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Abstract The growth of Pharmacogenetics (PGx), using biomarkers to diagnose, 
prognose and identify patient subgroups most responsive to clinical intervention, 
heralds the possibility of more effectively targeted therapies and personalised med-
icine. Whilst demonstrating clinical significance in a number of studies, greater 
use of PGx has been limited by the need for further technological/methodological 
advancement together with a more integrated approach in study design and data 
analysis at the outset of clinical studies. Consideration of the statistical factors to 
be examined over the course of biomarker studies at the planning stage, instead 
of the current trend for retrospective analysis, will ensure that studies will be suit-
ably powered to address specific questions and that subsequent data analysis will 
account appropriately for sources of variability. This will improve confidence levels 
in the conclusions drawn and the overall utility of PGx research. Greater use of 
PGx in the development of personalised medicine will require more guidance by 
statisticians and quantitative biologists in the handling and extraction of informa-
tion derived from the data produced from large studies within the multidisciplinary 
network of researchers involved. This chapter highlights the key limiting statistical 
factors to be considered when embarking upon investigations using PGx, affecting 
the quality of information obtained from clinical data generated in personalised 
medicine research.
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1  Introduction

The development of Pharmacogenetics (PGx) using biological markers (biomark-
ers) to identify patient groups responsive to treatment during clinical trials promises 
a new era in personalised medicine. Its application within recent clinical develop-
ment programmes has grown considerably as both healthcare providers and drug 
developers have recognised its importance in directing treatments to those most 
likely to benefit. Where PGx has been implemented it can be used to guide deci-
sion making in clinical studies. It offers additional options over the course of drug 
development by helping explain unexpected variability in safety and efficacy out-
comes in clinical interventions. Previously, such variability would have resulted 
in the termination of costly research programmes. However, as PGx can identify 
patient subgroups which are most responsive to treatment it can be used to focus 
further studies within these subsets.

Despite the potential value of PGx in improving the benefits and reducing the 
risks of some drugs in development by targeting treatments more effectively, so 
far its successes within research have been limited. This may be due in part to its 
predominant use, at present, as a tool to re-evaluate development plans when study 
outcomes are negative or ambiguous rather than being integrated at the outset in a 
personalised medicine approach. However, although PGx is still an evolving strat-
egy requiring further technological and methodological development to optimise its 
use in data analysis and study design, its uptake in research programmes at the pro-
spective planning stage, aiding study design and data analysis, is likely to improve 
its utility. To this end, this chapter identifies and quantifies the key limiting statisti-
cal factors commonly encountered when using PGx within a research study, which 
affect the quality of the information derived from personalised medicine research.

2  Types of Biomarkers

The aim of PGx analysis is to identify and characterise clinical responses occur-
ring in patients subject to a given clinical intervention. These effects can be traced 
through data sets acquired from a variety of biomarkers. The use of biomarkers to 
track disease and its treatment offers the future possibility of individualised thera-
pies providing personalised medicine for each patient. The biomarkers observed 
are biological characteristics that may be detected and measured objectively and 
used as an indicator of normal biological, pathogenic or pharmacologic processes in 
response to therapeutic intervention. Identification of individual biomarkers in the 
form of chemical, physical or biological parameters can be used either to measure 
progress of a disease or the efficacy of its treatment. As a result, biomarkers may be 
used to diagnose or predict treatment or disease outcome.

There are different types of biomarkers, with each type requiring the applica-
tion of distinct statistical methods depending on their relationship to the observed 
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treatment response. Therefore, the objective of a biomarker’s use and its charac-
teristics should be clear at the outset of analysis to ensure that the correct statisti-
cal approach is applied to the data. Some examples of biomarker types and their 
uses are given in Table 1. In this chapter, two types of biomarkers are considered, 
prognostic and predictive markers. For statistical purposes there is an important 
difference between these two marker types. Prognostic biomarkers, such as AB1-
42, are linked to the prognosis or likely disease outcome in a defined patient group 
independent to the treatment given. As a consequence, they are usually identified 
with models where the biomarker is fixed as the main effect. In contrast, predictive 
biomarkers, including HER2, are able to help identify patients likely to respond to a 
given treatment but not to a comparator where response may be measured as effica-
cy or safety. Their identification requires the application of a statistical model which 
allows interaction between biomarker and treatment. In some instances, however, 
biomarkers may be both prognostic and predictive. An example of this is mutant 
K-ras which expressed in non-small cell lung tumours and can be used to predict 
responsiveness to EGFR Tyrosine Kinase Inhibitors.

Table 1  Examples of predictive and prognostic biomarkers in current use
Biomarker Type Associated biological process/

function
Indication

EGFR (ErbB-1) Predictive Signal transduction, cell 
proliferation, regulation of 
DNA replication/repair, stress 
response, cell adhesion, cell 
migration

Advanced non-small 
cell lung cancer, anal 
cancer glioblastoma 
multiforme

HER2/neu (ErbB-2) Predictive Transcriptional regulation, 
signal transduction, cell 
proliferation

Breast cancer

BluePrint ® Predictive 80 gene panel for assessing 
molecular subtype of breast 
cancer

Breast cancer

MammaPrint® Predictive 70 gene panel to categorise 
lymph node negative breast 
cancer

Breast cancer

OncoTypDX® Predictive/
prognostic

21 gene panel for assessing 
response to chemotherapy of 
estrogen receptor (ER) posi-
tive tumours

Breast/colon cancer

HLA-B*5701 Predictive Immune regulation Hypersensitivity 
reaction to Abacavir

K-RAS Predictive/
prognostic

Ras protein signal transduc-
tion, cell proliferation, gene 
expression regulation

Colorectal cancer

AB1-42 Prognostic Protein component isoform 
of amyloid deposits associ-
ated with Alzheimer’s Disease 
(AD)

Alzheimer’s disease
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Identification of prognostic and predictive marker types is proving extremely 
useful in the development of personalised medicine. Prognostic markers can be used 
to segment populations by setting inclusion criteria at the start of a clinical study. 
This results in a reduction in the overall variability in the measure of response. In 
contrast, predictive markers are used to target treatments to patients more likely to 
derive benefit and are frequently further investigated as diagnostics for identifying 
responsive patient groups. An example of the use of a predictive biomarker to dis-
tinguish patient subgroups is shown in Fig. 1.

2.1  Biomarker Platforms

There are many different methods or platforms employed to measure biomarkers. 
These include a wide variety of technologies that can be used to produce biomarker 
data ranging from imaging modalities to the measurement of molecular biomarkers 
indicating gene expression, RNA expression, protein concentrations, single nucleo-
tide polymorphisms (SNPs) or metabolites. Biomarker data can also take the form 
of continuous measurements, categories and ordinal scores. Different platforms 
may measure single markers or many thousands of markers simultaneously, gener-
ating data with specific attributes which will need to be accounted for in any statisti-
cal analysis. Data generated from some platforms may also require pre-processing 
steps such as scaling or normalisation [1] which must be considered prior to analy-
sis. Consequently, it is important that the properties of the data obtained from each 
type of platform are factored into any statistical analysis.

Fig. 1  An example of a predictive biomarker that is able to distinguish between groups of patients. 
In this case, the difference in the response rate in the BM+ group between treatment 2 and treat-
ment 1 is greater than the equivalent difference in the BM− group. In other words, Δ2 is greater 
than Δ1
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2.2  Variability and Data Quality

Despite the accuracy of many of the biomarker platforms used, biomarker data can 
be prone to variability and bias. This can result in any subsequent analysis being 
subject to greater levels of statistical uncertainty leading to increased study fail-
ure rates. There are many factors which cause the observed variability and bias. 
These include the handling methods used for the tissue sample, when the sample 
was taken, patient factors such as drop-out rates, as well as inter-laboratory varia-
tion. If such factors are not addressed, inconsistent results are produced for the 
same biomarker across different biomarker studies [2, 3]. Therefore, it is critical 
that possible sources of variability should be evaluated during the development of 
a biomarker and suitable strategies for handling these sources and minimising their 
effect implemented.

2.3  Sources of Missing Data

Biomarker data often has a higher proportion of missing values than clinical data. 
These can arise as a result of numerous factors such as low consent rates for optional 
samples, patient drop-outs due to non-response or toxicity and measurements below 
the limits of detection of the biomarker assay. One key problem with these missing 
data is that the data are not missing at random. Indeed, the patients with missing 
values can be more likely to differ in their response to treatment compared to those 
with non-missing values. Therefore, it is important that missing biomarker data is 
not ignored as they are often informative. During any analysis involving missing 
biomarker data, it is important to compare key variables (e.g. those likely to impact 
response) between patients with and without biomarker data in order to understand 
differences between the missing group and the remainder of the study population. 
In addition, it is useful to understand reasons for missing data and take appropri-
ate action. Where the pattern of missing data is understood, the implementation of 
models or imputation methods can help to recover the true underlying population 
statistics in the presence of missing data. On the latter point, information relating 
to the reason for missing data (e.g. below the limit of quantification) is often not 
recorded within the data set. This illustrates the need to improve on data standards 
and management practices relating to biomarker data.

2.4  Dimensionality and False Positives

Biomarker studies often involve the evaluation of numerous biomarkers in order 
to generate new hypotheses relating to the association between biomarker and re-
sponse to treatment. This type of repetitive analysis results in a high number of 
false positive associations if the appropriate methods for controlling for the false 
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positive rate are not used. Methods for adjusting for multiple testing have been re-
viewed elsewhere [4]. However, it should be noted the strategy for controlling false 
positives should be consistent with the aims of the experiment and the proposed 
use of the results. In hypothesis generating studies, it does not make sense to apply 
an overly conservative strategy that limits the likelihood of identifying plausible 
markers. Furthermore, exploratory studies do not end when a statistically signifi-
cant p-value is generated. Indeed, there are often further steps in the evaluation 
process that will remove further spurious associations leaving those markers which 
are biologically plausible and have a clinically meaningful application.

3  Study Design Options

Good study design improves significantly the probability of meeting research ob-
jectives whilst minimising known sources of variability and bias. In PGx, the study 
design options depend on how and when PGx is being applied. At present, the early 
stages of PGx research is usually exploratory whereby many biomarkers are inves-
tigated, often using data collected as part of a study designed for another purpose. 
This is usually followed by confirmatory research where PGx becomes the primary 
objective in a prospectively designed study. To date, most methodological research 
into study designs for PGx has focused on the prospective, confirmatory applica-
tions.

3.1  Confirmatory Studies

Confirmatory studies are designed primarily to test a hypothesis based on observ-
able pre-specified biological effects. Such studies are designed prospectively and 
measure markers of relatively known function which have previously been shown 
to explain variability in patient response. Several study designs that use prognostic 
and predictive markers to stratify the study population have been suggested and 
evaluated [5–8]. Three common designs used in confirmatory studies for predictive 
markers are an enriched design, a stratification design and an adaptive design, as 
shown in Fig. 2. The merits of each of these are discussed in the following sections.

In the targeted or enriched design (Fig. 2a) patients are selected for the study 
based on their biomarker status in a pre-screening step. This allows patients with 
the negative status to be excluded from the study. Positive status patients are then 
randomised to one of the treatment groups. The main advantage of this design is 
that a treatment effect can be observed within smaller studies. The disadvantage of 
this approach is that it does not provide information on the effect of treatment in 
the excluded population. As a result, it can only be used when there is already prior 
knowledge of the impact of a single biomarker.
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In contrast, the stratification design is less restrictive in its remit (Fig. 2b). It also 
has a pre-screening step whereby all the study subjects are stratified according to 
biomarker status and then randomised to treatment. The advantage of this design is 
that information can be collected on the treatment effect in the negative biomarker 
status group. Moreover, the performance characteristics of a diagnostic test, for 
example its sensitivity and specificity, can be estimated. However, as with enriched 
design, considerable prior knowledge about the biomarker is also required.

Both the enriched and the stratification designs are useful when studies are de-
signed to test a single hypothesis relating to a given biomarker. However, more of-
ten studies have multiple objectives and involve evaluating a treatment effect in the 
entire study population as well as within sub-populations. In this instance an adap-
tive design is useful (Fig. 2c) [9]. With this design, patients are randomised to treat-
ment groups and the treatments are compared. If there is no difference in the treat-
ments, patients are stratified by biomarker status and a comparison of treatments is 
performed within these strata. This approach leads to a higher false-positive error 
rate, as multiple statistical tests are performed. Controlling for false-positives will 
result in larger studies. However, this design is more flexible than the targeted or 
stratified design as it allows the testing of multiple objectives and can be modified 
to include the evaluation of multiple biomarkers.

3.2  Exploratory Studies

PGx is used in exploratory studies for identifying useful biomarkers and to gener-
ate hypotheses for testing in further studies. Exploratory studies can range from 

a b

c d

Fig. 2  Examples of study designs for Pharmacogenetics: Enriched design (a), Stratification design 
(b), Adaptive design (c), Retrospective design (d)
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evaluating small groups of candidate markers to large scale biomarker arrays, de-
pending on prior knowledge of their biological function and relationships to treat-
ment response.

Currently, clinical studies often collect blood samples with a view to using them 
for exploratory PGx research [10]. If a PGx study is initiated, the study popula-
tion is stratified retrospectively and iteratively using the biomarkers under inves-
tigation (Fig. 2d). The advantage of this approach is its flexibility, as it does not 
compete with the original study objective and many biomarkers can be evaluated 
retrospectively. However, it has a limited ability to detect biomarker effects due to 
the restricted sample size and the need to control for the high false-positive rate. 
Moreover, bias and imbalance are introduced into the strata as patients within them 
have not been randomised to treatment [11]. Consequently, biomarkers identified 
using retrospective analysis may require further support from data derived in pro-
spectively designed studies [12].

As a result of the limitations of the retrospective approach in exploratory 
studies, PGx has not provided the breakthroughs anticipated. Notable exceptions 
to this have been studies with drugs associated with large genetic effects, such 
as Abacavir [13] and Panitumumab [14]. This has highlighted the key challenge 
in PGx research. Where insufficient patient data has been available, it has been 
hard to detect more moderately sized effects and thus identify biomarkers with 
clinical utility. Nevertheless, retrospective PGx approaches will continue to play 
an important exploratory role. However, to improve the likelihood of success-
ful exploratory PGx studies, a more integrated approach is required in research 
programmes at the outset of clinical study design and data analysis. Indeed, re-
cent research using computer simulation to design studies addressing multiple 
objectives, including PGx investigations [15], showed that prospective planning 
is vital. This is particularly important when studies are designed for another pur-
pose, so that useful PGx data can be generated without impacting the primary 
objectives of the study.

3.3  Data Analysis Methods

The main objective for PGx analysis is to identify and/or characterise genetic ef-
fects. Whilst there are too many methods to review adequately in this article, there 
are some general principles that are broadly followed in basic analyses, as shown 
in Fig. 3. Current approaches to biomarker or feature discovery involve a multi-
step process whereby biomarkers are selected for further investigation based on the 
strength of association with an outcome; typically by setting an arbitrary limit on 
the likelihood of detecting false positives (e.g. p value < 0.05). Evaluation of bio-
markers involves the application of a statistical model comprising the factors that 
are thought to contribute to the observed variability in response. These models can 
include two types of effects: main effects where factors make a sole contribution to 
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the observed variability; and interaction effects where two or more factors make a 
combined contribution. This model can be written in the form of

where R is the response to treatment, B is the biomarker measurement and T is the 
treatment group.

R B T B T= + + ×

Fig. 3  An example of a 
statistical analysis strategy 
for a personalised medicine 
study. The analysis typically 
involves multiple steps that 
integrate different sources of 
information
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The choice of model is important as it will determine the utility and application 
of selected markers. Models with genotype as a main effect are useful for identify-
ing markers that are associated with response, regardless of treatment (prognos-
tic markers) whilst markers that are associated with response in the presence of 
treatment (predictive markers) can be identified using models with an interaction 
between genotype and treatment. Genetic markers are then selected on the basis of 
their prognostic or predictive utility.

3.4  Alternative Analysis Methods

The analysis methods described above relate in general to linear regression models. 
However, these can be limited in terms of their ability to incorporate complex re-
lationships between different predictive and prognostic factors. In addition, linear 
modelling tends to require the pre-specification of the structure of the model. Clear-
ly, this can lead to an over-simplification of the form of the relationships amongst 
predictive factors and outcomes. There are numerous other approaches that do not 
make the same assumptions and are more flexible in terms of enabling complex re-
lationships to be modelled. There are too many to cover in any detail but neural net-
works [16], support vector machines [17] and random forests [18, 19] are regularly 
used to develop predictive models with some success. All modelling approaches 
need to take account of the study design and the biomarker utility and type.

High dimensional biomarker data sets are often sparse, in the sense that the mod-
el fitting process may have a limited number of observations that can be used to 
estimate the model parameters. There are a few useful methods that can be used to 
handle low density data including exact methods, lasso, elastic nets and others [20].

4  Model Building and Validation

The development of predictive and prognostic models generally involves the evalu-
ation of biomarkers in the context of many other factors, such as demographics, 
baseline measures and environmental factors. As a result, these models include a 
combination of many factors that are additive in terms of their association with out-
come. The development of these models is a multi-step process comprising variable 
selection and model evaluation followed by model validation [20].

Approaches to variable selection and model evaluation are generally well es-
tablished. Typically, variable selection and model evaluation is an iterative process 
whereby variables are added or removed from a model following an evaluation of 
the contributions of those variables to the performance of the model. Following the 
model building process, the final model is the one that is considered to be the best 
performer.

One major problem with using high-dimensional data to build a predictive model 
is over-fitting of the data. In this instance, many variables are shown to have strong 
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relationships with the outcome as a result of random selection. Consequently, any 
model that is based on these random relationships will not generalise to unseen data 
or an independent data set, highlighting the importance of model validation.

There are numerous ways to perform model validation [20]. A common approach 
is to train the model on data from one study and then use an independent dataset to 
validate the model by assessing its performance in the second dataset. One problem 
with this method is the lack of availability of a relevant independent dataset. An 
alternative approach is to split the data from one study into a training and validation 
set. The robustness of the model may be evaluated using an iterative procedure 
for selecting the test and validation set. This, however, relies on the availability of 
enough observations (patients) as splitting the data will reduce the power to identify 
useful markers. Where sample size is limited, another useful strategy is to use leave-
one out cross-validation. In this case, the model is trained on all but one observation 
and the ability of the model to predict the outstanding observation is evaluated. This 
evaluation is performed repeatedly by randomly selecting the observation that is left 
out of the model building step.

Recent work has shown that the best approach to model building is to integrate 
the variable selection and the validation steps into one large iterative process [21]. 
The benefit of this method is that the performance of many models can be assessed 
at once whilst controlling for false positives. For all the cross-validation approaches 
described above, the model building and performance characterisation is performed 
in the same dataset using data that were collated under study-specific conditions. 
The most robust form of validation involves the use of completely independent data 
(external validation) to assess the performance of a model.

5  Diagnostic Development

The use of statistics and modelling is vital in demonstrating the utility of companion 
diagnostics, prior to regulatory approval. The sensitivity and specificity of a diag-
nostic in its target population, as well as its positive and negative predictive value 
need to be identified under the original conditions in which it has been evaluated 
and developed. There are also a range of criteria that need to be set [22], such as 
defining the optimal threshold for biomarkers on a continuous scale and evaluating 
the repeatability and reproducibility of the biomarker assay. In addition, the diag-
nostic development process can be validated by understanding and quantifying the 
factors that may impact its performance. When a diagnostic is being co-developed 
with a drug for regulatory approval, good coordination between these processes is 
critical. Diagnostics development may often fall behind that of its associated drug, 
due to identification of biomarkers over the course of a research programme. This 
can cause delays in drug approval unless both development programmes are well 
synchronised.
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6  Visualisation and Presentation

A key component of any analysis in a personalised medicine study is a clear and 
simple visualisation of the results. The use of good graphical outputs able to dis-
play relevant information simply, help to place the results in a suitable context 
facilitating the interpretation of large data sets. Well-designed graphical displays 
can integrate information on the clinical utility of biomarkers along with biological 
information, such as the functional annotation of the gene region, by overlaying 
both sources of information on the same plot. Another important aspect of visualisa-
tion is the presentation of high dimensional data. In this case, the use of multi-panel 
plots, heat maps, contour and surface plots are extremely useful. In addition, it is 
common to reduce the dimensions of data using methods such as multi-dimensional 
scaling, principal components analysis and clustering. This enables the data to be 
displayed on standard plots in two or three dimensions and can also uncover hidden 
structures in the data.

The presentation of simple summary statistics can often mask effects and re-
sponses that are notably different to those of the broader population. Therefore, it is 
important to be able to distinguish those observations that differ in order to under-
stand variability in the data and identify patients that derive benefit. Consequently, 
any analysis of personalised medicine research should include graphical displays 
that enable the visualisation of individual data points. It also presents an opportunity 
for the observations obtained from a biomarker study to be visualised alongside 
information derived from other sources, placing it within a wider biological context.

7  Bioinformatics and Biological Interpretation

Since the completion of the Human Genome Project (HGP) and the arrival of next 
generation sequencing (NGS), technological advances in genomic sequencing have 
increased the speed at which entire genomes can now be sequenced. In addition, 
the use of microarray gene chip technology to screen patient tissue samples for the 
presence of genetic biomarkers associated with some disease processes has become 
increasingly commonplace. These advances in the area of medical genetics have 
resulted in the generation of unprecedented volumes of raw biological data. The 
need to analyse this data in order to understand it and how it might be used for 
clinical applications has required the capabilities provided by the expanding field of 
bioinformatics. Bioinformatics combines the mathematics, computer sciences and 
statistics required for the collection, banking, deciphering, analysing and model-
ling that is necessary to analyse large amounts of biological information. Indeed, 
bioinformaticians continue to seek to address the pressing need for data analysis 
through the development of analytical tools that can be utilised on desktop systems 
to analyse and interpret the data collected.
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The recent era of next generation sequencing and multiplex microarray platforms 
has allowed a vast expansion in the number of sequences able to be analysed in each 
experiment. Prior to the emergence of these technologies, the focus of molecular bi-
ology was on known sequences previously identified and attributed to a given pro-
tein and/or function. Complementary probes were used to identify the presence and 
abundance of those target sequences and determine differences between treated/
non-treated or resistant/responsive groups. Performed initially in singleplex assays 
(PCR), this quickly progressed to multiplex microarrays which could simultane-
ously measure thousands of targets (genes, single nucleotide polymorphisms (SNP) 
or messenger RNA transcripts (mRNA)) thanks to the technologies developed by 
Affymetrix, Agilent and Illumina. However, whilst this has increased the number of 
sequences that can be analysed it has also raised problems in their analysis due to 
the high number of dimensions in the data produced and the relatively low number 
of observations in studies.

Bioinformaticians have played a key role in implementing these technologies and 
addressing the difficulty in dealing with high dimensional data. The pre-processing 
of data has become critical to the utility of high-throughput systems, with several 
normalisation techniques, such as Robust Multi-array Average (RMA) and the cur-
rent Affymetrix algorithm MAS5, being developed and used routinely in both the 
proprietary software provided by the instrument manufacturers and in open source 
packages, such as that available on the Bioconductor software repository (http://
www.bioconductor.org/). Following normalisation, the next problem is dealing with 
the high dimensional data and correcting for the false discovery rate in hypothesis 
testing. Both commercial and open source packages use standard statistical methods 
to make comparisons between groups. P-values are typically adjusted to correct for 
the number of tests being performed through methods such as Benjamini–Hochberg 
[23].

Whilst many of the current tools for analysing and interpreting microarray and 
next generation sequencing data are useful, the huge quantities of data they produce 
nevertheless continue to create new challenges in data analysis. The technical pro-
cess of sequencing an entire genome may have become routine, however analysis 
of the data it generates remains problematic as it is very computationally intensive 
with over 3 billion base pairs and 50 million variations to consider. Although se-
quencing and microarray platforms have been around for some time, the ability to 
process the volume of data produced in a routine setting at an affordable cost has 
only become a relatively recent possibility due to the ability to store and process the 
terabytes of data produced.

Currently, a number of software tools exist which facilitate the process of in-
terpreting sequencing and microarray data. Alignment tools, such as BLAST, have 
been used for years to identify proteins or genes from short amino acid or nucleo-
tide sequences or to compare the similarity between two or more sequences. The 
concept of the algorithms used by FASTA/BLAST and software for NGS sequence 
alignment are similar, however, the alignment of hundreds of millions of short se-
quences (FASTQ) from the entire genome takes a lot longer to perform even with 
accelerated algorithms. The Bowtie sequence alignment tool is one of the most 
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widely used aligners, due to its speed and the fact it is freely available to use. Even 
this can take several hours per sample to process and many researchers choose to 
run these on cloud-based platforms such as Amazon’s Web Services. Other tools 
for analysing these alignments to identify variations, splice variants and differential 
expression of genes and isoforms are also freely available, such as the web-based 
application, Galaxy. However, these are still being actively developed and there 
are no clearly defined procedures as yet for the analysis and interpretation of align-
ments. Indeed, there are a plethora of tools both commercial and open-source for 
visualising, analysing and interpreting the large volume of information produced by 
each experiment.

Although the development of sequencing, storage and processing techniques has 
evolved concurrently, the ability to interpret the biological relevance of the informa-
tion generated is still lagging. Some understanding of the underlying biological pro-
cesses may be obtained through the mining of large gene sequence databases. These 
repositories of information encompass the knowledge gained to date regarding the 
biological relevance of genes and variations in sequences. Further biological con-
text for biomarker studies might also be obtained through the use of data banked in 
public databases, such as ArrayExpress a functional genomics database containing 
data from both microarray and high-throughput sequencing studies. These databas-
es now play a fundamental role in biological research and development, acting as 
a warehouse for storing, organising and providing large data sets relating to the oc-
currence and consequences of many biological processes, including gene variation, 
drug transport, drug targets, and other proteins of importance for drug response or 
toxicity [24–27]. Amongst the large number of databases generally available, some 
have become important bioinformatics tools within pharmacogenetics, such as the 
Human Genome Project (HGP) [28], Ensembl [29], the SNP databases dbSNP and 
JSNP [30], and HapMap [31]. These databases are rapidly expanding as they are 
continually updated with new submissions of genetic information, especially re-
garding the variation across the population.

The HGP demonstrated that the 20,000-plus genes expressed in humans only ac-
counts for 1.5 % of the genome, with very little known about the function of the re-
maining 98.5 %. This is now being addressed through global collaborative projects 
such as ENCODE, which aims to completely annotate the non-protein encoding 
regions of the genome. Moreover, large sequencing projects like HapMap phase 3 
and the 1000 Genomes Project, aim to give a clearer picture regarding the intrinsic 
genetic variation present within the human population. These projects in particular 
will provide a valuable resource for bioinformaticians, giving an important insight 
into the range of variation inherent in the human genome in general across multiple 
ethnicities. This will no doubt raise more considerations for analysis and interpreta-
tion of genomic data.

Possibly the most influential sequence database to date has been GenBank, an 
open access database storing known gene sequences from over 100,000 distinct 
species, along with their protein translations. It is run and maintained by the Na-
tional Center for Biotechnology Information (NCBI) which plays an active and col-
laborative role in the development of computational biology. Their bioinformatics 
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resources can be used to annotate and analyse an abundance of disparate data. Ac-
cess to this important and expanding resource allows researchers to derive possible 
connections between the different aspects of biomarker data and thereby shape a 
more biologically meaningful view of it [32, 33].

The Ensembl database also provides genomic information with a rich source 
of gene variant data from humans and other species, including single nucleotide 
polymorphisms (SNPs). Alongside the HGP and Ensembl, dbSNP, Japan’s JSNP 
and HapMap are another three of the more widely accessible and utilised bioinfor-
matics resources. The Single Nucleotide Polymorphism Database, (dbSNP), cre-
ated to supplement GenBank, is a public access archive for genetic variation within 
and between organisms developed by the NCBI. It comprises information on over 
64 million distinct SNP variants in 55 species, including Homo sapiens [34]. Mean-
while, the HapMap project provides an alternative platform of information designed 
to enable researchers to carry out large scale studies to link genetic variants to the 
risk of specific diseases [31].

Other useful databases storing genetic data are the Gene Expression Omnibus 
(GEO), the Kyoto Encyclopaedia of Genes and Genomes (KEGG) [35] and Phar-
mGKB [36]. The analysis of the data contained in these databases is now an inte-
gral element of the bioinformatics process. Many of the data storage facilities have 
analytical applications bolted on as add-ons, whilst others are standalone ware-
houses that store the information that is used in other analytical applications. As 
with genetic databases, there are many bioinformatics tools available for dissecting, 
analysing and visualising the data, a selection of these have been listed in Table 2. 
This is also an evolving field within bioinformatics with new software tools under 
development.

Another recent tool useful in understanding the biological complexity of differ-
entially expressed genes and proteins and identifying statistically significant sets of 
genes, is Gene Set Enrichment Analysis (GSEA) [37]. This is a powerful analytical 
method for interpreting gene expression data, deriving its power by focusing on 
groups of genes or gene sets that share common biological function, chromosomal 
location or regulation. Whilst single-gene analysis is useful it can miss important 
effects on biological pathways which are distributed across large networks of genes 
and are hard to detect at individual gene level. In contrast, GSEA which examines 
sets of related genes can identify many common biological pathways as cellular 
processes often affect networks of interacting genes. The advantage of GSEA is that 
it facilitates interpretation of genome-wide expression data as it focuses on gene 
sets which give more reproducible and therefore interpretable data.

Undoubtedly, constructing biological meaning from lists of statistically signifi-
cant markers remains a challenge to bioinformaticians. However the development 
of complex data warehouses and other resources, that detail the structures and pro-
cesses and interactions where individual genes/proteins exist, have helped to over-
come such difficulties through the grouping of long lists into smaller sets of related 
genes or proteins that share a similar physiological/pathological function, cellular 
localisation, position in the genome or can be defined by similar gene ontology 
terms. There is a plethora of gene set databases that use examples found in the 
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literature and gene sets that have been computationally derived. Databases such 
as, MSigDB and ConsensusPathDB, have brought together a large collection of 
gene sets comprising gene regulation, protein interactions, genetic interactions, bio-
chemical reactions, drug-target interactions, pathways, gene ontology, disease regu-

Table 2  A non-exhaustive list of bioinformatics tools available with a brief description of the tool 
and an external link
Tool Description Link
ArrayExpress Functional genomics database contain-

ing data from microarray and high-
throughput sequencing studies

http://www.ebi.ac.uk/
arrayexpress/

BioMart Search engine allowing generation of 
tables of terms linked to genes and 
SNPs

http://www.ensembl.org/
biomart

BLAST Database allowing searching and 
alignment of sequences to the RefSeq 
genome

http://www.blast.ncbi.nlm.nih.
gov/Blast.cgi

GeneMania Search engine to find related genes 
through linkage of association 
information

http://www.genemania.org/

GSEA Tool to perform enrichment analysis on 
gene sets provided in MSigDB database

http://www.broadinstitute.org.
gsea/index.jsp

Haploview Range of tools for analysing linkage 
disequilibrium and haplotype patterns

http://www.broad.mit.edu/mpg/
haploview/

KEGG mapper Collection for mapping gene sets to the 
KEGG pathways

http://www.kegg.jp/kegg/
kegg1b.html

KEGG pathway R package for analysis and visualisa-
tion of expression data within KEGG 
pathway

http://www.bioconductor.org/
packages/release/bioc/
html/KEGGprofile.html

PathNet Tool that performs pathway analysis 
using topological information from 
pathways

http://www.bioconductor.org/
packages/release/bioc/
html/PathNet.html

Pathway browser Tool for visualising pathways http://www.reactome.org/
PathwayBrowser/

SNAP SNP annotation/proxy search tool using 
linkage disequilibrium and physical 
distance

http://www.broadinstitute.org/
mpg/snap/

Stitch Tool for exploration of known/predicted 
molecular interactions

http://www.stitch.embl.de/

Sweep Tool for large scale haplotype analysis http://www.broadinstitute.org/
mpg/sweep/index.html

topGO Compares GO term representation in 
an expression set accounting for GO 
topology

http://www.bioconductor.org/
packages/2.12/bioc/
html/topGO.html

UCSC genome 
browser

Tool providing interactive graphical 
interface to visualise genome annotation 
and chromosomal position

http://www.genome.ucsc.edu/

http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
http://www.ensembl.org/biomart
http://www.ensembl.org/biomart
http://www.blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.genemania.org/
http://www.broadinstitute.org.gsea/index.jsp
http://www.broadinstitute.org.gsea/index.jsp
http://www.broad.mit.edu/mpg/haploview/
http://www.broad.mit.edu/mpg/haploview/
http://www.kegg.jp/kegg/kegg1b.html
http://www.kegg.jp/kegg/kegg1b.html
http://www.bioconductor.org/packages/release/bioc/
http://www.bioconductor.org/packages/release/bioc/
http://html/KEGGprofile.html
http://www.bioconductor.org/packages/release/bioc/
http://www.bioconductor.org/packages/release/bioc/
http://html/PathNet.html
http://www.reactome.org/PathwayBrowser/
http://www.reactome.org/PathwayBrowser/
http://www.broadinstitute.org/mpg/snap/
http://www.broadinstitute.org/mpg/snap/
http://www.stitch.embl.de/
http://www.broadinstitute.org/mpg/sweep/index.html
http://www.broadinstitute.org/mpg/sweep/index.html
http://www.bioconductor.org/packages/2.12/bioc/
http://www.bioconductor.org/packages/2.12/bioc/
http://html/topGO.html
http://www.genome.ucsc.edu/
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lation and many more. As differences in database structures and terminology exist, 
moving towards large warehouses of this information and development of advanced 
tools for mining the information are crucial to their implementation. Tools have 
been developed as stand-alone applications or as add-ons in other packages such as 
R (PGSEA). The principles of these tools are largely similar, in that they comprise 
an annotation database, a process that can assign those annotations to a given gene 
list, a further process that performs a statistical test to identify annotations that are 
significantly represented in the gene list and a method to interpret this graphically.

Examples of statistical approaches used in gene enrichment analysis are over-
representation analysis (ORA), functional class scoring and pathway topology. 
Using a statistical test, for example the hypergeometric or binomial, ORA evalu-
ates whether a specified functionally defined group of genes/proteins is represented 
within a gene list, or if it occurs merely by chance [38]. One drawback, however, is 
that ORA treats each gene equally, losing any possible correlation and interaction 
between genes. Functional class scoring overcomes some of the limitations of ORA 
as it treats the genes differently depending on the strength of the individual raw 
microarray values [38]. The pathway topology approach has advantages over both 
of these methods, in that it does not only consider the number of genes in a pathway 
to identify significant pathways, but also utilises information about inter-pathway 
connectivity. GSEA utilises its own novel method for performing the analysis, this 
calculates an enrichment score using a weight Kolmogorov-Smirnov-like test. The 
enrichment score generally reflects the degree of over representation at the top or 
bottom of a ranked gene list [37].

Whilst it remains challenging, bioinformatics has made some progress in under-
standing and interpreting large data sets by exploiting alternative data resources. 
The effort to understand in more depth the implications of the data collected and 
analysed within an experiment has required input from other data sources enabling 
a fuller understanding of its meaning. It is becoming clear that results from primary 
biomarker analyses might need augmentation with additional information from 
other studies to provide a greater biological context for the role of the biomarker in 
question. Further biomarker context could be given by its characterisation as well 
as by pathway analysis. Additional data in this form would help authenticate the 
patient subgroups identified from biomarker analysis by providing further support-
ing evidence. Alternatively, longitudinal data would allow further characterisation 
of subgroups using variables that change over time. This would require the pre-
selection of those variables, with the selection process used described.

8  Future Opportunities

There are a number of opportunities within statistics and modelling to improve the 
application and implementation of pharmacogenetics in future studies. Four key 
areas to be considered are improving study design, integration of analysis meth-
ods, use of disparate data sources to provide biological context and better multi-
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disciplinary collaboration involving quantitative scientists. Addressing these factors 
will develop PGx by increasing the success rate of exploratory studies to identify 
new biomarkers. Additional use of computer simulation will enable the application 
of smarter clinical trials that optimise the likelihood of success of a study without 
prohibitively increasing its size.

At present integrative analysis methods, such as Bayesian methods, are based 
on the idea of obtaining a consensus by combining prior information and current 
opinion, thereby providing a statistical framework that enables the quantitative 
(probabilistic) integration of information across multiple analysis steps [39]. This 
approach can limit biomarker discovery as such studies may be underpowered to 
detect small to moderate (but biologically important) effects; it filters potentially 
useful information in variables that fail to reach significance and it ignores the ad-
ditional control of false positives that naturally occurs in the subsequent analysis 
steps. To progress, there is a need to develop methods that do not filter out useful 
information and that enable the quantitative integration of information from ad-
ditional analysis steps, such as clinical and biological pathway analysis and com-
parisons with literature. Furthermore, there is enormous scope for developing and 
applying statistical models that more closely reflect the underlying biology and pat-
terns of response; using models that better describe the data will increase the power 
to detect genetic markers. The development of these capabilities will require exten-
sive methodological research and development for the integration and application 
of disparate data sources.

It is clear that statisticians and quantitative biologists are of increasing impor-
tance in the multidisciplinary network of researchers involved in the development 
of personalised medicine. Bioinformatics has helped develop new algorithms and 
software to facilitate the analysis of complex data sets. The development of new 
computational data and analytical solutions are crucial to handling and extracting 
the information derived from large clinical studies, improving the understanding 
of disease progression and treatment. Nevertheless, a knowledge gap still exists 
between the exploratory world of bioinformatics and the rigour and regulation of 
clinical statistics. Closer collaboration between quantitative scientists will break 
down the barriers in communication that exist between the disciplines and will en-
able scientists to gain experience, knowledge and an appreciation of the skills and 
capabilities that exist in other fields. Deeper understanding of other capabilities and 
technologies will lead to new innovations that make use of the extensive informa-
tion available and improve the application of Pharmacogenetics in the quest for 
personalised medicine.

References

1. Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, Su Z, Chu TM, Goodsaid 
FM, Pusztai L, Shaughnessy JD Jr, Oberthuer A, Thomas RS, Paules RS, Fielden M, Barlogie 
B, Chen W, Du P, Fischer M, Furlanello C, Gallas BD, Ge X, Megherbi DB, Symmans WF, 
Wang MD, Zhang J, Bitter H, Brors B, Bushel PR, Bylesjo M, Chen M, Cheng J, Chou J, Da-



Pharmacogenetics—Statistical Considerations 87

vison TS, Delorenzi M, Deng Y, Devanarayan V, Dix DJ, Dopazo J, Dorff KC, Elloumi F, Fan 
J, Fan S, Fan X, Fang H, Gonzaludo N, Hess KR, Hong H, Huan J, Irizarry RA, Judson R, 
Juraeva D, Lababidi S, Lambert CG, Li L, Li Y, Li Z, Lin SM, Liu G, Lobenhofer EK, Luo J, 
Luo W, McCall MN, Nikolsky Y, Pennello GA, Perkins RG, Philip R, Popovici V, Price ND, 
Qian F, Scherer A, Shi T, Shi W, Sung J, Thierry-Mieg D, Thierry-Mieg J, Thodima V, Trygg 
J, Vishnuvajjala L, Wang SJ, Wu J, Wu Y, Xie Q, Yousef WA, Zhang L, Zhang X, Zhong S, 
Zhou Y, Zhu S, Arasappan D, Bao W, Lucas AB, Berthold F, Brennan RJ, Buness A, Catalano 
JG, Chang C, Chen R, Cheng Y, Cui J, Czika W, Demichelis F, Deng X, Dosymbekov D, Eils 
R, Feng Y, Fostel J, Fulmer-Smentek S, Fuscoe JC, Gatto L, Ge W, Goldstein DR, Guo L, 
Halbert DN, Han J, Harris SC, Hatzis C, Herman D, Huang J, Jensen RV, Jiang R, Johnson 
CD, Jurman G, Kahlert Y, Khuder SA, Kohl M, Li J, Li M, Li QZ, Li S, Liu J, Liu Y, Liu Z, 
Meng L, Madera M, Martinez-Murillo F, Medina I, Meehan J, Miclaus K, Moffitt RA, Mon-
taner D, Mukherjee P, Mulligan GJ, Neville P, Nikolskaya T, Ning B, Page GP, Parker J, Parry 
RM, Peng X, Peterson RL, Phan JH, Quanz B, Ren Y, Riccadonna S, Roter AH, Samuelson 
FW, Schumacher MM, Shambaugh JD, Shi Q, Shippy R, Si S, Smalter A, Sotiriou C, Soukup 
M, Staedtler F, Steiner G, Stokes TH, Sun Q, Tan PY, Tang R, Tezak Z, Thorn B, Tsyganova 
M, Turpaz Y, Vega SC, Visintainer R, von Frese J, Wang C, Wang E, Wang J, Wang W, 
Westermann F, Willey JC, Woods M, Wu S, Xiao N, Xu J, Xu L, Yang L, Zeng X, Zhang M, 
Zhao C, Puri RK, Scherf U, Tong W, Wolfinger RD, Consortium M (2010) The MicroArray 
quality control (MAQC)-II study of common practices for the development and validation of 
microarray-based predictive models. Nat Biotechnol 28(8):827–838. doi:10.1038/nbt.1665

 2. Mattsson N, Blennow K, Zetterberg H (2010) Inter-laboratory variation in cerebrospinal fluid 
biomarkers for Alzheimer’s disease: united we stand, divided we fall. Clin Chem Lab Med 
48(5):603–607. doi:10.1515/CCLM.2010.131

 3. Fenech M, Bonassi S, Turner J, Lando C, Ceppi M, Chang WP, Holland N, Kirsch-Volders 
M, Zeiger E, Bigatti MP, Bolognesi C, Cao J, De Luca G, Di Giorgio M, Ferguson LR, Fucic 
A, Lima OG, Hadjidekova VV, Hrelia P, Jaworska A, Joksic G, Krishnaja AP, Lee TK, Mar-
telli A, McKay MJ, Migliore L, Mirkova E, Muller WU, Odagiri Y, Orsiere T, Scarfi MR, 
Silva MJ, Sofuni T, Surralles J, Trenta G, Vorobtsova I, Vral A, Zijno A, project HUM (2003) 
Intra- and inter-laboratory variation in the scoring of micronuclei and nucleoplasmic bridges 
in binucleated human lymphocytes. Results of an international slide-scoring exercise by the 
HUMN project. Mutat Res 534(1–2):45–64. doi:10.1016/S1383-5718(02)00248-6

 4. Hsu JC (2010) Multiplicity adjustment big and small in clinical studies. Clin Pharmacol Ther 
88(2):251–254. doi:10.1038/clpt.2010.122

 5. Bromley CM, Close S, Cohen N, Favis R, Fijal B, Gheyas F, Liu W, Lopez-Correa C, Prokop 
A, Singer JB, Snapir A, Tchelet A, Wang D, Goldstaub D, Industry Pharmacogenomics Work-
ing G (2009) Designing pharmacogenetic projects in industry: practical design perspectives 
from the Industry Pharmacogenomics Working Group. Pharmacogenomics J 9(1):14–22. 
doi:10.1038/tpj.2008.11

 6. Mandrekar SJ, Sargent DJ (2009) Clinical trial designs for predictive biomarker validation: 
one size does not fit all. J Biopharm Stat 19(3):530–542. doi:10.1080/10543400902802458

 7. Simon R (2010) Clinical trial designs for evaluating the medical utility of prognostic and 
predictive biomarkers in oncology. Per Med 7(1):33–47. doi:10.2217/pme.09.49

 8. Freidlin B, McShane LM, Korn EL (2010) Randomized clinical trials with biomarkers: de-
sign issues. J Natl Cancer Inst 102(3):152–160. doi:10.1093/jnci/djp477

 9. Jiang W, Freidlin B, Simon R (2007) Biomarker-adaptive threshold design: a procedure 
for evaluating treatment with possible biomarker-defined subset effect. J Natl Cancer Inst 
99(13):1036–1043. doi:10.1093/jnci/djm022

10. Goodsaid FM, Amur S, Aubrecht J, Burczynski ME, Carl K, Catalano J, Charlab R, Close 
S, Cornu-Artis C, Essioux L, Fornace AJ Jr, Hinman L, Hong H, Hunt I, Jacobson-Kram D, 
Jawaid A, Laurie D, Lesko L, Li HH, Lindpaintner K, Mayne J, Morrow P, Papaluca-Amati 
M, Robison TW, Roth J, Schuppe-Koistinen I, Shi L, Spleiss O, Tong W, Truter SL, Vonder-
scher J, Westelinck A, Zhang L, Zineh I (2010) Voluntary exploratory data submissions to 
the US FDA and the EMA: experience and impact. Nat Rev Drug Discov 9(6):435–445. 
doi:10.1038/nrd3116



A. Flynn et al.88

11. Wang SJ, O’Neill RT, Hung HJ (2010) Statistical considerations in evaluating phar-
macogenomics-based clinical effect for confirmatory trials. Clin Trials 7(5):525–536. 
doi:10.1177/1740774510375455

12. Burns DK, Hughes AR, Power A, Wang SJ, Patterson SD (2010) Designing pharmacoge-
nomic studies to be fit for purpose. Pharmacogenomics 11(12):1657–1667. doi:10.2217/
pgs.10.140

13. Hughes AR, Brothers CH, Mosteller M, Spreen WR, Burns DK (2009) Genetic association 
studies to detect adverse drug reactions: abacavir hypersensitivity as an example. Pharma-
cogenomics 10(2):225–233. doi:10.2217/14622416.10.2.225

14. Weber J, McCormack PL (2008) Panitumumab: in metastatic colorectal cancer with wild-
type KRAS. BioDrugs 22(6):403–411. doi:10.2165/0063030-200822060-00006

15. Flynn AA (2011) Pharmacogenetics: practices and opportunities for study design and data 
analysis. Drug Discov Today 16(19–20):862–866. doi:10.1016/j.drudis.2011.08.008

16. Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR, Whiteford CC, Bilke S, 
Krasnoselsky AL, Cenacchi N, Catchpoole D, Berthold F, Schwab M, Khan J (2004) Predic-
tion of clinical outcome using gene expression profiling and artificial neural networks for 
patients with neuroblastoma. Cancer Res 64(19):6883–6891

17. Lee HS, Cho SB, Lee HE, Kim MA, Kim JH, Park do J, Yang HK, Lee BL, Kim WH (2007) 
Protein expression profiling and molecular classification of gastric cancer by the tissue array 
method. Clin Cancer Res 13(14):4154–4163

18. Patterson SD, Cohen N, Karnoub M, Truter SL, Emison E, Khambata-Ford S, Spear B, Ibia 
E, Sproule R, Barnes D, Bhathena A, Bristow MR, Russell C, Wang D, Warner A, Westelinck 
A, Brian W, Snapir A, Franc MA, Wong P, Shaw PM (2011) Prospective-retrospective bio-
marker analysis for regulatory consideration: white paper from the industry pharmacogenom-
ics working group. Pharmacogenomics 12(7):939–951. doi:10.2217/pgs.11.52

19. Sanz-Pamplona R, Berenguer A, Cordero D, Riccadonna S, Sole X, Crous-Bou M, Guino E, 
Sanjuan X, Biondo S, Soriano A, Jurman G, Capella G, Furlanello C, Moreno V (2012) Clini-
cal value of prognosis gene expression signatures in colorectal cancer: a systematic review. 
PLoS One 7(11):e48877. doi:10.1371/journal.pone.0048877

20. Taylor JM, Ankerst DP, Andridge RR (2008) Validation of biomarker-based risk prediction 
models. Clin Cancer Res 14(19):5977–5983. doi:10.1158/1078-0432.CCR-07-4534

21. Freidlin B, Jiang W, Simon R (2010) The cross-validated adaptive signature design. Clin 
Cancer Res 16(2):691–698. doi:10.1158/1078-0432.CCR-09-1357

22. FDA (2005) Drug diagnostics co-development concept paper. http://www.fda.gov/downloads/
Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/UCM116689.pdf 2013. Accessed 
29 May 2014

23. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and power-
ful approach to multiple testing. J Roy Statist Soc Ser B 57(1):289–300

24. Chen YP, Chen F (2008) Identifying targets for drug discovery using bioinformatics. Expert 
Opin Ther Targets 12(4):383–389. doi:10.1517/14728222.12.4.383

25. Ginsburg GS, Willard HF (2009) Genomic and personalized medicine: foundations and ap-
plications. Transl Res 154(6):277–287. doi:10.1016/j.trsl.2009.09.005

26. Roos DS (2001) Computational biology. Bioinformatics–trying to swim in a sea of data. Sci-
ence 291(5507):1260–1261

27. Sim SC, Altman RB, Ingelman-Sundberg M (2011) Databases in the area of pharmacogenet-
ics. Hum Mutat 32(5):526–531. doi:10.1002/humu.21454

28. ORNL The Human Genome Management Information System (HGMIS) (2014) www.ornl.
gov/sci/techresources/Human_Genome/project/about.shtml. Accessed 29 May 2014

29. Ensembl Ensembl Genome Browser (2014) http://hapmap.ncbi.nlm.nih.gov/. Accessed 29 
May 2014

http://www.fda.gov/downloads/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/UCM116689.pdf
http://www.fda.gov/downloads/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/UCM116689.pdf
www.ornl.gov/sci/techresources/Human_Genome/project/about.shtml
www.ornl.gov/sci/techresources/Human_Genome/project/about.shtml


Pharmacogenetics—Statistical Considerations 89

30. NCBI SNP—Short Genetic Variations (2014) http://www.ncbi.nlm.nih.gov/SNP. Accessed 
29 May 2014

31. NCBI International HapMap Project (2014) http://hapmap.ncbi.nlm.nih.gov/. Accessed 29 
May 2014

32. NCBI Human Genome Resources (2015) http://www.ncbi.nlm.nih.gov/projects/genome/
guide/human/index.shtml. Accessed 23 Mar 2015 

33. Roses AD (2000) Pharmacogenetics and the practice of medicine. Nature 405(6788):857–
865. doi:10.1038/35015728

34. Johnson AD (2009) Single-nucleotide polymorphism bioinformatics: a comprehensive 
review of resources. Circ Cardiovasc Genet 2(5):530–536. doi:10.1161/CIRCGENET-
ICS.109.872010

35. KEGG KEGG: Kyoto Encyclopedia of Genes and Genomes (2014) www.genome.jp/kegg/. 
Accessed 29 May 2014

36. PharmGKB PharmaGKB (2014) http://www.pharmagkb.org. Accessed 29 May 2014
37. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich 

A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: 
a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl 
Acad Sci U S A 102(43):15545–15550. doi:10.1073/pnas.0506580102

38. Leong HS, Kipling D (2009) Text-based over-representation analysis of microarray gene lists 
with annotation bias. Nucleic Acids Res 37(11):e79. doi:10.1093/nar/gkp310

39. Heron EA, O’Dushlaine C, Segurado R, Gallagher L, Gill M (2011) Exploration of empirical 
Bayes hierarchical modeling for the analysis of genome-wide association study data. Biosta-
tistics 12(3):445–461. doi:10.1093/biostatistics/kxq072

http://www.ncbi.nlm.nih.gov/projects/genome/guide/human/index.shtml
http://www.ncbi.nlm.nih.gov/projects/genome/guide/human/index.shtml

	Pharmacogenetics—Statistical Considerations
	1 Introduction
	2 Types of Biomarkers
	2.1 Biomarker Platforms
	2.2 Variability and Data Quality
	2.3 Sources of Missing Data
	2.4 Dimensionality and False Positives

	3 Study Design Options
	3.1 Confirmatory Studies
	3.2 Exploratory Studies
	3.3 Data Analysis Methods
	3.4 Alternative Analysis Methods

	4 Model Building and Validation
	5 Diagnostic Development
	6 Visualisation and Presentation
	7 Bioinformatics and Biological Interpretation
	8 Future Opportunities
	References




