
Solving Parity Games in Scala

Antonio Di Stasio, Aniello Murano(B), Vincenzo Prignano,
and Loredana Sorrentino

Università degli Studi di Napoli Federico II, Napoli, Italy
murano@na.infn.it, vincenzo.prignano@gmail.com

Abstract. Parity games are two-player games, played on directed
graphs, whose nodes are labeled with priorities. Along a play, the max-
imal priority occurring infinitely often determines the winner. In the
last two decades, a variety of algorithms and successive optimizations
have been proposed. The majority of them have been implemented in
PGSolver, written in OCaml, which has been elected by the community
as the de facto platform to solve efficiently parity games as well as eval-
uate their performance in several specific cases.

PGSolver includes the Zielonka Recursive Algorithm that has been
shown to perform better than the others in randomly generated games.
However, even for arenas with a few thousand of nodes (especially over
dense graphs), it requires minutes to solve the corresponding game.

In this paper, we deeply revisit the implementation of the recursive
algorithm introducing several improvements and making use of Scala
Programming Language. These choices have been proved to be very suc-
cessful, gaining up to two orders of magnitude in running time.

1 Introduction

Parity games [13,35] are abstract infinite-duration games that represents a pow-
erful mathematical framework to address fundamental questions in computer
science and mathematics. They are strict connected with other games of infi-
nite duration, such as mean and discounted payoff, stochastic, and multi-agent
games [7–10].

In formal system design and verification [12,25], parity games arise as a nat-
ural evaluation machinery to automatically and exhaustively check for reliability
of distributed and reactive systems [1,3,26]. More specifically, in formal verifi-
cation, model-checking techniques [11,31] allow to verify whether a system is
correct with respect to a desired behavior by checking whether a mathemati-
cal model of the system meets a formal specification of the expected execution.
In case the latter is given by means of a μ-calculus formula [24], the model
checking problem can be translated, in linear-time, into a parity game [13].
Hence, every parity game solver can be used in practice as a model checker for a
μ-calculus specification (and vice-versa). Using this approach, liveness and safety

Aniello Murano—Partially supported by the FP7 European Union project 600958-
SHERPA and OR.C.HE.S.T.R.A. MIUR PON project.

c© Springer International Publishing Switzerland 2015
I. Lanese and E. Madelaine (Eds.): FACS 2014, LNCS 8997, pp. 145–161, 2015.
DOI: 10.1007/978-3-319-15317-9 9

146 A. Di Stasio et al.

properties can be addressed in a very elegant and easy way [28]. Also, this offers
a very powerful machinery to check for component software reliability [1,3].

In the basic settings, parity games are two-player turn-based games, played on
directed graphs, whose nodes are labeled with priorities (i.e., natural numbers).
The players, named player 0 and player 1, move in turn a token along graph’s
edges. Thus, a play induces an infinite path and player 0 wins the play if the
greatest priority visited infinitely often is even; otherwise, player 1 wins the play.

Table 1. Parity algorithms along with
their computational complexities.

Condition Complexity

Recursive [35] O(e · nd)

Small Progress Measures [22] O(d · e · (n
d)

d
2)

Strategy Improvement [34] O(2e · n · e)
Dominion Decomposition [23] O(n

√
n)

Big Step [32] O(e · n 1
3 d)

The problem of finding a winning
strategy in parity games is known to
be in UPTime ∩ CoUPTime [21] and
deciding whether a polynomial time
solution exists or not is a long-standing
open question. Aimed to find the right
complexity of parity games, as well as
come out with solutions working effi-
ciently in practice, several algorithms
have been proposed in the last two
decades. In Table 1, we report the most
common ones along with their known computational complexities, where para-
meters n, e, and d denote the number of nodes, edges, and priorities in the game,
respectively (for more details, see [15,16]).

All above mentioned algorithms have been implemented in PGSolver, writ-
ten in OCaml by Oliver Friedman and Martin Lange [15,16], a collection of
tools to solve, benchmark and generate parity games. Noteworthy, PGSolver has
allowed to declare the Zielonka Recursive Algorithm as the best performing to
solve parity games in practice, as well as explore some optimizations such as
decomposition into strong connect components, removal of self-cycles on nodes,
and priority compression [2,22].

Despite the enormous interest in finding efficient algorithms for solving parity
games, less emphasis has been put on the choice of the programming language.
Mainly, the scientific community relies on OCaml as the best performing pro-
gramming language to be used in this setting and PGSolver as an optimal and
the de facto platform to solve parity games. However, starting from graphs with
a few thousand of nodes, even using the Zielonka algorithm, PGSolver would
require minutes to decide the given game, especially on dense graphs. There-
fore a natural question that arises is whether there exists a way to improve the
running time of PGSolver. We identify three research directions to work on,
which specifically involve: the algorithm itself, the way it is implemented, and
the chosen programming language. As a result we introduce, in this paper, a
slightly improved version of the Classic Zielonka Algorithm along with a heav-
ily optimized implementation in Scala Programming Language [29,30]. Scala is a
high-level language, proven to be well performing [20], with object and functional
oriented features, that recently has come to the fore with useful applications in
several fields of computer science including formal verification [4]. Our experi-
ments show that, by using all Scala features extensively, we are able of gaining
two order of magnitude in running time with respect to the implementation of
the Zielonka algorithm in PGSolver.

Solving Parity Games in Scala 147

In details, the main goal of this work is the design and development of a
new tool for solving parity games, based on an improved version of the Zielonka
Recursive Algorithm, with performance in mind. Classical Zielonka algorithm
requires to decompose the graph game into multiple smaller arenas, which is
done by computing, in every recursive call, the difference between the current
graph and a given set of nodes. This operation (Fig. 1, lines 10 and 15) turns
out to be quite expensive as it requires to generate a new graph at each itera-
tion. Somehow such a difference operation has the flavor of the complicancy of
complementing automata in formal verification [33]. Remarkably, our improved
version guarantees that the original arena remains immutable by tracking the
removed nodes in every subsequent call and checking, in constant time, whether
a node needs to be excluded or not. Casting this idea in the above automata rea-
soning, it is like enriching the state space with two flags (removed, ¬removed),
instead of performing a complementation.

In this paper we consider and compare four implementations. The Classic
(C) and Improved (I) Recursive (R) algorithms implemented in Scala (S) and
OCaml (O). Using random generated games, we show that IRO gains an order
of magnitude against CRO, as well as CRS against CRO. Remarkably, we show
that these improvements are cumulative by proving that IRS gains two order of
magnitude against CRO.

We have been able to achieve this kind of performance optimization by
deeply studying the way the classic Recursive algorithm has been implemented
in PGSolver and concentrating on the following tasks of the algorithm, which
we have deeply improved: finding the maximal priority, finding all nodes with
a given priority, and removing a node (including related edges) from the graph.
Parsing the graph in Scala, we allocate an Array, whose size is fixed to the
number of nodes of the graph. In addition we populate at the same time the
adjacency list and incidence list for each node, which avoids to build a trans-
posed graph. We make also use of an open source Java library called Trove that
provides a fast and lightweight implementation of the java.util Collection API.

Finally, we want to remark that, among all programming languages, we have
chosen to investigate Scala as it shares several modern and useful programming
language aspects. Among the others, Scala carries functional and object-oriented
features, compiles its programs for the JVM, is interoperable with Java and
an high-level language with a concise and clear syntax. The results we obtain
strongly support our choice and allow to declare Scala as a clear winner over
OCaml, in terms of performance.

Outline. The sequel of the paper is structured as follows. In Sect. 2, we give
some preliminary concepts about parity games. In Sect. 3, we describe the Clas-
sic Recursive Zielonka Algorithm. In Sect. 4, we introduce our improved algo-
rithm based on the Zielonka algorithm that we implement in Sect. 5 using Scala
programming language. In Sect. 6 we study, analyze, and benchmark the Classic
and Improved Algorithms in OCaml (PGSolver) and Scala.

Finally we report that the tool is available as an open source project at
https://github.com/vinceprignano/SPGSolver.

https://github.com/vinceprignano/SPGSolver

148 A. Di Stasio et al.

2 Parity Games

In this section we report some basic concepts about parity games including the
Zielonka Recursive Algorithm. For more details we refer to [14,35].

A parity game is a tuple G = (V, V0, V1, E,Ω) where (V, E) forms a directed
graph whose set of nodes is partitioned into V = V0 ∪ V1, with V0 ∩ V1 = ∅,
and Ω : V → N is the priority function that assigns to each node a natural
number called the priority of the node. We assume E to be total, i.e. for every
node v ∈ V , there is a node w ∈ V such that (v, w) ∈ E. In the following we
also write vEw in place of (v, w) ∈ E and use vE := {w | vEw}.

Parity games are played between two players called player 0 and player 1.
Starting in a node v ∈ V , both players construct an infinite path (the play)
through the graph as follows. If the construction reaches, at a certain point,
a finite sequence v0...vn and vn ∈ V then player i selects a node w ∈ vnE
and the play continues with the sequence v0...vnw. Every play has a unique
winner, defined by the priority that occurs infinitely often. Precisely, the winner
of the play v0v1v2... is player i iff max{p | ∀j .∃k ≥ j : Ω(vk) = p}mod 2 = i.
A strategy for player i is a partial function σ : V ∗V → V , such that, for all
sequences v0...vn with vj+1 ∈ vjE, with j = 0, ..., n−1, and vn ∈ Vi we have that
σ(v0...vn) ∈ vnE. A play v0v1... conforms to a strategy σ for player i if, for all j
we have that, if vj ∈ Vi then vj+1 = σ(v0...vj). A strategy σ for player i (σi) is a
winning strategy in node v if player i wins every play starting in v that conforms
to the strategy σ. In that case, we say that player i wins the game G starting in
v. A strategy σ for player i is called memoryless if, for all v0...vn ∈ V ∗Vi and for
w0...wm ∈ V ∗Vi, we have that if vn = wm then σ(v0...vn) = σ(w0...wm). That
is, the value of the strategy on a path only depends on the last node on that
path. Starting from G we construct two sets W0,W1 ⊆ V such that Wi is the
set of all nodes v such that player i wins the game G starting in v. Parity games
enjoy determinacy meaning that for every node v either v ∈ W0 or v ∈ W1 [13].

The problem of solving a given parity game is to compute the sets W0 and W1,
as well as the corresponding memoryless winning strategies, σ0 for player 0 and
σ1 for player 1, on their respective winning regions. The construction procedure
of winning regions makes use of the notion of attractor. Formally, let U ⊆ V and
i ∈ {0, 1}. The i-attractor of U is the least set W s.t. U ⊆ W and whenever v ∈ Vi

and vE ∩ W �= ∅, or v ∈ V1−i and vE ⊆ W then v ∈ W . Hence, the i-attractor
of U contains all nodes from which player i can move “towards” U and player
1 − i must move “towards” U . The i-attractor of U is denoted by Attri(G,U).
Let A be an arbitrary attractor set. The game G\A is the game restricted to the
nodes V \ A, i.e. G \ A = (V \ A, V0 \ A, V1 \ A,E \ (A×V ∪ V ×A), Ω|V \A). It is
worth observing that the totality of G \ A is ensured from A being an attractor.

Formally, for all k ∈ N, the i-attractor is defined as follows:

Attr0i (U) = U ;
Attrk+1

i (U) = Attrki (U) ∪ {v ∈ Vi | ∃w ∈ Attrki (U) s.t. vEw}
∪ {v ∈ V1−i | ∀w : vEw =⇒ w ∈ Attrki (U)} ;

Attri(U) =
⋃

k∈N
Attrki (U).

Solving Parity Games in Scala 149

3 The Zielonka Recursive Algorithm

function win (G) :
i f V == ∅ :

(W0,W1) = (∅ , ∅)
else :

d = maximal p r i o r i t y in G
U = { v ∈ V | priority(v) = d }
p = d % 2
j = 1 − p
A = Attrp(U)

(W
′
0 , W

′
1) = win (G \ A)

i f W
′
j == ∅ :

Wp = W
′
p ∪ A

Wj = ∅
else :

B = Attrj(W
j
1)

(W
′
0 , W

′
1) = win (G \ B)

Wp = W
′
p

Wj = W
′
j ∪ B

return (W0,W1)

Fig. 1. Zielonka Recursive Algorithm

In this section, we describe the
Zielonka Recursive Algorithm using
the basic concepts introduced in the
previous sections and some observa-
tions regarding its implementation in
PGSolver.

The algorithm to solve parity
games introduced by Zielonka comes
from a work of McNaughton [27].
The Zielonka Recursive Algorithm, as
reported in Fig. 1, uses a divide and
conquer technique. It constructs the
winning sets for both players using
the solution of subgames. It removes
the nodes with the highest priority
from the game, together with all nodes
(and edges) attracted to this set. The
algorithm win(G) takes as input a
graph G and, after a number of recur-
sive calls over ad hoc built subgames,
returns the winning sets (W0,W1) for
player 0 and player 1, respectively. The
running time complexity of the Zielonka Recursive Algorithm is reported in
Table 1.

3.1 The Implementation of the Zielonka Algorithm in PGSolver

PGSolver turns out to be of a very limited application in several real scenarios.
In more details, even using the Zielonka Recursive Algorithm (that has been
shown to be the best performing in practice), PGSolver would require minutes
to decide games with few thousands of nodes, especially on dense graphs. In this
work we deeply study all main aspects that cause such a bad performance.

Specifically, our investigation beginnings with the way the (Classic) Recur-
sive Algorithm has been implemented in PGSolver by means of the OCaml pro-
gramming language. We start observing that the graph data structure in this
framework is represented as a fixed length Array of tuples. Every tuple has all
information that a node needs, such as the player, the assigned priority and
the adjacency list. Before every recursive call is performed, the program com-
putes the difference between the graph and the attractor, as well as it builds the
transposed graph. In addition the attractor function makes use of a TreeSet data
structure that is not available in the OCaml’s standard library, but it is imported
from TCSlib, a multi-purpose library for OCaml written by Oliver Friedmann
and Martin Lange. Such library implements this data structure using AVL-Trees
that guarantees logarithmic search, insert, and removal. Also, the same function
calculates the number of successors for the opponent player in every iteration
when looping through every node in the attractor.

150 A. Di Stasio et al.

4 The Improved Algorithm

function win (G) :
T = G. t ranspose ()
Removed = {}
return winI (G, T,Removed)

function winI (G, T,Removed) :
i f |V | == |Removed| :

return (∅ , ∅)
W = (∅, ∅)
d = maximal p r i o r i t y in G
U = { v ∈ V | priority(v) = d }
p = d % 2
j = 1 − p

W
′

= (∅, ∅)
A = Attr (G, T,Removed, U, p)

(W
′
0 ,W

′
1) = winI (G, T,Removed ∪ A)

i f W
′
j == ∅ :

Wp = W
′
p ∪ A

Wj = ∅
else :

B = Attr (G, T,Removed,W
′
j , j)

(W
′
0 ,W

′
1) = winI (G, T,Removed ∪ B)

Wp = W
′
p

Wj = W
′
j ∪ B

return (W0,W1)

Fig. 2. Improved Recursive Algorithm

In this section we introduce an
improved version based on the
Classic Recursive Algorithm by
Zielonka. The new algorithm is
depicted in Fig. 2. In Fig. 3 we also
report an improved version of the
attractor function that the new
algorithm makes use of.

Let G be a graph. Remov-
ing a node from G and building
the transposed graph takes time
Θ(|V | + |E|). Thus dealing with
dense graph such operation takes
Θ(|V |2). In order to reduce the
running time complexity caused by
these graph operations, we intro-
duce an immutability requirement
to the graphG ensuring that every
recursive call uses G without apply-
ing any modification to the state
space of the graph. Therefore, to
construct the subgames, in the

recursive calls, we keep track of each node that is going to be removed from
the graph, adding all of them to a set called Removed.

function Attr (G, T, Removed , A, i) :
tmpMap = []
for x = 0 to |V | :

i f x ∈ A tmpMap = 0
else tmpMap = −1

index = 0
while index < |A| :

for v0 ∈ adj(T,A[index]) :
i f v0 /∈ Removed :

i f tmpMap [v0] == −1:
i f p layer (v0) == i :

A = A ∪ v0
tmpMap [v0] = 0

else :
ad j counte r = −1
for x ∈ adj(G, v0) :

i f (x /∈ Removed) :
ad j counte r += 1

tmpMap [v0] = ad j counte r
i f ad j counte r == 0 :

A = A ∪ v0
else i f (p layer (v0) == j

and tmpMap [v0] > 0) :
tmpMap [v0] −= 1
i f tmpMap [v0] == 0 :

A = A ∪ v0
return A

Fig. 3. Improved Recursive Attractor

The improved algorithm is
capable of checking if a given node
is excluded or not in constant time
as well as it completely removes
the need for a new graph in every
recursive call. At first glance this
may seem a small improvement
with respect to the Classic Recur-
sive Algorithm. However, it turns
out to be very successful in practice
as proved in the following bench-
mark section. Further evidences
that boost the importance of such
improvement can be related to the
fact that the difference operation
has somehow the same complicance
of complementing automata [33].
Using our approach is like avoiding
such complementation by adding
constant information to the states,
i.e. a flag (removed, ¬removed).

Solving Parity Games in Scala 151

Last but not least, about the actual implementation, it is also worth mentioning
that general-purpose memory allocators are very expensive as the per-operation
cost floats around one hundred processor cycles [18]. Through these years many
efforts have been made to improve memory allocation writing custom allocators
from scratch, a process known to be difficult and error prone [5,6].

4.1 Implementation in OCaml for PGSolver

Our implementation of the Improved Recursive Algorithm, listed in Fig. 4, does
not directly modify the graph data structure (that is represented in PGSolver
as an array of tuples), but rather it uses a set to keep track of removed nodes.

l e t r ec win game tgraph exc =
l e t w = Array . make 2 In teSe t . empty in
i f (not ((Array . length game) =

(InteSe t . c a rd i na l exc))) then (
l e t (d, u) = (max pr io and set game exc) in
let p = d mod 2 in
let j = 1 − p in
let w1 = Array . make 2 InteSe t . empty in
let (attr, exc1) = a t t r f un game

exc tgraph u p in
let (sol0, sol1) = win game

tgraph exc1 in
w1.(0) <− s o l 0 ;
w1.(1) <− s o l 1 ;
i f (In t eSe t . i s empty w1 . (j)) then (

w. (p) <− (In t eSe t . union w1 . (p) a t t r) ;
w. (j) <− In t eSe t . empty ;

) else (
l e t (attrB , exc2) =
a t t r f un game exc tgraph w1.(j) j in

let (sol0, sol1) = win game
tgraph exc2 in

w1.(0) <− s o l 0 ;
w1.(1) <− s o l 1 ;
w.(p) <− w1.(p) ;
w.(j) <− (In t eSe t . union w1.(j) at t r B) ;

)
) ;
(w.(0), w.(1))

; ;

Fig. 4. Improved Recursive in OCaml

The Improved Recur-
sive Algorithm, named
solver, takes three para-
meters: the Graph, its
transposed one, and a
set of excluded nodes.
Our Improved Attrac-
tor function, uses a
HashMap, called temp-
Map to keep track of
the number of succes-
sors for the opponent
player’s nodes. In addi-
tion, we use a Queue,
from OCaml’s standard
library, to loop over
the nodes in the attrac-
tor. Aiming at per-
formance optimizations,
the attractor function,
implemented in PGS-
olver also returns the
set of excluded nodes
that solver passes to the next recursive call.

5 Scala

Scala [29,30] is the programming language designed by Martin Odersky, the code-
signer of Java Generics and main author of javac compiler. Scala defines itself
as a scalable language, statically typed, a fusion of an object-oriented language
and a functional one. It runs on the Java Virtual Machine (JVM) and supports
every existing Java library. Scala is a purely object-oriented language in which,
like Java and Smalltalk, every value is an object and every operation is a method
call. In addition Scala is a functional language where every function is a first class

152 A. Di Stasio et al.

object, also is equipped with efficient immutable and mutable data structures,
with a strong selling point given by Java interoperability. However, it is not a
purely functional language as objects may change their states and functions may
have side effects. The functional aspects are perfectly integrated with the object-
oriented features. The combination of both styles makes possible to express new
kinds of patterns and abstractions. All these features make Scala programming
language as a clever choice to solve these tasks, in a strict comparison with other
programming languages available such as C, C++ or Java. Historically, the first
generation of the JVM was entirely an interpreter; nowadays the JVM uses a
Just-In-Time (JIT) compiler, a complex process aimed to improve performance
at runtime. This process can be described in three steps: (1) source files are
compiled by the Scala Compiler into Java Bytecode, that will be feed to a JVM;
(2) the JVM will load the compiled classes at runtime and execute proper com-
putation using an interpreter; (3) the JVM will analyze the application method
calls and compile the bytecode into native machine code. This step is done in a
lazy manner: the JIT compiles a code path when it knows that is about to be
executed. JIT removed the overhead of interpretation and allows programs to
start up quickly, in addition this kind of compilation has to be fast to prevent
influencing the actual performance of the program. Another interesting aspect
of the JVM is that it verifies every class file after loading them. This makes
sure that the execution step does not violate some defined safety properties.

def win (G: GraphWithSets)
: (ArrayBuffer [Int] ,

ArrayBuffer [Int]) = {
va l W =

Array (ArrayBuffer . empty [Int] ,
ArrayBuffer . empty [Int])

va l d = G. max pr io r i ty ()
i f (d > −1) {

va l U = G. prior ityMap . get (d)
. f i l t e r (p => !G. exc lude (p))

va l p = d % 2
val j = 1 − p
va l W1 =
Array (ArrayBuffer . empty [Int] ,
ArrayBuffer . empty [Int])

va l A = Attr (G, U, p)
va l r e s = win (G −− A)
W1(0) = re s . 1
W1(1) = re s . 2
i f (W(j) . s i z e == 0) {
W(p) = W1(p) ++= A
W(j) = ArrayBuffer . empty [Int]

} else {
va l B = Attr (G, W1(j) , j)
va l r e s2 = win (G −− B)
W1(0) = re s2 . 1
W1(1) = re s2 . 2
W(p) = W1(p)
W(j) = W1(j) ++= B

}
}
(W(0) , W(1))

}

Fig. 5. Improved Algorithm in Scala

The checks are per-
formed by the verifier
that includes a com-
plete type checking of
the entire program. The
JVM is also available
on all major platforms
and compiled Java exe-
cutables can run on all
of them with no need
for recompilation. The
Scala compiler scalac
compiles a Scala pro-
gram into Java class
files. The compiler is
organized in a sequence
of successive steps. The
first one is called the
front-end step and per-
forms an analysis of the
input file, makes sure
that is a valid Scala
program and produces
an attributed abstract
syntax tree (AST); the

Solving Parity Games in Scala 153

back-end step simplifies the AST and proceeds to the generation phase where it
produces the actual class files, which constitute the final output. Targeting the
JVM, the Scala Compiler checks that the produced code is type-correct in order
to be accepted by the JVM bytecode verifier.

In [20], published by Google, Scala even being an high level language, per-
forms just 2.5x slower than C++ machine optimized code. In particular it has
been proved to be even faster than Java. As the paper notes: “While the bench-
mark itself is simple and compact, it employs many language features, in partic-
ular high level data structures, a few algorithms, iterations over collection types,
some object oriented features and interesting memory allocation patterns”.

5.1 Improved Algorithm in Scala

In this section we introduce our implementation of the Improved Recursive Algo-
rithm in Scala, listed as Figs. 5 and 6.

def Attr (G: GraphWithSets ,
A: ArrayBuffer [Int] , i : Int)
: ArrayBuffer [Int] = {

va l tmpMap = Array
. f i l l [Int] (G. nodes . s i z e)(−1)

var index = 0
A. fo r each (tmpMap() = 0)
while (index < A. s i z e) {

G. nodes (A(index))
.< . f o r each (v0 => {

i f (!G. exc lude (v0)) {
va l f l a g = G. nodes (v0) . p laye r == i
i f (tmpMap(v0) == −1) {

i f (f l a g) {
A += v0
tmpMap(v0) = 0

} else {
va l tmp = G. nodes (v0)
. >
. count (x => !G. exc lude (x)) − 1

tmpMap(v0) = tmp
i f (tmp == 0) A += v0

}
} else i f (! f l a g && tmpMap(v0) > 0){

tmpMap(v0) −= 1
i f (tmpMap(v0) == 0) A += v0

}
}

})
index += 1

}
A

}

˜

Fig. 6. Improved Attractor in Scala

Aiming at performance
optimizations we use a
priority HashMap where
every key is a certain pri-
ority and a value is a
set of each node v where
priority(v) = key. As
fast and JVM-Optimized
HashMaps and ArrayLists
we use the ones included
in the open source library
Trove. In addition, using
the well known strat-
egy pattern [17] we open
the framework for further
extensions and improve-
ments. The intended pur-
pose of our algorithm is
to assert that the per-
formance of existing tools
for solving parity games
can be improved using the
improved algorithm and
choosing Scala as the pro-
gramming language. We
rely on Scala’s internal
features and standard library making heavy use of the dynamic ArrayBuffer
data structure. In order to store the arena we use an array of Node objects. The
Node class contains: a list of adjacent nodes, a list of incident nodes, its prior-
ity and the player; the data structure also implements a factory method called
“− − (set : ArrayBuffer[Int])” that takes an ArrayBuffer of integers as input,

154 A. Di Stasio et al.

flags all the nodes in the array as excluded, and returns the reference to the new
graph. In addition, there is also a method called max priority() that will return
the maximal priority in the graph and the set of nodes with that priority.

The Attractor function makes deeply use of an array of integers named
tmpMap that is preallocated using the number of nodes in the graph with a
negative integer as default value; we use tmpMap when looping through every
node in the set A given as parameter, to keep track of the number of successors for
the opponent player. We add a node v ∈ V to the attractor set when its counter
(stored in tmpMap[v]) reaches 0 (adj(v) ⊆ A and v ∈ Vopponent) or if v ∈ Vplayer;
using an array of integers, or an HashMap, to serve this purpose, guarantees a
constant time check if a node was already visited and ensures that the count for
the opponent’s node adjacency list takes place one time only. These functions
are inside a singleton object called ImprovedRecursiveSolver that extends the
Solver interface.

6 Benchmarks

In this section we study, analyze and evaluate the running time of our four
implementations: Classic Recursive in OCaml (CRO), Classic Recursive in Scala
(CRS), Improved Recursive in OCaml (IRO) and Improved Recursive in Scala
(IRS). We have run our experiments on multiple instances of random parity
games. We want to note that IRS does not apply any preprocessing steps to
the arena before solving. All tests have been run on an Intel(R) Xeon(R) CPU
E5620 @ 2.40 GHz, with 16 GB of Ram (with no Swap available) running Ubuntu
14.04. Precisely, we have used 100 random arenas generated using PGSolver of
each of the following types, given N = i × 1000 with i integer and 1 ≤ i ≤ 10
and a timeout set at 600 s. In the following, we report six tables in which we
show the running time of all experiments under fixed parameters. Throughout

Fig. 7. Random Games Chart in Logarithmic Scale

Solving Parity Games in Scala 155

this section we define aboT when the program has been aborted due to excessive
time and aboM when the program has been killed by the Operating System
due to memory consumption. In Fig. 7 we also report the trends of the four
implementations using a logarithmic scale with respect to seconds. This figure
is based on the averages of all results reported in the tables below.

N nodes, N colors, adj(N2 , N) N nodes, N colors, adj(1, N)
N IRS CRO CRS IRO

1 × 103 0.204 1.99 0.505 0.752

2 × 103 0.456 13.208 1.918 3.664

3 × 103 1.031 41.493 2.656 6.147

4 × 103 1.879 96.847 6.728 15.966

5 × 103 2.977 183.589 12.616 27.272

6 × 103 3.993 306.104 19.032 41.051

7 × 103 4.989 486.368 27.05 50.367

8 × 103 6.103 aboT 36.597 70.972

9 × 103 7.287 aboT 55.171 97.216

10 × 103 8.468 aboT 68.303 113.36

N IRS CRO CRS IRO
1 × 103 0.179 1.21 0.454 0.583

2 × 103 0.389 8.075 1.173 2.366

3 × 103 0.868 25.097 2.656 6.147

4 × 103 1.279 57.186 4.23 10.452

5 × 103 2.273 108.983 9.206 20.377

6 × 103 2.772 183.884 12.562 27.489

7 × 103 3.748 291.077 17.942 37.521

8 × 103 3.942 418.377 22.105 47.502

9 × 103 4.989 593.721 23.93 61.593

10 × 103 6.413 aboT 42.408 80.508

N nodes, 2 colors, adj(N2 , N) N nodes, 2 colors, adj(1, N)
N IRS CRO CRS IRO

1 × 103 0.189 1.98 0.481 0.702

2 × 103 0.469 12.941 1.55 3.17

3 × 103 1.046 41.584 3.995 7.428

4 × 103 1.712 96.545 5.378 13.823

5 × 103 2.414 181.225 11.273 22.575

6 × 103 3.458 307.233 16.472 35.269

7 × 103 4.612 484.159 26.448 49.311

8 × 103 6.003 aboT 28.968 65.674

9 × 103 7.03 aboT 43.666 85.909

10 × 103 8.938 aboT 57.18 110.814

N IRS CRO CRS IRO
1 × 103 0.159 1.226 0.385 0.468

2 × 103 0.341 7.965 1.004 2.162

3 × 103 0.797 25.114 2.305 6.014

4 × 103 1.123 56.422 3.699 9.421

5 × 103 1.704 108.584 6.12 14.971

6 × 103 2.243 182.935 10.099 22.621

7 × 103 3.324 286.503 13.898 32.335

8 × 103 3.95 430.265 19.743 44.281

9 × 103 4.597 aboT 28.742 56.81

10 × 103 5.651 aboT 33.639 71.434

N nodes,
√
N colors, adj(N2 , N) N nodes,

√
N colors, adj(1, N)

N IRS CRO CRS IRO
1 × 103 0.204 1.978 0.468 0.71

2 × 103 0.456 13.114 1.575 3.203

3 × 103 1.031 41.493 3.868 7.492

4 × 103 1.621 96.55 5.744 13.97

5 × 103 2.439 183.589 10.72 22.98

6 × 103 3.372 307.426 15.978 34.78

7 × 103 4.662 485.826 26.432 48.875

8 × 103 6.499 aboT 34.741 66.423

9 × 103 7.147 aboT 48.915 86.645

10 × 103 8.988 aboT 56.656 111.492

N IRS CRO CRS IRO
1 × 103 0.162 1.218 0.384 0.475

2 × 103 0.344 7.947 1.034 2.195

3 × 103 0.788 25.029 2.406 5.944

4 × 103 1.105 57.307 3.835 9.608

5 × 103 1.678 108.623 6.34 15.165

6 × 103 2.281 182.154 9.871 22.859

7 × 103 3.193 285.28 14.338 32.536

8 × 103 4.185 422.74 20.362 44.515

9 × 103 5.009 599.071 24.347 57.022

10 × 103 5.76 aboT 35.024 72.291

156 A. Di Stasio et al.

6.1 Trends Analysis for Random Arenas

The speedup obtained by our implementation of the Improved Recursive Algo-
rithm is in most cases quite noticeable. Figure 8 shows the running time trend
for Improved and Classic Algorithm on each platform. The seconds are limited
to [0, 100]. As a result we show that even with all preprocessing steps enabled in
PGSolver, IRS is capable of gaining two orders of magnitude in running time.

Fig. 8. Trends Chart

6.2 Trends Analysis for Special Games

Focusing on Classic Recursive in PGSolver and our Improved Recursive in Scala,
here we show the running times for non-random games generated by PGSolver.
In particular we use four types of non-random games, these experiments have
been run against PGSolver using the Classic Recursive Algorithm with all opti-
mizations disabled and all solutions were matched to ensure correctness.

Clique[n] games are fully connected games without self-loops, where n is the
number of nodes. The set of nodes is partitioned into V0 and V1 having the same
size. For all v ∈ Vp, priority(v)%2 = p. For our experiments we set n = 2k

where 8 ≤ k ≤ 14. Table below reports the running time for our experiments
and these results are drawn in Fig. 9.

n 28 29 210 211 212 213 214

IRS 0.05 0.07 0.12 0.46 1.18 4.87 17.39

CRO 0.09 0.61 4.37 29.58 229.78 aboT aboM

Solving Parity Games in Scala 157

Fig. 9. Clique Trends

In Ladder[n] game, every node in V0 has priority 2 and every node in V1 has
priority 1. In addition, each node v ∈ V has two successors: one in V0 and one
in V1, which form a node pair. Every pair is connected to the next pair forming
a ladder of pairs. Finally, the last pair is connected to the top. The parameter n
specifies the number of node pairs. For our tests, we set n = 2k where 7 ≤ k ≤ 19
and report our experiments in the table below whose trend is drawn in Fig. 10.
Figure 10 shows better performance for CRO than IRS using low-scaled values
as input parameter. This behaviour is not surprising as there is a warming-up
time required by the Java Virtual Machine.

Fig. 10. Ladder Trends

158 A. Di Stasio et al.

n 27 28 29 210 211 212 213 214 215 216 217 218 219

IRS 0.01 0.02 0.03 0.05 0.08 0.11 0.13 0.15 0.19 0.25 0.38 0.48 0.93

CRO 0.00 0.00 0.01 0.01 0.03 0.06 0.13 0.3 0.65 1.39 2.93 6.21 11.71

Model Checker Ladder[n] consists of overlapping blocks of four nodes, where
the parameter n specifies the number of desidered blocks. Every node is owned
by player 1, V1 = V and V0 = ∅, and the nodes are connected such that every
cycle passes through a single point of colour 0. For our experiments we set n = 2k

where 7 ≤ k ≤ 19, report our experiments in the table below and draw the trends
in Fig. 11.

Fig. 11. Model Checker Ladder Trends

Fig. 12. Jurdiznski Trends with a Fixed Parameter of n = 10 Layers

Solving Parity Games in Scala 159

Fig. 13. Jurdiznski Trends with a Fixed Parameter of m = 10 Blocks

n 27 28 29 210 211 212 213 214 215 216 217 218 219

IRS 0.01 0.02 0.03 0.04 0.07 0.12 0.14 0.16 0.19 0.21 0.26 0.39 0.65

CRO 0.00 0.00 0.01 0.01 0.02 0.05 0.10 0.22 0.47 0.99 2.12 4.16 8.31

Jurdzinski[n, m] games are designed to generate the worst-case behaviour for
the Small Progress Measure Solver [22]. The parameter n is the number of layers,
where each layer has m repeating blocks that are inter-connected as described in
[22]. As this game takes two parameters, in our test we ran two experiments: one
where n is fixed to 10 and m = 10 × 2k, for k = 1, 2, 3, 4, 5 and one where m is
fixed to 10 and n = 10 × 2k, for k = 1, 2, 3, 4, 5. The results of our experiments
are reported in the tables below. The trends are drawn in Figs. 12 and 13.

m 10 × 21 10 × 22 10 × 23 10 × 24 10 × 25

IRS 0.21 0.48 1.54 4.55 15.31

CRO 0.23 0.79 3.14 15.77 65.85

n 10 × 21 10 × 22 10 × 23 10 × 24 10 × 25

IRS 0.28 0.77 3.02 30.02 232.24

CRO 0.42 2.94 22.69 184.12 aboT

7 Conclusions

PGSolver is a well-stablished framework that collects multiple algorithms to
decide parity games. For several years now this platform has been the only
one available to solve and benchmark in practice. Given PGSolver’s limitations
addressing huge graphs, several attempts of improvement have been carried out
recently. Some of them have been implemented as preprocessing steps in the tool
itself (such as priority compression or SCC decomposition and the like), while
others chose parallelism techniques, such as Cuda [19], applied to the algorithms.
However these improvements often do not show the desired performance.

In this paper we started from scratch by revisiting the Zielonka Recursive
Algorithm, implemented an improved and the classic versions in Scala and

160 A. Di Stasio et al.

OCaml, comparing among them. The choice of Scala as a programming lan-
guage has been not casual, but rather it comes out from a deep study focused on
performance and simplicity. Scala is interoperable with Java libraries, has a con-
cise and clear syntax, functional and object oriented features, runs on the Java
Virtual Machine and has been proven to be high performing. Our main result is
a new and fast tool for solving parity games capable of gaining up to two orders
of magnitude in running time. In conclusion we state that there is place for a
faster and better framework to solve parity games and this work is a starting
point raising several interesting questions. For example, what if one implements
the other known algorithms to solve parity games in Scala? PGSolver showed
that Zielonka’s algorithm is the best performing. Can one reproduce the same
results in Scala? We leave all these questions as future work.

References

1. Aminof, B., Mogavero, F., Murano, A.: Synthesis of hierarchical systems. Sci.
Comp. Program. 83, 56–79 (2013)

2. Antonik, A., Charlton, N., Huth, M.: Polynomial-time under-approximation of
winning regions in parity games. ENTCS 225, 115–139 (2009)

3. Aminof, B., Kupferman, O., Murano, A.: Improved model checking of hierarchical
systems. Inf. Comput. 210, 68–86 (2012)

4. Barringer, H., Havelund, K.: TraceContract: a scala DSL for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011)

5. Berger, E.D., Zorn, B.G., McKinley, K.S.: Composing high-performance memory
allocators. ACM SIGPLAN Not. 36, 114–124 (2001)

6. Berger, E.D., Zorn, B.G., McKinley, K.S.: OOPSLA 2002: reconsidering custom
memory allocation. ACM SIGPLAN Not. 48(4), 46–57 (2013)

7. Berwanger, D.: Admissibility in infinite games. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 188–199. Springer, Heidelberg (2007)

8. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff
and energy games. In: FSTTCS’10, LIPIcs 8, pp. 505–516 (2010)

9. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In:
LICS’05, pp. 178–187 (2005)

10. Chatterjee, K., Jurdzinski, M., Henzinger, T.A.: Quantitative stochastic parity
games. In: SODA’04, pp. 121–130 (2004)

11. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

12. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2002)

13. Emerson, E., Jutla, C.: Tree automata, µ-calculus and determinacy. In: FOCS’91,
pp. 368–377 (1991)

14. Friedmann, O.: Recursive algorithm for parity games requires exponential time.
RAIRO-Theor. Inform. Appl. 45(04), 449–457 (2011)

15. Friedmann, O., Lange, M.: The pgsolver collection of parity game solvers. Univer-
sity of Munich (2009)

16. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P.
(eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)

Solving Parity Games in Scala 161

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Education, New Jersey (1994)

18. Gay, D., Aiken, A.: Memory management with explicit regions. ACM Sigplan Not.
33, 313–323 (1998)

19. Hoffmann, P., Luttenberger, M.: Solving parity games on the GPU. In: Van Hung,
D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 455–459. Springer,
Heidelberg (2013)

20. Hundt, R.: Loop recognition in c++/java/go/scala. In: 2011 Proceedings of Scala
Days (2011)

21. Jurdzinski, M.: Deciding the winner in parity games is in up ∩ co-up. Inf. Process.
Lett. 68(3), 119–124 (1998)

22. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

23. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)

24. Kozen, D.: Results on the propositional mu-calculus. TCS 27(3), 333–354 (1983)
25. Kupferman, O., Vardi, M., Wolper, P.: An automata theoretic approach to

branching-time model checking. JACM 47(2), 312–360 (2000)
26. Kupferman, O., Vardi, M., Wolper, P.: Module checking. IC 164(2), 322–344 (2001)
27. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Log.

65(2), 149–184 (1993)
28. Mogavero, F., Murano, A., Sorrentino, L.: On promptness in parity games. In:

McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 601–618. Springer, Heidelberg (2013)

29. Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S.,
Mihaylov, N., Schinz, M., Stenman, E., Zenger, M.: An overview of the scala pro-
gramming language (2004)

30. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Inc, Sunnyvale
(2008)

31. Queille, J., Sifakis, J.: Specification and verification of concurrent programs in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) International Symposium
on Programming. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

32. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

33. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 133–191. MIT Press, Cambridge (1990)

34. Vöge, J., Jurdzinski, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

35. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

	Solving Parity Games in Scala
	1 Introduction
	2 Parity Games
	3 The Zielonka Recursive Algorithm
	3.1 The Implementation of the Zielonka Algorithm in PGSolver

	4 The Improved Algorithm
	4.1 Implementation in OCaml for PGSolver

	5 Scala
	5.1 Improved Algorithm in Scala

	6 Benchmarks
	6.1 Trends Analysis for Random Arenas
	6.2 Trends Analysis for Special Games

	7 Conclusions
	References

