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Preface

On behalf of the Program Committee, we are pleased to present the proceedings of the
11th International Symposium on Formal Aspects of Component Software (FACS
2014).

Component-based software development is a paradigm that has been proposing
sound engineering principles and techniques for coping with the complexity of software-
intensive systems. However, many challenging conceptual and technological issues
remain that require further research. Moreover, the advent of service-oriented and cloud
computing has brought to the fore new dimensions, such as quality of service and
robustness to withstand inevitable faults, which require established concepts to be
revisited and new ones to be developed in order to meet the opportunities offered by
those architectures. As software applications become themselves components of wider
sociotechnical systems, further challenges arise from the need to create and manage
interactions, which can evolve in time and space, and rely on the use of resources that
can change in noncomputable ways.

FACS 2014 was about how formal methods can be used to make component-based
development fit for the new architectures of today and the systems that are now
pervading the socioeconomic world. Formal methods have provided foundations for
component-based software through research on mathematical models for components,
composition, and adaptation, and rigorous approaches to verification, deployment,
testing, and certification. While those avenues still needed to be further explored, the
time was also ripe to bring new techniques to the fore, such as those based on stochastic
models and simulation.

FACS 2014 was the 11th in a series of events initially created as international
workshops by the United Nations University - International Institute for Software
Technology (UNU-IIST), in 2003 in Pisa. In 2011, the FACS events were promoted to
the status of International Symposium, with events located in Oslo (2011), Mountain
View (2012), Nanchang (2013). For this 11th event FACS returned to Italy, hosted in
the University Residential Center of Bertinoro, where it has been colocated with the
11th International Conference on Integrated Formal Methods (iFM 2014).

We received 44 submissions from 26 countries, out of which the Program Com-
mittee selected 20 papers, including 2 application and experience papers, 3 tool papers,
and 15 research contributions. All submitted papers were reviewed by at least three
referees. To minimize the preconference delays, the conference version of these papers
was distributed in electronic form to the participants. Here, we have revised versions
of these original contributions, taking into account also comments received during the
symposium. The authors of a selected subset of accepted papers have also been invited
to submit extended versions of their papers to appear in a special issue of Elsevier’s
Science of Computer Programming journal.

We are proud to have been endorsed by the European Association of Software
Science and Technology (EASST) to deliver an EASST best paper award to the paper



“Compositional Analysis Using Component-Oriented Interpolation” by Viet Yen
Nguyen, Benjamin Bittner, Joost-Pieter Katoen, and Thomas Noll.

We would like to express our gratitude to all the researchers who submitted their
work to the symposium, to all colleagues who served on the Program Committee, as
well as the external reviewers, who helped us to prepare a high-quality conference
program. Particular thanks to the invited speakers, Helmut Veith from Technical
University of Vienna, Rocco De Nicola from IMT Lucca, and Jean-Bernard Stefani
from INRIA Grenoble, for the willingness to present their research and to share their
perspective on formal methods for component software at the conference. Papers
recalling the talks by Rocco De Nicola and Jean-Bernard Stefani are included in the
proceedings, while a paper summarizing Helmut Veith’s talk can be found in the
proceedings of iFM 2014.

Without the support of the general chair and of the local organizers at Bertinoro and
at University of Bologna, this conference could not have happened. In particular, we
are deeply indebted to Gianluigi Zavattaro, Jacopo Mauro, and Monica Michelacci for
their help in managing all practical aspects of preparation of this event. We also thank
the Department of Computer Science and Engineering – DISI, of the University of
Bologna, for its sponsorship.

December 2014 Ivan Lanese
Eric Madelaine
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Components as Location Graphs

Jean-Bernard Stefani(B)

INRIA, Saint-Ismier, France
jean-bernard.stefani@inria.fr

Abstract. This paper presents a process calculus framework for model-
ing ubiquitous computing systems and dynamic component-based struc-
tures as location graphs. A key aspect of the framework is its ability to
model nested locations with sharing, while allowing the dynamic recon-
figuration of the location graph, and the dynamic update of located
processes.

1 Introduction

Motivations. Computing systems are increasingly built as distributed, dynamic
assemblages of hardware and software components. Modelling these assemblages
requires capturing different kinds of dependencies and containment relationships
between components. The software engineering literature is rife with analyses of
different forms of whole-part, aggregation or composition relationships, and of
their attendants characteristics such as emergent property, overlapping lifetimes,
and existential dependency [2]. These analyses explicitly consider the possibility
for a component to be shared at once between different wholes, an important
requirement in particular if one expects to deal with multiple architectural views
of a system.

Consider, for instance, a software system featuring a database DB and a
client of the database C. The database comprises the following (sub)components:
a cache CC, a data store DS and a query engine QE. Both data store and query
engine reside in the same virtual machine V0, for performance reasons. Client
and cache reside in another virtual machine V1, also for performance reasons. We
have here a description which combines two architectural views, in the sense of
[17]: a logical view, that identifies two high-level components, the database DB
and its client C, and the sub-components CC, QE and DS of the database, and
a process view, that maps the above components on virtual machines V0 and V1.
We also have two distinct containment or whole-part relationships: being placed
in a virtual machine, and being part of the DB database. A virtual machine is
clearly a container: it represents a set of resources dedicated to the execution
of the components it contains, and it manifests a failure dependency for all the
components it executes (should a virtual machine fail, the components it contains
also fail). The database DB is clearly a composite: it represents the result of the
composition of its parts (cache, query engine, and data store) together with their
attendant connections and interaction protocols; it encapsulates the behavior
of its subcomponents; and its lifetime constrains those of its parts (e.g. if the
c© Springer International Publishing Switzerland 2015
I. Lanese and E. Madelaine (Eds.): FACS 2014, LNCS 8997, pp. 3–23, 2015.
DOI: 10.1007/978-3-319-15317-9 1



4 J.-B. Stefani

database is destroyed so are its subcomponents). The cache component CC
in this example is thus part of two wholes, the database DB and the virtual
machine V1.

Surprisingly, most formal models of computation and software architecture do
not provide support for a direct modelling of containment structures with shar-
ing. On the one hand, one finds numerous formal models of computation and of
component software with strictly hierarchic structures, such as Mobile Ambients
and their different variants [6,7], the Kell calculus [25], BIP [4], Ptolemy [26],
or, at more abstract level, Milner’s bigraphs [20]. In bigraphs, for instance, it
would be natural to model the containment relationships in our database exam-
ple as instances of sub-node relationships in bigraphs, because nodes correspond
to agents in a bigraph. Yet this is not possible because the sub-node relation
in a bigraph is restricted to form a forest. To model the above example as a
bigraph would require choosing which containment relation (placement in a vir-
tual machine or being a subcomponent of the database) to represent by means of
the sub-node relation, and to model the other relation by means of bigraph edges.
This asymmetry in modelling is hard to justify for both containment relations
are proper examples of whole-part relationships.

On the other hand, one finds formal component models such as Reo [1],
π-ADL [22], Synchronized Hyperedge Replacement (SHR) systems [14], SRM-
Light [15], that represent only interaction structures among components, and
not containment relationships, and models that support the modeling of non-
hierarchical containment structures, but with other limitations. Our own work on
the Kell calculus with sharing [16] allows to model non-hierarchical containment
structures but places constraints on the dependencies that can be modelled.
For instance, the lifetime dependency constraints associated with the virtual
machines and the database in our example above (if the aggregate or composite
dies so do its sub-components) cannot be both easily modeled. The reason is
that the calculus still enforces an ownership tree between components for the
purpose of passivation: components can only passivate components lower down
in the tree (i.e. suspend their execution and capture their state). The formal
model which comes closer to supporting non strictly hierarchical containment
structures is probably CommUnity [28], where component containment is mod-
elled as a form of superposition, and can be organized as an arbitrary graph.
However, in CommUnity, possible reconfigurations in a component assemblage
are described as graph transformation rules that are separate from the behav-
ior of components, making it difficult to model reconfigurations initiated by the
component assemblage itself.

To sum up, we are missing a model of computation that allows us to directly
model both different forms of interactions and different forms of containment
relationships between components; that supports both planned (i.e. built in com-
ponent behaviors) and unplanned (i.e. induced by the environment) dynamic
changes to these relationships, as well as to component behaviors.

Contribution. In this paper, we introduce a model of computation, called G-Kells,
which meets these requirements. We develop our model at a more concrete
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level than bigraph theory, but we abstract from linguistic details by develop-
ing a process calculus framework parameterized by a notion of process and cer-
tain semantical operations. Computation in our model is carried out by located
processes, i.e. processes that execute at named locations. Locations can be nested
inside one another, and a given location can be nested inside one or more loca-
tions at once. Locations constitute scopes for interactions: a set of processes can
interact when situated in locations nested within the same location. Behaviors
of located processes encompass interaction with other processes as well as recon-
figuration actions which may change the structure of the location graph and
update located processes. In addition, the G-Kells framework supports a notion
of dynamic priority that few other component models support, apart from those
targeting real-time and reactive systems such as BIP and Ptolemy.

Outline. The paper is organized as follows. The framework we introduce can be
understood as an outgrowth of our prior work with C. Di Giusto [13], in which we
proposed a process calculus interpretation of the BIP model. We recall briefly
in Sect. 2 the main elements of this work, to help explain the extensions we
introduce in our G-Kells framework. Section 3 presents the G-Kells framework
and its formal operational semantics. Section 4 discusses the various features of
the G-Kells framework, and related work. Section 5 concludes the paper.

2 CAB: A Process Calculus Interpretation of BIP

One way to understand the G-Kells model we introduce in the next section, is
to see it as a higher-order, dynamic extension of the CAB model [13], a process
calculus interpretation of the BIP model. We recall briefly in this section the
main elements of CAB.

The CAB model captures the key features of the BIP model: (i) hierarchical
components; (ii) composition of components via explicit “glues” enforcing mul-
tiway synchronization constraints between sub-components; (iii) priority con-
straints regulating interactions among components. Just as the BIP model, the
CAB model is parameterized by a family P of primitive behaviors. A CAB com-
ponent, named l, can be either a primitive component C = l[P ], where P is taken
from P, or a composite component C = l[C1, . . . , Cn � G], built by composing a
set of CAB components {C1, . . . , Cn} with a glue process G. When l is the name
of a component C, we write C.nm = l. We note C the set of CAB components,
Nl the set of location names, and Nc the set of channel names. Behaviors in P
are defined as labelled transition systems, with labels in Nc.

In CAB, the language for glues G is a very simple language featuring:

– Action prefix ξ.G, where ξ is an action, and G a continuation glue (in contrast
to BIP, glues in CAB can be stateful).

– Parallel composition G1 | G2, where G1 and G2 are glues. This operator can
be interpreted as an or operator, that gives the choice of meeting the priority
and synchronization constraints of G1 or of G2.

– Recursion μX.G, where X is a process variable, and G a glue.
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Actions embody synchronization and priority constraints that apply to subcom-
ponents in a composition. An action ξ consists of a triplet 〈π · a · σ〉, where π is
a priority constraint, σ is a synchronization constraint, and a is a channel name,
signalling a possibility of synchronization on channel a. Priority and synchroniza-
tion constraints take the same form: {li : ai | i ∈ I}, where li are location names,
and ai are channel names. A synchronization constraint σ = {li : ai | i ∈ I}
requires each sub-component li to be ready to synchronize on channel ai. Note
that in a synchronization constraint σ = {li : ai | i ∈ I} we expect each li to
appear only once, i.e. for all i, j ∈ I, if i �= j then li �= lj . A priority constraint
π = {li : ai | i ∈ I} ensures each subcomponent named li is not ready to
synchronize on channel ai.

Example 1. A glue G of the form 〈{l : a}; c; {l1 : a1, l2 : a2}〉.G′ specifies a
synchronization between two subcomponents named l1 and l2: if l1 offers a syn-
chronization on channel a1, and l2 offers a synchronization on a2, then their
composition with glue G offers a synchronization on c, provided that the sub-
component named l does not offer a synchronization on a. When the synchro-
nization on a takes place, implying l1 and l2 have synchronized with composite
on a1 and a2, respectively, a new glue G′ is put in place to control the behavior
of the composite.

Note that the same component l can appear in both the priority and the syn-
chronization constraint of the same action ξ.

Example 2. An action of the form 〈{l : a} · c · {l : b, l′ : b}〉 specifies that a
synchronization on c is possible provided both subcomponents l and l′ offer a
synchronization on b, and component l does not offer a synchronization on a.

The operational semantics of the CAB model is defined as the labeled transition
system whose transition relation, →⊆ C × (Nl × Nc) × C, is defined by the
inference rules in Fig. 2, where we use the following notations:

– C denotes a finite (possibly empty) set of components
– Cσ denotes the set {Ci | i ∈ I}, i.e. the set of subcomponents involved in the

multiway synchronization directed by the synchronization constraint σ in rule
Comp. Likewise, C′

σ denotes the set {C ′
i | i ∈ I}.

– C |=p {li : ai | i ∈ I} denotes the fact that C meets the priority constraint
π = {li : ai | i ∈ I}, i.e. for all i ∈ I, there exists Ci ∈ C such that Ci.nm = li

and ¬(Ci
li:ai−−−→), meaning there are no C ′ such that Ci

li:ai−−−→ C ′.

The Comp rule in Fig. 2 relies on the transition relation between glues defined
as the least relation verifying the rules in Fig. 1.

The transition relation is well defined despite the presence of negative pre-
mises, for the set of rules in Fig. 2 is stratified by the height of components, given
by the function height, defined inductively as follows:

height(l[P ]) = 0 height(l[C � G]) = 1 + max{height(C) | C ∈ C}
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Act ξ.G
ξ−→ G

Rec
G{μ X. G/X} ξ−→ G′

μ X. G
ξ−→ G′

Parl
G

ξ−→ G′

G | G2
ξ−→ G′ | G2

Parr
G

ξ−→ G′

G2 | G
ξ−→ G2 | G′

Fig. 1. LTS semantics for CAB glues

Prim
P

α−→ P ′

l[P ]
l:α−−→ l[P ′]

Comp
G

〈π · a · σ〉−−−−−→ G′ σ = {li : ai | i ∈ I} ∀i ∈ I, Ci
li:ai−−−→ C′

i C |=p π

l[C � G]
l:a−−→ l[(C \ Cσ) ∪ C′

σ � G′]

Fig. 2. LTS semantics for CAB(P)

Indeed, in rule Comp, if height(l[C � G]) = n, then the components in C
that appear in the premises of the rule have a maximum height of n − 1. The
transitions relation → is thus the transition relation associated with the rules in
Fig. 2 according to Definition 3.14 in [5], which is guaranteed to be a minimal
and supported model of the rules in Fig. 2 by Theorem 3.16 in [5].

We now give some intuition on the operational semantics of CAB. The evo-
lution of a primitive component C = l[P ], is entirely determined by its primi-
tive behavior P , following rule Prim. The evolution of a composite component
C = l[C�G] is directed by that of its glue G, which is given by rules Act, Parl,
Parr and Rec. Note that the rules for glues do not encompass any synchroniza-
tion between branches G1 and G2 of a parallel composition G1 | G2. Rule Comp
specifies how glues direct the behavior of a composite (a form of superposition):
if the glue G of the composite l[C�G] offers action 〈π · a · σ〉, then the composite
offers action l : a if both the priority (C |=p π) and synchronization constraints
are met. For the synchronization constraint σ = {li : ai | i ∈ I} to be met, there
must exist subcomponents {Ci | i ∈ I} ready to synchronize on channel ai, i.e.
such that we have, for each i, Ci

li:ai−−−→ C ′
i, for some C ′

i. The composite can then
evolve by letting each each Ci perform its transition on channel ai, and by letting
untouched the components in C not involved in the synchronization (in the rule
Comp, the components Ci in C are simply replaced by their continuation C ′

i on
the right hand side of the conclusion).

The CAB model is simple but already quite powerful. For instance, it was
shown in [13] that CAB(∅), i.e. the instance of the CAB model with no primitive
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components, is Turing complete1. Priorities are indispensable to the result,
though: as shown in [13], CAB(∅) without priorities, i.e. where glue actions
have empty priority constraints, can be encoded in Petri nets. We now turn to
the G-Kells model itself.

3 G-Kells: A Framework for Location Graphs

3.1 Syntax

The G-Kells process calculus framework preserves some basic features of the
CAB model (named locations, actions with priority and synchronization con-
straints, multiway synchronization within a location) and extends it in several
directions at once:

– First, we abstract away from the details of a glue language. We only require that
a notion of process be defined by means of a particular kind of labelled transi-
tion system. The G-Kells framework will then be defined by a set of transition
rules (the equivalent of Fig. 2 for CAB) that takes as a parameter the transition
relation for processes.

– We do away with the tree structure imposed by CAB for components. Instead,
components will now form directed graphs between named locations, possibly
representing different containment relationships among components.

– In addition, our location graphs are entirely dynamic, in the sense that they
can evolve as side effects of process transitions taking place in nodes of the
graphs, i.e. locations.

– CAB was essentially a pure synchronization calculus, with no values exchanged
between components during synchronization. The G-Kells framework allows
higher-order value passing between locations: values exchanged during syn-
chronization can be arbitrary, including names and processes.

The syntax of G-Kells components is quite terse, and is given in Fig. 3. The
set of G-Kells components is called K. Let us explain the different constructs:

– 0 stands for the null component, which does nothing.
– l[P ] is a location named l, which hosts a process P . As we will see below,

a process P can engage in interactions with other processes hosted at other
locations, but also modify the graph of locations in various ways.

– l.r � h denotes an edge in the location graph. An edge l.r � h connects the
role r of a location l to another location h.

– C1 ‖ C2 stands for the parallel composition of components C1 and C2, which
allows for the independent, as well as synchronized, evolution of C1 and C2.

A role is just a point of attachment to nest a location inside another. A role
r of a location l can be bound, meaning there exists an edge l.r � h attaching a
1 The CAB model is defined in [13] with an additional rule of evolution featuring silent

actions. For simplicity, we have not included such a rule in our presentation here,
but the stated results still stand for the CAB model presented in this paper.
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C ::= 0 | l[P ] | l.r h | C ‖ C

l, h ∈ Nl r ∈ Nr

Fig. 3. Syntax of G-Kells components

location h to r, or unbound, meaning that there is no such edge. We say likewise
that location h is bound to location l, or to a role in location l, if there exists
an edge l.r � h. Roles can be dynamically attached to a location, whether
by the location itself or by another location. One way to understand roles is
by considering a location l[P ] with unbound roles r1, . . . , rn as a frame for a
composite component. To obtain the composite, one must complete the frame
by binding all the unbound roles r1, . . . , rn to locations l1, . . . , ln, which can be
seen as subcomponents. Note that several roles of a given location can be bound
to the same location, and that a location can execute with unbound roles.

Locations serve as scopes for interactions: as in CAB, interactions can only
take place between a location and all the locations bound to its roles, and a
location offers possible interactions as a result. Unlike bigraphs, all interactions
are thus local to a given location. One can understand a location in two ways:
either as a composite glue superposing, as in CAB, priority and synchronization
constraints on the evolution of its subcomponents, i.e. the locations bound to it,
or as a connector, providing an interaction conduit to the components it binds,
i.e. the locations bound to it. More generally, one can understand intuitively
a whole location graph as a component C, with unbound locations acting as
external interfaces for accessing the services provided by C, locations bound to
these interfaces corresponding to subcomponents of C, and unbound roles in the
graph to possible places of attachment of missing subcomponents.

We do not have direct edges of the form l � h between locations to allow
for processes hosted in a location, say l, to operate without knowledge of the
names of locations bound to l through edges. This can be leveraged to ensure
a process is kept isolated from its environment, as we discuss in Sect. 4. We
maintain two invariants in G-Kells components: at any one point in time, for
any location name l, there can be at most one location named l, and for any role
r and location l, there can be at most one edge of the form l.r � k.

Example 3. Let us consider how the example we discussed in the introduction
can be modeled using G-Kells. Each of the different elements appearing in the
configuration described (database DB, data store DS, query engine QE, cache
CC, client C, virtual machines V0 and V1) can be modeled as locations, named
accordingly. The database location has three roles s, q, c, and we have three
edges DB.s � DS,DB.q � QE,DB.c � CC, binding its three subcompo-
nents DS, QE and CC. The virtual machines locations have two roles each, 0
and 1, and we have four edges V1.0 � C, V1.1 � CC, V0.0 � DS, V0.1 � QE,
manifesting the placement of components C, CC, DS, QE in virtual machines.
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Now, the database location hosts a process supporting the semantics of com-
position between its three subcomponents, e.g. the cache management protocol
directing the interactions between the cache and the other two database sub-
components2. The virtual machine locations host processes supporting the fail-
ure semantics of a virtual machine, e.g. a crash failure semantics specifying that,
should a virtual machine crash, the components it hosts (bound through roles
0 and 1) should crash similarly. We will see in Sect. 4 how this failure semantics
can be captured.

3.2 Operational Semantics

We now formally define the G-Kells process calculus framework operational
semantics by means of a labelled transition system.

Names, Values and Environments

Notations. We use boldface to denote a finite set of elements of a given set.
Thus if S is a set, and s a typical element of S, we write s to denote a finite
set of elements of S, s ⊆ S. We use ε to denote an empty set of elements. We
write ℘f (S) for the set of finite subsets of a set S. If S1, S2, S are sets, we write
S1 
 S2 = S to mean S1 ∪ S2 = S and S1, S2 are disjoint, i.e. S1 and S2 form
a partition of S. We sometimes write s, s to denote {s} ∪ s. If C is a G-Kell
component, Γ (C) represents the set of edges of C. Formally, Γ (C) is defined
by induction as follows: Γ (0) = ∅, Γ (l[P ]) = ∅, Γ (l.r � h) = {l.r. � h},
Γ (C1 ‖ C2) = Γ (C1) ∪ Γ (C2).

Names and Values. We use three disjoint, infinite, denumerable sets of names,
namely the set Nc of channel names, the set Nl of location names, and the set
Nr of role names. We set N = Nc ∪Nl ∪Nr. We note P the set of processes. We
note V the set of values. We posit the existence of three functions fcn : V → Nc,
fln : V → Nlfrn : V → Nr that return, respectively, the set of free channel
names, free location names, and free role names occurring in a given value.
The restriction of fcn (resp. fln, frn) to Nc (resp. Nl,Nr) is defined to be the
identity on Nc (resp. Nl,Nr). The function fn : V → N , that returns the set of
free names of a given value, is defined by fn(V ) = fcn(V )∪fln(V )∪frn(V ). The
sets N , P and V, together with the functions fcn, fln, and frn, are parameters
of the G-Kells framework. We denote by E the set of edges, i.e. the set of triples
l.r � h of Nl × Nr × Nl. We stipulate that names, processes, edges and finite
sets of edges are values: N ∪ P ∪ E ∪ ℘f (E) ⊆ V. We require the existence of a
relation match ⊆ V2, used in ascertaining possible synchronization.
2 Notice that the database location does not run inside any virtual machine. This

means that, at this level of abstraction, our process architectural view of the database
composite is similar to a network connecting the components placed in the two
virtual machines.
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Environments. Our operational semantics uses a notion of environment. An
environment Γ is just a subset of N ∪ E , i.e. a set of names and a set of edges.
The set of names in an environment represents the set of already used names in
a given context. The set of edges in an environment represents the set of edges
of a location graph. the set of environments is noted G.

Processes

Process transitions. We require the set of processes to be equipped with a tran-
sition system semantics given by a labelled transition system where transitions
are of the following form:

P
〈π · α · σ · ω〉−−−−−−−→ P ′

The label 〈π · α · σ · ω〉 comprises four elements: a priority constraint π
(an element of Pr), an offered interaction α, a synchronization constraint σ (an
element of S), and an effect ω (an element of A). The first three are similar in pur-
pose to those in CAB glues. The last one, ω, embodies queries and modifications
of the surrounding location graph.

An offered interaction α takes the form {ai〈Vi〉 | i ∈ I}, where I is a finite
index set, ai are channel names, and Vi are values.

Evalution functions. We require the existence of evaluation functions on priority
constraints (evalπ), and on synchronization constraints (evalσ) of the following
types evalπ : G × Nl × Pr → ℘f (Nl × Nr × Nc), and evalσ : G × Nl × S →
℘f (Nl × Nr × Nc × V). The results of the above evaluation functions are called
concrete (priority or synchronization) constraints. The presence of evaluation
functions allows us to abstract away from the actual labels used in the semantics
of processes, and to allow labels used in the operational semantics of location
graphs, described below, to depend on the environment and the surrounding
location graph.

Example 4. One can, for instance, imagine a kind of broadcast synchronization
constraint of the form ∗ : a〈V 〉, which, in the context of an environment Γ and
a location l, evaluates to a constraint requiring all the roles bound to a locations
in Γ to offer an interaction on channel a, i.e.: evalσ(Γ, l, ∗ : a〈V 〉) = {l.r : a〈V 〉 |
∃h, l.r � h ∈ Γ}.

We require the existence of an evaluation function on effects (evalω) with the
type evalω : G×Nl×A → ℘f (E), where E is the set of concrete effects. A concrete
effect can take any of the following forms, where l is a location name:

– l : newl(h, P ), l : newch(c), l : newr(r), respectively to create a new location
named h with initial process P , to create a new channel named c, and to
create a new role named r.

– l : add(h, r, k), l : rmv(h, r, k), respectively to add and remove a graph edge
h.r � k to and from the surrounding location graph.
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– l : gquery(Γ ), to discover a subgraph Γ of the surrounding location graph.
– l : swap(h, P, Q), to swap the process P running at location h for process Q.
– l : kill(h), to remove location h from the surrounding location graph.

Concrete effects embody the reconfiguration capabilities of the G-Kells frame-
work. Effects reconfiguring the graph itself come in pairs manifesting intro-
duction and elimination effects: thus, adding and removing a node (location)
from the graph (newl, kill), and adding and removing an edge from the graph
(add, rmv). Role creation (newr) is introduced to allow the creation of new edges.
Channel creation (newch) allows the same flexibility provided by name creation
in the π-calculus. The swap effect (swap) is introduced to allow the atomic
update of a located process. The graph query effect (gquery) is perhaps a bit
more unorthodox: it allows a form of reflection whereby a location can discover
part of its surrounding location graph. It is best understood as an abstraction
of graph navigation and query capabilities which have been found useful for
programming reconfigurations in component-based systems [11].

Operational Semantics of Location Graphs

Transitions. The operational semantics of location graphs is defined by means
of a transition system, whose transition relation → is defined, by means of the
inference rules presented below, as a subset of G×K×L×K. Labels take the form
〈π · σ · ω〉, where π and σ are located priority and synchronization constraints,
respectively, and ω is a finite set of located effects (for simplicity, we reuse the
same symbols than for constraints and effects). The set of labels is noted L.

A located priority constraint π is just a concrete priority constraint, and takes
the form {li.ri : ai | i ∈ I}, where I is a finite index set, with li, ri, ai in loca-
tion, role and channel names, respectively. A located synchronization constraint
takes the form {uj : aj〈Vj〉}, where aj are channel names, uj are either location
names lj or pairs of location names and roles, noted lj .rj , and Vj are values.
Located effects can take the following forms: l : rmv(h, r, k), l : swap(h, P, Q), l :
kill(h), h : rmv(h, r, k), h : swap(h, P, Q), andh : kill(h), where l, h, k are loca-
tion names, r is a role name, P,Q are processes. The predicate located on E
identifies located effects. In particular, for a set ω ⊂ E, we have located(ω) if
and only if all elements of ω are located.

A transition 〈Γ,C, 〈π · σ · ω〉, C′〉 ∈→ is noted Γ � C
〈π · σ · ω〉−−−−−−→ C ′ and must

obey the following constraint:

– If Γ = u∪Δ, where u is a set of names, and Δ is a set of edges, then fn(Δ) ⊆ u
and fn(Γ ) = u.

– fn(C) ⊆ fn(Γ ), i.e. the free names occurring in C must appear in the already
used names of Γ .

– If l.r � h and l.r � k are in Γ ∪ Γ (C), then h = k, i.e. we only have a single
edge binding a role r of a given location l to another location h.
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Auxiliary relation −→•. The definition of → makes use of an auxiliary relation
−→•⊆ G×K×L•×K, where L• is a set of elements of the form 〈π · σ · ω〉 where π
and σ are located priority and synchronizaton constraints, and where ω is a finite
set of concrete effects. Relation −→• is defined as the least relation satisfying the
rules in Fig. 4, where we use the following notation: if α = {ai〈Vi〉 | i ∈ I}, then
l : α = {l : ai〈Vi〉 | i ∈ I}, and if α = ε, then l : α = ε.

Rule Act simply expresses how process transitions are translated into loca-
tion graph transitions, and process level constraints and effects are translated
into located constraints and concrete effects, via the evaluation functions intro-
duced above. Rule NewL specifies the effect of an effect l : newl(h, Q), which
creates a new location h[Q]. Notice how effect l : newl(h, Q) is removed from the
set of effects in the transition label in the conclusion of the rule: auxiliary relation
−→• is in fact used to guarantee that a whole set of concrete effects are handled
atomically. All the rules in Fig. 4 except Act, which just prepares for the evalua-
tion of effects, follow the same pattern. Rules NewC and NewR specify the cre-
ation of a new channel name and of a new role name, respectively. The rules just
introduce the constraint that the new name must not be an already used name
in the environment Γ . Our transitions being in the early style, the use of the new
name is already taken into account in the continuation location graph C (in fact
in the continuation process P ′ appearing on the left hand side of the instance of
rule Act that must have led to the building of C). This handling of new names is
a bit unorthodox but it squares nicely with the explicitly indexed labelled tran-
sition semantics of the π-calculus given by Cattani and Sewell in [8]. Rule AddE
specifies the effect of adding a new edge to the location graph. Rule Gquery
allows the discovery by processes of a subgraph of the location graph. In the rule
premise, we use the notation Γl to denote the set of edges reachable from loca-
tion l, formally: ΓL = {h.r � k ∈ Γ | l �

+
Γ h}, where l �

+
Γ h means that there

exists a non-empty chain l.r � l1, l1.r1 � l2, . . . , ln−1.rn−1 � ln, ln.rn � h,
with n ≥ 1, linking l to h in the location graph Γ . As in the case of name cre-
ation rules, the exact effect on processes is left unspecified, the only constraint
being that the discovered graph be indeed a subgraph of the location graph in
the environment.

Transition relation −→. The transition relation −→ is defined by the rules in Fig. 5.
We use the following notations and definitions in Fig. 5:

– Function seval is defined by induction as follows (for any l, r, h, V, σ, σ′):

seval(Γ, σ) = seval(Γ, σ′) if σ = {l.r : a〈V 〉, h : a〈W 〉} ∪ σ′

∧ l.r � h ∈ Γ ∧ match(V,W )
seval(Γ, σ) = σ otherwise
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Act•

P
〈π · α · σ · ω〉−−−−−−−−→ P ′

π• = evalπ(Γ, l, π) σ• = evalσ(Γ, l, σ) ω• = evalω(Γ, l, ω)

Γ � l[P ]
〈π• · l:α∪σ• · ω•〉−−−−−−−−−−−→• l[P ′]

NewL
Γ � l[P ]

〈π · σ · l:newl(h,Q),ω〉−−−−−−−−−−−−−→• C h �∈ Γ

Γ � l[P ]
〈π · σ · ω〉−−−−−−→• C ‖ h[Q]

NewC
Γ � l[P ]

〈π · σ · l:newch(c),ω〉−−−−−−−−−−−−→• C c �∈ Γ

Γ � l[P ]
〈π · σ · ω〉−−−−−−→• C

NewR
Γ � l[P ]

〈π · σ · l:newr(r),ω〉−−−−−−−−−−−→• C r �∈ Γ

Γ � l[P ]
〈π · σ · ω〉−−−−−−→• C

AddE
Γ � l[P ]

〈π · σ · l:add(h,r,k),ω〉−−−−−−−−−−−−−→• C ¬(∃k, h.r k ∈ Γ )

Γ � l[P ]
〈π · σ · ω〉−−−−−−→• C ‖ h.r k

Gquery
Γ � l[P ]

〈π · σ · l:gquery(Δ),ω〉−−−−−−−−−−−−−→• C Δ ⊆ Γl

Γ � l[P ]
〈π · σ · ω〉−−−−−−→• C

Fig. 4. Rules for auxiliary relation −→•

Swap Γ � l[P ]
〈ε · ε · swap(l,P,Q)〉−−−−−−−−−−−→ l[Q] Kill Γ � l[P ]

〈ε · ε · kill(l)〉−−−−−−−−→ 0

Rmv Γ � h.r k
〈ε · ε · rmv(h,r,k)〉−−−−−−−−−−→ 0

Act
Γ � l[P ]

〈π · σ · ω〉−−−−−−→• C located(ω)

Γ � l[P ]
〈π · σ · ω〉−−−−−−→ C

Comp

Γ ′ = Γ ∪ Γ (C1) ∪ Γ (C2) π = π1 ∪ π2 fn(Γ ′) 
 Δ1 
 Δ2 = N
Γ ′ � C1 ‖ C2 π |= π σ = seval(Γ ′, σ1 ∪ σ2) ω = aeval(Γ ′, ω1 ∪ ω2)

Γ ′ ∪ Δ1 � C1
〈π1 · σ1 · ω1〉−−−−−−−−→ C′

1 Γ ′ ∪ Δ2 � C2
〈π2 · σ2 · ω2〉−−−−−−−−→ C′

2

Γ � C1 ‖ C2
〈π · σ · ω〉−−−−−−→ C′

1 ‖ C′
2

Fig. 5. Rules for transition relation −→
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– Function aeval is defined by induction as follows (for any l, r, h, k, P,Q, σ, σ′):

aeval(Γ, σ) = aeval(Γ, σ′) if σ = {l : swap(h, P, Q), swap(h, P, Q)} ∪ σ′

aeval(Γ, σ) = aeval(Γ, σ′) if σ = {l : rmv(h, r, k), rmv(h, r, k)} ∪ σ′

aeval(Γ, σ) = aeval(Γ, σ′) if σ = {l : kill(h), kill(h)} ∪ σ′

aeval(Γ, σ) = σ otherwise

– Assume π = {li.ri : ai | i ∈ I}, then �C�π is obtained by replacing in C all the
locations {li[Pi] | i ∈ I} with locations {li[�Pi�] | i ∈ I}, where �P � is defined
by the LTS obtained from that of P by the following rule:

Trim
P

〈π · α · σ · ω〉−−−−−−−→ P ′

�P �

〈ε · α · σ · ω〉−−−−−−−→ P ′

In other terms, �C�π is obtained by disregarding the priority constraints that
are generated by locations li mentioned in the priority constraint π.

– Γ � C |= {li.ri : ai | i ∈ I} means that, for all i ∈ I, Γ � C |= li.ri : ai. We
write Γ � C |= l.r : a to mean that

¬(∃h, π, σ, ω, V, C ′, l.r � h ∧ Γ � C
〈π · l:a〈V 〉,σ · ω〉−−−−−−−−−−→ C ′)

Rule Swap specifies that at any point in time a location can see its process
swapped for another. Likewise, rules Kill and Rmv specify that at any point in
time a location or an edge, respectively, can be removed from a location graph.
Rule Act specifies the termination of the atomic execution of a set of concrete
effects. All the effects remaining must be located effects, which expect some
counterpart (provided by the rules Swap, Kill, and Rmv, when invoking rule
Comp) to proceed.

Rule Comp is the workhorse of our operational semantics of location graphs.
It specifies how to determine the transitions of a parallel composition C1 ‖ C2,
by combining the priority constraints, synchronization constraints and effects
obtained from the determination of contributing transitions from C1 and C2.
The latter takes place in extended environment Γ ′, that contains the original
environment Γ , but also the edges present in C1 and C2, defined as Γ (C1) and
Γ (C2), respectively. To ensure the names created as side effects of C1 and C2

transitions are indeed unique, the determination of the contributing transition of
C1 takes place in an environment where the already used names include those in
Γ as well as those in Δ1, which gathers names that may be created as a side effect
of the contributing transition of C2. Likewise for determining the contributing
transition of C2. The constraint fn(Γ ′)
Δ1
Δ2 = N ensures that names in Δ1

and Δ2 are disjoint, as well as disjoint from the already used names of fn(Γ ′).
The original aspect of rule Comp lies with the computation of located syn-

chronization constraints and effects resulting from the parallel composition of
G-Kells components: we allow it to be dependent on the global environment Γ ′

with the clauses σ = seval(Γ ′, σ1 ∪ σ2) and ω = aeval(Γ ′, ω1 ∪ ω2), which, in
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turn, allows to enforce constraints dependent on the location graph as in the def-
inition of function seval. In fact, as we discuss in Sect. 4 below, we can envisage
instances of the framework where different types of location-graph-dependent
constraints apply.

The use of environments in rule Comp to obtain a quasi-compositional rule
of evolution is reminiscent of the use of environment and process frames in the
parallel rule of the ψ-calculus framework [3]. We say our rule Comp is quasi-
compositional for the handling of priority is not compositional: it relies on the
global condition Γ ′ � �C1 ‖ C2�π, which requires computing with (an altered
view of) the whole composition. The use of the �·�− operator in rule Comp
is reminiscent of the handling of priorities in other works [9]. An easy way to
turn rule Comp into a completely compositional rule would be to adopt a more
“syntactic” approach, defining �C�π to be obtained by replacing all locations
l[P ] in C by their trimmed version l[�P �], and defining environments to include
information on possible actions by trimmed locations. On the other hand, we can
also adopt a purely “semantic” (albeit non-compositional) variant by defining
�C�π to be just C. However, in this case, we don’t know whether the completeness
result in Theorem 1 below still stands.

Example 5. To illustrate how the rules work, consider the following process
transitions:

P
〈ε · ε · ∗:a〈V 〉 · newl(h,P )〉−−−−−−−−−−−−−−−→ P ′ P1

〈ε · a〈V1〉 · ε · {newl(h1,P1)}〉−−−−−−−−−−−−−−−−−→ P ′
1 P2

〈ε · a〈V2〉 · ε · ε〉−−−−−−−−−→ P ′
2

Let Γ = {l, l1, l2} ∪ {l.r1 � l1, l.r2 � l2}, and let Δ,Δ′ be such that Δ 
 Δ′ =
N \{l, l1, l2, h, h1}. We assume further that match(V, V1) and match(V, V2), that
all names l, l1, l2, h, h1 are distinct, and that

evalσ(Γ, l, ∗ : a〈V 〉) = {l.r1 : a〈V 〉, l.r2 : a〈V 〉}
evalω(Γ, l, {newl(h, P )}) = {l : newl(h, P )}
evalω(Γ, l1, {newl(h1, P1)}) = {l1 : newl(h1, P1)}
evalω(Γ, l2, ε) = ε evalπ(Γ, l, ε) = ε evalπ(Γ, l1, ε) = ε evalπ(Γ, l2, ε) = ε

Applying rule Act•, we get

Γ ∪ {h1},Δ � l[P ]
〈ε · {l.r1:a〈V 〉,l.r2:a〈V 〉} · {l:newl(h,P )}〉−−−−−−−−−−−−−−−−−−−−−−−−−→• l[P ′]

Γ ∪ {h},Δ′ � l1[P1]
〈ε · l1:a〈V1〉 · {l1:newl(h1,P1)}〉−−−−−−−−−−−−−−−−−−−→• l1[P ′

1]

Γ ∪ {h},Δ′ � l2[P2]
〈ε · l2:a〈V2〉 · ε〉−−−−−−−−−→• l2[P ′

2]

Applying rule NewL, we get

Γ ∪ {h1},Δ � l[P ]
〈ε · {l.r1:a〈V 〉,l.r2:a〈V 〉} · ε〉−−−−−−−−−−−−−−−−−−→• l[P ′] ‖ h[P ]

Γ ∪ {h},Δ′ � l1[P1]
〈ε · {h1:a〈V1〉} · ε〉−−−−−−−−−−−→• l1[P ′

1] ‖ h1[P1]
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Applying rule Act we get

Γ ∪ {h1},Δ � l[P ]
〈ε · {l.r1:a〈V 〉,l.r2:a〈V 〉} · ε〉−−−−−−−−−−−−−−−−−−→ l[P ′] ‖ h[P ]

Γ ∪ {h},Δ′ � l1[P1]
〈ε · {l1:a〈V1〉} · ε〉−−−−−−−−−−−→ l1[P ′

1] ‖ h1[P1]

Γ ∪ {h},Δ′ � l2[P2]
〈ε · {l2:a〈V2〉} · ε〉−−−−−−−−−−−→ l2[P ′

2]

Finally, applying rule Comp we get

Γ ∪ {h},Δ′ � l1[P1] ‖ l2[P2]
〈ε · {l1:a〈V1〉,l2:a〈V2〉} · ε〉−−−−−−−−−−−−−−−−→ l1[P ′

1] ‖ h1[P1] ‖ l2[P ′
2]

Γ � l[P ] ‖ l1[P1] ‖ l2[P2]
〈ε · ε · ε〉−−−−−→ l[P ′] ‖ h[P ] ‖ l1[P ′

1] ‖ h1[P1] ‖ l2[P ′
2]

Transition relation −→ as a fixpoint. Because of the format of rule Comp, which
does not prima facie obey known SOS rule formats [21], or conform to the stan-
dard notion of transition system specification [5], the question remains of which
relation the rules in Figs. 4 and 5 define. Instead of trying to turn our rules into
equivalent rules in an appropriate format, we answer this question directly, by
providing a fixpoint definition for −→. We use the fixpoint construction introduced
by Przymusinski for the three-valued semantics of logic programs [23].

Let � be the ordering on pairs of relations in T = G × K × L × K defined as:

〈R1, R2〉 � 〈T1, T2〉 ⇐⇒ R1 ⊆ T1 ∧ T2 ⊆ R2

As products of complete lattices, (T ,⊆) and (T 2,�) are complete lattices [10].
One can read the Comp rule in Fig. 5 as the definition of an operator F : T 2 →
T 2 which operates on pairs of sub and over-approximations of →. Let →0 be the
relation in T 2 obtained as the least relation satisfying the rules in Figs. 4 and 5,
with rule Comp omitted. Operator F is then defined as follows:

F(R1, R2) = (→0 ∪R1 ∪ r(→0 ∪R1, R2), R2 ∩ r(R2,→0 ∪R1))
r(R1, R2) = {t ∈ T | t = (Γ,C1 ‖ C2, 〈π · σ · ω〉, C′

1 ‖ C ′
2)

∧ comp(Γ,C1, C2, π, σ, ω, C ′
1, C

′
2, R1, R2)}

where the predicate comp is defined as follows:

comp(Γ,C1, C2, π, σ, ω, C ′
1, C

′
2, R1, R2) ⇐⇒

∃π1, π2, σ1, σ2, ω1, ω2,Δ1,Δ2, Γ
′,

Γ ′ = Γ ∪ Γ (C1) ∪ Γ (C2)
∧ π = π1 ∪ π2

∧ fn(Γ ′) 
 Δ1 
 Δ2 = N
∧ σ = seval(Γ ′, σ1 ∪ σ2)
∧ ω = aeval(Γ ′, ω1 ∪ ω2)
∧ (Γ ′ ∪ Δ1, C1, 〈π1 · σ1 · ω1〉, C ′

1) ∈ R1

∧ (Γ ′ ∪ Δ2, C2, 〈π2 · σ2 · ω2〉, C ′
2) ∈ R1

∧ Γ ′ � �C1 ‖ C2�π |=R2 π
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where Γ � C |=R {li : ai | i ∈ I} means that, for all i ∈ I, Γ � C |=R li : ai, and
where Γ � C |=R l : a stands for:

¬(∃π, σ, ω, V, C ′, (Γ,C, 〈π · {l : a〈V 〉} ∪ σ · ω〉, C′) ∈ R)

The definition of the predicate comp mimics the definition of rule Comp,
with all the conditions in the premises appearing as clauses in comp, but where
the positive transition conditions in the premises are replaced by transitions
in the sub-approximation R1, and negative transition conditions (appearing in
the Γ ′ � �C1 ‖ C2�π |= π condition) are replaced by equivalent conditions with
transitions not belonging to the over-approximation R2. With the definitions
above, if R1 is a sub-approximation of →, and R2 is an over-approximation of
→, then we have R1 ⊆ π1(F(R1, R2)) and π2(F(R1, R2)) ⊆ R2, where π1, π2

are the first and second projections. In other terms, given a pair of sub and over
approximations of →, F computes a pair of better approximations.

From this definition, if it is easy to show that F is order-preserving:

Lemma 1. For all R1, T1, R2, T2 ∈ T 2, if (R1, R2) � (T1, T2), then F(R1, R2) �
F(T1, T2).

Since F is order-preserving, it has a least fixpoint, F∗ = (D,U), by the Knaster-
Tarski theorem. We can then define → to be the first projection of F∗, namely
D. With the definition of �C�π we have adopted, and noting that it provides
a form of stratification with the number of locations in a location graph with
non-empty priority constraints, it is also possible to show that →= U , meaning
that → as just defined is complete, using the terminology in [27]. In fact, using
the terminology in [27], we can prove the theorem below, whose proof we omit
for lack of space:

Theorem 1. The relation → as defined above is the least well-supported model
of the rules in Figs. 4 and 5. Moreover → is complete.

4 Discussion

We discuss in this section the various features of the G-Kells framework and
relevant related work.

Introductory example. Let’s first revisit Example 3 to see how we can further
model the behavior of its different components. We can add, for instance, a crash
action to the virtual machine locations, which can be triggered by a process

transition at a virtual machine location of the form P
〈ε · ε · ε · kill(∗)〉−−−−−−−−−−→ 0 with the

following evaluation function:

evalω(Γ, l, kill(∗)) = {kill(h) | ∃r, l.r � h ∈ Γ}

yielding, for instance, the following transition (where u includes all free names
in V0[P ] ‖ C[PC ] ‖ CC[PCC ]):

u, {V0.0 � C, V0.1 � CC} � V0[P ] ‖ C[PC ] ‖ CC[PCC ]
〈ε · ε · ε〉−−−−−→ V0[0] ‖ 0 ‖ 0
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This crash behavior can be extended to an arbitrary location graph residing in a
virtual machine, by first discovering the location graph inside a virtual machine
via the gquery primitive, and then killing all locations in the graph as illustrated
above.

Early style. Our operational semantics for location graphs is specified in an early
style [24], with values in labels manifesting the results of successful communica-
tion. This allows us to remain oblivious to the actual forms of synchronization
used. For instance, one could envisage pattern matching as in the ψ-calculus [3],
or even bi-directional pattern matching: for instance we could have a process syn-
chronization constraint r : a〈x, V 〉 matching an offered interaction h : a〈W, y〉,
which translate into matching located synchronization constraints l.r : a〈W,V 〉
and h : a〈W,V 〉.

Mobility vs higher-order. Our operational semantics comprises both mobility fea-
tures with location binding, and higher-order features with swapping and higher-
order interactions. One could wonder whether these features are all needed as
primitives. For instance, one could argue that mobility features are enough to
model higher-order phenomena as in the π-calculus [24]. Lacking at this point
a behavioral theory for the G-Kells framework, we cannot answer the question
definitely here. But we doubt that mobility via location binding is sufficient to
faithfully encode higher-order communication. In particular, note that we have
contexts (location graphs) that can distinguish the two cases via the ability to
kill locations selectively.

Directed graphs vs acyclic directed graphs. Location graphs form directed graphs.
One could wonder whether to impose the additional constraints that such graphs
be acyclic. While most meaningful examples of ubiquitous systems and software
structures can be modeled with acyclic directed graphs, our rules for location
graphs function readily with arbitrary graphs. Enforcing the constraint that all
evolutions of a location graph keep it acyclic does not seem necessary.

Relationship with CAB. The G-Kells model constitutes a conservative extension
of CAB. A straightforwward encoding of CAB in the G-Kells framework can be
defined as in Fig. 6, with translated glues �G� defined with the same LTS, mutatis
mutandis, as CAB glues. The following proposition is then an easy consequence
of our definitions:

Proposition 1. Let C be a CAB component. We have C
l:a−→ C ′ if and only if

�C�

〈ε · {l:a} · ε〉−−−−−−−→ �C ′
�.

Graph constraints in rules. For simplicity, the evaluation functions seval and
aeval have been defined above with only a simple graph constraint in the first
clause of the seval definition. One can parameterize these definitions with addi-
tional graph constraints to enforce different policies. For instance, one could
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Fig. 6. Encoding CAB in the G-Kells framework

constrain the use of the swap, kill and edge removal operations to locations dom-
inating the target location by adding a constraint of the form l �

∗ h to each
of the clauses in the definition of aeval, where l �

∗
Γ h means that there exists

a (possibly empty) chain l.r � l1, l1.r1 � l2, . . . , ln−1.rn−1 � ln, ln.rn � h
linking l to h in the location graph Γ . Similar constraints could be added to rule
AddE. Further constraints could be added to rule Gquery to further restrict
the discovery of subgraphs, for instance, preventing nodes other than immediate
children to be discovered.

Types and capabilities. The framework presented in this paper is an untyped one.
However, introducing types similar to i/o types capabilities in the π-calculus [24]
would be highly useful. For instance, edges of a location graph can be typed, per-
haps with as simple a scheme as different colors to reflect different containment
and visibility semantics, which can be exploited in the definition of evaluation
functions to constrain effects and synchronization. In addition, location, role and
channel names can be typed with capabilities constraining the transfer of rights
from one location to another. For instance, transferring a location name l can
come with the right to swap the behavior at l, but not with the right to kill
l, or with the right to bind roles of l to locations, but not with the ability to
swap the behavior at l. We believe these capabilities could be useful in enforcing
encapsulation and access control policies.

Relation with the ψ -calculus framework and SCEL. We already remarked that
our use of environments is reminiscent of the use of frames in the ψ-calculus
framework [3]. An important difference with the ψ-calculus framework is the
fact that we allow interactions to depend on constraints involving the global
environment, in our case the structure of the location graph. Whether one can
faithfully encode the G-Kells framework (with mild linguistic assumptions on
processes) with the ψ-calculus framework remains to be seen.

On the other hand, it would seem worthwhile to pursue the extension of the
framework presented here with ψ-calculus-like assertions. We wonder in particu-
lar what relation the resulting framework would have with the SCEL language for
autonomous and adaptive systems [12]. The notion of ensemble, being assertion-
based, is more fluid than our notion of location graph, but it does not have the
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ability to superimpose on ensembles the kind of control actions, such as swapping
and killing, that the G-Kells framework allows.

Relation with SHR. The graph manipulation capabilities embedded in the
G-Kells framework are reminiscent of synchronized hyperdege replacement (SHR)
systems [18]. In SHR, multiple hyperedge replacements can be synchronized to
yield an atomic transformation of the underlying hypergraph in conjunction with
information exchange. Intuitively, it seems one can achieve much the same effects
with G-Kells: located effects can atomically build a new subgraph and modify
the existing one, and they can be synchronized across multiple locations thanks
to synchronization constraints. In contrast, SHR systems lack priorities and the
internalization of hyperedge replacement rules (the equivalent of our processes)
in graph nodes to account for inherent dynamic reconfiguration capabilities. We
conjecture that SHR systems can be faithfully encoded in the G-Kells framework.

5 Conclusion

We have introduced the G-Kells framework to lift limitations in existing compu-
tational models for ubiquitous and reconfigurable software systems, in particular
the ability to describe dynamic structures with sharing, where different aggre-
gates or composites can share components. Much work remains to be done, how-
ever. We first intend to develop the behavioral theory of our framework. Indeed
we hope to develop a first-order bisimulation theory for the G-Kells framework,
avoiding the difficulties inherent in mixing higher-order features with passiva-
tion described in [19]. We also need to formally compare G-Kells with several
other formalisms, including SHR systems and the ψ-calculus framework. And we
definitely need to develop a typed variant of the framework to exploit the rich
set of capabilities that can be attached to location names.

Ackowledgements. Damien Pous suggested the move to an early style semantics.
The paper was much improved thanks to comments by Ivan Lanese on earlier versions.
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9. Cleaveland, R., Lüttgen, G., Natarajan, V.: Priority in process algebra. In: Hand-
book of Process Algebra. Elsevier (2001)

10. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, New York (2002)
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Abstract. Software-intensive cyber-physical systems have to deal with
massive numbers of components, featuring complex interactions among
components and with humans and other systems. Often, they are designed
to operate in open and non-deterministic environments, and to dynam-
ically adapt to new requirements, technologies and external conditions.
This class of systems has been named ensembles and new engineering
techniques are needed to address the challenges of developing, integrat-
ing, and deploying them. In the paper, we briefly introduce SCEL (Soft-
ware Component Ensemble Language), a kernel language that takes a
holistic approach to programming autonomic computing systems and
aims at providing programmers with a complete set of linguistic abstrac-
tions for programming the behavior of autonomic components and the
formation of autonomic components ensembles, and for controlling the
interaction among different components.

Software-intensive cyber-physical systems have to deal with massive numbers
of components, featuring complex interactions among components and with
humans and other systems. Often, they are designed to operate in open and
non-deterministic environments, and to dynamically adapt to new requirements,
technologies and external conditions. This class of systems has been named
ensembles. Sometimes, ensembles are assembled from systems that are indepen-
dently controlled and managed, while their interaction “mood” might be coop-
erative or competitive; then one has to deal with systems coalitions or so-called
systems of systems. Due to their inherent complexity, today’s engineering meth-
ods and tools do not scale well with such systems. Therefore, new engineering
techniques are needed to address the challenges of developing, integrating, and
deploying them.

A possible answer to the problems posed by such complex systems is to
make them able to self-manage by continuously monitoring their behavior and
their working environment and by selecting the actions to perform to best deal
with the current status of affairs. Self-management could be exploited also to
face situations in which humans intervention is limited or even absent and com-
ponents have to collaborate to achieve specific goals. This requires increasing
systems’ self-management capabilities and guaranteeing what now are known as
c© Springer International Publishing Switzerland 2015
I. Lanese and E. Madelaine (Eds.): FACS 2014, LNCS 8997, pp. 24–28, 2015.
DOI: 10.1007/978-3-319-15317-9 2
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self-* properties (self-configuration, self-healing, self-optimization, self-protection)
of autonomic computing.

The main challenges posed to language designers by these classes of systems
are:

– to devise appropriate abstractions and linguistic primitives to deal with the
large dimension of systems,

– to guarantee systems adaptation to (possibly unpredicted) changes of the
working environment,

– to take into account evolving requirements,
– to control the emergent behaviors resulting from complex interactions.

During the invited talk, we proposed facing these challenges by taking as
starting point the notions of autonomic components and autonomic components
ensembles and defining programming abstractions to model their evolutions and
their interactions. These notions are the means we propose to use to structure
systems into well-understood, independent and distributed building blocks that
interact and adapt in different ways.

Autonomic components are entities with dedicated knowledge units and
resources; awareness is guaranteed by providing them with information about
their state and behavior via their knowledge repositories. These repositories can
be also used to store and retrieve information about the working environment
of components, and can thus be used to adapt components’ behavior to the
perceived changes. Each component is equipped with an interface, consisting
of a collection of attributes, describing different component’s features such as
its identity, functionalities, spatial coordinates, group memberships, trust level,
response time.

Attributes play a crucial rôle, they are used by components to dynamically
organize themselves into ensembles. Indeed, one of the main novelties of our
approach is the way sets of partners are selected for interaction and thus how
ensembles are formed. Communication partners of a specific component can be
not only selected by using their identities, but also by exploiting the attributes in
their interfaces. Predicates over such attributes are used to specify the targets of
communication actions, to guarantee a sort of attribute-based communication. In
this way, the formation rule of ensembles is endogenous to components: members
of an ensemble are connected by the interdependency relations defined through
predicates. An autonomic-component ensembles is therefore not a rigid fixed
network but rather a highly flexible structure where components’ linkages are
dynamically established.

In the talk, we presented SCEL (Software Component Ensemble Language),
a kernel language that takes a holistic approach to programming autonomic
computing systems and aims at providing programmers with a complete set of
linguistic abstractions for programming the behavior of autonomic components
and the formation of autonomic components ensembles, and for controlling the
interaction among different components. These abstractions permit describing
autonomic systems in terms of Behaviors, Knowledge and Aggregations, accord-
ing to specific Policies depicted in Fig. 1 and described below.
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Fig. 1. SCEL component

– Behaviors describe how computations progress; they are modeled as processes
executing actions, in the style of process calculi.

– Knowledge repositories provide the high-level primitives to manage pieces
of information coming from different sources. Each knowledge repository is
equipped with operations for adding, retrieving, and withdrawing knowledge
items.

– Aggregations describe how different elements are brought together to form
components and to construct the software architecture of components ensem-
bles. Composition and interaction are implemented by exploiting the attri-
butes exposed in components interfaces.

– Policies control and adapt the actions of the different components for guaran-
teeing accomplishment of specific tasks or satisfaction of specific properties.

Components, by accessing and manipulating their own knowledge reposi-
tory or the repositories of other components, acquire information about their
status (self-awareness) and their environment (context-awareness) and can per-
form self-adaptation, initiate self-healing actions to deal with system malfunc-
tions, or install self-optimizing behaviors. All these self-* properties, as well
as self-configuration, can be naturally expressed by exploiting SCEL’s higher-
order features, namely the capability to store/retrieve (the code of) processes
in/from the knowledge repositories and to dynamically trigger execution of new
processes. Moreover, by implementing appropriate security policies, e.g. limit-
ing information flow or external actions, components can set up self-protection
mechanisms.

To show expressiveness and effectiveness of SCEL’s design, we briefly intro-
duced a Java implementation of the proposed abstractions and showed how it
had been exploited for programming the robotics scenario that was used as a
running example for describing achievements and potentials of the proposed
approach.

The results presented in the talk have been developed within the EU-FET
project Ascens [2] and most of them are presented in [9]. Other important
features have been described in various other papers to which the reader is
referred to for details about specific results and for references to related work.
In particular:
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– jRESP, the Java Run-time Environment for SCEL Programs that provides
an API for using SCEL’s linguistic constructs in JAVA programs is described
in [11]. There, it is also discussed how jRESP can be exploited to perform
statistical model checking of SCEL programs.

– Policies and their integration with the run time environment are studied
in [12,13]. A full instantiation of the SCEL language, called PSCEL (Policed
SCEL) that relies on modeling knowledge by means of distributed tuple spaces
(à la Klaim [7]) and on FACPL for specifying policies is introduced in [13].
In [12], jRESP is extended to encompass PSCEL and thus to deal also with
policies.

– Knowledge handling mechanisms alternative to distributed tuple spaces that
are instead based on constraints are studied in [15]. It is discussed how soft
constraints can be exploited to deal with partial knowledge and guarantee
multi-criteria optimization.

– Quantitative variants are considered in [10]. There, a stochastic version of
SCEL is introduced that enriches terms with information about actions dura-
tion, and can be used to support quantitative analysis of autonomic systems.
Investigation of these issues will continue in Quanticol [16] another EU-FET
project.

– Adaptation patterns and the possibility of modeling them via the SCEL
abstractions are considered in [6]. Modelling of self-expression in SCEL is
instead considered in [5].

– The extension of SCEL with reasoning capabilities that are guaranteed by
external reasoners is presented in [3]. There, the solid semantics foundations of
SCEL is also exploited to develop MISSCEL, an implementation of SCEL’s
operational semantics in Maude to pave the way towards using the rich ver-
ification tool set of this framework.

– In [8] it is instead shown how the SPIN model checker can be used to prove
properties of SCEL programs by translating them into Promela, the input
language of SPIN.

– Specific case studies taken from the automotive and cloud computing scenarios
are considered in [4,14].

– A core calculus with attribute-based communication obtained by distilling the
key concepts of SCEL is presented [1] with the aim of initiating fundamental
studies to understand the full impact of this novel communication paradigm.
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Abstract. Today, service compositions often need to be assembled or
changed on-the-fly, which leaves only little time for quality assurance.
Moreover, quality assurance is complicated by service providers only giv-
ing information on their services in terms of domain specific concepts
with only limited semantic meaning.

In this paper, we propose a method to construct service compositions
based on pre-verified templates. Templates, given as workflow descrip-
tions, are typed over a (domain-independent) template ontology defining
concepts and predicates. Templates are proven correct using an abstract
semantics, leaving the specific meaning of ontology concepts open, how-
ever, only up to given ontology rules. Construction of service composi-
tions amounts to instantiation of templates with domain-specific services.
Correctness of an instantiation can then simply be checked by verifying
that the domain ontology (a) adheres to the rules of the template ontol-
ogy, and (b) fulfills the constraints of the employed template.

1 Introduction

Concepts like component-based software engineering (CBSE) or service-oriented
architectures (SOA) ease the construction of software by combining off-the-shelf
components or services to compositions. Today, such compositions often need to
be assembled or changed on-the-fly, thereby imposing strong timing constraints
on quality assurance. “Quality” of service compositions might refer to either
non-functional properties (like performance [7]), or functional requirements like
adherence to protocols (e.g., [8]), to given pre- and postconditions [21], or to
properties specified with temporal logic [25]. Quality assurance methods typically
translate the composition (e.g., an architecture model, or a workflow description)
into an analysis model, which captures the semantics of the composition and
allows – at the best – for a fully automatic quality analysis. Both the transfor-
mation into the analysis model and the analysis itself are time-costly and thus
difficult to apply in an on-the-fly composition scenario.

In this paper, we propose a technique for service composition and analy-
sis based on templates. Templates can capture known compositional patterns,
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and thus allow for the generally proven principle of pattern usage in software
engineering [12]. In this paper, templates are workflow descriptions with service
placeholders, which are replaced with concrete services by instantiations. Our
templates are already verified, i.e., all template instances will be correct by con-
struction. Every template specification contains pre- and postconditions (with
associated meaning “if precondition fulfilled then postcondition guaranteed”),
and a correct template provably adheres to this specification. This poses a non-
trivial task on verification: Since templates should be usable in a wide range of
contexts and the instantiations of service placeholders are unknown at template
design time, we cannot give a fixed semantics to templates. Rather, the template
semantics needs to be parameterized in usage context and service instantiation.
A template is only correct if it is correct for all (allowed) usage contexts.

Technically, we capture the usage contexts by ontologies, and the interpreta-
tion of concepts and predicates occurring therein by logical structures. A template
ontology fixes the concepts and predicates of a template. Furthermore, a tem-
plate specification contains constraints fixing additional conditions on instantia-
tions. These constraints allow us to verify the correctness of the template despite
unknown usage and unknown fixed semantics. A template instantiation replaces
the template ontology with a homomorphous domain ontology, and the service
placeholders with concrete services of this domain. Verification of the instantia-
tion then amounts to checking whether the (instantiated) template constraints
are valid within the domain ontology, and thus can be carried out on-the-fly.

Section 2 describes ontologies and logical structures. Section 3 continues with
the syntax of templates, and Sect. 4 proceeds with their semantics and correct-
ness. Section 5 explains instantiation and presents the central result of our app-
roach: instantiation of correct templates yields correct service compositions, if
constraints are respected. Section 6 discusses related work, and Sect. 7 concludes.

2 Foundations

We assume service compositions to be assembled of services which are specified
by a signature and pre- and postconditions. Languages to describe signatures
with pre- and postconditions are already in use (e.g., OWL-S [21]). Such service
descriptions rely on domain specific concepts. Ontologies formally specify a con-
ceptualization of domain knowledge [13]; the semantics can be defined, e.g., by
description logics [5]. For this paper, we retain a high-level view of ontologies,
and focus on concepts, roles (relating concepts), and rules (formalizing additional
knowledge).

Definition 1. Let C be a finite set of concept symbols, and P a finite set of
role (or predicate) symbols, where every p ∈ P denotes a unary or higher order
relation on concepts. Let R be a set of rules of the form b0∧· · ·∧bn → h0∧· · ·∧hm,
where bi, hi are negated or non-negated predicates denoting concepts of C, or roles
from P . Then K = (C, P, R) denotes a rule-enhanced ontology.
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We assume every variable in the rules to be implicitly all-quantified, and rules to
be consistent, i.e., not to contain contradictions. For details about ontologies and
rules, we refer to [11,14]. In classical ontologies, predicates are always binary;
however, roles (predicates) relating to boolean types can be expressed unary,
and n-ary predicates with n > 2 can be translated to binary predicates by
introducing supplementary concepts. To avoid technicalities, we allow for a more
general notion of predicates here.

Example 1 introduces a template ontology. It will be used later in a “filter”
template, which extracts “good” elements from a set using a filter predicate.

Example 1. The template ontology KT = (CT , PT , RT ) has two concepts, two
predicates, and no rules:

CT = {Elem,Value}, PT = {fp : Value → bool, g : Elem → bool}, RT = {} .

Signatures and pre- and postconditions are specified using concepts and roles,
viz. predicates, of ontologies. To allow standard types like integers, we inductively
define the set TK of types over an ontology K = (CK , PK , RK) by these three
rules: (i) c ∈ CK → c ∈ TK , (ii) int ∈ TK , bool ∈ TK , and (iii) T ∈ TK →
set T ∈ TK . We furthermore assume that all predicate symbols of ontologies
are typed as well1, thus, e.g., a binary predicate p relating concepts T1 and T2

has type T1 ×T2 → bool. We therefore implicitly extend purely domain specific
ontologies by standard types.

Types are used to fix the types of inputs and outputs of services; the predi-
cates can occur in pre- and postconditions. We assume that we have – in addi-
tion to the predicates of an ontology K – standard predicate symbols, operations
and constants on integers, booleans and sets available, e.g., true,<,>,≤,=,∈,
∪,∩, ∅, . . . These make up a set PK (for predicate symbols) and a set FK (for
function symbols). We assume that PK ⊂ PK . Note that the ontology itself does
not define any function symbols. From PK and FK , we construct first-order logic
formulae in the usual way. To only get type-correct formulae, we assume a set
of typed variables Var , i.e., given an ontology K we assume a typing function
type : Var → TK .

We assume typed terms based on function symbols FK and typed variables
to be defined in the usual way. Note that the set of terms over different ontologies
might only use different variables, but always use the same (standard) function
symbols; also constants like true or 1 are nullary function symbols. Using typed
terms, we define the set of first-order logic formulae over K.

Definition 2. Let K be an ontology with types TK , predicate symbols PK , and
function symbols FK . The set of first order formulae over K, ΦK , is inductively
defined as follows:

– if p ∈ PK is a predicate symbol of arity k and type T1 × . . . × Tk → bool and
e1, . . . ek are terms of type T1, . . . , Tk, respectively, then p(e1, . . . , ek) ∈ ΦK ,

1 In expressive ontology languages and description logics, it is possible to express
notions similar to sub-classing; as we restrict ourselves to a simple version of ontolo-
gies, we can assume our roles to be typed even with this simple type system.
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– if ϕ1, ϕ2 ∈ ΦK then ¬ϕ1 ∈ ΦK and ϕ1 ∨ ϕ2 ∈ ΦK ,
– if ϕ ∈ ΦK then ∀x : ϕ ∈ ΦK and ∃x : ϕ ∈ ΦK .

As usual, we write free(F ) to denote the free and bound(F ) for the bound vari-
ables of a formula F .

The meaning of first-order logic is usually defined with respect to a logical
structure. A logical structure fixes the universe out of which elements of the types
are taken as well as an interpretation of the predicate and function symbols.

Definition 3. Let K be an ontology with types TK , predicate symbols PK , and
function symbols FK . A logical structure over K, SK = (U , I), consists of

– U =
⋃

T∈TK
UT the universe of values split up for the different types, and

– I an interpretation of the predicate and function symbols, i.e., for every p ∈
PK of type T1 × . . .×TK → bool and every f ∈ FK of type T1 × . . .×TK → T
we have a predicate I(p) : UT1 × . . . × UTk

→ Ubool and a function I(f) :
UT1 × . . . × UTk

→ UT , respectively.

We assume standard domains and interpretations for integers, sets, and boolean,
e.g., Ubool = {true, false}. Therefore all logical structures of an ontology agree
on standard types and their operations, but may differ on domain specific parts.

To define a semantics for formulae with free variables, we need a valuation
of variables. We let σ : V → U be a valuation of V ⊆ Var with (type-correct)
values from U . We write σ |=S F for a structure S and a formula F if S together
with σ is a model for F (viz. F holds true in S and σ); refer to, e.g., [1] for a
formal definition. If the formula contains no free variables, we can elide σ and just
write |=S F , or S |= F . Note that an ontology usually does not fix a structure
because it neither gives a universe nor an interpretation for its predicates. It
does, however, define constraints on valid interpretations by the rules R.

Definition 4. A structure S over an ontology K = (C, P, R) satisfies the rules
R of the ontology, S |= R, if it satisfies every rule in R, i.e., ∀r ∈ R : S |= r.

Note that rules do not contain free variables, and therefore no σ is needed here.

3 Services and Templates

The ontology and logical formulae over the ontology are basic building blocks for
services and compositions. A service in our notation is an entity which generates
outputs for given inputs. The signature fixes the types of inputs and outputs.

Definition 5. A service signature over an ontology K specifies the name of the
service as well as the type, order, and number of inputs T1 × · · · × Tj and the
type, order, and number of outputs Tj+1 × · · · × Tk, where each Ti ∈ TK .

Additionally, a service is specified by its pre- and postcondition (also: effect).
Both of these are given as first-order formulae. They are formulated over a set
of input and output variables.2

2 In combination also known as IOPE (Input/Output/Precondition/Effect) in SOA.
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Definition 6. A service description of a service Svc over an ontology K consists
of service signature, lists of input variables I and output variables O, a precondi-
tion preSvc and a postcondition postSvc, both elements of ΦK . Variables are typed
according to the signature of Svc, that is, for Svc : T1×· · ·×Tj → Tj+1×· · ·×Tk:

– I = (i1, . . . , ij) with type(il) = Tl for all 0 < l ≤ j, and
– O = (ij+1, . . . , ik) with type(il) = Tl for all j < l ≤ k.

The precondition describes only inputs, the postcondition inputs and outputs:
free(preSvc) ⊆ I and free(postSvc) ⊆ I ∪ O.

The set of service descriptions over an ontology K is denoted SVCK . Services
are composed using a workflow describing the order of execution of the services.
Workflows comprise control flow (using control structures) and data flow (using
variables) between services. While different notations are in practical use (e.g.,
WS-BPEL [23]), we use a simple programming language style notation here.

Definition 7. Let K be an ontology. The syntax of a workflow W over K can
be described by the following rules:

W ::= skip | u := t | W1;W2 | (uj+1, . . . , uk) := Svc(i1, . . . , ij)
| if B then W1 else W2 fi | while B do W od

| foreach a ∈ A do W od

with variables u, a, A; expression t of type type(u); A of type set T ; a of type
T ∈ TK ; B ∈ ΦK ; and Svc a service call with service description Svc, with inputs
i1, . . . , ij, and outputs uj+1, . . . , uk, with type and order fixed by the signature.

Here, we augment usual imperative programming elements with an iteration
construct for set types and with service calls. Workflows are build over arbitrary
sets of services, defined on the same ontology. For template workflows, we do not
use concrete services but service placeholders. Formally, a service placeholder has
a signature like a service, but instead of formulae for pre- and postconditions
we just write presp

Svc and postspSvc . We write SPK to denote the set of service
placeholders over K.

Example 2. The template in Fig. 1 accepts one input and produces one output,
both of a set type with element type Elem. It uses one service placeholder, V ,
and the predicates fp and g from Example 1. Its workflow initializes the output
variable A′, and then iterates over the input set A. Every element is given to
the service placeholder V , and then filtered by applying fp to the result of the
service call. If filtering succeeds, the element is put in the output set A′.

Like services, templates have pre- and postconditions: they define the cor-
rectness properties which we intend to achieve with the template, and allow us
to treat instantiated templates as any other services. The last part we find in a
template are constraints. They define conditions on instantiations: if a template
instantiation cannot guarantee these constraints, the postcondition of the tem-
plate might not be achieved, i.e., the template concretion might not be correct.
We will make this more precise in Sect. 5.
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Name :
Inputs : A with type(A) = set Elem
Outputs : A′ with type(A′) = set Elem
Services : V : Elem → Value
Precondition : {∀a ∈ A : presp

V (a)}
Postcondition: {A′ = {a ∈ A | g(a)}}
Constraints : {∀x, y : postspV (x, y) ∧ fp(y) ⇒ g(x),

∀x, y : postspV (x, y) ∧ ¬fp(y) ⇒ ¬g(x)}
1 A′ := ∅ ;
2 foreach a ∈ A do
3 (y) := V (a) ;
4 if fp(y) then A′ := A′ ∪ {a} fi ;

5 od

Fig. 1. Template to filter a list, using a filter fp and a validation service V

Definition 8. A workflow template WT over an ontology K consists of

– a name N ,
– a list of typed input variables I and typed output variables O,
– a set of services placeholders SPK ,
– a precondition pre ∈ ΦK and a postcondition post ∈ ΦK ,
– a set of constraint rules C as in Definition 1, and
– a workflow description W .

In short: WT = (N, I,O,SPK , pre, post , C,W ).

Later, we see how templates get instantiated. To this end, we need concrete,
existing services described by a domain ontology, to replace the service place-
holders. However, our ultimate aim is to show correctness on the level of tem-
plates, and inherit their correctness onto instantiations. Thus, we will now define
the semantics of templates and, with this help, their correctness.

4 Semantics of Templates

The key principle of our approach is to take correct templates, instantiate them,
and afterwards be able to check correctness of instances by checking simple side-
conditions. We start with the meaning of “correctness of templates”. Figure 1
shows a template with pre- and postconditions and constraints. Basically, these
state the property which the template should guarantee: if the precondition
holds and the constraints are fulfilled, then the postcondition is achieved. All
these parts contain undefined symbols: neither do we know the pre- and post-
conditions of the employed services (they are placeholders), nor the meaning of
the predicates of the template ontology. The definition of a semantics of tem-
plates and their correctness therefore necessarily has to be abstract, i.e., defined
modulo a concrete meaning. This meaning can only be fixed once we have a
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logical structure. This is, however, not given by an ontology; thus the logical
structure is a parameter for our semantics. The second parameter to the seman-
tics is the concretion of service placeholders with actual services, given by a
mapping π : SPK → SVCK .

Definition 9. Let K be an ontology, SPK a set of service placeholders over K,
and SVCK be a set of service descriptions over K. Then π : SPK → SVCK is a
concretion of service placeholders, if it respects signatures, i.e.

if π(sp) = svc and sp : T1 × · · · × Tk → Tk+1 × · · · × TN ,

then svc : T1 × · · · × Tk → Tk+1 × · · · × TN .

We lift the definition of π to replace pre- and postconditions of service placehold-
ers with their counterparts of the corresponding service, such that π(presp) ∈ ΦK

with free(π(presp)) = Isvc , and π(postsp) ∈ ΦK with free(π(postsp)) = Isvc ∪
Osvc . We use π to replace placeholders in any formula.

We define an operational semantics for workflows, much alike [1], however,
always parameterized with a structure S and a concretion π. The semantics is
defined by a transition relation between configurations. A configuration consists
of a workflow to be executed and a state. We introduce a failure state fail which
is entered once a service is called outside its preconditions. The workflow stops
in fail, thus we define a blocking semantics for service calls here.

Definition 10. Let S = (U , I) be a structure of an ontology K, and Var a set
of variables. A state σ over S is a type-correct mapping from Var to U . The set
of all states over S is denoted ΣS . We let Σfail

S = ΣS ∪ {fail}.
For a formula F ∈ ΦK we define the set of states satisfying F with respect

to a structure S as [[F ]]S = {σ ∈ ΣS | σ |=S F}.
A configuration 〈W, τ〉 has a workflow W over K and a state τ ∈ Σfail

S .

We use E to stand for the empty workflow. Later, the semantics of workflows
[[ · ]] will map initial to final configurations. For this, we first define transitions
between configurations by means of the set of axioms and rules given in Fig. 2.
The main deviation from the standard semantics given in [1] is that we take
two parameters into account: evaluation of conditions is parameterized in the
interpretation of predicates as given in the structure S, and influenced by the
concretion of placeholders, π. We also add rules for the foreach statement and
for service calls. Note that both introduce nondeterminism into the transition
system: foreach iterates over the set of elements in an arbitrary order, and
service calls can have more than one successor state.

Consider, e.g., rules (a) and (b) in Fig. 2: if a conditional statement is to be
executed in state σ, then W1 is selected as the next statement if and only if
the condition B is true in the given structure S (with placeholders replaced);
otherwise, W2 is the next statement. In both cases, the state remains the same, as
these rules only deal with the selection of the next workflow statement. Note that
the states σ in the rules exclude the failure state, i.e., configurations 〈W, fail〉
have no outgoing transitions.
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〈skip, σ〉 →π
S 〈E, σ〉

〈u := t, σ〉 →π
S 〈E, σ[u := σ(t)]〉

〈W1, σ〉 →π
S 〈W2, τ〉

〈W1; W, σ〉 →π
S 〈W2; W, τ〉

〈if B then W1 else W2 fi, σ〉 →π
S 〈W1, σ〉 if σ |=S π(B) (a)

〈if B then W1 else W2 fi, σ〉 →π
S 〈W2, σ〉 if σ |=S ¬π(B) (b)

〈while B do W od, σ〉 →π
S 〈W ;while B do W od, σ〉

if σ |= π(B)

〈while B do W od, σ〉 →π
S 〈E, σ〉 if σ |= ¬π(B)

〈foreach a ∈ A do W od, σ〉 →π
S 〈E, σ〉 if σ(A) = ∅

〈foreach a ∈ A do W od, σ〉 →π
S 〈W ; foreach a ∈ A do W od, σ′〉

if σ(A) �= ∅ ∧ σ′(a) = v ∧
v ∈ σ(A) ∧ σ′(A) = σ(A) \ {v}

〈(uj+1, . . . , uk) := Svc(i1, . . . , ij), σ〉 →π
S{〈E, σ[uj+1 := vj+1, . . . , uk := vk]〉 | π(postspSvc(σ(i1), . . . , σ(ij), vj+1 . . . , vk))

}

if σ |=S π(presp
Svc(σ(i1), . . . , σ(ij)))

〈(uj+1, . . . , uk) := Svc(i1, . . . , ij), σ〉 →π
S 〈(uj+1, . . . , uk) := Svc(i1, . . . , ij), fail〉

if σ |=S ¬π(presp
Svc(σ(i1), . . . , σ(ij)))

Fig. 2. Transition axioms and rules based on [1], with additional rules for service calls
and foreach constructs

The transition rules are used to derive the semantics of workflows. In this
paper, we only define a partial correctness semantics, i.e., we do not specifically
care about termination. Transitions lead to transition sequences, where a non-
extensible transition sequence of a workflow W starting in σ is a computation
of W . If it is finite and ends in 〈E, τ〉 or 〈W ′, fail〉, then it terminates. We use
the transitive, reflexive closure →∗ of → to describe the effect of finite transition
sequences. The semantics of partial correctness is again parameterized with a
logical structure and a concretion mapping for service placeholders.

Definition 11. Let S be a logical structure and π a concretion mapping. The
partial correctness semantics of a workflow W with respect to S and π maps an
initial state to a set of possible final states

[[W ]]πS : ΣS → 2ΣS∪{fail}, with [[W ]]πS(σ) = {τ | 〈W,σ〉→π
S

∗〈W ′, τ〉}

where W ′ = E or τ = fail.

We define a workflow template to be correct, if all computations starting in a
state which satisfies the precondition, end in a state which fulfills the postcon-
dition. Since services are only placeholders, correctness can only be stated when
the template works correctly for arbitrary concretions, as long as they obey the
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concretized constraints of the template. So far, we only operate on the tem-
plate ontology, and thus arbitrary concretion means inserting arbitrary formulae
for pre- and postconditions of placeholders. Therefore, our concretion mapping
π : SPK → SVCK maps placeholders to arbitrary service descriptions over K.

Definition 12. Let WT = (N, I,O,SPK , pre, post , C,W ) be a workflow tem-
plate, and K = (CK , PK , RK) the corresponding ontology. We say WT is correct
if the following holds:

∀ logical structures S over K,∀ concretions π : SPK → SVCK s.t.
S |= RK ∧ S |= π(C) : [[W ]]πS([[π(pre) ]]S) ⊆ [[π(post) ]]S .

There are different ways of proving template correctness. The verification app-
roach introduced in [27] encodes correctness as satisfiability problem. For brevity,
we provide a correctness proof for Example 2 in terms of Hoare-style verifica-
tion. Since our semantics is almost the same as that in [1], we can readily use
their proof calculus (augmenting it with rules for foreach and service calls; rules
omitted here). The proof outline in Fig. 3 shows that, starting from the precon-
dition, the postcondition is reached by the workflow; to do this, we rewrite the
if without else into an if-then-else with an empty else (skip) construct.

5 Template Instantiation

Templates are used to describe generic forms of service compositions, indepen-
dent of concrete domains and thus concrete services. To describe templates we
employ template ontologies which fix the concepts usable in a template. For
instantiation, we replace service placeholders with concrete services, which are
typed over concrete domain ontologies. To this end, we define a mapping between
a template ontology and a domain ontology. While general ontology mapping has
to deal with different ontology conflicts [19,22], we assume a perfect mapping
without conflicts.

Definition 13. Let KT = (CT , PT , RT ) be a template ontology and KD =
(CD, PD, RD) be a domain ontology. Then KT �fKD is an homomorphous ontol-
ogy mapping from KT to KD by f , if f is a pair of mappings f = (fC : CT →
CD, fP : PT → PD) such that

– fP preserves signatures with respect to fC , that is ∀p ∈ PT with p : T1 × · · · ×
Tn → bool we have fP (p) : fC(T1) × · · · × fC(Tn) → bool;

– f preserves the rules RT , that is ∀r ∈ RT with r = b1∧· · ·∧bn → h1∧· · ·∧hm,
there is r′ ∈ RD with r′ = f(b1) ∧ · · · ∧ f(bn) → f(h1) ∧ · · · ∧ f(hm).

We assume the mapping pair f to map standard types to themselves, e.g.,
f(bool) = bool, f(set T ) = set (f(T )). For brevity, we use f as a shorthand
notation for the application of the correct mappings fC , fP , or rule preservation.

To replace service placeholders (typed over a template ontology KT ) with
service descriptions (typed over a domain ontology KD), we define an concretion
πf for two ontologies with KT �fKD.
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1 {∀a ∈ A : presp
V (a) ∧ A0 = A}

2 A′ := ∅
3 {inv:A′ = {a′ ∈ A0 \ A | g(a′)}}
4 foreach a ∈ A do
5 {A′ = {a′ ∈ A0 \ (A ∪ {a}) | g(a′)}}
6 (y) := V (a)
7 {postspV (a, y) ∧ A′ = {a′ ∈ A0 \ (A ∪ {a}) | g(a′)}} // service call

8 if fp(y) then
9 {fp(y) ∧ postspV (a, y) ∧ A′ = {a′ ∈ A0 \ (A ∪ {a}) | g(a′)}}

10 A′ := A′ ∪ {a}
11 {g(a) ∧ A′ = {a′ ∈ A0 \ (A ∪ {a}) | g(a′)} ∪ {a}} // constr./set union

12 {inv}
13 else
14 {¬fp(y) ∧ postspV (a, y) ∧ A′ = {a′ ∈ A0 \ (A ∪ {a}) | g(a′)}}
15 skip
16 {¬g(a) ∧ A′ = {a′ ∈ A0 \ (A ∪ {a}) | g(a′)}} // constraint

17 {inv}
18 fi
19 {inv}
20 od
21 {inv ∧ A = ∅} // foreach

22 {A′ = {a′ ∈ A0 | g(a′)}}

Fig. 3. Proof outline for correctness of the filter template; comments refer to the seman-
tics definition

Definition 14. Let KT and KD be ontologies with KT �fKD, let SPT be the
set of service placeholders over KT , and SVCD be the set of service descriptions
over KD. Then πf : SPT → SVCD is a concretion of service placeholders from
KT to KD, if it respects signatures with respect to f , that is,

if πf (sp) = svc and sp : T1 × · · · × Tk → Tk+1 × · · · × TN ,

then svc : f(T1) × · · · × f(Tk) → f(Tk+1) × · · · × f(TN ) .

We lift πf to pre- and postconditions of placeholders, such that πf (presp) ∈ ΦD

and free(πf (presp)) = Isvc , as well as πf (postsp) ∈ ΦD and free(πf (postsp)) =
Isvc ∪ Osvc . In short, πf maps placeholders to services, using the ontology map-
ping f of KT �fKD to translate types from the template to the domain
ontology.

As the semantics of workflows rely on logical structures, we need to clarify
the relation of structures over KT to structures over KD: if a structure satisfies
the rules of KD, then there exists a corresponding one satisfying the rules of KT .

Proposition 1. Let KT = (CT , PT , RT ) and KD = (CD, PD, RD) be ontologies
and S = (U , I) a logical structure over KD. If KT �fKD, and S |= RD, then we
can construct a corresponding logical structure S�f , where
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S�f = (U�f , I�f ), with U�f

T = Uf(T ) and
I�f (p) = I(f(p)) for p ∈ PT

such that S�f |= RT .

Later, we will reason about formulae containing placeholders, which are satisfied
by a logical structure, and which follow from the rules of an ontology. Therefore,
in addition to the construction of a corresponding logical structure, we construct
a corresponding mapping from placeholders to service descriptions as well.

Proposition 2. Let KT = (CT , PT , RT ) and KD = (CD, PD, RD) be ontologies
with KT �fKD, and S = (U , I) a logical structure over KD. Let πf : SPT →
SVCD be a concretion, and Ψ ∈ ΦT be a formula containing placeholders from
SPT . If S satisfies the rules of KD and the concretized formula πf (Ψ), then
we can construct a corresponding concretion π

�f

f : SPT → SVCT within the
template ontology; let signature names be sp ∈ SPT , svc ∈ SVCD, svc′ ∈ SVCT

and πf (sp) = svc, π
�f

f (sp) = svc′, and svc and svc′ refer to the same name; if
π

�f

f is signature preserving (Definition 14), and

π
�f

f (sp) = svc′ with svc′ : T1 × · · · × Tj → Tj+1 × · · · × TN ,

then we also know, that

πf (sp) = svc with svc : f(T1) × · · · × f(Tj) → f(Tj+1) × · · · × f(TN )
presvc′ ∈ ΦT such that f(presvc′) = presvc

postsvc′ ∈ ΦT such that f(postsvc′) = postsvc ;

and we can conclude S�f |= π
�f

f (Ψ).

Proof: Consider some state σ |=S πf (Ψ) with Ψ ∈ ΦT . Then, the interpretations
ID are fix for every predicate. We can construct S�f by Proposition 1, where
the interpretations of template predicates are by construction the same as the
interpretations of the corresponding (by f) domain predicates. The only pred-
icates without interpretations are the pre- and postconditions of placeholders.
We can construct π

�f

f such that f(π�f

f (presp
svc)) = πf (presp

svc) (same for postcon-
dition). By definition, the interpretations are then mapped to the corresponding
predicates, and σ |=S πf (Ψ) ⇒ σ |=S�f π

�f

f (Ψ).
The same is true for σ �|=S πf (Ψ), therefore σ |=S πf (Ψ) ⇔ σ |=S�f π

�f

f (Ψ).
��

We can conclude that the set of states satisfying a formula with instantiated
placeholders under a structure S, is the same as for the corresponding S�f :

Lemma 1. Let KT = (CT , PT , RT ) a template ontology and KD = (CD, PD, RD)
a domain ontology with KT �fKD, a concretion πf , a formula F ∈ ΦT containing
placeholders from SPT , and a structure S |= πf (F ), then

[[πf (F ) ]]S = [[π�f

f (F ) ]]S�f .
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Note that we do not need to give an interpretation for the standard function
and predicate symbols since their interpretation is always the same.

We continue our example with a domain ontology and a service description.

Example 3. Let KD be an ontology of the (simplified) domain of restaurants
with concepts CD = {Restaurant ,Rating}, predicates PD = {isMinRating :
Rating → bool, goodRestaurant : Restaurant → bool, fastFood : Restaurant →
bool, cheap : Restaurant → bool, hasRating : Restaurant × Rating → bool}
and rules3

fastFood(res) ⇒ cheap(res)
hasRating(res, rat) ∧ isMinRating(rat) ⇒ goodRestaurant(res)

hasRating(res, rat) ∧ ¬isMinRating(rat) ⇒ ¬goodRestaurant(res)

We define a mapping f = (fC , fP ) from KT of Example 1 with KT �fKD as:

fC : Elem �→ Restaurant ,Value �→ Rating
fP : fp �→ isMinRating , g �→ goodRestaurant .

Since the template ontology has no rules, f trivially preserves them. For our
restaurant ontology, we assume a service Vld to provide a lookup service for
ratings of restaurants. It consists of the signature Restaurant → Rating , an
input res, an output rat , precondition preVld = true (it provides ratings for
all restaurants), and postcondition postVld = hasRating(res, rat) (the returned
rating belongs to the input restaurant).

Such services can replace service placeholders in the template. In addition,
instantiation requires replacing boolean conditions in the template workflow
(because they use template predicates) with their counterparts in the domain
ontology. To this end, we apply the ontology mapping f to the boolean condi-
tions.

Definition 15. Let WT = (N, I,O,SPT , pre, post , C,W ) be a workflow tem-
plate over a template ontology KT , let KD be a domain ontology with set of
services SVCD and KT �fKD with f = (fC , fP ). Let πf : SPT → SVCD be a
concretion of the service placeholders in WT to services of the domain ontol-
ogy. The instantiation of the workflow W with respect to π and f , πf (W ), is
inductively defined as follows:

3 Ontology languages provide dedicated constructs to specify different properties of
predicates, e.g., transitivity or cardinality (“every restaurant has exactly one rat-
ing”). These constructs can be expressed using rules, but for simplicity, we omitted
them in this example.
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πf (skip) := skip πf (u := t) := u := t

πf ((uj+1, . . . , uk) := Svc(i1, . . . , ij)) := (uj+1, . . . , uk) := πf (Svc)(i1, . . . , ij)
πf (W1;W2) := πf (W1);πf (W2)

πf (if B then W1 else W2 fi) := if f(B) then πf (W1) else πf (W2) fi

πf (while B do W od) := while f(B) do πf (W ) od

πf (foreach a ∈ A do W od) := foreach a ∈ A do πf (W ) od .

Note that terms t do not need to be mapped by f since they only contain function
symbols over standard types.

Name :
Inputs : A with type(A) = set Restaurant
Outputs : A′ with type(A′) = set Restaurant
Services : Vld : Restaurant → Rating
Precondition : {∀a ∈ A : preVld(a)}
Postcondition: {A′ = {a ∈ A | g(a)}}
Constraints : {∀x, y : postVld(x, y) ∧ isMinRating(y) ⇒ goodRestaurant(x),

∀x, y : postVld(x, y) ∧ ¬isMinRating(y) ⇒ ¬goodRestaurant(x)}
1 A′ := ∅ ;
2 foreach a ∈ A do
3 (y) := Vld(a);
4 if isMinRating(y) then A′ := A′ ∪ {a} fi ;

5 od

Fig. 4. Instantiation of the Filter template with a restaurant ontology and a rating
acquisition service

When templates are instantiated, we get service compositions. A service com-
position is a workflow (over a domain ontology) without service placeholders.
Figure 4 shows an instantiation of the filter template from Fig. 1, using the ontol-
ogy mapping of Example 3 and πf (V ) = Vld .

For the semantics of service compositions, we re-use the semantics definition
of templates. This time, however, we can omit the parameter πf , since all ser-
vices are concrete. Therefore, the only parameter left for the semantics is the
logical structure: the interpretation of domain ontology predicates is still not
fixed. The correctness condition can thus directly be re-used, except that service
compositions do not come with fixed pre- and postconditions (unlike templates).

Definition 16. A service composition W over a domain ontology K is correct
with respect to some precondition pre ∈ ΦK and some postcondition post ∈ ΦK

if the following holds:

∀ logical structures S s.t. S |= RK : [[W ]]S([[ pre ]]S) ⊆ [[ post ]]S .

We have defined correctness of templates and service compositions as well as
semantics for both. If a template and a composition are typed over the same
ontology, we can conclude from the definitions that they have the same semantics.
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Lemma 2. Let WT be a template with workflow W , and π : SPK → SVCK be
an instantiation with services over ontology K. Then the following holds:

∀ logical structures S : [[W ]]πS = [[π(W ) ]]S .

From the semantics and correctness definitions above, and assuming that the
template is already proven correct, we state the following: To prove correctness
of a service composition, it is sufficient to show that the instantiated constraints
of the template can be derived from the rules of the domain ontology.

Fig. 5. Overview of the proof of Theorem 1, with main steps (1) to (5)

Theorem 1. Let WT = (N, I,O,SPT , pre, post , C,W ) be a correct workflow
template over a template ontology KT , KD a domain ontology such that KT �fKD

with a mapping f = (fC , fP ), and let πf : SPT → SVCD be a concretion of service
placeholders in the template with services of the domain ontology.

If RD |= πf (C) then πf (W ) is correct with respect to πf (pre) and πf (post).

Figure 5 gives an overview of the proof. First, we select a structure which satisfies
the concretized constraints of the template (1). Then, we construct the corre-
sponding structure which satisfies the original constraints (2). By definition, we
know the semantics of the template (3) and can conclude that its instantiation
has the same semantics (4). As the template is correct, the instantiation is also
correct (5). We will now give the formal proof.

Proof: Let WT = (N, I,O,SPT , pre, post , C,W ) be a correct workflow tem-
plate over a template ontology KT , and πf (W ) be a service composition over a
domain ontology KD with KT �fKD. We have to show that, for any concretion
πf where the domain ontology satisfies the concretized template constraints,
πf (W ) is indeed a correct instantiation of template WT , that is, it is correct
with respect to the concretized precondition and postcondition of WT . Formally:
for all structures SD and instantiations πf the following has to hold:

SD |= RD ∧ RD |= πf (C) : [[πf (W ) ]]SD
([[πf (pre) ]]SD

) ⊆ [[πf (post) ]]SD
.

To start, fix SD and πf such that

SD |= RD ∧ RD |= πf (C) .
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If SD satisfies its rules, then it satisfies the subset of rules that is the range of
the homomorphous mapping:

SD |= RD ⇒ SD |= f(RT ) because f(RT ) ⊆ RD (by Definition 13).

Also, if both RD |= πf (C) and SD |= RD, then SD |= πf (C). Therefore

SD |= f(RT ) ∧ SD |= πf (C)

of course also holds. Now we “switch” to the template ontology; by KT �fKD, we
can construct a corresponding structure over the template ontology
(Proposition 1) along with a mapping π

�f

f : SPT → SVCT (Proposition 2):

∃S�f ,∃π
�f

f : S�f |= RT ∧ S�f |= π
�f

f (C) .

By Definition 12, and because WT is correct, we know

∃S�f ,∃π
�f

f :

S�f |= RT ∧ S�f |= π
�f

f (C) : [[W ]]
π

�f
f

S�f
([[π�f

f (pre) ]]S�f ) ⊆ [[π�f

f (post) ]]S�f .

As we are currently solely in the template ontology, by Lemma 2 we know that
a template and an instantiation have the same semantics, and therefore

∃S�f , π
�f

f :

S�f |= RT ∧ S�f |= π
�f

f (C) : [[ π
�f

f (W ) ]]S�f ([[ π
�f

f (pre) ]]S�f ) ⊆ [[ π
�f

f (post) ]]S�f .

If we “switch back” to the domain ontology, by Lemma 1, we can use our original
SD again:

SD |= RD ∧ SD |= πf (C) : [[πf (W ) ]]SD
([[πf (pre) ]]SD

) ⊆ [[πf (post) ]]SD
.

It is therefore sufficient to show that RD |= πf (C), if the template is already
proven to be correct, and KT �fKD holds. ��
For our example template, we look at the instantiation πf (V ) = Vld from Fig. 4.
It can easily be shown that the concretized constraints follow from the rules RD

of the restaurant domain. Thus the service composition as given by the instan-
tiated template is correct with respect to the mapped pre- and postconditions
of the template which are ∀a ∈ A : true (precondition) and A′ = {a ∈ A |
goodRestaurant(a)}.

6 Discussion

Our approach contains the following aspects: (1) we have correct templates with
a formal, parameterized semantics, (2) instantiate them with services of a con-
crete domain, and (3) show correctness of the instantiation by correctness of
simple side-conditions. As instantiated templates come along with a full-fledged
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service description, they can be treated as services themselves, and therefore be
re-used as services in other template instantiations.

On a basic level, verification of service compositions is not fundamentally
different from verification of programs. However, especially the context of on-
the-fly composition and verification comes with timing constraints; we therefore
believe that it is not feasible to prove correctness of service compositions individ-
ually. Domain-independent templates can, on the other hand, be verified without
timing constraints (e.g., by dedicated specialists). Then, instantiations can be
created on-the-fly, without the necessity of a complete verification: checking the
validity of the instantiated constraints is sufficient.

Working with templates in general is common in modular software design
methods, component-based software development, and service-oriented architec-
tures, either by dedicated modeling constructs, or by best-practices. However,
templates are not necessarily verified.

An early approach of formally specifying a service composition as a para-
meterized template, and to get provably correct instantiations, is the CARE
approach [16,20]. In CARE so-called fragments are used for modeling: primi-
tives, which come with a black-box description and are proven to be correct
externally; and composites, which are used to model complex algorithms. The Z
modeling language [28] is used as a concise formal notation. For a composition’s
specification, a proof obligation is derived automatically and can be proven by an
automated (and/or interactive) theorem prover to show that the instantiation
is correct wrt. the requirements. In contrast to CARE, we define correctness for
an incomplete template, and show that it is sufficient to proof that an instantia-
tion adheres to come constraints, instead of proving correctness for the complete
instantiation. Also, we integrate formalized domain knowledge into our approach.
[15] also uses the CARE method, but focuses on matching and adaptation.

Based on the development of adaptation techniques, [9] advocates the need
for verification at runtime, to verify compositions which changed while already
deployed. SimuLizar [6] extends the Palladio Component Model (PCM, [7])
with fuzzy requirements for adaptation using the temporal-logic-based RELAX
language, targeting scalability analysis. While both focus on non-functional
properties, it would be promising to apply our template- and constraint-based
verification to similar runtime contexts.

There is also more research to define formal semantics for existing industrial
workflow languages. While [26] defines an event algebra for general workflows,
[10] defines a semantic for WS-BPEL [23] based on abstract machines, and [24]
based on Petri nets. [18] derives a data flow network from BPEL and translate
it to a Promela [17] model.

Also based on generalized data flow networks, the REO approach [3] focuses
on communication between entities (e.g., services), by using channel-based com-
munication models, and defining a semantics based on times data streams [2].

While we use a simple imperative programming style language to present our
approach, we believe it is possible to apply our results to existing workflow or
software architecture languages. To do this, the target language needs a notion
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of placeholders, and a proper mapping between the languages has to be defined.
Our own ongoing experiments are based on an extension of PCM (esp. with
pre-/postconditions, [4]), where we also work on SAT-based verification of the
instantiation process.

7 Conclusion

In this paper, we presented an approach to create service compositions for dif-
ferent domains by instantiation of domain-independent templates. Moreover, if
these templates are provably correct, we have shown that verification of service
compositions can be reduced to verification of side-conditions of the instantia-
tion: the instantiated template constraints have to hold in the target domain.

To prove this, we defined an abstract semantics for workflow templates con-
taining service placeholders, which is parameterized with concretions (of place-
holders), and logical structures (which fix the concrete meaning). We defined
correctness with respect to pre- and postconditions based on this parameter-
ized semantics. If templates formalize instantiation constraints in the form of
rules, we have shown that all possible template instantiations are correct, if the
(corresponding) instantiation of these constraints are correct.

Therefore, using this approach to create service compositions, their verifica-
tion can be reduced to verification of side-conditions.

We would like to thank our colleague Felix Mohr for several discussions about
the use of templates in service compositions, as well as the anonymous reviewers
for their feedback.
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Abstract. Within a network of asynchronously communicating systems,
the complete network is often not known, or even available at run-time.
Consequently, verifying whether the network of communicating systems
behaves correctly, i.e., the network does not contain any deadlock or live-
lock, is impracticable. As such systems are highly concurrent by nature,
Petri nets form a natural choice to model these systems and their commu-
nication.

This paper presents a formal framework based on a generic communi-
cation condition to verify correctness of the system by pairwise checking
whether these systems communicate correctly and fulfill some condition,
then the whole network is guaranteed to behave correctly. As an example,
this paper presents the elastic communication condition.

1 Introduction

Dividing the functionality of a system into subsystems such that each subsystem
implements its own specific functionality is not new. Already in the sixties of the
last century, McIlroy [17] suggested to use components to design and implement
software systems. A component implements a specific part of the specification,
masking its internal design [22].

A component offers some functionality, and, in order to deliver this, it uses
functionality of other components. This way, a component has two roles: it is a
provider and a consumer. From a business oriented view, a component sells func-
tionality, and to meet its commitments, it buys functionality of other components
[4,12].

With the advent of paradigms like Service Oriented Architectures [3,18], sys-
tems become more and more distributed. Some of the components of the system
may be offered by third parties. As these third parties do not expose which com-
ponents their systems use, the individual systems form a, possibly unknown,
large scale ecosystem: a dynamic network of communicating components. These
systems communicate via messages: a component requests functionality from
another component, which in turn eventually sends its answer. Hence, com-
munication between the components is asynchronous by nature. Verification of
asynchronously communicating systems is known to be a hard problem.

The nature of this class of communicating systems is asymmetric. A provider
commits itself to deliver some functionality. It does not matter what other
c© Springer International Publishing Switzerland 2015
I. Lanese and E. Madelaine (Eds.): FACS 2014, LNCS 8997, pp. 49–67, 2015.
DOI: 10.1007/978-3-319-15317-9 4
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Fig. 1. Example of a component tree of four components A, B, C and D.

Fig. 2. Four components A, B, C1 and C2, such that A ⊕G B ⊕H C1 is sound, but
A ⊕G B ⊕H C2 is not.

components that provider needs, as long as it keeps delivering the requested
functionality. Therefore, the connections between components have a direction:
they are initiated by some client, and accepted by a provider. Consider the com-
ponent architecture depicted in Fig. 1. There are four components, A, B and C,
which are connected via ports G, H and J . The ©� operator indicates the direc-
tion of the communication. In this example, component B delivers a service to
component A over port G, and to do so, it uses the functionality of its children C
and D.

At run-time, components use other components to deliver their functional-
ity. In this way, the components form a component tree. The dynamic binding
of components causes the component tree to be unknown at design time. This
makes verification of behavioral correctness very hard. Thus, if we want to ensure
behavioral correctness, we need a verification method that only considers pair-
wise compositions of components: if each component is sound, and all pairwise
connected components satisfy some condition, the whole tree should be sound.

Current compositional verification techniques start with the verification of
a pair of components, compose these into a larger component, and then use
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this larger composition for the next pairwise composition. However, this way
of verification does not take the dynamic nature of service oriented approaches
into account: if one of the components changes, the whole network needs to be
checked again. Consider for example the components A, B, C1 and C2 depicted
in Fig. 2. In this example, the composition of A, B and C1 is sound. However,
if B decides to use C2 instead of C1, the communication with A is hampered.
Current compositional verification techniques have to re-verify the whole network
for soundness again.

In [16], the authors prove that in general verification of such a dynamic,
distributed setting is undecidable. Current research results (cf. [15,20,25,26])
are based on a message bound.

In this paper, we present a framework based on communication conditions to
verify a subclass of asynchronously communicating systems compositionally [24].
The formal foundation of the framework is Petri nets, in which communication is
asynchronous by nature. Petri nets can be used both for modeling the internal
activities of a component, as well as for the interaction between components.
We focus on soundness of systems: a system should always have a possibility to
terminate.

This paper is structured as follows. Section 2 presents the basic notions
used throughout the paper. Next, Sect. 3 introduces the notion of components
and their composition. In Sect. 4, we present a general framework to verify cor-
rectness of component trees compositionally. Next, Sect. 5 shows a subclass of
communicating systems based on this general framework. Section 6 concludes
the paper.

2 Preliminaries

Let S be a set. The powerset of S is denoted by P(S) = {S′ | S′ ⊆ S}. We use
|S| for the number of elements in S. Two sets U and V are disjoint if U ∩V = ∅.
A bag m over S is a function m : S → IN , where IN = {0, 1, 2, . . .} denotes the
natural numbers. We denote e.g. the bag m with an element a occurring once,
b occurring three times and c occurring twice by m = [a, b3, c2]. The set of all
bags over S is denoted by INS . Sets can be seen as a special kind of bag were
all elements occur only once. We use + and − for the sum and difference of two
bags, and =, <, >, ≤, ≥ for the comparison of two bags, which are defined in a
standard way. The projection of a bag m ∈ INS on elements of a set U ⊆ S, is
denoted by m|U , and is defined by m|U (u) = m(u) for all u ∈ U and m|U (u) = 0
for all u ∈ S \ U . Furthermore, if for some n ∈ IN , disjoint sets Ui ⊆ S with
1 ≤ i ≤ n exist such that S =

⋃n
i=1 Ui, then m =

∑n
i=1 m|Ui

.
A sequence over S of length n ∈ IN is a function σ : {1, . . . , n} → S. If

n > 0 and σ(i) = ai for i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉. The length
of a sequence is denoted by |σ|. The sequence of length 0 is called the empty
sequence, and is denoted by ε. The set of all finite sequences over S is denoted
by S∗. We write a ∈ σ if a 1 ≤ i ≤ |σ| exists such that σ(i) = a. Concatenation
of two sequences ν, γ ∈ S∗, denoted by σ = ν; γ, is a sequence defined by
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σ : {1, . . . , |ν| + |γ|} → S, such that σ(i) = ν(i) for 1 ≤ i ≤ |ν|, and σ(i) =
γ(i − |ν|) for |ν| + 1 ≤ i ≤ |ν| + |γ|.

A projection of a sequence σ ∈ S∗ on elements of a set U ⊆ S (i.e. eliminating
the elements from S \ U) is denoted as σ|U . The bag denoted the elements of
a sequence σ and their occurrences is called the Parikh vector and is denoted
by −→σ .

Labeled transition systems. To model the behavior of a system, we use a
labeled transition system. A labeled transition system (LTS) is a 5-tuple (S,A,→,
s0, Ω) where S is a set of states ; A is a set of actions ; →⊆ (S × (A ∪ {τ}) × S)
is a transition relation, where τ ∈ A is the silent action. (S,→, ∅) is a labeled
directed graph, called the reachability graph; s0 ∈ S is the initial state; and
Ω ⊆ S is the set of accepting states.

Let L = (S,A,→, si, Ω) be an LTS. For s, s′ ∈ S and a ∈ A ∪ {τ}, we write
(L : s

a−→ s′) if and only if (s, a, s′) ∈→. An action a ∈ A∪{τ} is called enabled
in a state s ∈ S, denoted by (L : s

a−→) if a state s′ exists such that (L : s
a−→ s′).

If (L : s
a−→ s′), we say that state s′ is reachable from s by an action labeled

a. A state s ∈ S is called a deadlock if no action a ∈ A ∪ {τ} exists such that
(L : s

a−→). We define =⇒ as the smallest relation such that (L : s =⇒ s′) if
s = s′ or ∃s′′ ∈ S : (L : s =⇒ s′′ τ−→ s′). As a notational convention, we may
write τ=⇒ for =⇒. For a ∈ A, we define a=⇒ as the smallest relation such that
(L : s

a=⇒ s′) if ∃s1, s2 ∈ S : (L : s =⇒ s1
a−→ s2 =⇒ s′).

We lift the notation of actions to sequences. For the empty sequence ε, we
have (L : s

ε−→ s′) if and only if (L : s =⇒ s′). Let σ ∈ A∗ be a sequence
of length n > 0, and let s0, sn ∈ S. Sequence σ is a firing sequence, denoted

by (L : s0
σ−→ sn), if states si−1, si ∈ S exist such that (L : si−1

σ(i)
=⇒ si)

for all 1 ≤ i ≤ n. We write (L : s
∗−→ s′) if a sequence σ ∈ A∗ exists such

that (L : s
σ−→ s′), and say that s′ is reachable from s. The set of reachable

states from some state s ∈ S is defined as R(L, s) = {s′ | (L : s
∗−→ s′)}.

We lift the notation of reachable states to sets by R(L,M) =
⋃

s∈M R(L, s) for
M ⊆ S. A set of states M ⊆ S is called a livelock if M ⊆ R(L,M). An LTS
L = (S,A,→, s0, Ω) is called weakly terminating if Ω ⊆ R(L, s0).

Petri nets. A Petri net [19] is a 3-tuple N = (P, T, F ) where (1) P and T are two
disjoint sets of places and transitions respectively; (2) F ⊆ (P × T ) ∪ (T × P )
is a flow relation. The elements from the set P ∪ T are called the nodes of
N . Elements of F are called arcs. Places are depicted as circles, transitions
as squares. For each element (n1, n2) ∈ F , an arc is drawn from n1 to n2.
Two Petri nets N = (P, T, F ) and N ′ = (P ′, T ′, F ′) are disjoint if and only
if (P ∪ T ) ∩ (P ′ ∪ T ′) = ∅. Let N = (P, T, F ) be a Petri net. Given a node
n ∈ (P ∪ T ), we define its preset •

N n = {n′ | (n′, n) ∈ F}, and its postset
n•

N = {n′ | (n, n′) ∈ F}. We lift the notation of preset and postset to sets. Given
a set U ⊆ (P ∪T ), •

N U =
⋃

n∈U
•

N n and U•
N =

⋃
n∈U n•

N . If the context is clear,
we omit the N in the superscript.

A marking of N is a bag m ∈ INP , where m(p) denotes the number of tokens
in place p ∈ P . If m(p) > 0, place p is called marked in marking m. A Petri net
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Fig. 3. Two components N and M with three ports G, H and J , where components
N and M share port G.

N with corresponding marking m is written as (N,m) and is called a marked
Petri net.

A system is a 3-tuple S = (N,m0, Ω) where (N,m0) is a marked Petri
net with N = (P, T, F ) and Ω ⊆ INP is the set of final markings. Its seman-
tics is defined by an LTS N (S) = (INP , T,→,m0, Ω) such that (m, t, m′) ∈→
iff •t ≤ m and m′ + •t = m + t• for m, m′ ∈ INP and t ∈ T . We write
(N : m

t−→ m′), R(N,m0), L(N,m0), and T (N,m0) as a shorthand notation
for (N (N,m0) : m

t−→ m′), R(N (N,m0)), L(N (N,m0)), and T (N (N,m0)),
respectively. A marking m ∈ R(N,m0) is a home marking if m ∈ R(N,m′) for
all m′ ∈ R(N,m0).

3 Asynchronously Communicating Systems

In a network of asynchronously communicating systems, systems communicate
via message passing. We call these systems components of the network. Two
components are connected via some interface that defines which messages are
exchanged between the systems. As communication is asynchronous, Petri nets
[19] form a natural choice to model the communication between these compo-
nents. We model the different messages that can be sent and received via special
places, called interface places. A component either receives messages from an
interface place, which is then called an input place, or it sends messages to an
interface place, which we then call an output place.

As components communicate with multiple components, we partition the
interface places of a system into ports. A transition can send or receive messages
via a port. For this, we introduce the notion of a transition sign. A transition
sends messages to a port (sign !), receives messages from a port (sign ?) or does
not communicate at all with a port (sign τ).
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The marking of a component represents the internal state of the component,
together with messages it has sent and received. As initially no messages have
been sent or received, the initial marking of a component has no messages in
its interface places. Similarly, in the desired final marking of a component, all
messages have been processed, i.e., all interface places should be empty. Often,
the desired final marking of a component represents an idle state, from which
the component can respond on new messages again. In terms of Petri nets, the
final marking is often a home marking.

Figure 3 depicts two components N and M . Component M has a single port
G with three input places a, c and d, and two output ports b and e. Component
N has three ports, G, H and J . The internal structure of a component, i.e., the
component without the interface places, is called the skeleton.

Definition 1 (Component, skeleton, sign). A Component is defined as an
8-tuple (P, I, O, T, F,G, i, f) where ((P ∪ I ∪ O), T, F ) is a Petri net; P is a set
of internal places; I is the set of input places, O is the set of output places
such that P , I and O are pairwise disjoint and •I = O• = ∅; G ⊆ P(I ∪ O) is a
partitioning of the interface places, an element of G is called a port; a transition
either sends or receives messages, i.e., •G ∩ G• = ∅ for all G ∈ G. i ∈ INP is
the initial marking, and f ∈ INP is the final marking.

Two components N and M are called disjoint if (PN ∪IN ∪ON ∪TN )∩(PM ∪
IM ∪ OM ∪ TM ) = ∅. A component N is called closed if IN = ON = ∅. The set
of all components is denoted by N. As a shorthand notation, we write R(N,m)
for R((PN ∪ IN ∪ ON , TN , FN ),m) for m ∈ INPN∪IN∪ON .

The skeleton of N is defined as the Petri net S(N) = (PN , TN , F ) with
F = FN ∩ ((PN ×TN )∪ (TN ×PN )). The skeleton system of N is defined as the
system S(N) = (S(N), iN , {fN}).

The sign of a transition with respect to a port G ∈ G is a function λG : T →
{!, ?, τ} defined by λG(t) =! if t• ∩ G = ∅, λG(t) =? if •t ∩ G = ∅, and λG(t) = τ
otherwise, for all t ∈ T .

It is desired that from every reachable marking of a component, the compo-
nent should be able to reach its desired final marking. This property is expressed
in the notion of weak termination. Another basic sanity check for components
is to check whether it internally behaves correctly, i.e., ignoring the interface
places, the component should be able to always reach its final marking. As this
property is closely related to soundness of workflow nets [1], We call this property
soundness.

Definition 2 (Weak termination and soundness). Let N be a component.
It is weakly terminating, if for each marking m ∈ R(N, iN ), we have fN ∈
R(N,m). It is sound, if the system defined by its skeleton is weakly terminating.

Notice that this definition does not require the final marking of a component
to be a deadlock. Instead, the final marking can be seen as a home marking, in
which the component is in rest.
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Components communicate via their ports. To be able to compose two com-
ponents so that they are able to communicate, the components should have
inverted ports: input places of the one should be output places of the other, and
vice versa.

Definition 3 (Composition of components). Two components A and B are
composable with respect to port G ∈ GA ∩ GB, denoted by A ⊕G B, if and only if
(PA ∪ IA ∪ OA ∪ TA) ∩ (PB ∪ IB ∪ OB ∪ TB) = (IA ∩ OB) ∪ (OA ∩ IB) = G.

If A and B are composable with respect to port G, their composition results
in a component A ⊕G B = (P, I, O, T, F,G, i, f) where P = PA ∪ PB ∪ H; I =
(IA∪IB)\H; O = (OA∪OB)\H; T = TA∪TB; F = FA∪FB; G = (GA∪GB)\H;
i = iA + iB; and f = fA + fB. If a port G ∈ GA ∩ GB exists such that A ⊕G B,
we write A ⊕ B.

Consider again the components N and M of Fig. 3. Both components share
port G, where the input places a, c and d of M are output places of N , and
the output places b and d are input places of N . Their composition results in a
component N ⊕ M , where the places a, b, c, d and e become internal places of
the composition.

The composition operator is commutative and associative, provided that the
components are composable.

Corollary 4 (Composition is commutative and associative). Let A, B
and C be three components, such that A ∩ C = ∅, and let G ∈ GA ∩ GB and
H ∈ GB ∩ GC . If A and B are composable w.r.t some port G ∈ GA ∩ GB, then
A⊕G B = B ⊕G A; Also, (A⊕G B)⊕H C exists iff A⊕G (B ⊕H C) exists. If the
compositions exist, they are identical.

In the remainder of this section, we discuss some properties of the composi-
tion operator. Composition only restricts behavior, i.e., the composition of two
components A and B does not introduce any new behavior. In [24], it is shown
that the projection of a composition to either one of its constituents is a simula-
tion relation [10]. As a consequence, a firing sequence in the composition of two
components is a firing sequence of its constituents, after hiding the transitions
of the other component, and any reachable marking in the composition results
in a reachable marking of that constituent.

Corollary 5. Let A and B be two composable components with respect to some
port G ∈ GA ∩ GB. Define N = A ⊕G B. Let m, m′ ∈ R(S(N)) and σ ∈ T ∗

N

such that (S(N) : m
σ−→ m′). Then m|PA

∈ R(S(A)) and m|PB
∈ R(S(B)),

(S(A) : m|PA

σ|TA−→ m′|PA
), and (S(B) : m|PB

σ|TB−→ m′|PB
).

4 A General Verification Framework

In this section we present a formal framework for compositional verification of
soundness on component trees. Proving the soundness of a component tree is
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Fig. 4. Composition A ⊕G B and its subnet N1 = CB(A)

done in two steps. First of all, each component should be sound itself. Next,
each connection is checked against some communication condition, from which
soundness of the composition, and of the whole tree can be concluded. Such a
condition should satisfy some criteria. A component may not notice the difference
whether it is communicating with a single component or with a component tree.
We therefore search for a sequence relation ϕ : T ∗

N × T ∗
N → IB, which is a

predicate on the firing sequences of component N , such that this property is
guaranteed.

As shown in [4], soundness is not a sufficient condition. Consider for example
the composition in Fig. 2. In this example, it is easy to verify that both composi-
tions A⊕GB and B⊕H C2 are sound. However, in the composition A⊕GB⊕H C2,
transition t is only enabled once it received a message from component A, which
in turn requires a message from component C2. Consequently, the composition
of the tree is not sound.

As soundness is not a sufficient condition, we need to strengthen the sound-
ness property by stating that for all reachable markings in the composition of
B and C and firing sequence σ in B, a firing sequence σ̃ should exist in the
composition such that σ and σ̃ satisfy the predicate ϕ.

Definition 6 (Communication condition). Let B and C be two components
such that B ⊕H C for some H ∈ GB ∩ GC . Define N = B ⊕H C and let ϕ :
T ∗

B ×T ∗
N → IB be a sequence relation. The communication condition comϕ(B,C)

holds if and only if:

∀m ∈ R(S(N), iN ), σ ∈ T ∗
B :

(S(B) : m|PB

σ−→ fB) =⇒ (∃σ̃ ∈ T ∗
N : (S(N) : m

σ̃−→ fN ) ∧ ϕ(σ, σ̃))

In fact, the communication condition states that B ⊕ C is able to follow B. For
any ϕ, this condition implies soundness, which directly follows from Corollary 5.

Lemma 7 (ϕ-communication condition implies soundness). Let B and
C be two components that are composable with respect to port G ∈ GB \ GC . Let
ϕ be a sequence relation. If B is sound and comϕ(B,C) holds for some sequence
relation ϕ, then B ⊕H C is sound.
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Condition comϕ is sufficient for deciding the soundness of two components.
Let A, B and C be three components such that A communicates with B, B
communicates with C, but A and C do not communicate, i.e., A and C are
disjoint. We prove that if the composition A ⊕ B is sound, and components B
and C satisfy comϕ(B,C), then the composition of A, B and C is sound. In
order to provide a sufficient condition for concluding soundness of a tree of three
components, such a sequence relation needs to satisfy several criteria. These
criteria follow directly from the proof.

To prove soundness of the component tree, we need to show that given a
reachable marking of the component tree, the final marking should be reachable.
As the composition of A and B is sound, we have a firing sequence in A ⊕ B
from this marking leading to the final marking of A⊕ B. Condition comϕ(B,C)
should guarantee that this firing sequence projected on B is still possible in the
component tree. The condition ensures the existence of a firing sequence in B⊕C
such that it satisfies the sequence relation ϕ.

Hence, we have a firing sequence in A ⊕ B and a firing sequence in B ⊕ C
satisfying the sequence relation ϕ. We should be able to interweave these firing
sequences, so that the resulting sequence is a firing sequence in the component
tree. Therefore, we divide the composition of A⊕B into two subnets, N1 and N2.
The first subnet, N1, covers component A and the transitions of B that commu-
nicate with A. Figure 4 depicts the division of the composition A ⊕ B into N1.
Net N2 is the skeleton of component B. Note that the union of nets N1 and N2

is the skeleton of the composition. The transitions of B that communicate with
A are common for the two subnets, the places of N1 and N2 are disjoint.

Definition 8. Let A and B be two components such that A and B are compos-
able with respect to some port G ∈ GA ∩ GB. Define N = A ⊕G B. The Petri net
CB(A) is defined as CB(A) = (P, T, F ) where P = PA ∪ G, T = TA ∪ •

N G ∪ G•
N

and F = FN ∩ ((P × T ) ∪ (T × P )).

Every firing sequence in A⊕ B can be turned into a firing sequence of CB(A)
by leaving out all transitions of TB , except the transitions of B that communicate
with A. The proof follows directly from Corollary 5.

Corollary 9. Let A and B be two OPNs that are composable with respect to
some port G ∈ GA ∩GB. Define N = A⊕B and L = CB(A). Then for all σ ∈ T ∗

N

and m, m′ ∈ INPN such that (S(N) : m
σ−→ m′) holds (L : m|PL

σ|TL−→ m′|PL
).

In the soundness proof, the firing sequence in A ⊕ B is projected on CB(A),
and it will be interweaved with the resulting firing sequence of the communica-
tion condition. The interweaving property will guarantee that this interweaving
is possible.

Property 10 (Interweaving firing sequences). Let A and B be two components
that are composable with respect to some port G ∈ GA∩GB . Let ϕ be a sequence
relation as defined in Definition 6. Let N1 = CB(A) and N2 = S(B). Let μ ∈ T ∗

N1

and m, m′ ∈ INPN1 such that (N1 : m
μ−→ m′). Let ν ∈ T ∗

N2
and m,m′ ∈ INPN2
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Fig. 5. The composition A ⊕ B ⊕ C is split into N1 = CB(A) and N2 = S(B ⊕ C)

such that (N2 : m
ν−→ m′) and ϕ(μ, ν). Then a σ ∈ T ∗

N exists such that (S(N) :
m + m

σ−→ m′ + m′), ϕ(μ, σ) and ϕ(ν, σ).

The interweaving property expresses that two sequences can be combined
into a single firing sequence that is executable and satisfies the sequence rela-
tion. Also, the sequence relation should hold for a firing sequence, and its firing
sequence in which all transitions are hidden except for the transitions that com-
municate. Rephrased, the sequence relation ϕ should not consider all transitions
in B, but only the transitions of B that communicate with A. This is expressed
in the next property.

Property 11. Let B and C be two components that are composable, and let
G ∈ GB \ GC . Define N = B ⊕ C and R = •

N G ∪ G•
N . Let ϕ be a sequence

relation as defined in Definition 6. Let σ ∈ T ∗
B and σ̃ ∈ T ∗

N . If ϕ(σ, σ̃), then
ϕ(σ|R, σ̃) and ϕ(σ, σ̃|R).

This leads to the main theorem, that the communication condition comϕ is
a sufficient condition for soundness. Note that to prove the main theorem for
a specific sequence relation, we need to show that both properties hold for the
sequence relation.

Theorem 12 (Communication condition sufficient for soundness). Let
A, B and C be three components such that A and B are composable with respect
to port G ∈ GA ∩GB, B and C are composable, A and C are disjoint and A⊕G B
is sound. Let ϕ be a sequence relation as defined in Definition 6.

If comϕ(B,C) holds, then A ⊕G B ⊕H C is sound.

Proof. Define N = A ⊕G B ⊕H C, M = A ⊕G B, N2 = S(B ⊕H C) and N1 =
CB(A). Let m ∈ R(S(N)). Since M is sound, a σ ∈ T ∗

M exists such that (S(M) :
m|PM

σ−→ fM ). By Corollary 5, the firing sequence σ|TB
is also a firing sequence

in S(B), i.e. (S(B) : m|PB

σ|TB−→ fB). By Corollary 5, m|PN2
∈ R(N2, iM ). Hence,

we can apply the communication condition comϕ(B,C) on m|PN2
and σ|TB

,

which results in a firing sequence σ̃ ∈ T ∗
N2

such that (N2 : m|PN2

σ̃−→ fN2) and
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ϕ(σ|TB
, σ̃). Hence, we have a firing sequence σ in M and a firing sequence σ̃ in

N2, which we need to interweave.
We split the composition N in N1 and N2, as shown in Fig. 5. By Corollary 9,

(N1 : m|PN1

σ|TN1−→ fA). By Property 11, the sequence relation also holds for the
projected firing sequence, i.e. ϕ(σ|TN1

, σ̃) holds. Then the Interweaving Property
(10) applied on (N1,m|PN1

) with firing sequence σ|TN1
and (N2,m|PN2

) with

firing sequence σ̃ results in a firing sequence σ ∈ T ∗
N such that (S(N) : m

σ−→
fA + fN2 = fN ). Hence, N is sound. �

From Theorem 12, it follows that comϕ is a sufficient condition to conclude
soundness of a component tree consisting of three components if Properties 10
and 11 hold for the sequence relation. Hence, if two connected components sat-
isfy comϕ, the composition is guaranteed to be sound, and it can be used for
compositional verification. In fact, comϕ(A,B) implies a direction in the com-
ponent tree: component A uses component B to provide its service on port G,
or, rephrased, B provides a service to A.

Definition 13 (Component uses another component). Let A and B be
two composable components with respect to port G ∈ GA ∩ GB, and let ϕ be a
sequence relation as defined in Definition 6.

We say A uses B, denoted by A ©�ϕB, if A ⊕G B and comϕ(A,B).

In this way, we can construct a component tree of components that uses other
components to deliver their service. A component tree is a tree of components
connected to each other such that components can only “subcontract” work to
other components. The structure of the tree is defined by the tree function c.
Each node A is a component that delivers a service to its parent c(A) using
the services of its children c−1(A). Each component only communicates with its
parent and its children, communication with other components is not allowed.
Note that the communication implied by this function is asymmetric: the parent
uses its children to deliver the service requested. By requiring that the transitive
closure of c is irreflexive, we ensure the component tree to be a tree.

Definition 14 (component tree). A component tree is a pair (O, c) where
O is a set of components, and c : O ⇀ O is a partial function called the parent
function such that the transitive closure c∗ of c is irreflexive, for all A,B ∈ O:

– c(B) = A =⇒ |GA ∩ GB | = 1 ∧ A ©�ϕB; and
– A ∩ B = ∅ =⇒ c(A) = B ∨ c(B) = A.

and for all A ∈ O a B ∈ O exists such that (A,B) ∈ c∗ or (B,A) ∈ c∗.

An example is shown in Fig. 1, where component A uses component B, which
in turns uses components C and D.

In a component tree, each parent should use the services of its children.
Hence, if the root is sound, and each parent uses its children, the component
tree should be sound. This is expressed in the next theorem. The proof uses the
associativity and commutativity of the composition operator and Theorem12.
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Theorem 15 (Soundness of component trees). Let (O, c) be a component
tree. If all components of O are sound, then

⊕
X∈O X is sound.

Proof. Assume all components in O are sound. As (O, c) is a tree, a topological
sort � exists on the nodes O. Let O = {O1, . . . , On} such that Oi � Oi+1 for
1 ≤ i < n. We prove the lemma by induction on i. For i = 1, the statement
holds trivially.

Now assume 1 < i < n and
⊕

X∈O′ X is sound where O′ = {O1, . . . , Oi}.
Let B = Oi+1. Since � is a topological sort, there exists a unique A ∈ O′ such
that A ©�ϕB, and B is disjoint with all OPNs in O′ \ {A}.

By associativity and commutativity, we have
⊕

X∈O′ X = (
⊕

X∈O′\{A} X)⊕
A, and

⊕
X∈O′\{A} X is disjoint with B. As A ©�ϕB, we have comϕ(A,B), and

thus by Theorem 12, (
⊕

X∈O′\{A} X)⊕ A⊕G B is sound. Again by associativity
and commutativity, (

⊕
X∈O′\{A} X) ⊕ A ⊕G B =

⊕
X∈O′∪{B} X. Hence, the

statement holds. �

5 Elastic Communication

In this section, we present a communication condition that satisfies both
Properties 10 and 11. Let A, B and C be three components such that A and
B, and B and C are both composable, and A and C are disjoint. In [4], it is
shown that checking whether the composition B ⊕ C behaves as component
B on the interface with A, i.e., identical communication, is sufficient to prove
soundness of a component tree. In fact, it is easy to show that this condition sat-
isfies Properties 10 and 11 [24]. However, this identical communication condition
is very restrictive. One way to weaken the condition of [4] is by allowing to per-
mute port transitions within a communication block, i.e., a block of only sending
or receiving transitions, possibly interweaved with silent transitions. Although
this already weakens the condition, it remains very restrictive [24]. Consider for
example the composition of Fig. 6. It is clear that the composition A ⊕G B is
sound. Now, take the sequence σ = 〈t1, t2, t3, t4, t5〉. Although it is easy to verify
that the composition A ⊕ B ⊕ C is sound, no firing sequence can be found that
behaves as σ, even when swaps within the same communication block is allowed.
The main problem of the net is that the b message is sent too early for some of
the sequences. This example shows that messages may be sent earlier without
violating the soundness property. Soundness only requires that messages should
be on time, i.e., components may send messages earlier, as long as they can both
terminate properly. We reflect this in the elastic communication condition.

The condition allows sending transitions to be shuffled, as long as for each
receiving transition at least the same sending transitions occur, or rephrased,
sending transitions may occur at any position within its communication block,
or it can be moved forward in the firing sequence. Although transitions sending
messages may be moved forward in the firing sequence, the condition ensures
that from every marking reachable, the final marking is reachable.

Consider the composition A⊕GB of two components A and B. In the proof of
Theorem 12, the composition is split into two nets, N1 = CB(A) and N2 = S(B),
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Fig. 6. Although net A ⊕G B ⊕H C is sound, identical communication does not hold

and a firing sequence in N1 is interweaved with a firing sequence in N2. Let μ be a
firing sequence in N1 and ν a firing sequence in N2. To be able to interweave the
two firing sequences, ν has to produce the tokens it sends in time, and μ has to
ensure that ν has sufficient tokens to be able to produce these tokens. In net N1,
all transitions of B either have an empty preset, or an empty postset. The set
of transitions of B with an empty preset is labeled Rout, the set of transitions
of B with an empty postset is labeled Rin. If in μ a transition of Rout fires, it
means that a message from B is needed for A to continue. On the other hand,
firing a transition of Rin in ν indicates that B needs a message from A.

To interweave sequences μ and ν into a firing sequence σ in the composition, if
a transition in Rin is the next transition of ν to be added to σ, then the transition
should already have fired in μ, since otherwise the transition cannot be enabled
in the composition. Likewise, if a transition in Rout is the next transition of μ to
be added to σ, then the transition should already have fired in ν, since otherwise
the transition cannot be enabled in σ. If both conditions do not hold, we cannot
create a firing sequence in the composition. Hence, the following formula has to
hold:

¬∃ 0 ≤ k < |μ|, 0 ≤ l < |ν| :
(−−−−−→μ[1..k+1]|Rout

> −−−→ν[1..l]|Rout
) ∧ (−−−−→ν[1..l+1]|Rin

> −−−→μ[1..k]|Rin
)

If such a pair k, l would exist, we cannot interweave the firing sequences: we
cannot add the next transition of μ, since it needs tokens of ν that are not yet
generated, and we cannot add the next transition of ν, since that transition
needs tokens of μ that are not yet generated. If such a pair does not exist, we
say the sequences are elastic to each other.
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Definition 16 (Elastic sequences). Let N = (P, T, F ) be a Petri net and
G ⊆ P . Define Rin = {t ∈ T | λG(t) =?} and Rout = {t ∈ T | λG(t) =!}. Let
μ, ν ∈ T ∗

N . Sequence μ is elastic to sequence ν, denoted by μ �G ν if and only
if: (−−−−−→μ[1..k+1]|Rout

≤ −−−→ν[1..l]|Rout
) ∨ (−−−−→ν[1..l+1]|Rin

≤ −−−→μ[1..k]|Rin
) for all 0 ≤ k < |μ|

and 0 ≤ l < |ν|.

Consider again Fig. 6. As an example, take the firing sequences σ = 〈t1, t2, t3,
t4, t5〉 and σ̃ = 〈t1, u1, t2, t4, u2, u3, t3, t5〉. In σ̃, the firing of transition t3 is
moved forward with respect to σ, i.e., sending message b is “delayed” in σ. Since
σ[1..0] = ε for each firing sequence σ, we have by definition σ[1..0] �G σ̃[1..0].
The index of σ̃ may be increased up to the situation that σ[1..0] �G σ̃[1..6], since
then t3 needs to be fired in σ[1..0] = ε, which is obviously not the case. Hence, we
need to increase the index of σ, which is allowed up to σ[1..5] �G σ̃[1..6]. Then,
it is allowed to increase the index of σ̃ up to σ[1..5] �G σ̃[1..8]. Hence, σ is elastic
to σ̃. The sequences not only should be elastic, but also the number of messages
sent and received by both sequences should match. These two requirements form
the elastic sequence relation.

Definition 17 (Elastic communication condition). Let B and C be two
components that are composable with respect to port G ∈ GB \ GC . Let μ ∈ T ∗

B

and ν ∈ T ∗
B⊕HC . We define the elastic sequence relation ψG : T ∗

B ×T ∗
B⊕HC → IB

by ψG(μ, ν) if and only if −→μ |R = −→ν |R and μ|R �G ν, where R = {t ∈ TB |
λG(t) = τ}. The elastic communication condition is defined as comψG

(B,C).

In order to show that the elastic communication condition comψ is a sufficient
condition, we need to show that Properties 10 and 11 hold for the elastic sequence
relation. The latter follows directly from the definition of the elastic sequence
relation.

Corollary 18. Let A and B be two components that are composable with respect
to port G ∈ GB \ GC . Define N = A ⊕ B. Let μ ∈ T ∗

B and ν ∈ T ∗
N such that

ψG(μ, ν). Define R = •
N G ∪ G•

N . Then ψG(μ|R, ν) and ψG(μ, ν|R).

To combine a firing sequence μ with a firing sequence ν it is elastic to, we
need to consider the elasticity, i.e., the structure of the sequences. Hence, to prove
Property 10 for ψ, we need to show that we can interweave firing sequences μ
and ν. If −−−−−→μ[1..k+1]|Rout

≤ −−−→ν[1..l]|Rout
, we concatenate σ and 〈μ(k + 1)〉 if μ(k + 1)

is not in Rin or Rout, and if −−−−→ν[1..l+1]|Rin
≤ −−−→μ[1..k]|Rin

, we concatenate σ and
〈ν(l + 1)〉. Since μ is elastic to ν, always at least one of the two cases holds for
each k < |μ| and l < |ν|. This operation results in the algorithm IsElasticTo.
In the algorithm, the If-�-Fi construction indicates that if multiple guards are
true, non-deterministically one of the guards evaluating true is chosen.

In this algorithm, if both conditions of the if clauses fail, sequence μ cannot be
elastic to sequence ν, and hence, the algorithm fails. Otherwise, an interweaved
firing sequence σ is returned, such that both μ �G σ and ν �G σ.
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Procedure IsElasticTo(μ,ν)
(k, l, σ) :=(0, 0, ε);
{Inv: μ[1..k] �G ν[1..l] ∧ μ[1..k] �G σ ∧ ν[1..l] �G σ }
while (k < |μ| ∨ l < |ν|) do

if k < |μ| ∧ −−−−−→μ[1..k+1]|Rout
≤ −−−→ν[1..l]|Rout

then

if μ(k + 1) �∈ (Rin ∪ Rout) then
σ := σ; 〈μ(k + 1)〉;

fi
k := k + 1;

� l < |ν| ∧ −−−−→ν[1..l+1]|Rin
≤ −−−→μ[1..k]|Rin

then

(σ, l) :=( σ; 〈ν(l + 1)〉, l + 1);
else

return ε;
fi

od
return σ

Corollary 19. Let N be a component and let G ∈ GN . Let μ, ν ∈ T ∗
N . Then an

invariant for procedure isElasticTo(μ,ν) is

μ[1..k] �G ν[1..l] ∧ μ[1..k] �G σ ∧ ν[1..l] �G σ

Next, we need to show that the firing sequence constructed via IsElasticTo
is executable. Given two OPNs A and B that are composable with respect to
port G, we split the composition into N1 = CB(A) and N2 = S(B). Every
marking in the composition can be split into a marking in S(A), S(B) and some
tokens in the interface places G. The marking in the interface G can again be split
into places that are input for B, which we name x, and places that are output
for B, which we name y. As shown in the next lemma, the elastic communication
condition ensures that at each point in time, there are sufficient tokens in the
interface places to continue.

Lemma 20. Let A and B be two components such that they are composable
with respect to some port G ∈ GA ∩ GB. Define GI = G ∩ IB, GO = G ∩ OB,
N1 = CB(A), N2 = S(B) and N = N1 ∪ N2. Let m0 ∈ INPN1 be a marking,
and let μ ∈ T ∗

N1
be a firing sequence of length k such that for all 1 ≤ i ≤ |μ|,

markings mi−1,mi ∈ INPN1 exist with (N1 : mi−1
μ(i)−→ mi). Let m0 ∈ INPB be a

marking, and let ν ∈ T ∗
B be a firing sequence of length l such that μ �G ν and

for all 1 ≤ i ≤ |ν|, markings mi−1,mi ∈ INPN2 exist with (N2 : mi−1
ν(i)−→ mi).

Then, a firing sequence σ ∈ T ∗
N and a marking m ∈ INPN exist such that: (1)

σ = IsElasticTo(μ, ν); (2) σ|TA
= μ|TA

and σ|TB
= ν|TB

; (3) (N : m0+m0
σ−→

m); and (4) mk|PA
≤ m, and ml ≤ m.

Proof. Define Rin = {t ∈ TB | λG(t) =?}, Rout = {t ∈ TB | λG(t) =!} and
R = Rin ∪ Rout. Note that R = TN1 \ TN2 .
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We prove the lemma by induction on the structure of μ �G ν. The statement
holds trivially for σ = ε and m = m0 + m0.

Suppose the statement holds for some μ′ ≤ μ and ν′ ≤ ν such that μ′ �G ν′,
i.e. let k = |μ′| and l = |ν′|, then for μ′ and ν′ a firing sequence σ′ ∈ T ∗

N and
marking m′ ∈ INPN exist such that σ′ = IsElasticTo(μ′, ν′), σ′|TA

= μ′
|TA

and
σ′|TB

= ν′|TB
(N : m0 + m0

σ′
−→ m′) and mk ≤ m′, and ml ≤ m′.

By the structure of �G, two cases need to be considered: k < |μ| and
−−−−−→μ[1..k+1]|Rout

≤ −−−→ν[1..l]|Rout
or (2) l < |ν| and −−−−→ν[1..l+1]|Rin

≤ −−−→μ[1..k]|Rin
.

First suppose k < |μ| and −−−−−→μ[1..k+1]|Rout
≤ −−−→ν[1..l]|Rout

. Let t = μ(k+1). If t ∈ R,
then t ∈ TB . Hence, firing transition t does not change the internal marking of A,
i.e. mk|PA

= mk+1|PA
. Choose σ = σ′ and m = m′. Then clearly the statement

holds.
Otherwise, t ∈ R. There are two cases to consider: either (a) •

N t ∩ G = ∅ or
(b) •

N t ∩ G = ∅. If (a) •
N t ∩ G = ∅, then •

N t ≤ mk|PA
≤ m′. Let σ = σ′; 〈t〉 and

m ∈ INPN such that (N : m′ t−→ m). Hence, σ and m have the desired property.
Next, suppose (b) •

N t ∩ G = ∅. Then, transition t needs input from some places
in the interface G. Since t ∈ R, we have −−−→μ[1..k]|Rout

= −−−−−→μ[1..k+1]|Rout
≤ −−−→ν[1..l]|Rout

=
−→
σ′ |Rout

. Let p ∈ •
N t ∩ G be an interface place in the preset of transition t. Since

transition t is enabled in (N,mk), we have mk(p) > 0. By the marking equation,
mk(p) = m0(p) +

∑
u∈•p

−−−→μ[1..k](u) −
∑

u∈p•
−−−→μ[1..k](u). As place p is an interface

place, mk(p) ≤ m′(p). Thus, transition t is enabled in (N,m′). Let σ = σ′; 〈t〉
and m ∈ INPN such that (N : m′ t−→ m).

Suppose (2) l < |ν| and −−−−→ν[1..l+1]|Rin
≤ −−−→μ[1..k]|Rin

. Let t = ν(l + 1). If
•

N t ∩ G = ∅, then •
N t ≤ ml. Hence, the statement holds for σ = σ′; 〈t〉 and

m ∈ INPN such that (N : m′ t−→ m).
Otherwise, •

N t ∩ G = ∅. Then λG(t) =? and transition t needs input from A
in order to be enabled in N . Hence, t ∈ Rin and ν[1..l]|Rin

(t) < μ[1..k]|Rin
(t). Let

p ∈ •
N t∩G be an interface place in the preset of t. Consequently, mk(p) < m′(p),

and transition t is enabled in (N,m′). Let σ = σ′; 〈t〉 and m ∈ INPN such that
(N : m′ t−→ m). �

Lemma 20 shows that a firing sequence and a firing sequence it is elastic to
may be interweaved into a new firing sequence that is elastic to both sequences.
As in elastic communication the number of occurrences of each communicating
transition should be equal, we may directly conclude that Property 10 holds for
the elastic sequence relation ψ.

Corollary 21 (Harlem shuffle). Let A and B be two OPNs that are com-
posable with respect to port G ∈ GA ∩ GB. Let N1 = CB(A) and N2 = S(B).
Let μ ∈ T ∗

N1
and m, m′ ∈ INPN1 such that (N1 : m

μ−→ m′). Let ν ∈ T ∗
N2

and
m,m′ ∈ INPN2 such that (N2 : m

ν−→ m′) and ψG(μ, ν). Then, there exists
σ ∈ T ∗

N such that (S(N) : m + m
σ−→ m′ + m′), ψG(μ, σ) and ψG(ν, σ).

From Corollaries 18 and 21 we can directly conclude that Condition comψ is
a sufficient condition for compositional verification.
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Fig. 7. Although net A ⊕G B ⊕H C is sound, condition ΨG(B, C) does not hold.

Theorem 22 (Elastic communication condition sufficient for sound-
ness). Let A, B and C be three OPNs such that A and B are composable with
respect to G ∈ GA ∩ GB, B and C are composable, A and C are disjoint and
A ⊕G B is sound. If comψG

(B,C) holds, then A ⊕G B ⊕H C is sound.

The framework does not provide a necessary condition. As shown in Fig. 7,
also the elastic communication condition is not necessary. In this example, com-
ponent A either receives an a or a b from component B. In the composition
B ⊕H C, component C decides which message will be sent by component B.
Consider the marking [iB , d, fC ] of the composition B ⊕ C. In this marking,
the composition can only decide to send message b, whereas if we project this
marking on B, i.e. we consider only the marking [iB ], also message a could be
sent. Hence, the condition does not hold for the example.

6 Conclusions

In this paper, we considered a sub class of dynamic networks of asynchronously
comunicating systems. We presented a framework for compositional verification
of such systems based on communication conditions.

The elastic communication condition is an example of using this framework.
Given two sequences, the elastic communication condition allows transitions that
send messages to occur earlier in the firing sequence, as long as it is produced
before the token needs to be consumed. A simple algorithm exists to decide
whether a firing sequence is elastic to another firing sequence, and if so, the
algorithm returns an interweaved firing sequence of the two.

Related Work. In [7] the authors give a constructive method preserving the
inheritance of behavior. As shown in [2] this can be used to guarantee the correct-
ness of interorganizational processes. Other formalisms, like I/O automata [14]
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or interface automata [6] use synchronous communication, whereas we focus on
asynchronous communication.

In [23], the author introduces place composition to model asynchronous com-
munication focusing on the question which subnets can be exchanged such that
the behavior of the whole net is preserved. In [13] the authors focus on decid-
ing controllability of an OPN and computing its operating guidelines. Operating
guidelines can be used to decide substitutability of services [21], or to prove that
an implementation of a service meets its specification [5].

In [8], the authors propose to model choreographies using Interaction Petri
nets. Similarly the authors of [11] propose a method to verify whether services
agree to a choreography specification. However, in these approaches the whole
network should be known at design-time.

In [9], the authors introduce an abstract component and interface algebra
based on logic, where consistency is based on the composition of, possibly infinite,
sets of traces of both the connections and the services. Although closely related,
the approach presented in this paper focuses more on the process aspects of
component-based design.

Future Work. Although we have shown that the elastic communication condi-
tion is sufficient, decidability of the condition remains future work. The proposed
framework shows that post-design verification is a challenging task. As, in lim-
itations one first shows oneself the master, we search for similar approaches as
presented in [12] that guarantees the presented conditions during the construc-
tion of a network of asynchronously communication systems.
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Abstract. We present a novel abstraction technique that exploits the
compositionality of a concurrent system consisting of interacting compo-
nents. It uses, given an invariant and a component of interest, bounded
model checking (BMC) to quickly interpolate an abstraction of that
component’s environment. The abstraction may be refined by increasing
the BMC bound. Furthermore, it is only defined over variables shared
between the component and its environment, resulting in an aggressive
abstraction with several applications. We demonstrate its use in a veri-
fication setting, as we report on our open source implementation in the
NuSMV model checker which was used to perform a practical assess-
ment with industrially-sized models from satellite case studies of ongo-
ing missions. These models are expressed in a formalized dialect of the
component-oriented and industrially standardized Architecture Analysis
and Design Language (AADL).

1 Introduction

An earlier work [11] reports on the application of a wide range of model check-
ing techniques for validating a satellite platform of an ongoing mission. This
industrially-sized model was expressed in a formalized dialect [2] of the Archi-
tecture Analysis and Design Language [12]. This AADL dialect is a component-
oriented formalism in which components interact through data and event ports
(i.e. shared variables). The sheer size of models was particularly visible once fail-
ures were injected. The nominal state space of roughly 48 million states exploded
by a factor 213563 due to the activation of failure modes and the fault manage-
ment functionality for handling it. The model checkers used in literature had a
hard time on this model. Various techniques have been proposed in literature to
cope with similar instances of the infamous state space explosion problem. In the
context of this paper, compositional reasoning and interpolation are particularly
relevant.
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The compositional reasoning technique by [8] was our starting point. It gen-
erates a so-called split invariant defined over the system’s global variables for
each parallel process. The split invariants are then checked against the property
instead of the full composition of processes. It was shown later [15,18] that this
technique, along with Cartesian abstract interpretation [18] and thread-modular
verification [13], is conceptually the same as the classical Owicki-Gries para-
digm, but differs in the details. They generally work well for parallel systems
where processes communicate over a small set of global variables, i.e. variables
that are visible to all processes. In the satellite models, components are highly
cohesive through shared variables, as variables of one component are only visible
to a handful of other components. The techniques from the Owicki-Gries para-
digm are ineffective here as naively all shared variables would have to be inter-
preted as global variables, which would make it a near-monolithic model checking
problem again. Another branch of compositional reasoning is the rely/assume
guarantee/provide techniques. There is a huge body of work behind this. The
most related ones are the automated methods that use learning techniques to
generate assumptions [5]. Our work is a twist on this, because instead of learning
we use interpolation to generate an environment. That environment can be then
viewed as an assumption for which the property of interest may hold. The use of
interpolation techniques [9] in model checking was pioneered by McMillan [19].
Also this led to a substantial body of work. To our knowledge, it however has not
been cast into a compositional reasoning scheme as we describe in this paper.

Contributions: The contributions of this paper are as follows.

– A theory inspired by Craig interpolation that results in an aggressive abstrac-
tion of the environment of a component of interest, resulting into a component-
oriented interpolant.

– A rudimentary (re)verification algorithm that exploits this theory.
– An open source implementation of the algorithm in NuSMV 2.5.4 [4].
– An evaluation of the theory and implementation using industrially-sized mod-

els from satellite platform case studies of ongoing missions.

Organization: Section 2 explains applicable background information and intro-
duces the majority of the formal notation used in this paper. Section 3 describes
the theoretical contribution of this paper, the component-oriented interpolant.
We implemented it into an algorithm and evaluated it using satellite platform
case studies on which we report in Sect. 4. Related work and the conclusions are
discussed respectively in Sects. 5 and 6.

2 Preliminaries

Our work builds upon existing works in satisfiability (SAT) solving, bounded
model checking and Craig interpolation. These are discussed in the following.

SAT Solving: Propositional formulae consist of literals, which are Boolean vari-
ables (e.g. x1) that can be negated (e.g. ¬x1), and are combined by AND
(i.e. ∧) and OR (i.e. ∨) operators. They are typically processed from their
conjunctive normal form (CNF) where the formula consists of conjuncted clauses
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(e.g. (¬x1)∧(x1∨¬x2)) and each clause is a disjunction of literals (e.g. (x1∨¬x2)).
As we can view CNF formulae as a set of clauses, we use the set membership
notation to check whether a clause is part of a CNF formulae, e.g. (x1∨¬x2) ∈ A
with A being a CNF formula. A classical decision problem is whether, given a
propositional formula, there exists a satisfying assignment, i.e. a vector of values
holding either true (i.e. �) or false (i.e. ⊥) for each variable. This is the NP-
complete SAT problem. Yearly competitions have highly stimulated research in
this area, progressing modern SAT-solvers to handle formulae with thousands
of variables in mere seconds. They typically generate the satisfying assignment,
denoted as σ, as a proof of satisfiability. In case of unsatisfiability, some SAT-
solvers provide a resolution refutation graph as a proof [19]. An example of
a resolution refutation graph is shown in Fig. 2. It is a directed acyclic graph
G = (V,E), where V is a set of clauses (not necessarily a subset of the original
formula). If a vertex v ∈ V is a root (there are usually multiple), then it is a
clause in the original formula. Otherwise the vertex has exactly two predeces-
sors, v1 and v2 of the form v1 = x ∨ D and v2 = ¬x ∨ D′. The clause v is the
simplification of D ∨ D′ and x is its pivot variable. There is only one leaf which
is the empty clause ⊥. The resolution graph reasons how clauses, starting from
the root clauses, have pivot variables that can be eliminated, as they contribute
to the inconsistency. Once all variables are eliminated, the empty clause ⊥ is
reached, indicating unsatisfiability.

Bounded Model Checking: Propositional formulae can be used to verify a prop-
erty (e.g. φ) of a model M = (I, T ). The initial condition I(s̄) is a Boolean
formula over a finite set of variables, e.g. s̄ = s1, . . . , sn. The set of occurring
variables is denoted by the predicate var, e.g. var(I) = {s1, . . . , sn}. Whenever
a particular valuation σ of s̄ satisfies I, i.e. σ(I) = �, then σ is an initial state.
Multiple distinct initial states may satisfy I. The transition function, denoted
as T (s̄ × s̄′), is a propositional function with s̄ = s1, . . . , sn and s̄′ = s′

1, . . . , s
′
n.

Note that the cardinalities of s̄ and s̄′ are equal. If for a pair of valuations σ
and σ′ the transition function holds, i.e. σσ′(T ) = �, then σ′ is a valid suc-
cessor state to state σ. The initial condition and the transition function are
used to compute the reachable states up to a natural bound k using the formula
I[s̄/r̄0]∧

∧k
i=1 T [s̄/r̄i−1, s̄

′/r̄i]. It uses the substitution operator T [x/y] to denote
that all occurrences of x in T are substituted by y. We refer to I0∧T1∧· · ·∧Tk as
its simplified notation. An invariant φ can be verified by conjuncting its negated
unrolling,

∨k
i=0 ¬φ[s̄/r̄i], to it. To ease notation, we simply refer to this formula

as ¬φ. The resulting formula, I0 ∧
∧k

i=1 Ti ∧¬φ, can be checked for satisfiability.
If it is satisfiable, the satisfying assignment is a counterexample to the invariant.
If it is unsatisfiable, then the invariant holds up to bound k, which is denoted
by M |=k φ. An outcome w.r.t. the full state space is however inconclusive [1].

Example 1 (Two-Bit Counter). Part of our running example is a simple two-bit
counter that is initialized to 0. It is incremented by 1 with each transition until
it hits the value 3. The Boolean encodings of its initial condition and transition
functions look as follows:
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I = ¬α ∧ ¬β

T = (¬α ∨ α′) ∧ (¬α ∨ β′) ∧ (α ∨ ¬α′ ∨ β) ∧ (α ∨ ¬β ∨ ¬β′) ∧ (α′ ∨ β′)

Its one-step unrolling looks as follows:

I0 ∧ T1 = (¬α0 ∧ ¬β0) ∧ (¬α0 ∨ α1) ∧ (¬α0 ∨ β1)
∧ (α0 ∨ ¬α1 ∨ β0) ∧ (α0 ∨ ¬β0 ∨ ¬β1) ∧ (α1 ∨ β1)

(end of example)

Interpolation: Our work is heavily inspired by Craig’s seminal result [9].

Theorem 1 (Craig’s Interpolation Theorem). Let A and B be formulae of
first-order logic. If A =⇒ B holds, then there exists an interpolant C expressed
using the common variables of A and B, i.e. var(C) ⊆ var(A) ∩ var(B), such
that A =⇒ C and C =⇒ B holds.

A proof of this theorem restricted to propositional logic can be found in [3]. The
beauty of this theorem is that the interpolant C is expressed using a subset of the
variables in A. This powerful notion inspired us for developing our compositional
reasoning technique.

Note that Craig’s theorem only postulates the existence of an interpolant
when A =⇒ B. This can be verified with a SAT-solver. Observe that A =⇒ B
is equivalent to ¬(A ∧ ¬B). This means its tautology infers the contradiction of
A ∧ ¬B. By Craig’s interpolation theorem it follows that if A ∧ ¬B is unsatis-
fiable, there exists an interpolant C such that A =⇒ C holds and C ∧ ¬B is
unsatisfiable. Thus in this shape, the unsatisfiability of a formula indicates the
existence of an interpolant. It is shown in [20] how an interpolant C is gener-
ated from the resolution refutation proof resulting from the unsatisfiability of
A ∧ ¬B. We use a similar approach to abstract a component’s environment as a
transition function.

3 Component-Oriented Interpolation

Our setting is a concurrent system composed of processes (also referred to as
components with behavior) using a parallel composition operator. We leverage
this composition to reason over its behaviour in a compositional manner. In the
upcoming, we will describe our approach in the synchronous case only, i.e. all
components transit per global transition. It can however be extended to the asyn-
chronous case (i.e. interleaving transitions) by complementing the asynchronous
model with an interleaving scheduler component that regulates which component
progresses upon a transition.

Consider a synchronous composition of n processes M1, . . . , Mn, with their
associated transition relations T i and initial conditions Ii such that T =

∧n
i=1 T i

and I =
∧n

i=1 Ii. When this is applied to the bounded model checking formula,
the result is

∧n
i=1 Ii0 ∧

∧n
i=1 T i

1 ∧ . . . ∧
∧n

i=1 T i
k ∧ ¬φ. We can now isolate any
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process Mp such that the remainder processes, i.e. process p’s environment,
shall be abstracted through interpolation. It then becomes more apparent how
A and ¬B from Theorem 1 are to be determined:

Ip0 ∧ T p
1 ∧ . . . ∧ T p

k ∧ ¬φ
︸ ︷︷ ︸

¬B

∧ I �=p
0 ∧ T �=p

1 ∧ . . . ∧ T �=p
k︸ ︷︷ ︸

A

(1)

In the above, I �=p
0 =

∧
q∈{1,...,n}\{p} Iq0 , and similarly for T �=p

i .

Example 2 (Counter Monitor). Let us refer to the counter example of Example 1
as M1. We now add a monitoring process, M2, that among its functions, raises
a flag when the counter exceeds 2. The Boolean encoding of M2, where both δ
and γ are flags and the latter being the flag of interest, looks as follows:

I2 = ¬γ ∧ δ

T 2 = (¬α ∨ ¬β ∨ ¬δ′) ∧ (¬α ∨ γ′) ∧ (α ∨ ¬γ) ∧ (α ∨ ¬γ′) ∧ (β ∨ ¬γ) ∧ (δ′ ∨ γ)

From this point on we shall use the synchronous composition M1 ∧ M2 as our
ongoing running example. Let us say we are interested to see whether the flag
γ always stays unraised, i.e. the invariant ¬γ. And let us isolate process M1,
i.e. p = 1, from the synchronous composition. This isolation on a two-step BMC
unrolling would look as follows:

I10 ∧ T 1
1 ∧ ∧T 1

2 ∧ (γ0 ∨ γ1 ∨ γ2)
︸ ︷︷ ︸

¬B

∧ I20 ∧ T 2
1 ∧ ∧T 2

2︸ ︷︷ ︸
A

(2)

(end of example)

From Theorem 1, it follows that whenever the invariant holds within bound k,
there exists an interpolant C, such that it is implied by A. Intuitively, the inter-
polant C can be perceived as an abstraction of the k-fold unrolled environment
of process p. It is significantly smaller than the original formula representing the
k-bounded environment, since it is only defined over the variables used for inter-
acting with process p over bound k. That is, var(C) ⊆ var(I �=p

0 , T �=p
1 , . . . , T �=p

k )∩
var(Ip0 , T p

1 , . . . , T p
k , φ), where var(S1, . . . , Sn) is a shorthand for var(S1) ∪ . . . ∪

var(Sn). Observe that C is not a formula over current/next states, because it
is interpolated from the unrolling of T �=p instead of T �=p itself. In that form,
the interpolant C is only useful for k-bounded reverification of component p. It
would only conclude whether the invariant still holds for a partial state space,
namely up to a depth k. We strive for a different kind of interpolant that can
conclude whether the invariant still holds for the full state space. We call it the
component-oriented interpolant.

To this end, let us have a closer look at the sharing of variables in the
component-oriented interpolation setting, as it is slightly different from Craig
interpolation. In the latter, there are two sets of variables that can be partitioned
into three disjoint sets of variables, namely var(A)\var(B), var(B)\var(A) and
var(A)∩var(B). This is shown in Fig. 1a where the sets are respectively denoted
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āA b̄ Bc̄

(a) Craig

āT �=p
i

ē

T �=p
�=i

ḡ B

d̄

b̄

f̄
c̄

(b) Component-oriented

Fig. 1. Relation of variables in both interpolation settings.

as ā, b̄, c̄. In our component-oriented setting, there are three sets of variables
which can be partitioned into seven disjoint sets. See Fig. 1b. Consider any step i
by component p’s environment, i.e. T �=p

i (ā, b̄, c̄, d̄). The remainder environment
transition steps are T �=p

�=i (ē, d̄, c̄, f̄) and the transition steps by component p and
the property φ are B(ḡ, f̄ , c̄, b̄). The variables of I �=p

0 are omitted here for clarity
and are covered w.l.o.g. by the variables of T �=p

1 .

Example 3 (Variable Sharing in Counter Monitor). Reconsider Eq. (2), the two-
step BMC unrolling of the counter monitor (cf. Example 2). The variable par-
titioning of that unrolling in the Craig interpolation case is: ā = {α2, β2},
b̄ = {α0, α1, β0, β1, γ0, γ1, γ2} and c̄ = {δ0, δ1, δ2}.

The partitions are more fine-grained in the component-oriented interpolation
case. If we would take p = 1 and i = 1 on our running example, we would get
the following arrangement out of Eq. (2):

I10 ∧ T 1
1 ∧ ∧T 1

2 ∧ (γ0 ∨ γ1 ∨ γ2)
︸ ︷︷ ︸

¬B

∧ I20 ∧ T 2
1︸ ︷︷ ︸

T �=1
1

∧∧T 2
2︸︷︷︸

T �=1
�=1

The partitioning of Fig. 1b then applies, resulting in the following partitioning:

ā = {δ0, δ1}
b̄ = {α0, β0, γ0}
c̄ = {γ1}

d̄ = {}
ē = {δ2}
f̄ = {α1, β1, γ2}

ḡ = {α2, β2}

(end of example)

We use the finer grained notion of variable sharing in Fig. 1b to construct
component-oriented interpolants by traversing the resolution refutation graph of
Eq. (1) for each step i of component p’s environment:

Definition 1 (Component-Oriented Interpolant Construction). Let us
consider step i ≤ k of a component p’s environment. Furthermore, let G = (V,E)
be the resolution refutation graph of Eq. (1) and partition the occurring variables
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into disjoint sets according to Fig. 1b. For each non-root vertex v ∈ V , let v1
and v2 be its predecessors and x its pivot variable. Then, with each v ∈ V we
associate a Boolean formula Ci

v given as follows

Ci
v =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⊥ if v ∈ T �=p
i and v is root

� if v ∈ T �=p
�=i ∪ I �=p ∪ B and v is root

(¬x ∧ Ci
v1

) ∨ (x ∧ Ci
v2

) if x ∈ b̄ ∪ c̄, x ∈ v1,¬x ∈ v2, and v is non-root
Ci

v1
∨ Ci

v2
if x ∈ ā ∪ d̄ and v is non-root

Ci
v1

∧ Ci
v2

if x ∈ ḡ ∪ f̄ ∪ ē and v is non-root

We refer to the formula Ci
v for the leaf vertex v = ⊥ as the full interpolant of

step i. All other interpolants are referred to as partial interpolants.

If Definition 1 is applied starting from the leaf ⊥, one gets a component-oriented
interpolant for T �=p

i .

Example 4 (Component-Oriented Interpolation on Counter Monitor). Consider
Fig. 2. As it is an unrolling for two steps, there are partial interpolants for the
first and second step, i.e. respectively C1

v and a C2
v . Take for example the upper-

left three-node subtree. That is v = ¬γ1 and its two predecessors as v1 = α0∨¬γ1
and v2 = ¬α0. The pivot is therefore α0. As we determined earlier in Example 3
that α0 is in b̄, the partial interpolant of v for transition step 1 becomes (¬α0 ∧
C1

v1
) ∨ (α0 ∧ C1

v2
). Since C1

v1
= ⊥ and C1

v2
= �, this is simplified to C1

v = α0.
(end of example)

This interpolant is weak enough to preserve the over-approximation from
Craig interpolation, i.e. T �=p

i =⇒ Ci
⊥. This is captured by the following lemma:

Lemma 1 (Over-Approximation byComponent-Oriented Interpolant).
Let σ be a valuation such that σ(v) = ⊥ for any v ∈ V in Definition 1. For any
1 ≤ i ≤ k, the following holds:

σ(Ci
v) = ⊥ =⇒ ∃a ∈ T �=p

i :: σ(a) = ⊥ (3)

Intuitively, this means that whenever the partial interpolant Ci
v evaluates to false

for a particular valuation, a clause of T �=p
i evaluates to false as well for the same

valuation, causing the whole formula (see Eq. (1)) to evaluate to false.

Proof. Due to paper size constraints, we only provide a proof sketch. The full
proof is by induction on the structure of Ci

v and follows the reasoning in [21].
The base case is trivial to show. For the inductive step, there are three cases,
namely that the pivot variable x of vertex v is either in b̄ ∪ c̄ or in ā ∪ d̄ or in
ḡ ∪ f̄ ∪ ē. See Fig. 1.

By the definition of the resolution refutation graph, each non-root vertex has
two predecessors v1 and v2. It can be shown that regardless of each of the three
cases, whenever σ(Ci

v) = ⊥ either predecessor branch evaluates to false for both
the intermediate component-oriented interpolant and the predecessor vertex, e.g.
σ(v1) = ⊥ and σ(Ci

v1
) = ⊥. Then by induction, Eq. (3) can be concluded. �
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Contrary to Craig interpolation, we cannot conclude σ(Ci
v) = � =⇒ ∃b ∈

B :: σ(b) = ⊥ and thus preserve the unsatisfiability of Eq. (1) using the
component-oriented interpolant. It could also be that whenever the component-
oriented interpolant evaluates to true, a clause in T �=p

�=i evaluates to false. Or
that a clause in I �=p evaluates to false. In that sense, the component-oriented
interpolant is significantly weaker than a Craig interpolant. It is however strong
enough for our practical purposes, as is demonstrated later in Sect. 4.

The component-oriented interpolant Ci
⊥ only derives an interpolated envi-

ronment for transition step i, i.e. T �=p
i =⇒ Ci

⊥. By substitution of the occurring
variables to current and successor-state variables, it can be used as a transition
function for the unbounded case. This holds for each 1 ≤ i ≤ k. So in general,
the following definition and theorem are applicable:

Definition 2 (Interpolated Environment). Let the component-oriented inte-
rpolants C1

⊥, . . . , Ck
⊥ be derived from the resolution refutation graph of Eq. (1)

using Definition 1. The component-oriented interpolated environment transition
function, defined as Ep, can be derived as such:

Ep =
k∧

i=1

Ci
⊥(r̄i−1, r̄i)[r̄i−1/s̄, r̄i/s̄′]

Theorem 2 (Over-Approximation by Interpolated Environment). Let
Ep be given according to Definition 2. It then follows that

T �=p =⇒ Ep (4)

Proof. This follows from Lemma 1 which shows that T �=p
i =⇒ Ci

⊥. As var(Ci
⊥) ⊆

var(T �=p
i ), it follows that T �=p =⇒ Ci

⊥[r̄i−1/s̄, r̄i/s̄′]. By composition of implica-
tions of each i, Eq. (4) follows. �

Example 5 (Transition Function from Component-Oriented Interpolants). Let
us apply Definition 2 on the component-oriented interpolants C1

⊥ and C2
⊥ from

our running example (cf. Fig. 2). That is, we substitute the occurring timed
variables into current and next-state variables:

Ep = C1
⊥[α0/α, γ1/γ′] ∧ C2

⊥[α1/α, γ2/γ′]
= (¬γ1 ∨ (γ1 ∧ α0))[α0/α, γ1/γ′] ∧ (¬γ2 ∨ (γ2 ∧ α1))[α1/α, γ2/γ′]
= ¬γ′ ∨ (γ′ ∧ α)
= α ∨ ¬γ′

Since we partitioned T �=p = T 2 in Eq. (2), it follows from Eq. (4) that T 2 =⇒
α ∨ ¬γ′. This is clearly evident from the definition of T 2 in Example 2, where
the interpolated environment is in fact the third clause. Component-oriented
interpolation therefore reduces the original transition function to 1/6th of the
amount of clauses. (end of example)
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Applications: Theorem 2 can be applied in several ways. We elaborate on a few
possible applications in the following.

Manual inspection for example becomes more feasible. Models as large and
complex as the one mentioned in Sect. 1 are labor-intensive to analyze manually,
yet this is often the pragmatical approach by industry for verifying/validating
involved requirements. The interpolated environment of Theorem 2 can support
this. Assume one is intimate with a particular (set of) component(s), e.g. the
power system. The remainder components can be viewed as a rather unfamil-
iar environment that can be abstracted in terms of variables shared with the
power system. Such an abstraction is significantly smaller and thus eases man-
ual inspection. The abstraction is cheap to compute, as it can be obtained for
a bound as small as k = 1, although a larger k is preferable since this possibly
strengthens the accuracy of the environment.

It can also be used as an abstraction method in model checking. Consider
the invariant checking case and assume a tractable bound k for M |=k φ. Yet
it is unclear whether it holds beyond the tractable bound k. One can pick a
component p and use Theorem 2 to over-approximate the remainder to Ep.
Heuristically it is wise to include at least the component directly referred to by
φ as p, as they directly affect the property of interest. Then the smaller model
(Ip, T p ∧ Ep) can be subjected to unbounded model checking to verify M |= φ.
An example of such an algorithm is discussed later in Sect. 4. Note that the
transition function T p ∧ Ep could be too weak. Thus, if a counterexample is
found during unbounded model checking, one has to distinguish whether it is a
false-negative due to over-approximation of Ep, or whether it is a counterexample
that also occurs in the original model. Techniques from CEGAR (counterexample
guided abstraction refinement) [7,10] can be utilized for this. Theorem 2 can
also supplement existing CEGAR techniques, as it can generate computationally
cheap abstractions.

Partial model reverification is also a suitable application. In monolithic model
checking, refinements or changes of the model require a full reverification round.
Theorem 2 can speed this up. Assume only a part of the model is changed, for
example component p. The unchanged environment can be interpolated from
previous verifications. The resulting interpolated environment is smaller in size.
Instead of reverifying the full model, the modified component p and the inter-
polant of the unchanged environment Ep can be used. Since reverification with
the smaller model (Ip, T p∧Ep) is likely to be faster, as less variables are present,
it can be used less reluctantly upon changes to component p, thus providing more
direct and continuous feedback during the construction of the model. Note that
here over-approximation might cause false counterexamples as well and therefore
warrant the use of CEGAR techniques.

4 Evaluation on Satellite Case Studies

We developed a prototype implementation utilizing Theorem 2 in NuSMV 2.5.4
and applied it to industrially-sized models of satellite case studies reported
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in [11]. The resulting data provides an indication of the quality of the abstraction,
as well as its effectiveness when used for manual inspection or (re)verification.

Tool Implementation: The prototype implementation is an extension of NuSMV
2.5.4 [4]. We reused NuSMV’s data structures and functionality for representing
and handling propositional formulae. The SAT-solving was performed by Min-
iSAT 1.14p. We deliberately chose version 1.14p over newer versions, as it is –
at the moment – the only publicly available version that can generate resolution
refutation graphs upon unsatisfiability. Additionally, NuSMV has a preexist-
ing integration with MiniSAT which we extended for handling those graphs.
The models are expressed in SLIM, a formalized dialect of AADL. We used the
SLIM-to-SMV translator built in the COMPASS toolset for obtaining their SMV
representations [2].

Case Description: We ran our evaluation with two large industrially-sized mod-
els. They are system-software models based on design data of Earth-orbiting
satellites in development.

Fig. 3. Decomposition of the PDR satellite model.

The first model is from the case study reported in [11]. We call it the PDR
satellite platform model. It was constructed from the design data available dur-
ing the satellite’s preliminary design review (PDR). Its global decomposition
into subsystems is shown in Fig. 3. The OCS consists of a series of controllable
thrusters for orbital corrections. The AOCS is a control system consisting of
several kinds of sensors for acquiring and maintaining a correct attitude and
orbit. The CDU is the main computer. The EPS consists of solar arrays and
batteries for powering the satellite and the TT&C is the radio communication
interface for ground control on Earth. The focus of the PDR model is the rela-
tion of the system’s nominal behavior, its erroneous behavior (e.g. faults) and
the subsequent behaviors resulting from the fault tolerance strategies by the
fault management design. Its nominal state space is roughly 48 million states.
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This number multiplies rapidly when failures are injected, thus activating failure
modes and the associated fault management strategies. The case is modeled in
our AADL dialect and comprises 3,831 lines of code, not counting comments.

The second model is a refinement of the PDR model. We call it the CDR
model. It was crafted from the design data available during the critical design
review (CDR) of the same satellite mission. During the CDR, more design details
have been decided upon. It is estimated that the amount of design data increased
twofold. The CDR model’s nominal behavior state space nevertheless counts
2,341 states thanks to the effective modeling lessons learned from the PDR
case study. The CDR model is however more detailed, more complex and more
difficult to analyze. Akin to the PDR model, its state space multiplies once
failures are injected. It is composed of 6,357 lines of AADL code, not counting
comments. A more detailed report of this model is currently being prepared for
publication.

We considered several configurations of the PDR and the CDR models. The
final configurations outlined below are known to require a bound k > 1 for
proving or disproving the invariant property of interest [11]. The first two con-
figurations are from the PDR model, whereas the remaining three are from the
CDR model. Note that the models are based on proprietary designs. Their details
are therefore not publicly available.

Model Fault injections Property

PDR-1 Earth sensor failure Fail-operational flag is set

PDR-2 Propulsion failure AOCS status flags are consistent

CDR-3 Various platform failures Not in safe mode

CDR-4 (none, i.e. nominal behaviour) Solar voltage level is consistent

CDR-5 (none, i.e. nominal behaviour) Not in safe mode

Comparison Factors: All experiments were run on a Linux 64-bits machine
equipped with a 2.33 GHz multi-core CPU and 32 GB RAM. We set the maxi-
mum computation time to 900 s. Our implementation is however single-threaded.
The exploitation of the multiple cores in a multi-threaded fashion is future work.

We intended to use NuSMV’s BDD-based verification as the baseline. We
however quickly learned that the BDDs were ineffective on both the PDR and
CDR model. BDD-based verification was a magnitude slower on PDR configu-
rations than the other techniques we considered (see Table 1). On CDR configu-
rations, the time for constructing the transition functions exceeded the 900 s by
far, thus leaving no time for the verification. We therefore omit BDD-verification
data and decided upon another technique as the baseline.

We used McMillan’s interpolation-based unbounded model checking tech-
nique for invariants [20] instead. It starts by k-bounded model checking the
property. Then it (Craig) interpolates the first transition step C =⇒ I ∧ T1.
This interpolant is a weakened characterization of one-step successor states s̄1.
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These states are added to I by variable substitution, i.e. I ← I ∨ C[s̄1/s̄0]. The
new I is a characterization of the original initial states and the one-step succes-
sor states. It is then used to bounded model check the property up to bound k,
thus reaching a search depth of k+1. This is repeated until a fixpoint is reached.
A sketch of the algorithm can be found in [20]. It is furthermore also part of
Algorithm 1 from lines 5 to 8, which we shall explain shortly after. We imple-
mented the algorithm in NuSMV as there was no pre-existing implementation.
The interpolation scheme we implemented is by McMillan as well [19] and it has
been studied thoroughly for use in this setting [10].

The component-oriented interpolation technique has been casted into a ver-
ification scheme. We heuristically chose the components p by selecting those
directly referred in the property. Given this, the remaining procedure is shown
in Algorithm 1. Intuitively, it obtains an interpolated environment (line 3), which
is then used in an inner reachability analysis (lines 5–8) until a fixpoint is encoun-
tered (line 8), meaning that the property holds. Otherwise, the bound is increased
in the hope for a stronger interpolated environment (line 9). The overall algo-
rithm can terminate in two ways: either a concrete (and real) counterexample is
eventually found at depth k while executing line 2, or reachability analysis on
the over-approximated model reaches a fixpoint without violation of the prop-
erty (line 8). Note that even though any inner reachability algorithm could be
used, we employed McMillan’s interpolant-based invariant checking algorithm
here. This is mainly for efficiency reasons of staying in a SAT-based context.
If for example BDD-based reachability techniques were used, we would have to
convert Ep, Ip and T p to BDDs, resulting in additional overhead.

Algorithm 1. Component-Oriented Interpolation-based Invariant Checking.
1: k ← 1
2: while ¬φ ∧ Ip

0 ∧ T p
1 ∧ · · · ∧ T p

k ∧ I �=p
0 ∧ T �=p

1 ∧ · · · ∧ T �=p
k is unsatisfiable do

3: Ep ← component-oriented interpolant of I �=p
0 ∧ T �=p

1 ∧ · · · ∧ T �=p
k

4: R ← Ip

5: while R ∧ T p
1 ∧ Ep

1 ∧ · · · ∧ T p
k ∧ Ep

k¬φ is unsatisfiable do
6: C ← Craig interpolant of R ∧ T p

1 ∧ Ep
1

7: if C ∧ ¬R is satisfiable then R ← R ∨ C
8: else[no new states explored] return φ holds
9: k ← k + 1

10: return counterexample extracted from the satisfying assignment

Experiment Data and Discussion: A summary of the experiment data is pre-
sented in Table 1. We kept track of the depth needed to determine whether the
property holds or whether there exists a counterexample. This depth k is the
column “Bound” in Table 1. A smaller bound indicates a faster convergence of
the abstraction.

The results indicate that the CDR model has a higher complexity than
the PDR model. This was expected due to the doubling of design details in
the CDR design data. The results furthermore indicate that the verification by
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Table 1. Summary of verification outcome, needed bound k, verification time and peak
memory consumption for McMillan’s interpolation-based invariant checking (MCM)
and the component-oriented interpolation-based invariant checking (COMP).

Case Technique Outcome Bound Time (sec) Mem (Mb)

PDR-1 MCM Counterexample 3 2.42 95.9

COMP Counterexample 3 3.52 111.9

PDR-2 MCM Counterexample 2 1.77 92.0

COMP Counterexample 2 2.28 100.4

CDR-3 MCM Counterexample 11 486.06 651.0

COMP Counterexample 11 338.56 865.5

CDR-4 MCM Holds 4 7.10 125.7

COMP Holds 3 7.00 138.0

CDR-5 MCM Holds 7 69.20 171.5

COMP Holds 3 8.10 137.0

the component-oriented interpolation method is competitive. This is in partic-
ular visible for CDR-3 and CDR-5, where the computation time is significantly
better. The reason for this is the needed bound k. A small k appears to suffice
for a quality abstraction. Note that these measures cannot be trivially gener-
alized. Timings depend heavily on the used SAT-solver, in particular on the
heuristics it employs, the possibly imposed randomness influenced by the order
of clauses, or by the choice of the target system. These factors are inherent to the
nature of current-day SAT-solvers. The numbers should therefore be interpreted
as indications.

While the experiment data indicate a positive influence of component-
oriented interpolation, we suspect that the way it is used in this evaluation
suffers from double abstraction. Observe that in Algorithm 1 two abstraction
techniques are jointly used. The first comes from component-oriented interpo-
lation which is a possible source of false counterexamples. The second comes
from inner reachability analysis (line 6 of Algorithm 1), which may add further
false counterexamples. Each abstract counterexample of the inner reachability
analysis turns the while condition in line 5 of Algorithm 1 to false, leading to an
unnecessary increase of k. An exact, rather than an approximative, inner reach-
ability would resolve this. We are however not aware of any exact unbounded
SAT-based reachability techniques. BDD-based techniques might work, but we
suspect that the repeated conversion from SAT-based data structures to BDDs
would add too much overhead to be competitive. Hence, we leave further opti-
mization in this area as future work.

As elaborated in Sect. 3, there are other applications for the component-
oriented interpolated environment, like manual inspection or partial model
reverification. Their algorithms look slightly different from Algorithm 1, but the
essential computational steps are there. For manual inspection, the emphasis is
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Fig. 4. Plots of time spent in milliseconds at each depth k for bounded model checking,
component-oriented interpolation and inner reachability (respectively lines 2, 3 and 5–8
of Algorithm 1) on experiment configuration CDR-3 (checking avoidance of safe mode
in the presence of various platform failures).

on the bounded model checking step (line 2) and component-oriented interpo-
lation (line 3). For reverification on the other hand, the emphasis lies on inner
reachability (lines 5–10). To extrapolate the effectiveness of component-oriented
interpolation for those two applications, we logged the time spent on parts of
Algorithm 1 at each step k. A summary is shown in Fig. 4 for experiment config-
uration CDR-3, which is representative for the other experiment configurations.
Note that the y-axis has a logarithmic scale. The bottom line is that the step for
constructing the interpolated environment has little impact on the overall run-
ning time, as it only takes a fraction of the time spent on bounded model checking
and inner reachability. Note that the (most time-costly) bounded model check-
ing step is avoided for partial model reverification, whereas inner reachability
is omitted for manual inspection. This is where time is saved for the overall
analysis.

5 Related Work

There is a huge body of work on compositional analysis in literature. In the
introduction, Sect. 1, we have briefly explained the main differences between our
work and what has been reported in literature. We continue this discussion in
this section.

Contrary to many works from the Owicki-Gries paradigm, which often make
distinctions between global and local variables, our work fits the shared variables
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paradigm. Global variables are typical to parallel systems, where multiple (iden-
tical) concurrent processes are active at the same time and interact with each
others through a small set of global variables. The technique by [7] essentially
abstracts and redefines the concurrent processes in terms of those global vari-
ables and calls this notion the split invariant. The technique by [13] is similar to
that, as well as the technique by [18]. Our work expresses environments in terms
of those variables that are shared with other components, thus not requiring
a model structure in which global variables are explicitly defined by the user.
The shared variable paradigm is therefore a generalization of the global/local
variables paradigm.

In this work, we show, so far, how the environments are interpolated using
the unsatisfiability proof from bounded model checking of an invariant. This
can be extended to a larger class of properties. Akin to [8], where the notion
of a process environment is described, the interpolated environments, as it cur-
rently is formalized, can also be used to verify safety and liveness properties.
In fact, our notion of the interpolated environment was inspired by that. We
however foresee that the interpolated environment is not strong enough for veri-
fying liveness properties and that techniques from CEGAR are a necessity here.
Particular techniques in this setting are by [8,17]. As these works were car-
ried out for the global/local variables paradigm, it requires further investigation
how these techniques are extendable to the shared variables paradigm. For the
moment, Algorithm 1 naively increases the bound k as a refinement step without
checking whether an abstract counterexample is a false-positive or not.

With regard to rely/assume guarantee/provide reasoning, we remarked in the
introduction that the automated approaches are closely related to ours. In [14],
a technique based on automata determinization is described to generate weakest
assumptions. In subsequent work [5], assumptions are learned using an automa-
ton learning algorithm, like L*. Our work is a twist on this, as we describe a
method using Craig interpolation.

Rely/assume guarantee/provide reasoning has also been applied to AADL
models, like for example [6]. The scope and semantic base of [6] differs from ours.
Our satellite models for example are expressed in a formalized dialect of AADL
by [2]. It is designed to provide a rigorous and coherent semantics for a system’s
nominal, erroneous and degraded behavior. The work by [6] appears to focus
only on the nominal behavior. Furthermore, their approach does not generate
assumptions nor guarantuees as we do, but rather provides a tool-supported
reasoning framework over them once provided by the user.

Interpolation in model checking has become an active field since the pioneer-
ing work by [19]. It has been further studied since, covering applications such as
a monolithic abstraction of the transition relation [16], or more theoretical inves-
tigations studying the differences in strength of interpolants as a consequence
of a chosen interpolation generation scheme [10]. We were inspired by [20] and
devised a modified interpolation scheme that is suitable for compositional rea-
soning that is reported in this paper.
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6 Conclusions

We have described and experimentally evaluated a technique for deriving an
abstract environment transition condition from a component-oriented model
using a Craig interpolation-inspired method. We call it the component-oriented
interpolant. It particularly fits models where highly cohesive components com-
municate through shared variables, which is a generalization over the global/local
variables setting. To our knowledge it is the first application of interpolation-like
techniques to exploit a model’s composition of components.

Through our work, we identified several open points for future work. In
particular a study of the component-oriented interpolant’s strength would be
interesting. We know from Lemma 1 that the component-oriented interpolant
over-approximates, but we do not know how strong it is such that the property
still holds up to bound k. This is in contrast to classical Craig interpolation,
where its interpolant does have this property. It requires further study to under-
stand how and whether the component-oriented interpolant can be strengthened.
Inspiration can be drawn from the strengthening techniques for classical inter-
polation, where the reordering of vertices in the resolution refutation proof and
asymmetric interpolation schemes have been studied for this purpose [10].

Studying the strength of the component-oriented interpolant also benefits its
suitability for verifying more expressive properties, like safety and liveness prop-
erties. We estimate that the component-oriented interpolation scheme of Defini-
tion 2 overapproximates too much for that purpose and thus the straight-forward
usage of the interpolated environment to safety/liveness properties would yield
too many false-positive counterexamples.

Furthermore, Algorithm 1 in Sect. 4 is open for further investigation. It suffers
from double abstraction, because it does not perform an exact inner reachability
analysis using the interpolated environment. Exact methods would alleviate that.
Especially ones that work in a SAT-based context are preferable, because that
would avoid the overhead of converting the used data-structures.

We have made our implementation available on http://www-i2.informatik.
rwth-aachen.de/∼nguyen/coi/ under the LGPL open source license.
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Abstract. Self-adaptive systems have the ability to adapt their behav-
ior to dynamic operation conditions. In reaction to changes in the envi-
ronment, these systems determine the appropriate corrective actions
based in part on information about which action will have the best
impact on the system. Existing models used to describe the impact of
adaptations are either unable to capture the underlying uncertainty and
variability of such dynamic environments, or are not compositional and
described at a level of abstraction too low to scale in terms of specifi-
cation effort required for non-trivial systems. In this paper, we address
these shortcomings by describing an approach to the specification of
impact models based on architectural system descriptions, which at the
same time allows us to represent both variability and uncertainty in
the outcome of adaptations, hence improving the selection of the best
corrective action. The core of our approach is an impact model lan-
guage equipped with a formal semantics defined in terms of Discrete
Time Markov Chains. To validate our approach, we show how employing
our language can improve the accuracy of predictions used for decision-
making in the Rainbow framework for architecture-based self-adaptation.

1 Introduction

Self-adaptive systems have the ability to autonomously change their behavior in
response to changes in their operating conditions, thus preserving the capability
of meeting certain requirements. For instance, to provide timely response to
service requests, a news website with self-adaptive capabilities can react to high
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response latencies by activating more servers, or reducing the fidelity of contents
being served [6,12].

Deciding which adaptations should be carried out in response to changes in
the execution environment requires that systems embody knowledge about them-
selves. Knowledge about the impact of adaptation choices on system’s properties
is particularly important when the decision process involves comparing alterna-
tive adaptations at runtime, as is often the case [5,11,14,17].

The effectiveness of the enacted changes, which affects the system’s ability to
meet its requirements, strongly depends on the accuracy of the analytical models
that are used for decision making. Exact models, if attainable at all, tend to be
quite complex and costly to obtain. As argued in [8], an alternative is to attend
to the uncertainty underlying the knowledge models in the decision process.

However, existing models used to describe the impact of adaptations are
either unable to capture the underlying uncertainty and variability of such
dynamic execution environments, or are not compositional and described at a
level of abstraction too low to scale in terms of specification effort required for
non-trivial systems.

In this paper, we address the specification of probabilistic impact models
for architecture-based self-adaptive systems that support the representation of:
(i) uncertainty in the outcome of adaptation actions (e.g., the activation of a
server can fail with some given probability), and (ii) context variability (e.g., the
impact on response time of activating a single server will progressively reduce
with a growing number of active servers). The core of our approach is a declara-
tive specification language for expressing complex probabilistic constraints over
state transitions that is equipped with a formal semantics defined in terms of
Discrete Time Markov Chains (DTMC). This language provides the means for
expressing impact models in a flexible and compact way.

We illustrate how the proposed impact models can be used in the context of the
Rainbow framework [11] for architecture-based self-adaptation, and quantify the
benefits of using probabilistic impactmodels instead of constant impact vectors [5].

The rest of the paper is organized as follows. Section 2 describes related
work. Section 3 provides a formal account of the concepts required to define
impact models. Section 4 presents the syntax and semantics of a new specifica-
tion language of probabilistic impact models and Sect. 5 shows how our impact
models can be used in the context of Rainbow for adaptation strategy selec-
tion. Next, experimental results that quantify the benefits of using probabilistic
impact models instead of impact vectors are presented in Sect. 6. Finally, Sect. 7
presents some conclusions and future work.

2 Related Work

Environment domain models are a key element used by adaptive systems to
determine their behavior [1,18]. These models capture the knowledge that the
system has about itself and its environment by describing how system and envi-
ronment respond to adaptation actions. Approaches to self-adaptation can be
divided into two categories, depending on the way in which environment domain
models are built.
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A first category takes a systematic approach to modeling the impact of indi-
vidual adaptation actions, which can be composed to reason about system behav-
ior under adaptation. An example is the approach presented in [5], developed
around Stitch, a language that enables the specification of adaptation strategies
composed of individual adaptation actions. The impact of these action is spec-
ified in terms of constant impact vectors which describe how the execution of
adaptation actions affects system quality attributes. The same type of impact
models is used in several approaches to optimization of service compositions,
such as the approach presented in [14]. Adaptation actions in this approach
target service composition instances and the optimal criteria relies on impact
models that are defined per adaptation action and system property as constant
functions. Slightly more expressive impact models are considered in the approach
presented [17], which targets component-based systems where impact models are
defined per adaptation action and key performance indicators (KPIs), as func-
tions over a given set of KPIs. These approaches address the specification of
environment domain models in a compositional way and at a very high level of
abstraction, thus facilitating specification and promoting reuse. However, they
severely limit the ability to represent environment domain knowledge in a realis-
tic way, since they are unable to model uncertainty and provide limited support
to capture variability.

The second category consists of approaches that consider the behavior of
the system and its environment modeled in a monolithic way in terms of more
powerful models defined at a lower level of abstraction [1,2,9]. For example,
in the approach presented in [2], DTMCs are used to model, for each system
configuration, the future state of a system and its environment if that configu-
ration is used. These models are expressive enough to model variability and the
uncertainty underlying adaptation outcomes. The main drawback here is that
these models being defined at the level of system configurations are system spe-
cific. For instance, in the case of a news website that can react to high response
latencies by activating more servers, a DTMC that models the effect of activat-
ing one server in a system that can use up to 4 servers is completely different
from another that models the same on a system that can use up to 10 servers,
although the effect of activating one server does not depend on the maximum
number of servers. Moreover, these models are both difficult and cumbersome to
write. The specification of a DTMC tends to be a non-trivial task, even using
description languages such as the one built into the probabilistic model checker
PRISM [13].

The approach described in this paper aims at striking a balance between
the ease of specification and reusability found in compositional approaches, and
the expressive power of monolithic approaches that use probabilistic models. We
present a language for the specification of impact models, which is: (i) more
intuitive than describing DTMCs in other probabilistic approaches, since it is
based on architectural descriptions and therefore raises the level of abstraction,
(ii) able to capture both variability and probabilistic outcomes of adaptation
actions, and (iii) scalable in terms of specification effort, since developers can
focus on smaller units of conceptualization (i.e., architectural properties) and
reason about them individually.
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3 Modeling Adaptation

We address the modeling of impact in the context of architecture-based approaches
to self-adaptation, that take the architectural style of the managed system as
a basis for the system adaptation. The aim is to support the specification of
impact models for families of systems that share the same architectural style.
The semantics of such specifications assigns, for each system in the family, an
impact model (a DTMC).

In this section, we provide a formal account of the concepts required to
define impact models, namely architectural style and system state. We start by
introducing the running example used in the rest of the paper.

3.1 Running Example

Znn.com [3] is a case study portraying a representative scenario for the applica-
tion of self-adaptation in software systems which has been extensively used to
assess different research in self-adaptive systems. Znn.com is able to reproduce
the typical infrastructure for a news website, and has a three-tier architecture
consisting of a set of servers that provide contents from backend databases to
clients via front-end presentation logic (Fig. 1). The system uses a load balancer
to balance requests across a pool of replicated servers, the size of which can be
adjusted according to service demand. A set of clients makes stateless requests,
and the servers deliver the requested contents.

Fig. 1. Znn.com architecture

The main objective for Znn.com is to provide
content to customers within a reasonable response
time, while keeping the cost of the server pool
within a certain operating budget. It is consid-
ered that from time to time, due to highly popu-
lar events, Znn.com experiences spikes in requests
that it cannot serve adequately, even at maximum
pool size. To prevent loss of customers, the sys-
tem can provide minimal textual content during
such peak times, to avoid not providing service to some of its customers. Con-
cretely, there are two main quality objectives for the self-adaptation of the sys-
tem: (i) performance, which depends on request response time, server load, and
network bandwidth, and (ii) cost, which is associated with the number of active
servers.

3.2 Architectural Style

As discussed in [4], when the architectural style of the managed system is taken
as a basis for the system adaptation, it has to define not only the class of mod-
els to which the managed system architecture belongs but also to determine
the operators representing available configuration changes on systems in that
style and prescribes what aspects of a system and its execution context need to
be monitored.
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An architectural style defines a vocabulary of component and connector
types that can be used in instances of that style and the properties of each of
these types. In the context of self-adaptive systems, it is essential to distinguish
between managed and monitored properties. Managed properties correspond to
properties that are uniquely under system control. Their values can be defined
at startup and changed subsequently by the control layer to regulate the sys-
tem. Monitored properties correspond to properties of the managed system or its
execution context that need to be monitored and made available to the control
layer. While the properties of the execution context are not under the system
control (e.g., available bandwidth), monitored properties also include those that
the system aims to control (e.g., response time).

As an example, we consider the architectural style of Znn.com. It has one
connector type — HttpConnT, and three component types — ClientT, ServerT and
ProxyT. For instance, ServerT has two managed properties — isTextualMode:bool
and cost:int. The former defines whether web pages are served by a given server
in textual or multimedia mode and the latter reflects the cost of an active server
per unit time. Since these properties are defined as uniquely under the sys-
tem’s control, the cost of each server included in the system must be defined
at deployment time, and whether it will start serving pages in textual or mul-
timedia mode. Additionally, ServerT has two monitored properties — load:double
and isActive:bool. The latter property is defined as monitored, since even if its
activation can be controlled, a server may crash anytime.

Formally, architectural signatures are defined as follows.

Definition 1 (Architectural Signature). An architectural signature Σ con-
sists of a tuple of the form 〈CompT,ConnT, Πo,Πm〉, where CompT and ConnT
are two disjoint sets (the sets of, respectively, component and connector types)
and, Πo and Πm are functions that assign, to architectural types κ∈CompT∪
ConnT, mutually disjoint sets whose elements are typed by datatypes in a fixed set
D (Πo(κ) and Πm(κ) represent, respectively, the managed and monitored prop-
erties of the type κ). We abbreviate Πo(κ)∪Πm(κ) by Π(κ) and, for p∈Π(κ),
will use dtype(κ.p) to denote its datatype.

The architectural configurations of systems with architectural signature Σ, here-
after called Σ-system states, are captured in terms of graphs of components and
connectors with state. State of architectural elements consist of the values taken
by their monitored and managed properties.

We formally define Σ-system states assuming there is a fixed universe AΣ of
architectural elements (components and connectors) for Σ, i.e., a countable set
whose elements are typed by elements in CompT ∪ ConnT. We use type(c) to
denote c’s type.

Definition 2 (Σ-System State). A Σ-system state s consists of (i) a simple
graph G, (ii) a function type that assigns an architectural type to every node of
G, (iii) an injective function Is from the set of nodes of G to AΣ such that
type(Is(c)) = type(c) and (iv) a function that assigns a value [[c.p]]s in the
domain of dtype(κ.p), to every pair c.p such that c is a node of G, κ = type(c)
and p∈Π(κ). We denote by SΣ (or simply S when Σ is clear from the context)
the set of all Σ-system states.
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An architectural style also defines the ways one can change systems with that
style. For instance, the Znn architectural style defines that property isTextualMode
of servers can be modified through setLowFidelity and setHighFidelity operators,
that set isTextualMode to, true and false, respectively.

Generically, these operators can range from primitive operations, such as
changing the value of a property of a given connector type or replacing an
implementation of a component type with another, to higher-level operations
that exploit restrictions of that style. However, in practice, most approaches to
self-adaptation consider only primitive operations. Hence, we focus on architec-
tural styles that define the set of operators provided by the target system for
(i) changing the values of the managed properties of its components and connec-
tors and (ii) replacing a component or connector of a given type by another of
the same type. Notice that, in these architectural styles, only the last two com-
ponents of a system state —Is and [[ ]]s— can change at runtime. The structure
of the system, defined by the graph and type function, does not change.

3.3 Adaptation Actions

The adaptation of the managed system is achieved through the execution of
adaptation actions defined at design-time. Adaptation actions define actions
packaged as applications of one or more operators, with a condition of applica-
bility. In the Znn example we could, for instance, define an adaptation action
switchToTextualMode applicable only if there is at least one active service not serv-
ing pages in textual mode, prescribing the application of operator setLowFidelity to
all servers in these conditions. A different adaptation action for Znn is enlistServer
that is applicable when there is at least one inactive server, and prescribes the
application of startServer to one inactive server.

Applicability conditions of adaptation actions are formulas of a constraint
language that are evaluated over system states. For illustration purposes, we
consider a constraint language inspired by that of Acme [10]1 in which, for
instance, (exists s:ServerT | exists k:HttpConnT | attached(k,s) and s.isActive) holds in
a system state iff the state includes at least one active server attached to one
http connector.

4 Modeling Impact

Deciding how to best adapt the system when a certain anomaly is detected
involves analyzing models describing the effects, in terms of costs and benefits, of
the available adaptation actions defined for the system. These models capture the
causal relationship between an adaptation action’s execution and its impact on
the different system properties. Because 100 % accurate models are in general not
attainable, it is important to have means to address the underlying uncertainty.

In this section, we describe an expressive language to model adaptation action
execution, which is able to capture: (i) the context that might influence the
1 Acme is in turn derived from OCL [16], with the addition of functions that relate to

architectural structure.
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outcome of an adaptation action’s execution, and (ii) the intrinsic uncertainty that
pervades self-adaptive systems. Specifically, this language enables the description
of models of the expected impact of each adaptation action on the different sys-
tem properties. These models are based on DTMCs [15], and enable us to express
alternative possible outcomes of the execution of the same adaptation action with
some given probability.

4.1 Impact Model Language

The impact model of adaptation actions is defined in terms of probabilistic
expressions in a language that allows one to express probabilistic constraints
over state transitions (regarded as pairs of before and after system states), incor-
porating some elements of the PRISM language [13].

The language targets systems whose structure does not change at runtime.
For this reason, it is built over a language E for specifying sets of components
and connectors in a system state. For illustration purposes, we use a language
in line with the one that we use to express constraints, in which, for instance,
(s: ServerT | s.isActive) describes the set of active servers in a system state. To
handle data, we assume that the fixed set of datatypes D is equipped with the
relevant operations. We denote by T the term language used to describe data
values and by Td(Σ,X) the set of terms built over variables in X denoting values
of datatype d. Similarly, we use Eκ(Σ,X) to denote the set of expressions defined
over the variables in X denoting sets of architectural elements of type κ.

Definition 3 (Probabilistic Expressions). Let X be a set of variables typed
by architectural types in an architectural signature Σ. The set P(Σ,X), of prob-
abilistic expressions over variables in X, is defined by the following grammar:

α:: = x.p ′ = t with x ∈ X, p∈Π(κ), t∈Td(Σ, xΠ),
where κ = type(x) and d = dtype(p)

| forall x : ε | α1

| foreach x : ε | α1

| foreach x : ε minus D | α1 with x /∈ X, ε∈Eκ(Σ,X),
α1∈P(Σ,X∪{x : κ}) and D⊆Xκ

| {α1& . . . &αn}
| {[p1]α1 + [p2]α2 + · · · + [pn]αn} with, for 1 ≤ i ≤ n, αi∈P(Σ,X),

0 ≤ pi ≤ 1 and Σn
i=1pi = 1

where xΠ={x.p : d | p∈Π(type(x)), d = dtype(p)} and Xκ={x∈X : type(x) = κ}.
P(Σ) is the set of probabilistic expressions without free variables, i.e., P(Σ, ∅).

The atomic expression x.p ′ = t defines the value of the property p in the next
state (after the execution of the adaptation action), for every component or con-
nector denoted by x. This value can be defined in terms of the values of the
properties of the same element as well as other architectural elements in the sys-
tem, but the free variables of t are limited to variables representing properties
of x. For instance, assuming that s is a variable of type ServerT, we can write
s.isActive’ = !s.isActive to express that every server denoted by s has its isActive
property toggled.
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The operator forall is used to impose the same constraints over a set of
architectural elements of the same type, denoted by a given expression in E . The
operator foreach is used to define a number of alternative outcomes, all with the
same probability. For instance, foreach x:ServerT | x.isActive’ = true states that
all servers have the same probability of having their isActive property set to true.
Adding minus D to the expression reduces the target to elements not included
in the denotation of variables in D.

For instance, foreach x:E | foreach y:E minus x | {x.isActive’=true &y.isActive’=
true} where E is (s:ServerT|!s.isActive), expresses that exactly two servers are acti-
vated and that all pairs of distinct inactive servers have the same probability of
being activated.

A fixed number of constraints over the next state are expressed through
conjunction (&). Probabilities that sum to one are assigned to a fixed number
of expressions defining constraints over alternative outcomes of the adaptation
action execution. Assigning a probability to an expression with [p]α has the effect
of world closure: all properties of components and connectors not constrained
by α are considered to keep the same value in the next state.

To capture that an adaptation action may have different impacts under differ-
ent conditions, impact models are defined as sets of guarded probabilistic expres-
sions with mutually exclusive guards (i.e., at most one guard holds in any system
state). As before, we abstract from the language used for expressing the guard
conditions and assume a fixed language C of constraints over system states.

Definition 4 (Impact Model). An impact model I of an adaptation action is
a finite set of pairs 〈φ, α〉 where φ is a constraint in C(Σ) and α is a probabilistic
expression in P(Σ) such that all φ are mutually exclusive.

An example of a simple impact model is presented below for the adaptation
action switchToTextualMode. For the sake of clarity, we present all examples mak-
ing use of a concrete syntax that supports the definition of abbreviations and in
which guarded expressions are represented as φ → α.

1 define S=(s:ServerT | !s.isTextualMode and s.isActive) and define k=size(S)

2 define f(x)=x∗(1−k/(2∗(k+1))) and define g(x)=x∗(1−k/(k+1))

3 impactmodel switchToTextualMode

4 k>0 → { [0.8] { forall s:S | s.isTextualMode’=true & forall c:ClientT | c.expRspTime’=f(c.expRspTime) }
5 + [0.2] { forall s:S | s.isTextualMode’=true & forall c:ClientT | c.expRspTime’=g(c.expRspTime) }}

Listing 1.1. Impact model for adaptation action switchToTextualMode.

This model expresses the impact of the adaptation action over manipu-
lated properties, where the fact that operator setLowFidelity sets the property
isTextualMode to true is represented by s.isTextualMode’=true. Moreover, the model
foresees that switchToTextualMode can impact the response time of all clients in
two ways, both decreasing its value, considering the number of servers that were
changed to low fidelity. The more severe reduction of the response time is defined
to be the least likely, with probability 0.2. According to this (simplistic) model,
the execution of this adaptation action is not expected to affect the remaining
properties of servers, clients, or http connectors.
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Alternatively, we could specify that switchToTextualMode can impact the res-
ponse time of each client in two ways as follows:
1 impactmodel switchToTextualMode

2 k>0 → forall c:ClientT | { [0.8] { forall s:S | s.isTextualMode’=true & c.expRspTime’=f(c.expRspTime) }
3 + [0.2] { forall s:S | s.isTextualMode’=true & c.expRspTime’=g(c.expRspTime) }}

Listing 1.2. Alternative impact model for switchToTextualMode.

While we have considered that the property isTextualMode of servers is subject
only to system control, isActive was defined as a monitored property and it was
considered that the activation of a server, through the execution of operator
startServer, may fail. An impact model for enlistServer that captures this aspect is
presented below.
1 define m=size(s:ServerT | s.isActive) and define S= (s:ServerT | !s.isActive)

2 define f(x)=x∗(1−((1/log(100∗m,2))∗(m/(2∗m+1)))) and define g(x)=x∗(1−1/log(100∗m,2))

3 impactmodel enlistServer

4 m>0 → { [0.95] { foreach s:S | s.isActive’=true &

5 { [0.7] forall c:ClientT | c.expRspTime’=f(c.expRspTime)

6 + [0.3] forall c:ClientT | c.expRspTime’=g(c.expRspTime) }}
7 + [0.05] { forall s:ServerT | s.isActive’=s.isActive & forall c:ClientT | c.expRspTime’=c.expRspTime }}

Listing 1.3. Impact model for adaptation action enlistServer.

This impact model implicitly states that the starting of the server is expected
to fail with probability 0.05 and foresees that the adaptation action may impact
client response time in two ways, both considering the number of servers that
were already active.

Moreover, isActive is also defined as a monitored property, since a server could
become spontaneously inactive (e.g., due to a server crash). The impact model
above does not define any impact of the adaptation action over the property
isActive of already active servers, hence the probability of an active server crashing
while executing enlistServer is considered to be so small that it can be neglected.
Alternatively, we can define the probability of each relevant crash scenario (e.g.,
for one server, two servers, etc.). For instance, the impact model presented below
defines that the probability of exactly one active server crashing while executing
enlistServer is 0.001.

1 define T=(s:ServerT | s.isActive)

2 impactmodel enlistServer

3 m>0 → { [0.999] { foreach s:S | s.isActive’=true &

4 { [0.7] forall c:ClientT | c.expRspTime’=f(c.expRspTime) +

5 [0.3] forall c:ClientT | c.expRspTime’=g(c.expRspTime) } }
6 + [0.001] { foreach s:S | s.isActive’=true & foreach t:T | t.isActive’=false &

7 forall c:ClientT | c.expRspTime’=c.expRspTime } }

Listing 1.4. Alternative impact model for adaptation action enlistServer.

4.2 Impact Model Semantics

The semantics of impact models is formally defined in terms of DTMCs. Since
a DTMC has a discrete state space, we have to limit properties of components
and connectors to take values in discrete sets and perform quantization.

Quantization. For each property p that takes values in a datatype d ∈ D that
has a non-countable domain Id, it is necessary that a countable set [Id]p and a
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quantization function Qp : Id → [Id]p be defined. For each property p : d such
that Id is countable we take [Id]p = Id and Qp as the identity function.

The quantization of the properties of component and connector types can
be propagated to the level of system states, defining a discrete set of states
[S] = {[s] : s ∈ S}. In [s], the value of a property p of a component or connector
c is obtained by applying the corresponding quantization function to the value
it has in s, i.e., [[c.p]][s] = Qp([[c.p]]s).

The semantics of adaptation action impact models is defined in terms of
DTMCs over [S]. We start by providing the semantics of the probabilistic expres-
sions used to assemble such models.

The interpretation of a probabilistic expression α over a set of variables
X is defined in the context of a system state s and an interpretation ρ of X
assigning to each variable x:κ, a set of elements in s of type κ. This interpretation,
denoted by [[α]]sρ, consists of a set Y of properties of component and connectors
in s — those which are constrained by α — and a function P defining the
probability of a transition between any pair of Y -states. As an example, consider
[[x.isActive’=true]]sρ where x : ServerT, s is a state with servers z1, . . . , zn and ρ :
x 
→ {z1}. The expression constrains only the property isActive of z1, i.e.,
Y = {z1.isActive} and, hence, in this case, a Y -state is just a truth value for
z1.isActive. Its interpretation is that the probability of a transition from any
Y -state to {z1.isActive 
→ true} is 1 and to {z1.isActive 
→ false} is 0.

Formally, given a set Y of properties, a Y -state s is a function defining the
value of each property in y ∈ Y , subject to the corresponding quantization
functions. As for system states, we simply write [[y]]s and use [SY ] for referring
to the set of all Y -states.

An important operation over probabilistic expressions is world closure
through assignment of a probability. As mentioned before, when we write [p]α,
all properties of components and connectors not constrained by α are considered
to keep the same value in the next state. World closure can be captured by the
following notion of closure over transition probability matrices:

Definition 5 (Closure). Let Y ⊆Y ′ be two sets of properties. Given a function
P :[SY ] × [SY ] → [0, 1], the closure of P to Y ′ is the function PY ′

:[SY ′ ] × [SY ′ ] →
[0, 1] s.t.

PY ′
(s1, s2) =

{
P (s1|Y , s2|Y ) if ∀y ∈ Y ′ \ Y, [[y]]s2 = [[y]]s1

0 otherwise

where s|Y is the Y -state obtained through the restriction of s to the properties
in Y .

The closure of P corresponds to extending the probabilities given by P to states
with more properties, considering that their values do not change.

Definition 6 (Interpretation of Probabilistic Expressions). The inter-
pretation [[α]]sρ of α ∈ P(Σ,X) in a system state s and an interpretation ρ of
X is a pair of the form 〈Y, P :[SY ] × [SY ] → [0, 1]〉 defined inductively in the
structure of α as follows:
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– [[x.p′ = t]]sρ = 〈Y, P 〉

Y = {c.p : c ∈ ρ(x)} and P (s1, s2) =

{
1 if ∀c ∈ ρ(x), [[c.p]]s2 = [[t]]s1

ρc

0 otherwise
with ρc = {x.q 
→ [[c.q]]s1 : q ∈ Π(type(x))}

– [[forall x : ε | α]]sρ = [[α]]sρ′ with ρ′=ρ ⊕ x 
→ [[ε]]s

– [[foreach x : ε | α]]sρ = 〈Y, P 〉
Let C=[[ε]]s. If |C| = 0, then Y = ∅ and P is the empty function to [0, 1].
Otherwise, let ρc=ρ ⊕ x 
→ {c}, for every c ∈ C, and [[α]]sρc

=〈Yc, Pc〉.

Y =
⋃

c∈C Yc and P (s1, s2) =
∑

c∈C
1

|C| · PY
c (s1|Yc

, s2|Yc
)

– [[foreach x : ε minus D | α]]sρ = 〈Y, P 〉
Let C=[[ε]]s \ ρ(D). If |C| = 0, then Y = ∅ and P is the empty function to
[0, 1]. Otherwise, let ρc=ρ ⊕ x 
→ {c}, for every c ∈ C, and [[α]]sρc

= 〈Yc, Pc〉.

Y =
⋃

c∈C Yc and P (s1, s2) =
∑

c∈C
1

|C| · PY
c (s1|Yc

, s2|Yc
)

– [[{α1& · · · &αn}]]sρ= 〈Y, P 〉
Let [[αi]]sρ = 〈Yi, Pi〉, for i = 1, .., n. If the sets Y1, · · · , Yn are not mutually
disjoint, then Y = ∅ and P is the empty function to [0, 1]. Otherwise,

Y =
⋃

i=1,..,n

Yi and P (s1, s2) =
n∏

i=1

Pi(s1|Yi
, s2|Yi

)

– [[{[p1]α1 + · · · + [pn]αn}]]sρ = 〈Y, P 〉

Let [[αi]]sρ = 〈Yi, Pi〉, for i = 1, .., n.

Y =
⋃

i=1,..,n

Yi and P (s1, s2) =
n∑

i=1

pi · PY
i (s1|Yi

, s2|Yi
)

Notice that there are some state-dependent semantic restrictions over proba-
bilistic expressions. If, in a given state s, an expression α does not meet these
conditions, then α does not impose any restriction in the evolution of the system
state (i.e., Y = ∅).

Proposition 1. If [[α]]sρ = 〈Y, P : [SY ] × [SY ] → [0, 1]〉, then P is a transition
probabilistic matrix, i.e.,

∑
s2∈[SY ] P (s1, s2) = 1, for every s1 ∈ [SY ].

The quantization of component and connector properties may invalidate an
impact model, by making pairs of constraints that were mutually exclusive, non
mutually exclusive anymore. Invalid adaptation action models are inconsistent
(i.e., they do not admit any interpretation) and, hence, we limit our attention
to valid impact models.

Definition 7 (Semantics of Impact Models). An impact model I is valid if
for every s ∈ S, there exists at most one element 〈φ, α〉 ∈ I such that [s] |= φ.
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The semantics of a valid impact model I is the DTMC 〈[S], P : [S]×[S] → [0, 1]〉
where P is defined as follows:

If the graph of s1and s2 is not the same then P (s1, s2) = 0,
else if exists 〈φ, α〉 ∈ I s.t. s1 |= φ then P (s1, s2) = P

Ys1
α (s1|Yα

, s2|Yα
)

else if s1 = s2 then P (s1, s2) = 0 else P (s1, s2) = 1

where Ys denotes the set of all properties of components and connectors in a sys-
tem state s, i.e., Ys = {c.p : d | c is a node in s, p ∈ Π(type(c)), d = dtype(p)}.
As an example, consider an impact model defined by 〈size(E)>0, α〉 with α =
(foreach x:E | x.isActive’ = true) and E=(s:ServerT|!s.isActive). Let s, s1, s2 be three
system states with servers z1, z2, z3 that only differ in the number of active
servers: (i) in s only z3 is active, (ii) in s1 only z2 is inactive and (iii) in s2
only z1 is inactive. According to definition above, we have for instance that
P (s, s1) = P (s, s2) = 1

2 and P (s, s′) = 0, for every other system state s′ different
from s1 and s2.

5 Predicting Adaptation Strategy Impact

In this section we show how the proposed impact models can be used when
the adaptation of the managed system is achieved through the execution of an
adaptation strategy selected from a portfolio of strategies specified in Stitch [5].

5.1 Adaptation Strategies

Strategies are built from tactics, which are Stitch’s adaptation actions. Strategies
have an applicability condition and a body. The body of a strategy σ is a tree
Tσ whose edges n → m are labelled by a guard condition, a tactic and a success
condition. Once at node n, if the guard condition is true, it means that the
edge can be taken. When a edge is taken, the corresponding tactic is executed.
Upon its termination the success condition is evaluated to determine if the tactic
achieved what was expected and node m is reached. Guards include a special
symbol success capturing whether the last tactic had succeeded or not.

An example of a strategy for Znn is simpleReduceResponseTime presented in
Fig. 2. hiLoad, hiLatency and hiRspTime are formulas expressing respectively that
the system load, latency and response time is high. hiRspTime, for instance, is
defined in terms of the average response time of the clients by:

(sum(c.expRspTime|c: ClientT)/count(c: ClientT) > MAX RSPTIME)

The body of the strategy defines that initially there are three alternatives,
depending on the load and latency of the system. If the latency is high, then a
possibility defined by the strategy is to just apply the tactic switchToTextualMode.
The success condition in this case is hiRspTime that expresses that the average
response time is below a given threshold. If the load is high, then a possibility is
to apply the tactic enlistServer and, depending on the success of the application
of this tactic, either terminate with skip or still try the application of the tactic
switchToTextualMode. If neither the latency nor the load is high, the strategy does
not offer any remedy.
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Table 1. Utility functions and preferences for Znn

UR(wUR = 0.6) UC(wUC = 0.4)

0 : 1.00 200 : 0.99 1000 : 0.70 2000 : 0.25 0 : 1.00 2 : 0.90 4 : 0.00

100 : 1.00 500 : 0.90 1500 : 0.50 4000 : 0.00 1 : 1.00 3 : 0.30

5.2 Strategy Selection

Fig. 2. A strategy for Znn.

A particular situation that requires adap-
tation can typically be addressed in differ-
ent ways by executing alternative adaptation
strategies, many of which may be applicable
under the same run time conditions. Differ-
ent strategies impact quality attributes in dif-
ferent ways; thus there is a need to choose
a strategy that will result in the best out-
come with respect to achieving the system’s
desired quality objectives. To enable decision-
making for selecting strategies Stitch uses
utility functions and preferences, which are
sensitive to the context of use and able to
consider trade-offs among multiple potentially
conflicting objectives. Specifically, the process
consists in selecting the strategy that maximizes its expected utility, which
entails: (i) defining quality objectives, relating them to specific run-time condi-
tions, and (ii) assessing the expected aggregate utility of every applicable strat-
egy, based on the impact model of its tactics on the system’s quality objectives
(using utility functions and preferences).

Defining Quality Objectives. Defining quality objectives requires identifying
the concerns for the different stakeholders. In Znn, users are concerned with expe-
riencing service without any disruptions, which can be mapped to specific run-
time conditions such as response time. In contrast, the organization is interested
in minimizing the cost of operating the infrastructure, which can be mapped to
the cost of specific resources used at run-time (e.g., active servers). In short, we
identify two quality objectives: maintaining low client response time (R), and cost
(C). Table 1 summarizes the utility functions for Znn defined by an explicit set
of value pairs (where intermediate points are linearly interpolated). Function UR

maps low response times (up to 100 ms) with maximum utility, whereas values
above 2000 ms are highly penalized (utility below 0.25), and response times above
4000 ms provide no utility. Function UC maps a increasing cost (derived from the
number of active servers) to lower utility values. Utility preferences capture busi-
ness preferences over the quality dimensions, assigning a specific weight (wUR

, wUC
)

to each one of them. In Znn, preference is given to performance over cost.
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To compute the utility of a given system state s (denoted as Util(s)), we
first need to map the values of the different qualities 2 to their correspond-
ing utility values. In a system state with 1250 ms of response time and a
cost of 2 usd/hour, based on the utility functions defined in Table 1, we have
[UR(1250),UC(2)]=[0.625, 0.9]. Finally, all utilities are combined into a single
value, using utility preferences: 0.625*0.6+0.9*0.4=0.735.

Assessing the Aggregate Utility of Strategies. The expected utility of a
strategy σ in a given system state s can be formulated in terms of a tree like
that presented in Fig. 3, i.e., a labelled tree with two types of nodes — nor-
mal and chance nodes, that alternate in consecutive depth levels of the tree.
As with decision trees, chance nodes represent situations in which the choice
between the different alternatives is external (i.e., not under the system’s con-
trol), and is governed according to a given probability distribution function.
Normal nodes, as decision nodes of decision trees, represent situations in which
the choice between the different alternatives is internal. These nodes reflect situ-
ations of non-determinism during the execution of the strategy (that arise when
more than one edge can be executed) that we assume are solved by a fair sched-
uler and, hence, all alternatives have the same probability of being taken. In
this way, all edges 〈n,m〉 of the tree are labelled with a probability p; if n is a
normal node then the edge is additionally labelled by a tactic t. For short we
write, respectively, n

p

m and n
p

t m. Chance nodes are not labelled whereas
every normal node n is labelled by a system state.

Formally, this type of labelled trees can be represented as a tuple 〈N, st, E, l〉
with N=H∪A, where H and A are the sets of, respectively, chance and normal
nodes, st is a function that labels nodes in H with system states, E is the set
of edges and l labels edges with a probability and, optionally, a tactic. The tree
defined by a strategy σ in a given system state s, which we denote by TI(σ, s),
is defined as follows.

Definition 8 (TI(σ, s)). Let σ be a strategy and s a system state. Given an
impact model It for every tactic t used in σ, TI(σ, s) is the labelled tree obtained
as follows:

1. Start with an empty set of chance nodes and edges and with a single normal
node root(Tσ) labelled by [s].

2. While there exists a normal node n that has not been considered before:
(a) Find the edges of Tσ that start in n and can be executed in state st(n):

En = {n
〈φ,t,ψ〉

m in Tσ : st∗(n) � φ}
where, supposing that k is the parent node of n and ψ′ is the success
condition of the edge that leads to n in Tσ, st∗(n) is the extension of
st(n) with the interpretation of success with true if ψ′ holds in st(k) and
false, otherwise.

2 For utility calculation, we assume a representation of system state in terms of qual-
ities. In Znn, we take the average of response time in all clients and the sum of the
costs of active servers.
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Fig. 3. Tree for simpleReduceResponseTime and a system state with 2000 ms of response
time, and a cost of 2 usd/h.

(b) For every n
〈φ,t,ψ〉

m ∈ En:
i. add m to the set of chance nodes and n

1/|E|
t m to the set of edges.

ii. for every state s′ such that p = P[[It)]](st(n), s′) > 0, add the node ms′

labelled by s′ to the set of normal nodes and m
p

ms′
to the set of

edges.

Figure 3 presents the tree TI(simpleReduceResponseTime, s) where s is system
state with two clients (c0, c1) and three servers (z0, z1, z2). Only server z0 is
active in s and is not working in textual mode. The cost assigned to all servers
is 1 and the load assigned to z0, z1, z2 is, respectively, 2, 0 and 0. The response
time for c0 is 1700 and for c1 is 2300. The considered impact models for tactics
switchToTextualMode and enlistServer were those presented, respectively, in List-
ings 1.1 and 1.3. For readability reasons we represented in the figure only the part
of the system state that is directly manipulated or affected by the two tactics.
Then, using the utility profile, we can calculate the utility of the state associated
with each leaf node. The expected utility of the strategy is given by the sum of
these utilities weighted by the probability of the path that leads to that node.

Definition 9 (Expected Utility of a Strategy). Given a set of impact mod-
els I, the expected utility of a strategy σ in a system state s is given by

∑
n∈leaves(TI(σ,s)) pn · Util(st(n))

where pn is the product of the probabilities in the path leading from the root to n.

Table 2 illustrates the utility calculation for strategy simpleReduceResponseTime
that corresponds to the tree shown in Fig. 3. Note that nodes l1 and l2 contribute
half of the utility, and that the sum of all pn assigned to leaf nodes adds to one.
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Table 2. Sample calculation of aggregate utility for strategy simpleReduceResponse
Time

n pn avg. expRspTime cost UR(st(n)) UC(st(n)) Util(st(n)) pn · Util(st(n))

(ms) (usd/hour)

l1 0.4 1330 1 0.585 1 0.751 0.3004

l2 0.1 1000 1 0.75 1 0.85 0.085

l3 0.057 965 2 0.7605 0.9 0.8163 0.046529

l4 0.01425 410 2 0.927 0.9 0.9162 0.013056

l5 0.16625 1695 2 0.4025 0.9 0.6105 0.1014496

l6 0.057 565 1 0.8805 1 0.9283 0.052913

l7 0.01425 245 2 0.9765 1 0.9859 0.014049

l8 0.16625 1695 2 0.4025 0.9 0.6105 0.101496

l9 0.02 1200 1 0.65 1 0.79 0.0158

l10 0.005 670 1 0.849 1 0.9094 0.004245

total 1 - - - - - 0.734937

6 Experimental Results

To quantify the benefits of using probabilistic impact models in Rainbow, we
considered two alternative models of Znn, one using impact vectors3 and the
other using the proposed impact models. We manually encoded the two models
in the language of PRISM [13] and assessed the quality of the models that we
are able to specify in each case by quantifying: (i) impact of tactics on the state
of the target system, and (ii) impact of strategies on system utility. In addition,
both models incorporate an M/M/c queuing model [7], which is able to compute
the response time of the system based on the rate of request arrivals to the
system, number of active servers, and the service rate (i.e., the time that it takes
to service a request, which in this case is directly proportional to the fidelity
level). In our experiments, we assume that the response time computed with the
queuing model is considered as the actual response time of the system, against
which we compare the predictions made using either vectors or probabilistic
models.

Using each of the alternative models, we explored a state space [S] = [1, 9]×
[1, 3], which includes the request arrival rate in the interval [1, 9] requests/s, and
the number of active servers in the interval [1, 3] (i.e., a valid system configuration
can have up to a maximum of 4 active servers). For the sake of clarity, we fixed in
our experiments the values of other variables which could have been considered
as additional dimensions in our state space (network latency is 0 ms, whereas
service rate is fixed at 1 ms).

6.1 Impact of Tactics on System State

To quantify the improvement obtained using vectors with the results of employ-
ing probabilistic models, we focused on the enlistServer tactic, for which we
encoded two alternative impact descriptions:

3 The impact of individual adaptation actions is specified in terms of constant impact
vectors (called cost/benefit attribute vectors) which describe how the execution of
adaptation actions affects system quality attributes [5].
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Cost-benefit Attribute Vectors. For the vector-based version of the model,
we computed the average impact in response time of adding a server in all
points of the explored region of the state space, making use of the M/M/c
queuing model, which is the best approximation that can be obtained, given by
(
∑

s∈[S] MMc(ars, ass + 1) −MMc(ars, ass))/|[S]|, where MMc(a, b) returns the
response time for request arrival rate a and number of active servers b. Moreover,
ars and ass designate the request arrival rate, and number of active servers in
state s, respectively.

For our state space, this calculation yielded a reduction of response time
of 714 ms. Since the cost is increased in 1 unit, and fidelity is not changed by
enlistServer, the vector used in our experiments for the tactic is [−714,+1, 0].
Probabilistic Impact Models. The probabilistic version of the model emp-
loyed for the experiments is analogous to the one described in Listing 1.3.

Figure 4 shows the deviation from actual response time impact values (com-
puted using the M/M/c model) for tactic enlistServer. The values computed using
the probabilistic impact model (right) are much more accurate, since their devi-
ation is far less prominent than the one presented when computing impact with
vectors (average deviation Δrt in values computed using vectors is �315 % wrt
the values obtained using impact models). Moreover, while the values computed
using vectors are not sensitive to context, presenting reduced deviations wrt
actual response times only in states that are close to the average (e.g., 1 server,
3–5 requests/s), values obtained with the probabilistic model better approxi-
mate actual impact, reflecting the fact that a higher number of active servers
noticeably reduces the impact of the tactic on response time.

6.2 Impact of Strategies on System Utility

The use of different models to express the impact of tactics on system state also
affects the predictions that concern the expected utility of the system after the
execution of adaptation strategies. To assess how utility prediction is affected
by the constructs available to express tactic impact, we included in our PRISM
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Fig. 4. Deviation in response time impact prediction for tactic enlistServer: cost/benefit
vector (left) and probabilistic impact model (right).
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Fig. 5. Utility prediction for the execution of strategy reduceResponseTime based on:
queuing model, impact model, and impact vector. Lighter colors represent higher utility
improvements.

model an encoding of the strategy simpleReduceResponseTime shown in Fig. 2, and
computed the expected utility after its execution for each of the states included
in [S] for each of the alternatives.

Figure 5 shows how the utility values predicted using probabilistic impact
models (center) exhibit a similar pattern to the one obtained using the queuing
model (left). In contrast, vectors (right) show an entirely different pattern, which
only coincides with the one resulting from the queuing model in the area in which
the impact of tactics is close to their average impact (i.e., when there are two
active servers).

It is worth noticing that the overall average difference in utility ΔU across
the state space does not constitute a representative indicator of the accuracy of
utility predictions, since positive and negative utility deltas in different states
can cancel each other (i.e., the average ΔU yielded by vectors is +0.113, which is
closer to the one obtained with the queuing model of +0.057, even if the absolute
value of the deviation in individual states in vectors is greater than in the case
of impact models).

7 Conclusions and Future Work

In this paper we addressed the specification of impact models for self-adaptive
systems and presented a declarative language that allows one to explicitly rep-
resent the uncertainty in the outcome of adaptation actions. The mathematical
underpinnings of the language were heavily influenced by the input language of
PRISM [13], but its syntax is also based on the language of structural constraints
of Acme [10]. The language was shown to have the ability to express sophisticated
impact models, providing expressive and compact descriptions. Although there is
an upfront investment in learning the notation and specifying these impact mod-
els compared to other approaches [5,17], the fact that we can model variability
improves reusability (e.g., across systems sharing the same architectural style).

We also showed how the proposed impact models can be used in the context
of Rainbow with adaptation strategies defined in the language Stitch [5], and
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proposed a new method for calculating the utility of a strategy. The benefits
of the proposed impact models can be extended to other architecture-based
approaches to self-adaptation that rely on impact models for adaptation decision-
making such as [17] and [14].

Regarding future work, we plan on extending our declarative language to
cater to architectural styles that support structural changes. Moreover, we plan
on leveraging and furthering formal analysis of adaptation behavior by encoding
impact models described in our language into existing tools. A third research
direction aims at further refining our approach to consider time as a first-class
entity in impact models.
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Abstract. Self-adaptation allows systems to modify their structure and/
or their behaviour depending on the environment and the system itself.
Since reconfigurations must not happen at any but in suitable circum-
stances, guiding and controlling dynamic reconfigurations at runtime is
an important issue. This paper contributes to two essential topics of the
self-adaptation—a runtime temporal properties evaluation, and a decen-
tralization of control loops. It extends the work on the adaptation of
component-based systems at runtime via policies with temporal patterns
by providings (a) specific progressive semantics of temporal patterns and
(b) a decentralised method which is suitable to deal with temporal pat-
terns of component-based systems at runtime. The implementation with
the GROOVE tool constitutes a practical contribution.

1 Introduction

Self-adaptation—the ability of systems to modify their structure and/or their
behaviour in response to their interaction with the environment and the system
itself, and their goals—is an important and active research field with applications
in various domains [1]. Since dynamic reconfigurations that modify the architec-
ture of component-based systems without incurring any system downtime must
not happen at any but in suitable circumstances, adaptation policies are used to
guide and control reconfigurations at runtime. For triggering adaptation policies
and specifying behaviours of component-based systems, a linear temporal logic
based on Dwyer’s work on patterns and scopes [2], called FTPL, has been used
in [3]. In this adaptation context, choosing a suitable adaptation policy in a
current component-based system configuration depends on a runtime temporal
patterns evaluation which is one of the essential topics of the self-adaptation [1].

We consider open component-based systems interacting with their environ-
ment, therefore, their behaviour depends on both external and internal events.
Since our component-based systems are modelled by infinite state transition
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systems, for our pattern-based verification to remain tractable, we consider a
non-blocking environment with incomplete information about the component-
based system that enables all the external events.

In this setting, providing values for temporal patterns is a difficult task. In [3],
a centralised evaluation of temporal patterns at runtime has been proposed. In
order to contribute to decentralization of control loops—another self-adaptation
topic, this paper addresses the FTPL decentralised evaluation problem on a
reconfiguration path, and presents a method that is suitable to deal with tem-
poral patterns of component-based systems. Indeed, as these patterns contain
conjunctions or disjunctions of properties over components’ parameters and rela-
tions, the evaluation of temporal patterns in a decentralised manner makes sense,
and the sooner the better.

Inspired by the LTL decentralised evaluation [4] for closed systems, this paper
provides a progressive FTPL semantics allowing a decentralised evaluation of
FTPL formulae over open component-based systems – the first contribution.
The second contribution consists of an algorithm to answer the temporal pattern
decentralised evaluation problem in B4 and of the correctness and uniqueness
results saying that whenever an FTPL property is evaluated in the decentralised
manner, it matches the FTPL evaluation using the basic semantics in [3]. The
implementation with the GROOVE tool [5] constitutes a practical contribution.

Related work. When checking properties of open systems, the idea is to satisfy
a property no matter how the environment behaves. For non-universal tempo-
ral logics, this problem, called module-checking, is in general much harder than
model-checking of closed systems in finite as well as in infinite settings [6,7], and
it becomes undecidable with imperfect information about the control states [8].
Fortunately, for universal temporal logics as LTL, the module checking prob-
lem with both complete or incomplete information remains decidable in finite
setting [6]; in particular, it is PSPACE-complete for LTL.

As temporal properties often cannot be evaluated to true or false during
the system execution, in addition to true and false values, potential true and
potential false values are used whenever an observed behaviour has not yet led
to an acceptance or a violation of the property under consideration, forming the
B4 domain like in RV-LTL [9]. Like in [10], in our framework external events
can be seen as invocations of methods performed by (external) sensors when a
change is detected in their environment.

Let us remark that this work is motivated by applications in numerous
frameworks that support the development of components together with their
monitors/controllers, as, e.g., Fractal [11], CSP‖B [12], FraSCAti [13], etc.

More generally, this paper aims to contribute to the development of new
verification approaches for complex systems that integrate ideas of distributed
algorithms [14].

Layout of the paper. After a short overview of a component-based model and
of a linear temporal patterns logic in Sects. 2, 3 presents a specific progressive
semantics of temporal patterns. Afterwards, Sect. 4 addresses the temporal pat-
tern decentralised evaluation problem on a reconfiguration path by providing
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an algorithm for such an evaluation in B4. Section 5 describes the implemen-
tation with the GROOVE tool and details an example of a location composite
component. Finally, Sect. 6 presents our conclusion.

2 Background: Reconfiguration Model
and Temporal Patterns

The reconfigurations we consider here make the component-based architecture
evolve dynamically. They are combinations of basic reconfiguration operations
such as instantiation/destruction of components; addition/removal of compo-
nents; binding/unbinding of component interfaces; starting/stopping compo-
nents; setting parameter values of components. In the remainder of the paper,
we focus on reconfigurations that are combinations of basic operations.

Components

Parameters Required
Interfaces

Provided
Interfaces

PTypes

ITypes

mandatory
optional

stopped
started

Binding

Delegate

InterfaceType

Contingency

Supplier

Parent
State

ParamTypeValue

Fig. 1. Configurations = architectural ele-
ments and relations

In general, a system configuration
is the specific definition of the elements
that define or prescribe what a system
is composed of. As in [15], we define
a configuration to be a set of architec-
tural elements (components, required
or provided interfaces, and parame-
ters) together with relations (binding,
delegation, etc.) to structure and to
link them, as depicted in Fig. 1.

Given a set of configurations C = {c, c1, c2, . . .}, let CP be a set of configu-
ration properties on the architectural elements and the relations between them
specified using first-order logic formulae. The interpretation of functions, rela-
tions, and predicates is done according to basic definitions in [16] and in [15].
A configuration interpretation function l : C → CP gives the largest conjunction
of cp ∈ CP evaluated to true on c ∈ C1.

Among all the configuration properties, the architectural consistency cons-
traints CC express requirements on component assembly common to all the
component architectures. These constraints introduced in [17] allow the defini-
tion of consistent configurations regarding, in particular, the following rules:

– a component supplies one provided interface, at least;
– the composite components have no parameter;
– a sub-component must not include its own parent component;
– two bound interfaces must have the same interface type and their containers

are sub-components of the same composite;
– when binding two interfaces, there is a need to ensure that they have not

been involved in a delegation yet; similarly, when establishing a delegation
link between two interfaces, the specifier must ensure that they have not yet
been involved in a binding;

1 By definition in [16], this conjunction is in CP .
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– a provided (resp. required) interface of a sub-component is delegated to at
most one provided (resp. required) interface of its parent component; the
interfaces involved in the delegation must have the same interface type;

– a component is started only if its mandatory required interfaces are bound or
delegated.

Definition 1 (Consistent configuration). Let c = 〈Elem,Rel〉 be a configu-
ration and CC the architectural consistency constraints. The configuration c is
consistent, written consistent(c), if l(c) ⇒ CC.

Let R be a finite set of reconfiguration operations, and run a generic running
operation. The possible evolutions of the component architecture via the recon-
figuration operations are defined as a transition system over Rrun = R∪{run}.

Definition 2 (Reconfiguration model). The operational semantics of com-
ponent systems with reconfigurations is defined by the labelled transition system
S = 〈C, C0,Rrun ,→, l〉 where C = {c, c1, c2, . . .} is a set of consistent configura-
tions, C0 ⊆ C is a set of initial configurations, R is a finite set of reconfigurations,
→ ⊆ C × Rrun × C is the reconfiguration relation.

Let us write c
ope→ c′ when c′ is reached from c by ope ∈ Rrun. An evolution path

σ (or a path for short) in S is a (possibly infinite) sequence of configurations
c0, c1, c2, . . . such that ∀i ≥ 0 . (∃ opei ∈ Rrun.(ci

opei→ ci+1)). Let σ(i) denote
the i-th configuration of a path σ, σi a suffix path starting with σ(i), and Σ the
set of paths. An execution is a path σ in Σ such that σ(0) ∈ C0.

In this section, we also briefly recall the FTPL2 logic patterns introduced
in [18]. In addition to configuration properties (cp) in CP mentioned above, the
proposed logic contains external events (ext), as well as events from reconfigu-
ration operations, temporal properties (tpp) together with trace properties (trp)
embedded into temporal properties. Let PropFTPL denote the set of the FTPL
formulae obeying the FTPL grammar below. The FTPL semantics from [3] is
summarized in the long version of this paper [19].

<FTPL> ::=<tpp> | <events> | cp
<tpp> ::= after<events><tpp> | before<events><trp> | <trp>until<events> | <trp>
<trp> ::= always cp | eventually cp | <trp> ∧ <trp> | <trp> ∨ <trp>
<events> ::=<event>,<events> | <event>
<event> ::= openormal | ope exceptional | ope terminates | ext

In the rest of the paper, let AE be the set of atomic events composed of
atomic propositions from CP and of basic FTPL events. An event θ is an element
of Θ = 2AE . Let us suppose that each component Ci of the component-based
system has a local monitor Mi attached to it, from the set M = {M0, . . . , Mn−1}
of monitors3. Let us introduce the projection function Πi to restrict events to
2 FTPL stands for TPL (Temporal Pattern Language) prefixed by ‘F’ to denote its

relation to Fractal-like components and to first-order integrity constraints over them.
3 Implemented as controllers in CSP‖B, Fractal, FraSCAti, etc.
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the local view of the monitor Mi. For atomic events, Πi : 2AE → 2AE , and
we write AEi = Πi(AE). We assume ∀i, j ≤ n.i �= j ⇒ AEi ∩ AEj = ∅

4.
Similarly, for events, we define Πi : 2Θ → 2Θ, with Θi = Πi(Θ), and we assume
∀i, j ≤ n.i �= j ⇒ Θi ∩ Θj = ∅.

Let ev : C → Θ be a function to associate events with configurations. Given
a configuration σ(j) of a path σ with j ≥ 0, the corresponding event is θ(j) =
ev(σ(j)). In this setting, an individual behaviour of a component Ci can be
defined as a (finite or infinite) sequence of events θi = θi(0) · θi(1) · · · θi(j) · · ·
s.t. ∀j ≥ 0.θi(j) = Πi(ev(σ(j))) ∈ Θi, also called a trace. Finite (resp. infinite)
traces over Θ are elements of Θ∗ (resp. Θω); the set of all traces is Θ∞ = Θ∗∪Θω.

3 FTPL Progression and Urgency

This section provides the underpinnings to allow a decentralised evaluation of
FTPL formulae. Inspired by definitions in [4], our notions of progression and
urgency are adapted to the FTPL semantics: they take into account external
and internal events as well as scopes of linear temporal patterns.

For decentralised evaluation of the FTPL formulae, instead of the set B4 as
in [3], let us consider the set B5 = {⊥,⊥p,#,�p,�}, where ⊥,� stand resp. for
false and true values, ⊥p,�p for potential false and potential true values, and #
for unknown value. We consider B5 together with the truth non-strict ordering
relation �5 satisfying ⊥ �5 ⊥p �5 �p �5 � �5 #. On B5 we define two binary
symmetric operations �5, �5 resp. as the minimum and maximum interpreted
wrt. �5. Thus, (B5,�5) is a finite lattice but not a Boolean nor a de Morgan
lattice. Let ∀ϕ ∈ PropFTPL.ϕ�5 # = ϕ. We write � and � instead of �5 and �5

when it is clear from the context. For any formula ϕ ∈ PropFTPL, let ϕ̂ denote
the value of ϕ in B5.

In the context of a decentralised evaluation, each monitor may not be aware
of information related to a given property and may be not able to evaluate it.
This property is then written as a formula in terms of the current configuration.
However, after the transition to the next configuration, such a formula may
be not relevant. To compensate for this, we define the progression function to
rewrite FTPL formulae in a way relevant to the next configuration of a path.
Intuitively, given an FTPL formula and a set of atomic events, the progression
function provides either the value of the property, if available, or the rewritten
formula otherwise.

Definition 3 (Progression Function for Events). Let ε, ε1, ε2 ∈ AE, e =
e1, e2 . . . em, a list of FTPL events from AE, and θ(i) an event. The progression
function P : PropFTPL × Θ → PropFTPL is inductively defined by:
4 For relations involving two components (like Delegate or Parent) we consider that

only the parent component is aware of the relation. For the Binding relation, only
the component owning the required (or client) interface is aware of the binding.
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P (ε, θ(i)) = � if ε ∈ θ(i),⊥ otherwise ; P (⊥, θ(i)) = ⊥
P (ε1 ∨ ε2, θ(i)) = P (ε1, θ(i)) ∨ P (ε2, θ(i)) ; P (⊥p, θ(i)) = ⊥p

P (¬ε, θ(i)) = ¬P (ε, θ(i)) ; P (�p, θ(i)) = �p

P (e, θ(i)) =
∨

1≤j≤m

P (ej , θ(i)) ; P (�, θ(i)) = �

Let us now introduce, in order to establish progression formulae, the X-operator
that precedes an FTPL property to denote its evaluation at the configuration
preceding the current one, i.e., P (Xξ, θ(i)) = P (ξ, θ(i − 1)). We write X

m
ξ to

denote
m

︷ ︸︸ ︷

XX . . . X ξ. Also, when m = 0, X
m

ξ = ξ.
Because of lack of room, the progression function is not given for every type

of FTPL property. Instead, we provide a definition for the always trace property
(Definition 4), lists of events (Definition 5), and the before temporal property
(Definition 6). The reader can extrapolate these definitions for the remaining
FTPL properties, using the FTPL progressive semantics introduced in [3].

Definition 4 (Progression of the always FTPL trace property’s evalu-
ation formulae on a (suffix) path). Let cp be a configuration property and φ
a trace property of the form φ = always cp. The progression function P for the
always property on a (suffix) path is defined by:

P (φσk
, θ(i)) =

{
P (cp, θ(i)) � �p for i = k

P (cp, θ(i)) � P (Xφσk
, θ(i)) for i > k

(1)

Definition 5 (Progression of FTPL list of events properties’ evaluation
formulae on a (suffix) path). Let e be a list of FTPL events, the progression
function P for FTPL lists of events on a (suffix) path is defined by:

P (eσk
, θ(i)) =

{
P (e, θ(i)) for i = k

P (e, θ(i)) � (�p � P (Xeσk
, θ(i))) for i > k

(2)

Definition 6 (Progression of the before FTPL temporal property’s
evaluation formulae on a (suffix) path). Let e be a list of FTPL events, trp
a trace property, and β a temporal property of the form β = before e trp. The
progression function P for the before property on a (suffix) path is defined by:

P (βσk
, θ(i)) =

{
�p for i = k

FB(P (eσk
, θ(i)), P (Xtrpσk

, θ(i)), P (Xβσk
, θ(i))) for i > k

(3)

where FB is based on the FTPL progressive semantics and defined as follows:

FB(ε, trp, tpp) =

⎧
⎪⎨

⎪⎩

�p if ε = ⊥
⊥ if ε = � ∧ trp ∈ {⊥,⊥p}
tpp otherwise

(4)
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Example 1. Let be ϕ = before e trp where e is an FTPL list of events and trp a
trace property. To evaluate ϕ at the configuration of index i > 0 on the suffix path
σ0, let us set P (eσ0 , θ(i)) = eσ0(i) = � and P (trpσ0 , θ(i−1)) = trpσ0(i−1) = ⊥p.
Then by Equalities (3) and (4) we have:

P (ϕσ0 , θ(i)) = FB(P (eσ0 , θ(i)), P (Xtrpσ0 , θ(i)), P (Xϕσ0 , θ(i)))
= FB(P (eσ0 , θ(i)), P (trpσ0 , θ(i − 1)), P (ϕσ0 , θ(i − 1)))
= FB(�,⊥p, P (ϕσ0 , θ(i − 1)))
= ⊥

In order to perform evaluation in a decentralised manner, we define below the
Normalised Progression Form (NPF) to describe the point up to which a formula
should be developed, using the progression function.

Definition 7 (NPF). Let ϕ be an FTPL property and θ an event. A formula
P (ϕ, θ) is in NPF if the X-operator only precedes atomic events.

Theorem 1 (Existence of NPF). Let ϕ be an FTPL property and θ an event.
Every P (ϕ, θ) can be rewritten into an equivalent5 formula in NPF.

Proof. The proof is by induction on the indexes of the events (i.e., on the trace)
using Definitons 4 to 6 (and definitions for the remaining FTPL properties).

Example 2. Let be ϕ = before e trp, e = a, b, and trp = always cp, where a
and b are FTPL events s.t. a, b, and cp ∈ CP are atomic events. The resulting
formula in NPF is obtained using Eq. 3.

P (ϕσ0 , θ(0)) = 	p

P (ϕσ0 , θ(1)) = FB(P (eσ0 , θ(1)), P (Xtrpσ0 , θ(1)), P (Xϕσ0 , θ(1)))

= FB(P (e, θ(1)) 
 (	p � P (Xeσ0 , θ(1))), P (trpσ0 , θ(0)), P (ϕσ0 , θ(0)))

= FB(P (a, θ(1)) 
 P (b, θ(1)) 
 (	p � P (eσ0 , θ(0))), P (cp, θ(0)) � 	p
, 	p

)

= FB(P (a, θ(1)) 
 P (b, θ(1)) 
 (	p � P (e, θ(0))), P (cp, θ(0)) � 	p
, 	p

)

= FB(P (a, θ(1)) 
 P (b, θ(1)) 
 (	p � (P (a, θ(0)) 
 P (b, θ(0)))), P (cp, θ(0))�	p
, 	p

)

= FB(P (a, θ(1))
P (b, θ(1))
(	p�(P (Xa, θ(1))
P (Xb, θ(1)))), P (Xcp, θ(1))�	p
,	p

)

As in [4] for LTL, a monitor Mj for the component Cj accepts as input an event
θ(i) and FTPL properties. Applying Definition 3 to atomic events could lead to
wrong results in a decentralised context. For example, if ε �∈ θ(i) holds locally
for the monitor Mj it could be due to the fact that ε �∈ AEj . The decentralised
progression rule should be adapted by taking into account a local set of atomic
events. Hence, the progression rule for atomic events preceded by the X-operator
is given below.

P (X
m

ς, θ(i), AEj) =

⎧
⎪⎨

⎪⎩

� if ς = ς ′ for some ς ′ ∈ AEj ∩ Πj(θ(i − m)),
⊥ if ς = ς ′ for some ς ′ ∈ AEj \ Πj(θ(i − m)),
X

m+1
ς otherwise.

(5)
5 wrt. the semantics.
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We complete the specification of the progression function with the special
symbol # �∈ AE for which the progression is defined by ∀j.P (#, θ, AEj) = #.
Finally, among different formulae to be evaluated, the notion of urgency allows
determining a set of urgent formulae. In a nutshell, the urgency of a formula
in NPF is 0 if the formula does not contain any X-operator or the value of the
greatest exponent of the X-operator. Using formulae in NPF, any sub-formula
ς following an X-operator is atomic (∃j.ς ∈ AEj) and can only be evaluated by
a single monitor Mj . A formal definition of urgency can be found in [19].

4 Decentralised Evaluation Problem

As FTPL patterns contain conjunctions or disjunctions of properties over
components’ parameters and relations, the evaluation of temporal patterns in
a decentralised manner makes sense. Section 4.1 addresses the temporal pat-
tern decentralised evaluation problem on a reconfiguration path by providing an
algorithm for such an evaluation in B4. Its properties are studied in Sect. 4.2.

4.1 Problem Statement and Local Monitor Algorithm

Let ϕ̂σk
(s) denote the value of ϕ at configuration of index s on the suffix path σk.

While considering components with their monitors, because of a decentralised
fashion, the evaluation of ϕσk

(s) by a monitor Mi may be delayed to configura-
tion σ(t) with t > s, and the progression comes into play. In this case, let iϕ

s
σk

(t)
denote the decentralised formula as progressed to the configuration σ(t) by Mi,
for the evaluation of ϕ started at configuration σ(s). Therefore, we consider the
following decision problem.

Temporal Pattern Decentralised Evaluation on a Path (TPDEP)
Input: an FTPL temporal property ϕ, a suffix path σk with k ≥ 0, a configu-
ration σ(s) with s ≥ k, and a number n = |M| of monitors.

Output: i, j < n, and iϕ̂
s
σk

(s + j) ∈ B4, the value of ϕ at σ(s + j) by Mi.
We consider as the basic TPDEP case the situation when only run opera-

tions occur after the TPDEP problem input, and until an output is returned,
communications between monitors being covered by run operations.

The idea of a decentralised evaluation is as follows. Similarly to [4], at the
configuration σ(t), if iϕ

s(t) cannot be evaluated in B4, a monitor Mi progresses
its current formula iϕ

s(t) to iϕ
s(t + 1) = P (iϕ

s(t), θ(t), AEi) and sends it to a
monitor that can evaluate its most urgent sub-formula. After iϕ

s(t + 1) is sent,
Mi sets iϕ

s(t + 1) = #. When Mi receives one or more formulae from others
monitors, each of them is added to the current formula using the � operator.

Unlike [4], where LTL decentralised monitoring determines the steady value
of a property in B2, our decentralised method allows values of FTPL proper-
ties in B4 to vary at different configurations, depending notably on the property
scopes and on external events. To this end, a result in B4 obtained by a mon-
itor is broadcast to other monitors, allowing them to maintain a complete but
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Fig. 2. Algorithm LDMon

bounded history that can be used to invoke the TPDEP problem at the following
configurations.

To answer the TPDEP problem, we propose the LDMon algorithm displayed in
Fig. 2. It takes as input the index i of the current monitor, its set AEi of atomic
events, the index s of the current configuration, an FTPL temporal property ϕ
to be evaluated, and the index k of the suffix path on which ϕ is supposed to be
evaluated. An integer variable t indicates the index of the current configuration as
it evolves. The algorithm broadcasts to all monitors, as soon as it is determined,
the result of the evaluation of ϕ in B4. We chose this method to transmit the
results because we prefer to focus on the feasibility of a decentralised evaluation
of temporal patterns and we consider that the transmission of result is a related
issue outside of the scope of this paper.

Three functions are used in this algorithm: (a) send(ϕ), sends ϕ (as well as
its sub-formulae evaluated at the current configuration) to monitor Mj (differ-
ent from the current monitor) where ψ is the most urgent sub-formula6 such
that Prop(ψ) ⊆ AEj holds, with Prop : PropFTPL → 2AE yielding the set of
events of an FTPL formula; (b) receive({ϕ, . . . }), receives formulae sent (and
broadcast) by other monitors; and (c) broadcast(ϕ), broadcasts ϕ to all other
monitors.

As long as an evaluation of ϕ in B4 is not obtained (line 11), the LDMon
algorithm loops in the following way: the evaluation formula is progressed to the
next configuration (line 12) and the current configuration index t is incremented
(line 13). If at least one event of the current formula belongs to the set of atomic
events AEi (Prop(ϕ) ∩ AEi �= ∅) and if no progressed formula was sent (or if
such a formula was sent and at least one from another monitor was received)
at the previous configuration (iϕ

s
σk

(t) �= #), the progressed formula is sent to
the monitor that can solve its most urgent sub-formula (line 15) and is set to #
(line 16). Progressed formulae (and broadcast results) from other monitors are
received (line 18) and are combined to the local formula using the �-operator

6 In the case where there are two or more equally urgent formulae, ϕ is sent to a
monitor determined by an arbitrary order with the function Mon : M × 2AE → M.
Mon(Mi, AE′) = Mjmin s.t jmin = min(j ∈ [1, n]\{i}|AE′ ∩ AEj �= ∅).
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(line 19). If the result is not in B4, the loop continues, otherwise if the result
of the formula has not already been provided by another monitor (line 21), the
result is broadcast (line 22) and returned (line 24).

4.2 Correctness, Uniqueness, and Termination

In this section several properties of the LDMon algorithm are studied. Proposition 1,
below, guarantees that the LDMon algorithm provides an output within a finite
number of configurations, communications being covered by run operations.

Proposition 1 (Existence). Let ϕ ∈ PropFTPL, σk a suffix path, k ≥ 0. For a
given configuration σ(s) with s ≥ k, when using a number n = |M| of monitors,
the LDMon algorithm provides an output such that ∃i, j.i, j < n∧ iϕ̂

s
σk

(s+j) ∈ B4.

Proof. (Sketch.) Let M0,M1, . . . , Mn−1 be n monitors. At a given configuration
of index s, if one of the monitors Mi ∈ M is able to evaluate its formula in
B4, the proposition holds with j = 0. Otherwise, each monitor Mi (0 ≤ i < n)
progresses its formula iϕ

s
σk

(s) into iϕ
s
σk

(s + 1) and sends it to another monitor,
according to Mon, able to answer its most urgent sub-formula.

We assume that i1ϕ
s
σk

(s + 1) is sent to the monitor Mi2 �=i1 . At the next con-
figuration of index s + 1, the monitor Mi2 receives i1ϕ

s
σk

(s + 1) and combines
it with i2ϕ

s
σk

(s + 1) as well as other formulae (if any) received from other moni-
tors using the �-operator. If one of these formulae (or a sufficient number of sub-
formulae) can be evaluated in B4, the proposition holds with j = 1 and iϕ̂

s
σk

(s+1).
Otherwise, each monitor Mi progresses the formula iϕ

s
σk

(s + 1) into iϕ
s
σk

(s + 2)
and sends it to another monitor according to Mon which is able to answer its most
urgent sub-formula.

We assume that i2ϕ
s
σk

(s + 2) is sent to the monitor Mi3 with i3 �= i2. Also
i3 �= i1 because previously, all sub-formulae of i1ϕ

s
σk

(s + 1) that could be solved
using the set of atomic events AEi1 were already solved. This way, the problem
is reduced from n to n − 1 monitors. Since for a single monitor the output of
the algorithm is ϕ̂σk

(s) with j = 0, we can infer that for n monitors, there is at
least one monitor Mi0 such that i0 ϕ̂

s
σk

(s + j) ∈ B4 with j < n. ��

As explained before, when evaluating ϕσk
(s), the formula iϕ

s
σk

(t) at configura-
tion of index t by Mi either has a result iϕ̂

s
σk

(t) ∈ B4 or progresses to #. The
latter is written iϕ̂

s
σk

(t) = #. Thus iϕ̂
s
σk

(t) ∈ B5.

Theorem 2 (Semantic Correctness). iϕ̂
s
σk

(t) �= # ⇔ iϕ̂
s
σk

(t) = ϕ̂σk
(s).

Proof. (Sketch.)

⇒ If iϕ̂
s
σk

(t) �= #, a result has been obtained in B4, otherwise iϕ̂
s
σk

(t) would
equal #. Therefore, we only have to verify that the progression function
of Definitions 3 to 6 (and definitions for the remaining FTPL properties)
matches the FTPL semantics in B4 as defined in [3]. It is done by induction
on the path length.

⇐ iϕ̂
s
σk

(t) = ϕ̂σk
(s) ⇒ iϕ̂

s
σk

(t) ∈ B4 ⇒ iϕ̂
s
σk

(t) �= #.
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Corollary 1 (Uniqueness). If iϕ̂
s
σk

(t) �= # and jϕ̂
s
σk

(t) �= # for i �= j, then
iϕ̂

s
σk

(t) = jϕ̂
s
σk

(t).

Corollary 2 (Generalised Uniqueness). Let be Sϕs
σk

(t) = �
i∈S

iϕ
s
σk

(t) for

S ⊆ [1, n]. If Sϕ̂s
σk

(t) �= # then for all j ∈ S, jϕ̂
s
σk

(t) �= # implies jϕ̂
s
σk

(t) =
Sϕ̂s

σk
(t).

Corollary 2 allows a monitor to simplify the combination of formulae with the
operator �. For a given property, a conjunction in B4 of formulae received from
other monitors with the formula of the current monitor can be replaced by any
of these formulae provided that its value is different from #.

Example 3. Let us consider again ϕ = before e trp. Let A,B, and C be the
components with their respective monitors MA, MB, and MC such that iϕ

s(t) =
FB(ie

s(t), itrp
s−1(t), iϕ

s−1(t)) for i ∈ {A,B,C} (Definition 6). Let us assume
ϕ(s) = FB(e(s), trp(s−1), ϕ(s−1)), with ϕ(s), e(s), trp(s−1), and ϕ(s−1) being
evaluated in B4. By Corollary 2, e(s) = Aes(t)�Bes(t)�Ces(t) (resp. trp(s−1) =
Atrps−1(t)�Btrps−1(t)�Ctrps−1(t), ϕ(s−1) = Aϕs−1(t)�Bϕs−1(t)�Cϕs−1(t)) if
it exists at least one i such that the value of ie

t(s) (resp. itrp
s−1(t), iϕ

s−1(t)) is in
B4; in this case, ie

s(t) = e(s) (resp. itrp
s−1(t) = trp(s−1), iϕ

s−1(t) = ϕ(s−1)).
For example, if Aϕs(t) = FB(�, φ, Aϕs−1(t)), Bϕs(t) = FB(ε,�p, Bϕs−1(t)),

and Cϕs(t) = FB(ε, ψ,�p), with φ, Aϕs−1(t), ε, Bϕs−1(t), ε, and ψ not being
evaluated in B4. It implies Aes(t) = e(s) = � (resp. Btrps−1(t) = trp(s−1) = �p,
Cϕs−1(t) = ϕ(s − 1) = �p) and ϕ(s) = FB(�,�p,�p) = �p.

Proposition 2 (Correctness and Uniqueness). The output provided by the
LDMon algorithm answers the TPDEP problem. For a given configuration σ(s),
this answer is unique.

Proof. (Sketch.) By Proposition 1 LDMon provides an output iϕ̂
s
σk

(s + j) for at
least one monitor Mi, within a finite number j of configurations. By Theorem 2
this output answers the TPDEP problem. Furthermore Corollary 1 establishes
that for any i0, if i0 ϕ̂

s
σk

(s + j) is the output of the LDMon algorithm for the
monitor Mi0 then i0 ϕ̂

s
σk

(s + j) = iϕ̂
s
σk

(s + j). ��

Proposition 3 (Termination). The LDMon algorithm always terminates, either
at the configuration when an output is provided or at the next one. Furthermore,
the number of configurations needed to reach a result is at most |M|.

Proof. (sketch) Propositions 1 and 2 establish that the LDMon algorithm termi-
nates and answers the TPDEP problem for at least one monitor Mi after a finite
number of reconfigurations j < |M|. Such monitor Mi broadcasts the result to
all other monitors before finishing (line 22 of the LDMon algorithm, Fig. 2). This
enables any monitor for which the LDMon algorithm did not finish at configuration
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s + j to receive the result of the broadcast and to finish its instance of the LDMon
algorithm at configuration s + j + 1 ≤ s + |M|. ��

In general, decentralised algorithms tend to be very hard for creating a consensus
and moreover they require significant communication overhead. Let us empha-
size the fact that Proposition 2 guarantees the correctness and uniqueness of
a result, which implies such a consensus. As a consequence of Propositions 2
and 3 adaptation policies relying on the decentralised evaluation of FTPL tem-
poral properties can be applied to component-based systems for their dynamic
reconfiguration at runtime.

Let us now discuss communication overhead. We consider a component-based
system of N components reporting their status in B4 to a central controller at
each configuration as described for in [3]. In the centralised context, thanks to
the progressive semantics, the evaluation of a given FTPL property ϕ would
mean that N messages should be sent to conclude in B4. With the decentralised
approach, assuming that atomic events of ϕ would be distributed among n com-
ponents (n ≤ N), we would need, at most, n2 − 1 messages to evaluate ϕ.

This means that to evaluate a formula involving n = 10 components of a
component-based system of N = 100 components, in the worst case the decen-
tralised fashion would need 99 messages versus 100 for the centralised approach
to evaluate ϕ which is a ratio of 99%. If, however, the total number N of compo-
nents of the system is much greater than the number n of components involved
in the evaluation of ϕ, the communication overhead ratio can be even lower (e.g.,
9.9% for N = 1000). Reciprocally, if a great proportion of the system is involved
in the property to evaluate, the centralised method would lead to better results.
Let q be such a proportion, i.e., n = qN , the communication overhead ratio is
Nq2 − 1/N .

This is different from the result in [4] where the decentralised algorithm
outperforms its centralised counterpart by a proportion of 1 to 4 in terms of
communication overhead, to conclude in B2. Such a difference is due to the fact
that in our case, as soon as a property is evaluated in B4 for a given configuration
of the path, another evaluation is initiated for another configuration. Neverthe-
less, we have better results while monitoring only components concerned with
the temporal property, that can be determined syntactically. To sum up, our
approach is suitable for systems with a large number of components when the
FTPL property to evaluate involves a small proportion of them.

5 Implementation and Experiment

This section describes how the LDMon algorithm has been implemented within
the GROOVE graph transformation tool [5]. This implementation is then used
to experiment with a case study.
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5.1 Implementing with GROOVE

Fig. 3. Rule remove

OrphanMon (Color
figure online)

GROOVE uses simple graphs for modelling the structure
of object-oriented systems at design-time, compile-time,
and runtime. Graphs are made of nodes and edges that
can be labelled. Graph transformations provide a basis
for model transformation or for operational semantics of
systems. Graphs are transformed by rules consisting of
(a) patterns that must be present (resp. absent) for the
rule to apply, (b) elements (nodes and edges) to be added
(resp.deleted) from the graph, and (c) pairs of nodes to be
merged. Colour and shape coding allow these rules to be
easily represented. For example, our implementation uses
the graph rule removeOrphanMon represented Fig. 3 that

can be interpreted as follows: (a) The red (dashed fat) “embargo” elements,
representing a node of type component and an edge defining a monitoring rela-
tion between monitors, of type ldmon, and components, must be absent, (b) the
blue (dashed thin) “eraser” element, representing a node of type ldmon, must
be present, and (c) if both conditions are satisfied, the blue (dashed thin) ele-
ment is deleted. This means that if a monitor of type ldmon is not monitoring
a component, the monitor node, ldmon, must be deleted. The reader interested
in GROOVE is referred to [5].

Our implementation uses the GROOVE typed mode to guarantee that all
graphs are well-typed. It consists of generic types and graph rules that can
manage assigned priorities in such a way that a rule is applied only if no rule of
higher priority matches the current graph. The input is a graph containing an
FTPL formula and a component-based system, both represented using the model
presented in Sect. 2. Figure 4 shows a screenshot of GROOVE displaying, in the
main panel, a graph modelling the location component-based system used in the
case study below. Components are represented in blue, Required (resp. Provided)
Interfaces in magenta (resp. red), Parameters in black, and both ITypes and
PTypes in grey. The top left panel shows graph rules ordered by priority, whereas
the bottom left panel contains GROOVE types.

5.2 Case Study

In this section we illustrate the LDMon algorithm with an example of a location
composite component, and afterwards we provide several details on its imple-
mentation in GROOVE. The location system is made up of different positioning
systems, like GPS or Wi-Fi, a merger and a controller. Thanks to adaptation
policies with temporal patterns, the location composite component can be modi-
fied to use either GPS or Wi-Fi positioning systems, depending on some proper-
ties, such as available energy, occurrences of indoor/outdoor positioning external
events, etc. For example, when the level of energy is low, if the vehicle is in a
tunnel where there is no GPS signal, it would be useful to remove the GPS
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Fig. 4. Model of the location component-based system displayed with GROOVE

removegpsrun run addgps run

Location GPS

Wi-FiController

Merger Location GPS

Wi-FiController

MergerLocation

Wi-FiController

Merger

σ(k ) σ(i0−1) σ(i0 ) σ(i1−1) σ(i1 )

Fig. 5. Representation of the suffix configuration path σk

component (cf. Fig. 5). To save energy, this component may not be added back
before the level of energy reaches an acceptable value.

This example has been fully implemented with GROOVE together with adap-
tation policies. Let G be the GROOVE graph representing this example. Let us
consider the FTPL temporal property ϕ=after removegps normal (eventually
(power≥33) before addgps normal), which can be written as ϕ=after e0 φ,
with e0 = removegps normal, φ = trp before e1, trp = eventually cp, e1 =
addgps normal, and cp = (power ≥ 33). Intuitively, ϕ represents the require-
ment “After the GPS component has been removed, the level of energy has to
be greater than 33% before this component is added back”. Figure 6 shows how
ϕ is represented in our implementation.

Let Mc, Mm, Mg, and Mw be four monitors pertaining respectively to the con-
troller, merger, GPS, and Wi-Fi components. Monitor Mc has access to the value
of the configuration property power ge 33 (� if power ≥ 33, or ⊥ otherwise) while
Mm is aware of the values of addgps normal (resp. removegps normal) which are
� at the configuration following the addition (resp. removal) of the GPS com-
ponent, or ⊥ otherwise. Since monitors, Mg and Mw do not have access to any
atomic event having an influence on the evaluation of ϕ (i.e., Prop(ϕ) ∩ AEg =
Prop(ϕ) ∩ AEw = ∅), Mg and Mw do not send messages, which has a beneficial
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effect on the communication overhead. In our implementation, each monitor is a
subgraph of G containing the monitored component via an edge named monitor.
Communications between monitors are represented by edges named sentreceived
and broadcast. Recall that in the model, communications between monitors are
covered by run operations as they do not directly affect the system’s architecture.

Fig. 6. Representation of the ϕ FTPL property

Let us consider a reconfigura-
tion path σ representing the
sequences of configurations of
the location composite com-
ponent where the transitions
between configurations are
reconfiguration operations. In
the suffix path σk displayed in
Fig. 5, we suppose that all the
reconfiguration operations are
run, except between σ(i0 − 1)
and σ(i0) (resp. σ(i1 − 1) and
σ(i1)), where it is removegps
(resp. addgps). During runtime,
an adaptation controller—in
charge of the application of
adaptation policies—needs to
evaluate FTPL properties. To do so, the adaptation controller uses the LDMon
algorithm to evaluate ϕ. When a result is returned by a monitor, the most suit-
able adaptation policy is applied, and the algorithm is used again to evaluate ϕ at
the following configuration, where it may vary because of the scope, for example.
In the following, we describe how, at each configuration of index s (k ≤ s ≤ i1)
the adaptation controller requests the evaluation of ϕ to the monitors using the
LDMon algorithm, and receives the answer at the same configuration σ(s). In
Fig. 7 green (dashed) arrows represent broadcast communications, blue (plain)
arrows represent formulae being sent, and red (dotted) arrows indicate that (a)
the destination component is able to solve the most urgent sub-formula of the
source component and (b) no communication is made between these compo-
nents. Because neither Mg nor Mw has access to atomic events impacting their
formulae, they do not send any message during the run described below.

At configuration σ(k), since Mm can evaluate e0 = ⊥, by definition of the
after FTPL property, mϕ̂k

σk
(k) = �p is established and broadcast. Other mon-

itors progress their formulae and determine that the most urgent sub-formula
can be solved by Mm (Fig. 7a); consequently, Mc sends its formulae7 to Mm.

7 The formula to evaluate as well as its sub-formulae evaluated at the current state.
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Fig. 7. Interactions between monitors (Color figure
online)

At every configuration σ(s)
for k + 1 ≤ s ≤ i0 − 1,
since e0 does not occur, the
decentralised evaluation con-
sists in evaluating ϕ by Mm

that returns and broadcasts
the result. Other monitors
receive the result from the pre-
vious configuration broadcast
by Mm

8. They also progress
their current formulae, which
cause Mc to send its formu-
lae to Mm. This is diplayed
in Fig. 7b, where FA represents
the FTPL temporal property
after in the same way FB
does for the before property
in Definition 6. At configura-
tion σ(i0), the event e0 =
removegps normal, signify-
ing the GPS normal removal,
occurs. The Mm monitor,
being aware of this occur-
rence, evaluates ϕ: mϕ̂i0

σk
(i0) =

mφ̂
i0
σi0

(i0) = �p because the
“before” FTPL pattern is
defined to be �p at the first
configuration of its scope. The
result is then retuned and
broadcast. In the meantime, Mc and Mw receive the result broadcast at the
previous configuration and Mc sends its formulae to Mm.

At configuration σ(s) for i0 + 1 ≤ s ≤ i1 − 1, because e0 occurred once,
Mm computes mϕ̂s

σk
(s) = mφ̂

s

σi0
(s) = �p, since φ = trp before e1 and e1 has

not yet occurred; the result is then returned and broadcast. Mc and Mw receive
the result broadcast at the previous configuration which contains, as a sub-
formula, the information that e0 occurred at configuration σ(i0). The formula
progressed by Mc contains cφ

s
σi0

(s + 1) = FB(Xe1, ˆtrp
s−1

σi0
(s),�p). We suppose

that there is a configuration σ(s′) s.t. s′ > i0, where the power rises over 33%,
i.e., cp = (power ≥ 33) = � and then ˆtrp

s

σi0
(s) = cp � ˆtrp

s−1

σi0
(s) = � for

s ≥ s′. In this case, the set of formulae Mc sends to Mm (Fig. 7c) contains
FB(Xe1,�,�p) and trps

σi0
(s).

At configuration σ(i1), e1 = addgps terminates just occurred. We assume
that the reconfiguration terminated normally and that the GPS component was
8 This allows all monitors to keep a history of |M| + 1 configurations.
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Table 1. Graph rules used at configuration σ(s)

Index s of configuration Number of graph rules Reconfiguration Part of formula to be evaluated

s = k 85 after removegps normal . . .

k + 1 ≤ s ≤ i0 − 1 111 − 162 after removegps normal . . .

s = i0 237 removegps . . .before addgps normal

i0 + 1 ≤ s ≤ i1 − 1 149 . . .before addgps normal

s = i1 253 addgps . . . eventually (power ≥ 33) . . .

added. Mc, Mg, and Mw receive the result broadcast at the previous configu-
ration. Mc and Mw behave in a way similar than above at configuration σ(s)
with i0 + 1 ≤ s ≤ i1 − 1, whereas Mg behaves like Mw. Finally, Mm evaluates

its formula to mϕ̂i1
σk

(i1) = mφ̂
i1
σi0

(i1) = FB(�,Xtrpσi0
,�p) = �p using the fact

that the sub-formula Xtrpσi0
was sent by Mc at the previous configuration. This

result answers correctly the TPDEP.
Back to the implementation, Table 1 gives information on the GROOVE

graph rules for the case study. The columns show, from left to right, the pos-
sible values of the index of the considered configurations, the number of graph
rules used, the reconfiguration occurring (if any), and the part of the FTPL
formula that must be evaluated to obtain a result in B4. At configuration σ(k)
85 rules are used, rules concerning the evaluation of FTPL events are the ones
used the most; as long as the event removegps normal has not occurred yet,
only the evaluation of the part “after removegps normal . . . ” of the formula
is needed to obtain a result. At configuration σ(s), with k + 1 ≤ s ≤ i0 − 1,
from 111 to 162 graph rules are used, depending of the length of the history
being built at the beginning of the run; once the length of history has reach
its maximum, i.e., |M| + 1, the most used graph rules are the ones designed
to clear outdated history. At configuration σ(i0), the reconfiguration removegps
occurs, then as long as the event addgps normal has not occurred yet, only the
evaluation of the part “. . .before addgps normal” of the formula is needed to
obtain a result; 237 graph rules are used, most of them doing a cleaning of the
elements of the subgraph representing the monitor of the GPS component being
removed. At configuration σ(s), with k + 1 ≤ s ≤ i0 − 1, 149 graph rules are
used, mainly to clear outdated history. At configuration σ(i1), the reconfigura-
tion addgps occurs, then only the evaluation, at the previous configuration, of
the part “. . . eventually (power ≥ 33) . . . ” of the formula is needed to obtain a
result; 253 graph rules are used, mainly to clear outdated history and to update
the scope of the property.

6 Conclusion

This paper has addressed the decentralised evaluation problem for linear tempo-
ral patterns on reconfiguration paths of component-based systems. To this end,
we have proposed a specific progressive semantics of temporal patterns, and an
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algorithm for their decentralised evaluation using monitors associated with com-
ponents. We have shown that when reached, the decentralised evaluation results
coincide with the results obtained by the centralised evaluation of temporal pat-
terns at runtime. We have described the implementation with GROOVE and its
application to a location composite component.

In this paper, for the sake of readability, monitors only deal with a single
FTPL property. To evaluate several FTPL formulae, we can either use a single
monitor (per component) dealing with all the formulae, as herein described, or
a monitor per formula of interest. Depending on the context, each method can
have its own advantages and drawbacks.

In the case of the removal of a component, the corresponding monitor ter-
minates and is removed. Thanks to the adaptation policies’ controller, this
should not influence any ongoing temporal pattern evaluation. When a com-
ponent is added, its monitor starts with a blank history. Furthermore, when a
monitored primitive component is replaced with a composite component whose
sub-components contain (among other) the same parameters as the original com-
ponent, the monitor shall keep working seamlessly. Since no additional monitor
is added, this mechanism allows us to mitigate the communication overhead that
could be incurred by the increase of the number of components.

As a future work, we intend to extend the analysis of the TPDEP problem
to the case when several reconfiguration operations occur. It would be possible
when reconfigurations lead to configurations whose atomic events do not interfere
with the evaluation of the temporal property of interest (the TPDEP input). In
this case the adaptation controller can authorize reconfigurations of independent
parts of the component-based system. On the implementation side, we plan to
exploit the decentralised evaluation method for the implementation handling the
adaptation policies. The overall goal is to exploit its results to apply adaptation
policies to the component-based system under scrutiny at runtime. So far we have
considered the components having monitors to be all on the same architectural
level, i.e., they all are siblings. As a future work, we plan to delegate part of the
monitoring of composite components to their subcomponents.
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Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012)

5. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. Int. J. Softw. Tools Technol. Trans. 14, 15–40 (2012)



126 O. Kouchnarenko and J.-F. Weber

6. Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Inf. Comput. 164,
322–344 (2001)

7. Bozzelli, L., Murano, A., Peron, A.: Pushdown module checking. In: Sutcliffe, G.,
Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 504–518. Springer,
Heidelberg (2005)

8. Aminof, B., Legay, A., Murano, A., Serre, O., Vardi, M.Y.: Pushdown module
checking with imperfect information. Inf. Comput. 223, 1–17 (2013)

9. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. Int. J. Logic Comput. 20, 651–674 (2010)

10. Kim, M., Lee, I., Shin, J., Sokolsky, O., et al.: Monitoring, checking, and steering
of real-time systems. ENTCS 70, 95–111 (2002)

11. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal
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Abstract. Software architectures are the blueprint of software systems
construction and evolution. During the overall software lifecycle, several
changes of its architecture may be considered (e.g. including new soft-
ware requirements, correcting bugs, enhancing software performance).
To ensure a valid and reliable evolution, software architecture changes
must be captured, verified and validated at an early stage of the soft-
ware evolution process. In this paper, we address this issue by proposing
a set of evolution rules for software architectures in a manner that pre-
serves consistency and coherence between abstraction levels. The rules
are specified in the B formal language and applied to a three-level Adl
that covers the three steps of software development: specification, imple-
mentation and deployment. To validate our rules, the approach is tested
on a running example of Home Automation Software.

Keywords: Software architecture evolution · Component reuse ·
Consistency checking · Coherence checking · Evolution rules · Formal
models · Abstraction level · B formal language

1 Introduction

The great importance of evolution and maintenance in software systems engi-
neering has been noticed over more than two decades ago. According to a highly
cited survey conducted by Lientz and Swanson in the late 1970s [1], it has been
proven that software maintenance represents the main part of a software lifecycle
in terms of cost and time. In particular, this high fraction relates to component-
based software engineering that tackles the development of complex software
architectures (thanks to modularity, abstraction and reuse). Indeed, an ill mas-
tered software system maintenance or a misconception during its evolving process
may lead to serious architectural mismatches and inconsistencies. A famous prob-
lem that software architecture evolution is subject to is erosion. Introduced by
Perry and Wolf [2] in 1992 and studied over many years [3], erosion can be
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defined as the deterioration or violation of architectural design decisions by the
software implementation. It is usually due to software aging and an undisciplined
evolution of its architecture. While a lot of work was dedicated to architectural
modeling and evolution, there is still a lack of means and techniques to tackle
architectural inconsistencies, and erosion in particular. Indeed, almost existing
Adls hardly support the whole life-cycle of a component-based software and it
often creates a gap between design and implementation, requirements and design
or even both. These gaps make evolution harder and increase the risk of non-
conformance between requirements, design and implementation hence leading to
erosion.

In previous work [4,5], we proposed Dedal, an Adl that supports the full
lifecycle process of component-based software systems. Dedal proposes to model
architectures at three abstraction levels that correspond to the three steps of
software development: specification, implementation and deployment. However,
at this stage the Adl handles evolution in an adhoc manner and lacks rigorous
support for reliable and automatic software evolution. In this paper, we propose
a set of evolution rules specified using the B formal language [6] to automatically
handle forward and reverse evolution among Dedal levels in a reliable way. We
also show how evolution can be simulated at an early stage using the proposed
rules, anticipating and preventing inconsistencies.

The remainder of this paper is outlined as follows: Sect. 2 discusses related
work. Section 3 gives a brief overview of Dedal architecture levels and their for-
malization. Section 4 presents the three-level evolution approach, illustrated by
some evolution rules. Section 5 gives the simulation of an evolution scenario
example using the proposed rules. Finally, Sect. 6 concludes the paper and dis-
cusses future work.

2 Related Work

Over the two past decades, a wide area of related work has addressed the prob-
lem of software evolution. Indeed, many Adls have been proposed [7]. Exam-
ples include C2SADL [8], Wright [9], Rapide [10], ACME [11], Darwin [12] and
π-ADL [13]. While ”box-and-line” seems to be the easiest way to represent archi-
tectures for practitioners [14], this notation is informal and leads to ambiguity
and imprecision. For this reason, the use of a formalism and its integration into
an Adl is crucial. To cope with software evolution and particularly dynamic
change, existing Adls use several kinds of formal ground depending on their
application domain. For instance, C2SADL uses event-based processes to model
concurrent systems while Dynamic-Wright lies on CSP [15], a process algebra
formalism to support the specification and analysis of interactions between com-
ponents. ACME, which was basically designed to define a common interchange
language for architecture design tools, is based on first-order logic. The Adl
was extended with Plastik [16] to support dynamic reconfiguration of archi-
tectures. π-ADL was designed for concurrent and mobile systems. It lies on
π-calculus [17], a higher-order logic formalism to model and evolve the behav-
ior of the architectures. C2SADL, Pi-ADL, ACME and Dynamic-Wright support
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dynamic reconfiguration of architectures. However, they lack analysis support for
the evolution activity and hardly cover the whole lifecycle of component-based
software.

In our work, we propose a solution for the simulation and verification of
software architecture evolution using B [6] formal models. The choice of B is
motivated by its rigorism (first-order logic) and its expressiveness that enables
modeling concepts in a reasonable easy way. The B formal models correspond to
the definitions of our three-level Dedal Adl that covers the whole lifecycle of a
software system (i.e. specification, implementation and deployment). Hence, we
address both static and dynamic evolution by proposing change rules at each of
the three abstraction levels of our Adl.

3 Overview of Dedal

3.1 Dedal Abstraction Levels

Dedal is a novel Adl that covers the whole life-cycle of a component-based
software. It proposes a three-step approach for specifying, implementing and
deploying software architectures as a reuse-based process(cf. Fig. 1).

Fig. 1. Dedal overall process [5]

To illustrate the concepts of Dedal, we propose to model a home automa-
tion software (Has) that manages comfort scenarios. Here, it automatically con-
trols the building’s lighting and heating in function of the time and ambient
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temperature. For this purpose, we propose an architecture with an orchestrator
component that interacts with the appropriate devices to implement the desired
scenario.

The abstract architecture specification is the first level of software architec-
ture descriptions. It represents the architecture as imagined by the architect to
meet the requirements of the future software. In Dedal, the architecture spec-
ification is composed of component roles, their connections and the expected
global behavior. Component roles are abstract and partial component type spec-
ifications. They are identified by the architect in order to search for and select
corresponding concrete components in the next step. Figure 2a shows a possi-
ble architecture specification for the Has. In this specification, five component
roles are identified. A component playing the Orchestrator role controls four
components playing the Light, Time, Thermometer and CoolerHeater roles.

Fig. 2. Architecture specification, configuration and assembly of HAS

The concrete architecture configuration is an implementation view of soft-
ware architectures. It results from the selection of existing component classes
in component repositories. Thus, an architecture configuration lists the con-
crete component classes that compose a specific version of the software system.
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In Dedal, component classes can be either primitive or composite. A primitive
component class encapsulates executable code. A composite component class
encapsulates an inner architecture configuration (i.e. a set of connected compo-
nent classes which may, in turn, be primitive or composite). A composite com-
ponent class exposes a set of interfaces corresponding to unconnected interfaces
of its inner components.

Figure 2b shows a possible architecture configuration for the Has example as
well as an example of an AirConditioner composite component and its inner con-
figuration. As illustrated in this example, a single component class may realize
several roles in the architecture specification as with the AirConditioner compo-
nent class, which realizes both Thermometer and CoolerHeater roles. Conversely,
a component class may provide more services than those listed in the architec-
ture specification as with the Lamp component class which, provides an extra
service to control the intensity of light.

The instantiated architecture assembly describes software at runtime and
gathers information about its internal state. The architecture assembly results
from the instantiation of an architecture configuration. It lists the instances of
the component and connector classes that compose the deployed architecture at
runtime and their assembly constraints (such as maximum numbers of allowed
instances).

Component instances document how component classes in an architecture
configuration are instantiated in the deployed software. Each component instance
has an initial and current state defined by a list of valued attributes. Figure 2c
shows an instantiated architecture assembly for the Has example.

3.2 Dedal Formal Model

Dedal is enhanced by a formal model using the B specification language. The
proposed model covers all Dedal concepts and includes rules for substitutability
and compatibility among each level as well as the rules that govern interrelations
between the different levels (cf. Fig. 3). These rules, which were discussed in
previous work [18], are the basis for controlling the evolution process. Indeed,
evolution needs a subtyping mechanism to manage change locally (at the same
abstraction level) and then, inter-level rules to propagate change to the other
levels.

For the sake of simplicity, we present in Table 1 a generic formal model cov-
ering the underlying concepts of Dedal.

For instance, the concept of component is specialized into compRole at the
specification level and the concept of architecture is specialized into configuration
at the configuration level.

This model is used to set generic evolution rules which are specialized for
each of the three abstraction levels of Dedal. An evolution scenario is presented
in Sect. 5 as an illustration.



132 A. Mokni et al.

Fig. 3. Component interrelations in Dedal

Table 1. Formal specification of underlying concepts

4 The Formal Evolution Approach

In this section, we present our approach to handle multi-level software evolution
as a reuse-based process. The objective of this approach is twofold: (1) cap-
ture software change and control its impact on architecture consistency and,
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Fig. 4. The formal evolution process

(2) propagate change between multiple architecture levels to preserve global
coherence. The approach is formal model-based since it relies on the formal
models of our three-level Adl and uses consistency and coherence properties
and a set of evolution rules (cf. Fig. 4). The approach is also dynamic in the
sense that it performs analysis and simulates change on executable models. The
formal models may be generated through a Mde (Model Driven Engineering)
process where the source models are textual or graphical (UML profile) descrip-
tions of Dedal. Since the transformation is not tooled yet, this issue is out of the
scope of the present paper.

The evolution management is composed of three main activities: consistency
analysis, inter-level coherence analysis and evolution rules triggering. In the
remainder, we present the foundations and the mechanisms of each of these
three activities.

4.1 Architecture Consistency Analysis

Taylor et al. [19] define consistency as an internal property intended to ensure
that different elements of an architectural model do not contradict one another.



134 A. Mokni et al.

Usually, this property includes five sorts of consistency: name, interface, behav-
ior, interaction and refinement consistency. Some properties such as parameters,
names and interfaces are taken into account by adding constraints in the defin-
ition of our architectural formal model [18]. In our approach, we focus on three
main properties: name consistency, connection consistency, which includes inter-
action and compatibility between components, and architecture completeness.

Name consistency. This property ensures that each component belonging to
the architecture holds a unique name and hence avoids conflicts when selecting
components.

Connection consistency. This property ensures that all architecture connec-
tions are correct and satisfy compatibility between both sides (i.e. a required
interface is always connected to a compatible provided one). In addition, con-
nection consistency stipulates that the architecture graph is consistent (i.e. each
component is connected to at least another one).

Architecture completeness. This property ensures that the architecture real-
izes all its functional objectives. From an internal point of view, completeness is
satisfied when all the required services in the architecture are met. Structurally,
it means that all the required interfaces are connected to a compatible provided
one.

When a change occurs, the analyzer checks all the aforementioned properties
and notify the evolution manager in case a violation is detected. Then, the
adequate evolution rules are triggered to reestablish architecture consistency.
The properties are defined using B, a first order set-theoretic formalism and
hence analysis is performed using a B model checker.

4.2 Inter-level Coherence Properties

Coherence analysis is managed using inter-level rules (cf. Fig. 5). These rules
are defined to check whether a configuration conforms to its specification or a
software instantiation is coherent with its configuration.

Coherence between specification and configuration. A specification is a
formal description of software requirements that is used to guide the search for
suitable concrete component classes to implement the software. An architec-
ture definition is coherent when all component roles are realized by component
classes in the configuration. This results in a many-to many relation. Indeed,
several component roles may be realized by a single component class while, con-
versely, a composition of component classes may be needed to realize a single
role. Formally:

implements ∈ configuration ↔ specification∧
∀ (Conf, Spec).(Conf ∈ configuration ∧ Spec ∈ specification

⇒
(Conf, Spec) ∈ implements

⇔
∀ CR.(CR ∈ compRole ∧ CR ∈ spec components(Spec) ⇒

∃ CL.(CL ∈ compClass ∧ CL ∈ config components(Conf) ∧
(CL,CR) ∈ realizes)))
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Fig. 5. Coherence between architecture levels

Coherence between configuration and assembly. Coherence between con-
figuration and assembly levels is satisfied when all the classes of the configuration
are instantiated at least once in the architecture assembly and, conversely, all
instances of the assembly are instances of the component classes of the configu-
ration. Formally:

instantiates ∈ assembly → configuration∧
∀(Asm,Conf).(Asm ∈ assembly ∧ Conf ∈ configuration
⇒
((Asm,Conf) ∈ instantiates

⇔
∀CL.(CL ∈ compClass ∧ CL ∈ config components(Conf)

⇒
∃CI.(CI ∈ compInstance ∧ CI ∈ assm components(Asm)∧

(CI,CL) ∈ comp instantiates))∧
∀CI.(CI ∈ compInstance ∧ CI ∈ assm components(Asm)

⇒
∃CL.(CL ∈ compClass ∧ CL ∈ config components(Conf)∧

(CI,CL) ∈ comp instantiates)) ))

Coherence analysis comes after consistency checking returns a positive result.
Indeed, it is necessary that software system descriptions are consistent at all
abstraction levels before checking coherence between them. When a change
occurs at any level, this may result in erosion or drift (for instance, some higher
level decisions are violated or not taken into account by the lower level).
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The evolution manager is then notified about the detected incoherence and prop-
agates the change to the incoherent levels using the adequate evolution rules.

4.3 Specifying Evolution Rules

An evolution rule is an operation that changes a target software architecture
by the deleting, adding or substituting of one of its constituent elements (com-
ponents and connections). These rules are specified using the B notation and
each rule is composed of three parts: the operation signature, preconditions and
actions.

Architecture specification evolution. Evolving an architecture specification
is usually a response to a new software requirement. For instance, the architect
may need to add new functionalities to the system and hence add some new
roles to the specification. Moreover, a specification may also be modified during
the change propagation process to preserve coherence and keep an up-to-date
specification description of the system that may be implemented in several ways.
The proposed evolution rules related to the specification level are the addition,
deletion and substitution of a component role and the addition and deletion of
connections. The following role addition rule is an example of evolution rules at
specification level:

addRole(spec, newRole) =
PRE
spec ∈ arch spec ∧ newRole ∈ compRole ∧ newRole �∈ spec components(spec) ∧
/* spec does not contain a role with the same name*/
∀ cr.(cr ∈ compRole ∧ cr ∈ spec components(spec)

⇒ comp name(cr) ¬ comp name(newRole))
THEN

spec servers(spec) := spec servers(spec) ∪ servers(newRole) ||
spec clients(spec) := spec clients(spec) ∪ clients(newRole) ||
spec components(spec) := spec components(spec) ∪ {newRole}

END;

Architecture configuration evolution. Change can be initiated at configu-
ration level whenever new versions of software component classes are released.
Otherwise, an implementation may also be impacted by change propagation
either from the specification level, in response to new requirements, or from the
assembly level, in response to a dynamic change of the system. Indeed, a config-
uration may be instantiated several times and deployed in multiple contexts. At
configuration level, there is a need for two more evolution rules: the connection
and the disconnection of the exposed services. Indeed, a component class used in
a configuration may hold more provided interfaces than the component role that
it implements. These extra interfaces may be left unconnected. On the contrary,
a specification sets by definition the requirements, and hence the provided inter-
faces of all roles must be connected to keep the architecture consistent. As an
example of evolution rule at configuration level, we list the following component
class substitution rule:
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replaceClass(config, oldClass, newClass) =
PRE

oldClass ∈ compClass ∧ newClass ∈ compClass ∧ config ∈ configuration ∧
oldClass ∈ config components(config) ∧
/* The old component class can be substituted for the new one

(verified by the component substitution rule)*/
newClass �∈ config components(config) ∧ (oldClass, newClass) ∈ class substitution

THEN
config components(config) := (config components(config) - {oldClass}) ∪ {newClass} ||
config clients(config) := (config clients(config) - clients(oldClass)) ∪ clients(newClass)

END

Architecture assembly evolution. Since the architecture assembly repre-
sents the software at runtime, evolving software at assembly level is a dynamic
evolution issue. Several kinds of change may occur at runtime. For instance,
dynamic software change may be needed due to a change in the execution con-
text (e.g. lack of memory, CPU). Unanticipated changes are one of the most
important issues in software evolution. Indeed, some software systems have to
be self-adaptive to keep providing their functions despite environmental changes.
This issues are handled by the evolution manager which monitors the execution
state of the software through its corresponding formal model. It then triggers the
assembly evolution rules to restore consistency when it is violated. These rules
include component instance deployment, component instance removal, compo-
nent instance substitution, component instance connection/disconnection and
service connection/disconnection. As an example of dynamic evolution rule, we
state the following component instance addition rule:

deployInstance(asm, inst, class, state) =
PRE

asm ∈ assembly ∧ class ∈ compClass ∧
/* The instance is a valid instantiation of an existing component class*/

inst ∈ compInstance ∧ class = comp instantiates(inst) ∧ inst �∈ assm components(asm) ∧
/* The state given to the instance is a valid value assignment to the attributes

of the instantiated component class*/
state ∈ P (attribute value) ∧ card(state) = card(class attributes(class)) ∧

/* The maximum number of allowed instances of the given component class
is not already reached*/

nb instances(class) < max instances(class)
THEN

/*initial and current state initialization*/
initiation state(inst) := state ||
current state(inst) := state ||

/*updating the number of instances and the assembly architecture*/
nb instances(class) := nb instances(class) + 1 ||
assm components(asm) := assm components(asm) ∪ {inst} ||
assm servers(asm) := assm servers(asm) ∪ servers(inst) ||
assm clients(asm) := assm clients(asm) ∪ clients(inst)

END;

5 Implementing an Evolution Scenario

To illustrate the use of evolution rules, we propose to evolve the Has architecture
by adding of a new device that manages the building’s shutters. The evolution
simulation is performed using ProB [20], an animator and model checker of B
models. Once the formal models corresponding to the three architecture descrip-
tions are successfully checked, we use the ProB solver to trigger change as a goal
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to reach. In the remainder, we give some details about the example instances
and the different steps of the evolution process.

5.1 Intra-level Change

Figure 6 illustrates the old architecture specification and the evolved one.

Fig. 6. Evolving the HAS specification by role addition

Initially, the instantiation of the formal Has specification is as follows:

compRole := {cr1, cr1a, cr2, cr3, cr4, cr4a, cr5, cr6}||
comp name := {cr1 → Light, cr1a → ELight, cr2 → Time,

cr3 → Thermometer, cr4 → HomeOrchestrator,
cr4a → HomeOrchestrator, cr5 → CoolerHeater,
cr6 → Shutter}||

arch spec := {HAS spec}||
spec components := {HAS spec → {cr1, cr2, cr3, cr4, cr5}}||
spec connections := {HAS spec → {

((cr4, rintILight) → (cr1, pintILight)),
((cr4, rintIT ime) → (cr2, pintIT ime)),
((cr4, rintITherm2) → (cr3, pintITherm1)),
((cr4, rintICon) → (cr5, pintICon))}}||

spec clients := {(HAS spec → {(cr4, rintILight), (cr4, rintIT ime),
(cr4, rintITherm2), (cr4, rintICon))}}||

spec servers := {(HAS spec → {(cr1, pintILight), (cr2, pintIT ime),
(cr3, pintITherm1), (cr5, pintICon)})}

The change is requested by the execution of the role addition operation that takes
as arguments the HAS spec Has architecture specification and the Shutter (cr6)
component role.

addRole(HAS spec, cr6)
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The change process is initiated by setting a goal. When the goal cannot be
reached, the change process rolls back to the initial state of the architecture. In
this case, the goal is to add a Shutter to the Has specification while maintaining
architecture consistency (as defined in Sect. 4):

GOAL == changeOperation = ADDITION ∧ selectedRole = cr6∧
selectedSpec = HAS spec ∧ specification consistency

The change entails the disconnection of all servers, the deletion of the old
orchestrator (cr4), the addition of the new orchestrator (cr4a) and finally the
connection of all servers. These operations are automatically generated by the
ProB solver:
disconnect(HAS spec, (cr4, rintILight), (cr1, pintILight))
disconnect(HAS spec, (cr4, rintIT ime), (cr2, pintIT ime))
disconnect(HAS spec, (cr4, rintITherm1), (cr3, pintITherm))
disconnect(HAS spec, (cr4, rintICon), (cr5, pintICon))
deleteRole(HAS spec, cr4)
generateAddRole(HAS spec, cr4a)
connect(HAS spec, (cr4a, rintILight), (cr1, pintILight))
connect(HAS spec, (cr4a, rintIT ime), (cr2, pintIT ime))
connect(HAS spec, (cr4a, rintITherm1), (cr3, pintITherm))
connect(HAS spec, (cr4a, rintICon), (cr5, pintICon))
connect(HAS spec, (cr4a, rintIShutter), (cr6, pintIShutter))

5.2 Propagating Change to Other Levels

Once the change is successfully achieved at the specification level, the propaga-
tion rules are triggered in the other levels to attempt to restore coherence with
the new specification architecture.

Propagating change to the HAS configuration. To restore conformity with
the new Has specification, the new configuration must realize the added Shutter
role and its connection to the orchestrator device to perform the new required
behavior. In the given example, the solution is to search for a concrete component
class that realizes the Shutter role and can be connected to a compatible orches-
trator class. Initially, the Has configuration (illustrated by Fig. 7) is formally
instantiated as follows:
compClass := {cl1, cl2, cl3, cl4, cl3a, cl3b, cl4a, cl6}||
comp name := {cl1 → Lamp, cl2 → Clock, cl3 → AirConditioner,

cl3a → CHEngine, cl3b → Thermostat,
cl4 → AndroidOrchestrator, cl4a → AndroidOrchestrator,
cl6 → AndroidShutter}||

configuration := {HAS config,AirConConfig}||
compositeComp := {cl3}
composite uses := {cl3 → AirConConfig}
config components := {HAS config → {cl1, cl2, cl3, cl4},

AirConConfig → {cl3a, cl3b}||
spec connections := {HAS config → {

((cl4, rintIPower) → (cl1, pintIPower)),
((cl4, rintIIntensity) → (cl1, pintIIntensity)),
((cl4, rintIClock) → (cl2, pintIClock)),
((cl4, rintITherm2) → (cl3, pintITherm2)),
((cl4, rintICon) → (cl3, pintICon))},
AirConConfig → {((cl3a, rintITherm1) → (cl3b, pintITherm1)),
((cl4, rintIT ime) → (cl2, pintILamp))}||

config clients := {(HAS config → {(cl4, rintILamp), (cl4, rintIIntensity),
(cl4, rintIClock), (cl4, rintITherm2), (cl4, rintICon))}}||

config servers := {(HAS config → {(cl1, pintILamp), (cl1, pintIIntensity),
(cl2, pintIT ime), (cl3, pintITherm2), (cl3, pintICon)})}
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Fig. 7. Change propagation to HAS configuration

Again, we use the ProB solver giving it the following goal to restore coherence
property with the new Has specification:

GOAL == selectedConfig = HAS config ∧ configuration consistency ∧ specConfigCoherence

We note that specConfigCoherence is the conformity rule defined in Sect. 4 to
check conformity between a specification and a configuration.

A potential solution generated by the solver is:

disconnect(HAS config, (cl4, rintILamp), (cl1, pintILamp))
disconnect(HAS config, (cl4, rintIIntensity), (cl1, pintIItensity))
disconnect(HAS config, (cl4, rintIClock), (cl2, pintIClock))
disconnect(HAS config, (cl4, rintITherm2), (cl3, pintITherm2))
disconnect(HAS config, (cl4, rintICon), (cl3, pintICon2))
deleteClass(HAS config, cl4)
addClass(HAS config, cl4a)
connect(HAS config, (cl4a, rintILamp2), (cl1, pintILamp))
connect(HAS config, (cl4a, rintIIntensity2), (cl1, pintIItensity))
connect(HAS config, (cl4a, rintIClock), (cl2, pintIClock))
connect(HAS config, (cl4a, rintITherm3), (cl3, pintITherm2))
connect(HAS config, (cl4a, rintICon2), (cl3, pintICon2))
connect(HAS config, (cl4a, rintIShutter), (cl6, pintIShutter))

Propagating change to the HAS assembly. In the same way, change is
propagated to assembly level by disconnecting and deleting the instance of the
old AndroidOrchestrator and by creating, deploying and connecting an instance
of the new added Shutter device.
The solver is given the following goal:

GOAL == selectedAssembly = HAS assembly ∧ assembly consistency∧
assemblyConfigCoherence
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The assemblyConfigCoherence is the defined property to check coherence
between an assembly and a configuration (cf. Sect. 4).

The solution generated by the solver is as follows:

unbind(HAS assembly, (ci4, rintILampInst), (ci11, pintILampInst1))
unbind(HAS assembly, (ci4, rintIIntensityInst), (ci11, pintIItensity1Inst))
unbind(HAS assembly, (ci4, rintILampInst), (ci12, pintILampInst2))
unbind(HAS assembly, (ci4, rintIIntensityInst), (ci12, pintIItensityInst2))
unbind(HAS assembly, (ci4, rintIClockInst), (ci2, pintIClockInst))
unbind(HAS assembly, (ci4, rintITherm2Inst), (ci3, pintITherm2Inst))
unbind(HAS assembly, (ci4, rintIConInst), (ci3, pintICon2Inst))
removeInstance(HAS assembly, ci4)
deployInstance(HAS assembly, ci4a, cl4a, {})
bind(HAS assembly, (ci4a, rintILamp2Inst), (ci11, pintILampInst1))
bind(HAS assembly, (ci4a, rintIIntensity2Inst), (ci11, pintIItensityInst1))
bind(HAS assembly, (ci4a, rintIClockInst), (ci2, pintIClockInst))
bind(HAS assembly, (ci4a, rintILamp2Inst), (ci12, pintILampInst2))
bind(HAS assembly, (ci4a, rintITherm3Inst), (ci3, pintITherm2Inst))
bind(HAS assembly, (ci4a, rintICon2Inst), (ci3, pintICon2Inst))
bind(HAS assembly, (ci4a, rintIIntensity2Inst), (ci12, pintIItensityInst2))
bind(HAS assembly, (ci4a, rintIShutterInst), (ci6, pintIShutterInst))

At this stage, change is simulated and verified semi-automatically since the mod-
els are instantiated manually. Moreover, a manual checking is needed to validate
the proposed evolution rules. A perspective is to fully automate the evolution
management process and to study the scalability of the solver to timely handle
complex goals.

6 Conclusion and Future Work

In this paper, we proposed a set of rules to evolve software architectures. These
rules defined as a B formal model of our three-level Dedal Adl that covers the
whole lifecycle of software systems. Our approach enables simulation and early
validation of software evolution at design time (specification and implementa-
tion) as well as runtime (deployment). At this stage, the proposed consistency
properties and evolution rules are checked and validated using a B animator and
model checker. As a future work, we aim to extend the use of the proposed evo-
lution rules in order to consider the semantics of changes. Another perspective
is to generate multiple candidate evolution paths that can be evaluated using
some criteria (e.g. quality of service, cost, change priority) as proposed by Barnes
et al. [21].

We are also considering several MDE techniques to develop an eclipse-based
environment for Dedal that automatically manages software architecture evolu-
tion.
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Abstract. Parity games are two-player games, played on directed
graphs, whose nodes are labeled with priorities. Along a play, the max-
imal priority occurring infinitely often determines the winner. In the
last two decades, a variety of algorithms and successive optimizations
have been proposed. The majority of them have been implemented in
PGSolver, written in OCaml, which has been elected by the community
as the de facto platform to solve efficiently parity games as well as eval-
uate their performance in several specific cases.

PGSolver includes the Zielonka Recursive Algorithm that has been
shown to perform better than the others in randomly generated games.
However, even for arenas with a few thousand of nodes (especially over
dense graphs), it requires minutes to solve the corresponding game.

In this paper, we deeply revisit the implementation of the recursive
algorithm introducing several improvements and making use of Scala
Programming Language. These choices have been proved to be very suc-
cessful, gaining up to two orders of magnitude in running time.

1 Introduction

Parity games [13,35] are abstract infinite-duration games that represents a pow-
erful mathematical framework to address fundamental questions in computer
science and mathematics. They are strict connected with other games of infi-
nite duration, such as mean and discounted payoff, stochastic, and multi-agent
games [7–10].

In formal system design and verification [12,25], parity games arise as a nat-
ural evaluation machinery to automatically and exhaustively check for reliability
of distributed and reactive systems [1,3,26]. More specifically, in formal verifi-
cation, model-checking techniques [11,31] allow to verify whether a system is
correct with respect to a desired behavior by checking whether a mathemati-
cal model of the system meets a formal specification of the expected execution.
In case the latter is given by means of a μ-calculus formula [24], the model
checking problem can be translated, in linear-time, into a parity game [13].
Hence, every parity game solver can be used in practice as a model checker for a
μ-calculus specification (and vice-versa). Using this approach, liveness and safety
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properties can be addressed in a very elegant and easy way [28]. Also, this offers
a very powerful machinery to check for component software reliability [1,3].

In the basic settings, parity games are two-player turn-based games, played on
directed graphs, whose nodes are labeled with priorities (i.e., natural numbers).
The players, named player 0 and player 1, move in turn a token along graph’s
edges. Thus, a play induces an infinite path and player 0 wins the play if the
greatest priority visited infinitely often is even; otherwise, player 1 wins the play.

Table 1. Parity algorithms along with
their computational complexities.

Condition Complexity

Recursive [35] O(e · nd)

Small Progress Measures [22] O(d · e · (n
d )

d
2 )

Strategy Improvement [34] O(2e · n · e)
Dominion Decomposition [23] O(n

√
n)

Big Step [32] O(e · n 1
3 d)

The problem of finding a winning
strategy in parity games is known to
be in UPTime ∩ CoUPTime [21] and
deciding whether a polynomial time
solution exists or not is a long-standing
open question. Aimed to find the right
complexity of parity games, as well as
come out with solutions working effi-
ciently in practice, several algorithms
have been proposed in the last two
decades. In Table 1, we report the most
common ones along with their known computational complexities, where para-
meters n, e, and d denote the number of nodes, edges, and priorities in the game,
respectively (for more details, see [15,16]).

All above mentioned algorithms have been implemented in PGSolver, writ-
ten in OCaml by Oliver Friedman and Martin Lange [15,16], a collection of
tools to solve, benchmark and generate parity games. Noteworthy, PGSolver has
allowed to declare the Zielonka Recursive Algorithm as the best performing to
solve parity games in practice, as well as explore some optimizations such as
decomposition into strong connect components, removal of self-cycles on nodes,
and priority compression [2,22].

Despite the enormous interest in finding efficient algorithms for solving parity
games, less emphasis has been put on the choice of the programming language.
Mainly, the scientific community relies on OCaml as the best performing pro-
gramming language to be used in this setting and PGSolver as an optimal and
the de facto platform to solve parity games. However, starting from graphs with
a few thousand of nodes, even using the Zielonka algorithm, PGSolver would
require minutes to decide the given game, especially on dense graphs. There-
fore a natural question that arises is whether there exists a way to improve the
running time of PGSolver. We identify three research directions to work on,
which specifically involve: the algorithm itself, the way it is implemented, and
the chosen programming language. As a result we introduce, in this paper, a
slightly improved version of the Classic Zielonka Algorithm along with a heav-
ily optimized implementation in Scala Programming Language [29,30]. Scala is a
high-level language, proven to be well performing [20], with object and functional
oriented features, that recently has come to the fore with useful applications in
several fields of computer science including formal verification [4]. Our experi-
ments show that, by using all Scala features extensively, we are able of gaining
two order of magnitude in running time with respect to the implementation of
the Zielonka algorithm in PGSolver.
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In details, the main goal of this work is the design and development of a
new tool for solving parity games, based on an improved version of the Zielonka
Recursive Algorithm, with performance in mind. Classical Zielonka algorithm
requires to decompose the graph game into multiple smaller arenas, which is
done by computing, in every recursive call, the difference between the current
graph and a given set of nodes. This operation (Fig. 1, lines 10 and 15) turns
out to be quite expensive as it requires to generate a new graph at each itera-
tion. Somehow such a difference operation has the flavor of the complicancy of
complementing automata in formal verification [33]. Remarkably, our improved
version guarantees that the original arena remains immutable by tracking the
removed nodes in every subsequent call and checking, in constant time, whether
a node needs to be excluded or not. Casting this idea in the above automata rea-
soning, it is like enriching the state space with two flags (removed, ¬removed),
instead of performing a complementation.

In this paper we consider and compare four implementations. The Classic
(C ) and Improved (I ) Recursive (R) algorithms implemented in Scala (S ) and
OCaml (O). Using random generated games, we show that IRO gains an order
of magnitude against CRO, as well as CRS against CRO. Remarkably, we show
that these improvements are cumulative by proving that IRS gains two order of
magnitude against CRO.

We have been able to achieve this kind of performance optimization by
deeply studying the way the classic Recursive algorithm has been implemented
in PGSolver and concentrating on the following tasks of the algorithm, which
we have deeply improved: finding the maximal priority, finding all nodes with
a given priority, and removing a node (including related edges) from the graph.
Parsing the graph in Scala, we allocate an Array, whose size is fixed to the
number of nodes of the graph. In addition we populate at the same time the
adjacency list and incidence list for each node, which avoids to build a trans-
posed graph. We make also use of an open source Java library called Trove that
provides a fast and lightweight implementation of the java.util Collection API.

Finally, we want to remark that, among all programming languages, we have
chosen to investigate Scala as it shares several modern and useful programming
language aspects. Among the others, Scala carries functional and object-oriented
features, compiles its programs for the JVM, is interoperable with Java and
an high-level language with a concise and clear syntax. The results we obtain
strongly support our choice and allow to declare Scala as a clear winner over
OCaml, in terms of performance.

Outline. The sequel of the paper is structured as follows. In Sect. 2, we give
some preliminary concepts about parity games. In Sect. 3, we describe the Clas-
sic Recursive Zielonka Algorithm. In Sect. 4, we introduce our improved algo-
rithm based on the Zielonka algorithm that we implement in Sect. 5 using Scala
programming language. In Sect. 6 we study, analyze, and benchmark the Classic
and Improved Algorithms in OCaml (PGSolver) and Scala.

Finally we report that the tool is available as an open source project at
https://github.com/vinceprignano/SPGSolver.

https://github.com/vinceprignano/SPGSolver
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2 Parity Games

In this section we report some basic concepts about parity games including the
Zielonka Recursive Algorithm. For more details we refer to [14,35].

A parity game is a tuple G = (V, V0, V1, E,Ω) where (V, E) forms a directed
graph whose set of nodes is partitioned into V = V0 ∪ V1, with V0 ∩ V1 = ∅,
and Ω : V → N is the priority function that assigns to each node a natural
number called the priority of the node. We assume E to be total, i.e. for every
node v ∈ V , there is a node w ∈ V such that (v, w) ∈ E. In the following we
also write vEw in place of (v, w) ∈ E and use vE := {w | vEw}.

Parity games are played between two players called player 0 and player 1.
Starting in a node v ∈ V , both players construct an infinite path (the play)
through the graph as follows. If the construction reaches, at a certain point,
a finite sequence v0...vn and vn ∈ V then player i selects a node w ∈ vnE
and the play continues with the sequence v0...vnw. Every play has a unique
winner, defined by the priority that occurs infinitely often. Precisely, the winner
of the play v0v1v2... is player i iff max{p | ∀j .∃k ≥ j : Ω(vk) = p}mod 2 = i.
A strategy for player i is a partial function σ : V ∗V → V , such that, for all
sequences v0...vn with vj+1 ∈ vjE, with j = 0, ..., n−1, and vn ∈ Vi we have that
σ(v0...vn) ∈ vnE. A play v0v1... conforms to a strategy σ for player i if, for all j
we have that, if vj ∈ Vi then vj+1 = σ(v0...vj). A strategy σ for player i (σi) is a
winning strategy in node v if player i wins every play starting in v that conforms
to the strategy σ. In that case, we say that player i wins the game G starting in
v. A strategy σ for player i is called memoryless if, for all v0...vn ∈ V ∗Vi and for
w0...wm ∈ V ∗Vi, we have that if vn = wm then σ(v0...vn) = σ(w0...wm). That
is, the value of the strategy on a path only depends on the last node on that
path. Starting from G we construct two sets W0,W1 ⊆ V such that Wi is the
set of all nodes v such that player i wins the game G starting in v. Parity games
enjoy determinacy meaning that for every node v either v ∈ W0 or v ∈ W1 [13].

The problem of solving a given parity game is to compute the sets W0 and W1,
as well as the corresponding memoryless winning strategies, σ0 for player 0 and
σ1 for player 1, on their respective winning regions. The construction procedure
of winning regions makes use of the notion of attractor. Formally, let U ⊆ V and
i ∈ {0, 1}. The i-attractor of U is the least set W s.t. U ⊆ W and whenever v ∈ Vi

and vE ∩ W �= ∅, or v ∈ V1−i and vE ⊆ W then v ∈ W . Hence, the i-attractor
of U contains all nodes from which player i can move “towards” U and player
1 − i must move “towards” U . The i-attractor of U is denoted by Attri(G,U).
Let A be an arbitrary attractor set. The game G\A is the game restricted to the
nodes V \ A, i.e. G \ A = (V \ A, V0 \ A, V1 \ A,E \ (A×V ∪ V ×A), Ω|V \A). It is
worth observing that the totality of G \ A is ensured from A being an attractor.

Formally, for all k ∈ N, the i-attractor is defined as follows:

Attr0i (U) = U ;
Attrk+1

i (U) = Attrki (U) ∪ {v ∈ Vi | ∃w ∈ Attrki (U) s.t. vEw}
∪ {v ∈ V1−i | ∀w : vEw =⇒ w ∈ Attrki (U)} ;

Attri(U) =
⋃

k∈N
Attrki (U).
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3 The Zielonka Recursive Algorithm

function win (G) :
i f V == ∅ :

(W0,W1 ) = (∅ , ∅)
else :

d = maximal p r i o r i t y in G
U = { v ∈ V | priority(v) = d }
p = d % 2
j = 1 − p
A = Attrp(U)

(W
′
0 , W

′
1 ) = win (G \ A)

i f W
′
j == ∅ :

Wp = W
′
p ∪ A

Wj = ∅
else :

B = Attrj(W
j
1 )

(W
′
0 , W

′
1 ) = win (G \ B )

Wp = W
′
p

Wj = W
′
j ∪ B

return (W0,W1 )

Fig. 1. Zielonka Recursive Algorithm

In this section, we describe the
Zielonka Recursive Algorithm using
the basic concepts introduced in the
previous sections and some observa-
tions regarding its implementation in
PGSolver.

The algorithm to solve parity
games introduced by Zielonka comes
from a work of McNaughton [27].
The Zielonka Recursive Algorithm, as
reported in Fig. 1, uses a divide and
conquer technique. It constructs the
winning sets for both players using
the solution of subgames. It removes
the nodes with the highest priority
from the game, together with all nodes
(and edges) attracted to this set. The
algorithm win(G) takes as input a
graph G and, after a number of recur-
sive calls over ad hoc built subgames,
returns the winning sets (W0,W1) for
player 0 and player 1, respectively. The
running time complexity of the Zielonka Recursive Algorithm is reported in
Table 1.

3.1 The Implementation of the Zielonka Algorithm in PGSolver

PGSolver turns out to be of a very limited application in several real scenarios.
In more details, even using the Zielonka Recursive Algorithm (that has been
shown to be the best performing in practice), PGSolver would require minutes
to decide games with few thousands of nodes, especially on dense graphs. In this
work we deeply study all main aspects that cause such a bad performance.

Specifically, our investigation beginnings with the way the (Classic) Recur-
sive Algorithm has been implemented in PGSolver by means of the OCaml pro-
gramming language. We start observing that the graph data structure in this
framework is represented as a fixed length Array of tuples. Every tuple has all
information that a node needs, such as the player, the assigned priority and
the adjacency list. Before every recursive call is performed, the program com-
putes the difference between the graph and the attractor, as well as it builds the
transposed graph. In addition the attractor function makes use of a TreeSet data
structure that is not available in the OCaml’s standard library, but it is imported
from TCSlib, a multi-purpose library for OCaml written by Oliver Friedmann
and Martin Lange. Such library implements this data structure using AVL-Trees
that guarantees logarithmic search, insert, and removal. Also, the same function
calculates the number of successors for the opponent player in every iteration
when looping through every node in the attractor.
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4 The Improved Algorithm

function win (G) :
T = G. t ranspose ( )
Removed = {}
return winI (G, T,Removed)

function winI (G, T,Removed ) :
i f |V | == |Removed| :

return (∅ , ∅)
W = (∅, ∅)
d = maximal p r i o r i t y in G
U = { v ∈ V | priority(v) = d }
p = d % 2
j = 1 − p

W
′

= (∅, ∅)
A = Attr (G, T,Removed, U, p)

(W
′
0 ,W

′
1 ) = winI (G, T,Removed ∪ A)

i f W
′
j == ∅ :

Wp = W
′
p ∪ A

Wj = ∅
else :

B = Attr (G, T,Removed,W
′
j , j )

(W
′
0 ,W

′
1 ) = winI (G, T,Removed ∪ B )

Wp = W
′
p

Wj = W
′
j ∪ B

return (W0,W1 )

Fig. 2. Improved Recursive Algorithm

In this section we introduce an
improved version based on the
Classic Recursive Algorithm by
Zielonka. The new algorithm is
depicted in Fig. 2. In Fig. 3 we also
report an improved version of the
attractor function that the new
algorithm makes use of.

Let G be a graph. Remov-
ing a node from G and building
the transposed graph takes time
Θ(|V | + |E|). Thus dealing with
dense graph such operation takes
Θ(|V |2). In order to reduce the
running time complexity caused by
these graph operations, we intro-
duce an immutability requirement
to the graphG ensuring that every
recursive call uses G without apply-
ing any modification to the state
space of the graph. Therefore, to
construct the subgames, in the

recursive calls, we keep track of each node that is going to be removed from
the graph, adding all of them to a set called Removed.

function Attr (G, T, Removed , A, i ) :
tmpMap = [ ]
for x = 0 to |V | :

i f x ∈ A tmpMap = 0
else tmpMap = −1

index = 0
while index < |A| :

for v0 ∈ adj(T,A[index]) :
i f v0 /∈ Removed :

i f tmpMap [ v0 ] == −1:
i f p layer (v0 ) == i :

A = A ∪ v0
tmpMap [ v0 ] = 0

else :
ad j counte r = −1
for x ∈ adj(G, v0) :

i f (x /∈ Removed ) :
ad j counte r += 1

tmpMap [ v0 ] = ad j counte r
i f ad j counte r == 0 :

A = A ∪ v0
else i f ( p layer (v0 ) == j

and tmpMap [ v0 ] > 0 ) :
tmpMap [ v0 ] −= 1
i f tmpMap [ v0 ] == 0 :

A = A ∪ v0
return A

Fig. 3. Improved Recursive Attractor

The improved algorithm is
capable of checking if a given node
is excluded or not in constant time
as well as it completely removes
the need for a new graph in every
recursive call. At first glance this
may seem a small improvement
with respect to the Classic Recur-
sive Algorithm. However, it turns
out to be very successful in practice
as proved in the following bench-
mark section. Further evidences
that boost the importance of such
improvement can be related to the
fact that the difference operation
has somehow the same complicance
of complementing automata [33].
Using our approach is like avoiding
such complementation by adding
constant information to the states,
i.e. a flag (removed, ¬removed).
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Last but not least, about the actual implementation, it is also worth mentioning
that general-purpose memory allocators are very expensive as the per-operation
cost floats around one hundred processor cycles [18]. Through these years many
efforts have been made to improve memory allocation writing custom allocators
from scratch, a process known to be difficult and error prone [5,6].

4.1 Implementation in OCaml for PGSolver

Our implementation of the Improved Recursive Algorithm, listed in Fig. 4, does
not directly modify the graph data structure (that is represented in PGSolver
as an array of tuples), but rather it uses a set to keep track of removed nodes.

l e t r ec win game tgraph exc =
l e t w = Array . make 2 In teSe t . empty in
i f (not ( (Array . length game) =

( InteSe t . c a rd i na l exc ) ) ) then (
l e t (d, u) = ( max pr io and set game exc ) in
let p = d mod 2 in
let j = 1 − p in
let w1 = Array . make 2 InteSe t . empty in
let (attr, exc1) = a t t r f un game

exc tgraph u p in
let (sol0, sol1) = win game

tgraph exc1 in
w1.(0) <− s o l 0 ;
w1.(1) <− s o l 1 ;
i f ( In t eSe t . i s empty w1 . ( j ) ) then (

w. ( p) <− ( In t eSe t . union w1 . ( p) a t t r ) ;
w. ( j ) <− In t eSe t . empty ;

) else (
l e t (attrB , exc2) =
a t t r f un game exc tgraph w1.(j) j in

let (sol0, sol1 ) = win game
tgraph exc2 in

w1.(0) <− s o l 0 ;
w1.(1) <− s o l 1 ;
w.(p) <− w1.(p) ;
w.(j) <− ( In t eSe t . union w1.(j) at t r B ) ;

)
) ;
(w.(0), w.(1))

; ;

Fig. 4. Improved Recursive in OCaml

The Improved Recur-
sive Algorithm, named
solver, takes three para-
meters: the Graph, its
transposed one, and a
set of excluded nodes.
Our Improved Attrac-
tor function, uses a
HashMap, called temp-
Map to keep track of
the number of succes-
sors for the opponent
player’s nodes. In addi-
tion, we use a Queue,
from OCaml’s standard
library, to loop over
the nodes in the attrac-
tor. Aiming at per-
formance optimizations,
the attractor function,
implemented in PGS-
olver also returns the
set of excluded nodes
that solver passes to the next recursive call.

5 Scala

Scala [29,30] is the programming language designed by Martin Odersky, the code-
signer of Java Generics and main author of javac compiler. Scala defines itself
as a scalable language, statically typed, a fusion of an object-oriented language
and a functional one. It runs on the Java Virtual Machine (JVM) and supports
every existing Java library. Scala is a purely object-oriented language in which,
like Java and Smalltalk, every value is an object and every operation is a method
call. In addition Scala is a functional language where every function is a first class
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object, also is equipped with efficient immutable and mutable data structures,
with a strong selling point given by Java interoperability. However, it is not a
purely functional language as objects may change their states and functions may
have side effects. The functional aspects are perfectly integrated with the object-
oriented features. The combination of both styles makes possible to express new
kinds of patterns and abstractions. All these features make Scala programming
language as a clever choice to solve these tasks, in a strict comparison with other
programming languages available such as C, C++ or Java. Historically, the first
generation of the JVM was entirely an interpreter; nowadays the JVM uses a
Just-In-Time (JIT ) compiler, a complex process aimed to improve performance
at runtime. This process can be described in three steps: (1) source files are
compiled by the Scala Compiler into Java Bytecode, that will be feed to a JVM;
(2) the JVM will load the compiled classes at runtime and execute proper com-
putation using an interpreter; (3) the JVM will analyze the application method
calls and compile the bytecode into native machine code. This step is done in a
lazy manner: the JIT compiles a code path when it knows that is about to be
executed. JIT removed the overhead of interpretation and allows programs to
start up quickly, in addition this kind of compilation has to be fast to prevent
influencing the actual performance of the program. Another interesting aspect
of the JVM is that it verifies every class file after loading them. This makes
sure that the execution step does not violate some defined safety properties.

def win (G: GraphWithSets )
: ( ArrayBuffer [ Int ] ,

ArrayBuffer [ Int ] ) = {
va l W =

Array ( ArrayBuffer . empty [ Int ] ,
ArrayBuffer . empty [ Int ] )

va l d = G. max pr io r i ty ( )
i f (d > −1) {

va l U = G. prior ityMap . get (d)
. f i l t e r (p => !G. exc lude (p ) )

va l p = d % 2
val j = 1 − p
va l W1 =
Array ( ArrayBuffer . empty [ Int ] ,
ArrayBuffer . empty [ Int ] )

va l A = Attr (G, U, p)
va l r e s = win (G −− A)
W1(0) = re s . 1
W1(1) = re s . 2
i f (W( j ) . s i z e == 0) {
W(p) = W1(p) ++= A
W( j ) = ArrayBuffer . empty [ Int ]

} else {
va l B = Attr (G, W1( j ) , j )
va l r e s2 = win (G −− B)
W1(0) = re s2 . 1
W1(1) = re s2 . 2
W(p) = W1(p)
W( j ) = W1( j ) ++= B

}
}
(W(0 ) , W(1 ) )

}

Fig. 5. Improved Algorithm in Scala

The checks are per-
formed by the verifier
that includes a com-
plete type checking of
the entire program. The
JVM is also available
on all major platforms
and compiled Java exe-
cutables can run on all
of them with no need
for recompilation. The
Scala compiler scalac
compiles a Scala pro-
gram into Java class
files. The compiler is
organized in a sequence
of successive steps. The
first one is called the
front-end step and per-
forms an analysis of the
input file, makes sure
that is a valid Scala
program and produces
an attributed abstract
syntax tree (AST ); the
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back-end step simplifies the AST and proceeds to the generation phase where it
produces the actual class files, which constitute the final output. Targeting the
JVM, the Scala Compiler checks that the produced code is type-correct in order
to be accepted by the JVM bytecode verifier.

In [20], published by Google, Scala even being an high level language, per-
forms just 2.5x slower than C++ machine optimized code. In particular it has
been proved to be even faster than Java. As the paper notes: “While the bench-
mark itself is simple and compact, it employs many language features, in partic-
ular high level data structures, a few algorithms, iterations over collection types,
some object oriented features and interesting memory allocation patterns”.

5.1 Improved Algorithm in Scala

In this section we introduce our implementation of the Improved Recursive Algo-
rithm in Scala, listed as Figs. 5 and 6.

def Attr (G: GraphWithSets ,
A: ArrayBuffer [ Int ] , i : Int )
: ArrayBuffer [ Int ] = {

va l tmpMap = Array
. f i l l [ Int ] (G. nodes . s i z e )(−1)

var index = 0
A. fo r each (tmpMap( ) = 0)
while ( index < A. s i z e ) {

G. nodes (A( index ) )
.< . f o r each ( v0 => {

i f ( !G. exc lude ( v0 ) ) {
va l f l a g = G. nodes ( v0 ) . p layer == i
i f (tmpMap( v0 ) == −1) {

i f ( f l a g ) {
A += v0
tmpMap( v0 ) = 0

} else {
va l tmp = G. nodes ( v0 )
. >
. count (x => !G. exc lude (x ) ) − 1

tmpMap( v0 ) = tmp
i f (tmp == 0) A += v0

}
} else i f ( ! f l a g && tmpMap( v0 ) > 0){

tmpMap( v0 ) −= 1
i f (tmpMap( v0 ) == 0) A += v0

}
}

})
index += 1

}
A

}

˜

Fig. 6. Improved Attractor in Scala

Aiming at performance
optimizations we use a
priority HashMap where
every key is a certain pri-
ority and a value is a
set of each node v where
priority(v) = key. As
fast and JVM-Optimized
HashMaps and ArrayLists
we use the ones included
in the open source library
Trove. In addition, using
the well known strat-
egy pattern [17] we open
the framework for further
extensions and improve-
ments. The intended pur-
pose of our algorithm is
to assert that the per-
formance of existing tools
for solving parity games
can be improved using the
improved algorithm and
choosing Scala as the pro-
gramming language. We
rely on Scala’s internal
features and standard library making heavy use of the dynamic ArrayBuffer
data structure. In order to store the arena we use an array of Node objects. The
Node class contains: a list of adjacent nodes, a list of incident nodes, its prior-
ity and the player; the data structure also implements a factory method called
“− − (set : ArrayBuffer[Int])” that takes an ArrayBuffer of integers as input,
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flags all the nodes in the array as excluded, and returns the reference to the new
graph. In addition, there is also a method called max priority() that will return
the maximal priority in the graph and the set of nodes with that priority.

The Attractor function makes deeply use of an array of integers named
tmpMap that is preallocated using the number of nodes in the graph with a
negative integer as default value; we use tmpMap when looping through every
node in the set A given as parameter, to keep track of the number of successors for
the opponent player. We add a node v ∈ V to the attractor set when its counter
(stored in tmpMap[v]) reaches 0 (adj(v) ⊆ A and v ∈ Vopponent) or if v ∈ Vplayer;
using an array of integers, or an HashMap, to serve this purpose, guarantees a
constant time check if a node was already visited and ensures that the count for
the opponent’s node adjacency list takes place one time only. These functions
are inside a singleton object called ImprovedRecursiveSolver that extends the
Solver interface.

6 Benchmarks

In this section we study, analyze and evaluate the running time of our four
implementations: Classic Recursive in OCaml (CRO), Classic Recursive in Scala
(CRS ), Improved Recursive in OCaml (IRO) and Improved Recursive in Scala
(IRS ). We have run our experiments on multiple instances of random parity
games. We want to note that IRS does not apply any preprocessing steps to
the arena before solving. All tests have been run on an Intel(R) Xeon(R) CPU
E5620 @ 2.40 GHz, with 16 GB of Ram (with no Swap available) running Ubuntu
14.04. Precisely, we have used 100 random arenas generated using PGSolver of
each of the following types, given N = i × 1000 with i integer and 1 ≤ i ≤ 10
and a timeout set at 600 s. In the following, we report six tables in which we
show the running time of all experiments under fixed parameters. Throughout

Fig. 7. Random Games Chart in Logarithmic Scale
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this section we define aboT when the program has been aborted due to excessive
time and aboM when the program has been killed by the Operating System
due to memory consumption. In Fig. 7 we also report the trends of the four
implementations using a logarithmic scale with respect to seconds. This figure
is based on the averages of all results reported in the tables below.

N nodes, N colors, adj(N2 , N) N nodes, N colors, adj(1, N)
N IRS CRO CRS IRO

1 × 103 0.204 1.99 0.505 0.752

2 × 103 0.456 13.208 1.918 3.664

3 × 103 1.031 41.493 2.656 6.147

4 × 103 1.879 96.847 6.728 15.966

5 × 103 2.977 183.589 12.616 27.272

6 × 103 3.993 306.104 19.032 41.051

7 × 103 4.989 486.368 27.05 50.367

8 × 103 6.103 aboT 36.597 70.972

9 × 103 7.287 aboT 55.171 97.216

10 × 103 8.468 aboT 68.303 113.36

N IRS CRO CRS IRO
1 × 103 0.179 1.21 0.454 0.583

2 × 103 0.389 8.075 1.173 2.366

3 × 103 0.868 25.097 2.656 6.147

4 × 103 1.279 57.186 4.23 10.452

5 × 103 2.273 108.983 9.206 20.377

6 × 103 2.772 183.884 12.562 27.489

7 × 103 3.748 291.077 17.942 37.521

8 × 103 3.942 418.377 22.105 47.502

9 × 103 4.989 593.721 23.93 61.593

10 × 103 6.413 aboT 42.408 80.508

N nodes, 2 colors, adj(N2 , N) N nodes, 2 colors, adj(1, N)
N IRS CRO CRS IRO

1 × 103 0.189 1.98 0.481 0.702

2 × 103 0.469 12.941 1.55 3.17

3 × 103 1.046 41.584 3.995 7.428

4 × 103 1.712 96.545 5.378 13.823

5 × 103 2.414 181.225 11.273 22.575

6 × 103 3.458 307.233 16.472 35.269

7 × 103 4.612 484.159 26.448 49.311

8 × 103 6.003 aboT 28.968 65.674

9 × 103 7.03 aboT 43.666 85.909

10 × 103 8.938 aboT 57.18 110.814

N IRS CRO CRS IRO
1 × 103 0.159 1.226 0.385 0.468

2 × 103 0.341 7.965 1.004 2.162

3 × 103 0.797 25.114 2.305 6.014

4 × 103 1.123 56.422 3.699 9.421

5 × 103 1.704 108.584 6.12 14.971

6 × 103 2.243 182.935 10.099 22.621

7 × 103 3.324 286.503 13.898 32.335

8 × 103 3.95 430.265 19.743 44.281

9 × 103 4.597 aboT 28.742 56.81

10 × 103 5.651 aboT 33.639 71.434

N nodes,
√
N colors, adj(N2 , N) N nodes,

√
N colors, adj(1, N)

N IRS CRO CRS IRO
1 × 103 0.204 1.978 0.468 0.71

2 × 103 0.456 13.114 1.575 3.203

3 × 103 1.031 41.493 3.868 7.492

4 × 103 1.621 96.55 5.744 13.97

5 × 103 2.439 183.589 10.72 22.98

6 × 103 3.372 307.426 15.978 34.78

7 × 103 4.662 485.826 26.432 48.875

8 × 103 6.499 aboT 34.741 66.423

9 × 103 7.147 aboT 48.915 86.645

10 × 103 8.988 aboT 56.656 111.492

N IRS CRO CRS IRO
1 × 103 0.162 1.218 0.384 0.475

2 × 103 0.344 7.947 1.034 2.195

3 × 103 0.788 25.029 2.406 5.944

4 × 103 1.105 57.307 3.835 9.608

5 × 103 1.678 108.623 6.34 15.165

6 × 103 2.281 182.154 9.871 22.859

7 × 103 3.193 285.28 14.338 32.536

8 × 103 4.185 422.74 20.362 44.515

9 × 103 5.009 599.071 24.347 57.022

10 × 103 5.76 aboT 35.024 72.291
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6.1 Trends Analysis for Random Arenas

The speedup obtained by our implementation of the Improved Recursive Algo-
rithm is in most cases quite noticeable. Figure 8 shows the running time trend
for Improved and Classic Algorithm on each platform. The seconds are limited
to [0, 100]. As a result we show that even with all preprocessing steps enabled in
PGSolver, IRS is capable of gaining two orders of magnitude in running time.

Fig. 8. Trends Chart

6.2 Trends Analysis for Special Games

Focusing on Classic Recursive in PGSolver and our Improved Recursive in Scala,
here we show the running times for non-random games generated by PGSolver.
In particular we use four types of non-random games, these experiments have
been run against PGSolver using the Classic Recursive Algorithm with all opti-
mizations disabled and all solutions were matched to ensure correctness.

Clique[n] games are fully connected games without self-loops, where n is the
number of nodes. The set of nodes is partitioned into V0 and V1 having the same
size. For all v ∈ Vp, priority(v)%2 = p. For our experiments we set n = 2k

where 8 ≤ k ≤ 14. Table below reports the running time for our experiments
and these results are drawn in Fig. 9.

n 28 29 210 211 212 213 214

IRS 0.05 0.07 0.12 0.46 1.18 4.87 17.39

CRO 0.09 0.61 4.37 29.58 229.78 aboT aboM



Solving Parity Games in Scala 157

Fig. 9. Clique Trends

In Ladder[n] game, every node in V0 has priority 2 and every node in V1 has
priority 1. In addition, each node v ∈ V has two successors: one in V0 and one
in V1, which form a node pair. Every pair is connected to the next pair forming
a ladder of pairs. Finally, the last pair is connected to the top. The parameter n
specifies the number of node pairs. For our tests, we set n = 2k where 7 ≤ k ≤ 19
and report our experiments in the table below whose trend is drawn in Fig. 10.
Figure 10 shows better performance for CRO than IRS using low-scaled values
as input parameter. This behaviour is not surprising as there is a warming-up
time required by the Java Virtual Machine.

Fig. 10. Ladder Trends
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n 27 28 29 210 211 212 213 214 215 216 217 218 219

IRS 0.01 0.02 0.03 0.05 0.08 0.11 0.13 0.15 0.19 0.25 0.38 0.48 0.93

CRO 0.00 0.00 0.01 0.01 0.03 0.06 0.13 0.3 0.65 1.39 2.93 6.21 11.71

Model Checker Ladder[n] consists of overlapping blocks of four nodes, where
the parameter n specifies the number of desidered blocks. Every node is owned
by player 1, V1 = V and V0 = ∅, and the nodes are connected such that every
cycle passes through a single point of colour 0. For our experiments we set n = 2k

where 7 ≤ k ≤ 19, report our experiments in the table below and draw the trends
in Fig. 11.

Fig. 11. Model Checker Ladder Trends

Fig. 12. Jurdiznski Trends with a Fixed Parameter of n = 10 Layers
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Fig. 13. Jurdiznski Trends with a Fixed Parameter of m = 10 Blocks

n 27 28 29 210 211 212 213 214 215 216 217 218 219

IRS 0.01 0.02 0.03 0.04 0.07 0.12 0.14 0.16 0.19 0.21 0.26 0.39 0.65

CRO 0.00 0.00 0.01 0.01 0.02 0.05 0.10 0.22 0.47 0.99 2.12 4.16 8.31

Jurdzinski[n, m] games are designed to generate the worst-case behaviour for
the Small Progress Measure Solver [22]. The parameter n is the number of layers,
where each layer has m repeating blocks that are inter-connected as described in
[22]. As this game takes two parameters, in our test we ran two experiments: one
where n is fixed to 10 and m = 10 × 2k, for k = 1, 2, 3, 4, 5 and one where m is
fixed to 10 and n = 10 × 2k, for k = 1, 2, 3, 4, 5. The results of our experiments
are reported in the tables below. The trends are drawn in Figs. 12 and 13.

m 10 × 21 10 × 22 10 × 23 10 × 24 10 × 25

IRS 0.21 0.48 1.54 4.55 15.31

CRO 0.23 0.79 3.14 15.77 65.85

n 10 × 21 10 × 22 10 × 23 10 × 24 10 × 25

IRS 0.28 0.77 3.02 30.02 232.24

CRO 0.42 2.94 22.69 184.12 aboT

7 Conclusions

PGSolver is a well-stablished framework that collects multiple algorithms to
decide parity games. For several years now this platform has been the only
one available to solve and benchmark in practice. Given PGSolver’s limitations
addressing huge graphs, several attempts of improvement have been carried out
recently. Some of them have been implemented as preprocessing steps in the tool
itself (such as priority compression or SCC decomposition and the like), while
others chose parallelism techniques, such as Cuda [19], applied to the algorithms.
However these improvements often do not show the desired performance.

In this paper we started from scratch by revisiting the Zielonka Recursive
Algorithm, implemented an improved and the classic versions in Scala and
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OCaml, comparing among them. The choice of Scala as a programming lan-
guage has been not casual, but rather it comes out from a deep study focused on
performance and simplicity. Scala is interoperable with Java libraries, has a con-
cise and clear syntax, functional and object oriented features, runs on the Java
Virtual Machine and has been proven to be high performing. Our main result is
a new and fast tool for solving parity games capable of gaining up to two orders
of magnitude in running time. In conclusion we state that there is place for a
faster and better framework to solve parity games and this work is a starting
point raising several interesting questions. For example, what if one implements
the other known algorithms to solve parity games in Scala? PGSolver showed
that Zielonka’s algorithm is the best performing. Can one reproduce the same
results in Scala? We leave all these questions as future work.
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Abstract. Task-level reconfiguration techniques in automotive appli-
cations aim to reallocate tasks to computation cores during failures to
guarantee that the desired functionality is still delivered. We consider
a class of mixed-criticality asymmetric multi-core systems inspired by
our collaboration with a leading automotive manufacturing company,
for which we automatically synthesize task-level reconfiguration services
to reduce the number of processing cores and decrease the cost with-
out weakening fault-tolerance. We admit the following types of faults:
safety violations by tasks, permanent core failures, and temporary core
failures. We use timed games to synthesize the controllers. The services
suspend and reinstate the periodic executions of the non-critical tasks
to ensure enough processing capacity for the critical tasks by maintain-
ing lookup tables, which keep track of processing capacity. We present a
methodology to synthesize the services and use a case study to show that
suitable abstractions can dramatically improve the scalability of timed
games-based tools for solving industrial problems.

1 Introduction

We synthesize task-level reconfiguration services to ensure fault-tolerance of a
mixed-criticality automotive system that consists of an asymmetric multi-core
processor (AMP). The system has a fault-intolerant AMP scheduler. We augment
the existing scheduler with supplementary reconfiguration services, which we
synthesize. The services assure the periodic executions of all the critical tasks in
the presence of faults from a fault model.

We use timed games at synthesis-time and lookup tables at runtime to
provide task-level reconfiguration, a cost-effective fault-tolerance technique, for
mixed-criticality multi-core systems. System-level requirements for embedded,
real-time software in many domains (such as automotive) have enough flexibility
to reallocate tasks from one processing core to another. A task-level reconfig-
uration technique reduces the number of redundant cores those are used only
to provide fault-tolerance by reallocating the loads of the failed cores to the
c© Springer International Publishing Switzerland 2015
I. Lanese and E. Madelaine (Eds.): FACS 2014, LNCS 8997, pp. 162–180, 2015.
DOI: 10.1007/978-3-319-15317-9 10



Synthesis of a Reconfiguration Service 163

non-redundant operational cores. Reduction in the amount of expensive hard-
ware makes task-level reconfiguration a promising fault-tolerance technique in
the automotive industry, where cost-efficiency and fault-tolerance are both cru-
cial issues. Since this economical technique can handle tasks with different levels
of criticality, one of its prospective application sectors is next-generation auto-
motive systems, most of which are expected to be mixed-criticality multi-core
systems.

Formal methods have been used for the development of fault-tolerant real-
time systems. However, in industry, fault-tolerance problems are typically
designed, analyzed, and solved using classical control theory [1,2]. Timed game
theory [3–5], a dense-time automata-based game theory, is almost unexplored in
industrial applications. The use of timed game theory to solve industrial prob-
lems is attractive because of automated controller synthesis, visual modeling, and
dense-time formal analysis. Nevertheless, applying timed game theory to solve
industrial problems is challenging because of its high computational complexity.

We use timed games to synthesize the embedded controllers of the reconfig-
uration services. Our approach guarantees fault-tolerance up to a certain max-
imal number of concurrent faults after inserting the services into the system.
Such reliable and accurate information is helpful to build mixed-criticality sys-
tems cost effectively. Intellectual property regulations do not allow us to present
the case study on the systems of our industrial partner. Instead we demon-
strate the approach using a small system, which is complex enough to show the
essence of the problem and our approach, yet simple enough to allow a compact
presentation.

Structure of Paper. In Sect. 3 we propose a service-based task-level reconfigu-
ration technique to guarantee fault-tolerance of mixed-criticality multi-core sys-
tems. Timed games are used to synthesize controllers that select safe operational
cores to reallocate the periodic executions of critical tasks from failed cores.
Lookup tables are used at runtime to suspend and reinstate the periodic exe-
cutions of non-critical tasks to ensure that operational cores have enough free
processing capacity for the executions of the newly reallocated critical tasks. We
synthesize the reconfiguration services in six steps:

Section 4. Identification of modeling abstractions and required system parame-
ters to construct a scalable model.

Sections 4.1–4.3. Construction of a timed game model where unsafe locations
are reachable if and only if a core exceeds its load capacity.

Section 5.1. Analysis of the model for the existence of a central controller that
ensures no unsafe location is reachable; binary search for the maximal value
of the concurrent-failures–limit for which such a controller exists; and auto-
mated synthesis of the controller of the maximal concurrent-failures–limit.

Section 5.2. Synthesis of the services by distributing the synthesized central
controller and combining the abstracted elements of Sect. 4.

Section 5.3. Leverage scalability of the whole process for industrial systems
using aggressive abstractions.
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Section 5.4. Generalization of the synthesis process to apply to other multi-core
systems, such as for symmetric multi-core processing (SMP) systems.

We use Uppaal Tiga [6]—a solver for timed games—to model, analyze, and
synthesize. The methodology, however, can be applied using any solver for timed
games, such as Synthia [7]. The paper concludes in Sect. 6.

2 Related Work

A real-time control problem can be viewed as a two-player timed game [3–5]
between the controller and the environment, where the controller aims to find
a strategy to guarantee that the system will satisfy a given property, no matter
what the environment does [8]. An example of such reformulation is to find a
strategy for the controller (or a reconfiguration service) to prevent the system
from becoming unstable in the presence of the faults of the fault model.

We use a dense-time model-based approach to synthesize the services because
dense-time models also can capture uncontrollable behaviors which may occur
other than at discrete time units. Timed automata (TA) [9,10]—finite automata
with dense-time clocks, clock constraints, and clock resets—are a prominent
class of formal models to analyze safety and reachability properties of real-time
systems. Clocks, clock constraints, and clock resets are used to express timing
behaviors in TA. Timed automata have been used for many purposes [10] includ-
ing fault diagnosis [11–13], analyzing multi-core systems [14,15], task models [16],
and analyzing mixed-criticality systems [17].

A timed I/O automaton (TIOA) [18,19] is a timed automaton which has
an input alphabet and a set of uncontrollable transitions along with a regular
(output) alphabet and a set of regular (controllable) transitions. The controller
plays controllable transitions and the environment plays uncontrollable transi-
tions; thus TIOA are a natural model for real-time games. Uppaal Tiga [6] is a
well-known timed games-based tool that uses TIOA for modeling.

3 Task-Level Reconfiguration Technique

We introduce a service-based task-level reconfiguration technique to assure fault-
tolerance of mixed-criticality multi-core systems.

3.1 Systems

We consider a class of multi-core systems having asymmetric processing cores.
Different asymmetric cores may exhibit different performance for the same task.
The systems under consideration are mixed-criticality systems, because they
execute both critical tasks and non-critical tasks with two different priorities.
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Definition 1. A mixed-criticality system consists of

– N asymmetric processing cores: core1, core2, · · · , coreN .
– M tasks: task1, task2, · · · , taskM .
– P critical tasks, where P < M .
– Predicate criticality(taski) holds only for critical tasks.
– A fault-intolerant criticality-unaware asymmetric multi-core processor (AMP)

scheduler with a static allocation of tasks.
– Function primary(taski) maps taski to the core on which the task runs in the

initial system-state.
– load(taski, corej) is a function mapping each task-core pair to the worst-case

load that the task generates on the core, represented as a number {0, 1, · · · , 100}
∪ {+∞}, where +∞ represents incompatibility between the core and the task.

– Each task is executed periodically. Tasks always terminate within the pre-
scribed periods. Each task is described as a timed I/O automaton. These
automata do not communicate1. Every task can be killed (and resumed) in
any of its states by a reconfiguration technique.

– Fault Model: The system is fault-free in its initial system-state. In the other
system-states, the system might suffer three types of faults: safety violations by
tasks, permanent core failures, and temporary core failures. Critical tasks are
assumed not to breach any safety constraints2. Non-critical tasks may violate
safety constraints. Every core of the system may fail. However, all cores of a
system concurrently cannot be in their failed states. The maximal number of
cores that can fail concurrently is restricted by the concurrent-failures–limit
(CFL). No limit is imposed on the total number of fault occurrences in a run.

Given a mixed-criticality system of Definition 1, we want to obtain a task allo-
cation policy that is able to cope with the failures admitted by the fault model.
We will synthesize distributed reconfiguration services that assure uninterrupted
execution of all the critical tasks. Section 3.2 explains how the reconfiguration
technique is expected to work using an example.

3.2 Task-Level Reconfiguration Service

We propose a service-based reconfiguration technique for the fault-tolerance of
mixed-criticality systems, where the system has a task-level reconfiguration ser-
vice each per core. The services manage critical tasks differently than non-critical
tasks. Consider, for instance, a simple mixed-criticality AMP system system1,
one of the systems that are described in Sect. 3.1. System system1 executes six
periodic tasks S, W, D, N1, N2, and N3. Only three tasks S, W, and D are the critical
1 More generally, the communication can be abstracted by suitable understanding of

worst and best case execution times, and terminations are independent of commu-
nication.

2 Critical tasks are developed using formal methods and control theory; therefore we
assume that they do not violate safety constraints. However, the main principle of
the presented synthesis process works even after removing this assumption.
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tasks, where in an execution S records exactly one update of a speedometer,
and W (respectively, D) records at most one update of a wiper (resp., door). The
system has three cores core1, core2, and core3, which are asymmetric but each
core is able to execute all six tasks.

Fig. 1. Sample trace of system1 with reconfiguration

Figure 1 presents a
trace of a desirable behav-
ior of system1 in the pres-
ence of different faults
after inserting the recon-
figuration services; the
figure omits suspended
non-critical tasks to avoid
clutter. At any given
time, the periodic exe-
cution of a task can be
assigned to at most one
operational core. A task
is assigned to its primary
core in the initial system-
state, where a core is
responsible for executing
only its primary tasks.
For instance, core1 is the
primary core of task S,
and S is a primary task of
core1 in Fig. 1. We call a
non-primary core a backup core of a critical task when that core can execute that
task; similarly, a task is a backup task of its backup core. Whenever a core fails,
the services assign the critical tasks that were previously assigned to that failed
core to the operational cores. The services may kill and suspend temporarily one
or more non-critical tasks on the operational cores during a reallocation process
to ensure enough processing capacity for the reallocated critical tasks. In Fig. 1,
core core2 fails in system-state s2; in the next system-state, the periodic execution
of critical task W is assigned to a backup core core3 and the periodic execution of
non-critical task N3 is suspended temporarily on core3 to have enough process-
ing capacity for W. A critical task is allowed to execute further on a backup core
only if the primary core is in a failed state. The services kill a critical task on
a backup core (if that task is initialized or released) and cancel the assignment
of that task to that backup core, whenever the primary core recovers from a
temporary failure. As an example, core core2 recovers from a temporary failure
in system-state s6, and after that only core2 is again assigned to perform critical
task W. The services reinstate a suspended non-critical task as soon as enough
processing capacity for that task is regained due to the recovery of a core from
a temporary failure; for example, the periodic execution of non-critical task N3
is reinstated in system-state s7. The services permanently suspend a non-critical
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task when it performs some harmful activities, such as illegal memory access.
For instance, non-critical task N1 performs some harmful activities in system-
state s4, and the task is permanently suspended in system-state s5.

Problem Statement. Given a mixed-criticality system as specified in Definition 1,
the problem is to synthesize a reconfiguration service servicei for each core corei

such that servicei reacts whenever any other core fails or a core recovers (includ-
ing corei), or a non-critical task violates a safety constraint on corei at that time
servicei may kill, resume, and suspend any task running on corei and as long as
corei is in a failure state, none of its tasks or servicei executes. All reconfiguration
services of a system together satisfy a property that at all times critical tasks are
allocated to operating cores as long as the CFL limit is observed, and any non-
critical task that has violated a safety constraint is suspended from execution
indefinitely.

4 Modeling

We construct a timed game model of the system in a way that an unsafe loca-
tion becomes reachable when a core exceeds its processing capacity. The model
explicitly or implicitly captures the behaviors of the scheduler, the reconfigura-
tion services, the cores, and the tasks.

To obtain a scalable model: (i) we model only a single (central) reconfigura-
tion service for the whole system, instead of one service per core; (ii) we assume
that every non-idle state of a task requires the worst-case core load of the task
on the current core; and (iii) we abstract away the non-critical tasks. These three
assumptions do not prevent synthesis of a distributed reconfiguration service per
core, which will be shown in Sect. 5. Our model depends on four system parame-
ters: (i) the release period of each task (constants pS, pW, pD); (ii) the worst-case
load of each task on each core, in percent of the processing capacity of that
core (constants lS1, lW1, lD1, lS2, lW2, lD2, lS3, lW3, lD3); (iii) the worst-case
execution time (WCET) of each task on all cores (constants wS, wW, wD); and
(iv) the best-case execution time (BCET) of each task on all cores (constants
bS, bW, bD).

Now we illustrate the design process by constructing a concrete model of
mixed-criticality system system1. The main design principle behind this model
is to describe each component of the system in detail as a timed I/O automaton
to obtain an intuitive model by composing all the components using parallel
composition [19]. The concrete model has 13 TIOA, which follow five different
templates. In general, the concrete model has at most (N × K) + N + 1 TIOA
and K + 2 templates, where N is the number of total cores, K is the number
of total critical tasks: N × K TIOA represent execution of K critical tasks on
N cores, N TIOA represent the cores, one automaton represent the service, K
templates for the tasks, one template for the cores, and one template for the
service.

Each automaton of the concrete model represents exactly one rectangle of
Fig. 2. The automata synchronize using both actions and global variables.
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Fig. 2. Architecture of system1 after adapting abstractions of Sect. 4

The model does not have any local variables and constants. A task automaton
models initialization, killing, resumption, termination, and state information of
a task on a specific core; for example, task automaton core1.S at the bottom of
Fig. 3 represents the activities of task S on core1. A core may fail only if the
fault model allows it to fail. A core automaton models initializations and termi-
nations of tasks on a core along with failures of the core and safety violations; for
instance, core automaton core1 in the middle of Fig. 3 represents the activities of
core core1. The service automaton on top of Fig. 3 models reallocations of the
critical tasks when a core fails or recovers. In the model a failed core may recover
at any time. All automata of the model are presented in a technical report [20].

The models are built in Uppaal Tiga [6], which displays controllable transi-
tions as solid arrows (edges 1–4), and uncontrollable transitions as dashed arrows
(edges 5–8). The core automata follow the same template. For instance, automa-
ton core1 uses action kS1 to model the killing of task S on core1 (edge 16 in
Fig. 3), kW1 to model the killing of task W on core1 (edge 17), kD1 to model
the killing of task D on core1 (edge 18), and global variable L1 to record the cur-
rent worst-case load on core1 (edges 9–14,16–18); similarly, automaton core2 uses
action kS2 to model the killing of S on core2 and global variable L2 to record the
current worst-case load on core2. The automata modeling the same task—but
on different cores—follow the same template.

4.1 Task Automata

A task automaton represents two types of activities of a task on a core:

Task Life-Cycle Activities (edges 1–5). Every task can be initialized, killed, and
resumed by performing controllable actions. Task terminations are modeled using
uncontrollable actions because neither the scheduler nor the reconfiguration ser-
vices can control the exact termination period of a task. The duration between
an initialization and the immediate termination of a task represents one com-
plete execution of that task. A task can be killed and then resumed arbitrarily
many times in a single execution. Initialization, killing, resumption, and termi-
nation of task S on core1 are modeled by performing actions iS1 (edge 1), kS1
(edges 3–4), rS1 (edge 2), and tS1 (edge 5), respectively. Every task automaton
has at least two locations: Idle and Active. The task is either killed or yet to
be initialized in location Idle. Every non-idle location has an invariant to force
the task to terminate within the WCET; for instance, an automaton modeling
task S has invariant x≤wS to force termination, where global clock x records the
amount of time passed since the last initialization of S and global constant wS
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Fig. 3. Automata core1.S (in the bottom), core1 (in the middle), service (in the top)
of the concrete model (and comments are on the left)
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stores the WCET of S. Similarly, global constant bS stores the BCET of task
S. Hence, clock guard x≥bS prevents task S from terminating before the BCET
(edge 5).

Task Specific Activities (edges 6–8). Task S records exactly one update of a dig-
ital speedometer (modeled as global variable vS) in an execution: vS represents
the speed in multiples of five varying from zero to hundred. Boolean variable uS
is 1 if and only if the speedometer is updated in the current execution of S.

Task automata core1.W and core1.D in the concrete model are presented in the
technical report [20]. The automata model the task life-cycle activities and task
specific activities of tasks W and D.

Fig. 4. Transformation of a timed I/O automaton representing a task (in Definition 1)
to a task automaton: from single to periodic executions with kill and resumption at all
internal states

In general, a timed I/O automaton representing a task (in Definition 1) is
transformed (see Fig. 4) to a corresponding task automaton by adding control-
lable transitions to capture periodic (or cyclic) initialization of the task (by the
scheduler), killing by reconfiguration services at all internal states (of interest),
and resumption by reconfiguration services at all internal states (of interest).

4.2 Core Automata

A core automaton in the concrete model can carry out two types of activities:

Operation-Time Activities (edges 9–14). A core automaton periodically initial-
izes a task at its release period if the corresponding core is assigned to execute
that task. A task terminates voluntarily after completing its assigned functions.
A task between its initialization and termination uses a portion of the resources.
When a task terminates (resp., is initialized) on a core, the corresponding core
automaton decreases (resp., increases) a variable modeling the current worst-case
load. In location Main, task S is initialized by performing action iS1 (edge 9)
if S is assigned to core1 (aS==1), and S is not initialized yet (iS==0), and



Synthesis of a Reconfiguration Service 171

clock x hits the value of the release period of S (x==pS). Automaton core1
(edge 14) receives action tS1 from task automaton core1.S (edge 5) whenever S
terminates its execution on this core. Function terminate(S,1) decreases (resp.,
initialize(S,1) increases) variable L1, modeling the worst-case load on core1,
by constant lS1, the worst-case load of task S on core core1, and resets Boolean
variable iS to 0 (resp., 1), which means task S terminates (resp., is initialized).

Failure-Time Activities (edges 15–22). Core automaton core1 models failures of
the core by traversing an uncontrollable edge. In order to respect the concur-
rent failure limit, this edge is only admitted if the number of currently failed
cores (F) is less than CFL (CFL). Location Urgent is reached from Main when-
ever core1 fails. Urgent is one of the urgent locations, denoted as in Uppaal
Tiga syntax, which means the automaton cannot spend time in this location
(edges 15–21). When the core fails, the automaton instantaneously kills all tasks
currently released on it—to simulate that no task can continue to run on a
failed core (edges 16–18). Then the automaton instantaneously performs spe-
cific actions to communicate the information which tasks are currently assigned
to the failed core; i.e., action mS is performed if S is the only assigned task,
action mSW is performed if S and W are the only assigned tasks, and action mSD is
performed if S and D are the only assigned tasks (edges 19–21). Note that tasks
W and task D cannot be assigned to core core1 without task S because a task (S)
must be assigned to its operational primary core (core1). At runtime, the recon-
figuration services use a distributed monitoring system to identify these (task)
assignments because no failed core can broadcast a message. An unsafe location
BAD becomes reachable when the current worst-case load on core1 exceeds the
load limit of core1 because of the failure of some other core(s) (edge 22). This
prevents the synthesis algorithm from producing a strategy that would require
illegal loads.

Fig. 5. A core automaton in general

A core automaton in Fig. 5 is con-
structed for a core, which is com-
patible with K number of critical
tasks of the system. The automa-
ton has three locations: Main, Urgent,
and BAD. The initial location Main
has K controllable (resp., K uncon-
trollable) self-loops to simulate ini-
tializations (resp., terminations) of
K critical tasks on the core. Loca-
tion Urgent is reached from Main
when the core fails. At Urgent all
the active tasks are killed instanta-
neously by traversing maximum K
self-loops. After that, Main is reached
instantaneously by broadcasting the
assigned critical tasks to the core.
There are 2K−J edges to broadcast all
combinations of assigned tasks to the core, where J is the number of primary
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critical tasks of the core. However, the number of compatible cores for a task
(resp., K) in an AMP system is typically low. The environment may take the
game to location BAD when the respective core has more load than its load limit.

4.3 Service Automaton

A service automaton spends most of its time in observing states waiting for a
fault to occur (or for a core recovery from a temporary failure). The automaton
reallocates a task in two steps: (i) assigns the periodic execution of the task to
a suitable operational core, and (ii) resumes the task on the assigned core if the
task was initialized before the reallocation. Other than Observing, all locations
are committed, denoted as in Uppaal Tiga syntax. They model states in which
reconfiguration decisions are taken, which are expected to be instantaneous and
get precedence even over the urgent transitions of the other automata. Activities
of the automaton can be divided into three groups described in the following.

Handling a Primary Core Failure ( edges 23–37). Recall the invariant that an
operating core is always assigned to execute its primary tasks, so in system1 when
a core (say core1) is assigned to execute only one task then it must be a primary
task (S). In the model a failure message is broadcast using an action (e.g., mS)
linked to the currently assigned tasks of the failed core, instead of the name of
the core. Therefore, whenever a core failing with only assignment of the periodic
execution of task S (or action mS is performed) then core1, the primary core of
S, must be that failed core. At that point, task S is reallocated to either core2 or
core3. For example, location A1 is reached from location Observing when core1
fails (edges 23–27); in A1 the focus is reallocating S, the primary task of core1, to
core core2 (bottom two outgoing edges) or to core core3 (top two outgoing edges).
Details of reallocation depend on whether the task was initialized (and needs to
be reassigned and then resumed) or is yet to be initialized (and just needs to
be reassigned). For instance, to reallocate task S to core2, location Observing is
reentered from A1 by: (i) assigning the periodic execution of S to core2 (aS:=2)
if core2 is operational (aW==2) and S was yet to be initialized (iS==0), or (ii)
assigning the periodic execution of S to core2 and resuming S on the core (by
performing rS2) if core2 is operational and S was initialized (iS==1).

Handling a Backup Core Failure ( edges 38–52). In our example, when a core is
assigned to execute two critical tasks then one of them must be a backup task of
that core; hence, after such a failure at least two cores concurrently are in their
failed states. The fault model does not allow all cores to fail concurrently. For
instance, core1 must be operational when core2 and core3 are in their failed states;
and the executions of tasks W and D have to be assigned to core1. Location B1 is
reached from Observing when a core fails that is responsible to execute both W
and D or when action mWD is received (edges 48–52). Location C1 is reached from
B1 by assigning the periodic execution of W to the only operational core core1
and resuming W, if necessary (iW==1). Then Observing is reached by assigning
the periodic execution of D to core1 and resuming D, if necessary (iD==1).
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Handling a Primary Core Recovery ( edges 53–67). The periodic execution of
a task must be assigned to its primary core when it is operational. Therefore,
a task must be reallocated from a backup core to the primary core whenever
it recovers from a temporary failure. The periodic execution of task S can be
assigned to a backup core (aS!=1) only if its primary core core1 is in a failed
state. Location G1 is reached from location Observing when core1 recovers from
a failure (edges 53–57). In G1 the controller has two main choices depending
on the initialization condition of the task: S is yet to be initialized and needs
to be only reassigned to its primary core (the bottom outgoing edge); and S is
initialized on a backup core and needs to be killed (the top two outgoing edges)
and then resumed on the primary core (the outgoing edge from location H1).

Fig. 6. A service automaton in general

In general, the
service automaton
of Fig. 6 remains
in observing states
unless a core fails
or recovers. Recon-
figuration services
need at least one
operational core to
run tasks. In the
worst case when
a failure occurs,
CFL-1 cores are in
their failed states
(because if CFL
cores had already
failed, then no fur-
ther failure can hap-
pen before some of
the cores recover).
When a task is failing as the last failure admitted by the fault model, there
are 2CFL−1 possible subsets of cores from which its currently running task might
have been migrated (so they are backup tasks). Therefore in total N × 2CFL−1

edges are used to match these situations, where the total number of cores is N .
The construction is exponential in CFL, however usually CFL is much smaller
than N . Similarly, the internal edges of core recoveries depend on CFL and
task-core compatibility (load(taski, corej)) relationships.

5 Synthesis

A reconfiguration service runs on a core, which can fail. Hence, fault tolerance
cannot be achieved using only one central reconfiguration service. We propose
that each core executes its own reconfiguration service consisting of three compo-
nents: a distributed controller to reallocate critical tasks, a monitoring system



174 M.T.B. Waez et al.

Fig. 7. Architecture of system1 at runtime

to observe the system’s conditions, and a switch to cancel and reinstate the
periodic execution of non-critical tasks. All the distributed controllers of a sys-
tem differ from each other—but complement each other in a way that they all
together work similarly with a central controller, which is synthesized by analyz-
ing the model of Sect. 4. Figure 7 presents the architecture of system1 with the
reconfiguration services.

5.1 Central Controller Synthesis

We perform a controller synthesis for the monolithic model of Sect. 4 against a
safety objective “A[] not (core1.BAD or core2.BAD or core3.Bad)”, mean-
ing that there is a strategy to always avoid locations core1.BAD, core2.BAD, and
core3.BAD. If the property holds, the strategy—which is our central controller—
is automatically synthesized by a timed game solver.

In order to obtain the most fault-tolerant controller possible, we synthesize
it for the maximal concurrent-failures–limit (MCFL), the maximal value of CFL
for which such a controller still exists. We use binary search to find MCFL. If
MCFL is zero, then no safe controller exists. The higher MCFL is the better
the fault-tolerance offered by the reconfiguration services. The value of MCFL is
strictly bounded by the total number of processing cores. Consider, for instance,
configuration C1 in Table 1 where the release period, the WCET, the BCET of
every task is 10, 5, and 4 time units, respectively; the worst-case load of tasks
S, W, and D on core1 (resp., core2, core3) are 60 % (10 %, 10 %), 45 % (80 %, 5 %),
and 5 % (5 %, 85 %), respectively. Configuration C1 does not have a controller for
CFL 2. However, there is a controller for CFL 1. Hence, the MCFL for system1

in configuration C1 is 1.

5.2 Service Synthesis

We synthesize the distributed reconfiguration service of a core by combining its
distributed controller with an embedded monitor and an embedded switch.

Distributed Controller. The functions of the central controller are completely
and exclusively distributed into separate controllers for each core. A distributed
controller is responsible for killing, reassignment, and resumption of critical tasks
only on its core. A timed game represents all the possible transitions of the con-
troller. As a result, a timed game may have non-deterministic choices for the
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controller. For example, in Fig. 1 the controller has non-deterministic choices
at system-state s4 when only core2 fails and the other two cores are operational
(edges 28–32). A strategy removes non-determinism for the controller. By direct-
ing the controller to take the correct paths, the strategy plays a crucial role when
in the model some paths guarantee satisfaction of a property (say reallocating
task W to core3 at system-state s5 in Fig. 1) and some paths do not (say real-
locating W to core1). For example, when core2 fails (edges 28–32) a strategy (or
the central controller) may say, “if the system-state fulfills condition
X then reallocate task W to core3, otherwise to core1”; then the distrib-
uted controller of this portion (edges 28–32) for core3 is “if the system-state
fulfills condition X then reallocate task W to core3”; and the distrib-
uted controller of this portion (edges 28–32) for core1 is “if the system-state
does not fulfill condition X then reallocate task W to core1”. Thus,
deriving the distributed controllers from the central controller is a mechanical
process and cannot fail.

Monitor. The monitor of a reconfiguration service periodically broadcasts health
messages of the corresponding core. A health message has three parts: (a) name
of its core, (b) currently assigned critical tasks to its core, and (c) currently
initialized critical tasks on its core. A monitor periodically also receives health
messages—from the other reconfiguration services—and manipulates received
messages. It marks a core as a failed core if two consecutive health messages of
that core are not received. The monitor concludes core recovery when it receives
a message from a previously failed core. In the same way, the monitor detects
when the scheduler releases a task and when a task terminates on a core.

Switch. A reconfiguration service has a static lookup table and a dynamic lookup
table. The static lookup table lists the worst-case core load of every critical
task (of the system) on this core and of every non-critical task assigned to this
core. The dynamic lookup table keeps a list of the assigned tasks, temporarily
suspended non-critical tasks, and permanently suspended non-critical tasks. The
controllers reallocate critical tasks from a failed or to a recovered core without
considering the existence of non-critical tasks. The switch of a reconfiguration
service (of the targeted core) suspends a set of non-critical tasks on its core using
the lookup tables when the residual capacity on the core is insufficient to run
the newly reallocated task safely. The distributed controllers first take necessary
steps related to primary tasks of the recovered core whenever a core recovers.
After that the switches reinstate the periodic executions of a set of suspended
non-critical tasks on each source core where free processing capacity is revived
due to the recovery. The switch permanently suspends a non-critical task when
it violates safety constraints.

5.3 Scalability

The scalability of our service synthesis process mostly depends on the cen-
tral controller synthesis as the remaining steps are mechanical and cannot fail.
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The concrete model has a very large state space. For example, configuration
C1 in Table 1 generates a strategy of size 290,663 KB in 94.20 s for this model
when CFL is 1. Moreover, for many configurations (C3–C6 in Table 1) the solver
runs out of memory during analysis. Detailed and monolithic models like the
concrete model are easy to construct, understand, and present. However, large
state spaces make them a poor choice for analysis.

The main purpose of the strategy is to resolve non-determinism among
enabled controllable transitions in a way that guarantees satisfaction of the
desired property. Hence, one can abstract away every detail from a timed game
model that does not contribute to the non-determinism (or to the property).
For instance, task specific activities and their non-deterministic updates of the
tasks, which do not have any impact on our property, can be removed from
a timed game model of system1. Using such aggressive abstractions we con-
struct the abstract model of system1. Presented in Fig. 8, the model has only one
automaton.

The abstract model uses all the modeling abstractions and system parame-
ters of Sect. 4. It models only task initializations (edges 68–70), task termina-
tions (edges 71–76), core failures (edges 77–79), core recovery (edges 80–94), and
safety violations (edge 95) explicitly. Like task killings and resumptions, task
initializations and terminations change the load on a core; thus they play an
important role in the required property (or the safety checking). The invari-
ant is used to release or initialize the tasks periodically. While a task termi-
nation within the WCET is forced by allowing an additional controllable tran-
sition (edges 74–76). Reallocation is a function which combines task killings,

Fig. 8. The abstract model (with comments on the left)
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reassignments, and resumptions (edges 77–94). The model uses nine Boolean
variables aS1, aW1, aD1, aS2, aW2, aD2, aS3, aW3, and aD3 to keep track of the
currently assigned tasks to cores: the value of aS1 (resp., aW1, aD1) is 1 when
the periodic execution of task S (resp., W, D) is assigned to core core1, otherwise
the value is 0; similarly, aS2 (resp., aW2, aD2) is 1 if and only if the periodic
execution of task S (resp., W, D) is assigned to core core2. If both the concrete
model and the abstract model use a variable or constant then it is used for the
same purpose; for example, variable iS in both the models is used to identify
when task S is initialized.

Fig. 9. The abstract model in general

In general, the abstract model (in Fig. 9)
combines all automata of the concrete
model into a single automaton. In both
models, one clock per task is used for the
execution times, and the worst-case loads
have been used. A task can be killed and
resumed in any internal state, and the
internal control behaviors of a task can-
not be effected by other tasks (see Defi-
nition 1). Therefore, internal executions of
the tasks can be abstracted away by only
tracking task assignments along with task
initializations—which is actually done in
the abstract model. The abstract model
hides communication among automata of
the concrete model but keeps its effects. For
example, in a core automaton (in Fig. 3 or
in Fig. 5) when the core fails, all the initial-
ized tasks on the core are instantaneously
killed by sending kill messages to the cor-
responding task automata and instanta-
neously broadcast the assignments to the
service automaton; the abstract model sim-
ulates core failures and hides the following two communication steps (but per-
forms necessary changes in the variables). Similarly, communication in the
concrete model between the service automaton and a task automaton related
to task killing and resumption is abstracted away in the abstract model. The
abstract model also hides obvious details of the concrete model. For example, in
the service automaton (in Fig. 3) to reallocate, an initialized task is (reassigned
and then) resumed and an uninitialized task is only reassigned; the abstract
model (in Fig. 8) models only task reallocations (and hides the other details
of resumptions and reassignments). Therefore, a strategy extracted from the
abstract model can be used for the concrete model by augmenting these commu-
nications and obvious details.

Experimental Results. We analyze the two models with different configurations.
All the analyses and controller syntheses were performed by Uppaal Tiga-0.17
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Table 1. Comparisons of the two models with respect to their controller synthesis
time (in s) and the strategy size (in KB), for different configurations (release period,
WCET, and BCET have abstract time units; and loads are in % of the respective core)

on a PC with an Intel Core i3 CPU at 2.4 GHz, 4 GB of RAM, and running 64-
bit Windows 7. Table 1 shows that the abstract model improves the scalability
dramatically. Other than aggressive abstraction, it encodes the whole model into
a single automaton to avoid parallel composition, because parallel composition
typically increases the size of the state space very rapidly. The larger the differ-
ence between WCET and BECT the longer the analysis time, and the sparser the
strategy (configuration C1 vs. configuration C2). The smaller the least common
denominator of the clock ranges (or the execution times and release periods) the
smaller the state space, the shorter the analysis time, and the more compact the
strategy (C2 vs. C3). However, variations in the least common denominator of
other variables, such as different loads, do not have any significant impact on the
analysis (C4 vs. C5). Uppaal Tiga takes less time and generates asmaller strat-
egy for a higher value for CFL (C4, C5). The MCFL of system system1 depends
on its configuration: the MCFL is 1 for the first three configurations (C1–C3); 2
for the next two configurations (C4, C5); and 0 for the last configuration (C6).

5.4 Discussion

We briefly discuss the handling of systems with slightly different properties.
For systems with asymmetric cores, which are unable to execute some tasks on
some of the other cores, we do not model the initialization, termination, killing,
reassignment, and resumption for the illegal combinations of tasks and cores.
For symmetric multi-core processing (SMP) one simply has to set the same
load parameters on all the cores for each task. The synthesized reconfiguration
services are oblivious to the tasks having substructure (sub-tasks), if they can be
consistently abstracted by a single set of parameters (WCET, BCET and load).

We have assumed that an initialized task reallocated from a failed core should
resume in the same state. If this is not required, i.e., a task can start from the
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initial state on the new core at its next release period, then the model can be sim-
plified, by removing the edges modeling resumption. We have not investigated
the synthesis process for a scheduler with dynamic allocation yet. In another
paper, we presented a theoretical framework for hierarchical dynamic open sys-
tems (such as system system1) having any number of control hierarchies [21].
The framework supports an automated state-space reduction technique to allow
timed games-based analysis for industrial hierarchical dynamic open systems.

6 Conclusion

We have presented the synthesis process using a mixed-criticality AMP system
having a fault-intolerant criticality-unaware scheduler with fixed allocation. This
includes two different design principles to model the problem using timed games,
based on a selection of simplifications and abstractions. We compared the mod-
els for scalability, showing that solving the problem using strategy synthesis
for timed games is feasible. We have observed that reducing action based syn-
chronization, the state space, and especially shared states, improves efficiency
of algorithms. Our reconfiguration services are distributed, and the synthesis
process applies to mixed-criticality systems, both in symmetric and asymmetric
scenarios. We demonstrated this on a case study from the automotive domain.
To the best of our knowledge, this is the first case study applying timed games
to the synthesis reconfiguration services for fault-tolerance.
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Abstract. The Helena approach [5] provides a modeling technique for
distributed systems where components dynamically collaborate in ensem-
bles. Models of such systems are formalized with ensemble specifications.
They can be implemented using the jHelena framework [6]. In this paper,
we present a domain-specific language for ensemble specifications and pro-
vide an Eclipse plug-in featuring an editor and an automatic code gener-
ator for translating ensemble specifications into executable code.

1 Motivation

Exploiting global interconnectedness in distributed systems, autonomic com-
ponents can dynamically form ensembles to collaborate for some global goal.
The EU project ASCENS [1,9] develops foundations, techniques and tools to
support the whole life cycle for the construction of Autonomic Service Com-
ponent ENSembles. In this context, several approaches to formalize and imple-
ment ensemble-based systems have been developed. SCEL [3,4] provides a kernel
language for abstract programming of autonomic systems, whose components
rely on knowledge repositories, and models interaction by knowledge exchange.
In SCEL (and its implementation jRESP) ensembles are understood as group
communications. DEECo [2] introduces an explicit specification artifact for
ensembles dynamically formed according to a given membership predicate. Inter-
action is realized by implicit knowledge exchange managed by DECCo’s runtime
infrastructure. Related approaches have been developed in the context of multi-
agent systems and multi-party session types, for instance in the Scribble frame-
work [10]. Recently, we proposed the Helena approach [5] which is centered
around the notion of roles. Roles can be adopted by components to collabo-
rate in ensembles. The introduction of roles helps (1) to focus on the particular
tasks which components fulfill in specific collaborations and (2) to structure
the implementation of ensemble-based systems. In the jHelena framework [6],
roles are implemented as Java threads on top of a component. Role objects are
bound to specific ensembles while components can adopt many roles in differ-
ent, concurrently running ensembles. So far, there is no tool support for writing
ensemble specifications and their implementation in jHelena must be derived
by hand. In this paper, we present HelenaText, a domain-specific language for
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ensemble specifications, and provide an Eclipse plug-in for writing specifications
and generating code following the strategy proposed in [6].

2 HELENA in a Nutshell

Helena is based on a rigorous typing discipline, distinguishing between types
and instances. Component instances classified by component types are considered
as carriers of basic information relevant across many ensembles. Whenever a
component instance joins an ensemble, the component adopts a role by creating
a new role instance and assigning it to itself. The kind of roles a component
is allowed to adopt is determined by role types. Given a set CT of component
types, a role type rt over CT is a tuple rt = (nm, compTypes, roleattrs, rolemsgs)
such that nm is the name of the role type, compTypes ⊆ CT is a finite, non-
empty subset of component types (whose instances can adopt the role), roleattrs
is a set of role specific attribute types for role-specific information, and rolemsgs
is a set of message types capturing incoming, outgoing, and internal messages
supported by the role type rt . We want to illustrate the use of Helena at
a peer-2-peer network supporting the distributed storage of files which can be
retrieved upon request. Several peers work together to request and transfer a file:
One peer plays the role of the Requester of the file, other peers act as Routers
and the peer storing the requested file adopts the role of the Provider. All these
roles can be adopted by components of the type Peer. Figure 1a shows the role
type Router in graphical representation similar to a UML class. The notation
Router:{Peer} indicates that any component instance of type Peer can adopt the
role Router. The Router has no role-specific attributes and supports one incoming
and two outgoing messages types. The full specification and implementation of
the example can be found in [5,6].

A Helena ensemble specification EnsSpec = (Σ,RoleBeh ) consists of two
parts, an ensemble structure Σ and a family RoleBeh of role behavior speci-
fications RoleBehrt (one for each role type rt occurring in Σ). The ensemble
structure Σ = (roleTypes, rconnTypes) specifies a set roleTypes of pairs, consist-
ing of a role type and an associated multiplicity. Each multiplicity (like 0..1, 1,
∗, 1..∗ etc.) determines how many instances of that role type may contribute to
the ensemble. The set rconnTypes of role connector types specifies which types
of messages can be exchanged between role instances. Each role connector type
must be equipped with a source and a target role type which must be declared in
roleTypes. Figure 1b shows a graphical representation of the ensemble structure
for the p2p example. It consists of three role types (Requester, Router, Provider)
with associated multiplicities and five role connector types. For instance, the con-
nector type ReqAddrConn consists of the single message type reqAddr(Requester

req)(String fn) with source type Requester and with target type Router. It will
be used for requesting the address of a provider for file fn such that the file can
be directly downloaded afterwards using the connectors between Requester and
Provider.

A role behavior specification RoleBehrt for a role type rt specifies the life cycle
of each instance of rt . We represent role behaviors by labeled transition systems
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derived from process expressions [8]. The labels denote actions which must fit
to the declared ensemble structure. There are actions for creating role instances,
sending (!) or receiving (?) messages, and performing internal computations. For
instance, Fig. 1c shows the behavior specification of a Router. Initially, a router is
able to receive a request for an address either via the role connector ReqAddrConn

(from the requester) or via FwdReqAddrConn (from another router). Depending on
whether the router knows the peer storing fn or not, it either creates a provider
role instance prov and sends it back to the requester (right branch) or it forwards
the request to another router (left branch). The formal ensemble specification
serves as an analysis model, e.g. to eliminate collaboration mismatches between
different roles at early stages, and as a design model for implementation.

Fig. 1. Ensemble specification in graphical notation (excerpt)

For the implementation and execution of ensembles, we provide the Java
framework jHelena [6]. The framework contains two layers and a system man-
ager; cf. upper part of Fig. 2. The metadata layer implements the types used in
ensemble structures, i.e. component types, role types, etc. All types and ensemble
structures themselves are represented by objects of the metadata classes which
are linked according to the formal definitions. While the metadata layer is related
to the type level, the developer interface is related to the instance level. It con-
tains abstract base classes which must be extended to implement subclasses
for particular components, roles etc. The SysManager class provides basic func-
tionality for the administration of ensembles. Its abstract operations must be
implemented by a concrete system manager for configuring particular ensemble
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Fig. 2. jHelena framework and generated p2p ensemble application (excerpts)

structures and the necessary types, creating the underlying component instances
and instantiating and starting an ensemble. The framework controls that the
created ensembles are built in accordance with previously configured ensemble
structures.

3 HELENATEXT and Code Generation

When modeling and implementing an ensemble-based system according to
Helena, the developer may experience two pitfalls. Without any editor support,
the developer has to ensure herself that her specifications conform to Helena
and respect all constraints formulated in the formal definitions. To implement
an ensemble, she has to translate an ensemble specification to jHelena code
by hand and has no guarantee that the implementation indeed respects the for-
mal specification. We therefore define HelenaText, a domain-specific language
(DSL) which provides a concrete syntax for ensemble specifications supporting
roles and ensemble structures as first-class citizens. We also provide Eclipse inte-
gration which features a full HelenaText editor including syntax highlighting,
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content assist, and validation. Moreover, we define a set of rules for the automatic
generation of jHelena code from HelenaText.

HELENATEXT. For defining the syntax of HelenaText we use Xtext (www.
eclipse.org/Xtext/), a framework for the development of DSLs fully integrated
into Eclipse. We define a grammar in a BNF-like notation following the for-
mal definitions of types, ensemble structures and role behaviors. Constraints
which cannot be included into the DSL grammar are formulated as valida-
tion rules written with Xtend. For instance, Listing 1.1 shows the gram-
mar for the declaration of ensemble structures which must start with the key
word ensembleStructure followed by its name. In curly braces the two parts
(roleTypes, rconnTypes) of an ensemble structure Σ (cf. Sect. 2) are specified:
roleTypes is a list of role types with multiplicity, rconnTypes is a list of role
connector types (their specifications including source and target types are not
shown). However, in the DSL grammar we cannot express the constraint that
each role connector type must be equipped with a source and a target role type
defined in roleTypes. For that, a validation rule in Xtend is added (cf. List-
ing 1.2) which iterates over all role connector types in the ensemble structure and
reports an error if the context condition is not satisfied. The concrete syntax for
the declaration of the ensemble structure of Fig. 1b is shown in Listing 1.3. The
concrete syntax for role behaviors is a textual representation of labeled transition
systems not shown here. The rules for all syntactic constructs of HelenaText
can be found at [7].

Code generation. The code generator takes a HelenaText file containing a
particular ensemble specification and generates a package for the ensemble appli-
cation which is split into two parts, the (sub)packages src-gen and src-user;

www.eclipse.org/Xtext/
www.eclipse.org/Xtext/
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see Fig. 2. The package src-gen is already complete and must not be touched by
the user. It contains a subclass (here P2PSysManager) of the SysManager class which
implements the method configureTypes(). The method body creates objects for
the metadata classes to represent types and the ensemble structure in accordance
with the specification. Moreover, src-gen contains subclasses for the abstract base
classes of the developer interface. These subclasses, like Peer, Router, correspond
to the types of the given ensemble structure.

To define templates for the code generation, we use template expression in
Xtend. Listing 1.4 shows an excerpt of such an Xtend rule. The operation body

is called for any role type given in a HelenaText specification and generates
the corresponding class declaration in jHelena. Basically anything in the opera-
tion body is written to the generated class file except text enclosed in tag brackets

which must be evaluated first. For example, in line 3 the class-header is built.
The name of the class is dynamically evaluated from the expression .
This is a function of RoleType which is called for the first parameter it of the
operation (see line 1) and retrieves the name of the role type it (the resulting
class-header for the role type Router is shown in line 1 of Listing 1.5). Afterwards,
in line 4-6 of the Xtend rule all attributes of the role type are generated (which
are none for the role type Router). Lines 8–18 declare additional attributes for
any created instances or parameters of incoming messages in the role behavior of
the role type such that their values can be accessed throughout the execution of
the role behavior. For example, for the role behavior of the Router in Fig. 1c we
need attributes to store the values of the two created role instances router and
prov, of the role connector instances frac and sac as well as of the parameters
req and fn of the incoming message reqAddr. For the role behavior itself the
method step is generated from the textual labeled transition system representa-
tion in HelenaText (see line 22, template not shown here). Basically, a simple
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state machine is implemented which will be called repeatedly by the run method
implemented in the base class Role of the developer interface in jHelena.

Lines 11–26 in Listing 1.5 show an excerpt of the step method generated
from the behavior specification of Router shown graphically in Fig. 1c. The code
generator creates a sequence of case distinctions to determine the next action
depending on the current state. If there is only one transition starting from the
current state, the action can directly be translated from HelenaText to code.
If there are several alternatives for one state, like for or r1 in Fig. 1c, the
nondeterminism between those branches has to be resolved. In Helena there
are no mixed states in a role behavior meaning that whenever an incoming
message is an alternative in a certain state then the other alternatives must also
be incoming messages. Nondeterminism for incoming messages can be resolved
easily by waiting for several messages in parallel; cf. line 13–15 in Listing 1.5.
For all other actions, the code generator cannot decide which transition to take.
Therefore, for each such branch an abstract boolean method is called, cf. line 19
and 23, which must be implemented by the user to decide which branch should be
taken. This mechanism is also used for the creation of new role instances. In fact,
the user has to decide on which component the role instance should be deployed;
cf. call to the abstract method getOwnerForRouter() in line 20. To implement user
decisions, the code generator constructs the package src-user which includes
implementation classes for all abstract classes in src-gen. The package src-user

also contains a concrete manager class (here P2pSysManagerImpl). The user has to
implement the methods createComponents() and startEnsembles() for creating
components and for creating and starting ensembles, which can run concurrently.
We have only described here the basic ideas behind the code generation. Formally
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it is based on a set of generation rules written in Xtend which define, for each
model element in HelenaText, how it is translated to jHelena code. The rules
for all syntactic constructs of HelenaText can be found at [7].

Next steps. In the near future we intend to provide a graphical DSL in addition
to HelenaText which implements our UML-like notation used throughout the
paper. Moreover, we want to investigate collaboration requirements and inte-
grate tools for the analysis of ensemble specifications to check the absence of
collaboration errors.
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Abstract. MAccS is a tool for the modular design of complex IT
systems. Component specifications are given in the form of marked accep-
tance specifications which are acceptance specifications, an extension of
modal specifications, enriched with reachability constraints on states.
The tool supports the crucial operators for a complete specification the-
ory: satisfaction checking, consistency, refinement, product, quotient and
conjunction. These operators can be used to build larger systems by com-
posing or decomposing component specifications while ensuring some
reachability properties.

1 Introduction

The basic idea underlying modular design is to break down complex systems into
individual components that can be implemented concurrently or possibly taken
off-the-shelf, and later composed to obtain the targeted system. This approach
can be supported by a specification theory in which a formalism is defined for the
component specifications together with dedicated operators allowing to perform
different steps of a system design flow.

The tool MAccS implements a specification theory based on marked accep-
tance specifications (MAS) [1]. As an example of MAS, consider the specification
Server shown in Fig. 1. It consists of a finite deterministic transition system with,
associated to any state q, a set Acc(q) of sets of actions that may be enabled in
a model of the specification. In general terms, a MAS characterizes a (possibly
infinite) set of finite transition systems called its models. Now Fig. 2 depicts two
models of Server (for a formal definition of satisfaction, see [1]). In each state of
the model, the set of outgoing transitions must be an element of the acceptance
set of the specification. For example, the state 2 of the MAS Server allows either
to do only one transition labeled response or two transitions labeled response
and ban. In the model on the right of Fig. 2, the state 2 chose this last option
(both response and ban) while the state 4 only realizes the transition response.

Observe that logout and ban are optional respectively in state 1 and in state 2
of Server as these actions are not present in all sets in Acc(1) and Acc(2) and
thus may not be present in some models of the specification. Moreover, state
3 of Server is marked to encode the constraint that it must be reached in any

Source code of MAccS, screenshots and more examples are available at http://irit.
fr/Guillaume.Verdier.
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Acc(0) = {{login}}
Acc(1) = {{read, post}, {read, post, logout}}
Acc(2) = {{response}, {response, ban}}
Acc(3) = {∅}

Fig. 1. A MAS Server

0 1 2

3

login
read, post

response
logout

0 1 2

34

5
login read, post ban

response

read, post

response

Fig. 2. Two models of the MAS Server

model. As a result, although the actions logout and ban are optional, at least
one of the two must be present in any model of Server. This kind of constraint
entails that MAS are more expressive than modal transition systems (MTS) [2].
In this case, marking the state 3 is used to express the termination of the service,
as the marked state has no outgoing transition, but one may also mark some
states with outgoing transitions to ensure the reachability of checkpoints or a
liveness property.

Consequently, the MAS Server specifies the behavior of a forum-like site:
after having logged in, one can read messages or post a new message and may
eventually log out. The server may also eventually decide to ban users.

A specification theory must support a set of crucial operators to be regarded
as complete [3]. This is the case for the one implemented in MAccS which sup-
ports satisfaction checking, consistency and refinement for substitutability. It
also supports product for the composition of MAS, quotient for the decompo-
sition of MAS and conjunction for the merge of viewpoints modeled as MAS.
These operators preserve the reachability of marked states and thus guarantee
by design some reachability properties.

2 The Tool MAccS

MAccS offers a Graphical User Interface (GUI) featuring an interactive view of
transition systems and MAS allowing to edit them easily and a sidebar to select
and apply different operations defined on MAS. MAccS is also available as a
library for integration in other programs or automatic processing.

MAccS is written in standard C++; the graphs underlying the transition
systems and MAS are handled by the Boost Graph Library [4]. The GUI is
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init {{login}}

wait {{read,post},{read,post,logout}}

...

init -login-> wait

wait -read-> reply

reply -response-> wait

...

Fig. 3. Excerpt of the textual form of the MAS given in Fig. 1

made with the framework Qt and Dot [5] is used to generate the layout of the
transition systems and MAS. MAccS does not make use of platform-specific
libraries and should thus compile and run on most desktop operating systems.

In addition to being created and modified through the GUI, the transition
systems and MAS may be written in a simple textual format. An excerpt of this
format is shown in Fig. 3 which corresponds to the MAS Server in Fig. 1. It is
also possible to import and export them from and to the Dot format [5].

After creating (or importing) some transition systems or some MAS, several
operations are available that we now introduce briefly.

Satisfaction checking. As mentioned in the introduction, a MAS characterizes a
set of transition systems. One may first test in MAccS if a transition system M
is a model of a given MAS S.

For example, it can be verified that the left-hand side transition system in
Fig. 2 is a model of the MAS Server in Fig. 1. It corresponds to the implemen-
tation of Server in which users are never banned: after the login transition, the
set {read, post, logout} was selected from the Acc(1) and the set {response} was
chosen from Acc(2).

Refinement of MAS. Refinement allows one to replace, in any context, a specifi-
cation by a more detailed version of it. Substitutability of a MAS S2 by a MAS
S1 is allowed when every model satisfying the refinement S1 also satisfies the
larger specification S2. Inclusion of the sets of models, also referred as thorough
refinement in the literature, can be tested for two MAS in MAccS thus enabling
to decide refinement.

Product of MAS. Two MAS S1 and S2 may be composed using the product
operation (denoted ⊗), which synchronizes their actions. However, reachability
is not compositional in general meaning that there may exist some models M1

of S1 and M2 of S2 such that from some states of M1 × M2 no pair of marked
states can be reached.

In order to enable the concurrent implementation of MAS while guaranteeing
some reachability constraints, we have proposed in [1] a compatible reachability
criterion which is a precondition for the computation of S1 ⊗ S2 and allows to
check if a pair of marked states is always reachable in the product of any two
models of the MAS.
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0′ 1′ 2′

3′

login
read, post

response

logout ban

Acc(0′) = {{login}}
Acc(1′) = {{read, post, logout}}
Acc(2′) = {{response, ban}}
Acc(3′) = {∅}

Fig. 4. MAS Client

0,0′ 1,1′ 2,2′

3,3′

login
read, post

response

logout ban

Acc(0, 0′) = {{login}}
Acc(1, 1′) = {{read, post}, {read, post, logout}}
Acc(2, 2′) = {{response}, {response, ban}}
Acc(3, 3′) = {∅}

Fig. 5. Result of Server ⊗ Client

For example, the MAS Server given in Fig. 1 and Client given in Fig. 4 have
a compatible reachability and their product is shown in Fig. 5.

When some MAS S1 and S2 do not have a compatible reachability, MAccS
proposes to compute the largest refinement S′

2 of S2 such that S1 and S′
2 have

a compatible reachability.

Quotient of MAS. Conversely, we may decompose specifications with the quo-
tient operation. Intuitively, it is the opposite of the product: given two MAS S
and S1, the MAS S/S1 is such that any of its models composed with any model
of S1 is a model of S. It also allows component reuse as S1 may be typically the
specification associated to a grey box component available off-the-shelf.

For example, consider the MAS ROServer in Fig. 6. This specification cor-
responds to a read-only forum: logged users may read messages and log out, but
if they try to post a message, the server will ban them.

0′ 1′ 2′

3′ 4′

5′

login
read

response
post

logout
response

read, post
ban

logout

Acc(0′) = {{login}}
Acc(1′) = {{read, post}, {read, post, logout}}
Acc(2′) = {{response}}
Acc(3′) = {{response, ban}}
Acc(4′) = {{read, post}, {read, post, logout}}
Acc(5′) = {∅}

Fig. 6. Specification ROServer
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Now the Fig. 7 shows the quotient of Server and ROServer. Note that a
priority P is generated to enforce the eventual choice of the transition labeled
ban in any model M/ and thus guarantee that, regardless of the implementation
choices that are made when building a model M of ROserver, M × M/ will
satisfy the reachability constraint included in Server. A screenshot of MAccS
with the result of this quotient is shown in Fig. 8.

0,0′ 1,1′ 2,2′

2,3′ 1,4′

3,5′

login
read

response
post

logout
response

read, post
ban

logout

Acc(0, 0′) = {{login}}
Acc(1, 1′) = {{read, post}, {read, post, logout}}
Acc(2, 2′) = {{response}}
Acc(2, 3′) = {{response}, {response, ban}}
Acc(1, 4′) = {{read, post}, {read, post, logout}}
Acc(3, 5′) = {∅}

P = {{((2, 3′), ban)}}

Fig. 7. Result of Server/ROServer

Fig. 8. Screenshot of MAccS with the result of Server/ROServer
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Conjunction and consistency of MAS. It is a current practice to attach to a given
(sub)system several specifications, each of them describing a different aspect or
viewpoint of the (sub)system. These specifications have to be interpreted in a
conjunctive way.

The tool MAccS addresses viewpoint-design by implementing a conjunction
operator for MAS: given two MAS S1 and S2, the MAS S1 ∧ S2, whose set of
models is exactly the intersection of the set of models of S1 and S2, can be
computed. If this intersection is empty, the two MAS are declared inconsistent.

3 Related Work

MAS extend modal transition systems (MTS) [2] by allowing to specify any
combination of actions and not only the sets of actions which belong to an inter-
val defined by may/must transitions. Moreover, the possibility to require some
reachability constraints on states is only available for MAS and also improves
expressivity with respect to MTS.

MAccS is the first tool for MAS with the support of a complete specifica-
tion theory. MTS have been identified as a specification formalism particularly
suitable for interface-based design [3,6], contract-based design [7], software prod-
uct lines description [8] and model merging [9] but only a few tools support
them. The tool MTSA [10] supports refinement, product and conjunction of
MTS but no quotient. The tools MIO workbench [11] and MICA [12] are ded-
icated to MTS enriched with input and output actions. They both support a
complete specification theory but restricted to the modal case and their opera-
tors do not guarantee concurrent reachability. The tool MoTRAS [13] also pro-
poses a complete specification theory for MTS, which are less expressive than
MAS. MoTRAS allows for LTL model-checking of specifications but this is not
enough to go along with reachability constraints as advocated in [1]. Several
non-deterministic MTS variants, namely Disjunctive MTS [14], Boolean MTS
and Parametric MTS [15], which have a similar expressive power as acceptance
specifications (without marked states), are also under the scope of MoTRAS,
but only for a reduced set of operations: there is no quotient for DMTS and
only refinement and the deterministic hull for BMTS and PMTS. Last, the tools
ECDAR [16] and PyECDAR [17] support a complete timed specification theory.

References

1. Verdier, G., Raclet, J.-B.: Quotient of acceptance specifications under reachability
constraints. In: LATA 2015. LNCS, vol. 8977 (2015, to appear)

2. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210, IEEE
(1988)

3. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A
modal interface theory for component-based design. Fundam. In. 108(1–2), 119–
149 (2011)

4. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library. Addison-Wesley,
Boston (2002)



MAccS: A Tool for Reachability by Design 197

5. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Softw. Pract. Exp. 30(11), 1203–1233 (2000)

6. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

7. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B.,
Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen,
K.G.: Contracts for system design. Research report, RR-8147, 65 pp., Nov 2012.
https://hal.inria.fr/hal-00757488

8. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A logical framework to deal
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Abstract. MPass is a freely available open source tool for the verifi-
cation of message passing programs communicating in an asynchronous
manner over unbounded channels. The verification task is non-trivial as
it involves exploring state spaces of arbitrary or even infinite sizes. Even
for programs that only manipulate finite range variables, the size of the
channels could grow unboundedly, and hence the state space that need
to be explored could be of infinite size. MPass addresses the bounded-
phase reachability problem, where each process is allowed to perform a
bounded number of phases during any run of the system. In each phase,
a process can perform either send transitions or receive transitions (but
not both). However, this does not bound the number of context switches
between processes or the size of the channels but just the number of alter-
nations between receive and send transitions of each process. Currently,
MPass can decide bounded-phase reachability problem for three types
of channel semantics, namely lossy, stuttering and unordered channels.
Messages inside these channels can be lost, duplicated and re-arranged,
respectively. MPass efficiently and uniformly reduces the bounded-phase
reachability problem into the satisfiability of quantifier-free Presburger
formula for each of the above mentioned semantics.

1 Introduction

MPass is a tool dedicated to the verification of state reachability for message-
passing programs communicating in an asynchronous manner via unbounded
channels. The reachability problem is undecidable in the case where the chan-
nels are perfect, i.e. channels that behave as non-lossy queues [6]. Because of
the unbounded size of the channels, this message passing programs can be in
fact considered as infinite state systems, even if the number of the states of
the program itself is finite. Nevertheless, the problem becomes decidable if we
consider other than perfect channel kind of semantics for the communication
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medium, namely lossy, stuttering or unordered channel semantics [1,9,12,14].
Lossy semantic allows loss of messages from any channel at any possible tran-
sition of the program. Stuttering on the other hand allows any message in any
channel to be replicated any number of times. Finally, no order of arrival is
kept in the unordered semantic, i.e. the channel is a multiset of messages where
only the number of copies of each message is kept. It turns out that the state
reachability of message passing programs for these semantics still comes with
a high complexity. Therefor, different approaches have been suggested in order
to reduce the complexity of the reachability problem. Most of these approaches
consists in some sort of under approximation analysis of the system, allowing the
system to evolve up to a certain fixed bound, thus limiting the state space that
has to be explored in order to check the reachability of a given program state.
One of these approaches consists in bounding the number of context switches
between processes [11]. Since many bugs get exposed after a small number of
context switches, it appears that these kind of approaches are very helpful when
it comes to find bugs. On the other hand, they can tell about the program safety
only up to a certain bound, the one under which the analysis has been car-
ried. More specific to message passing communicating programs, La Torre et al.
considered in [8] a bounded context switch analysis for perfect channel commu-
nicating processes, where processes are allowed to receive from only one channel
in each context.

Parosh et al. considered in [3] a different approach, called bounded phase
analysis. A phase of the program is a run in which each process is either per-
forming send operations or receive operations, but not both. For instance, con-
sider a program composed of two processes p1 and p2. A run of this program
consists of only one phase if the following conditions are met: (i) p1 is either
receiving or sending messages, but not both, and (ii) p2 is either receiving or
sending messages, but not both. If p1 is only receiving (resp. sending) messages,
we say that p1 is in a receiving (resp. sending) phase. Say one process (e.g. p1)
switches from receiving to sending or from sending to receiving during a run
of the system, then two phases are needed in order to describe the run of the
process. In that sense, a phase is local to each process. The run of the system
as a whole is composed of only one phase if the run of each one of its processes
is composed of only one local phase. Note that the number of send and receive
operations within a phase is not bounded, and the number of channels to which
processes are sending to (resp. receiving from) is only bounded by the number of
channels composing the system. Also, this approach does not put any restriction
on the length of the run or on the size of the buffers. Finally, it allows multiple
processes to be running at the same time and allows an arbitrary number of
context switches.

A variant of this approach has been demonstrated in a prototype, alterna-
tor [2]. The phase in this variant is global, i.e. phases are defined not for each
process, but for the whole system. This variant is more coarse-grained than the
local (per-process) phase bounding approach. The tool alternator proceeds in
two steps in order to analyse the program within the phase bound. First, it trans-
lates the bounded phase reachability problem of the program to the satisfiability
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problem of a quantifier-free Presburger formula. Second, it feeds the generated
formula to an Smt-solver. This allows leveraging the full power of state-of-the-art
Smt-solvers for obtaining a very efficient solution to the bounded-phase reacha-
bility problem for all above mentioned semantics. The promising results of this
prototype motivated its reimplementation into a more efficient tool, MPass, that
we present here in this paper.

MPass turns the bounded phase state reachability verification task into a
push-button exercise. Moreover, it comes with the following features:

– Users of MPass can feed the tool with: (i) The protocol specification in Xml,
(ii) the target state for which the reachability analysis should be conducted,
(iii) the semantic of the channel and (iv) the phase bound. Details of the input
format are provided in Sect. 2.

– MPass can handle three different kinds of channel semantics: lossy (Lcs),
stuttering (Slcs) and multiset-unordered (Ucs) semantics which allow the
messages inside the channels to be, respectively, lost, duplicated or re-ordered.

– MPass allows a local (per process) bounded phase analysis. This fine grained
analysis explores more behaviours than the global (per program) bounded
phase analysis implemented in alternator.

– Several optimisations have been implemented in MPass, in particular in the
Smt-formula generation phase (see Sect. 3).

– MPass uses the z3 Smt-solver http://z3.codeplex.com.
– If MPass finds a bug then it is a real bug of the input program (under the

considered channel semantic).
– If the bound on the number of phases increases then the set of explored

program behaviours increases. In the limit, every run of the programs can
then be explored.

– Users are provided with the computational time needed both by the constraint
generation engine and by the Smt-solver in order to analyse the reachability
of the provided protocol and state.

– MPass output is generated in a user friendly manner, by generating a tex
file. More information regarding this feature can be found in the manual of
the tool [4].

– Finally, MPass is an open source tool which can be interfaced with other
Smt-solvers.

Targeted Users MPass can be used by the following group of users:

1. Researchers and computer scientists can use the freely available and open
source code of MPass to:
(a) Compare the bounded phase approach with other approaches for the ver-

ification of message-passing programs,
(b) Improve and optimize the implemented techniques, either by generating

a different Smt-formula or by using a different Smt-solver.
(c) Target new platforms and programs (e.g. by adding shared variables or

considering other channel semantics).

http://z3.codeplex.com
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2. Teachers of distributed systems and concurrent programming classes can
use (and augment) MPass to get their students accustomed with message-
passing programs and protocols. In particular, the precision of MPass can
concretely illustrates the difficulty of writing a correct distributed protocol
or algorithm.

3. Software designers that are working on message-passing programs can use
MPass to evaluate the safety of their tentative solutions. It can also be used
to check faultiness of an already used protocol by verifying the reachability
of some error state.

2 Input Format

Examples on which we run our protocols are mostly taken from [7] which are
further described in [10] and [13]. Bounded Retransmission Protocol (Brp) is
also adapted from [5]. All protocols used for our experiments can be found in
the Includes/Protocols folder. In [7] and in alternator, the authors used
a tabular format to specify a protocol (.csv file) from which an Xml descrip-
tion could be extracted. Our tool works directly on the Xml description. More
specifically, MPass takes as input a settings file where users can feed the tool
with a structured input containing the following informations:

XML file: Path to the Xml file where the protocol is specified.
Channel semantic: Either lossy (Lcs), stuttering (Slcs) or unordered

(Ucs) channel semantic.
Phase bound: How many phases are allowed per process.
Bad state: It takes pairs of values. First is the name of the process, second is

the (bad) state (of that process) for which state reachability is to be checked.
Note that several bad states can be entered.

For instance, in order to ask MPass to check the 3-phase-bounded reacha-
bility of the state Invalid of the process RECEIVER of the Brp protocol using
the lossy semantic, the user can feed the tool with the file depicted in Fig. 1a,
which you can also find in the src directory of MPass.

Protocol Specification. The Xml specification of all protocols used for our
experiments can be found in the Includes/Protocols folder. Variants of these
protocols can be specified by modifying their corresponding Xml specifica-
tion. Also, new protocols can be specified by writing a new Xml specification.
An Xml protocol description contains: 1. The name of the protocol (Exam-
ple: Altenating Bit Protocol), 2. the set of messages exchanged between
processes, 3. the set of channels, and 4. a list of process specifications. The
specification of each process contains: 1. The name of the process, 2. the set of
states of the process, and 3. the set of transitions of the process. Each process
transition is specified as an Xml rule. An example of such a rule is depicted
in Fig. 1b. The set of transition rules, together with the set of states defines a
process. The set of processes, together with channel and message definitions,
defines a protocol.
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Fig. 1. Input format

3 Implementation

The tool is available on GitHub [4]. It includes sources files, protocol specifica-
tions in Xml and the user manual. MPass tool is implemented in C++ with the
help of lemon and pugixml libraries. In order to use MPass, the Smt-solver z3
is also required.

From the XML Protocol Specification to Automata Representation.
Protocols are specified in Xml files in the Includes sub-folder of the tool repos-
itory. They can be modified in a simple manner by adding, modifying or removing
the Xml rules and new protocols can be specified by writing their specification
into an Xml file. The first task of MPass is to translate the protocol specifi-
cation into a set of Non-Deterministic Finite Automaton (Nfa). It does so by
parsing the Xml file which path is given as input in the settings file (using
the plugixml library). Then, it makes use of the lemon library to translate the
protocol into a set of Nfa, each Nfa defining one process from the protocol. For
each such generated Nfa, MPass proceeds by extracting two automata, one con-
taining all except the receive transitions (send copy of that process), the other
one containing all except the send transitions (receive copy of that process). In
total, MPass would have extracted 2 ∗N automata from the input protocol (N
being the number of processes composing the protocol).

From Automata to Quantifier-Free Presburger Formulas. The reacha-
bility problem of a given protocol state is analyzed by generating a quantifier-free
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Presburger formula from the set of extracted send an receive automata. If the
Smt-solver proves the quantifier free Presburger formula to be satisfiable, then
the state is reachable and we have an unsafe condition. Otherwise, the formula
is unsatisfiable, the state is unreachable and the program is safe. Note that the
result of the reachability analysis should be interpreted with regard to the phase
bound and to the channel semantic under which the analysis has been carried.

More information regarding the translation of the bounded phase state reach-
ability to the satisfiability of quantifier-free Presburger formula can be found in
[3], but here are some details concerning this translation. In order to generate
the quantifier-free Presburger formula, a certain number of variables need to be
defined in order to encode states and transitions of every Nfa. This includes
the index, the occurrence and the match variables. Variables index are integer
variables used in order to index all states of all automata, while occurrence
are boolean variables that apply to transitions and tell if the transition has
been taken or not with respect to a given run. Variables match apply to receive
transitions and check whether the receive transition matches a previous send
operation. By enforcing that for every two consecutive receiving transitions, the
order through which the matching sending transitions happens is the same as the
order through which the receiving transitions happens, we encode the first-in-
first-out lossy semantic of the channels. On the other hand, the unordered chan-
nel semantic is encoded by enforcing that every two distinct received message
are matched by two distinct receive operations. The respective receiving opera-
tions and sending operations order does not matter for this semantic. Finally, the
order of visited states and fired transitions along a run is encoded by ordering
the indices (index variables) of the states.

Optimisations. Various optimizations were implemented in order to increase the
efficiency of the approach described in [3] and implemented in alternator [2]:

Reduction of the number of copies per process: Since the reachability
analysis is carried under a certain phase bound k, the original approach
consisted in making k copies of each process from the protocol specification.
Instead of that, we make only two copies per process (send and receive
copies). MPass then generates variables for both send and receive copies
of each process and duplicates them k times which are then further used
to generate the Presburger formula. Thus, by duplicating variables instead
of processes, we have saved space and time during the Presburger formula
generation phase.

Removal of strongly connected components: We evaluate all the strongly
connected components (Scc) of the send copy of each process. Then, we
replace each Scc by two new states, sinScc and soutScc. For every send opera-
tion occurring between two states in the Scc, we add the same transition
between sinScc and soutScc. sinScc will be the entering point for any transition
inbounding this Scc, while soutScc will be the source state for all transitions
leaving the Scc. Thus, the number of states and transitions per process is
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Table 1. Verification Results for examples from [10] and [7]

P Bad Sem Const. Smt Total Assert. Ph Res

gen. check time Nb.

Abp RECEIVER, Invalid Ucs 0.07 74 74.07 4025 4 Unsafe

Abp RECEIVER, Invalid Lcs 0.04 1 1.04 2519 3 Safe

Abp RECEIVER, Invalid Slcs 0.03 2 2.03 2519 3 Safe

Brp RECEIVER, Invalid Ucs 0.3 2 2.3 23461 3 Safe

Brp RECEIVER, Invalid Lcs 0.28 2 2.28 23461 3 Safe

Brp RECEIVER, Invalid Slcs 0.28 1 1.28 23461 3 Safe

Stp A, Invalid Ucs 0.03 4 4.03 2354 6 Unsafe

Stp A, Invalid Lcs 0.02 0 0.02 1348 4 Safe

Stp A, Invalid Slcs 0.02 0 0.02 1348 4 Safe

reduced, which, in consequence, reduces the number of generated variables
and assertions in the Smt-formula.

Reduction of the number of assertions: The z3 single command create
distinct statement was used in order make all state indices distinct, thus
replacing all assertions of the form index(state1) != index(state2). This
considerably reduced the number of assertions fed to the Smt solver.

4 Experimental Results

Table 1 displays the results of running MPass tool on some examples; whereas
Table 2 shows the results of running MPass on some protocols which were inten-
tionally modified in order to introduce some errors. The displayed examples are
taken from [7] which are further described in [10] and [13]. Bounded Retrans-
mission Protocol (Brp) is also adapted from [5].

Columns of both tables should be interpreted as follows: 1. P lists the name
of the protocol under analysis. 2. Bad indicates both the process and the state of

Table 2. Verification Results for buggy (faulty) examples

P Bad Sem Const. Smt Total Assert. Ph Res

gen. check time Nb.

Abp F RECEIVER, Invalid Slcs 0.04 1 1.04 1275 2 Unsafe

Abp F RECEIVER, Invalid Ucs 0.04 1 1.04 1275 2 Unsafe

SlidingWindow F RECEIVER, Invalid Slcs 0.02 0 0.02 913 1 Unsafe

SlidingWindow F RECEIVER, Invalid Ucs 0.03 0 0.03 913 1 Unsafe

Synchronous F B, Invalid Slcs 0.02 0 0.02 713 3 Unsafe

Synchronous F B, Invalid Ucs 0.02 0 0.02 713 3 Unsafe
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the process for which the state reachability analysis is conducted. 3. Sem indi-
cated the channel semantic used for the analysis: lossy (Lcs), stuttering (Slcs)
or unordered (Ucs). 4. Constraint generation (Const. gen.), 5. Smt check and
6. Total time lists, respectively, the time taken by MPass to generate the Smt-
formula, the time taken by the Smt solver z3 to check the satisfiability of that
formula and the total time of the analysis (time is given in seconds). 7. Assert.
Nb. lists the number of assertions fed to the Smt solver. 8. Ph. indicates the
bound on the number of phases. Finally, 9. Res gives the result of the analysis.
The result is either Unsafe if the bad state is reachable (i.e. the Smt formula is
satisfiable), or Safe if the bad state is not reachable under the bounded-phase
assumption and for the considered channel semantic (i.e. the Smt formula is
unsatisfiable).

Results displayed here are for few protocols only. Rest of the results are
available online at [4] in the docs folder.

Table 1 shows that seven out of nine examples have been proved by MPass
to be safe in less than three seconds. Also, MPass found two safe examples to
be faulty when we raised the phase bound from 3 to 4 for Abp and from 4 to 6
for Stp. In both cases, the unordered channel semantic has been considered. It
seems that this particular channel semantic (Ucs) exposes more false negatives
than the stuttering and the lossy one (Slcs and Lcs). Also, it seems that rising
the phase bound makes the reachability analysis explore more behaviours of the
system in general. On the other hand, regarding the (faulty) examples listed in
Table 2, all of them have been proved to be unsafe in less than two seconds and
within less than three phases. Finally, we would like to mention that comparing
alternator with MPass would be hazardous since a phase does not have the
same semantic in both of the tools.
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Abstract. This paper presents a compositional approach for schedu-
lability analysis of hierarchical systems, which enables to prove more
systems schedulable by having richer and more detailed scheduling mod-
els. We use a lightweight method (statistical model checking) for design
exploration, easily assuring high confidence in the correctness of the
model. A satisfactory design can be proved schedulable using the com-
putation costly method (symbolic model checking). In order to analyze a
hierarchical scheduling system compositionally, we introduce the notion
of a stochastic supplier modeling the supply of resources in each compo-
nent. We specifically investigate two different techniques to widen the set
of provably schedulable systems: (1) a new supplier model; (2) restricting
the potential task offsets. We also provide a way to estimate the mini-
mum resource supply (budget) that a component is required to provide.

1 Introduction

The use of hierarchical scheduling systems is a new trend in software architecture
that integrates a number of individual components into a single system running
on one execution platform. Hierarchical scheduling systems have reached a matu-
rity where they are used in real automotive and space systems [10,15]. A class
of analytical methods has been developed for hierarchical scheduling systems
[19,20]. Due to their rigorous nature, analytical methods are easy to apply once
proven correct, but very hard to prove correct. They also suffer from the abstract-
ness of the models; they do not deal with any detail of the system behavior and
thus grossly overestimate the amount of needed resources. Model-based method-
ologies for schedulability analysis [6,8,10] allow modeling more detailed and
complicated behavior of individual tasks, relative to analytical methods while
powerful analysis tools can be applied. Profiting from the technological advances
in model checking, we provide a model based methodology for the schedulability
analysis of hierarchical scheduling systems. We model tasks, resources, schedulers
and suppliers as Parameterized Stopwatch Automata (PSA) [9]. The models can
be quickly analyzed using statistical methods (Uppaal SMC), which provide
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guarantees with a selected statistical margin. Once a satisfying model design has
been found, the model can be analyzed using symbolic model checking (Uppaal).
Our approach aims at increasing resource utilization by (1) adjusting task offsets
relative to the component period; (2) providing a new supplier model where the
supply of resources is delayed as much as possible according to task requests.
Our methodology also has the advantage that it is possible for system engineers
to update the models in order to have a more realistic analysis of the system. In
this way, they can utilize detailed knowledge of the system that they are working
with; something that cannot be achieved with a classical analytical approach.

An example of a hierarchical scheduling system is depicted in Fig. 1. It
includes two top level components Controls and Display and Nav. Ctrl scheduled
according to the Earliest Deadline First (EDF) policy. Each component is char-
acterized by timing requirements consisting of period and execution time (e.g.
(10, 6) for Nav. Ctrl). The attributes of tasks are similar to the ones of compo-
nents. Task deadlines are the same as the task periods.

Fig. 1. A hierarchical scheduling systems.

According to the CARTS
tool [19], the hierarchical
scheduling system of Fig. 1
is not schedulable. However
using the specific approach
shown in this paper, this sys-
tem can be shown to be
schedulable using different
offset parameters and/or a
new supplier model.

Symbolic model checking
offers absolute certainty that
the verified properties are
correct. However, it suffers
from state space explosion
and undecidability, thus some models might not be feasible to check and others
will take a long time to verify. Statistical model checking provides high confidence
in the results that one obtains in contrast to symbolic model checking.

This paper presents a methodology for performing compositional schedulabil-
ity analysis of hierarchical scheduling systems. The general methodology consists
of using a light weight statistical method and a costly but absolute certain sym-
bolic method that operates on identical models. Design space exploration can
be carried out at low cost using the statistical model checking in order to deter-
mine optimal system parameters that could be impossible to find using classical
analytical methods. The use of automata and statistical model checking enables
a larger class of tasks and resource supply models to be analyzed compared to
the conventional real-time analytical method while still being efficient. Allow-
ing designing systems based on a confidence level can be highly beneficial for
soft real-time systems. In order to verify the schedulability of the system found
using statistical methods we use the symbolic method on the final system design.
The end goal of the methodology is to widen the set of concrete systems that
can be proved schedulable. We instantiate our methodology using PSA models,



Widening the Schedulability of Hierarchical Scheduling Systems 211

Uppaal SMC and Uppaal. Using the general methodology and our specific
tools, we investigate two concrete techniques that affect the resource utilization.
The first technique decreasing the needed resources relies on an update of the
stochastic supplier model, such that it defers resource consumption until a task
is ready. Secondly, we describe a way of giving a potential decrease in the needed
resources of a component by ensuring more synchronicity between the initial off-
set of tasks and the starting point of the parent component’s period. In order
to enable compositional verification, we introduce the concept of a stochastic
supplier model. We evaluate our methodology by comparing our results to the
ones obtained using the state of the art tool CARTS [19]. Our verification results
are consistent with the results obtained from CARTS. In one particular case, we
have uncovered a significant difference between CARTS and our methodology.
After further investigation, this turned out to be an error in the implementation
of CARTS and not the underlying theory. This has been confirmed by the devel-
opers of CARTS. When checking the schedulability of a system, our tools can
prove the non-schedulability by means of a counterexample. Our methodology,
which builds on previous work in [6], is very scalable because both design and
analysis are compositional.

The rest of this paper is organized as follows: Sect. 2 describes our methodol-
ogy. Section 3 presents our compositional modeling and analysis of hierarchical
scheduling systems using Uppaal and Uppaal SMC. Section 4 describes two
techniques to improve resource utilization. Section 5 compares our results with a
state of the art tool. Section 6 describes related work. Section 7 is a conclusion.

2 Methodology and Preliminaries

This paper presents a general methodology, a specific approach and investi-
gates two concrete techniques. The methodology could be instantiated using
any modeling formalism supporting both a lightweight statistical analysis and a
more costly formal verification. In this paper the methodology is instantiated as
a specific approach using Parameterized Stopwatch Automata (PSA) together
with the verification suite Uppaal SMC and Uppaal.

Fig. 2. Classes of systems that different
methods can prove schedulable.

The two concrete techniques for
enhancing the resource utilization are
described in Sect. 4. Figure 2 shows a
graphical conceptual representation of
different sets of systems that differ-
ent methods can show to be schedu-
lable. Systems that are easily proven
schedulable using classical analytical
approaches can also be proven correct
using symbolic model checking. Sys-
tems that can be shown, with a high
degree of certainty, to be correct using
statistical model checking (SMC) can-
not always be proven to be correct
using symbolic model checking due to
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state space explosion. In the same way some complex systems that are analyzable
using model checking cannot be proved correct using analytical approaches [8].
Our methodology consists of exploring system models with different sets of para-
meters (S(Pi)) searching for a realistic configuration that optimally satisfies the
requirements. These experiments are performed using SMC with a high confidence
level. Using SMC one can easily and interactively obtain either a high degree of
confidence that the model is correct or a counterexample showing an error trace.
When a satisfying final configuration has been found the system can be proven to
be schedulable using symbolic model checking. In very rare cases an error could be
found at this stage, but this is highly unlikely due to the confidence levels obtained
using SMC.

2.1 Statistical Model Checking

We use both SMC and classical symbolic model checking techniques to analyze
the schedulability of hierarchical scheduling systems. The Uppaal verification
suite provides both symbolic and SMC. The models which in practice can be
analyzed statistically, using the Uppaal SMC verification engine, are larger
and can contain more features.

Meanwhile, SMC provides much faster responses. The speed of such responses
depends entirely on the degree of certainty that one wants to obtain. The reason
is that SMC consists in running a sufficiently high number of simulations of the
system under analysis. The advantage of SMC resides in: (1) SMC provides a
quick response in terms of less than a minute. This is also true in the case of non-
schedulability were SMC produces counter-example witnesses; (2) SMC enables
quantitative performance measurements instead of the Boolean (true, false) eval-
uation that symbolic model checking techniques provide. We can summarize the
features of Uppaal SMC that we use in the following:

– Stopwatches [9] are clocks that can be stopped and resumed without a reset.
They are very practical to measure the execution time of preemptable tasks.

– Simulation and estimation of the value of expressions, E[bound](min:expr)
and E[bound](max:expr), for a given simulation time and/or number of runs
specified by bound.

– Probability evaluation (Pr[bound] P) for a property P to be satisfied for a
given simulation time and/or number of runs specified by bound.

The disadvantage of using SMC is that it will not provide complete certainty
that a property is satisfied, but only verify it up to a specific confidence level,
given as an analysis parameter [7].

2.2 Classical Compositional Framework

In this section, we provide the formal basis of our model-based compositional
analysis approach. In fact, our theory conforms with the formal basis given in
the compositional framework [21] for hierarchical scheduling systems.
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Fig. 3. Component and sub-tasks in a
compositional framework

A scheduling unit C is defined as a
tuple (W,A) where W is a workload, con-
sisting of a set of tasks Ti = (pi, ei), and
a scheduling policy A. Each task Ti =
(pi, ei) has timing attributes in the form
of a period pi and an execution time ei.
Task deadlines are the same as periods.
The scheduling unit C (Fig. 3) is given a
collective timing requirement Γ = (Π, Θ)
called interface, where Π is a period and Θ is a budget for the component. The
collective timing requirement Γ is a representative of all timing requirements
of tasks constituting the workload W . In the compositional framework [21], the
schedulability of the system is checked by the following relation:

dbf(W,A, t) ≤ sbfΓ (R, t) (1)

where t is a time interval. In this relation, the demand bound function
dbf(W,A, t) computes the maximum amount of resource required by W
under scheduling algorithm A during t time units. The supply bound function
sbfΓ (R, t) returns the minimum amount of resource that the resource model R
allocates during a time interval t according to the resource requirement Γ . The
system is said to be schedulable under the EDF policy if and only if it satisfies
relation (1) for any value t.

2.3 Conceptual Models of Our Approach

In our model-based approach, we realize the compositional framework in the
form of PSA models. We implemented the dbf as a set of tasks together with a
scheduling algorithm, while the sbf is implemented by the supplier model. Such
a supplier model (RPSA) represents the classical resource model R in accordance
with the contract Γ . The time when the workload can use resources follows from
the scheduling algorithm, and is also constrained by the resource model RPSA.

Fig. 4. Task model in PSA

PSA supports stopwatches, which
are clocks that can be stopped and
resumed without a reset. The modeling
formalism allows for having different
rates of progression for stopwatches,
but we only utilize the values 1 (run-
ning) and 0 (stopped). In our PSA mod-
els, the stopwatch is used to express the
preemption of a task’s execution. The
execution of a task is preempted, i.e.
the associated clock stops, in two cases: when it is preempted by a higher prior-
ity task or when any of the needed resources is not provided by the supplier.

Figure 4 is a conceptual model of a task, which we will realize using PSA in
Sect. 3. The clock x stops progressing in the locations where its derivative x′ is
set to 0. The clock x keeps progressing at other locations. The task starts at the
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initial location Rdy and moves to Run when the two following conditions hold:
the task is scheduled to use a resource pid, (isSched(pid)) and there is a supply
of necessary resources (supply = true). The clock x measures the execution time
of the task while it is in the location Run. If either of the two conditions is false
at the location Run, the task moves back to the location Rdy. The task stays
at location Run until the stopwatch x reaches the execution time e, and then
jumps to location Done delaying until the next period. A task joins the error
location Err when its deadline d is missed (y > d). Throughout this paper we
keep the assumption that e ≤ d ≤ p.

In the following, we relate the analytical view of the supply bound function
and the resource model with the way they are implemented as a supplier model
in our approach. We use the Periodic Resource Model (PRM) [21] as an example.

Fig. 5. Resource allocations of periodic resource model

Figure 5 shows an
example of the resource
allocations of the PRM
which guarantees the
resource requirement
Γ = (Π, Θ) where Π is
5 and Θ is 2. Σ repre-
sents a delay until the
next period and Λ is the delay located between the beginning of a period and
the start of supply (slack time). The resource allocation in PRM does not need
to be synchronized with the execution of tasks, thus Λ is deviated between 0 and
Π − Θ. The consecutive delay of Σ and Λ is denoted by Ψ , where no resource is
allocated at all.

Property 1. The interval Ψ varies between 0 and the maximum consecutive
delays of Σ and Λ, i.e. 0 ≤ Ψ ≤ 2(Π − Θ).

The delay Λ varies between 0 and Π − Θ by the definition of the PRM. After a
supply of Θ time units, the delay Σ is deviated between 0 and Π − Θ. Conse-
quently, 0 ≤ Λ + Σ ≤ 2(Π − Θ).

The supply bound function sbfΓ (R, t) based on the PRM is formulated as:

sbfΓ (PRM, t) =
⌊

t − (Π − Θ)
Π

⌋

· Θ + εs (2)

εs = max
(

t − 2(Π − Θ) − Π

⌊
t − (Π − Θ)

Π

⌋

, 0
)

(3)

Our PSA model for the PRM (RPSA) is designed to generate all possible
allocations of resources in compliance with Γ = (Π, Θ).

One can remark that our resource model supplies the whole budget non-
preemptively in one chunk, however according to [21] if one considers only worst
cases, both preemptive and non-preemptive resource models provide the same
analysis results. Thus we will use a non-preemptive supplier model (Fig. 6) both
in this conceptual description as well in the computation models. Figure 6 shows
the conceptual model of PSA resource model. In this model, the variable supply



Widening the Schedulability of Hierarchical Scheduling Systems 215

represents the resource allocation, which is a shared variable with the task model.
Thus the supply is only enabled for Θ time units within the period Π. The loca-
tion Rdy of RPSA corresponds to the delay Λ in PRM of Fig. 5. This represents
a situation where a new period started but the resource allocation has not been
started. The location Sup corresponds to Θ where the resource is allocated, and
Done corresponds to Σ where the resource model waits for the next period.

Fig. 6. Conceptual PRM model in PSA notation

In order to realize a compo-
sitional approach, our resource
model RPSA does not synchro-
nize with the execution of tasks
similarly to the resource alloca-
tion of PRM. Thus the resource
model can stay at the location
Rdy up to Π −Θ or immediately
move to the location Sup. This resource model is designed to generate all possible
resource allocations including the maximum duration of no resource allocation Ψ .

3 Compositional Analysis Approach

In this section we present concrete PSA models based on the conceptual models
presented in the previous section. The implementation contains a resource model
(supplier template) and a task template. The scheduling policy is modeled as a
separate PSA template, which is represented as a parameter when instantiating
the concrete system. This increases the reconfigurability of our approach. We
have modeled three different scheduling policies EDF, RM and FIFO but we
only use EDF and RM in the experiments. Moreover, all tasks in the system are
instances of the same Task template but with different parameters.

3.1 Stochastic Periodic Resource Model

Fig. 7. Stochastic periodic resource model

In [22] the resource allocation by
the supplier does not necessar-
ily synchronize with tasks peri-
ods. That is, if the workloads of
tasks start at time tw and the
resource allocation begins at time
tr then [22] assumes that tw is
not necessarily equal to tr. This
assumption leads to a stochastic
periodic supplier model, where
the supply of resources follows a
uniform probability distribution
within the supplier period. Thus,
we impose no obligation on the scheduler at the parent level of providing
resources at a certain point in time. We only consider that the whole budget
should be provided before the end of the supplier period. Figure 7 shows the
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supplier template, which communicates with the other templates through two
output broadcast channels (start supplying and stop supplying) and a shared vari-
able (supplying). These channels are used in the template Task to keep track
of the resource supply. The initial location of the Supplier template is marked
with double circles. Such a location is also marked with a “c” which indi-
cates that it is a committed location, this leads the supplier to move instan-
taneously to the next location Rdy. Slack time is the maximum amount of
time that can elapse before the supplier starts to supply resources. It is used
in several places of Supplier and written as sup[supid].prd − sup[supid].budget.
The location Rdy has an invariant consisting of a conjunction of two parts.
The first part supplying time[supid]′ == 0 means that the clock represent-
ing the supplied amount of resources does not progress while the template
resides in the location Rdy. The second part curT ime <= sup[supid].prd −
sup[supid].budget ensures that once curT ime has reached the end of the slack
time the template leaves the location Rdy.

At some point in time between time zero and the slack time, the sup-
plier moves to the location Sup. In this location, the progress rate of the clock
supplying time[supid] is set to 1, signifying that the supplier keeps supplying
resources. While the likelihood of delays happening at location Rdy would be the
same, we treat such a non-deterministic wait via a uniform probability distribu-
tion when performing statistical analysis. One can notice that non-determinism
motivates the use of statistical model checking. The supplier can not provide
more resources than budgeted and will move to the location Done when it has
provided the needed resources. At the start of the next period, the supplier moves
to the location Rdy.

3.2 Task Model

The task model in this paper has various execution attributes, such as the worst
case execution time, deadline, initial offset and regular offset. Thus, our frame-
work can easily be used to describe complicated hierarchical scheduling systems.
Formally, a task within the workload W = {T1, T2, ..., Tn} is defined by

– pri: Task priority.
– initial offset: The offset of the initial period of the task.
– offset: The offset from the beginning of each period until task release.
– bcet: Best-case execution time.
– wcet: Worst-case execution time.
– preemptable: Whether a task is preemptable.
– tid: Task identifier.

Figure 8 shows the PSA task template. It begins its execution by waiting,
non-deterministically, for an amount of time up to the initial offset (initial offset).
Using this parameter, we can adjust the synchronicity of the task execution
with the supplier. This will be further explained in Sect. 4. The stopwatch twcrt

is used to measure the worst-case response time of the task. The behavior of the
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Fig. 8. Task model

task model consists mainly in checking whether a resource is available or not, by
checking the supplier status supplying[tstat[tid].pid], which is done inside the
function isTaskSched().

The execution of a task can always be suspended whenever the supplier stops
providing the task’s requested resource. A task may travel several times between
location Ready and location Run due to preemption by other tasks in the same
component. This preemption is implemented at the level of the scheduling policy.
Once the execution of a task is achieved within its deadline, the task moves to
the location PDone, before starting the next period. If a task misses its deadline
it moves to the location Err where it assigns 1 to the global variable error. This
variable is used when analyzing the schedulability. The models used are available
at http://people.cs.aau.dk/∼ulrik/submissions/721641/models.zip. The top level
system is formed by a parallel composition of component suppliers together with a
scheduling policy. The schedulability of the top level system is performed according
to [6]. The PSA models of scheduling algorithms are not included in the paper
because their behavior is trivial, but they are provided in the above link.

3.3 Automated Computation of the Supplier Budget

Fig. 9. Modified resource model

We have automated a technique for
directly estimating the supplier bud-
get. Such an automation is realized
by adding a helper template to the
system and exploiting the expressive-
ness of the Uppaal SMC query lan-
guage. Figure 9 shows the modified
initial states of the Supplier template.
We do not show the helper because of

http://people.cs.aau.dk/~ulrik/submissions/721641/models.zip
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its simple behavior consisting of one transition, storing a value at the end of the
simulation time. Between the initial location and the Rdy location of the mod-
ified supplier template, the budget is assigned a uniformly distributed random
value between 0 and the period of the supplier, given in the template as the
two constants LowerBound and UpperBound. The minimal budget can be found by
searching for every budget value which makes the system non schedulable. To
this end, we use the following query:

Pr[cbudget[1] <= rbudget] (<> globalTime >= simTime and error) (4)

Fig. 10. Probability distribution of supplier’s
budgets that make component S2 of Table 2
non schedulable under EDF

where cbudget[1] is the budget can-
didate for the supplier in a given
run, rbudget is a constant value that
is larger than any of the poten-
tial budgets, and globalTime is the
current simulation time (clock). In
the helper template, cbudget[1] is
assigned a value larger than rbudget

when the simulation has executed
for simTime time units. Thus, this
query finds every number between 0
and the supplier’s budget for which
Uppaal SMC finds a run where a task misses its deadline before the expiry of
simTime, i.e. globalTime>=simTime.

Figures 10 and 11 show the probability distributions of budgets that Uppaal
SMC produces after checking the system using query (4). Figure 10 shows that
for every potential budget between 0 and 45 a run where a deadline has been
missed was found. In other words, a budget greater than 45 can make the system
schedulable.

Fig. 11. Probability distribution of supplier’s
budgets that make component S2 of Table 2
non schedulable under RM

Given a budget, the schedulabil-
ity of a component and its workload
can be checked using the following
query:

Pr[<= simTime](<> error) (5)

Such a query computes the prob-
ability of a component to finally
(<>) reach an error, where simTime

is a simulation time and error is a
global variable indicating whether a
task has missed its deadline or not.

By using the budget found via query (4) as a parameter value for compo-
nent S2 of Table 2 when checking query (5), we can see that this indeed makes
component S2 schedulable under EDF. Figure 11 is the estimation results of the
same component under RM, showing that a supplier budget greater than 47 can
make component S2 schedulable. By using query (4), we can obtain a very good
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estimate for the minimal budget. In practice one might still need to check two
or three values using query (5) after having applied query (4). Once a candi-
date budget is strongly determined, we apply symbolic model checking to be
absolutely certain.

4 Enhancement of Resource Utilization

This section presents two techniques for enhancing the utilization of a resource:
(1) introducing a new supplier model; (2) making tasks more synchronous with
their suppliers by adjusting tasks initial offset.

4.1 Synchronous Periodic Resource Model

In order to increase the resource utilization by trying to avoid supplying resource
when it is not needed, i.e. no waiting task, we introduce a new supplier model.
The new supplier relies on delaying the resource supply, while no task is request-
ing resource, until a task request is received. Such a delay is up to the component
slack time (period-budget).

Figure 12 depicts the PSA template that implements our new supplier model.
Once started, the supplier joins location Rdy and keeps waiting while the slack
time is not expired. Such a constraint is implemented by the location invariant
curTime≤ sup[supid].prd-sup[supid].budget, where prd and budget are respectively the
period and budget of the supplier. One can remark that, at location Rdy, the stop-
watch measuring the resource supply is not progressing (supplying time[supid]’==0).
Non deterministically, the supplier moves from location Rdy to the location Sup by
either receiving a task request (guard isReq() over the crooked edge), or once the
slack time is expired (guard curTime≥sup[supid].prd-sup[supid].budget over the verti-
cal edge).

Fig. 12. Synchronous periodic resource model in
PSA

At location Sup, the supplier
keeps supplying resource before
moving to the location Done.
Such a location can be reached
once the whole budget is sup-
plied. From location Done and
once the period is expired, the
supplier joins location Rdy to
start new period and resets its
clocks.

Table 1 shows the gain in
resource utilization obtained
when applying the new supplier
model. At the first stage, using
the periodic resource model
PRM, we compute the component budgets of the avionics system we mentioned
earlier. The component budgets obtained via CARTS (2nd column) and Uppaal
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PRM

SPRM

Arv. WCRT
SPRM

Arv. WCRT
PRM

(a) Flight data

PRMSPRM

Arv. WCRT
SPRM

Arv. WCRT
PRM

(b) Steering

Fig. 13. Probability distributions of WCRT of flight data and steering tasks. The
queries E[<= 100000; 1000](max : wcrt[1]) and E[<= 100000; 1000](max : wcrt[2])
are used to generate the probability distributions using Uppaal SMC.

SMC (3rd column) are identical; (10,6) (20,6) (20,2) (20,10). By replacing PRM
with our new supplier model, we recompute the minimum budgets making the
avionics components schedulable using Uppaal SMC (4th column). For compo-
nents Nav.Radar Ctrl and Navigation, the budgets are decreased to 5 in each case,
with a gain of 17% thanks to our new supplier model. We have checked and
confirmed such new budgets using the Uppaal symbolic model checking (MC).

Table 1. Resource utilization comparison

Analysis Tool CARTS SMC SMC & MC
Resource Model PRM PRM Synchronous PRM

Nav. Radar Ctrl (10, 6) (10, 6) (10, 5)
Navigation (20, 6) (20, 6) (20, 5)
Radar Ctrl (20, 2) (20, 2) (20, 2)

Control & Display (20, 10) (20, 10) (20, 10)

In order to evaluate the
effects of introducing a new
supplier model, we have made
a statistical experiment using
the two tasks in the compo-
nent Navigation. Figure 13 shows
the probability distributions of
WCRT using two different resource models. This shows that the average WCRT
is enhanced using the new supplier model SPRM. There is no significant differ-
ence in the actual WCRT. By using these plots we can see how much a hier-
archical system can be improved by using different system settings. The fact
that we can easily generate such plots also shows the versatility of a model and
simulation based approach.

4.2 Offset Manipulation

Our second technique consists in limiting the initial offset for the arrival of all tasks.
Explicitly including offsets in the schedulability analysis was initiated in [23]. By
limiting this initial offset to a certain percentage of the supplier period, the given
component can be schedulable with a lower budget. This is an assumption that we
are making about the system. It is the responsibility of the system engineers to con-
firm that the offset that they chose actually conforms with the real system. Thus
we are not computing optimal offsets making the system schedulable, but investi-
gating the impact of different offsets on the individual component resource require-
ments.As shown inTable 3, the smallest supplier budget can be obtained if all tasks
arrive exactly synchronously with the start of the supplier period. This could be
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hard to achieve in practice. On the other hand, we think that it is indeed very pos-
sible to make the tasks synchronized with the supplier period such that all tasks
arrive within either the first 20 % or 50 % of the supplier period. For these realis-
tic values, we still obtain significant savings in the budget that a given component
needs in order to be schedulable (See column 6 to 9 of Table 3). The percentage
value is a parameter that can be easily changed in our setting when checking the
schedulability. Similarly to Table 2, all statistical results in Table 3 are found using
a confidence level of 0.95.

Another observation that we have made is that, the length of the period of
the supplier can have a great impact on the budget that a component needs
in order to be schedulable. This can be seen in Table 3 for component S5. We
have analyzed the same component with two different supplier periods. The first
period is not a common divisor of the task periods (50000), while the second
supplier period (10000) is a common divisor of the task periods. For the first
experiment, the component can be schedulable with 30 % of the complete system
resources, while in the second case it can be schedulable using only 18.8 % of
the system resources (see column 4). In fact, this observation is an experimental
result that can be found using both our approach and the CARTS tool (see
Table 2 for component S4).

4.3 Confirming Uppaal SMC Results with Model Checking

In order to give absolute responses about the schedulability analysis performed
using Uppaal SMC, we have verified some of the Uppaal SMC results by
means of symbolic model checking. These are marked in Table 3 by a gray back-
ground color in the cells. The reason for only verifying some of our results, but
not all, is that for some of the models the verification time is as much as a couple
of days.

According to our experience, statistical model checking is a good way to deal
with the undecidability challenge of symbolic model checking in schedulability
analysis, but does not represent an alternative.

5 Evaluation and Comparison

In order to evaluate the correctness of our model-based approach, we compare the
component budgets from our estimation to the budgets obtained by the CARTS
tool [19] for the same hierarchical system configurations. All the results presented
in Table 2 are obtained with a confidence 0.95. When Uppaal SMC returns a
result where the estimated probability of missing a deadline is an interval from
zero to some low value ε (e.g. [0,0.0973938]), this means that Uppaal SMC did
not find any trace in which a deadline was missed, i.e. with 95 % confidence a
deadline will not be missed with the given budget and probability distribution.
If a higher confidence is needed, the confidence value can be increased and the
query can be rerun.

Table 2 shows the comparison we have done with the CARTS tool. Column
1 (Comp) contains 4 different components on which we have performed the
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Table 2. Comparison of the estimated budgets of CARTS and Uppaal SMC

Comp Tasks P, WCET CARTS SMC

EDF RM EDF RM

S1 T1 500, 30 100, 32.5 100, 32.5 100, 33 100, 33

T2 500, 100

S2 T1 170, 30 100, 46.67 100, 47.5 100, 47 100, 48

T2 500, 100

S3 T1 250, 40 150, 42.5 150, 42.5 150, 45 150, 45

T2 750, 50

S4 T1 80000, 6890 50000, 15082 50000, 15082 50000, 15082 50000, 15082

T2 100000, 8192

T3 200000, 2644 10000, 1880 10000, 2155.6 10000, 1875 10000, 2155

T4 1000000, 5874

experiment. The workload of each component is stated on the second column
(Tasks). In fact, each of component S1, S2 and S3 is a parallel composition of 2
tasks (T1, T2), while S4 contains 4 tasks (T1,. . . , T4). The third column specifies
the period and the worst case execution time for each task. In order to perform a
more thorough comparison, we have considered two different scheduling policies;
EDF and RM. According to the CARTS tool, the minimum budget that the
resource supplier should provide each 100 time units, for which the component
S1 is schedulable under EDF and RM, is 32.5. For the same parameters, the
minimum budget we have computed in our framework using Uppaal SMC is
33, which is very close to that obtained by CARTS. The two tools produce
almost identical results. CARTS has the advantage of being an extremely fast
method, while our approach is extremely flexible and configurable.

5.1 Uppaal SMC Counterexample for One CARTS Result

During the schedulability analysis of a specific component configuration, we
obtained a result from CARTS that was in conflict with our own results.

Fig. 14. Counterexample for the deadline
missing of T1 in S3 with the budget 43
under RM in Table 2

This was for the specific case (bold
gray numbers) of component S3 in
Table 2. According to CARTS’s com-
putations, the minimal necessary bud-
get for S3 to be schedulable under
EDF and RM is 42.5. With the use
of Uppaal SMC, we first estimated
the minimal budget to be 45, which
has a considerable difference with the
results from CARTS.

Our estimation using Uppaal
SMC immediately produced a coun-
terexample trace which shows that
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Task1 (T1) can miss its deadline with a supplier budget of 43. The counterexam-
ple is depicted in Fig. 14 in terms of a plot that was also produced by Uppaal
SMC. The bottom of the plot shows the supplier; the dashed spikes represent
the length of the supplier period and the solid line illustrates when the supplier
is supplying. Each of the other two groups illustrates the behavior of a task.
The solid line shows when the task is executing, and the dashed line goes up
when the task is released and down when the task has finished its computation.
Approximately at time 880, Task1 is executing on its third period but fails to
complete before its deadline. In order to confirm our findings, we also calculated
the minimum supplier budget according to the theory underlying the CARTS
tool. We calculated this both using the equations from [22] and equations from
[21]. The results of such calculations confirmed our findings in that we calculated
the minimal budget to be 45. This leads us to conclude that there must be an
error in the implementation of CARTS while the underlying theory is correct.
We reported this anomaly and it has been confirmed by the developers of the
CARTS tool that CARTS has an implementation error.

6 Related Work

In an engineering setting, providing effective parameters that make a system
realizable is very practical in terms of time and cost. In this paper, while we
explore the schedulability analysis of hierarchical scheduling systems by profit-
ing from the technological advances made in the area of model checking, we pro-
pose a compositional analysis approach to determine and increase the potential
configurations making much more hierarchical scheduling systems schedulable.

The concept of hierarchical scheduling systems was first introduced as 2 levels
systems in [11], and then generalized as a real-time multi-level system by [16]. An
example of the increasing use of hierarchical scheduling systems is the standard
ARINC 653 [2] for avionics real-time operating systems.

Several compositional analysis techniques [1,8,12,13,21,22] have been pro-
posed. An analytical compositional framework was presented in [22] as a basis for
the schedulability analysis of hierarchical scheduling systems. Such a framework
relies on the abstraction and composition of system components, which are given
by periodic interfaces. The interfaces state the components timing requirement
without any specification of the tasks concrete behavior. In [20], the authors
extend their previous work [22] to a hierarchical scheduling framework for mul-
tiprocessors based on cluster-based scheduling. They used analytical methods to
perform the analysis. However, in both [20,22], the proposed framework is lim-
ited to a set of formulas describing an abstraction of the system entities, given
in terms of periodic interfaces, without any specification of the tasks behavior
and interaction. CARTS (Compositional Analysis of Real-Time Systems) [19]
is tool that implements the theory given in [20,22]. Compared to our approach
CARTS is a mature tool that is easy to use. On the other hand, we provide a
more detailed modeling and analysis.

As common traits, analytical approaches assume computations with deter-
ministic Execution Time usually coincident with the Worst Case Execution
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Time (WCET), and they provide pessimistic results [8]. Recent research within
schedulability analysis gives tremendous attention to model-based approaches,
because of their expressiveness that allows for modeling more complicated behav-
ior of systems, and also due to the technological advances made in the area
of model-based simulation and analysis tools. In [4], the authors analyzed the
schedulability of hierarchical scheduling systems using the TIMES tool [1,3], and
implemented their model-based framework in VxWorks [4]. They constructed an
abstract task model as well as scheduling algorithms focusing on the component
under analysis. However, the authors not only consider the timing attributes of
the component under analysis but also the timing attributes of the other com-
ponents that can preempt the execution of the current component. Thus, the
proposed approach is not fully compositional. The authors of [8] provided a com-
positional framework modeled as preemptive Time Petri Nets for the verification
of hierarchical scheduling systems using the ORIS tool [17]. They only analyze
systems using two specific scheduling algorithms severely restricting the class of
systems they can handle. In [10], the authors introduced a model-based frame-
work using Uppaal for the schedulability analysis of single layered scheduling
systems, modeling the concrete task behavior as a sequence of timed actions.

We have been inspired by the work in [10] but generalizing and lifting it to a
compositional approach for hierarchical scheduling systems. Resource efficiency
constitutes one of the most important factors in the performance evaluation of
hierarchical scheduling systems. Such resources are often represented by either
periodic [21] or explicit deadline periodic [12] resource models. The resource mod-
els represent an interface between a component and the rest of the system. In
[14], the authors introduced the Dual Periodic Resource Model (DPRM) and pre-
sented an algorithm for computing the optimal resource interface, reducing the
overhead suffered by the classical periodic resource models. In [18], the authors
introduced a technique for improving the schedulability of real-time scheduling
systems by reducing the resource interferences between tasks.

In contrast, we propose a model-based framework for the modeling of hierar-
chical scheduling systems with a generic resource model, while we use Uppaal
and Uppaal SMC to analyze the schedulability of components in a composi-
tional manner. We also introduce two novel techniques for improving resource
efficiency, and computing the minimum resource supply of system components.

7 Conclusion

In this paper we have presented a compositional methodology for schedulability
analysis using a combination of statistical and symbolic model checking. The
methodology could be instantiated with any modeling formalism supporting both
a lightweight statistical analysis and a more costly formal verification.

The methodology we propose is instantiated in a concrete approach using
Parameterized Stopwatch Automata (PSA), Uppaal SMC and Uppaal. Our
approach is model based, compositional and highly configurable. We have com-
pared the results we obtained on different system configurations with results
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obtained from the CARTS tool. The results from the two tools are almost iden-
tical. We discovered one case with a large difference, which has been confirmed as
an implementation error by the developers of CARTS. Our configurable approach
can be instantiated and updated for many different applications and system con-
figurations including scheduling policies. We have investigated two specific tech-
niques for enhancing the resource utilization: a new resource model and offset
manipulation. Both techniques are investigated using statistical model check-
ing. We also provided a faster method for estimating the minimal budget of a
supplier, instead of performing a binary search of potential budgets. The main
contribution of the paper is that systems, which cannot be proven schedulable
using classical analytic approaches, can potentially be proven schedulable using
our approach.

A perspective of this work could be a study of the impact of the two tech-
niques, we proposed for the enhancement of resource utilization, on the systems
energy efficiency [5].
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Abstract. AADL is a Model-Based Engineering language for archi-
tectural analysis and specification of real-time embedded systems with
stringent performance requirements (e.g. fault-tolerance, security, safety-
critical etc.). However, core AADL lacks of a mechanism for modeling
continuous evolution of physical processes which are controlled by digital
controllers. In our previous work, we have introduced Hybrid Annex—
an AADL extension for continuous behavior and cyber-physical inter-
action modeling based on Hybrid Communicating Sequential Processes
(HCSP). In this paper, we present formal semantics of the synchronous
subset of AADL models annotated with Hybrid Annex specifications
using HCSP. The semantics are then used to verify correctness of AADL
models (with Hybrid Annex specifications) using an in-house developed
theorem prover — Hybrid Hoare Logic (HHL) prover.

Keywords: AADL · Formal semantics · HCSP · Hybrid Annex · Hybrid
systems

1 Introduction

Embedded Systems (ESs) make use of computer units to control physical processes
so that the behavior of the controlled processes meets expected requirements.
They have become ubiquitous in our daily life, e.g. automotive, aerospace, con-
sumer electronics, communications, medical, manufacturing and so on. ESs are
used to carry out highly complex and often critical functions such as to moni-
tor and control industrial plants, complex transportation equipment, communi-
cation infrastructure, etc. The development process of ESs is widely recognized
as a highly complex and challenging task. A thorough validation and verification
activity is necessary to enhance the quality of ESs and, in particular, to fulfill
the quality criteria mandated by the relevant standards engineers. How to design
correct embedded systems is a grand challenge for computer science and control
theory. Model-Based Engineering (MBE) is considered as an effective way of
c© Springer International Publishing Switzerland 2015
I. Lanese and E. Madelaine (Eds.): FACS 2014, LNCS 8997, pp. 228–247, 2015.
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developing correct complex ESs, and has been successfully applied in industry
[7,9]. In the framework of MBE, a model of the system to be developed is defined
at the beginning; then extensive analysis and verification are conducted based on
the model so that errors can be detected and corrected at early stages of design of
the system. Afterwards, model transformation techniques are applied to transform
abstract formal models into more concrete models, even into source code. Hybrid
Systems (HSs) are mathematical models with precise mathematical semantics for
ESs, wherein continuous physical dynamics are combined with discrete transi-
tions. Based on HSs, rigorous analysis and verification of ESs become feasible.

Architectural Analysis & Design Language (AADL) is an SAE International
standard and is an architecture description language for ESs [13]. It is based on
architectural-centric MBE approach. It has been introduced to cope with embed-
ded system design challenges by minimizing model inconsistency, decreasing
mismatched assumptions of different stakeholders and supporting dependability
predictions through analyzable architecture development. However, core AADL
only provides support for structural modeling of embedded computing units and
nothing related to detailed behavior of the software and physical processes which
are controlled by the software can be modeled. So, as a result not only the relia-
bility prediction, performance analysis and verification of AADL models are not
precise enough, but also the cost is very high. To address these issues, Behavior
Annex (BA) and BLESS annex are introduced for more precise behavior model-
ing using state transition systems with guards and actions [12,14]. Both BA and
BLESS annex are intended to model discrete behavior of a control system. How-
ever, in practice, it is quite common that a control system contains continuous
behavior, in particular, the behavior of controlled physical processes. In [17], we
have introduced a lightweight language extension to AADL called the Hybrid
Annex (HA) for continuous behavior and cyber-physical interaction modeling.

In addition, formal semantics are especially important for safety-critical sys-
tems and are the basis for formal analysis and verification of these systems.
Although considerable amount of literature is available on formalization of AADL
for performance and dependability analysis but the majority of the literature is
focused on discrete behavior (behavior of the computing units) only and formal-
ization of the continuous part of hybrid systems and the cyber-physical interac-
tion (communication between the computing unit and the physical processes) is
not addressed at all.

Hence, in order to use AADL for modeling and verification of hybrid system,
it is required not only to define the formal semantics of the core language but
also define the formal semantics of the dedicated annex (HA) used for continuous
behavior modeling, in such a language which is designed to model and formally
verify the HSs.

1.1 A Running Example

Throughout this paper, we use the Water Level Control System (WLCS) [8] as
a running example to explain the motivation, to illustrate how to apply the HA
extension to model HSs, as well as the use of proposed formal semantics for
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Fig. 1. WLCS diagram - a classical hybrid system

verification. As depicted in Fig. 1, WLCS consists of two main parts, the water
tank and the controller. Continuous change of water level h in the water tank is
described by {

ḣ = v · Qmax − π · r2 ·
√

2 · g · h
v̇ = 0 v ∈ {0, 1}

where Qmax = 0.007m3s−1, π = 3.14, r = 0.0254m, and g = 9.8ms−2. v ·Qmax is
the water inflow Qin into the tank, which takes the value 0 or Qmax depending on
if the valve v is close or open. π ·r2 ·

√
2 · g · h stands for water outflow Qout, which

follows Torricelli’s law.1 S, v, and A represent the sensor, inflow valve and the
actuator used to control inflow valve (v) respectively. The main goal of WLCS
is to maintain water level h between a specified limit which is 0.30m to 0.60m,
by controlling the inflow valve v to be close or open. The control command is
computed by the controller based on the water level observed by sensor S and
the predefined control strategy. The command is then sent to actuator A to
control the inflow valve v appropriately.

Core AADL with HA can be used to model the structural architecture of
the controller, continuous behavior of the water tank and the cyber-physical
interaction between them. Assurance of the correct system behavior and the
certification of real-time and dependability related properties demand a system
level formal verification approach which is not addressed at all in the existing
literature on formalization of AADL. In this paper, formal semantics for AADL
models with HA specifications are proposed to fill this gap.

Contributions: In this paper, we propose formal semantics of AADL execution
model with synchronous communication and HA using HCSP. The contribution
of the paper is twofold. Firstly, we illustrate the use of HA to model the contin-
uous behavior and the communication between the controller and the physical
process. Continuous system behavior specified using HA can easily be attached
to predefined AADL components. Secondly, formal semantics of AADL execu-
tion model and synchronous communication mechanism based on a language
(HCSP) suitable for hybrid systems modeling and analysis is presented. Formal

1 Normally, Qout = π · r2 · √
2 · g · h · u. But for simplicity, we take u = 1 here.
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semantics are then used to verify correctness of AADL model annotated with
HA specifications using an in-house developed theorem prover known as HHL
prover [16,19].

Outline: Section 2 introduces HCSP, HHL and AADL with its execution model
and synchronous communication semantics. Section 3 presents the continuous
behavior and cyber-physical interaction modeling using HA and Sect. 4 discusses
the formal semantics of AADL execution model along with synchronous com-
munication. Section 5 illustrates verification of the case study using HHL prover.
Section 6 presents a summary of the related work. Section 7 concludes this paper
and discusses the future work.

2 Preliminaries

This section presents an overview of HCSP by highlighting primitive language
constructs. The specification logic HHL for reasoning about HCSP behavior
is then introduced briefly. Basic AADL notions and notations are also pre-
sented with emphases on execution model and synchronous data communication
semantics.

2.1 Overview of HCSP

HCSP is an extension of Hoare’s Communicating Sequential Processes (CSP)
for modeling HSs [5,8]. In HCSP, differential equations are introduced to model
continuous evolution of the physical processes along with interrupts, so both
discrete and continuous behaviors are still modeled as processes. A hybrid system
in HCSP is a parallel composition of networked sequential processes interacting
through dedicated channels, or a repetition of a sub-system. Note that processes
in parallel can only interact through communication and no shared variables
are allowed. The set of variables is denoted by V = {x, y, z, ...} and the set
of channels is denoted by Σ = {ch1, ch2, ch3, ...}. The processes of HCSP are
constructed as follows:

P ::= skip | x := e | wait d | ch?x | ch!e | P;Q | B → P | P � Q | []i∈I(chi∗ → Qi) | P∗

| 〈F(ṡ, s) = 0&B〉 | 〈F(ṡ, s) = 0&B〉 �d Q| 〈F(ṡ, s) = 0&B〉 � []i∈I(chi∗ → Qi)

S ::= P | S∗ | S‖S

Here P,Q, and Qi represent sequential processes, whereas S stands for a
(sub)system; ch, chi ∈ Σ are communication channels, while chi∗ is a communi-
cation event which can be either an input event ch?x or an output event ch!e; B
and e are boolean and arithmetic expressions respectively, and d is a non-negative
real constant.

Process skip terminates immediately without updating variables, and process
x := e assigns the value of expression e to x and then terminates. Process wait d
keeps idle for d time units without any change to respective variables. Interaction
between processes is based on two types of communication events: ch!e sends the
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value of e along channel ch and ch?x assigns the value received along channel ch
to variable x. Communication takes place when both the source process and the
destination process are ready.

HCSP supports both sequential and concurrent composition. A sequentially
composed process P;Q behaves as P first, and if it terminates, as Q afterwards.
The alternative process B → P behaves as P only if B is true and terminates oth-
erwise. Internal choice between processes P and Q, denoted as P � Q is resolved
by the process itself. Communication controlled external choice []i∈I(chi∗ → Qi)
specifies that as soon as one of the communications chi∗ takes place, the process
starts behaving as respective process Qi. The repetition P∗ executes P for an
arbitrary finite number of times, and the choice of the number of times is non-
deterministic.

Continuous evolution is specified as 〈F(ṡ, s) = 0&B〉. Real variables s evolve
continuously according to differential equations F as long as the boolean expres-
sion B is true. B defines the domain of s. Interruption of continuous evolution due
to B (as soon as it becomes false) is known as Boundary Interrupt. Continuous
evolution can also be preempted due to the following interrupts:

– Timeout Interrupt : 〈F(ṡ, s) = 0&B〉 �d Q behaves like 〈F(ṡ, s) = 0&B〉, if
the continuous evolution terminates before d time units. Otherwise, after d
time units of evolution according to F , it moves on to execute Q.

– Communication Interrupt : 〈F(ṡ, s) = 0&B〉 � []i∈I(chi∗ → Qi) behaves like
〈F(ṡ, s) = 0&B〉, except that the continuous evolution is preempted whenever
one of the communications chi∗ takes place, which is followed by respective
Qi.

Finally, S defines a HCSP system on the top level. A parallel composition
S1‖S2 behaves as if S1 and S2 run independently except that they need to syn-
chronize along the common communication channels.

2.2 Overview of Hybrid Hoare Logic (HHL)

In [10], we have extended Hoare Logic to hybrid systems, by adding history for-
mulas to describe continuous properties that hold throughout the whole execu-
tion of HCSP processes. The history formulas are defined by Duration Calculus
(DC), which is a real arithmetic extension of Interval Temporal Logic (ITL)
for specifying and reasoning about real-time systems. The mainly used asser-
tion 
S�, where S is a state formula, means that S holds everywhere inside the
considered interval.

In HHL, the specification for a sequential process P is of the form {Pre}P
{Post;HF}, where Pre,Post represent pre-/post-conditions, expressed by first-
order logic, to specify properties of variables held at starting and termination
of the execution of P, and HF is a history formula, expressed by DC, to record
the execution history of P, including real-time and continuous properties. The
specification for a parallel process is then defined by assigning to each sequential
component the respective pre-/post-conditions and history formula, that is

{Pre1,Pre2}P1‖P2 {Post1,Post2;HF1,HF2}
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In HHL, each HCSP construct is axiomatized by a set of axioms and infer-
ence rules. Based on the inference system, we have implemented an interactive
theorem prover for HHL in proof assistant Isabelle/HOL. The tool can be down-
loaded from lcs.ios.ac.cn/∼znj/HHLProver. For further details on HCSP, HHL
and HHL prover, we refer to [16].

The WLCS can be modeled, using HCSP, as a parallel composition of the
water tank and the controller, whose specification is given as follows:

{Pre1,Pre2} Watertank‖Controller{0.30 ≤ h ≤ 0.60,True; 
0.30 ≤ h ≤ 0.60�,True}.

As shown by the postcondition and history formula corresponding to Watertank,
the water level h will always be kept in the range [0.30, 0.60]. The details for the
modeling and verification of the WLCS system are described in the rest of the
paper.

2.3 Overview of AADL

AADL contains components for both the application software, and the execution
hardware of an embedded system, and supports textual, graphical and XML
Metadata Interchange (XMI) specification formats. Components with type and
implementation classifiers are instantiated and connected together to structure
the system architecture. AADL core language constructs are categorized into
application software, execution platform and composite components. The system
component represents a composite entity containing software, execution platform
or system components.

Components and Connections. Execution platform category represents com-
putation and communication resources including processor, memory, bus and
device components. A processor component represents the hardware and soft-
ware responsible for thread scheduling and execution. Properties can be assigned
to a processor component to specify scheduling policies, high-level operating
system services and communication protocols. A memory component is used to
represent storage entities for data and code. A device component can model a
physical entity in the external environment: a plant or the software simulation of
the plant. It can also be used as an interactive component like sensor or actuator.
A bus component represents the physical connections among execution platform
components.

Application software category consists of process, data, subprogram, thread,
and thread group components. A process component represents the protected
address space, which is bound to a memory component. A data component can
be used to abstract data type, local data or parameter of a subprogram. A sub-
program models the executable code which is called, with parameters, by thread
and other subprograms. Thread is the only schedulable component with execu-
tion semantics to model system execution behavior. A thread represents sequen-
tial flow of the execution and the associated semantic automation describes life
cycle of the thread.

A component type declaration defines interface elements and may contain
Features. Features contain communication ports. AADL supports data, event
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Fig. 2. Thread execution state machine

and event data ports to transmit and receive data, control, and control and
data respectively. Port communication is typed and directional. An in port
receives data/control and an out port sends data/control while an in out port
can send and receive data/control. Communication is realized through connec-
tions between ports, parameters and access to shared data.

This paper is focused on formalizing execution model semantics of AADL
with synchronous communication in which threads are communicating through
data ports. Due to the page limitation, these two aspects are briefly discussed
in the rest of this section. We refer to AADL standard document AS5506-B [13]
for further details.

Execution Model. AADL structure model (hierarchical composition of the
components) does not contain explicit information about the execution model,
instead it is specified by the execution control automaton and properties at model
and project level. AADL execution model deals with execution control automa-
ton, thread dispatch strategy, scheduling and execution and fault handling. Our
focus in this paper is on the execution model and (synchronous) communication
formalism and the formalization of thread fault handling and modal semantics
will be subject of a later paper.

Thread execution life cycle, as depicted in Fig. 2 is same for every thread.
Thread execution life cycle consists of two types of states: action states and
rest states. Threads in action states are forced to execute associated program
code while in rest states threads do not perform any execution. Initialize, Acti-
vate, Deactivate, Compute, and Finalize are the action states while Halted,
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AwaitMode, and AwaitDispatch are the rest states. Active states can have
properties specifying the source code entry points, computation time and
deadlines.

Thread in AwaitDispatch state is active in current operational mode (AADL
supports more than one operational modes) and is waiting for dispatch. Thread
dispatch condition is type dependant. A Periodic thread is dispatched after a
fixed time interval specified in its Period property. An aperiodic thread, if its
predefined dispatch port is not connected, is dispatched each time it receives an
event, otherwise it is dispatched each time it receives an event on dispatch port.

A thread is initialized after the respective process is loaded into memory
and is directly moved to AwaitDispatch state if it is active in current process
mode otherwise it is moved to AwaitMode state. Thread dispatch is controlled
by Enabled(t) function and Wait For Dispatch invariant in AwaitDispatch state.
The clock variable t is reset each time an active state is entered, and the timing
assertion assert t ≤ (state Deadline+Recover Deadline) is placed in the active
state to specify deadline violation. If assertion in any active state is violated,
thread is moved to the Halted state.

Synchronous Communication. Inter-thread communication in synchronous
data flow communication pattern can either be immediate or delayed depending
on data port connections. For an immediate connection, data is transmitted
whenever the source thread completes its execution and meanwhile destination
thread is suspended. The value received at destination is the value produced at
the latest completion of source thread. For immediate connection, threads must
share a common dispatch. For a delayed connection the output is transmitted
at the deadline of the source thread so it is available to the destination thread
at the next dispatch. The value received at destination is the value produced at
the latest deadline of the source thread. For delayed connection, threads do not
need to share a common dispatch.

2.4 WLCS Discrete Behavior Modeling

Depicted using the AADL graphical notations, Fig. 3 shows the architecture of
the controller of the running example (WLCS), while the detailed behavior of the
water tank is presented in Listing 1 and is discussed in the next section. The con-
tinuous state of the water tank, i.e. the water level h, is measured by a sensor
and the output is sent to the controller process Wlcs.impl through connection C1,
which contains two periodic threads get data and com cmd. Threads are con-
nected through an immediate connection Conn. Thread get data samples sen-
sor data through its in data port s along connection C2 on every dispatch and
sends computed data to com cmd thread through out data port w along connec-
tion Conn. Control command according to control laws, is computed by com cmd
thread and is sent to actuator through out data port c using connectionsC3 andC4.

In relation to execution model and synchronous communication mechanisms
discussed earlier, threads get data and com cmd share same execution life cycle
presented in Fig. 2 and the immediate connection Conn between them is as dis-
cussed in Sect. 2.3. Formal semantics of this discrete behavior of the controller
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Fig. 3. AADL model of WLCS using graphical notations

component (consisting of threads and communication between them) are pre-
sented in Sect. 4 in detail.

3 Hybrid Annex

Hybrid Annex (HA) has been proposed to equip AADL for hybrid system mod-
eling and analysis [17]. An HA specification can be attached to either the imple-
mentation classifier of an AADL device component or to an abstract component
to model the continuous behavior of the interactive components (i.e. sensors and
actuators) or to model the behavior of a physical process respectively. An HA
specification may contain six sections: assert, invariant, variables, constants,
channels, and behavior to specify predicates, predicates that must hold through-
out continuous behavior model, local variables, constants, communication chan-
nels and continuous behavior respectively.

Listing 1 presents the complete textual AADL model with HA specifications
of the water tank of WLCS–the running example. The type classifier declares
the interface of the WaterTank component with two data ports. The out data
port wl is used to send the current water level, while the in data port cc is used
to receive the control command. The WaterTank is connected to the sensor and
actuator using ports wl and cc with appropriate connections. The WaterLevel

and ValveStatus refer to AADL Data Model Annex components in package WLCS

that specifies the details of the range and measuring units of the data types used
in this model.

The implementation of the WaterTank component in Listing 1 is specified
using three HA sections: variables, constants, and behavior. Below we explain
each of these sections in the context of the running example. The formal syntax,
grammar and details on each section of HA are presented in [17].

3.1 Variables Section

Local variables in the scope of current HA subclause are declared in variables

section. A variable may either be discrete or continuous depending on the com-
ponent to which HA specification is attached and must have a data type specified
by AADL component classifier reference. In Listing 1, the variables section con-
tains t, v, and h to specify the current time, status of the inflow valve and the
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Listing 1. AADL WaterTank Component Specification using Hybrid Annex
� �

abstract WaterTank

features

cc: in data port WLCS::ValveStatus;

wl: out data port WLCS::WaterLevel;

end WaterTank;

abstract implementation WaterTank.impl

annex hybrid {**

variables

t : WLCS::Time -- value of current time

v : WLCS::ValveStatus -- inflow valve status

h : WLCS::WaterLevel -- current water level

constants

Qmax = 0.007 cmps -- maximum water inflow

g = 9.8 mpss -- gravitational force

pi = 3.14

r = 0.0254 m -- radius of outflow valve

u = 1 -- outflow valve status , permanently open

period = 0.01 sec -- sampling period

behavior

Plant ::= t := 0 &

’DT 1 h =(v*Qmax)-(pi*(r^2)*1.414*(g^0.5)*(h^0.5)*u)’ &

’DT 1 v = 0′ <(t <period)> [[> wl!(h)]]> GetCmd

GetCmd ::= cc?(v)

WaterTank ::= repeat (Plant)

**};

end WaterTank.impl;
� �

current water level. Variable v can take value either 0 or 1 to represent the close
and open status of the inflow valve.

3.2 Constants Section

In the standard way, constants section is used to define constants that are used
in modeling continuous behavior of the physical process. Constants are only ini-
tialized once at declaration by either integer or real value, along with appropriate
measuring unit specification.

The constants section in Listing 1 contains six constants. Constant Qmax with
value 0.007 specifies the maximum water inflow through valve v. Measuring unit
of the water inflow m3s−1 is specified as cmps. Constant g is the gravitational
force with 9.8 and measuring unit ms−2 specified as mpss. Constants pi and u

represent the value of π and status of the outflow valve without any measuring
unit specification. The constant period with value 0.01 and measuring unit sec-
onds specified as sec represents the sampling period of the controller. Radius of
the outflow valve r takes value 0.0254 and is measured in meters specified as m.
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3.3 Behavior Section

The behavior section in HA contains parallel composition of networked sequen-
tial processes to specify the continuous behavior and cyber-physical interaction
between AADL components and the physical processes. Each behavior speci-
fication is represented as a HCSP process explained in Sect. 2.1. Specification
of a continuous evolution consists of differential expression along with boolean
conditions followed by one or more communication events denoting interrupts.
Differential expression contains differential equations specified using the key-
word DE followed by the order of the differential equation and the dependant
and independent variables. Keeping in view the extensive use of time derivation
in real-time modeling, separate notation is defined for time derivation specifi-
cation consisting of the keyword DT followed by the order and the dependant
variable.

The behavior section in Listing 1 shows HA specification for the water tank
of the running example. Continuous evolution of water level h is modeled using
time derivation ‘DT 1 h = (v*Qmax)-(pi*(r^2)*1.414*(g^0.5)*(h^0.5)*u)’ with
boundary condition t < period as process Plant. Here, (v*Qmax) is the total water
inflow if the value of v is 1 and (pi*(r^2)*1.414*(g^0.5)*(h^0.5)*u)’ is the total
water outflow at a particular time t. ‘DT 1 v = 0’ represents the rate of change of
variable v with respect to time, which is 0 in this case. The continuous evolution
of the water level h is preempted by the communication event on out data port
wl. This communication interrupt is modeled using [[> wl!(h) ]]> followed by
the process GetCmd. Process GetCmd contains the communication event cc?(v)

used to get the control command from the controller on port cc. The repeating
continuous behavior of the water tank is modeled by the WaterTank process where
every iteration starts by resetting the time clock t:=0.

HA is expressive enough to model physical processes with complex continuous
dynamics attached to AADL ports and mapped with AADL connections.2

4 Formal Semantics

4.1 Formalization of Synchronous Subset of AADL

Algorithm 1 lists the main steps followed for defining formal semantics of the
AADL execution model with synchronous communications. Here, Tr is a set of
threads in an AADL model, and for every tr ∈ Tr, processes ACTtr, DIStr, and
COMtr are generated to specify activation, dispatch and computation behavior
of the thread. Based on specific properties, associated connections and timing
constraints, each active thread corresponding to state machine shown in Fig. 2
is translated into one HCSP process.
2 The details of the AADL textual model for the Controller component and all proof

files (discussed in Sect. 5) related to the running example are available at https://
github.com/ehah/FACS2014.

https://github.com/ehah/FACS2014
https://github.com/ehah/FACS2014
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Algorithm 1. Translation of an AADL model into HCSP processes
Require: AADL instance model
Ensure: Generate HCSP processes for periodic threads and connections
1: for all tr ∈ Tr do
2: generate an activation process ACTtr (Sect. 4.1)
3: generate a dispatch process DIStr (Sect. 4.2)
4: generate a compute process COMtr (Sect. 4.3)
5: end for
6: for all ctr ∈ CONtr do
7: if tr is source in ctr then
8: update COMtr for ctr (Sect. 4.4)
9: else

10: update DIStr for ctr (Sect. 4.5)
11: end if
12: end for

Separate activation and dispatch processes are defined for each thread to
specify the activation and dispatch behavior of the thread. AADL modal seman-
tics is not considered here, so every thread has only one operational mode. Fol-
lowing parallel composition of ACT, DIS and COM processes represents the
HCSP process corresponding to an AADL periodic thread.

ThrdName(period, deadline, bcet,wcet) � ACT∗||DIS∗||COM∗

Here, period, deadline, bcet, and wcet are process parameters to represent Period,
Deadline, minimum and maximum Compute Execution Time properties respec-
tively. Processes ACT, DIS and COM have repeating behavior and can only
communicate through common channels.

Process ACT is used to specify the behavior of a thread which had already
been initialized, activated and is ready for dispatch. Behavior of ACT process, as
shown below, is quite simple. It only signalizes process DIS via output communi-
cation event complete act!, which shows the execution completion of source code
contained in a file associated with Activate Entrypoint Source Text property of
a thread.

ACT � complete act!

Below we explain dispatch (DIS) and compute (COM) processes in detail.

4.2 Dispatch Process

A periodic thread is dispatched after every fixed time interval specified in its
Period property. The dispatch process for a periodic thread is specified as:

DIS � complete act?;wait period; dispatch!dis;GetData(data); trans!data;
complete comp?



240 E. Ahmad et al.

Fig. 4. Thread execution and actions in compute state

At the start, process DIS is ready to receive activation completion event from
process ACT. Then it keeps idle for the period of the thread, after which it
is ready to send dispatch event (dis) over channel dispatch. Thread execution
completion event is received across channel complete comp and after which the
process is repeated again. Periodic thread inputs value from in data ports at
dispatch time and outputs values to out data ports at completion time. Process
GetData shows getting data from all in data ports at dispatch time. The data
is then sent along channel trans to compute process (COM ) which is explained
below.

4.3 Compute Process

Compute process itself is a parallel composition of Ready, Running, and
AwaitResource processes with clock variables c and t to be initialized at the
start, as depicted in Fig. 4. Continuous evolution of variable t represents the
total amount of time since the dispatch event received from the dispatch process
while the continuous evolution of variable c specifies execution time in the cur-
rent dispatch. Therefore, the clock t is always progressing in all the sub-states
(represented by δt = 1), while c is only progressing in Running sub-state (rep-
resented by δc = 1).

Process COM below specifies behavior of a compute process. After the dis-
patch event, it first receives data x2 along channel trans, then communications
along trik for k = 1, 2, 3 are performed, not only to coordinate the execution order
between the four parallel sub-processes, but also to transmit x2 to processes
Ready, Running, and AwaitResource. The boolean variable isReady indicates
whether the ready state is enabled.

COM � (dispatch?x; trans?x2; tri1!x2; tri2!x2; tri3!x2)
||(tri1?y1; t := 0; isReady := 1; (isReady → Ready)∗)
||(tri2?y2; c := 0;Running∗)||(tri3?y3;AwaitResource∗)
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Thread execution in Compute state (see Fig. 4) is controlled by the sched-
uler modeled using AADL processor component. Detailed specification of the
scheduling policies and protocols is beyond the scope of this paper as we are
not aiming for schedulability analysis. Although, in this paper, we use a simpli-
fied static scheduler with predefined unique thread priorities assigned at design
level, proposed semantics can be enhanced to model dynamic scheduling by
adding a separate process to specify the respective behavior. Whenever the exe-
cuting thread completes its execution or is blocked due to required resources, the
processor is allocated to the highest priority thread in the Ready state (mod-
eled as Ready process). Execution of the thread can only be interrupted due
to required resources blocked by any other thread. This waiting for resource
behavior is specified by AwaitResource process.

Process Ready maintains a continuous variable t to model the deadline of the
thread. Continuous evolution of time t starts once a dispatch event is received
from DIS process on dispatch channel by the parent process COM. After process
Ready receives an event from the scheduler via run channel, indicating that
current thread is ready to run, it then sends current value of time t via resume
channel to process Running. After this communication, it is ready to accept the
new value of t via unblock channel sent by AwaitResouce process. If the new value
of t is equal to the deadline, the ready state is disabled, as a result the thread
will need re-initialization and re-activation. The Ready process is specified as
below:

Ready �〈ṫ = 1&t < deadline〉 � (run? → (resume!t; unblock?t));
t = deadline → isReady := 0

Process Running maintains variable ct to record current time t sent by process
Ready via resume channel, and variable c (defined in COM process) to record
execution time. The boundary condition for continuous evolution is to check if c
is less than or equal to WCET and ct is less than or equal to the deadline. Contin-
uous evolution can be interrupted by an event from the scheduler along res busy
channel, indicating that the shared resource is blocked, then the Running process
will send the current value of ct along block channel to AwaitResource. Con-
tinuous evolution can also be interrupted by an event to the scheduler along
complete exec channel, indicating the execution completion of the source code
specified in a file associated with Compute Entrypoint Source Text property of
the thread in the dispatch. The Running process will then signal the successful
execution completion along complete comp! to process DIS. To ensure determin-
ism, it is checked that the thread must execute at least till BCET otherwise it has
to wait for (bcet−c) time units. Process SetData(xr) represents the computation
of new values xr based on the received data y2 (as shown in the parent COM
process) and then sending new values to the out data ports. As an illustration,
it is instantiated and explained in [18] in detail for our running example. The
Running process is specified as below:
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Running � resume?ct; 〈ċ = 1, ċt = 1&c ≤ wcet ∧ ct ≤ deadline〉�
((res busy? → block!ct)[](complete exec! → (SetData(xr);
complete comp! → c < bcet → wait (bcet − c))))

When an executing thread accesses a shared data component locked by any
other thread, it is blocked. Such waiting behavior is specified by AwaitResource
process. It receives current time via block channel from process Running and
stores it in variable act. After it receives an event via res free channel from the
scheduler, indicating that the required resource is available, the current value of
act is sent via unblock channel to Ready process. Below is the specification of
AwaitResource process.

AwaitResource � block?act; 〈 ˙act = 1&act ≤ deadline 〉 � (res free? → unblock!act);

The lock/un-clock mechanism of shared resources depends on the implemen-
tation strategies and does not affect analysis at architecture level so it is not
discussed here.

4.4 Connection Process

The connection between two threads or between a thread and a device has an
ultimate source and an ultimate destination. Synchronous communication in
AADL is realized through periodic thread with data ports. Based on communi-
cation semantics explained in Sect. 2.3, the behavior of a connection is specified
by

Conntr � StC?xc;CtD!xc.

StC is a communication channel between the source and the connection process
(Conntr in this case). StC?xc shows input communication event ready to occur
when the respective source thread completes its execution and is ready to send
dispatch event, and moreover, receives the data xc from the source state. The
dispatch event together with the data xc is sent across channel CtD to destination
thread to start its execution.

For every connection ctr ∈ CONtr in which thread tr is a source thread, the
Running process is updated based on connection type: immediate or delayed.
In case of immediate connection it sends the complete event on execution com-
pletion together with data xr to connection process Conntr via StC as defined
below.

Runningi �resume?ct; 〈ċ = 1, ċt = 1&c ≤ wcet ∧ ct ≤ deadline〉�
... (SetData(xr); complete comp! →
c < bcet → wait(bcet − c);StC!xr) ...

The behavior of the Running process, in case of a source thread with delayed
connection, is specified below, in which the completion event complete comp!
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together with data xr is sent after the deadline.

Runningd �resume?ct; 〈ċ = 1, ċt = 1&c ≤ wcet ∧ ct ≤ deadline〉 � ...

(ct = deadline → StC! xr; complete comp!)...

For every connection ctr ∈ CONtr in which tr is a destination thread, the
respective DIS process is updated to wait for complete event with the data from
the connection process Conntr via CtD channel. As a result, process DIS does
not need to specify the period of the thread. Instead, after the complete event
with data z is received from channel CtD, the dispatch dis event is sent across
channel dispatch which is received by respective COM process. The behavior of
modified DIS process of a destination thread is specified as follows:

DIS � complete act?;CtD?z; dispatch!dis;GetData(data); trans!data; complete comp?

4.5 WLCS Hybrid System Modeling

The structure of the running example (WLCS) has been simplified to focus
tightly on the elements needed to present a description of hybrid behavior of the
system using plant and the controller while the internal behavior of the sensor
and actuator is not discussed. So, connections C1 and C2 in Fig. 3 are specified
as channel wl and connections C3 and C4 are mapped to channel cc resulted in a
cyber-physical interaction supported by HA. HA uses ports to communicate with
other AADL component and channels for internal process communication. Both
of these communication mechanisms are mapped as channel communications
for verification in terms of HCSP. The hybrid system of the running example
(WLCS as whole), as specified below, is modeled as parallel composition of the
WaterTank and the Controller.

WLCS � Watertank‖Controller
Watertank � (t := 0;Plant)∗

Plant � 〈ḣ = v · Qmax − π · r2 ·
√

2 · g · h, v̇ = 0&t < 0.01〉
�wl! h → cc?v;

Controller � get data‖Conn‖com cmd

Behavior of the WaterTank is specified in Listing 1 and the behavior of
Controller is obtained by applying the translation approach explained in Algo-
rithm 1 to the AADL model of Fig. 3. The process Controller is composed of
three subprocesses: get data, Conn, and com cmd executing in parallel. These
processes specify behavior of thread get data, immediate connection Conn and
thread com cmd respectively.

The complete HCSP model of the running example, along with parameters
(obtained from respective AADL properties) and details of the subprocesses
get data, Conn, and com cmd, are presented in [18]. As HA is based on HCSP so
each notation of HA automatically corresponds to a respective HCSP notation.
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5 Verification Using HHL Prover

In this section, we show how to use HHL prover to formally verify an AADL
model with HA specification through the running example WLCS.

The main goal of WLCS is to maintain water level h between a specified
limit which is 0.30m to 0.60m, by controlling the inflow valve v to be close or
open. The control algorithm of the system is designed as follows: every 0.01 s,
the controller samples the value of h, and when h is greater than 0.59m, it
assigns value 0 to v, while when h is less than 0.31m, v assigned value 1. We can
investigate the safety of the WLCS system from two aspects:

– it is deadlock-free, under the assumption that the scheduler is well-behaved
– the property 0.30 ≤ h ≤ 0.60 always holds for the WLCS system

The deadlock-freedom can be checked by some existing CSP checkers, like the
known CSP tool FDR. Here we focus on the verification of the second property,
which is mostly related to the hybrid behavior of the system. Thus, we abstract
away various communications for synchronizing AADL components, and obtain
a simplified controller for the WLCS system with the same control behavior as
the Controller in the translated HCSP model:

Controller = (wait period; wl?x; x ≤ 0.31 → y := 1; x ≥ 0.59 → y := 0; cc!y)∗

where period is 0.01 s as mentioned above. The resulting model for the WLCS
system covers the continuous plant, the controller containing the corresponding
control algorithm, and the interactions between them.

By applying the HHL prover, we have proved the following specification for
the WLCS system:

{t = 0 ∧ h = 0.31 ∧ v = 1, y = 0 ∨ y = 1} WLCS

{0.30 ≤ h ≤ 0.60, T rue; 
0.30 ≤ h ≤ 0.60�, T rue}

indicating that from the initial state when t is 0 s, h is 0.31m and v is open,
throughout the execution of WLCS, the safety requirement 0.30 ≤ h ≤ 0.60
always holds for the water tank.

6 Related Work

Formalization of AADL has been explored a lot. Here we summerize some of the
important work. Yang et al [15] have formalized BA by translating it into Time
Abstract State Machine (TASM). Process algebra interpretation of AADL mod-
els is presented in [11]. They have translated AADL models to process algebra
ACSR and Real-Time Calculus (RTC) for performance evaluation using VERSA
and RTC Toolbox respectively. COMPASS toolset used a variant of AADL called
SLIM and SuSMv model checker for safety, dependability and performance eval-
uation [4]. In [6], a tool called AADL2BIP based on BIP (Behavior Interaction
Priority) for safety property verification has been introduced.
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Considerable amount of efforts are made to formalize AADL, but most of
them are focused on control systems with discrete behavior. To our best knowl-
edge, formalization of the continuous time modeling based on a dedicated annex
has not been explored before. The proposed formal semantics based on language
purely designed for hybrid system is novel and the first step to enhance AADL
modeling and formal analysis capabilities for systems with both discrete and
continuous dynamics.

There have been a number of modeling languages proposed for formaliz-
ing hybrid systems. The most popular is hybrid automata [1,2], with real-time
temporal logics interpreted on their behaviors as specification languages. How-
ever, analogous to state machines, hybrid automata provides little support for
structured description and composition. As an alternative approach, Platzer [3]
proposed hybrid programs and the related differential dynamic logic for the
compositional modeling and deductive verification of hybrid systems. However,
in his work, parallelism and communication were not well handled, that occur
ubiquitously in AADL models.

Based on HA for continuous behavior modeling and AADL core for discrete
modeling, our approach of defining formal semantics for verification is scalable
and can be used to verify complex HSs.

7 Conclusion and Future Work

The AADL with Hybrid Annex can model continuous behavior of the physical
process to be monitored and controlled by the control system. Formal semantics,
based on HCSP, of synchronous subset of AADL annotated with Hybrid Annex
are presented to furnish AADL for modeling and verification of hybrid systems.
The application of the Hybrid Annex for modeling and formal semantics for veri-
fication is illustrated through a benchmark of hybrid system, i.e., the example of
water level control system. AADL model is verified using an in-house developed
theorem prover called HHL prover. Being the first step towards formalization
of continuous behavior and cyber-physical interaction modeling and verification
using AADL, this study has opened new horizon for research in AADL.

Our future work includes enhancement of the current approach to cover asyn-
chronous subset of AADL which is based on aperiodic thread with event-driven
communication models and the development of a plug-in to Open-Source AADL
Tool Environment (OSATE), the development environment for AADL modeling,
for automatic translation of AADL models (with Hybrid Annex specifications)
to HCSP processes and verification using HHL prover.
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Abstract. One of the challenges that engineers face, during the devel-
opment process of safety-critical systems, is the verification of safety
application models before implementation. Formalization is important
in order to verify that the design meets the specified safety require-
ments. In this paper, we formally describe the set of transformation rules,
which are defined for the automatic transformation of safety application
source models to timed automata target models. The source models are
based on our domain-specific component model, named SARA, dedicated
to SAfety-critical RAilway control applications. The target models are
then used for the observer-based verification of safety requirements. This
method provides an intuitive way of expressing system properties with-
out requiring a significant knowledge of higher order logic and theorem
proving, as required in most of existing approaches. An experimentation
over a chosen benchmark at rail-road crossing protection application is
shown to highlight the proposed approach.

Keywords: Software component · Timed automata · Transformation ·
Verification · Safety-critical applications

1 Introduction

Safety-critical systems must conform to safety standards defined by domain stan-
dardizations, such as the European standard of software for railway control and
protection systems, EN 50128 [8]. This is why one of the challenges that engineers
face, during the development process of safety-critical systems, is the verifica-
tion of safety application models before implementation. Over the last few years,
the complexity of safety applications has increased. Then the modeling and the
formalization of safety applications is becoming a very difficult task.

Component-Based Software Engineering (CBSE) is a possible software mod-
eling solution. It is an established approach for modeling a complex software and
for facilitating integration by a third party [20]. There are several research works
that facilitate component-based development in general or in domain-specific
c© Springer International Publishing Switzerland 2015
I. Lanese and E. Madelaine (Eds.): FACS 2014, LNCS 8997, pp. 248–266, 2015.
DOI: 10.1007/978-3-319-15317-9 16
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purposes [2,5,10,21]. In this paper, we use our domain-specific component model,
named SARA, dedicated to the development of SAfety-critical RAilway control
applications [17]. The objective of our approach consists in modeling and enforc-
ing dependability requirements during the development process of safety-critical
applications in order to facilitate their certification process.

On the other hand, design models have to be mapped to formal models for
automatic verification. In this work, we focus on verification approaches that
take advantage of the flexibility of reliable component models and analysis facil-
ities offered by formal models in order to satisfy timing requirements. There
are several research works that propose the transformation of informal or semi-
formal models into formal models, which are supported by available verification
tools [1,4,15]. For example, for the safety of rail-road protection systems, Mekki
et al. use the model-driven architecture approach to systematically transform
the UML state machine into the Timed Automata (TA) in order to validate
some temporal requirements [15]. In this approach, the three-tier approach for
the composition of pre-verified components is not explicitly considered. Based on
pre-defined formal models of source and target models, Soliman et al. transform
the function block diagram to the Uppaal timed automata [19]. In the same way,
Bhatti et al. suggest an approach for the verification of IEC 61499 function block
applications by using the observer-based verification [4].

In this paper, we focus on the transformation phase from our SARA model to
the TA model, which is one of the most popular models adapted for the verifica-
tion of timing properties [3]. The transformation algorithm consists of transfor-
mation rules. Both the source and the target domain models have been formally
defined. Then, these formal definitions are used for the definition of transforma-
tion rules. The target models and the timing requirement observers are next used
for the observer-based verification of safety applications. This method provides
an intuitive way of expressing system properties without requiring a significant
knowledge of higher order logic and theorem proving, as required in most of the
existing approaches [4]. Indeed, users can use predefined observer patterns or
can enhance them for their verification tasks.

The remainder of this paper is organized as follows. In Sect. 2, we motivate
our approach by an example of rail-road crossing protection system. In Sect. 3,
we give an overview of the suggested process of modeling and verification. In
Sect. 4, we introduce the formal definitions of the SARA component model and
the formal definitions in terms of the TA formalism. Then, based on these def-
initions, the transformation rules are defined. In Sect. 5, based on a use case of
our motivating example, the observer patterns of some safety requirements are
presented. These observer models are synchronized with the use case model to
do the verification. Finally, we discuss related works in Sect. 6 before concluding
and pointing out future directions of our research in Sect. 7.

2 Motivating Example

Our approach is motivated by using a rail-road intersection protection sys-
tem. Figure 1 presents an implementation of a rail-road level crossing control
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application by using software components. Note that, in this section, we focus
on its global description. The elements, component types and component con-
nections types will be detailed in Sect. 4.1. The component Sensor embedded in
the train reads information from track sensors to detect an approaching and an
exiting of trains in the monitored intersection. This information is translated
into a sequence of events appr and exit depending on the distance dist of trains
from the intersection. The intersection gate is operated through the Gate com-
ponent which closes or opens the gate. The Gate component responds to events
by moving barriers up or down. The component Controller acts as a mediator
between the other two components. It receives events from the sensor component
and decides to open or not the gate to road traffic.

Fig. 1. The example of SARA components

For example, when the approach signal appr is received (respectively exit),
the component instance Controller Inst 1 sends immediately a close signal
(respectively open) to the gate instance Gate Inst 1. In general, the behavior of
controller instance depends on operation rules, i.e., in some operation scenarios.
In fact, railway level crossing behavior depends generally on the national opera-
tion rules [22]. But in most European countries, the automatic protection system
gives absolute or relative priority to railway traffic, while preventing road users
from crossing whenever a train is approaching [15]. In this work, we use an
adapted use case, which is presented in detail in Sect. 5.

It is possible that the interaction of components in Fig. 1 results in the vio-
lation of system safety requirements specification, such as:

Requirement 1: “the gate must be down whenever a train is inside the rail-road
crossing section” (adapted from [4]);
Requirement 2: “when the gate is opened to road traffic, it must stay open
at least Tmin time units, where Tmin represents the minimum desired period of
time separating two successive closing cycles of gate” (adapted from [15]);
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Requirement 3: “once closed and when there is no train approaching mean-
while, the gate must be kept closed at least (Tbegin) and at most (Tend), where
Tbegin and Tend are the time limits prescribed” (adapted from [15]).

The above application architecture and these safety requirements under verifi-
cation are used throughout the rest of the paper.

3 Overview

Figure 2 shows the schematic structure of our component-based modeling and
observer-based verification approach. It is composed of two development paths
and one verification tool.

Fig. 2. Our methodology

The path on the left of Fig. 2 represents the system functional development
path. It is responsible for performing the functional requirements. Functional
requirements are modeled according to a component-based paradigm. In this
paper, we use our SARA component model. Then, this model is translated into
the TA formal model. One of the main parts of our method is the transformation
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of the SARA model to the TA model, as detailed in Sect. 4. The result of this
path is a system TA model.

The path on the right of Fig. 2 represents the system safety development path.
It is responsible for monitoring safety requirements. Generally, safety require-
ments depend on operation rules developed with a rule-based paradigm. For
each safety requirement, the appropriate observation pattern is selected from
the generic patterns and then instantiated to produce a corresponding safety
requirement observer, as detailed in Sect. 5. The result of this development path
is a safety TA observer.

In the end, the safety TA observers instantiated are synchronized with the
system TA model obtained to generate a system global TA model. Then, by
using a verification tool (e.g., Uppaal model checkers), the verification task is
reduced to a reachability search of an error or no-error states (KO or OK states)
on the global TA model.

4 From SARA Model to TA Model

In order to define the transformation rules, we first formally define our source
model, i.e., the SARA model and the target model, i.e., the TA model. Then,
based on these two formal models, we define the transformation rules from the
SARA model to the TA model for the verification of safety-critical applications.

4.1 SARA Model

SARA component model is a domain-specific component model dedicated to
SAfety-critical RAilway control applications [17]. Its Application Programming
Interface (API), which is specified with Ravenscar profile of Ada programming
language, is defined to implement the train speed supervision application [16].

According to the SARA model and its Ravenscar API, a component specifi-
cation is defined as an entity which encapsulates data structures with operations
working on these data. The component specification (a) is separated from the
component body (b), from the component instance (c) and from the component
runtime (d) (see Fig. 3). Firstly, each component specification is distinguished by
a unique name (e.g., CompTypeName in line 1 of Fig. 3.(a)). Each component
specification defines the interface of operations for its instances by a set of input
parameters, a set of output parameters or input/output parameters (e.g., see line
10 in Fig. 3.(a)). Operations are annotated with the timing requirement anno-
tations (e.g., see lines 12–15 in Fig. 3.(a)). These annotations can be checked,
as illustrated in Fig. 3.(d) with the Ada language annotations checking tool [9].
However, tasks and synchronization are not currently permitted in this tool.

Secondly, in the body of components, the behavior of component instances is
defined by users (e.g., see lines 5–6 Fig. 3.(b)). Thirdly, SARA application, i.e.,
a top-level component named SARAProg, built from others connected compo-
nents, can only be instantiated when the required resources are present (e.g.,
see lines 17–18 in Fig. 3.(c)), while components can only be instantiated within
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(a)
1 package CompTypeName i s
2 −− Component type :
3 type CompType i s new Sara .Comps←↩

with record
4 Time Var : I n t eg e r ;
5 Train Pos : Float ;
6 end record ;
7 −− o ther data :
8 Tmax : constant I n t eg e r := 15 ;
9 −− opera t i ons :

10 Procedure Op (C : in out ←↩
CompType)

11 −− opera t ion annota t ions :
12 with
13 pre => (C. Time Var = 0) ,
14 Post => (C. Time Var <= Tmax
15 and then C. Train Pos =10.0) ;
16 end CompTypeName ;

(b)
1 package body ←↩

CompTypeName i s
2 Procedure Op (C : in←↩

out CompType) ←↩
i s

3 begin
4 −− user de f ined ←↩

behav ior : e . g . ,
5 C. Time Var := 10 ;
6 C. Train Pos := 1 2 . 0 ;
7 end Op;
8 end CompTypeName ;

(c)
1 with CompTypeName ;
2 Procedure SARAProg −− Top− l e v e l component
3 −− prog input parameters :
4 Tra i n I n i t : I n t eg e r := 0 ;
5 Train X Coord : Float := 0 . 0 ;
6 −− prog component in s t ance s :
7 CompInst : Sara . Prog .CompType :=
8 (Time Var => Tra in In i t ,
9 Train Pos => Train X Coord ) ;

10 −− program component execu t i on :
11 package Defined Task i s new Sara .←↩

Per iod ic Task
12 (Comp Type => Sara . Prog .CompType ,
13 Comp Inst => Sara . Prog . CompInst ,
14 Pr i o r i t y => 1 , Period => 0 .010 ,
15 Provided Op => CompTypeName .Op) ;
16 −− program resource s :
17 use Defined Task ;
18 use Ada . Calendar ; −− or Ada . Real Time
19 Start , F in i sh : Time ;
20 begin
21 Star t := Clock ; −− ge t system s t a r t time
22 . . .
23 end SARAProg ;

(d)

Fig. 3. (a) Specification (b) Body (c) Instance (d) run-time checks
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an application or other components (e.g.; see lines 7–15 in Fig. 3.(c)). Finally,
Fig. 3.(d) shows the screen shot of the runtime execution and runtime annotation
checking of our application implementation based on SARA component model.

More formally, the SARA component model is defined as follows.

Definition 1 (SARAProg). A SARA program is defined as a tuple SARA-
Prog = (ProgName, IP, OP, LV, CV, IO, ProgBody), where:

– ProgName is the name of the program, which is defined by its developer;
– IP is a set of input parameters, which enter the input ports of program com-

ponents, e.g., IP = {dist, init, reset,monitorT} in Fig. 1;
– OP is a set of output parameters, which exit the output ports of program

components, e.g., OP = {up, down, emergency} in Fig. 1;
– LV is a set of local variables of this program. For technical reasons, we assume

that all the local variables of program components occur somewhere in the
program structure. e.g., LV = {init, set, urgent, refT ime} in Fig. 1;

– CV is a set of clock variables that monitor the time, e.g., CV = {monitorT}.
– IO is a set of input/ouput variables of the program body, e.g., IO = {approach,

exit, close, open} ∪ IP ∪ OP ∪ LV ∪ CV in Fig. 1;
– ProgBody is a SARA program body. It is defined as a set of component

instances which are interconnected using variables. The connections of
component instances are defined as a program configurations, ProgConfigs
(Definition 2).

Definition 2 (ProgConfig). A program component configuration is defined as
a tuple ProgConfig = (CompInsts, CompConnects), where

– CompInsts is a set of component instances (see Definition 3),
– CompConnects is a set of component connections (see Definition 5).

Definition 3 (CompInst). A component Instance is defined as a tuple (Inst-
Name, CompTypeName, Priority), where:

– InstName is a user defined name of specific instance of a component type;
– CompTypeName is the name of the corresponding component type, Comp-

Type (see Definition 4);
– Priority is an integer that defines the execution order of component instances

in the context of the component configuration. For instance, the execution
order of Fig. 1 is: Gate Inst 1 < Controller Inst 1 < Sensor Inst 1. This means
that Sensor Inst 1 has a highest priority than Controller Inst 1 and Con-
troller Inst 1 has a highest priority than Gate Inst 1.

Definition 4 (CompType). A component type is defined as a tuple Comp-
Type = (CompTypeName, IP, OP, LV, Annotation, CompBody), where:

– CompTypeName is the name of the component type, which is defined by its
developer. We distinguish two kinds of component type: active and passive
components. An active component has its own dedicated thread of execution.
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While a passive component is directly processed in the context of the calling
thread of an active component. Note that a component is either a basic com-
ponent or a hierarchical component. A hierarchical component contains other
components that can be themselves hierarchical or basic (e.g. SARAprog of
Fig. 3 (c) that contains basic component instances of Fig. 1). Whereas, a basic
component directly encapsulates behavior (e.g., in Fig. 1, BP-component is a
basic passive component, and BA-component is a basic active component);

– IP = {ip1, ip2, ..., ipn} is a set of input ports;
– OP = {op1, op2, ..., opn} is a set of output ports;
– LV is a set of local variables of this component type;
– Annotation is a time annotation of component body operations, e.g., see lines

12-15 of Fig. 3 (a);
– CompBody defines the behavior of instances of component type. The body

can be written in any programming language. For example, we use the Ada
programming language, e.g., see Fig. 3 (b).

Definition 5 (CompConnect). A component connection is defined as a set of
four types of connection, CompConnect = {DC, IC, LC, OC}, where:

– DC is a set of direct connections between IP of component instances and OP
of component instances. It is defined as:

• DCn : InstNamei.opj → InstNamek.ipl,
• e.g., DC1 : Sensor Inst 1.op1 → Controller Inst 1.ip1 in Fig. 1;

– IC is a set of connections that connect input parameters ipj ∈ IP of SARA-
Prog to an input port ipl ∈ IP of kth component instance or to a program
local variable lvk ∈ LV . It is defined as:

• ICn: ProgName.ipj → InstNamek.ipl, or
• ICn: ProgName.ipj → ProgName.vlk,
• e.g., IC1 : dist → Sensor Inst 1.ip1 in Fig. 1 or
• e.g.,: IC2 : init → Sensor Inst 1.init in Fig. 1;

– LC is a set of connections that involves local variables of a program that do
not occur in IC. A local variable lvi ∈ LV of SARAProg may be connected
to an input port ipj ∈ IP of the kth component instance, an output port
opl ∈ OP of the kth component instance or an output parameters opm ∈ OP
of SARAProg. It is defined as:

• LCn: ProgName.lvi → InstNamek.ipj , or
• LCn: InstNamek.opl → ProgName.lvi, or
• LCn: ProgName.lvi → ProgName.opm
• e.g., LC1 : reset → Controller Inst 1.set, or
• e.g., LC2: Controller Inst 1.op3 → emergency in Fig. 1;

– OC is a set of output connections between opi ∈ OP of the kth component
instance and output variables opj ∈ OP of SARAProg. It is defined as: OCn :
InstNamek.opi → ProgName.opj , e.g.: OC1 : Gate Inst 1.op1 → up in
Fig. 1.
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4.2 Time Annotations

In this section, we provide predefined time annotations, which are used to anno-
tate our component operations (e.g., lines 12–15 in Fig. 3.(a)). This predefi-
nition facilitates the expression of timing constraints commonly used. While
analysing various types of common temporal requirement classifications [7,12],
we found out that most of requirements can be expressed either as a set of
obligation rules or as a set of interdiction rules. Table 1 shows some examples of
timing response obligation annotations and their descriptions. Generally, in com-
mon temporal requirements, an event e, named here monitored event e should
occur permanently or temporarily in response to a stimulus event, named here
referenced event e′.

Table 1. Time annotations

Time annotations Descriptions

between(e, Tbegin, Tend, i, e
′) Ensures that a monitored event e must occur

within a temporal interval [Tbegin, Tend] after
the ith occurrence of referenced event e′

mindelay(e, Tmin, i, e
′) Ensures that a monitored event e must occur after

a minimum delay Tmin time unit after the ith

occurrence of referenced event e’

maxdelay(e, Tmax, i, e
′) Ensures that a monitored event e must occur

before a maximum delay Tmax time unit after
the ith occurrence of event e′

exactdelay(e, T, i, e′) Ensures that a monitored event e must occur
exactly at a delay T time unit after the ith

occurrence of event e′

In this paper, we also give to users the possibility to express requirements
that refer not only to the timed interval relatively to a given event, but also to
the occurrence ith of this event appearance. For example, stating only the timed
obligation pattern (e.g., event e must occur after event e′) is ambiguous since
the assertion does not specify the response time limit within which e may occur
after e′. In addition, it does not specify if e may occur after the first or the
last occurrence of e′. However, affirming that event e must occur before a
maximum delay of 3 time units after the first occurrence of event e′

avoid confusion. In this example, the assertion obtained is identified in Table 1
as the maxdelay(e, Tmax, 1,e’) annotation, where Tmax = 3 time units (e.g.,
seconds) and i = 1th, i.e., the first occurrence of e′.

The goal of these timed annotations is to guide users during the modeling
in order to produce a clear and accurate description, while manipulating simple
and precise concepts.
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4.3 TA Model

Timed Automata (TA) is one of the most popular models adapted to real-time
system [3]. First, TA models are well adapted for the verification of time proper-
ties for real-time components because temporal requirements are explicitly mod-
eled by using state invariants, transition guards and setting or resetting clock
variables. Second, a number of methods based on variants of the TA model (or
other similar models such as timed Petri nets) have been proposed [11,13,14]. In
this paper, we use timed automata over input or output actions, called the Timed
Automata with Inputs and Outputs (TAIO) [13]. Finally, a number of automatic
model checker tools for TA have been efficiently developed, e.g., Uppaal [14] and
Kronos [24]. In this work, we use Uppaal as one of these tools for the verification
process. It offers a convenient graphical user interface for simulation. In the fol-
lowing the TA system, based on Uppaal TA system, is defined to facilitate the
transformation process of the SARA model. This means that all parts which are
not used by the transformation process are not included in the definitions.

Definition 6 (TASys). A TA verification system can be defined as a tuple
TA = (TAModels, TADeclarations), where:

– TAModels is a set of all TA models used in a system global model. In this
work, every TA model is defined according to TAIO (see Definition 7);

– TADeclarations is the declaration part that contains all input/output vari-
ables of all component instances and all input/output/local variables of the
program (see Definition 10).

Definition 7 (TAModel). A TA model is defined as a tuple TAModel =
(TAName, TASyntax, TASemantic), where:

– TAName is the name of the TA model which appears in the system declara-
tions part to arrange priorities on TAModels;

– TASyntax is the syntax of the state-transition description of TAIO extended
with boolean and integer variables (see Definition 8);

– TASemantic is the semantic (see Definition 9).

Definition 8 (TASyntax). TAIO is represented by the tuple A = (L, l0, V, Act,
Clock, Inv, T), where:

– L is a finite set of locations;
– l0 ∈ L is the initial location;
– V = Vbool ∪ Vint ∪ Vact ∪ Vconst ∪ Vclock is a finite set of variables (boolean,

bounded integer, channel, constant or clock) declared in the TADeclarations
part (see Definition 10);

– Act = Vact × {!, ?} is a set of synchronization actions over channel variables
Vact. It is the partitioned set of input and output actions, Act = Actin∪Actout.
Input actions are denoted a?, b?, etc., and output actions are denoted a!, b!,
etc.;

– Clock is a finite set of real-valued clocks, {x1, x2, ..., xn};
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– Inv is a function, that assigns an invariant to each location. Inv(Vclock, Vint)
is the set of invariants over clocks xj ∈ Clock and integer variables c ∈ Vint;

– T is a finite set of edges for transitions.

Each edge T is a tuple (l, g, r, a, l′), where:

– l, l′ ∈ L are respectively the source and destination locations;
– g is a set of time constraints of the form x • c, where x ∈ Clock is a clock

variable, c ∈ Vconst is an integer constant and • ∈ {<,≤,=,≥, >};
– r ∈ Clock is a set of clocks to reset to zero, (r := 0, where 0 is the initial

valuation of the clock);
– a ∈ Act is a set of actions to update (a := b, where b is another action).

Definition 9 (TASemantic). The semantic of A = (L, l0, V, Act, Clock, Inv,
T) is defined by the Timed Labeled Transition System (TLTS) [13]. TLTS is a
tuple (S, s0, Act, Td, Tt), where:

– S = L × R
X
+ is a set of timed states associated to locations of A;

– s0 = (q0,0) is the initial state. 0 is the valuation assigning 0 to every clock
x ∈ Clock of A;

– Td is a set of discrete transitions of the form (s, a, s′) = (s′, v) a−→ (s′, v′),

where a ∈ Act and there is an edge E = (l, g, r, a, l′, ), such that v satisfies g
and v′ is obtained by resetting to zero all clocks in r and leaving the others
unchanged; where t ∈ R+. Tt must be deterministic.

Definition 10 (TADeclarations). In order to facilitate the transformation
process of SARA model to TA model, TADeclarations are partitioned to a
TA model declaration part (TAModelDecl) and to a system model declaration
part (TASysDecl). TAModelDecl = (dataType, variableName, value), where: -
dataType is a set of project-specific data types. In this work, we use the Uppaal
declaration types: constant, boolean, bounded integer, channels, array or clock; -
variableName represents the name of the variable and - value is considered
either the initial value or the constant according to the data type.

TASysDecl defines the execution order by assigning priority to TA models.
For example in the example of Fig. 1, input connections (e.g., IC1) have the
highest priority, followed by component instances (e.g., Controller Inst 1), fol-
lowed by other connection types according to the execution order defined (e.g.,
DC1) and finally followed by output connections (e.g., OC1).

4.4 Transformation Rules

This sub-section presents the transformation rules developed to translate SARA
application models to TA models. They are based on the above SARA and TA
formal models.

Rule 1 (mapping of declarations). The objective of this rule is to transform the
input and output variables of each component instance (CompInst) and all the
variables declared in the SARA program (SARAProg) into TA declaration parts
(TADeclarations). It is composed of two parts:
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– Rule 1.1. For each CompInst = (InstNamei, CompTypeName, Priority),
where CompType = (CompTypeName, IP, OP, LV, Annotation, CompBody),
insert ipj ∈ IPi and opj ∈ OPi in TADeclarations, where i = 1, 2, ..., n and n
is the number of CompType instances, as shown in the left hand of Fig. 4;

– Rule 1.2. For each ProgName of SARAProg, where ipm ∈ IP , opn ∈ OP
and lvp ∈ LV insert corresponding variables in TADeclarations, as shown in
the right hand of Fig. 4.

//Sensor Inst 1 of Fif. 1 TA declaration
Const int N = 2; // number of trains
typedef int[0,N-1] id; // bounded integer,
clock x1, x2, x3; // sensor clock variables
int ip 1 list for dist[N];
bool ip 2 list for init[N];
chan op 1 channel for approach[N];
chan op 2 channel for exit[N];

//Fig1. program TA declaration
int dist;
bool init;
bool reset;
...
...
bool up;
bool down;

Fig. 4. Example of Fig. 1 TAdeclarations

Rule 2 (mapping of CompInsts). The objective of this rule is to transform
CompInsts to TAModels. For each CompInst = (InstName, CompTypeName, Pri-
ority), where CompType = (CompTypeName, IP, OP, LV, Annotation, Comp-
Body), insert the corresponding TAModel to TASys with TAName = InstName
by using a user predefined TAModel library and by taking into account the anno-
tations in order to add the suitable state invariants and transition guards accord-
ing to rule 4. For example, see Fig. 7, which corresponds to our use case TAModel
corresponding to the three component instances of Fig. 1.

Rule 3 (Mapping of annotations). This rule is invoked from rule 3 when a
component type contains time annotations as shown in Table 1, and illustrated in
lines 12–15 of Fig. 3 (a). These annotations are translated into boolean conditions
in TASyst by respecting the TASemantic shown in Definition 8.

Rule 4 (mapping of connections). The objective of this rule is to transform con-
nections. For each connection in CompConnect = (DC, IC, LC, OC), a TAModel
in TASys is inserted by respecting the following rule parts:

– Rule 4.1. For each DCn : InstNamei.opj → InstNamek.ipl, insert a
TAModel (L, l0, V, Act, Clock, Inv, T ) with name DCn, where L = {l0} =
{DCn}, V = {opj , ipl}, Inv = {}, and T = {(q, g, r, a, q′)}, with g = {opj ⊕
ipl}, where ⊕ or XOR represents the inequality function between the output
opj and the input ipl, r ∈ Clock∧ r = {} and a ∈ Act∧a = {ipl := opj} (e.g.,
DC3 in Fig. 5);

– Rule 4.2. For each ICn : ProgName.ipj → InstNamek.ipl or ProgName.ipj
→ ProgName.vlk, insert a TAModel with name ICn (e.g., IC1 in Fig. 5);

– Rule 4.3. For each LCn : ProgName.vli → InstNamek.ipj , InstNamek.opl
→ ProgName.lvi or ProgName.lvi → ProgName.opm, insert a TAModel,
with name LCn (e.g., LC1 in Fig. 5);
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Fig. 5. Example of Fig. 1 TA connections

– Rule 4.4. For each OCn : InstNamek.opi → Program.opj , insert a TAModel
with name OCn, (e.g., OC1 in Fig. 5);

Rule 5 (Initial input mapping). The objective of this rule is to allow manual val-
idation by using TASys like Uppaal simulator. For this, input variables IP of the
SARA program are allowed to be changed by the user. For each ProgName.ipj
in IP, insert TAModel with name INITn, where L = {INITn}, V = {ipj} and
T = {(q, g, r, a, q′)}, with a ∈ Act∧a = {ipj :=!ipj}, r ∈ Clock∧r = {}∧g = {},
(e.g., INIT1 in Fig. 5).

Rule 6 (mapping of execution flow). The objective of this rule is to define
the execution flow of the TASys by using priorities on TA models. Based on
priority defined in CompInst = (InstName, CompTypeName, Priority) shown in
Definition 3, assign priority to each TAName in TASysDecl (see Definition 10).

The validation of these transformation rules are realized through their applica-
tion in some use case scenarios of SARA model. The preservation of syntax and
semantic information across the transformations was checked whenever the TA
output models are successful processed by the Uppaal simulation tool.

5 Proof of Concept

In this section, a simulation scenario of a use case is translated into the TA
model for the verification of system-level requirements presented in Sect. 2.

5.1 Use Case

The safety of rail-road Level Crossing (LC) has long been a major concern for
railway and road stakeholders since LC accidents often generate serious mate-
rial damage, traffic disruption and human losses. As a consequence, the LC
system has already been used as a benchmark in several previous verification
approaches [4,15]. Figure 6 shows the LC topography considered in this paper.
It is composed of the following features: (1) double-track railway lines (UpLine
and DownLine); (2) roads with traffic in both directions; (3) traffic lights to
manage the road traffic in the LC zone; (4) sound alarms to signal train arrival;
(5) two half-barriers used to prevent road users from crossing while trains are
passing; (6) three train sensors Ani, Api and Exi in both track lines. For exam-
ple, in DownLine, the An2 is the anticipation sensor, which allows the detection
of the approaching train speed, necessary to alert road users with sound alarm
and road lights. The sensor Ap2 is used to detect the arrival of trains in the
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LC zone and the exit sensor Ex2 is used to announce the departure of trains
after exiting the LC zone. Since several trains with different speeds (passenger
or freight trains) can circulate on railway lines, the required durations between
sensors are expressed with intervals in Fig. 6. For example, d1 = [10, 15] second
(s) is a required interval of durations between Ani and Api. This interval and
the others must be respected by trains circulating in the railway track lines.

Fig. 6. Level crossing topography

5.2 Transformation of Simulation Scenario to TA Model

In this step, the SARA model of a simulation scenario is translated into the TA
model. Figures 1 and 3 present an architecture and an implementation of a simu-
lation example of our use case by using software components (Sensor, Controller,
Gate). These components are executed in parallel and are synchronized through
various events, e.g., appr, close, etc., in order to provide the automatic LC con-
trol system. This LC model is manually transformed to the Uppaal TA model in
oder to use its simulation tool for the verification of our requirements. Figure 7
shows the Uppaal TA model of a LC system scenario, presented as follows.

When a train arrives in the monitored area, it activates the first sensor
instance Ani, (i.e., An1 for the UpLine direction and An2 for the DownLine
direction) and it sends the appr event with its id (appr[id]! in Fig. 6) to the
controller. In the same way, when it approaches the crossing section, it acti-
vates the second sensor Api and sends the close[id]! event to the controller. The
train spends at least 10 s and at most 15 s in this first section (between Ani

and Api, i.e., between appr sending and close sending). This timing requirement
is presented as an invariant of state Near1 (i.e., x1 >= 10 in Fig. 6) and the
guard of a transition to state Near1 to Near2 (i.e., x1 <= 15). The train leaves
the crossing section at least 30 s and at most 45 s after sending the close event.
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Fig. 7. The level crossing TA model: Controller model, Sensor model and Gate model

When a train leaves the crossing section, it activates the third sensor instance
Exi, and the train sends an exit! signal to the controller. When the close? signal
(respectively exit?) is received, the controller immediately sends a down! signal
(respectively up!) to the gate. We assume that there is no overlap between trains
in the same direction, which means that the controller handles at most two trains
at the same time, i.e., at most one train in each direction. The controller model
of Fig. 7 is a simplified version of the controller behavioral model. It deals with
the case when the gate is closed and when there is a train approaching mean-
while, the controller decides to open immediately the gate or to wait certain
duration before open the gate. The Gate responds to down? signal by moving
down and takes 10 s to be completely closed. Indeed, it takes 4 s to activate the
light warning the vehicles approaching the LC and 6 s to close the gate. Con-
versely, it responds to up signal by moving up and it takes 6 s to be completely
open.

5.3 Requirement Validation Using Observer Patterns

The verification consists in checking that the parallel composition of the applica-
tion model under test and its safety requirements observers never enters an erro-
neous state. The system-level safety requirements stated in Sect. 2 are checked
based on the predefined observer patterns.

Requirement 1 validation. This requirement is a critical condition aiming
to avoid train-car collisions in the crossing zone. It states that “The gate is
never open when the train is inside”. This requirement will be expressed as
an exclusion pattern between open state and inside state. Firstly, this textual
description of the requirement, which is presented as an annotation in the SARA
component model (see Fig. 3 (a)), is intuitively presented as an exclusion observer
pattern in the TA model. Figure 8 (a) presents the graphical representation of
this exclusion pattern, which is used to check that a given situation (state S1
and S2 are activated at the same time with event b1? and a1?) is never reached.

Secondly, once identified, the patterns are instantiated with the appropri-
ate parameters. In our case, the exclusion pattern is instantiated with in[id],
exit[id], opening[id] and down[id] events, instead of a1, a0, b1 and b0, respec-
tively. Thirdly, once generated, the TA patterns are synchronized with the
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Fig. 8. (a) Exclusion observer pattern, (b) Forbidden before observer pattern,
(c) Obligation between observer pattern

system model to generate a global system. Finally, the verification of our use
case is carried out on the Uppaal model checker. The “KO” node in the TA
observers is never reached, which means that this requirement “the gate must
be down when the train is inside the crossing” is always evaluated to true.

Requirement 2 validation. In our scenario model shown in Sect. 5.2, we firstly
supposed that the Gate should stay in the open state at least 15 s before becom-
ing closed again. According to the Gate model in Fig. 7, the Gate takes 4 s to
signal when vehicles can traverse, and 6 s to be closed. So, the time that separates
the up and down detection is Tmin = 15 s − 4. This means that the down detec-
tion should be done at least 11 s after the up detection. With the Uppaal model
checker, the “KO” node of Fig. 3 (b) observer pattern instantiation (down[id]
instead of a and up[id] instead of b) is reached. Indeed, the path that violates
the requirement can be expressed as follows: (1) the first train leaves the critical
section and sends exit[id1] signal. Exit detection triggers the up[id1] sending.
Consequently, the gate is open; (2) suppose that a second train is simultane-
ously entering the LC section, an appr[id2] signal is detected; (3) the second
train takes 10 s to trigger the close signal, which triggers the down[id2] sending;
(4) As a result, 10 s is computed between up[id1] and down[id2], which violates
this requirement: “when the gate is opened to road traffic, it must stay open
at least Tmin time units, where Tmin = 11 s”. This verification result helps the
designer to search the accepted time parameter between open cycles.

Requirement 3 validation. “once closed and when there is no train
approaching meanwhile, the gate must be kept closed at least Tbegin and at most
Tend.” For the validation of this requirement, we determine the different speed
intervals allowed in the track lines. In the beginning, the train speed interval
considered in our double-track railway lines of Fig. 6 is [14,45] m/s. The counter
examples given by Uppaal model checker, allow to identify new speed intervals
that validate the requirement, and so on. The obtained speed intervals that vali-
date this requirement an above requirements are: {[14, 15[, [15, 16[, [16, 18[, [18,
20[, [20, 22[, [22, 30[, [30, 45]}.
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5.4 Proof of Concept Discussion

The first results obtained in the previous “proof in use” are encouraging and
show the correctness of the defined rules. However, the more formal validation
still need to be defined in order to formally verify that the syntax and specially
the semantic information are indeed preserved across the transformation.

Having said that, the strong goal of our approach is to express and ver-
ify requirements relative to certain scenarios of use cases. The scenario-based
description, rather the entire system description, allows a limitation of the
explored space search, and hence a first reduction in the combinatorial explosion,
which is an important limitation for the application of model checking techniques
in complex software projects [23]. For this reason, the strong assumptions we
made about the SARA model is that the designer is able to identify all possi-
ble interactions between components of the system and between the system and
its environment. We justify this strong hypothesis, particularly in the field of
embedded systems, by the fact that the designer of a component needs to know
precisely and completely the context, i.e., constraints, conditions, of its system
for properly developing it. It would be necessary to study formally the validity
of this working assumption for scalability in the targeted applications. In this
paper, we do not address this aspect, which is planned for our future work.

6 Related Work

Automating the verification process of applications increases development pro-
ductivity and quality [1]. There are several research works in this direction. These
works are mainly based on the transformation of the source models to the target
formal models, which are next used for verification purposes by exploiting verifi-
cation tools [18]. For example, Solimaan et al. transform function block diagram
to timed automata for the automated formal verification by using the Uppaal
model checker [19]. Textual safety requirements are converted to CTL properties
and are checked on the Uppaal TA system using the verifier tool. This verifi-
cation process requires significant knowledge of higher order logic and theorem
proving. This process has two main limitations. The first one is that users must
be familiar with the higher order logic in CTL. The second is the lack of patterns
for high-level system properties. In contrast, in our verification methodology, we
use observer-based verification by providing the timed annotation patterns which
promote reusability. As demonstrated in [4], the verification of safety properties
by using observer-based verification does not require learning another language
for the purpose of property specification. The verification task can be reduced
to a simple reachability analysis. Our method suggests using generic predefined
observation patterns [6] to check the temporal requirements of a given system.

In this work, we focus on the verification approach that takes advantage of the
flexibility of the source model and the analysis facilities offered by a target formal
model. In the same way, Mekki et al., based on the flexibility an the expressive-
ness of UML State Machine (UML SM), transform this semi-formal model to
the TA model [15]. This method allows the automated verification of temporal
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requirements, initially expressed in a semi-formal formalism, through the model
transformation. This work is focused on the validation of new functional require-
ments that prevent several accidents at LCs with model-checking techniques
[15]. We use the suggested new LC topography as our use case. In contrast, our
work focuses on the integrated development approach. Indeed, given a software
requirement specification of safety-critical software, the proposed development
process is to guide developers at the first design stage for the identification of
requirement types, for the modeling of requirements and for the verification of
requirement models before implementation.

7 Conclusion

The main challenge we face in this paper is how to transform a source model
of safety-critical applications to a target model suitable for automatic formal
verification. In order to face this challenge, we formalize our SARA component
model and the TA model. Based on these formal models, transformation rules
were then defined. A component model of a simulation scenario is manually
transformed to the Uppaal TA model to validate some safety requirements. The
counter examples discovered during the verification process can help the devel-
oper to identify the software components that should be modified before the
implementation and the integration. After the verification phase, the scenario
model is implemented with the Ravenscar profile of Ada language, which is
one of the recommended languages in the development of railway safety-critical
applications. The complete process to validate the safety requirements shows
the understanding of the transformation process and the applicability of the
proposed approach.

This is very encouraging to automate the transformation of our SARA model
to the TA model. We are currently working on the development of this automa-
tion. As a consequence, our future work targets the automation process for the
automatic verification of timing requirement annotations, which are not sup-
ported by the annotation checking tool [9], used in this paper. In addition, the
application of our approach to several use case scenarios is another direction to
demonstrate the efficiency and the scalability of our approach.
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Abstract. Non-interference characterises the absence of undesired
information flows in a computing system, by asking that actions with
higher level of confidentiality do not cause any observable effect at the
lower levels. In many concrete applications, this requirement is too strict
and the abstract model is enriched with some form of downgrading,
namely with the possibility of declassifying information, thus allowing for
a controlled form of leakage. This paper focuses on BINI (Bisimilarity-
based Intransitive non-interference), a formalisation of non-interference
with downgrading in the setting of Petri nets. Generalising some previ-
ous works, we provide a causal characterisation of BINI in terms of the
unfolding semantics, a true concurrent semantics of Petri nets. Building
on this, we design an algorithm for checking BINI on safe Petri nets which
relies on the construction of suitable complete prefixes of the unfolding.
The algorithm is implemented in a prototype tool and some prelimi-
nary tests are quite encouraging as they suggest that the management
of downgrading does not cause any significant performance decay.

1 Introduction

The theory of information flow control, and more specifically of non-interference,
identifies different levels (or domains) to which components of a computing
system (function, variable, process, resource, etc.) are mapped. The levels are
organised in a partial order (sometimes in a lattice [1]) and information may
flow from lower levels to higher levels but not vice versa: the higher is the level,
the more classified are the data or entities belonging to it.

The concept of non-interference was introduced in [2] in order to provide a
formal foundation for the specification and analysis of information flow security
policies and the mechanisms that enforce them. The common intuition is that
information flows from a level A to a level B if the behaviour of some compo-
nent of level B is affected by some component of level A in some run of the
system.

The classical theory of non-interference [2] dealt with transitive multilevel
security policies. According to this view A ≤ B implies that information is
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allowed to flow from level A to level B; of course if, additionally, B ≤ C, then
information is also allowed to flow from A to C. Some multilevel security policies
do not allow all transitive flows: admitted flows are expressed by a reflexive, pos-
sibly not transitive, relation �⊆≤, the meaning of A � B being that “informa-
tion is allowed to flow from level A to level B”. For practical security problems
a requirement like A �� B (complete absence of flows from A to B) is in gen-
eral too strong and suitable weakenings can be appropriate which allow one to
declassify information (e.g., a certain secret becomes obsolete or a password has
to be checked against the one provided by the user). An early approach is [3],
where declassification is rendered in the form of downgrading (or channel con-
trol). One adds an intermediate level D with A � D � B: the level D is acting
as a downgrader so that any flow from A to B is required to happen only through
the intermediary D and not directly from A to B. A general treatment of intran-
sitive policies is provided in [4,5] where computing systems are abstracted away
as automata or labelled transition systems. The first work adapting intransitive
non-interference to a programming language setting is [6], that provides a type-
based approach to the enforcement of intransitive multilevel security policies for
imperative languages. Intransitive non-interference has been widely studied also
in the context of process calculi (see, e.g., [7]) and Petri nets [8,9].

In the simplest view, the system has a high (secret) part H and a low (public)
part L. The high part H should not interfere with the low part L, meaning
that whatever is done in H produces no “visible” effect on L, where the idea
of visibility is based on some observational semantics which can be trace or
bisimulation equivalence (see, e.g., [10–12]).

In those concurrent formalisms which include forms of composition and syn-
chronisation, such as process calculi and Petri nets, a popular formulation of
non-interference is the so-called NDC (Non-Deducibility on Composition), which
looks at the system under analysis as a component possibly interacting with the
surrounding environment. It states that a process (or net) S is free of interfer-
ences whenever S running in isolation, seen from the low level, is behaviourally
equivalent to S interacting with any parallel high level process (or net) that may
synchronise on high actions (or transitions) [8,10,13–16].

The fact that the behaviour of S is not altered by composition is often
described by referring to some informal notion of causality – the activity at high
level should not cause visible effects on the behaviour at low level – but formalised
in terms of interleaving semantics. Some steps towards a causal characterisation
of non-interference can be found in [15], where several notions of non-interference,
in particular BNDC (Bisimilarity-based NDC), are studied over contact-free ele-
mentary nets (or equivalently pure safe nets) and trace nets. A purely causal
characterisation of BNDC on safe Petri nets is provided in [16], in terms of a
classical true concurrent semantics of Petri nets, the unfolding semantics [17].
The interest for a causal characterisation is not only of theoretical nature. On
the pragmatic side the use of a true concurrent semantics, which represents
interleavings only implicitly, is helpful for facing the state explosion problem
which affects the verification of concurrent systems. Indeed, the efficiency of this
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approach is supported by evidences provided by a prototype tool UBIC which
checks BNDC on safe Petri nets by implementing the algorithm proposed in [16],
outperforming other tools based on interleaving semantics.

In this paper we show that the unfolding-based approach to non-interference
proposed in [16] for Petri nets can be generalised to deal with a form of declas-
sification. We work with the formalisation in [8,9], where the two-level app-
roach based on the distinction between high H (confidential) and low L (public)
actions, is enriched with the addition of so-called downgrading actions D. The
occurrence of a downgrading action declassifies all the high actions that have
occurred before, which are no longer considered confidential. These high actions
can thus be observed at the low level without any concern about information
leakage. The notion of observation is formalised by taking bisimilarity as a ref-
erence equivalence, so that the resulting property is called Bisimilarity-based
Intransitive Non-Interference (BINI) [8].

We provide a structural characterisation of BINI: a safe net is BINI if and
only if its unfolding reveals neither a direct causality (given by a weak causal
place), with a token flowing from a high to a low level transition without passing
through a downgrading transition, nor a direct conflict (represented by a weak
conflict place) between a low level and a non-downgraded high level transition.

The structural characterisation, in turn, enables the checking of the BINI
property on a suitably defined complete prefix of the unfolding: we present an
algorithm that actually performs this verification. A potential advantage of our
approach, compared to other techniques that construct (or explore) the reacha-
bility graph of the net, is a great gain of efficiency for highly concurrent systems,
since the unfolding prefix is, in these cases, much smaller than the complete state
space (see e.g. [18] and references therein). The unfolding-based algorithm for
checking BINI has been implemented in a prototype tool UBIC2 [19]. Dealing
with downgrading requires a refined notion of completeness for prefixes and, con-
sequently, UBIC2 has to manage additional data structures with respect to the
tool UBIC in [16]. In practice the overhead, both in terms of time and memory
consumption, turns out to be reasonably light and the performances of UBIC2
are in line with those of UBIC, which in [16] are argued to outperform those
of interleaving-based tools like ANICA [20] and PNSC [9]. We discuss some
preliminary test runs which show promising results.

The rest of the paper is structured as follows. In Sect. 2 we define the basics
of Petri nets and their unfoldings semantics, and we present the BINI property.
In Sect. 3 we give a characterisation of BINI based on weak causal and conflict
places. In Sect. 4 we provide an unfolding-based characterisation of BINI which is
then exploited in Sect. 5 for devising a corresponding algorithm. Implementation
and experimental results are discussed in Sect. 6. Finally, in Sect. 7 we draw some
conclusions.

2 Preliminaries

In this section we review the basics of Petri nets and their unfolding semantics,
and we define BINI, the reference non-interference property for the paper.
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2.1 Petri Nets

A Petri net is a tuple N = (P, T, F ) where P , T are disjoint sets of places
and transitions, respectively and F : (P × T ) ∪ (T × P ) → {0, 1} is the flow
relation. Graphically, places and transitions are drawn, respectively, as circles
and rectangles, while the flow relation is rendered by means of directed arcs
connecting places and transitions. For example if F (p, t) = 1 then there is an arc
from p to t. For x ∈ P ∪ T we define its pre-set •x = {y ∈ P ∪ T : F (y, x) = 1}
and its post-set x• = {y ∈ P ∪T : F (x, y) = 1}. We will only consider nets where
•t �= ∅ for all t ∈ T .

A marking of N is a function m : P → N. A transition t ∈ T is enabled
at a marking m, denoted m[t〉, iff m(p) ≥ F (p, t) for all p ∈ P . If m[t〉 then t
can be fired leading to a new marking m′, written m[t〉m′, defined by m′(p) =
m(p) + F (t, p) − F (p, t) for all places p ∈ P . The enabling and firing relations
are extended to σ ∈ T ∗ (finite sequences of elements of T ) by defining m[ε〉m
(where ε is the empty sequence) and m[σt〉m′′ when m[σ〉m′ and m′[t〉m′′.

A marked Petri net is a pair N = (N,m0) where N is a Petri net and
m0 is a marking of N . A marking m′ is reachable if there exists σ ∈ T ∗ such
that m0[σ〉m′. The set of reachable markings of N is denoted by [m0〉. When
m[t〉m′, the marking m′, uniquely determined by m and t, is denoted by 〈m[t〉.
Analogously, for σ ∈ T ∗, if m[σ〉 we can define the marking 〈m[σ〉. In pictures
markings are represented as black dots, called tokens, inside places (the presence
of n dots inside place p means that m(p) = n).

The net N is safe if for every p ∈ P and m ∈ [m0〉 we have m(p) ≤ 1. In a
safe net every marking m can be seen as a subset of places and we write p ∈ m
instead of m(p) = 1.

2.2 Bisimulation-Based Intransitive Non-Interference

A net system is a Petri net N where T is partitioned into three disjoint sets
H, L and D. We sometimes write N = (P,H,L, D, F ) making the three sets
of transitions explicit. The idea is to model a system with two distinguished
classes of “users”: high level users and low level users. Transitions in H, called
high transitions, are thought of as visible only to the high level users, while the
low transitions in L are globally visible. Transitions in D are called downgrading
transitions. Their firing “declassify” prior occurrences of high transitions.

The idea of secure net system in the presence of downgrading is made precise
by the definition of Bisimulation-based Intransitive Non-Interference (BINI).

As a first step we need to recall Bisimilarity-based Non-Deducibility on Com-
position (BNDC, for short) [8,15], the security notion which has been formulated
for two-level net systems, where D = ∅ (no downgrading transitions). A net sys-
tem N is called high when L = ∅ and D = ∅.

A two-level net system N is deemed free of interferences when, seen from the
low level, the system N interacting with any parallel high system is indistinguish-
able from N restricted to the low transitions. The formalisation of this intuition
requires (parallel) composition and restriction operators on net systems, as in [8].
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Definition 1 (parallel composition). Let N and N ′ be two-level net systems
such that P ∩ P ′ = ∅, (H ′ ∩ L) ∪ (H ∩ L′) = ∅, and (P ∩ T ′) ∪ (P ′ ∩ T ) = ∅. The
parallel composition of N and N ′ is the net system N |N ′ = (P ∪P ′,H ∪H ′, L∪
L′, F ∪ F ′). The composition of marked two-level net systems N = (N,m0) and
N′ = (N ′,m′

0) is the two-level marked net system N |N′ = (N |N ′,m0 ∪ m′
0).

Intuitively, N |N ′ is the superposition of N and N ′, synchronised on the common
transitions.

Definition 2 (restriction). Given a net system N and a subset T1 ⊆ T , the
restriction of N by T1 is the net system N \T1 = (P,H−T1, L−T1,D−T1, F \T1)
where F \ T1 is the restriction of F to (P × (T − T1)) ∪ ((T − T1) × P ). For a
marked net system N, the restriction N \ T1 is (N \ T1,m0).

As a last ingredient, we need to define the low view (see [15, Definition 3.1]) of a
sequence σ ∈ T ∗, which represents the view of a low level user on σ in a two-level
net system N. It is defined inductively by νN (ε) = ε and νN (t σ) = t νN (σ) if
t ∈ L and νN (t σ) = νN (σ) if t ∈ H.

Definition 3 (low view bisimulation). A low view simulation between two
marked net systems N and N′ is a binary relation R ⊆ [m0〉 × [m′

0〉 such that
(i) (m0,m

′
0) ∈ R and (ii) for all (m, m′) ∈ R, if m[σ〉 there exists σ′ such that

m′[σ′〉, (〈m[σ〉, 〈m′[σ′〉) ∈ R and νN (σ) = νN ′(σ′). The relation R is a low view
bisimulation if both R and R−1 are low view simulations. In this case, we say
that N and N′ are low view bisimilar and write N ≈ N′.

Intuitively, the low transitions are supposed to be observed by the low level
users, while the high transitions cannot be observed and should hopefully be kept
secret, i.e. they should not be revealed to the low level users by the observation
of the firing sequences in which they occur. This is formalised by saying that a
two-level net system N is BNDC when no behavioural difference can be detected,
by a low level observer, between N \ H (i.e. N running in isolation and without
firing high transitions) and (N |N′) \ (H − H ′) (i.e., N running in parallel with
an arbitrary high net N′, thus possibly synchronising on high transitions).

Definition 4 (BNDC). A two-level marked net system N is BNDC if for every
high marked net system N′ we have that N \ H ≈ (N |N′) \ (H − H ′).

Figure 1(a) represents a two-level net system C (without downgrading transi-
tions): high transitions are double edged rectangles. It models a batch service
S that checks digital signatures of digital documents. The files to be checked
are enqueued in a buffer. For each file an algorithm generates a pair of keys
(pK, sK): the secret key sK is used by the signer to sign the file (transition
set key) and then the public key pK is received by S (transition get key). In
the meantime the file is sent to S (transition send file) and immediately after
pK is used by S to verify the signature (transition check key) once the file has
been received. According to the outcome of the verification operation the sender
receives a message (either ok or fail). The net system C is not BNDC, since
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Fig. 1. (a) A net system C; (b) A high net system D; (c) (C |D) \ (HC − HD).

the fact that the low level receives the outcome of the signature check results in
a leak of information from the high level. More formally, the net system D of
Fig. 1(b) is such that C \ HC is not bisimilar to (C |D) \ (HC − HD) (Fig. 1(c)).
In this case (C |D) \ (HC − HD) coincides with C |D, since HC − HD = ∅.

This example illustrates the strictness of BNDC: the system C is rejected by
this security policy, even if the fact that “public level” will know the outcome of
the signature check seems unavoidable.

Bisimulation-based Intransitive Non-Interference (BINI) is a more relaxed
security policy obtained with the insertion of downgrading transitions. Down-
grading transitions may be observed by the low level user, but when such transi-
tions occur, they declassify the prior occurrences of high transitions which does
not need to be kept secret any longer.

As usual we let T ∗D = {σd : σ ∈ T ∗, d ∈ D}. A d-marking of a marked net
system N is any marking m = 〈m0[σ〉, for some σ ∈ {ε} ∪ T ∗D.

Definition 5 (BINI [8]). A marked net system N is BINI when for every d-
marking m the two-level net system (N \ D,m) is BNDC.

The intuition behind Definition 5 is as follows: BINI is a clocked version of
BNDC, where the ticks of the clock are the downgrading transitions. In fact
every time a downgrading transition d is fired the system reaches a d-marking:
all the high transitions that can be fired afterwards (without firing another down-
grading transition) are required to be non-observable w.r.t. low view bisimula-
tion. Instead there is no requirement on the high transitions that might have
occurred before d: they may be revealed by the downgrading transition itself or
by subsequent low transitions without breaking the security policy.

The net system P of Fig. 2(a) is a slight modification of the net system C
of Fig. 1(a): it includes downgrading transitions, identifiable as rounded edge
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Fig. 2. (a) A net system P modelling signature checking with declassification and
(b) partial unfolding of the net system in Fig. 1(a).

rectangles. In particular P “extends” C with downgrading transitions which
declassify the signature check, thus making the system BINI.

2.3 Unfolding Semantics and Related Notions

Given a Petri net N, the unfolding construction [17] produces a Petri net U(N)
whose places are a reification of the tokens that circulate in N and whose tran-
sitions are copies of the transitions of N, representing their possible firings.
The unfolding provides an implicit representation of the marking graph of N, a
directed graph whose nodes are the reachable markings of N. The unfolding can
be infinite, but when N is safe along the lines of the seminal work in [21,22],
finite fragments can be constructed containing a representation of all the reach-
able markings and, for highly concurrent systems, possibly exponentially smaller
than the marking graph.

The unfolding is constructed inductively starting from the initial marking of
N and then adding, at each step, an occurrence of each transition of N which
is enabled by (the image of) a coverable subset of the places already generated.
Below we indicate by π1 the projection over the first component of tuples.

Definition 6 (unfolding). Let N be a safe marked Petri net and let ⊥ be
an element not in P , T , F . Define the Petri net U (0) = (T (0), P (0), F (0)) as
T (0) = ∅, P (0) = {(p,⊥) : p ∈ m0} and F (0) = ∅. Then the unfolding is the least
Petri net U(N) = (P (ω), T (ω), F (ω)) containing U (0) and such that

– if t ∈ T and X ⊆ P (ω) with X reachable and π1(X) = •t, then (t, X) ∈ T (ω);
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– for any e = (t, X) ∈ T (ω), the set Z = {(p, e) : p ∈ π1(e)•} ⊆ P (ω); moreover
•e = X, and e• = Z.

Places and transitions in the unfolding represent tokens and firing of transitions,
respectively, of the original Petri net. Each place in the unfolding is a tuple
recording the place in the original Petri net and the “history” of the token.
The projection π1 over the first component maps places and transitions of the
unfolding to the corresponding items of the original Petri net N. Usually the
places and transitions of the unfolding are also called conditions and events,
respectively. The initial marking is left implicit as it is identified as the set of
minimal places. The unfolding of a marked net system is made an occurrence net
system by setting H(ω) = {e ∈ T (ω) : π1(e) ∈ H}, L(ω) = {e ∈ T (ω) : π1(e) ∈ L}
and D(ω) = {e ∈ T (ω) : π1(e) ∈ D}.

The following relations characterise the interdependencies between events in
Petri net unfoldings.

Definition 7 (causality, conflict). Causality < is the least transitive relation
on P (ω) ∪ T (ω) such that if x ∈ •y then x < y. By ≤ we denote the reflexive
closure of <. Conflict � is the least symmetric relation on P ∪ T such that if
t, t′ ∈ T , t �= t′ and •t ∩ •t′ �= ∅ then t � t′ and if x < x′ and x � y then x′ � y.

Two events are in conflict when they can never occur in the same computation:
for example ok1 � fail1 in the net system C of Fig. 1(c).

The causes of an event e ∈ T (ω) are [e] = {e′ ∈ T (ω) : e′ ≤ e} and we write [e)
for the strict causes, i.e., [e) = [e]−{e}. The computations of N are represented
by configurations in U(N), i.e., causally closed and conflict-free subsets of T (ω).

Definition 8 (configuration). A configuration of U(N) is a finite subset C ⊆
T (ω) such that � ∩ (C × C) = ∅ and [e] ⊆ C for all e ∈ C. The set of all
configurations of U(N) is denoted by C(U(N)).

A configuration of U(N) can be associated with a reachable marking of N,
obtained by firing all its transitions in any order compatible with causality. The
frontier of a configuration C is the set C◦ = (P (0) ∪

⋃
e∈C e•) − (

⋃
e∈C

•e);
it induces a marking M(C) on N defined by M(C) = {π1(b) : b ∈ C◦}. The
unfolding has been shown to be marking complete in the sense that m ∈ [m0〉
iff there exists C ∈ C(U(N)) such that M(C) = m (see [17,21]).

3 BINI Through Causal and Conflict Places

The paper [15] characterises BNDC for contact-free elementary Petri nets (safe
nets without self-loops) in terms of the absence of suitably defined causal and
conflict places. Later [9] adapted this approach to the BINI property, still for
contact-free elementary Petri nets. Here we provide a different structural char-
acterisation of the BINI property for safe net systems in terms of what we call
weak causal and conflict places. The qualification weak is motivated by the fact
that our requirements are weaker than those in [9], a fact which plays a pivotal
role for the development of the unfolding-based algorithm.
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Notation. Given a net system N, a place p ∈ P and a transition t ∈ T , we set
t− = {p ∈ P : F (t, p) < F (p, t)} and t+ = {p ∈ P : F (t, p) > F (p, t)}.

Definition 9 (weak causal place). A place p of a net system N is weak causal
if there are transitions l ∈ L, h ∈ H and a sequence τ ∈ (L ∪ H)∗ satisfying
(1) p ∈ •l ∩ h+ and (2) there is a reachable marking m such that m[hτl〉.
In words, a token in place p is needed by l (i.e. p is in the pre-set of l) and h
contributes positively to such place. Furthermore, there exists a firing sequence
m[hτl〉 in which h puts a token in p, that may afterwards travel through the net
moved by transitions (the sequence τ , which does not include downgradings),
and eventually goes back to p where it is essential for the firing of l. Intuitively,
this witnesses a causal information flow from the high to the low level since
the firing of l depends on the firing of a non-downgraded occurrence of h. An
example of weak causal place is p8 in Fig. 1(a). Clearly p8 ∈ check key+ ∩ •ok.
Moreover if m0[set key get key send file〉m and m[check key ok〉 (with τ = ε,
in the notation of Definition 9).

A notion of weak conflict place can be defined along the same lines.

Definition 10 (weak conflict place). A place p of a net system N is weak
conflict if there are transitions l ∈ L, h ∈ H and a sequence τ ∈ (L ∪ H)∗

satisfying (1) p ∈ •l∩h− and (2) there is a reachable marking m such that m[h〉
and m[τ l〉.
Notice that a token in place p is needed by l (since p ∈ •l) and consumed by h.
Moreover there is a marking in which there is a choice: either high transition h fires,
“stealing” a token from p, or a sequence τ (not containing downgrading transi-
tions) is executed which leads to the firing of l. Intuitively, the firing of l is possible
only in absence of the firing of a non-downgraded occurrence of h. An example
of weak conflict place is p4 in Fig. 1(a). Clearly p4 ∈ check key− ∩ •dequeue.
Moreover m0[set key get key send file〉m and m[check key〉, m[dequeue〉 (again
τ = ε with the notation of Definition 10).

Theorem 1 (BINI in safe net systems). A safe marked net system N is not
BINI iff it contains either a weak causal place or a weak conflict place.

4 Intransitive Non-Interference in the Unfolding

In this section we show how the presence of weak causal and conflict places in
a safe net N can be characterised in the unfolding U(N). In view of Theorem 1
this will provide also a characterisation of the BINI property. This is the basis
for devising unfolding-based algorithms for checking BINI (see Sect. 5).

4.1 Weak Causal and Conflict Places Through the Unfolding

Notation. For a condition b and an event e in U(N) we set e+ = {b ∈ P (ω) :
π1(b) ∈ π1(e)+} and e− = {b ∈ P (ω) : π1(b) ∈ π1(e)−}. Moreover transitions
denoted by d, h and l, possibly with subscripts, will be implicitly assumed to be
downgrading, high and low transitions, respectively.
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Lemma 1. Let N be a net system.

(i) If p is a weak causal place in N, then there are events h′, l′ and a condition b
in U(N) such that b ∈ •l′∩h′+, π1(b) = p and {d′ ∈ D(ω) : h′ < d′ < l′} = ∅;

(ii) if p is a weak conflict place in N, then there are events h′, l′ and a condition
b in U(N) such that b ∈ •l′ ∩ h′−, [h′) ∪ [l′] ∈ C(U(N)), π1(b) = p and for
all d′ ∈ D(ω) if d′#h′, then d′ �< l′.

Lemma 1 gives structural conditions that the unfolding U(N) necessarily satisfies
if N contains either a weak causal or a weak conflict place. Specifically, a weak
causal place in N is witnessed by the presence of a condition b ∈ •l′ ∩h′+ in the
unfolding, such that h′ is not downgraded by an event causally following h′ and
preceding l′. A weak conflict place is witnessed by the presence of a condition
b ∈ •l′ ∩ h′− such that h′ is not ruled out by any downgrading event necessary
for the occurrence of l′.

One can prove that also the converse holds and thus we get a characterisa-
tion of BINI for safe net systems in terms of the absence, in the unfolding, of
conditions satisfying the structural properties indicated in the following theorem.

Theorem 2 (BINI in the unfolding of safe net systems). A safe net sys-
tem N is not BINI iff there are events h′, l′ and a condition b in U(N) such that
either (1) b ∈ •l′ ∩ h′+ and {d′ ∈ D(ω) : h′ < d′ < l′} = ∅ or (2) b ∈ •l′ ∩ h′−,
[h′) ∪ [l′] ∈ C(U(N)) and for all d′ ∈ D(ω) if d′#h′, then d′ �< l′.

4.2 Complete Prefixes for Interferences

The characterisation of BINI in Theorem 2 paves the way to an unfolding-based
checking algorithm for such property. The general idea of unfolding-based verifi-
cation techniques, originating from the seminal work [21], consists in construct-
ing a causally closed subnet of the unfolding, referred to as an unfolding prefix,
which is complete for the property of interest. In [21] the focus is on reachability
and a prefix U of the unfolding is deemed complete when any marking reachable
in N is in the image of the marking produced by some configuration of U . This
has been later extended to more general properties [22].

In [16] it was observed that a prefix which is complete for reachability (and
also for executability of transitions), could lack relevant information for inter-
ferences. The solution adopted in [16] consists in considering extended markings,
which also record the security level of transitions producing tokens on the fron-
tier. This is not enough in presence of downgradings. Consider for instance the
net in Fig. 3 (a), its unfolding (b) and a prefix of the unfolding (c). The unfolding
prefix (c) is marking complete even if we take into account the security level of
the transition producing the tokens (i.e., it is extended marking complete in the
sense of [16]). The event l21 can be omitted in (c) since [l23] produces the same
marking as [l21], namely {p2, p3}, and in both cases only p3 is filled with a token
generated by a high transition (h1). However, the prefix (c) does not contain
an occurrence of place p3 satisfying the conditions of Theorem 2(1), witnessing
that p3 is a weak causal place. In fact, the only occurrence is p13 ∈ •l22 ∩ h1

1
+,
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Fig. 3. (a) A not BINI net system, (b) its unfolding and (c) a prefix not including an
interference.

but {d′ ∈ D(ω) : h1
1 < d′ < l22} = {d21} �= ∅. Thus the prefix does not witness the

fact that the net system is not BINI.
In order to produce a complete prefix which captures all interferences, we

need to further enrich the marking associated with a configuration.

Definition 11 (downgrading marking). Let N be a safe net system, U(N)
its unfolding and let C ∈ C(U(N)). The downgrading marking of C is Md(C) =
〈M(C), δC〉 where δC ⊆ M(C) × M(C) is the relation

δC = {(π1(b), π1(b′)) : (∃h′ ∈ H(ω). b′ ∈ h′+) ⇒ (∃d′ ∈ D(ω). h′ < d′ < b)}.

Roughly, when a token has been produced using a downgrading transition, its
presence in a marking can downgrade the confidentiality level of some tokens
produced by high transitions. The relation δC is intended to capture exactly this
information: given b, b′ ∈ C◦, we have that π1(b)δCπ1(b′) if b′ is produced by a
high-level transition h′ and b “declassifies” b′, in the sense that the presence of
a token in b witnesses the previous firing of a downgrading transition d′ caused
by h′. If, instead, b′ is not produced by a high transition then π1(b′) is already
public, and indeed π1(b)δCπ1(b′) trivially holds, i.e., b′ is declassified by any
condition (in particular by b′ itself).

For instance, consider again the unfolding (b) of Fig. 3. Note that Md([l21]) �=
Md([l23]) because p2δ[l23]p3 but ¬(p2δ[l21]p3). Therefore in a prefix of the unfolding
of (a), complete with respect to downgrading markings, none of the events l21
and l12 can be safely omitted. Hence the prefix will contain a witness of the weak
causal place p3 satisfying condition (1) of Theorem 2.
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Fig. 4. The d-markings become different after adding transition d′.

Definition 12 (d-complete prefix). A prefix U of U(N) is complete for
downgrading marking reachability (d-complete), when for any configuration
C ∈ C(U(N)) there exists C ′ ∈ C(U) such that Md(C) = Md(C ′).

Given a safe net system N, a d-complete prefix U of U(N) contains sufficient
information for deciding whether or not N contains a weak causal place.

Theorem 3 (d-completeness for weak causal places). Let N be a safe net
system and let U be an d-complete prefix of U(N). Then p is a weak causal place
in N iff there exist high and low events h′, l′ and a condition b in U such that
b ∈ •l′ ∩ h′+, {d′ ∈ D(ω) : h′ < d′ < l′} = ∅ and π1(b) = p.

5 Unfolding-Based Algorithms

Even if d-complete prefixes of U(N) determine whether N is BINI or not, there
are some technical difficulties concerning the actual construction of a d-complete
unfolding prefix. The problem lies in the fact that two configurations with the
same d-marking, once extended with an occurrence of the same transition, might
not have the same d-marking. For instance, consider configurations C1 and C2 -
marked by a grey background - in Fig. 4, where we assume that items denoted
by x′ and x′′ are occurrences of x. Then Md(C1) = Md(C2) = 〈{b5, b4}, δ〉 but
the equality of the d-markings no longer holds after adding the occurrences of d.
As a consequence Lemma 2 (cut-off elimination) would fail, thus invalidating the
construction of a complete prefix. Speaking in terms of the theory of canonical
prefixes [22], d-markings do not provide a valid cutting context. In order to cope
with this problem we further enrich the information recorded in the marking.

Definition 13 (ad-marking). Let N a safe net system, U(N) its unfolding
and C ∈ C(U(N)). The algorithmic downgrading marking ( ad-marking) of C is
Mad(C) = 〈M(C), δC , ζC〉, where ζC is the function given, for each h ∈ H, by
ζC(h) = {π1(b) : b ∈ C◦ ∧ ∃h′. π1(h′) = h ∧ h′+ ∩ C◦ �= ∅ ∧ h′ < b}.
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Ad-markings contain an additional component ζC(h), which provides an indica-
tion of those tokens which have non-downgraded instances of the high transition
h in their history. A downgrading transition using this token will determine the
downgrading of all tokens produced by h in the current marking.

Consider again configurations C1 and C2 in Fig. 4. Note that b5 ∈ ζC1(h) −
ζC2(h), so that Mad(C1) �= Mad(C2).

A key notion for constructing ad-complete prefixes is that of cut-off, which
is roughly a transition in the unfolding that produces an ad-marking already
produced by other transitions with smaller history. The idea of cut-off events
goes back to [21]. The word “smaller” is formalised by fixing an order ≺ on
configurations. We can take C ≺ C ′ is |C| < |C ′|, as in [21], but finer adequate
orders (see [22]) can be considered for reducing the size of complete prefixes and
improving the efficiency (this actually is done in the tool UBIC2).

Definition 14 (cut-off). Let N be a safe net system, U(N) its unfolding and U
a prefix of the unfolding. An event t ∈ TU is a cut-off when either (1) Mad([t]) =
Mad(∅), i.e. it as the same ad-marking as the initial marking, (2) or there exists
event t′ ∈ TU such that Mad([t]) = Mad([t′]) and [t′] ≺ [t].

A procedure that unfolds a net system by adding events with ≺-minimal history
and stopping at cut-offs produces an ad-complete prefix of the unfolding. This
requires Lemma 2 to be proved and follows from the general theory in [22].

Lemma 2 (cut-off elimination). Let N be a finite safe net system, U(N)
its unfolding and C ∈ C(U(N)) a configuration. There exists a configuration
C ′ ∈ C(U(N)) without cut-offs such that Mad(C) = Mad(C ′).

Relying on the results developed so far we are finally close to provide an algo-
rithm for checking the BINI property for safe net systems. Note that ad-complete
and d-complete prefixes are only ensured to witnesses causal interferences. How-
ever along the lines of [16], we can show that given a safe net system a construc-
tive procedure allows us to obtain a net which is BINI if and only if the original
net is, and where all interferences have been reduced to causal ones.

Lemma 3 (causal reduction). Let N be a safe net system. It is possible to
build a safe net called causal reduct of N, denoted by γ(N), such that N is BINI
iff γ(N) has a weak causal place.

The details of the construction of γ(N) are omitted here since such construction
for the BINI property is very similar to the one for BNDC in [16]. It causes at
most the doubling of the size of the net.

On these bases we developed Algorithm 1. It first computes the causal reduct
N′ = γ(N) of N. Then it builds an ad-complete prefix of the unfolding U(N′),
looking, at each step, for the presence of causal dependencies between high and
low transitions satisfying the conditions in Theorem 3. The starting unfolding
prefix U is the initial marking of N′. At each step, a possible extension of U ,
namely an event e′ of U(N′) such that •e′ ⊆ C◦ for some configuration C of U ,
is added. The set of possible extensions is updated by the procedure PE .



282 P. Baldan et al.

Data: A safe c-net system N
Result: ‘yes’ iff N is BINI
compute γ(N);
U := γ(m0);
PE(U, pe);
while pe �= ∅ do

take t ∈ pe s.t. [t] is <-minimal;
if π1(t) ∈ L then

if ∃h ∈ HU , p′ ∈ PU : p′ ∈ •t∩ h+ ∧ {d ∈ DU |h < d < t} = ∅ then
return ‘no’

end

end
if t is not a cut-off then

add t to U ;
end
PE(U,pe);

end
return ‘yes’

Algorithm 1. Algorithm to decide BINI on safe net systems.

Theorem 4 (correctness of the algorithm for safe net systems). Let
N be a safe net system. Then Algorithm 1 always terminates and provides the
answer ‘yes’ iff N is BINI.

6 Implementation and Experimental Results

A tool UBIC2 (Unfolding-Based Interference Checker 2 ) [19], which checks the
property BINI on safe net systems by resorting to Algorithm 1, has been imple-
mented as an extension of the tool UBIC for BNDC [16]. Both UBIC and UBIC2
are based on CUNF [23], a toolset for the computation of the unfolding of con-
textual Petri nets.

The tool UBIC2 takes as input a safe net N in the PEP ll net format, docu-
mented in [23]. The security level of transitions is determined by the first charac-
ter of their name: “h” stands for high, “d” for downgrading any other character
for low. Depending on the selected option, the tool can either stop when the first
interference witness is found (if any) or compute a complete unfolding prefix.

The benefits arising from resorting to a true-concurrent semantics rather
than to an interleaving one have been already discussed in [16], where UBIC is
shown to outperform in several cases tools based on interleaving approaches like
ANICA [20] (which in turn has better performances than PNSC [9]).

The discussions and tests which follows are thus mainly aimed at assessing to
what extent the increased complexity and the additional data structures needed
for managing the downgrading influence the performances. As such, they focus
on the tools UBIC and UBIC2. We also keep an eye on the comparison with the
tool ANICA, based on the interleaving semantics, in order to get a confirmation



Intransitive Non-Interference by Unfolding 283

Table 1. Test results on C nets.

UBIC UBIC2 ANICA

Size Places Trans Time Mem Time Mem Time

(sec) (MB) (sec) (MB) (sec)

25 200 200 0.032 8.277 0.037 8.367 1.167

50 400 400 0.145 25.922 0.166 25.918 4.616

100 800 800 1.010 84.738 1.074 84.469 25.730

200 1600 1600 7.947 293.113 8.022 291.605 210.695

300 2400 2400 31.634 615.156 32.900 615.898 779.620

of the gain of efficiency provided by a true concurrent approach in the case of
highly concurrent systems.

The tests have been run on a laptop mounting Intel R©CoreTMi3-3227U CPU
@ 1.90GHz, 4GB of RAM @ 1.90GHz and XUbuntu GNU/Linux version 13.04.
For each test the following data are reported:

– Size: size of the net w.r.t. parameters that depend on the kind of net,
– Places: number of places in the net before any kind of processing,
– Trans: number of transitions in the net before any kind of processing,
– X Time (sec): time needed by tool X to analyse the net (in seconds),
– X Mem (MB): memory consumed by tool X to analyse the net (in MB).

The tests presented below have been conducted on two families of systems.

1. Generalisations C(m) of the file signature checker Fig. 1, with m multiple
parallel components. The results are reported in Table 1. All the instances
are not BNDC (whence not BINI). The tools have been invoked by requiring
to find all possible interferences. We did not report the memory usage for
ANICA because it invokes subprocesses, a fact that makes it very difficult to
get an accurate measure. Hence very few can be said about the comparison of
UBIC2 and ANICA in terms of memory usage. We also compared UBIC2 and
ANICA on the checking of property BINI using variations of net system C
with downgrading transitions, namely on systems consisting of parallel copies
of the net system P in Fig. 2 (UBIC was not included in the comparison as it
does not deal with downgradings). The results are almost identical to those
in the last two columns of Table 1, hence not reported.

2. Nets R(m) implementing a simple mutual exclusion algorithm described
in [16], parametric with respect to the number m of processes competing
for the resource. The results are reported in Table 2. All the instances are not
BNDC and hence they are not BINI.

The experimental results in Tables 1 and 2 are quite reassuring. They show
that, when verifying BNDC, UBIC2 has almost the same performances as UBIC
in terms of execution time and memory consumption. In turn, UBIC was shown
in [16] to often outperform interleaving based tools and this is confirmed here.
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Table 2. Test results on R nets.

UBIC UBIC2

Size Places Trans Time Mem Time Mem

(sec) (MB) (sec) (MB)

10 64 62 0.010 2.562 0.015 2.777

20 124 122 0.044 7.234 0.065 7.965

30 184 182 0.169 15.840 0.219 17.352

50 304 302 1.369 51.152 1.499 55.059

100 604 602 22.548 300.465 24.348 316.121

An overhead in memory usage is expected due to the additional data recorded
in ad-markings with respect to what happens for the algorithm verifying BNDC
in [16]. If ad-markings for histories are explicitly stored, the memory consump-
tion for markings increases of a factor O(2|H| · |P |). The factor |P | is due to the
maximal size of a marking (at most all places are marked in the net), while the
factor 2|H| is due to the number of components in the ad-marking. Roughly,
we can expect that the increase in memory consumption for UBIC2 w.r.t. UBIC
will be proportional to the number of high transitions in the net. Indeed this
effect is visible in the tests reported in Table 2 where nets with a significant
number of high transitions are considered.

Concerning the execution time, there are two kinds of overhead: the compu-
tation of the ad-marking and the exploration of histories in search of downgrad-
ing transitions. They do not seem to have a relevant impact, possibly due to the
fact that the data structures used by CUNF are optimised for these operations.

7 Conclusions and Future Work

We provided a “causal” characterisation of non-interference by focusing on Petri
nets and on Bisimilarity-based Intransitive Non-Interference (BINI). For the
class of safe net systems, we characterised BINI on the unfolding, in terms of
causalities and conflicts between high and low level transitions. Our work led to
an algorithm for checking BINI based on the generation of a suitable finite prefix
of the unfolding. We also developed a prototype tool UBIC2 (Unfolding-Based
Interference Checker 2) [19] that implements the algorithm proposed in this
paper. The algorithm, despite being in a prototypical form, exhibits promising
performances compared to other tools based on interleaving semantics.

The paper mostly deals with safe Petri nets, which are widely used in system
modelling and verification. This is quite convenient when resorting to unfold-
ing techniques. A generalisation to non-safe (but still finite-state) Petri nets is
possible at the price of technical complications and a reduced efficiency.

As future lines of research, we intend to explore causal characterisations of
non-interference for other formalisms including process calculi and imperative
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languages. This would allow to establish a formal and possibly fruitful link with
the huge literature on non-interference in these settings. The connection could
rely on Petri net encodings of these formalisms. For process calculi many propos-
als can be found in the literature (see, e.g., [24–26]). For imperative languages
a suitable encoding, properly capturing dependencies between computational
steps, could require more sophisticated Petri net models. In particular Petri
nets extended with read arcs, capable of representing the concurrent read access
to shared resources, could be helpful. The use of read arcs can lead to a gain of
efficiency for unfolding-based verification techniques (see, e.g., [27]). Preliminary
investigations suggest that the extension of the framework in the present paper
to Petri nets with read arcs is algorithmically feasible and yet non-trivial.

Our paper develops in a two-level setting, where we only consider a private
and a public level. We believe that this choice is more suited for presenting the
fundamental ideas and difficulties, which could be obfuscated in a more realistic
and fine-grained context. The extension to an arbitrary number of security levels
does not seem to oppose serious conceptual complications (the security check in a
multi-level setting can be reduced to a number of checks in a two-level setting),
although it could impact on performances. Another interesting refinement is
the use of selective declassification [28], where each downgrading action d can
declassify only a subset H(d) ⊆ H of high actions. Again, we believe that our
approach can be easily adapted by slightly changing the notion of ad-marking.

Opacity has been studied in the setting of Petri nets [29] as a general notion,
capable of capturing various confidentiality properties, including non-interference
notions with downgrading. Exploring the possibility of exploiting causal semantics
in this setting appears as an interesting venue of future research. We would also
like to investigate the relation with other approaches which exploit Petri nets and
causal semantics in the presence of partial information. In particular, diagnosabil-
ity properties [30] (roughly, the possibility of deducing hidden action occurrences
from the observation of visible ones) seem similar in spirit to non-interference
properties.

Acknowledgements. We are grateful to the the anonymous referees for their insight-
ful comments and suggestions on the submitted version of this paper.
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Abstract. Reduction and abstraction techniques have been proposed to
address the state space explosion problem in verification. In this paper,
we present reduction and abstraction techniques for component-based
systems modeled in BIP (Behavior, Interaction and Priority). Given
a BIP system consisting of several atomic components, we select two
atomic components amenable for reduction and compute their prod-
uct. The resulting product component typically contains constants and
branching bisimilar states. We use constant propagation to reduce the
resulting component. Then we use a branching bisimulation abstraction
to compute an abstraction of the product component. The presented
method is fully implemented and scales to large designs not possible to
verify with existing techniques.

1 Introduction

As systems become more complex, verifying their correctness becomes harder,
especially in the presence of state explosion. Researchers have proposed reduction
and abstraction techniques to address this problem [11,14,17]. We discuss and
compare to them in Sect. 6.

We target component-based systems (CBS) expressed in the BIP (Behavior,
Interaction and Priority) framework [2]. BIP uses a dedicated language and tool-
set supporting a rigorous design flow. The BIP language allows to build complex
systems by coordinating the behavior of a set of atomic components. Behavior
is described with Labeled Transition Systems (LTS) where transitions are anno-
tated with data and functions written in C. Coordination between components
is layered. The first layer describes the interactions between components that
allow synchronization and data transfer. The second layer describes dynamic
priorities between the interactions to express scheduling policies. The combi-
nation of interactions and priorities characterizes the overall architecture of a
system. Moreover, BIP has rigorous operational semantics: the behavior of a
composite component is formally described as the composition of the behaviors
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of its atomic components. This allows a direct relation between the underlying
semantic model and its (automatically synthesized) implementation.

The BIP framework uses: (1) DFinder [3], a compositional and incremental
verification tool-set, and (2) NuSMV [8] model checker, to verify BIP system
invariants.

In this paper, we present reduction and abstraction techniques for component-
based systems modeled in BIP. Given a BIP system consisting of several atomic
components, our method automatically selects a pair of candidate components
that have a high reduction potential based on their data dependencies and
their synchronization. Our method uses component selection heuristics similar to
[9,10,19] and provides a user-defined selection API. Then, our method computes
the product of the selected pair of atomic components which renders the interac-
tion data transfer operations into transition data transfer operations. This often
uncovers opportunities for constant propagation in the product component that
were hidden before. Moreover, the product operation results in product transi-
tions of two types: (1) non-observable transitions involved only in a singleton
interaction (i.e., a singleton interaction involves only one component) and with
no actions; (2) observable transitions involved in either multiparty interactions
or in a singleton interaction but with actions. Non-observable transitions form
a branching bisimilar equivalence relation that partitions the state space. Our
method detects and merges equivalence classes into representative states result-
ing in an abstraction of the product component.

The presented techniques are fully implemented. We evaluate our method
using (1) traffic light controller case study and (2) medium to large config-
urations of an Automatic Teller Machine (ATM). The results show that our
method drastically reduces the state space and enables verifying invariants more
efficiently. In this paper, we make the following contributions:

– We abstract a BIP system with a branching bisimulation equivalence that we
formalize and that leverages observable and non-observable transitions in the
BIP context.

– We provide structural heuristics for selecting candidate pairs of components
amenable for reduction and abstraction.

– We also provide an API for user-defined component selection criteria.
– We formalize the product operation between two BIP components and embed

constant propagation in it.

The rest of the paper is structured as follows. Section 2 discusses needed
background information about BIP. We present the merging and constant prop-
agation techniques in Sect. 3, and the branching bisimulation reduction in Sect. 4.
Section 5 illustrates the results obtained from verifying models reduced using our
method. We summarize related work in Sect. 6 and conclude in Sect. 7.

2 BIP - Behavior, Interaction, Priority

We recall the necessary concepts of the BIP framework [2]. BIP allows to con-
struct systems by superposing three layers of modeling: Behavior, Interaction,
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and Priority. The behavior layer consists of a set of atomic components repre-
sented by transition systems. Atomic components are Labeled Transition Sys-
tems (LTS) extended with C functions and data. Transitions are labeled with sets
of communication ports. The interaction layer models the collaboration between
components. Interactions are described using sets of ports. The priority layer is
used to specify scheduling policies applied to the interaction layer, given by a
strict partial order on interactions.

Atomic Components. An atomic component is endowed with a finite set of
local variables X taking values in a domain Data. Atomic components synchro-
nize and exchange data with each others through ports. Below, we will denote by
B[X] the set of boolean predicates over X and by Exp[X] the set of assignment
statements of the form X := f(X).

Definition 1 (Port). A port p[Xp], where Xp ⊆ X, is defined by a port iden-
tifier p and some data variables in a set Xp (referred to as the support set). We
will also denote this set of variables by p.X.

Definition 2 (Atomic component). An atomic component B is defined as
a tuple (P,L,X, T ), where P is a set of ports,1 L is a set of control locations,
X is a set of variables and T ⊂ L × P × B[X] × Exp[X] × L is a transition
relation, such that, for each transition τ = (l, p[Xp], gτ , fτ , l′) ∈ T , gτ ∈ B[X] is
a Boolean guard over X and fτ ∈ Exp[X] is a partial mapping associating to
some x ∈ X the corresponding statement fx

τ (X).

For τ = (l, p[Xp], gτ , fτ , l′) ∈ T a transition of the LTS, l (resp. l′) is referred
to as the source (resp. destination) location and p is a port through which an
interaction with another component can take place. Transition τ can be executed
only if the guard gτ evaluates to true, and fτ is a computation step: a set of
assignments to local variables in X.

In the sequel we use the dot notation. Given a transition τ = (l, p[Xp], gτ , fτ , l′),
τ.src, τ.port , τ.guard , τ.func, and τ.dest denote l, p, gτ , fτ , and l′, respectively.
Also, the set of variables used in a transition is defined as var(fτ ) = {x ∈ X | x :=
fx(X) ∈ fτ}. Given an atomic component B, B.P denotes the set of ports of the
atomic component B, B.L denotes its set of locations, etc. We denote by X the
set of valuations of the variables X.

Semantics of Atomic Components. The semantics of an atomic component is an
LTS over configurations and ports, formally defined as follows:

Definition 3 (Semantics of Atomic Components). The semantics of the
atomic component B = (P,L,X, T ) is defined as the LTS SB = (QB ,
PB ,−→),2 where QB = L × X, PB = P × X denotes the set of labels, that
is, ports augmented with valuations of variables and −→=

{(
(l, v), p(vp), (l′, v′)

)
|

1 All sets are finite.
2 Here and below, we omit the index on −→, since it is always clear from the context.
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∃τ = (l, p[Xp], gτ , fτ , l′) ∈ T : gτ (v)∧v′ is equal to the value of fτ (vp/v)
}
, where

vp is a valuation of the variables Xp.

Transition (l, v)
p(vp)−−−→ (l′, v′) is possible iff there exists a transition

(l′, p[Xp], gτ , fτ , l), such that gτ (v′) = true. As a result, the valuation of vari-
ables X is updated to v′ = fτ (vp/v), i.e. the values of variables Xp are updated
to vp before the application of f .

Creating Composite Components. Atomic components interact by synchro-
nizing transitions. Upon synchronization, data values can be transferred between
components.

Definition 4 (Interaction). An interaction a is a tuple (Pa, Ga, Fa), where
Pa ⊆

⋃n
i=1 Bi.P is a nonempty set of ports that contains at most one port

of every component, that is, ∀i : 1 ≤ i ≤ n : |Bi.P ∩ Pa| ≤ 1. Denoting by
Xa =

⋃
p∈Pa

Xp the set of variables available to a, Ga ∈ B[Xa] is a boolean
guard and Fa : Xa → Xa is an update function. Pa is the set of connected ports
called the support set of a.

Definition 5 (Semantics of Composite Components). Let B =
{B1, . . . , Bn} be a set of atomic components with their respective semantic LTS
SBi

= (QBi
, PBi

,−→) (recall, Definition. 3, that the states QBi
and labels PBi

comprise valuations of data variables); let γ be a set of interactions. The com-
position of B with γ is the LTS γ(B) = (Q, γ,→), where Q = QB1 × . . . × QBn

and −→ is the least set of transitions satisfying the following rule

a =
(
{pi}i∈I , Ga, Fa

)
∈ γ Ga({vpi

}i∈I)

∀i ∈ I, qi
pi(vi)−−−−→i q′

i ∧ vi = F i
a({vpi

}i∈I) ∀i �∈ I, qi = q′
i

(q1, . . . , qn) a−→ (q′
1, . . . , q

′
n)

where vpi
denotes the valuation of the variables attached to port pi and F i

a is the
partial function derived from Fa restricted to the variables associated with pi.

The meaning of the above rule is the following: if there exists an interaction a
such that all its ports are enabled in the current state and its guard evaluates to
true, then the interaction can be fired. When a is fired, all involved components
evolve according to the interaction and not involved components remain in the
same state.

Finally, we consider systems defined as a parallel composition of components
together with an initial state.

Definition 6 (System). A BIP system S is a tuple (B, Init , v) where B is a
composite component, Init ∈ B1.L × . . . × Bn.L is the initial state of B, and
v ∈ XInit where XInit ⊆

⋃n
i=1 Bi.X.
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3 Merging and Constant Propagation

In this section we present two techniques merging and constant propagation
in order to reduce the state space of the system. First, we select candidate
components for merging based on a set of heuristics. Then, we apply a constant
propagation technique [16] that will reduce the state space by removing some
data variables.

3.1 Merging Components

Throughout this paper, we assume that the input BIP systems have no priority
rules and that all the automata in the BIP atomic components are complete.
An automaton is complete iff in any location, the disjunction of guards of the
outgoing transitions evaluates to true.

Let B be a set of atomic components and γ be an interaction model. Consider
two atomic components B1, B2 ∈ B and denote I(B1, B2) = {a ∈ γ | Pa ⊆ B1.P∪
B2.P} the set of interactions involving only B1 and B2; P12 =

⋃
a∈I(B1,B2)

Pa

the set of all ports that are part of some interaction a ∈ I(B1, B2) and pa a
new port corresponding to an interaction a ∈ I(B1, B2). Assume further that all
ports involved in interactions between B1 and B2 are not involved in interactions
with any other atomic components, i.e., for any a ∈ γ, either a ∈ I(B1, B2), or
Pa ∩ P12 = ∅.

Definition 7 (Product Component). Let B1 and B2 be two atomic compo-
nents as above. Their product is an atomic component prod(B1, B2) = (P,L,
X, −→), where:

– P = B1.P ∪ B2.P ∪ {pa | a ∈ I(B1, B2)} \ P12,
– X = B1.X ∪ B2.X,
– −→ is the minimal transition relation induced by the following rules,

a ∈ I(B1, B2) Pa = {p1, p2} l1
(p1,g1,f1)−−−−−−→ l′1 l2

(p2,g2,f2)−−−−−−→ l′2

(l1, l2)

(
pa, g1∧g2∧Ga, (f1∪f2)◦Fa

)

−−−−−−−−−−−−−−−−−−−→ (l′1, l
′
2)

,

{i, j} = {1, 2} p ∈ Bi.P \ P12 li
(p,g,f)−−−−→ l′i l′j = lj

(l1, l2)
(p,g,f)−−−−→ (l′1, l

′
2)

,

– L =
{
(l1, l2) ∈ B1.L × B2.L | ∃(l′1, l

′
2) ∈ B1.L × B2.L : (l1, l2) −→ (l′1, l

′
2)

}
.

Informally, the product component operation is a syntactic analogue of the
semantic parallel composition operation of two atomic components as defined
in Definition 5.

Definition 8 (Component Merging). Let γ(B) be a composite component
and B1, B2 be atomic components as above. We define the component merging
operation merge(γ(B)) = γ′(B′) where
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– B′ = B ∪ {prod(B1, B2)} \ {B1, B2}, and
– γ′ =

(
γ \ I(B1, B2)

)
∪

{(
{pa}, true, id

) ∣
∣ a ∈ I(B1, B2)

}

By Definition 5 system γ′(B′) is semantically equivalent to γ(B) since the
product component prod(B1, B2) ∈ B′ from Definition 7, where B1 and B2 are
atomic components in B, is semantically equivalent to a parallel composition.

Several heuristics for selecting candidate components have been presented for
LTS systems with no data transfer [9,10,19]. These heuristics consider merging
pairs of components and favor the ones that result in smaller components. Our
method iteratively selects and merges candidate components for merging based
on a set of heuristics that take data transfer and component synchronization
into consideration.

The first heuristic favors the pairs of components with the largest amount
of data transfer. Intuitively, larger data transfer operations offer more room for
stuck at constant variables that we detect and eliminate using constant propaga-
tion. The width of the data transfer considers the type of data variables (integers
are wider than Boolean variable). The second heuristic favors the components
that are highly synchronized since they produce more compact products. Intu-
itively, the product of highly synchronized components results in a large unreach-
able state space that is easily detected. Both are structural analysis heuristics
and take polynomial running time with respect to the size of the system.

Our method also supports a merge selection API that users can implement
to rank candidate component pairs. The API passes a pair of components to the
user implementation and the implementation evaluates the pair and returns a
merging rank value. The pair with highest rank is considered for merging.

Product components can be very large which is a problem to compositional
model checking techniques in DFinder and NuSMV. Our method considers the
product of components B1 and B2 if the maximum number of possible transitions
of B1 × B2 is smaller than a threshold value n1 × n2 ≤ nt where n1 and n2 are
the number of transitions in B1 and B2, respectively.

3.2 Constant Propagation

We remove stuck-at-constant data variables by following the basic definition of
constant propagation from [16,20]. A variable is stuck-at-constant if it is constant
on all possible control locations of an atomic component. Applying constant
propagation as an intermediate step in compositional verification tools is not
novel and is a well established technique [12,15]. To the best of our knowledge,
we are the first to apply it in the context of BIP systems.

Given a composite component γ({Bi}i∈I) and an atomic component Bk such
that k ∈ I, we construct the composite component γ({Bj}j∈J , B′

k) where J = I\
{k} and B′

k is an atomic component such that B′
k.L = Bk.L, B′

k.X = Bk.X\Xc

where Xc ⊆ Bk.X is the set of stuck-at-constant variables in Bk, and B′
k.T = T ′

where T ′ is T with each constant variable x ∈ Xc is replaced by its constant
value appropriately.
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Algorithm 1. Algorithm for building CFG of an atomic component
l0 ← initial location of B
Create vertex vinit s.t. vinit.l = l0 and vinit.f = initial valuation of B.X
Create vertex vl0 s.t. vl0 .l = l0 and vl0 .f = φ
Create vertex (vinit, vl0)
V ertices[l0] ← vl0

stack.push(l0)
while ¬stack.isEmpty() do

l ← stack.pop()
Set l as visited
vl ← V ertices[l]
for all τ s.t. τ.src = l do

Create vertex v s.t. v.l = l and v.f = τ.f
Create edge (vl, v)
if τ.dest visited then

Create edge (v, V ertices[τ.dest])
else

Create vertex vdest s.t. v.dest.l = τ.dest and vdest.f = φ
Create edge (v, vdest)
V ertices[τ.dest] ← vdest

stack.push(τ.dest)
end if

end for
end while

Definition 9 (Control Flow Graph). The control flow graph (CFG) of an
atomic component B is a directed graph (V,E) where:

– V is a set of vertices, each representing a control location l ∈ B.L and a set of
computational steps in B. We denote by v.l and v.f the control location and
the set of computational steps in v ∈ V , respectively.

– E is a set of edges, such that (v1, v2) ∈ E iff ∃(τ ∈ B.T ). (v1.l = τ.src ∧ v2.l =
τ.dest) ∧ (v1.f = τ.f ∨ v2.f = τ.f).

Listing 1 shows the algorithm used for constructing the CFG of an atomic
component B. We create an empty vertex for each control location in B. We
denote by vl the empty vertex corresponding to control location l ∈ B.L. Then
we perform a depth first traversal of the LTS of B. For each control location
l, for every outgoing transition τ , we create a vertex vτ such that vτ .l = l
and vτ .f = τ.f , and create edges (vl, vτ ) and (vτ , vτ.dest). The empty vertices
can be easily discarded, but we keep them to simplify the constant propagation
step. Intuitively, this step is conservative as it abstracts away guards and may
not consider some potential stuck-at-constant variables. Alternatively, symbolic
computation can be used to take advantage of that.

Definition 10 (Lattice element). A lattice element is a representation of sta-
tic knowledge of the value of a variable x during the execution of a constant
propagation algorithm [20]. A lattice element can have one of three types:
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– �: x is likely to have a yet to be determined constant value.
– ⊥: x’s value cannot be determined statically.
– ci: x has the value i.

Definition 11 (Lattice element meet). The meet (�) operation of two lattice
elements is an operation such that: (1) � � any = any; (2) ⊥ � any = ⊥; (3)
ci � cj = ci if i = j; and (4) ci � cj = ⊥ if i �= j.

Listing 2 shows the constant propagation algorithm. Given an atomic component
B, we start by constructing the CFG G(B) = (V,E). At each vertex v ∈ V , a
variable is associated with two lattice elements, an entry element and an exit
element. We initialize all variables to have the � lattice element. Variables that
take part in any interaction are directly assigned the ⊥ element since their
values cannot be predicted from the component itself. Visiting a vertex v consists
of computing the entry lattice elements for each variable x ∈ var(v.f), where
var(v.f) is the set of variables referenced in v.f . This is done by performing
a meet operation on the exit lattice elements of all vertices v′ such (v′, v) ∈
E. We then evaluate v.f based on the new entry elements. The rules for the
evaluation of the addition operator on lattice elements are: (1) �+(� or ci) = �;
(2) ⊥+any = ⊥; and (3) ci +cj = ci+j . The rules for the rest of operators follow
similarly.

If the evaluation of v.f causes a change in the exit lattice element of any vari-
able x ∈ B.X, all vertices v′′ such that (v, v′′) ∈ E are marked for visiting. A fixed
point is reached once no further exit elements are changes and no vertices are still
marked for visiting. After reaching the fixed point, we form the set of stuck at
constant variables Xc = {x : x ∈ B.Xand ∀v ∈ V. Entry[v][x] is constant} that
have constant lattice elements at the entry of every vertex. Finally, we construct
T ′ = {(l, p, g′

τ , f ′
τ , l′) | (l, p, gτ , fτ , l′) ∈ T} where g′

τ and f ′
τ are the new guards

and actions. We substitute the Xc variables with their corresponding constant
values in the guards g′

τ = gτ [x ∈ Xc/Entry[v][x]] where v.f = fτ . We do the
same for the actions f ′

τ = (fτ\ {x := fx(X) | x ∈ Xc})[x ∈ Xc/Entry[v][x]] but
after removing the assignment statements corresponding to Xc variables.

4 Branching Bisimulation Abstraction

To cope with the increase in the number of control locations introduced by the
component merging process, we apply a branching bisimulation based abstrac-
tion [13]. A branching bisimulation equivalence relation partitions the control
locations into disjoint sets of locations that are branching bisimilar [21]. We
recall the definition of branching bisimulation for LTS systems from [5,13] and
apply it in the BIP context.

Definition 12 (Partition of control locations). Given an atomic component
B, π ⊆ 2B.L is partition of the set of control locations B.L iff (1)

⋃
L∈π L = B.L;

and (2) ∀L′, L′′ ∈ π, L′ �= L′′ ⇒ L′ ∩ L′′ = ∅.

We denote by π(l) the block L ∈ π containing the control location l.



296 M. Noureddine et al.

Algorithm 2. Constant propagation algorithm
G ← CFG(B)
for all v ∈ G.V do

for all x ∈ var(v.f) do
Entry[v][x] ← Exit[v][x] ← �

end for
end for
v0 ← G.vinit

stack.push(v0)
while ¬stack.isEmpty() do

v ← stack.pop()
for all x ∈ var(v.f) do

Entry[v][x] ← meet(Exit[v′][x] ∀v′ ∈ G.V s.t. (v′, v) ∈ G.E)
end for
for all x ∈ var(v.f) do

Exit[v][x] = evaluate(v.f)
if Exit[v][x] changed then

for all v′′ s.t. (v, v′′) ∈ E do
stack.push(v′′)

end for
end if

end for
end while

Definition 13 (Non-observable transition). Given a composite compo-
nent γ({Bi}i∈I), an atomic component Bk for k ∈ I, a transition τ =
(l, p, gτ , fτ , l′) ∈ Bk.T is a non-observable transition iff (1) fτ = ∅; and
(2) ∀a = (Pa, Ga, Fa) ∈ γ, p ∈ Pa ⇒ (Pa = {p} ∧ Fa = ∅).

Informally, non-observable transitions involved only in a singleton interaction
and with no actions. Non-observable transitions form a branching bisimilar
equivalence relation that partition the state space.

Let ε = {(l, l′) | ∃τ = (l, p, gτ , fτ , l′) ∈ Bk.T and τ is non-observable}. The
set ε∗ denotes the reflexive transitive closure of ε. We use the notation l

p−→ l′

for τ = (l, p, gτ , fτ , l′) ∈ B.T .

Definition 14 (Branching bisimilarity relation). Given a composite com-
ponent γ({Bi}i∈I), an atomic component Bk for k ∈ I, a relation B = Bk.L ×
Bk.L is a branching bisimilarity relation on Bk iff:

– B is symmetric
– Given l, � ∈ Bk.L, (l, �) ∈ B iff ∀l, l1, l

p−→ l1,

⎧
⎪⎨

⎪⎩

(l, l1) ∈ ε ∧ (l1, �) ∈ B

∨
∃(l2, �1 ∈ Bk.L), (�1

p−→ l2) ∧ (�, �1) ∈ ε∗ ∧ (l, �1) ∈ B ∧ (l1, l2) ∈ B
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We write l1 ∼ l2 when (l1, l2) ∈ B. We denote by πb the partition under the
branching bisimilarity equivalence.

Definition 15 (Quotient branching bisimilar component). Given a com-
posite component γ({Bi}i∈I), and an atomic component Bk for k ∈ I, let B be
the largest branching bisimulation relation over Bk, an atomic component B is
the quotient branching bisimilar component of Bk iff B is the atomic component
with the smallest number of states such that

1. B.L = πb

2. B.T = {(πb(l), p, g, f, πb(l′)) | (l, p, g, f, l′) ∈ Bk.T ∧
(
(l ∼ l′) ⇒ ((l, l′) /∈ ε)

)
}

3. B.P = {p | ∃τ = (l, p, g, f, l′) ∈ B.T}.

Definition 16 (Branching bisimulation abstraction). Given a composite
component γ({Bi}i∈I) and an atomic component Bk for k ∈ I, we define the
branching bisimulation abstraction operation

abstract(k, γ({Bi}i∈I)) = γ({Bi}i∈I)|Bk=B

where Bk is replaced by its quotient branching bisimilar component B.

Construction. We follow the signature refinement approach for branching
bisimulation abstraction as presented in [5,21]. It is based on computing a signa-
ture for each control location l ∈ B.L. At the end of the algorithm, control loca-
tions with the same signature sig(l) are bisimilar with respect to the branching
bisimilarity relation B. Given an atomic component B, we start from an initial
partition π0 = {B.L}. We then keep refining the partition π w.r.t. B until a
fixed point is reached and we are left with a minimal partition πb of B.L.

Definition 17 (Branching bisimulation signature function). Given an
atomic component B and a partition π of B.L, the branching bisimulation
signature function of a control location l ∈ B.L is defined as: sig(l) =
{(p, π(l1)) | ∃l2 ∈ B.L s.t. (l, l2) ∈ ε∗ ∧ l2

p−→ l1 ∧
(
(l2, l1) /∈ ε∨π(l1) �= π(l)

)
}.

Listing 3 shows the algorithm we used for computing the minimal partition πb

of the control locations B.L; it is a direct adaptation of the single threaded
algorithm presented in [5]. Constructing the quotient atomic component from
the computed partition is a direct translation of Definition 15.

Correctness. As noticed in [4], a straightforward consequence of Bloom’s
results [6] is that composition with sets of interactions (Definition 5), called
“BIP glue operators” in [4], preserves bisimilarity. Since the only transitions
that we consider non-observable in this paper do not modify the data variables
of atomic component and do not participate in any of the interactions, it follows
that branching bisimilarity is preserved by composition with interactions.
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Algorithm 3. Branching bisimulation abstraction algorithm
BranchingBisimilarityAbstraction(B)
π′ ← π ← B.L
repeat

π ← π′

π′ ← refinePartition(B, π)
until π′ ← π

refinePartition(B, π)
for all l ∈ B.L do

sig ← ∅
for all l′ ∈ B.L s.t. (l, p, g, f, l′) ∈ B.T do

if ((l, p, l′) �= ε) ∨ (π(l′) �= π(l)) then
sig ← sig ∪ (p, π(l′))

end if
end for
insertSignature(B, π, l, sig)

end for
return {{l′ ∈ B.L | sig(l′) = sig(l)} | l ∈ B.L}

insertSignature(B, π, l, sig)
sig(l) ← sig(l) ∪ sig
for all l′ ∈ B.L s.t. l′ ε−→ l do

if π(l) = π(l′) then
insertSignature(B, π, l′, sig)

end if
end for

The branching bisimulation abstraction introduces new behaviors as follows.
Observable transitions are allowed to introduce changes to the state of the com-
ponent by changing the values of the internal variables. The branching bismi-
larity relation only considers ports as transition labels and ignores differences in
actions. Thus grouping locations and building the quotient component may intro-
duce new sequences of transitions, especially in the cases where guards on the
transitions are not mutually exclusive. Nevertheless, the interactions between the
different components in the system are preserved, i.e., synchronization between
the components is not affected.

5 Results

We illustrate our method using a traffic light controller case study and evaluate
it using several configurations of medium to large ATM systems. We use the
NuSMV [8] model checker to verify deadlock freedom of the BIP systems before
and after reduction. We report on the number of BDD nodes allocated, and on
the execution time taken to perform the verification. Moreover, we also report
on the execution time taken by DFinder [3] to prove the deadlock freedom of
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the ATM design. All experiments are run on a machine with an Intel Core i7
processor and 4 GB of physical memory. We set a time-out for verification of 5000
seconds, and do not set a limit on the memory usage other than the physical
limit of the machine. We use the default configuration of NuSMV and do not
add any further optimizations. We use the command check fsm to verify deadlock
freedom of the designs.

5.1 Traffic Light Controller

Figure 1 shows a traffic light controller system modeled in BIP. It is composed of
two atomic components, timer and light. The timer counts the amount of time
for which the light must stay in a specific state (i.e. a specific color of the light).
The light component determines the color of the traffic light. Additionally, it
informs the timer about the amount of time to spend in each location through
a data transfer on the interaction a between the two components.

The interaction a between the components creates a data dependence between
the two. This data dependence hides the fact that the variable n has a constant
value at each location in the timer component. Figure 2a shows the product
component of the light and timer components. Since the done ports of the two
components are synchronized, we replace them by a single port donedone. Sub-
sequently, the interaction a is replaced by an interaction a′ based solely on the
newly created port. Note that this synchronization between the two done ports
renders some transitions in the product automaton obsolete, i.e. they can never
be taken and are thus removed.

Performing constant propagation on the resulting product yields to detecting
that both the variables n and m are constants at each control location. We
replace these variables by their constant values at each control location, and
remove them from the component as shown in Fig. 2b.

t := 0

timer done

[true] done.n := done.m

done
[true] [true]

done
m := 5

done
m := 10

G

YR

m := 3
[true]

done

[t ≥ n]

t := t+ 1

s0

[t < n]
timer

done

Fig. 1. Traffic light in BIP

Table 1 shows the results of running NuSMV on the translated BIP models
before and after applying our reduction techniques. The Locations and Transi-
tions columns show the total number of control locations and transitions in the
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s0, Ytimer
t := t+ 1

[t < n]

timer

[t < n]
timer
t := t+ 1

[t ≥ n]
donedone

[t ≥ n]
donedone

timer donedone

n := m;m := 5; t := 0;

t := t+ 1

[t < n]

n := m;m := 10; t := 0;

n := m;m := 3; t := 0;
donedone
[t ≥ n]

s0, G

s0, R

(a) Before constant propagation

t := 0;

timer
t := t+ 1

[t < 5]

timer

[t < 3]
timer
t := t+ 1

[t ≥ 10]
donedone
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Fig. 2. The product of the timer and light components

Table 1. Results for traffic light controller

Before reduction After reduction

Locations Transitions BDD nodes Time(s) Locations Transitions BDD nodes Time(s)

4 5 8589 0.0088 1 6 1425 0.0016

BIP system, respectively. The BDD Nodes and Time columns show the num-
ber of allocated BDD nodes and the time taken for verification, respectively.
Using branching bisimulation reduction, we are able to reduce the number of
control locations from 4 to a single location. Although the component merging
operation introduced an increase in the number of transitions, this addition did
not affect neither the number of allocated BDD nodes nor the verification time.
Our method reduced the verification time by a factor of 5 and the number of
allocated BDD nodes by a factor of 6.

5.2 Automatic Teller Machine

An ATM is a computerized system that provides financial services for users in a
public space. Figure 3 shows a structured BIP model of an ATM system adapted
from the description provided in [7]. The system is composed of four atomic
components: (1) the User, (2) the ATM, (3) the Bank Validation and (4) the
Bank Transaction. It is the job of the ATM component to handle all interactions
between the users and the bank. No communication between the users and the
bank is allowed.

The ATM starts from an idle location and waits for the user to insert his
card and enter the confidential code. The user has 5 time units to enter the code
before the counter expires and the card is ejected by the ATM. Once the code
is entered, the ATM checks with the bank validation unit for the correctness of
the code. If the code is invalid, the card is ejected and no transaction occurs.
If the code is valid, the ATM waits for the user to enter the desired amount of
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Fig. 3. Modeling of ATM system in BIP

money for the transaction. The time-out for entering the amount of money is of
6 time units.

Once the user enters the desired transaction amount, the ATM checks with
the bank whether the transaction is allowed or not by communicating with the
bank transaction unit. If the transaction is approved, the money is transferred
to the user and the card is ejected. If the transaction is rejected, the user is
notified and the card is ejected. In all cases, the ATM goes back to the idle
location waiting for any additional users. In our model, we assume the presence
of a single bank and multiple ATMs and users.

Table 2 shows the improvement obtained by applying our reduction method
on the ATM design for a number of ATMs ranging from 2 to 50. We show
the number of control locations and transitions before and after applying our
reduction method. We also present the number of allocated BDD nodes and the
verification time in seconds in each case for NuSMV, and the verification time
taken by DFinder to prove deadlock freedom. Note that in all cases, the results
were conclusive and no spurious counter-examples were generated. Our method
reduced by 3 times the number of control locations in the design and by 2 times
the number of transitions. Under NuSMV, it introduced large improvements in
both the number of allocated BDD nodes and the verification time, achieving

Table 2. Results for ATM system

NuSMV DFinder

Locations Transitions Reduction BDD nodes

ATMs Orig. Red. Orig. Red. Orig. Red. Orig. Red. Orig. Red.

2 50 18 68 32 0.066 977,712 542,901 1.4 0.2 3 2

3 73 25 98 44 0.073 6,183,118 921,076 142.6 10.3 4 3

4 96 32 128 56 0.079 18,630,028 1,893,192 3,360.9 281.3 6 4

5 119 39 158 68 0.086 N/A N/A N/A N/A 7 5

10 234 74 308 128 0.133 N/A N/A N/A N/A 24 8

50 1,154 354 1,508 608 0.472 N/A N/A N/A N/A 267 37
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10 times reduction for the case of 4 ATMs and 4 users. For number of ATMs
and users higher than 4, NuSMV reached the time-out limit for both designs.
As for DFinder, our method achieved high improvement reaching a speedup of
10 in the case of 50 ATMs and users. Note that in all cases, the time needed to
reduce the designs is negligible as shown in Table 2.

6 Related Work

Much work has been done on the automatic compositional reduction of com-
municating processes [1,9,10,19]. The techniques revolve around incrementally
composing and minimizing individual components of an input system modulo
an equivalence relation. Most of the techniques focus on finding heuristics for
selecting components to be composed in a way that minimizes the size of the
largest intermediate composed component.

The work in [9] presents a comparative study of three component selection
heuristics. The first is proposed in [19] and aims at finding components such
that the number of transitions that can be removed (hidden) after their parallel
composition is as high as possible. The authors in [9] improve on the heuristics
defined in [19] by introducing metrics to estimate the number of the transitions
that can be removed after parallel composition. Our transformations can make
use of the aforementioned heuristics to select candidate components for merging.
In fact, our supporting tool provides an easy to use programming interface for
adding and testing selection heuristics.

The work in [10] uses the concept of networks of LTSs introduced in [18]
to support compositional reduction using different compositional operators. The
authors use a heuristic similar to the ones presented in [9] to estimate the num-
ber of internal transitions that can be removed after applying the composition
operators, and compare the obtained metric for possible compositions. Our tech-
nique differs from the work in [10] in that our transformations are solely targeted
towards BIP systems, and need not be as general as the techniques presented
in [10].

Additionally, the idea of computing the product of communicating finite state
machines and then reducing them using a notion of state equivalence is presented
in [1]. The authors propose a method to iteratively multiply the components of
a given design and reduce the product at each iteration using a notion of input-
output equivalence. This leads to the construction of a minimal product finite
state machine representing the entire input system, on which verification is to
be performed. We follow a similar approach to that presented in [1], but we do
not compute the product of the entire system, component merging is based on
a set of user defined heuristics and is done while considering the state explosion
introduced by the product operation.

In [11], the authors address the problem of using program analysis in order to
assist reduction techniques, mainly symmetry reduction, in limiting state-space
explosion in systems composed of multiple communicating processes. Such a
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system is symmetric if its transition relation is invariant under some given per-
mutations of the communicating processes. States in the system that are identi-
cal up to these permutations are considered equivalent, and lead to generating
a reduced system that is bisimilar to the original system. The authors argue
that symmetry reduction is affected by local state explosion in the each of the
processes, and propose the usage of static analysis techniques such as static local
reachability analysis in order to benefit the efficiency of symmetry reduction. In
our work, we also make use of constant propagation, a static program analysis
technique, in the benefit of reducing the number of internal variables and thus
help the model checker in deciding the problem.

Graf and Steffen [14] focus on presenting a compositional minimization tech-
nique for finite state concurrent systems. This technique makes use of inter-
face specifications to remove unreachable transitions of the system. Interface
specifications are provided by the user and are used to define sets of observ-
able sequences at the interfaces between communicating processes. The authors
present a method that takes interface specifications into consideration when per-
forming iterative composition and minimization, thus avoiding the state-space
explosion at the intermediate composition levels. We resemble the aforemen-
tioned approach in that we consider port synchronization between components
when performing merging, thus leading to removing unreachable transitions from
the product component.

Compositional minimization via static analysis (CMSA) [22] selects candi-
date components for minimization using a mincut based algorithm such that the
number of component outputs is significantly smaller that the number of inputs.
CMSA then partitions the state space into equivalence classes relevant to the
outputs, selects representative states of the equivalence classes, and computes
a reduced circuit using a bisimulation based transformation that targets state
space reduction. CMSA is applicable to circuit designs only. Our method dif-
fers in that it works on BIP systems, and resembles CMSA in that it considers
merged components as candidate components, and applies a branching bisimula-
tion abstraction with respects to the ports of the resulting product component.

7 Conclusion

Our work makes contributions to efficiently verify component-based systems
modeled in BIP. First, we select pairs of components amenable for reduction and
abstraction using structural heuristics. Then we merge the selected components
using a product operation and we reduce the resulting component using constant
propagation. Finally, we use abstraction techniques based on merging branch-
ing bisimilar states in order to reduce the size of the system and its complexity.
Spurious counterexamples are detected by translating the counterexample to the
original system and simulating it. Our contributions are complementary to tools
that are used to verify BIP systems such as DFinder and BIP-to-NuSMV. Our
reduction and abstraction techniques are completely implemented in a support-
ing tool that provides an API to specify user defined merging heuristics.
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In the future, we plan to extend our work to handle priorities in the BIP
context. We also plan to define feedback guidance to refine the abstraction in
case a spurious counterexample is generated. We also plan to use the component
selection heuristics defined in the literature in our tool, compare them on dif-
ferent designs and propose new heuristics that are targeted towards the efficient
compositional reduction of BIP systems.
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Abstract. We provide a framework for compositional and iterative
design and verification of systems with quantitative information, such
as rewards, time or energy. It is based on disjunctive modal transi-
tion systems where we allow actions to bear various types of quanti-
tative information. Throughout the design process the actions can be
further refined and the information made more precise. We show how
to compute the results of standard operations on the systems, includ-
ing the quotient (residual), which has not been previously considered
for quantitative non-deterministic systems. Our quantitative framework
has close connections to the modal nu-calculus and is compositional with
respect to general notions of distances between systems and the standard
operations.

1 Introduction

Specifications of systems come in two main flavors. Logical specifications are
formalized as formulae of modal or temporal logics, such as the modal μ-calculus
or LTL. A common way to verify them on a system is to translate them to
automata and then analyze the composition of the system and the automaton.
In contrast, in the behavioral approach, specifications are given, from the very
beginning, in an automata-like formalism. Such properties can be verified using
various equivalences and preorders, such as bisimilarity or refinement. Here we
focus on the latter approach, but also show connections between the two.

Behavioral formalisms are particularly apt for component-based design.
Indeed, specifications can be easily composed as well as separately refined into
more concrete ones. The behavioral formalisms we work here with are modal
transition systems (MTS) [30] and their extensions. MTS are like automata, but
with two types of transitions: must-transitions represent behavior that has to
be present in every implementation; may-transition represent behavior that is
allowed, but not required to be implemented.
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A simple example of a vending machine specification, in Fig. 1 on the left,
describes that any correct implementation must be ready to accept money, then
may offer the customer to choose extras and must issue a beverage. While the
must-transitions are preserved in the refinement process, the may-transitions can
be either implemented and turned into must-transitions, or dropped.

s

money
extras

beverage t

$1

$2
teacoffee

beer

milk

sugar

sugar

tea

coffee

tea

coffee

Fig. 1. Two specifications of a vending machine

This low-level refinement process is, however, insufficient when the designer
wants to get more specific about the implemented actions, such as going from the
coarse specification just described to the more fine-grained specification on the
right of Fig. 1. In order to relate such specifications, MTS with structured labels
were introduced [5]. Given a preorder on labels, relating for instance coffee �
beverage, we can refine a transition label into one which is below, for example
implement “beverage” with its refinement “coffee”. Then t will be a refinement
of s.

This framework can be applied to various pre-
orders. For example, one can use labels with a dis-
crete component carrying the action information
and an interval component to model time durations
or energy consumption. As an example, consider
the simple real-time property to the right: “after a
req(uest), grant has to be executed within 5 time units without the process
being idle meanwhile”. The transition (grant, [0, 5]) could be safely refined to
(grant, [l, r]) for any 0 ≤ l ≤ r ≤ 5.

However, here we identify several shortcomings of the current approaches:

Expressive power. The current theory of structured labels is available only for the
basic MTS. Very often one needs to use richer structures such as disjunctive MTS
(DMTS) [8,31] or acceptance automata [23,35]. While MTS generally cannot
express disjunction of properties, DMTS can express any Boolean combinations
of properties. This allows, for instance, to prohibit deadlocks as in the example to
the left in Fig. 2. The disjunctive must, depicted as a branching arrow, requires
at least one of the transitions to be present. Thus we allow the deadline for
grant to be reset as long as additional work is generated. Note that specifying
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Fig. 2. A DMTS and its ν-calculus translation

grant and work as two separate must-transitions would not allow postponing the
deadline; and two separate may-transitions would not guarantee any progress,
as none of them has to be implemented.

The additional expressive power of DMTS is also justified by the fact that
DMTS are equivalent to the modal ν-calculus [7]. We hence propose DMTS
with structured labels and also extend the equivalence between DMTS and the
ν-calculus to our setting. Figure 2 (right) shows a ν-calculus translation of the
DMTS on its left.

Robustness. Consider again the request-grant example x in Fig. 2, together with
the two labeled transition systems in Fig. 3 (left). While i1, issuing grant after
precisely 5 time units, is a valid implementation of x, if there is but a small
positive drift in the timing, like in i2, it is not an implementation anymore.
However, this drift might be easily mended or just might be due to measur-
ing errors. Therefore, when models and specifications contain such quantitative
information, the standard Boolean notions of satisfaction and refinement are of
limited utility [25] and should be replaced by notions more robust to perturba-
tions. For another example, the DMTS to the right of Fig. 3 is not a refinement
of the second one in Fig. 2, but for all practical purposes, it is very close.

One approach to robustness is to employ metric distances instead of Boolean
relations; this has been done for example in [12,14,15,17,24,36,38] and many
other papers. An advantage of behavioral specification formalisms is that models
and specifications are closely related, hence distances between models can easily
be extended to distances between specifications. We have developed a distance-
based approach for MTS in [3,4] and shown in [4,20] that a good general setting

Fig. 3. Two implementations (left) and another DMTS specification (right)
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is given by recursively specified trace distances on an abstract quantale. Here we
extend this to DMTS.

Compositionality. The framework should be compositional. In the quantitative
setting, this in essence means that the operations we define on the systems should
behave well with respect not only to satisfaction, but also to the distances. For
instance, if s1 is close to t1 and s2 close to t2, then also the structural compo-
sition s1‖s2 should be close to t1‖t2. We prove this for the usual operations; in
particular, we give a construction for such a well-behaved quotient.

The quotient of s by t is the most general system that, when composed with
t, refines s. This operation is thus useful for computing missing parts of a system
to be implemented, when we already have several components at our disposal.
The construction is complex already in the non-quantitative setting [7] and the
extension of the algorithm to structured labels is non-trivial.

Our contribution. To sum up, we extend the framework of structured labels to
DMTS and the modal ν-calculus. We equip this framework with distances and
give constructions for the structured analogues of the standard operations, so
that they behave compositionally with respect to the distances. The full proofs
can be found in [19].

Further related work. Refinement of components is a frequently used design
approach in various areas, ranging from subtyping [32] over the Java modeling
language JML [27] or correct-by-design class diagrams operations [18] to inter-
face theories close to MTS such as interface automata [16] based on alternating
simulation. A variant of alternating simulation called covariant-contravariant
simulation has been compared to MTS modal refinement in [1]. The graphi-
cal representability of these variants was studied in [7,9]. Quantities have been
introduced also to the modal mu-calculus. At first, the focus lied on probabilities
[26,33,34], but later predicates with values in arbitrary metric spaces were also
introduced [15]. However, no refinement has been considered.

2 Structured Labels

Let Σ be a poset with partial order �. We think of � as label refinement, so
that if a � b, then a is less permissive (more restricted) than b.

We say that a label a ∈ Σ is an implementation label if b � a implies b = a
for all b ∈ Σ, i.e., if a cannot be further refined. The set of implementation labels
is denoted Γ , and for a ∈ Σ, we let �a� = {b ∈ Γ | b � a} denote the set of its
implementations. Note that a � b implies �a� ⊆ �b� for all a, b ∈ Σ.

Example 1. A trivial but important example of our label structure is the discrete
one in which label refinement � is equality (and Γ = Σ). This is equivalent to
the “standard” case of unstructured labels.

A typical label set in quantitative applications consists of a discrete compo-
nent and real-valued weights. For specifications, weights are replaced by (closed)
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weight intervals, so that Σ = U × {[l, r] | l ∈ R∪ {−∞}, r ∈ R∪ {∞}, l ≤ r} for
a finite set U , cf. [4,5]. Label refinement is given by (u1, [l1, r1]) � (u2, [l2, r2])
iff u1 = u2 and [l1, r1] ⊆ [l2, r2], so that labels are more refined if they specify
smaller intervals; thus, Γ = U × {[x, x] | x ∈ R} ≈ U × R.

For a quite general setting, we can instead start with an arbitrary set Γ of
implementation labels, let Σ = 2Γ , the powerset, and � = ⊆ be subset inclusion.
Then �a� = a for all a ∈ Σ. (Hence we identify implementation labels with one-
element subsets of Σ.) 	


2.1 Label Operations

Specification theories come equipped with several standard operations that make
compositional software design possible [2]: conjunction for merging viewpoints
covering different system’s aspects [6,37], structural composition for running
components in parallel, and quotient to synthesize missing parts of systems [31].
In order to provide them for DMTS, we first need the respective atomic opera-
tions on their action labels.

We hence assume that Σ comes equipped with a partial conjunction, i.e., an
operator � : Σ × Σ ⇀ Σ for which it holds that

(1) if a1 � a2 is defined, then a1 � a2 � a1 and a1 � a2 � a2, and
(2) if a3 � a1 and a3 � a2, then a1 � a2 is defined and a3 � a1 � a2.

Note that by these properties, any two partial conjunctions on Σ have to agree
on elements for which they are both defined.

Example 2. For discrete labels, the unique conjunction operator is given by

a1 � a2 =

{
a1 if a1 = a2 ,

undef. otherwise .

For labels in U × {[l, r] | l, r ∈ R, l ≤ r}, the unique conjunction is

(u1, [l1, r1]) � (u2, [l2, r2]) =

{
undef. if u1 �= u2 or [l1, r1] ∩ [l2, r2] = ∅ ,

(u1, [l1, r1] ∩ [l2, r2]) otherwise .

Finally, for the case of specification labels as sets of implementation labels,
the unique conjunction is a1 � a2 = a1 ∩ a2. 	


For structural composition and quotient of specifications, we assume a partial
label synchronization operator � : Σ × Σ ⇀ Σ which specifies how to compose
labels. We assume � to be associative and commutative, with the following
technical property which we shall need later: For all a1, a2, b1, b2 ∈ Σ with a1 �
a2 and b1 � b2, a1 � b1 is defined iff a2 � b2 is, and if both are defined, then
a1 � b1 � a2 � b2.
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Example 3. For discrete labels, the conjunction of Example 2 is the same as
CSP-style composition, but other compositions may be defined.

For labels in U × {[l, r] | l, r ∈ R, l ≤ r}, several useful label synchronization
operators may be defined for different applications. One is given by addition of
intervals, i.e.,

(u1, [l1, r1])
+
� (u2, [l2, r2]) =

{
undef. if u1 �= u2 ,

(u1, [l1 + l2, r1 + r2]) otherwise ,

for example modeling computation time of actions on a single processor. Another
operator uses maximum instead of addition:

(u1, [l1, r1])
max
� (u2, [l2, r2]) =

{
undef. if u1 �= u2 ,

(u1, [max(l1, l2), max(r1, r2)]) otherwise .

Here we wait for the slower action. This models a blocking synchronization where
both synchronized actions have to be performed before we can continue. Yet
another operator uses interval intersection instead, i.e., ∩

� = �; this is useful if
the intervals model deadlines.

For set-valued specification labels, we may take any synchronization operator
� given on implementation labels Γ and lift it to one on Σ by a1�a2 = {b1�b2 |
b1 ∈ �a1�, b2 ∈ �a2�}. 	


3 Specification Formalisms

In this section we introduce the specification formalisms which we use in the rest
of the paper. The universe of models for our specifications is the one of standard
labeled transition systems. For simplicity of exposition, we work only with finite
specifications and implementations, but most of our results extend to the infinite
(but finitely branching) case.

A labeled transition system (LTS) is a structure I = (S, s0,−→) consisting
of a finite set S of states, an initial state s0 ∈ S, and a transition relation
−→⊆ S × Γ × S. We usually write s

a−→ t instead of (s, a, t) ∈−→. Note that
transitions are labeled with implementation labels.

3.1 Disjunctive Modal Transition Systems

A disjunctive modal transition system (DMTS) is a structure D = (S, S0, ���,
−→) consisting of finite sets S ⊇ S0 of states and initial states, respectively, may-
transitions ���⊆ S × Σ × S, and disjunctive must-transitions −→⊆ S × 2Σ×S .
It is assumed that for all (s, N) ∈−→ and (a, t) ∈ N there is (s, b, t) ∈��� with
a � b.

Note that we allow multiple (or zero) initial states. We write s
a��� t instead of

(s, a, t) ∈��� and s−→ N instead of (s, N) ∈−→. A DMTS (S, S0, ���,−→) is an
implementation if ���⊆ S × Γ × S, −→= {(s, {(a, t)}) | s

a��� t}, and S0 = {s0}
is a singleton; DMTS implementations are hence isomorphic to LTS.
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DMTS were introduced in [31] in the context of equation solving, or quotient
of specifications by processes. They are a natural extension of modal transition
systems [30], which are DMTS in which all disjunctive must-transitions s−→N
lead to singletons N = {(a, t)}; in fact, DMTS are the closure of MTS under
quotient [31].

We introduce a notion of modal refinement of DMTS with structured labels.
For discrete labels, it coincides with the classical definition [31].

Definition 4. Let D1 = (S1, S
0
1 , ���1,−→1), D2 = (S2, S

0
2 , ���2,−→2) be

DMTS. A relation R ⊆ S1×S2 is a modal refinement if it holds for all (s1, s2) ∈
R that

– for all s1
a1��� 1 t1 there is s2

a2��� 2 t2 such that a1 � a2 and (t1, t2) ∈ R, and
– for all s2 −→ 2 N2 there is s1 −→ 1 N1 such that for all (a1, t1) ∈ N1 there is

(a2, t2) ∈ N2 with a1 � a2 and (t1, t2) ∈ R.

D1 refines D2, denoted D1 ≤m D2, if there exists a modal refinement R for which
it holds that for every s01 ∈ S0

1 there is s02 ∈ S0
2 for which (s01, s

0
2) ∈ R.

We write D1 ≡m D2 if D1 ≤m D2 and D2 ≤m D1. The implementation seman-
tics of a DMTS D is �D� = {I ≤m D | I implementation}. We say that D1

thoroughly refines D2, and write D1 ≤th D2, if �D1� ⊆ �D2�. The below propo-
sition, which follows directly from transitivity of modal refinement, shows that
modal refinement is sound with respect to thorough refinement; in the context
of specification theories, this is what one would expect.

Proposition 5. For all DMTS D1, D2, D1 ≤m D2 implies D1 ≤th D2. 	


3.2 Acceptance Automata

A (non-deterministic) acceptance automaton (AA) is a structure A = (S, S0,

Tran), with S ⊇ S0 finite sets of states and initial states and Tran : S → 22
Σ×S

an
assignment of transition constraints. The intuition is that a transition constraint
Tran(s) = {M1, . . . , Mn} specifies a disjunction of n choices M1, . . . , Mn as to
which transitions from s have to be implemented.

An AA is an implementation if S0 = {s0} is a singleton and it holds for all
s ∈ S that Tran(s) = {M} ⊆ 2Γ×S is a singleton; hence AA implementations
are isomorphic to LTS. Acceptance automata were first introduced in [35], based
on the notion of acceptance trees in [23]; however, there they are restricted to
be deterministic. We employ no such restriction here.

Let A1 = (S1, S
0
1 ,Tran1) and A2 = (S2, S

0
2 ,Tran2) be AA. A relation R ⊆

S1×S2 is a modal refinement if it holds for all (s1, s2) ∈ R and all M1 ∈ Tran1(s1)
that there exists M2 ∈ Tran2(s2) such that

for all (a1, t1) ∈ M1 there is (a2, t2) ∈ M2 with a1 � a2 and (t1, t2) ∈ R ,

for all (a2, t2) ∈ M2 there is (a1, t1) ∈ M1 with a1 � a2 and (t1, t2) ∈ R .
(1)
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The definition reduces to the one of [35] in case labels are discrete. We will write
M1 �R M2 if M1, M2, R satisfy (1).

In [7], the following translations were discovered between DMTS and AA: For
a DMTS D = (S, S0, ���,−→) and s ∈ S, let Tran(s) = {M ⊆ Σ × S | ∀(a, t) ∈
M : s

a��� t,∀s−→ N : N ∩ M �= ∅} and define the AA da(D) = (S, S0, Tran).
For an AA A = (S, S0,Tran), define the DMTS ad(A) = (D,D0, ���,−→) by

D = {M ∈ Tran(s) | s ∈ S}, D0 = {M0 ∈ Tran(s0) | s0 ∈ S0},

−→ =
{(

M, {(a,M ′) | M ′ ∈ Tran(t)}
) ∣

∣ (a, t) ∈ M
}
,

��� = {(M,a,M ′) | ∃M −→ N : (a,M ′) ∈ N}.

Similarly to a theorem of [7,21], we can now show the following:

Theorem 6. For DMTS D1, D2 and AA A1, A2, D1 ≤m D2 iff da(D1) ≤m

da(D2) and A1 ≤m A2 iff ad(A1) ≤m ad(A2). 	


This structural equivalence will allow us to freely translate forth and back
between DMTS and AA in the rest of the paper. Note, however, that the state
spaces of A and ad(A) are not the same; the one of ad(A) may be exponentially
larger. [21] shows that this blow-up is unavoidable.

From a practical point of view, DMTS are a somewhat more useful specifi-
cation formalism than AA. This is because they are usually more compact and
easily drawn and due to their close relation to the modal ν-calculus, see below.

3.3 The Modal ν-Calculus

In [7], translations were discovered between DMTS and the modal ν-calculus,
and refining the translations in [21], we could show that for discrete labels, these
formalisms are structurally equivalent. We use the representation of the modal
ν-calculus by equation systems in Hennessy-Milner logic developed in [29]. For
a finite set X of variables, let H(X) be the set of Hennessy-Milner formulae,
generated by the abstract syntax H(X) � φ ::= tt | ff | x | 〈a〉φ | [a]φ | φ∧φ | φ∨
φ, for a ∈ Σ and x ∈ X. A ν-calculus expression is a structure N = (X,X0,Δ),
with X0 ⊆ X sets of variables and Δ : X → H(X) a declaration.

We recall the greatest fixed point semantics of ν-calculus expressions from [29],
but extend it to structured labels. Let (S, S0,−→) be an LTS, then an assignment
is a mapping σ : X → 2S . The set of assignments forms a complete lattice
with order σ1 � σ2 iff σ1(x) ⊆ σ2(x) for all x ∈ X and lowest upper bound( ⊔

i∈I σi

)
(x) =

⋃
i∈I σi(x).

The semantics of a formula in H(X) is a function from assignments to subsets
of S defined as follows: �tt�σ = S, �ff�σ = ∅, �x�σ = σ(x), �φ ∧ ψ�σ = �φ�σ ∩
�ψ�σ, �φ ∨ ψ�σ = �φ�σ ∪ �ψ�σ, and

�〈a〉φ�σ = {s ∈ S | ∃s
b−→ t : b ∈ �a�, t ∈ �φ�σ},

�[a]φ�σ = {s ∈ S | ∀s
b−→ t : b ∈ �a� =⇒ t ∈ �φ�σ}.
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The semantics of a declaration Δ is then the assignment defined by �Δ� =
⊔

{σ :
X → 2S | ∀x ∈ X : σ(x) ⊆ �Δ(x)�σ}; the greatest (pre)fixed point of Δ.

An LTS I = (S, s0,−→) implements (or models) the expression N , denoted
I |= N , if there is x0 ∈ X0 such that s0 ∈ �Δ�(x0).

In [21] we have introduced another semantics for ν-calculus expressions,
which is given by a notion of refinement, like for DMTS and AA. For this we
need a normal form for ν-calculus expressions:
Lemma 7 ([21]). For any ν-calculus expression N1 = (X1,X

0
1 ,Δ1), there exists

another expression N2 = (X2,X
0
2 ,Δ2) with �N1� = �N2� and such that for any

x ∈ X, Δ2(x) is of the form Δ2(x) =
∧

i∈I

( ∨
j∈Ji

〈aij〉xij

)
∧

∧
a∈Σ [a]

( ∨
j∈Ja

ya,j

)

for finite (possibly empty) index sets I, Ji, Ja and all xij , ya,j ∈ X2. 	


As this is a type of conjunctive normal form, it is clear that translating a
ν-calculus expression into normal form may incur an exponential blow-up. We
introduce some notation for ν-calculus expressions in normal form. Let N =
(X,X0,Δ) be such an expression and x ∈ X, with Δ(x) =

∧
i∈I

( ∨
j∈Ji

〈aij〉xij

)
∧

∧
a∈Σ [a]

( ∨
j∈Ja

ya,j

)
as in the lemma. Define ♦(x) = {{(aij , xij) | j ∈ Ji} | i ∈ I}

and, for each a ∈ Σ, �a(x) = {ya,j | j ∈ Ja}. Intuitively, ♦(x) collects all 〈a〉-
requirements from x, whereas �a(x) specifies the disjunction of [a]-properties
which must hold from x. Note that now,

Δ(x) =
∧

N∈♦(x)

( ∨

(a,y)∈N

〈a〉y
)

∧
∧

a∈Σ

[a]
( ∨

y∈�a(x)

y
)
. (2)

Let N1 = (X1,X
0
1 ,Δ1), N2 = (X2,X

0
2 ,Δ2) be ν-calculus expressions in

normal form and R ⊆ X1 × X2. The relation R is a modal refinement if it holds
for all (x1, x2) ∈ R that

– for all a1 ∈ Σ and y1 ∈ �a1
1 (x1) there is a2 ∈ Σ and y2 ∈ �a2

2 (x2) with
a1 � a2 and (y1, y2) ∈ R, and

– for all N2 ∈ ♦2(x2) there is N1 ∈ ♦1(x1) such that for all (a1, y1) ∈ N1 there
exists (a2, y2) ∈ N2 with a1 � a2 and (y1, y2) ∈ R.

We say that a ν-calculus expression (X,X0,Δ) in normal form is an imple-
mentation if X0 = {x0} is a singleton, ♦(x) = {{(a, y)} | y ∈ �a(x), a ∈ Σ} and
�a(x) = ∅ for all a /∈ Γ , for all x ∈ X. We can translate a LTS (S, S0,−→) to
a ν-calculus expression (S, S0,Δ) in normal form by setting ♦(s) = {{(a, t)} |
s

a−→ t} and �a(s) = {t | s
a−→ t} for all s ∈ S, a ∈ Σ. This defines a bijec-

tion between LTS and ν-calculus implementations, hence, like for DMTS and
AA, an embedding of LTS into ν-calculus. One of the main results of [21] is
that for discrete labels, the refinement semantics and the fixed point semantics
of the modal ν-calculus agree; the proof can easily be extended to our case of
structured labels:

Theorem 8. For any LTS I and any ν-calculus expression N in normal form,
I |= N iff I ≤m N . 	
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For a DMTS D = (S, S0, ���,−→) and all s ∈ S, let ♦(s) = {N | s−→N}
and, for each a ∈ Σ, �a(s) = {t | s

a��� t}. Define the (normal-form) ν-calculus
expression dn(D) = (S, S0,Δ), with Δ given as in (2). For a ν-calculus expression
N = (X,X0,Δ) in normal form, let ���= {(x, a, y) ∈ X × Σ × X | y ∈ �a(x)},
−→= {(x,N) | x ∈ X,N ∈ ♦(x)} and define the DMTS nd(N ) = (X,X0, ���,
−→). Given that these translations are entirely syntactic, the following theorem
is not a surprise:

Theorem 9. For DMTS D1, D2 and ν-calculus expressions N1, N2, D1 ≤m D2

iff dn(D1) ≤m dn(D2) and N1 ≤m N2 iff nd(N1) ≤m nd(N2). 	


4 Specification Theory

Structural specifications typically come equipped with operations which allow
for compositional reasoning, viz. conjunction, structural composition, and quo-
tient, cf. [2]. On deterministic MTS, these operations can be given easily using
simple structural operational rules (for such semantics of weighted systems, see
e.g., [28]). For non-deterministic systems this is significantly harder; in [7] it
is shown that DMTS and AA permit these operations and, additionally but
trivially, disjunction. Here we show how to extend these operations on non-
deterministic systems to our quantitative setting with structured labels.

We remark that structural composition and quotient operators are well-
known from some logics, such as, e.g., linear [22] or spatial logic [10], and were
extended to quite general contexts [11]. However, whereas these operators are
part of the formal syntax in those logics, for us they are simply operations on
logical expressions (or DMTS, or AA). Consequently [21], structural composition
is generally only a sound over-approximation of the semantic composition.

Given the equivalence of DMTS, AA and the modal ν-calculus exposed in the
previous section, we will often state properties for all three types of specifications
at the same time, letting S stand for any of the three types.

4.1 Disjunction and Conjunction

Disjunction of specifications is easily defined as we allow multiple initial states.
For DMTS D1 = (S1, S

0
1 , ���1,−→1), D2 = (S2, S

0
2 , ���2,−→2), we can hence

define D1 ∨ D2 = (S1 ∪ S2, S
0
1 ∪ S0

2 , ���1 ∪ ���2,−→1 ∪ −→2) (with all unions
disjoint). For conjunction, we let D1 ∧ D2 = (S1 × S2, S

0
1 × S0

2 , ���,−→), with

– (s1, s2)
a1�a2��� (t1, t2) whenever s1

a1��� 1t1, s2
a2��� 2t2 and a1 � a2 is defined,

– for all s1 −→N1, (s1, s2)−→{(a1 � a2, (t1, t2)) | (a1, t1) ∈ N1, s2
a2��� 2t2, a1 �

a2 defined},
– for all s2 −→N2, (s1, s2)−→{(a1 � a2, (t1, t2)) | (a2, t2) ∈ N2, s1

a1��� 1t1, a1 �

a2 defined}.

Theorem 10. For all specifications S1, S2, S3,

– S1 ∨ S2 ≤m S3 iff S1 ≤m S3 and S2 ≤m S3,
– S1 ≤m S2 ∧ S3 iff S1 ≤m S2 and S1 ≤m S3,
– �S1 ∨ S2� = �S1� ∪ �S2�, and �S1 ∧ S2� = �S1� ∩ �S2�.



316 U. Fahrenberg et al.

With bottom and top elements given by ⊥ = (∅, ∅, ∅) and � = ({s}, {s},Tran�)
with Tran�(s) = 22

Σ×{s}
, our classes of specifications form bounded distributive

lattices up to ≡m.

4.2 Structural Composition

For AA A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), their structural composition

is A1‖A2 = (S1 × S2, S
0
1 × S0

2 ,Tran), with Tran((s1, s2)) = {M1 � M2 | M1 ∈
Tran1(s1),M2 ∈ Tran2(s2)} for all s1 ∈ S1, s2 ∈ S2, where M1 � M2 = {(a1 �

a2, (t1, t2)) | (a1, t1) ∈ M1, (a2, t2) ∈ M2, a1 � a2 defined}.

D1

D2

s1 s2

t1 t2

a

b

Remark a subtle difference between conjunction and
structural composition, which we expose for discrete labels
and CSP-style composition: for the DMTS D1, D2 shown
to the right, both D1 ∧D2 and D1‖D2 have only one state,
but Tran(s1 ∧ t1) = ∅ and Tran(s1‖t1) = {∅}, so that
D1 ∧ D2 is inconsistent, whereas D1‖D2 is not.

This definition extends the structural composition defined for modal transi-
tion systems, with structured labels, in [4]. For DMTS specifications (and hence
also for ν-calculus expressions), the back translation from AA to DMTS entails
an exponential explosion.

Theorem 11. Up to ≡m, the operator ‖ is associative, commutative and
monotone.

Corollary 12 (Independent implementability). For all specifications S1,
S2, S3, S4, S1 ≤m S3 and S2 ≤m S4 imply S1‖S2 ≤m S3‖S4. 	


4.3 Quotient

Because of non-determinism, we have to use a power set construction for the
quotient, as opposed to conjunction and structural composition where product
is sufficient. For AA A3 = (S3, S

0
3 ,Tran3), A1 = (S1, S

0
1 , Tran1), the quotient is

A3/A1 = (S, {s0},Tran), with S = 2S3×S1 and s0 = {(s03, s
0
1) | s03 ∈ S0

3 , s01 ∈ S0
1}.

States in S will be written {s13/s11, . . . , s
n
3/sn

1 )} instead of {(s13, s
1
1), . . . , (s

n
3 , sn

1 ))}.
Intuitively, this denotes that such state when composed with si

1 conforms to si
3

for each i; we call this consistency here.
We now define Tran. First, Tran(∅) = 2Σ×{∅}, so ∅ is universal. For any other

state s = {s13/s11, . . . , s
n
3/sn

1} ∈ S, its set of permissible labels is defined by

pl(s) = {a2 ∈ Σ | ∀i = 1, . . . , n : ∀(a1, t1) ∈∈ Tran1(si
1) :

∃(a3, t3) ∈∈ Tran3(si
3) : a1 � a2 � a3} ,

that is, a label is permissible iff it cannot violate consistency. Here we use the
notation x ∈∈ z as a shortcut for ∃y : x ∈ y ∈ z.

Now for each a ∈ pl(s) and each i ∈ {1, . . . , n}, let {t1 ∈ S1 | (a, t1) ∈∈
Tran1(ti1)} = {ti,11 , . . . , ti,mi

1 } be an enumeration of all the possible states in S1
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after an a-transition. Then we define the set of all sets of possible assignments
of next-a states from si

3 to next-a states from si
1:

pta(s) = {{(ti,j
3 , ti,j

1 ) | i = 1, . . . , n, j = 1, . . . , mi} | ∀i : ∀j : (a, ti,j
3 ) ∈∈ Tran3(s

i
3)}

These are all possible next-state assignments which preserve consistency. Now
let pt(s) =

⋃
a∈pl(s) pta(s) and define

Tran(s) = {M ⊆ pt(s) | ∀i = 1, . . . , n : ∀M1 ∈ Tran1(si
1) :

∃M3 ∈ Tran3(si
3) : M 
 M1 �R M3} ,

where M 
 M1 = {(a1 � a, ti3) | (a, {t13/t11, . . . , t
k
3/tk1)}) ∈ M, (a1, t

i
1) ∈ M1},

to guarantee consistency no matter which element of Tran1(si
1), s is composed

with.

Fig. 4. Two DMTS and their quotient.

Example 13. Consider the two simple systems in Fig. 4 and their quotient under
∩
�, i.e., where label synchronization is intersection. During the construction and
the translation back to DMTS, many states were eliminated as they were incon-
sistent (their Tran-set was empty). For instance, there is no may transition to
state {s2/t2}, because when it is composed with t2 there is no guarantee of
late-transition, hence no guarantee to refine s2.

Theorem 14. For all specifications S1, S2, S3, S1‖S2 ≤m S3 iff S2 ≤m S3/S1.

5 Robust Specification Theories

We proceed to lift the results of the previous sections to a quantitative setting,
where the Boolean notions of modal and thorough refinement are replaced by
refinement distances. We have shown in [4,20] that a good setting for quantitative
analysis is given by the one of recursively specified trace distances on an abstract
commutative quantale as defined below; we refer to the above-cited papers for
a detailed exposition of how this framework covers all common approaches to
quantitative analysis.

Denote by Σ∞ = Σ∗ ∪ Σω the set of finite and infinite traces over Σ.
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5.1 Recursively Specified Trace Distances

Recall that a (commutative) quantale consists of a complete lattice (L,�L) and a
commutative, associative addition operation �L which distributes over arbitrary
suprema; we denote by ⊥L, �L the bottom and top elements of L. We call a
function d : X × X → L, for a set X and a quantale L, an L-hemimetric if
it satisfies d(x, x) = ⊥L for all x ∈ X and d(x, z) �L d(x, y) �L d(y, z) for
all x, y, z ∈ X. L-hemimetrics are generalizations of distances: for L = R≥0 ∪
{∞} the extended real line, an (R≥0 ∪ {∞})-hemimetric is simply an extended
hemimetric.

A recursive trace distance specification F = (L, eval, dLtr, F ) consists of a
quantale L, a quantale morphism eval : L → R≥0 ∪ {∞}, an L-hemimetric
dL
tr : Σ∞×Σ∞ → L (called lifted trace distance), and a distance iterator function

F : Σ ×Σ ×L → L. F must be monotone in the third and anti-monotone in the
second coordinate and satisfy an extended triangle inequality: for all a, b, c ∈ Σ
and α, β ∈ L, F (a, b, α) �L F (b, c, β) �L F (a, c, α �L β).

F is to specify dLtr recursively in the sense that for all a, b ∈ Σ and all
σ, τ ∈ Σ∞ (and with “.” denoting concatenation),

dL

tr(a.σ, b.τ) = F (a, b, dLtr(σ, τ)) . (3)

The trace distance associated with such a distance specification is dtr : Σ∞ ×
Σ∞ → R≥0 given by dtr = eval ◦ dL

tr.
Note that dLtr specializes to a distance on labels (because Σ ⊆ Σ∞); we

require that this is compatible with label refinement in the sense that a � b
implies dLtr(a, b) = ⊥L. Then (3) implies that whenever a � b, then F (a, b,⊥L) =
dL
tr(a, b) = ⊥L. As an inverse property, we say that F is recursively separating if

F (a, b, α) = ⊥L implies that a � b and α = ⊥L.

Example 15. It is shown in [4,20] that all commonly used trace distances obey
recursive characterizations as above. We give a few examples, all of which are
recursively separating:

– The point-wise distance from [14], for example, has L = R≥0 ∪{∞}, eval = id
and

dLtr(a.σ, b.τ) = max(d(a, b), dLtr(σ, τ)) ,

where d : Σ × Σ → R≥0 ∪ {∞} is a hemimetric on labels. For the label
set Σ = U × {[l, r] | l ∈ R ∪ {−∞}, r ∈ R ∪ {∞}, l ≤ r} from Exam-
ple 1, one useful example of such a hemimetric is d((u1, [l1, r1]), (u2, [l2, r2])) =
supx1∈[l1,r1] infx2∈[l2,r2] |x1 − x2| = max(l2 − l1, r1 − r2, 0) if u1 = u2 and ∞
otherwise, cf. [3].

– The discounting distance, also used in [14], again uses L = R≥0 ∪ {∞} and
eval = id, but

dLtr(a.σ, b.τ) = d(a, b) + λdLtr(σ, τ)

for a constant λ ∈ [0, 1).
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– For the limit-average distance used in [12] and others, L = (R≥0 ∪ {∞})�,
eval(α) = lim infj∈� α(j), and

dLtr(a.σ, b.τ)(j) =
1

j + 1
d(a, b) +

j

j + 1
dLtr(σ, τ)(j − 1) .

– The discrete trace distance is given by dtr(σ, τ) = 0 if σ � τ and ∞ otherwise
(here we have extended � to traces in the obvious way). It has a recursive
characterization with L = R≥0 ∪ {∞}, eval = id, and dtr(a.σ, b.τ) = dtr(σ, τ)
if a � b and ∞ otherwise.

For the rest of this paper, we fix a recursively specified trace distance.

5.2 Refinement Distances

We lift the notions of modal refinement, for all our formalisms, to distances.
Conceptually, this is done by replacing “∀” quantifiers by “sup” and “∃” by “inf”
in the definitions, and then using the distance iterator to introduce a recursive
functional whose least fixed point is the distance.

Definition 16. The lifted refinement distance on the states of DMTS D1 = (S1,
S0
1 , ���1,−→1), D2 = (S2, S

0
2 , ���2,−→2) is the least fixed point to the equations

dLm(s1, s2) = max

⎧
⎪⎨

⎪⎩

sup
s1

a1��� t1

inf
s2

a2��� t2

F (a1, a2, d
L
m(t1, t2)) ,

sup
s2 −→ N2

inf
s1 −→ N1

sup
(a1,t1)∈N1

inf
(a2,t2)∈N2

F (a1, a2, d
L
m(t1, t2)) .

For AA A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), the equations are instead

dLm(s1, s2) =

sup
M1∈Tran1(s1)

inf
M2∈Tran2(s2)

max

⎧
⎪⎨

⎪⎩

sup
(a1,t1)∈M1

inf
(a2,t2)∈M2

F (a1, a2, d
L
m(t1, t2)) ,

sup
(a2,t2)∈M2

inf
(a1,t1)∈M1

F (a1, a2, d
L
m(t1, t2)) ,

and for ν-calculus expressions N1 = (X1,X
0
1 ,Δ1), N2 = (X2,X

0
2 ,Δ2),

dLm(x1, x2) = max

⎧
⎪⎨

⎪⎩

sup
a1∈Σ,y1∈�a1

1 (x1)

inf
a2∈Σ,y2∈�a2

2 (x2)

F (a1, a2, d
L
m(y1, y2)),

sup
N2∈♦2(x2)

inf
N1∈♦1(x1)

sup
(a1,y1)∈N1

inf
(a2,y2)∈N2

F (a1, a2, d
L
m(y1, y2)).

Using Tarski’s fixed point theorem, one easily sees that the lifted refinement
distances are indeed well-defined. (Here one needs monotonicity of F in the
third coordinate, together with the fact that sup and inf are monotonic.)

Note that we define the distances using least fixed points, as opposed to the
greatest fixed point definition of standard refinement. Informally, this is because
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our order is reversed: we are not interested in maximizing refinement relations,
but in minimizing refinement distance.

The lifted refinement distance between specifications is defined by

dLm(S1,S2) = sup
s0
1∈S0

1

inf
s0
2∈S0

2

dLm(s01, s
0
2) .

Analogously to thorough refinement, there is also a lifted thorough refinement
distance, given by dLth(S1,S2) = supI1∈�S1� infI2∈�S2� dLm(I1, I2). Using the eval

function, one gets distances dm = eval ◦ dL
m and dth = eval ◦ dLth, with values in

R≥0 ∪{∞}, which will be the ones one is interested in for concrete applications.

Example 17. We compute the discounting refinement distance between the
DMTS x and x′ in Figs. 2 and 3, assuming sup-inf distance on quantitative
labels. We have

dm(x, x′) = max(0 + λdm(x, x′), 0 + λdm(y, y′)) ,

dm(y, y′) = max(0 + λdm(x, x′), 1 + λdm(y, y′) ,

the least fixed point of which is dm(x, x′) = λ
1−λ . Similarly, dm(x′, x) = λ

1−λ .
Note that x �≤m x′ and x′ �≤m x.

The following quantitative extension of Theorems 6 and 9 shows that our trans-
lations preserve and reflect refinement distances.

Theorem 18. For all DMTS D1,D2, all AA A1, A2 and all ν-calculus expres-
sions N1, N2:

dL

m(D1,D2) = dLm(da(D1), da(D2)) dLm(A1,A2) = dLm(ad(A1), ad(A2))
dLm(D1,D2) = dLm(dn(D1), dn(D2)) dLm(N1,N2) = dLm(nd(N1),nd(N2))

We sum up important properties of our distances:

Proposition 19. The functions dLm, dLth are L-hemimetrics, and dm, dth are
hemimetrics. For specifications S1, S2, S1 ≤m S2 implies dL

m(S1,S2) = ⊥L, and
S1 ≤th S2 implies dLth(S1,S2) = ⊥L. If F is recursively separating, then also the
reverse implications hold.

For the discrete distances, dm(S1,S2) = 0 if S1 ≤m S2 and ∞ otherwise.
Similarly, dth(S1,S2) = 0 if S1 ≤th S2 and ∞ otherwise.

As a quantitative analogy to the implication from (Boolean) modal refinement
to thorough refinement (Proposition 5), the next theorem shows that thorough
refinement distance is bounded above by modal refinement distance. Note that
for the discrete trace distance (and using Proposition 19), this is equivalent to
the Boolean statement.

Theorem 20. For all specifications S1, S2, dLth(S1,S2) �L dLm(S1,S2).
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5.3 Disjunction and Conjunction

In order to generalize the properties of Theorem 10 to our quantitative setting,
we introduce a notion of relaxed implementation semantics:

Definition 21. The α-relaxed implementation semantics of S, for a specifica-
tion S and α ∈ L, is �S�

α = {I implementation | dLm(I,S) � α}.

Hence, �S�
α comprises all labeled transition systems which are implementations

of S up to α. Note that by Proposition 19 and for F recursively separating,
�S�

⊥L = �S�.

Theorem 22. For all specifications S1, S2, S3 and α ∈ L,

– dLm(S1 ∨ S2,S3) = max(dL
m(S1,S3), dLm(S2,S3)),

– dLm(S1,S2 ∧ S3) �L max(dL
m(S1,S2), dLm(S1,S3)),

– �S1 ∨ S2�
α = �S1�

α ∪ �S2�
α, and �S1 ∧ S2�

α ⊆ �S1�
α ∩ �S2�

α.

The below example shows why the inclusions above cannot be replaced by equal-
ities. To sum up, disjunction is quantitatively sound and complete, whereas con-
junction is only quantitatively sound.

I
a, 2

D1
a, [0, 1]

D2
a, [3, 4]

D1 ∧ D2

Fig. 5. LTS I together with DMTS D1, D2 and their conjunction. For the point-wise
or discounting distances, dm(I, D1) = dm(I, D2) = 1, but dm(I, D1 ∧ D2) = ∞.

Example 23. For the point-wise or discounting distances, the DMTS in Fig. 5
are such that dm(I,D1) = dm(I,D2) = 1, but dm(I,D1 ∧ D2) = ∞. Hence
dm(I,S1 ∧ S2) �= max(dm(I,S1), dm(I,S2)), and I ∈ �D1�

1 ∩ �D2�
1, but I /∈

�D1 ∧ D2�
1.

5.4 Structural Composition and Quotient

We proceed to devise a quantitative generalization of the properties of structural
composition and quotient exposed in Sect. 4. To this end, we need to use a
uniform composition bound on labels:

Let P : L × L → L be a function which is monotone in both coordinates,
has P (α,⊥L) = P (⊥L, α) = α and P (α,�L) = P (�L, α) = �L for all α ∈ L.
We require that for all a1, b1, a2, b2 ∈ Σ and α, β ∈ L with F (a1, a2, α) �= � and
F (b1, b2, β) �= �, a1 � b1 is defined iff a2 � b2 is, and if both are defined, then

F (a1 � b1, a2 � b2, P (α, β)) �L P (F (a1, a2, α), F (b1, b2, β)) . (4)
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Note that (4) implies that dtr(a1 � a2, b1 � b2) �L P (dtr(a1, b1), dtr(a2, b2)).
Hence P provides a uniform bound1 on distances between synchronized labels,
and (4) extends this property so that it holds recursively. Also, this is a general-
ization of the condition that we imposed on � in Sect. 2; it is shown in [4] that
it holds for all common label synchronizations.

The following theorems show that composition is uniformly continuous (i.e., a
quantitative generalization of independent implementability; Corollary 12) and
that quotient preserves and reflects refinement distance (a quantitative general-
ization of Theorem 14).

Theorem 24. For all specifications S1, S2, S3, S4, dL
m(S1‖S2,S3‖S4) �L P (dLm

(S1,S3), dLm(S2,S4)).

Theorem 25. For all specifications S1, S2, S3, dLm(S1‖S2,S3) = dLm(S2,S3/S1).

6 Conclusion

We have presented a framework for compositional and iterative design and veri-
fication of systems which supports quantities and system and action refinement.
Moreover, it is robust, in that it uses distances to measure quantitative refine-
ment and the operations preserve distances.

The framework is very general. It can be applied to a large variety of quan-
tities (energy, time, resource consumption etc.) and implement the robustness
notions associated with them. It is also agnostic with respect to the type of
specifications used, as it applies equally to behavioral and logical specifications.
This means that logical and behavioral quantitative specifications can be freely
combined in quantitative system development.
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Abstract. We present a generic framework for verifying temporal safety
properties of procedural programs that are dynamically or statically con-
figured by replacing, adapting, or adding new components. To deal with
such a variability of a program, we require programmers to provide local
specifications for its variable components, and verify the global properties
by replacing these specifications with maximal models. Our framework
is a generalization of a previously developed framework that abstracts
from all program data. In this work, we capture program data and thus
significantly increase the range of properties that can be verified. Our
framework is generic by being parametric on the set of observed pro-
gram events and their semantics. We separate program structure from
the behavior it induces to facilitate independent component specifica-
tion and verification. We provide tool support for an instantiation of our
framework to programs written in a procedural language with pointers
as the only datatype.

1 Introduction

In modern computing systems code changes frequently. Components evolve
rapidly or exist in multiple versions customized for different users, and in open
and mobile contexts a system may even automatically reconfigure itself. As a
result, systems are no longer developed as monolithic applications; instead they
are composed of ready-made off-the-shelf components, and each component may
be dynamically replaced by a new one that provides improved or additional
functionality. The design and implementation of systems with such static and
dynamic variability has been attracting considerable attention over the past
years. However, there has been less attention to their formal verification. In this
paper, we develop a generic framework for the verification of temporal safety
properties of such systems.

The verification of variable systems is challenging because the code of the
variable components is either not available at verification time or changes fre-
quently. Therefore, an ideal verification technique for such systems should
(i) localize the verification of variable components, and (ii) relativize the global
properties of the system on the correctness of its variable components. This can
be achieved through a compositional verification scheme where system compo-
nents are specified locally and verified independently, while the correctness of
c© Springer International Publishing Switzerland 2015
I. Lanese and E. Madelaine (Eds.): FACS 2014, LNCS 8997, pp. 327–345, 2015.
DOI: 10.1007/978-3-319-15317-9 20
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its global properties is inferred from these local specifications. As a result, this
allows an independent evolution of the implementations of individual compo-
nents, only requiring the re-establishment of their local correctness. An algorith-
mic technique for realization of this verification scheme is to replace the local
specifications by so-called maximal models [12]. These are most general models
satisfying the specifications. Thus, if such models exist, they can replace the
specifications of variable components in the verification of the global properties.

The work presented in this paper is the second, final, and conceptually
more complicated phase of developing a compositional verification framework
for temporal properties of procedural programs with variability exploiting max-
imal models. In the first phase, we developed a compositional verification tech-
nique that separates program structure from its operational semantics (behavior)
to allow independent evolution of components [13,15]. The technique abstracts
away all program data to achieve algorithmic and practical verification. Such a
drastic abstraction, while allowing the verification of certain control flow safety
properties [25], significantly reduces the range of properties that can be handled.
For instance, properties of sequences of method invocations such as “method m1

is not called after method m2 is called” can be verified, but not properties that
involve program data, such as “method m1 is called only if variable V is not
pointing to null”. In this work, we generalize this technique to capture program
data, and thus bring the usability of our work to a whole new level.

The two main limitations of any verification technique that is based on max-
imal models are (i) the computationally complex maximal model construction
and (ii) the difficulty of producing component specifications. In our previous
works, these limitations were softened by full data abstraction. As we show in
Sect. 2, including program data (if done in the straightforward fashion) makes the
maximal model construction and property specification impractical: the program
models and properties become too detailed and large, maximal model construc-
tion becomes unmanageably complex, and the program models become overly
specific to one programming language. Our present proposal captures program
data without adding extra complexity to the maximal model construction, and
keeps the complexity of property specification within practical limits.

We define a novel notion of program structure that is parametric on a set
of actions that model single instructions of a selected type, and a set of Hoare-
style state assertions that capture abstractly the effect of a series of statements
between consecutive actions. We combine the abstraction provided by assertions
with the precision provided by actions to define a uniform control flow graph
representation of programs that can be tuned for the verification of the class of
properties of interest. The abstraction provided by assertions prevents the local
specifications from becoming overly verbose, and allows us to capture program
data without adding extra complexity to the maximal model construction. From
a wider perspective, by providing Hoare-style assertions and precise ordering of
actions these models allow to combine Hoare-style with temporal logic reasoning.

To the extent of our knowledge, our previous framework and consequently
the one presented in this paper are the only ones for algorithmic verification of
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Fig. 1. Web Server Application

temporal properties of procedural languages that allow the proofs to be rela-
tivized on component specifications. From a technical point of view, the main
contributions of this paper compared to our previous works are: (i) a novel struc-
tural model that combines the precise ordering of selected instructions with
abstract representation of the remaining ones, and its operational semantics
(a behavioral model), (ii) a proof that the original maximal model construction
can be adapted for the case with data (possibly from infinite domains) with
minimal additional cost, (iii) a proof of the correctness of the technique by (non-
trivial) re-establishment of our previous results, and (iv) tool support for an
instantiation of the framework to programs with pointers as the only datatype.
The extended version of this paper including additional examples and proofs can
be found in the accompanying report [24].

2 Overview of the Approach

This section provides an overview of our framework by demonstrating its use on
an example that mimics the method invocation style of real-life web applications.
Although the technique we propose applies to procedural languages in general,
we illustrate it here on Pointer Programs (PoP), a language with pointers as
the only datatype [23]. The language supports pointer creation and deletion,
assignments and conditional statements, loops, and method-calls with call-by-
reference parameter passing. The statement new x allocates a fresh chunk of
memory and assigns its pointer to variable x, while del x deletes the memory
that x is pointing to and assigns null to x (and all its aliases). The guards for
the conditional statements and loops are equality (alias) and inequality checks
on variables, and non-deterministic choice, denoted by *. Being able to deal with
this language is of interest, since it can give rise to infinite state spaces, for two
reasons: unbounded stacks of procedure calls, and unbounded pointer creation.
Due to space constraints, the formal instantiation of our generic verification
framework to the PoP language is delegated to the accompanying report [24].

We use this language to implement a program that mimics the method invoca-
tion style of Java enterprise web applications. The execution of such applications
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starts in method Container where based on the current request a Servlet is called
to prepare the output. As a coding standard [17], servlets should not call each
other. Thus if for example servlet A needs to make use of servlet B, it forwards
a request to the Container that triggers a call to B. We model this so-called for-
warding mechanism by explicit invocation of Container in servlets.

The program in Fig. 1 provides an implementation of a container and two
implementations of a single servlet, in which the one at the bottom extends the
one at the top by adding a logging facility through calling method LogSys. In
the code, the variables are pointers to requests. The global variables p and c
point to the previous (last-received) and current requests, respectively. At the
beginning of the execution, the request c is initialized by Main and Container
is called. In Container if the current request is different with the previous one,
the current request is stored in p and method Servlet is called, which non-
deterministically generates a fresh request and calls back Container. By this,
we mimic the call-backs to Container (forwarding mechanism) in a real web-
application when servlets call each other via the container. Container drops (i.e.,
deletes) the requests that are bounced back to it (when p = c) to avoid cycles in
the computation. The code of method LogSys is not shown here,but we assume
that it does not modify the global variables. Here, we consider each method as
a component, but in general a component can consist of several methods.

In this example, we assume that the method Servlet is the variable part
of the program. The structural local specification of method Servlet and two
behavioral global properties are given in the figure. In the remainder of this
section, we explain how to apply to this program the verification technique devel-
oped in the later sections, in different variability scenarios.

Verification Technique. In our framework, we divide the verification of variable
programs into two independent sub-tasks:

(i) a check that the implementation of each variable component satisfies its local
specification, and

(ii) a check that the composition of the local specifications together with the
implementations of the non-variable components entails the global property.

By this division we localize the verification of variable components (with sub-
task (i)), and relativize the correctness of global properties of the program on
the local specifications of its variable components (with sub-task (ii)). Thus,
adding or changing the implementation of a variable component does not require
the global property to be re-verified, just its local specification (with sub-task
(i)). Also notice that, if the local specifications are specified as completely as
possible (i.e., are not tailored toward particular global properties), once the local
checks of sub-task (i) are performed, the verification of new global properties will
not require the re-specification and verification of variable components. In fact,
variable components are often implemented and specified as general-purpose
libraries that can be used in arbitrary contexts and should thus not be specified
toward specific global properties.
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In most variability scenarios, variable systems would be verified once (with
sub-tasks (i) and (ii)) before delivering the software to customers, and would be
re-verified every time a variable component is modified by performing sub-task
(i) on the customer’s side. Ideally, sub-task (i) should be performable quickly and
thus in isolation from the non-variable part of the system, which is (usually) sig-
nificantly larger than the modified component. This is difficult to achieve for local
specifications that express properties of the execution of programs, i.e. behav-
ioral specifications, but is natural for those that express properties of the code
(program text) itself, i.e. structural specifications. The reason is that the lat-
ter can be checked against the component’s code rather than the execution of
the whole program. For example, a behavioral specification of method Servlet
would be “c points to null at any return point of method Servlet”, which can-
not be checked for method Servlet in isolation from Container and LogSys,
while the structural specification given in Fig. 1 can be checked against Servlet’s
code, independent from the rest of the program. In practice, these local speci-
fications should be provided by the developers. This requires the knowledge of
the safety requirements of the system.

Let us now mimic some dynamic variability scenarios. First assume that no
implementation of Servlet is available, for example because it is not imple-
mented yet or should be imported from a third-party library. Still, the incom-
plete program can be verified from the given structural local property of method
Servlet and the implementation of methods Main and Container by perform-
ing sub-task (ii). Later, when the implementation of method Servlet at the top
becomes available, it is only checked against its specification, as in sub-task (i).
Now assume that, after a while, the implementation of Servlet is updated to
the one at the bottom. Again, only the local check of sub-task (i) needs to be
performed, this time for the new implementation.

For static variability scenarios, assume that the two implementations of
Servlet are available and each of them together with Container make an appli-
cation that is delivered to customers based on their needs and budget (as in prod-
uct families). To verify the global property, the local specification of method
Servlet is checked for each of the implementations separately (sub-task (i)).
Independently, the composition of this local specification with the implementa-
tion of Container is checked against the global property (sub-task (ii)).

To verify programs in such variability scenarios, we model the structure of
non-variable components with flow graphs, and convert local specifications of
the variable components to maximal flow graphs. Here, we present these notions
informally and describe how they are used in our verification framework.

Flow Graphs. A flow graph is a finite collection of method graphs, each of which
represents the control flow structure of a method. Our flow graphs are parametric
on the class of program instructions that need to be explicitly represented for the
verification of the properties of interest, while using an abstract representation of
all other instructions. The rationale is that in temporal reasoning one is usually
interested in the ordering of certain events of interest, here called actions. The
exact ordering of the other events can be abstracted away; only their cumulative
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(a) Flow Graphs of Main and Container (b) Maximal Flow Graph of Servlet

Fig. 2. (a) Flow Graphs of Main and Container (b) Maximal Flow Graph of Servlet

effect needs to be captured. We represent the effect of a series of consecutive
events between two actions in a Hoare style, through logical assertions. The
combination of the precise ordering of actions and abstract representation of
data provided by assertions yields a flexible program model that potentially
allows to combine Hoare-style with temporal logic reasoning. Here, however, we
use these models only for the verification of control flow properties.

In our flow graphs, the actions have parameters and are represented by tran-
sition labels, while the assertions are assigned to control nodes1. Besides asser-
tions, return nodes are tagged by the atomic proposition r. Entry nodes of
method graphs represent the beginning of methods.

As an example, Fig. 2a shows a flow graph of the code of methods Main and
Container. We want to verify properties talking about order of new and del
statements, e.g., global properties in the figure, thus in this example, actions
are new and del. We add a neutral action ε to simplify the presentation of the
flow graphs. Assertions are equality and inequality checks on the variables at
the beginning and the end of a block of code between two actions. They express
the cumulative effect of condition evaluation and assignments. We use variable
names (such as p and c) and their primed version (p′ and c′) to refer to the values
at the beginning and the end of blocks, respectively. For example, state s8 in the
figure represents the assignment statement p := c in the code of Container.

Maximal Flow Graphs. A maximal flow graph for a specification is a flow graph
that represents the structure of any code satisfying it. To verify global proper-
ties, in our framework the variable components are replaced with maximal flow
graphs constructed from their specifications (in sub-task (ii)). By this, we decou-
ple the concrete implementations of variable components from the global cor-
rectness reasoning, thus allowing independent evolution of their code. In Sect. 5,
we define formally maximal flow graphs, prove their existence and uniqueness
for our specification logic, and provide an algorithm to construct them. Here, we
only give an intuitive explanation of their specifics in the present setup.

Local specifications often specify constraints on a small subset of the pro-
gram variables only, namely the variables whose values should be captured for
1 This (maybe non-standard) design choice allows a clear distinction between actions

and assertions, which is crucial for our framework.



Algorithmic Verification of Procedural Programs 333

the verification of the class of properties of interest. For example, the specifi-
cation of method Servlet does not specify any constraint on the variables p
and c since their values don’t have any effect on the global properties. In such
situations, there are (possibly infinitely) many implementations for a component
that respect its specification. A maximal flow graph should capture the structure
of all these implementations. It is therefore of size exponential in the number
of unspecified variables and their values, and is thus infeasible to construct in
practice with standard algorithms, e.g., [12,13,20], where data is represented
concretely.

In our structural models, however, data is represented symbolically through
logical assertions. We use a semantic entailment relation on assertions to reduce
the size and complexity of the construction of the maximal flow graphs. The
idea is that a control node with assertion φ can represent any set of nodes that
are tagged with assertions entailing φ. For example, consider the maximal flow
graph constructed from the local specification of Servlet shown in Fig. 2b. In
the graph the assertions (true) do not specify any constraints on the variables,
so any similar flow graph that for example has c′ = c or p′ = p as assertions at
its control nodes will be represented by the given maximal flow graph.

Verification. In our framework we support verification of structural and behav-
ioral global properties by performing the sub-tasks (i) and (ii) as follows. (i) The
flow graph extracted from the available implementation of Servlet is model
checked against its local specification. (ii) The maximal flow graph of Servlet
and the flow graph of Container are composed by means of set-theoretic union.
This composition can be directly model checked against structural global prop-
erties. However, the verification of behavioral global properties requires that a
behavioral model is induced from the composition. Intuitively this model (called
flow graph behavior) should capture all possible runs (executions) of the flow
graph. Therefore, it should model the call stack and represent the values of vari-
ables at each point of the execution, in which the latter requires the semantics of
the transition labels and state assertions. Also, to allow model checking of such
models, values should be from finite domains. Then the model can be represented
by means of pushdown automata. These models are defined in Sect. 3.

3 Program Model

We first define an abstract notion of model on which our representations of pro-
gram structure and behavior are based. A model is a Kripke structure extended
with transition labels and a set of state assertions.

Definition 1 (Model). A model is a tuple M = (S,L,→, A, P, λA, λP ) where
S is a set of states, L a set of labels, →⊆ S×L×S a labeled transition relation, A
a finite set of atomic propositions (or atoms), P a finite set of state assertions,
λA : S → 2A and λP : S → P valuations assigning to each state a set of atoms
and a state assertion, respectively. An initialized model S is a pair (M, E) with
M a model and E ⊆ S a set of initial states.
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Models are composed through disjoint union �. We assume the set of state
assertions P to be equipped with a semantic entailment relation, denoted by
�. This relation is used to define simulation preorder, logical satisfaction, and
maximal model construction.

In contrast to models without data, the states of models with data are addi-
tionally tagged with state assertions. As we shall see, these assertions together
with the atomic propositions provide the basis for the symbolic and concrete rep-
resentation of data, respectively. State assertions are used in structural models
to capture how data may change at the states (nodes) of the model, while atomic
propositions are used in behavioral models to represent the values of variables
at each point of the program execution.

We mentioned that a maximal model is the most general model satisfying a
property. The generality relation on models is technically defined w.r.t. a pre-
order relation called simulation. The definition of simulation preorder is para-
metric on the semantic entailment �.

Definition 2 (Simulation). A simulation on S is a binary relation R on S
such that whenever (s, t) ∈ R then λA(s) = λA(t), λP (s) � λP (t), and whenever
s

a−→s′ then there is some t′ ∈ S such that t
a−→t′ and (s′, t′) ∈ R. We say that t

simulates s, written s � t, if there is a simulation R such that (s, t) ∈ R.

Simulation on two disjoint models M1 and M2 is defined, as usual, as simulation
on their union. Simulation is extended to initialized models (M1, E1) by defining
(M1, E1) � (M2, E2) if there is a simulation R such that for each s ∈ E1 there
is some t ∈ E2 with (s, t) ∈ R.

As mentioned earlier, we compose models to verify global properties. The
following theorem establishes that simulation is preserved by model composition.

Theorem 1 (Monotonicity). If S1 � S ′
1 and S2 � S ′

2 then S1 �S2 � S ′
1 �S ′

2.

3.1 Flow Graphs

Intuitively, a flow graph is a collection of method graphs, one for each method of
the program, as illustrated in Fig. 2a. W.l.o.g., we assume that method names
are distinct and taken from a countably infinite set of method names Meth.
The notion of method graph is an instance of the generic notion of initialized
model defined above, with particular sets of assertions P and labels L. Let A
be a set of actions with data parameters. The set of flow graph labels is L =
LA ∪ Lcall, where LA = {α(a1, ..., an) | α ∈ A} are action-induced labels and
Lcall = {m(a1, . . . , aw) | m ∈ Meth} are labels representing method invocations.

Definition 3 (Method Graph). A method graph for method name m ∈ Meth
over a set M ⊆ Meth of method names is an initialized model (Mm, Em) where
Mm = (Sm, Lm,→m, Am, Pm, λAm

, λPm
) is a finite model and Em ⊆ Sm is

a non-empty set of entry points of m. Sm is the set of control nodes of m,
Lm ⊆ L, Am = {m, r}, Pm ⊆ P , λPm

: Sm → Pm is a valuation for transition
propositions, and λAm

: Sm → {{m}, {m, r}} is a valuation for atoms so that
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each node is tagged with its method name, and return nodes are additionally
tagged with r.

We sometimes write s |= m to denote m ∈ λA(s). Notice that with the above
definition, control nodes of flow graphs do not in general correspond to single
program points in the actual program’s code, but rather to sets of them.

Example 1. The definition of method graphs for PoP programs is an instantia-
tion of the definition above where Apop is formed from PoP actions and Pm are
the PoP assertions. Recall that the set of PoP actions is Apop = {del, new, ε}
where the arities of new and del are one and of ε is zero. The set of PoP assertions
Ppop is formed by equality and inequality constraints on the values of variables
at the beginning (non-primed variables) and end (primed variables) of the code
block that has collapsed into a state. Figure 2a shows a flow graph for the non-
variable components (methods Main and Container) of the PoP program in
Fig. 1.

Given the definition of PoP assertions above, semantic entailment � on Ppop

is defined as logical implication. �

In contrast to the flow graphs defined here, the ones without data do not have
state assertions, because all variables and their values are abstracted away.

Every flow graph G is equipped with an interface I, denoted by G : I. A flow
graph interface consists of a triple I = (M+,M−,Modify), where M+,M− ⊆
Meth are finite sets of provided and required methods, respectively, and Modify
is the set of the global variables of the program that are modified in the code of
the provided methods. As we shall see, interfaces are needed when constructing
maximal flow graphs, which in turn are used for compositional verification.

The definition of flow graph simulation, denoted by �s, is an instantiation of
the general notion of simulation on models (see Definition 2) to flow graphs.

3.2 Flow Graph Behavior

Program states σ ∈ Σ are defined as usual as mappings from the set of program
variables V to their values taken from D. Behavioral transitions conceptually
capture the occurrence of actions together with data transformations as spec-
ified by assertions. An assertion φ is interpreted over pairs of program states,
written (σ, σ′) |= φ, and is defined to hold when the closed formula φ[σ, σ′] is
logically valid (here σ, σ′ are used as syntactic substitutions for the non-primed
and primed variables, respectively). We define behavioral states 〈s, σ, σ′〉 as con-
sisting of a control node and a pair of program states that satisfies the assertion
of the node.

Example 2. PoP programs can create infinitely many pointers. However, at any
point of the execution (behavior), only finitely many of them are referenced by
program variables. Following [23] we exploit this fact and abstractly represent
the infinite pointers of PoP programs by finitely many equivalence classes. Two
variables are deemed to be equivalent whenever they are pointing to the same
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memory. Thus, PoP program states are essentially partitionings of variables into
such equivalence classes. In Example 3 we show how these program states are
used to form an execution of the PoP program in Fig. 1. �

Next we define flow graph behavior. Behavioral transitions are labeled with
“m1 call m2(a1, . . . , aw)” for an invocation of method m2 by method m1 with
parameters a1, . . . , aw, “m2 ret m1” for the corresponding return from the call,
or α(a1, ..., an) ∈ LA for the (method-local) transfer of control by action α with
parameters a1, ..., an. The definition of flow graph behavior is parametric on
externally provided (denotational) semantic mappings �·� over states and state
pairs that specify the (local) effect of actions, calls and returns.

Definition 4 (Flow Graph Behavior). Let S = (M, E) : (M+,M−,Modify)
be a flow graph s.t. M = (S,L,→, A, P, λA, λP ). The behavior of S is defined as
the initialized model b(S) = (Mb, Eb) where Mb = (Sb, Lb,→b, Ab, Pb, λAb

, λPb
),

with Sb ⊆ (S × Σ × Σ) × (S × Σ)∗, i.e., states (or configurations) are pairs of
behavioral states 〈s, σ, σ′〉 and stacks γ over pairs of control nodes and program
states, Lb = LA ∪ {m1 call lm2 | m1 ∈ M+ ∧ lm2 ∈ Lcall} ∪ {m1 ret m2 |
m1,m2 ∈ M+}, Ab = A ∪ (Σ × Σ), Pb = {tt}, λAb

(〈s, σ, σ′〉, γ) = λA(s) ∪
{(σ, σ′)}, and →b⊆ Sb × Lb × Sb is defined by the following transition rules:

[α] (〈s1, σ1, σ′
1〉, γ)

α(σ′(a1),...,σ′(an))−−−−−−−−−−−−−−→(〈s2, σ2, σ′
2〉, γ) if s1

α(a1,...,an)−−−−−−−−−→s2 ∧
(σ1, σ′

1) |= λP (s1)∧
(σ2, σ′

2) |= λP (s2)∧
σ2 = �α�σ′

1

[call] (〈s1, σ1, σ′
1〉, γ) if s1

m′(a1,...,aw)−−−−−−−−−−→s2 ∧ s |= m′ ∧
m call m′(σ′(a1),...,σ′(aw))−−−−−−−−−−−−−−−−−−−−→(〈s, σ, σ′〉, 〈s2, σ′

1〉 · γ) s1, s2 |= m ∧ m, m′ ∈ M+ ∧
(σ1, σ′

1) |= λP (s1)∧
(σ, σ′) |= λP (s)∧
σ2 = �call�σ′

1

[ret] (〈s1, σ1, σ′
1〉, 〈s2, σ2〉 · γ)

m ret m′
−−−−−−→(〈s2, σ3, σ′

3〉, γ) if s1 |= r ∧ m, m′ ∈ M+ ∧
s2 |= m′ ∧ (σ1, σ′

1) |= λP (s1)∧
s1 |= m ∧ (σ3, σ′

3) |= λP (s2)∧
σ3 = �ret�(σ′

1, σ2)

The initial configurations are Eb = {(〈s, σ0, σ
′
0〉, ε) | s ∈ E ∧ (σ0, σ

′
0) |= λP (s)},

where σ0 and ε denote the initial program state and the empty stack, respectively.

In the behavioral models variables are explicitly assigned to values and therefore
the set of assertions Pb should be empty. However, to be faithful to Definition 1,
we use the (dummy) value tt which we assign to all behavioral states. It should
further be noted that if D is finite, flow graph behavior can also be defined by
means of pushdown automata, as in [13].

Example 3. The above definition is instantiated to PoP programs through the
denotational semantics of PoP transition labels: PoP actions, call and ret.
Due to space limitation, here we only provide an intuitive explanation of the
semantics and delegate the formal definitions to the accompanying technical
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report [24]. Intuitively, the semantics of ε is the identity function, del(v) moves
v and all of its aliases to the equivalence class of null, new(v) maps v to a fresh
equivalence class, call initializes a program state for the called method, and
ret recomputes the equivalence classes of variables upon a return from a call.
Consider the composition of flow graphs shown in Fig. 2a and b. An example
run through this flow graph is shown below2. In the run, the boxes represent the
equivalence classes of variables, where the left box always represents the class of
null, e.g., shows that variables p is in the equivalence class of null and c
is in a different one.

Observe how assertions and transitions change the equivalence classes of vari-
ables, and states are pushed to and popped from the stack. E.g., the first tran-
sitions, new c, changes the equivalence class of c from null to a fresh one;
the assertion of state s8 moves p to the equivalence class of c; and the second
transition pushes to the stack, that is popped by the last transition. �

In contrast to the above definition of behavior, the one without data does not
have program states Σ, and the only action is ε. Thus, at calls control nodes
are simply pushed to the stack and these are popped at returns. Also the set of
atomic propositions Ab is equal to A, only consisting of method names and r.

Again, we instantiate the general definition of simulation (Definition 2) to
flow graph behavior, and denote it by �b. A result that we later exploit for
compositional verification is that if two flow graphs are related by structural
simulation, then their behaviors are related by behavioral simulation.

Theorem 2 (Simulation Correspondence). For flow graphs A and B, if
A �s B then b(A) �b b(B).

4 Logic

As a property specification language we use the safety fragment of Modal Equa-
tion Systems [21], that is without diamond modalities. This logic is equal in
expressive power to the safety fragment of the modal μ-calculus [19]. Here, we
employ the former logic for technical reasons that will become clear later, but a
user is free to use either. The translation of μ-calculus to simulation logic defined
2 This example is simplified for the presentation in this paper. For complete examples

please see [24].
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in Definition 6 below is based on Bekič’s principle described in [6,8]. The transla-
tion in the other direction is straightforward and done simply by replacing each
fixed point by an equation.

Following Larsen [21], we define the syntax and semantics of the specification
language in two steps: first we define a basic modal logic that is parametrized
on a set of labels L, state assertions P , and atoms A, and then we add recursion
by means of equation systems in Definition 6. Basic simulation logic is a variant
of Hennessy-Milner logic [14] without diamond modalities.

Definition 5 (Basic Simulation Logic: Syntax). The formulas of basic sim-
ulation logic are inductively defined by:

φ ::= a | ¬a | p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [l]φ

where a ∈ A, p ∈ P , l ∈ L, and X ranges over a set of propositional variables V.
Formulas of the shape a, ¬a, p, and ¬p are called atomic formulas.

The semantics of a formula φ of basic simulation logic over L, P , and A is defined
relative to a model M and an environment ρ : V → 2S as an extension of the
standard definition (see [26]) with the following additional clauses.

‖p‖ρ
def= {s ∈ S | λP (s) � p} and ‖¬p‖ρ

def= S \ ‖p‖ρ

Definition 6 (Modal Equation System). A modal equation system Π =
{Xi = Φi | i ∈ J} over L and A for a set of indexes J is a finite set of
defining equations such that the variables Xi are pairwise distinct and each Φi

is a formula of basic simulation logic over L, P , and A. The set of variables
occurring in Π is partitioned into the set of bound variables, defined by bv(Π) =
{Xi | i ∈ J}, and the set of free variables fv(Π).

The semantics of a closed modal equation system ‖[Π]‖ρ is defined as its greatest
fixed point. We use n-ary versions of conjunction and disjunction, setting

∧
∅ =

tt (true) and
∨

∅ = ff (false). We use Labels(X) and Atoms(X) to refer to
the set of labels and atoms of the defining equation for X, respectively.

Finally, using the definitions of basic simulation logic and modal equation
systems, the formulas of simulation logic are defined by Φ[Π] over L, P , and A,
where Φ is a formula of basic simulation logic and Π is a modal equation sys-
tem. The semantics of Φ[Π] w.r.t. model M and environment ρ is defined by
‖Φ[Π]‖ρ

def= ‖Φ‖ρ[‖Π‖ρ]. We say that a state s of a model M satisfies Φ[Π],
written (M, s) |= Φ[Π], if s ∈ ‖Φ[Π]‖ρ for all ρ. For initialized model (M,E) we
define (M,E) |= Φ[Π] if (M, s) |= Φ[Π] for all s ∈ E.

Simulation logic is capable of expressing safety properties of sequences of
observed actions, calls and returns. We use two instantiations of this logic to
represent structural and behavioral properties. Structural logic expresses prop-
erties of flow graphs (Definition 3), therefore it is instantiated by a ∈ A, p ∈ P ,
and l ∈ L. Behavioral logic, however, expresses properties of flow graph behaviors
(Definition 4), therefore it is instantiated by a ∈ Ab, p ∈ Pb, and l ∈ Lb.
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Example 4. The structural local property “Container can only be called as the
last statement of the method Servlet” in Fig. 1 is specified by the structural
formula X[Π], where Π is

X = [Container()]r ∧
∧

l∈LServlet\Container()
[l]X

The second behavioral global property in Fig. 1 is specified by the behavioral
formula X[Π], where Π is X = ((Main∧r) ⇒ (p = null∧c = null))∧

∧
l∈Lb

[l]X.

5 Maximal Models and Flow Graphs

To construct maximal models, we generalize our previous algorithm for models
without program data [13], following closely the treatment there. We therefore
only sketch our construction here, and refer the reader to [13] for the details. Our
construction algorithm is defined on the general notion of model (Definition 1).

5.1 Maximal Model Construction

We define two auxiliary functions θ and χ which form a Galois connection
between finite models and formulas in simulation logic. Function χ translates
a finite model into a formula, while θ translates a formula into a (finite) model.
Both functions are defined on formulas in a so-called simulation normal form
(SNF). In this section, we define SNF and show that every formula of simulation
logic has an SNF representation and provide an algorithm to convert a formula
to its SNF. The construction of maximal models basically consists of translating
a given formula into SNF and applying function θ on the result.

Definition 7 (χ). Function χ maps a finite initialized model (M, E) into its
characteristic formula χ(M, E) = φE [ΠM], where φE =

∨
s∈E Xs, and ΠM is

defined by the equations:

Xs =
∧

l∈L

[l]
∨

s
l−→t

Xt ∧
∧

a∈λA(s)

a ∧
∧

b/∈λA(s)

¬b ∧ λP (s)

Example 5. Function χ maps the flow graph of method Main to its characteristic
formula (X1)[ΠMain], where ΠMain is the modal equation system

X1 =
∧

l∈L\{new c}[l]ff ∧ [new c]X2 ∧ ¬r ∧ Main ∧ Φ

X2 =
∧

l∈L\{Container()}[l]ff ∧ [Container()]X3 ∧ ¬r ∧ Main ∧ Φ

X3 =
∧

l∈L[l]ff ∧ r ∧ Main ∧ Φ

and where L is the set of structural labels. Recall that ff =
∨

∅. �

The next result shows that function χ precisely translates an initialized model
to a formula. This is a variation of an earlier result by Larsen [21].
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Theorem 3. Let S1 and S2 be two initialized models and let S2 be finite. Then
S1 � S2 if and only if S1 |= X (S2).

Definition 8 (Simulation Normal Form). A formula φ[Π] of simulation
logic over L, A, and P is in simulation normal form (SNF) if φ has the form∨

Z for some finite set Z ⊆ bv(Π) and all equations of Π have the following
state normal form

X =
∧

l∈L

[l]
∨

YX,l ∧
∧

a∈BX

a ∧
∧

b/∈A\BX

¬b ∧ p (1)

where each YX,l ⊆ bv(Π) is a finite set of variables, BX ⊆ A is a set of atomic
propositions, and p ∈ P is a state assertion.

Example 6. The property shown in Example 5 is in simulation normal form. �

To translate simulation logic formulas into SNF we generalize the algorithm
of [13] that works as follows. For a given set of atoms A, labels L, and a for-
mula φ[Π], it saturates each equation of Π by conjoining its missing labels as∧

l∈L∧l/∈Labels(X)[l] tt, and atoms as
∧

a∈A∧a/∈Atoms(X)(a ∨ ¬a), and then trans-
forms the resulting formula to SNF by introducing new equations for disjunctions
of formulas not guarded by any box. Our adaptation of this algorithm to for-
mulas φ[Π] of Definition 6 proceeds in two steps. First, we apply the above
algorithm to φ[Π], simply carrying over the assertions of the equations. In the
second step, we conjoin the top element of the lattice of P to the resulting equa-
tions that do not have any assertions. In this way we simplify the saturation of
assertions, that would otherwise be very inefficient or even impossible when the
set of variables and their values is large or infinite.

Theorem 4. Every formula of simulation logic has an equivalent one in SNF.

Definition 9 (θ). Function θ translates a formula (
∨

X )[Π] over L, A, and P ,
that is in SNF as in (1), to the (finite) initialized model θ((

∨
X )[Π]) = ((S,L,→,

A, P, λA, λP ), E) where S = bv(Π), E = X and for every X ∈ X the equation
for X induces transitions {X

l−→Y | Y ∈ YX,l}, λA(X) = BX , and λP (X) = p.

Theorem 5 (Maximal Model Theorem). For any φ in SNF, we have S �
θ(φ) if and only if S |= φ.

Thus, the model θ(φ) is a maximal model for φ, in the sense that θ(φ) is a model
that satisfies φ and simulates all models satisfying it.

5.2 Maximal Flow Graph Construction

Maximal models constructed from structural properties by the above algorithm
are in general not legal flow graphs. To restrict these to legal flow graphs, we
conjoin the property with a so-called characteristic formula CI constructed from
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the interface I = (M+,M−,Modify). CI describes precisely the models that
constitute flow graphs with interface I:

CI = ΦI [ΠI ] , ΦI =
∨

m∈M+ Xm

ΠI = {Xm =
∧

l∈L[l]Xm ∧ am ∧ pm | m ∈ M+}
am = m ∧

∧
{¬m′ | m′ ∈ M+,m′ �= m}

pm =
∧

{v = v′ | v /∈ Modify ∧ v ∈ V }
With the help of CI we obtain a variant of Theorem 5 for flow graphs.

Theorem 6. Let I = (M+,M−,Modify) be an interface. For any initialized
model S = (M, E) over L and A = M+ ∪ {r} we have:

1. S |= CI if and only if R(S) : I
2. S �s θ(φ ∧ CI) if and only if S |= φ and R(S) : I

where R(S) denotes the reachable part of S.

6 Compositional Verification and Tool Support

As mentioned in Sect. 5, for models and formulas as defined in Definitions 1
and 6, maximal models exist and are unique up to isomorphism. Therefore,
for this choice of model and logic we can provide the following principle for
compositional verification that is sound and complete for finite models: “To show
M1 � M2 |= ψ, it suffices to show M1 |= φ, i.e., that component M1 satisfies
a suitably chosen local specification φ, and θ(φ) � M2 |= ψ, i.e., that M2, when
composed with the maximal model θ(φ), satisfies the global property ψ.”

We exploit Theorem 6 to adapt this principle to flow graphs (as models) and
structural logic and use the maximal flow graph construction from Sect. 5.2 to
obtain the rule below.

G1 |= φ θ(φ ∧ CI) � G2 |= ψ

G1 � G2 |= ψ
(2)

The rule states that the composition of flow graphs G1 and G2 satisfies the
structural property ψ if flow graph G1 satisfies a local structural property φ,
and the composition of flow graph G2 with the maximal flow graph for φ and
interface I satisfies ψ.

Theorem 7. Rule (2) is sound and complete.

We restrict local specifications to structural properties, and by exploiting the fact
that structural simulation implies behavioral simulation (Theorem 2), we obtain
a complete compositional verification rule for global behavioral properties, thus
avoiding the possibility of false negatives. However, adapting the compositional
verification principle to local behavioral specifications is more problematic, as
behavioral properties in general do not give rise to unique maximal flow graphs.
We can represent the set of flow graphs satisfying the local specification by a
(pushdown) model that simulates the behavior of these flow graphs, but this
necessarily leads to approximate (i.e., sound but incomplete) solutions, since
such a model cannot be guaranteed to be a legal flow graph behavior.
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Tool Support and Evaluation. We have extended our compositional verification
toolset [16] for the verification of PoP programs in the presence of variability.
Besides the necessary data structures, the toolset includes a maximal flow graph
constructor, a tool to induce behaviors from flow graphs, and external model
checkers CWB [9] and Moped [18]. We used this toolset to verify a Java J2EE
application consisting of 1087 lines of code, of which 297 lines are variable.

We focused on properties of database connections, such as “at the end of
the execution, all database connections should have been closed”. We there-
fore abstracted away all program data except variables of this type, constructed
and destructed by invoking methods getConnection and close, respectively. To
extract flow graphs with this abstraction, we first extracted a data-less flow graph
from the Java code with our flow graph extractor tool ConFlEx [11]. Then we
manually inserted all 4 database connection variables of the program into the
extracted flow graphs and replaced any call to getConnection and close meth-
ods with new and del actions, respectively. This was necessary because currently
we do not have a tool to extract PoP flow graphs from code. We also specified
each method of the program with a structural local specification, expressing
its safe sequences of invocation of methods getConnection and close (here
renamed to new and del). We then (i) model checked the flow graphs of variable
components against their corresponding local specifications with CWB (took 0.5
sec.), and (ii) constructed maximal flow graphs from the local specifications of
the variable components (took 4.1 sec.), composed them with the flow graphs of
the other components and model checked the result against a property of data-
base connection with Moped (took 2.1 sec.). Recall that to re-verify the program
after a change in the variable components only sub-task (i) needs to be repeated.

7 Related Work

In the context of compositional verification of temporal properties, the maxi-
mal model technique was first proposed by Grumberg and Long for ACTL, the
universal fragment of CTL [12], and later generalized by Kupferman and Vardi
for ACTL* [20]. These works do not address the verification of infinite state
systems. In our previous work, we used maximal models constructed from safety
μ-calculus formulas to verify infinite state context-free behaviors, where the pro-
gram data is disregarded [13]. In this work we extend our previous work to a
generic framework that captures program data.

For a different class of properties, Hoare logic provides a popular frame-
work for compositional verification of programs, (see e.g. [22]) that is technically
capable of verifying programs with variability. Also, of particular interest to our
technique is the work by Alur and Chaudhuri [3], which proposes a unification
of Hoare logic and Manna-Pnueli-style temporal reasoning by defining a set of
proof rules for the verification of some particular classes of (non-regular) tem-
poral properties. Our technique is partially inspired by this work.

Related to our approach of relativizating global properties on local speci-
fications, Andersen introduces partial model checking in which global proper-
ties of concurrent systems are reduced to local properties of their components
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(processes) [5]. The work only considers finite-state systems; however, the app-
roach suggests the possibility of extending our technique to generate local prop-
erties for variable components of programs when the global properties are fixed.

Several successful tools and techniques exist for (non-compositional) ver-
ification of behavioral properties of procedural programs. However, as men-
tioned, compositionality is essential for the verification of variable programs.
Still, related to our two-step verification procedure, tools such as SLAM [7] and
ESP [10] divide the verification into (local) intra- and (global) inter-procedural
analysis to achieve scalability. It is interesting to explore if the ideas presented
here can be used to adapt these tools for the verification of systems with
variability.

Closely related to our flow graph model are recursive state machines [2],
defined by Alur and others as a formalism to model procedural programs with
recursive calls. The authors propose efficient LTL and CTL* model checking
algorithms. However, they do not address compositional verification.

As for specification languages, the temporal logic of nested calls and returns [4]
and its generalization to nested words [1] are of particular interest to this work.
These logics are capable of abstracting internal computations by moving from a
call to its corresponding return point in one step. However, they do not make a
clear separation of structure and behavior, and may therefore require more
involved maximal model constructions.

8 Conclusion

This paper presents a generic framework for compositional verification of tem-
poral safety properties of sequential procedural programs in the presence of vari-
ability. The framework is a generalization of a previously developed framework
which disregards program data. Our technique relies on local specifications of
the variable components, in that the correctness of global properties of the pro-
gram is relativized on the composition of the maximal flow graphs constructed
from these local specifications and the flow graphs of the stable components.

The framework is parametric on a set of selected “visible” program instruc-
tions that are explicitly represented as transition labels, while the effect of all
other instructions is captured abstractly by means of Hoare-style state asser-
tions. This distinction allows to keep the level of detail of specifications within
practical limits. It also allows a (symbolic) formulation of the maximal model
construction for program models with data that does not add to the complex-
ity of the construction for models without data. To evaluate our technique in
practice, we provide tool support for the verification of evolving PoP programs.

In the current setting, our (symbolic) flow graphs induce behaviors with
concrete data from finite domains. We conjecture that program data can be
represented symbolically in the behaviors as well, using the state assertions of
the structural program model (Definition 1). We plan to investigate the expres-
siveness of symbolic behaviors. We are currently working on a parametric flow
graph extractor to extract flow graphs of Java programs for the given sets of
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actions and assertions. We also plan to provide tool support for the verification
of programs with other datatypes, such as integers and Booleans.
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vol. 6528, pp. 107–121. Springer, Heidelberg (2011)

17. Servlet Development. Release 2 (9.0.3). http://docs.oracle.com/cd/A97688 16/
generic.903/a97680/develop.htm#1007089

18. Kiefer, S., Schwoon, S., Suwimonteerabuth, D.: Moped–a model-checker for push-
down systems. http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

19. Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)
20. Kupferman, O., Vardi, M.: An automata-theoretic approach to modular model

checking. TOPLAS 22(1), 87–128 (2000)

http://docs.oracle.com/cd/A97688_16/generic.903/a97680/develop.htm#1007089
http://docs.oracle.com/cd/A97688_16/generic.903/a97680/develop.htm#1007089
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/


Algorithmic Verification of Procedural Programs 345

21. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) Automatic Verifica-
tion Methods for Finite State Systems. LNCS, vol. 407, pp. 232–246. Springer,
Heidelberg (1989)

22. Müller, P. (ed.): Modular Specification and Verification of Object-Oriented Pro-
grams. LNCS, vol. 2262. Springer, Heidelberg (2002)

23. Rot, J., de Boer, F., Bonsangue, M.: Unbounded allocation in bounded heaps. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS, vol. 8161, pp. 1–16. Springer,
Heidelberg (2013)

24. Soleimanifard, S., Gurov, D.: Algorithmic verification of procedural programs in
the presence of code variability. Technical report, KTH (2013). http://urn.kb.se/
resolve?urn=urn:nbn:se:kth:diva-128950

25. Soleimanifard, S., Gurov, D., Huisman, M.: Procedure-modular specification and
verification of temporal safety properties. Softw. Syst. Model. (2013). doi:10.1007/
s10270-013-0321-0

26. Stirling, C.: Modal and Temporal Logics of Processes. Springer, New York (2001)

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-128950
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-128950
http://dx.doi.org/10.1007/s10270-013-0321-0
http://dx.doi.org/10.1007/s10270-013-0321-0


Place-Liveness of ComSA Applications
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Abstract. Interactive scientific visualization applications are based on
heterogeneous codes to implement simulation, visualization and inter-
action parts. These different parts need to be precisely assembled to
construct high performance applications allowing efficient interactions.
Thanks to their programming paradigm, component-based approaches
are suitable to construct this kind of applications. However, building a
correct application using this paradigm is a difficult task. Even starting
up such an application may be a difficult problem since the composition
may lead to deadlocks. This paper defines a sufficient condition that
ensures place-liveness of a subclass of FIFO nets. This result is used to
provide tools that help a user to analyze his application. Especially, this
analysis aims at avoiding deadlocks and starting the application up in a
way that ensures its liveness i.e. all its components are active.

Keywords: FIFO nets · Component-based approaches · Analysis tools

1 Introduction

Component-based approaches are widely used in many different domains. The
main advantages of such approaches are their great ability to integrate heteroge-
neous codes in a single application and the separation of concerns and the code
reusability that they favor. Scientific computing, including scientific visualiza-
tion, is a domain which can benefit from component-based approaches since it
requires applications that integrate very specific and sophisticated codes from
different fields. In this sense, scientific workflows (e.g. [8]) are often component-
based approaches.

The work presented in this paper takes place in the domain of interactive
scientific visualization, i.e. scientific applications that include a simulation cou-
pled with a real-time visualization as well as interaction means allowing the user
to interact with the simulation or the visualization. Such applications are made
from different kinds of modules. They can be parallel codes for shared or distrib-
uted memory systems or they can be sequential codes. Thus, the modules can
have very different behaviors: some can be very slow, others can be very fast.
Finally, the interactivity introduces performance constraints since the result of
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an interaction should be quickly visible to the user to understand what he does.
A component-based approach can help to resolve these constraints thanks to
exogenous coordination. In this case, some connectors, which express very spe-
cific communication policies, are used to coordinate the components when assem-
bling them in an application [11]. For example, coupling a parallel simulation
with a visualization can generate buffer overflows on the visualization. But it
may be unnecessary to render all the simulation results thus a connector based
on a greedy policy can solve the problem. Our connectors are similar to Reo [2]
connectors. However, they are not based on a request-response protocol unlike
the channel-based coordination model of Reo. The connectors deliver data when
the receiver is ready to consume them. Therefore the sender is able to run at its
own rate. That is why the exogenous coordination need to be precisely defined
with connectors able to specify synchronization policies taking into account the
application specificities.

The ComSA component model, subject of our paper, meets the needs of inter-
active scientific visualization applications. It can be implemented in frameworks
like FlowVR [1] which is specifically designed to provide exogenous coordination
that fits the constraints of interactive applications [6].

Building a ComSA application can be a difficult task especially for users who
are not computer experts. Particularly, the composition needs to be well defined
in order to ensure that the application can start and also to prevent run time
issues. Solving these problems is often based on the analysis of the application
deadlocks. For component-based approaches, the deadlocks are widely studied
as illustrated by the recent work [3]. In this context, our goal is to provide a set
of tools that helps to build the application and to analyze it. In particular, the
analysis tools aim to correct the application by detecting deadlocks. They also
target to start properly the application which may be non-trivial.

Petri nets are extensively used as formal models for concurrent systems. For
the component-based approaches they are also frequently utilized because of
their analysis and verification ability as in [4,16] where the application behavior
analysis and refinement are based on colored Petri nets. Moreover, they offer a
simple graphical representation that can be used for simulation purposes.

This paper proposes to complete ComSA with a toolkit based on a special
class of FIFO nets called strict colored FIFO nets (sCFN). The formal semantics
offered by sCFN models finely the behavior of high performance interactive visu-
alization applications. This can be used for simulation purposes to test the global
behavior of an application for example. But such a modeling is also helpful to
specify some properties on the structure of the application to ensure that it can
be started and that it can run without blocking because of deadlocks. This kind of
analysis usually relies on liveness properties of Petri nets. Sufficient conditions to
insure liveness of some classes of Petri nets most often use the well known Com-
moner property that relies on the notions of siphons and traps [5,10]. Such con-
ditions also provide a way to build a proper initial marking that makes the Petri
net live. The deadlock freedom of the applications presented in this paper relies
on a place-liveness property of the sCFNs that model them. The place-liveness
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is demonstrated using a reduction of the problem to a class of ordinary Petri
nets and are based on liveness results of the asymmetric choice Petri nets.

The remainder of this paper is structured as follows: the ComSA component
model is presented in Sect. 2 with an example to present the problem. Section 3
defines the class of sCFN and presents the semantics of ComSA applications
using sCFNs. Section 4 presents a sufficient condition for place-liveness of sCFNs
and shows how it is used to help the user to build and start his application.
Finally Sect. 5 concludes and gives some perspectives.

2 The ComSA Model

The component-based approach for Scientific Applications (ComSA) aims to
design and develop interactive applications including visualization components.
It can model applications developed with the FlowVR middleware. The model is
first described and some examples are given. The examples are used to illustrate
how our model fits with the targeted application constraints and to show the
need of analysis tools to check application properties as the existence of a start
configuration which guarantees all the components will actually run.

2.1 The Component Model

A component is an existing piece of software composed of input ports and output
ports which are the interfaces between a component and the outside.

Definition 1. A component is a quadruple C = (Id, pIn∪{s}, pOut∪{e}, IR),
where Id is its unique identifier, pIn a set of input data ports, s an input trig-
gering port, pOut a set of output data ports, e an output signal port and IR a
subset of P(pIn) × P(pOut) called incidence relations.

For a component C, IdC , pInC , pOutC and IRC denote respectively its identifier,
input ports, output ports and its incidence relations.

The component behavior is described by the incidence relations. Each of
them represents an operational mode of the component and can be linked to a
specific service provided by the component. Data exchanges between component
are performed through messages and during an iteration a component can read
at most one message on each of its input port and produce at most one message
on each of its output port.

Definition 2. Given a component C, an incidence relation is a pair r = 〈I, O〉
s.t. I ⊆ pInC is the set of input ports of r and O ⊆ pOutC its set of output
ports. I and O are denoted IRin(r) and IRout(r) respectively. r is said satisfied
if each port p ∈ IRin(r) contains data.

The behavior of a component C named wait-get-put is the following: wait until
at least one of its incidence relation is satisfied, get one message from the input
ports of all satisfied incidence relations of C, put one new message to the output
ports of all satisfied incidence relations of C and emit a signal on port e.
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It is important to remark that at each iteration, all the satisfied incidence
relations are triggered and all the corresponding results are produced. The inci-
dence relations describe different computations the component can make accord-
ing to the inputs and only one result is computed for each output port. For a
component C, let P(IRC) be the set of all the non-empty subsets of IRC , each
set S ∈ P(IRC) is a behavior of C s.t. ∀r ∈ S, r is fired.

Fig. 1. Example of incidence relations.

For example, the component illustrated Fig. 1 has three incidence relations.
However, if i2 and i3 are fed then both r2 and r3 are executed and if all the
input ports are fed, all the incidence relations are fired. So, the component has
two behaviors in addition to those corresponding to r1, r2 and r3. It is also
important to remark that if the input port s of a component C is connected in
an application, it becomes an implicit input port of all incidence relations of C.
This way, it is possible to control the component iterations from the outside.

Assembling components to realize an application, consists in defining a com-
munication schema allowing the exchanges of data between the components. This
schema is based on communication connectors in charge of the communication
policy and on links.

Definition 3. A connector is a quadruple c = (Id, {i, s}, {o}, t) where Id is the
identifier of c, i is an input port, s a triggering input port, o an output port and
t the type of the connector.

For a connector c, the notations Idc, pInc, pOutc and tc stand respectively for
the identifier, the set of input ports, the set of output ports and the type of c.
The behavior of a connector depends on its type. Three types of connectors are
available:

– The sFIFO connector is a plain FIFO connection. To prevent overflows, the
sender waits for a triggering signal on its s port usually sent by the receiver.

– bBuffer and nbBuffer connectors keep their incoming messages and dispatch
the oldest one when they receive a triggering signal on their s port. nbBuffer
is the non-blocking variant of bBuffer i.e. it generates an empty message to
the receiver when triggered while it has no message waiting.
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– bGreedy and nbGreedy connectors keep only the last message provided by
the sender and send it when they receive a triggering signal on their s port.
nbGreedy is the non-blocking variant of the bGreedy connector.

The links are used to connect components and connectors via their ports.

Definition 4. A link is a pair 〈xp, yq〉 where x, y are components or connectors,
p ∈ pOutx and q ∈ pIny. When, p �= e, q �= s and either x or y is a connector
the link 〈xp, yq〉 is called a data link. When, p = e, q = s and x is a component,
the link 〈xp, yq〉 is called a trigger link.

Two data links 〈xp1
1 , yq1

1 〉 and 〈xp2
2 , yq2

2 〉 are compatible if yq1
1 �= yq2

2 . Each input
port cannot belong to more than one link.

An application is described by a graph that connects the output ports to
the input ports of components and connectors. Thus, its vertices are the compo-
nents and the connectors. Its edges are the links. Formally, an application App
is defined by a graph (Comp

⋃
Conn,Dl

⋃
T l) where Comp is a set of compo-

nents, Conn a set of connectors, Dl a set of pairwise compatible data links and
T l a set of trigger links.

It is important to remark that data links must be compatible to prevent that
an input port is fed concurrently by two different producers. On the other hand,
a s port can be the end of several trigger links and it will be fed with a signal
at the end of the iteration of all the emitter components.

Definition 5. Let App = (Comp
⋃

Conn,Dl
⋃

T l) and C ∈ Comp, each r ∈
IRC is said active if ∀p ∈ IRin(r)∃ l ∈ Dl and c ∈ Conn s.t. l = 〈ci, Cp〉.

If for each C ′ ∈ Comp ∃r ∈ IRC′ s.t. r is active then the application App is
said well-formed.

Figure 2 illustrates an application graph for the scientific visualization of a mole-
cular dynamics simulation. Thus, Components I1 and I2 represent interaction
components, S1, S2 and S3 computation components and V is the visualiza-
tion component. Therefore, I1 and I2 provide some events as mouse clicks,
3D or analog positions. For example they can be respectively associated to a
Omni R©Phantom (an haptic device with force feedback and a 3D position sens-
ing) and a SpaceBall (a 3D motion controller). Component S1 transforms these
events into actions and interprets raw the 3D positions it receives. Component
S2 is the simulation component. It provides the atom positions and their energy
according to the molecular dynamics it implements. The molecular dynamics can
be influenced by a force applied on some atoms that S2 can receive. Component
S3 computes this force when it receives the right event and sends it to both
Component S2 and I1 that is able to produce a feedback to the user. Finally,
Component V renders the atoms and the forces when applied on atoms. Compo-
nent V also receives the actions and the 3D position which is used to represent
an avatar. This avatar allows atom selections from which forces are computed
using the distance between this avatar and the nearest atom at the time of the
selection.
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Fig. 2. Application of a molecular dynamics simulation

The incidence relations of each component describe its behaviors. For exam-
ple, the component S2 has two behaviors. It produces atom positions at each
iteration and an energy only at the reception of a force on its input port. Its
incidence relations are {〈∅, {pos}〉, 〈{f}, {E}〉}. The component S3 computes a
force from the avatar and the atom positions according to the action message
it receives on its act port. As soon as it receives an energy it also updates the
force to modulate its norm for example. Therefore its incidence relations are
{〈{pos, av, act}, {f}〉, 〈{pos, av, E}, {f}〉}.

To ensure the application runs as fast as possible, communications are based
on nbGreedy connectors in order to not saturate the slowest components thanks
to message loss and to not delay the fastest ones. However, events as mouse
clicks cannot be lost. Indeed they trigger specific computations. For example
the mouse click from c1 of I1 is interpreted by S1 into an action that triggers
a force computation of the S3 component. That is why, a Buffer connector was
chosen to connect c1 of I1 (resp. c2 of I2) to c1 (resp. c2) of S1. We choose a
blocking or non blocking mode for these connectors according to the component
capacity to interpret empty messages. The energy must not be lost for the force
computation and the component S2 must interpret all the forces from S3. To
ensure that no information is lost bBuffer connectors were chosen between the
E and the f ports of S2 and S3.

It is simple to check that an application App is well-formed which ensures
that all the components may be operational. However, it does neither guarantee
that the application starts nor all its components are live, in the sense they can
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actually receive data. Therefore, it may be very difficult for a user to start and
verify the liveness of such application because of cycles in the application graph.
That is why, it is essential to define analysis tools to help the user to check the
good properties of his application. These tools rely on an operational semantics
of the ComSA model in terms of strict Colored Fifo Nets (sCFN), a subclass of
FIFO nets. In the following, we describe how the formal semantics offered by
sCFN models the ComSA applications.

3 The ComSA Semantics

Some definitions and notations of Petri nets are first recalled, then the sFIFO
nets are defined and finally the ComSA semantics is presented.

3.1 Ordinary Petri Nets

The place-liveness property of strict color FIFO nets uses a place-liveness suffi-
cient condition on ordinary Petri nets. Hence, definitions, notations and results
on Petri nets used in the remainder are presented. For more details see e.g. [5].

An ordinary Petri net (OPN) is a tuple 〈P, T,A,M〉 where P is a finite set
of places, T is a finite set of transitions (with P ∩T = ∅), A a set of arcs either of
the form 〈p, t〉 or of the form 〈t, p〉 where p ∈ P , t ∈ P . Finally M is a function
which assigns a positive number of tokens to each place. The notation 〈P, T,A〉
refers to the structure of the net 〈P, T,A,M〉.

The following definitions are used to express the dynamics of an OPN. In
an OPN 〈P, T,A,M〉, •x where x ∈ P ∪ T denotes the set {y|∃〈y, x〉 ∈ A} and
symmetrically x• denotes the set {y|∃〈x, y〉 ∈ A}. Note that if x ∈ P •x and x•
are subsets of T and vice versa. Let E be a subset of P or of T , •E denotes the
set

⋃
x∈E •x and E• denotes the set

⋃
x∈E x•. A set of places E is said to be

marked if ∃p ∈ E such that M(p) > 0. A place p such that •p = ∅ is called a
source place. A place p such that |p • | > 1 is called a conflict and in this case,
the elements of p• are called conflicting transitions.

In an OPN 〈P, T,A,M〉, a transition t ∈ T is enabled if ∀p ∈ •t M(p) > 0.
Firing an enabled transition consists in consuming one token in each of its input
places and putting one token to each of its output places. The OPN 〈P, T,A,M〉
can evolve to 〈P, T,A,M ′〉 when firing transition t (denoted 〈P, T,A,M〉 →t

〈P, T,A,M ′〉), if t is an enabled transition of 〈P, T,A,M〉 and M ′ is the marking
defined as follows

MR(p) =
∣
∣
∣
∣
M(p) − 1 if p ∈ •t
M(p) otherwise M ′(p) =

∣
∣
∣
∣
MR(p) + 1 if p ∈ t•
MR(p) otherwise

Note that MR is just an auxiliary marking that helps to define M ′ especially
for the places of t • ∩ • t. For an OPN 〈P, T,A〉, a marking M ′ is said reachable
in one step from a marking M if 〈P, T,A,M〉 →t 〈P, T,A,M ′〉 for some t ∈ T ,
it is denoted M →〈P,T,A〉 M ′ or M → M ′ if 〈P, T,A〉 is clear from context.
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The reflexive transitive closure of → is denoted →∗. A marking M ′ is reachable
from the marking M if M →∗ M ′.

An OPN 〈P, T,A,M〉 is said to be live if for any marking M ′ reachable
from M and any transition t ∈ T there exists a marking M ′′ reachable from M ′

such that t is enabled in 〈P, T,A,M ′′〉. Moreover, it is said place-live if for every
marking M ′ reachable from M and for every place p ∈ P , there exists a marking
M ′′ which marks p.

In the following all the OPNs are considered to contain at least one place
and one transition and to be connected in order to not consider several sub-nets
in demonstrations i.e. they do not contain an isolated place.

Lemma 1. If an OPN is live then it is place-live.

Now, let us give some definitions and properties related to the structure of an
OPN. First of all, an OPN 〈P, T,A〉 is an asymmetric choice net (ACN) iff
∀p1, p2 ∈ P p1 • ∩p2• �= ∅ =⇒ p1• ⊆ p2• or p2• ⊆ p1•.

Let 〈P, T,A〉 be an OPN. A set of places E ⊆ P is called a siphon if •E ⊆ E•
and it is called a trap if E• ⊆ •E. It is well-known that if a siphon is unmarked for
a marking M then it remains unmarked for every marking M ′ reachable from M .
Symmetrically if a trap is marked for a marking M then it remains marked for
every marking M ′ reachable from M . Those properties are very important to
prove the liveness of an ACN [13].

Theorem 1. If every siphon of an ACN contains a marked trap, then it is live.

3.2 sCFN Definition

OPNs are too weak to express the semantics of ComSA applications since their
tokens are all alike this is why sCFNs are introduced. sCFN is a subclass of
FIFO nets [7] that are colored Petri nets [9] where places are FIFO queues to
ensure that tokens leave a place in the order they entered this place. These two
features fit our needs to model the behavior of the components. sCFN imposes
that each transition consumes exactly one token in each of its input places and
produces exactly one token on its output places. Moreover, some transitions have
priorities, represented by a weight, which is the number of input places of each
transition to resolve the conflict between these transitions.

Definition 6. A strict colored FIFO net is a tuple 〈P, T,A,M〉 where P is a
finite set of places which are FIFO queues of tokens, T is a finite set of transitions
(with P ∩T = ∅), A a set of arcs either of the form 〈p, t, e〉 or of the form 〈t, p, e〉
where p ∈ P , t ∈ T and e is an expression that may contain variables. Finally M
is a function which associates a FIFO queue to each place. Note that transitions
have a weight that is a positive integer denoted by Wt.

In order to illustrate the sCFN, let us denote a FIFO queue as a list of elements
(a1, . . . , an) where a1 is the oldest element of the queue and an the most recent
one. The empty FIFO is denoted ∅. Moreover we use the following notations.
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Let f a FIFO queue, f+e denotes the addition of an element in the FIFO,
f ↑ denotes the oldest element of the FIFO and f -- the removing of the oldest
element (only defined if f �= ∅).

Most of the notations used for OPNs apply to sCFNs. However the dynamics
of the net is quite different. In a sCFN 〈P, T,A,M〉 a place is said marked if
M(p) �= ∅. A transition t ∈ T is enabled with the binding σ if ∀p ∈ •t M(p) �= ∅
and ∀〈p, t, e〉 ∈ A, σ(e) = M(p) ↑ where σ simply maps variables of e to values.
Note that unlike OPN, it is not sufficient that the input places of a sCFN are
marked to make it enabled. However, when a transition is fired only one token is
consumed from the input places and only one token is put to the output places.

Firing an enabled transition consists in consuming the oldest token in each of
its input places and putting one token to each of its output places. If several con-
flicting transitions are enabled, only those of the greater weight can be fired. The
sCFN 〈P, T,A,M〉 can evolve to 〈P, T,A,M ′〉 when firing transition t (denoted
〈P, T,A,M〉 →t 〈P, T,A,M ′〉), if t is an enabled transition of 〈P, T,A,M〉 such
that there is no other enabled transition in conflict with t and having a strictly
greater weight. In this case, M ′ is the marking defined as follows

MR(p) =
∣
∣
∣
∣
M(p)-- if p ∈ •t
M(p) otherwise M ′(p) =

∣
∣
∣
∣
MR(p) + σM

t (e) if 〈t, p, e〉 ∈ A
MR(p) otherwise

Note that if two conflicting transitions are enabled, the one with the greater
weight is applied, if they have the same weight, only one is applied in a don’t
know way.

Figure 3 illustrates the dynamics of a sCFN. In the sCFN of Fig. 3(a), Pm

contains a token [] that represents the empty list and therefore Pm is not empty.
In this sCFN, both tin and tout have no empty input places but only tin is
enabled (with σ1 = {e �→ 1, L �→ []}). Indeed the arc from Pm to tout is labeled
with a list containing one element ([e]) which cannot match the empty list.
Firing tin with σ1 removes 1 from Pi and [] from Pm and puts σ1([e]) (i.e. [1])
to Pm. The resulting sCFN is displayed in Fig. 3(b). In this sCFN, both tin
and tout are enabled, tin is fired (but tout could have been also) with σ2 =
{e �→ 2, L �→ [1]} which gives the sCFN of Fig. 3(c). Note that this step discards
token 1. Figure 3(d) illustrates the result after firing of tout with σ3 = {e �→ 2}.
Ps becomes empty and Pm gets again a token that is the empty list. Finally,
transition tback is fired with σ4 = {e �→ 2} which empties Po and puts 1 in Ps

and 2 in Pi (since places are FIFOs, 2 enters at the end of this FIFO). This
kind of sCFN is used to express greedy connection since tin let tokens coming
from Pi, enter into Pm but instead of adding it to the place, it replaces the old
token by the new one. The place Ps represents the signal port that indicates
when the token stored in Pm must be sent to the recipient.

3.3 Semantics Based on sCFNs

The semantics of our component model is given by a function Ψ that defines the
sCFN describing the behavior of an application. This function is decomposed in
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Fig. 3. An example of sCFN and its dynamics

several parts to define the sCFN of each C ∈ Comp, the sCFN of each c ∈ Conn
and finally the sCFN of the application graph in linking the sCFN representing
components and connectors. For lack of space, Ψ is detailed only for components
and connectors.

The general idea to define the semantics of a component C consists in repre-
senting each port of the component by a place and each behavior by a transition.
In the following, to ensure the uniqueness of the places and transitions names,
they are denoted using the component or the connector Id they represent. For
example the Ps place of a component C1 will be denoted PC1

s . However, if there
is no ambiguity the Id will be omitted.

As explained in Sect. 2, the incidence relations IRC of a component C describe
all its behaviors from P(IRC). If Bin

C = {
⋃

r∈E IRin(r)|E ∈ P(IRC)} then IP ∈
Bin

C is a set of input ports which trigger a behavior of C.
For a component C = (Id, I,O, IR), ΨC(C) = 〈P port

C ∪ PSig
C , T IR

C ∪ TSig
C , AC〉

where P port
C = {Pp|p ∈ I ∪ O} is the set of places representing the ports, PSig

C =
{Pit, Pes} are places that control the passage from one iteration to the other,
T IR

C = {ti|i ∈ Bin
C } is the set of transitions that model the different behaviors

of the component and TSig
C = {te, ts} are the transitions to send to the outside
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the signal of the iteration end and to receive activation signals from outside. AC

is detailed later.
A component iterates only when all the input ports of at least one of its

incidence relations contain messages. Then, all satisfied incidence relations are
triggered. To translate this behavior to a sCFN, a transition ti is created for all
possible combinations of satisfied incidence relations.

ts Pes

1

te

1

Ps

1

Pe

1

Pit

t{en,av,act,pos}

p=4

1 1

xit + 1xit

t{av,act,pos}

p=3

1 1

xit + 1xit

t{en,av,pos}

p=3

1 1

xit + 1xit

Pf

Pen

Pav

Pact

Ppos

Fig. 4. ΨC applied on the component S3 (Fig. 2).

These transitions have a weight that is the number of input places. This
weight guarantees that all the satisfied incidence relations are activated. On
the example in Fig. 4, the transitions t{av,act,pos} and t{en,av,pos} model the two
incidence relations of S3 with a priority of 3. Messages in the application are rep-
resented by tokens composed of the iteration of the component whose produced
the message and the message itself.

The set AC is the union of five sets. The two first ones AP
C and AT

C encode
consumption and production of messages for each behavior.
AP

C = {〈Pp, ti, 〈xp,mp〉〉|Pp ∈ P IR
C , p ∈ i} tells that for a behavior i the compo-

nent consumes one message in each input port of this behavior.
AT

C =
⋃

E∈P(IRC){〈ti, Pp, 〈xit,mp〉〉|i = IRin(E), p ∈ IRout(E)} expresses that
one message stamped with the iteration number of the component, is produced
in each output port of the behavior.

In an application, component synchronizations are managed thanks to the
ports s and e of each component. To model these controls, the place Ps must
be marked to trigger any transition t ∈ T IR

C which must then send an ending
signal to the place Pe. The transition ti, if triggered, must also update the
iteration number in sending the current iteration number to the Pit place and
receiving the incremented number. Hence, the additional arcs are defined by
APe

C = {〈ti, Pe, 1〉|ti ∈ T IR
C }, APs

C = {〈Ps, ti, 1〉|ti ∈ T IR
C },

ASig
C = {〈Pe, te, 1〉, 〈te, Pes, 1〉, 〈Pes, ts, 1〉, 〈ts, Ps, 1〉} and

Ait
C = {〈Pit, ti, xit〉, 〈ti, Pit, xit + 1〉|ti ∈ T IR

C }.
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The sCFN model of a connector c is defined by the function Ψc(c) according
to the type of c. The sFIFO connector sCFN consists of two places Pi and Po to
represent respectively the input and the output port and a transition to transmit
messages from Pi to Po. For other connectors given in Fig. 5, in addition to the
Pi and Po places they also have a place Ps to represent the triggering port and
a place Pm that represents the memory of the connector (the list of messages
it stores). In the bBuffer sCFN, the buffering is done thanks to the transition
tin that stores new incoming messages in the place Pm. The transition tout

delivers the messages stored in Pm when a signal arrives in Ps. The sCFN of
the bGreedy connector models the message loss using a list in Pm that is either
empty or contains a single element. This list is initialized to the empty list. Each
time a new message arrives in Pi the list contained in Pm is replaced by the list
that contains only the new message. This way only the last message is stored
in Pm. When a signal arrives in Ps, if the list of Pm is empty the transition tout

is not enabled, otherwise the message contained in the list of Pm is delivered
to Po and the empty list is put in Pm. The non blocking versions of those two
connectors just add a transition ts that is enabled once a signal is in the place
Ps and is able to deliver an empty message m∅ to Po. However the weight of ts
is smaller than the weight of tout so that when a real message is available in Pm,
this message is delivered to Po.
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Fig. 5. sCFNs of the different connectors

The additional transitions and arcs used to represent the links in the appli-
cation are not presented here for lack of space. However they do not cause any
structural problems in the resulting net since they mainly duplicate tokens or
synchronize some signals.

An initial marking Minit is necessary to define the application sCFN. Minit

consists in initializing with a (1) the Ps places of the components when •Ps = {ts}.
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Minit also initializes the Pit places with a (0) for each component. This initial
marking will be completed in Sect. 4 which deals with the construction of the start
configuration which guarantees that all the components of the application are live.

4 Deadlock Analysis of ComSA Applications

This section first proves a sufficient condition for place-liveness of a subclass of
sCFNs, then it shows how this result can be used to help the user to build a
deadlock-free application.

4.1 Place-Liveness of sCFNs

The deadlock freedom of our applications is based on a place-liveness property
of sCFNs. This property expresses that all the component ports in the applica-
tion graph eventually receive data during the application running. This section
presents a sufficient condition to insure the place-liveness of sCFNs. This result
relies on Theorem1 that gives a sufficient condition for liveness of ACNs. The
general idea consists in simulating sCFNs by OPNs in such way places containing
tokens in the sCFNs are the same as the corresponding ones in the OPN.

Definition 7. Let N = 〈P, T,A〉 be an OPN, and M and M ′ are two markings
of N such that M(p) > 0 ⇔ M ′(p) > 0, then M and M ′ are said mark-
equivalent. It is denoted M ↔ M ′.

If M ↔ M ′, 〈P, T,A,M〉 and 〈P, T,A,M ′〉 have the same enabled transitions.

Definition 8. Let N = 〈P, T,A〉 and N ′ = 〈P ′, T ′, A′〉 be two OPNs and N,N ′

do not contain isolated place. N ′ is a sub-net of N if P ′ ⊆ P , T ′ ⊆ T and
A′ ⊆ A with ∀〈x, y〉 ∈ A′ x, y ∈ P ′ ∪ T ′. N ′ is said underlying N if it is a
sub-net of N s.t. P ′ = P and A′ = {〈x, y〉 ∈ A|x ∈ T ′ or y ∈ T ′}.

Lemma 2. Let N = 〈P, T,A〉 be an OPN and N ′ = 〈P, T ′, A′〉 an OPN underly-
ing N . Let M1 be a marking s.t. 〈P, T ′, A′,M1〉 is live. If ∀M2 s.t. 〈P, T,A,M1〉 →t

〈P, T,A,M2〉 we have 〈P, T ′, A′,M2〉 is live then 〈P, T,A,M1〉 is place-live.

Proof. Proving 〈P, T,A,M1〉 is place-live means proving that ∀M2 such that
M1 →∗

N M2, ∀p ∈ P , ∃M3 such that M2 →∗
N M3 and M3(p) > 0.

First let us remark that if 〈P, T,A,M1〉 where M1 is such that 〈P, T ′, A′,M1〉
is live then ∀p ∈ P ∃M2 such that M2(p) > 0 and M1 →N M2. Indeed, since
〈P, T ′, A′,M1〉 is live, it is place-live, i.e. ∀p ∈ P ∃M2 such that M1 →N ′ M2

and M2(p) > 0. Since N ′ is underlying N all transitions used in M1 →N ′ M2

are transitions of N therefore M1 →N M2.
Now, by hypothesis N is s.t. if 〈P, T ′, A′,M1〉 is live then ∀M2 such that

〈P, T,A,M1〉 →t 〈P, T,A,M2〉, M2 verifies 〈P, T ′, A′,M2〉 is live. Thus, by an
easy induction, it is obvious that any marking M3 reachable from a marking M1

making N ′ live, is s.t. 〈P, T ′, A′,M3〉 is live. So, from the remark above, ∀p ∈ P
∃M4 reachable from M3 that marks p therefore 〈P, T,A,M1〉 is place-live.
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Now let us define a class of OPN that preserves the liveness of an underlying
ACN. For that some additional definitions have to be introduced.

Definition 9. Let 〈P, T,A〉 an OPN. t ∈ T is said covering if ∃T ′ ⊂ T such
that t �∈ T ′, •t = •T ′ and t• = T ′•.

Lemma 3. Let 〈P, T,A,M〉 an OPN where t is covering T ′ ⊂ T and M ′ s.t.
〈P, T,A,M〉 →t 〈P, T,A,M ′〉 then ∃M ↔ M and M ′ ↔ M ′ s.t. 〈P, T,A,M〉 →∗

〈P, T,A, M ′〉 where each transition of T ′ is fired once in the derivation.

Proof. Since 〈P, T,A,M〉 →t 〈P, T,A,M ′〉, M ′ is such that M ′(p) > 0 ∀p ∈ t•
and M ′(p) = M(p) − 1 ∀p ∈ •t \ t•.

Let Mt be the marking such that Mt(p) =
∣
∣
∣
∣
M(p) − 1 + |p • ∩T ′| if p ∈ •t
M(p) otherwise

since M enables t (∀p ∈ •t, M(p) > 0) and Mt only adds tokens in •t, M ↔ Mt.
Moreover, for each place p ∈ •t, Mt(p) is greater than the number of transitions
of T ′ whose p is an input place. As a consequence, it is possible to fire each
transition of T ′ once from Mt. The resulting marking M ′

t is such that M ′
t(p) > 0

for any p ∈ T ′• (recall T ′• = t•) and M ′
t(p) = Mt(p) − |p • ∩T ′| = M(p) − 1 for

any p ∈ •T ′ \ T ′•. Thus M ′
t(p) ↔ M ′.
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(c) Simulation sCFN of Fig. 3(b)

Fig. 6. Lossy nets and simulation

Definition 10. A lossy net is an OPN such that Lossy = 〈PL, TL, AL〉 as shown
Fig. 6(a). The transition tl is called lossy transition.

A lossy OPN is used to simulate a lossy connection. pb is a buffer that accepts
only one token. This is controlled by places po that indicates the buffer is empty
and pi that indicates the buffer is full. The transition tl is used to discard tokens
that arrive in pe while pb contains a token. More precisely, starting from a mark-
ing such that po contains one token and all other places are empty, when a token
arrives at place pe the transition te is enabled. Once te is fired, a token is placed



360 A. Ait Wakrime et al.

in pi and pb and pe is emptied. As a consequence te is not enabled but as soon
as a token arrives to pe, tl is. While the transition to is not fired, tokens arriving
in pe can be discarded using tl. When to is fired, places pi and pb become empty
and place po contains one token which indicates that the next token arriving at
pe will be put in the buffer.

A lossy OPN is not an ACN one since both pe• and pi• contain tl but none
of these sets includes the other. However, lossy OPN preserves the liveness of
the underlying ACN.

Definition 11. Let N = 〈P, T,A〉 an OPN, N contains a lossy net N ′ =
〈PL, TL, AL〉 that is connected by {pe, to} if the only arcs between N ′ and N \N ′

are the following {〈t, pe〉|t ∈ T \TL}, {〈to, p〉|p ∈ P \PL} and {〈p, to〉|p ∈ P \PL}.

Lemma 4. Let N be an OPN s.t. it contains a sub-net N ′ that is a lossy net
connected by {pe, to}. Let M a marking s.t. M(po) = 1 and M(pi) = M(pb) = 0.
Then every marking M ′ reachable from M is s.t. if tl is enabled then M ′(pb) = 1.

Proof. Since pi ∈ •tl, tl is enabled means that pi is not empty. Since •pi = {te},
pi is marked when te is fired, pb is also marked since pb ∈ te•. te cannot be
enabled until po is empty. Thus both pi and pb cannot contain more than one
token. When to is fired, pi and pb are emptied and po receives a token.

Definition 12. An extended asymmetric choice net (EACN for short) is an
OPN N = 〈P, T,A〉 such that the underlying net 〈P, T ′, A′〉 is ACN where T ′ =
T \ ({t ∈ T |t is covering}

⋃
∪L∈L(N ){tl}) with L(N) the set of all the lossy nets

connected by some {pe, to} in N .

Theorem 2. Let N = 〈P, T,A〉 an EACN whose underlying ACN is N ′ =
〈P, T ′, A′〉 and M1 a marking such that 〈P, T ′, A′,M1〉 marks one trap in every
siphon of N ′. Any marking M2 such that 〈P, T,A,M1〉 →t 〈P, T,A,M2〉, marks
one trap in every siphon of N ′.

Proof. First, note that if N ′ is an ACN and M marks a trap in every siphon
of N , from the liveness property of ACN we know that any marking reachable
from M also marks a trap in any siphon of N ′. Now, let us prove Theorem2.
Three cases must be distinguished according to the kind of transitions t.

– If t ∈ T ′, the property is verified since N ′ is an ACN.
– If t is covering, then from Lemma 3 we know that 〈P, T,A,M1〉 →t 〈P, T,A,M2〉

corresponds to a derivation 〈P, T,A, M1〉 →∗
N ′ 〈P, T,A, M2〉 such that M1 ↔

M1 and M2 ↔ M2. Thus M2 is such that every siphon of N ′ contains a marked
trap, so M2 also verifies this property.

– If t is a lossy transition, the only place that may be empty after firing t is the
place pe associated to t. It can be remarked that every trap of N ′ containing
this place pe contains either the pi or the pb place associated to t. Since t is
enabled in M1, from Lemma 4 both pi and pb are marked in M so they are in
M2. So every trap of N ′ marked in M1 remains marked in M2.
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Definition 13. Let N = 〈P, T,A〉 be a sCFN, N = 〈P , T ,A〉 be an OPN and
three onto functions ΦP : P → P , ΦT : T → T and ΦM : FIFO → N where
the last two are applications. N ′ simulates N through ΦP , ΦT and ΦM if for every
marking M1 and M2 〈P, T,A,M1〉 →t 〈P, T,A,M2〉 iff 〈P , T ,A, ΦM (M1)〉 →ΦT (t)

〈P , T ,A, ΦM (M2)〉.

The OPN of Fig. 6(b) simulates the bGreedy sCFN of Fig. 3(a) with ΦP =
{pe �→ pi, pb �→ pm, ps �→ ps, pout �→ po}, ΦT = {tl �→ tin, te �→ tin, to �→ tout,
tback �→ tback} and ΦM (x) is the number of elements of x for any FIFO x except
([]) where ΦM (([])) = 0. Fig. 6(c) displays the result of firing transition tl which
corresponds to the net simulating the sCFN of Fig. 3(b).

Theorem 3. Let S be a sCFN and N be an OPN that simulates S through
ΦP , ΦT and ΦM , if N is place-live then S is place-live too.

It is obvious from Definition 13 and Theorem 2. Of course, it is not always pos-
sible to find an OPN that simulates a sCFN. Fortunately, the sCFNs describing
the semantics of our component model can be simulated by OPNs using gener-
alization of functions ΦT , ΦP and ΦM described above. The obtained OPN is
in the class of EACN when the active elementary incidence relations respect
asymmetric choice condition (i.e. IRin(r1) ∩ IRin(r2) �= ∅ ⇒ IRout(r1) ⊆
IRout(r2) ∨ IRout(r2) ⊆ IRout(r1)). Indeed in this case, there are two kinds
of places which do not verify the ACN conditions; namely the places encoding
input ports and the pe places of lossy sub-nets. In both cases the transitions that
are in the post set of the place are either covering or respect ACN condition.

Note that a sCFN that is place live may not be live but, in this case, the only
transitions that are not live are those representing compositions of elementary
behaviors of the components. This is not a problem since each elementary behav-
ior is live. On the other hand, weights on transitions may prevent the firing of
some transitions. Once again, this is not a real problem since in the sCFN built
from an application, if a transition t conflicts with another t′ and W (t) > W (t′)
then t is covering. This means t is a behavior that includes the behavior t′.

The analysis of the EACN that simulates the sCFN of an application makes
possible to detect whether the application can be launched and be live.

4.2 Start Configuration and Experiments

The process to start ComSA application consists of three main steps.

ACN condition. The first step consists in verifying that the set of active inci-
dence relations of the application respect the ACN condition. If it is not the
case, it is proposed to the user to lock several behaviors of involved components
which is equivalent to replace two relations 〈I1, O1〉 and 〈I2, O2〉 by the relation
〈I1 ∪ I2, O1 ∪ O2〉. This way non asymmetric incidence relations are eliminated.
The consequence is that the application would not exploit all the asynchrony
allowed by the component but it is the price to pay to avoid deadlocks.
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Siphon-trap condition. The second stage consists in verifying that all the siphons
of the application sCFN contain a trap. Indeed, if it is not the case the application
cannot be live. If some siphons do not contain a trap, the cycles they form in
the application are highlighted so that the user can modify the application to
make it deadlock free.

Start configuration. Finally, when all the siphons contain a trap, the initial mark-
ing Minit (Sect. 3.3) is used to find out the traps still unmarked. In each of these
traps, a blocking connector is randomly chosen to deliver a first empty message.
The random choice may be replaced by user’s choice.

The first and the last steps are straightforward and do not require much com-
putations but the second one is known to be NP-hard. This step has been imple-
mented using the method described in [14]. This method consists in transforming
the original problem into a SAT problem. The open-source SAT solver [15] has
been used to solve the problem.

The application illustrated Fig. 2 contains 18 incidence relations such that
all components verified the ACN condition. Its sCFN has 76 transitions and 71
places excluding the Pit places. For this case, the second phase lasts 95s on a
standard laptop. The result is the determination of 9 siphons all containing a
trap. For example, one of this siphon allowed to highlight the cycle illustrated by
the red path on the Fig. 2. The initial marking Minit is completed by marking
of a randomly chosen connector Ps place in unmarked traps. In the application,
this marking is interpreted as a set of connectors, blocking or not, which need
to send a first empty message. Thus, the sCFN analysis offers the automatic
construction of a proper start configuration.

5 Conclusion

In this paper, the ComSA component model has been presented. This approach is
dedicated to design interactive scientific visualization applications. The ComSA
semantics has been defined by means of sCFN whose place-liveness has been
proved under specific conditions. These results are used to help users to build
correct applications without deadlocks and to start those applications.

The results presented in this paper are the basis of a set of tools dedicated
to the design and the analysis of ComSA applications. Those tools include sim-
ulation of the application, analysis of its structure to control its starting and its
liveness. sCFN semantics should also help to design algorithms to reconfigure on
the fly a running application without stopping it completely. This involves to stop
some components, verify that the new configuration is deadlock-free and start
the new composition. The tools are still under construction. Some preliminary
experiments on real applications show their practical usefulness in particular in
automating the construction of a start configuration. However, they need to be
optimized for larger applications and the use of a hierarchical construction of the
application should be of great interest. Further analysis on the global behavior
of ComSA applications should be possible thanks to the sCFN modeling. For
example, it should be possible to express data coherence problems which is an
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important issue for applications that allow lossy communications. This analysis
could rely on previous work [12] that defines some ways to control data loss.
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Abstract. Linearizability has become the standard correctness crite-
rion for fine-grained non-atomic concurrent algorithms, however, most
approaches assume a sequentially consistent memory model, which is
not always realised in practice. In this paper we study the correctness
of concurrent algorithms on a weak memory model: the TSO (Total
Store Order) memory model, which is commonly implemented by multi-
core architectures. Here, linearizability is often too strict, and hence, we
prove a weaker criterion, quiescent consistency instead. Like linearizabil-
ity, quiescent consistency is compositional making it an ideal correctness
criterion in a component-based context. We demonstrate how to model
a typical concurrent algorithm, seqlock , and prove it quiescent consistent
using a simulation-based approach. Previous approaches to proving cor-
rectness on TSO architectures have been based on linearizabilty which
makes it necessary to modify the algorithm’s high-level requirements.
Our approach is the first, to our knowledge, for proving correctness with-
out the need for such a modification.

1 Introduction

This paper is concerned with correctness of concurrent algorithms that typi-
cally arise in the multicore processor context, in which shared variables or data
structures such as queues, stacks or hashtables are accessed concurrently by sev-
eral processes. These are becoming prevalent in libraries such as java.util.
concurrent and operating system kernels. To increase efficiency, these algo-
rithms dispense with locking, or only lock small parts of a data structure. Thus
the shared variables or data structure might be concurrently accessed by differ-
ent processors executing different operations — correctness of such algorithms
is therefore a key issue.

To date, the subject of correctness has focussed on a condition called lin-
earizability [11]. This requires that fine-grained implementations of access oper-
ations (e.g., reading or writing of a shared variable) appear as though they
take effect instantaneously at some point in time within the operation’s inter-
val of execution — thereby achieving the same effect as an atomic operation.
There has been an enormous amount of interest in deriving techniques for veri-
fying linearizability. These range from using shape analysis [1,4] and separation
c© Springer International Publishing Switzerland 2015
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logic [4] to rely-guarantee reasoning [21] and refinement-based simulation meth-
ods [6,8].

The vast majority of this work has assumed a sequentially consistent memory
model, whereby program instructions are executed by the hardware in the order
specified by the program [14]. However, processor cores within modern multicore
systems often communicate via shared memory and use (local) store buffers to
improve performance. Whilst these weak memory models give greater scope for
optimisation, sequential consistency is lost (as the effect of a write to the shared
memory is delayed by the local buffer). One such memory model is the TSO
(Total Store Order) model which is implemented in the x86 multicore processor
architecture [19].

The purpose of this paper is to investigate correctness of concurrent algo-
rithms in the TSO memory model. There has been limited work in this area so
far, with current approaches [3,9] based on linearizabilty, which makes it neces-
sary to modify the algorithm’s high-level requirements. Instead, we focus here
on the weaker notion of quiescent consistency as a correctness criterion. Like lin-
earizability, quiescent consistency is compositional making it an ideal correctness
criterion in a component-based context. Quiescent consistency was introduced
in [2,18] and has been advocated recently by Shavit as the correctness condi-
tion to be used in the multicore age [17]. Although these papers provide neither
a formal definition nor a proof method for quiescent consistency, both these
shortcomings were addressed in [5], for sequentially consistent architectures.

Like linearizability [11], the definition in [5] is formalised in terms of histo-
ries of invocations and responses of the operations of the concurrent algorithm,
while the proof method is based on coupled simulations [7] of history-enhanced
data types [6]. However, the methods in [5] only address concurrent data struc-
tures that are designed to be quiescent consistent and execute under sequentially
consistent memory. The aim of this paper is to investigate the use of quiescent
consistency as the correctness requirement under TSO memory, then adapt the
proof method in [5] to verify such algorithms. We are not proposing that quies-
cent consistency is the definitive correctness criterion for TSO, but rather that
it is an alternative to linearizability that may be useful in some circumstances.
We illustrate this with our running example in the paper.

We make three contributions. First, we show how we can adapt the definition
of quiescent consistency to a TSO memory model (Sect. 2). Second, we show
in Sect. 3 how we can use Z to model algorithms on a TSO architecture, then in
Sect. 4 using this model we show how we can adapt the simulation-based proof
method to verify quiescent consistency. We conclude in Sect. 5.

2 Background

2.1 The TSO Memory Model

In the TSO (Total Store Order) architecture (see [19] for a good introduction),
each processor core uses a write buffer, which is a FIFO queue that stores pending
writes to memory. A processor core performing a write to a memory location
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enqueues the write to the buffer and continues computation without waiting for
the write to be committed to memory. Pending writes do not become visible
to other cores until the buffer is flushed, which commits (some or all) pending
writes to memory.

The value of a memory location read by a process is the most recent value for
that location in the processor’s local buffer. If there is no such value (e.g., initially
or when all writes corresponding to the location have been flushed), the value
of the location is fetched from memory. The use of local buffers allows a read
by one process, occurring after a write by another, to return an older value as if
it occurred before the write.

In general, flushes are controlled by the CPU. However, a programmer may
explicitly include a fence, or memory barrier , instruction in a program’s code
to force a flush to occur. Therefore, although TSO allows some non-sequentially
consistent executions, it is used in many modern architectures on the basis that
these can be prevented, where necessary, by programmers using fence instruc-
tions. To model concurrent algorithms on TSO we assume the following behav-
iour, which is reflected our Z models [20]:1

– A write operation to a memory location adds the entry to the tail of its store
buffer.

– The head of the store buffer is flushed into the memory. This flush is under
the control of the CPU and thus happens non-deterministically.

– A read of a memory location takes as its value the most recent value in the
store buffer if available, and the value from memory otherwise.

Example 1. Consider the following example, with two global variables x and y
which are both initially 0, and operations to write to and read from the variables.

word x=0, y=0;

set_x(in word d) {x=d;}

read_x(out word d) {d=x;}

set_y(in word d) {y=d;}

read_y(out word d) {d=y;}

A possible execution in TSO is the following sequence of operation calls and
flushes:

s1 = 〈(p, set x(1)), (p, read y(0)), (q , set y(1)), (q , read x(0)),
flush(p), flush(q)〉

where (p, read y(0)), for example, means that process p performs a read y oper-
ation that returns 0, and flush(p) corresponds to a CPU flush of a single value
from p’s buffer. Note that both reads return 0, which is not possible on a sequen-
tially consistent architecture. This is because the corresponding set operations
write to the process’s local buffer, and these writes are not globally visible until
that process’s buffer is flushed. Here that happens at the end of the execution. �

1 We do not need a full formal semantics of TSO, but interested readers are referred
to [15,16] for formal definitions.
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2.2 Concurrent Consistency Models

In what sense is a concurrent algorithm correct? Not only do we have execu-
tions as in the example above, but the fine-grained nature of operations means
that processes do not perform the whole operation at once — an operation’s
steps might be interleaved with steps of another operation executed by another
process. To formally capture the fact that operations can overlap in this way, we
introduce the notion of histories as sequences of events. Events in the sequential
world are invocations or returns of operations. In TSO, they will be an invoca-
tion, response or a flush. The sets of events are denoted Event and EventTSO

respectively. Flushes are performed by the CPU and operate on a particular
process’s buffer.

A method is pending if it has been invoked but has not yet returned. A history
is sequential if all invoke events are immediately followed by their matching
returns. Where this is not the case, methods overlap. A quiescent state is one in
which there are no pending methods, and all buffers have been flushed.

Invocations and returns of operations from a set I are performed by a par-
ticular process from a set P with an input or output value V . We let ⊥ denote
empty inputs/outputs and assume that ⊥ ∈ V . Thus we define:

Event ::= inv〈〈P × I × V 〉〉 | ret〈〈P × I × V 〉〉
EventTSO ::= inv〈〈P × I × V 〉〉 | ret〈〈P × I × V 〉〉 | flush〈〈P〉〉

Example 2. A TSO history corresponding to the sequence s1 above is:2

h1 = 〈inv(p, set x, 1), ret(p, set x, ), inv(p, read y, ), ret(p, read y, 0),
inv(q , set y, 1), ret(q , set y, ), inv(q , read x, ), ret(q , read x, 0),
flush(p),flush(q)〉

It is in a quiescent state initially and at its end but not anywhere in between. �

Correctness means that the histories of an implementation should correspond
‘in some sense’ to those of its abstract specification (in which overlapping oper-
ations are not possible). Varying the meaning of ‘in some sense’ results in differ-
ent correctness conditions [10]. Of these, linearizability has been widely used as
the correctness criterion in sequentially consistent architectures. However, issues
arise in the context of TSO since the direct application of linearizability to TSO
requires the natural abstract specification to be weakened (see the approaches
of both [3,9]). Thus it seems that linearizability might impose too many con-
straints to be a useful criterion for a weak memory model such as TSO since it
requires sequential consistency amongst the system processes [10]. Instead, here
we use an alternative (weaker) correctness criterion, quiescent consistency [17].
Informally it states that operations separated by quiescent states should appear
to take effect in their (real-time) order.

2 We elide empty inputs or outputs in the events, e.g., write ret(p, set x, ) for
ret(p, set x,⊥).
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Quiescent consistency has been recently formalised in [5] for sequentially con-
sistent architectures and a proof method developed for it. Our first task there-
fore is to adapt the definition for a TSO model. First of all some preliminaries.
For a history h, #h is the length of the sequence, and h(n) its nth element (for
n : 1..#h). Predicates inv?(e), ret?(e), and flush?(e) are used to check whether
an event e ∈ Event ∪ EventTSO is an invoke, return or flush, respectively. We let
e.p ∈ P , e.i ∈ I and e.v ∈ V be the process executing the event e, the operation
to which the event belongs, and the input/output value of v , respectively. Further-
more, for a TSO event e that is a return or flush, we assume e.bv is the boolean
corresponding to the event, which holds iff all local buffers are empty immediately
after e occurs. Finally, we let Ret ! be the set of all TSO return events.

We now need a preliminary definition saying what it means to be a matching
pair of invocation and return, a pending invocation, a legal history (where each
process calls at most one operation at a time), and a quiescent history (a history
which is in a quiescent state at its end). Unlike, earlier work, we record concrete
flush events in the concrete histories to handle TSO memory, and hence, the
definition below differs from [5,6], which were defined for SC architectures.

Definition 1. Suppose h ∈ seqEvent∪seqEventTSO . Two positions m,n : 1..#h
form a matching pair iff mp(m,n, h) holds; n in h is a pending invocation iff
pi(n, h) holds; h is legal iff legal(h) holds; and h is quiescent iff qu?(h) holds,
where:

mp(m,n, h) =̂ h(m).p = h(n).p ∧ h(m).i = h(n).i ∧ inv?(h(m)) ∧ ret?(h(n)) ∧
∀ k • m < k < n ∧ h(k).p = h(m).p ⇒ flush?(h(k))

pi(n, h) =̂ inv?(h(n)) ∧ ∀m • n < m ≤ #h ∧ h(m).p = h(n).p ⇒ flush?(h(n))
legal(h) =̂ h ∈ seqEventTSO ∧ h �= 〈 〉 ∧ inv?(h(1)) ∧

∀n : 1..#h • if inv?(h(n)) then pi(n, h) ∨ ∃m • mp(n,m, h)
elseif ret?(h(n)) then ∃m • mp(m,n, h)

qu?(h) =̂ legal(h) ∧ h(#h).bv ∧ ∀n : 1..#h • ¬pi(n, h) �

Both linearizability and quiescent consistency are defined by comparing the his-
tories generated by concurrent implementations with the sequential histories of
some given abstract atomic specification. Here we will adapt the standard defi-
nitions to TSO.

Our formal definitions of linearizability and quiescent consistency for TSO are
given below. Both are defined using a function smap that maps the indices of the
concurrent history to a sequential history, and linearizability uses an additional
function complete that removes all pending invokes. Bijections from X to Y are
denoted X �→ Y . We assume a function remflush(h, z ) which transforms h to z
by removing all flushes from h, but keeps the order of all other events in h the
same. Function remflush can be defined recursively, but its formal definition is
elided here for space reasons.

eveq(e, e ′) =̂ e ∈ Event ∧ e ′ ∈ EventTSO ∧ e.p = e ′.p ∧ e.i = e ′.i ∧ e.v = e ′.v
smap(h, f , hs) =̂ ∃ z : seqEventTSO • remflush(h, z ) ∧ f ∈ 1..#z �→ 1..#hs ∧

∀m,n : 1..#z • eveq(hs(f (n)), z (n)) ∧
(mp(m,n, z ) ⇒ f (m) + 1 = f (n))
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Definition 2 (Linearizability and Quiescent consistency on TSO). Let
h be a TSO history, hs a sequential history. The history h is said to be quiescent
consistent with hs iff qcons(h, hs) holds and linearizable with respect to hs iff
lin(h, hs) holds, where:

qcons(h, hs) =̂ ∃ f • smap(h, f , hs) ∧
∀m,n, k : 1..#h • m < n ∧ m ≤ k ≤ n∧

qu?(h[1..k ]) ∧ ret?(h(m)) ∧ inv?(h(n)) ⇒ f (m) < f (n)
lrel(h, hs) =̂ ∃ f • smap(h, f , hs) ∧

∀m,n,m′,n ′ : 1..#h •
n < m ′ ∧ mp(m,n, h) ∧ mp(m ′,n ′, h) ⇒ f (n) < f (m ′)

lin(h, hs) =̂ ∃ h0 : seqRet ! • legal(h � h0) ∧ lrel(complete(h � h0), hs) �

The key point to note is that quiescent consistency allows the operations of
processes between quiescent states to be reordered, whereas linearizablity does
not. As in [5], we have the following property.

Proposition 1 (Linearizability implies quiescent consistency). For any
h ∈ seqEventTSO and hs ∈ seqEvent, lin(h, hs) ⇒ qcons(h, hs). �

Example 3. Let us return to Example 1 above. In what sense is this correct with
respect to an abstract specification which has one operation for each concrete
one? Consider h1 again. Because of the effect of the local buffers, both read
operations return 0. This is only possible at the abstract level if the reads occur
before the writes. For example, h1 could be mapped to sequential history:

h2 = 〈inv(p, read y, ), ret(p, read y, 0), inv(q , read x, ), ret(q , read x, 0),
inv(p, set x, 1), ret(p, set x, ), inv(q , set y, 1), ret(q , set y, )〉

Such a reordering is possible under quiescent consistency, but not line-
arizability. �

This example highlights a typical consequence of using a TSO architecture.
We should allow for programmers to exploit such consequences in order to
improve the efficiency of their algorithms. Therefore, in some circumstances it
makes sense to adopt quiescent consistency as the correctness criterion for TSO.
The only existing work on correctness on TSO [3,9] has looked at linearizability,
and to do so has needed to modify the high-level requirements of the algorithms
by either adding implementation-level details such as buffers and flushes, or
nondeterminism reflecting operation reorderings to the abstract specifications.
There has been no work, as far as we are aware, on quiescent consistency as the
correctness criterion for TSO.

3 Modelling an Algorithm on the TSO Architecture

As a more complex motivating example, we examine the Linux locking mecha-
nism seqlock [13], which allows reading of shared variables without locking the
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global memory, thus supporting fast write access. We begin by showing that
while seqlock is linearizable on a standard architecture, it is neither linearizable
nor quiescent consistent on TSO without the use of memory barriers. We then
turn our attention to a one-writer variant of seqlock (based on the non-blocking
write protocol of [12]) which we show is quiescent consistent in Sect. 4.

Example 4. In the usual seqlock algorithm all processes can read and write.
A process wishing to write to the shared variables x1 and x2 acquires a lock
and increments a counter c. It then proceeds to write to the variables, and
finally increments c again before releasing the lock. The lock ensures synchroni-
sation between writers, and the counter c ensures the consistency of values read
by other processes. The two increments of c ensure that it is odd when a process
is writing to the variables, and even otherwise. Hence, when a process wishes to
read the shared variables, it waits in a loop until c is even before reading them.
Also, before returning it checks that the value of c has not changed (i.e., another
write has not begun). If it has changed, the process starts over. A typical imple-
mentation of seqlock (based on that in [3]) is given in Fig. 1. A local variable c0 is
used by the read operation to record the (even) value of c before the operation
begins updating the shared variables. In general, the release operation does
not include a fence instruction and so does not flush the buffer. �

word x1 = 0, x2 = 0;
word c = 0;

write(in word d1,d2) {
acquire;
c++;
x1 = d1;
x2 = d2;
c++;
release; }

read(out word d1,d2) {
word c0;
do {

do {
c0 = c;

} while (c0 % 2 != 0);
d1 = x1;
d2 = x2;

} while (c != c0); }

Fig. 1. Seqlock implementation

Abstract specification - AS. The algorithm is captured abstractly in Z [20],
a state-based specification formalism that allows specification of data types by
defining their state (variables), initial state and operations. All these are given as
schemas, consisting of variable declarations plus predicates further constraining
the variables. Input and output variables are decorated by ‘?’ and ‘!’, respec-
tively, and notation v ′ denotes the value of a variable v in the post state of
an operation. Unprimed variables of a schema S are introduced into another
schema by including S in the declaration, and both unprimed and primed vari-
ables are introduced using ΞS or ΔS , the former constraining variables to remain
unchanged. For the program in Fig. 1, the abstract specification is:
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AS
x1, x2 : N

ASInit
AS

x1 = x2 = 0

Writeq
ΔAS
d1?, d2? : N

x ′
1 = d1? ∧ x ′

2 = d2?

Readq
ΞAS
d1!, d2! : N

d1! = x1 ∧ d2! = x2

The abstract state (as defined by schema AS ) consists of two variables x1
and x2 of type N, representing x1 and x2 in Fig. 1, respectively. The initial
state is given by ASInit , which ensures that execution begins in a state in which
the value of both x1 and x2 is 0. Parameterised schemas Writeq and Readq , where
q denotes the process performing the step, represent abstractions of the fine-
grained operations write and read in Fig. 1, respectively. Writeq (atomically)
sets the values of x1 and x2 by ensuring the values of x ′

1 and x ′
2 equal to d1?

and d2?, respectively. Readq sets the outputs d1! and d2! to x1 and x2, respectively.
Histories of the abstract specification are generated by initialising the state

as specified by ASInit , then repeatedly choosing a process q and schema Writeq
or Readq non-deterministically, and transitioning to the next state as specified
by the chosen schema.

Proposition 2. Seqlock is linearizable with respect to the abstract specification
AS on a sequentially consistent architecture.

Choosing the final statement of each concrete operation as its linearization point
(i.e., the point where the operation appears to take effect), the proposition can
be proved using the existing approach of Derrick et al. [6]. �

Proposition 3. Seqlock is not linearizable with respect to the abstract specifica-
tion AS on the TSO architecture, nor is it quiescent consistent.

Proof. By Proposition 1 linearizability does not hold if quiescent consistency
does not hold. To show quiescent consistency does not hold, we provide a counter
example, which follows from the fact that flushes from successive writes can
interleave resulting in inconsistent reads. For example, in the following concrete
history process r reads the values 3 and 2 for x1 and x2, respectively, which
cannot occur according to the abstract specification:

〈inv(p, write, (1, 2)), ret(p, write, ), inv(q , write, (3, 4)), ret(q , write, ),
flush(p),flushF (p),flush(q),flush(q),flush(q),flush(q),flush(p),flush(p),
inv(r , read, ), ret(r , read(3, 2))〉
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The four flushes for each of p and q correspond to the flushing of the first write
to c, the write to x1, the write to x2, and the second write to c, respectively.
Note that this counter-example is only possible since the write operations may
not include a fence. �

To avoid such inconsistent behaviour in practice, a memory barrier is required
at the end of the write operation. Since reads cannot complete while a write
operation is pending, with this memory barrier there are no behaviours possi-
ble on TSO other than those possible on a sequentially consistent architecture.
Hence, the algorithm can be proved linearizable by Proposition 2.

To illustrate correctness proofs on a TSO architecture further, we examine a
variant of seqlock in which all processes can read, but only one can write. In this
case, no writer lock is required and the write operation can be simplified by
removing the acquire and release commands. To verify quiescent consistency
(or indeed linearizability) we need a formal specification of this system, which
we give now.

Concrete specification - CS. Let P be a set of processes and PC denote
program counter values.

PC ::= 1 | w1 | w2 | w3 | r1 | r2 | r3 | r4

The state CS comprises both the global variables, and program counters, local
variables and buffers for each process.

CS
x1, x2, c : N
pc : P → PC
d1, d2, c0 : P → N

b : P → seq({x1, x2, c} × N)

CSInit
CS

x1 = x2 = c = 0
∀ q : P • pc(q) = 1 ∧ b(q) = 〈 〉

The elements of the processes’ buffers (denoted by variable b) are ordered
pairs, the first element of which identifies a global variable (using a label, e.g.,
x1, written in sans serif), and the second the value written to it by the process.
To simplify the presentation of the operation specifications, we adopt the follow-
ing two conventions:

1. Any values (of variables or in the range of functions) that are not explicitly
defined in an operation are unchanged.

2. x1(q) denotes the value of x1 read by a process q . This value is either the
most recent in its buffer or, when no such value exists, the value of the global
variable x1. Similarly, for x2(q) and c(q).

Let p : P denote the writer process. The write operation is captured by four
operations in Z: one for each of its lines (given that the acquire and release
commands have been removed). The subscript p acts as a parameter to the
operations.
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W 1p
ΔCS
d1?, d2? : N

pc(p) = 1 ∧ pc′(p) = w1

d ′
1(p) = d1? ∧ d ′

2(p) = d2?
b′(p) = b(p) � 〈(c, c(p) + 1)〉

W 2p
ΔLS

pc(p) = w1 ∧ pc′(p) = w2

b′(p) = b(p) � 〈(x1, d1)〉

W 3p
ΔCS

pc(p) = w2 ∧ pc′(p) = w3

b′(p) = b(p) � 〈(x2, d2)〉

W 4p
ΔCS

pc(p) = w3 ∧ pc′(p) = 1
b′(p) = b(p) � 〈(c, c(p) + 1)〉

The read operation is captured by 5 operations in Z: R1q for one iteration
of the inner do-loop3, R2q for the assignment to local variable d1, R3q for the
assignment to local variable d2, R4q for starting a new iteration of the outer
do-loop (when c = c0), and R5q for returning the read values (when c = c0). In
each case, the subscript q : P is a parameter identifying the process performing
the operation. There is also an operation Flushp corresponding to a CPU flush
of the writer process’s buffer.

R1q
ΔCS

pc(q) = 1 ∨ pc(q) = r1
c′
0(p) = c ∧ if c′

0(q) mod 2 = 0
then pc′(q) = r1
else pc′(q) = r2

R2q
ΔCS

pc(q) = r2 ∧ pc′(q) = r3
d ′
1(q) = x1(q)

R3q
ΔCS

pc(q) = r3 ∧ pc′(q) = r4
d ′
2(q) = x2(q)

R4q
ΔCS

pc(q) = r4 ∧ c0(q) = c(q)
pc′(q) = r1

3 Any command, and in particular a write to c, occurring between the assignment to
c0 and the check of the loop condition will have the same effect as if it occurred
after the check. Hence, no potential behaviour is prohibited by modelling the two
commands by a single operation.
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R5q
ΔCS
d1!, d2! : N

pc(q) = r4 ∧ c0(q) = c(q)
d1! = d1(p) ∧ d2! = d2(q)
pc′(q) = 1

Flushp
ΔCS

b(p) = 〈 〉
(b(p)(1)).1 = x1 ⇒ x ′

1 = (b(p)(1)).2
(b(p)(1)).1 = x2 ⇒ x ′

2 = (b(p)(1)).2
(b(p)(1)).1 = c ⇒ c′ = (b(p)(1)).2
b′(p) = tail b(p)

4 Showing Quiescent Consistency on the TSO
Architecture

With this model in place we now consider how we can verify that it is indeed qui-
escent consistent. First of all we consider why linearizability is not appropriate.

Proposition 4. Seqlock with one writer process is not linearizable with respect
to the abstract specification AS on a TSO architecture.

This follows from Example 5 below, which gives a history in which reads from
the writer process p and another process q occur in an order that is not possible
at the abstract level. �

Example 5. The following concrete history is possible.

〈inv(p, write, (1, 2)), ret(p, write, ), inv(p, read, ), ret(p, read, (1, 2)),
inv(q , read, ), ret(q , read, (0, 0)),flush(p),flush(p),flush(p),flush(p)〉

The first flush occurs after q ’s read so c will be even, which allows the read to
proceed. The first read in the history (by p) reads the values of x1 and x2 from
p’s buffer. The second (by q) reads from the global memory. The overall effect
is that the second read returns older values than the first; hence, there is no
corresponding abstract history. �

Burckhardt et al. [3] prove this variant of seqlock is linearizable on TSO.
However, in order to do this, they are forced to use an abstract specification that,
like the concrete algorithm, has local buffers and CPU flushes. Hence, reading of
older values after newer values have been read (as in the history above) is allowed
by the abstract specification. It is our goal, however, to show correctness with
respect to the stronger, and more intuitive, abstract specification AS — since
an abstract description of seqlock should not mention buffers and flushes.

Under quiescent consistency, the above history could be reordered as the
following abstract sequential history:

hs = 〈inv(q , read, ), ret(q , read, (0, 0)), inv(p, write, (1, 2)), ret(p, write, ),
inv(p, read, ), ret(p, read, (1, 2))〉
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Proposition 5. Seqlock with one writer process is quiescent consistent with
respect to abstract specification AS on a TSO architecture. �

We describe a proof methodology in Sect. 4.1 and then give an outline proof of
this proposition using the schemas from AS and CS in Sect. 4.2.

4.1 Simulation Rules for Quiescent Consistency

We adapt a refinement-based proof method for verifying quiescent consistency
on sequentially consistent memory models defined in [5]. Let our abstract spec-
ification be given as A = (AState,AInit , (AOPp,i)p∈P,i∈I ) and concrete specifi-
cation be given as C = (CState,CInit , (COPp,j )p∈P,j∈J ) where the sets I and
J are used to index the abstract and concrete operations and P is the set of all
process identifiers. The function abs : J → I maps each concrete operation to the
abstract operation it implements. In the definitions below, we treat operations
as functions in the following two ways: AOpp,i(ini , outi) denotes an operation
with its input and output parameters, and in COpp,j (in, cs, cs ′) we have made
the before and after states explicit.

The simulation rules for quiescent consistency use a non-atomic, or coupled,
simulation [7] which matches the concrete return events that result in a quiescent
state with a sequence of abstract operations, and (abstractly) views all other
concrete events as skips. For this to work, we need to keep track of the progress
of the concrete operations in non-quiescent states. Thus we extend the retrieve
relation R (between abstract and concrete states) with a history H , giving a
family of retrieve relations RH . For transitions to a quiescent state, we need to
match up with a sequence of all abstract operations corresponding to the invoke
and return events occurring in H . Quiescent consistency allows us to potentially
reorder H to achieve this.

quiescent quiescent

A :

AOpp,1 o
9 AOpq,1

H1 = 〈inv(p,AOp1, )〉
H2 = H1

� 〈inv(q,AOp1, )〉
H3 = H2

� 〈ret(q,AOp1, )〉

COpp,a COpq,a COpq,b COpp,b
C :

RH1R〈 〉 RH2 RH3 R〈 〉

Fig. 2. Coupled simulation for some example run

Figure 2, taken from [5], illustrates an example where the abstract operation
AOpp,1 is implemented as COpp,a o

9 COpp,b (so abs maps both a and b to 1).
Processes p and q execute concrete steps. In the initial and final quiescent
states, the systems are related by R〈 〉. In non-quiescent states the systems are
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related by a retrieve relation that has recorded (via invocation and return events)
the concrete operations that have completed. These will ultimately have to be
matched when transitioning to a quiescent state. As with all simulations, to
apply the proof method one needs to define the simulation rules, and prove that
all the squares (and triangles) in diagrams such as Fig. 2 commute.

Notation: The definition of coupled simulation uses predicates inv?(Op),
ret?(Op), int?(Op), and flush?(Op) that hold iff the concrete operation Op is
an invocation, return, internal (i.e., neither invoke, return or flush), and flush
event respectively.

To allow the concrete reordering we write hs � H for two histories hs :
seqEvent and H : seqEventTSO iff hs ∼ H \ {| flush |} where ∼ is permutation
equivalence and H \ {| flush |} removes all flushes from the history H .

Furthermore, we let AOP denote the set of all abstract operations and
define a function hist which constructs the sequential history corresponding to
a sequence of abstract operations:

hist(〈AOpp1,1(in1, out1), . . . ,AOppn ,n(inn , outn)〉) =̂
〈inv(p1,AOp1, in1), ret(p1,AOp1, out1), . . . , inv(pn ,AOpn , inn), ret(pn ,AOpn , outn)〉

For a sequential history hs and abstract states as and as ′ we define

seqhist(hs, as, as ′) =̂ ∃ aops : AOP∗ • aops(as, as ′) ∧ hist(aops) = hs,

which holds iff (a) there is some abstract sequence of operations aops whose
composition (in order) is a relation between as and as ′, and (b) the sequential
history generated from aops is hs.

Example 6. The abstract history hs of Example 5 maps the state as = {x1 �→
0, x2 �→ 0} to as ′ = {x1 �→ 1, x2 �→ 2}. Hence, we have seqhist(hs, as, as ′). �

A coupled simulation for proving quiescent consistency is given below. It uses
the following definition where h is an abstract history and cs is a concrete state:

qu(h, cs) =̂ ∀n : 1..#h • ¬pi(n, h) ∧ ∀ p : P • cs(b(p)) = 〈 〉

which holds iff (a) there are no pending invocations in h, and (b) all process
buffers are empty in cs, where we assume b models the buffer for each process.
This is used to determine when an execution is in a quiescent state. For example,
in seqlock reads are completed by their returns, whereas writes require at least
one flush after their return to complete. Therefore, we reach a quiescent state
in one of the following two ways. Either all buffers are empty and the lasting
pending read returns, or all processes are idle and a flush empties the last non-
empty buffer.

Note that unlike Definition 2, which uses concrete histories to determine qui-
escence, Definition 3 below uses both the histories H and the concrete state built
up in RH .
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Definition 3 (QC Coupled simulation for TSO). Let A and C be abstract
and concrete specifications. Let H : seqEventTSO . A family of relations RH ⊆
AState × CState is a QC (quiescent consistent) coupled simulation from A to
C iff ∀ as : AState, cs, cs ′ : CState, in, out : V , p : P, i : I , j : J such that
RH (as, cs), each of the following holds:

1. COpp,j (in, cs, cs ′) ∧ inv?(COpp,j ) ⇒ RH�〈inv(p,AOpabs(j),in)〉(as, cs ′)
2. COpp,j (cs, cs ′) ∧ int?(COpp,j ) ⇒ RH (as, cs ′)
3. COpp,j (cs, cs

′, out) ∧ ret?(COpp,j ) ⇒
if ¬qu(H � 〈ret(p,AOpabs(j), out)〉, cs ′) then RH

�〈ret(p,AOpabs(j),out)〉(as, cs ′)
else ∃ as ′ : AState • R〈 〉(as ′, cs ′) ∧

∃ hs • hs � H � 〈ret(p,AOpabs(j), out)〉 ∧ seqhist(hs, as, as ′)
4. COpp,j (cs, cs ′) ∧ flush?(COpp,j ) ⇒

if ¬qu(H � 〈flush(p)〉, cs ′) then RH�〈flush(p)〉(as, cs ′)
else ∃ as ′ : AState • R〈 〉(as ′, cs ′) ∧

∃ hs • hs � H � 〈flush(p)〉 ∧ seqhist(hs, as, as ′)

together with the initialisation condition: ∀ ci : CInit • ∃ ai : AInit • R〈 〉

(ai , ci). �

We now describe these proof obligations. Rule 1 is for a step that starts (invokes)
an operation, e.g., W 1p , where the event corresponding to the step is added to
the history H collected thus far. The proof obligation requires that if RH holds
before the invocation then RH�〈inv(p,AOpabs(j),in)〉 holds after, and the abstract
system does not take a step. Rule 2 applies to steps that are neither invocations
nor returns, e.g., W 2p , and requires that RH is maintained. Again, the abstract
system does not take a step.

Rule 3 applies to a return step, e.g., W 4p , and has two cases. The case
is determined by appending the corresponding return event to H and test-
ing whether or not qu holds. For a return to non-quiescent step, the abstract
state does not change, but RH�〈ret(p,AOpabs(j),out)〉 must hold in the poststate
provided RH holds in the prestate. Return to quiescence is more complicated,
and requires that there exists a sequential history hs that is a permutation of
H � 〈ret(p,AOpabs(j ), out)〉 such that overall effect of the steps corresponding
to hs is equivalent to a transition from the abstracting start state as to as ′. Fur-
thermore, as ′ is related to the concrete poststate cs ′ via R〈 〉, where the history
collected thus far is empty because the system has returned to quiescence.

These rules are in essence the same as those for sequentially consistent archi-
tectures in [5]. For TSO, we need an additional rule for flushes, Rule 4. This rule
is similar to Rule 3. For a return to non-quiescent step, the abstract state does
not change, and RH�〈flush(p)〉 must hold in the poststate provided RH holds in
the prestate. Return to quiescence requires that there exists a sequential history
hs that is a permutation of H � 〈flush(p)〉 such that overall effect of the steps
corresponding to hs is equivalent to a transition from the abstracting start state
as to as ′. Again, as ′ is related to the concrete poststate cs ′ via R〈 〉.
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Quiescent consistency, as with linearizability, is a safety property and no
liveness is guaranteed. Therefore, Definition 3 does not mention any applicability
conditions.

Following the proof strategy in [5], it can be shown that coupled simulation
is a sound proof technique for quiescent consistency (the proof of this follows
from the definition).

Theorem 1. Let A and C be abstract and concrete specifications, respectively.
If there is a coupled simulation RH from A to C , then C is quiescent consistent
wrt. A. �

4.2 Proof Outline for Seqlock

To apply Definition 3 one needs to define RH and also give the explicit reordering
of the concrete history on returning to quiescence (conditions 3 and 4). RH is
a conjunction of a number of individual cases corresponding to possible values
of the buffer in any state. The proof consists of a number of small proof steps
which individually are not complicated but we do not have space to give them
all here. Rather we just aim to give a flavour of what is involved.

First we need to determine which condition(s) of Definition 3 needs to be
proved for each of the concrete Z operations. Condition 1 needs to be proved for
W 1p and R1q which are the invocation events of the write and read operations
respectively. Condition 3 needs to be proved for W 4p and R5q which are the
return events of the write and read operation respectively, and condition 4 for
the occurrence of Flushp . Condition 2 needs to be proved for all other operations.

1. Defining R〈 〉: R〈 〉 relates abstract states and quiescent concrete states. The
latter are those in which pc(q) = 1 for all processes q , and the buffer of the
writer process p is empty. In these states, the abstract and concrete values of
x1 and x2 are equal, and c is even. That is, letting A.x1 and A.x2 denote the
abstract variables x1 and x2, R〈 〉 is true when

A.x1 = x1 ∧ A.x2 = x2 ∧ c mod 2 = 0 ∧ (∀ q : P • pc(q) = 1) ∧ b(p) = 〈 〉

2. Defining RH : For H = 〈 〉, RH includes a number of conjuncts depending on
the values of pc and b for the individual processes. For example, when H ’s last
event is an invocation of the write operation with input values d1? and d2?,
RH includes the following conjuncts.

– If pc(p) = w1 the inputs from the pending write operation are in d1(p) and
d2(p).

pc(p) = w1 ⇒ d1(p) = d1? ∧ d2(p) = d2? (1)

– If pc(p) = w2 the inputs from the pending write operation are either in the
last entry of b(p) and d2(p), or x1 and d2(p) when the writer process’s buffer
has been completely flushed.
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pc(p) = w2 ∧ b(p) = 〈 〉 ⇒ last b(p) = (x1, d1?) ∧ d2(p) = d2? (2)

pc(p) = w2 ∧ b(p) = 〈 〉 ⇒ x1 = d1? ∧ d2(p) = d2? (3)

3. Proof obligations for initialisation and non-quiescent states.
Given the complete definition of RH it is possible to prove the initialisation
condition and the coupled simulation conditions for each concrete Z operation
that does not result in a quiescent state. For example, consider just the conjuncts
(1) to (3) above.

The invocation event for the write operation is W 1p . This operation sets
d1(p) to d1?, and d2(p) to d2?, and so establishes the consequent of (1). Since
pc(p) = w1 in its poststate, (1) to (3) hold.

Operation W 2p is an internal event. It adds (x1, d1(p)) to the end of b(p).
Since (1) holds in the prestate of the operation, last b(p) = (x1, d1?) in the
poststate. Also since (1) holds in the prestate and the operation does not change
d2(p), d2(p) = d2? in the poststate. Hence, the consequent of (2) is established.
Since W 2p also establishes pc(p) = w2 and b(p) = 〈 〉 in its poststate, (1) to (3)
hold.

When pc(p) = w1 or pc(p) = w2, a Flushp operation can also result in
a non-quiescent state. It does not change pc(p). When pc(p) = w1, since the
consequent of (1) holds in the prestate of the operation, it will also hold in the
poststate since Flushp does not change d1(p) or d2(p). Hence, (1) to (3) hold.

When pc(p) = w2, since b(p) = 〈 〉 in the prestate of Flushp the consequent
of (2) holds. If in the poststate b(p) = 〈 〉 then, since Flushp does not change
last b(p) or d2(p), the consequent of (2) continues to hold as required. If in the
poststate b(p) = 〈 〉 then in the prestate there was only one entry in the buffer
which we know from the consequent of (2) is (x1, d1?). Hence, in the operation’s
poststate we have x1 = d1? and, since Flushp does not change d2(p), d2(p) = d2?.
Hence, the consequent of (3) holds as required. Therefore in both cases, (1) to
(3) hold.

Finally, when pc(p) = w1 or pc(p) = w2, a process other than p can do any
of the concrete Z operations capturing the read operation, as an invocation or
internal event. In each case, since no local variables of p nor any global variables
are changed, (1) to (3) will continue to hold.

In the full proof, the above reasoning would be extended to all conjuncts
which comprise RH for each concrete history H beginning from a quiescent state.

4. Proof obligations for quiescent states. The remaining steps of the proof
require showing that each concrete Z operation that results in a quiescent state
simulates an abstract history which is a reordering of the concrete history since
the last quiescent state. As discussed earlier there are two ways of a reaching a
quiescent state. The first is when all buffers are empty and the lasting pending
read returns. In this case, the else condition of Rule 3 applies. The other case
is when all processes are idle and a flush empties the last non-empty buffer. In
this case the else condition of Rule 4 applies.

To prove the rules we are required to find a reordering of the sequence of the
concrete history, which can be determined for both Rule 3 and 4 as follows.
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Case 1: ret(p, read, ( , )) occurs between ret(p, write, ( , )) and the final
flush(p) of that write.
In this case, there is no to reorder the operations (since the read is from p’s
buffer and so is consistent with the write) and the abstract history corre-
sponds to the order of returns.

Case 2: ret(q , read, ( , )) occurs between ret(p, write, ( , )) and the final
flush(p) of that write.
In this case, the clue for finding a valid reordering is found in Example 5 where
a process reads an older value after a newer value has been read. To avoid
this situation, we can reorder the concrete history as follows. In the reordered
abstract history, we want the read by q to occur before the write by p.
Therefore, we move the return (and if necessary, invocation) of the read to
be immediately before the return of the write. As in Case 1, the order of the
abstract history is then the order of the returns. If there is more than one
such read operation, the order they appear in before the write operation is
arbitrary.

Case 3: ret(p, read, ( , )) occurs after both ret(p, write, ( , )) and the final
flush(p) of that write.
In this case, there is no to reorder the operations and the abstract history
corresponds to the order of returns.

Case 4: ret(q , read, ( , )) occurs after both ret(p, write, ( , )) and the final
flush(p) of that write.
In this case, there is no to reorder the operations and the abstract history
corresponds to the order of returns.

The reordered concrete history will have no read operations on q while a
write operation on p is pending or has not yet been completely flushed to
the global memory. Hence, there will be no effects from writes being delayed:
all reads by processes other than the writer process will occur either before the
write begins, or after it has been completely flushed to memory. Therefore, there
will be an abstract history corresponding to the reordered concrete one. As an
example, consider the following concrete history with a single write and three
reads.

〈inv(p, write, (1, 2)), inv(r , read, ), ret(p, write, ), inv(p, read, ), inv(q , read, ),
ret(q , read, (0, 0)),flush(p),flush(p), ret(p, read, (1, 2)),flush(p),flush(p),
ret(r , read,(1,2)〉

At the end of this history, we are in a quiescent state. All buffers are empty
and the lasting pending read returns, hence Rule 3 applies. To reorder this, we
note that Case 1 applies to the read by p and Case 4 to the read by r . Therefore,
no reordering is required. For the read by q Case 2 applies. Therefore, the return
of this read is moved to immediately before the return of the write. In this case,
we also need to move the invocation of the read (since it occurs after the return
of the write.
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The reordered concrete history is therefore as follows.

〈inv(p, write, (1, 2)), inv(r , read, ), inv(q , read, ), ret(q , read, (0, 0)),
ret(p, write, ), inv(p, read, ),flush(p),flush(p), ret(p, read, (1, 2)),flush(p),
flush(p), ret(r , read,(1,2)〉

The order of the operations in the corresponding sequential abstract history
hs is given by the order of returns above:

〈inv(q , read, ), ret(q , read, (0, 0)), inv(p, write, (1, 2)), ret(p, write, ),
inv(p, read, ), ret(p, read, (1, 2)), inv(r , read, ), ret(r , read,(1,2)〉 .

5 Conclusions

This paper has investigated methods for proving correctness of concurrent algo-
rithms on TSO architectures. Due to the apparent reorderings of reads and
writes in a TSO memory model, we have focussed on quiescent consistency as
a correctness criterion. We have shown how to model an algorithm and prove
quiescent consistency using a simulation-based approach. This was illustrated
with a running example based on seqlock, but is applicable to other algorithms
running on TSO.

Fig. 3. Comparison of different approaches

Other work on correctness of algorithms on TSO have altered the defini-
tion of linearizability. For example, TSO-TSO linearizability [3] and TSO-SC
linearizability [9] have been defined. These approaches, however, prove correct-
ness with respect to abstract specifications which have been altered to include
either low-level details of local buffers and CPU flushes (TSO-TSO linearizabil-
ity), or nondeterminism to account for possible operation reorderings (TSO-SC
linearizability). Gotsman et al. [9] provide the following abstract specification
of seqlock, where the abstract state is modelled as queue: writes are added to
the head of the queue, and reads do not return the last value in the queue
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but any previously written values. In their notation, this is written as follows
[9, pp. 20–21].

Queue q = {(0, 0)};

write(in word d1, d2) {

q.enqueue(d1,d2); }

read(out word d1, d2) {

while (*)

q.dequeue();

(d1,d2) = q.top(); }

This is in contrast to our more natural specification where reads return the most
recently written values.

Burckhardt et al. also use a more natural specification:

word x1 = 0, x2 = 0;

write(in word d1, d2) { lock; x1 = d1; x2 = d2; unlock; }

read(out word d1, d2) { lock; d1 = x1; d2 = x2; unlock; }

However, to cope with the effects of TSO memory, each write operation of
the abstract specification takes place in two atomic steps: a write to a store
buffer and a memory flush. Therefore, while the abstract specification is seem-
ingly natural, its underlying semantics is architecturally dependant and includes
local store buffers and CPU flushes. As acknowledged by Burckhardt et al., their
notion of linearizability is “different from the classical definition of linearizabil-
ity on a sequentially consistent memory model, which requires methods in the
specification to be implemented by one atomic action” [3, p. 100].

An overview of our approach in comparison to TSO-TSO and TSO-SC lin-
earizability is given in Fig. 3. TSO-TSO linearizability fails to cross the bound-
ary from the TSO implementation to a sequentially consistent (SC) abstraction,
while TSO-SC linearizability crosses this boundary at the cost of a weaker non-
deterministic specification. On the other hand, by weakening the linearizability
criterion to quiescent consistency, it is possible to prove a relationship with
respect to a more intuitive deterministic abstract specification.
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