
A Formal Approach to Autonomic Systems
Programming: The SCEL Language

(Long Abstract)

Rocco De Nicola(B)

IMT – Institute for Advanced Studies, Lucca, Italy
rocco.denicola@imtlucca.it

Abstract. Software-intensive cyber-physical systems have to deal with
massive numbers of components, featuring complex interactions among
components and with humans and other systems. Often, they are designed
to operate in open and non-deterministic environments, and to dynam-
ically adapt to new requirements, technologies and external conditions.
This class of systems has been named ensembles and new engineering
techniques are needed to address the challenges of developing, integrat-
ing, and deploying them. In the paper, we briefly introduce SCEL (Soft-
ware Component Ensemble Language), a kernel language that takes a
holistic approach to programming autonomic computing systems and
aims at providing programmers with a complete set of linguistic abstrac-
tions for programming the behavior of autonomic components and the
formation of autonomic components ensembles, and for controlling the
interaction among different components.

Software-intensive cyber-physical systems have to deal with massive numbers
of components, featuring complex interactions among components and with
humans and other systems. Often, they are designed to operate in open and
non-deterministic environments, and to dynamically adapt to new requirements,
technologies and external conditions. This class of systems has been named
ensembles. Sometimes, ensembles are assembled from systems that are indepen-
dently controlled and managed, while their interaction “mood” might be coop-
erative or competitive; then one has to deal with systems coalitions or so-called
systems of systems. Due to their inherent complexity, today’s engineering meth-
ods and tools do not scale well with such systems. Therefore, new engineering
techniques are needed to address the challenges of developing, integrating, and
deploying them.

A possible answer to the problems posed by such complex systems is to
make them able to self-manage by continuously monitoring their behavior and
their working environment and by selecting the actions to perform to best deal
with the current status of affairs. Self-management could be exploited also to
face situations in which humans intervention is limited or even absent and com-
ponents have to collaborate to achieve specific goals. This requires increasing
systems’ self-management capabilities and guaranteeing what now are known as
c© Springer International Publishing Switzerland 2015
I. Lanese and E. Madelaine (Eds.): FACS 2014, LNCS 8997, pp. 24–28, 2015.
DOI: 10.1007/978-3-319-15317-9 2



A Formal Approach to Autonomic Systems Programming 25

self-* properties (self-configuration, self-healing, self-optimization, self-protection)
of autonomic computing.

The main challenges posed to language designers by these classes of systems
are:

– to devise appropriate abstractions and linguistic primitives to deal with the
large dimension of systems,

– to guarantee systems adaptation to (possibly unpredicted) changes of the
working environment,

– to take into account evolving requirements,
– to control the emergent behaviors resulting from complex interactions.

During the invited talk, we proposed facing these challenges by taking as
starting point the notions of autonomic components and autonomic components
ensembles and defining programming abstractions to model their evolutions and
their interactions. These notions are the means we propose to use to structure
systems into well-understood, independent and distributed building blocks that
interact and adapt in different ways.

Autonomic components are entities with dedicated knowledge units and
resources; awareness is guaranteed by providing them with information about
their state and behavior via their knowledge repositories. These repositories can
be also used to store and retrieve information about the working environment
of components, and can thus be used to adapt components’ behavior to the
perceived changes. Each component is equipped with an interface, consisting
of a collection of attributes, describing different component’s features such as
its identity, functionalities, spatial coordinates, group memberships, trust level,
response time.

Attributes play a crucial rôle, they are used by components to dynamically
organize themselves into ensembles. Indeed, one of the main novelties of our
approach is the way sets of partners are selected for interaction and thus how
ensembles are formed. Communication partners of a specific component can be
not only selected by using their identities, but also by exploiting the attributes in
their interfaces. Predicates over such attributes are used to specify the targets of
communication actions, to guarantee a sort of attribute-based communication. In
this way, the formation rule of ensembles is endogenous to components: members
of an ensemble are connected by the interdependency relations defined through
predicates. An autonomic-component ensembles is therefore not a rigid fixed
network but rather a highly flexible structure where components’ linkages are
dynamically established.

In the talk, we presented SCEL (Software Component Ensemble Language),
a kernel language that takes a holistic approach to programming autonomic
computing systems and aims at providing programmers with a complete set of
linguistic abstractions for programming the behavior of autonomic components
and the formation of autonomic components ensembles, and for controlling the
interaction among different components. These abstractions permit describing
autonomic systems in terms of Behaviors, Knowledge and Aggregations, accord-
ing to specific Policies depicted in Fig. 1 and described below.



26 R. De Nicola

Knowledge

K
Processes

P

I Interface

Policies

Fig. 1. SCEL component

– Behaviors describe how computations progress; they are modeled as processes
executing actions, in the style of process calculi.

– Knowledge repositories provide the high-level primitives to manage pieces
of information coming from different sources. Each knowledge repository is
equipped with operations for adding, retrieving, and withdrawing knowledge
items.

– Aggregations describe how different elements are brought together to form
components and to construct the software architecture of components ensem-
bles. Composition and interaction are implemented by exploiting the attri-
butes exposed in components interfaces.

– Policies control and adapt the actions of the different components for guaran-
teeing accomplishment of specific tasks or satisfaction of specific properties.

Components, by accessing and manipulating their own knowledge reposi-
tory or the repositories of other components, acquire information about their
status (self-awareness) and their environment (context-awareness) and can per-
form self-adaptation, initiate self-healing actions to deal with system malfunc-
tions, or install self-optimizing behaviors. All these self-* properties, as well
as self-configuration, can be naturally expressed by exploiting SCEL’s higher-
order features, namely the capability to store/retrieve (the code of) processes
in/from the knowledge repositories and to dynamically trigger execution of new
processes. Moreover, by implementing appropriate security policies, e.g. limit-
ing information flow or external actions, components can set up self-protection
mechanisms.

To show expressiveness and effectiveness of SCEL’s design, we briefly intro-
duced a Java implementation of the proposed abstractions and showed how it
had been exploited for programming the robotics scenario that was used as a
running example for describing achievements and potentials of the proposed
approach.

The results presented in the talk have been developed within the EU-FET
project Ascens [2] and most of them are presented in [9]. Other important
features have been described in various other papers to which the reader is
referred to for details about specific results and for references to related work.
In particular:



A Formal Approach to Autonomic Systems Programming 27

– jRESP, the Java Run-time Environment for SCEL Programs that provides
an API for using SCEL’s linguistic constructs in JAVA programs is described
in [11]. There, it is also discussed how jRESP can be exploited to perform
statistical model checking of SCEL programs.

– Policies and their integration with the run time environment are studied
in [12,13]. A full instantiation of the SCEL language, called PSCEL (Policed
SCEL) that relies on modeling knowledge by means of distributed tuple spaces
(à la Klaim [7]) and on FACPL for specifying policies is introduced in [13].
In [12], jRESP is extended to encompass PSCEL and thus to deal also with
policies.

– Knowledge handling mechanisms alternative to distributed tuple spaces that
are instead based on constraints are studied in [15]. It is discussed how soft
constraints can be exploited to deal with partial knowledge and guarantee
multi-criteria optimization.

– Quantitative variants are considered in [10]. There, a stochastic version of
SCEL is introduced that enriches terms with information about actions dura-
tion, and can be used to support quantitative analysis of autonomic systems.
Investigation of these issues will continue in Quanticol [16] another EU-FET
project.

– Adaptation patterns and the possibility of modeling them via the SCEL
abstractions are considered in [6]. Modelling of self-expression in SCEL is
instead considered in [5].

– The extension of SCEL with reasoning capabilities that are guaranteed by
external reasoners is presented in [3]. There, the solid semantics foundations of
SCEL is also exploited to develop MISSCEL, an implementation of SCEL’s
operational semantics in Maude to pave the way towards using the rich ver-
ification tool set of this framework.

– In [8] it is instead shown how the SPIN model checker can be used to prove
properties of SCEL programs by translating them into Promela, the input
language of SPIN.

– Specific case studies taken from the automotive and cloud computing scenarios
are considered in [4,14].

– A core calculus with attribute-based communication obtained by distilling the
key concepts of SCEL is presented [1] with the aim of initiating fundamental
studies to understand the full impact of this novel communication paradigm.

Acknowledgement. As evident from the list of the papers mentioned in the bibliog-
raphy below, design, implementation and exploitation of SCEL has been a collective
effort. I would like to thank all involved colleagues for their fundamental contributions.
I take the occasion to thank also Ivan Lanese and Eric Madelaine for giving me the
possibility of presenting our work at the FACS conference and in the proceedings.



28 R. De Nicola

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proceedings of SAC 2015 (2015, to appear)

2. ASCENS. Autonomic service-components ensemble, a FET-EU project. http://
www.ascens-ist.eu/ (2014). Accessed 28 Nov 2014

3. Belzner, L., De Nicola, R., Vandin, A., Wirsing, M.: Reasoning (on) service com-
ponent ensembles in rewriting logic. In: Iida, S., Meseguer, J., Ogata, K. (eds.)
Specification, Algebra, and Software. LNCS, vol. 8373, pp. 188–211. Springer,
Heidelberg (2014)

4. Bures, T., De Nicola, R., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N.,
Valentina Monreale, G., Montanari, U., Pugliese, R., Serbedzija, N. B., Wirsing,
M., Zambonelli, F.: A life cycle for the development of autonomic systems: the
e-mobility showcase. In: Proceedings of SASOW, pp. 71–76. IEEE (2013)

5. Cabri, G., Capodieci, N., Cesari, L., De Nicola, R., Pugliese, R., Tiezzi, F.,
Zambonelli, F.: Self-expression and dynamic attribute-based ensembles in SCEL.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 147–
163. Springer, Heidelberg (2014)

6. Cesari, L., De Nicola, R., Pugliese, R., Puviani, M., Tiezzi, F., Zambonelli, F.:
Formalising adaptation patterns for autonomic ensembles. In: Fiadeiro, J.L., Liu,
Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 100–118. Springer, Heidelberg
(2014)

7. De Nicola, R., Ferrari, G.L., Pugliese, R.: Klaim: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

8. De Nicola, R., Lluch Lafuente, A., Loreti, M., Morichetta, A., Pugliese, R., Senni,
V., Tiezzi, F.: Programming and verifying component ensembles. In: Bensalem, S.,
Lakhneck, Y., Legay, A. (eds.) From Programs to Systems. LNCS, vol. 8415, pp.
69–83. Springer, Heidelberg (2014)

9. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. TAAS 9(2), 7 (2014)

10. Latella, D., Loreti, M., Massink, M., Senni, V.: Stochastically timed predicate-
based communication primitives for autonomic computing. In: Bertrand, N.,
Bortolussi, L. (eds.) Proceedings of QAPL 2014, Electronic Proceedings in Theo-
retical Computer Science, EPTCS, 2014, pp. 1–16. ISSN: 2075–2180, doi:10.4204/
EPTCS.154.1

11. Loreti, M.: jRESP: a run-time environment for SCEL programs. Technical report,
Sept 2014. http://rap.dsi.unifi.it/scel/ and http://code.google.com/p/jresp/

12. Loreti, M., Margheri, A., Pugliese, R., Tiezzi, F.: On programming and policing
autonomic computing systems. In: Margaria, T., Steffen, B. (eds.) ISoLA. LNCS,
vol. 8802, pp. 164–183. Springer, Heidelberg (2014)

13. Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic abstractions for programming and
policing autonomic computing systems. In: UIC/ATC, pp. 404–409. IEEE (2013)

14. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl,
J., Bures, T.: The autonomic cloud: a vision of voluntary, peer-2-peer cloud com-
puting. In: Proceedings of SASOW, pp. 89–94. IEEE (2013)

15. Montanar, U., Pugliese, R., Tiezzi, F.: Programming autonomic systems with mul-
tiple constraint stores. In: De Nicola, R., Hennicker, R. (eds.) Software, Services
and Systems. LNCS. Springer, Heidelberg (2015)

16. QUANTICOL. A quantitative approach to management and design of collective
and adaptive behaviours, a FET-EU project. http://blog.inf.ed.ac.uk/quanticol/.
Accessed 28 Nov 2014

http://www.ascens-ist.eu/
http://www.ascens-ist.eu/
http://dx.doi.org/10.4204/EPTCS.154.1
http://dx.doi.org/10.4204/EPTCS.154.1
http://rap.dsi.unifi.it/scel/
http://code.google.com/p/jresp/
http://blog.inf.ed.ac.uk/quanticol/

	A Formal Approach to Autonomic Systems Programming: The SCEL Language
	References


