance. Table 1 and Fig. 3 chart the progress of the
tuning exercise. Some notes are in order:

• Virtual Raw Device Mapping (RDM) provides the benefits of direct access to
physical devices in addition to most of the advantagesof a virtual disk on VMFS
storage [15]. The difference is akin to the difference between file system I/O and raw
I/O at the operating system level.

Table 1. Tuning steps for 1 VM

                                                            
2

Throughput Tuning 

587 Baseline 

618 Switch the virtual disks from VMFS to virtual RDM 

683 
Instead of all 4 (virtual) LUNs of each VM on a single virtual 
HBA in the guest, use 4 virtual HBAs with a single LUN per 
vHBA 

1090 Improve RDTSC access 

1095 
32 vCPUs, 4 NUMA nodes X 8 vCPUs, bind vCPUs in 4 nodes, 
bind vmkernel threads  

1139 
32 vCPUs, 4 NUMA nodes X 8 vCPUs, bind vCPUs in 2 x 16 
groups, bind vmkernel threads 

1198 
30 vCPUs, 4 NUMA nodes with 8/8/8/6 vCPUs, bind vCPUs in 2 
x 15 groups bind vmkernel threads

2 As of 6/13/2014. Complete details available at http://www.tpc.org/4064.
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• Spreading the LUNs over multiple vHBAs allows the guest OS to distribute the I/O
interrupts over multiple CPUs. It also trades off some interrupt coalescing, which is
good for CPU usage efficiency, for better latency, which is important for TPC-E.

• The TPC-E workload on SQL Server is a heavy user of timer queries. Normally,
reading the RDTSC results in an expensive VMexit, but vSphere 5.5 allows certain
operating systems such as Windows Server 2012 to access the time source directly
through the RDTSC instruction, avoiding the VMexit. This is a vSphere 5.5 feature,
and we saw a 60 % boost when we switched to the code base that had this feature.

• Setting aside CPUs for the auxiliary threads of the hypervisor kernel (vmkernel
[16]) and binding virtual CPUs and vmkernel threads to specific cores is a common
tuning practice, and it allowed us to go from 1.86X the original results to 2.04X.

• VM sizing and vCPU binding choices are discussed in Sects. 3.1 and 3.2.

Phase one tuning brought the virtual performance up to 85 % of native. Rather than
further tuning of the 1-VM case, we continued with tuning of a 4-VM configuration.

The goal for phase two tuning is to see what kind of overhead we get when the
number of guest VMs align with the number of NUMA nodes on the server. In this
case, we assign each guest to a NUMA node to reduce the remote memory access
overhead.

We used 4 DB instances, each running in one of the 4 guest VMs. Each DB has one
dedicated P421 SmartArray Controller, each VM has 8 vCPUs and is bound to a
separate NUMA node. The sum of the throughputs of the 4 VMs, shown in Fig. 4
reached 94.5 % of native performance. This is not surprising: 8-way systems have less
SMP overhead than 32-way systems, whether native or virtual. Also, each of the 4
VMs enjoyed 100 % local memory.

What is also worth noting is that with little tuning, the 4-VM aggregate throughput
was 12 % higher than the 1-VM throughput, confirming the benefits of NUMA locality
and better SMP scaling of smaller VMs.

Fig. 3. DL385p Gen8 single-VM tuning progress
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The TPC-VMS benchmark was designed to run with 3 VMs expressly to pose a
scheduling challenge to the hypervisor. Our first runs in this configuration proved the
difficulty of achieving good performance with 3 VMs on a server with 4 NUMA nodes.

The throughput values in Table 2 are the sums of the throughputs of the 3 VMs.
This aggregate throughput is not a TPC-VMS metric, but is a good way of charting our
progress in comparison with 1-VM and 4-VM configurations. Figure 5 shows the
improvement in throughput as we applied the optimizations detailed in Table 2, and
Fig. 6 shows the throughputs of the 3 VMs for the published result.

The goal of phase three is to get the best performance for publishing. Measured by
the unofficial metric of the overall throughput of the 3 VMs, we achieved close to
100 % of the native result. Section 4 will explore the reasons behind this good
performance.

In phase one of the tuning, the challenge is to reduce the hypervisor overhead,
while in phase three, the challenge is to balance the Consolidated Database Sever
resources to achieve the best result. Since the TPC-VMS score is the lowest throughput
of the three TPC-E instances, the goal is to maximize the lowest throughput, or to get
the three throughput values as close to each other as possible.

The hypervisor has full control over how to expose the NUMA properties of the
hardware to the guest OS. It presents a number of virtual NUMA nodes to the guest OS.
A NUMA client is a group of vCPUs that are scheduled on a physical NUMA node as a
single entity. Typically, each virtual NUMA node is a NUMA client, unless a virtual
NUMA node is larger than a physical NUMA node and maps to multiple virtual
NUMA clients. We used five 2-vCPU virtual NUMA clients for each VM. This pro-
vides good granularity to distribute the workload from each VM evenly amongst two
NUMA nodes. Upgrading vSphere 5.5 hardware version to 10 gave us a 4.6 % per-
formance improvement.

Fig. 4. Throughputs of 4 VMs on DL385p Gen8
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The phase three tuning culminated in the published result of 457.77 VMStpsE. The
throughputs of the 3 VMs were 457.55 tpsE, 468.11 tpsE, and 470.31 tpsE. So the
official reported TPC-VMS result was 457.77 VMStpsE.3 We can see that the lowest
throughput VM was at 97.3 % of the highest throughput VM, showcasing a successful
division of resources among the 3 VMs, which as [7] points out, is not trivial.

Table 2. Tuning steps for 3 VMs on the DL385p Gen8

Throughput Tuning 

840 Five 2-vCPU virtual NUMA clients per VM 

1150 
For each VM, distribute and bind the 5 virtual NUMA clients 
and its vmkernel threads over 3 physical NUMA nodes 

1224 
For each VM, bind 4 2-vCPU virtual NUMA clients to an 8-
core physical NUMA node; the 4th physical NUMA node runs 
the remaining 2 vCPUs of each VM and its vmkernel threads 

1262 Fine tune binding policy 

1355 Increase database size from 200,000 Customer to 220,000 

1396 Use the new vSphere 5.5 feature: virtual hardware version 10 

1395.97 Published result of 457.77 VMStpsE 

Fig. 5. DL385p Gen8 3-VM tuning progress

3 As of 6/13/2014. Complete details available at http://www.tpc.org/5201.
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2.2 Second Disclosure

The second TPC-VMS result is on an HP ProLiant DL380p Gen8 server again running
vSphere 5.5 and Microsoft Windows Server 2012, but the newer Microsoft SQL Server
2014 as the DBMS. We will cover the benchmark configuration and the tuning process.

2.2.1 Configuration
The client hardware is identical to the one described in Sect. 2.1.1. The Consolidated
Database Sever server, Fig. 7 is an HP ProLiant DL380p Gen8 using 2 x Intel Xeon
E5-2697 v2 processors with 256 GB of memory. Turbo boost and HyperThreading
were enabled; so we have 24 cores and 48 HyperThread (logical) processors in 2
physical NUMA nodes. Six P421 SmartArray controllers are used, each attaches to one
D2700 enclosure containing 4 X 800 GB 6G MLC SSDs for a total of 24 drives.

2.2.2 Tuning Process
Although no native TPC-E results have been published on this exact server, there are
two published results that also used servers with 2 Intel Xeon E5-2697 v2 processors,
512 GB of memory, Microsoft SQL Server (one used the 2012 edition, one 2014), and

Microsoft Windows Server 2012. Based on published throughputs of 2,472.58
tpsE4 and 2,590 tpsE5 on these systems, we used an even 2,500 tpsE for baseline native
performance for our server in order to gauge the progress of the tuning project.

Having already completed a full tuning cycle for the first disclosure, we did not
need to experiment with the 1-VM or 4-VM configurations, and started the tests with 3
VMs. Some notes regarding the tuning steps in Table 3:
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Fig. 6. Throughput of 3 VMs on DL385

4 As of 6/13/2014. Complete details available at http://www.tpc.org/4065.
5 As of 6/13/2014. Complete details available at http://www.tpc.org/4066.
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• Much of the tuning exercise was focused on choosing the right number of vCPUs
(15 or 16), and the placement of the vCPUs of 3 VMs and the vmkernel threads on
the 2 NUMA nodes.

• The aggregate throughput of 2022 is with each of the 3 VMs split across both
NUMA nodes. By placing VM2 and VM3 only on one NUMA node each, their
performance increases by 4–5 %, without impacting VM1, giving us the 2089
aggregate performance. More on VM sizing and vCPU binding choices in Sects. 3.1
and 3.2.

Fig. 7. DL380p Gen 8VSUT configuration

Table 3. Tuning steps for 3VMs on the DL380p Gen8

Throughput Tuning 

1851 
Baseline: 16 vCPUs for each VM, all 3 VMs split across 2 
NUMA nodes, no placement of vmkernel threads 

1951 15 vCPUs for each VM 

1974 Bind the vmkernel threads associated with VMs 

2022 
Also bind the vmkernel threads associated with physical devic-
es 

2089 
VM1 split across NUMA nodes; VMs 2 and 3 bound to 1 
NUMA node 

2139 Drop the Soft-NUMA setting in SQL Server 

2191 monitor.virtual_mmu=software 

2179 
Final configuration with fewer, denser drivers, 375K Custom-
ers, and SQL Server 2014 

2179.11 Published result  of 718.12 VMStpsE
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• SQL Server allows CPUs in hardware NUMA nodes to be grouped into smaller
Soft-NUMA nodes for finer control, e.g. for load balancing of networking traffic.
The Soft-NUMA node setting enhanced performance by enabling finer granularity
in the first TPC-VMS result. However in the second result with the DL380p Gen8
system, it hurt performance. When the Soft-NUMA setting is dropped, and we
instead expose the server’s 2 Hard-NUMA nodes to the DBMS, throughput
improves by 2.4 %.

• Section 3.3 discusses the reasoning behind setting monitor.virtual_mmu=software.

Figure 8 shows the throughputs of the 3 VMs at 718.12 tpsE, 737.08 tpsE, and
723.91 tpsE. So the official reported TPC-VMS result was 718.12 VMStpsE.6 We can
see that the lowest throughput VM was at 97.4 % of the highest throughput VM,
matching the first publication even though having only 2 NUMA nodes made this a
more challenging project.

The virtual-native ratio is lower than that of the first disclosure mainly due to the
difficulty of evenly fitting 3 VMs on two NUMA nodes, compared to the 4 NUMA
nodes of the first disclosure. It is worth noting that VM1, which was split between the
two NUMA nodes, had a throughput of only 2.6 % lower than VM2, which was
entirely contained within one NUMA node. So we did not see a large benefit from
NUMA locality, which as Sect. 4 demonstrates, has a profound impact on performance.
One reason is that we have to favor VM1, which determines the reported metric, even
at the cost of a larger negative impact on the other two VMs. In our configuration, 45
of the 48 physical CPUs run the 45 vCPUs of the 3 VMs. It would be intuitive to
assign the vmkernel auxiliary threads of each VM to one of the 3 remaining physical
CPUs. This indeed gives us the highest aggregate throughput, but not the highest VM1
throughput. So we distribute some of VM1’s auxiliary vmkernel threads to the pCPUs
that handle the vmkernel threads of VM2 and VM3. Although this has enough of a
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negative impact on VM2 and VM3 to cause a small (0.4 %) drop in the aggregate
performance, VM1 performance improves by 2 % to the final reported value.

3 Lessons Learned

3.1 VM Size Matters

Since TPC-E tests typically utilize the compute resources and the memory of the SUT
to nearly 100 %, we configured each of the 3 VMs with nearly 1/3 of the memory, after
allowing for a small virtualization tax. Since memory can be allocated in arbitrary units,
dividing the host memory into 3 chunks for the 3 VMs was trivial, as was the hy-
pervisor automatically placing the memory pages on the same physical NUMA nodes
as the VM’s vCPUs. But choosing the right number of vCPUs posed a challenge. For
the AMD-based platform with a total of 32 cores, the best configuration proved to be 3
10-vCPU VMs, and 2 cores left for the vmkernel threads. With the 4 NUMA nodes
(see Sect. 3.2), both the vCPU count and vCPU placement was rather easy.

The Intel-based platform with 24 cores/48 HyperThreads and 2 NUMA localities
presented more of a challenge. An intuitive choice was a configuration with 16 vCPUs
per VM, and allowing the hypervisor’s scheduler to provision CPU time between the
vCPUs and the vmkernel threads. But in practice, we found that allocating 15 vCPUs
per VM and leaving 3 logical processors for the vmkernel threads gave us the best
performance even though it left a few percent idle unused. This may appear to be a
negligible amount of idle, but in fact it is significant in a well-tuned TPC-E
configuration.

The 16-vCPU configuration faced a lot more idle than the 15-vCPU case due to the
high latency of storage I/O caused by the vmkernel threads competing with vCPUs for
CPU resources. One could extrapolate the throughput to a slightly higher value than
what we achieved with 15 vCPUs, but we were not able to push more load through the
system and utilize the remaining CPU power due to high storage latencies.

3.2 vCPU Placement and Binding Plays an Important Role

The choice of 3 VMs for TPC-VMS certainly succeeded in producing a hard workload
for the hypervisor scheduler! Utilizing all system resources in a way that (a) resulted in
full CPU utilization, and (b) uniform throughput for the 3 VMs proved to be very
difficult. It was somewhat easier with 4 NUMA nodes because we could dedicate 3 of
the NUMA nodes to the 3 VMs, one node per VM, and use the 8 cores in the 4th node
for 2 more virtual CPUs for each VM as well as the vmkernel threads. But mapping
vCPUs and vmkernel threads to physical CPUs posed a bigger challenge with 2
NUMA nodes. Keep in mind that the TPC-VMS metric is the lowest of the 3 VMs’
throughputs. So maximizing the overall performance – informally measured as the sum
of the throughputs of the 3 VMs – does not benefit us if it comes at the cost of lowering
the throughput of the lowest VM.

The optimal configuration was splitting VM1 across the two NUMA nodes, and
binding VMs 2 and 3 to a NUMA node each. With 15 vCPUs per VM, this left 3
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HyperThreads to be dedicated to vmkernel threads. The overall percentage of time in
vmkernel, a portion of which is the time in the vmkernel threads, was measured to be
around 8 %. So dedicating 2 of the 32 cores on the DL385p Gen8 or the 3 Hy-
perThreads on the 48-HyperThread DL380p Gen8 to the vmkernel threads proved to be
a good fit.

3.3 Reduce TLB Miss Processing Overhead

A complete treatment of the two-dimensional TLB walk is outside the scope of this
paper. Consult [1, 2, 4, and 6] for a more thorough treatment of Intel’s EPT and AMD’s
NPT. Briefly, modern microprocessors have hardware assist features for virtualizing
memory, and handling the address translation from the guest Virtual Address to the
guest Physical Address and ultimately to the host Machine Address. Intel’s EPT and
AMD’s NPT make managing virtualized virtual memory much easier, but the trade-off
is a near doubling of the TLB miss processing costs for certain workloads. The vast
majority of workloads run faster with EPT and NPT even though TLB misses are more
expensive. But occasionally, the higher TLB miss processing costs may be a heavy
overhead for an application. TPC-E on SQL Server on Windows appears to be one such
workload [7]. Hardware counter collections showed an overhead of as much as 9 % in
two-dimensional TLB miss processing. By switching to the older software MMU
option [2], we were able to raise the performance of the DL380p Gen8 server by 2.7 %.

4 Comparing the Performance of Virtual
and Native Platforms

The TPC fair use rules disallow comparisons between different TPC benchmarks,
including those of the same benchmark with different scale factors. And, although
TPC-VMS is based on existing benchmarks, this rule still holds, and TPC-VMS results
can’t be compared to their native counterparts. However, since TPC-VMS can be run
on the same system/software that may have a full native result also published, there is a
strong tendency to simply add the performance metrics of the three VMs together and
directly compare to this native result. It may be assumed that the fair use rules are for
marketing or administrative purposes and that this is an excellent way to determine the
overhead of the hypervisor used. There are several technical reasons to avoid this
comparison.

Firstly, the native system has a database three times the size of the virtualized test.
Comparing databases of different sizes is not allowed by the benchmark specification,
and the effects on IO and memory due to database size are non-linear in fashion.
Second, the memory is divided into three, allowing the SQL Server buffer pool to use
more local accesses for each guest VM, making it more efficient. And most impor-
tantly, each instance of SQL server is affinitized to only one third of the total pro-
cessors, incurring less contention and scaling issues than the full native system which
must scale across all logical processors.
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From this, one can see that the summation of the TPC-VMS throughputs of the 3
VMs is not a proper direct comparison to a native result. One method to make a
comparison to the non-virtualized system would be to use three native instances of
Microsoft SQL Server, running against three databases of the same size as the virtu-
alized TPC-VMS case. A proper comparison of this type was completed using the HP
DL385p Gen8 server. See Fig. 9.

Table 4 summarizes the findings when running three instances of SQL server. In the
case of the HP DL385p Gen8 server, one only sees a difference of 1.5 % when
comparing the published native TPC-E and virtualized TPC-VMS results. However,
due to the aforementioned technical reasons, three instances of SQL Server on a native
system yields nearly 6 % more performance than the full native system. Thus, it can be
concluded that there is an overhead of at least 7 % simply due to virtualization. The
main take-away here is not an exact calculation of virtualization overhead. Rather, it is
that an oversimplified comparison, especially using different benchmarking rules, can
be misleading.

Table 4. Native and virtualized comparison points

Comparison Performance ratio 

TPC-VMS versus published TPC-E 98.6% 

3-instance native TPC-E versus 1-instance native TPC-E 105.9% 

Estimated TPC-VMS versus 3-instance native TPC-E 93.1% 

Fig. 9. Three databases on a native server and a virtualized server
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5 Conclusions and Future Work

TPC-VMS is a virtualized database benchmark using the existing TPC workloads. HP,
working with VMware, published the first two TPC-VMS results with TPC-E. In this
paper, we shared the configuration and tunings of the two setups, the analysis of the
native and virtualized results, and virtualized database tuning tips. As the results show,
with the very low overhead of the virtualization, virtualized servers make excellent
platforms for the most demanding database workloads. Nonetheless, virtualization
introduces an extra layer of software that needs to be tuned for optimal performance.

There are a number of areas for future work, including running 3 and 4 database
instances on one VM, and comparing the aggregate performance to multiple instances
on a native system as well as to multiple VMs, each with one database instance. This
will quantify more accurately the overhead of the virtualization layer, as well as the
additional costs of running multiple VMs on one server. Note that although we col-
lected data on some of these configurations, these were stepping stones on the way to
the final TPC–VMS configurations, and not well-tuned.

It would be instructive to collect hardware event counts on the two server to explain
why one server seems to record an aggregate throughput closer to a native system. How
much of a role does the number of NUMA nodes – and more generally, TPC–VMS’s
unusual VM count of 3 – play in the performance difference with native systems? Are
there performance differences between the virtualization-assist features of the
processors?

Achieving the good performance reported here required fine tuning of the hyper-
visor settings. Although these optimizations are well-known to the performance
community, we still had to manually apply them. A direction for future work is
incorporating the optimizations into the hypervisor scheduler to detect DBMS work-
loads and automatically optimize for them.

Finally, this tuning methodology can be applied to other database workloads, other
DBMS products, and other hypervisors.
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Abstract. Several cloud providers offer reltional databases as part of
their portfolio. It is however not obvious how resource virtualization and
sharing, which is inherent to cloud computing, influence performance and
predictability of these cloud databases.

Cloud providers give little to no guarantees for consistent execution
or isolation from other users. To evaluate the performance isolation capa-
bilities of two commercial cloud databases, we ran a series of experiments
over the course of a week (a query, a minute) and report variations in
query response times. As a baseline, we ran the same experiments on a
dedicated server in our data center. The results show that in the cloud
single outliers are up to 31 times slower than the average. Additionally,
one can see a point in time after which the average performance of all
executed queries improves by 38 %.

1 Introduction

Cloud computing has been a hype for several years. Motivations for moving to the
cloud range from high flexibility and scalability to low costs and a pay-as-you-go
pricing model. From a provider’s point of view, consolidation of applications on
a shared infrastructure leads to increased infrastructure utilization and reduced
operational costs.

Virtually all major vendors offer relational databases as part of their cloud
ecosystem, e.g., Amazon Relational Data Services [1], Microsoft Azure SQL
Databases [11], or Oracle Database Cloud Services [13]. A common use-case
for a database in the cloud is as storage tier for a website or application run-
ning in the same cloud. Storing application data outside the infrastructure of
the provider is often unfeasible or prohibitively expensive with respect to data
transfers or performance. However, relational databases traditionally had strict
performance requirements and users have certain expectations when it comes
to database performance. The service provider has to balance his interest in a
high degree of resource sharing (which leads to an economic use of the available
resources) and the customers’ interest in a predictable, yet cheap service.

We refer to any database in a system that offers flexible provisioning, a pay-
as-you-go pricing model, and resource sharing (by means of resource virtualiza-
tion and usually transparent to the user) as a cloud database. Cloud databases
have a considerably shifted focus on requirements compared to classic relational
c© Springer International Publishing Switzerland 2015
R. Nambiar and M. Poess (Eds.): TPCTC 2014, LNCS 8904, pp. 173–187, 2015.
DOI: 10.1007/978-3-319-15350-6 11
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databases. Throughput, having been the number one metric in the past, is still
of interest, though many applications that run in a cloud infrastructure do not
have the highest throughput requirements. However, new quality measures like
predictability, scalability, fairness, and performance isolation determine the way,
a customer perceives a cloud database.

In this work, we concentrate on the problem of performance isolation. Per-
formance isolation refers to the customer’s requirement that his performance
is not influenced by other customers’ activities. Performance isolation directly
affects predictability, i.e., whenever different users influence one another it leads
to variation in query response times and hence to bad predictability.

Depending on the implementation of the cloud database system, perfor-
mance isolation is hard to achieve. Moreover, performance isolation is a goal
that conflicts with high resource utilization. Service providers acknowledge that
and state, e.g. “Each physical machine can service many databases, and per-
formance for each database can vary based on other activities on the physical
hosting machine.”1 Providers in the past have made little promises with respect
to performance or predictability. However, this seems to change and providers
started to add performance guarantees to their products or product road maps.

The research community also showed interest in performance isolation on
different levels. For example, Gupta et al. [4] and Krebs et al. [10] investigated
performance isolation in Xen based systems using different applications including
databases. Narasayya et al. [12] and Das et al. [3] worked on the problem of
performance isolation in shared-process cloud database implementations and
provided a prototype implementation of their solution.

The evaluation of performance isolation in commercial cloud database offer-
ings is inherently difficult. Many aspects of the implementation, especially the
placement of different cloud databases, are by design hidden from the user. It
is (from the outside) not possible to force the co-location of different databases
which would allow us to artificially generate concurrency to evaluate the per-
formance isolation. Hence, the only way we see to evaluate a cloud database
system from the outside is to consider it a black box and observe the behavior
in different situations. Our approach is to generate a constant load over a long
period of time and to “hope” for other users to generate concurrent load that
ultimately influences our query execution times. More specifically, we query the
database every minute over a period of seven days and observe the variation of
the response times for the query. In our experiments, we compare two different
commercial cloud database providers with a baseline collected on a dedicated
server.

To summarize, our key contributions in this paper are:

– An analysis of cloud database implementation options and their performance
isolation challenges.

– An overview of currently available commercial cloud offerings.
– An experimental comparison of two commercial cloud databases with respect

to performance isolation.
1 From the Microsoft Azure documentation at http://msdn.microsoft.com/en-us/

library/azure/dn338083.aspx.

http://msdn.microsoft.com/en-us/library/azure/dn338083.aspx
http://msdn.microsoft.com/en-us/library/azure/dn338083.aspx


A Query, a Minute: Evaluating Performance Isolation in Cloud Databases 175

The rest of the paper is organized as follows. Section 2 discusses performance
isolation in different cloud database implementation classes. Section 3 continues
with an overview of currently available commercial cloud offerings. Our exper-
iments are detailed in Sect. 4 before we discuss related work and conclude our
work in Sects. 5 and 6, respectively.

2 Performance Isolation in Database Clouds

In this section, we discuss the problem of performance isolation in general. Fur-
thermore, we analyze possible cloud database implementation classes and the
challenges for performance isolation related to each class.

2.1 Design Decisions

The degree of performance isolation in a cloud database system is a design
decision for the service provider to make. Independent of the ability to implement
it in the given system, the desired degree of performance isolation is not obvious.

Offering strong isolation leads to better predictability of the database perfor-
mance. Resources are constantly assigned to users to ensure consistent behavior.
At the same time, assigned resources that are currently not used by a certain
user cannot be given to other users or else there is high chance of interference
and degraded performance. Consequently, resources are often idle and the global
utilization in the system is bad.

In contrast, designing for weak isolation gives the service provider the free-
dom to assign idle resources to active users, potentially above the amount they
are actually paying for. Shared infrastructures in other domains deal with such
higher assignments with a notion of bonus resources to indicate that the per-
formance is at times better than the booked service level. With weak isolation,
systems can also be oversubscribed to further increase utilization and lower ser-
vice prices. However, depending on the global load, the performance that a single
user observes may be unpredictable.

From personal communication with one of the cloud database providers, we
know that customers seem to value predictability higher than bonus resources or
cheap service. However, whether or not there is a best decision on performance
isolation is up for debate.

2.2 Cloud Database Implementation Classes

The layered system stack of a DBMS—from the database schema to the operat-
ing system—allows for consolidation at different levels. Previous works have clas-
sified virtualization schemes, leading to classes like private OS, private process,
private database, or private schema [5,7]. The classes differ in the layer that
is virtualized and consequently in the resources that are private to a user or
shared among several users. Figure 1 shows four possible implementation classes
for cloud databases.
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Fig. 1. Cloud database implementation classes

The means as well as the extent of performance isolation depend on the cho-
sen implementation class. We differentiate different kinds of resources, system
resources and DBMS resources. System resources are, e.g., CPU, main memory,
storage, or network. DBMS resources are, e.g., page buffers, sort buffers, logging
facilities, or locking facilities. Although DBMS resources ultimately map to sys-
tem resources, their isolation and predictability depend on the ability to assign
access to them and to prevent congestion on them.

Private Operating System: The system shown in Fig. 1 on the left implements
a private OS virtualization where each user is given a complete stack of vir-
tual machine, operating system, and database management system. The virtual
machine hypervisor is responsible for balancing and isolating multiple virtual
machines that run database workloads.

The private OS implementation class offers strong isolation of the system
resources. The virtual machine hypervisor can be used to assign virtual CPU
cores, main memory, storage capacity, and network bandwidth to each virtual
machine. Depending on the system setup (disk setup), storage performance may
or may not be isolated. Multiple virtual machines that access the same set of
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hard disks may have quotas with respect to size, but they still rival for IOPS.
Oversubscription of the system can be used to increase the system utilization,
but may harm performance isolation. DBMS resources are strongly isolated in
this class.

Private Process: The second system shown in Fig. 1 implements a private process
scheme. In this implementation class, each user is given a private database server
process and several such processes share the operating system.

In the private process implementation class, operating system facilities can be
used to isolate certain system resources. The operating system scheduler assigns
CPU time to the various competing processes and priority levels and sometimes
quotas can be used to increase or decrease the share of any process. The main
memory is per default not limited by the operating system. Each process can
use the same virtual address space. The operating system only takes care of
mapping the virtual memory to physical memory and of paging in case of memory
shortage. In the Linux operating system, the ulimit system tool can be used
to set system wide limits for certain resources (including memory). Similarly, a
process can limit its resources with the system call setrlimit. Control groups
(cgroups) are a Linux kernel feature to limit, police, and account the resource
usage of certain process groups.

Storage and network resources are hard to isolate on the OS level. There
are no integrated means in standard operating systems to assign, e.g., IOPS or
network bandwidth, to processes. DBMS resources are per process and hence
strongly isolated in this implementation class.

Private Database: The third system shown in Fig. 1 is a private database system.
Here, a single server process hosts a number of private databases—a common
setup for many database servers. The database management system needs to
provision resources and balance loads between different databases, i.e., users.
The different users are usually indistinguishable by the operating system.

In the private database class, all users share a database process and hence
all system resources (from the operating system’s point of view). The only way
to isolate the users’ performances is by means of managing and isolating DBMS
resources. In our experience, buffers (e.g., for pages or sorts) can usually be
split and assigned to different databases. Other resources, such as the logging
facility are usually shared and can hence lead to congestion and inevitably weak
performance isolation.

The detailed isolation options in currently available systems are dependent on
the DBMS implementation and usually very limited. In the research community,
Narasayya and Das et al. [3,12] investigated the problem of performance isola-
tion in shared-process cloud database implementations. They presented SQLVM,
an abstraction for performance isolation in the DBMS. Furthermore, they imple-
mented and tested a prototype of SQLVM in Microsoft Azure.

Private Schema: The system shown in Fig. 1 on the right is an example for
a private schema virtualization. Each user is implemented as a schema in a



178 T. Kiefer et al.

single physical database. The performance isolation characteristics of the private
schema class are similar to the private database class. However, some resources
like page buffers may be even harder or impossible to isolate in a shared database.

3 Commercial Cloud Database Offerings

In this section, we present currently available commercial cloud database pro-
viders and their service characteristics and conditions. We analyzed three com-
mercial database cloud offerings, Amazon Relational Data Services [1], Microsoft
Azure SQL Databases [11], and Oracle Database Cloud Services [13]. The selec-
tion of these products is based on their availability and visibility but without
intention of promoting any particular one. The various usage options and condi-
tions are complex and detailed in the providers’ documentations. In this work,
we concentrate on a few key aspects such as pricing, resource provisioning, and
(if available) performance guarantees. Though different in detail, the aspects
we focus on are quite similar across the different service providers. Again, our
intention is to provide an overview of available services, not to compare or rank
them.

Amazon Web Services: Relational Database Service (RDS) is the part of Ama-
zon Web Services that provides relational databases in the cloud. The user can
select from four different database products (MySQL, PostgreSQL, Oracle, and
Microsoft SQL Server). To fit the database performance to the application needs,
users can select from different instance classes which differ in the provided num-
ber of virtual CPUs, the amount of memory, and the network performance.
The available classes for MySQL instances in the region US East at this time
are summarized in Table 1.2 For high availability, a database can be deployed in
multiple availability zones (Multi-AZ) so that there are a primary and a standby
version for failover. Amazon guarantees 99.95 % monthly up time for Multi-AZ
databases. Prices for the different database instances range from $0.025 per
hour (db.t1.micro) to $7.56 per hour (db.r3.8xlarge Multi-AZ) (again, prices are
exemplary for MySQL instances and the deployment region). The storage for the
database can be as large as 3 TBs, where each GB is charged with $0.1 per month
($0.2 for Multi-AZ instances). Amazon offers the use of provisioned IOPS stor-
age for fast and consistent performance at an additional cost. This provisioned
storage can help to increase performance isolation and hence predictability.

Microsoft Azure: Microsoft offers its cloud ecosystem Azure with SQL Data-
bases, a service to easily set up and manage relational databases. Databases
can grow up to 150 GB but are charged based on their actual size, starting
from $4.995 per month (up to 100 MB) and ranging to $225.78 per month for
150 GB. Microsoft maintains two synchronous copies in the same data center
for failover. Geo-replication for further availability is a preview feature at this
2 see http://aws.amazon.com/rds/pricing/.

http://aws.amazon.com/rds/pricing/
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Table 1. DB instance classes in RDS (exemplary for MySQL instances in region US
East)

Instance type vCPU Memory Network Price/hour Price/hour

[GB] performance (Single-AZ) [$] (Multi-AZ) [$]

db.t1.micro 1 0.613 Very low 0.025 0.050

db.t1.small 1 1.7 Low 0.055 0.110

db.m3.medium 1 3.75 Moderate 0.090 0.180

db.m3.large 2 7.5 Moderate 0.185 0.370

db.m3.xlarge 4 15 Moderate 0.370 0.740

db.m3.2xlarge 8 30 High 0.740 1.480

db.r3.large 2 15 Moderate 0.240 0.480

db.r3.xlarge 4 30.5 Moderate 0.475 0.950

db.r3.2xlarge 8 61 High 0.945 1.890

db.r3.4xlarge 16 122 High 1.890 3.780

db.r3.8xlarge 32 244 10 gigabit 3.780 7.560

time. The Microsoft SQL Azure Service Level Agreement3 contains so called
Service Credit in case of a monthly uptime percentage below 99.9 %. As of now,
Microsoft provides two different database classes, web as backend for websites
and for testing and development purposes and business for production systems.
Details about the configurations of both classes are not known. As a preview
feature for future releases, Azure also contains additional classes basic, stan-
dard, and premium. With these classes, Microsoft introduces so called Database
Throughput Units (DTU) that represent the performance of the database engine
as a blended measure of CPU, memory, and read and write rates. It seems as
if Microsoft is aiming for more predictable database performance and better
performance isolation with DTUs and the new classes.

Oracle Cloud: Oracle’s cloud ecosystem, the Oracle Cloud, provides several ser-
vices including one for relational databases. A user can rent a schema in an
Oracle 11 g instance. Thereby, the user selects between databases of up to 5 GB,
up to 20 GB, or up to 50 GB. The prices range from $175 per month for 5 GB
to $2000 for 50 GB. As a preview feature, users can rent virtual machines with
fully configured (and optionally managed) Oracle database instances. As the
only provider in our overview, Oracle lets users decide between different cloud
database implementation class, i.e., Private Schema or Private OS.

4 Experimental Evaluation

In this section, we describe the setup and results of our experimental evaluation.
3 see http://azure.microsoft.com/en-us/support/legal/sla/.

http://azure.microsoft.com/en-us/support/legal/sla/
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Two fundamental problems of evaluating cloud databases’ performance iso-
lation from a user’s point of view are a lack of control and a lack of insight.
A user can only control a database by means of starting, stopping, and using a
database. Furthermore, it is possible to configure a database in the boundaries of
what the service provider allows. It is however not possible to influence aspects
of placement (beyond the selection of a region or data center) or co-location
of several databases. The lack of insight refers to situations where a database’s
observed behavior changes. It is near impossible to reason about such changes
without knowing the infrastructure and possible events that may have caused
the change.

To overcome the problem of not being able to generate concurrency between
cloud databases, we decided to run a steady workload for several days. Assuming
that other users are actively using their cloud databases, we collect and report
variations in execution times. These variations can have several reasons that are
beyond our control and knowledge but are likely influenced by concurrency and
the degree of performance isolation. As mentioned before, we can only speculate
about reasons that may have caused certain changes in response times.

Since we are interested in performance isolation (and not absolute perfor-
mance), we only report relative execution times. We also do not disclose which
cloud database providers were used for our experiments but will refer to them
as CloudA and CloudB.

4.1 Experiment Setup

Cloud Databases: We ran our experiments on databases from two different cloud
providers. Additionally, we ran the same workload on a dedicated server in our
data center as a baseline. The cloud databases were provisioned to fit the size
of our data (1 GB). Beyond that requirement, we only used the most basic con-
figuration and did not book any additional guaranteed performance (if available
at all). We used the MulTe benchmark framework [8] to set up and fill our data-
bases as well as to execute the workload. The workload driver that queries the
cloud database was executed on a virtual machine in the cloud. We ensured that
the virtual machine and the cloud database are in the same providers cloud and
in the same region or data center.

Database Configuration: We used a TPC-H [16] database of scale factor 1 (equals
1 GB raw data) for our experiments. Primary key constraints as well as indexes
that benefit the selected queries were created on the database. We did not modify
the cloud database’s configuration in any way.

Workload Configuration: As workload, we picked a subset of TPC-H queries,
namely queries 2 (Minimum Cost Supplier), 13 (Customer Distribution), 17
(Small-Quantity-Order-Revenue), and 19 (Discounted Revenue). These queries
were selected for their different characteristics and different execution times.
The workload driver was configured to pick one of the four queries randomly
and execute it. Afterward, the workload driver slept for one minute before it
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started the next query. Since the execution times vary for different queries and
cloud databases, we collected between 7632 and 9145 values over seven days.

Metric: The query execution times collected in our experiments are normalized
to the average execution time (per query type and cloud database). Thereby,
we are able to compare the two cloud databases although the absolute execu-
tion times differ. Additionally, we report the coefficient of variation (i.e., stan-
dard deviation divided by mean) and certain percentiles of the query execution
times. We consider execution times below the 1st percentile and above the 99th
percentile outliers and refer to the remaining execution times as being without
outliers.

4.2 Result Discussion

The relative execution times over seven days are plotted in Fig. 2. The charts
provide a high-level first impression of the execution time variations. One can see
that CloudA (Fig. 2a) has many queries that executed slowly compared to the
average. Single queries needed as long as 31 times the average execution time of
this query type. The figure also shows that there are more slow query executions
on day 6 of the experiment compared to the other days. Figure 2b shows that
query execution times in CloudB are closer around the average execution times.
There are no execution times above 5 times the average. CloudB does not show
any major changes of behavior over the duration of the experiment. Finally,
Fig. 2c shows that our on-premise database has the least variations in execution
times.

Table 2 lists the coefficient of variation of the query execution times. The
impression that the on-premise database varies least is confirmed by the values.
The table also shows that the variations are almost always higher in CloudA,
except for Query 2 where the difference is negligible.

Table 3 lists the 90th, 95th, and 99th percentile of the relative query execution
times. One can see that 95 % of all queries in CloudA finish within 1.46 times the
average execution time. Accordingly, within 1.44 times the average in CloudB,
and 1.27 times the average in the dedicated database. The high value of the 99th
percentile in CloudA is caused by the few very long query executions.

Figures 3 and 4 show the relative query execution times (without outliers) of
both cloud databases, split up by query and plotted in the range from 0 to 3.
This more detailed plots shows several interesting things. First of all, there is no
obvious daily rhythm visible. Even if the data centers are differently utilized at
different times of the day, it does not show in our experiment results. Second,
Fig. 3 shows that there must have been a distinct event in CloudA on day 3.
After that event, all queries show an improved query execution time for the rest
of the experiment (the execution time drops by 38 % for Query 17). Figure 3a
gives the impression that there may have been more events on days 5 and 6
that increased the execution times for short periods of time. We have no way of
knowing what caused the sudden change in performance, especially since we did
not change the setup whatsoever. The third conclusion from Figs. 3 and 4 is that
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Fig. 2. Experiment overview—relative execution times over seven days
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Table 2. Coefficient of variation of query execution times (without outliers in paran-
theses)

CloudA CloudB On-premise

Query 2 1.65 (0.81) 0.25 (0.22) 0.21 (0.20)

Query 13 0.31 (0.19) 0.36 (0.20) 0.01 (0.01)

Query 17 1.39 (0.59) 0.22 (0.19) 0.16 (0.15)

Query 19 1.04 (0.44) 0.29 (0.26) 0.11 (0.11)

Table 3. Percentiles of relative execution times over all queries

CloudA CloudB On-premise

90th percentile 1.17 1.29 1.20

95th percentile 1.46 1.44 1.27

99th percentile 5.13 1.89 1.37

in CloudA the execution times show a rather distinct baseline with variance
above that line while execution times in CloudB vary above and below the
average.

5 Related Work

Several works have investigated implementation and performance of cloud data-
bases or performance isolation in general (not specific to databases).

Kossmann et al. [9] analyzed different cloud databases when they were still
very new and partly immature. They described different cloud database architec-
tures and compared different providers with respect to performance, i.e., mainly
scalability, and cost. Shue et al. [14] propose a system for per-tenant fair shar-
ing and performance isolation in multi-tenant, key-value cloud storage services.
However, key-value stores differ from relational databases and the results cannot
easily be transferred between the two systems. Curino et al. [2] present Relational
Cloud, a Database-as-a-Service for the cloud. Unlike commercial providers, the
authors provide insights in their architecture and propose mechanisms for con-
solidation, partitioning, and security. While they try to consolidate databases
such that service level objectives are met, performance isolation is not in the
focus of their research.

Performance isolation in private OS systems has also been studied in the
past. Somani and Chaudhary [15] investigated performance isolation in a cloud
based on the Xen virtual machine monitor. They use different application bench-
marks simultaneously to evaluate the isolation strategy provided by Xen. Gupta
et al. [4] analyzed performance isolation in Xen based systems. Furthermore,
they presented a set of primitives implemented in Xen to monitor per-VM and
aggregated resource consumption as well as to limit the amount of consumed
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Fig. 3. CloudA—relative execution times over seven days in the range from 0 to 3
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resources. Krebs et al. [10] propose metrics for quantifying the performance iso-
lation of cloud-based systems. Furthermore, they consider approaches to achieve
performance isolation in Software-as-a-Service offerings. Their experimental eval-
uation uses several instances of the TPC-W benchmark in a controlled environ-
ment with a system running the Xen hypervisor.

Other works focus on performance isolation in private process systems, e.g.,
Kaldewey et al. [6] virtualize storage performance, a particularly hard resource to
isolate. They used disk time utilization as the aspect of disk performance to focus
on and implemented a prototype that uses utilization based I/O scheduling.

Finally, there is work in the area of shared process cloud systems. Narasayya
et al. [12] investigated the problem of performance isolation in shared-process
cloud database implementations. They presented SQLVM, an abstraction for
performance isolation in the DBMS. Furthermore, they implemented and tested
a prototype of SQLVM in Microsoft Azure. In [3], Das et al. further detail per-
formance isolation in SQLVM with focus on the CPU as a key resource.

6 Summary

In this work, we gave an overview on performance isolation in cloud databases.
We analyzed different implementation classes for cloud databases and the chal-
lenges on performance isolation that each class poses.

A black-box analysis of two commercial cloud databases gave us insights
in their behavior. Our experiments revealed that variations in query execution
times, which are influenced by the degree of performance isolation, differ in the
two cloud databases. Moreover, we learned that both cloud databases showed
constantly higher variations than our dedicated database.
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Abstract. Generating synthetic data sets is integral to benchmarking,
debugging, and simulating future scenarios. As data sets become larger,
real data characteristics thereby become necessary for the success of
new algorithms. Recently introduced software systems allow for synthetic
data generation that is truly parallel. These systems use fast pseudoran-
dom number generators and can handle complex schemas and uniqueness
constraints on single attributes. Uniqueness is essential for forming keys,
which identify single entries in a database instance. The uniqueness prop-
erty is usually guaranteed by sampling from a uniform distribution and
adjusting the sample size to the output size of the table such that there
are no collisions. However, when it comes to real composite keys, where
only the combination of the key attribute has the uniqueness property,
a different strategy needs to be employed. In this paper, we present a
novel approach on how to generate composite keys within a parallel data
generation framework. We compute a joint probability distribution that
incorporates the distributions of the key attributes and use the unique
sequence positions of entries to address distinct values in the key domain.

1 Introduction

When big data systems have to be debugged or their performance needs to
be analyzed, large test data sets are required. Due to privacy restrictions or
locality of data sets, it is not always feasible to ship and share the original data.
Additionally, one might be interested in the analysis of data patterns that are
not present in current real world data. These are use cases where synthetic data
generation plays a vital role.

Synthetic generation of giga- and terabyte data sets becomes scalable if data
is generated truly in parallel and not only distributed, i.e., a data generating
process does not need to communicate or synchronize with other processes.
This is facilitated by a recent trend towards massively parallel shared-nothing
architectures where processes have no common resources and communication is
typically expensive. It is important that frameworks designed for such architec-
tures take the distribution of resources into account.
c© Springer International Publishing Switzerland 2015
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Traditional data generators, like dbgen from TPC-H,1 are hand-tuned scripts
dedicated to produce data for a specific schema. In the schema of TPC-H all
unique attributes are primary keys of type integer ranging from 1 to n, where n
is the final table size. By simply partitioning the sequence of integers and drawing
all other attributes independently and randomly from predefined distributions,
tuples can be generated in parallel. Process i will thereby generate the primary
keys [(i − 1) · n

N , ..., i · n
N ] where N is the number of child processes. It is the low

complexity of the schema of TPC-H that enables parallel execution. The fixed
schemata are of few inter- and intra-column dependencies and are common to
most standard benchmarks. However, this does not suffice to perform tasks like
validation of techniques that are sensitive to specific data patterns.

In contrast, flexible toolkits, like Myriad [1] or PDGF [11], enable the imple-
mentation of use-case tailored data generators deployable for benchmarks, and
also for the purpose of debugging or testing. Most importantly, Myriad and
PDGF follow a parallel execution model for shared-nothing architectures. That
is, independent from value domains and column constraints they split the data
generation process for tables row- or column-wise. By assigning distinct sub-
streams of the pseudorandom number generator (PRNG), which serves for
sampling, to each node, inter-process communication is avoided. Through a
hierarchical seeding strategy any value of the final data set can be computed
locally, which is integral for resolving data dependencies. Constant lookup time is
provided by a class of non-recursive PRNGs. Examples are explicit inverse
congruential generators (EICGs) [5], compound EICGs [4], or hash function based
PRNGs [9,10].

Pseudorandom data generators (PRDGs) use the uniformly distributed out-
put of PRNGs to produce user-defined domain values for arbitrary distribution
functions through inverse transform sampling (ITS, see Sect. 2.2) or dictionary
lookups. ITS is sufficient to generate values for a single column for which unique-
ness holds. Consequently, these generators support all key constraints where at
least one simple key is involved. Simple keys are single attributes, whose values
uniquely identify a row. However, this approach fails if it comes to the generation
of composite keys for which exclusively the combination of all key attributes is
unique (i.e., we cannot ensure uniqueness if no simple key is involved). Unfortu-
nately, all parallel data generators we are aware of suffer from this constraint.

In this paper we present a novel approach on how to overcome this limitation.
Our basic approach is to use the unique row identifiers to address distinct data
points in the discretized space of all possible keys.

The rest of the paper is organized as follows. In Sect. 2 we give a more formal
description of the problem of parallel composite key generation. In Sect. 3 we
present our algorithm with an accompanying example followed by an evaluation
part (Sect. 4) and a discussion (Sect. 7). Notations and additional examples are
provided in the appendix.
1 http://www.tpc.org/tpch/.

http://www.tpc.org/tpch/
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2 Composite Keys

2.1 Definition

Our composite key generation approach is explained and evaluated based on the
relational model [3], although our approach is not restricted to this particular
data model. We use the term ‘table’ as a synonym for a relation R whose columns
are a set of attributes A and whose rows are tuples. Single tuples are addressed
by keys, a subset of attributes for which uniqueness must hold. Although a table
may have many columns, we only consider the d columns that are relevant when
forming a key, i.e., A = {A1,A2, ...,Ad}.

In the context of databases, composite keys are identifiers of two or more
attributes (d > 1) for which at least one attribute does not make up a simple key.
In other words, for composite keys there exists at least one key attribute that is
not unique. In contrast, compound keys are keys of two or more attributes where
each attribute makes up a simple key in its own right. To make this distinction
clearer, examples are given in the appendix (Sect.A).

2.2 Problem Statement

Our goal is to generate a table of n key tuples, each of them forming a ‘real’
composite key of d attributes, i.e. no key attribute must be unique. Moreover, the
resulting key set should respect intra-table dependencies and satisfy attribute
distributions in expectation.

To understand why guaranteeing uniqueness on a combination of non-unique
attributes is more challenging than producing a single, unique column, we will
first describe how synthetic data is generated by parallel data generator tools
(PDGs) like Myriad or PDGF. Typical demands on the output of PDGs are:

(i) attribute values are distributed according to arbitrary, derived or user-
defined distributions;

(ii) attribute values may conditionally depend on other attributes;
(iii) concrete attribute values are not correlated to process identifiers or their

sequence position in the generation process, unless it is intended.

The above requirements can be satisfied if data generators use a class of PRNGs
whose sequence can be accessed randomly and that show a high degree of ran-
domness, i.e., they pass various tests for randomness. We can therefore recompute
values from other substreams in constant time to resolve attribute dependencies,
such as foreign key constraints, without querying remote processes – a key prop-
erty for parallelization. Compound EICGs and some hash functions are PRNGs
with these properties. Both are implemented in Myriad. Panneton et al. [10] give
concrete examples of hash functions passing several tests for randomness.

PRNGs provide the input for pseudorandom data generators. The uniformly
distributed output is normalized to [0, 1] and mapped to the target domain via
inverse transform sampling. Given a continuous or discrete distribution function
f : X �→ [0, 1], with X being a continuous, discrete (numerical or categorical)
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domain, we compute its cumulative distribution function (CDF) FX : X �→
[0, 1], FX(x) = P (X ≤ x) on a random variable X ∈ X and take the inverse (see
Fig. 1 as an illustrative example).
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Fig. 1. Illustration of the inverse transform sampling technique. Given a set of uni-
formly distributed values from [0, 1], we want to simulate normally distributed values
f ∝ N (x|μ = 2, σ = 1) (orange) in [0, 6]. Putting a normalized value y ∈ Y from a

uniform distribution into the inverse of its CDF FX =
∫X

−∞ fX(t)dt (red) produces a
domain value that is distributed according to the target distribution function (gray
path).

From the sampling perspective, composite keys fall into two groups. The first
group exhibits at least one unique attribute (see example schema Composite1 in
the appendix), while the second group exhibits none (see schema Composite2),
which means that uniqueness holds exclusively for the join of all key columns.
Data according to the first group can be generated with the same approach
that applies to simple keys (i.e., we produce a unique attribute column which in
turn ensures uniqueness for the whole key tuple). The other key attributes are
sampled according to their target distributions.

For the second group of composite keys this approach is not applicable. Each
key attribute may contain repeated values according to its particular distribution
function (e.g., the first attribute may follow a uniform distribution, the second
attribute a normal distribution, and so forth). A näıve approach would be to
sample attribute-wise conditioned on already generated domain values. However,
this approach does not scale, since it requires parsing all of the data. On a shared-
nothing architecture this would be prohibitively expensive.

We will now describe an approach for generating composite keys that is
applicable within the parallel data generation frameworks for shared-nothing
architectures described introductorily. From now on, we use the term composite
key as a synonym for the aforementioned second group that contains no unique
single attribute.
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3 Algorithm

3.1 Preliminaries

Our composite key generation algorithm exploits the uniqueness property of
tuple identifiers to construct an injective mapping from integer identifiers to
multidimensional tuples of the attribute domain instead of sampling stochasti-
cally. To achieve a uniform distribution within a bin, we introduce index shuffling
with the help of keyed pseudorandom permutation functions (PRPs) whose out-
put domain size is adjustable. We will denote a PRP by

π : K × E × D �→ D.

where K is the key space for seeding the PRP, D the target size for the output,
and E the input. We address elements of a PRP in an array-like fashion, notated
as [·]. For the same key and domain size, πk,d[i] �= πk,d[j] holds for all i, j iff
i �= j. Since each process receives the same set of seeds, we omit the index k.

As initial input the process receives a process identifier in [0..N −1], and the
total table size n. It also receives an instance of a PRP function together with
a seed k ∈ K which enables each process to use the same permutation. As part
of the configuration, a process has information about the attribute domains Ai

and their target distributions, given attribute-wise as discrete histograms Bi.
Attribute domains may be nominal or real-valued.

The tuple identifiers are given by the non-intersecting ranges of indices that
are assigned to the data generating processes. For example, process N1 produces
table entries with identifiers [0, 1, ..., r1], process N2 for identifiers [r1 + 1, r1 +
2, ..., r2], and so forth.

To be able to produce a unique mapping we assume that the domains of the
attributes of interest are discretizable and their particular distributions are given
in terms of histograms (univariate or conditioned). From the set of histogram
distributions, we form a multidimensional joint histogram. However, instead of
sampling with the aid of PRNGs, identifier ranges are mapped to bins such that
the relative range corresponds to a particular bin height of the joint histogram.
In doing so, we respect the joint probability distribution of the key attributes.
Given a unique tuple identifier, we first assign a d-dimensional bin and then pick
a tuple within the bin. Algorithm1 summarizes these steps.

Usually, tuple identifiers are distributed in a sequential manner among data
generating nodes, like described previously with processes N1 and N2. Since
these identifiers will later correspond to tuple indices of the ordered set of all
possible tuples, which is much larger, we break the correlation by introducing
shuffling. Shuffling of identifiers will be applied preliminary to the bin assign-
ment step (line 6 of Algorithm 1) and to the assignment of a multidimensional
tuple within a bin (line 1 of Algorithm2). After introducing the accompanying
example, we will explain in more detail the computation of the joint histogram,
the bin assignment, and the tuple assignment step.
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Algorithm 1. Composite Key Generation.
Input: nodeID, N , n, A, B
Output: Data[(nodeID − 1) · n/N, ..., nodeID · n/N ]

1 // Compute joint histogram
2 C := jointHistogram(B)
3 // Generate n/N composite keys
4 for id ← (nodeID − 1)·n/N to nodeID·n/N do
5 // Decorrelate bin and node index
6 id′ := πn[id]
7 // Find bin for current tuple identifier
8 binID := findBin(id′, C)
9 // Convert scalar to tuple

10 Data[id′] = id2Tuple(id′, A, CbinID)

11 end

3.2 Accompanying Example

For the purposes of illustration, we will consider an example from biochemistry.
Assume we would like to generate a table of composite keys of two attributes:
proteins and amino acids. The building blocks of proteins are amino acids and
their derivates. We restrict our example to three common proteins, i.e., collagen
(c), actin (a), and hemoglobin (h) and six amino acids, i.e., Glycine (G), Proline
(P), Alanine (A), Glutamine (Q), Arginine (R), and Aspartic acid (D). For all
compounds we use the one-letter notation.

A = {A1, A2}
A1 = {c, a,h}
A2 = {G,P,A,Q,R,D}

The normalized frequencies of the three proteins in mammal tissues and their
composition from amino acids are given in the Tables 1 and 2 below:

3.3 Joint Histogram

Let us fix our notations. For a set of attribute domains A, we have a correspond-
ing set of histograms B reflecting the discretized distributions of the attributes.
For a single histogram Bi, we denote with γBi

the number of bins, blow
i,j the lower

bound, and with bup
i,j the upper bound (both inclusive of the bin), and fi,j the

relative frequency of values from Ai that fall into the boundaries of the j-th bin:

B = {B1, B2, ..., Bd}
Bi = [(blow

i,1 , bup
i,1, fi,1), ..., (blow

i,γBi
, bup

i,γBi
, fi,γBi

)] for i ∈ [1..d].
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Table 1. Proteins and
their normalized frequen-
cies.

Protein Frequency

c 0.7

a 0.2

h 0.1

Table 2. Six amino acids and their nor-
malized frequencies in collagen, actin, and
hemoglobin.

Protein Amino acid frequency

G P A Q R D

c 0.40 0.23 0.15 0.09 0.07 0.07

a 0.17 0.10 0.18 0.24 0.11 0.20

h 0.28 0.09 0.23 0.17 0.06 0.17

For our running example, we have

B = {B1, B2}
B1 = [(c, c, 0.7), (a, a, 0.2), (h,h, 0.1)]
B2 = [(G,A, 0.696), (Q,D, 0.304)]

Each interval [blow
i,j ..bup

i,j ] represents a disjoint subset for attribute Ai. The
joint histogram is the set of all combinations Bi ⊗ Bj �=i of intervals taken from
B1 to Bd. If we assume independence of the attributes, we can compute the joint
frequencies φ for the combined histogram as the product of all one-dimensional
bin probabilities. In our example the amino acid frequencies depend on the
protein. Table 2 displays the conditional probabilities of amino acids given a
protein. Hence, the joint probability for our two-dimensional case is

Pr[c1 ∈ B1,i, c2 ∈ B2,j ] =
∑

c1∈B1,i

Pr[c1] · ( ∑

c2∈B2,j

Pr[c2|c1]
)
. (1)

Using Eq. 1, we receive for our running example the following joint probabilities:

Pr[c ∈ C1] = Pr[c1 ∈ B1,1] · Pr[c2 ∈ B2,1|c1 ∈ B1,1] = 0.546
Pr[c ∈ C2] = Pr[c1 ∈ B1,2] · Pr[c2 ∈ B2,2|c1 ∈ B1,2] = 0.09
Pr[c ∈ C3] = Pr[c1 ∈ B1,3] · Pr[c2 ∈ B2,1|c1 ∈ B1,3] = 0.06
Pr[c ∈ C4] = Pr[c1 ∈ B1,1] · Pr[c2 ∈ B2,2|c1 ∈ B1,1] = 0.161
Pr[c ∈ C5] = Pr[c1 ∈ B1,2] · Pr[c2 ∈ B2,1|c1 ∈ B1,2] = 0.11
Pr[c ∈ C6] = Pr[c1 ∈ B1,3] · Pr[c2 ∈ B2,2|c1 ∈ B1,3] = 0.04

For d attributes the tensor Φ of joint probabilities has d dimensions. When
attributes are independent, it is the result of a series of products2 of bin fre-
quencies:

Φ = ⊕d
i=1fi.

Each entry Φi1,i2,..,id = f1,i1 · f2,i2 · .. · fd,id represents the relative frequency of
a multidimensional bin with a set of lower and upper bin edges. For variables
2 denoted by ⊕.
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conditioned on others, we may replace some fi by the conditional probability
tables. In order to avoid lists of indices, we use a one-dimensional representation.
We apply a reshaping ρ : Rm1×..×md �→ R

∏
mi to the tensor Φ. The reshaping

logically arranges the tensor as a vector:

φ := ρ(Φ).

In our example, the reshaping of joint probabilities would be a row-wise
concatenation. Let C denote the set of d-dimensional bins with frequencies φ:

C = [C1, C2, ..., CγC
], γC = |B1| · ... · |Bd|

Ci = (cilow, ci
up, φi) ∈ B1 × B2 × ... × Bd

ci
low = [clow

i,1 , clow
i,2 , ..., clow

i,d ]
ci

up = [cup
i,1, c

up
i,2, ..., c

up
i,d]

If we use the above notation for our example, the joint histogram is:

C1 = ([c,G], [c,A], 0.546)
C2 = ([c,Q], [c,D], 0.161)
C3 = ([a,G], [a,A], 0.09)

C4 = ([a,Q], [a,D], 0.11)
C5 = ([h,G], [h,A], 0.06)
C6 = ([h,Q], [h,D], 0.04)

The ordering of the proteins and amino acids will be kept throughout the
whole paper (e.g., C3 represents actin combined with the three amino acids
Glutamine, Arginine, and Aspartic acid).

3.4 Bin Assignment

Following the construction of a multidimensional histogram, the next step is to
guarantee that in expectation φi · n of the n key tuples will lie in bin Ci. We
construct a step function that maps tuple identifiers to bin indices with ranges
adjusted according to φ:

findBin : [0..n − 1] �→ [0..γC − 1]

findBin(id) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if 0 ≤ id < nφ1

2, if nφ1 ≤ id < n(φ1 + φ2)
...

...
k, if n

∑k−1
i=1 φi ≤ id < n

∑k
i=1 φi

...
...

γC , if id ≥ n
∑γC−1

i=1 φi

The following figure illustrates the bin assignment step for our joint histogram
of the example:
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C1

C2

C3

C4

C5

C6

id

0

1

2

3

4

...

7

φ1n =

φ2n =

φ6n =

B1

B2

Due to the sequential assignment of identifiers to the data generating nodes,
we obtain a clustered bin assignment. Hence, each process will generate keys that
lie in the same or in adjoined bins. We can decorrelate node and bin identifiers
by first applying a keyed permutation function that shuffles the tuple identifier:

id′ = πn[id]
binID := findBin(id′, C)

In our toy example, we would like to produce n = 8 composite keys by N = 2
processes. N1 generates keys for initial identifiers in [0..3] and N2 for [4..7]. To
shuffle the indices, we simply XOR the identifiers with random pad k, say 5.

πk=5,D=8[id] = id ⊕ k.

The step function for bin assignment and the assignment of identifiers to bin
IDs are given below. Note that bin C3 and C6 are empty due to rounding and
the small output size n.
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3.5 Tuple Assignment

Given the bin identifier i of the joint histogram from the previous step, we
again make use of the uniqueness of id to compute a relative tuple index tID
in Ci. This can then be used to map attribute-wise to the output domain. The
relative position of id is obtained by subtracting the lowest tuple identifier that
is assigned to Ci. This information is given by the step function of the bin
assignment step, i.e.,

tID := id − min(findBin−1
C (binID)).

Note that we use here a simplified description, since id may not directly be
used, but its shuffled value (π[id] instead of id). The relative tuple identifier
is in [0..φi · n). If we think of the output domain values as an ordered set, we
project onto the first φi ·n tuples. Backmost tuples that correspond to identifiers
in [φi · n, ..., γCi

) are missed. By shuffling the tuple indices randomly, a uniform
distribution is attained within a bin Ci. The parameter D for the output domain
of the shuffle function is the bin cardinality of Ci, tID’ = πD=Ci

[tID]. To produce
a key = (a1, a2, ..., ad) ∈ A1×A2×..×Ad from the shuffled scalar tuple identifier,
we iteratively compute integer division of a rest and the total cardinality of the
subsequent dimensions (see Algorithm 2). This last conversion step corresponds
to the procedure id2Tuple listed in Algorithm 1 and is shown below.

Algorithm 2. Conversion of scalar to tuple of output domain.
Input: tID, A, Ci

Output: a
1 tID’:= πD=Ci [tID]
2 rem := tID’
3 for k = 1..d − 1 do
4 // Bin cardinality for subsequent dimensions

5 γ :=
∏d

j=k+1|{a ∈ Aj |clowij ≤ a ≤ cupij }|
6 // Compute absolute index

7 pos := �rem/γ� + Ak.indexOf(clowIk )
8 ak := Ak[pos]
9 rem := rem modγ

10 end

11 pos := rem + Ak.indexOf(clowDk )
12 ad := Ad[pos]

Table 3 shows the final result for our accompanying example. To permute the
relative tuple identifier, we use π3 – a shift by one, i.e., π3[i] = (i + 1) mod 3.
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Table 3. Conversion of id and binID to tuples. The last two steps are performed by
Algorithm 2

id binID tID = id − min(findBin−1(binID)) tID’ = π3[tID] tuple

N1 5 3 0 1 (a,P)

4 2 1 2 (c,D)

7 5 0 1 (h,P)

6 4 0 1 (a,R)

N2 1 1 1 2 (c,A)

0 1 0 1 (c,P)

3 2 0 1 (c,R)

2 1 2 0 (c,G)

4 Evaluation

Our composite key generation algorithm was implemented into the data gener-
ation toolkit Myriad. We used the permutation scheme as proposed in Sect. 7.1
and tested the algorithm on a numerical data set – the stellar data set from
the Sloan Digital Sky Survey (SDSS). After determining the feature set for the
composite key attributes for both data sets we proceed as follows:

(i) Computation of the histograms B for each feature.
(ii) Execution of the composite key generation algorithm with different scaling

factors or partition schemes.
(iii) Optional testing for duplicates.
(iv) Computation of distribution error (see Eq. 2) by comparing initial his-

tograms f and histograms f̃ computed on output files.

error(f, f̃) =
1

|A|
|A|∑

i=1

1
|Bi|

|Bi|∑

j=1

(
fij − f̃ij

)2
. (2)

All tests were performed with two Intel Xeon Processors E5620 (12 M Cache,
2.40 GHz, 5.86 GT/s Intel QPI) and 50 GB main memory.

4.1 Sloan Digital Sky Survey Data Set

The Sloan Digital Sky Survey (SDSS) data set contains the positions of celestial
bodies, i.e. spherical coordinates right ascension (ra) and declination (dec) and
the amount of light emitted at different wavelengths. Since no two objects have
the same position, ra and dec form a composite key. We queried the data of
1000 objects in the field of the galaxy NGC 2967 (see SQL query below) and
computed histograms of four bins per dimension. The values were discretized by
cutting their floating point values after ten decimal places.
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SELECT top 1000 p . obj id , p . ra , p . dec
FROM galaxy p ,

dbo . fgetNearByObjEq (145 . 514 , 0 . 3 36 , 4 ) n
WHERE p . ob j id=n . ob j id

For the first test we launched the binary with varying number of processes
N, i.e. 1 to 16 processes generating a table of 1 GB size. The execution time
includes the writing of data to hard disk, see Table 4:

Table 4. Error and execution times [s] with varying partition schemes and constant
table size of 1 GB.

N 1 2 4 8 16

Error 0.593e-4 0.593e-4 0.593e-4 0.593e-4 0.593e-4

Time 155 80 45 35 25

As a second test we varied the data set size from 100 MB to 100 GB, but kept
the partition scheme fixed. Since the first test already covered testing for dupli-
cates, we omitted the writing of data to hard disk and computed the histograms
on-the-fly:

Table 5. Error and execution times [s] with varying table sizes and 8 processes.

Size 100 MB 1 GB 10 GB 100 GB

Error 0.8264e-4 0.8265e-4 0.8238e-4 0.8244e-4

Time 0.34 1.8 6.1 9.4

5 Results

The resulting data sets were sorted and checked for duplicates by the Linux
command line tools sort and comm. For all tests and partition schemes the pair-
wise comparison of the resulting data files showed that no duplicates had been
generated.

The experimental results in Table 4 show that the partitioning has no influ-
ence on the data quality – the averaged errors between the initial histograms
and the ones computed on the resulting data sets are constant. The experiment
also shows that our composite key generation algorithm is parallelizable, since
the execution times decrease when more processors are initiated. The second
test (see Table 5) points out that with larger scalings the initial distributions are
still respected and data is not skewed. Note, that errors of Tables 4 and 5 are
not comparable since different bucket widths were used.

6 Related Work

There is much work done in synthetic data generation. Gray et al. [6] were
one of the first to propose strategies for scalable data generation. For example,
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they propose a forking scheme where each process generates a partition of each
table. They also showed how to use multiplicative groups to produce sequences
of numbers that are dense and unique.

Bruno and Chaudhuri developed a flexible data generation tool [2] including
a Data Description Language (DGL). The basic construct for generating values
is the iterator. Iterators can be combined, nested or concatenated to produce
complex types. DGL also allows for querying existing data during the generation
of new data. Iterators produce their output sequentially and may be consumed
by other iterators. However, their buffering technique via shared memory makes
their approach unscalable.

In his PhD thesis, Hoag [7,8] presented a parallel synthetic data generator
(PSDG) along with an XML-based data description language. The synthetic data
specification accepts five types of generation constraints: uniform, histogram,
value sequences, and formular constraints involving operators, constants, built-
in functions, or field values.

Rabl et al. [11] presented a parallel data generation framework (PDGF) which
is Java-based like PSDG, but has an execution model close to the one of Myr-
iad. It uses a hash function based pseudorandom number generator with con-
stant access time which enables efficient substream partition and recomputation
between nodes.

In contrast to PDGF Myriad employs an XML-to-source compilation tech-
nique and makes extensively use of C++ templates. This ensures a minimal
amount of expensive virtual function calls inside the generation loop and offers
extensibility at code-level.

7 Discussion

7.1 Permutation

For each sample that has to be written, there are two calls of the PRP. One call
to decorrelate the tuple and node index and one to achieve a uniform distribution
within a bin. We can only scale-up if we use PRPs with constant lookup times.
Below we show how we constructed a pseudorandom permutation function π
within the Myriad framework, which exploits the already implemented PRNGs.
Under the condition that a PRNG produces numbers with multiplicative predic-
tion resistance, we can simply concatenate random numbers and the prediction
resistance scales with it in a multiplicative way. For example, concatenating two
64-bit samples that are prediction resistant under multiplication results in a 128-
bit number with multiplicative prediction resistance. Let PRNGmult denote the
multiplicative prediction resistant generator

PRNGmult : {0, 1}q → {0, 1}r.

We can construct a PRNG with arbitrary domain size n and seed s by calling
the PRNG 
 log2 n

r � times and concatenate its bit representation

PRNGmult,gen
s : N → N, n �→ (PRNGmult(j))

j=s..� log2 n
r �
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We use the above constructed generator to permute the virtual tuple iden-
tifier in Θ(
 log2 n

r �) time by XORing the identifier with the pad resulting from
PRNGmult,gen

s :

π : {0, 1}log2 n → {0, 1}, (n, i) �→ PRNGmult,gen
s (n) ⊕ i. (3)

In the field of cryptography, this encryption scheme is known as Vernam’s cipher
or one-time pad, which obtains perfect secrecy3. However, since we re-use the pad
for keeping the uniqueness property of the output, we lose the pseudorandomness
property. For example, if b is the number of bits used for the pad, we only address
2b different permutations out of n! many. The exploration of more powerful
random-access permutation functions for our composite key generation algorithm
remains future work.

7.2 Discretization

For our composite key generation algorithm we assume as input discretized dis-
tributions. Discretizing the target distributions is not restrictive, and natural in
two ways. Firstly, when replicating a database instance column distributions are
read out in form of histograms collected by the optimizer of a database manage-
ment system. Secondly, during the data generation process the bit representation
of numbers fixes the number of decimal places. In this way, the number of items
in a bin is countable, which is exploited during the sampling process when it
comes to mapping to a domain value.

8 Conclusion

We gave a description of how to generate tuples with attribute values for which
uniqueness holds only on their combination. In the context of databases, this is
relevant for a class of composite keys or user-defined constraints. Our key gener-
ation algorithm therefore extends the capabilities of the already existing parallel
data generation frameworks to more complex data. It is completely parallel and
can be implemented such that PRNGs with constant access times are utilized.

Acknowledgements. We thank the anonymous reviewers for their input that helped
to improve the quality of the paper. Furthermore, the first author would like to thank
Christian Lessig for his valuable assistance in editing.

A Composite Keys

Listing 1.1 shows four SQL statements for creating simple schemas. For the sake
of simplicity the statements only declare key columns. Table Simple has one
column protein which is declared as primary key and is necessarily unique,
3 Under the condition that the pad is used only once and not known to the adversary.
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i.e. protein makes up a simple key. Table Compound has two attributes, each
making up a simple key in its own right, since they are declared as unique.
Tables Composite1 and Composite2 are examples of composite key declarations.
Composite1 has only one key attribute which makes up a simple key. Table
Composite2 has even two attributes for which uniqueness exclusively holds for
their combination. Possible instances of all four relations are shown below.

Listing 1.1. Table creation in SQL

CREATE TABLE Simple(

protein VARCHAR (50) PRIMARY KEY

);

CREATE TABLE Compound(

protein VARCHAR (50) UNIQUE ,

aminoacid CHAR (3) UNIQUE ,

PRIMARY KEY(protein , aminoacid)

);

CREATE TABLE Composite1(

protein VARCHAR (50) UNIQUE ,

aminoacid CHAR(3),

PRIMARY KEY(protein , aminoacid)

);

CREATE TABLE Composite2(

protein VARCHAR (50),

aminoacid CHAR(3),

PRIMARY KEY(protein , aminoacid)

);
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