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Abstract

Nanoparticles exhibit, from a magnetic point of view, various anomalies and

specific magnetic properties, different from those of the bulk with the same

chemical composition. Knowing the new magnetic properties is very important,

both from theoretical point of view and their numerous practical applications in

nanotechnology (nanotechnics and, recently, in nanomedicine), which should be

considered. In this chapter we shall present an overview on the following topics:

saturation magnetization, magnetic anisotropy, and magnetic behavior of mag-

netic nanoparticles, in relation with their size and magnetic structure, single- or

multi-domains. The magnetic properties of the nanoparticles are compared and

discussed in relation to those of the corresponding bulk. The surface effects, in

the case of surfacted nanoparticles and those embedded in different matrices, on
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magnetic properties are presented and discussed in the core–shell model (core of

the nanoparticle, where the magnetic moments are aligned under the exchange

interaction, and the shell, where the magnetic moments are in a disordered

structure).

Keywords

Nanoparticles • Size effect • Saturation magnetisation • Magnetic anisotropy •

Magnetic behaviour • Magnetic relaxation

Introduction

According to their size, the nanoparticles (NPs) are in the dimensional range: from a

few nm until hundreds of nm (considering the diameter of the particles as a linear

dimension (D), for the approximation of the spherical nanoparticles). The effect of

their size is strongly reflected on the magnetic structure of nanoparticles and,

consequently, on their magnetic behavior in an external magnetic field. By reducing

the size of the nanoparticles from tens of nanometers to a few nanometers (Fig. 1),

their magnetic structure changes: from a structure with magnetic domains (D > Dc,

where Dc is the critical diameter), where the magnetization is stable and

nonuniform (Weiss domains), to a structure without magnetic domains (single-

domain structure) (Dt < D < Dc, where Dt is the threshold diameter), with stable

and uniform magnetization or unstable magnetization (transition state), at very

small dimensions (D < Dt), to a single-domain structure but with fluctuant magne-

tization along a direction in the crystal (easy magnetization axis) (superpara-

magnetic (SPM) range). The magnetic structures result from the condition of

minimization of the free energy of the crystal, which leads to its stable configuration.

single-domain magnetic structure

0 Dt Dc

D (nm)

e.m.a.

Ms

multi-domain magnetic structure

Fig. 1 The single- and multi-domain magnetic structures of nanoparticles
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At small dimensions (usually a few nanometers), the magnetization of the single-

domain nanoparticle is no longer stable, and it can reverse to 180� under the effect
of the thermal activation. The transition state may be considered a transition area

between the state of magnetic stability and the superparamagnetic state (SPM).

The magnetic behavior of these nanostructures is with hysteresis (D > Dt) and

anhysteretic (D < Dt), more precisely SPM (see subsection “Superparamagnetic

Behavior of the Nanoparticles”), behavior which, at a given temperature, is

also highly influenced by the magnetic anisotropy of NPs. These data are summa-

rized in Table 1. The results obtained so far have shown that the saturation

magnetization of NPs (Ms) depends on their size, the saturation magnetization

reducing along with the reduction of the size, as a result of the spin disorder at the

surface of the nanoparticles, which leads to a dominant effect at very small

dimensions.

In this chapter, we present and discuss the effect of the size of nanoparticles on

the saturation magnetization, magnetic anisotropy, magnetic structure, and mag-

netic behavior. The chapter is divided into three sections. The first section

approaches the issue of saturation magnetization of nanoparticles, which, in gen-

eral, is lower than that of the corresponding bulk; here, we take into account the

spin disorder at the surface of the nanoparticles and the variation of the NP

saturation magnetization with temperature, which is unusual, in many cases. The

second section presents the magnetic anisotropy in the case of nanoparticles, which

is generally higher (much higher in some cases) than the magnetocrystalline
anisotropy of the bulk, which is dominated by the surface anisotropy in the case

of very small nanoparticles, as it is shown by the results of many experiments. The

last section presents the behavior of the nanoparticles in an external magnetic field,
according to their size, which has a certain magnetic structure, resulted from the

competition of the exchange, magnetostatic, and anisotropy forces.

The size of the nanoparticles, determined during the process of their obtaining or

by some subsequent thermal treatments, is a basic parameter for many practical

applications, in addition to the nature of the material; also, the shape and size

Table 1 Magnetization and magnetic behavior of nanoparticles according to their size and

magnetic structures

Nanoparticle

size (nm)

Magnetic

structure

Magnetization

state Magnetic behavior

Basic

referencea

D > Dc Multi-

domain

Stable

nonuniform

Large hysteresis loop

(like bulk)

[75, 98, 102]

Dt << D < Dc

(closer to Dc)

Single

domain

Stable uniform Hysteresis loop (from

rectangular to linear)

[103–105, 107,

108, 110]

Dt < D << Dc

(closer to Dt)

Single

domain

Transition

state

(relaxation)

Small hysteresis loop to

no hysteresis

[102, 104, 114]

0 < D < Dt Single

domain

Fluctuating Superparamagnetic [33, 122–124,

127, 129, 139]
aIn section “Magnetic Behavior of Nanoparticles in an External Field”
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distribution of nanoparticles, as well as the magnetostatic interactions between

them, can change the magnetic behavior of a system of nanoparticles. Moreover,

using surfactants or covering the nanoparticles with a layer, or embedding them in

different solid, noncrystalline, or crystalline matrices (nanocomposites) or their

dispersion in a carrier liquid (nanofluids) can change the magnetic properties of the

nanosystem. Knowing these aspects, and their effects on the magnetic behavior of

nanoparticles in an external magnetic field, is very important from a practical point

of view, for future applications in nanotechnology.

Here we will take into consideration these aspects in the case of nanoparticles

with ferro- and ferrimagnetic ordering of their internal magnetic moments (due to

the exchange interaction (direct) and, respectively, superexchange interaction

(indirect, through the oxygen ions) of the magnetic moments). We will not discuss

the case of antiferromagnetic, which can be found in other bibliographic references

(chapters, books). Also, the effects described are discussed in the absence of

interactions.

Saturation Magnetization of Nanoparticles

Surface Spin Disorder in Nanoparticles and Saturation
Magnetization

Many results, both experimental and theoretical [1–6], have shown that the satu-
ration magnetization of nanoparticles is lower than that of the corresponding

bulk material and that it decreases rapidly along with decreasing the size of

very small (nm) nanoparticles [7]. The magnetization (M
!
) of a material is deter-

mined by the resulting magnetic moment ( μ
!
) per unit volume (V ). For an

elementary volume, in the case of continuous distribution of magnetic (atomic)

moments, the magnetization is

M
!¼ dμ

!

dV
; (1)

the magnetization vector M
!

having the same direction and sense as the elementary

magnetic momentd μ
!
. For a large-sized nanoparticle (tens to hundreds of nm) which

has a magnetic domain structure, at magnetic saturation, all the magnetic atomic

moments are on the same direction (the direction of the externally applied magnetic

field), the magnetization of the nanoparticle being, in this case, uniform and equal to

the saturation magnetization (spontaneous) (Ms) of the material. Under these condi-

tions, according to Eq. 1, the magnetic moment for a volume of material will be

m ¼ Ms

ð
Vð Þ

dV; (2)
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for the finite volume (known) of the particle (VP),

mP ¼ MsVP: (3)

In the case of small (nm to tens of nm), single-domain nanoparticles (without a
structure of magnetic domains), their volume is generally smaller than a magnetic

domain (Weiss domain), domain in which the magnetic moments from the crystal-

line network are aligned (ordered) spontaneously at saturation. As a result, their

magnetization is uniform and always equal to the spontaneous magnetization of the

material (M�Ms). In this case, the magnetic moment of the single-domain nano-
particle will be

mNP ¼ MsVNP; (4)

where VNP is the volume of the single-domain nanoparticle.

For a system of identical nanoparticles, in the absence of interactions, which has

the concentration n (the number of nanoparticles (N ) in the volume of the system

(VS)), each nanoparticle having the magnetic moment mNP (Fig. 2), the saturation
magnetization can be expressed by the formula

Msat,NP ¼ nmNP; (5)

respectively,

Msat,NP ¼ nVNPMs ¼ N
VNP

VS
Ms: (6)

(3)

(2)
(1)

(N)

VNP

VS

mNP

HFig. 2 System of

nanoparticles without

interaction at magnetic

saturation
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This formula is also valid in the case of the system of large nanoparticles (with

domain structure), but only when it is magnetized to saturation.
In conclusion, the magnetization of a system of nanoparticles, even if they are

small or large, at magnetic saturation can be expressed by the formula (6), where

NVNP=VS ¼ f V represents the (volume) packing fraction of nanoparticles within the

system. Therefore, the saturation magnetization of a system of nanoparticles can

also be expressed by the formula

Msat,NP ¼ f VMs: (7)

The observable fV can take values in the range 0–1 (0 � f V � 1), in the case of a

system of nanoparticles. The case f V ¼ 1 corresponds to the bulk material (compact

system), for whichMsat,NP ¼ Ms. Equation 7 can be verified by experiment, for any

given system of nanoparticles, if we take into account the value of the packing

fraction of the nanoparticles.

In theory, at magnetic saturation, taking into account the magnetic packing

fraction of a system of nanoparticles, there should not occur any differences

between the two values Msat,NP and Ms; they should be equal (Msat,NP ¼ Ms , for

f V ¼ 1). However, in practice, it has been experimentally observed that there is a

difference between the two values, namely, Msat,NP is smaller than Ms (Msat,NP
< Ms) [1–9].

The difference between the saturation magnetization of a system of

nanoparticles and that of the corresponding bulk material, experimentally deter-

mined, was explained by Coey, in Ref. [8] for the nanocrystallites of γ-Fe2O3

having the mean diameter of 5.9 nm, who showed that at the surface of small

nanoparticles, the spins (magnetic moments in the crystalline network) are not

ordered as they are in their inside (core), but are disposed in disorder structure
(the surface spins are inclined at various angles). For the spin disorder at the surface

of nanoparticles, several models have been proposed for different nanostructures.

Coey [8] proposes the model of the inclined spins at the surface of nanoparticles, in

the core–shell model: core, where the spins are normally aligned, and surface layer,

where the spins are inclined to their normal direction. Berkowitz et al. [9, 10]

propose for the surface spin disorder the model “spin canting,” for nanoparticles of

NiFe2O4, and “spin pinning” when the particles are covered with organic surfactant.

Kodama and Berkowitz et al. [11] propose the model ferrimagnetically aligned core

spins and a spin-glass-like surface layer, at low temperatures, where canted spins

freeze in such a structure. The suface layer of nanoparticles where the spins are in a

disordered structure was experimentally confirmed by Mössbauer spectroscopy for

γ-Fe2O3 [8, 12, 13] and NiFe2O4 [14], polarized neutron scattering technique for

nanoparticles of CoFe2O4 [15], magnetic resonance (ESR) for the nanoparticles of

MnxFe1–xFe2O4 (x= 0.1� 0.7) with oleic acid as surfactant [16] or nanoparticles of

γ-Fe2O3 [17] and Ni-Zn [18] dispersed in the matrix of SiO2, as well as by

transmission electron microscopy (TEM or HR-TEM) and magnetic measurements

[17–20]. The surface spin disorder is due to the modification of the exchange

interactions between surface magnetic ions in incomplete coordination [21].
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In the case of ferrimagnetic nanoparticles, the orientation of the surface magnetic

moments can be more altered, because the exchange interaction is done through the

oxygen ion O2� (superexchange). Therefore, the absence of the ion at the surface or
the presence of another atom (ion) as impurity leads to the breaking of the exchange

interaction (“broken exchange bond”) between the magnetic cations, which induces

the surface spin disorder [11]. Figure 3 shows the nanoparticle surface spin disorder

when there is broken bond. This model was calculated for the 25 A� NiFe2O4

nanoparticle with broken bond density of 0.8 and higher roughness (with a surface

anisotropy of 4 kB/spin) [3].

The spin disorder can change the magnetic properties of nanoparticles, especially

when there is a high area/volume ratio [4, 5, 22, 23]. Due to surface effects mentioned

above and to the core–shell morphology, the saturation magnetization of nanoparticle

systems is considerably lower than the corresponding bulk material [1–6].

Taking now into account the surface layer of the nanoparticles, without magnetic
ordering, considering the core–shell structure (core, where the spins are aligned due
to the ferro- and ferrimagnetic exchange interaction, and shell, where the spins are

disposed in a disorder structure), it results that the formula (7) that gives the

saturation magnetization of the nanoparticle system must take into account a

volume of the nanoparticle, named magnetic volume (Vm,NP) (the volume of the

core of the nanoparticles where the spins are aligned), smaller than the VNP volume

(physical volume),

Vm,NP < VNP: (8)

Fig. 3 Particle broken bond

density BBD= 0.8 and higher

roughness (2.1 A� RMS),

hence significant surface spin

disorder (Reprinted from [3],

Copyright (1999), with

permission from Elsevier)
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In the spherical nanoparticle pattern (Fig. 4), we can assess the volume of the

surface layer of the nanoparticles which contains the spins in disorder,

ΔV ¼ VNP � Vm,NP ¼ π D3 � D3
m

� �
=6 ; (9)

and its thickness η ¼ D� Dmð Þ=2, respectively.
Consequently, in the case of nanoparticles, the formula must be corrected,

meaning that a magnetic (volume) packing fraction, f m ¼ NVm,NP=VS , must now

be taken into account, instead of fV, as a result of the reduced volume of the

nanoparticles where the spins are aligned ferromagnetically. Therefore, for a

system of nanoparticles, there is the relation

Msat ¼ fmMs < Msat,NP; (10)

where fm < 1 ( fm < f V), a formula that corresponds to the physical reality (verified
by experimental data). The larger or smaller deviation of saturation magnetization

of magnetic nanoparticles, Msat, as compared to that of the bulk, Ms (or Msat,NP for

f V ¼ 1), will depend on the existent nanostructures [2, 4, 5, 24–30].

The difference between the saturation magnetization of the bulk and that of

the nanoparticles corresponding to the same material, ΔMsat ¼ MVsat,NP �Msat ,

increases as the nanoparticles are smaller. The difference decreases when the size of

the nanoparticles increases, and it becomes insignificant (ΔMsat ! 0) at very high

values of the NPs (hundreds of nm, or even more). This effect can be easily

understood if the surface/volume ratio of the nanoparticles (SNP/VNP) is taken into

account, which can be rendered, in the approximation of spherical nanoparticles:

SNP=VNP ¼ 6=Dm: (11)

As the magnetic volume of the nanoparticles decreases (the decrease of

the diameter Dm), the ratio SNP/VNP will increase, reaching very high values in the

nanometer domain. For example, for nanoparticles with 10 nm in diameter, the

surface/volume ratio will be SNP=VNP ¼ 6� 108m�1. For example, considering

η = 0.8 nm (typical value) and assessing the contribution of the surface layer in

Dm

D

0

η

Fig. 4 Core–shell pattern of

the spherical nanoparticle
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relation to the core of the nanoparticle, ΔV=Vm ¼ V � Vmð Þ=Vm ¼ D=Dmð Þ3 � 1,

we obtain the value 0.05 in the case of 100 nm nanoparticles and 0.69 in the case of

10 nm nanoparticle, respectively, 2.18 for 5 nm. This shows that, for small

nanoparticles, the contribution of the spins from the surface of nanoparticles

becomes very important and cannot be neglected, and, as a result, a significant

reduction of the saturation magnetization will occur. In the case of large-sized

nanoparticles, the effect is reverse; there is an increase in the contribution of the

spins in the interior of nanoparticles, which will lead to an increase of the saturation

magnetization, and when the contribution of the surface spins becomes insignifi-

cant, it will lead to the saturation magnetization of the bulk. Figure 5 illustrates this

situation in the case of nanoparticles of Ni-Zn, when the (specific) magnetization

strongly decreases when the diameter of the nanoparticles decreases [5].

Taking into account the thickness of the surface layer of NPs, we can estimate

the saturation magnetization of the magnetic nanoparticle, using the formula

Msat ¼ Ms
Vm,NP=VNP

� �
: (12)

Considering the NP model from Fig. 4, with the thickness of the surface layer η and
the volume of the surface layer given by Eq. 9, from Eq. 12 we obtain

Msat ¼ Ms
VNP � ΔV

VNP
¼ Ms 1� 2

η

D

� �3
(13)

This relation allows the estimation of the thickness of the surface layer of

nanoparticles, using the experimental data: the saturation magnetization (determined

by experiment) and the physical diameter D (determined, e.g., through TEM). This

formula allows a more precise assessment of the thickness of the surface layer, than

the one proposed in Ref. [30] (M0
sat ¼ Ms 1� 6=Dð Þ), which is a good approximation

only for very small values of thickness, in general under 0.3 nm; at larger thick-

nesses, of more nm, significant errors occur when using this formula.

70

60

50

40

30

20
10 20 30

<D>(311) [nm]

σ s
 [u

em
/g

]

40 50

Fig. 5 Specific saturation

magnetization as a function of

the mean diameter of

nanocrystallites [5]. # IOP

Publishing (Reproduced by

permission of IOP Publishing.

All rights reserved)
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The situation becomes more complex in the case of surfacted nanoparticles

(or covered with different molecules) or those embedded in different nonmagnetic

solid matrices (crystalline or noncrystalline). After the process of preparation

(through different physical and chemical methods), besides the effect discussed

above, a layer at the surface of the nanoparticles can also appear as a result of

different processes (adsorption, chemisorption, formation of bonds with the mag-

netic ions at the surface of NPs, etc.) [13, 31, 32]. The thickness of this new layer,

without magnetic ordering, can vary from tenths of nm to 1–2 nm [18–20, 32, 33].

In these cases the issues are not yet clarified, for example, whether we can consider

of two layers, as a result of the surface effect and that of the surfactant, or of a single

layer determined by their cumulative effect. Many studies have been conducted on

this matter [34–36], but a universally valid magnetic pattern of the nanoparticle

doesn’t exist. Therefore, for the practical applications in nanotechnology, it is

recommended that, for each particular case, the exact values of interest be studied

and determined in advance (before the application), as well as the practical values

of interest, such as the saturation magnetization, the thickness of the layer from the

surface of nanoparticles, surfactant or not, etc.

The Variation of the Nanoparticle Saturation Magnetization
with Temperature

The temperature variation of the saturation magnetization of nanoparticles is a highly
discussed, but not clarified issue, especially at low temperatures, and there is,

currently, much research on this matter [37–43]. The surface effects (section “Surface

Spin Disorder in Nanoparticles and Saturation Magnetization”), in the case of small

nanoparticles, or the interface effects, in the case of surfactant or those embedded in

different matrices of nanoparticles, can influence the variation of saturation magne-

tization with the temperature of the system of nanoparticles (see below).

At present, it becomes more clear that, at high temperatures, the temperature at

which the saturation magnetization reaches zero (Curie temperature (TC)), when the
transition from the ferromagnetic (or ferrimagnetic) state to the paramagnetic state

occurs, depends on the size of nanoparticles: the Curie temperature of the nano-

particle system decreases, as the diameter of nanoparticles decreases, a fact proved

both experimentally and theoretically [44–49]. It was shown that the Curie temper-

ature can be expressed in relation to diameter of nanoparticle (D) by finite-size

scaling law [50] (in agreement with Monte Carlo (MC) simulation),

TC Dð Þ ¼ TC, bulk 1� d0
D

� �1=v
" #

(14)

where Tc,bulk is the Curie temperature corresponding to the bulk, d0 is a microscopic

length scale close to the lattice constant [50, 51], and ν is an exponent which has the
theoretical value of 0.7048 (predicted by the Heisenberg model) [52].
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Figure 6 (where d�D) shows such a variation in the case of Fe3O4 nanoparticles

covered with SiO2 [44], the experimental values being in good agreement with the

ones obtained by the Monte Carlo simulation [53].

However, at low temperatures, the results obtained so far have shown that there

is an influence of the surface layer of nanoparticles (or nanoparticle size) on the

variation of saturation magnetization with temperature. We further present [40], in

more detail, an interesting result, compared to literature data [3, 54–61], obtained

for the variation of saturation magnetization with temperature for nanoparticles of

Mn0.6Fe2.4O4 when oleic acid surfactant was used (organic surfactant) [40, 62] and

dispersed in kerosene (solvent), at a concentration n = 4,58 � 1022 m�3 [63]

(ferrofluid sample) (With kind permission from Springer Science + Business

Media: [40] # Springer-Verlag 2004). Due to the surfactant, the interactions

between nanoparticles are missing, the magnetic (volume) packing fraction, fm =
Msat /Ms,300 (Ms,300 = 448 � 103 A/m at a temperature of 300 K [55]), being only

0.031 (~3 %).

At low temperatures, the variation of the spontaneous magnetization (Ms) with

the temperature (T ) for the bulk is governed by the law in T3/2 (the Bloch law)

[54, 55], deduced from the spin wave model,

Ms Tð Þ ¼ Γ 1� ΛT3=2
� �

; (15)

where Γ is the spontaneous magnetization at 0 K (Ms(0)) and Λ is a constant that

depends on the exchange integral J (Λ ~ 1/J3/2). Dependence (Eq. 15) is well

verified experimentally until room temperature, both for bulk materials (Fe, Ni)

[56, 57] and for some spinel ferrites (such as MnxFe3–x O4; 0,2 < x < 1,0 [58]).

Some differences can only be observed for the exponent value of temperature

T (e.g., for magnetite, the exponent has the approximate value of 2).

Experiment

MC

d (nm)

T
C
 (

K
)

900

850

800

750

700

650

600
5 10 15 20 25 30 35 40

Fig. 6 (Color online) TC’s of
the magnetite nanoparticles

vs the mean diameter d. The
solid squares are the data

points obtained from

experiment and solid circles

represent the result obtained

from MC simulations (Ref.

[53]). The best fit of (14) to

the MC result (solid line)
yields υ = 0.82 � 0.02 and d0
= 0.51 � 0.02 nm (Reprinted

with permission from [44],

Copyright [2011], AIP

Publishing LLC)
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In the case of fine particles and clusters, some theoretical calculus and the

experimental results have shown that the exponent of the temperature is higher

than 3/2 [59–61]. However, Martinez et al. [3] have demonstrated experimentally

that in systems made up of γ-Fe2O3 nanoparticles with a diameter of ~10–15 nm,

the saturation magnetization does indeed follow the law in T3/2 until room tem-

perature. All these results show that the dependence, Ms – T, that was verified for

the bulk material does not always apply to systems made up of fine particles and

clusters, and there have been various interpretations for this behavior. Further-

more, when nanoparticles are covered with oleic acid (organic surfactant), the acid

is strongly absorbed on the surface [17], and thus it forms a superficial layer [18].

This layer can influence the variation of saturation magnetization with

temperature.

The variation of the saturation magnetization of the nanoparticle system in the

temperature range (90–300) K is shown in Fig. 7. This was determined from the

magnetization curves at saturation, which were recorded both for the sample cooled

down from 300 K to 90 K, in the presence of a continuous magnetic field H0 =
120 kA/m applied along the direction where the magnetization will occur, and in

the absence of this field.

Two important aspects can be observed from the diagram: (i) a rapid increase of

the saturation magnetization with the decrease of temperature, with a relative

variation ΔMsat/Msat,300 = 55.8 % (ΔMsat = Msat,90 � Msat,300; the numeric index

represents the value of the temperature) that is ~35 % higher than the relative

variation of the spontaneous magnetization of bulk ferrite (ΔMs/Ms,300 ffi 21 %

[55]), in the same temperature range, and (ii) the increase of the saturation magne-

tization does not depend on the fact that the nanoparticles, and with their easy

magnetization axes, were oriented (aligned) by the field H0 along the subsequent

measuring direction (in the absence of the field H0, the easy magnetization axes are

randomly oriented). This result shows an abnormal increase of the saturation

23

22

21

20

19

18

17

16

15

14

13
50 100 150

H0=0

H0=120 kA/m

200
T (K)

M
sa

t×
10

–3
 (

A
/m

)

250 300

Fig. 7 Saturation

magnetization as a function of

temperature of the system

composed of Mn0.6Fe2.4O4

nanoparticles surfacted with

oleic acid, both in the

presence and in the absence of

the continuous field H0

(Springer and Applied

Physics A [40], Fig. 1, #
Springer-Verlag 2004. With

kind permission from

Springer Science and

Business Media)

486 C. Caizer



magnetization of the surfacted nanoparticles, and this increase is an intrinsic

property of the particle.

The dependence Msat(T ) both for the MnxFe3–xO4 bulk ferrite (x = 0.6)

(curve α), where Γ = 17.12 � 103 A/m, Λ = 3.74 � 10�5 K�3/2 (Eq. 15) [55],

and for the sample made up of nanoparticles that are covered with oleic acid

(curve □) (and which was magnetized in the absence of the continuous magnetic

field) is shown in Fig. 8. The value of the constant Γ was determined based on the

assumption that the saturation magnetization of the nanoparticle would follow

the same variation law as bulk material (Eq. 15) and, at the same time, by taking

into consideration the value of the magnetic packing fraction fm (Γ = fmMs(0),

Ms(0) = 556 � 103 A/m [64] where Ms(0) is the spontaneous magnetization at

0 K. In the case of surfacted nanoparticles, they have found that there is a high

deviation of the dependence Msat vs. T from curve (α). This difference in

behavior was also observed for magnetite nanoparticles covered in oleic

acid [19].

This deviation is determined by the increase of the magnetic diameter attached

to the nanoparticles’ cores where the spins are aligned due to the superexchange

interaction. This reasoning is based on their previous results [35] which have shown

that the magnetic diameter of the nanoparticles surfacted with oleic acid increases

when the temperature decreases, as it will be shown below for nanoparticles of

Mn0.6Fe2.4O4. These results led to the idea that the packing fraction fm also

increases with temperature, and this aspect has to be taken into consideration

when determining the variation of the saturation magnetization with the tempera-

ture of the nanoparticle system.

While the saturation magnetization of bulk ferrite is the same as the spontaneous

magnetization at 0 K, in the case of ferrofluids, it disappears completely since

Msat ¼ fmMs (16)
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(see section “Surface Spin Disorder in Nanoparticles and Saturation Magnetiza-

tion”). Under these circumstances, the magnetic packing fraction of the nanoparti-

cle system at a temperature T

f m Tð Þ ¼ Msat Tð Þ
Ms Tð Þ (17)

and at 0 K,

f m 0ð Þ ¼ Msat 0ð Þ
Ms 0ð Þ ; (18)

respectively, is not constant anymore (it increases with the decrease of tempera-

ture). Furthermore, if in the Bloch law (Eq. 15) they replaceMs(T ) from Eq. 17 and

Ms(0) from Eq. 18, we obtain the mathematical expression of the saturation

magnetization of the system made up of surfacted nanoparticles

Msat Tð Þ ¼ Msat 0ð Þ fm Tð Þ
fm 0ð Þ 1� Λ 	 T3=2

� �
¼ Ms 0ð Þfm Tð Þ 1� Λ 	 T3=2

� �
: (19)

In a more restricted form, the temperature dependence of the saturation magne-

tization of the surfacted nanoparticle system is

Msat Tð Þ ¼ Γ Tð Þ 1� ΛT3=2
� �

; (20)

where the parameter

Γ Tð Þ ¼ Ms 0ð Þfm Tð Þ (21)

is a function of temperature and not a constant, as in the case of bulk ferrite.

Provided fm did not depend on temperature and were a constant (the same as the

one at room temperature), Eq. 19 would be reduced to the Bloch law for bulk

material (Eq. 15), where Γ � Ms(0) = const., and the increase of the saturation

magnetization of the system would be a result of the variation of the spontaneous

magnetization with temperature.

When fm is no longer a constant and it depends on temperature (as in their case),
a further term has to be included in the equation to reflect this aspect (i.e., the

increase of the nanoparticle magnetic moment and of the magnetic diameter, with

the decrease of temperature); in other words, the law has to be considered as it was

written in Eq. 19.

Because the saturation magnetization of the nanoparticle system is

Msat Tð Þ ¼ nmm,NP Tð Þ ¼ nVm Tð ÞMs Tð Þ (22)
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in agreement with Eq. 17, it results that

fm Tð Þ ¼ nπ Dm Tð Þh i3=6 (23)

(in the approximation of spherical nanoparticles). By replacing fm(T ) in Eq. 19, we

obtain

Msat Tð Þ ¼ Ms 0ð Þ nπ=6ð Þ Dm Tð Þh i3 1� Λ 	 T3=2
� �

: (24)

In Eq. 24, hDm(T )i is the mean magnetic diameter of the nanoparticles as a

function of temperature. In agreement with Eq. 24, it can be concluded that the

considerable increase of the saturation magnetization of a system made up of

surfacted nanoparticles, compared to that of bulk ferrite, is a result of the increase

of the mean magnetic diameter hDmi of the nanoparticles (in which the spins are

aligned by means of the superexchange interaction), because n ffi const. and the

increase of the spontaneous magnetization Ms(T ) when the temperature decreases

from 300 to 77 K (Fig. 8, curve α) is much lower. Our explanation for this behavior

is attributed to the modification of the superexchange energy (Wsch) in the surface

layer of the nanoparticles due to the presence of surfactant molecules [35]. Conse-

quently, the Néel temperature (TN ffi Wsch=kB , kB – Boltzmann constant) in the

superficial layer will change, and it will be lower than the room temperature. As

the temperature decreases, TN of the sublayers that are adjacent to the magnetic

core of the nanoparticles will be exceeded gradually, so that these sublayers will

successively become ferrimagnetically ordered. The result is an increase of the

magnetic diameter hDmi attached to the core where the spins are aligned, with the

decrease of temperature; this will in turn lead to an increase of the magnetic

packing fraction fm and, implicitly, of the saturation magnetization for the nano-

particle system.

In a different approach, from Eq. 22 at temperature T (T < 300 K) and at room

temperature, they obtain

Dm Tð Þh i3 ¼ Dmh i3300
Ms

Msat

� �
300

Msat Tð Þ
Ms Tð Þ : (25)

The mean magnetic diameter hDmi300 at a temperature of 300 K was determined

from the magnetization curve, with the procedure described in Ref. [34], admitting

a lognormal distribution of the magnetic diameters and the dependence of the

particle’s magnetic moment on the diameter. This way, we have found hDmi300 =
10.8 nm. Considering that in the case of the nanoparticles surfacted with oleic acid

at their surface, a superficial layer is formed and its mean thickness is 0.7 nm

[32, 65–67],

ηh i300 ¼ Dh i � Dmh i300
� �

=2 ¼ 0:7nm; (26)
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the mean physical diameter of the nanoparticles is also obtained:

Dh i ¼ 12:2nm: (27)

Replacing in Eq. 25 the values Msat(T ) (Fig. 8, (□)), Ms(T ) (Fig. 8, curve (α)),
and hDmi300, we have calculated hDm(T )i3. The resulting values are shown in

Fig. 9.

According to Eq. 26, given that the magnetic diameter increases, the surface

layer is narrowing when the temperature decreases (Fig. 9, curve○). A proof for the

fact that the determined values of the diameters hDi and hDmi are correct is that at
the lowest temperature (90 K), the diameter hDmi90 = 11.9 nm does not exceed the

physical diameter hDi (12.2 nm). These results make them admit that the layer on

the surface of the nanoparticles is paramagnetic at 300 K. As the temperature

decreases, the layer gradually becomes magnetically ordered, starting from the

core and towards the shell. Using the electron spin resonance technique, Upadhyay

et al. [68, 69] have recently shown the existence of the paramagnetic shell of the

MnxFe1–xFe2O4 (x = 0.1–0.7) nanoparticles in ferrofluid, surfacted with oleic acid.

The authors have highlighted the existence of two absorption lines in the ESR

spectrum: one that appears due to the ferrimagnetic core and another one that

corresponds to e = 4 (e – the spectroscopic splitting factor), attributed to the Fe3+

ion in the complex structure made up of oleic acid molecules. The line with e = 4

disappears at low temperatures. Similarly, Tronc et al. [70] have used Mössbauer

spectroscopy at low temperatures to highlight the existence of the paramagnetic

layer on the surface of phosphated γ-Fe2O3 nanoparticles.
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The variation shape of the function hDm(T)i3 in Eq. 24 was determined by fitting

the experimental values (Fig. 9(•)). The variation can be approximated very well

with the function

Dm Tð Þh i3 ¼
X4
q¼0

cqT
2q (28)

(cq are known constants that were determined from the fit). A good resemblance of

the fit curve and the experimental curve can also be obtained if there are two fitting

coefficients; however, in order to obtain a more realistic variation of the magnetic

diameter with the temperature, they have also considered the higher-order terms of T2.
The same variation form of < Dm > 3 with temperature was observed for Fe3O4

nanoparticles with a diameter of ~11 nm, covered in oleic acid and dispersed in

kerosene [71]; however, the fitting coefficients (especially the first two) are differ-

ent, since they depend on the nature of the material.

Under these circumstances, Eq. 24 can be written as

Msat Tð Þ ¼ Ms 0ð Þ nπ
6

X4
q¼0

cqT
2q

 !
1� ΛT3=2
� �

: (29)

By building the function Msat – T defined by Eq. 29, with the known values of

Ms(0) (556 � 103 A/m), n (4.58 � 1022 m�3), Λ (3.74 � 10�5 K�3/2), and cq
(constants) that resulted from the fit, we have obtained curve (β) in Fig. 8. It can be

observed that there is a very good agreement of the calculated curve (—) with the

experimental curve (□), which demonstrates that function Eq. 29 is suited to

describe the temperature variation of the saturation magnetization of the system

composed of surfacted nanoparticles. The result obtained justifies the correctness of

the function Eq. 29 that we have suggested for describing the variation of the

saturation magnetization of the surfacted nanoparticle system with the temperature

in a range of low temperatures.

Magnetic Anisotropy of Nanoparticles

The issue of the magnetic anisotropy of nanoparticles is very important, because it

has a significant influence on their magnetic behavior in an exterior magnetic field.

In the case of nanoparticles, there are several components of the magnetic anisot-

ropy, which must be considered in the total energy of a crystal, when making a

thorough magnetic (micromagnetic) analysis. These are the magnetocrystalline

anisotropy (WV), the anisotropy due to the shape (Wsh), surface anisotropy (Ws),

and an induced anisotropy (of different effects) (Wi). Therefore, the total energy of

a crystal in an external magnetic field (H) will be written as

W ¼ Wex þWm þWH þWw þWa (30)
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where Wex is the exchange energy, Wm is the magnetostatic energy, WH is

the energy in the external magnetic field, Ww is the energy of the magnetic

domain wall (when it exists (for large nanoparticles)), and Wa is the anisotropy

energy,

Wa ¼ WV þWsh þWs þWi: (31)

They present below each of the four types of magnetic anisotropy that may exist in

the case of nanoparticles.

Magnetocrystalline anisotropy. In the case of nanoparticles, as in the case of the
bulk, macroscopically, the magnetization of a single crystal in an external magnetic

field depends on the direction in which this occurs in relation to its crystallographic

axes (Fig. 10a). This leads to the existence of a magnetocrystalline anisotropy. The
direction in the crystal in which the magnetization occurs the easiest (the mechan-

ical work of the magnetization, μ0

ð
HdM, is the lowest) is the easy magnetization

axis (e.m.a.), and the direction in which the magnetization occurs the hardest (the

mechanical work of the magnetization is the highest) is the hard magnetization axis
(h.m.a.). For example, for Fe, the directions |100|, |010|, and |001| (the edges of the

cube) are easy magnetization axes, and the direction |111| (large diagonal of

the cube) is the hard magnetization axis [72]. The first magnetization curves

of single crystals of Fe [72], Ni [73], and Co [74] depending on the directions of
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magnetization (in Kneller [75]) and their crystallographic systems with easy and

hard magnetization axes are shown in Fig. 10a.

In order to rotate the spontaneous magnetization vector from the direction

e.m.a. in a different direction, set by direction cosines α1, α2, and α3 in relation to

the crystallographic axes, mechanical work of magnetization is needed, the varia-

tion of which is equal to the magnetocrystalline anisotropy energy. In the phenom-

enological model based on the symmetry properties of the crystal [76, 77], the

magnetocrystalline anisotropy energy can be expressed by a power series formula,

which in the case of cubic symmetry (Fe, Ni) has the expression

WV, c ¼ K1 α21α
2
2 þ α21α

2
3 þ α22α

2
3

� �þ K2α
2
1α

2
2α

2
3 þ K3 α41α

4
2 þ α41α

4
3 þ α42α

4
3

� �þ . . . ; (32)

where K1, K2, K3 are the magnetocrystalline anisotropy constants (energy densi-

ties). In the formula (32), in agreement with the experiment data, they can most

often consider only the first two terms of the series, the third term being insignif-

icant, since it is usually very small.

In the case of hexagonal symmetry (uniaxial) (Co), the magnetocrystalline

anisotropy energy is given by the relation [78]

WV, u ¼ K1u sin
2φþ K2u sin

4φþ . . . ; (33)

where φ is the angle between the spontaneous magnetization vector and the main

axis of symmetry (see Fig. 10c). Developments regarding the magnetocrystalline

anisotropy, which better reflect the symmetry properties of the crystal, were made

by Kneller and van Vleck [79].

Anisotropy energy can also be expressed in relation to the anisotropy field (HV),

through the relation

WV ¼ �μ0 M
!

s 	 H
!

k

� �
: (34)

In the case of uniaxial symmetry, in the approximation K2u << K1u , it can be

written as

HV, u ¼ 2K1u

μ0Ms
: (35)

Usually, when only the anisotropy constant K1 is used in the formulas of anisotropy

(field) energy, it is simply written as K instead of K1, without using indices (e.g.,

HV, u ¼ 2Ku=μ0Ms).

Shape magnetic anisotropy. Since nanoparticles can have different shapes, their

magnetization will also depend on the shape.

In the case of a single crystal of ellipsoidal shape (ellipsoid of revolution) with

the ellipsoid axes a >> b = c (Fig. 11), the anisotropy energy due to shape is [75]

Wsh ¼ μ0=2ð Þ Na � Nbð ÞM2
s sin

2θ (36)
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where Na and Nb are demagnetization factors of the axes a and b, respectively, of

the ellipsoid and θ is the angle that the spontaneous magnetization makes with the

major (a) axis of the ellipsoid. Considering Eq. 33, in the first-order approximation,

the anisotropy constant due to shape can be expressed by the formula

Ksh ¼ �μ0 Nb � Nað ÞM2
s=2: (37)

In the case of spherical nanoparticle, since Na = Nb and, therefore, Ksh = 0,

there is no shape anisotropy. However, in the case of elongated and soft magnetic

nanoparticles, such as some ferrites (ferrimagnetic nanoparticles), the shape anisot-

ropy constant can become comparable to or even higher than the

magnetocrystalline anisotropy constant [19].

Surface magnetic anisotropy. The problem of surface anisotropy was studied in

detail by Neel [80, 81], which showed that in the case of crystals with cubic

symmetry and surfaces of the type |111| and |100|, the surface anisotropy energy

can be expressed by the formula

Ws ¼ Ks cos
2β; (38)

where Ks is the surface anisotropy constant (expressed in Jm�2 in IS) and β is the

angle between the spontaneous magnetization vector and the direction of the

external normal at the surface considered. Expressing the surface anisotropy energy

constant in units Jm�3 [82, 83], considering relation (11),

K0
s Jm�3
� 	

IS
¼ 6=Dð ÞKs Jm�2

� 	
IS
; (39)

and comparing it with the magnetocrystalline anisotropy constant, it is found that

the value of K’s becomes significant for nanoparticles. Moreover, when the diam-

eter of the nanoparticles is low enough, generally less than 25 nm in many cases of

soft magnetic materials, the value of the surface anisotropy constant exceeds the

magnetocrystalline anisotropy constant, being the greater as the nanoparticle diam-

eter is smaller. For example [84], in the case of nanoparticles of Ni-Zn ferrite with a

diameter of 10 nm, considering the value of the constant Ks which is of the order of
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Fig. 11 Single crystal of

ellipsoidal shape; θ is the

angle between spontaneous

magnetization vector M
!
s and

the axis 0a of the ellipsoid
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10�5 Jm�2 [85], the value obtained for K’s is 6 � 103 Jm�3. This value is five times

higher than the magnetocrystalline anisotropy constant (1,5 � 103 Jm�3 [86]) of

Ni-Zn ferrite. In conclusion, in the case of small nanoparticles, the contribution of

the spins at the surface layer of nanoparticles to the magnetic anisotropy becomes

important, sometimes even dominant.

Induced magnetic anisotropy. In the case of nanoparticles, as a result of mechan-

ical, radiation processes, heat treatments, etc., or of their methods of preparation,

that can lead to the presence of elastic tensions in the material or to the existence of
magnetic coupling between spins (e.g., to the nanoparticle - matrix interface or of

two different magnetic materials (ferromagnetic core–shell paramagnetic)), a mag-

netic anisotropy can be induced, because the equilibrium position of the spontane-

ous magnetization vector can be influenced. The results of the experiments showed

that the elastic tensions can induce very large magnetic anisotropy, with one to two

orders of magnitude larger than the magnetocrystalline. For example [84], in the

case of γ-Fe2O3 nanoparticles, Vassiliou et al. [87] obtain the anisotropy constant

value of 4.4 � 105 J/m3 for 8.3 nm diameter nanoparticles embedded in polymer

matrix, and Coey et al. [88] obtain the value of 1.2 � 105 J/m3 for nanoparticles of

6.5 nm. These values are about two orders of magnitude higher than the

magnetocrystalline anisotropy constant of bulk ferrite of γ-Fe2O3, which is KV =
4.6� 103 J/m3 [89, 90]. The pronounced effect obtained was attributed to the elastic

tensions (stress) exerted on nanoparticles by the solid polymer matrix in which

these can be found. Another cause of the increase of magnetic anisotropy is the

presence of an antiferromagnetic or paramagnetic layer at the surface of

nanoparticles (core–shell structure), due to the exchange coupling between core

and shell [91].

Taking into account all the four forms of magnetic anisotropy that can exist in

the case of nanoparticles and their cumulative contribution to the total magnetic

anisotropy, they may consider an effective (total) magnetic anisotropy energy, that

is, an effective magnetic anisotropy constant [18],

Keff ¼ KV þ Ksh þ K0
s þ Ki; (40)

where Ki is the constant of anisotropy resulted from the induced magnetic

anisotropy.

The rigorous study (theoretical) of the magnetic anisotropy for nanoparticles can

be done by considering the nanoparticle as a system of spins
�
S
!

i) [92–97], taking

into account all the magnetic interactions possible, where in Eqs. (30) and (31) the

energies are given by the Dirac-Heisenberg Hamiltonian (tridimensional (0xyz)).

For example, taking into account only the exchange interaction and the interaction

with the external magnetic field, and considering a magnetocrystalline anisotropy

(cubic) for the core of nanoparticle and a surface anisotropy for the surface spins,

the Hamiltonian of the system of spins will be

H ¼ H ex þ H H þ H V þ H s (41)
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and [97]

H ¼� 2
X
i6¼jð Þ

Jij S
!
i 	 S

!
j

� �

� gμB H
! 	
X
i

S
!

i � KV

X
i

S2x, iS
2
y, i þ S2y, iS

2
z, i þ S2x, iS

2
z, i

� �

� Ks

X
k

S
!
k 	 e!k

� �2
; (42)

respectively, where g is the Landé factor, μB is the Bohr magneton, and e
!
is the unit

vector normal on the surface.

Magnetic Behavior of Nanoparticles in an External Magnetic Field

It is very important to know, from both a practical and a theoretical point of view,

how a nanoparticle magnetic system behaves when it is magnetized in an external

magnetic field. It was found that the magnetic behavior of nanoparticles is much

different from that of the corresponding bulk material, as it is strongly influenced by

the size of the nanoparticles, which determines a specific behavior. These issues are

presented below, starting from larger nanoparticles, which have a multi-domain or

single-domain magnetic structure, until reaching nanoparticles without magnetic

domains but with fluctuating magnetization (superparamagnetic).

Hysteresis Magnetic Behavior of Nanoparticles

Hysteresis Magnetic Behavior of Multi-domain Nanoparticles
Large nanoparticles, which have a size above a certain critical value (Dc) (see

section “Introduction”), have a magnetic domain structure, and their behavior when

magnetized (static) in an exterior magnetic field is with hysteresis, similarly to the

corresponding bulk magnetic material [75, 98]. Stable magnetic structures depend

on the crystal symmetry (Fig. 12), the most common experimentally observed

a b

Ms Ms

Fig. 12 Magnetic domain structures in large nanoparticles; (a) the uniaxial and (b) cubic symmetry
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structures being those with free magnetic poles, in the case of uniaxial symmetry

(Fig. 12a), or without free magnetic poles (with magnetic flux closure domains)

(Fig. 12b), in the case of cubic symmetry. In closing domains (Fig. 12b), the

spontaneous magnetization is oriented at an angle of 45� in relation to the surface

of the wall of the closing domain, so no additional magnetostatic energy appears.

The number of magnetic domains in a stable structure can be determined from the

minimization condition of the crystal energy (equilibrium condition).

The magnetization of nanoparticles with domain structure takes place through

processes of magnetic domain wall displacement, reversible and irreversible, in

smaller fields and through rotation processes of the spontaneous magnetization

vector, reversible and irreversible, in large fields, when the walls are missing (the

structure becoming single domain).

The magnetization curve (the first magnetization) is, in this case, the typically

known, generally characteristic to a ferromagnetic (or ferrimagnetic) bulk material

(Fig. 13a): the incipient part (I), approximately linear (at low fields); the part of the

transition from moderate fields (II), with point of inflection (i); and the part to

magnetic saturation (III), from the high fields.

At low fields (up to approx. Hc/10 (Hc is the coercive field)), Rayleigh’s law

applies, which gives the variation of magnetization when applying a variation of the

external magnetic field ΔH,

ΔM ¼ χiΔH þ α

2
ΔHð Þ2 (43)

where χi is the initial magnetic susceptibility and α a coefficient.

At high fields, the magnetization is well described by the law of approach to

saturation (LAS) [99]

M ¼ Ms 1� a

H
� b

H2
� c

H3
	 		

� �
þ χ0H; (44)
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Fig. 13 First magnetization curve (a) and the hysteresis loop (b) characteristic of nanoparticles

with magnetic domain structure
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where a, b, and c are some coefficients and the term χ0H is determined by the

presence of the contribution χ0 (para-process), independent of the field. The term

χ0H becomes more significant when the sample approaches the Curie temperature.

However, experimental measurements [99, 100] indicated that, in the case of the

nanoparticles, a relation of the following form is often sufficient [3, 100, 101]:

M ffi Ms 1� b

H2

� �
; (45)

since the χ0H terms and the one in H�3 can be neglected and the presence

of the term in H�1 is not justified, except in certain cases (its presence would

imply an infinite magnetization which cannot be the result of rotation of the

magnetization processes). The coefficient b from the formula (45) depends on the

magnetic anisotropy. In the case of uniaxial symmetry, it has the expression [102]

b ¼ 4

15

Ku

μ0Ms

� �2

; (46)

and in the case of cubic symmetry [99],

b ¼ 8

105

K1

μ0Ms

� �2

: (47)

For a system of magnetic nanoparticles, relations (46) and (47) allow the determi-
nation of the magnetic anisotropy constants by means of experiment (from the

saturation magnetization curves), which is commonly used in current practice

[3, 101].

In the transition area, at moderate fields, a law that correctly describes the

magnetization of the nanosystem doesn’t exist, the magnetization curves obtained

experimentally being characteristic of each type of material.

At the magnetization–remagnetization of nanoparticles, a hysteresis loop is

obtained (Fig. 13b) with the value of the saturation magnetization (Msat) dependent

on the surface effects (see section “Surface Spin Disorder in Nanoparticles and

Saturation Magnetization”) and the coercive field (Hc) strongly dependent on the

size of nanoparticles (see section “Single-Domain Nanoparticles in the Area of

Sizes Where Fluctuations in Magnetization Exist: The Coercive Field of

Nanoparticles”). The curves in Fig. 13 are given for a γ-Fe2O3 nanoparticle system

with a mean diameter of ~35 nm, which have the structure of the magnetic domains.

Nanoparticles were obtained by using the method described in Ref. [5].

The critical volume, that is, the critical diameter for spherical nanoparticles

corresponding to the transition from a structure with magnetic domains (multi-

domains), with nonuniform magnetization, to a single-domain structure, with

uniform and stable magnetization, can be determined from the condition of mini-

mization of the energy of the crystal (equilibrium condition) using the single-

domain particle model [103]. Reducing the volume of a large nanoparticle
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(tens of nm), which has a magnetic domain structure, a certain critical size can be

reached in which the nanoparticle does not have a domain structure anymore,

consisting of a magnetic single domain with uniform magnetization (single-domain
structure). Kittel [103] is the first to point out that certain geometries can lead to a

uniform magnetization, thus without magnetic domains. The problem that arises in

this case is at which size a structure without magnetic domains (single domain) is

obtained, so that the energy of the single-domain configuration is lower than that

corresponding to a nanoparticle that has a structure of domains. The answer to this

problem can be obtained based on the condition that the free energy of a nanopar-

ticle with uniform magnetization is equal, to the limit, to the free energy of a

nanoparticle that has a domain structure (the classical model of the single-domain

particle) [103–105]. We consider below two cases of domain structures [84, 106]

(With permission from Eurobit: [84]).

(I) The case of cubic symmetry. For the single-domain structure (Fig. 14a), the

energy is determined only by the magnetostatic energy:

W1 ¼ Wm ¼ 1

2
μ0NM

2
s V; (48)

where N is the demagnetizing factor (N ¼ 1=3 for spherical particles). In the case of
structure with cubic symmetry, shown in Fig. 14b, the main contribution to the

energy is given by Bloch walls. Thus, we can write

W2 ¼ 2Ww ¼ 2ewS (49)

where S is the surface of a wall. Expressing the volume and the surface of the

nanoparticle, considered as spherical, according to the diameter, and equalizing to

the limit the two energies,

W1 ¼ W2; (50)

we obtain the relation

Dc ¼ 18eP
μ0M

2
s

; (51)

a b c

Fig. 14 Magnetic structures in spherical nanoparticle model; (a) uniform magnetization;

nonuniform magnetization in the case of (b) cubic and (c) uniaxial symmetry (# Eurobit 2004.

Reprinted with permission from Ref. [84])
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which gives the critical diameter (or critical volume, Vc = πDc
3/6). In agreement

with this result, when the nanoparticle has a smaller diameter than the critical

diameter (D < Dc), the nanoparticle is single domain and has uniform magnetiza-

tion. On the contrary, when the diameter of the nanoparticle is greater than the

critical diameter (D > Dc), the nanoparticle has a magnetic domain structure, its

magnetization being nonuniform.

(II) The case of uniaxial symmetry. Considering for this case, the structure of

domains from Fig. 14c at the nanoparticle’s energy will contribute, on the one hand,

the magnetostatic energy (structure without closing poles) and, on the other hand,

the energy of the existing domain wall. Due to the presence of the two domains

(magnetized at 180�), the magnetostatic energy will be reduced to half, as compared

to the cases where there is a single domain (Fig. 14a). Thus, in this case, the energy

of the structure can be written as

W0
2 ¼ Wm

2
þWP: (52)

Imposing now the condition given by the rel. (50), where instead ofW2 they useW
0
2

given by relation (52), it results

Wm ¼ Wm

2
þ ePS: (53)

Replacing the magnetostatic energy (Eq. 48), we obtain the critical diameter for

uniaxial symmetry,

Dc ¼ 18eP
μ0M

2
s

; (54)

below which the nanoparticle has a single-domain structure with uniform magne-

tization. By comparing Eqs. 51 and 54, they observe that, regardless of the model

chosen for the domain structure (with cubic symmetry (b) or uniaxial (c)), the

formula for the critical diameter remains the same.

The energy density of the domain wall ep was determined by Landau-Lifshitz

[107] based on the exchange energy and the anisotropy of the wall involved in the

spin orientation. For this, the following formula was found:

ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTcKV

a

r
; (55)

where “a” is the lattice constant and kB is Boltzmann’s constant.

Calculations made for Fe led to a critical diameter of ~34 nm and for Co of

~60 nm [84], the values mostly depending on the existent of the magnetic anisot-

ropy. In the case of soft ferrites, the critical diameter decreases considerably,

reaching values of ~15 nm. For example, for the Ni0,35Zn0,65Fe2O4 ferrite

nanoparticles, we found ep = 0.145 erg/cm2 and Dc = 21.6 nm [106]. In the case
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of hard ferrites, e.g., the Co ferrite nanoparticles, the calculations made lead to the

value of 162 nm for a critical diameter [101].

They must mention here that, in specific cases, in agreement with the issues

presented in sections “Saturation Magnetization of Nanoparticles” and “Magnetic

Anisotropy of Nanoparticles,” they must consider both the size and the type of

nanoparticles, so that the observables Msat, Keff, and TC are corrected. In this

respect, they must consider their experimentally determined values, knowing that

Msat, Keff, and TC, in the case of nanoparticles, have different values from those of

the bulk material. By not taking these aspects into account, the results can lead to

significant errors.

Hysteresis Magnetic Behavior of Single-Domain Nanoparticles

Single-Domain Nanoparticles with Stable Magnetization
As shown in the previous paragraph, nanoparticles that have a smaller volume

than the critical volume (V< Vc) have a single-domain structure with uniform and

stable magnetization. Their magnetization in an external field will be made by

rotation processes (reversible and irreversible) of the spontaneous magnetization

vector. The magnetic behavior of a single-domain nanoparticle system with

stable magnetization [84] can be achieved using the Stoner-Wohlfarth (S-W)

model [108] (et al. [109, 110]). Thus, considering an isolated single-domain

nanoparticle with uniaxial anisotropy, in the absence of thermal agitation (T =
0) (or if this is low enough so it cannot reverse the magnetization of the

nanoparticle), in the external magnetizing field H, the density of the energy of

the particle is

w ¼ Ku sin
2φ� μ0 M

!
s	 H

!� �
: (56)

They consider the x0y plan, so that the 0x axis coincides with the direction of easy

magnetization of the nanoparticle and the 0y axis with the hard magnetization

direction (perpendicular to the 0x axis) (Fig. 15).

Expressing the vectors H
!

and M
!

s according to their components on the two

directions,

H
!¼ Hx i

! þHyj
!

(57)

and

M
!
s ¼ Mx i

! þMy j
!¼ Ms cosφð Þ i

! þ Ms sinφð Þ j
!
; (58)

the energy from Eq. 56 will be given by the formula (in Kneller [75])

w ¼ Ku sin
2φ� μ0HxMs cosφ� μ0HyMs sinφ: (59)
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In Eq. 59 α is the angle between the external magnetic field H
!

and the easy

magnetization axis, and φ is the angle between the spontaneous magnetization M
!

s

and the same axis (e.m.a.) (Fig. 15).

The equilibrium magnetization is obtained from the condition of minimum

energy

dw

dφ
¼ 0: (60)

Thus, they obtain

hx sinφ� hy cosφ ¼ � 1

2
sin 2φð Þ; (61)

which is a straight line in the plan (hx0hy) for φ ¼ const:. In Eq. 61 they considered
the reduced fields, hx ¼ Hx=HV, u and hy ¼ Hy=HV, u , where HV, u ¼ 2Ku= μ0Msð Þ
is the uniaxial anisotropy field and Ku is the uniaxial anisotropy constant of

the nanoparticle. For different values of φ (obtained according to the values of hx
and hy and the external field H ), they obtain a family of straight lines which are

the directions in which the magnetization is in equilibrium. The magnetization is

in stable equilibrium when d2w=dφ2 > 0 and in unstable equilibrium when d2w=d

φ2 < 0.

The critical field at which the irreversible (coherent) rotation of the magneti-

zation can be obtained results from the condition

d2w

dφ2
¼ 0; (62)

ϕ
α

H

x

y

0

e.m.a.

h.
m

.a
.

Hs

Fig. 15 The orientation of

the vectors of spontaneous

magnetization and magnetic

field in the plan x0y

502 C. Caizer



which leads to

hx cosφþ hy sinφ ¼ � cos 2φð Þ: (63)

Eliminating the φ in Eqs. 61 and 63, they obtain the astroid equation

hxð Þ2=3 þ hxð Þ2=3 ¼ 1; (64)

in the plan (hx0hy). In Fig. 16, the computer-generated astroid is represented. Also,

in the same figure, they represented the lines of equation (61), PC generated for

φ = 25� and φ = 145� (in agreement with Ref. [109]). The continuous part of the

straight line corresponds to the stable state of the magnetization, and the part

discontinuously marked (with dashed lines) corresponds to the unstable state
(With permission from Eurobit: [84]). In the critical field determined by equation

(I.91), a stable equilibrium position determined by a direction moves to another

position determined by another direction. Inside the astroid, there are two possible

orientations of the vector M
!
s , corresponding to the stable positions (see point Q).

Outside the astroid, there is only one orientation of M
!

s , which corresponds to the

stable state (see point Q0). Thus, if in the state Q, the magnetization was oriented in

the direction of the figure, by changing the external field in such a way that the point

Q is closer to the astroid, the vectorM
!
swill rotate smoothly (reversibly, coherently);

as soon as the point touches the astroid, the orientation ofM
!

s is no longer possible to

be (very) close to the previous one direction because that orientation will corre-

spond, from now on, to the unstable state d2w=dφ2 < 0
� �

. Therefore, a rotation by

jump (irreversible) of the magnetization will occur in the direction of minimum

energy, a direction for which d2w=dφ2 > 0.

Stoner and Wohlfarth calculated the magnetization (reduced) curves for differ-

ent angles between the magnetic field and the easy magnetization axis, at

Fig. 16 The astroid in the

(hx0hy) plan and the

magnetization equilibrium

directions for φ = 25� and φ
= 145� (computer generated)
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magnetization–remagnetization. The curvesMx=Ms ¼ f hxð Þ (Mx ¼ Ms cosφ, which
is the component parallel to the easy magnetization axis) for different constant

values of hy are shown in Fig. 17 (the system is considered a thin layer formed of

noninteraction single-domain particles, with uniaxial anisotropy along the layer)

(in figure I � M ).

As shown, the coercive (static) field for coherent rotations, hxr ¼ Hxr=HV, u ,

moves from a value 1 to the value 0 when hy increases from value 0 to value

1. The function hxr ¼ f hy
� �

is identical with the critical curve and is given by

the astroid equation where hx must be replaced by hxr. For the magnetization curve

My=Ms ¼ f hy
� �

(component parallel to the hard magnetization axis), when hx ¼ 0,

they obtain a line (the dashed line shown in Fig. 17). When hy ¼ 0 (which means

that external field is applied in the direction x), the magnetization in the direction of

easy magnetization follows a rectangular hysteresis cycle. This case is very

important from a practical point of view, because, (i) on the one hand, in these

circumstances, they obtain a switch (very fast reverse to 180�) of the magnetization,

by rotation, between two stable states and, (ii) on the other hand, it enables the
determination of the field (constant) of uniaxial anisotropy achieved by experiment.
Fast switching of the magnetization finds practical application in the production of

magnetic memories, such as computer hard drives.

In terms of determining the anisotropy field, imposing the condition hx ¼ 1

(when the irreversible jump at 180� of the magnetization occurs), they obtain the

relation

HV, u ¼ 2Ku

μ0Ms
¼ Hxr ffi Hc: (65)

hy = 0 1,0

1,0

0,6
0,2

1,0 hx, hy

Ix/Is, Iy/Is

(Iy/Is) (hy)

(Ix/Is) (hx)

Fig. 17 Theoretical

longitudinal magnetization

curve (Ix/Is) (hx)hy = const. of a

uniaxial thin layer. The trans-

versal curve (Iy/Is) (hy)hx = 0

is also shown as dashed
(Springer [75], Fig. 27.37,

# Springer-Verlag 1962. With

kind permission from Springer

Science and Business Media;

Reprinted with permission

from [110]. Copyright [1958],

AIP Publishing LLC)
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Therefore, the uniaxial anisotropy constant Ku can be determined by measuring

experimentally the coercive field Hc, which can be approximated with the critical

field at which the rotation by jump of the magnetization takes place.

For a system of single-domain nanoparticles with uniaxial anisotropy, in the

absence of interactions between them, and with the randomly anisotropy axes, a

hysteresis loop is obtained as shown in Fig. 18. In this case [108], the reduced field

(hc)in the direction of magnetization (when the rotations of magnetic moments at

unison accurs) is hc ffi 0:5, the mean coercive field is,

Hch i ffi 1

2
HV, u ffi Ku

μ0Ms
; (66)

(where by hi we designated the mean value), and the (theoretical) reduced magne-

tization is

Mr

Ms
¼ 0:5: (67)

The results obtained confirm the model [111–113], and only small differences

occur in the values (1/2)HV,u and Mr/Ms = 0.5, which are slightly lower due to

superparamagnetic relaxation effects [18, 33, 102, 114] (which will be discussed in

section “Superparamagnetic Behavior of the Nanoparticles”) or quantum tunneling

of magnetization [115–117] which occurs in the case of small nanoparticles.

When magnetocrystalline anisotropy is different from the uniaxial one, Néel

[118] calculated the coercive field for a system of randomly oriented spherical

particles, obtaining the value of 0.64 Ku/μ0Ms. When the shape anisotropy is

dominant (see section “Magnetic Anisotropy of Nanoparticles”), considering

Eq. 36 and Ksh, it results Hc ~ (Nb – Na) = N(r). For an ensemble of nanoparticles,

an extended range of values may exist, so it will be considered Hc ~ <N(r) > (< >
mean value) or a function of volume distribution. Other studies [119, 120] showed

that the coercive field of the ensemble of nanoparticles is lower than the mean

1

0

–1
–1 0

hx

M
x
/M

s

1

Fig. 18 The hysteresis loop

of a system of nanoparticles

with the easy magnetization

axes randomly oriented (#
Eurobit 2004. Reprinted with

permission from Ref. [84])
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value, depending on particle size. Of course, this problem is more complex [121]; in

reality they must consider the magnetization processes, coherent or noncoherent,

that is, the remagnetizations by rotation in unison, the waving of the magnetization

or magnetization curving that may exist depending on the shape and size of the

sample, as well as the existence of other forms of anisotropy (see section “Magnetic

Anisotropy of Nanoparticles”).

Single-Domain Nanoparticles in the Area of Sizes Where Fluctuations
in Magnetization Exist: The Coercive Field of Nanoparticles
In the presence of thermal activation (T> 0) (With permission from Eurobit: [84]),

when the nanoparticle’s volume becomes lower than Vt (V < Vt) (see Fig. 1), the

magnetization of nanoparticle fluctuates along the easy magnetization axis (revers-

ing at 180�) (Néel) [122]. For the spontaneous magnetization to reverse, in the

absence of external magnetic field (H = 0), considering nanoparticle with uniaxial

magnetic anisotropy (see section “Magnetic Anisotropy of Nanoparticles”)

WV, u ¼ KuV sin2φ; (68)

the energy barrier must be overcome:

Wb ¼ KuV (69)

(φ ¼ π=2) (Fig. 19a). In this case, there is some probability of crossing the potential

barrier [123, 124] which is greater as the temperature is higher and the

nanoparticle’s volume lower.

The time in which this process takes place [125] is the Néel relaxation time [122]:

τN ¼ τ0exp
KuV

kBT

� �
; (70)

where τ0 is a time constant which usually has the value 10�9 s [126], and the process

is known as Néel magnetic relaxation. In practical conditions of measurement, the

interval of time in which the relaxation process is registered is called measurement
time (tm). In the case of static measurements, it is considered 100 s [123]. At limit,

when the relaxation time is equal to the measuring time (τN ¼ tm), there can be found
the nanoparticle’s volume corresponding to the transition from the state in which the

magnetization does not relax (magnetization is stable over time) to the state in which

the magnetization relaxes (it reverses by 180� in a certain time). Thus, from Eq. 70

KuVt ffi 25kBT; (71)

results and the threshold volume

Vt ¼ 25kBT

Ku
: (72)
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Fig. 19 (a) Variation of the nanoparticle’s energy (expressed in eV) as a function of the angle φ
and the field H, for H = 1 Am�1 (a) and when H increases: from 1 to the maximum value Hm, i.e.,

30 � 103 Am�1 (b) and 100 � 103 Am�1 (c), respectively [130] (# IOP Publishing. Reproduced

by permission of IOP Publishing. All rights reserved)
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Also, it defines a temperature corresponding to the blocking of magnetic

moments (blocking temperature) [123]:

Tb ¼ KuV

25kB
: (73)

When the nanoparticle with volume V has a temperature T < Tb , the magnetic

moment of the nanoparticle is blocked, and when T > Tb, the magnetic moment

of nanoparticle fluctuates along the axis of easy magnetization (it relaxes).

In conditions of dynamic measurement, commonly used in current practice

(using, e.g., the Mössbauer spectroscopy [12, 127, 128], where the measuring

time is 5 � 10�8 s), considering the experimental time of measurement,

corresponding to the technique used, formulas (71) and (73) can be considered

general [129]

Vt ¼ kBT

Ku
ln tm=τ0ð Þ; (74)

respectively,

Tb ¼ KuV

kBln tm=τ0ð Þ : (75)

In the presence of an external magnetic field applied along the easy magnetiza-

tion direction of nanoparticles, the energy barrier will change (WbH) [130], either by

increasing or decreasing, depending on the sense of the magnetic field (increases

when the field H is applied in the sense of magnetization Ms and decreases in

reverse). In Fig. 19 (b, c), the variation of the energy barrier for Fe3O4 nanoparticles

surfacted with oleic acid and dispersed in kerosene (ferrofluid) [130], having the

magnetic diameter of 12.35 nm [71] and a uniaxial anisotropy constant Ku= 12.2�
103 Jm�3, is shown [19].

When the magnetic field is applied in the opposite direction of spontaneous

magnetization, starting from the energy of the particle in the field, they obtain the

formula [131]

WbH ¼ KuVm 1� μ0mm,NPH

2KuVm

� �2

; (76)

where the magnetic moment of the nanoparticle has been replaced (see section

“Magnetic Behavior of Nanoparticles in an External Field”), considering the

observations made in section “Surface Spin Disorder in Nanoparticles and Satura-

tion Magnetization.” In this case, in agreement with the formula (71), it results that

there will be a certain external field, called critical field (or threshold field, Hct), at
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which the magnetic moment will reverse to 180�. This can be determined by

imposing the condition (Eq. 71)

KuVm 1� μ0mm,NPHct

2KuVm

� �2

¼ 25kBT; (77)

from where it results

Hct ¼ 2KuVm

μ0mm,NP
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
25kBT

KuVm

s !
¼ HV, u 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
25kBT

KuVm

s !
: (78)

In the absence of thermal activation (when the temperature is T ¼ 0), from Eq. (78)

results the formulaHct ¼ HV, u, meaning that the critical field becomes equal to the

anisotropy field (see Eq. 65), a formula in agreement with the S-W model (see

section “Single-Domain Nanoparticles with Stable Magnetization”). Given the

formula for the threshold volume (Eq. 72) and using Eq. 78, the end result is

Hct ¼ HV, u 1� Vmt

Vm

� �1=2
" #

¼ HV, u 1� Dmt

Dm

� �3=2
" #

; (79)

where Vmt is the threshold magnetic volume and Dmt is the threshold magnetic

diameter, respectively, in the approximation of the spherical nanoparticle. Using

Eq. 73, the formula (79) can also be written according to blocking temperature:

Hct ¼ HV, u 1� T

Tb

� �1=2
" #

: (80)

This result (Eq. 79) shows that the critical field (coercive field in this case)

decreases as the magnetic diameter of the nanoparticles decreases, and becomes

zero at the threshold diameter (Dm=Dmt). Experimental results broadly confirm the

law of variation (Eq. 79) in the range Dm=Dmt ¼ 1� 5ð Þ . Kneller and Luborsky

[132] found a good concordance between the calculated and experimental values

for an ensemble of spherical nanoparticles of CoFe. For values Dm ¼ 5� 6ð ÞDmt,

deviations from this pattern occur, the coercive field decreasing in this area,

approaching the coercive field characteristic to the bulk material.

For a system of identical nanoparticles (in the absence of interactions) in the case

of random orientation of uniaxial anisotropy axis, they will use Eq. 66 for the

anisotropy field HV,u.

In Fig. 20 the variation of coercive field of nanoparticles according to their

magnetic diameter, starting from the area with the magnetic domain structure (very

large nanoparticles (tens to hundreds of nm)) until the superparamagnetic area (very

small nanoparticles (a few nm)) is shown, qualitatively. Here, it should be specified

that such a variation is obtained for nanoparticles with low anisotropy and at usual
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temperatures (e.g., room temperature) when there are thermal fluctuations of

spontaneous magnetization (magnetic moments) of single-domain nanoparticles.

The single-domain area with stable magnetization, quite narrow, close to the

critical diameter, for Dm < Dmc, can be extended to lower values of nanoparticle

diameter (see dashed curve) by the following means: (i) reducing the temperature,
possibly to 0 K (T ! 0, under the conditions of the S-W model), or (ii) at room

temperature by increasing the magnetic anisotropy. Case (ii) can be obtained using
nanoparticles with very high anisotropy (hard), e.g., Co ferrite nanoparticles.

Noting in Eq. 79

σ ¼ KuVm

kBT
; (81)

when σ > > 1, τN is very high and the magnetic moments of nanoparticles are

“frozen” on the uniaxial anisotropy axes. In this case, and in normal conditions, the

magnetization is stable.

A variation similar to that of Fig. 20, continuous curve, was found in the case of

soft Ni-Zn ferrite nanoparticles (the anisotropy constant is 1.5 � 103 Jm�3) [5],

where the area of stability of magnetization (Hc ~ constant) is virtually absent at

room temperature (Fig. 21). In this case, besides the low anisotropy and high

temperature (room temperature) at which the measurement of the coercive field

was made, the variation is also influenced by the existence of a distribution of

diameters of the nanoparticles from the sample (in small nanoparticles the sponta-

neous magnetization fluctuates along the easy magnetization axis).

stable

single-domain multi-domain

SPM

0 Dmt

H
c

Dmc Dm (nm)

Fig. 20 The variation of the coercive field of a system of nanoparticles according to their

magnetic diameter
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It should be noted that some discrepancies between the calculated (Eq. 79 or 80)

and experimental values [133–137] are due to the effects presented in sections

“Saturation Magnetization of Nanoparticles” and “Magnetic Anisotropy of

Nanoparticles,” regarding decreases of the saturation magnetization and increases

of magnetic anisotropy for nanoparticles, which can dramatically change the

magnetic behavior.

Superparamagnetic Behavior of the Nanoparticles

In the area of small diameters, where Dm < Dmt (generally less than 10 nm for

nanoparticles with moderate anisotropy), and at room temperature (~300 K),

when the condition σ > 1 is met and σ slightly greater than 1 (Eq. 81), the

relaxation time of the magnetic moments of the nanoparticles, oriented or not, is

very small, of the order of 10�9 s. Under these conditions, the magnetization of

single-domain nanoparticles fluctuates rapidly along the easy magnetization axis

[122], being always in thermodynamic equilibrium, and when applying an

external magnetic field, it follows, almost instantly, the field variations. This

system, from a magnetic point of view, behaves like a system of paramagnetic

atoms (Langevin) [138], in the absence of interactions, where the atomic mag-

netic moment exists instead of the nanoparticle magnetic moment. Having in

view this basic feature between this two paramagnetic systems, atoms or

nanoparticles (which contains>105 atoms) with their magnetic moments (atomic

magnetic moment for paramagnetic atom ( μ
!
a ) and nanoparticle magnetic

moment ( m
!
m,NP ) for nanoparticle (see section “Magnetic Behavior of

Nanoparticles in an External Field”), in this case the system of nanoparticles

was called superparamagnetic (SPM) [129], and the behavior in the external field,

superparamagnetic behavior. Under these conditions for the magnetization of the

nanoparticle system, the atomic paramagnetism theory of Langevin applies [138].

50
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H
c 

[O
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Fig. 21 Coercivity as a

function of the average

diameter of nanocrystallites

[5] (# IOP Publishing.

Reproduced by permission of

IOP Publishing. All rights

reserved)

19 Nanoparticle Size Effect on Some Magnetic Properties 511



Thus, the magnetization of a SPM nanoparticle system is given by the formula [139]

MSPM H,Tð Þ ¼ nmm,NP cth
μ0mpH

kBT
� kBT

μ0mpH

� �
; (82)

where n is the concentration of nanoparticles in the system, mm,NP is the magnetic

moment of the nanoparticle, and the parenthesis contains the Langevin function

L H,Tð Þ ¼ cth
μ0mm,NPH

kBT
� kBT

μ0mm,NPH
: (83)

The magnetization as a function of magnetic field,MSPM H,Tð Þ ¼ f Hð ÞT, is without
hysteresis loop (Hc= 0), and the curve of first magnetization (for H> 0) not having

an inflection point, being defferent from that of the other nanoparticles, ferro- or

ferrimagnetic, single-domain, stable or less stable, or with a magnetic domain

structure, where there is always a hysteresis loop (small ar large) and with an

inflection point in their first magnetization curve in a static external magnetic field

(see sections “Hysteresis Magnetic Behavior of Multi-domain Nanoparticles” and

“Single-Domain Nanoparticles with Stable Magnetization”). For a system of

nanoparticles to have a superparamagnetic behavior in the external field, in the

absence of interactions, two conditions must be met: (i) the magnetization curves

M ¼ f Hð Þ recorded at different temperatures must be without hysteresis and follow

the Langevin function, and (ii) the same magnetization curves in the representation

M=Msat ¼ f H=Tð Þ should overlap.

In reality, there is a size distribution of nanoparticles in a system; therefore, for a

rigorous approach, their distribution function should also be considered. In most

cases, it was found that the nanoparticle distribution is lognormal [140–143],

f Dð Þ ¼ 1ffiffiffiffiffi
2π

p
λD

exp � ln Dð Þ � ln D0ð Þ½ 
2
2λ2

( )
; (84)

where D0 and λ are distribution parameters. In these conditions, the magnetization

of the nanoparticle system will be

MSPM ¼ Msat

ð1
0

L ξ H,T,Dmð Þ½ 
f Dmð Þd Dmð Þ; (85)

where the argument of the Langevin function is

ξ H,T,Dmð Þ ¼ π

6

μ0D
3
mMsH

k
B
T

; (86)
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in the approximation of spherical nanoparticles. In formula (85) it was taken into

account Eq. 5 for the saturation magnetization of the system of nanoparticles and

Eq. 23 for the diameter of the magnetic nanoparticles (given that Dm < D (8), as

shown in the section “Surface Spin Disorder in Nanoparticles and Saturation

Magnetization”).

In Fig. 22 the first magnetization (reduced) curve for Ni-Zn nanoparticles

isolated in a SiO2 amorphous matrix (nanocomposite), having a concentration of

15 % and the mean magnetic diameter < Dm > = 8.9 nm [18], is shown, and in

Fig. 23 the magnetization–remagnetization curve of the Fe3O4 nanoparticles cov-

ered with oleic acid and dispersed in kerosene (nanofluid), with mean magnetic

diameter of 10.9 nm and the narrow lognormal distribution of their sizes, is shown

[71]. The continuous line represents the fitting to the Langevin function. The

analysis of the curves obtained experimentally, in the area of low fields (ξ << 1)
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and high fields (ξ >> 1) [71, 144], enables the determination of the distribution

parameters (D0 and λ) and then of the mean magnetic diameter of the nanoparticles

in the system,

Dmh i ¼ D0exp λ2=2
� �

: (87)

This is a very important issue for the magnetic nanoparticles because it allows the

evaluation of the thickness of the surface layer of the nanoparticles (for SPM

behavior), knowing that Dm < D (see section “Saturation Magnetization of

Nanoparticles”) in various cases (small nanoparticles, surfacted nanoparticles,

nanoparticles embedded in various matrices, etc.), using electron microscopy

(TEM or HR-TEM) [20, 145] or other techniques, such as Small Angle Neutron

Scattering (SANS), etc., to determine the physical diameter (D). Given that the

thickness of the nanoparticles’ surface layer is of the order of 1 nm [18, 19, 32], the

two diameters (magnetic and physical) must be determined with high accuracy.

Therefore, in a more accurate analysis, especially in the case of broad distribution

of nanoparticle diameters, for the determination of the mean magnetic diameter, it

must be taken into account that the magnetic moment of the nanoparticle also

depends on the magnetic diameter,

mm,NP Dmð Þ ¼ πMsD
3
m=6: (88)

In this case, for the magnetization of the nanoparticle system, function will be used

[71, 146]:

MSPM ¼ n

ð1
0

mp Dmð ÞL ξ H,T,Dmð Þ½ 
f Dmð Þd Dmð Þ; (89)

instead of the one given by Eq. 85.

Conclusion

The finite size of nanoparticles is a critical parameter that, according to its value,

leads to a certain magnetic structure: multi-domain, with nonuniform magnetiza-

tion, or single domain, with uniform and stable magnetization or with fluctuant

magnetization. Consequently, the nanoparticles will have a certain magnetic behav-

ior in the external magnetic field, from ferro- or ferrimagnetic with large hysteresis

loop, for big-sized nanoparticles (tens to hundreds of nm), similar to the bulk, to a

behavior with no hysteresis, for smaller sizes, and, respectively, to a superpara-

magnetic behavior for very small-sized nanoparticles (a few nm).

The size of nanoparticles is also reflected in the structure of the spins (magnetic

atomic moments) from the surface of the nanoparticles, which are no longer aligned

under the action of the exchange or superexchange interaction (being placed in a
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disorder structure), with the spins from the core of the nanoparticles, which are

ferro- or ferrimagnetically aligned, a structure that becomes dominant in the case of

small-sized nanoparticles, causing a considerable decrease of the saturation mag-

netization of nanoparticles. Consequently, they must take into consideration a

model for the core–shell nanoparticles: core, where the magnetic moments are

aligned, and shell, where the magnetic moments are in a disorder structure. The

noncollinearity of the spins from the surface of the nanoparticles is reflected in the

decrease of the saturation magnetization of the nanoparticles, as compared to that of

the corresponding bulk material, the effect being more intense when the

nanoparticles are smaller (a few nm). Furthermore, the decrease of the saturation

magnetization is higher in the case of ferrimagnetic nanoparticles, where the

exchange interaction, which aligns the atomic magnetic moments, takes place

through the ions of oxygen (superexchange interaction).

The effect of the size decrease of nanoparticles also reflects upon the variation of

the saturation magnetization of nanoparticles as a function of temperature, which is

different from that of the corresponding bulk material, in the case of many

nanostructures. Also, the Curie temperature of nanoparticles decreases along with

the decrease of their size, the decrease being more pronounced when the

nanoparticles are smaller, in the range of nanometers.

The magnetic anisotropy also modifies in the case of nanoparticles, in some

cases becoming unusually high, as compared to the magnetocrystalline anisotropy

of the corresponding bulk material, especially in the case of small nanoparticles

(a few nm). An important contribution to the magnetic anisotropy is due to the

surface anisotropy component, which may even become dominant in the case of

small nanoparticles, as compared to the magnetocrystalline anisotropy or to the

shape anisotropy. Besides the nature of the material, the value of this contribution

also depends on the nanoparticles being surfactant or not or embedded in different

crystalline or amorphous matrices. When the nanoparticles are embedded in matri-

ces, very high magnetic anisotropies may occur, one or two orders of magnitude

higher than the magnetocrystalline anisotropy, due to the contribution of anisotropy

determined by tensions (stress anisotropy).

All these aspects must be taken into consideration for the accurate fundamental

study of the magnetic properties of nanoparticles and their practical future appli-

cations in nanotechnology.

References

1. H. Kachkachi, J. Magn. Magn. Mater. 316, 248 (2007)

2. T. Kim, M. Shima, J. Appl. Phys., 101, 09 M516 (2007)

3. R.H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999)

4. L. Zhang, G.C. Papaefthymiou, R.F. Ziolo, J.Y. Ying, Nano Struct Mater 9, 185 (1997)

5. C. Caizer, M. Stefanescu, J. Phys. D Appl. Phys. 35, 3035 (2002)

6. C. Caizer, Mater Sci. Eng. B 100, 63 (2003)

7. A.E. Berkowitz, W.J. Schuele, P.J. Flanders, J. Appl. Phys. 39, 1261 (1968)

8. J.M.D. Coey, Phys. Rev. Lett. 27, 1140 (1971)

19 Nanoparticle Size Effect on Some Magnetic Properties 515



9. A.E. Berkowitz, J.A. Lahut, I.S. Iacobs, L.M. Levinson, D.W. Forester, Phys. Rev. Lett. 34,
594 (1975)

10. A.E. Berkowitz, J.A. Lahut, C.E. VanBuren, IEEE Trans. Magn. MAG-16, 184 (1980)

11. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Phys. Rev. Lett. 77, 394 (1996)

12. C. Cannas, G. Concas, A. Musinu, G. Piccaluga, G. Spano, Z. Naturforsch 54 a, 513 (1999)

13. E. Tronc, A. Ezzir, R. Cherkaoui, C. Chanéac, M. Noguès, H. Kachkachi, D. Fiorani,
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43. G.F. Goya, T.S. Berquó, F.C. Fonseca, J. Appl. Phys. 94, 3520 (2003)

44. J. Wang, W. Wu, F. Zhao, G. Zhao, Appl. Phys. Lett. 98, 083107 (2011)

45. H.M. Lu, Z.H. Cao, C.L. Zhao, P.Y. Li, X.K. Meng, J. Appl. Phys. 103, 123526 (2008)

46. W. Wu, X. Lin, H. Duan, J. Wang, Int. J. Mod. Phys. B 26, 1250073 (2012)

47. Xe. He, H. Shi, Particuology, 10, 497 (2012)

48. H. Mayama, T. Naito, Physica E 41, 1878 (2009)

516 C. Caizer



49. N.S. Gajbhiye, G. Balaji, M. Ghafari, Phys. Status Solidi A 189, 357 (2002)

50. M.E. Fisher, A.E. Ferdinand, Phys. Rev. Lett. 19, 169 (1967)

51. F. Huang, G.J. Mankey, M.T. Kief, R.F. Willis, J. Appl. Phys. 73, 6760 (1993)

52. K. Chen, A.M. Ferrenberg, D.P. Landau, Phys. Rev. B 48, 3249 (1993)

53. J. Mazo-Zuluaga, J. Restrepo, J. Mejia-Lopez, J. Phys. Condens. Matter 20, 195213 (2008)

54. F. Bloch, Z Phys 61, 206 (1930)

55. A.H. Eschenfelder, in: Landolt-Börnstein, Magnetic properties I (Springer, Berlin, 1962)
56. A.T. Aldred, P.H. Frohle, Int. J. Magnet. 2, 195 (1972)

57. A.T. Aldred, Phys. Rev. B 11, 2597 (1975)

58. J.F. Dillon, in Landolt-Börnstein, Magnetic properties I (Springer, Berlin, 1962)
59. P.V. Hendriksen, S. Linderoth, P.A. Lindgard, J. Magn. Magn. Mater. 104–107, 1577

(1992)

60. S. Linderoth, L. Balcells, A. Labarta, J. Tejada, P.V. Hendriksen, S.A. Sethi, J. Magn. Magn.

Mater. 124, 269 (1993)

61. P.V. Hendriksen, S. Linderoth, P.A. Lindgard, Phys. Rev. B 48, 7259 (1993)

62. C. Caizer, Habil. Thesis (2013)
63. C. Caizer, Solid State Commun. 124, 53 (2002)

64. A.H. Eschenfelder, J. Appl. Phys. 29, 378 (1958)

65. B. Berkovsky, V. Bashtovoy, Magnetic Fluids and Applications Handbook (Begell House,

New York, 1996)

66. M. Xu, P.J. Ridler, J. Appl. Phys. 82, 326 (1997)

67. Yu.I. Raikher, M.I. Shliomis, Adv. Chem. Phys., 87, 3 (1994)
68. R.V. Upadhyay, D. Srinivas, R.V. Mehta, J. Magn. Magn. Mater. 214, 105 (2000)

69. M.D. Sastry, Y. Babu, P.S. Goyal, R.V. Mehta, R.V. Upadhyay, D. Srinivas, J. Magn. Magn.

Mater. 149, 64 (1995)

70. E. Tronc, A. Ezzir, R. Cherkaoui, C. Chanéac, M. Noguès, H. Kachkachi, D. Fiorani,
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