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Abstract
Nanotechnology-based coatings have shown remarkable growth in recent years 
in many strategic industries such as automotive, aerospace, petroleum, electronics, 
etc. The unique characteristics that can be offered from nanotechnology are one 
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of the main driving forces for the sharp innovation in coatings technology 
nowadays. Nanocoatings have recently been proposed to add functionalities to 
the materials to be coated such as anticorrosion self-healing, anti-icing, self-
cleaning, etc. Different types of nanomaterials have been incorporated in anticor-
rosion coatings by adopting various approaches. The basic approach utilizes 
incorporation of inorganic nanomaterials with the traditional organic coatings to 
enhance certain functionality of the formulated nanocomposite coating. However, 
one of the recent trends in nanotechnology is to design nanomaterial-based 
coatings of multifunctionality. These include stimuli-responsive/smart coatings, 
self-healing coatings, organic/inorganic hybrid coatings, and electroactive 
coatings. This chapter highlights these emerging nanotechnologies and presents 
the most recent achievements in this area.

Keywords
Nanotechnology • Self-healing • Nanocoatings • Smart coatings • Corrosion 
protection

�Introduction

Protective polymeric coatings are the most widespread approach for corrosion 
protection of metallic structures. They act as barrier to prevent or impede the inter-
action of corrosive species with the metallic substrates. However, there are some 
factors affecting the protection performance of the polymer such as temperature, 
humidity, and the presence of aggressive salts which result in the degradation of the 
polymer and deteriorate their barrier effect (Fig. 1a, b). Therefore, there is an 
increased demand for designing coatings with self-healing functionalities to pro-
vide long-term protection.

The sharp innovation in nanotechnology is one of the main reasons for the devel-
opment of “smart” functional coatings which can be used for a variety of applica-
tions including antifogging [1] and anti-icing coatings [2–4], scratch-resistant 
coatings [5–7], anti-stain coatings [8, 9], moisture-resistant coatings [10–12], oil-
repellent coatings [13, 14], self-cleaning coatings [15–17], antimicrobial coatings 
[18–22], UV protection coatings [23, 24], adhesive coatings [25], and anticorrosive 
self-healing coatings [26–37].

Self-healing coatings can be constructed by the adsorption of stimuli-respon-
sive polymers on solid support materials. The stimuli-responsive polymers can be 
classified into two categories: (1) intrinsic polymers that are able to heal the 
cracks by themselves and (2) extrinsic polymers in which the healing agent has to 
be pre-embedded [38]. For example, thermally responsive reversible cross-linked 
polymers represent an important class of intrinsic self-healing polymers [39–41]. 
The mechanism of self-healing is based on Diels-Alder and retro-Diels-Alder 
reactions. However, in the case of extrinsic self-healing, the healing agent is 
encapsulated within a reservoir [42, 43]. The encapsulated healing agent contains 
liquid monomer that is able to polymerize at room temperature with the help of a 
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catalyst present in the composite matrix [44, 45]. However, there are some cases 
that the self-healing agent can polymerize without any catalytic support [46].

Smart self-healing coatings are designed to interact with the surrounding envi-
ronment by responding to external physical or chemical changes induced by exter-
nal stimuli such as temperature, pH, ionic strength, pressure, corrosion products, or 
light. This switching of the physiochemical properties will lead to the rupture of the 
self-healing container/capsule and eventually the release of the encapsulated corro-
sion inhibitor. Figure 1c illustrates the concept of self-healing-protective coating 
with autorepair functionality. The effective release of stored corrosion inhibitor 
from the encapsulated container provides a real triggering mechanism for spontane-
ous repair of small defects in a similar fashion to the toxic chromate coatings which 
maintain a passive layer of protective metal oxide through the intelligent release of 
chromate anions as illustrated in Eq. 1:

	
2 2 4 24

2
2 3 2 3 2Fe CrO H Fe O Cr O H O+ + ® + +- + 	 (1)
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Fig. 1  Schematic illustration of self-healing anticorrosion coating (a) corrosion initiation at the 
topcoat layer, (b) corrosion penetrates to the metal surface, and (c) self-healing through the release 
of the encapsulated inhibitor that is embedded in the coating matrix
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This chapter discusses the recent approaches for the design and preparation of 
anticorrosive coatings of self-healing functionality. These approaches include 
encapsulation of corrosion inhibitors, embedding corrosion inhibitors into nanocon-
tainers and various inorganic microparticles, application of polyelectrolyte multi-
layers, and utilization of electrically conductive polymers as potential self-healing 
anticorrosive coatings.

�Microcapsule-Based Self-healing Coatings

�Definition and Limitations

The encapsulation process is considered as a key step for obtaining effective and 
functional self-healing coatings. The designed containers must possess strong shell 
walls, for long life durability, and impermeability to corrosive species such as atmo-
spheric oxygen and water. Also, the containers should be able to supply the stored 
active content on demand upon certain triggering mechanism and consequently pro-
vide self-healing response.

The encapsulation process enables the self-healing coatings to provide supe-
rior performance over their traditional coating counterparts. In traditional coating 
systems, where the corrosion inhibitor is incorporated by direct mixing, possible 
interactions with the formulated coating can result in loss of inhibitor efficiency, 
coating degradation, or both [47]. However, in the case of smart-responsive coatings, 
the corrosion inhibitor is encapsulated in a variety of micro- or nanostructured 
materials such as microcapsules, nanocapsules, nanocontainers, and nanoreser-
voirs. Thus, the encapsulating container acts as a “host” for the corrosion inhibitor 
and also prevents the direct contact between the inhibitor and the coating, allow-
ing for the controlled release of the stored active content at the time of corrosion 
initiation.

�Synthesis and Preparation

Microcapsules can be designed and prepared by using different techniques 
including pan coating, spray drying, centrifugal extrusion, and emulsion-based 
methods [48]. Emulsion methods include emulsion polymerization, layer-by-layer 
assembly, internal phase separation, and coacervation. The efficient trigger-
release performance of the prepared capsule depends on parameters such as shell 
wall thickness, permeability, mechanical integrity, and chemical functionality of 
the capsule shell wall as well as the capsule size.

�Emulsion Polymerization
Emulsion polymerization process can be utilized for the preparation of capsules as 
illustrated in Fig. 2a. Emulsion is created by strong agitation or sonication of 
biphasic liquid, typically oil in water (emulsion) or water in oil (inverse emulsion) 
[49, 50]. Stirring or sonication creates droplets which become the core material of 
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the capsule. The capsule shell wall is created by the polymerization at the aqueous/
organic interface around these droplets. Polymers can be formed by condensation 
polymerization of two immiscible monomers at the aqueous/organic interface [44] 
or through in situ free radical polymerization reactions of vinyl monomers such as 
styrene, vinyl acetate, 1,3-butadiene, and isoprene [51].

�Layer-by-Layer Assembly
In layer-by-layer (LBL) assembly, polyelectrolyte layers with alternating posi-
tive and negative charges are deposited on the capsule shell wall [47, 52, 53]. 
The thickness of capsule shell wall can be controlled by the number of depos-
ited layers. Since polyelectrolytes are pH-responsive macromolecules, the trig-
ger and release mechanism depends on the stability of the polyelectrolyte layers, 
which in turn is governed by the pH of the surrounding environment. Thus, the 
selection of weak/strong, acidic/basic ionizable groups allows for the optimiza-
tion of trigger and release mechanism to occur at certain pH range.

Capsule fabrication using LBL method can be achieved via three stages as illus-
trated in Fig. 2b. The first stage represents the selection of suitable capsule core 
material such as metal oxide particles. Then, polyelectrolytes with alternating posi-
tive and negative charges are deposited on the capsule shell wall. The final stage 
includes the removal of the metal oxide core by acid treatment, leaving behind hol-
low, porous, and semipermeable capsules.

Fig. 2  Schematic illustration for microcapsule preparation (a) emulsion polymerization is used to 
create polymeric shell around the stabilized droplet, which become the core material, and (b) 
layer-by-layer deposition of polyelectrolytes onto metal oxide template, which is removed to cre-
ate hollow and porous microcapsule
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The porosity of the capsule shell wall enables the capsule core to be loaded and 
exchanged with a variety of molecules after the preparation process. However, the 
main disadvantage of this technique is the weakness of the created capsule shell 
wall due to the weak integrity of the layered polyelectrolytes shell wall, which often 
results in capsules that resemble deflated balloons after being dried.

In another approach, inverse emulsion polymerization was used to prepare 
epoxy-amine microcapsules, with diameter of 10–240 μm, which was embedded 
with 10 wt% magnesium sulfate solution as inhibitor [54]. Magnesium ions (Mg2+) 
can react with hydroxide ions in alkaline medium, at pH = 9.3, to produce insoluble 
magnesium hydroxide as shown in the following equation:

	
Mg HO Mg OH2

2
2+ -+ ® ( ) 	 (2)

�Nanocontainer-Based Self-healing Coatings

Compared to microcapsules, thin tubular nanocontainers are more attractive as they 
exhibit superior aero- and hydrodynamic properties and hence better processability. 
The modification of the inner and outer surfaces of the nanocontainers with well-
defined functionality allows for designing nanocontainers with fine-tuned proper-
ties, for example, for varying hydrophobicity.

Halloysite nanotubes, mesoporous silica containers, hydroxyapatite microparti-
cles, and layered double hydroxides have been utilized as carriers and reservoirs for 
immobilization, storage, and controlled release of inhibitors that incorporated in 
self-healing anticorrosive coatings. In general, this can be achieved in three steps as 
illustrated in Fig. 3. The first step includes loading the organic or inorganic inhibi-
tors into the target nanocontainer by the absorption of the inhibitor through the 
porous nanocontainers’ structure, by encapsulation process utilizing emulsion 
polymerization, or by ion exchange with counter positive/negative ions in the cor-
responding nanocontainers. In the second step, the inhibitor-loaded nanocontainers 
are coated with pH-sensitive polyelectrolyte multilayers. Finally, the inhibitor-
loaded nanocontainers are dispersed in suitable organic/inorganic polymeric matrix 
material.

�Halloysite Nanocontainers

Nanocontainers can be made from different tubular materials such as carbon, poly-
meric, metal, and metal oxide nanotubes. Polymeric nanotubes can be templated by 
molecular sieves or cylindrical nanopores to form tubular structures [55]. Metal and 
metal oxide nanotubes are synthesized by employing polymeric or inorganic 
nanorods as scaffold template. The shortcoming of these types of nanotubes is the 
employment of template that needs to be prepared separately and requires extra 
post-synthesis removal steps, which is time-consuming and a costly process.
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One of the future prospective containers that can be industrially applicable is 
halloysite nanotubes. In comparison to the carbon nanotubes, halloysite is biocom-
patible and inexpensive nanocontainer ($4/Kg with annual production of 50,000 t 
per year) that can be used for a variety of applications including microencapsulation 
of biologically active molecules.

Halloysite is defined as a two-layered aluminosilicate with hollow tubular struc-
ture in the submicrometer range [56]. The adjacent alumina and silica layers create 
a packing disorder causing them to curve. The size of halloysite particles varies 
within 1–15 μm in length and 10–150 nm in inner diameter depending on the depos-
its. Thus, a variety of active agents such as drugs, corrosion inhibitors, and marine 
biocides can be entrapped within the halloysite inner lumen as well as within void 
spaces in the multilayered aluminosilicate shell. The entrapped and stored active 
agents are retained and released in a controlled manner for specific application. 
Both hydrophilic and hydrophobic agents can be entrapped after suitable pretreat-
ment and conditioning of the halloysite [57–61].

Fig. 3  Schematic illustration for preparation of inhibitor-loaded nanocontainers and their incor-
poration into coating matrix
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A hybrid sol-gel film doped with halloysite nanotubes for controlled release of 
entrapped corrosion inhibitor on aluminum substrate has been proposed [62]. Initially, 
the halloysite nanocontainers were doped with 5 wt% 2-mercaptobenzothiazole 
inhibitor. In order to prevent the leakage of the doped inhibitor, the surface of the 
inhibitor-doped halloysite nanocontainers was coated with several alternating poly-
electrolyte multilayers of (poly(styrene sulfonate)/poly(allylamine hydrochloride)). 
This step was essential to close the edges of the nanocontainers as well as to enable 
the controlled release of the doped 2-mercaptobenzothiazole inhibitor to the surround-
ing environment upon pH change. In a separate step, the organically modified hybrid 
sol-gel was prepared by using zirconium (IV) n-propoxide (TPOZ) and 3-glycidoxy-
propyltrimethoxysilane (GPTMS) precursors. Finally, the inhibitor-doped halloysite 
nanocontainers suspension was incorporated into the sol-gel solution prior to the dip 
coating of the AA2024-T3 samples. The prepared sol-gel films with the halloysite 
nanocontainers provided long-term corrosion protection in comparison with the 
undoped sol-gel film.

Abdullayev et al. reported an enhanced and strong anticorrosion self-healing 
effect caused by the sol-gel coating embedded with benzotriazole-doped halloy-
site nanocontainers in the cracked area of 2024 alloy [63]. In the same study, the 
corrosion protection performance of the industrial oil-based paint coating (ECS-
34 True-Test) embedded with/without benzotriazole-doped halloysite nanotubes 
was investigated on scratched copper strips. After 10 days, immersion in highly 
corrosive environment, there was no evidence of visible rust in the scratched area, 
and the elemental analysis of the reacted corrosive solution did not show any cop-
per content, whereas samples without halloysite nanocontainers were rusted, and 
their reacted corrosive solution was found to contain 128 ppm Cu(II) ions. These 
results demonstrate the self-healing functionality of the coating prepared by 
incorporation of the benzotriazole-loaded halloysite nanocontainers. The release 
rate of the benzotriazole was controlled by adapting two methods: (1) tube stop-
per formation and (2) layer-by-layer polyelectrolyte encapsulation for the inhibi-
tor-embedded halloysite nanotubes. In the first method, the complexation reaction 
between loaded benzotriazole and transition metal ions was employed for the 
formation of stoppers at the tube ends. The best results were obtained when Cu(II) 
ions were employed for complex formation. It was found that the concentration of 
the Cu(II) ions has a direct and reverse effect on the release rate of the entrapped 
benzotriazole. In contrast, the polyelectrolyte multilayer shell (second method) 
did not slow down benzotriazole release from the encapsulated tubes. This finding 
was attributed to the low molecular weight of the benzotriazole inhibitor, which 
makes the diffusion through the polyelectrolyte multilayers more difficult to 
control.

In a later study, Abdullayev et al. [64] investigated the decrease in the release rate 
of the benzotriazole (BTA) through Cu-BTA complex at the tube ends based on the 
following reaction:

	

Cu BTA NH Cu NH BTA
insoluble complex excess sol

- + ® ( )éë ùû +
( ) ( )

+

3 3 4

2

uuble dissolved products/( ) 	
(3)
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When ammonia solution was injected, a switch of the release rate of benzotri-
azole was observed, as was evident from the sharp increase in the concentration of 
both copper and benzotriazole in the treated solution. This result demonstrates that 
the stoppers can be diluted and the release rate can be restored with ammonia 
treatment.

�Mesoporous Silica Nanocontainers (MSNs)

Monodisperse, mesoporous silica nanoparticles were loaded with organic corrosion 
inhibitor benzotriazole (BTZ) and embedded in hybrid sol-gel coating for corrosion 
protection of aluminum alloy AA2024 [65]. The reported mesoporous silica-BTZ sys-
tem exhibited a number of interesting properties: (1) high surface area (≈1000 m2 g-1), 
(2) narrow pore size distribution (d ≈ 3 nm), large pore volume (1 mL g-1), and high 
loading capacity of BTZ (41 wt%). The BTZ-doped silica nanocontainers were 
embedded in the sol-gel hybrid coating without further encapsulation steps (i.e., 
without using additional polyelectrolyte multilayer coating), which means that the 
trigger-release mechanism was entirely based on the corrosion process, providing a 
self-healing effect.

Li et  al. investigated the synthesis and preparation of silica/polymer double 
wall hybrid nanotubes and their applications as stimuli-responsive nanocontainers 
in self-healing coatings [66]. The synthesis procedure started with the preparation 
of nickel hydrazine/silica core-shell rod templates, which were then surface modi-
fied by grafting methodology, using 3-(trimethoxysilyl) propyl methacrylate, for 
introducing carbon-carbon double bonds on silica surface. The thickness of the 
polymer coating was controlled by varying the feed ratio between monomer and 
nickel hydrazine/silica templates. Three different polymers were grafted on the 
surface of the silica: (1) the pH-responsive poly(methacrylic acid) (PMAA), (2) 
the temperature-responsive poly(N-isopropylacrylamide) (PNIPAM), and (3) the 
redox-responsive poly(poly(ethylene glycol)methacrylate) (PPEGMA). The final 
synthetic step was the selective etching of the nickel hydrazine/silica/polymer 
core-double shell rods in HCl solution. Then, the corrosion inhibitor benzotri-
azole (BTA) was encapsulated into the prepared SiO2/polymer hybrid nanotubes, 
with 6–7 wt% loading capacity. The self-healing coating was prepared by dispers-
ing BTA-loaded nanotube containers into SiOx/ZrOy hybrid films at room tem-
perature. The anticorrosion agent BTA encapsulated in the hybrid nanotubes can 
be controlled to be released in the absence or presence of external stimuli. Silica/
PMMA hybrid nanotubes showed pH-dependent release of BTA corrosion inhibi-
tor, which was attributed to the swelling (at pH = 12) and shrinkage (at pH = 2) 
behavior of the grafted weak carboxylic acid moieties. Silica/PNIPAM hybrid 
nanotubes showed temperature-dependent release of BTA inhibitor due to the 
swelling and shrinkage of the PNIPAM outer wall at 25 and 50 °C, respectively. 
BTA-Silica/PPEGMA hybrid nanocontainers exhibited redox-dependent release 
of corrosion inhibitor due to the presence of the disulfide bonds in the grafted 
PPEGMA polymer networks.
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Maia et  al. reported one-stage process for the synthesis of porous silica 
nanocapsules (SiNC) loaded with 2-mercaptobenzothiazole (MBT) inhibitor for 
corrosion protection application [67]. The synthesized SiNCs have regular shape and 
a diameter in the range of 100–150 nm, with gradual mesoporosity. The encapsula-
tion efficiency was 68 %, with MBT loading content of 10 wt%. Two samples were 
investigated for their corrosion protection performance. In the first sample, MBT-
SiNCs were incorporated (2 wt%) in water-based epoxy coating, which was subse-
quently used to coat AA2024plates with a film of 30 μm thickness. The second 
sample was prepared with empty SiNC, and the MBT inhibitor was incorporated 
in the formulated coating matrix by direct addition. The active protection of 
MBT-SiNC was assessed by the introduction of two circular defects (spots) in each 
sample. The MBT release was triggered by changes in pH and concentration of 
chloride anion. The self-healing functionality of the MBT-SiNC was evident from 
the high value of the electrochemical impedance measurements and visual inspec-
tion after 30 days of immersion in aggressive solution. In comparison to coating 
prepared by direct dispersion of MBT inhibitor, the coating with MBT-encapsulated 
SiNCs exhibited better and controlled inhibitor release for longer periods.

�Layered Double Hydroxides (LDHs)

Layered double hydroxides (LDHs), also known as anionic clays or hydrotalcite-
like compounds, are anion exchange materials consisting of stacks of positively 
charged, mixed metal hydroxide layers between which anionic species and solvent 
molecules are intercalated [68, 69]. Due to their low toxicity, biocompatibility, and 
their ability to release active species in a controlled way, LDHs have been employed 
as nanocarriers for drug-delivery applications at cellular level [70–73]. Therefore, 
LDHs can be thought of as suitable nanocarrier substrates for immobilization and 
encapsulation corrosion inhibitor molecules. LDHs can be incorporated in corrosion-
protective organic coatings to provide self-healing protection functionality through 
the release of the stored inhibitors. The anion exchange property of the LDHs is 
important for two reasons: (1) it allows the immobilization of negatively charged 
organic/inorganic inhibitor, and (2) it allows the entrapment of the corrosive anions 
such as, chloride and sulfate anions [74–78].

Poznyak et al. reported the preparation of nanocrystalline LDHs, with platelike 
morphology, as novel inorganic host materials intercalated with guest organic inhib-
itors for anticorrosion applications [79]. Two different organic inhibitors were used, 
2-mercaptobenzothiazolate (MBT) and quinaldate (QA). The anion exchange reac-
tion of the nitrate-loaded LDHs precursors was utilized for creation of organic 
inhibitor containers. The release of the negatively charged organic inhibitors was 
found to occur by an exchange mechanism (i.e., release of inhibitor and entrapment 
of the aggressive anions) and sequential release of the anions, providing active feed-
back for corrosion protection control. The corrosion protection performance of the 
prepared LDHs was investigated by electrochemical impedance spectroscopy (EIS) 
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technique on a bare AA2024 aluminum alloy for two weeks. The AA2024 samples 
were placed in contact with LDH suspensions in a 0.05 M NaCl solution. After 24 h 
immersion time, EIS showed a small anticorrosion activity of these systems. 
This observation was attributed to the local alkalization of the solution in the 
presence of hydroxide-rich LDHs particles, which causes a decrease in the inhibi-
tion efficiency of MBT and QA inhibitors. However, the corrosion process was 
inhibited after long immersion times due to the formation of a protective film, with 
enhanced performance in case of MBT inhibitor.

Tedim et al. utilized the anion exchange reaction to prepare Zn-Al LDHs interca-
lated with phosphate, vanadate, and 2-mercaptobenzothiazolate inhibitors [80]. The 
corrosion protection assessment was performed on AA2024 substrate. The AA2024 
samples were treated with a thin layer (2 μm) of hybrid sol-gel, followed by over-
painting with non-inhibited water-based epoxy primer (25 μm), and finally, a 30 μm 
topcoat layer was introduced. Both primer and sol-gel formulations were loaded with 
10 wt% LDHs nanocontainers in dry paint film. The developed coating showed well-
defined active corrosion protection toward AA2024 substrates. The best results were 
obtained with a combination of sol-gel film (pretreatment layer) doped with LDH-
MBT and primer doped with LDH-VOx. It was concluded that the MBT anions were 
available in a very short time scale for protection of the interface layer between the 
aluminum substrate and the sol-gel film, whereas the long-term protection was con-
ferred by vanadate anions released from LDH nanocontainers added to the primer. 
The results proved that the combination of different types of nanocontainers in the 
same or in different functional coating layers is an effective way to design active 
corrosion protection systems with enhanced and superior performance.

Guo et al. proposed a simple one-step hydrothermal synthesis method for the 
direct fabrication of zinc-aluminum layered double hydroxide (ZnAl-LDH)/alu-
mina bilayer film on an aluminum substrate [81]. The resulted film was found to 
exhibit strong, compact, and uniform adhesion to the aluminum substrate. Coated 
aluminum substrates were immersed in 3.5 % NaCl aqueous solution for the 
assessment of the corrosion protection performance. Polarization measurements 
showed that the bilayer film was able to provide an effective corrosion protection 
for the coated substrates, as revealed from the low corrosion current density value 
(10−8 A/cm2). EIS showed that the impedance of the bilayer was as high as 16 MΩ, 
which means that the film was able to provide a protective passive layer with high 
charge transfer resistance.

�Hydroxyapatite (HAP) Microparticles

Hydroxyapatite (HAP) microparticles, which is a calcium phosphate-based clay 
(Ca10(PO4)6(OH)2), possess a number of features that make them suitable carriers 
for corrosion inhibitors. These features include crystallinity, insolubility in water, 
submicrometer size, high surface area, and chemical dissolution at acidic pH 
range. The dissolution of HAP microparticles in the acidic medium provides a 
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pH-dependent triggering mechanism for the release of stored inhibitors, whereas 
their high surface area enables a high loading capacity.

Snihirova et  al. investigated the incorporation of inhibitor-doped HAP mic-
roparticles into a hybrid sol-gel coating as new feedback-active anticorrosion sys-
tem [82]. Cerium (Ce3+) and lanthanum (La3+) cations, salicylaldoxime (Sal), and 
8-hydroxyquinoline (8HQ) were used as the dopants in the HAP microparticles. 
Inorganic cationic inhibitors were incorporated by cation exchange with Ca2+, and 
the organic inhibitors were adsorbed on the surface of HAP microparticles. This 
resulted in 22, 20, 9.3, and 0.54 wt% loadings for (Ce3+), (La3+), (8HQ), and (Sal), 
respectively. AA2024-T3 was coated with thin films of the formulated coating 
that contains 0.2 wt% inhibitor-doped HAP microparticles, by employing dip 
coating technique. The release of doped inhibitors occurred at pH below 6, with 
an acceleration of Ce3+ and La3+release when the pH falls below 3.1. The local 
acidification down to pH = 3.65 was attributed to the anodic dissolution of Al (Eq. 4), 
as revealed from localized pH measurements that was conducted using pH-selective 
microelectrodes.

	
Al aq H O Al OH aq H aq3

2

2+ + +( ) + « ( )éë ùû ( )+ ( ) 	 (4)

Thus, the HAP microparticles were able to sense the corrosion onset (local acidi-
fication) and release the stored inhibitors on demand. Also, the dissolution of HAP 
microparticles contributed to corrosion protection by pH buffering mechanism, as 
conferred from the delayed corrosion of the AA2404-treated substrates with sol-gel 
coating embedded with blank HAP microparticles (i.e., undoped with inhibitor).

�Layer-by-Layer Approach for Designing Self-healing Coatings

Polyelectrolytes multilayers with alternating charges can be deposited on metal 
substrate, and the low molecular weight corrosion inhibitors can be embedded 
between the deposited polyelectrolyte layers as shown in Fig. 4. The key parame-
ters for controlling the growth of the multilayers are the pH and the ionic strength 
(degree of ionization/dissociation) of certain polyelectrolyte. These factors affect 
the conformations of the deposited polyelectrolytes and, consequently, the thick-
ness of the multilayers [83–90]. The conformation of the polyelectrolytes can be 
altered by changing the pH or by the addition of salt. The presence of salt in the 
deposited layers allows for polymeric chains to collapse and converts the expanded 
chains into the coil conformation. Deposition of the weak polyelectrolytes can be 
easily affected by the pH of the polymeric solution. At certain pH range, the poly-
electrolyte is completely dissociated, and, as a result, the maximum charge density 
can be achieved at that pH range.

Layer-by-layer (LBL) deposition can be achieved by three different methods: 
spraying, spin coating, and dip coating. The dip coating technique includes the fol-
lowing steps: (1) the substrates are immersed in the dipping solution, (2) equilib-
rium time of 10–20 min, and (3) washing the substrate with suitable solvent to 
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remove the excess polyelectrolyte. This method is time-consuming and requires 
relatively large amount of material for each deposition. However, this is the only 
method that can be used for the formation of polyelectrolyte capsules and deposi-
tion of LBL films on spheres, microcapsules, and nanocontainers, as discussed pre-
viously in Sections 2 and 3.

In case of spraying technique, the procedure involves the following steps: (1) 
two spraying sequences per single layer, (2) waiting time interval for the removal of 
excess polyelectrolyte solution, (3) spraying with the rinsing solution, and (4) 
another waiting time interval for the removal of the excess rinsing solution. The key 
advantage of the spraying technique is the time reduction for the multilayers 
formation.

Spin coating technique requires excess polyelectrolyte solution to be applied to 
the metal substrate before spinning. Next, the solvent is expelled from the substrate 
surface, and the dissolved component forms a layer. The spinning time and rate can 

Fig. 4  Schematic illustration for using polyelectrolyte multilayers, embedded with corrosion 
inhibitor layer, for preparation of self-healing coating
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be varied for particular system. This technique is very fast and does not require 
equilibration time. However, this technique can be only applied to planar surfaces.

The thickness and roughness of the prepared layer-by-layer films depend on the 
used coating technique. The self-healing ability of the deposited polyelectrolyte 
layers is strongly affected by the ionic strength of the used polyelectrolytes. For 
example, when the scratched metal substrate was coated with two weak polyelectro-
lytes, polyethylenimine (PEI) and poly(acrylic acid) (PAA), and immersed in 0.1 M 
NaCl solution, the (PEI/PAA) system was able to stop the initiation of the corrosion 
[52]. The self-healing mechanism was attributed to the high mobility of the nano-
layers that facilitate the water penetration through the polyelectrolyte multilayers 
and trigger the release of the embedded inhibitor. In comparison with the above 
“weak-weak” polyelectrolytes, the two strong polyelectrolytes, poly (diallyldimeth-
ylammonium) chloride (PDADMAC) and polystyrene sulfonate (PSS), did not 
show self-healing property. In this case, the high charge density of the two strong 
polyelectrolytes cannot be altered by pH change.

Grigoriev and coworkers prepared a series of polyelectrolyte/inhibitor com-
plexes by employing different LBL deposition procedures [91]. The polyelectro-
lyte/inhibitor complexes have two main advantages: (1) they will help to build up 
more thick and protective multilayers and, thus, reduce the permeability of poly-
electrolyte multilayers that may lead to the undesired fast release of the stored 
inhibitor and (2) the polyelectrolyte/inhibitor complex is formed through inter-
layer bonds that enable the coating to respond more effectively to the aggressive 
factors. The thickness of the multilayers formed between polyethylene imine 
(PEI), poly(allylamine hydrochloride) (PAH), and 2-(benzothiazole-2-ylsulfanyl) 
succinic acid inhibitor (BYS), PEI(BYS/PAH)10, showed a pH dependence, with 
a distinct maximum at pH 7. At acidic or basic conditions, the thickness of the 
multilayers decreases, allowing for partial release of the bonded inhibitor and 
hence providing the self-healing functionality of the coating. Similarly, the pro-
tective coating with embedded 8-hydroxyquinoline (8HQ) in the PSS/(8HQ/PSS)n 
multilayers demonstrated a very effective mechanism for corrosion suppression. 
Thus, the inhibitor release provided an active feedback for effective termination 
of corrosion.

In addition, the above study [91] reported the utilization of SiO2 mesoporous 
microcontainers filled with benzotriazole (BTA) inhibitor and plugged by the 
(PSS/BTA) complex into a sol-gel coating for protection of aluminum alloy 
AA2024. The stiff inorganic SiO2 carriers provided the integrity for the microcon-
tainers, and their charged shells improve their dispersion in the coating matrix. 
The results of the scanning vibrating electrode (SVET) for the anticorrosion effi-
ciency in 0.1 M NaCl revealed that the protective coating with incorporated nano-
carriers exhibited an excellent self-healing performance. Anodic activity was 
developed after 42 h of the total immersion time. However, after another 18 h 
(i.e., after 60 h of the total immersion time in NaCl solution), almost complete 
suppression of the corrosion process was detected, with anodic activity less than 
2 μA cm-2, demonstrating the self-healing response of the coating for the corro-
sion process.
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�Electrically Conductive Polymers for Self-healing Coatings

Electrically conductive polymers (ECPs) belong to those classes of polymers which 
have π conjugation along the polymer backbone such as polyaniline (PANi), poly-
pyrrole (PPy), and polythiophene (PTh), as shown in Fig. 5. ECPs are known for 
their ability to undergo oxidation-reduction reactions by gaining or loosing elec-
trons from the surrounding environment. Due to this interesting property, ECPs 
have been utilized as novel corrosion-protective coatings for a variety of metals and 
alloys [92–94].

ECPs function as corrosion-protective coatings by one or more of the following 
three mechanisms [95]. First, ECPs can provide barrier protection by isolating the 
metal surface from the surrounding environment. This can be achieved by using the 
ECPs as primers or as a component of the barrier layer [96–101]. Second, ECPs can 
provide anodic protection through the formation of passive layer of metal oxide 
(ennobling mechanism) [102, 103]. In this case, ECPs act as oxidizing agent for the 
leached metal ions, maintaining the metal in the passive domain by providing a thin 
layer of metal oxide.

In the third protection mechanism, Kendig [104] proposed that ECPs can pro-
vide self-healing functionality for the coated metal substrates through storage and 
immobilization of the doped corrosion inhibitor anions as illustrated in Fig. 6 [105]. 
The release of the stored inhibitor anions to the corroded areas is triggered by the 
electrochemical reduction of the ECP. Different organic/inorganic dopants (Fig. 7) 
can be immobilized on the polymeric backbone of ECPs [106–114]. This can be 
achieved during polymerization process of the ECP, through doping process (Eq. 5), 
or by ion exchange reaction with negatively charged inhibitor anions (Eq. 6).
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Polyaniline doped with 2,5-dimercapto-1,3,4-thiadiazole (DMcT) was tested, in 
solvent-borne epoxy, as anticorrosion coating for aluminum alloys (AA2024-T3 
and 7075-T6) [115]. The results showed that DMcT-doped PANi epoxy primer 
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Fig. 5  Chemical structure of common electrically conductive polymers
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Fig. 6  Schematic illustration of self-healing functionality of an electrically conductive polymer (ECP)

coating was able to provide similar protection performance to that of strontium 
chromate coating for a period of 2,000 h in corrosive media. The enhanced anticor-
rosion performance was attributed to the effective release of the anionic organic 
inhibitor (DMcT) from the reduced polyaniline which suppresses the oxygen reduc-
tion reactions and consequently delayed the corrosion process.

Inorganic inhibitors such as MoO4
2- , PO4

3- , and WO4
2-  can be immobilized and 

stored as dopant anions into the ECP matrix. Molybdate-doped polyaniline was 
investigated as self-healing anticorrosive coating [116]. PANi MoO- -

4
2  film was 
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deposited on mild steel substrate by in situ electrochemical polymerization in the 
presence of oxalic acid solution. PANi MoO- -

4
2  coating system showed superior 

anticorrosion performance to that of pure PANi due to the formation of iron-molybdate 
complex along with the passive film as shown in the following equations:

	
Fe Fe e® ++ -3 3 	 (7)

	
2 33

4
2

2 4 3
Fe MoO Fe MoO+ -+ ® ( ) 	 (8)

Steel substrates coated with molybdate-doped polypyrrole film were protected in 
chloride-containing solution even when the coating has defects [117]. This was 
attributed to the migration of molybdate anions through the polypyrrole film in a 
short time and subsequent formation of passive layer at the defected sites.

Polypyrrole doped with larger molecular size phosphomolybdate anion 
[PMo12O40]3− has also been investigated and showed significant self-healing corro-
sion protection performance [118, 119]. Responsive release of the inhibitor 
[PMo12O40]3− occurs only when the potential at the metal-polymer interface 
decreases at an active defects.

Kowalski et al. investigated bilayered polypyrrole coating composed of molybdate-
doped internal layer and dodecyl sulfate-doped external layer [120]. The immobile and 
bulky counter anion (dodecyl sulfate) prevents the penetration of small aggressive 
anions through anion exchange reaction, whereas the internal layer provides the self-
healing functionality through the controlled release of the molybdate anions. The above 
duplex coating was applied to steel substrate and provided corrosion protection for 190 
h in chloride-containing solution. However, steel substrate coated with similar thickness 
of dodecyl sulfate-doped polypyrrole monolayer was able to provide corrosion protec-
tion for only 10 h. It was concluded that the molybdate-doped internal layer was able to 
maintain the metal substrate in the passive domain for longer period, which is attributed 
to the formation of salt layer of ferric molybdate complex at the defect site [121].
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Fig. 7  Chemical structure of organic doping acids (a and b), inorganic inhibitor dopants (c and d), 
and organic inhibitor dopant (e)
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Chen et  al. prepared polyaniline (PANi)-containing coating for waterborne 
corrosion protection applications by using oxidative dispersion polymerization of 
aniline monomer in the presence of partially phosphorylated polyvinyl alcohol 
(P-PVA) [122]. The resulted PANi nanoparticles were stabilized by P-PVA with 
uniform diameters in the range of 60–100 nm. The coating was prepared by using 
waterborne epoxy resin as matrix, with a dry film thickness of ≈90 μm. Mild steel 
samples were dip coated with the waterborne PANi/P-PVA-containing coating 
and exposed to 3.0 wt% NaCl solution. The corrosion protection performance was 
evaluated by the measurement of OCP versus time of exposure and EIS. After 30 
days of salt spray tests, samples coated with 2.5 wt% PANi/P-PVA content, the 
measured impedance values were higher than 1×107 Ω cm2, which showed that 
the PANi/P-PVA coating was able to provide superior corrosion protection for 
long period.

�Conclusions and Future Remarks

Development of self-healing coatings for corrosion protection applications can be 
considered as one of the future emerging nanotechnology fields. Nowadays, there is 
a lot of scientific research interest in this fast growing area. The main advantage of 
self-healing coatings is their autoresponse to the corrosion phenomena. The respon-
sive self-healing coatings are characterized by their ability to provide instantaneous 
feedback upon corrosion initiation. The criterion for automatic feedback depends 
on the design of the self-healing coating as well as the surrounding environment.

Different materials with nano and microscale dimensions have been utilized for the 
preparation of self-healing agents prior to their embedding and incorporation into the 
polymeric coating matrix. The selection and design of specific self-healing agent can 
provide specific triggering mechanism for the effective release of the encapsulated 
active corrosion inhibitor molecules. Since corrosion is an electrochemical process 
accompanied with pH change, redox-dependent and pH-dependent triggering mecha-
nisms are suitable for providing active feedback in case of corrosion initiation.

Different approaches have been investigated for the design, synthesis, and prepa-
ration of self-healing coatings. The first approach employs different types of inor-
ganic nanocontainers and microparticles as carriers/reservoirs for storage and 
immobilization of corrosion inhibitor molecules. These carriers include halloysite 
nanotubes, mesoporous silica nanotubes, hydroxyapatite microparticles, and lay-
ered double hydroxides nanotubes. Corrosion inhibitors are incorporated by simple 
adsorption or by cationic/anionic exchange with unbound cations/anions, like in the 
case of hydroxyapatite and layered double hydroxide microparticles.

The second approach utilized layer-by-layer polyelectrolyte assembly for the 
preparation of thin-responsive coating films. Corrosion inhibitor layers are sand-
wiched between the alternating positive and negative polyelectrolyte multilayers. 
The effective release of the corrosion inhibitor and the self-healing functionality of 
the polyelectrolyte multilayer depend on the type of the used polyelectrolytes 
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(weak/strong), the ionic strength of the polyelectrolyte solution, and the conforma-
tion of the polyelectrolyte multilayers (coiled/expanded).

The third approach utilized the electrically conductive polymers (ECPs) as 
potential class of the self-healing anticorrosive polymeric coatings. ECPs are redox-
active polymers and have the ability to sense the corrosion process by the accompa-
nied oxidation-reduction reactions. ECPs can immobilize the anionic corrosion 
inhibitors through doping/de-doping process. When corrosion is initiated, the metal 
substrate is oxidized at the defected site, and consequently, the ECP gains the 
released electrons and became the reduced state. As a result, the stored anionic 
inhibitor migrates to the defected site and provides a self-healing action.

Properties of certain self-healing coatings can be designed and fine-tuned by 
using a combination of the above discussed approaches. However, the development 
in the area of nanomaterial-based anticorrosive self-healing coatings is still in its 
early stage, and multidisciplinary collaboration is required to overcome both eco-
nomic and technical challenges for commercialization of this type of coatings. The 
applicable environmental conditions and the cost are very important criteria for 
marketing self-healing coatings. The technical challenges such as mechanical prop-
erties, adhesion, durability, and coating lifetime are essential factors for future 
investigation and improvement in this area.
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