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Abstract. We present a novel abstraction technique that exploits the
compositionality of a concurrent system consisting of interacting compo-
nents. It uses, given an invariant and a component of interest, bounded
model checking (BMC) to quickly interpolate an abstraction of that
component’s environment. The abstraction may be refined by increasing
the BMC bound. Furthermore, it is only defined over variables shared
between the component and its environment, resulting in an aggressive
abstraction with several applications. We demonstrate its use in a veri-
fication setting, as we report on our open source implementation in the
NuSMV model checker which was used to perform a practical assess-
ment with industrially-sized models from satellite case studies of ongo-
ing missions. These models are expressed in a formalized dialect of the
component-oriented and industrially standardized Architecture Analysis
and Design Language (AADL).

1 Introduction

An earlier work [11] reports on the application of a wide range of model check-
ing techniques for validating a satellite platform of an ongoing mission. This
industrially-sized model was expressed in a formalized dialect [2] of the Archi-
tecture Analysis and Design Language [12]. This AADL dialect is a component-
oriented formalism in which components interact through data and event ports
(i.e. shared variables). The sheer size of models was particularly visible once fail-
ures were injected. The nominal state space of roughly 48 million states exploded
by a factor 213563 due to the activation of failure modes and the fault manage-
ment functionality for handling it. The model checkers used in literature had a
hard time on this model. Various techniques have been proposed in literature to
cope with similar instances of the infamous state space explosion problem. In the
context of this paper, compositional reasoning and interpolation are particularly
relevant.
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The compositional reasoning technique by [8] was our starting point. It gen-
erates a so-called split invariant defined over the system’s global variables for
each parallel process. The split invariants are then checked against the property
instead of the full composition of processes. It was shown later [15,18] that this
technique, along with Cartesian abstract interpretation [18] and thread-modular
verification [13], is conceptually the same as the classical Owicki-Gries para-
digm, but differs in the details. They generally work well for parallel systems
where processes communicate over a small set of global variables, i.e. variables
that are visible to all processes. In the satellite models, components are highly
cohesive through shared variables, as variables of one component are only visible
to a handful of other components. The techniques from the Owicki-Gries para-
digm are ineffective here as naively all shared variables would have to be inter-
preted as global variables, which would make it a near-monolithic model checking
problem again. Another branch of compositional reasoning is the rely/assume
guarantee/provide techniques. There is a huge body of work behind this. The
most related ones are the automated methods that use learning techniques to
generate assumptions [5]. Our work is a twist on this, because instead of learning
we use interpolation to generate an environment. That environment can be then
viewed as an assumption for which the property of interest may hold. The use of
interpolation techniques [9] in model checking was pioneered by McMillan [19].
Also this led to a substantial body of work. To our knowledge, it however has not
been cast into a compositional reasoning scheme as we describe in this paper.

Contributions: The contributions of this paper are as follows.

– A theory inspired by Craig interpolation that results in an aggressive abstrac-
tion of the environment of a component of interest, resulting into a component-
oriented interpolant.

– A rudimentary (re)verification algorithm that exploits this theory.
– An open source implementation of the algorithm in NuSMV 2.5.4 [4].
– An evaluation of the theory and implementation using industrially-sized mod-

els from satellite platform case studies of ongoing missions.

Organization: Section 2 explains applicable background information and intro-
duces the majority of the formal notation used in this paper. Section 3 describes
the theoretical contribution of this paper, the component-oriented interpolant.
We implemented it into an algorithm and evaluated it using satellite platform
case studies on which we report in Sect. 4. Related work and the conclusions are
discussed respectively in Sects. 5 and 6.

2 Preliminaries

Our work builds upon existing works in satisfiability (SAT) solving, bounded
model checking and Craig interpolation. These are discussed in the following.

SAT Solving: Propositional formulae consist of literals, which are Boolean vari-
ables (e.g. x1) that can be negated (e.g. ¬x1), and are combined by AND
(i.e. ∧) and OR (i.e. ∨) operators. They are typically processed from their
conjunctive normal form (CNF) where the formula consists of conjuncted clauses
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(e.g. (¬x1)∧(x1∨¬x2)) and each clause is a disjunction of literals (e.g. (x1∨¬x2)).
As we can view CNF formulae as a set of clauses, we use the set membership
notation to check whether a clause is part of a CNF formulae, e.g. (x1∨¬x2) ∈ A
with A being a CNF formula. A classical decision problem is whether, given a
propositional formula, there exists a satisfying assignment, i.e. a vector of values
holding either true (i.e. �) or false (i.e. ⊥) for each variable. This is the NP-
complete SAT problem. Yearly competitions have highly stimulated research in
this area, progressing modern SAT-solvers to handle formulae with thousands
of variables in mere seconds. They typically generate the satisfying assignment,
denoted as σ, as a proof of satisfiability. In case of unsatisfiability, some SAT-
solvers provide a resolution refutation graph as a proof [19]. An example of
a resolution refutation graph is shown in Fig. 2. It is a directed acyclic graph
G = (V,E), where V is a set of clauses (not necessarily a subset of the original
formula). If a vertex v ∈ V is a root (there are usually multiple), then it is a
clause in the original formula. Otherwise the vertex has exactly two predeces-
sors, v1 and v2 of the form v1 = x ∨ D and v2 = ¬x ∨ D′. The clause v is the
simplification of D ∨ D′ and x is its pivot variable. There is only one leaf which
is the empty clause ⊥. The resolution graph reasons how clauses, starting from
the root clauses, have pivot variables that can be eliminated, as they contribute
to the inconsistency. Once all variables are eliminated, the empty clause ⊥ is
reached, indicating unsatisfiability.

Bounded Model Checking: Propositional formulae can be used to verify a prop-
erty (e.g. φ) of a model M = (I, T ). The initial condition I(s̄) is a Boolean
formula over a finite set of variables, e.g. s̄ = s1, . . . , sn. The set of occurring
variables is denoted by the predicate var, e.g. var(I) = {s1, . . . , sn}. Whenever
a particular valuation σ of s̄ satisfies I, i.e. σ(I) = �, then σ is an initial state.
Multiple distinct initial states may satisfy I. The transition function, denoted
as T (s̄ × s̄′), is a propositional function with s̄ = s1, . . . , sn and s̄′ = s′

1, . . . , s
′
n.

Note that the cardinalities of s̄ and s̄′ are equal. If for a pair of valuations σ
and σ′ the transition function holds, i.e. σσ′(T ) = �, then σ′ is a valid suc-
cessor state to state σ. The initial condition and the transition function are
used to compute the reachable states up to a natural bound k using the formula
I[s̄/r̄0]∧

∧k
i=1 T [s̄/r̄i−1, s̄

′/r̄i]. It uses the substitution operator T [x/y] to denote
that all occurrences of x in T are substituted by y. We refer to I0∧T1∧· · ·∧Tk as
its simplified notation. An invariant φ can be verified by conjuncting its negated
unrolling,

∨k
i=0 ¬φ[s̄/r̄i], to it. To ease notation, we simply refer to this formula

as ¬φ. The resulting formula, I0 ∧∧k
i=1 Ti ∧¬φ, can be checked for satisfiability.

If it is satisfiable, the satisfying assignment is a counterexample to the invariant.
If it is unsatisfiable, then the invariant holds up to bound k, which is denoted
by M |=k φ. An outcome w.r.t. the full state space is however inconclusive [1].

Example 1 (Two-Bit Counter). Part of our running example is a simple two-bit
counter that is initialized to 0. It is incremented by 1 with each transition until
it hits the value 3. The Boolean encodings of its initial condition and transition
functions look as follows:
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I = ¬α ∧ ¬β

T = (¬α ∨ α′) ∧ (¬α ∨ β′) ∧ (α ∨ ¬α′ ∨ β) ∧ (α ∨ ¬β ∨ ¬β′) ∧ (α′ ∨ β′)

Its one-step unrolling looks as follows:

I0 ∧ T1 = (¬α0 ∧ ¬β0) ∧ (¬α0 ∨ α1) ∧ (¬α0 ∨ β1)
∧ (α0 ∨ ¬α1 ∨ β0) ∧ (α0 ∨ ¬β0 ∨ ¬β1) ∧ (α1 ∨ β1)

(end of example)

Interpolation: Our work is heavily inspired by Craig’s seminal result [9].

Theorem 1 (Craig’s Interpolation Theorem). Let A and B be formulae of
first-order logic. If A =⇒ B holds, then there exists an interpolant C expressed
using the common variables of A and B, i.e. var(C) ⊆ var(A) ∩ var(B), such
that A =⇒ C and C =⇒ B holds.

A proof of this theorem restricted to propositional logic can be found in [3]. The
beauty of this theorem is that the interpolant C is expressed using a subset of the
variables in A. This powerful notion inspired us for developing our compositional
reasoning technique.

Note that Craig’s theorem only postulates the existence of an interpolant
when A =⇒ B. This can be verified with a SAT-solver. Observe that A =⇒ B
is equivalent to ¬(A ∧ ¬B). This means its tautology infers the contradiction of
A ∧ ¬B. By Craig’s interpolation theorem it follows that if A ∧ ¬B is unsatis-
fiable, there exists an interpolant C such that A =⇒ C holds and C ∧ ¬B is
unsatisfiable. Thus in this shape, the unsatisfiability of a formula indicates the
existence of an interpolant. It is shown in [20] how an interpolant C is gener-
ated from the resolution refutation proof resulting from the unsatisfiability of
A ∧ ¬B. We use a similar approach to abstract a component’s environment as a
transition function.

3 Component-Oriented Interpolation

Our setting is a concurrent system composed of processes (also referred to as
components with behavior) using a parallel composition operator. We leverage
this composition to reason over its behaviour in a compositional manner. In the
upcoming, we will describe our approach in the synchronous case only, i.e. all
components transit per global transition. It can however be extended to the asyn-
chronous case (i.e. interleaving transitions) by complementing the asynchronous
model with an interleaving scheduler component that regulates which component
progresses upon a transition.

Consider a synchronous composition of n processes M1, . . . ,Mn, with their
associated transition relations T i and initial conditions Ii such that T =

∧n
i=1 T i

and I =
∧n

i=1 Ii. When this is applied to the bounded model checking formula,
the result is

∧n
i=1 Ii0 ∧ ∧n

i=1 T i
1 ∧ . . . ∧ ∧n

i=1 T i
k ∧ ¬φ. We can now isolate any
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process Mp such that the remainder processes, i.e. process p’s environment,
shall be abstracted through interpolation. It then becomes more apparent how
A and ¬B from Theorem 1 are to be determined:

Ip0 ∧ T p
1 ∧ . . . ∧ T p

k ∧ ¬φ
︸ ︷︷ ︸

¬B

∧ I �=p
0 ∧ T �=p

1 ∧ . . . ∧ T �=p
k︸ ︷︷ ︸

A

(1)

In the above, I �=p
0 =

∧
q∈{1,...,n}\{p} Iq0 , and similarly for T �=p

i .

Example 2 (Counter Monitor). Let us refer to the counter example of Example 1
as M1. We now add a monitoring process, M2, that among its functions, raises
a flag when the counter exceeds 2. The Boolean encoding of M2, where both δ
and γ are flags and the latter being the flag of interest, looks as follows:

I2 = ¬γ ∧ δ

T 2 = (¬α ∨ ¬β ∨ ¬δ′) ∧ (¬α ∨ γ′) ∧ (α ∨ ¬γ) ∧ (α ∨ ¬γ′) ∧ (β ∨ ¬γ) ∧ (δ′ ∨ γ)

From this point on we shall use the synchronous composition M1 ∧ M2 as our
ongoing running example. Let us say we are interested to see whether the flag
γ always stays unraised, i.e. the invariant ¬γ. And let us isolate process M1,
i.e. p = 1, from the synchronous composition. This isolation on a two-step BMC
unrolling would look as follows:

I10 ∧ T 1
1 ∧ ∧T 1

2 ∧ (γ0 ∨ γ1 ∨ γ2)
︸ ︷︷ ︸

¬B

∧ I20 ∧ T 2
1 ∧ ∧T 2

2︸ ︷︷ ︸
A

(2)

(end of example)

From Theorem 1, it follows that whenever the invariant holds within bound k,
there exists an interpolant C, such that it is implied by A. Intuitively, the inter-
polant C can be perceived as an abstraction of the k-fold unrolled environment
of process p. It is significantly smaller than the original formula representing the
k-bounded environment, since it is only defined over the variables used for inter-
acting with process p over bound k. That is, var(C) ⊆ var(I �=p

0 , T �=p
1 , . . . , T �=p

k )∩
var(Ip0 , T p

1 , . . . , T p
k , φ), where var(S1, . . . , Sn) is a shorthand for var(S1) ∪ . . . ∪

var(Sn). Observe that C is not a formula over current/next states, because it
is interpolated from the unrolling of T �=p instead of T �=p itself. In that form,
the interpolant C is only useful for k-bounded reverification of component p. It
would only conclude whether the invariant still holds for a partial state space,
namely up to a depth k. We strive for a different kind of interpolant that can
conclude whether the invariant still holds for the full state space. We call it the
component-oriented interpolant.

To this end, let us have a closer look at the sharing of variables in the
component-oriented interpolation setting, as it is slightly different from Craig
interpolation. In the latter, there are two sets of variables that can be partitioned
into three disjoint sets of variables, namely var(A)\var(B), var(B)\var(A) and
var(A)∩var(B). This is shown in Fig. 1a where the sets are respectively denoted
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āA b̄ Bc̄

(a) Craig

āT �=p
i

ē

T �=p
�=i

ḡ B

d̄

b̄

f̄
c̄

(b) Component-oriented

Fig. 1. Relation of variables in both interpolation settings.

as ā, b̄, c̄. In our component-oriented setting, there are three sets of variables
which can be partitioned into seven disjoint sets. See Fig. 1b. Consider any step i
by component p’s environment, i.e. T �=p

i (ā, b̄, c̄, d̄). The remainder environment
transition steps are T �=p

�=i (ē, d̄, c̄, f̄) and the transition steps by component p and
the property φ are B(ḡ, f̄ , c̄, b̄). The variables of I �=p

0 are omitted here for clarity
and are covered w.l.o.g. by the variables of T �=p

1 .

Example 3 (Variable Sharing in Counter Monitor). Reconsider Eq. (2), the two-
step BMC unrolling of the counter monitor (cf. Example 2). The variable par-
titioning of that unrolling in the Craig interpolation case is: ā = {α2, β2},
b̄ = {α0, α1, β0, β1, γ0, γ1, γ2} and c̄ = {δ0, δ1, δ2}.

The partitions are more fine-grained in the component-oriented interpolation
case. If we would take p = 1 and i = 1 on our running example, we would get
the following arrangement out of Eq. (2):

I10 ∧ T 1
1 ∧ ∧T 1

2 ∧ (γ0 ∨ γ1 ∨ γ2)
︸ ︷︷ ︸

¬B

∧ I20 ∧ T 2
1︸ ︷︷ ︸

T �=1
1

∧ ∧T 2
2︸︷︷︸

T �=1
�=1

The partitioning of Fig. 1b then applies, resulting in the following partitioning:

ā = {δ0, δ1}
b̄ = {α0, β0, γ0}
c̄ = {γ1}

d̄ = {}
ē = {δ2}
f̄ = {α1, β1, γ2}

ḡ = {α2, β2}

(end of example)

We use the finer grained notion of variable sharing in Fig. 1b to construct
component-oriented interpolants by traversing the resolution refutation graph of
Eq. (1) for each step i of component p’s environment:

Definition 1 (Component-Oriented Interpolant Construction). Let us
consider step i ≤ k of a component p’s environment. Furthermore, let G = (V,E)
be the resolution refutation graph of Eq. (1) and partition the occurring variables
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into disjoint sets according to Fig. 1b. For each non-root vertex v ∈ V , let v1
and v2 be its predecessors and x its pivot variable. Then, with each v ∈ V we
associate a Boolean formula Ci

v given as follows

Ci
v =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⊥ if v ∈ T �=p
i and v is root

� if v ∈ T �=p
�=i ∪ I �=p ∪ B and v is root

(¬x ∧ Ci
v1

) ∨ (x ∧ Ci
v2

) if x ∈ b̄ ∪ c̄, x ∈ v1,¬x ∈ v2, and v is non-root
Ci

v1
∨ Ci

v2
if x ∈ ā ∪ d̄ and v is non-root

Ci
v1

∧ Ci
v2

if x ∈ ḡ ∪ f̄ ∪ ē and v is non-root

We refer to the formula Ci
v for the leaf vertex v = ⊥ as the full interpolant of

step i. All other interpolants are referred to as partial interpolants.

If Definition 1 is applied starting from the leaf ⊥, one gets a component-oriented
interpolant for T �=p

i .

Example 4 (Component-Oriented Interpolation on Counter Monitor). Consider
Fig. 2. As it is an unrolling for two steps, there are partial interpolants for the
first and second step, i.e. respectively C1

v and a C2
v . Take for example the upper-

left three-node subtree. That is v = ¬γ1 and its two predecessors as v1 = α0∨¬γ1
and v2 = ¬α0. The pivot is therefore α0. As we determined earlier in Example 3
that α0 is in b̄, the partial interpolant of v for transition step 1 becomes (¬α0 ∧
C1

v1
) ∨ (α0 ∧ C1

v2
). Since C1

v1
= ⊥ and C1

v2
= �, this is simplified to C1

v = α0.
(end of example)

This interpolant is weak enough to preserve the over-approximation from
Craig interpolation, i.e. T �=p

i =⇒ Ci
⊥. This is captured by the following lemma:

Lemma 1 (Over-Approximation byComponent-Oriented Interpolant).
Let σ be a valuation such that σ(v) = ⊥ for any v ∈ V in Definition 1. For any
1 ≤ i ≤ k, the following holds:

σ(Ci
v) = ⊥ =⇒ ∃a ∈ T �=p

i :: σ(a) = ⊥ (3)

Intuitively, this means that whenever the partial interpolant Ci
v evaluates to false

for a particular valuation, a clause of T �=p
i evaluates to false as well for the same

valuation, causing the whole formula (see Eq. (1)) to evaluate to false.

Proof. Due to paper size constraints, we only provide a proof sketch. The full
proof is by induction on the structure of Ci

v and follows the reasoning in [21].
The base case is trivial to show. For the inductive step, there are three cases,
namely that the pivot variable x of vertex v is either in b̄ ∪ c̄ or in ā ∪ d̄ or in
ḡ ∪ f̄ ∪ ē. See Fig. 1.

By the definition of the resolution refutation graph, each non-root vertex has
two predecessors v1 and v2. It can be shown that regardless of each of the three
cases, whenever σ(Ci

v) = ⊥ either predecessor branch evaluates to false for both
the intermediate component-oriented interpolant and the predecessor vertex, e.g.
σ(v1) = ⊥ and σ(Ci

v1
) = ⊥. Then by induction, Eq. (3) can be concluded. �
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Contrary to Craig interpolation, we cannot conclude σ(Ci
v) = � =⇒ ∃b ∈

B :: σ(b) = ⊥ and thus preserve the unsatisfiability of Eq. (1) using the
component-oriented interpolant. It could also be that whenever the component-
oriented interpolant evaluates to true, a clause in T �=p

�=i evaluates to false. Or
that a clause in I �=p evaluates to false. In that sense, the component-oriented
interpolant is significantly weaker than a Craig interpolant. It is however strong
enough for our practical purposes, as is demonstrated later in Sect. 4.

The component-oriented interpolant Ci
⊥ only derives an interpolated envi-

ronment for transition step i, i.e. T �=p
i =⇒ Ci

⊥. By substitution of the occurring
variables to current and successor-state variables, it can be used as a transition
function for the unbounded case. This holds for each 1 ≤ i ≤ k. So in general,
the following definition and theorem are applicable:

Definition 2 (Interpolated Environment). Let the component-oriented inte-
rpolants C1

⊥, . . . , Ck
⊥ be derived from the resolution refutation graph of Eq. (1)

using Definition 1. The component-oriented interpolated environment transition
function, defined as Ep, can be derived as such:

Ep =
k∧

i=1

Ci
⊥(r̄i−1, r̄i)[r̄i−1/s̄, r̄i/s̄′]

Theorem 2 (Over-Approximation by Interpolated Environment). Let
Ep be given according to Definition 2. It then follows that

T �=p =⇒ Ep (4)

Proof. This follows from Lemma 1 which shows that T �=p
i =⇒ Ci

⊥. As var(Ci
⊥) ⊆

var(T �=p
i ), it follows that T �=p =⇒ Ci

⊥[r̄i−1/s̄, r̄i/s̄′]. By composition of implica-
tions of each i, Eq. (4) follows. �
Example 5 (Transition Function from Component-Oriented Interpolants). Let
us apply Definition 2 on the component-oriented interpolants C1

⊥ and C2
⊥ from

our running example (cf. Fig. 2). That is, we substitute the occurring timed
variables into current and next-state variables:

Ep = C1
⊥[α0/α, γ1/γ′] ∧ C2

⊥[α1/α, γ2/γ′]
= (¬γ1 ∨ (γ1 ∧ α0))[α0/α, γ1/γ′] ∧ (¬γ2 ∨ (γ2 ∧ α1))[α1/α, γ2/γ′]
= ¬γ′ ∨ (γ′ ∧ α)
= α ∨ ¬γ′

Since we partitioned T �=p = T 2 in Eq. (2), it follows from Eq. (4) that T 2 =⇒
α ∨ ¬γ′. This is clearly evident from the definition of T 2 in Example 2, where
the interpolated environment is in fact the third clause. Component-oriented
interpolation therefore reduces the original transition function to 1/6th of the
amount of clauses. (end of example)
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Applications: Theorem 2 can be applied in several ways. We elaborate on a few
possible applications in the following.

Manual inspection for example becomes more feasible. Models as large and
complex as the one mentioned in Sect. 1 are labor-intensive to analyze manually,
yet this is often the pragmatical approach by industry for verifying/validating
involved requirements. The interpolated environment of Theorem 2 can support
this. Assume one is intimate with a particular (set of) component(s), e.g. the
power system. The remainder components can be viewed as a rather unfamil-
iar environment that can be abstracted in terms of variables shared with the
power system. Such an abstraction is significantly smaller and thus eases man-
ual inspection. The abstraction is cheap to compute, as it can be obtained for
a bound as small as k = 1, although a larger k is preferable since this possibly
strengthens the accuracy of the environment.

It can also be used as an abstraction method in model checking. Consider
the invariant checking case and assume a tractable bound k for M |=k φ. Yet
it is unclear whether it holds beyond the tractable bound k. One can pick a
component p and use Theorem 2 to over-approximate the remainder to Ep.
Heuristically it is wise to include at least the component directly referred to by
φ as p, as they directly affect the property of interest. Then the smaller model
(Ip, T p ∧ Ep) can be subjected to unbounded model checking to verify M |= φ.
An example of such an algorithm is discussed later in Sect. 4. Note that the
transition function T p ∧ Ep could be too weak. Thus, if a counterexample is
found during unbounded model checking, one has to distinguish whether it is a
false-negative due to over-approximation of Ep, or whether it is a counterexample
that also occurs in the original model. Techniques from CEGAR (counterexample
guided abstraction refinement) [7,10] can be utilized for this. Theorem 2 can
also supplement existing CEGAR techniques, as it can generate computationally
cheap abstractions.

Partial model reverification is also a suitable application. In monolithic model
checking, refinements or changes of the model require a full reverification round.
Theorem 2 can speed this up. Assume only a part of the model is changed, for
example component p. The unchanged environment can be interpolated from
previous verifications. The resulting interpolated environment is smaller in size.
Instead of reverifying the full model, the modified component p and the inter-
polant of the unchanged environment Ep can be used. Since reverification with
the smaller model (Ip, T p∧Ep) is likely to be faster, as less variables are present,
it can be used less reluctantly upon changes to component p, thus providing more
direct and continuous feedback during the construction of the model. Note that
here over-approximation might cause false counterexamples as well and therefore
warrant the use of CEGAR techniques.

4 Evaluation on Satellite Case Studies

We developed a prototype implementation utilizing Theorem 2 in NuSMV 2.5.4
and applied it to industrially-sized models of satellite case studies reported
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in [11]. The resulting data provides an indication of the quality of the abstraction,
as well as its effectiveness when used for manual inspection or (re)verification.

Tool Implementation: The prototype implementation is an extension of NuSMV
2.5.4 [4]. We reused NuSMV’s data structures and functionality for representing
and handling propositional formulae. The SAT-solving was performed by Min-
iSAT 1.14p. We deliberately chose version 1.14p over newer versions, as it is –
at the moment – the only publicly available version that can generate resolution
refutation graphs upon unsatisfiability. Additionally, NuSMV has a preexist-
ing integration with MiniSAT which we extended for handling those graphs.
The models are expressed in SLIM, a formalized dialect of AADL. We used the
SLIM-to-SMV translator built in the COMPASS toolset for obtaining their SMV
representations [2].

Case Description: We ran our evaluation with two large industrially-sized mod-
els. They are system-software models based on design data of Earth-orbiting
satellites in development.

Satellite

Payload

Platform

AOCS

EPS

TT&C

OCS

CDU

OBDH RM

Control & 
Data Unit

Module

Attitude & 
Orbit Control 

System

Power

Onboard Data 
Handling

Telemetry, 
Tracking &
Command

Propulsion

Fig. 3. Decomposition of the PDR satellite model.

The first model is from the case study reported in [11]. We call it the PDR
satellite platform model. It was constructed from the design data available dur-
ing the satellite’s preliminary design review (PDR). Its global decomposition
into subsystems is shown in Fig. 3. The OCS consists of a series of controllable
thrusters for orbital corrections. The AOCS is a control system consisting of
several kinds of sensors for acquiring and maintaining a correct attitude and
orbit. The CDU is the main computer. The EPS consists of solar arrays and
batteries for powering the satellite and the TT&C is the radio communication
interface for ground control on Earth. The focus of the PDR model is the rela-
tion of the system’s nominal behavior, its erroneous behavior (e.g. faults) and
the subsequent behaviors resulting from the fault tolerance strategies by the
fault management design. Its nominal state space is roughly 48 million states.
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This number multiplies rapidly when failures are injected, thus activating failure
modes and the associated fault management strategies. The case is modeled in
our AADL dialect and comprises 3,831 lines of code, not counting comments.

The second model is a refinement of the PDR model. We call it the CDR
model. It was crafted from the design data available during the critical design
review (CDR) of the same satellite mission. During the CDR, more design details
have been decided upon. It is estimated that the amount of design data increased
twofold. The CDR model’s nominal behavior state space nevertheless counts
2,341 states thanks to the effective modeling lessons learned from the PDR
case study. The CDR model is however more detailed, more complex and more
difficult to analyze. Akin to the PDR model, its state space multiplies once
failures are injected. It is composed of 6,357 lines of AADL code, not counting
comments. A more detailed report of this model is currently being prepared for
publication.

We considered several configurations of the PDR and the CDR models. The
final configurations outlined below are known to require a bound k > 1 for
proving or disproving the invariant property of interest [11]. The first two con-
figurations are from the PDR model, whereas the remaining three are from the
CDR model. Note that the models are based on proprietary designs. Their details
are therefore not publicly available.

Model Fault injections Property

PDR-1 Earth sensor failure Fail-operational flag is set

PDR-2 Propulsion failure AOCS status flags are consistent

CDR-3 Various platform failures Not in safe mode

CDR-4 (none, i.e. nominal behaviour) Solar voltage level is consistent

CDR-5 (none, i.e. nominal behaviour) Not in safe mode

Comparison Factors: All experiments were run on a Linux 64-bits machine
equipped with a 2.33 GHz multi-core CPU and 32 GB RAM. We set the maxi-
mum computation time to 900 s. Our implementation is however single-threaded.
The exploitation of the multiple cores in a multi-threaded fashion is future work.

We intended to use NuSMV’s BDD-based verification as the baseline. We
however quickly learned that the BDDs were ineffective on both the PDR and
CDR model. BDD-based verification was a magnitude slower on PDR configu-
rations than the other techniques we considered (see Table 1). On CDR configu-
rations, the time for constructing the transition functions exceeded the 900 s by
far, thus leaving no time for the verification. We therefore omit BDD-verification
data and decided upon another technique as the baseline.

We used McMillan’s interpolation-based unbounded model checking tech-
nique for invariants [20] instead. It starts by k-bounded model checking the
property. Then it (Craig) interpolates the first transition step C =⇒ I ∧ T1.
This interpolant is a weakened characterization of one-step successor states s̄1.
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These states are added to I by variable substitution, i.e. I ← I ∨ C[s̄1/s̄0]. The
new I is a characterization of the original initial states and the one-step succes-
sor states. It is then used to bounded model check the property up to bound k,
thus reaching a search depth of k+1. This is repeated until a fixpoint is reached.
A sketch of the algorithm can be found in [20]. It is furthermore also part of
Algorithm 1 from lines 5 to 8, which we shall explain shortly after. We imple-
mented the algorithm in NuSMV as there was no pre-existing implementation.
The interpolation scheme we implemented is by McMillan as well [19] and it has
been studied thoroughly for use in this setting [10].

The component-oriented interpolation technique has been casted into a ver-
ification scheme. We heuristically chose the components p by selecting those
directly referred in the property. Given this, the remaining procedure is shown
in Algorithm 1. Intuitively, it obtains an interpolated environment (line 3), which
is then used in an inner reachability analysis (lines 5–8) until a fixpoint is encoun-
tered (line 8), meaning that the property holds. Otherwise, the bound is increased
in the hope for a stronger interpolated environment (line 9). The overall algo-
rithm can terminate in two ways: either a concrete (and real) counterexample is
eventually found at depth k while executing line 2, or reachability analysis on
the over-approximated model reaches a fixpoint without violation of the prop-
erty (line 8). Note that even though any inner reachability algorithm could be
used, we employed McMillan’s interpolant-based invariant checking algorithm
here. This is mainly for efficiency reasons of staying in a SAT-based context.
If for example BDD-based reachability techniques were used, we would have to
convert Ep, Ip and T p to BDDs, resulting in additional overhead.

Algorithm 1. Component-Oriented Interpolation-based Invariant Checking.
1: k ← 1
2: while ¬φ ∧ Ip

0 ∧ T p
1 ∧ · · · ∧ T p

k ∧ I �=p
0 ∧ T �=p

1 ∧ · · · ∧ T �=p
k is unsatisfiable do

3: Ep ← component-oriented interpolant of I �=p
0 ∧ T �=p

1 ∧ · · · ∧ T �=p
k

4: R ← Ip

5: while R ∧ T p
1 ∧ Ep

1 ∧ · · · ∧ T p
k ∧ Ep

k¬φ is unsatisfiable do
6: C ← Craig interpolant of R ∧ T p

1 ∧ Ep
1

7: if C ∧ ¬R is satisfiable then R ← R ∨ C
8: else[no new states explored] return φ holds
9: k ← k + 1

10: return counterexample extracted from the satisfying assignment

Experiment Data and Discussion: A summary of the experiment data is pre-
sented in Table 1. We kept track of the depth needed to determine whether the
property holds or whether there exists a counterexample. This depth k is the
column “Bound” in Table 1. A smaller bound indicates a faster convergence of
the abstraction.

The results indicate that the CDR model has a higher complexity than
the PDR model. This was expected due to the doubling of design details in
the CDR design data. The results furthermore indicate that the verification by



Compositional Analysis Using Component-Oriented Interpolation 81

Table 1. Summary of verification outcome, needed bound k, verification time and peak
memory consumption for McMillan’s interpolation-based invariant checking (MCM)
and the component-oriented interpolation-based invariant checking (COMP).

Case Technique Outcome Bound Time (sec) Mem (Mb)

PDR-1 MCM Counterexample 3 2.42 95.9

COMP Counterexample 3 3.52 111.9

PDR-2 MCM Counterexample 2 1.77 92.0

COMP Counterexample 2 2.28 100.4

CDR-3 MCM Counterexample 11 486.06 651.0

COMP Counterexample 11 338.56 865.5

CDR-4 MCM Holds 4 7.10 125.7

COMP Holds 3 7.00 138.0

CDR-5 MCM Holds 7 69.20 171.5

COMP Holds 3 8.10 137.0

the component-oriented interpolation method is competitive. This is in partic-
ular visible for CDR-3 and CDR-5, where the computation time is significantly
better. The reason for this is the needed bound k. A small k appears to suffice
for a quality abstraction. Note that these measures cannot be trivially gener-
alized. Timings depend heavily on the used SAT-solver, in particular on the
heuristics it employs, the possibly imposed randomness influenced by the order
of clauses, or by the choice of the target system. These factors are inherent to the
nature of current-day SAT-solvers. The numbers should therefore be interpreted
as indications.

While the experiment data indicate a positive influence of component-
oriented interpolation, we suspect that the way it is used in this evaluation
suffers from double abstraction. Observe that in Algorithm 1 two abstraction
techniques are jointly used. The first comes from component-oriented interpo-
lation which is a possible source of false counterexamples. The second comes
from inner reachability analysis (line 6 of Algorithm 1), which may add further
false counterexamples. Each abstract counterexample of the inner reachability
analysis turns the while condition in line 5 of Algorithm 1 to false, leading to an
unnecessary increase of k. An exact, rather than an approximative, inner reach-
ability would resolve this. We are however not aware of any exact unbounded
SAT-based reachability techniques. BDD-based techniques might work, but we
suspect that the repeated conversion from SAT-based data structures to BDDs
would add too much overhead to be competitive. Hence, we leave further opti-
mization in this area as future work.

As elaborated in Sect. 3, there are other applications for the component-
oriented interpolated environment, like manual inspection or partial model
reverification. Their algorithms look slightly different from Algorithm 1, but the
essential computational steps are there. For manual inspection, the emphasis is
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Fig. 4. Plots of time spent in milliseconds at each depth k for bounded model checking,
component-oriented interpolation and inner reachability (respectively lines 2, 3 and 5–8
of Algorithm 1) on experiment configuration CDR-3 (checking avoidance of safe mode
in the presence of various platform failures).

on the bounded model checking step (line 2) and component-oriented interpo-
lation (line 3). For reverification on the other hand, the emphasis lies on inner
reachability (lines 5–10). To extrapolate the effectiveness of component-oriented
interpolation for those two applications, we logged the time spent on parts of
Algorithm 1 at each step k. A summary is shown in Fig. 4 for experiment config-
uration CDR-3, which is representative for the other experiment configurations.
Note that the y-axis has a logarithmic scale. The bottom line is that the step for
constructing the interpolated environment has little impact on the overall run-
ning time, as it only takes a fraction of the time spent on bounded model checking
and inner reachability. Note that the (most time-costly) bounded model check-
ing step is avoided for partial model reverification, whereas inner reachability
is omitted for manual inspection. This is where time is saved for the overall
analysis.

5 Related Work

There is a huge body of work on compositional analysis in literature. In the
introduction, Sect. 1, we have briefly explained the main differences between our
work and what has been reported in literature. We continue this discussion in
this section.

Contrary to many works from the Owicki-Gries paradigm, which often make
distinctions between global and local variables, our work fits the shared variables
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paradigm. Global variables are typical to parallel systems, where multiple (iden-
tical) concurrent processes are active at the same time and interact with each
others through a small set of global variables. The technique by [7] essentially
abstracts and redefines the concurrent processes in terms of those global vari-
ables and calls this notion the split invariant. The technique by [13] is similar to
that, as well as the technique by [18]. Our work expresses environments in terms
of those variables that are shared with other components, thus not requiring
a model structure in which global variables are explicitly defined by the user.
The shared variable paradigm is therefore a generalization of the global/local
variables paradigm.

In this work, we show, so far, how the environments are interpolated using
the unsatisfiability proof from bounded model checking of an invariant. This
can be extended to a larger class of properties. Akin to [8], where the notion
of a process environment is described, the interpolated environments, as it cur-
rently is formalized, can also be used to verify safety and liveness properties.
In fact, our notion of the interpolated environment was inspired by that. We
however foresee that the interpolated environment is not strong enough for veri-
fying liveness properties and that techniques from CEGAR are a necessity here.
Particular techniques in this setting are by [8,17]. As these works were car-
ried out for the global/local variables paradigm, it requires further investigation
how these techniques are extendable to the shared variables paradigm. For the
moment, Algorithm 1 naively increases the bound k as a refinement step without
checking whether an abstract counterexample is a false-positive or not.

With regard to rely/assume guarantee/provide reasoning, we remarked in the
introduction that the automated approaches are closely related to ours. In [14],
a technique based on automata determinization is described to generate weakest
assumptions. In subsequent work [5], assumptions are learned using an automa-
ton learning algorithm, like L*. Our work is a twist on this, as we describe a
method using Craig interpolation.

Rely/assume guarantee/provide reasoning has also been applied to AADL
models, like for example [6]. The scope and semantic base of [6] differs from ours.
Our satellite models for example are expressed in a formalized dialect of AADL
by [2]. It is designed to provide a rigorous and coherent semantics for a system’s
nominal, erroneous and degraded behavior. The work by [6] appears to focus
only on the nominal behavior. Furthermore, their approach does not generate
assumptions nor guarantuees as we do, but rather provides a tool-supported
reasoning framework over them once provided by the user.

Interpolation in model checking has become an active field since the pioneer-
ing work by [19]. It has been further studied since, covering applications such as
a monolithic abstraction of the transition relation [16], or more theoretical inves-
tigations studying the differences in strength of interpolants as a consequence
of a chosen interpolation generation scheme [10]. We were inspired by [20] and
devised a modified interpolation scheme that is suitable for compositional rea-
soning that is reported in this paper.
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6 Conclusions

We have described and experimentally evaluated a technique for deriving an
abstract environment transition condition from a component-oriented model
using a Craig interpolation-inspired method. We call it the component-oriented
interpolant. It particularly fits models where highly cohesive components com-
municate through shared variables, which is a generalization over the global/local
variables setting. To our knowledge it is the first application of interpolation-like
techniques to exploit a model’s composition of components.

Through our work, we identified several open points for future work. In
particular a study of the component-oriented interpolant’s strength would be
interesting. We know from Lemma 1 that the component-oriented interpolant
over-approximates, but we do not know how strong it is such that the property
still holds up to bound k. This is in contrast to classical Craig interpolation,
where its interpolant does have this property. It requires further study to under-
stand how and whether the component-oriented interpolant can be strengthened.
Inspiration can be drawn from the strengthening techniques for classical inter-
polation, where the reordering of vertices in the resolution refutation proof and
asymmetric interpolation schemes have been studied for this purpose [10].

Studying the strength of the component-oriented interpolant also benefits its
suitability for verifying more expressive properties, like safety and liveness prop-
erties. We estimate that the component-oriented interpolation scheme of Defini-
tion 2 overapproximates too much for that purpose and thus the straight-forward
usage of the interpolated environment to safety/liveness properties would yield
too many false-positive counterexamples.

Furthermore, Algorithm 1 in Sect. 4 is open for further investigation. It suffers
from double abstraction, because it does not perform an exact inner reachability
analysis using the interpolated environment. Exact methods would alleviate that.
Especially ones that work in a SAT-based context are preferable, because that
would avoid the overhead of converting the used data-structures.

We have made our implementation available on http://www-i2.informatik.
rwth-aachen.de/∼nguyen/coi/ under the LGPL open source license.
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compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

6. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compo-
sitional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012)

7. Cohen, A., Namjoshi, K.S.: Local proofs for global safety properties. Formal Meth-
ods Syst. Des. 34(2), 104–125 (2009)

8. Cohen, A., Namjoshi, K.S.: Local proofs for linear-time properties of concurrent
programs. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 149–161.
Springer, Heidelberg (2008)

9. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Log. 22(3), 269–285 (1957)

10. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944,
pp. 129–145. Springer, Heidelberg (2010)

11. Esteve, M.-A., Katoen, J.-P., Nguyen, V.Y., Postma, B., Yushtein, Y.: Formal
correctness, safety, dependability and performance analysis of a satellite. In: Pro-
ceedings of 34th Software Engineering (ICSE), pp. 1022–1031. IEEE (2012)

12. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, Upper
Saddle River (2012)

13. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

14. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: Proceedings of 17th Automated Software
Engineering (ASE), pp. 3–12. IEEE (2002)

15. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: a constraint-based verifier for
multi-threaded programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 412–417. Springer, Heidelberg (2011)

16. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51.
Springer, Heidelberg (2005)

17. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-modular counterexample-guided
abstraction refinement. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS,
vol. 6337, pp. 356–372. Springer, Heidelberg (2010)

18. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-modular verification is Cartesian
abstract interpretation. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC
2006. LNCS, vol. 4281, pp. 183–197. Springer, Heidelberg (2006)

19. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

20. McMillan, K.L.: Applications of Craig interpolants in model checking. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer,
Heidelberg (2005)

21. Nguyen, V.Y.: Trustworthy spacecraft design using formal methods. Ph.D. thesis,
RWTH Aachen University, Germany (2012)


	Compositional Analysis Using Component-Oriented Interpolation
	1 Introduction
	2 Preliminaries
	3 Component-Oriented Interpolation
	4 Evaluation on Satellite Case Studies
	5 Related Work
	6 Conclusions
	References


