
Reduction and Abstraction Techniques for BIP

Mohamad Noureddine2(B), Mohamad Jaber2,
Simon Bliudze1, and Fadi A. Zaraket2

1 Ecole Polytechnique Fédérale de Lausanne, Station 14, 1015 Lausanne, Switzerland
simon.bliudze@epfl.ch

2 American University of Beirut, Beirut, Lebanon
{man17,mj54,fz11}@aub.edu.lb

Abstract. Reduction and abstraction techniques have been proposed to
address the state space explosion problem in verification. In this paper,
we present reduction and abstraction techniques for component-based
systems modeled in BIP (Behavior, Interaction and Priority). Given
a BIP system consisting of several atomic components, we select two
atomic components amenable for reduction and compute their prod-
uct. The resulting product component typically contains constants and
branching bisimilar states. We use constant propagation to reduce the
resulting component. Then we use a branching bisimulation abstraction
to compute an abstraction of the product component. The presented
method is fully implemented and scales to large designs not possible to
verify with existing techniques.

1 Introduction

As systems become more complex, verifying their correctness becomes harder,
especially in the presence of state explosion. Researchers have proposed reduction
and abstraction techniques to address this problem [11,14,17]. We discuss and
compare to them in Sect. 6.

We target component-based systems (CBS) expressed in the BIP (Behavior,
Interaction and Priority) framework [2]. BIP uses a dedicated language and tool-
set supporting a rigorous design flow. The BIP language allows to build complex
systems by coordinating the behavior of a set of atomic components. Behavior
is described with Labeled Transition Systems (LTS) where transitions are anno-
tated with data and functions written in C. Coordination between components
is layered. The first layer describes the interactions between components that
allow synchronization and data transfer. The second layer describes dynamic
priorities between the interactions to express scheduling policies. The combi-
nation of interactions and priorities characterizes the overall architecture of a
system. Moreover, BIP has rigorous operational semantics: the behavior of a
composite component is formally described as the composition of the behaviors

Mohamad Noureddine – The presented work was partially realised while this author
was at EPFL for a summer internship. The authors are listed alphabetically.

c© Springer International Publishing Switzerland 2015
I. Lanese and E. Madelaine (Eds.): FACS 2014, LNCS 8997, pp. 288–305, 2015.
DOI: 10.1007/978-3-319-15317-9 18

Reduction and Abstraction Techniques for BIP 289

of its atomic components. This allows a direct relation between the underlying
semantic model and its (automatically synthesized) implementation.

The BIP framework uses: (1) DFinder [3], a compositional and incremental
verification tool-set, and (2) NuSMV [8] model checker, to verify BIP system
invariants.

In this paper, we present reduction and abstraction techniques for component-
based systems modeled in BIP. Given a BIP system consisting of several atomic
components, our method automatically selects a pair of candidate components
that have a high reduction potential based on their data dependencies and
their synchronization. Our method uses component selection heuristics similar to
[9,10,19] and provides a user-defined selection API. Then, our method computes
the product of the selected pair of atomic components which renders the interac-
tion data transfer operations into transition data transfer operations. This often
uncovers opportunities for constant propagation in the product component that
were hidden before. Moreover, the product operation results in product transi-
tions of two types: (1) non-observable transitions involved only in a singleton
interaction (i.e., a singleton interaction involves only one component) and with
no actions; (2) observable transitions involved in either multiparty interactions
or in a singleton interaction but with actions. Non-observable transitions form
a branching bisimilar equivalence relation that partitions the state space. Our
method detects and merges equivalence classes into representative states result-
ing in an abstraction of the product component.

The presented techniques are fully implemented. We evaluate our method
using (1) traffic light controller case study and (2) medium to large config-
urations of an Automatic Teller Machine (ATM). The results show that our
method drastically reduces the state space and enables verifying invariants more
efficiently. In this paper, we make the following contributions:

– We abstract a BIP system with a branching bisimulation equivalence that we
formalize and that leverages observable and non-observable transitions in the
BIP context.

– We provide structural heuristics for selecting candidate pairs of components
amenable for reduction and abstraction.

– We also provide an API for user-defined component selection criteria.
– We formalize the product operation between two BIP components and embed

constant propagation in it.

The rest of the paper is structured as follows. Section 2 discusses needed
background information about BIP. We present the merging and constant prop-
agation techniques in Sect. 3, and the branching bisimulation reduction in Sect. 4.
Section 5 illustrates the results obtained from verifying models reduced using our
method. We summarize related work in Sect. 6 and conclude in Sect. 7.

2 BIP - Behavior, Interaction, Priority

We recall the necessary concepts of the BIP framework [2]. BIP allows to con-
struct systems by superposing three layers of modeling: Behavior, Interaction,

290 M. Noureddine et al.

and Priority. The behavior layer consists of a set of atomic components repre-
sented by transition systems. Atomic components are Labeled Transition Sys-
tems (LTS) extended with C functions and data. Transitions are labeled with sets
of communication ports. The interaction layer models the collaboration between
components. Interactions are described using sets of ports. The priority layer is
used to specify scheduling policies applied to the interaction layer, given by a
strict partial order on interactions.

Atomic Components. An atomic component is endowed with a finite set of
local variables X taking values in a domain Data. Atomic components synchro-
nize and exchange data with each others through ports. Below, we will denote by
B[X] the set of boolean predicates over X and by Exp[X] the set of assignment
statements of the form X := f(X).

Definition 1 (Port). A port p[Xp], where Xp ⊆ X, is defined by a port iden-
tifier p and some data variables in a set Xp (referred to as the support set). We
will also denote this set of variables by p.X.

Definition 2 (Atomic component). An atomic component B is defined as
a tuple (P,L,X, T), where P is a set of ports,1 L is a set of control locations,
X is a set of variables and T ⊂ L × P × B[X] × Exp[X] × L is a transition
relation, such that, for each transition τ = (l, p[Xp], gτ , fτ , l′) ∈ T , gτ ∈ B[X] is
a Boolean guard over X and fτ ∈ Exp[X] is a partial mapping associating to
some x ∈ X the corresponding statement fx

τ (X).

For τ = (l, p[Xp], gτ , fτ , l′) ∈ T a transition of the LTS, l (resp. l′) is referred
to as the source (resp. destination) location and p is a port through which an
interaction with another component can take place. Transition τ can be executed
only if the guard gτ evaluates to true, and fτ is a computation step: a set of
assignments to local variables in X.

In the sequel we use the dot notation. Given a transition τ = (l, p[Xp], gτ , fτ , l′),
τ.src, τ.port , τ.guard , τ.func, and τ.dest denote l, p, gτ , fτ , and l′, respectively.
Also, the set of variables used in a transition is defined as var(fτ) = {x ∈ X | x :=
fx(X) ∈ fτ}. Given an atomic component B, B.P denotes the set of ports of the
atomic component B, B.L denotes its set of locations, etc. We denote by X the
set of valuations of the variables X.

Semantics of Atomic Components. The semantics of an atomic component is an
LTS over configurations and ports, formally defined as follows:

Definition 3 (Semantics of Atomic Components). The semantics of the
atomic component B = (P,L,X, T) is defined as the LTS SB = (QB ,
PB ,−→),2 where QB = L × X, PB = P × X denotes the set of labels, that
is, ports augmented with valuations of variables and −→=

{(
(l, v), p(vp), (l′, v′)

) |
1 All sets are finite.
2 Here and below, we omit the index on −→, since it is always clear from the context.

Reduction and Abstraction Techniques for BIP 291

∃τ = (l, p[Xp], gτ , fτ , l′) ∈ T : gτ (v)∧v′ is equal to the value of fτ (vp/v)
}
, where

vp is a valuation of the variables Xp.

Transition (l, v)
p(vp)−−−→ (l′, v′) is possible iff there exists a transition

(l′, p[Xp], gτ , fτ , l), such that gτ (v′) = true. As a result, the valuation of vari-
ables X is updated to v′ = fτ (vp/v), i.e. the values of variables Xp are updated
to vp before the application of f .

Creating Composite Components. Atomic components interact by synchro-
nizing transitions. Upon synchronization, data values can be transferred between
components.

Definition 4 (Interaction). An interaction a is a tuple (Pa, Ga, Fa), where
Pa ⊆ ⋃n

i=1 Bi.P is a nonempty set of ports that contains at most one port
of every component, that is, ∀i : 1 ≤ i ≤ n : |Bi.P ∩ Pa| ≤ 1. Denoting by
Xa =

⋃
p∈Pa

Xp the set of variables available to a, Ga ∈ B[Xa] is a boolean
guard and Fa : Xa → Xa is an update function. Pa is the set of connected ports
called the support set of a.

Definition 5 (Semantics of Composite Components). Let B =
{B1, . . . , Bn} be a set of atomic components with their respective semantic LTS
SBi

= (QBi
, PBi

,−→) (recall, Definition. 3, that the states QBi
and labels PBi

comprise valuations of data variables); let γ be a set of interactions. The com-
position of B with γ is the LTS γ(B) = (Q, γ,→), where Q = QB1 × . . . × QBn

and −→ is the least set of transitions satisfying the following rule

a =
({pi}i∈I , Ga, Fa

) ∈ γ Ga({vpi
}i∈I)

∀i ∈ I, qi
pi(vi)−−−−→i q′

i ∧ vi = F i
a({vpi

}i∈I) ∀i �∈ I, qi = q′
i

(q1, . . . , qn) a−→ (q′
1, . . . , q

′
n)

where vpi
denotes the valuation of the variables attached to port pi and F i

a is the
partial function derived from Fa restricted to the variables associated with pi.

The meaning of the above rule is the following: if there exists an interaction a
such that all its ports are enabled in the current state and its guard evaluates to
true, then the interaction can be fired. When a is fired, all involved components
evolve according to the interaction and not involved components remain in the
same state.

Finally, we consider systems defined as a parallel composition of components
together with an initial state.

Definition 6 (System). A BIP system S is a tuple (B, Init , v) where B is a
composite component, Init ∈ B1.L × . . . × Bn.L is the initial state of B, and
v ∈ XInit where XInit ⊆ ⋃n

i=1 Bi.X.

292 M. Noureddine et al.

3 Merging and Constant Propagation

In this section we present two techniques merging and constant propagation
in order to reduce the state space of the system. First, we select candidate
components for merging based on a set of heuristics. Then, we apply a constant
propagation technique [16] that will reduce the state space by removing some
data variables.

3.1 Merging Components

Throughout this paper, we assume that the input BIP systems have no priority
rules and that all the automata in the BIP atomic components are complete.
An automaton is complete iff in any location, the disjunction of guards of the
outgoing transitions evaluates to true.

Let B be a set of atomic components and γ be an interaction model. Consider
two atomic components B1, B2 ∈ B and denote I(B1, B2) = {a ∈ γ | Pa ⊆ B1.P∪
B2.P} the set of interactions involving only B1 and B2; P12 =

⋃
a∈I(B1,B2)

Pa

the set of all ports that are part of some interaction a ∈ I(B1, B2) and pa a
new port corresponding to an interaction a ∈ I(B1, B2). Assume further that all
ports involved in interactions between B1 and B2 are not involved in interactions
with any other atomic components, i.e., for any a ∈ γ, either a ∈ I(B1, B2), or
Pa ∩ P12 = ∅.

Definition 7 (Product Component). Let B1 and B2 be two atomic compo-
nents as above. Their product is an atomic component prod(B1, B2) = (P,L,
X,−→), where:

– P = B1.P ∪ B2.P ∪ {pa | a ∈ I(B1, B2)} \ P12,
– X = B1.X ∪ B2.X,
– −→ is the minimal transition relation induced by the following rules,

a ∈ I(B1, B2) Pa = {p1, p2} l1
(p1,g1,f1)−−−−−−→ l′1 l2

(p2,g2,f2)−−−−−−→ l′2

(l1, l2)

(
pa, g1∧g2∧Ga, (f1∪f2)◦Fa

)

−−−−−−−−−−−−−−−−−−−→ (l′1, l
′
2)

,

{i, j} = {1, 2} p ∈ Bi.P \ P12 li
(p,g,f)−−−−→ l′i l′j = lj

(l1, l2)
(p,g,f)−−−−→ (l′1, l

′
2)

,

– L =
{
(l1, l2) ∈ B1.L × B2.L | ∃(l′1, l

′
2) ∈ B1.L × B2.L : (l1, l2) −→ (l′1, l

′
2)

}
.

Informally, the product component operation is a syntactic analogue of the
semantic parallel composition operation of two atomic components as defined
in Definition 5.

Definition 8 (Component Merging). Let γ(B) be a composite component
and B1, B2 be atomic components as above. We define the component merging
operation merge(γ(B)) = γ′(B′) where

Reduction and Abstraction Techniques for BIP 293

– B′ = B ∪ {prod(B1, B2)} \ {B1, B2}, and
– γ′ =

(
γ \ I(B1, B2)

) ∪ {({pa}, true, id
) ∣
∣ a ∈ I(B1, B2)

}

By Definition 5 system γ′(B′) is semantically equivalent to γ(B) since the
product component prod(B1, B2) ∈ B′ from Definition 7, where B1 and B2 are
atomic components in B, is semantically equivalent to a parallel composition.

Several heuristics for selecting candidate components have been presented for
LTS systems with no data transfer [9,10,19]. These heuristics consider merging
pairs of components and favor the ones that result in smaller components. Our
method iteratively selects and merges candidate components for merging based
on a set of heuristics that take data transfer and component synchronization
into consideration.

The first heuristic favors the pairs of components with the largest amount
of data transfer. Intuitively, larger data transfer operations offer more room for
stuck at constant variables that we detect and eliminate using constant propaga-
tion. The width of the data transfer considers the type of data variables (integers
are wider than Boolean variable). The second heuristic favors the components
that are highly synchronized since they produce more compact products. Intu-
itively, the product of highly synchronized components results in a large unreach-
able state space that is easily detected. Both are structural analysis heuristics
and take polynomial running time with respect to the size of the system.

Our method also supports a merge selection API that users can implement
to rank candidate component pairs. The API passes a pair of components to the
user implementation and the implementation evaluates the pair and returns a
merging rank value. The pair with highest rank is considered for merging.

Product components can be very large which is a problem to compositional
model checking techniques in DFinder and NuSMV. Our method considers the
product of components B1 and B2 if the maximum number of possible transitions
of B1 × B2 is smaller than a threshold value n1 × n2 ≤ nt where n1 and n2 are
the number of transitions in B1 and B2, respectively.

3.2 Constant Propagation

We remove stuck-at-constant data variables by following the basic definition of
constant propagation from [16,20]. A variable is stuck-at-constant if it is constant
on all possible control locations of an atomic component. Applying constant
propagation as an intermediate step in compositional verification tools is not
novel and is a well established technique [12,15]. To the best of our knowledge,
we are the first to apply it in the context of BIP systems.

Given a composite component γ({Bi}i∈I) and an atomic component Bk such
that k ∈ I, we construct the composite component γ({Bj}j∈J , B′

k) where J = I\
{k} and B′

k is an atomic component such that B′
k.L = Bk.L, B′

k.X = Bk.X\Xc

where Xc ⊆ Bk.X is the set of stuck-at-constant variables in Bk, and B′
k.T = T ′

where T ′ is T with each constant variable x ∈ Xc is replaced by its constant
value appropriately.

294 M. Noureddine et al.

Algorithm 1. Algorithm for building CFG of an atomic component
l0 ← initial location of B
Create vertex vinit s.t. vinit.l = l0 and vinit.f = initial valuation of B.X
Create vertex vl0 s.t. vl0 .l = l0 and vl0 .f = φ
Create vertex (vinit, vl0)
V ertices[l0] ← vl0

stack.push(l0)
while ¬stack.isEmpty() do

l ← stack.pop()
Set l as visited
vl ← V ertices[l]
for all τ s.t. τ.src = l do

Create vertex v s.t. v.l = l and v.f = τ.f
Create edge (vl, v)
if τ.dest visited then

Create edge (v, V ertices[τ.dest])
else

Create vertex vdest s.t. v.dest.l = τ.dest and vdest.f = φ
Create edge (v, vdest)
V ertices[τ.dest] ← vdest

stack.push(τ.dest)
end if

end for
end while

Definition 9 (Control Flow Graph). The control flow graph (CFG) of an
atomic component B is a directed graph (V,E) where:

– V is a set of vertices, each representing a control location l ∈ B.L and a set of
computational steps in B. We denote by v.l and v.f the control location and
the set of computational steps in v ∈ V , respectively.

– E is a set of edges, such that (v1, v2) ∈ E iff ∃(τ ∈ B.T). (v1.l = τ.src ∧ v2.l =
τ.dest) ∧ (v1.f = τ.f ∨ v2.f = τ.f).

Listing 1 shows the algorithm used for constructing the CFG of an atomic
component B. We create an empty vertex for each control location in B. We
denote by vl the empty vertex corresponding to control location l ∈ B.L. Then
we perform a depth first traversal of the LTS of B. For each control location
l, for every outgoing transition τ , we create a vertex vτ such that vτ .l = l
and vτ .f = τ.f , and create edges (vl, vτ) and (vτ , vτ.dest). The empty vertices
can be easily discarded, but we keep them to simplify the constant propagation
step. Intuitively, this step is conservative as it abstracts away guards and may
not consider some potential stuck-at-constant variables. Alternatively, symbolic
computation can be used to take advantage of that.

Definition 10 (Lattice element). A lattice element is a representation of sta-
tic knowledge of the value of a variable x during the execution of a constant
propagation algorithm [20]. A lattice element can have one of three types:

Reduction and Abstraction Techniques for BIP 295

– �: x is likely to have a yet to be determined constant value.
– ⊥: x’s value cannot be determined statically.
– ci: x has the value i.

Definition 11 (Lattice element meet). The meet (�) operation of two lattice
elements is an operation such that: (1) � � any = any; (2) ⊥ � any = ⊥; (3)
ci � cj = ci if i = j; and (4) ci � cj = ⊥ if i �= j.

Listing 2 shows the constant propagation algorithm. Given an atomic component
B, we start by constructing the CFG G(B) = (V,E). At each vertex v ∈ V , a
variable is associated with two lattice elements, an entry element and an exit
element. We initialize all variables to have the � lattice element. Variables that
take part in any interaction are directly assigned the ⊥ element since their
values cannot be predicted from the component itself. Visiting a vertex v consists
of computing the entry lattice elements for each variable x ∈ var(v.f), where
var(v.f) is the set of variables referenced in v.f . This is done by performing
a meet operation on the exit lattice elements of all vertices v′ such (v′, v) ∈
E. We then evaluate v.f based on the new entry elements. The rules for the
evaluation of the addition operator on lattice elements are: (1) �+(� or ci) = �;
(2) ⊥+any = ⊥; and (3) ci +cj = ci+j . The rules for the rest of operators follow
similarly.

If the evaluation of v.f causes a change in the exit lattice element of any vari-
able x ∈ B.X, all vertices v′′ such that (v, v′′) ∈ E are marked for visiting. A fixed
point is reached once no further exit elements are changes and no vertices are still
marked for visiting. After reaching the fixed point, we form the set of stuck at
constant variables Xc = {x : x ∈ B.Xand ∀v ∈ V. Entry[v][x] is constant} that
have constant lattice elements at the entry of every vertex. Finally, we construct
T ′ = {(l, p, g′

τ , f ′
τ , l′) | (l, p, gτ , fτ , l′) ∈ T} where g′

τ and f ′
τ are the new guards

and actions. We substitute the Xc variables with their corresponding constant
values in the guards g′

τ = gτ [x ∈ Xc/Entry[v][x]] where v.f = fτ . We do the
same for the actions f ′

τ = (fτ\ {x := fx(X) | x ∈ Xc})[x ∈ Xc/Entry[v][x]] but
after removing the assignment statements corresponding to Xc variables.

4 Branching Bisimulation Abstraction

To cope with the increase in the number of control locations introduced by the
component merging process, we apply a branching bisimulation based abstrac-
tion [13]. A branching bisimulation equivalence relation partitions the control
locations into disjoint sets of locations that are branching bisimilar [21]. We
recall the definition of branching bisimulation for LTS systems from [5,13] and
apply it in the BIP context.

Definition 12 (Partition of control locations). Given an atomic component
B, π ⊆ 2B.L is partition of the set of control locations B.L iff (1)

⋃
L∈π L = B.L;

and (2) ∀L′, L′′ ∈ π, L′ �= L′′ ⇒ L′ ∩ L′′ = ∅.
We denote by π(l) the block L ∈ π containing the control location l.

296 M. Noureddine et al.

Algorithm 2. Constant propagation algorithm
G ← CFG(B)
for all v ∈ G.V do

for all x ∈ var(v.f) do
Entry[v][x] ← Exit[v][x] ← �

end for
end for
v0 ← G.vinit

stack.push(v0)
while ¬stack.isEmpty() do

v ← stack.pop()
for all x ∈ var(v.f) do

Entry[v][x] ← meet(Exit[v′][x] ∀v′ ∈ G.V s.t. (v′, v) ∈ G.E)
end for
for all x ∈ var(v.f) do

Exit[v][x] = evaluate(v.f)
if Exit[v][x] changed then

for all v′′ s.t. (v, v′′) ∈ E do
stack.push(v′′)

end for
end if

end for
end while

Definition 13 (Non-observable transition). Given a composite compo-
nent γ({Bi}i∈I), an atomic component Bk for k ∈ I, a transition τ =
(l, p, gτ , fτ , l′) ∈ Bk.T is a non-observable transition iff (1) fτ = ∅; and
(2) ∀a = (Pa, Ga, Fa) ∈ γ, p ∈ Pa ⇒ (Pa = {p} ∧ Fa = ∅).

Informally, non-observable transitions involved only in a singleton interaction
and with no actions. Non-observable transitions form a branching bisimilar
equivalence relation that partition the state space.

Let ε = {(l, l′) | ∃τ = (l, p, gτ , fτ , l′) ∈ Bk.T and τ is non-observable}. The
set ε∗ denotes the reflexive transitive closure of ε. We use the notation l

p−→ l′

for τ = (l, p, gτ , fτ , l′) ∈ B.T .

Definition 14 (Branching bisimilarity relation). Given a composite com-
ponent γ({Bi}i∈I), an atomic component Bk for k ∈ I, a relation B = Bk.L ×
Bk.L is a branching bisimilarity relation on Bk iff:

– B is symmetric
– Given l, � ∈ Bk.L, (l, �) ∈ B iff ∀l, l1, l

p−→ l1,

⎧
⎪⎨

⎪⎩

(l, l1) ∈ ε ∧ (l1, �) ∈ B

∨
∃(l2, �1 ∈ Bk.L), (�1

p−→ l2) ∧ (�, �1) ∈ ε∗ ∧ (l, �1) ∈ B ∧ (l1, l2) ∈ B

Reduction and Abstraction Techniques for BIP 297

We write l1 ∼ l2 when (l1, l2) ∈ B. We denote by πb the partition under the
branching bisimilarity equivalence.

Definition 15 (Quotient branching bisimilar component). Given a com-
posite component γ({Bi}i∈I), and an atomic component Bk for k ∈ I, let B be
the largest branching bisimulation relation over Bk, an atomic component B is
the quotient branching bisimilar component of Bk iff B is the atomic component
with the smallest number of states such that

1. B.L = πb

2. B.T = {(πb(l), p, g, f, πb(l′)) | (l, p, g, f, l′) ∈ Bk.T ∧(
(l ∼ l′) ⇒ ((l, l′) /∈ ε)

)}
3. B.P = {p | ∃τ = (l, p, g, f, l′) ∈ B.T}.
Definition 16 (Branching bisimulation abstraction). Given a composite
component γ({Bi}i∈I) and an atomic component Bk for k ∈ I, we define the
branching bisimulation abstraction operation

abstract(k, γ({Bi}i∈I)) = γ({Bi}i∈I)|Bk=B

where Bk is replaced by its quotient branching bisimilar component B.

Construction. We follow the signature refinement approach for branching
bisimulation abstraction as presented in [5,21]. It is based on computing a signa-
ture for each control location l ∈ B.L. At the end of the algorithm, control loca-
tions with the same signature sig(l) are bisimilar with respect to the branching
bisimilarity relation B. Given an atomic component B, we start from an initial
partition π0 = {B.L}. We then keep refining the partition π w.r.t. B until a
fixed point is reached and we are left with a minimal partition πb of B.L.

Definition 17 (Branching bisimulation signature function). Given an
atomic component B and a partition π of B.L, the branching bisimulation
signature function of a control location l ∈ B.L is defined as: sig(l) =
{(p, π(l1)) | ∃l2 ∈ B.L s.t. (l, l2) ∈ ε∗ ∧ l2

p−→ l1 ∧ (
(l2, l1) /∈ ε∨π(l1) �= π(l)

)}.
Listing 3 shows the algorithm we used for computing the minimal partition πb

of the control locations B.L; it is a direct adaptation of the single threaded
algorithm presented in [5]. Constructing the quotient atomic component from
the computed partition is a direct translation of Definition 15.

Correctness. As noticed in [4], a straightforward consequence of Bloom’s
results [6] is that composition with sets of interactions (Definition 5), called
“BIP glue operators” in [4], preserves bisimilarity. Since the only transitions
that we consider non-observable in this paper do not modify the data variables
of atomic component and do not participate in any of the interactions, it follows
that branching bisimilarity is preserved by composition with interactions.

298 M. Noureddine et al.

Algorithm 3. Branching bisimulation abstraction algorithm
BranchingBisimilarityAbstraction(B)
π′ ← π ← B.L
repeat

π ← π′

π′ ← refinePartition(B, π)
until π′ ← π

refinePartition(B, π)
for all l ∈ B.L do

sig ← ∅
for all l′ ∈ B.L s.t. (l, p, g, f, l′) ∈ B.T do

if ((l, p, l′) �= ε) ∨ (π(l′) �= π(l)) then
sig ← sig ∪ (p, π(l′))

end if
end for
insertSignature(B, π, l, sig)

end for
return {{l′ ∈ B.L | sig(l′) = sig(l)} | l ∈ B.L}

insertSignature(B, π, l, sig)
sig(l) ← sig(l) ∪ sig
for all l′ ∈ B.L s.t. l′ ε−→ l do

if π(l) = π(l′) then
insertSignature(B, π, l′, sig)

end if
end for

The branching bisimulation abstraction introduces new behaviors as follows.
Observable transitions are allowed to introduce changes to the state of the com-
ponent by changing the values of the internal variables. The branching bismi-
larity relation only considers ports as transition labels and ignores differences in
actions. Thus grouping locations and building the quotient component may intro-
duce new sequences of transitions, especially in the cases where guards on the
transitions are not mutually exclusive. Nevertheless, the interactions between the
different components in the system are preserved, i.e., synchronization between
the components is not affected.

5 Results

We illustrate our method using a traffic light controller case study and evaluate
it using several configurations of medium to large ATM systems. We use the
NuSMV [8] model checker to verify deadlock freedom of the BIP systems before
and after reduction. We report on the number of BDD nodes allocated, and on
the execution time taken to perform the verification. Moreover, we also report
on the execution time taken by DFinder [3] to prove the deadlock freedom of

Reduction and Abstraction Techniques for BIP 299

the ATM design. All experiments are run on a machine with an Intel Core i7
processor and 4 GB of physical memory. We set a time-out for verification of 5000
seconds, and do not set a limit on the memory usage other than the physical
limit of the machine. We use the default configuration of NuSMV and do not
add any further optimizations. We use the command check fsm to verify deadlock
freedom of the designs.

5.1 Traffic Light Controller

Figure 1 shows a traffic light controller system modeled in BIP. It is composed of
two atomic components, timer and light. The timer counts the amount of time
for which the light must stay in a specific state (i.e. a specific color of the light).
The light component determines the color of the traffic light. Additionally, it
informs the timer about the amount of time to spend in each location through
a data transfer on the interaction a between the two components.

The interaction a between the components creates a data dependence between
the two. This data dependence hides the fact that the variable n has a constant
value at each location in the timer component. Figure 2a shows the product
component of the light and timer components. Since the done ports of the two
components are synchronized, we replace them by a single port donedone. Sub-
sequently, the interaction a is replaced by an interaction a′ based solely on the
newly created port. Note that this synchronization between the two done ports
renders some transitions in the product automaton obsolete, i.e. they can never
be taken and are thus removed.

Performing constant propagation on the resulting product yields to detecting
that both the variables n and m are constants at each control location. We
replace these variables by their constant values at each control location, and
remove them from the component as shown in Fig. 2b.

t := 0

timer done

[true] done.n := done.m

done
[true] [true]

done
m := 5

done
m := 10

G

YR

m := 3
[true]

done

[t ≥ n]

t := t+ 1

s0

[t < n]
timer

done

Fig. 1. Traffic light in BIP

Table 1 shows the results of running NuSMV on the translated BIP models
before and after applying our reduction techniques. The Locations and Transi-
tions columns show the total number of control locations and transitions in the

300 M. Noureddine et al.

s0, Ytimer
t := t+ 1

[t < n]

timer

[t < n]
timer
t := t+ 1

[t ≥ n]
donedone

[t ≥ n]
donedone

timer donedone

n := m;m := 5; t := 0;

t := t+ 1

[t < n]

n := m;m := 10; t := 0;

n := m;m := 3; t := 0;
donedone
[t ≥ n]

s0, G

s0, R

(a) Before constant propagation

t := 0;

timer
t := t+ 1

[t < 5]

timer

[t < 3]
timer
t := t+ 1

[t ≥ 10]
donedone

[t ≥ 3]
donedone

timer donedone
t := t+ 1

[t < 10]

donedone
[t ≥ 5]

s0, G

s0, R s0, Y

t := 0;t := 0;

(b) After constant propagation

Fig. 2. The product of the timer and light components

Table 1. Results for traffic light controller

Before reduction After reduction

Locations Transitions BDD nodes Time(s) Locations Transitions BDD nodes Time(s)

4 5 8589 0.0088 1 6 1425 0.0016

BIP system, respectively. The BDD Nodes and Time columns show the num-
ber of allocated BDD nodes and the time taken for verification, respectively.
Using branching bisimulation reduction, we are able to reduce the number of
control locations from 4 to a single location. Although the component merging
operation introduced an increase in the number of transitions, this addition did
not affect neither the number of allocated BDD nodes nor the verification time.
Our method reduced the verification time by a factor of 5 and the number of
allocated BDD nodes by a factor of 6.

5.2 Automatic Teller Machine

An ATM is a computerized system that provides financial services for users in a
public space. Figure 3 shows a structured BIP model of an ATM system adapted
from the description provided in [7]. The system is composed of four atomic
components: (1) the User, (2) the ATM, (3) the Bank Validation and (4) the
Bank Transaction. It is the job of the ATM component to handle all interactions
between the users and the bank. No communication between the users and the
bank is allowed.

The ATM starts from an idle location and waits for the user to insert his
card and enter the confidential code. The user has 5 time units to enter the code
before the counter expires and the card is ejected by the ATM. Once the code
is entered, the ATM checks with the bank validation unit for the correctness of
the code. If the code is invalid, the card is ejected and no transaction occurs.
If the code is valid, the ATM waits for the user to enter the desired amount of

Reduction and Abstraction Techniques for BIP 301

y=0

l0 l1 l2

l3

l4

l5

l6l7

insert enter

validated
invalid

amount

eject

accept

cancel

success

withdraw

fail fiat

veto transaction

non−authorized validate

authorized

transaction

authorized
non−

authorized
fiat

veto

validate

insert

eject fail cancel

enter validated amount

accept
success

w
ithdraw

insertentervalidatedamount

cancel fail eject
w
it
hd

ra
w

su
cc
es
s

ac
ce
pt

l0 l1
validate

x=0

x=x+1

x<2
tick

authorized
x>=1

l0 l1
tick
y<4
y=y+1

fiat
y>=2

y>=2

l0

l1

l2 l3 l4

l5

l6

l7 l8

l9

l10

l11l12

l13

insert

enter

t1=0

t1>1

validate

accept

veto

fiat
successwithdraweject

invalid
fail

non−authorized
t2>=3

amountvalidatedauthorized

t2>=3

tick
t2=0

t1=t1+1
t1<5
tick

cancel

User

ATM
veto

transaction

Bank_Transaction

transaction

t2=t2+1
t2<6

x>=1
non−authorized

Bank_Validation

Fig. 3. Modeling of ATM system in BIP

money for the transaction. The time-out for entering the amount of money is of
6 time units.

Once the user enters the desired transaction amount, the ATM checks with
the bank whether the transaction is allowed or not by communicating with the
bank transaction unit. If the transaction is approved, the money is transferred
to the user and the card is ejected. If the transaction is rejected, the user is
notified and the card is ejected. In all cases, the ATM goes back to the idle
location waiting for any additional users. In our model, we assume the presence
of a single bank and multiple ATMs and users.

Table 2 shows the improvement obtained by applying our reduction method
on the ATM design for a number of ATMs ranging from 2 to 50. We show
the number of control locations and transitions before and after applying our
reduction method. We also present the number of allocated BDD nodes and the
verification time in seconds in each case for NuSMV, and the verification time
taken by DFinder to prove deadlock freedom. Note that in all cases, the results
were conclusive and no spurious counter-examples were generated. Our method
reduced by 3 times the number of control locations in the design and by 2 times
the number of transitions. Under NuSMV, it introduced large improvements in
both the number of allocated BDD nodes and the verification time, achieving

Table 2. Results for ATM system

NuSMV DFinder

Locations Transitions Reduction BDD nodes Time (s) Time (s)

ATMs Orig. Red. Orig. Red. Time (s) Orig. Red. Orig. Red. Orig. Red.

2 50 18 68 32 0.066 977,712 542,901 1.4 0.2 3 2

3 73 25 98 44 0.073 6,183,118 921,076 142.6 10.3 4 3

4 96 32 128 56 0.079 18,630,028 1,893,192 3,360.9 281.3 6 4

5 119 39 158 68 0.086 N/A N/A N/A N/A 7 5

10 234 74 308 128 0.133 N/A N/A N/A N/A 24 8

50 1,154 354 1,508 608 0.472 N/A N/A N/A N/A 267 37

302 M. Noureddine et al.

10 times reduction for the case of 4 ATMs and 4 users. For number of ATMs
and users higher than 4, NuSMV reached the time-out limit for both designs.
As for DFinder, our method achieved high improvement reaching a speedup of
10 in the case of 50 ATMs and users. Note that in all cases, the time needed to
reduce the designs is negligible as shown in Table 2.

6 Related Work

Much work has been done on the automatic compositional reduction of com-
municating processes [1,9,10,19]. The techniques revolve around incrementally
composing and minimizing individual components of an input system modulo
an equivalence relation. Most of the techniques focus on finding heuristics for
selecting components to be composed in a way that minimizes the size of the
largest intermediate composed component.

The work in [9] presents a comparative study of three component selection
heuristics. The first is proposed in [19] and aims at finding components such
that the number of transitions that can be removed (hidden) after their parallel
composition is as high as possible. The authors in [9] improve on the heuristics
defined in [19] by introducing metrics to estimate the number of the transitions
that can be removed after parallel composition. Our transformations can make
use of the aforementioned heuristics to select candidate components for merging.
In fact, our supporting tool provides an easy to use programming interface for
adding and testing selection heuristics.

The work in [10] uses the concept of networks of LTSs introduced in [18]
to support compositional reduction using different compositional operators. The
authors use a heuristic similar to the ones presented in [9] to estimate the num-
ber of internal transitions that can be removed after applying the composition
operators, and compare the obtained metric for possible compositions. Our tech-
nique differs from the work in [10] in that our transformations are solely targeted
towards BIP systems, and need not be as general as the techniques presented
in [10].

Additionally, the idea of computing the product of communicating finite state
machines and then reducing them using a notion of state equivalence is presented
in [1]. The authors propose a method to iteratively multiply the components of
a given design and reduce the product at each iteration using a notion of input-
output equivalence. This leads to the construction of a minimal product finite
state machine representing the entire input system, on which verification is to
be performed. We follow a similar approach to that presented in [1], but we do
not compute the product of the entire system, component merging is based on
a set of user defined heuristics and is done while considering the state explosion
introduced by the product operation.

In [11], the authors address the problem of using program analysis in order to
assist reduction techniques, mainly symmetry reduction, in limiting state-space
explosion in systems composed of multiple communicating processes. Such a

Reduction and Abstraction Techniques for BIP 303

system is symmetric if its transition relation is invariant under some given per-
mutations of the communicating processes. States in the system that are identi-
cal up to these permutations are considered equivalent, and lead to generating
a reduced system that is bisimilar to the original system. The authors argue
that symmetry reduction is affected by local state explosion in the each of the
processes, and propose the usage of static analysis techniques such as static local
reachability analysis in order to benefit the efficiency of symmetry reduction. In
our work, we also make use of constant propagation, a static program analysis
technique, in the benefit of reducing the number of internal variables and thus
help the model checker in deciding the problem.

Graf and Steffen [14] focus on presenting a compositional minimization tech-
nique for finite state concurrent systems. This technique makes use of inter-
face specifications to remove unreachable transitions of the system. Interface
specifications are provided by the user and are used to define sets of observ-
able sequences at the interfaces between communicating processes. The authors
present a method that takes interface specifications into consideration when per-
forming iterative composition and minimization, thus avoiding the state-space
explosion at the intermediate composition levels. We resemble the aforemen-
tioned approach in that we consider port synchronization between components
when performing merging, thus leading to removing unreachable transitions from
the product component.

Compositional minimization via static analysis (CMSA) [22] selects candi-
date components for minimization using a mincut based algorithm such that the
number of component outputs is significantly smaller that the number of inputs.
CMSA then partitions the state space into equivalence classes relevant to the
outputs, selects representative states of the equivalence classes, and computes
a reduced circuit using a bisimulation based transformation that targets state
space reduction. CMSA is applicable to circuit designs only. Our method dif-
fers in that it works on BIP systems, and resembles CMSA in that it considers
merged components as candidate components, and applies a branching bisimula-
tion abstraction with respects to the ports of the resulting product component.

7 Conclusion

Our work makes contributions to efficiently verify component-based systems
modeled in BIP. First, we select pairs of components amenable for reduction and
abstraction using structural heuristics. Then we merge the selected components
using a product operation and we reduce the resulting component using constant
propagation. Finally, we use abstraction techniques based on merging branch-
ing bisimilar states in order to reduce the size of the system and its complexity.
Spurious counterexamples are detected by translating the counterexample to the
original system and simulating it. Our contributions are complementary to tools
that are used to verify BIP systems such as DFinder and BIP-to-NuSMV. Our
reduction and abstraction techniques are completely implemented in a support-
ing tool that provides an API to specify user defined merging heuristics.

304 M. Noureddine et al.

In the future, we plan to extend our work to handle priorities in the BIP
context. We also plan to define feedback guidance to refine the abstraction in
case a spurious counterexample is generated. We also plan to use the component
selection heuristics defined in the literature in our tool, compare them on dif-
ferent designs and propose new heuristics that are targeted towards the efficient
compositional reduction of BIP systems.

References

1. Aziz, A., Singhal, V., Swamy, G., Brayton, R.K.: Minimizing interacting finite
state machines: a compositional approach to language to containment. In: ICCD,
pp. 255–261 (1994)

2. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the bip framework. IEEE Softw.
28(3), 41–48 (2011)

3. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-Finder: a tool for composi-
tional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

4. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508–522. Springer, Heidelberg (2008)

5. Blom, S., Orzan, S.: Distributed branching bisimulation reduction of state spaces.
Electron. Notes Theor. Comput. Sci. 89(1), 99–113 (2003). PDMC 2003, Parallel
and Distributed Model Checking (Satellite Workshop of CAV 2003)

6. Bloom, B.: Ready simulation, bisimulation, and the semantics of CCS-like lan-
guages. Ph.D. thesis, Massachusetts Institute of Technology (1989)

7. Chaudron, M., Eskenazi, E., Fioukov, A., Hammer, D.: A framework for formal
component-based software architecting. In: OOPSLA, pp. 73–80 (2001)

8. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

9. Crouzen, P., Hermanns, H.: Aggregation ordering for massively compositional mod-
els. In: 2010 10th International Conference on Application of Concurrency to Sys-
tem Design (ACSD), pp. 171–180. IEEE (2010)

10. Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011)

11. Emerson, E.A., Wahl, T.: Efficient reduction techniques for systems with many
components. Electr. Notes Theor. Comput. Sci. 130, 379–399 (2005)

12. Garavel, H., Sifakis, J.: Compilation and verification of lotos specifications. PSTV
10, 359–376 (1990)

13. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

14. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: CAV,
pp. 186–196 (1990)

15. Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Ponse, A., Verhoef,
C., van Vlijmen, S.F.M. (eds.) Algebra of Communicating Processes, pp. 26–62.
Springer, London (1995)

Reduction and Abstraction Techniques for BIP 305

16. Kildall, G.A.: A unified approach to global program optimization. In: POPL 1973,
pp. 194–206. ACM, New York (1973)

17. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction
in SMT-based unbounded software model checking. In: Sharygina, N., Veith, H.
(eds.) CAV 2013. LNCS, vol. 8044, pp. 846–862. Springer, Heidelberg (2013)

18. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional,
and on-the-fly verification methods. In: Romijn, J.M.T., Smith, G.P., van de Pol,
J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

19. Tai, K.C., Koppol, P.V.: Hierarchy-based incremental analysis of communication
protocols. In: Proceedings of the 1993 International Conference on Network Pro-
tocols, 1993, pp. 318–325. IEEE (1993)

20. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. 13(2), 181–210 (1991)

21. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref – a
symbolic bisimulation tool box. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 477–492. Springer, Heidelberg (2006)

22. Zaraket, F.A., Baumgartner, J., Aziz, A.: Scalable compositional minimization via
static analysis. In: ICCAD, pp. 1060–1067 (2005)

	Reduction and Abstraction Techniques for BIP
	1 Introduction
	2 BIP - Behavior, Interaction, Priority
	3 Merging and Constant Propagation
	3.1 Merging Components
	3.2 Constant Propagation

	4 Branching Bisimulation Abstraction
	5 Results
	5.1 Traffic Light Controller
	5.2 Automatic Teller Machine

	6 Related Work
	7 Conclusion
	References

