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Abstract. Self-adaptation allows systems to modify their structure and/
or their behaviour depending on the environment and the system itself.
Since reconfigurations must not happen at any but in suitable circum-
stances, guiding and controlling dynamic reconfigurations at runtime is
an important issue. This paper contributes to two essential topics of the
self-adaptation—a runtime temporal properties evaluation, and a decen-
tralization of control loops. It extends the work on the adaptation of
component-based systems at runtime via policies with temporal patterns
by providings (a) specific progressive semantics of temporal patterns and
(b) a decentralised method which is suitable to deal with temporal pat-
terns of component-based systems at runtime. The implementation with
the GROOVE tool constitutes a practical contribution.

1 Introduction

Self-adaptation—the ability of systems to modify their structure and/or their
behaviour in response to their interaction with the environment and the system
itself, and their goals—is an important and active research field with applications
in various domains [1]. Since dynamic reconfigurations that modify the architec-
ture of component-based systems without incurring any system downtime must
not happen at any but in suitable circumstances, adaptation policies are used to
guide and control reconfigurations at runtime. For triggering adaptation policies
and specifying behaviours of component-based systems, a linear temporal logic
based on Dwyer’s work on patterns and scopes [2], called FTPL, has been used
in [3]. In this adaptation context, choosing a suitable adaptation policy in a
current component-based system configuration depends on a runtime temporal
patterns evaluation which is one of the essential topics of the self-adaptation [1].

We consider open component-based systems interacting with their environ-
ment, therefore, their behaviour depends on both external and internal events.
Since our component-based systems are modelled by infinite state transition
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systems, for our pattern-based verification to remain tractable, we consider a
non-blocking environment with incomplete information about the component-
based system that enables all the external events.

In this setting, providing values for temporal patterns is a difficult task. In [3],
a centralised evaluation of temporal patterns at runtime has been proposed. In
order to contribute to decentralization of control loops—another self-adaptation
topic, this paper addresses the FTPL decentralised evaluation problem on a
reconfiguration path, and presents a method that is suitable to deal with tem-
poral patterns of component-based systems. Indeed, as these patterns contain
conjunctions or disjunctions of properties over components’ parameters and rela-
tions, the evaluation of temporal patterns in a decentralised manner makes sense,
and the sooner the better.

Inspired by the LTL decentralised evaluation [4] for closed systems, this paper
provides a progressive FTPL semantics allowing a decentralised evaluation of
FTPL formulae over open component-based systems – the first contribution.
The second contribution consists of an algorithm to answer the temporal pattern
decentralised evaluation problem in B4 and of the correctness and uniqueness
results saying that whenever an FTPL property is evaluated in the decentralised
manner, it matches the FTPL evaluation using the basic semantics in [3]. The
implementation with the GROOVE tool [5] constitutes a practical contribution.

Related work. When checking properties of open systems, the idea is to satisfy
a property no matter how the environment behaves. For non-universal tempo-
ral logics, this problem, called module-checking, is in general much harder than
model-checking of closed systems in finite as well as in infinite settings [6,7], and
it becomes undecidable with imperfect information about the control states [8].
Fortunately, for universal temporal logics as LTL, the module checking prob-
lem with both complete or incomplete information remains decidable in finite
setting [6]; in particular, it is PSPACE-complete for LTL.

As temporal properties often cannot be evaluated to true or false during
the system execution, in addition to true and false values, potential true and
potential false values are used whenever an observed behaviour has not yet led
to an acceptance or a violation of the property under consideration, forming the
B4 domain like in RV-LTL [9]. Like in [10], in our framework external events
can be seen as invocations of methods performed by (external) sensors when a
change is detected in their environment.

Let us remark that this work is motivated by applications in numerous
frameworks that support the development of components together with their
monitors/controllers, as, e.g., Fractal [11], CSP‖B [12], FraSCAti [13], etc.

More generally, this paper aims to contribute to the development of new
verification approaches for complex systems that integrate ideas of distributed
algorithms [14].

Layout of the paper. After a short overview of a component-based model and
of a linear temporal patterns logic in Sects. 2, 3 presents a specific progressive
semantics of temporal patterns. Afterwards, Sect. 4 addresses the temporal pat-
tern decentralised evaluation problem on a reconfiguration path by providing
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an algorithm for such an evaluation in B4. Section 5 describes the implemen-
tation with the GROOVE tool and details an example of a location composite
component. Finally, Sect. 6 presents our conclusion.

2 Background: Reconfiguration Model
and Temporal Patterns

The reconfigurations we consider here make the component-based architecture
evolve dynamically. They are combinations of basic reconfiguration operations
such as instantiation/destruction of components; addition/removal of compo-
nents; binding/unbinding of component interfaces; starting/stopping compo-
nents; setting parameter values of components. In the remainder of the paper,
we focus on reconfigurations that are combinations of basic operations.

Components
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ITypes

mandatory
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stopped
started

Binding

Delegate

InterfaceType

Contingency
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Parent
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Fig. 1. Configurations = architectural ele-
ments and relations

In general, a system configuration
is the specific definition of the elements
that define or prescribe what a system
is composed of. As in [15], we define
a configuration to be a set of architec-
tural elements (components, required
or provided interfaces, and parame-
ters) together with relations (binding,
delegation, etc.) to structure and to
link them, as depicted in Fig. 1.

Given a set of configurations C = {c, c1, c2, . . .}, let CP be a set of configu-
ration properties on the architectural elements and the relations between them
specified using first-order logic formulae. The interpretation of functions, rela-
tions, and predicates is done according to basic definitions in [16] and in [15].
A configuration interpretation function l : C → CP gives the largest conjunction
of cp ∈ CP evaluated to true on c ∈ C1.

Among all the configuration properties, the architectural consistency cons-
traints CC express requirements on component assembly common to all the
component architectures. These constraints introduced in [17] allow the defini-
tion of consistent configurations regarding, in particular, the following rules:

– a component supplies one provided interface, at least;
– the composite components have no parameter;
– a sub-component must not include its own parent component;
– two bound interfaces must have the same interface type and their containers

are sub-components of the same composite;
– when binding two interfaces, there is a need to ensure that they have not

been involved in a delegation yet; similarly, when establishing a delegation
link between two interfaces, the specifier must ensure that they have not yet
been involved in a binding;

1 By definition in [16], this conjunction is in CP .
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– a provided (resp. required) interface of a sub-component is delegated to at
most one provided (resp. required) interface of its parent component; the
interfaces involved in the delegation must have the same interface type;

– a component is started only if its mandatory required interfaces are bound or
delegated.

Definition 1 (Consistent configuration). Let c = 〈Elem,Rel〉 be a configu-
ration and CC the architectural consistency constraints. The configuration c is
consistent, written consistent(c), if l(c) ⇒ CC.

Let R be a finite set of reconfiguration operations, and run a generic running
operation. The possible evolutions of the component architecture via the recon-
figuration operations are defined as a transition system over Rrun = R∪{run}.

Definition 2 (Reconfiguration model). The operational semantics of com-
ponent systems with reconfigurations is defined by the labelled transition system
S = 〈C, C0,Rrun ,→, l〉 where C = {c, c1, c2, . . .} is a set of consistent configura-
tions, C0 ⊆ C is a set of initial configurations, R is a finite set of reconfigurations,
→ ⊆ C × Rrun × C is the reconfiguration relation.

Let us write c
ope→ c′ when c′ is reached from c by ope ∈ Rrun. An evolution path

σ (or a path for short) in S is a (possibly infinite) sequence of configurations
c0, c1, c2, . . . such that ∀i ≥ 0 . (∃ opei ∈ Rrun.(ci

opei→ ci+1)). Let σ(i) denote
the i-th configuration of a path σ, σi a suffix path starting with σ(i), and Σ the
set of paths. An execution is a path σ in Σ such that σ(0) ∈ C0.

In this section, we also briefly recall the FTPL2 logic patterns introduced
in [18]. In addition to configuration properties (cp) in CP mentioned above, the
proposed logic contains external events (ext), as well as events from reconfigu-
ration operations, temporal properties (tpp) together with trace properties (trp)
embedded into temporal properties. Let PropFTPL denote the set of the FTPL
formulae obeying the FTPL grammar below. The FTPL semantics from [3] is
summarized in the long version of this paper [19].

<FTPL> ::=<tpp> | <events> | cp
<tpp> ::= after<events><tpp> | before<events><trp> | <trp>until<events> | <trp>
<trp> ::= always cp | eventually cp | <trp> ∧ <trp> | <trp> ∨ <trp>
<events> ::=<event>,<events> | <event>
<event> ::= openormal | ope exceptional | ope terminates | ext

In the rest of the paper, let AE be the set of atomic events composed of
atomic propositions from CP and of basic FTPL events. An event θ is an element
of Θ = 2AE . Let us suppose that each component Ci of the component-based
system has a local monitor Mi attached to it, from the set M = {M0, . . . ,Mn−1}
of monitors3. Let us introduce the projection function Πi to restrict events to
2 FTPL stands for TPL (Temporal Pattern Language) prefixed by ‘F’ to denote its

relation to Fractal-like components and to first-order integrity constraints over them.
3 Implemented as controllers in CSP‖B, Fractal, FraSCAti, etc.
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the local view of the monitor Mi. For atomic events, Πi : 2AE → 2AE , and
we write AEi = Πi(AE). We assume ∀i, j ≤ n.i �= j ⇒ AEi ∩ AEj = ∅

4.
Similarly, for events, we define Πi : 2Θ → 2Θ, with Θi = Πi(Θ), and we assume
∀i, j ≤ n.i �= j ⇒ Θi ∩ Θj = ∅.

Let ev : C → Θ be a function to associate events with configurations. Given
a configuration σ(j) of a path σ with j ≥ 0, the corresponding event is θ(j) =
ev(σ(j)). In this setting, an individual behaviour of a component Ci can be
defined as a (finite or infinite) sequence of events θi = θi(0) · θi(1) · · · θi(j) · · ·
s.t. ∀j ≥ 0.θi(j) = Πi(ev(σ(j))) ∈ Θi, also called a trace. Finite (resp. infinite)
traces over Θ are elements of Θ∗ (resp. Θω); the set of all traces is Θ∞ = Θ∗∪Θω.

3 FTPL Progression and Urgency

This section provides the underpinnings to allow a decentralised evaluation of
FTPL formulae. Inspired by definitions in [4], our notions of progression and
urgency are adapted to the FTPL semantics: they take into account external
and internal events as well as scopes of linear temporal patterns.

For decentralised evaluation of the FTPL formulae, instead of the set B4 as
in [3], let us consider the set B5 = {⊥,⊥p,#,�p,�}, where ⊥,� stand resp. for
false and true values, ⊥p,�p for potential false and potential true values, and #
for unknown value. We consider B5 together with the truth non-strict ordering
relation �5 satisfying ⊥ �5 ⊥p �5 �p �5 � �5 #. On B5 we define two binary
symmetric operations �5, �5 resp. as the minimum and maximum interpreted
wrt. �5. Thus, (B5,�5) is a finite lattice but not a Boolean nor a de Morgan
lattice. Let ∀ϕ ∈ PropFTPL.ϕ�5 # = ϕ. We write � and � instead of �5 and �5

when it is clear from the context. For any formula ϕ ∈ PropFTPL, let ϕ̂ denote
the value of ϕ in B5.

In the context of a decentralised evaluation, each monitor may not be aware
of information related to a given property and may be not able to evaluate it.
This property is then written as a formula in terms of the current configuration.
However, after the transition to the next configuration, such a formula may
be not relevant. To compensate for this, we define the progression function to
rewrite FTPL formulae in a way relevant to the next configuration of a path.
Intuitively, given an FTPL formula and a set of atomic events, the progression
function provides either the value of the property, if available, or the rewritten
formula otherwise.

Definition 3 (Progression Function for Events). Let ε, ε1, ε2 ∈ AE, e =
e1, e2 . . . em, a list of FTPL events from AE, and θ(i) an event. The progression
function P : PropFTPL × Θ → PropFTPL is inductively defined by:
4 For relations involving two components (like Delegate or Parent) we consider that

only the parent component is aware of the relation. For the Binding relation, only
the component owning the required (or client) interface is aware of the binding.
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P (ε, θ(i)) = � if ε ∈ θ(i),⊥ otherwise ; P (⊥, θ(i)) = ⊥
P (ε1 ∨ ε2, θ(i)) = P (ε1, θ(i)) ∨ P (ε2, θ(i)) ; P (⊥p, θ(i)) = ⊥p

P (¬ε, θ(i)) = ¬P (ε, θ(i)) ; P (�p, θ(i)) = �p

P (e, θ(i)) =
∨

1≤j≤m

P (ej , θ(i)) ; P (�, θ(i)) = �

Let us now introduce, in order to establish progression formulae, the X-operator
that precedes an FTPL property to denote its evaluation at the configuration
preceding the current one, i.e., P (Xξ, θ(i)) = P (ξ, θ(i − 1)). We write X

m
ξ to

denote
m

︷ ︸︸ ︷

XX . . . X ξ. Also, when m = 0, X
m

ξ = ξ.
Because of lack of room, the progression function is not given for every type

of FTPL property. Instead, we provide a definition for the always trace property
(Definition 4), lists of events (Definition 5), and the before temporal property
(Definition 6). The reader can extrapolate these definitions for the remaining
FTPL properties, using the FTPL progressive semantics introduced in [3].

Definition 4 (Progression of the always FTPL trace property’s evalu-
ation formulae on a (suffix) path). Let cp be a configuration property and φ
a trace property of the form φ = always cp. The progression function P for the
always property on a (suffix) path is defined by:

P (φσk
, θ(i)) =

{
P (cp, θ(i)) � �p for i = k

P (cp, θ(i)) � P (Xφσk
, θ(i)) for i > k

(1)

Definition 5 (Progression of FTPL list of events properties’ evaluation
formulae on a (suffix) path). Let e be a list of FTPL events, the progression
function P for FTPL lists of events on a (suffix) path is defined by:

P (eσk
, θ(i)) =

{
P (e, θ(i)) for i = k

P (e, θ(i)) � (�p � P (Xeσk
, θ(i))) for i > k

(2)

Definition 6 (Progression of the before FTPL temporal property’s
evaluation formulae on a (suffix) path). Let e be a list of FTPL events, trp
a trace property, and β a temporal property of the form β = before e trp. The
progression function P for the before property on a (suffix) path is defined by:

P (βσk
, θ(i)) =

{
�p for i = k

FB(P (eσk
, θ(i)), P (Xtrpσk

, θ(i)), P (Xβσk
, θ(i))) for i > k

(3)

where FB is based on the FTPL progressive semantics and defined as follows:

FB(ε, trp, tpp) =

⎧
⎪⎨

⎪⎩

�p if ε = ⊥
⊥ if ε = � ∧ trp ∈ {⊥,⊥p}
tpp otherwise

(4)
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Example 1. Let be ϕ = before e trp where e is an FTPL list of events and trp a
trace property. To evaluate ϕ at the configuration of index i > 0 on the suffix path
σ0, let us set P (eσ0 , θ(i)) = eσ0(i) = � and P (trpσ0 , θ(i−1)) = trpσ0(i−1) = ⊥p.
Then by Equalities (3) and (4) we have:

P (ϕσ0 , θ(i)) = FB(P (eσ0 , θ(i)), P (Xtrpσ0 , θ(i)), P (Xϕσ0 , θ(i)))
= FB(P (eσ0 , θ(i)), P (trpσ0 , θ(i − 1)), P (ϕσ0 , θ(i − 1)))
= FB(�,⊥p, P (ϕσ0 , θ(i − 1)))
= ⊥

In order to perform evaluation in a decentralised manner, we define below the
Normalised Progression Form (NPF) to describe the point up to which a formula
should be developed, using the progression function.

Definition 7 (NPF). Let ϕ be an FTPL property and θ an event. A formula
P (ϕ, θ) is in NPF if the X-operator only precedes atomic events.

Theorem 1 (Existence of NPF). Let ϕ be an FTPL property and θ an event.
Every P (ϕ, θ) can be rewritten into an equivalent5 formula in NPF.

Proof. The proof is by induction on the indexes of the events (i.e., on the trace)
using Definitons 4 to 6 (and definitions for the remaining FTPL properties).

Example 2. Let be ϕ = before e trp, e = a, b, and trp = always cp, where a
and b are FTPL events s.t. a, b, and cp ∈ CP are atomic events. The resulting
formula in NPF is obtained using Eq. 3.

P (ϕσ0 , θ(0)) = 	p

P (ϕσ0 , θ(1)) = FB(P (eσ0 , θ(1)), P (Xtrpσ0 , θ(1)), P (Xϕσ0 , θ(1)))

= FB(P (e, θ(1)) 
 (	p � P (Xeσ0 , θ(1))), P (trpσ0 , θ(0)), P (ϕσ0 , θ(0)))

= FB(P (a, θ(1)) 
 P (b, θ(1)) 
 (	p � P (eσ0 , θ(0))), P (cp, θ(0)) � 	p
, 	p

)

= FB(P (a, θ(1)) 
 P (b, θ(1)) 
 (	p � P (e, θ(0))), P (cp, θ(0)) � 	p
, 	p

)

= FB(P (a, θ(1)) 
 P (b, θ(1)) 
 (	p � (P (a, θ(0)) 
 P (b, θ(0)))), P (cp, θ(0))�	p
, 	p

)

= FB(P (a, θ(1))
P (b, θ(1))
(	p�(P (Xa, θ(1))
P (Xb, θ(1)))), P (Xcp, θ(1))�	p
,	p

)

As in [4] for LTL, a monitor Mj for the component Cj accepts as input an event
θ(i) and FTPL properties. Applying Definition 3 to atomic events could lead to
wrong results in a decentralised context. For example, if ε �∈ θ(i) holds locally
for the monitor Mj it could be due to the fact that ε �∈ AEj . The decentralised
progression rule should be adapted by taking into account a local set of atomic
events. Hence, the progression rule for atomic events preceded by the X-operator
is given below.

P (X
m

ς, θ(i), AEj) =

⎧
⎪⎨

⎪⎩

� if ς = ς ′ for some ς ′ ∈ AEj ∩ Πj(θ(i − m)),
⊥ if ς = ς ′ for some ς ′ ∈ AEj \ Πj(θ(i − m)),
X

m+1
ς otherwise.

(5)
5 wrt. the semantics.
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We complete the specification of the progression function with the special
symbol # �∈ AE for which the progression is defined by ∀j.P (#, θ, AEj) = #.
Finally, among different formulae to be evaluated, the notion of urgency allows
determining a set of urgent formulae. In a nutshell, the urgency of a formula
in NPF is 0 if the formula does not contain any X-operator or the value of the
greatest exponent of the X-operator. Using formulae in NPF, any sub-formula
ς following an X-operator is atomic (∃j.ς ∈ AEj) and can only be evaluated by
a single monitor Mj . A formal definition of urgency can be found in [19].

4 Decentralised Evaluation Problem

As FTPL patterns contain conjunctions or disjunctions of properties over
components’ parameters and relations, the evaluation of temporal patterns in
a decentralised manner makes sense. Section 4.1 addresses the temporal pat-
tern decentralised evaluation problem on a reconfiguration path by providing an
algorithm for such an evaluation in B4. Its properties are studied in Sect. 4.2.

4.1 Problem Statement and Local Monitor Algorithm

Let ϕ̂σk
(s) denote the value of ϕ at configuration of index s on the suffix path σk.

While considering components with their monitors, because of a decentralised
fashion, the evaluation of ϕσk

(s) by a monitor Mi may be delayed to configura-
tion σ(t) with t > s, and the progression comes into play. In this case, let iϕ

s
σk

(t)
denote the decentralised formula as progressed to the configuration σ(t) by Mi,
for the evaluation of ϕ started at configuration σ(s). Therefore, we consider the
following decision problem.

Temporal Pattern Decentralised Evaluation on a Path (TPDEP)
Input: an FTPL temporal property ϕ, a suffix path σk with k ≥ 0, a configu-
ration σ(s) with s ≥ k, and a number n = |M| of monitors.

Output: i, j < n, and iϕ̂
s
σk

(s + j) ∈ B4, the value of ϕ at σ(s + j) by Mi.
We consider as the basic TPDEP case the situation when only run opera-

tions occur after the TPDEP problem input, and until an output is returned,
communications between monitors being covered by run operations.

The idea of a decentralised evaluation is as follows. Similarly to [4], at the
configuration σ(t), if iϕ

s(t) cannot be evaluated in B4, a monitor Mi progresses
its current formula iϕ

s(t) to iϕ
s(t + 1) = P (iϕ

s(t), θ(t), AEi) and sends it to a
monitor that can evaluate its most urgent sub-formula. After iϕ

s(t + 1) is sent,
Mi sets iϕ

s(t + 1) = #. When Mi receives one or more formulae from others
monitors, each of them is added to the current formula using the � operator.

Unlike [4], where LTL decentralised monitoring determines the steady value
of a property in B2, our decentralised method allows values of FTPL proper-
ties in B4 to vary at different configurations, depending notably on the property
scopes and on external events. To this end, a result in B4 obtained by a mon-
itor is broadcast to other monitors, allowing them to maintain a complete but



116 O. Kouchnarenko and J.-F. Weber

Fig. 2. Algorithm LDMon

bounded history that can be used to invoke the TPDEP problem at the following
configurations.

To answer the TPDEP problem, we propose the LDMon algorithm displayed in
Fig. 2. It takes as input the index i of the current monitor, its set AEi of atomic
events, the index s of the current configuration, an FTPL temporal property ϕ
to be evaluated, and the index k of the suffix path on which ϕ is supposed to be
evaluated. An integer variable t indicates the index of the current configuration as
it evolves. The algorithm broadcasts to all monitors, as soon as it is determined,
the result of the evaluation of ϕ in B4. We chose this method to transmit the
results because we prefer to focus on the feasibility of a decentralised evaluation
of temporal patterns and we consider that the transmission of result is a related
issue outside of the scope of this paper.

Three functions are used in this algorithm: (a) send(ϕ), sends ϕ (as well as
its sub-formulae evaluated at the current configuration) to monitor Mj (differ-
ent from the current monitor) where ψ is the most urgent sub-formula6 such
that Prop(ψ) ⊆ AEj holds, with Prop : PropFTPL → 2AE yielding the set of
events of an FTPL formula; (b) receive({ϕ, . . . }), receives formulae sent (and
broadcast) by other monitors; and (c) broadcast(ϕ), broadcasts ϕ to all other
monitors.

As long as an evaluation of ϕ in B4 is not obtained (line 11), the LDMon
algorithm loops in the following way: the evaluation formula is progressed to the
next configuration (line 12) and the current configuration index t is incremented
(line 13). If at least one event of the current formula belongs to the set of atomic
events AEi (Prop(ϕ) ∩ AEi �= ∅) and if no progressed formula was sent (or if
such a formula was sent and at least one from another monitor was received)
at the previous configuration (iϕ

s
σk

(t) �= #), the progressed formula is sent to
the monitor that can solve its most urgent sub-formula (line 15) and is set to #
(line 16). Progressed formulae (and broadcast results) from other monitors are
received (line 18) and are combined to the local formula using the �-operator

6 In the case where there are two or more equally urgent formulae, ϕ is sent to a
monitor determined by an arbitrary order with the function Mon : M × 2AE → M.
Mon(Mi, AE′) = Mjmin s.t jmin = min(j ∈ [1, n]\{i}|AE′ ∩ AEj �= ∅).
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(line 19). If the result is not in B4, the loop continues, otherwise if the result
of the formula has not already been provided by another monitor (line 21), the
result is broadcast (line 22) and returned (line 24).

4.2 Correctness, Uniqueness, and Termination

In this section several properties of the LDMon algorithm are studied. Proposition 1,
below, guarantees that the LDMon algorithm provides an output within a finite
number of configurations, communications being covered by run operations.

Proposition 1 (Existence). Let ϕ ∈ PropFTPL, σk a suffix path, k ≥ 0. For a
given configuration σ(s) with s ≥ k, when using a number n = |M| of monitors,
the LDMon algorithm provides an output such that ∃i, j.i, j < n∧ iϕ̂

s
σk

(s+j) ∈ B4.

Proof. (Sketch.) Let M0,M1, . . . ,Mn−1 be n monitors. At a given configuration
of index s, if one of the monitors Mi ∈ M is able to evaluate its formula in
B4, the proposition holds with j = 0. Otherwise, each monitor Mi (0 ≤ i < n)
progresses its formula iϕ

s
σk

(s) into iϕ
s
σk

(s + 1) and sends it to another monitor,
according to Mon, able to answer its most urgent sub-formula.

We assume that i1ϕ
s
σk

(s + 1) is sent to the monitor Mi2 �=i1 . At the next con-
figuration of index s + 1, the monitor Mi2 receives i1ϕ

s
σk

(s + 1) and combines
it with i2ϕ

s
σk

(s + 1) as well as other formulae (if any) received from other moni-
tors using the �-operator. If one of these formulae (or a sufficient number of sub-
formulae) can be evaluated in B4, the proposition holds with j = 1 and iϕ̂

s
σk

(s+1).
Otherwise, each monitor Mi progresses the formula iϕ

s
σk

(s + 1) into iϕ
s
σk

(s + 2)
and sends it to another monitor according to Mon which is able to answer its most
urgent sub-formula.

We assume that i2ϕ
s
σk

(s + 2) is sent to the monitor Mi3 with i3 �= i2. Also
i3 �= i1 because previously, all sub-formulae of i1ϕ

s
σk

(s + 1) that could be solved
using the set of atomic events AEi1 were already solved. This way, the problem
is reduced from n to n − 1 monitors. Since for a single monitor the output of
the algorithm is ϕ̂σk

(s) with j = 0, we can infer that for n monitors, there is at
least one monitor Mi0 such that i0 ϕ̂

s
σk

(s + j) ∈ B4 with j < n. ��
As explained before, when evaluating ϕσk

(s), the formula iϕ
s
σk

(t) at configura-
tion of index t by Mi either has a result iϕ̂

s
σk

(t) ∈ B4 or progresses to #. The
latter is written iϕ̂

s
σk

(t) = #. Thus iϕ̂
s
σk

(t) ∈ B5.

Theorem 2 (Semantic Correctness). iϕ̂
s
σk

(t) �= # ⇔ iϕ̂
s
σk

(t) = ϕ̂σk
(s).

Proof. (Sketch.)

⇒ If iϕ̂
s
σk

(t) �= #, a result has been obtained in B4, otherwise iϕ̂
s
σk

(t) would
equal #. Therefore, we only have to verify that the progression function
of Definitions 3 to 6 (and definitions for the remaining FTPL properties)
matches the FTPL semantics in B4 as defined in [3]. It is done by induction
on the path length.

⇐ iϕ̂
s
σk

(t) = ϕ̂σk
(s) ⇒ iϕ̂

s
σk

(t) ∈ B4 ⇒ iϕ̂
s
σk

(t) �= #.
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Corollary 1 (Uniqueness). If iϕ̂
s
σk

(t) �= # and jϕ̂
s
σk

(t) �= # for i �= j, then
iϕ̂

s
σk

(t) = jϕ̂
s
σk

(t).

Corollary 2 (Generalised Uniqueness). Let be Sϕs
σk

(t) = �
i∈S

iϕ
s
σk

(t) for

S ⊆ [1, n]. If Sϕ̂s
σk

(t) �= # then for all j ∈ S, jϕ̂
s
σk

(t) �= # implies jϕ̂
s
σk

(t) =
Sϕ̂s

σk
(t).

Corollary 2 allows a monitor to simplify the combination of formulae with the
operator �. For a given property, a conjunction in B4 of formulae received from
other monitors with the formula of the current monitor can be replaced by any
of these formulae provided that its value is different from #.

Example 3. Let us consider again ϕ = before e trp. Let A,B, and C be the
components with their respective monitors MA, MB, and MC such that iϕ

s(t) =
FB(ie

s(t), itrp
s−1(t), iϕ

s−1(t)) for i ∈ {A,B,C} (Definition 6). Let us assume
ϕ(s) = FB(e(s), trp(s−1), ϕ(s−1)), with ϕ(s), e(s), trp(s−1), and ϕ(s−1) being
evaluated in B4. By Corollary 2, e(s) = Aes(t)�Bes(t)�Ces(t) (resp. trp(s−1) =
Atrps−1(t)�Btrps−1(t)�Ctrps−1(t), ϕ(s−1) = Aϕs−1(t)�Bϕs−1(t)�Cϕs−1(t)) if
it exists at least one i such that the value of ie

t(s) (resp. itrp
s−1(t), iϕ

s−1(t)) is in
B4; in this case, ie

s(t) = e(s) (resp. itrp
s−1(t) = trp(s−1), iϕ

s−1(t) = ϕ(s−1)).
For example, if Aϕs(t) = FB(�, φ, Aϕs−1(t)), Bϕs(t) = FB(ε,�p, Bϕs−1(t)),

and Cϕs(t) = FB(ε, ψ,�p), with φ, Aϕs−1(t), ε, Bϕs−1(t), ε, and ψ not being
evaluated in B4. It implies Aes(t) = e(s) = � (resp. Btrps−1(t) = trp(s−1) = �p,
Cϕs−1(t) = ϕ(s − 1) = �p) and ϕ(s) = FB(�,�p,�p) = �p.

Proposition 2 (Correctness and Uniqueness). The output provided by the
LDMon algorithm answers the TPDEP problem. For a given configuration σ(s),
this answer is unique.

Proof. (Sketch.) By Proposition 1 LDMon provides an output iϕ̂
s
σk

(s + j) for at
least one monitor Mi, within a finite number j of configurations. By Theorem 2
this output answers the TPDEP problem. Furthermore Corollary 1 establishes
that for any i0, if i0 ϕ̂

s
σk

(s + j) is the output of the LDMon algorithm for the
monitor Mi0 then i0 ϕ̂

s
σk

(s + j) = iϕ̂
s
σk

(s + j). ��
Proposition 3 (Termination). The LDMon algorithm always terminates, either
at the configuration when an output is provided or at the next one. Furthermore,
the number of configurations needed to reach a result is at most |M|.
Proof. (sketch) Propositions 1 and 2 establish that the LDMon algorithm termi-
nates and answers the TPDEP problem for at least one monitor Mi after a finite
number of reconfigurations j < |M|. Such monitor Mi broadcasts the result to
all other monitors before finishing (line 22 of the LDMon algorithm, Fig. 2). This
enables any monitor for which the LDMon algorithm did not finish at configuration
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s + j to receive the result of the broadcast and to finish its instance of the LDMon
algorithm at configuration s + j + 1 ≤ s + |M|. ��
In general, decentralised algorithms tend to be very hard for creating a consensus
and moreover they require significant communication overhead. Let us empha-
size the fact that Proposition 2 guarantees the correctness and uniqueness of
a result, which implies such a consensus. As a consequence of Propositions 2
and 3 adaptation policies relying on the decentralised evaluation of FTPL tem-
poral properties can be applied to component-based systems for their dynamic
reconfiguration at runtime.

Let us now discuss communication overhead. We consider a component-based
system of N components reporting their status in B4 to a central controller at
each configuration as described for in [3]. In the centralised context, thanks to
the progressive semantics, the evaluation of a given FTPL property ϕ would
mean that N messages should be sent to conclude in B4. With the decentralised
approach, assuming that atomic events of ϕ would be distributed among n com-
ponents (n ≤ N), we would need, at most, n2 − 1 messages to evaluate ϕ.

This means that to evaluate a formula involving n = 10 components of a
component-based system of N = 100 components, in the worst case the decen-
tralised fashion would need 99 messages versus 100 for the centralised approach
to evaluate ϕ which is a ratio of 99%. If, however, the total number N of compo-
nents of the system is much greater than the number n of components involved
in the evaluation of ϕ, the communication overhead ratio can be even lower (e.g.,
9.9% for N = 1000). Reciprocally, if a great proportion of the system is involved
in the property to evaluate, the centralised method would lead to better results.
Let q be such a proportion, i.e., n = qN , the communication overhead ratio is
Nq2 − 1/N .

This is different from the result in [4] where the decentralised algorithm
outperforms its centralised counterpart by a proportion of 1 to 4 in terms of
communication overhead, to conclude in B2. Such a difference is due to the fact
that in our case, as soon as a property is evaluated in B4 for a given configuration
of the path, another evaluation is initiated for another configuration. Neverthe-
less, we have better results while monitoring only components concerned with
the temporal property, that can be determined syntactically. To sum up, our
approach is suitable for systems with a large number of components when the
FTPL property to evaluate involves a small proportion of them.

5 Implementation and Experiment

This section describes how the LDMon algorithm has been implemented within
the GROOVE graph transformation tool [5]. This implementation is then used
to experiment with a case study.
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5.1 Implementing with GROOVE

Fig. 3. Rule remove

OrphanMon (Color
figure online)

GROOVE uses simple graphs for modelling the structure
of object-oriented systems at design-time, compile-time,
and runtime. Graphs are made of nodes and edges that
can be labelled. Graph transformations provide a basis
for model transformation or for operational semantics of
systems. Graphs are transformed by rules consisting of
(a) patterns that must be present (resp. absent) for the
rule to apply, (b) elements (nodes and edges) to be added
(resp.deleted) from the graph, and (c) pairs of nodes to be
merged. Colour and shape coding allow these rules to be
easily represented. For example, our implementation uses
the graph rule removeOrphanMon represented Fig. 3 that

can be interpreted as follows: (a) The red (dashed fat) “embargo” elements,
representing a node of type component and an edge defining a monitoring rela-
tion between monitors, of type ldmon, and components, must be absent, (b) the
blue (dashed thin) “eraser” element, representing a node of type ldmon, must
be present, and (c) if both conditions are satisfied, the blue (dashed thin) ele-
ment is deleted. This means that if a monitor of type ldmon is not monitoring
a component, the monitor node, ldmon, must be deleted. The reader interested
in GROOVE is referred to [5].

Our implementation uses the GROOVE typed mode to guarantee that all
graphs are well-typed. It consists of generic types and graph rules that can
manage assigned priorities in such a way that a rule is applied only if no rule of
higher priority matches the current graph. The input is a graph containing an
FTPL formula and a component-based system, both represented using the model
presented in Sect. 2. Figure 4 shows a screenshot of GROOVE displaying, in the
main panel, a graph modelling the location component-based system used in the
case study below. Components are represented in blue, Required (resp. Provided)
Interfaces in magenta (resp. red), Parameters in black, and both ITypes and
PTypes in grey. The top left panel shows graph rules ordered by priority, whereas
the bottom left panel contains GROOVE types.

5.2 Case Study

In this section we illustrate the LDMon algorithm with an example of a location
composite component, and afterwards we provide several details on its imple-
mentation in GROOVE. The location system is made up of different positioning
systems, like GPS or Wi-Fi, a merger and a controller. Thanks to adaptation
policies with temporal patterns, the location composite component can be modi-
fied to use either GPS or Wi-Fi positioning systems, depending on some proper-
ties, such as available energy, occurrences of indoor/outdoor positioning external
events, etc. For example, when the level of energy is low, if the vehicle is in a
tunnel where there is no GPS signal, it would be useful to remove the GPS
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Fig. 4. Model of the location component-based system displayed with GROOVE

removegpsrun run addgps run

Location GPS

Wi-FiController

Merger Location GPS

Wi-FiController

MergerLocation

Wi-FiController

Merger

σ(k ) σ(i0−1) σ(i0 ) σ(i1−1) σ(i1 )

Fig. 5. Representation of the suffix configuration path σk

component (cf. Fig. 5). To save energy, this component may not be added back
before the level of energy reaches an acceptable value.

This example has been fully implemented with GROOVE together with adap-
tation policies. Let G be the GROOVE graph representing this example. Let us
consider the FTPL temporal property ϕ=after removegps normal (eventually
(power≥33) before addgps normal), which can be written as ϕ=after e0 φ,
with e0 = removegps normal, φ = trp before e1, trp = eventually cp, e1 =
addgps normal, and cp = (power ≥ 33). Intuitively, ϕ represents the require-
ment “After the GPS component has been removed, the level of energy has to
be greater than 33% before this component is added back”. Figure 6 shows how
ϕ is represented in our implementation.

Let Mc, Mm, Mg, and Mw be four monitors pertaining respectively to the con-
troller, merger, GPS, and Wi-Fi components. Monitor Mc has access to the value
of the configuration property power ge 33 (� if power ≥ 33, or ⊥ otherwise) while
Mm is aware of the values of addgps normal (resp. removegps normal) which are
� at the configuration following the addition (resp. removal) of the GPS com-
ponent, or ⊥ otherwise. Since monitors, Mg and Mw do not have access to any
atomic event having an influence on the evaluation of ϕ (i.e., Prop(ϕ) ∩ AEg =
Prop(ϕ) ∩ AEw = ∅), Mg and Mw do not send messages, which has a beneficial
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effect on the communication overhead. In our implementation, each monitor is a
subgraph of G containing the monitored component via an edge named monitor.
Communications between monitors are represented by edges named sentreceived
and broadcast. Recall that in the model, communications between monitors are
covered by run operations as they do not directly affect the system’s architecture.

Fig. 6. Representation of the ϕ FTPL property

Let us consider a reconfigura-
tion path σ representing the
sequences of configurations of
the location composite com-
ponent where the transitions
between configurations are
reconfiguration operations. In
the suffix path σk displayed in
Fig. 5, we suppose that all the
reconfiguration operations are
run, except between σ(i0 − 1)
and σ(i0) (resp. σ(i1 − 1) and
σ(i1)), where it is removegps
(resp. addgps). During runtime,
an adaptation controller—in
charge of the application of
adaptation policies—needs to
evaluate FTPL properties. To do so, the adaptation controller uses the LDMon
algorithm to evaluate ϕ. When a result is returned by a monitor, the most suit-
able adaptation policy is applied, and the algorithm is used again to evaluate ϕ at
the following configuration, where it may vary because of the scope, for example.
In the following, we describe how, at each configuration of index s (k ≤ s ≤ i1)
the adaptation controller requests the evaluation of ϕ to the monitors using the
LDMon algorithm, and receives the answer at the same configuration σ(s). In
Fig. 7 green (dashed) arrows represent broadcast communications, blue (plain)
arrows represent formulae being sent, and red (dotted) arrows indicate that (a)
the destination component is able to solve the most urgent sub-formula of the
source component and (b) no communication is made between these compo-
nents. Because neither Mg nor Mw has access to atomic events impacting their
formulae, they do not send any message during the run described below.

At configuration σ(k), since Mm can evaluate e0 = ⊥, by definition of the
after FTPL property, mϕ̂k

σk
(k) = �p is established and broadcast. Other mon-

itors progress their formulae and determine that the most urgent sub-formula
can be solved by Mm (Fig. 7a); consequently, Mc sends its formulae7 to Mm.

7 The formula to evaluate as well as its sub-formulae evaluated at the current state.
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Fig. 7. Interactions between monitors (Color figure
online)

At every configuration σ(s)
for k + 1 ≤ s ≤ i0 − 1,
since e0 does not occur, the
decentralised evaluation con-
sists in evaluating ϕ by Mm

that returns and broadcasts
the result. Other monitors
receive the result from the pre-
vious configuration broadcast
by Mm

8. They also progress
their current formulae, which
cause Mc to send its formu-
lae to Mm. This is diplayed
in Fig. 7b, where FA represents
the FTPL temporal property
after in the same way FB
does for the before property
in Definition 6. At configura-
tion σ(i0), the event e0 =
removegps normal, signify-
ing the GPS normal removal,
occurs. The Mm monitor,
being aware of this occur-
rence, evaluates ϕ: mϕ̂i0

σk
(i0) =

mφ̂
i0
σi0

(i0) = �p because the
“before” FTPL pattern is
defined to be �p at the first
configuration of its scope. The
result is then retuned and
broadcast. In the meantime, Mc and Mw receive the result broadcast at the
previous configuration and Mc sends its formulae to Mm.

At configuration σ(s) for i0 + 1 ≤ s ≤ i1 − 1, because e0 occurred once,
Mm computes mϕ̂s

σk
(s) = mφ̂

s

σi0
(s) = �p, since φ = trp before e1 and e1 has

not yet occurred; the result is then returned and broadcast. Mc and Mw receive
the result broadcast at the previous configuration which contains, as a sub-
formula, the information that e0 occurred at configuration σ(i0). The formula
progressed by Mc contains cφ

s
σi0

(s + 1) = FB(Xe1, ˆtrp
s−1

σi0
(s),�p). We suppose

that there is a configuration σ(s′) s.t. s′ > i0, where the power rises over 33%,
i.e., cp = (power ≥ 33) = � and then ˆtrp

s

σi0
(s) = cp � ˆtrp

s−1

σi0
(s) = � for

s ≥ s′. In this case, the set of formulae Mc sends to Mm (Fig. 7c) contains
FB(Xe1,�,�p) and trps

σi0
(s).

At configuration σ(i1), e1 = addgps terminates just occurred. We assume
that the reconfiguration terminated normally and that the GPS component was
8 This allows all monitors to keep a history of |M| + 1 configurations.
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Table 1. Graph rules used at configuration σ(s)

Index s of configuration Number of graph rules Reconfiguration Part of formula to be evaluated

s = k 85 after removegps normal . . .

k + 1 ≤ s ≤ i0 − 1 111 − 162 after removegps normal . . .

s = i0 237 removegps . . .before addgps normal

i0 + 1 ≤ s ≤ i1 − 1 149 . . .before addgps normal

s = i1 253 addgps . . . eventually (power ≥ 33) . . .

added. Mc, Mg, and Mw receive the result broadcast at the previous configu-
ration. Mc and Mw behave in a way similar than above at configuration σ(s)
with i0 + 1 ≤ s ≤ i1 − 1, whereas Mg behaves like Mw. Finally, Mm evaluates

its formula to mϕ̂i1
σk

(i1) = mφ̂
i1
σi0

(i1) = FB(�,Xtrpσi0
,�p) = �p using the fact

that the sub-formula Xtrpσi0
was sent by Mc at the previous configuration. This

result answers correctly the TPDEP.
Back to the implementation, Table 1 gives information on the GROOVE

graph rules for the case study. The columns show, from left to right, the pos-
sible values of the index of the considered configurations, the number of graph
rules used, the reconfiguration occurring (if any), and the part of the FTPL
formula that must be evaluated to obtain a result in B4. At configuration σ(k)
85 rules are used, rules concerning the evaluation of FTPL events are the ones
used the most; as long as the event removegps normal has not occurred yet,
only the evaluation of the part “after removegps normal . . . ” of the formula
is needed to obtain a result. At configuration σ(s), with k + 1 ≤ s ≤ i0 − 1,
from 111 to 162 graph rules are used, depending of the length of the history
being built at the beginning of the run; once the length of history has reach
its maximum, i.e., |M| + 1, the most used graph rules are the ones designed
to clear outdated history. At configuration σ(i0), the reconfiguration removegps
occurs, then as long as the event addgps normal has not occurred yet, only the
evaluation of the part “. . .before addgps normal” of the formula is needed to
obtain a result; 237 graph rules are used, most of them doing a cleaning of the
elements of the subgraph representing the monitor of the GPS component being
removed. At configuration σ(s), with k + 1 ≤ s ≤ i0 − 1, 149 graph rules are
used, mainly to clear outdated history. At configuration σ(i1), the reconfigura-
tion addgps occurs, then only the evaluation, at the previous configuration, of
the part “. . . eventually (power ≥ 33) . . . ” of the formula is needed to obtain a
result; 253 graph rules are used, mainly to clear outdated history and to update
the scope of the property.

6 Conclusion

This paper has addressed the decentralised evaluation problem for linear tempo-
ral patterns on reconfiguration paths of component-based systems. To this end,
we have proposed a specific progressive semantics of temporal patterns, and an
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algorithm for their decentralised evaluation using monitors associated with com-
ponents. We have shown that when reached, the decentralised evaluation results
coincide with the results obtained by the centralised evaluation of temporal pat-
terns at runtime. We have described the implementation with GROOVE and its
application to a location composite component.

In this paper, for the sake of readability, monitors only deal with a single
FTPL property. To evaluate several FTPL formulae, we can either use a single
monitor (per component) dealing with all the formulae, as herein described, or
a monitor per formula of interest. Depending on the context, each method can
have its own advantages and drawbacks.

In the case of the removal of a component, the corresponding monitor ter-
minates and is removed. Thanks to the adaptation policies’ controller, this
should not influence any ongoing temporal pattern evaluation. When a com-
ponent is added, its monitor starts with a blank history. Furthermore, when a
monitored primitive component is replaced with a composite component whose
sub-components contain (among other) the same parameters as the original com-
ponent, the monitor shall keep working seamlessly. Since no additional monitor
is added, this mechanism allows us to mitigate the communication overhead that
could be incurred by the increase of the number of components.

As a future work, we intend to extend the analysis of the TPDEP problem
to the case when several reconfiguration operations occur. It would be possible
when reconfigurations lead to configurations whose atomic events do not interfere
with the evaluation of the temporal property of interest (the TPDEP input). In
this case the adaptation controller can authorize reconfigurations of independent
parts of the component-based system. On the implementation side, we plan to
exploit the decentralised evaluation method for the implementation handling the
adaptation policies. The overall goal is to exploit its results to apply adaptation
policies to the component-based system under scrutiny at runtime. So far we have
considered the components having monitors to be all on the same architectural
level, i.e., they all are siblings. As a future work, we plan to delegate part of the
monitoring of composite components to their subcomponents.
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